
Beginning iOS
Game Center
and GameKit

For iOS, tvOS, and MacOS
—
Second Edition
—
Kyle Richter
Beau G. Bolle

Beginning iOS Game
Center and GameKit

For iOS, tvOS, and MacOS

Second Edition

Kyle Richter
Beau G. Bolle

Beginning iOS Game Center and GameKit: For iOS, tvOS, and MacOS

ISBN-13 (pbk): 978-1-4842-7755-3		 ISBN-13 (electronic): 978-1-4842-7756-0
https://doi.org/10.1007/978-1-4842-7756-0

Copyright © 2022 by Kyle Richter and Beau G. Bolle

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-7755-3. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Kyle Richter
Eagle River, AK, USA

Beau G. Bolle
Syracuse, USA

https://doi.org/10.1007/978-1-4842-7756-0

This book is lovingly dedicated to my wife Elizabeth,
who can always be found by my side and who has

provided endless patience and understanding of my
life choices and decisions, such as committing to

authoring additional books.

—Kyle Richter

Dedicated to my wife, Deborah, for always being
there to help me keep going and putting up with

many hours of rubber ducking.

—Beau G. Bolle

v

Table of Contents

Chapter 1: ��Getting Started with GameKit and Game Center������������������1

GameKit: An Overview��3

Networking���3

Game Center���4

Voice Chat���4

Sample Game: UFOs���4

UFOs: Understanding the Game��5

UFOs: Examining the Source Code���7

Setting Up the Accelerometer Delegate���9

Drawing the Player to the View��10

Setting Up Cows, Beams, and Scores���11

Adding Player Movements��12

Watching for Touch Events���13

Spawning and Moving Cows��16

Performing a Hit Test with a UIImage���20

Abducting a Cow��21

Configuring App Store Connect for Game Center���23

About the Authors���xiii

Acknowledgments���xv

Foreword: The Legend of Kyle, Game Hero��xvii

Introduction��xxi

vi

Getting Started with App Store Connect��24

Configuring Game Center in App Store Connect���26

Summary���27

Chapter 2: ��Game Center: Configuring and Getting Started������������������29

Creating a Game Center Manager Class��29

Authenticating with Game Center��31

Modifying the GameCenterManager Class���31

Authenticating from UFOViewController���33

Watching for Status Changes���37

Working with GKLocalPlayer��38

Game Center Friends���39

Working with Players���41

Summary���43

Chapter 3: ��Leaderboards���45

Why a Leaderboard?��46

An Overview of Leaderboards in Game Center��47

Benefits of Using Apple’s Leaderboard GUI vs. a Custom GUI������������������������48

Configuring a Leaderboard in App Store Connect��49

Recurring Leaderboards��55

Posting a Score��56

Adding Score Posting to UFOs���57

Handling Failures When Submitting a Score��60

Presenting a Leaderboard��65

Customizing the Leaderboard��68

Modifying GameCenterManager��71

Filtering Results on a Custom Leaderboard���72

Table of Contents

vii

Displaying the Custom Leaderboard���74

Local Player Score���75

A Better Approach��76

Game Center Groups��76

Summary���77

Chapter 4: ��Achievements���79

Why Achievements?���81

An Overview of Achievements in Game Center��82

Benefits of Using Apple’s Achievement GUI vs. a Custom GUI������������������������82

Configuring Achievements in App Store Connect���84

Presenting Achievements���90

Modifying Achievement Progress���92

Resetting Achievements��99

Adding Achievement Hooks���100

Achievement Completion Feedback���108

Custom Achievement GUI���111

Recovering from a Submit Failure��119

Summary���122

Chapter 5: ��Matchmaking and Invitations��123

Why Add Matchmaking and Invitations to Your App?���124

Common Matchmaking Scenarios���126

Creating a New Match Request���128

Presenting Match GUI��129

Handling Incoming Invitations��135

Auto-Matching���139

Matching Programmatically���140

Table of Contents

viii

Adding a Player to a Match��141

Reinvites��142

Player Groups���142

Player Attributes���144

Understanding Player Attribute Limitations��145

Working with Player Attributes���146

Player Activity��151

Using Your Own Server (Hosted Matches)��154

Summary���158

Chapter 6: ��Network Design Overview��159

Three Types of Networks��161

Peer-to-Peer Network���161

Client-to-Host Network���163

Ring Network��165

Less Common Networks��166

Reliable Data vs. Unreliable Data���168

Sending Only What Is Needed��171

Prediction and Extrapolation��173

Formatting Messages��174

Preventing Cheating and Preventing Timeout-Related Disconnections�������������175

What to Do When All Else Fails���176

Summary���177

Chapter 7: ��Exchanging Data��179

Modifying a Single-Player Game��179

Setting Up Our Engine for Multiplayer��180

Picking a Host���183

Table of Contents

ix

Sending Data��184

Receiving Data���189

Putting Everything Together���192

Selecting the Host��193

Displaying the Enemy UFO���195

Spawning Cows��199

Sharing Scores���204

Adding Network Abduction Code��206

Disconnections���214

Summary���215

Chapter 8: ��Turn-Based Gaming with Game Center����������������������������217

A New Sample Project���219

GKTurnBasedMatchmakerViewController��222

Establishing Game State��226

Starting a New Game���229

Making the First Move���233

GKLocalPlayerListener Extensions���238

Continuing a Game in Progress��239

Quitting and Forfeiting���242

Programmatic Matches��243

GKTurnBasedEventHandler��244

Summary���245

Chapter 9: ��Voice Chat��247

Voice Chat for Game Center���247

Creating an Audio Session��248

Creating New Voice Channels���249

Starting and Stopping Voice Chat���250

Table of Contents

x

Chat Volume and Muting��251

Monitoring Player State��252

Putting It Together��253

Hooking Up a User Interface��255

Summary���256

Chapter 10: ��In-App Purchase with StoreKit���������������������������������������257

Setting Up Your App in App Store Connect���259

Adding Products to Your App��265

App IDs and In-App Purchase���265

Setting Up���266

Retrieving the Product List���267

Presenting Your Products to the User���269

Purchasing a Product���271

Purchasing Code���272

Purchasing Multiple Items��273

Processing a Transaction��274

Restoring Previously Completed Transactions��277

Test Accounts and Testing Purchases��277

Signing In with a Test Account���278

Submitting a Purchase GUI Screenshot���278

Developer Approval��279

Tying Everything Together in UFOs���279

Summary���280

Chapter 11: ��Game Controllers��283

Types of Physical Game Controllers���283

Connecting to Game Controllers��284

Reading Data Through Polling��286

Table of Contents

xi

Data Callbacks���289

Pausing��291

Player Indicator Lights���291

Snapshotting��292

Virtual Controllers��292

Summary���295

Index��297

Table of Contents

xiii

About the Authors

Kyle Richter started writing code in the early

1990s on the Commodore 64 and soon after

progressed to a Mac SE. Since then, he has

been dedicated to working exclusively with

Apple products. Kyle is currently the CEO of

MartianCraft LLC, a custom mobile software

development shop. Kyle has been running

software development companies since 2004.

His company was behind the release of the

first iOS trivia game, as well as the first mobile game to support true

nonlocal multiplayer. His companies have been named to the Inc.

5000 fastest-growing companies in the world on three separate occasions.

Kyle has worked on notable projects for some of the largest brands in

the world. He is also a frequent speaker on software development and

entrepreneurship, speaking at more than 200 events across the globe.

In his spare time, he enjoys traveling, backcountry hiking, scuba diving,

and cooking. He can be found on Twitter at @kylerichter.

Beau G. Bolle has been tinkering with

technology as long as he can remember and

has over 20 years of professional software

development experience. He’s worked on a

wide variety of clients from startups to Fortune

500 companies on an even wider variety of

projects including audio tools; social media

apps; ecommerce, bug tracking, source control,

xiv

and CRM systems; and enterprise apps. As CTO of MartianCraft, he is

dedicated to creating an environment that fosters creativity and enables

people to do their best work. In his free time, Beau enjoys traveling,

camping, and hiking. He’s an avid tabletop gamer and has recently taken

up leatherworking.

About the Authors

xv

Acknowledgments

Writing this book would not have been possible without the support and

help of many people. Looking at the acknowledgments for any technical

book shows that while there may only be one author, there are dozens of

people needed to ship a technical book such as this. First, I would like to

thank Jordan Langille of One Toad Design for taking time out of his busy

schedule to provide the graphics for the sample program contained within.

I would like to extend a special thanks to everyone at MartianCraft

for doing their jobs so well and professionally that I was able to find the

available time to work on this book. In addition, I would like to extend a

special thanks to Beau G. Bolle for his help bringing this revised edition to

print.

Last but not least, I would like to thank the community as a whole.

Never before in my life have I met such a supportive, outstanding group

of people. From Cocoaheads and NSCoders to conferences and forums,

everyone has always been of the highest caliber. It is often said of the Apple

development community that two competing developers can be friends

and share code and secrets among each other. Whenever I got stuck on

a seemingly unsurmountable problem, there has always been someone

there to help me through it. Throughout all my years of development and

my travels across the globe, I have never met another group of people as

awesome as the Apple development community, without whom I may

have never shipped my first app.

xvii

Foreword: The Legend of
Kyle, Game Hero

By Brent Simmons for Kyle Richter's book on writing games

You picked up the right book. You’re awesome! You’re awesome and you

want to write games. Cool. If I wanted to learn to write games, what I’d do

is park myself at Kyle Richter’s house and make him teach me. But then

we’d get distracted, and some friends would be in town, and we’d end up

going out and I’d learn nothing. Lucky us, lucky you and me both—we have

this book. Whew.

Let me tell you a bit about the author. Folks in the developer

community will tell you that “Kyle Richter” is of course a pseudonym.

You may recognize the name from one of Tom Clancy’s novels: “Kyle

Richter” is a highly trained, highly experienced covert ops agent who

retired from service before turning 30 and who then made millions by

creating simulations—games—out of the tangles he encountered in

various undeclared theaters around the world and in low-earth orbit.

It’s obvious, if you think about it—the name “Kyle Richter” is a

transparent fiction. “Kyle” sounds like “Guile,” and “Richter” is obviously

a reference to earthquakes. A perfect name for a perfect game hero: smart,

cunning, and dangerous. However, in the interest of comprehensiveness,

I should point out that a small minority of people claim that “Kyle Richter”

is actually an elite group of Ninja Valley Girl programmers. This claim has

been investigated, and not a single shred of evidence has been found.

Nothing. Our top people have looked, I assure you.

xviii

“Which proves the point,” some say. “If they weren’t ninjas, there’d

be some evidence. Ergo, they’re ninjas.” (I should also point out that this

theory and this faulty logic come from designers, not programmers.

As Kyle would say: “I know, right?”)

Since I know Kyle personally, I can clear this up. Let’s take the

superficial qualities first: Kyle is built like Thor, but has a decided height

advantage. His cherry-red hair is so radiant you can tell when he’s coming

around the corner. Children, squirrels, and vegetarians often mistake his

face for the sun.

And then there’s the laugh, that laugh, which is, well, pleasant enough,

I guess.

Anyway, what’s important is his mind, how he thinks, how he

communicates. In a recent conversation with him, he recounted how he

handles firing employees and contractors. “The second I realize things

aren’t working out, then it’s over,” he says. (Kyle drags a hand across the

throat here. I recoil in horror until he assures me he’s just letting them seek

their bliss elsewhere.) “No point in dragging it out,” he says.

What that tells me is that he has no patience for nonsense, that he’s

highly practical, and that he has Vulcan-like emotional control. All of

which are superb characteristics in a teacher, especially for technical

topics. In other words, you want to learn how to write games without

having to wade through a bunch of fluff and nonsense. That’s where this

book comes in. (Fluff and nonsense are strictly relegated to this Foreword.

The rest of the book is information-packed and well-written.)

Not that Kyle is trigger-happy to fire people. He isn’t. Quite the

opposite. This industry is very short on talent, and Kyle, like everybody

else, works hard to find good iOS developers. There aren’t enough of

them—so please learn what’s in this book and help us all out!

At the same time, Kyle’s knowledge and the contents of this book go

beyond the merely technical. Kyle knows the history of games and what

makes some successful and others not. You have questions. (“Longevity.

Morphology. Incept dates.”) The book has answers.

Foreword: The Legend of Kyle, Game Hero

xix

•	 Does your game need a leaderboard? See Chapter 3.

•	 How awesome is it to add a multiplayer element to your

game? Find out in Chapter 5.

But the book is a technical book, and it has the goods, and the code

and the explanations—even for the newest APIs. Chapter 8, for instance,

talks about turn-based gaming via GameCenter. Not a ton of people

are expert at this yet, much less expert enough to write about it. Kyle is,

though, and it’s in the book.

If, in the end, it turns out that Kyle is “just this guy, you know?”—and

a good sport who’s fun to tease, and not actually Thor-like—it doesn’t

matter, because this book is a gold mine. And I’m proud of him.

In the eternal words of George Clinton: “Nothing is good unless you

play with it.” By which I mean: read, learn, and play. The book is technical,

but the things you make will be for play, and making those things should

be like playing. Have fun!

In the immortal, sunny words of Kyle Richter (or “Kyle Richter”):

“I know, right?”

Foreword: The Legend of Kyle, Game Hero

xxi

Introduction

iOS is by far the most popular development platform in the world. With

changes to how apps are developed on Apple TV and MacOS, sharing

code between platforms has never been easier. As all of these platforms

continue to skyrocket in popularity, adding additional rich features to your

software is more important than ever. Game Center and GameKit provide

an easy path for adding advanced functionality to your software with only

a fraction of the work in the past.

�Prerequisites
This book assumes that you have the basic skills and understanding

required to create an iOS, Mac, or Apple TV app. The book also assumes

that you have the background necessary to work with Xcode 13 or newer.

There will be no primer on how to define methods and variables, install

and launch Xcode, or create and work with new projects or classes. There

are many excellent books on those topics such as Beginning iPhone

Development with Swift by Apress. When you feel comfortable that you

are ready to begin working with some of the more advanced framework

technologies such as Game Center and GameKit, we assume that you have

the basics mastered to a degree that allows you to move through this book

without consulting other texts for help.

xxii

�How This Book Is Organized
As you begin working through this book, you will notice that it is broken

down into stand-alone chapters. Every effort has been made so that each

chapter can be read independently of the others. If you have no experience

with Game Center or GameKit yet, it is highly recommended that you read

the first two chapters before skipping around, as they will provide you with

the basic information on how to get Game Center and GameKit up and

running in your development environment.

Each chapter follows along with a simple sample iOS game that is

introduced in Chapter 1. Following along with the book from start to finish

will walk you through the process of creating a fully functional Game

Center– and GameKit-leveraged iOS game. In addition, each chapter will

build onto a Game Center Manager class that is designed to be reusable

across all of your projects.

If you already have a background in Game Center and GameKit and

are looking for help on a specific technology, each chapter is designed to

walk you through its covered technology, as well as provide samples on

how to apply the technology to your software.

�Required Software, Materials,
and Equipment
To develop iOS, MacOS, or Apple TV software—and more specifically

Game Center– and GameKit-based software—you will first need an Intel-

based or ARM Mac computer running MacOS 11 (Big Sur) or newer. While

you can develop on older versions of MacOS, it will not support the most

up-to-date release of Xcode. You will also need a copy of Xcode, which you

can download for free from the Mac App Store or at http://developer.

apple.com. This book has been targeted to work with iOS 15.

Introduction

http://developer.apple.com
http://developer.apple.com

xxiii

In addition to the software and hardware requirements, you will also

need a developer account provided by Apple. This account lets you build

and test software on devices, as well as ship your finished product to

the App Store. The software developer account is available for $99 USD

a year and you can purchase yours at https://developer.apple.com/

programs/.

Introduction

https://developer.apple.com/programs/
https://developer.apple.com/programs/

1© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_1

CHAPTER 1

Getting Started
with GameKit
and Game Center
Welcome to Beginning iOS Game Center and GameKit! This book is

designed to walk you through the process of adding GameKit and Game

Center functionality into your iOS, Mac, or Apple TV apps and games. It is

centered around a sample game built for iOS that you will be introduced to

later in this chapter. You will find that most of the instructions are universal

between platforms; however, if there is specific behavior for a platform

other than iOS, they will be called out in the text.

If you have an existing app or game that you want to add GameKit or

Game Center functionality to, you may substitute that project instead; I will

try to use the most generic approach possible throughout the forthcoming

chapters to make the functionality easy to implement.

This book is written as a reference and resource to aid you in the

process of adding social gaming functions into your iOS, Mac, or Apple TV

app. While I recommend you follow along from beginning to end to gain

the most knowledge of the covered technologies, it is not a requirement.

Every chapter is designed to stand on its own. You can skip ahead to the

chapters that cover the material that is relevant to your project and quickly

implement them into your software.

https://doi.org/10.1007/978-1-4842-7756-0_1#DOI

2

When Apple announced GameKit on March 17, 2009, it was presented

as an answer to the often-frustrating game style networking on iOS devices,

which, until this point, had been challenging to say the least. GameKit

added support for Bluetooth and local area network (LAN) as well as voice

chat services. Shortly after, Apple announced the Game Center addition to

GameKit as part of iOS 4.0. With the new SDK, Apple brought a wealth of

new features—the Game Center being the most important to the scope of

this book. Game Center largely stood untouched without major updates

until 2020 when Apple released a significant update to the Game Center

and GameKit frameworks.

Developers in the community have a tendency to think of Game Center

as a stand-alone set of Application Programming Interfaces (APIs). This is

a fallacy. Game Center is an integral part of GameKit. The two complement

one another and work hand in hand. You will see an abundance of

evidence of this in the following pages. For the purpose of this book, we are

going to address both of these technologies together as GameKit; however,

we may still refer to Game Center–specific functionality by its proper name.

Note  Despite their names, GameKit and Game Center are not
designed for just games. Apple has in the past cracked down on
Game Center technology being used in nongames. Some developers
have received the following type of rejection email from Apple:

“The intended use of Game Center is to complement game apps or
game functionality within an app. However, we noticed that your app
does not contain any game play or game features.”

These rejections seem to apply mainly toward the use of
leaderboards and achievements in nongaming apps. The argument
can easily be made that adding a leaderboard or achievement system
to your app adds a gameplay element. If you happen to receive this

Chapter 1 Getting Started with GameKit and Game Center

3

rejection, you still have the option of appealing it. There haven’t been
any instances of rejection for using GameKit networking in any app to
my knowledge. However, when dealing with guidelines for App Store
approval, you should always consult the latest Developer Guidelines
made available by Apple.

�GameKit: An Overview
GameKit can be broken up into three individual sections: networking,

Game Center, and voice chat. Though all of these services work together

to create a single seamless environment, it can be helpful to look at each

individually. While there might be overlap between sections, such as

networking and Game Center, each section of GameKit can be broken

down into a primary category. While these sections are not differentiated

in the API, you may find it is useful to keep them separate while learning

GameKit development.

�Networking
Networking in GameKit allows you to send and receive data between

“peers.” GameKit networking also provides a connection protocol to

connect to local clients that are found on your Wi-Fi network or locally

using Bluetooth.

GameKit supports creating an ad hoc Bluetooth or local wireless

network between two iOS devices; Game Center matchmaking also

supports networking over the Internet supporting up to 16 players at once.

GameKit networking is covered in Chapters 6, 7, and 8. Game Center

matchmaking is covered in Chapter 5.

Chapter 1 Getting Started with GameKit and Game Center

4

�Game Center
Game Center itself handles authentication, friends, leaderboards,

achievements, and invitations. In a sense, Game Center is providing the

server services that are related to social interaction. It can also be argued

that Game Center contains its own networking system. While this is true,

we will be grouping that topic in the preceding section on networking,

which is covered extensively in Chapter 5. Game Center technologies, such

as leaderboards and achievements, are covered in Chapters 3 and 4.

Note  Game Center, in various articles of print and reference
documentation, sometimes refers to the collective set of Game Center
APIs as well as to the Game Center app itself.

�Voice Chat
“Game Voice,” as Apple often refers to it, allows any app (not just games)

to provide voice communication over a network connection, commonly

known as VOIP. The APIs handle the entire listening and playback of

audio feeds for the user and provide services to handle connections,

communications, errors, and disconnections. This technology is discussed

in Chapter 10.

�Sample Game: UFOs
In my experience, most developers are “experience-type” learners. This

means that they learn best by doing, not by watching or listening. When I

first started to learn how to program, I would copy source code out of code

magazines line by line into a Commodore 64. The experience of physically

typing in each line of code is what I believe made the information stick.

Chapter 1 Getting Started with GameKit and Game Center

5

Listening to a lecture or watching someone else write code prevented me

from retaining a good deal of the information. I can’t imagine I would have

stayed with this career path if lectures and demonstrations were my only

ways of learning. This book is designed in the spirit of other experience-

type learners.

The first thing we cover, before moving into GameKit itself, is working

with the supplied sample game. The game, which we call “UFOs,” is

designed not to be an award-winning, addictive game, but rather to be

simple enough that it can be thought of as any generic project. I have made

every effort to reduce the amount of code to less than 300 lines. Although

the game itself is simple, I feel that it is vital that every reader understands

the code as if they wrote it themselves. This will allow you, as the reader, to

detach yourself from the project itself and focus on the GameKit-specific

information. We will start by playing the game and then looking at the

source code.

Note  The source code for all the chapters, as well as the sample
project, is available at www.apress.com.

�UFOs: Understanding the Game
The first thing you need to do is open the base project that you

downloaded from apress.com. Figure 1-1 shows the file structure for the

project. We’ll quickly run the game to see what it’s like.

Chapter 1 Getting Started with GameKit and Game Center

http://www.apress.com
http://apress.com

6

To play the game, select Run from Product Menu bar. The game will

launch to a generic screen with one button labeled “Play.” Go ahead and select

the Play button. You will be taken to the game screen, as seen in Figure 1-2;

this screen may vary slightly depending on your selected test device.

The objective of the game is both typical and simple; tilt the device

up/down or left/right to move your ship around the screen. Once you are

positioned over a cow, tap anywhere on the screen and hold until the cow

has been abducted. You are awarded one point for every cow you abduct.

Like all the best games, there is no ending or way to “win.” Every time you

abduct a cow, a new one will be spawned.

Figure 1-1.  The file structure for the UFO sample project, as seen by
the Finder

Chapter 1 Getting Started with GameKit and Game Center

7

Now that you understand how the gameplay works, you can take a look

at the source code that makes everything happen.

�UFOs: Examining the Source Code
In your group tree, you will see the four class files we will be working with:

AppDelegate.swift, SceneDelegate.swift, GameViewController.swift,

and HomeViewController.swift. The group tree is shown in Figure 1-3.

You will also notice a Main.storyboard file which contains the user

interface elements of the project.

Figure 1-2.  A look at the gameplay view from the UFOs sample project

Chapter 1 Getting Started with GameKit and Game Center

8

First, take a look at the AppDelegate.swift and SceneDelegate.swift

files. These files should look familiar to you from other swift development

works. They are nothing more than a base UIApplicationDelegate and

UIWindowSceneDelegate subclass. If you need to familiarize yourself with

the code found here, take a look at Apple’s sample code for new projects.

The next group of files is also relatively simple; take a look at

UFOViewController.h and UFOViewController.m. These are the

associated classes for the landing or home screen. All that we have

here right now is a Play button, but we will be adding leaderboards,

achievement, and multiplayer controls to this view as we progress through

this book.

Finally, we will be working with UFOGameViewController.m. This is the

main class that will be powering all gameplay and where the majority of

the GameKit functionality will be added.

Figure 1-3.  A look at the group tree structure for the sample project
from within Xcode

Chapter 1 Getting Started with GameKit and Game Center

9

�Setting Up the Accelerometer Delegate
The first thing our sample project needs to do is set itself up to detect

accelerometer motion; the game will use this motion to move the players’

spaceship. This code is found at the top of the GameViewController file.

Take a look at the following code snippet, which is discussed in detail next:

private let motionManager = CMMotionManager()

override func viewDidLoad() {

 super.viewDidLoad()

 motionManager.accelerometerUpdateInterval = 0.05

 �motionManager.startAccelerometerUpdates(to:

OperationQueue.current!) { (accelerometerData, error) in

 �self.motionOccurred(with: accelerometerData ??

CMAccelerometerData())

 if error != nil {

 print(error.debugDescription)

 }

 }

}

The first thing we do is set motionManager to CMMotionManager();

this gives us a handy reference back to the main CMMotionManager.

Next, viewDidLoad is overrode and code is added to set the accelerometer

to test for new motion data every 1/20th of a second and then to call

motionOccurred with the updated data, which we will discuss shortly.

If there are any errors, they are then printed to the console.

Chapter 1 Getting Started with GameKit and Game Center

10

Next, take a look at the additional variable definitions. Let’s break this

down into sections to understand exactly what is going on here:

private var movementSpeed = 15.0

private var accelerometerDamp = 0.3

private var accelerometer0Angle = 0.6

Here we set some class variables to hold onto some data that we

will need when we begin to process the accelerometer input. We will

be working with these variables again when we start to deal with ship

movement. For now, you don’t need to understand exactly what they are

doing, just that they have been set.

�Drawing the Player to the View
Next, we need to create our “player.” At the top of the class file, you will find

a definition for the playerImageView in which a share and initial starting

position is first defined.

private let myPlayerImageView = UIImageView(frame: CGRect(x:

100, y: 70, width: 80, height: 34))

Shifting our focus back into the viewDidLoad function, you will find

the following additional code snippet:

myPlayerImageView.animationDuration = 0.75

myPlayerImageView.animationImages = [

 UIImage(named: "Saucer1")!,

 UIImage(named: "Saucer2")!

]

myPlayerImageView.startAnimating()

view.addSubview(myPlayerImageView)

Chapter 1 Getting Started with GameKit and Game Center

11

The next four lines of code are a little-known but very useful part of

UIImageView. We are setting an array of images that the UIImageView will

cycle through. In this example, we are setting two images to be rotated

through. We also specify how long we want the full animation to take

(3/4 of a second for our purposes) and the number of times we want the

animation to repeat. Once we have set up the animation details, we call

startAnimating() on the myPlayerImageView UIImageView. Then, all that

is left for us to do is add the UIImageView subview to the main view. Now

we have a player on the screen that is animating!

�Setting Up Cows, Beams, and Scores
We have some objects to initialize and need to set up our score label.

private var cows: [UIImageView] = []

private let tractorBeamImageView = UIImageView()

private var score = 0

Once the variables are set up, we can once again turn our attention to

the viewDidLoad function and set the score variable we just defined to a

label that was created in the interface file.

scoreLabel.text = formatted(score: score)

for _ in 0..<7 { spawnCow() }

updateCowPaths()

The last thing we need to do in our viewDidLoad function is create

some cows for placement on the screen. I have created a helper function to

spawn these cows. Every time it is called, it will create a new cow and place

it on the screen. We will take a look at this a little later in this section. We

also call another helper function to update the walking path for the cows.

Again, we will look at this function in more detail later.

Chapter 1 Getting Started with GameKit and Game Center

12

�Adding Player Movements
That takes care of all our initialization and setup code. Now we can move

into the more exciting parts of the game. First, we look at user input and

actions and then the gameplay functionality.

func movePlayer(_ vertical: Double, _ horizontal: Double) {

 var vertical = vertical

 var horizontal = horizontal

 vertical += accelerometer0Angle

 if vertical > 0.50 {

 vertical = 0.50

 } else if vertical < -0.50 {

 vertical = -0.50

 }

 if horizontal > 0.50 {

 horizontal = 0.50

 } else if horizontal < -0.50 {

 horizontal = -0.50

 }

 var playerFrame = myPlayerImageView?.frame

 �if (vertical < 0 && (playerFrame?.origin.y ?? 0.0) <

120) || (vertical > 0 && (playerFrame?.origin.y ?? 0.0)

> 20) {

 �playerFrame?.origin.y -= CGFloat(vertical *

movementSpeed)

 }

Chapter 1 Getting Started with GameKit and Game Center

13

 �if (horizontal < 0 && (playerFrame?.origin.x ?? 0.0) <

440) || (horizontal > 0 && (playerFrame?.origin.x ??

0.0) > 0) {

 �playerFrame?.origin.x -= CGFloat(horizontal *

movementSpeed)

 }

 myPlayerImageView?.frame = playerFrame ?? CGRect.zero

}

The preceding function is much simpler than first glance would imply.

The first chunk of code sets our maximum speed; we don’t want the player

to be flying around the screen too fast. The next section of code ensures

that the user cannot move their UFO off the screen. Once we have checked

both of these safety nets, we update the player’s frame and move the UFO.

�Watching for Touch Events
The next aspect of the game that we need to worry about is touch events.

We will be using a touch to initiate and control the tractor beam. The first

step is overriding the touchesBegan event.

override func touchesBegan(_ touches: Set<UITouch>, with event:

UIEvent?) {

 currentAbductee = nil

 tractorBeamOn = true

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers("$beginTractorBe

am", reliable: true)

 }

Chapter 1 Getting Started with GameKit and Game Center

14

 �tractorBeamImageView?.frame = CGRect(x:

(myPlayerImageView?.frame.origin.x ?? 0.0) + 25, y:

(myPlayerImageView?.frame.origin.y ?? 0.0) + 10, width:

28, height: 318)

 tractorBeamImageView?.animationDuration = 0.5

 tractorBeamImageView?.animationRepeatCount = 99999

 �let imageArray = [UIImage(named: "Tractor1.png"),

UIImage(named: "Tractor2.png")]

 �tractorBeamImageView?.animationImages = imageArray.

compactMap { $0 }

 tractorBeamImageView?.startAnimating()

 if let tractorBeamImageView = tractorBeamImageView {

 view.insertSubview(tractorBeamImageView, at: 4)

 }

 let cowImageView = hitTest()

 if let cowImageView = cowImageView {

 currentAbductee = cowImageView

 abductCow(cowImageView)

 }

}

We first clear out the pointer to the current abducted cow. This

value should be nil already, but it is best to be diligent. We then set

a BOOL for whether the tractor beam is on to true/yes. At this point,

we need to draw the tractor beam. To do this, we set the frame for our

tractorBeamImageView to where the player’s UFO is currently located.

We will be using the same animation shortcut that was demoed earlier in

this section to animate the tractor beam. We then add the tractor beam

imageView to the main view; we use an insertSubview function here to

Chapter 1 Getting Started with GameKit and Game Center

15

make sure the tractor beam is below the cows but above the background.

Then we call our hitTest function, which we will look at a little later in this

chapter. If we get a result back from the hitTest, we call our abductCow

function.

Before we can move on to the hitTest and abductCow functions, we

must first finish handling our touch events. The only other touch event

that we are concerned with at this point is the touchesEnded delegate call.

When the user removes their finger from the screen, we want to remove

the tractor beam from the view and let the user resume their movement.

override func touchesEnded(_ touches: Set<UITouch>, with event:

UIEvent?) {

 tractorBeamOn = false

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers("$endTractorBeam",

reliable: true)

 }

 tractorBeamImageView?.removeFromSuperview()

 if let currentAbductee = currentAbductee {

 UIView.animate(

 withDuration: 1.0,

 delay: 0,

 �options: [.curveEaseIn, .beginFromCurrentState],

 animations: {

 var frame = currentAbductee.frame

 frame.origin.y = 260

 �frame.origin.x = (self.myPlayerImageView?.

frame.origin.x ?? 0.0) + 15

Chapter 1 Getting Started with GameKit and Game Center

16

 currentAbductee.frame = frame

 }

)

 }

 currentAbductee = nil

}

Set the state variable for the tractorBeamOn to NO. Then we can remove

the tractor beam image from the view. The next section of code drops the

cow back to the ground (if there was one midway in the air). To do this, we

just begin a simple animation where we return the cow to ground level.

The last thing we need to do is reset the currentAbductee pointer to nil.

�Spawning and Moving Cows
As mentioned earlier in this chapter, we also have a convenience function

to spawn a new cow. This is the function we call from viewDidLoad to

give the player a base number of cows to try and abduct; we also call this

whenever we are finished abducting a cow.

 func spawnCow() {

 let x = Int(arc4random() % 480)

 �let cowImageView = UIImageView(frame: CGRect(x:

CGFloat(x), y: 260, width: 64, height: 42))

 cowImageView.image = UIImage(named: "Cow1.png")

 view.addSubview(cowImageView)

 cowArray?.append(cowImageView)

}

Chapter 1 Getting Started with GameKit and Game Center

17

Tip  Arc4Random() will return a random number the same way
that rand() or random() will but will automatically seed itself if it is
the first time it is being called.

We create a new imageView that will represent the cow. We then use an

arc4Random() function to produce a random x position. We set the image

that the cow will be using and add it to the main view. The last thing we

need to do here is add the imageView to our cow array. We will be using

this for a hit test as well as updating the movement paths.

While UFOs is not designed to be an extremely challenging game, we

do want to add at least some aspects of difficulty to the gameplay. The

following function will cause our cows to randomly wander around the

screen:

func updateCowPaths() {

 for x in 0..<(cowArray?.count ?? 0) {

 let tempCow = cowArray?[x] as? UIImageView

�if tempCow != currentAbductee && tempCow != otherPlayer

CurrentAbductee {

 �let currentX = Float(tempCow?.frame.origin.x

?? 0.0)

 �var newX = currentX + Float

(arc4random() % 100) – 50

if newX > 480 {

 newX = 480

}

if newX < 0 {

 newX = 0

}

Chapter 1 Getting Started with GameKit and Game Center

18

 if tempCow != currentAbductee {

 UIView.animate(

 withDuration: 3.0,

 delay: 0,

 options: [.curveLinear],

 animations: {

 �tempCow?.frame = CGRect(x:

CGFloat(newX), y: 260,

width: 64, height: 42)

 }

)

 }

 tempCow?.animationDuration = 0.75

 tempCow?.animationRepeatCount = 99999

 //flip cow

 if newX < currentX {

 �let flippedCowImageArray =

[UIImage(named: "Cow1Reversed.png"),

UIImage(named: "Cow2Reversed.png"),

UIImage(named: "Cow3Reversed.png")]

 �tempCow?.animationImages =

flippedCowImageArray.compactMap { $0

}

 } else {

 �let cowImageArray = [UIImage(named:

"Cow1.png"), UIImage(named: "Cow2.

png"), UIImage(named: "Cow3.png")]

 �tempCow?.animationImages =

cowImageArray.compactMap { $0 }

 }

Chapter 1 Getting Started with GameKit and Game Center

19

 tempCow?.startAnimating()

 }

 }

 //change the paths for the cows every 3 seconds

 �DispatchQueue.main.asyncAfter(deadline: .now() +

3, execute: {

 self.updateCowPaths()

 })

}

We will need to cycle through our array of cow objects. We do this

on the first line of the preceding function. We then randomize a new x

position for the cow. A quick check ensures we are not instructing the cow

to walk off the screen. Then we commit the animation. We also need to

handle the direction change for the cow.

Note  The code that we use to handle that event is not the most
efficient manner of flipping an image, but it is the easiest to learn if
you are new to this type of game.

As we had previously done with the tractor beam and the UFO images,

we will add some animation frames so the cow walks more realistically.

The last thing we do is call performSelector with a delay of three seconds.

This will update the cow’s path every three seconds, adding a more

realistic appearance of random movement.

Chapter 1 Getting Started with GameKit and Game Center

20

�Performing a Hit Test with a UIImage
Before we can worry about how to set up the cow abduction, there are

preliminary steps for abducting the cow itself. For starters, we must

implement a hitTest function that was previously being called from the

touchesBegan event that was discussed earlier in this section.

func hitTest() -> UIImageView? {

 if !tractorBeamOn {

 return nil

 }

 for x in 0..<(cowArray?.count ?? 0) {

 let tempCow = cowArray?[x] as? UIImageView

 let cowLayer = tempCow?.layer.presentation()

 let cowFrame = cowLayer?.frame

 �if cowFrame?.intersects(tractorBeamImageView?.frame

?? CGRect.zero) ?? false {

 tempCow?.frame = cowLayer?.frame ?? CGRect.zero

 tempCow?.layer.removeAllAnimations()

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers(String(for

mat: "$abductCowAtIndex:%i", x), reliable:

true)

 }

 return tempCow

 }

 }

 return nil

 }

Chapter 1 Getting Started with GameKit and Game Center

21

The first line is another sanity check to ensure that we are not calling

the hitTest function when the tractorBeam is not on. Once we make sure

we are supposed to be checking for the hit, we iterate through our array of

cow objects. Since the cows are in the middle of an animation, we cannot

rely on the data from the frame, as it will show where the cow will end up

and not where the cow currently is.

To determine where the cow currently is, we ask for the

presentationLayer. Core Graphics provides a useful function for testing

whether two GCRects intersect, and that is what we will be using here. If

we hit a cow, we return the object. If we get to the end of our loop without

passing a hit test, we return nil, which lets us know that no cow was

hit by the tractor beam.

Tip  presentationLayer can be called on any CALayer to
provide a best guess on the current values of a layer that is currently
in the process of being animated. While it does not absolutely
guarantee the current position of the animation, it provides a good-
enough solution for our game.

�Abducting a Cow
In our touchesBegan function, we tested to see if hitTest returned a cow.

If it did, we call abductCow with the object that was returned. We can now

take a look at that function.

func abductCow(_ cowImageView: UIImageView?) {

 UIView.animate(

 withDuration: 4.0,

 delay: 0,

 options: [.curveEaseIn, .beginFromCurrentState],

Chapter 1 Getting Started with GameKit and Game Center

22

 animations: {

 var frame = cowImageView?.frame

 �frame?.origin.y = self.myPlayerImageView?.frame.

origin.y ?? 0.0

 cowImageView?.frame = frame ?? CGRect.zero

 },

 completion: finishAbducting

)

}

We begin an animation event on our cow object (which is an

imageView). We also set a completion handler, which will be called once

the animation has finished. We set the new y axis coordinate for the cow to

our UFO’s current y axis coordinate and begin the animation.

Once the animation has stopped, we get a callback to

finishAbducting. This allows us to increase the score, clean up the

abducting code, and spawn a new cow.

func finishAbducting(_ finished: Bool) {

 if currentAbductee == nil || !tractorBeamOn {

 return

 }

 �cowArray = cowArray?.filter({ ($0) as AnyObject !==

(currentAbductee) as AnyObject })

 tractorBeamImageView?.removeFromSuperview()

 tractorBeamOn = false

 score += 1

 scoreLabel.text = String(format: "SCORE %05.0f", score)

Chapter 1 Getting Started with GameKit and Game Center

23

 currentAbductee?.layer.removeAllAnimations()

 currentAbductee?.removeFromSuperview()

 currentAbductee = nil

 spawnCow()

 }

At the beginning of the function, we check to see that the tractor beam

is still on and that we have an abductee, once again just for some extra

sanity and error checking. Just as we did when the user released their

touch from the screen, we also want to remove the tractor beam image

from the view and correctly set the state variables. We award the user with

a single point for abducting each cow, and we update the scoreLabel

accordingly. We clean up the old cow image and set it back to nil. Now we

spawn a new cow to replace the abducted one.

�Configuring App Store Connect for Game Center
Before your swift app or game can access any of the Game Center

functionality, it will need to be configured in App Store Connect, formerly

called iTunes Connect. Apple uses this portal as its main source for app

configuration. Such functionality as in-app purchase (IAP), TestFlight, and

Game Center requires App Store Connect configuration.

Note  You can still use any stand-alone GameKit functionality
without setting up Game Center for your app. See Chapters 6, 7, 8,
and 10 for more information on GameKit’s stand-alone functionality.

Chapter 1 Getting Started with GameKit and Game Center

24

�Getting Started with App Store Connect
If you have never uploaded an app to the App Store, you might be

unfamiliar with the App Store Connect portal. However, if you have worked

with App Store Connect previously, you might want to skip to the next

section, as this will be refresher for you.

App Store Connect is a web portal accessed from any web browser at

https://appstoreconnect.apple.com. You will use your existing AppleID,

which you registered as a developer with, to gain access to the portal. This

is the same web application that you will use when you want to upload

new apps for sale on the App Store, as well as make any changes to them,

such as price or description. A view of the landing page for App Store

Connect can be seen in Figure 1-4.

Figure 1-4.  A view of App Store Connect taken November 2020

Chapter 1 Getting Started with GameKit and Game Center

https://appstoreconnect.apple.com

25

When you log in to App Store Connect, you will be presented with a

wealth of options. The most important of these is setting up your contracts,

tax, and banking information. While these requirements do not have

anything to do with Game Center per se, it is good to get them out of the way.

It may take weeks for Apple to process this information, so submit it

as soon as possible. Until this information is processed and approved,

you will be unable to release software on the App Store. Once you have

completed all the requested information under this section, you can focus

on the app development itself.

Note  If you plan on releasing only free apps, you do not need to
complete the paid apps contracts. However, if you plan on releasing
any paid software in the future, these should be completed as soon
as possible.

Before you can access any Game Center–specific information, you

will need to create a new (or use an existing) app. This is a straightforward

process that you will be walked through in App Store Connect. You begin

under the My Apps section; there you will find a small plus button near

the web page title in the upper left corner. The rest should be fairly self-

explanatory.

If you are not yet ready to upload an app, you can create placeholder

data here to gain access to the Game Center portal. Once your app has

been created in App Store Connect, you can begin to configure the Game

Center–specific information.

Caution  If you create an app and fail to upload a release build
within 90 days, Apple will delete the app information and restrict you
from creating a new app with the same name in the future. This is an
effort to prevent people from “domain squatting” app names.

Chapter 1 Getting Started with GameKit and Game Center

26

�Configuring Game Center in App Store Connect
Once you have selected your app from within App Store Connect, you will

see a view similar to the screen capture in Figure 1-5, shown later in this

section. If you direct your attention to navigation bar, you will notice a

features item; this is where Game Center items will be configured.

If you are familiar with in-app purchase in previous apps, this area

will seem very familiar to you. The process for configuring IAP is similar to

working with Game Center.

Once you navigate to the features area for the app, you will be given an

option to add challenges, new leaderboards, or achievements. We focus on

these options more in later chapters (Chapter 3 covers leaderboards, and

Chapter 4 covers achievements). For now, all we need to do is ensure that

our app is set up and ready for Game center functionality to be added.

Figure 1-5.  The first view of the Game Center portal for a new App

Chapter 1 Getting Started with GameKit and Game Center

27

Make sure to check off the Game Center functionality under the

General App Information on the first tab (“App Store” on your new app),

otherwise your App may not register as having Game Center functionality.

Tip  If you are having difficulty getting your app to acknowledge
Game Center, the most likely culprit is one of two common issues.
Make sure your app is using the same bundle ID that is shown in the
App Info page. The second issue may be that you have not let enough
time pass. There can be up to a 30-minute delay between making
changes in App Store Connect to Game Center and having the app
notice those changes.

�Summary
You should now have a basic understanding of what GameKit and Game

Center have to offer, as well as an in-depth understanding of the sample

project you will be working with throughout the course of this book.

Additionally, you should now be comfortable setting up a new app in App

Store Connect for use with Game Center.

In the upcoming chapters, you will learn how to incorporate all the

functionality of Game Center and GameKit into an app. In the next chapter,

you will learn how to get Game Center incorporated into a project.

Chapter 1 Getting Started with GameKit and Game Center

29© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_2

CHAPTER 2

Game Center:
Configuring and
Getting Started
In the last chapter, we learned how to configure Game Center in App Store

Connect and began working with the sample project, UFOs. In this chapter,

we will discuss integrating Game Center into our app and get our hands

dirty with some code.

You will learn how to detect Game Center compatibility, explore the

limitations of the sandbox, authenticate a local player, work with sessions,

and retrieve a friends list. You will also create the Game Center Manager

class that we will be working with and expanding throughout the rest of the

book.

�Creating a Game Center Manager Class
When Game Center was first released, it was important to test for

compatibility before implementing it; however, Game Center has readily

been available across all our platforms for years, and unless you plan on

targeting very old devices, there is no longer a need to make sure a device

is running it. On our way to implementing Game Center functionality,

https://doi.org/10.1007/978-1-4842-7756-0_2#DOI

30

the first thing we need to do to perform this check is to create our

new GameCenterManager class. We will use this class throughout the

remainder of this book to keep our Game Center functionality in one

easy-to-access class. This class will house all of our Game Center–specific

code and callbacks and can be easily shared and reused across all of

your apps.

First, create a new Swift file in Xcode; name the new class

GameCenterManager, as shown in Figure 2-1. You will also want to add the

GameKit.framework to your project at this time, as well as add the import

GameKit line to the top of the newly created GameCenterManager class.

Figure 2-1.  Creating the GameCenterManager Class

Chapter 2 Game Center: Configuring and Getting Started

31

�Authenticating with Game Center
Before doing anything with Game Center, you first need to authenticate

the user. The user who is authenticated with Game Center will always

be referred to as the local player and will be represented by the class

GKLocalPlayer. Failing to authenticate a local user before making calls to

other Game Center functionality will result in errors and other undefined

behaviors.

Apple recommends that you authenticate with Game Center as early

as possible in your app. The primary reason to authenticate before the

user needs to access any Game Center behavior is to ensure that the user

is not waiting for the network callbacks to authenticate a user at a time

when they want to perform a Game Center action. Early authentication

also makes sure that the user is not prompted for a login in the middle

of gameplay, which would detract from the user experience. There are

additional benefits of authenticating before the user may need to that we

will explore in upcoming chapters, such as resubmitting high scores that

failed to submit at an earlier time.

�Modifying the GameCenterManager Class
Handling authentication requires additional code to the

GameCenterManager class. This is done by expanding on the

GameCenterManager struct. The first step is to define a new function

to handle the authentication; we will call this authenticateLocalUser. A

completion handler is defined as the calling view controller; this will allow

us to report errors and successes back to the main game. Next, a quick

sanity check is done to make sure that the local player authentication

handler isn’t already defined, and then define it as the calling view

controller.

Chapter 2 Game Center: Configuring and Getting Started

32

class GameCenterManager: UIViewController,

GKMatchmakerViewControllerDelegate, GKLocalPlayerListener,

UIAlertViewDelegate {

 func authenticateLocalUser(_ controller: UIViewController?) {

 let localPlayer = GKLocalPlayer.local

 if localPlayer.isAuthenticated == false {

 �localPlayer.authenticateHandler = { [weak self]

viewController, error in

 guard let self = self else {

 return

 }

 if let viewController = viewController {

 �controller?.present(viewController,

animated: true)

 }

 if localPlayer.isAuthenticated {

 localPlayer.unregisterListener(self)

 self.submitAllSavedScores()

 self.submitAllSavedAchievements()

 �DispatchQueue.main.asyncAfter(deadline:

.now() + 3) { [weak self] in

 self?.populateAchievementCache(nil)

 }

 GKLocalPlayer.local.register(self)

 }

 �self.playerDelegate?.processGameCenter

Authentication(error)

 }

 }

 }

Chapter 2 Game Center: Configuring and Getting Started

33

Tip D on’t forget to import the GameKit framework, otherwise,
GKLocalPlayer will be undefined.

�Authenticating from UFOViewController
The preceding function will serve as a helper for authenticating with Game

Center. While the Game Center Manager code has been configured to log

the player in, your app needs to call this new function. You will need to

swift your attention back to the HomeViewController, which is the view

controller that the game launches to, before any gameplay begins. The

following code can be added into the viewDidLoad function:

func authenticateLocalUser(_ controller: UIViewController?) {

 let localPlayer = GKLocalPlayer.local

 if localPlayer.isAuthenticated == false {

 �localPlayer.authenticateHandler = { [weak self]

viewController, error in

 guard let self = self else {

 return

 }

 if let viewController = viewController {

 �controller?.present(viewController, animated:

true)

 }

 if localPlayer.isAuthenticated {

 localPlayer.unregisterListener(self)

 self.submitAllSavedScores()

 self.submitAllSavedAchievements()

 �DispatchQueue.main.asyncAfter(deadline:

.now() + 3) { [weak self] in

Chapter 2 Game Center: Configuring and Getting Started

34

 self?.populateAchievementCache(nil)

 }

 GKLocalPlayer.local.register(self)

 }

 �self.playerDelegate?.processGameCenter

Authentication(error)

 }

 }

}

The first line of code calls the authenticateLocalUser function from the

Game Center Manager. After that, an error check is performed before the

login view controller is shown. In the event that an error is encountered,

we present the user with an alert window letting them know about

the error. If there was no error, then the Game Center Login screen is

presented.

Game Center handles the required login views and authentication

as well as any account creation at this point. However, we do need to

watch our authentication completion handler in order to catch any errors

encountered while authenticating.

Caution I f you have cancelled a Game Center login three or more
times from within an app, you will not be able to sign in from that app
again until you have gone to the GameCenter.app and signed in. This
is an undocumented behavior and can be a real pain to trace if you
do not know what you are searching for. In addition, if you find you
are unable to sign in even from Game Center.app, you can reset the
simulator or restore the device to resolve these issues. It is rare for a
user of your app to face these issues, but as a developer, the constant
debugging and error testing more often than not will put you into an
expected behavioral state.

Chapter 2 Game Center: Configuring and Getting Started

35

Tip I f you encounter the error “This game is not recognized by
Game Center,” make sure to check your bundle identifier and that it
matches the app that you set up in App Store Connect.

It is important here to take a few moments to talk about thread

safety. Thread safety may be a term you are very familiar with, might be

something you have heard briefly touched on in our materials, or may

even be a completely new term for you. While it is beyond the scope of

this book to dive too deeply into threads, it’s important to at least have a

cursory understanding of the technology.

When an app executes and runs, it can do so in sequence along a

single thread, meaning that the next task will not begin until the previous

task has finished. This is called synchronous execution. On the other hand,

you can have multiple tasks all running at the same time and finishing in

whatever order they happen to finish; this is called asynchronous. Running

code asynchronously is often faster because modern devices have multiple

cores which can each handle one or more tasks at a time. However not

knowing when tasks will finish running, having tasks finish before other

tasks, or trying to have two tasks modify the same object at once can

result in bugs, unexpected behavior, and even hard-to-track-down race

conditions.

You may have noticed that when reviewing sample codes, frameworks,

methods, or functions, the author will sometimes denote whether

something is thread safe, isn’t thread safe, or needs to be executed on the

main thread. These notations will allow you to make smart decisions on

how to write the most optimal code and guide you through avoiding bugs

and crashes. As a general rule of thumb, if you are updating an interface

item, such as displaying a button, launching an alert, or changing the color

of something on the screen, that action must be done on the main thread.

Many of the features of Game Center and GameKit will require the

execution of the code on the main thread. Since we are not running the

Chapter 2 Game Center: Configuring and Getting Started

36

authentication of the local user on a background thread, there are not

any changes that we need to make in the sample app. However, if you are

designing an app that will be authenticating from a background thread,

make sure to access the authentication function through a main thread;

while there are numerous ways to accomplish this, the easiest, albeit

perhaps not the most optimal, is as follows:

DispatchQueue.main.async { [unowned self] in

 self.yourCodeHere()

}

While your app should continue to function normally whether or not a

user has signed into Game Center, it may be necessary to set some flags or

perform some other actions upon successful login.

You can add the following code snippet to the end of the

authenticateLocalUser completion handler:

if (GKLocalPlayer.local.isAuthenticated)

{

 print("Successfully authenticated")

}

Now when you log in, you should see “Successfully authenticated”

printed to the console, as well as the image shown in Figure 2-2 (with your

Game Center name instead).

Caution  When logging in to Game Center for testing purposes,
always create a new Apple ID. Never use an existing Apple ID to log
in to Game Center from the sandbox environment. There have been
historic incidents where a user account can become broken during
testing, and it can be a huge hassle to deal with a broken account on
your primary Apple ID.

Chapter 2 Game Center: Configuring and Getting Started

37

Tip I f you are having trouble logging in, make sure your bundle ID
in the info.plist matches a bundle ID that has Game Center enabled
for it in App Store Connect. See Chapter 1 for more information on
configuring Game Center in App Store Connect.

�Watching for Status Changes
With multiple apps running in the background and depending on the

device side by side, the authentication can become a little more complex,

with a user logging in and out through different apps. For example, the

user may log out of Game Center, or even log in as a different user, while

your app is in the background. Therefore, it is vital that you listen for

changes to the local user through the NSNotification system.

Figure 2-2.  The standard welcome back message the user will see
when logging in to Game Center

Chapter 2 Game Center: Configuring and Getting Started

38

Add the following snippet of code in viewDidLoad of

UFOViewController.m right after the test is performed to verify whether

Game Center is available:

NotificationCenter.default.addObserver(self, selector:

#selector(localUserAuthenticationChanged(_:)), name:

NSNotification.Name.GKPlayerAuthentication

DidChangeNotificationName, object: nil)

You also want to add a new function to UFOViewController. This

function will be called whenever player authentication status changes.

@objc private func localUserAuthenticationChanged(_

notification: Notification) {

 �print("Authentication changed: \(notification.object ??

"()")")

 }

This new function will print the description for the new GKLocalPlayer

when authentication changes. You will need to determine what special

steps need to be taken in your app to handle local player changes.

Tip D o not forget to test user switching before shipping your app,
as Apple will test it in the review stage.

�Working with GKLocalPlayer
The GKLocalPlayer will always exist and be non-nil when authenticated

with Game Center; this object is a representation of the user. You will never

create an instance of GKLocalPlayer; this is handled through the class

method localPlayer. The localPlayer singleton will be the only way that you

will interact with the localPlayer.

Chapter 2 Game Center: Configuring and Getting Started

39

The GKLocalPlayer has several properties associated with it:

authenticated, underage, isMultiplayerGamingRestricted, and

isPersonalizedCommunicationRestricted. We will be dealing with the

friends property in the following section. We have already worked with the

authenticated Boolean in our authentication code in the previous sections.

The underage, isMultiplayerGamingRestricted, and

isPersonalizedCommunicationRestricted properties are useful for

restricting content in a Game Center–enabled app. The following code

performs an underage check; similar code can be added for multiplayer or

communication restrictions:

if (GKLocalPlayer.local.isUnderage)

{

 print("User is Underage")

}

�Game Center Friends
When Game Center was first released, a lot of focus was placed on building

and managing your personal friends list. Over the years this has become

less of a priority and focus for Apple. The friends property of the local user

was deprecated in iOS 8 and replaced with a loadFriendPlayers which was

in turn deprecated in iOS 10. Finally, loadRecentPlayers was introduced

and remains usable in iOS 14. You may notice that this function doesn’t

include the language “friends”; however, the documentation provides

more insight. Asynchronously load the challengeable friends list as an

array of GKPlayer. A challengeable player is a player with friend levels

1 and 2, or FL1 and FL2. This function calls a completionHandler when

finished. The error will be nil on success. The Game Center controls in the

settings app still lets you add friends.

Chapter 2 Game Center: Configuring and Getting Started

40

While having playable friends continues to be deprioritized in new

updates to Game Center, the functionality does remain to get a list of

GKPlayers that are friends to the authenticated local user.

In order to retrieve a list of all of your existing Game Center friends, the

following function may be utilized:

func retrieveFriendsList() {

 if GKLocalPlayer.local.isAuthenticated == true {

 �GKLocalPlayer.local.loadRecentPlayers(completionHandler:

{ [weak self] recentPlayers, error in

 DispatchQueue.main.async { [weak self] in

 �self?.playerDelegate?.friendsFinishedLoading(

recentPlayers, error: error)

 }

 })

 } else {

 print("You must authenicate first")

 }

 }

This method will call back to friendsFinishedLoading when the data

has been fully retrieved. In the following code snippet, you can see an

implementation of what that function might look like:

func friendsFinishedLoading(_ friends: [GKPlayer]?, error:

Error?) {

 if let error = error {

 �print("An error occured during friends list

request: \(error.localizedDescription)")

 } else if let friends = friends {

 playerDataLoaded(friends, error: error)

 }

 }

Chapter 2 Game Center: Configuring and Getting Started

41

Once the data has been loaded from the server, a final function is

implemented to print that data to the console.

�func playerDataLoaded(_ players: [GKPlayer]?, error: Error?) {

 if let error = error {

 �print("An error occured during player lookup: \(error.

localizedDescription)")

 } else {

 print("Players loaded: \(players ?? [])")

 }

}

�Working with Players
At the heart of Game Center is a social service, and as such, it revolves

around players be it challenges, multiplayer, leaderboards, or competing

for achievements. You need to be aware of properties associated with

a GKPlayer object. Three properties handle the name of the player,

gamePlayerID, and teamPlayerID, which are unique identifiers that will

refer to a player. The gamePlayerID is static and will always point to the

same player for the same game, while teamPlayerID is unique to the

player across all games from your developer account. The teamPlayerID

therefore allows you to identify a player across multiple apps and can be

very powerful for marketing and cross-promotion. The gamePlayerID and

teamPlayerID string should never be shown to the user in your app; it is

used purely for internal reference. The alias or displayName, on the other

hand, is dynamic and can be changed by the user at any time. A Game

Center user can set a new alias at any time; the alias property will always

display the alias; if you use displayName, it will always display the alias

unless a user is a friend, and then it will show their real names instead. The

alias and displayName should never be used to test the identity of a user,

but they should be the only string used to identify the player to your app’s

Chapter 2 Game Center: Configuring and Getting Started

42

user. It is important to also keep in mind that an alias is not unique and

more than one player may have identical aliases or displayNames.

Caution D o not make assumptions about the structure of the player
identifier string. Its format and length are subject to change.

When looking at any list of player IDs in Game Center, we do not begin

with GKPlayer objects, instead we have an array of user IDs. To help us

work with players, we will add two additional convenience methods to

translate player IDs into GKPlayers objects.

We need to create two new functions: one will handle an array

of player IDs, and the other will handle a single player ID. This will

save us extra work down the road. We add the helper methods to our

GameCenterManager class.

We will add the following two function methods to the

GameCenterManager class:

func playersForIDs(_ playerIDs: [String]) {

 �GKPlayer.loadPlayers(forIdentifiers: playerIDs) {

[weak self] players, error in

 DispatchQueue.main.async {

 �self?.playerDelegate?.playerDataLoaded(players,

error: error)

 }

 }

 }

 func playerForID(_ playerID: String) {

 playersForIDs([playerID])

 }

Now, when the App is run (assuming you have friends associated with

your Game Center account), it will pull down a list of your friends’ player

Chapter 2 Game Center: Configuring and Getting Started

43

IDs and then perform a lookup and print the GKPlayer description to the

console. Your output should look similar to the following:

UFOs[4038:207] Authentication Changed: <GKPlayer-

0x5f46fb0>(playerID: G:1092793231, alias: the_other_kyle,

status: (null), rid:(null)) UFOs[4038:207] Players loaded:

("<GKPlayer 0x6a201e0>(playerID: G:1093075676, alias: johncash,

status: (null),4-rid:(null))"

)

�Summary
In this chapter, you learned how to test for Game Center compatibility and

authenticate the local user. You should now have a strong grasp of how we

will be using the Game Center Manager class and the benefits it will have

on creating a clean code environment that will be easily reusable across

multiple projects.

In the next chapter, we will take an in-depth look at leaderboards and

expand on topics learned in this chapter. If you have any difficulty with

anything discussed in this chapter, remember that the included sample

code contains working examples of all the topics discussed.

Chapter 2 Game Center: Configuring and Getting Started

45© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_3

CHAPTER 3

Leaderboards
Leaderboards are older than video games themselves. The leaderboard, as

we know it, goes back to the days of the original pinball games of the 1950s.

The makers of these pinball games soon realized that adding a high-score

list increased competition, which translates to more time played and more

money earned.

During the 1970s, when video games began to emerge, leaderboards

were quickly adopted into these new games, making their first appearance

in Sea Wolf, released in 1976 (see Figure 3-1). Since then, they have played

an integral part of the gaming culture. Leaderboards have become so

widespread that, in 2007, The King of Kong, a full-length documentary, was

released about the heated competition over the high score on Nintendo’s

Donkey Kong. The King of Kong was so popular that it even led to a musical

titled King of Kong: The Musical and a rumored scripted film adaptation

is in the works by director Seth Gordon. Leaderboards have become so

mainstream that they are now an expected part of any video game. They

remain one of the easiest ways to build in completeness and replayability

to a game.

https://doi.org/10.1007/978-1-4842-7756-0_3#DOI

46

Game Center for iOS, Mac, and Apple TV greatly simplifies adding

leaderboards to your project. This is a huge improvement when you

consider that, previously, a developer had to write and maintain a server

to hold, push, and retrieve the scores from. In this chapter, we examine the

steps required to implement multiple leaderboards under Game Center, as

well as all the required leaderboard support. You learn how to post scores,

retrieve leaderboards, customize the graphical user interface (GUI) of

leaderboards, and everything else needed to create leaderboards that are

the right fit for your app.

�Why a Leaderboard?
Before we get into working with leaderboards themselves, it is important to

understand why leaderboards are an integral part of your social app or game:

•	 Leaderboards create a sense of community in an app

or game that, otherwise, might not allow your user to

interact directly with other users.

Figure 3-1.  Sea Wolf (1976), the first video game to feature a high score

Chapter 3 Leaderboards

47

•	 Leaderboards drive users to return to your app in an

effort to beat their own, their friends, or the community

at large scores.

•	 Leaderboards create a sense of goal and

accomplishment in an app.

•	 Leaderboards make it easier for users to share their app

experience and progress with their friends, family, and

peers.

•	 Leaderboards in Game Center are easy to implement

and can make your app quickly feel more polished and

finished.

�An Overview of Leaderboards in Game
Center
A leaderboard, in the sense of Game Center, is an array of GKScore objects

related to a specific leaderboard identifier, of which many can exist per

app. Leaderboards can be retrieved and further filtered based on friend

status and date submitted.

GKScore objects represent each entry on a specific leaderboard. A

GKScore always has a player ID associated with it. When submitting a new

GKScore to a leaderboard, the player ID is set automatically by the API and

cannot be changed. There are also values for the date and rank that are

automatically set and updated. You are required to set only the raw score

value and leaderboard category to which the score belongs.

There are two ways to retrieve and display leaderboards. The most

common, and easiest, method is by using Apple’s leaderboard GUI. This

will be the first approach we learn about in the following sections. The

second option is to retrieve the raw GKScore values and display them

in your own GUI; this method is also discussed later in this chapter.

Chapter 3 Leaderboards

48

Leaderboard sets were introduced in iOS 7; these sets allow the developer

to combine several leaders together into a single group. Leaderboard sets

are flexible and may be used in many different ways, the most popular is

to have groups of leaderboards for different worlds or difficulties in your

game. You can define up to 100 leaderboard sets each containing up to 100

leaderboards.

Note  Game Center currently has a limit of 100 leaderboards or
leaderboard sets per bundle ID. When you work with Leaderboard
sets, the leaderboard limit is increased to 500 while still respecting
the 100 leaderboards per leaderboard set limit. .

�Benefits of Using Apple’s Leaderboard GUI vs.
a Custom GUI
Benefits of using Apple’s leaderboard GUI include the following:

•	 The design was created by some of the best designers

in the world. When Apple updates the designs, they will

automatically be updated in your App, giving your user

interface an instant facelift and keeping it feeling more

modern, even if you haven’t been regularly updating.

•	 It is very simple to implement and present the

leaderboard.

•	 Users will see a familiar interface that they already

know how to interact with.

Chapter 3 Leaderboards

49

Benefits of using a custom GUI include the following:

•	 Your leaderboard can match the custom design of

your app.

•	 You have more freedom over the resulting data and can

filter using additional criteria.

•	 You can implement your own custom caching behavior.

As you can see, there are advantages and disadvantages of each

system, and there is no right answer in which one you should be using.

At the end of this chapter, you will have a strong background in both

options and will be able to make the correct decision on which method to

implement based on the specific needs of your app.

�Configuring a Leaderboard in App
Store Connect
Before working with the code side of leaderboards, you must first set up

a new leaderboard in App Store Connect. Log in to App Store Connect

(https://appstoreconnect.apple.com/), and select the app that we have

already been working with from Chapters 1 and 2. Once you have selected

your app from the control panel, go to the Features area, and then select

Game Center.

The Game Center portal for your app will have a section labeled

“Leaderboards.” Once you are in the leaderboard section (see Figure 3-2),

select the “+” button in the upper left-hand corner of the leaderboard

section. You will be prompted to select either a Classic Leaderboard or a

Recurring Leaderboard. A Classic Leaderboard will build a list of scores

which are permeant to your game and will never reset. Alternatively, a

Recurring Leaderboard will have a fixed amount of time specified that the

leaderboard will automatically reset, such as weekly.

Chapter 3 Leaderboards

https://appstoreconnect.apple.com/

50

We begin by creating a new classic leaderboard, as shown in Figure 3-3.

The first thing you need to enter is the Leaderboard Reference Name. This

value is used solely as a reference within App Store Connect. The reference

name is designed to help you quickly find leaderboards within App Store

Connect; the user never sees it. For this example, you can use the reference

name “Leaderboard Foo.”

Figure 3-2.  Adding a new leaderboard in App Store Connect

Figure 3-3.  Creating a new classic leaderboard in App Store Connect

Chapter 3 Leaderboards

51

The next field is the Leaderboard ID, the value you will query in your

code to retrieve a particular leaderboard. Apple recommends that you use

a reverse DNS-type entry for this field, such as com.company.appname.

leaderboardname. Fill in the appropriate values for your app here; it is not

important what they are, but you will need to remember them throughout

the remainder of this chapter.

The score format type is also required when creating a new

leaderboard. Select the score format that meets the requirements for your

score data. For information on score data formats, see Table 3-1.

Tip  If none of the provided format types match your requirements,
select the one that best matches your needs. Later in this chapter,
you will see how to customize these values by retrieving the raw
score values.

Table 3-1.  Score Format Types for Adding a New Leaderboard in

App Store Connect

Score Format Type Example Output

Integer 12,345

Fixed point, to 1 decimal 12,345.1

Fixed point, to 2 decimals 12,345.12

Fixed point, to 3 decimals 12,345.123

Elapsed time, to the minute 3:45

Elapsed time, to the second 3:45:55

Elapsed time, to the hundredth of a Second 3:45:55.82

Money, whole numbers $182,121

Money, to 2 decimals $182,121.68

Chapter 3 Leaderboards

52

The next field is for the Score Submission Type; there are two options

available: Best Score and Most Recent Score. Select Best Score if you want

the best score displayed first. Select Most Recent Score if you want the

most recent score displayed first.

You also need to select whether you want the leaderboard to sort by

ascending or descending order. Ascending order will display the lowest

score first, as in a golf game or a lap around a track. Descending order will

show the highest scores first, as in a game of football or a typical score in a

first-person shooter.

There is also an optional score range field. This prevents users from

submitting scores outside of the approved range; for example, if you have a

golf game, you can’t reasonably expect someone to submit a score of under

18 for an 18-hole game; likewise you probably don’t want someone to be

able to submit a score of 100,000. This field is optional but can prevent out-

of-whack leaderboard caused by mischievous user behavior.

The last thing that needs to be done when creating a new classic

leaderboard is entering the localized score information, as shown in

Figure 3-4. App Store Connect contains built-in localization support for

Game Center; you will need to create a new entry for each language you

want to support. You can also add a unique image to be displayed along

with your localized leaderboard.

The Name field is the display name for your leaderboard in the chosen

language. The Score Format field will vary depending on the score format

type you selected on the previous screen. (See Figure 3-4 for an example

of money formatting.) You also need to provide a score format suffix. This

string will be appended to the end of your score value when retrieving the

formatted score property.

Caution  You will need to add at least one language for every
leaderboard you create before it can be considered valid.

Chapter 3 Leaderboards

53

Tip  If you want a space to appear between the score and the score
format suffix in the formatted score value, don’t forget to add a space
before the beginning of the score suffix.

You now have a classic leaderboard configured for your app. There

may be situations in which you want to create a leaderboard set, or a group

of leaderboards that have a common attribute. For example, your game has

several different worlds with each world containing several leaderboards

for most coins collected, highest score obtained, and most enemies killed.

In order to enable a leaderboard set, we need at least two leaderboards

that share the same type of score format. Go ahead and create a second

classic leaderboard now.

Once you have two leaderboards that share the same score format

type, you can create a leaderboard set. Once you have two leaderboards

created, an option labeled “More” will appear at the top right portion of

the Leaderboard interface section. The option “Move All Leaderboards

Figure 3-4.  Editing the localization information on a new
leaderboard

Chapter 3 Leaderboards

54

Into Leaderboard Set” will begin the process of setting up a leaderboard

set. The main difference is that you need to select the leaderboards

you want to combine, as shown in Figure 3-5. You will need to create a

new leaderboard ID, as well as specify the localization data for the new

combined leaderboard.

Note  “Move All Leaderboards Into Leaderboard Set” is labeled in
a confusing manner; you will not be required to move all existing
leaderboards into a new set and will still have the option of
selectively picking those that should be in a set together.

We will also add one last single leaderboard to let us work with a single

uncombined leaderboard, as the two previous leaderboards that we had

created are now “Attached”-type leaderboards. Your leaderboard panel

should now have four leaderboards in it: two attached, one combined, and

one single leaderboard. Now that we have a handful of valid leaderboards

Figure 3-5.  Creating a combined leaderboard

Chapter 3 Leaderboards

55

to work with, we can move back to Xcode and begin to work with the

leaderboard-specific code.

Important  Once a leaderboard has gone live in a shipping app, it
can never be removed, so double-check your leaderboard information
before shipping an app.

�Recurring Leaderboards
Apple has recently expanded the capabilities of leaderboards to allow

time-limited leaderboards, referred to as recurring leaderboards. These

are added just like a classic leaderboard, except the option for recurring

is selected when prompted. A recurring leaderboard will feature three

new options. The first is the date and time that the leaderboard will first

become available to the user, the second is a duration that the leaderboard

will be available for, and finally a delay for the leaderboard to reset and

become available again. Referring to Figure 3-6, a new leaderboard will

appear beginning June 7, 2021, and will collect scores for 24 hours; every

7 days the leaderboard will reset all of its scores and become available for

another 24-hour period.

Chapter 3 Leaderboards

56

�Posting a Score
Before a leaderboard provides any useful functionality, we need to

populate it with some score data. We begin this process by modifying our

GameCenterManager class once again. Add the following function to the

implementation; it should look very familiar as it follows the same pattern

that we used when we implemented the authentication methods:

�func reportScore(_ score: Int, forCategory category: String) {

 �GKLeaderboard.submitScore(score, context: 0, player:

GKLocalPlayer.local, leaderboardIDs: [category]) { [weak

self] error in

 if let error = error {

 �print("An error occurred while submitting a score.

Data will be saved to UserDefaults:

\(error.localizedDescription)")

Figure 3-6.  Creating a recurring leaderboard

Chapter 3 Leaderboards

57

 �let savedScore = SavedScore(score: score, category:

category)

 self?.storeScoreForLater(savedScore)

 }

 DispatchQueue.main.async { [weak self] in

 self?.gameDelegate?.scoreReported(error)

 }

 }

}

This new method takes an integer for the score and a GKLeaderboard

object. The date and user values are already set for us by the API. When

submitScore is called on the GKLeaderboard, it accepts the score, a player

context, and the player that is submitting the score, which should always

be the local player.

This concludes all of the required modifications to our

GameCenterManager class. We can now turn our focus back to the game

itself. We will need to first implement some new gameplay dynamics to

handle high scores.

�Adding Score Posting to UFOs
There are two obvious ways that we can score in our UFOs game. Firstly,

we could implement a system that counted how many cows were abducted

and submit that as the score. Although this approach is the easiest to

implement for us, it is not a very fun gameplay technique because there

is no logical point at which the game ends. Secondly, high-score method

is harder to implement but makes more sense. It clocks how long the user

took to abduct ten cows; the user with the lowest time is the winner.

Chapter 3 Leaderboards

58

These are topics that must be carefully considered for your own app;

sometimes the most straightforward approach to high scores isn’t the most

fun for the user. For the purpose of this book, we will demonstrate the

first method in which the number of cows abducted is the user’s score. If

you were going to implement a timer-based system, the approach is very

similar: you would start a timer at the beginning of the round, and when

ten cows are abducted, you would submit the time in seconds on the timer.

In order to implement this score-based system, we need to add a way

for the player to end a game. In an actual game, this could be handled by

something being able to kill your player, or a time limit. However, for the

purpose of this example, we will simply add an exit button. This will allow

the user to simulate a game-over event while keeping the code Game

Center–focused without adding extra complexity.

We add an exit button in UFOGameViewController.xib, as shown in

Figure 3-7. We will need to create a new IBAction for the exit button as

well. Add the following code to UFOGameViewController, and connect

our exit button to it. For the time being, we will just pop the navigation

controller back to the root view:

@IBAction func exitAction(_ sender: Any) {

 navigationController?.popViewController(animated: true)

}

Note  You are not required to wait until the end of a game to submit
a new score, but it is generally thought of as good practice. You want
to avoid submitting a new score multiple times per game if it can be
prevented.

A notable exception might be a continuous role-playing game in
which the score continually updates, and there is no proper ending to
submit a score during the game.

Chapter 3 Leaderboards

59

The only remaining step is to actually submit the score to Game

Center; if you recall, we have already written the method to handle

this in our GameCenterManager class. We already have an instance of

our GameCenterManager class that we used in UFOViewController to

authenticate the user.

We will also modify the exitAction method to just submit the score. To

do so, replace the old exitAction function with the following. Notice how

we are using the leaderboard ID that we set in App Store Connect; make

sure to use the same one that you entered, as it will probably not match

this example:

@IBAction func exitAction(_ sender: Any) {

 navigationController?.popViewController(animated: true)

 �gcManager?.reportScore(Int64(score), forCategory:

"com.dragonforged.ufo.single")

}

Figure 3-7.  Adding the ability to exit the game so a high score can be
submitted

Chapter 3 Leaderboards

60

When you now play and click Exit, you should see a console message

that looks similar to the following output:

2011-02-10 12:32:47.629 UFOs[15092:207] Score submitted

Tip  See the section, “A Better Approach,” at the end of this chapter
for a more complex, but user-friendly, approach to submitting scores.

Now that we have a score submitted to a leaderboard, in the following

sections, we will learn how to present this data back to the user. This

action has been greatly simplified for the purpose of making this section

as easy to learn as possible. This will not be the user experience you want

to present to your user; we are simply trapping the user in the game screen

while we wait for a network callback. In reality, you will want to handle the

delegate callback in the previous view. This ensures the user is not waiting

when they do not have to be. For simplicity’s sake, we will continue to use

the easier-to-follow methodology.

Tip  You can only have one score posted per leaderboard category
for each player. You might notice that the scores that you are
submitting never appear on the leaderboard. If you are noticing this
behavior, make sure that the score you are submitting is higher than
the highest score for that player.

�Handling Failures When Submitting a Score
If a score fails to submit, you as the developer are solely responsible for

storing the score and resubmitting it when the error has been resolved.

Nothing is more frustrating to a user than earning a new high score and

Chapter 3 Leaderboards

61

losing it due to a network failure or even a crash. This is also a step that

Apple likes to test for during app reviews, so keep in mind you may have a

rejection if you fail to implement it properly.

There are many different ways to store the score information for

resubmitting it later; however, I feel that the following approach is the

easiest for the novice to implement. Feel free to implement your own

system if you feel that the provided one does not suit the needs of your app.

There are three steps that need to be completed to handle and recover

from a score submitting failure. The first step is to save the score data.

Although we do not inform the user of the failure in this example, it is

a good idea to notify the user that their score could not be submitted at

this time and that you will automatically retry later. Modify the following

function in GameCenterManager to match the following code:

�static func reportScore(score: Int, to leaderboard:

GKLeaderboard, using context: Int, completion: ((Error?) ->

())?) {

 �leaderboard.submitScore(score, context: context, player:

GKLocalPlayer.local) { (error) in

 if error != nil {

 self.storeScoreForLater(

 with: StoredScore(

 score: score,

 �leaderboardId: leaderboard.

baseLeaderboardID,

 context: context,

 �playerId: GKLocalPlayer.local.gamePlayerID

)

)

 }

Chapter 3 Leaderboards

62

 if let completion = completion {

 completion(error)

 }

 }

}

We have added a few additional lines of code that will run if an error is

detected; if it is, then the NSData from the GKScore is captured and saved.

We will later retrieve the GKScore from this NSData. We also call a new

function that we have named storeScoreForLater. Let’s take a look at that

function now; add the following function to the implementation of the

GameCenterManager class:

�private static func storeScoreForLater(with score:

StoredScore) {

 var savedScores: [StoredScore] = []

 �if let data = UserDefaults.standard.data(forKey:

savedScoresKey) {

 �savedScores = (try? JSONDecoder().decode([StoredScore].

self, from: data)) ?? []

 }

 savedScores.append(score)

 �UserDefaults.standard.setValue(try? JSONEncoder().

encode(savedScores), forKey: savedScoresKey)

}

This snippet of code will save the NSData that represents our score

to the user defaults. You could also write this data to a file or even store

it in core data. Never assume the user has only one unsubmitted score;

they may have racked up a number of scores across many different

leaderboards while playing offline.

Chapter 3 Leaderboards

63

We caught a posting failure as well as saved the score to disk to be

retried later. The last remaining step is to attempt to resubmit the score to

Game Center. This step can be very complex, depending on how intelligent

you want the system to be. Most failures of score submissions are related

to network access issues but could also be caused by Game Center being

down or even a DNS issue.

There is no correct answer as to when to repost a score, but the

guideline is that you don’t want to hold on to a score that could be

submitted. Before we worry about where to tie in the method to resubmit

failed scores, let’s first implement a method to retry a score posting. Add

the following method to your GameCenterManager class:

func submitAllSavedScores() {

 let defaults = UserDefaults.standard

 �if let savedScoresData = defaults.data(forKey: Self.

savedScoresKey) {

 defaults.removeObject(forKey: Self.savedScoresKey)

 �if let savedScores = try? JSONDecoder().

decode([SavedScore].self, from: savedScoresData) {

 savedScores.forEach { savedScore in

 �GKLeaderboard.submitScore(savedScore.score,

context: 0, player: GKLocalPlayer.local,

leaderboardIDs: [savedScore.category]) {

[weak self] error in

 if let error = error {

 �print("An error occurred while

submitting a score. Data will be

saved to UserDefaults: \(error.

localizedDescription)")

 self?.storeScoreForLater(savedScore)

 } else {

Chapter 3 Leaderboards

64

 print("Saved score submitted")

 }

 }

 }

 }

 }

 }

The preceding code will loop through all of the saved scores and

attempt to resubmit them. We simply log any successes and failures to add

back to our array of non-submitted scores for retrying again later.

As mentioned earlier, there are dozens of ways to tie back in

resubmitting failed scores. To keep it simple, we add a call to the

submitAllSavedScores after we properly authenticate with Game Center.

Modify the authenticateLocalUser method of GameCenterManager to

match the following:

static func authenticateLocalUser(completion:

((UIViewController?, Error?) -> ())?) {

 �guard GKLocalPlayer.local.authenticateHandler == nil

else {

 return

 }

 �GKLocalPlayer.local.authenticateHandler = {

(viewController, error) in

 if error != nil {

 if let completion = completion {

 completion(nil, error)

 return

 }

 } else {

Chapter 3 Leaderboards

65

 �if let completion = completion, let

viewController = viewController {

 completion(viewController, nil)

 }

 self.submitAllSavedScores()

 }

 }

�Presenting a Leaderboard
Now that we have a leaderboard configured in App Store Connect,

and populated a score into that leaderboard, it is time to present the

leaderboard to the user. There are two ways of presentation: the first is

with Apple’s GUI; the second is with a custom GUI. This section will take a

look at the implementation using Apple’s GUI. In the next section, you will

learn how to present a leaderboard with custom graphics by accessing the

raw data for the leaderboard directly.

Before we can begin, we need to create a new button that will trigger

the leaderboard. We want to do this outside of the game screen because

you do not want to drag the user away from a game in progress to view

a leaderboard. Begin by adding a new button to the UFOViewController

view, as shown in Figure 3-8.

Chapter 3 Leaderboards

66

Hook up the button to a new action that matches the one shown

next. When leaderboards were first introduced into Game Center, it was

required to set up which leaderboard you wanted to launch to. In more

recent versions of Game Center, the leaderboards share a combined

Leaderboard interface in which the user can navigate to whatever

leaderboard they want to view.

@IBAction func leaderboardButtonTapped(sender: UIButton) {

 �let leaderboardController = GKGameCenterViewController

(state: .leaderboards)

 �leaderboardController.gameCenterDelegate =

self present(leaderboardController, animated: true)

 }

When you run the program and click the newly added Leaderboard

button, the result should look similar to the image in Figure 3-9. It is worth

noting that while the underlying APIs for GameKit and Game Center aren’t

updated with great frequency, the UI that Apple uses to represent Game

Center changes rapidly and frequently. Not only does the interface change,

but some of the navigation has changed in the past as well. For example, in

Figure 3-8.  Adding a leaderboard button

Chapter 3 Leaderboards

67

the original versions of leaderboards, the user would be presented directly

to the leaderboards for the game they were accessing; in the current

implementation, the user is taken to an overview section of leaderboards

for the current game.

The GUI provides a back button to take us to a list of all the leaderboards

(see initial view in Figure 3-10) that we have configured for the app. If you

omit entering a category when you create the GKLeaderboardViewController

instance, you will be presented with whatever leaderboard has been selected

as the default leaderboard in App Store Connect.

This is all there is to creating and presenting a leaderboard using

Apple’s GUI. In the next section, we will look at how to customize a

leaderboard to match your own GUI.

Note  Remember that you cannot access any Game Center
functionality, including leaderboards, before a local user
has authenticated. If you try to do so, you will receive a
GKErrorNotAuthenticated error.

Figure 3-9.  A leaderboard being presented using Apple’s GUI

Chapter 3 Leaderboards

68

Tip  You can change the order that leaderboards appear
(see Figure 3-10) by dragging leaderboard entries up and down in
App Store Connect.

�Customizing the Leaderboard
As demonstrated in the previous section, presenting a leaderboard to

the user is straightforward. However, what if you want to customize the

appearance of a leaderboard? In this section, you will be walked through

the process of receiving the raw leaderboard information so that you can

present it in your app in whatever fashion suits your needs.

We begin the process of adding a custom leaderboard by adding a

new button and associated action for it to UFOViewController. Add a new

button adjacent to the previous leaderboard button, and create a new

action for it.

Figure 3-10.  A collection of leaderboards, shown with Apple’s GUI

Chapter 3 Leaderboards

69

In the previous example, Apple provides a view controller for us. When

we are working with our own custom leaderboards, we need to create

a view controller to handle the presentation. Create a new subclass of

UIViewController, and name it UFOLeaderboardViewController. Modify

the action of the new custom leaderboard button to present a new instance

of UFOLeaderboardViewController, as seen in the following code snippet:

@IBAction func customLeaderboardButtonPressed() {

 �let leaderboardViewController =

UFOLeaderboardViewController()

 leaderboardViewController.gcManager = gcManager

 present(leaderboardViewController, animated: true)

}

The next step is to set up the storyboard for the new UFOLeaderboard

ViewController. We will use the setup as shown in Figure 3-11; however,

you may provide whatever kind of customization you want here. Create the

outlets and objects, as shown in the figure, and hook up connections for all

of them, including the delegate and data source for the table.

Figure 3-11.  Creating the xib for a custom leaderboard

Chapter 3 Leaderboards

70

If you were to run the app at this point and click the Custom

Leaderboard button, it should launch a blank table in the correct

orientation and allow you to dismiss it to return to the first view.

Now that we got the view controller overhead out of the way, we can

begin to focus on the Game Center–specific features. First, set up the table

view delegate and data source methods that we will be using. We need to

create a new class property to hold the score data for display. Create a new

NSArray object and name it scoreArray. Add the following two functions to

your implementation:

extension UFOLeaderboardViewController: UITableViewDataSource {

 �func tableView(_ tableView: UITableView,

numberOfRowsInSection section: Int) -> Int {

 return scoreArray?.count ?? 0

 }

 static let tableViewCellIdentifier = "Cell"

 �func tableView(_ tableView: UITableView, cellForRowAt

indexPath: IndexPath) -> UITableViewCell {

 �var cell = tableView.dequeueReusableCell(wi

thIdentifier: UFOLeaderboardViewController.

tableViewCellIdentifier)

 if cell == nil {

 �cell = UITableViewCell(style: .subtitle,

reuseIdentifier: UFOLeaderboardViewController.

tableViewCellIdentifier)

 cell?.selectionStyle = .none

 }

Chapter 3 Leaderboards

71

 �let score = scoreArray?[indexPath.row] as?

GKLeaderboard.Entry

 let playerName = score?.player.alias

 if playerName == nil {

 cell?.textLabel?.text = "Loading Name..."

 } else {

 cell?.textLabel?.text = playerName

 }

 cell?.detailTextLabel?.text = score?.formattedScore

 return cell!

 }

}

The first function returns the number of items in our table view. We

deal with only one section in this example, so the number of rows will

always equal the number of scores that are in our array. The next function

displays the score into the cell. We use UITableViewCellStyleSubtitle in

this example, but in most cases, you will want to create a more customized

cell. The main label is set to the player alias, and the secondary label is set

to the formatted score value. In the previous chapter, it was noted that you

should never show a player ID to the user.

�Modifying GameCenterManager
Let’s take a moment to switch over to our GameCenterManager class.

We create a new function to retrieve scores from the Game Center

servers. Add the following method to the GameCenterManager class:

Chapter 3 Leaderboards

72

 �static func retrieveScores(from leaderboard: GKLeaderboard,

playerScope: GKLeaderboard.PlayerScope, timeScope:

GKLeaderboard.TimeScope, range: ClosedRange<Int>,

completion: ((GKLeaderboard.Entry?, [GKLeaderboard.Entry]?,

Int, Error?) -> ())?) {

 �leaderboard.loadEntries(for: playerScope, timeScope:

timeScope, range: NSRange(range.clamped(to: 1...100))) {

(localPlayerEntry, entries, totalPlayerCount, error) in

 if let completion = completion {

 �completion(localPlayerEntry, entries,

totalPlayerCount, error)

 }

 }

 }

}

We want to keep this call as generic as possible because the ultimate

goal of the GameCenterManager class is to be a reusable class that can

easily be dropped into any of your future projects.

The preceding method takes all the arguments that are required

to create a new GKLeaderboard object. Once we have created the

object and set the properties that are required, we can call the method

loadScoresWithCompletionHandler on the GKLeaderboard object.

These are all the modifications that are needed in the

GameCenterManager class for this section.

�Filtering Results on a Custom Leaderboard
Let’s shift our focus back to the UFOLeaderboardViewController class

again. We will next add an action for our segmented controller. This

will allow the user to switch between global scores and friends-only

Chapter 3 Leaderboards

73

scores. Connect the following method to the valueChanged action of the

segmented controller:

@IBAction func scopeChanged(_ sender: UISegmentedControl) {

 scores = []

 if let leaderboard = GameCenterManager.leaderboard {

 �GameCenterManager.retrieveScores(from: leaderboard,

playerScope: scopeSegmentedControl.selectedSegmentIndex

== 0 ? .friendsOnly : .global, timeScope: .allTime,

range: 1...50) { (localPlayerEntry, entries,

totalPlayerCount, error) in

 if let error = error {

 �print("An error occurred: \(error.

localizedDescription)")

 } else {

 self.scores = entries ?? []

 }

 self.tableView.reloadData()

 }

 }

}

This method calls the GameCenterManager method to retrieve our

score list. The segmented control has two values: one for friends and

one for everyone (global). You could easily modify the preceding code to

retrieve different time scopes as well, but in this example, we request only

the all-time scope. An important step here that can be easy to overlook is

setting the array to an empty array and reloading the table. Doing so will

remove the scores that are in the table when the segmented controller

value is changed.

Chapter 3 Leaderboards

74

The retrieve scores call is fairly straightforward. We use the category

we set in App Store Connect for the leaderboard we wish to retrieve and set

our time and player scope. The last argument on the method is a range. In

the previous example, we return scores from 1st place to 50th place.

Note  Score ranges always start at an index of 1. You could modify
the preceding example with a new range of NSMakeRange(50,50);
this will retrieve scores from 50th place to 100th place. Make sure
you don’t request too many scores at a time, as the time it takes
to retrieve the score data is related to how many scores you are
attempting to retrieve.

�Displaying the Custom Leaderboard
If you were to run this project now, you would notice the table is always

blank. This is caused by an omission. To rectify this, modify the existing

IBAction method to set the property for gameCenterDelegate to the

instance that exists in the UFOViewController. Your code should look like

the following example:

@IBAction func leaderboardButtonTapped(sender: UIButton) {

 �let leaderboardController = GKGameCenterViewController(st

ate: .leaderboards)

 leaderboardController.gameCenterDelegate = self

 present(leaderboardController, animated: true)

 }

If you were to now run the app again, you would see output similar

to that shown in Figure 3-12. The number of scores, the score values, and

the player alias will be different, but you should be able to see at least one

score listed.

Chapter 3 Leaderboards

75

Important  It cannot be guaranteed that you will not be returned
cached data for a leaderboard request. You should assume that the data
you are retrieving is cached and might not be the most up-to-date.

�Local Player Score
There are oftentimes that you will want to know the local players’ score on

a given leaderboard. Maybe you want to display their scores at the top of

your leaderboard, or perhaps you want to fetch a leaderboard that shows

other player scores that are close to your local player’s score. You can even

want to post an action in the game when the user has beaten their own

previous high score.

Apple has provided an easy technique for determining the local

players’ score. Once you have a reference to the leaderboard you are

interested in finding a local score for, all that needs to be done is query the

property for localPlayerScore.

print(leaderboard.localPlayerScore)

Figure 3-12.  An initial view of our custom leaderboard

Chapter 3 Leaderboards

76

�A Better Approach
In the section “Posting a Score,” earlier in this chapter, we discovered how to

post new scores to Game Center. Our methodology, while simple, was not the

best approach from a user-interaction standpoint. It is now time to refactor the

posting new score code to improve usability. This approach is more complex

but delivers better performance and has less of an impact on the user.

The first thing we need to do is move our scoreReported function from

UFOGameViewController to UFOViewController. We also want to modify

the exit action in the UFOViewController to report the score back to Game

Center.

This allows us to exit the game without waiting for a network callback

from the Game Center delegate.

�Game Center Groups
A more recent addition to Game Center functionality allowed for Game

Center Groups, or more succulently sharing a leaderboard or achievement

across multiple different apps. Some caveats exist and need to be considered

before moving to a Game Center Group; most notably all the apps must exist

under the state App Store Connect account; there is no way to set up a Game

Center Group between apps under different accounts.

In order to set up a new Game Center Group, you must first launch

the Game Center area of the App Store Connect portal for the first app you

want to add to the group. There is a small section to set up a new group;

see Figure 3-13.

Important  If your app has an existing leaderboard, their
leaderboard IDs will be listed with a “grp.” prefix. You can keep the ID
the same or create a new one when setting them up.

Chapter 3 Leaderboards

77

You may selectively pick which leaderboards and achievements will

be part of each group, and the process is reversable to the point where

you may delete the entire group if you later desire. If your app already

has existing leaderboards (or achievements), you must decide whether to

merge those items with the group items. You may of course also create new

group-specific leaderboards and achievements.

All functionality of Game Center Groups is controlled via the App Store

Connect portal, and it will guide you through merging and controlling

leaderboards and achievements just as you would do with a non-group

leaderboard or achievement.

Accessing the leaderboards from within your app is exactly the same

whether it is a group or not; you will just need the app to be part of the

respected group and reference the provided (or created) leaderboard ID.

�Summary
This chapter introduced leaderboards in Game Center. We covered the

benefits of using a leaderboard, as well as the two available types. We

learned how to post a score and recover for any errors that occurred during

posting. We also looked at the requirements of getting leaderboards up and

running in your app, using either Apple’s provided GUI or a custom one.

Figure 3-13.  Setting up a Game Center Group

Chapter 3 Leaderboards

78

Throughout the chapter, we continued to build our

GameCenterManager class, adding the required methods to post scores,

retrieve scores both local and global, and display custom and built-in

leaderboards. You should now feel confident in adding a leaderboard to

any existing or new iOS app. In the next chapter, we will explore all that

Game Center achievements offer.

Chapter 3 Leaderboards

79© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_4

CHAPTER 4

Achievements
The relatively new gaming concept, achievements, came along much

later than leaderboards and has gained a dramatic rise in popularity with

the release of Microsoft’s Xbox 360 and newer devices. Achievements

offer a higher level of detail overlooked in more basic leaderboards.

While leaderboards show who currently possesses the leading scores,

achievements demonstrate a player’s skills and strengths by rewarding

the player for completing more specific tasks, events, or levels. When

the achievements start to serve in-game purposes, they become more of

a power-up over other players. The ability to view the achievements by

others gives players a type of “bragging rights.” As you are of no doubt

aware, bragging rights in a game can extend gameplay for a variety of users

trying to reach 100% completeness, to maintain their lead over their peers,

or to knock a peer from the top.

As social network–enabled gaming spreads and becomes prevalent, the

achievement system feature has skyrocketed into even more popularity.

Social games are filled with a niche player base determined to complete

100% of the game.

Foursquare was one of the first to bring achievements out of the

gaming world and into the social app universe. Foursquare calls its

achievements “stickers” (see Figure 4-1), but the basic concept is the same.

Players receive a reward for completing a task, but the number of badges

does not affect gameplay or, in this case, the ability for the user to use the

app in any direct manner.

https://doi.org/10.1007/978-1-4842-7756-0_4#DOI

80

Game Center has made adding an achievement system to your iOS,

Mac, or Apple TV app simple. In this chapter, we will learn how to add

achievements to our demo game, UFOs. You will learn everything needed

to fully integrate an achievement system into your app quickly and easily.

Notably, you will learn how to:

•	 Create new achievements

•	 Display achievement progress

•	 Add achievement hooks into your app

Figure 4-1.  Foursquare for iPhone showing achievements, renamed
Stickers in later versions

Chapter 4 Achievements

81

•	 Progress and reset achievements

•	 Customize the appearance of achievements

�Why Achievements?
If it is not already apparent what achievements can add to your social app

or game, let’s take a moment to review some of the many benefits:

•	 Achievements give your users an extra sense of

accomplishment and reward.

•	 Achievements bring users back into your app more

often. Users are more likely to return to your app to

complete more achievements, making completing the

game a more rewarding and fun process.

•	 Achievements add an easy way for users to share

experiences with other users.

•	 Achievements in Game Center provide a polished look

and feel to the shipping product.

•	 Achievements give users a greater sense of progression

as they make their way through your app or game.

•	 Achievements provide an alternative way to play

the game. If users do not enjoy the campaign, they

can enjoy a sense of accomplishment through your

achievement system.

•	 Achievements attribute game brand awareness.

As users share their accomplishments on Twitter,

Facebook, and other social platforms, name

recognition increases and in hand sales.

Chapter 4 Achievements

82

�An Overview of Achievements in Game
Center
Achievements, also known as badges in certain circles, function slightly

differently in Game Center than on other platforms. As with leaderboards,

achievements first need to be configured in App Store Connect on a per-

app basis. You will be creating new instances of a GKAchievement object

to report progress (more on this object later). Unlike leaderboard entries,

which are created when a score is reached and submitted, achievements

can report incremental or partial progress.

Another notable change from working with leaderboards (see Chapter 3

for more on leaderboards) is that you will use two different types of

objects to submit and retrieve achievements. GKAchievement is used

to submit new achievements or update progress on achievements, and

GKAchievementDescription is used to display achievement data to the

user. This is contrary to what we saw when working with leaderboards, in

which GKScore objects were used to submit data as well as retrieve it.

As with leaderboards, achievement progress can be shown using

either Apple’s included graphical user interface (GUI) or a customized

one that better matches the look and feel of your app. The advantages and

disadvantages of each system are the same as with leaderboards. Those

advantages and disadvantages follow for your convenience, with minor

achievement-specific information added where appropriate.

�Benefits of Using Apple’s Achievement GUI vs.
a Custom GUI
The following are some of the benefits that you will gain by using Apple’s

included GUI for working with achievements:

•	 The look and feel of your achievements are created by

some of the best designers in the world.

Chapter 4 Achievements

83

•	 The GUI is very simple and easy to implement, making

it straightforward to present the achievement progress

to your users.

•	 Users appreciate a familiar interface with which they

already know how to interact.

•	 Your app is more future-proof than it otherwise would

be if you implemented your own system. Every revision

of Game Center user interfaces is automatically taken

advantage of by your app.

The following are a few of the benefits of using your own GUI when

working with achievements on iOS devices:

•	 Your achievement progress can match the custom

design of your app.

•	 You have more freedom over the returned data and can

filter using additional criteria.

•	 You can implement your own custom caching behavior.

•	 You can use custom images for incomplete or in-

progress achievements.

As you can see, as always, there are advantages and disadvantages

of each system, and there is no right answer in which one you should be

using. By the end of this chapter, you will have a better understanding of

the options and be better equipped to decide which approach is the best fit

for your app.

As mentioned in the beginning of this section, you will need to begin

with achievements in the same manner as we did for leaderboards, in App

Store Connect.

Chapter 4 Achievements

84

�Configuring Achievements in App Store
Connect
As we saw with leaderboards, you cannot begin working with

achievements without first setting up at least one new achievement in App

Store Connect. Log in to App Store Connect (http://appstoreconnect.

apple.com) using your Apple connect username and password, and

select the app that we have already been working with from the previous

chapters (see Chapter 2 for more information). Once you have selected

your app from the control panel, return to the Manage Features and then

Game Center area that was introduced earlier in this book.

The Game Center portal for your app will have a section labeled

“Achievements.” You will find a “+” button in the upper left area of the

achievement area. This button will allow you to set up a new achievement

as seen in Figure 4-2.

You might notice that there are a lot of similarities between this portal

page and the leaderboard portal page. I break down the attributes in

Table 4-1.

Figure 4-2.  Adding a new achievement through the App Store
Connect portal

Chapter 4 Achievements

http://appstoreconnect.apple.com
http://appstoreconnect.apple.com

85

Tip  You aren’t required to have your achievements add up to
1,000 total points, but you cannot exceed 1,000 points. Be careful
of figuring in any future achievements you might want to add. Once
an achievement has gone live, it cannot be removed from App Store
Connect; however, it can be removed and hidden from your game.

Table 4-1.  Achievement Attributes in iTunes Connect

Attribute Description

Achievement

reference name

A string that is not used outside of iTunes Connect; this string is

used to easily locate and reference this achievement within App

Store Connect.

Achievement ID This is the identifier that you will refer to in your code. As with

leaderboard categories, Apple recommends that you use a reverse

DNS system such as com.company.appname.achievementname.

Hidden If an achievement is hidden, the user will not see it in the

achievement list until they have either completed it or increased

the progress.

Point value Achievements can be assigned points. Your app is allocated 1,000

points. Each completed achievement progresses the user toward

that total. Once the user has reached 1,000 points, they have

unlocked all achievements.

You should assign more points to achievements that are more

difficult to complete. This provides the user with a better sense of

how valuable the achievement is.

Point values are optional and can be ignored if you do not want to

use them within your app.

Chapter 4 Achievements

86

It is now time to make a new achievement. We will create an

achievement that will be reached when the user abducts 25 cows. We will

use “Abduct 25” for the achievement name so it will be easy to find when

we have dozens of achievements. For our achievement ID, we will use

“com.dragonforged.ufo.abduct25.” Feel free to use whatever ID you want

here, but make sure to substitute it for com.dragonforged.ufo.abduct25 in

the upcoming examples. We will make this an unhidden achievement and

assign it a point value of 10.

Important  No achievement can have more than 100 points
awarded for completing it.

Figure 4-3.  The configuration view for new achievements in App
Store Connect

Chapter 4 Achievements

87

For an achievement to be valid, you must configure at least

one language. As you can see in Figure 4-4, the localization area of

achievements is much different than that encountered when creating

leaderboards in the previous chapter. Refer to Table 4-2 for information on

each attribute.

Note  Each game owns its achievement descriptions; you may not
share achievement descriptions between multiple games.

Figure 4-4.  Localizing an achievement in iTunes Connect

Chapter 4 Achievements

88

For our purposes, we will configure this achievement for English.

I will use “Abduct 25 Cows” as the title, but you may use any title that

you prefer. For the pre-earned description, I chose “Abduct 25 cows

with your UFO.” For the earned description, I used “You have mastered

the art of cow abduction.” I will also use a cow crossing road sign as the

image. When you are done, you should have a fully set up achievement,

which should look similar to the view shown in Figure 4-5.

Table 4-2.  Localized Achievement Attributes in iTunes Connect

Attribute Description

Language Select the language in which this achievement will appear. You must

set up a language for each localization that you will support in your

shipping product.

Title This is the title that will appear within the app to describe this

achievement.

Pre-earned

description

This is the description that appears when the achievement is

unhidden and is unearned or only partially completed.

Earned

description

This is the description that is shown when the achievement has

been fully unlocked and completed.

Image This is the image that will be displayed to the user when the

achievement is earned. Apple will supply the unearned image, or

you can specify your own when working with a custom achievement

GUI.

This image must be 512 x 512 and 72 DPI.

Chapter 4 Achievements

89

We will want to work with a couple of different achievement setups for

our game. Go ahead and create another new achievement for abducting

a single cow; this will be our nonprogressive achievement. Then, make

a third achievement for five-minute playtime and set it to hidden. This

last achievement will let us work with timers, progressive achievements,

and hidden achievements. You may select any point values, descriptions,

titles, and images you want for these achievements, but make sure you

remember the achievement IDs.

You should now have three achievements configured in App Store

Connect for our game.

We can now get back into Xcode and begin working with these

achievements.

Figure 4-5.  A new achievement, as shown in iTunes Connect

Chapter 4 Achievements

90

�Presenting Achievements
Unlike leaderboards, there will be plenty to preview GUI-wise before

we populate user data into our achievement system. It is helpful to see

the effects that modifying achievements have on how they are displayed

through the default GUI. In the remainder of this chapter, we will begin by

presenting Apple’s achievement GUI and then move on to submitting user

data. We will also cover custom GUI achievements.

Before we can begin, we need to create a new UIbutton that will trigger

the achievement view. We most likely want to do this outside of the game

screen, as we did with our two leaderboard buttons. We begin by adding a

new button to the UFOViewController view, as shown in Figure 4-6.

You also need to create and hook up an IBAction to our new

achievement button. Insert the following code into the action that you

hooked up to the achievement button:

@IBAction func achievementButtonPressed() {

 �var achievementViewController: GKGameCenterViewController?

= nil

 �if let state = GKGameCenterViewControllerState(

rawValue: 1) {

 �achievementViewController = GKGameCenterView

Controller(state: state)

 }

 achievementViewController?.gameCenterDelegate = self

 �if let achievementViewController =

achievementViewController {

 present(achievementViewController, animated: true)

 }

}

Chapter 4 Achievements

91

If you were to run the App and tap on the achievement button,

you would now see a view similar to the one shown in Figure 4-7.

The achievements shown are using Apple’s unearned image. Apple

recommends that you always use its unearned image, but when working

with a custom achievement GUI, you can override this image and return

your own.

Next, recall that we set up three achievements, one of them hidden.

As you can see in Figure 4-7, the provided view shows us only two

achievements. Because we have not submitted any kind of progress to

the third achievement, its details are hidden from the user. However,

you can see that the top information line reflects that there is a hidden

achievement (0 of 3 achievements). Also notice that the achievements are

using the localized unearned description that was set in iTunes Connect.

Figure 4-6.  Adding a new button to trigger our achievement view

Chapter 4 Achievements

92

These are the only necessary steps to show the user his or her

achievement progress through Apple’s built-in GUI. In the next section, we

will look at how to update and progress these achievements. Later in this

chapter, you will learn how to present achievement using a custom GUI.

Note  A user can always see his or her achievement progress in
Game Center, but it is recommended allowing your user a way to
view their progress from within your app as well.

�Modifying Achievement Progress
Unlike a leaderboard entry, achievements can be constantly modified

and progressed through user interaction. As with the other Game Center

functionality we have been working with, we will create a new method in

our GameCenterManager class to handle interacting with achievements.

Once the following method has been added, we will review the method to

understand exactly how it functions.

Figure 4-7.  Our achievements, as shown with Apple’s default GUI

Chapter 4 Achievements

93

Tip  Remember that all this source code is made available to you
online. When dealing with large functions, it might be easier to copy it
from the source code downloaded from apress.com.

 �func submitAchievement(_ identifier: String,

percentComplete: Double) {

 if GKLocalPlayer.local.isAuthenticated == false {

 return

 }

 guard earnedAchievementCache != nil else {

 populateAchievementCache() {

 �self.submitAchievement(identifier,

percentComplete: percentComplete)

 }

 return

 }

 �if let achievement = achievement(forIdentifier:

identifier) {

 let storedProgress = achievement.percentComplete

 guard percentComplete > storedProgress else {

 return

 }

 achievement.percentComplete = percentComplete

 �GKAchievement.report([achievement],

withCompletionHandler: { [weak self] error in

Chapter 4 Achievements

http://apress.com

94

 if let error = error {

 p�rint("An error occurred while

reporting an achievement. Data will

be saved to UserDefaults: \(error.

localizedDescription)")

 �self?.storeAchievementToSubmitLater(

achievement)

 }

 if percentComplete >= 100 {

 �GKAchievementDescription.loadAchievementDes

criptions(completionHandler: { [weak self]

achievementDescriptions, error in

 if let error = error {

 �print("An error occurred while

loading achievement descriptions:

\(error.localizedDescription)")

 }

 �achievementDescriptions?.forEach{

achievementDescription in

 �if achievement.identifier ==

achievementDescription.identifier {

 �self?.gameDelegate?.achievement

Earned(achievementDescription)

 }

 }

 })

 }

 DispatchQueue.main.async { [weak self] in

 �self?.gameDelegate?.achievementSubmitted(

achievement, error: error)

 }

Chapter 4 Achievements

95

 })

 }

 }

}

Now look at the submitAchievement:percentComplete: function we

added. There are two primary if/else blocks. The first one is executed if

earnedAchievementCache is nil, which it will always be the first time this

code is executed. Let’s take a look at that block of code now.

GKAchievement.loadAchievements(completionHandler: {

achievements, error in

 if error == nil {

 var tempCache: [String: GKAchievement] = [:]

 for achievement in achievements ?? [] {

 �tempCache[achievement.identifier] =

achievement

 }

 �self.earnedAchievementCache = tempCache as?

NSMutableDictionary

 �self.submitAchievement(identifier,

percentComplete: percentComplete)

 } else {

 DispatchQueue.main.async {

 �self.delegate?.

achievementSubmitted?(nil, error:

error)

 }

 }

 })

Chapter 4 Achievements

96

Important  The array that is returned by loadAchievements
WithCompletionHandler will not show any achievements that you
have not yet submitted a percentageCompleted for.

The primary function of this code snippet is to load a list

of achievements into the earnedAchievementCache. We call

loadAchievementsWithCompletionHandler on GKAchievement. This

call returns an array of all the achievements that were set up in App Store

Connect. We then store the GKAchievement object into the dictionary with

the identifier as the key. At this point, the code calls submitAchievement

:percentComplete again. This time, earnedAchievementCache is not nil

and the second set of code is executed. If we encounter an error during this

process, we use our standard delegate callback to send the error back to

our delegate.

You will need to add new functions to GameCenterManager to handle

this delegate callback; this is a good time to do that. Add the following

optional protocol to the header file:

func achievementSubmitted(_ achievement: GKAchievement?,

error: Error?)

Now let’s take a look at the second section of code. The following code,

when successfully executed, submits the achievement to the Game Center

servers:

var achievement = earnedAchievementCache?[identifier ?? ""] as?

GKAchievement

 if achievement != nil {

 �if ((achievement?.percentComplete ?? 0.0) >=

100.0) || ((achievement?.percentComplete ??

0.0) >= percentComplete) {

Chapter 4 Achievements

97

 achievement = nil

 }

 achievement?.percentComplete = percentComplete

 } else {

 �achievement = GKAchievement(identifier:

identifier ?? "")

 achievement?.percentComplete = percentComplete

 �earnedAchievementCache?.setValue(achievement,

forKey: achievement?.identifier ?? "")

 }

 if let achievement = achievement {

 �GKAchievement.report([achievement],

withCompletionHandler: { error in

 if error != nil {

 �self.storeAchievement(toSubmitLater:

achievement)

 }

 if percentComplete >= 100 {

 �GKAchievement.loadAchievements(completion

Handler: { achievements, error in

 �for achievementDescription in

achievements ?? [] {

 �if achievement.

identifier == self.

from(achievementDescription).

identifier {

 �self.delegate?.achievement

Earned?(self.from(

achievementDescription))

 }

Chapter 4 Achievements

98

 }

 })

 }

 DispatchQueue.main.async {

 �self.delegate?.achievementSubmitted?(

achievement, error: error)

 }

 })

 }

The first line of code retrieves a GKAchievement object from our

earnedAchievementCache, based on the identifier string that is passed

into this function. If the achievement is completed or the reported

progress is equal to what we have on the Game Center server, we set the

achievement to nil. This prevents us from tying up networking time by

submitting progress on something that will be ignored. We also set the

property for percentComplete on the GKAchievement object to the double

that was passed into this method.

In the event that the achievement doesn’t exist in the cache, we create

a new instance of it. In this event, we also want to add it to our local

achievement cache.

The final step, after doing a nil check, is to submit the achievement.

We call reportAchievementWithCompletionHandler on the achievement

object. We then pass the results back to our delegate using our existing

protocol.

Note  All achievements have a percentageComplete regardless of
whether they allow a percentage to be completed at a time. If your
achievement can only be completely earned or unearned, then you
will want to pass 100 for earned.

Chapter 4 Achievements

99

The last thing that we need to do in this section is implement our

protocol method in UFOGameViewController. Add the following method

to the implementation of that file; all we will worry about right now is

printing the error and success information to the console.

func achievementSubmitted(_ achievement: GKAchievement?, error:

Error?) {

 if let error = error {

 �print("There was an error in reporting the

achievement: \(error.localizedDescription)")

 } else {

 print("achievement submitted")

 }

 }

�Resetting Achievements
There are circumstances when you might want to reset user achievements.

Besides being extremely helpful in debugging, you might find it useful to

provide users with an option to reset. You might want to add a prestige

mode or give the users a chance to start your game over from the

beginning.

func resetAchievements()

{

 �GKAchievement.resetAchievementsWithCompletionHandler()

{(error) in

 self.lastError = error

 }

}

Chapter 4 Achievements

100

Important  Don’t forget to remove the cached information you have
stored on the achievements, or you will not be able to progress the
reset achievements until the app is restarted.

�Adding Achievement Hooks
The biggest challenge in implementing achievements into your app is

adding the hooks to activate and progress those achievements into your

normal routines. In my personal experience, I have found that adding

these hooks when the program is almost finished is easier than trying to

add them in as you go. In this section, I will provide a number of examples

of how to tie in achievements; your own app may differ significantly, but

you should be able to easily adapt the examples to suit your needs.

To make achievements easier to retrieve progress details, we first add

a few convenience functions to our GameCenterManager class. This is the

first method we will use to populate the local achievement cache.

func populateAchievementCache(_ completion: (() -> Void)? =

nil) {

 guard earnedAchievementCache == nil else {

 completion?()

 return

 }

 �GKAchievement.loadAchievements { [weak self]

achievements, error in

 if let error = error {

 �print("An error occurred while loading

achievements: \(error.localizedDescription)")

 } else {

Chapter 4 Achievements

101

 if let achievements = achievements {

 �self?.earnedAchievementCache =

achievements.reduce(into: [:], { result,

achievement in

 �result[achievement.identifier] =

achievement

 })

 } else {

 self?.earnedAchievementCache = [:]

 }

 completion?()

 }

 }

 }

The preceding function is very similar to the cache population

code in the submit achievement progress method previewed in the

previous section. We will need to populate the local cache in order to

work with the other two convenience functions. We will want to call the

populateAchievementCache as soon as we can after authenticating.

I have added a call to it from the local player did authenticate function in

GameCenterManager. Add the following function as well:

func percentageCompleteOfAchievement(withIdentifier identifier:

String?) -> Double {

 if GKLocalPlayer.local.isAuthenticated == false {

 return -1

 }

 if earnedAchievementCache == nil {

 �print("Unable to determine achievement progress,

local cache is empty")

 } else {

Chapter 4 Achievements

102

 �let achievement = earnedAchievementCache?[

identifier ?? ""]

 if let achievement = achievement {

 return achievement.percentComplete

 } else {

 return 0

 }

 }

 return -1

 }

The preceding function returns a double for the percentage complete

for the achievement with the identifier passed to it. If it cannot find a copy

of the achievement in the local cache, we can assume the percentage

complete is 0. The next function uses the preceding function to return

either YES or NO on whether an achievement has been completed.

�func achievement(withIdentifierIsComplete identifier: String?)

-> Bool {

 �if percentageCompleteOfAchievement(withIdentifier:

identifier) >= 100 {

 return true

 } else {

 return false

 }

 }

Note  Do not forget to call populateAchievementCache as soon as
possible after authentication. Otherwise, these convenience methods
will not return correct information.

Chapter 4 Achievements

103

Now that we have some helper functions in place, we can begin

to hook up the achievement hooks for UFOs. We have three different

achievements we need to tie in. The first two both have to do with the

number of cows that we have abducted, so let’s start there. Modify the

finishAbducting function of UFOGameViewController to match the

following:

func finishAbducting() {

 if currentAbductee == nil || !tractorBeamOn {

 return

 }

 �cowArray = cowArray?.filter({ ($0) as AnyObject !==

(currentAbductee) as AnyObject })

 tractorBeamImageView?.removeFromSuperview()

 tractorBeamOn = false

 score += 1

 scoreLabel.text = String(format: "SCORE %05.0f", score)

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers("$score:\(score)",

reliable: true)

 }

 currentAbductee?.layer.removeAllAnimations()

 currentAbductee?.removeFromSuperview()

 currentAbductee = nil

 if isHost {

 spawnCow()

 }

Chapter 4 Achievements

104

 �if (gcManager?.achievement(withIdentifierIsComplete:

"com.dragonforged.ufo.aduct1") == false) {

 �gcManager?.submitAchievement("com.dragonforged.ufo.

aduct1", percentComplete: 100)

 }

 �if (gcManager?.achievement(withIdentifierIsComplete:

"com.dragonforged.ufo.abduct25") == false) {

 �var percentComplete = gcManager?.percentageComplet

eOfAchievement(withIdentifier: "com.dragonforged.

ufo.abduct25") ?? 0.0

 percentComplete += 4

 �gcManager?.submitAchievement("com.dragonforged.ufo.

abduct25", percentComplete: percentComplete)

 }

 }

We are concerned with only the last few lines of this

method at this time. First, we call our convenience function

achievementWithIdentifierIsComplete on our identifier string for a

single abduction. Because this is an earned or unearned achievement,

we don’t need to worry about current percentage complete. To mark the

achievement as complete, we set its percentage complete to 100.

Note  Don’t forget to change the identifier string from the example
to the one that you used in App Store Connect for a single abduction
if different.

The next achievement is hooked up in a similar fashion; the only

difference is that we use incremental progress. Look at the newly added

following code snippet onto the end of the finishAbducting function:

Chapter 4 Achievements

105

if (gcManager?.achievement(withIdentifierIsComplete: "com.

dragonforged.ufo.abduct25") == false) {

 �var percentComplete = gcManager?.percentageComplete

OfAchievement(withIdentifier: "com.dragonforged.

ufo.abduct25") ?? 0.0

 percentComplete += 4

 �gcManager?.submitAchievement("com.dragonforged.ufo.

abduct25", percentComplete: percentComplete)

 }

In the preceding code snippet, we use the same methodology that we

did for submitting a complete achievement, but with one main difference.

We first need to determine the current progress on the achievement. We

then add 4 to it, since 4% of 25 is 1. To increment by 1 abduction out of 25,

we need to add 4% each time a new cow is abducted.

Tip  Do not forget about the resetAchievement method that we
added to GameCenterManager. It is very useful in debugging the
submit code. It is helpful to keep a call to this in the didAuthenticate
section to always put the app back to a clean state during debugging.

Go ahead and run the game and abduct a few cows. When you are

done, you will notice that the achievement screen now shows progress

similar to that shown in Figure 4-8. If you abducted at least one cow, you

should have a complete achievement. If you abducted less than 25 cows,

you should have one progressed achievement. Notice that the user is not

informed when he or she completes an achievement; we will discuss a

method of notification in the later section, “Achievement Completion

Feedback.”

Chapter 4 Achievements

106

The last hook we add for this project handles the player for the five-

minute achievement. Your first instinct is probably to keep track of time

played and submit it as progress when your user exits the game. This

might not be the best approach. We want to inform the user when they

complete an achievement. You don’t want them to have to wait until

they finish a game to see which achievements they have earned. There

are many approaches to this problem. For this example, we will fire an

NSTimer every three seconds (which is 1% of five minutes) and update the

achievements progress. Add the following to UFOGameViewController:

func tickThreeSeconds() {

 �if gcManager?.achievement(withIdentifierIsComplete:

"com.dragonforged.ufo.play5") == true {

 return

 } else {

 �var percentComplete = gcManager?.percentageComplet

eOfAchievement(withIdentifier: "com.dragonforged.

ufo.play5") ?? 0.0

Figure 4-8.  Progressing achievements

Chapter 4 Achievements

107

 percentComplete += 1

 �gcManager?.submitAchievement("com.dragonforged.ufo.

play5", percentComplete: percentComplete)

 }

 }

Same as modifying the viewDidAppear and ViewWillDisappear

functions to match the following, we will start a three-second timer. Every

time the timer fires, we call tickThreeSeconds. This gives us our current

progress of the achievement, to which we add 1%, and then submit it back

to the server. In the event that the achievement is already complete, we

simply return.

override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 timer = Timer.scheduledTimer(

 timeInterval: 3.0,

 target: self,

 selector: #selector(tickThreeSeconds),

 userInfo: nil,

 repeats: true)

}

override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 timer?.invalidate()

 timer = nil

}

Chapter 4 Achievements

108

�Achievement Completion Feedback
It is important to let users know when they have completed an

achievement. However, you don’t want to just present a UIAlertView,

as that would be very distracting, considering most achievements are

going to be completed in the middle of an action, such as completing 20

laps in a racing game. You wouldn’t want to take the user away from any

interaction, so we will need a better system. I have always been a fan of the

small view that slides in from the bottom or top to inform the user of the

accomplishment—very similar to the fashion in which you get feedback

from logging in to Game Center.

The first thing we need to do in order to implement a feedback system

is add a new protocol function to GameCenterManager. We will use this to

inform the delegate that an achievement has been completed for the first

time. Add the following function to the project as an optional protocol:

�func achievementEarned(_ achievement: GKAchievementDescription?)

In addition, we need to modify our existing submitAchievem

ent:percentComplete: method. Take a look at the last if statement

block of that function. We want to modify it as follows but add an if

statement to determine whether we have a percentageComplete over

100, which will call our new protocol. Also notice that we are using

GKAchievementDescription instead of GKAchievement. We will discuss

this further in the next section, “Custom Achievement GUI.”

if percentComplete >= 100 {

 �GKAchievementDescription.loadAchievementDes

criptions(completionHandler: { [weak self]

achievementDescriptions, error in

 if let error = error {

Chapter 4 Achievements

109

 �print("An error occurred while

loading achievement descriptions: \

(error.localizedDescription)")

 }

 �achievementDescriptions?.forEach{

achievementDescription in

 �if achievement.identifier ==

achievementDescription.identifier {

 �self?.delegate?.achievementEarn

ed(achievementDescription)

 }

 }

 })

 }

This completes the modifications that we need to make to the

GameCenterManager class. Now we need to hook up the visual feedback

for the user. Move back into UFOGameViewController.swift, and add our

new function achievementEarned. You could add any type of feedback

here including a standard UIAlertView, but we will be exploring something

a little more user friendly in this section.

We need to create some new IBOutlets as part of our

UFOGameViewController. Make a new view. Then, set the background of

the view to black with 70% opacity. We also create a new label, place it in

the center of this view, and set the text alignment to the center. Your view

should look similar to that shown in Figure 4-9.

Figure 4-9.  Achievement earned view and label

Chapter 4 Achievements

110

First a new frame is created for the completion view, and it is then

added as a subview to the game view.

func achievementEarned(_ achievement:

GKAchievementDescription?) {

 �achievementCompletionView.frame = CGRect(x: 0, y: 320,

width: 480, height: 25)

 view.addSubview(achievementCompletionView)

 �achievementcompletionLabel.text = achievement?.

achievedDescription

 UIView.animate(

 withDuration: 0.5,

 animations: {

 �self.achievementCompletionView.frame =

CGRect(x: 0, y: 295, width: 480, height: 25)

 },

 completion: achievementEarnedAnimationDone

)

 }

Both of these functions are fairly straightforward. When we get

a delegate callback from completing the achievement, we add our

achievementCompletionView to our game view. Then, we animate

it onto the bottom of the view. After a five-second delay, we animate

it back off the view. You also have access to the images used in

GKAchievementDescription. We will look more into these properties in the

next section.

Tip  You might need to reset your achievements to see any
completion progress. You may find that it is helpful to create a new
button that resets achievements for use during testing.

Chapter 4 Achievements

111

If you run the app now and abduct a single cow (assuming you haven’t

yet accomplished that achievement), you should see output very similar to

that shown in Figure 4-10.

�Custom Achievement GUI
There might be times when you will want to customize the appearance of

your achievement system to match the custom GUI in your App or game.

As we saw with leaderboards in the previous chapter, we have the ability

to work with the raw data and present it in whatever fashion we choose.

This section focuses on adding achievements to your app using your own

GUI. As with the leaderboard section, the first thing that we need to do is to

add a new button to get to our custom achievement progress view. Add a

new button and associated action, as shown in Figure 4-11.

Figure 4-10.  Achievement notification banner visible after
completing a new achievement for the first time

Chapter 4 Achievements

112

We will need to create a new class to handle processing and

displaying the achievement progress information. Create a new class

named UFOAchievementViewController, and make it a subclass of

UIViewController. Set up actions and outlets in the storyboard for a table

view, a navigation bar, and a dismiss button. Don’t forget to set the data

source and delegate for the table view as well.

We also want to create an array that will be used to hold onto

the achievement data. Create a new NSArray object and name it

achievementArray. We also want to import the GameCenterManager

header and conform to its protocol.

Now, hook up the action to present our new

UFOAchievementViewController class. Edit the action that was created in

UFOViewController to reflect the following changes:

@IBAction func customAchievementButtonPressed() {

 �let achievementViewController =

UFOAchievementViewController()

 achievementViewController.gcManager = gcManager

 present(achievementViewController, animated: true)

}

Figure 4-11.  Adding a custom achievement button in Xcode

Chapter 4 Achievements

113

Let’s take a minute to switch over to the file for

UFOAchievementViewController. We need a dismiss action; add that

function as well.

@IBAction func dismissAction() {

 dismiss(animated: true, completion: nil)

 }

If you were to run the app now, you should see a plain and boring table

view, similar to the one shown in Figure 4-12. In addition, the dismiss

button should now be working.

Before we can go on with our UFOAchievementViewController, we

need to move back into our GameCenterManager class. Add the following

method as an optional protocol to the GameCenterManagerDelegate:

�func achievementDescriptionsLoaded(_ descriptions:

[GKAchievementDescription]?, error: Error?)

Figure 4-12.  The blank custom table that we will be using for our
custom achievements

Chapter 4 Achievements

114

Then add the following new method to the implementation of

GameCenterManager:

func retrieveAchievmentMetadata() {

 �GKAchievementDescription.loadAchievementDescriptions {

(descriptions, error) in

 if let error = error {

 �print("An error occurred while loading

achievement descriptions: \(error.

localizedDescription)")

 }

 DispatchQueue.main.async {

 �self.delegate?.achievementDescriptionsLoaded(

descriptions, error: error)

 }

 }

 }

This function will return all the GKAchievementDescriptions that

are found on the Game Center server. We can now move back to our

UFOAchievementViewController class and finish implementing the

custom achievement table.

Important  The retrieveAchievementMetadata function will return
hidden achievements as well. If you want to hide these from the user,
you will have to filter them out of the results.

In addition, add the new protocol that we created earlier. If we do not

encounter any errors, we simply set the returned descriptions to our local

array. When we get the new data, we will also want to refresh the table to

show the data to the user.

Chapter 4 Achievements

115

 �func achievementDescriptionsLoaded(_ descriptions:

[GKAchievementDescription]?, error: Error?) {

 if error == nil {

 achievementArray = descriptions

 } else {

 �print("An error occurred when retrieving

the achievement descriptions: \(error?.

localizedDescription ?? "")")

 }

 achievementTableView.reloadData()

 }

}

For our numberOfRowsInSection method, we simply return the count

on the achievementArray, as follows:

func tableView(_ tableView: UITableView, numberOfRowsInSection

section: Int) -> Int {

 self.achievementArray?.count ?? 0

 }

We also need to implement a cellForRowAtIndexPath method. Add the

following method to the implementation as well. After it is added, we will

look at it in more detail:

static let tableViewCellIdentifier = "Cell"

 �func tableView(_ tableView: UITableView, cellForRowAt

indexPath: IndexPath) -> UITableViewCell {

 �var cell = tableView.dequeueReusableCell(wi

thIdentifier: UFOAchievementViewController.

tableViewCellIdentifier)

Chapter 4 Achievements

116

 if cell == nil {

 �cell = UITableViewCell(style: .default,

reuseIdentifier: UFOAchievementViewController.

tableViewCellIdentifier)

 cell?.selectionStyle = .none

 }

 �let achievementDescription =

achievementArray?[indexPath.row]

 �if let percentage = gcManager?.percentageCompleteOfA

chievement(withIdentifier: achievementDescription?.

identifier) {

 �cell?.textLabel?.text = (achievementDescription?.

title ?? "")

 }

 �achievementDescription?.loadImage(completionHandler: {

(image, error) in

 if image != nil {

 cell?.imageView?.image = image

 } else {

 �cell?.imageView?.image =

GKAchievementDescription.

placeholderCompletedAchievementImage()

 }

 })

 return cell!

 }

Chapter 4 Achievements

117

The first half of this function is rather standard; we create a new

table cell or we use one from our reusable collection. We are using the

default built-in table cell to save some time as well. We create a new

GKAchievementDescription and populate it based on the row number

from our achievementArray.

The first property we work with is the title, which we use to set the

textLabel of the cell. In most circumstances, you will want to use the

achievedDescription or unachievedDescription as well as the title. For the

sake of simplicity, we use only the title here. Next, we need to set the image

for the achievement. This is slightly more complex.

GKAchievementDescription has an image property associated

with it, which is nil until you populate it. First, check to see whether

the property is populated; we can accomplish this with a simple nil

check. If it is populated, we set the cell image to the one that we have

cached. If not, we need to load an image from the Game Center servers.

To populate it, we call loadImageWithCompletionHandler on the

GKAchievementDescription object. This returns the earned image. Notice

that we used the default placeholder image, which we can access through

a class method on GKAchievementDescription.

Tip  When setting an image in the UITableViewCellStyleDefault cell,
do not set the image to nil. This will cause the cell to left align the
text and remove the image view. If we then use our block to load the
image, it wouldn’t appear until the cell or table has been reloaded.
This is the reason we set the placeholder image first.

If we were to run the app and visit our custom achievement view, it

should look similar to the one shown in Figure 4-13.

Chapter 4 Achievements

118

We are able to view only a list of achievements and associated

images, but not how far the user has progressed toward unlocking

the achievements. If you recall, earlier in this chapter, we wrote a

few convenience functions, which can be useful here. We have two

functions that will return just the progress for the achievement,

percentageCompleteOfAchievementWithIdentifier: and

achievementWithIdentifierIsComplete. In addition, if we want access to

the entire GKAchievement object, we can use achievementForIdentifier.

Let’s use the percentageCompleteOfAchievementWithIdentifier: to

display the percentage complete here. Modify the section of code in the

cellForRowAtIndexPath: that sets the text label of the cell. The new code

snippet should look like the following:

Figure 4-13.  Achievement data, as displayed in a custom GUI

Chapter 4 Achievements

119

Figure 4-14.  Achievements with custom GUI and completion
percentage

�if let percentage = gcManager?.percentageCompleteOfAchievement(

withIdentifier: achievementDescription?.identifier) {

 �let percentageCompleteString = String(format: " %.1f%%

Complete", percentage)

 �cell?.textLabel?.text = (achievementDescription?.title ??

"") + percentageCompleteString

 }

If you run the game again, you will notice a more helpful output, as

shown in Figure 4-14.

�Recovering from a Submit Failure
You as the developer are solely responsible for handling achievement-

submitting failures. You do not want your users to lose any achievement

progress. Losing an achievement is very frustrating to your users and

should be avoided at all cost. To prevent this, take the same approach that

Chapter 4 Achievements

120

we used when working with score failures. The primary difference is that

there is no need to store the GKAchievement object because it does not

contain any date information or time-sensitive information. We just need

to store the percentageComplete. We will create a new method to handle

this behavior for us. Add the following method to the GameCenterManager

class:

func storeAchievementToSubmitLater(_ achievement:

GKAchievement) {

 let defaults = UserDefaults()

 let savedAchievementsKey = "savedAchievements"

 �var achievementsDictionary = defaults.

dictionary(forKey: savedAchievementsKey) as? [String:

Double] ?? [:]

 let achievementKey = achievement.identifier

 let achievementProgress = achievement.percentComplete

 �let storedProgress = achievementsDictionary[achievement

Key] ?? 0

 if achievementProgress > storedProgress {

 �achievementsDictionary[achievementKey] =

achievementProgress

 �defaults.setValue(achievementsDictionary, forKey:

savedAchievementsKey)

 }

 }

This function will treat an achievement as an argument and verify

whether it is not already stored as a reference in our achievements that

have failed to be properly submitted. If it has, then we need to see which

one is progressed further so we do not have any instances in which we

delete a user’s progress. Once that is done, we store it into userDefaults as

a dictionary, using the identifier as the key and the percentage completed

Chapter 4 Achievements

121

as the value. We add a call to this method from an error in the submitAchie

vement:PercentComplete: function.

Tip  I recommend informing your users their achievement could not
be submitted at this time, but it has been saved and will be submitted
later. This lets the user know that any progress has not been lost.

We also need a new function that will check to see whether we have

uncommitted achievement progress. There is no right answer for when it

is a good time to call this function. You can typically get away with calling

it after a user authenticates with Game Center, but you may want to add

additional methods that it is called from, such as whenever the reachability

status is updated. Add the following method to your GameCenterManager

class:

func submitAllSavedAchievements() {

 let defaults = UserDefaults()

 let savedAchievementsKey = "savedAchievements"

 �if let achievementsDictionary = defaults.

dictionary(forKey: savedAchievementsKey) as? [String:

Double] {

 achievementsDictionary.forEach { key, value in

 submitAchievement(key, percentComplete: value)

 }

 defaults.removeObject(forKey: savedAchievementsKey)

 }

 }

Chapter 4 Achievements

122

This function loads a copy of our unsubmitted progress and loops

through each item, attempting to resubmit them as they go. In the event

that they fail to be submitted again, they will be added back to our saved

data.

�Summary
You now have all the tools you need to add rich and complex achievements

into your Game Center–enabled iOS, Mac, or Apple TV app. You now know

the value of adding achievements, as well as how to set up and configure

them in the App Store Connect portal. We have discussed the pros and

cons of using both Apple’s default GUI and a custom GUI that you have

designed. You now know how to expand our GameCenterManager class to

include posting achievement progress, getting achievement feedback, and

resetting achievement progress all together.

The most important step completed in this chapter is expanding the

reusable GameCenterManager class, which will allow you to easily add

achievements in future projects. In the next chapter, we will explore Game

Center’s matchmaking and invitation systems so you can add multiplayer

capabilities and other networking features.

Chapter 4 Achievements

123© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_5

CHAPTER 5

Matchmaking
and Invitations
Beginning with this chapter, and through the next few chapters, we will

discuss how to add networking and multiplayer capabilities with Game

Center, and later GameKit, into your app or game. Adding networking

capability to your app is almost considered essential technology in the

modern era. Virtually all modern software has some sort of networking

component associated with it today, whether it is talking to an online

service to retrieve or post information or talking directly to a peer device to

exchange data.

In the following chapters, we will discuss communicating with other

peer devices, although not all of our networking configurations will be

direct peer to peer (see Chapter 6 for details on network design).

This chapter, in particular, explores how to use Game Center to find

and invite peers into your app using Game Center’s integrated invitation

system.

Game Center provides an amazingly undervalued marketing and

distribution tool to the developer for very historically low overhead, in

regards to handling invitations. When inviting local or Internet users to

begin a multiplayer experience in your game or app, you have the option

to invite any of your Game Center friends. If the friends that you invite do

not currently have the app installed, they will be prompted to purchase the

app instantly and begin playing. Even after a decade of Game Center, there

https://doi.org/10.1007/978-1-4842-7756-0_5#DOI

124

are no other methods on iOS to send a “buy now” link to another user

in this manner. This functionality provides a great way to grow your user

base—just let your users do the selling for you.

�Why Add Matchmaking and Invitations
to Your App?
When looking at the list of the top ten selling PC or console games for any

recent year, you will find it heavily dominated by games that demonstrate

a strong focus on multiplayer interaction. Let’s take a quick look at the

number one selling PC game for 2021, Call of Duty: Black Ops Cold War.

While this game does feature a single-player mode, this is considered more

of an add-on to the game as opposed to the primary selling point. The

focus was obviously the multiplayer gaming, even at the sacrifice of the

single-player campaign. In recent years, the industry’s focus has shifted

from creating rich and in-depth single-player campaigns to putting more

effort into the multiplayer. There is a perfectly reasonable answer for this

new phenomenon: you get more bang for the buck with multiplayer. This

is not to say that it is safe to ignore single-player gaming either; there is a

growing demand for single-player and couch co-op games.

Humans are, by their very nature, social creatures. We crave social

interaction for healthy mental development. Video games and other social

software are increasingly becoming an outlet for that interaction. Whether

you agree with the sociology of that statement is not what is important

here, but the fact remains that multiplayer games are becoming more and

more popular. Software users have grown increasingly fond of multiplayer

interaction, be it a massive multiplayer online role-playing game or your

garden variety first-person shooter with an Internet lobby.

Adding a multiplayer element to your game can increase user playtime

by a hundredfold. If you need proof, look at Quake III Arena or Unreal

Tournament, both of which were released in 1999 and both of which still

Chapter 5 Matchmaking and Invitations

125

had users logging in for many years after; there is even an active community

to this day more than 20 years later. If these games had focused solely on

single player, they most likely wouldn’t have had such a devoted fan base.

Outlined here are some additional reasons why adding matchmaking and

invitations through Game Center should be a simple business decision for

your products regardless of what platform you are considering:

•	 Adding a multiplayer component to a game is a great

way to add additional polish. Depending on the type

of game you are working with, it might be very minor

additional work to add a multiplayer element.

•	 Users have come to expect multiplayer from top-notch

games on the App Store.

•	 You can justify a higher selling point if you have a well-

done multiplayer component.

•	 There is no better way to have users download your app

on the fly than the auto-buy invitation system. If you

can set up perspective users for a situation in which

they are invited to play and can purchase immediately,

you will have a much better chance of closing the sale;

those new users will bring in more users themselves.

•	 You can increase playtime or use time in your app or

game if you are using an ad-supported system. This

will result in more income. If you are selling a paid app,

users will feel like they have gotten more value for their

money.

•	 Humans like to compete, so encourage your users to do

what they enjoy. Multiplayer might not be for everyone,

but for many, it is all they are interested in when

shopping for a new game.

Chapter 5 Matchmaking and Invitations

126

Tip  Whenever possible, also provide your users with a single-player
option for your game, as there is still a noticeable user base that
prefers single-player campaigns.

�Common Matchmaking Scenarios
Before we begin working with matches and invitations themselves, it is

important to understand some of the scenarios that you might encounter

in your quest to implement multiplayer networking into your iOS app or

game:

•	 The first, and probably most common, scenario that

you could encounter would be players who are already

in your app and want to create an auto-matched game.

Both players will already have the app installed and

loaded, as well as be in a place where it is expected

that they will want to begin a networked session with

each other. The invitee player will receive a notification

asking whether they want to join a game with the

inviter. When both agree, the matchmaking GUI is

dismissed and a new match is created.

•	 Another common scenario that you could encounter

would be if the user creates a new matchmaking event

and invites other players from their Game Center

friends list. The invited friends will receive a push

notification informing them that they have been invited

to a game; if they already have the game installed

and accept the invitation, the game will be launched.

Once all invited players have entered the match, the

Chapter 5 Matchmaking and Invitations

127

game will begin. If they do not yet have the game

installed, they will be prompted to install it, and it will

automatically be launched after it has been successfully

installed.

•	 A slightly different event path would occur if a friend is

invited and they do not yet have the app installed and

have decided to install the app. After the installation

process, the app will automatically launch, and you

can continue with the normal flow of the matchmaking

event.

•	 A player can also create a new matchmaking event from

within the Game Center App itself. In this scenario,

all players are launched into the app and receive an

invitation to join the match. The best part about this

scenario is that if your app already supports invitations,

you don’t need to write any additional code to support

this scenario.

•	 A player can also invite a friend or multiple friends and

fill any remaining slots with the auto-matcher. This

is a mix and match of the first two scenarios, and if

support for both of them is added, you shouldn’t have

any additional programming to implement for this

scenario.

•	 The last scenario you could encounter (optionally) is

to programmatically auto-match players. In this case, a

request would be sent to the Game Center servers and

matches would be returned for you. The player would

not see any standard GUI and you have the option to

implement your own interface.

Chapter 5 Matchmaking and Invitations

128

Note  Matchmaking can only be done between two of the same
apps. If the bundle identifier doesn’t match, the apps will not be able
to communicate over the matchmaking system.

�Creating a New Match Request
To create a new match, you first have to create a new GKMatchRequest

object. This object represents the desired parameters for the new match

that you will be creating. A GKMatchRequest is used both when presenting

a GUI and when creating matches programmatically. When working with

the GUI, you will pass the GKMatchRequest object to a new instance of

GKMatchmakerViewController; on the other hand, if you are handling the

matchmaking programmatically, you will pass the object to an instance of

GKMatchmaker. See the following sections for more details on programmatic

match interaction. For the time being, let’s focus on how to create a new

match request in your code. Take a look at the following code snippet:

let request = GKMatchRequest()

request.minPlayers = 2

request.maxPlayers = 2

This example is the simplest demonstration of how to create a new

match. You must specify the maximum as well as the minimum number

of players. In this example, we are creating a new request that will require

exactly two players.

A GKMatchRequest also has a property titled playersToInvite, in which

you can use an array of GKPlayer identifiers to automatically populate into

a new match. This can be very helpful when playing multiple games that

are chained back-to-back and you want to keep the same groups of players

together. This property is also prepopulated when your app is launched

from the Game Center.app with the players that invited you into the app.

Chapter 5 Matchmaking and Invitations

129

Note  When accepting an invite to a match with a friend, the
event is handled from the Game Center App and the playersToInvite
property will be populated.

GKMatchRequest also has additional two properties that you will be

working with in later sections of this chapter. These are playerAttributes

and playerGroup. These two properties are discussed in length in the

sections that share their names.

Note  If you are using Game Center as your server for hosting
games, you are limited to a maximum of four players. However, if
you implement your own server as discussed in the “Using Your Own
Server” section of this chapter, you can include up to 16 players.

�Presenting Match GUI
We begin with the easiest path forward first, by working with the

standard matchmaking GUI provided to us by Apple. Start by first

adding a new button to handle presenting the view on the main screen

of our test game. I have also gone ahead and renamed the old Play

button to Single Player and created a new button called Multiplayer (see

Figure 5-1). We will use the UFOViewController to act as the delegate

for our matchmaking behavior, so set the view controller to conform to

GKMatchmakerViewControllerDelegate. Additionally, modify the action

function of the multiplayer button we just added to match the following

code:

Chapter 5 Matchmaking and Invitations

130

@IBAction func multiplayerButtonPressed() {

 let request = GKMatchRequest()

 request.minPlayers = 2

 request.maxPlayers = 2

 �guard let matchmakerViewController = GKMatchmakerViewContro

ller(matchRequest: request) else {

 �print("There was an error creating the matchmaker view

controller.")

 return

 }

 matchmakerViewController.matchmakerDelegate = self

 present(matchmakerViewController, animated: true)

}

We create a new instance of GKMatchRequest, as we did in the

previous section. Our demo game will consist of exactly two players, so we

set both the max and the min to two.

Figure 5-1.  Adding a new button for multiplayer in the
UFOViewController storyboard

Chapter 5 Matchmaking and Invitations

131

In the next part of the code snippet, we create a new instance of

GKMatchViewController with the GKMatchRequest we just created.

We also set the delegate to our UFOViewController class. When that is

done, we present it as we present any other modal view. You should have

output that looks similar to that pictured in Figure 5-2.

If you haven’t already done so, now would be a good time to populate

your friends list on your sandboxed Game Center account. It is helpful

to have several unused email addresses available for this process, as you

don’t want to use any email addresses that have previously been used with

iTunes Connect or with Game Center. Once you have populated a friend

or two, you can go ahead and tap on the Invite Friend button pictured in

Figure 5-2. You should now see a list of your friends and have the ability to

invite them into your app, as shown in Figure 5-3.

Reminder  Do not use any email addresses you have previously
used in iTunes Connect or Game Center when creating sandboxed
accounts, as it can cause strange and unexpected behavior.

Tip  Many email providers allow you to add a + to the end of your
email address to act as an alias. For example, GameCenterRocks@
Gmail.com and GameCenterRocks+new@Gmail.com both go to
the same inbox, but Apple will treat them as two different email
addresses.

Chapter 5 Matchmaking and Invitations

GameCenterRocks@Gmail.com
GameCenterRocks@Gmail.com
GameCenterRocks+new@Gmail.com

132

Figure 5-2.  MatchmakerViewController creating a new match GUI
with two players

Figure 5-3.  Inviting a friend from your Game Center friends list

Chapter 5 Matchmaking and Invitations

133

Before we can continue, we need to implement the required delegate

functions for the GKMatchmakerViewController. We need to implement

the following three functions before we can continue working with

matchmaking:

func matchmakerViewControllerWasCancelled(_ viewController:

GKMatchmakerViewController) {

 dismiss(animated: true, completion: nil)

}

func matchmakerViewController(_ viewController:

GKMatchmakerViewController, didFailWithError error: Error) {

 dismiss(animated: true, completion: nil)

 �let alert = UIAlertController.init(title: "", message:

"An error occurred: \(error.localizedDescription)",

preferredStyle: .alert)

 �let defaultAction = UIAlertAction(title: "Dismiss", style:

.default, handler: { action in

 self.dismiss(animated: true, completion: nil)

 })

 alert.addAction(defaultAction)

 present(alert, animated: true, completion: nil)

}

func matchmakerViewController(_ viewController:

GKMatchmakerViewController, didFind match: GKMatch) {

 dismiss(animated: true, completion: nil)

}

The first two methods handle user cancellations and failures, while

the third method handles the successes. The last method will return a

GKMatch object upon success; we will use this object in the following

chapters to begin a new match.

Chapter 5 Matchmaking and Invitations

134

When working with a variable number of players allowed per match,

the user will have the option of adding and removing player slots from the

matchmaker view controller as seen in Figure 5-4. When inviting friends

into a Game Center match, you will have the option of supplying a short

message to be displayed with the invitation, as seen in Figure 5-5.

Figure 5-4.  A matchmaker screen with a variable number of players

Chapter 5 Matchmaking and Invitations

135

�Handling Incoming Invitations
When implementing matchmaking into your app, you also have to

implement a system to handle invitations from friends. The invitee’s device

will receive a push notification informing them that one of their friends has

Figure 5-5.  Sending an invitation method to a friend asking them to
begin a match with you. This message will be sent as an iMessage

Chapter 5 Matchmaking and Invitations

136

invited them to play a game. Assuming they have the game installed and

accept the invitation, you will be required to handle connecting the two

players together via a new match. If the invitee does not have the game or

app installed, they will be prompted to download it. After the download is

finished, the normal invitation process is followed.

Note  You will also need to process invitations from new matches
created within Game Center. You most likely won’t need to write
any additional code; however, you do want to thoroughly test this
interaction path.

We will process invitations using an invitation handler (special

thanks to Apple for the naming). two distinct delegate methods of the

GKInviteEventListener protocol will handle the invite process.

Important  When working with the sandboxed mode and invitations,
there can be some quirkiness. If you find yourself never getting the
invited push notification, open up the app on both devices and invite
the other player on both devices. After this has been done once, it
normally restores the ability to test invitations from the springboard.

Now that we know what kind of parameters that we will be working

with, as well as the scenarios that we will encounter, we can begin to write

a new invitation handler. To keep things clean and simple, we wrap our

invitation handler in its own method in our GameCenterManager class.

Add the following new method to GameCenterManager:

Chapter 5 Matchmaking and Invitations

137

public func player(_ player: GKPlayer, didAccept invite:

GKInvite) {

 �guard let matchmakerViewController = GKMatchmakerViewContro

ller(invite: invite) else {

 �print("There was an error creating the matchmaker view

controller.")

 return

 }

 matchmakerViewController.matchmakerDelegate = self

 present(matchmakerViewController, animated: true)

}

public func player(_ player: GKPlayer,

didRequestMatchWithRecipients recipientPlayers: [GKPlayer]) {

 let request = GKMatchRequest()

 request.minPlayers = 2

 request.maxPlayers = 2

 request.recipients = recipientPlayers

 �guard let matchmakerViewController = GKMatchmakerViewContro

ller(matchRequest: request) else {

 �print("There was an error creating the matchmaker view

controller.")

 return

 }

 matchmakerViewController.matchmakerDelegate = self

 present(matchmakerViewController, animated: true)

}

Chapter 5 Matchmaking and Invitations

138

Let’s break down these functions to see exactly what is happening

at each step of the process. The first thing we do is create the

GKMatchmakerViewController with the incoming invite object. The

delegate for the matchmaker is set to self and the interface is presented to

the user.

Important  You cannot accept or otherwise process an invitation
formally until you have authenticated a local user with Game Center.
It is, therefore, important to register an invitation handler as soon
after a successful authentication as possible.

Because we want this to be called as soon as possible after

authenticating with Game Center, we add a call to our new

method after we have successfully authenticated. Modify the

processGameCenterAuthentication method of UFOViewController to

match the following one:

func processGameCenterAuthentication(_ error: Error?) {

 if let error = error {

 �print("An error occurred during authentication:

\(error.localizedDescription)")

 }

}

Tip  If you don’t have two devices to test invitations on, you can
use the simulator as one of the devices. Don’t forget to sign in to the
simulator and your device from two different Game Center accounts,
or you won’t be able to invite each other.

Chapter 5 Matchmaking and Invitations

139

We will use self (UFOViewController) as the delegate for our invitation

handler. If you completed the required delegate calls in the last section,

“Presenting Match GUI,” you will not need to make any additional changes

to this class.

Congratulations! You can now handle incoming invitations to your

app. In the next section, we will explore how to configure auto-matching to

populate invitees for you.

Note  The buy now feature of invitations cannot be tested in
the sandboxed environment; it can be used only in live apps. The
app must be installed on every device being used in order to test
invitations while in sandbox.

�Auto-Matching
Auto-matching is a great feature provided to you for no extra work when

working with Game Center. Game Center keeps an online queue of people

who are waiting to join a multiplayer game in your app. If you do not fill

up a new match request with all invited friends, the auto-matching feature

will automatically populate the remaining spots with other unmatched

players online.

Keep in mind that auto-matching is only as useful as your game is

popular; if you do not have a large enough player base to support auto-

matching, users will try to join a game for a few moments then exit out

when they aren’t matched.

You can filter down the auto-matched results using player groups and

player attributes, which will be discussed later in this chapter. In addition,

you can query the activity of any live player group to see what the average

wait time is to be paired up with a new match; this is also discussed more

in a later section.

Chapter 5 Matchmaking and Invitations

140

�Matching Programmatically
It is also possible for your app to find matches programmatically without

using the matchmaker interface. You could use this methodology to

implement your own custom GUI for matchmaking or create an “instant

match” type action, in which users are automatically paired and a game

begins with no additional user interaction. We will not be using this style of

matchmaking in our demo app, but the following method will allow you to

implement a match programmatically:

func findProgrammaticMatch() {

 let request = GKMatchRequest()

 request.minPlayers = 2

 request.maxPlayers = 4

 �GKMatchmaker.shared().findMatch(for: request,

withCompletionHandler: { match, error in

 if let error = error {

 pr�int("An error occurred during finding a match: \

(error.localizedDescription)")

 } else if let match = match {

 print("A match has been found: \(match)")

 }

 })

}

The preceding is fairly straightforward. We create a new

GKMatchRequest and set the minimum players to two, as well as set the

maximum players to four. We then call a new method, findMatch, and

pass in a copy of our new GKMatchRequest object. This will call our block

when a match is found, so it might be a good idea to provide an activity

indicator if a match isn’t returned quickly. After you have a GKMatch, you

can begin a new multiplayer game, as discussed in the following chapters.

Chapter 5 Matchmaking and Invitations

141

When working with programmatically added matches, it is important

to allow users a way to cancel the match request if it is taking too long or if

they have changed their minds. That action can be accomplished with the

following line of code:

GKMatchmaker.shared().cancel()

�Adding a Player to a Match
There might be occasions in which you will want to add a new player to

a match after it has already been created. For example, maybe you have

a player drop from a game and want to replace him without starting the

game over, or a player fails to connect after a game starts and you want to

substitute in a replacement. The following function will automatically add

a new player to the match using the auto-matching behavior:

func addPlayer(to match: GKMatch?, with request:

GKMatchRequest?) {

 if let match = match, let request = request {

 �GKMatchmaker.shared().addPlayers(to: match,

matchRequest: request, completionHandler: { error in

 if let error = error {

 �print("An error occurred during adding a player

to match: \(error.localizedDescription)")

 } else {

 print("A player has been added to the match")

 }

 })

 }

}

Chapter 5 Matchmaking and Invitations

142

After a player has been added to a match, you will need to sync that

player up with the current match. Adding a player will now allow the player

to receive and send data, but they will not have any access to data that has

already been sent through the match.

�Reinvites
Game Center has the ability to automatically try to reinvite a

disconnected player. This method is only supported in two-person

Game Center matches. The following function is called when a player

is disconnected; Game Center will automatically try to reconnect

to that player. If successful, you will receive an additional call to

match(_:player:didChange:):

func match(_ match: GKMatch, shouldReinviteDisconnectedPlayer

player: GKPlayer) -> Bool {

 true

}

�Player Groups
Player groups allow you to specify different classifications for each player.

Game Center, by default, auto-matches everyone into the same group.

With player groups, you can specify that certain players are looking for

groups that contain only other players of that group.

For example, players who want to play a certain level of dungeon or

a specific race track will be grouped together, so they are paired up with

other people who want to play that same level. Player groups can be used

to segregate players into many different types of groupings, such as the

following:

Chapter 5 Matchmaking and Invitations

143

•	 Players who wish to play the same level of a map (such

as a race course), area in an RPG, map in a first-person

shooter, or level in an action game.

•	 Separate players based on skill level. Either have

players choose the skill level that they wish to play at, or

automatically determine their skill level based on past

performance or previous win streaks.

•	 Type of game that is being played. For example, players

can be broken down into who wants to play Capture

the Flag, Team Deathmatch, Domination, or Last Man

Standing.

•	 Players of the same Clan, Guild, Team, or Network who

want to play together.

•	 Players who have purchased additional in-app content

and can no longer be paired up with those who do not

have the same content available for any reason.

A player group isn’t restricted to these items and can be used to group

players together in whatever fashion meets the needs of your app. A player

group is represented by the playerGroup property on a GKMatchRequest.

The only restriction placed on this property is that it must be represented

by an Int. Specifying a playerGroup is rather straightforward, as seen in the

following code snippet:

let myForestMap = 123456789

let request = GKMatchRequest()

request.minPlayers = 2

request.maxPlayers = 4

request.playerGroup = myForestMap

Chapter 5 Matchmaking and Invitations

144

Under most circumstances, you will want to let your users select the

playerGroup that they belong to; however, there might be instances in

which this is not true, such as automatically determining a player’s skill

level.

Caution  After you set playerGroup to any nonzero value, players
will only be matched with other players of that group.

�Player Attributes
Like player groups, player attributes are used during matchmaking to

narrow down the possible available games to the user. Player attributes,

which generally function the same as player groups, do handle some

things in a different manner. Some of the many uses for player attributes

include the following:

•	 Often, in role-playing games, characters pick a class. It

is common to require a group of multiple classes—such

as a healer, a fighter, and a mage—in order to complete

a quest.

•	 Sports games often have various positions on a team,

such as goalkeeper, fullback, midfielder, and forward.

A team will require a mix of all of these to be able to play.

•	 In a submarine simulator game, you could also have

various players, such as a captain, sonar operator, pilot,

and weapons systems.

•	 In a first-person shooter game, you could need players

in roles such as close-quarter combat specialist, sniper,

medic, and platoon leader.

Chapter 5 Matchmaking and Invitations

145

�Understanding Player Attribute Limitations
Player attributes can be used to assign these values to each player so that

you can balance a team that contains the required players. However, there

are a number of limitations when using player attributes; it is important

that you familiarize yourself with them before you begin working with

player attributes:

•	 Only a single player may fill a role. For example, you

cannot require three midfielders in a soccer game.

•	 All roles must be filled before the game is considered

ready to start. For example, you can’t have a first-

person shooter without a sniper (based on the

preceding example).

•	 Each player can fill only one role at a time; players

cannot offer to join a game in a position that would fill

more than one role. For example, you couldn’t have a

player in a first-person shooter willing to play either a

sniper or a medic; they will need to pick one before the

match request is finalized.

•	 Player attributes are used during auto-matching. If

you invite a friend into a game, they are not tested to

see whether they match the role that needs to be filled.

Instead, they will automatically be assigned a random,

unassigned role. In short, friends do not get to pick

their player attributes.

•	 Roles are not displayed anywhere in the standard

matchmaking graphical user interface. You will need to

implement your own system prior to entering this view

to allow users to select their roles.

Chapter 5 Matchmaking and Invitations

146

•	 The GKMatch object does not contain information

about which players have been assigned which roles.

You will need to implement your own system after the

match is connected to determine who is playing which

role.

•	 There is no system in place to determine which roles

are overfilled or which are harder to find matches for.

For example, everyone might want to play a mage in

a role-playing game and no one might want to be a

healer; therefore, it would be much harder for a mage

to find an open game, while a healer can easily find

one.

�Working with Player Attributes
Don’t let the long list of limitations scare you off from player attributes.

Even with the listed limitations, they can be extremely valuable in creating

a better multiplayer experience. Let’s look at an example of how to build a

match using player attributes:

struct PlayerClass: OptionSet {

 let rawValue: UInt32

 �static let squadLeader = �PlayerClass(rawValue:

0xFF000000)

 �static let breacher = �PlayerClass(rawValue:

0x00FF0000)

 �static let grenadier = �PlayerClass(rawValue:

0x0000FF00)

 �static let lightMachineGun = �PlayerClass(rawValue:

0x000000FF)

}

Chapter 5 Matchmaking and Invitations

147

We begin by defining a mask for each of our player attributes, which we

will refer to as “classes” for the rest of this section. This example represents

a standard squad in a modern military-style game. Each class is assigned

a different value of a mask. Game Center uses an algorithm to match these

players together, using the following rules.

•	 A match’s mask will always begin with the mask of the

inviting player.

•	 Game Center will ignore all players who have not set

a player attribute mask if the inviting player has set a

player attribute mask.

•	 A player will be added to a match only if their player

attribute mask doesn’t overlap any section of a mask

from any players already invited into the match.

•	 After adding a player to the match, the value of that

player’s attributes value is logically OR’ed into the

match’s mask.

•	 If a match’s mask value is equal to FFFFFFFFh, then

the match is considered complete and can begin; if the

mask does not equal FFFFFFFFh, then Game Center

will continue searching for a player who can fill the

match.

•	 There is no way to query Game Center to see which

player is still currently being waited on.

The following is based on the classes we just defined.

A blank match will have the player attribute mask shown in Figure 5-6.

Figure 5-6.  An empty player attribute mask (0x00000000)

Chapter 5 Matchmaking and Invitations

148

Player 1 begins a new match and selects Squad Leader as his class.

When that player creates the match, it will now have a player attribute

mask that looks like that shown in Figure 5-7.

Now the creator of the match uses Game Center to auto-match for

new players. The first player Game Center finds has selected a class of

Grenadier. The Grenadier will have a mask, which looks like that shown in

Figure 5-8.

When compared to the already existing match’s mask, as shown in

Figure 5-9, we can see there are no overlaps, so that player can be invited

into the game.

When these masks are combined to form the new match mask, it will

look like that shown in Figure 5-10.

Figure 5-7.  A player attribute mask representing the Squad Leader
class (0xFF000000)

Figure 5-8.  A player attribute mask representing the Grenadier class
(0x0000FF00)

Figure 5-9.  Comparison of 0xFF000000 and 0x0000FF00

Chapter 5 Matchmaking and Invitations

149

Player 3 selects Breacher as his class and searches for a game. Game

Center finds the match that we have been working with and determines

that there is room for a Breacher by comparing the match’s mask to the

Breacher’s mask, as shown in Figure 5-11.

Since there is no overlap between the masks, the Breacher can be

invited into the game. Player 4 selects the class of Grenadier and has Game

Center look for a match. Game Center again will find our match in progress

and attempt to add the new player to it.

Since the mask supplied by Player 4 overlaps a part of the match’s mask

(see Figure 5-12), that player is not allowed to join. If Game Center cannot

find an open match for that player, then it will begin looking for new

players to fill in the holes on that player’s match.

Figure 5-10.  A new match mask, representing two players
(0xFF00FF00)

Figure 5-11.  The top is the current match’s mask (0xFF00FF00), and
the bottom is a Breacher’s mask (0x00FF0000)

Figure 5-12.  The top is the current match’s mask (0xFFFFFF00), and
the bottom is a Grenadier mask (0x0000FF00)

Chapter 5 Matchmaking and Invitations

150

Player 5 selects Light Machine Gun as his mask and begins looking for

a game to join. Game Center compares his mask to the current match’s

mask, as shown in Figure 5-13.

Since there is no overlap between the two mask sets, Player 5 can join

the match. This will create a complete player attribute mask for the match,

as shown in Figure 5-14.

If Player 5 never joined the game, and the original inviter wanted to fill

the slot with a friend from Game Center, the invited friend would not have

an option to select his class. The match, in that case, would have a mask

that looks like that shown in Figure 5-15. The invited friend would then be

assigned the mask, shown in Figure 5-16, that would complete the match’s

mask. This would complete the player attribute masks and allow the game

to begin.

Figure 5-13.  The top is the current match’s mask (0xFFFFFF00), and
the bottom is a Light Machine Gun’s mask (0x000000FF)

Figure 5-14.  A completed match mask (0xFFFFFFFF)

Figure 5-15.  The current match’s mask (0xFFFFFF0)

Chapter 5 Matchmaking and Invitations

151

Setting a player attribute is very straightforward and is shown in the

following code snippet:

struct PlayerClass: OptionSet {

 let rawValue: UInt32

 �static let squadLeader = �PlayerClass(rawValue:

0xFF000000)

 �static let breacher = �PlayerClass(rawValue:

0x00FF0000)

 �static let grenadier = �PlayerClass(rawValue:

0x0000FF00)

 �static let lightMachineGun = �PlayerClass(rawValue:

0x000000FF)

}

...

let request = GKMatchRequest()

request.minPlayers = 4

request.maxPlayers = 4

request.playerAttributes = PlayerClass.squadLeader.rawValue

�Player Activity
Game Center provides a method to query for recent player activity. Your

users will often want as much information as possible about how long of

a wait they could experience while looking for a multiplayer match. It is

important to establish that player activity is recent activity and not current

activity. There is no Apple-provided method for determining exactly how

Figure 5-16.  A Machine Gun’s mask (0x000000FF), needed to
complete the match’s mas

Chapter 5 Matchmaking and Invitations

152

many players are waiting for a match, but Apple does provide a way to

determine how many users have recently looked for a match. Let’s take a

look at the required source code to get player activity. Add the following

two new functions to your GameCenterManager class’s implementation

file:

func findAllActivity() {

 GKMatchmaker.shared().queryActivity { activity, error in

 DispatchQueue.main.async {

 �self.delegate?.playerActivity?(activity as

NSNumber, error: error)

 }

 }

}

func findActivityForPlayerGroup(_ playerGroup: Int) {

 �GKMatchmaker.shared().queryPlayerGroupActivity(playerGroup)

{ activity, error in

 let activityDictionary = [

 "activity": activity,

 "playerGroup": playerGroup,

]

 DispatchQueue.main.async {

 �self.delegate?.playerActivity?(forGroup:

activityDictionary, error: error)

 }

 }

}

Chapter 5 Matchmaking and Invitations

153

We also need to add two new protocol methods to

GameCenterManagerPlayerDelegate in GameCenterManager.swift. Add

the following two functions:

func playerActivity(_ activity: Int?, error: Error?)

func playerActivity(forGroup activityDict: [AnyHashable :

Any]?, error: Error?)

When you implement these new protocol methods in your

UFOViewController as follows:

func playerActivity(_ activity: Int?, error: Error?) {

 if let error = error {

 �print("An error occurred while querying player

activity: \(error.localizedDescription)")

 } else {

 print("All recent player activity: \(activity ?? 0)")

 }

}

func playerActivity(forGroup activityDict: [AnyHashable :

Any]?, error: Error?) {

 if let error = error {

 �print("An error occurred while querying player

activity: \(error.localizedDescription)")

 } else {

 if let activity = activityDict?["activity"],

 let playerGroup = activityDict?["playerGroup"] {

 �print("All recent player activity: \(activity) For

group: \(playerGroup)")

 }

 }

}

Chapter 5 Matchmaking and Invitations

154

you should get output similar to the following:

2021-03-08 11:11:04.007 UFOs[3000:207] All recent player

activity: 3 For Group: 12345 2021-03-08 11:11:04.008

UFOs[3000:207] All recent player activity: 3

So now that we have player activity for a specified player group, what

do these numbers mean? Apple has never specified the exact meaning of

these numbers, but through careful research, it appears that they represent

the number of users who attempted to connect to a game using the auto-

matching feature in the last one to three minutes. The numbers seem to

reset at an undeterminable interval somewhere within that time frame. In

addition, there appears to be a 15–30 second delay until new numbers are

reflected from users attempting to join a match.

Even with the limitations imposed by player activity, it can still be a

very valuable tool in determining possible wait times for your users to

find a match. However, you want to make sure these numbers are used for

informational purposes only, as they tend to be just unreliable enough to

depend upon.

Note  You can implement your own server system to keep track of
exactly how many players are waiting for a match if the Apple system
does not provide specific enough information on player activity for the
needs of your app.

�Using Your Own Server (Hosted Matches)
Under normal circumstances, Game Center will host your match for you;

however, Apple has provided a technique for implementing your own

server to host a match. This approach is called a “hosted match” and can

Chapter 5 Matchmaking and Invitations

155

be implemented in any app to add increased flexibility to Game Center–

based multiplayer networking.

When using Game Center to host a match, every device that is

connecting to that match creates an instance of GKMatch. The GKMatch

class does all the legwork of connecting, handshaking, sending and

receiving data, and handling errors. However, there are times when you

will need to implement your own server, most notably if you want to

allow more than four people to connect to a single match at a time. In this

scenario, you can use Game Center to find peers for your match and use

your own server to connect those peers.

Tip  Using a hosted match allows you to connect up to 16 users, as
opposed to the limit of four while using Game Center hosting.

There are several downsides to using your own server, however,

most notably that you are now responsible for all the legwork that was

previously given to you for free by Game Center, specifically the following:

•	 You must design and implement all of your own

networking code to connect the peers together.

Game Center will find the matches for you, but its

involvement stops there.

•	 If your app is using the standard matchmaking

interface, your server must inform the app when a new

peer successfully connects so that it can update the

GUI.

We will need to make a handful of minor changes to our code base

in order to support hosted matches on the device side. We begin by

modifying our multiplayer button action method that we set up earlier in

this chapter.

Chapter 5 Matchmaking and Invitations

156

@IBAction func multiplayerButtonPressed() {

 let request = GKMatchRequest()

 request.minPlayers = 2

 request.maxPlayers = 4

 �guard let matchmakerViewController = GKMatchmakerView

Controller(matchRequest: request) else {

 �print("There was an error creating the matchmaker view

controller.")

 return

 }

 matchmakerViewController.matchmakerDelegate = self

 matchmakerViewController.isHosted = true

 present(matchmakerViewController, animated: true)

}

As you can see, we added a new line, matchmakerViewController.

isHosted = true, which tells the matchmaker GUI that this

match will be hosted on our own servers. In addition to setting the

matchMakerViewController to hosted, you will need to have each device

connect to your server. This section does not deal with how to code the

server itself, as there are dozens of languages and approaches that can be

taken here. However, after a device has connected to your server, it needs

to call the following with the player who is joining:

matchmakerViewController.setHostedPlayer(player, didConnect:

true)

This will update the GUI on all the connected players’ screens,

informing them that a new player is ready to begin a match. After all the

players are connected to your server, and have confirmed that they are

ready, your delegate is called to begin the game. When working with Game

Chapter 5 Matchmaking and Invitations

157

Center matches, we used the delegate callback matchmakerViewContro
ller(_:didFind:) to begin a match. However, for a hosted game, we use the

following:

func matchmakerViewController(_ viewController:

GKMatchmakerViewController, didFindPlayers playerIDs: [String]) {

 dismiss(animated: true, completion: nil)

 print("Players: \(playerIDs)")

 //Begin Hosted Game

}

At this point, you can begin the game with your server handling the

communication between the connected players. In addition, you can

begin a hosted match programmatically, as we saw with a Game Center–

hosted match earlier in this chapter.

func findProgrammaticHostedMatch() {

 let request = GKMatchRequest()

 request.minPlayers = 2

 request.maxPlayers = 16

 �GKMatchmaker.shared().findPlayers(forHostedRequest:

request) { players, error in

 if let error = error {

 �print("An error occurred during finding a match:

\(error.localizedDescription)")

 } else if let players = players {

 p�rint("Players have been found for match:

\(players)")

 }

 }

}

Chapter 5 Matchmaking and Invitations

158

As you can see, it is very similar to our previous method; however,

instead of getting back a GKMatch object, we are returned an array of

players. You will also note that we can also increase the maximum players

to 16.

�Summary
In this chapter you were introduced to the concepts of matchmaking and

invitations. We discussed the overwhelming benefits of adding multiplayer

to your iOS, Mac, or Apple TV app or game, as well as some of the hurdles

you might need to jump along the way. We explored the matchmaking

process from presenting the standard Apple GUI to highly customized

matches using player groups and player attributes. We reviewed how to

process invitations in every possible scenario, as well as how to query for

player activity. Finally, we discovered how it is possible to implement your

own server to remove some of the limitations placed on Game Center. We

expanded our reusable Game Center Manager to handle matchmaking,

invitations, and the required overhead so that you can quickly add

multiplayer ability to your apps.

In this chapter, we deeply explored how to create matches and

populate them with peers. In the upcoming chapters, we will not only

learn how to communicate between the peers but also explore new

methods for locating peers with whom to communicate. The next chapter

covers information on how to design a Network Environment for use with

your game or app.

Chapter 5 Matchmaking and Invitations

159© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_6

CHAPTER 6

Network Design
Overview
In the previous chapters, we learned how to find and establish connections

to peers through a variety of methods using both Game Center and

GameKit. In this chapter, we will look at how to design a networking

experience for a modern computer game. This chapter is written and laid

out slightly different than the previous chapters you have encountered

in this book. Primarily, there will be no associated source code with this

chapter, and we will only briefly touch on GameKit networking topics

themselves. This chapter will focus on the concepts of network design from

an academic viewpoint, as opposed to actually implementing the network

itself. In the next chapter, you will discover how to tie everything together

and have your peers begin to communicate with each other.

While it is entirely possible (and all too often performed) to go

ahead and just start writing your network logic without any planning or

forethought, it is probably not a great idea. After all, you wouldn’t begin

writing a new app or game without first planning out how the logic of it will

function. Network design is a complex topic, and you should approach it

with a plan; otherwise, you could find yourself rewriting the entire system

from scratch after putting a lot of work and effort into it. You don’t want

to find yourself up against a wall because the approach you took limited

your options for future expandability. Just like with software, you shouldn’t

https://doi.org/10.1007/978-1-4842-7756-0_6#DOI

160

jump right into writing code on the first day. You should whiteboard things

out a little and get a feel for the requirements of the project.

Take, for example, a desktop role-playing game called Clan Lord that

was written in the late 1990s for the Mac. Clan Lord has maintained a

very dedicated fan base that has kept the game active and continual to

the present day. However, when the game was originally written, many

network-related issues were seemingly not properly thought through for a

game that would still be played more than two decades later.

Clan Lord uses frame-by-frame syncing for all of its network calls.

This means that every frame, every element visible on the player’s screen,

has to be transmitted. This approach works and works well while you

have a small game, a small user base, and limited complex functionality.

However, when you are designing software, you cannot have a limited

vision for the future. Always plan for the best or, depending on your

perspective, the worst case. When designing a network, you must take into

account what you will want to do six months, a year, or even ten years from

now with your game or app. It is all too often that software far exceeds its

estimated life span and continues to operate well beyond when its initial

software developers had intended; we need to look no further than the Y2K

bug to see this in action. Every developer assumes something better will be

along shortly to replace the work they are doing; more often than not they

are wrong and products live on long past when it makes practical sense to

keep them going.

Clan Lord now suffers from long-ingrained problems, such as a five

frames per second rendering engine, due to the fact that you cannot

sync more than five full frames of data per second on the average home

network. This could have been prevented by implementing some logic

into the client when the project was first started; for example, it would

have been much more efficient to inform the client where objects are and

when they move, as opposed to fully syncing everything in each frame.

In addition, player movement is limited to four to five frames per second

because actions have to be synced back to the server, making it hard to

Chapter 6 Network Design Overview

161

react to events. This also could have been prevented by using prediction

algorithms, discussed later in this chapter, to determine where a player will

end up during movement.

Clan Lord is one example of a game that was much more popular

or at the very least had a much more dedicated fan base than planned

and lived a lot longer than anyone expected. Sadly, when this happens,

you are limited to the vision and design that you had when the project

was first started. It is much harder to undo something later than to do it

initially. When designing your network, take time to do it carefully and

intentionally, as it can haunt you and your app for a very long time.

�Three Types of Networks
Although there are many different types of network designs in existence,

there are three practical and primary kinds of networks that you can

implement when designing your network infrastructure. Picking a primary

type of network is a good place to start, as it will guide you toward the next

step in the design process.

We will be focusing on just these three of the primary types of

network designs, but keep in mind that there are dozens of other well-

known network configurations, some of which we will briefly touch

on in this section. The three types of networks we will be discussing in

length throughout this chapter are peer-to-peer, client-to-host, and ring

networking.

�Peer-to-Peer Network
A peer-to-peer network (see Figure 6-1) is the most common network that

you will see on the iOS/Mac platform. No device is treated any differently

than any other device, and each device is in charge of sending and

receiving data to all the other peers it wishes to communicate with. While

Chapter 6 Network Design Overview

162

this type of network may look complicated, it is one of the most simple

and straightforward approaches to joining together multiple devices in

communication.

A peer-to-peer network is commonly used when dealing with Game

Center networking because it is the easiest to implement on the platform.

While this approach has the benefit of being extremely easy to set up, it has

an equal number of weaknesses. Primarily, it can cause a lot of redundant

overhead. Each peer needs to inform every other peer about its actions. In

a six-way network like the one shown in Figure 6-1, this means that each

device needs to send out five messages every time it wants to update the

Figure 6-1.  A visual representation of a peer-to-peer network using
six iOS devices

Chapter 6 Network Design Overview

163

game state. In addition, if you are implementing a system in which each

peer confirms a successful message, you will also need to receive five

messages to confirm each event.

Another disadvantage of a peer-to-peer network is that it can become

very confusing to work with a large number of peers. As you can see

from Figure 6-1, things can get messy quickly. Unlike the other primary

types of networks that we will discuss in this section, the peer-to-peer

approach is the only one without a clear flow. Each peer can message

any other peer, by definition. This also means that you have to keep track

of what every peer needs to know. Under most circumstances, this is a

perfectly acceptable approach. However, when you begin to deal with

more complex types of networks and information that needs to be sent and

received, this configuration might no longer be ideal.

In addition, no one device is in control of the state of the game. If there

are artificial intelligence components, then you will need to figure out a

system that will allow them to stay in sync between all the devices.

�Client-to-Host Network
A client-to-host network designates one device to be the host, or server

if you prefer that terminology. This device is responsible for sending

information to all the connected clients. The clients never speak to each

other; they speak only to the host who then relays the required information

back to the other clients. An example of what a client-to-host setup looks

like is shown in Figure 6-2.

Chapter 6 Network Design Overview

164

A client-server network simplifies the flow of data. Each peer or client

only needs to worry about itself and the host; they do not need to be aware

of the other devices that might exist on the network. The benefit of this

type of network is that one device keeps everything in sync and handles

the flow of information; this makes it a very secure network (in the sense

of anti-cheating). Cheating, however, is not a large concern on the iOS

platform because it’s a sandboxed system to begin with; the state of the

Mac is a little more open, but often it is not a major concern until a game

becomes very successful.

There are other benefits to this system as well, such as the fact that

only one device needs to worry about the state of the network, and that

sole device is in charge of the behavior of the network. This type of network

simplifies events such as connections, disconnections, transmission errors,

Figure 6-2.  A visual representation of a client-to-host network using
five iOS devices

Chapter 6 Network Design Overview

165

and other state changes such as computer-controlled objects like artificial

intelligence. However, this same setup could be troublesome on the iOS

platform; if the host device has too much information to process, that

device could run slower or use more battery. This approach also requires

two separate logic handlers, one for the client and one for the host. This

type of system becomes a dedicated server system in larger environments

when one player is no longer needed to be the host.

�Ring Network
A ring network (see Figure 6-3) has no host and no clients. It

works similarly to a peer-to-peer network, but a peer is in charge

of communicating with only one designated peer and will receive

information from only another separately defined peer. The information

flows through a group of devices in the shape of a ring, hence the name.

This type of network isn’t very common on the iOS platform, as there

is not a lot of argument for the redundancy that it typically provides for

disconnected peers. Apple has done a lot of the groundwork to ensure that

networks remain active and stable, without the need for the developer

to spend additional design hours ensuring that there won’t be instances

where peers lose contact with other peers that are currently joined

together. There are times, however, where you might find this type of

configuration useful when designing your network on the iOS platform.

Keep in mind as you add additional clients to a ring network that the time

it takes for information to complete a circuit of the ring increases and can

be especially bogged down by one or more laggy devices.

Chapter 6 Network Design Overview

166

�Less Common Networks
There are many additional types of network designs available in computer

science. Some are more practical than others, and some are mostly

theoretical. In this section, we cover some of the better known “uncommon”

networks. Although some of these can be implemented on iOS devices, most

will likely not have any real benefit for the average project:

•	 Headless Client: The client has no data whatsoever and

is controlled by a host device. You can think of this type

of setup as a computer terminal that is booted from a

server disk.

Figure 6-3.  A visual representation of a ring network using six iOS
devices. Notice how much simpler this diagram appears than the
peer-to-peer network shown in Figure 6-1

Chapter 6 Network Design Overview

167

•	 Dedicated Server: The host in this example does not

participate in the game or activity and is dedicated to

sending the information out from the peers and collecting

new input. This is typically seen deployed by large

companies creating a gaming community. A dedicated

server system can be seen as an extension of the client to

host setup where the host becomes a dedicated machine.

•	 Mesh/Partial Mesh Network: This is a peer-to-peer

network in which each peer may not be aware of the

other peers that exist on the network. The packets are

tagged with a destination and every hop attempts to

get the packet closer to the destination. A full-mesh

network means that every peer is interconnected,

which is more or less the same as a peer-to-peer

network practically speaking.

•	 Tree Network: This type of network consists of a tree of

peers interconnected to each other and each controlled

by a centralized point. The central point passes

messages to other central points, and each tree branch

passes messages back and forth along that branch.

•	 Hybrid Network: This type of network combines two or

more technologies, such as two groups of peers who are

linked together through a centralized server.

This covers most of the networks you will encounter during a career

of software engineering. There is really no limit to the type of network that

you can design, and every year better designs and flows become available.

If you find this topic especially interesting, there are many great resources

available online that dive into network design in much greater detail. In

the next section, we will look at the actual packets that will be sent and

received on your network.

Chapter 6 Network Design Overview

168

�Reliable Data vs. Unreliable Data
When dealing with network design, packet reliability is an important

topic. When discussing packet reliability, we are specifically referring

to the priority of the data, the ordering of the packets, and the retry

determination factor. Let’s look at all these attributes separately and

how they relate to network design (see Table 6-1) before we dig into the

specifics we need for our implementation when dealing specifically with

the Apple platforms.

Table 6-1.  Common Packet Attributes and How They Affect Network

Behavior

Attribute Relationship to network design

Priority When you are working with low-level networking, you are dealing with

packets. Each packet is a predetermined size and contains information

about the event that you want to send to another peer. Packets are

typically sent to a queue and then sent out to the peer they are addressed

for, but because networking isn’t precise (especially if you are trying

to get the lowest latency), packets might not always be received in the

order that they are generated.

For example, in a standard online game, you might be passing two types

of information, game state changes, and chat information. Obviously, your

character requesting an action, such as attacking an enemy or dodging

an attack, is more important to have in a timely manner than a chat

message.

The solution to this type of problem is to set priority for packets. The peer

will send cycle through all its pending messages and send the highest

priority ones first. This allows the vital messages to be retried in the event

of failure first, as well as bump the important packets to the top of the queue.

(continued)

Chapter 6 Network Design Overview

169

Table 6-1.  (continued)

Attribute Relationship to network design

Ordering The order in which packets are received can be crucial. For example, if

you are sending 10 packets, which together make up a very long chat

message, or together make up the game state, then the order in which

those packets are received is important to the receiving peer.

If the packets aren’t received and processed in order, your message

could appear scrambled. When this happens with a state engine, very

unpredictable behavior may follow. There is a certain cost overhead

involved when ensuring packets are ordered, however. If you are waiting

for packet 1 of 10, then you can’t do anything with the packets you might

have already received. This creates a situation in which your network

is only as fast as your slowest packet. If ordering isn’t critical to your

network functioning correctly, then you should not worry about the order.

Remember that maintaining order is expensive; only require it where it is

actually required.

(continued)

Chapter 6 Network Design Overview

170

Now that we have covered the issues that are important when dealing

with sending the actual data packets from one device to another, we can

look at how these principles apply to the Apple platforms themselves.

There are two types of modes that data can be sent in with

GameKit: the first is GKSendDataReliable; the second is, naturally,

GKSendDataUnreliable. Let’s take a look at what each one of these modes do

for us and how they fit in with the topics we just discussed. See Table 6-2.

Table 6-1.  (continued)

Attribute Relationship to network design

Retry Networks are, by nature, unreliable. Even a desktop machine hooked up

to a dedicated connection will have lost packets and experienced other

failures. When you are dealing with network reliability on a mobile device,

the only thing you can reliably count on is failure. When you send a

packet to another peer, you can handle it two ways: the first is a send-

and-forget system; the second is a send-and-verify system.

In the first approach, you send a packet and you don’t really care if it gets

there. Let me clarify: you do care, but if it fails, there is nothing you can

do about it. A good example of this type of acceptable failure is a voice

chat packet. If it fails to reach the end of the line successfully, resending

it will merely bring things out of sync; it is better to just continue on

streaming the data. The result of course will be a brief loss of voice but

it’s better than the alternative.

In the second approach, the packet is considered vital, such as player

opening a chest, searching a slain foe for treasure, or updating their

direction of movement. The peer needs this data to be sent to continue

smoothly executing the commands. If you skip this packet, it will be

frustrating to the user, as they will have to retry the action themselves

instead of having the network retry it for them.

Chapter 6 Network Design Overview

171

�Sending Only What Is Needed
One of the vital mistakes that first-timers make when designing a network

is sending too much data. It is easy to just send everything. In the

beginning of this chapter, we talked about a game that exhibited this very

problem.

If I had more time I would write a shorter letter.

—Blaise Pascal

Table 6-2.  Packet Attributes and How They Apply to Game Center

Attribute GKSendDataReliable GKSendDataUnreliable

Priority GameKit networking doesn’t

factor in any type of priority

when dealing with packets.

Packets are sent in the order

that they are fed into the

system.

GameKit networking doesn’t factor in

any type of priority when dealing with

packets. Packets are sent in the order

that they are fed into the system.

Ordering Packets will be received in the

order that they are sent.

Packets using this method are not

guaranteed to be received in the same

order that they were sent.

Retry A packet will be continuously

retried until it is successfully

received. The next packet will

not be sent until the first one

has been confirmed received.

A packet is sent and then removed

from the queue. The API does not

wait to receive a received notification

before it sends the next packet. This

is naturally faster than waiting for a

response between each packet.

Chapter 6 Network Design Overview

172

Pascal could have very well been talking about network packets, in this

often-misattributed quote. The size of the packet can be directly related

to the speed, stability, and scalability of your network. It is important to

spend the time to figure out what the absolute bare minimum is that can

be sent. It is also likely worth the time to figure out how to condense the

data you do have.

Take a look at a hypothetical example that some of you might

encounter while designing a game. For this example, let’s say you are

working on a role-playing game. You control your hero and guide them

through a series of dungeons. In these dungeons, you can interact with

items and encounter various enemies, which you will fight in real time.

Well, we know we will have some static data; for example, the layout

of the dungeon probably will not be changing while you are inside it,

so instead of sending the map tiles to the client every frame or even

periodically, we should send that data when the player first enters the

zone. There might be elements that will be moving, but we can predict

their behavior infinitely, such as a river flowing or a torch flickering. These

items can also be loaded once with the information they need to stay in

sync. Also consider whether it’s important that these items are even in sync

with the server; a torch flicker might not need to be in sync on every client

at once.

There are, of course, items that will need to be updated throughout

the player’s adventures in the dungeon. The player themselves will need

to be updated every time the user performs a new action. For example, if

you are running east, you could send a packet every frame to tell the server

that you are running east. However, a much more efficient way to handle

this interaction is to tell the server to begin moving east at full speed.

When you are done moving east, you should inform the server that you

want to stop. This type of interaction drastically reduces the number of

messages that need to be sent to the server to accomplish the same task.

Optimizations such as these is why, when playing modern games, you

sometimes see disconnected players running into walls—the server never

Chapter 6 Network Design Overview

173

received a stop-running command before the client disconnected. These

same optimizations are why you will sometimes see a very lagged player

jumping around in a bunch of different directions.

Take the time to carefully design how you will structure your network

data. You can always add more information, but it becomes very difficult

to remove data as you dig deeper into your network design. Always look for

a way to reduce packet size, as there is no downside to packets being too

small, but a packet that is too large will cause you a lot of suffering down

the road.

�Prediction and Extrapolation
Let’s take another example into consideration: this time, a racing game.

Each player controls a car that is guided around a track. We know where

each car is at the start of the race. We also know that any messages we send

to the server will have an inherited latency due to the round-trip network

time. Should we not update the car positions until the server tells us to?

That would result in a very choppy racing game. To account for this very

common issue, we use predictive technology.

We know that race cars will, more than likely, continue on a current

course for the next handful of frames. We will assume things will continue

doing what they are doing until the server tells us otherwise; if the user

steers slightly to the left or right, that is a minor correction we will need to

make when the server informs us of the update. The fact that an object in

motion will stay in motion until acted on by an outside force is not just a

law of physics; it is also the first rule of designing a predictive network.

The chances of an object completely reversing its current course are

much less likely than slightly modifying its current course. This makes

it easier to account for minor changes if the server informs you that

things are out of sync. In the event that a player does completely change

direction or otherwise break your prediction about what actions were

Chapter 6 Network Design Overview

174

going to continue, you are only off the mark by as much as your current

latency, which is typically only a small fraction of a second. If you have an

object that is likely to continue doing what it is doing—such as a player

moving, objects in a falling state, bullet trajectory, or any type of physics

simulation—the best bet is to continue assuming that those actions will

continue until the server informs you that they have changed.

�Formatting Messages
Whenever you are dealing with designing a network for a game or game-

like application, you are guaranteed to be dealing with at least two types

of messages. These are often referred to as state messages and server

messages. A state message is a message that will directly affect your game

engine, such as a player moving or opening a chest. Server messages

deal with the glue that holds everything together, such as connections,

disconnections, pings, and errors.

It becomes important to quickly sort these messages to different

handlers. It is a good design pattern to keep the parsing of these messages

in different places. After all, you don’t want to be scanning all your chat

messages in a first-person shooter for client timeout messages. There

are many different methods to handle this segregation, but I have found

a simple prefix is suitable for most cases. If you prefix all of your state

messages with a character that you will not see in server messages, you

can quickly check the first character in incoming messages to make

sure they are delivered to the correct parser. If you are designing a more

complex network, you can use a large number of possible prefixes to make

sure things get to the correct place. In Chapter 8, we will look at practical

examples of message formatting when we begin to send and receive data.

Chapter 6 Network Design Overview

175

�Preventing Cheating and Preventing
Timeout-Related Disconnections
One thing that has not become a big concern on the iOS platform, as of

yet, is cheating through network exploits. Likewise, the Mac App Store

has remained relatively free of cheating and abuse. If you are an online

gamer, you are probably all too familiar with this behavior. A clever user

will determine how the network behaves and then send commands that

the client itself would never send, such as increase hit points to max float

or decrease respawn time to zero. Although you might need to have your

server respond to things such as increase or decrease hit points, you want

to make sure the server is in control. For example, instead of letting the

client say “increase moment speed to fifty,” you should set up the message

to something like “request increase moment speed” and then have the

server return the new speed. If you put clients in charge of variables, at

some point someone will take advantage of this and exploit your system.

When thinking through your network design, the best practice is to never

trust the client to tell you the truth about the game state. You will want to

remove as much dependance as possible on the client’s version of events

or state of the world.

If your client doesn’t have any updates to send out to the server or its

peers, it is good practice to send a message that simply states, “I’m still

here, don’t disconnect me,” which is known as a “keep alive” message.

Although you don’t have to worry about timeout disconnection on the

GameKit platform, it is still a good idea to make sure that you keep your

own line of communication open between idle peers.

When you are designing a message architecture, you can really think of

it as designing an API; there are a lot of similarities, and you have to follow

the same guidelines. If you ship version one of your app with a command

that lets users query for their movement speed, you can’t easily pull out

that command in version two because previous clients might still be

Chapter 6 Network Design Overview

176

depending on it. Follow the same guidelines that API developers do: test

everything thoroughly because after it is out in the wild, it is very hard to

get it back.

�What to Do When All Else Fails
An issue that is bound to come up when you have been working with

networks long enough is that of what to do when the system you have

designed no longer meets your needs. Let’s discuss something that might

be familiar to those of you who have taken some logic or business courses.

There is a syndrome known as the “sunk cost fallacy,” where when dealing

with nonrefundable resources, such as time, those costs are weighed as

equally as refundable costs.

Take a look at the following equation:

Payoff = project revenue – open cost

Now let’s look at the same example using some real-world data. In

1968, Knox and Inkster approached 141 horse bettors: 72 of the people had

just finished placing a $2.00 bet within the past 30 seconds, and 69 people

were about to place a $2.00 bet within the next 30 seconds. The hypothesis

was that people who had just committed themselves to a course of action

would reduce post-decision dissonance by believing more strongly than

ever that they had picked a winner. Knox and Inkster asked the bettors to

rate their horse’s chances of winning on a seven-point scale. What they

found was that people who were about to place a bet rated the chance that

their horse would win at an average of 3.48, which corresponded to a “fair

chance of winning,” whereas people who had just finished betting gave an

average rating of 4.81, which corresponded to a “good chance of winning.”

This hypothesis was confirmed: after making a $2.00 commitment, people

became more confident that their bet would pay off. Knox and Inkster

Chapter 6 Network Design Overview

177

performed an ancillary test on the patrons of the horses themselves and

managed to repeat their finding almost identically.1

What we are talking about is accepting when it is time to give up and

start over. Giving up is never a popular solution; our brains are wired

against it. We look at the nonrefundable cost and calculate that into our

favor. Once you have already made an investment, it is easier to justify

that investment and try to defend it. No one wants to be the person to call

it quits and throw away all the time and money already invested into a

project; however, when you spend time and resources on a development

project, they are spent and they cannot be recouped. You cannot justify

more time simply based on time spent.

There is no right answer on when to give up and start over, and there

is no wrong answer. The only thing you can do is look at the problem

objectively. If you hadn’t already invested into this problem, what solution

would you pick?

The best approach is to always think through architecture decisions

before implementing anything. However, it is all too often that developers

spend time trying to fix something instead of starting over. With

networking it is easy to build out a design, but it is much harder to change

and readapt an existing solution. Sometimes the best course of action is to

wipe the slate clean and begin anew.

�Summary
In this chapter, we looked at the design of the actual network, as opposed

to the platform-specific information that we have dealt with in the rest of

this book so far. You could easily design a working network without the

information in this chapter, through common sense and gut instinct, but

1 �Knox, R. E., & Inkster, J. A. (1968). “Postdecision dissonance at post time.” Journal
of Personality and Social Psychology, 8, 319–323

Chapter 6 Network Design Overview

178

keep in mind the lesson learned throughout this chapter: just because it

works doesn’t mean it works well. Designing a network is easy; designing a

network correctly is very difficult.

There is significantly more information on network design than can

easily fit into a single chapter, or even a single book. If I can leave you with

a final piece of advice: when you begin to look at how to structure your

network, think through everything as you go, and never feel the need to be

satisfied with your first solution.

In the next chapter, we will finally get to work with sending our

messages from one device to another. Chapter 9 will also be an extension

of that technology where we look into how to add voice chat services to

your app.

Chapter 6 Network Design Overview

179© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_7

CHAPTER 7

Exchanging Data
In a previous chapter, we explored how to connect to peers through a

variety of methods. So far, we have not been able to do much with that

connection. In this chapter, we will learn all that there is to know about

exchanging data between sets of peers using GameKit and Game Center

networking. We have already added the ability to find peers using Game

Center to our UFO game. We will now add the ability to actually play a

multiplayer match.

Because all the groundwork has already been laid out in the previous

chapters, there are only two items that we need to worry about in regards

to exchanging data. First, we need to send the actual data; second, we need

to receive and process that data on the other side. Everything else that you

need to do is already done, except some logic for disconnecting. Let’s jump

right into it by modifying our source code from Chapter 5.

�Modifying a Single-Player Game
There are a few modifications that we need to make to our single-player

game in order to transform it into a multiplayer game:

•	 Once we connect to a new peer, we need to begin the

game. We also need a way to inform our existing engine

that the new game is multiplayer.

https://doi.org/10.1007/978-1-4842-7756-0_7#DOI

180

•	 One device needs to be designated the host device. We

will have this one device control the movements of the

cows, since both devices can’t control cow movement

themselves. This is an important step if we want both

devices to appear in sync.

•	 Each peer needs to inform the other peer(s) about its

actions, such as movement and tractor beam usage.

•	 Each peer needs to parse the other peer’s device and

update its own game state to keep both devices in sync

with each other.

These steps are a representation of the bare minimum that is typically

required to turn a single-player game into a multiplayer game. Your

particular game or app might be much more complex. For example, your

multiplayer experience might be so different from your single-player

gameplay that you cannot reuse the same class for both modes. On the

other hand, your game might be even simpler. For example, a multiplayer

game of Battleship wouldn’t require either device to be the host because

there are no computer-controlled elements that you need to worry about

keeping track of.

�Setting Up Our Engine for Multiplayer
The very first thing that we need to do is let our game engine know whether

the state should be set to multiplayer or single player. There are complex

ways and simple ways of doing this. Depending on your needs, you will

most likely be able to get away with a simple state variable.

A state variable is the approach that we will use for our example, since

our game is extremely straightforward. In UFOGameViewController.swift,

we create a new property to represent a Bool, which will be set to inform

Chapter 7 Exchanging Data

181

the class whether we are in single-player or multiplayer mode. Add the

following lines into our already existing file:

class UFOGameViewController: UIViewController {

 var gameIsMultiplayer = false

}

We will use this property throughout our code base to determine

whether the game is running in multiplayer mode.

We have an existing function in UFOViewController that will be called

when our game begins a new multiplayer match. Game Center returns a

GKMatch object to help us identify the game. We will also add some new

methods in our GameCenterManager class to handle communication

to this system. For now, we will simply focus on getting the game up and

running in a new state.

func matchmakerViewController(_ viewController:

GKMatchmakerViewController, didFind match: GKMatch) {

 dismiss(animated: true, completion: nil)

}

Next, we add a section of code to the end of this function to begin a

new multiplayer game after we find a peer that we want to play against. Go

ahead and add the following snippet of code into each method:

let gameVC = UFOGameViewController()

gameVC.gcManager = gcManager

gameVC.gameIsMultiplayer = true

navigationController?.pushViewController(gameVC, animated: true)

We also need to hold onto the GKMatch that represents a peer. Create

two new properties in the UFOGameViewController, named peerIDString

and peerMatch. Set these up in the same fashion that you did for the

Chapter 7 Exchanging Data

182

gameIsMultiplayer property. The new section of your header should look

like the following abstracted snippet:

class UFOGameViewController: UIViewController {

 //...

 var peerIDString: String?

 var peerMatch: GKMatch?

}

Now we need to add logic to set these properties for beginning a new

multiplayer game. These functions should now look like the following ones.

When we load our game view controller, we know whether it is

multiplayer or not, as well as having a reference to our peer or peers. Our

GameViewController now has all the information it needs to begin a new

multiplayer game.

func matchmakerViewController(_ viewController:

GKMatchmakerViewController, didFind match: GKMatch) {

 dismiss(animated: true, completion: nil)

 let gameVC = UFOGameViewController()

 gameVC.gcManager = gcManager

 gameVC.gameIsMultiplayer = true

 gameVC.peerIDString = nil

 gameVC.peerMatch = match

 �navigationController?.pushViewController(gameVC, animated:

true)

}

Chapter 7 Exchanging Data

183

�Picking a Host
Picking which device will be the host is harder than it sounds. Both

devices, when first connected together, are treated as equals. How do we

then determine which device will have more control than the other?

The most straightforward and foolproof system that I have used is

having each device generate a random number. Whichever device has the

largest random number becomes the host. In the very rare event that both

devices generate the same random number, we simply try and generate

two new random numbers again.

After we have determined the random number, a device has picked for

its chance at being the host; we need to send that data to the other device.

On the other side, we need to process the data and have both devices

come to the same conclusion about which one has been selected as the

host. This section deals only with generating the host number; the next

two sections handle how to send and receive this data. We now add the

following function to our UFOGameViewController class:

func generateAndSendHostNumber() {

 let randomHostNumber = Double(arc4random())

 let randomNumberString = "$Host:\(randomHostNumber)"

 �gcManager?.sendString(toAllPeers: randomNumberString,

reliable: true)

}

For the purpose of this particular example, we will work with a string

for sending the data back and forth. You could easily send this as an Int

as well, but whatever we send will first need to be converted to data,

which we will cover in the next section. In addition, we want to make sure

this method is called whenever we are dealing with a multiplayer game.

Chapter 7 Exchanging Data

184

To do so, we need to add the following to the end of our viewDidLoad

method. We also need to slightly modify our logic to spawn cows. If it is a

multiplayer game, only the host is responsible for spawning and updating

cow paths.

Tip  When you begin to deal with more complex networking, it is
often beneficial to switch to a data type that can easily store more
data with less parsing, such as a dictionary or an array.

override func viewDidLoad() {

 //...

 generateAndSendHostNumber()

 if gameIsMultiplayer == false {

 for _ in 0..<5 {

 spawnCow()

 }

 updateCowPaths()

 }

}

�Sending Data
We will work with two primary functions to send data to other connected

peers. One will handle sending data to every peer we are connected to,

and the other will send data only to specified peers, such as teammates

or other groups of players. First, add the following two methods to our

GameCenterManager class:

func sendStringToAllPeers(_ dataString: String, reliable: Bool)

func sendString(_ dataString: String, toPeers peers: [String]

reliable: Bool)

Chapter 7 Exchanging Data

185

We will use these functions to send strings back and forth, but you

can add additional methods to accept any type of input that you want

to work with for your particular game. Keep in mind that everything

will need to be converted to data along the way. You might also notice

that the first function is the same method we called previously from our

generateAndSendHostNumber.

Tip I t is a good idea to implement functions to handle arrays
and dictionaries if you plan on building a reusable Game Center
class. These are both very common data types when working with
networking messages.

Before we can really begin to send data back and forth, we need to

know the GKMatch that was created for our multiplayer game. To do this,

we create a new property in the GameCenterManager class. We name

it matchOrSession and set it to an ID type. We need to set this property

before we begin a new multiplayer game, after we have been returned

either a new GKSession or GKMatch. Let’s first take a look at sending data

to all peers. The new method is posted as follows. After you have examined

it, we will discuss it in further detail:

func sendStringToAllPeers(_ dataString: String, reliable: Bool) {

 guard matchOrSession != nil else {

 �print("Game Center Manager matchOrSession property

was not set, this needs to be set with the GKMatch or

GKSession before sending or receiving data")

 return

 }

Chapter 7 Exchanging Data

186

 guard let dataToSend = dataString.data(using: .utf8) else {

 �print("Game Center Manager dataString could not be

converted to Data.")

 return

 }

 var sendError: Error?

 if let session = matchOrSession as? MCSession {

 let peers = session.connectedPeers

 �let mode: MCSessionSendDataMode = reliable ? .reliable

: .unreliable

 do {

 �try session.send(dataToSend, toPeers: peers,

with: mode)

 } catch {

 sendError = error

 }

 } else if let match = matchOrSession as? GKMatch {

 �let mode: GKMatch.SendDataMode = reliable ? .reliable :

.unreliable

 do {

 �try match.sendData(toAllPlayers: dataToSend,

with: mode)

 } catch {

 sendError = error

 }

 } else {

 �print("Game Center Manager matchOrSession was not a

GKMatch or a GKSession, we are unable to send data.")

 }

Chapter 7 Exchanging Data

187

 if let sendError = sendError {

 �print("An error occurred while sending data:

\(sendError.localizedDescription)")

 }

}

We need to make sure that we have properly set the matchOrSession

property. If we haven’t, we will not be able to continue, as we will be using

this object to send data. After we have ensured that we have the proper

information to continue, we then transform our NSString to an NSData

object. This encodes the string into a format that is safe for sending over the

network. We also need to set the reliability mode, as discussed in Chapter 7.

Now that we have everything in place to actually send data, we first

detect whether we are working with a GKMatch from a Game Center–type

connection or a GKSession from a Peer Picker–type connection. All that is

left to do is send the data using the GameKit APIs.

Now is a good time to look at how we will selectively send data only to

certain peers. We can build off the example we already have for sending

data to all peers. Let’s take a look at our sendString function:

func sendString(_ dataString: String, toPeers peers: [Any],

reliable: Bool) {

 guard matchOrSession != nil else {

 �print("Game Center Manager matchOrSession property

was not set, this needs to be set with the GKMatch or

GKSession before sending or receiving data")

 return

 }

 guard let dataToSend = dataString.data(using: .utf8) else {

 �print("Game Center Manager dataString could not be

converted to Data.")

 return

 }

Chapter 7 Exchanging Data

188

 var sendError: Error?

 �if let session = matchOrSession as? MCSession, let peerIDs

= peers as? [MCPeerID] {

 �let mode: MCSessionSendDataMode = reliable ? .reliable

: .unreliable

 do {

 �try session.send(dataToSend, toPeers: peerIDs,

with: mode)

 } catch {

 sendError = error

 }

 �} else if let match = matchOrSession as? GKMatch, let

players = peers as? [GKPlayer] {

 �let mode: GKMatch.SendDataMode = reliable ? .reliable :

.unreliable

 do {

 �try match.send(dataToSend, to: players, dataMode:

mode)

 } catch {

 sendError = error

 }

 } else {

 �print("Game Center Manager matchOrSession was not a

GKMatch or a GKSession, or peers was not the correct

type of array, we are unable to send data.")

 }

Chapter 7 Exchanging Data

189

 if let sendError = sendError {

 �print("An error occurred while sending data:

\(sendError.localizedDescription)")

 }

}

This method is very similar to the method for sending data to all peers.

The main difference is that we use a new API call and feed in an array of

peer IDs or players. You can, of course, change these methods to accept

more than a string when sending data, but for the simplicity of our test

game, a string is all we need.

This concludes everything you need to know about sending data

between two or more iOS, Mac, or Apple TV devices. In the next section,

we will look at how to receive and parse the data we get from another peer.

�Receiving Data
GKMatch has its own system for receiving delegate callbacks for incoming

data. Game Center uses the same delegate that we used for our invitation

handler in Chapter 5. We will begin by modifying that existing function.

The first step in setting up our app to receive data is to set the

receive data delegate to our GameCenterManager class. We will use the

GameCenterManager class as a filter point for passing data back into our

game. While you could easily receive data in your Game Controller itself,

if we pipe everything throughout GameCenterManager, it makes it much

easier to plug this class into future apps.

Chapter 7 Exchanging Data

190

Modify both matchmakerViewController of UFOViewController.swift

to match the following:

func matchmakerViewController(_ viewController:

GKMatchmakerViewController, didFind match: GKMatch) {

 dismiss(animated: true, completion: nil)

 gcManager?.matchOrSession = .match(match)

 let gameVC = UFOGameViewController()

 gameVC.gcManager = gcManager

 gameVC.gameIsMultiplayer = true

 gameVC.peerMatch = match

 �navigationController?.pushViewController(gameVC,

animated: true)

 }

The important change to focus on in the preceding function

is setting the delegate to handle the incoming data request to our

GameCenterManager class. This allows us to handle all incoming data

in one centralized place; from there, we can relay it out to the relevant

sections of the app.

Next, you need to add the following function to your

GameCenterManager class. This new function handles incoming data

from Game Center. This function assumes we will be working with only

incoming strings because that is the design we have chosen when dealing

with sending data in our game. You can easily adapt this method to handle

receiving other types of objects. In addition, we will expand this new

function to handle game-specific data. You can also further adapt this

setup to use a more complex and intelligent system of data parsing, but it

will be more than suitable for the needs of UFOs.

Chapter 7 Exchanging Data

191

func receivedData(_ dataDictionary: [AnyHashable : Any]?) {

 �guard let dataDictionary = dataDictionary as? [String:

String] else { return }

}

Tip  You can use the context property to pass any data to the
received delegate method.

Further modify the receivedData function to handle all the possible

types of data that will be seen in our game:

func receivedData(_ dataDictionary: [AnyHashable : Any]?) {

 �guard let dataDictionary = dataDictionary as?

[String: String] else { return }

 determineHost(dataDictionary)

 }

All that is left now is to implement our function to determine which

player is the host; add a new function as seen in the following code snippet:

func determineHost(_ dataDictionary: [String : String]?) {

 if Double(dataString ?? "") ?? 0.0 == randomHostNumber {

 �print("Host numbers are equal, we need to reroll

them")

 generateAndSendHostNumber()

 �} else if Double(dataString ?? "") ?? 0.0 >

randomHostNumber {

 isHost = true

Chapter 7 Exchanging Data

192

 for _ in 0..<5 {

 spawnCow()

 }

 updateCowPaths()

 �} else if Double(dataString ?? "") ?? 0.0 <

randomHostNumber {

 isHost = false

 }

 }

If you run the game on two devices now, you can see that each log

reflects whether the device has been designated a host or whether the

other device is the host. The receivedData function is very flawed, though,

because it only works with the host data message. In the next section, we

will refine this function to accept not only the host message but also input

for player movements, cow movements, and other game actions.

You now have all the basic skills required to send data between two

different iOS, Mac, or Apple TV devices, as well as receive and parse that

data and have your system react to it. If you want to experiment with

working with these calls in practice, the next section will walk you through

several examples of sending and receiving data in our UFOs game.

�Putting Everything Together
In the last section, we learned how to receive the data that has been sent

to a device. In this section, we walk through the exercise of actually using

received data in a useful way for our game. We add a second player, allow

movement information to be sent over the network, sync up state data

across both devices (such as cow movement), track each player’s score,

and complete various other required overhead tasks associated with our

particular game.

Chapter 7 Exchanging Data

193

�Selecting the Host
Let’s start by improving the host selection logic that was implemented in

the previous section. Right now, any data that we receive is assumed to be

the host number. Because most of the data we receive will not be the host

number, we need to find a way to filter that data to where we can parse it.

Modify the generateAndSendHostNumber function to match the following

code block:

func generateAndSendHostNumber() {

 randomHostNumber = Double(arc4random())

 let randomNumberString = "$Host:\(randomHostNumber)"

 �gcManager?.sendStringToAllPeers(randomNumberString,

reliable: true)

}

As you can see, we now add an identifier prefix to the message that

we will send. I have chosen for this example the prefix of $Host:, but you

can use whatever system you want. In addition, we need to modify the

receivedData callback to support the new format.

func receivedData(_ dataDictionary: [AnyHashable : Any]?) {

 �guard let dataDictionary = dataDictionary as? [String:

String] else { return }

 if dataDictionary["data"]?.hasPrefix("$Host:") ?? false {

 determineHost(dataDictionary)

 } else {

 �print("Unable to determine type of message:

\(dataDictionary)")

 }

 }

Chapter 7 Exchanging Data

194

If we determine that the message is a host message, we send it to a new

helper function called determineHost to determine which device is the host. If

we are unable to determine the type of message, we print a warning message

to the console, which will help us debug later down the road. We need to

move the old code from receivedData into determineHost. In addition to

moving the code, we need to strip off the prefix. Although stripping off the

prefix has a lot of overhead, it is the easiest way to accomplish this task. In

more complex apps, you might need to design a more robust message system.

func determineHost(_ dataDictionary: [String : String]?) {

 �let dataString = dataDictionary?["data"]?.

replacingOccurrences(of: "$Host:", with: "")

 if Double(dataString ?? "") ?? 0.0 == randomHostNumber {

 �print("Host numbers are equal, we need to reroll

them")

 generateAndSendHostNumber()

 �} else if Double(dataString ?? "") ?? 0.0 >

randomHostNumber {

 isHost = true

 �} else if Double(dataString ?? "") ?? 0.0 <

randomHostNumber {

 isHost = false

 }

 }

Now we can still determine who the host is, but we have opened the

door to be able to process more than only this type of data.

The next step will be transmitting and displaying our peer’s UFO into

our game. In this chapter, I have added two new images to the project,

EnemySaucer1.png and EnemySaucer2.png. These are the same as the

originals but with a different color scheme applied to them. We will use

this new artwork to display the opponent’s spacecraft.

Chapter 7 Exchanging Data

195

�Displaying the Enemy UFO
The first thing we need to do is detect whether we are a multiplayer game,

and if so, we need to draw the enemy UFO in the viewDidLoad function of

UFOGameViewController. You will notice this is the exact same code we

use for drawing the player in single-player mode except we use a different

graphic asset.

override func viewDidLoad() {

 super.viewDidLoad()

 if gameIsMultiplayer {

 �let otherPlayerFrame = CGRect(x: 100, y: 70, width:

80, height: 34)

 �otherPlayerImageView = UIImageView(frame:

otherPlayerFrame)

 otherPlayerImageView?.animationDuration = 0.75

 otherPlayerImageView?.animationRepeatCount = 99999

 �let imageArray = [UIImage(named: "EnemySaucer1.

png"), UIImage(named: "EnemySaucer2.png")]

 �otherPlayerImageView?.animationImages = imageArray.

compactMap { $0 }

 otherPlayerImageView?.startAnimating()

 if let otherPlayerImageView = otherPlayerImageView {

 view.addSubview(otherPlayerImageView)

 }

 }

}

If we were to run the game on two devices and begin a new multiplayer

game, we would now see a red enemy UFO that just sits in the sky. The

next step is to send our movement data to our peer so that they can update

where the enemy player is. To do so, we add a new code snippet to the end

of our movePlayer function.

Chapter 7 Exchanging Data

196

func movePlayer(_ vertical: double, _ horizontal: double) {

 //...

 if gameIsMultiplayer {

 �let positionString = "$PlayerPosition:

\(playerFrame?.origin.x ?? 0.0) \(playerFrame?.

origin.y ?? 0.0)"

 �gcManager?.sendStringToAllPeers(positionString,

reliable: false)

 }

}

Here we send your player’s x and y coordinates to the peer every time

you move. We will be sending the data as unreliable, since if we fail, we

can just use the next packet. You may remember back to Chapter 7 that

this is one of the benefits of sending the full data instead of the delta of the

movement. The data will always be updating while the player is moving.

This would be a great place to use predictive technology, as discussed

in Chapter 7, but for simplicity’s sake, we will be syncing every frame. In

addition, there are better ways to send the x and y coordinates to another

device, such as a dictionary or custom data format. However, encoding

them into a string is the easiest to understand. As you develop your game

or app, you can design this type of function to be more streamlined with

less overhead.

Tip  Using stringWithFormat carries with it a lot of overhead. In
practice, you should use methods such as stringByAppendingString
to further optimize this type of code.

Chapter 7 Exchanging Data

197

We also need to update our receivedData function to handle the new

type of data we are expecting. Modify that function to match the new one

as follows. In addition, we add a new function to parse the incoming data.

Also add a new function called drawEnemyShipWithData, as follows:

 func receivedData(_ dataDictionary: [AnyHashable : Any]?) {

 �guard let dataDictionary = dataDictionary as?

[String: String] else { return }

 if dataDictionary["data"]?.hasPrefix("$Host:") ?? false {

 determineHost(dataDictionary)

 �} else if dataDictionary["data"]?.

hasPrefix("$PlayerPosition:") ?? false {

 drawEnemyShip(withData: dataDictionary)

else {

 �print("Unable to determine type of message:

\(dataDictionary)")

 }

 }

func drawEnemyShip(withData dataDictionary: [String : String]?) {

 �let dataArray = dataDictionary?["data"]?.

components(separatedBy: " ")

 let x = Double(dataArray?[1] ?? "") ?? 0.0

 let y = Double(dataArray?[2] ?? "") ?? 0.0

 �otherPlayerImageView?.frame = CGRect(x: CGFloat(x), y:

CGFloat(y), width: 80, height: 34)

 }

Chapter 7 Exchanging Data

198

This function parses the incoming data from the network. We pull

the x and y coordinates out of the string that we received, and we update

the enemy player’s frame with the new position. This type of approach

is syncing the two devices frame by frame and is very inefficient. Given

more time, this function should be updated to use predictive technology

to determine where the player is heading and only update the feed if the

player goes against the prediction. However, for the purposes of this demo,

it suits our needs. For more information on predictive networking, see

Chapter 7.

If you were to run the game now and begin a new multiplayer game,

you would see that each device reflects the movement of its partnered

device. We still need to spawn the cows, add the tractor beam, and update

the scores, but we have a functional (albeit dull, for the time being)

multiplayer game, as shown in Figure 7-1.

Figure 7-1.  Adding a second player to UFOs. Each player can move
around independently and is kept in sync through the network

Chapter 7 Exchanging Data

199

�Spawning Cows
Because we want the cow movement to be synced between each device,

we need to dedicate one device to handling the cow spawning and

movement paths. We have already picked a host device, so we will let the

host determine where the cows will be placed. We begin by modifying the

determineHost function. As you can see in the following code, if we are the

host, we begin our normal spawn cow process:

func determineHost(_ dataDictionary: [String : String]?) {

 �let dataString = dataDictionary?["data"]?.

replacingOccurrences(of: "$Host:", with: "")

 if Double(dataString ?? "") ?? 0.0 == randomHostNumber {

 �print("Host numbers are equal, we need to

reroll them")

 generateAndSendHostNumber()

 �} else if Double(dataString ?? "") ?? 0.0 >

randomHostNumber {

 isHost = true

 for _ in 0..<5 {

 spawnCow()

 }

 updateCowPaths()

 �} else if Double(dataString ?? "") ?? 0.0 <

randomHostNumber {

 isHost = false

 }

 }

Chapter 7 Exchanging Data

200

We also need to modify our spawnCow function to support the new

networking behavior. All we are doing here is determining whether we are

a network game and whether we are the host and then sending the data to

our network handlers.

func spawnCow() {

 let x = Int(arc4random() % 480)

 �let cowImageView = UIImageView(frame: CGRect(x: CGFloat(x),

y: 260, width: 64, height: 42))

 cowImageView.image = UIImage(named: "Cow1.png")

 view.addSubview(cowImageView)

 cowArray?.append(cowImageView)

 if isHost && gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers(String(format:

"$spawnCow:%i", x), reliable: true)

 }

}

Modify the receivedData function to support the new $spawnCow

message type. We also want to extract the x axis origin from the message

and pass it to a new method that will handle spawning a cow from the

network. Both of these functions are shown next:

else if dataDictionary["data"]?.hasPrefix("$spawnCow:") ??

false {

 �let x = Int(dataDictionary["data"]?.replacing

Occurrences(of: "$spawnCow:", with: "") ?? "") ?? 0

 spawnCow(fromNetwork: x)

 }

Chapter 7 Exchanging Data

201

Tip  Our host doesn’t need to pass the y axis coordinate for the
cows because they are always spawned on the same y axis. If you
can eliminate data from a packet, it is always beneficial as this type
of unnecessary data adds up.

If you were to run the game now, you would see that both devices

spawn cows in the exact same location, but the host device is the only

device that animates the cow movements.

The next step is to add the logic to share the animation control for

the cows. Modify the existing updateCowPaths method to send the newX

and array position of the cow we want to update. The following new code

should be added to the end of the for loop:

if gameIsMultiplayer {

 �let dataString = String(format: "$cowMove:%i:%f",

x, newX)

 �gcManager?.sendStringToAllPeers(dataString,

reliable: true)

 }

Note  Because we set the data for the spawn cow call to reliable, it
is guaranteed to be received in the order that it was sent. This means
that we can be assured that the objects in our cowArray on both
devices will be in the same order.

We also need to add a new data handler to our receivedData function.

We pass the entire dictionary to our new updateCowPathsFromNetwork

function.

Chapter 7 Exchanging Data

202

else if dataDictionary["data"]?.hasPrefix("$cowMove:") ?? false {

 updateCowPaths(fromNetwork: dataDictionary)

}

func updateCowPaths(fromNetwork dataDictionary: [String :

String]?) {

 �let dataArray = dataDictionary?["data"]?.

components(separatedBy: ":")

 let placeInArray = Int(dataArray?[1] ?? "") ?? 0

 let tempCow = cowArray?[placeInArray] as? UIImageView

 let currentX = Double(tempCow?.frame.origin.x ?? 0.0)

 let newX = Double(Int(dataArray?[2] ?? "") ?? 0)

 if tempCow != currentAbductee {

 UIView.animate(

 withDuration: 3.0,

 delay: 0,

 options: [.curveLinear],

 animations: {

 �tempCow?.frame = CGRect(x: CGFloat(newX),

y: 260, width: 64, height: 42)

 }

)

 }

 tempCow?.animationDuration = 0.75

 tempCow?.animationRepeatCount = 99999

Chapter 7 Exchanging Data

203

 //flip cow

 if newX < currentX {

 �let flippedCowImageArray = [UIImage(named:

"Cow1Reversed.png"), UIImage(named: "Cow2Reversed.

png"), UIImage(named: "Cow3Reversed.png")]

 �tempCow?.animationImages = flippedCowImageArray.

compactMap { $0 }

 } else {

 �let cowImageArray = [UIImage(named: "Cow1.png"),

UIImage(named: "Cow2.png"), UIImage(named: "Cow3.

png")]

 �tempCow?.animationImages = cowImageArray.compactMap

{ $0 }

 }

 tempCow?.startAnimating()

 }

{

This function is very similar to our existing function for updating cow

paths. The two differences are that we get our place in the array from the

network, and we don’t randomly generate a newX position. If you were to

run the game again, you would see that both sets of cows are now in sync

with each other. When a cow changes position, it is reflected exactly the

same on both devices. Figure 7-2 shows the current state of the game.

Chapter 7 Exchanging Data

204

Each player can now abduct cows and increment their score. There

are, however, still two remaining issues that need to be addressed. The first

is that we don’t share scores between devices, and the second is that we

don’t show the other player’s tractor beams or animate the cows into the

UFO during the abduction. Let’s start off by adding in support for the score.

�Sharing Scores
When we increment the score, we send that data to our peers. Add the

following snippet of code to our finishAbducting function, right after we

increment the score:

Figure 7-2.  Syncing up the cow movements over the network between
two iOS devices

Chapter 7 Exchanging Data

205

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers("$score:\(score)",

reliable: true)

}

We, again, need to modify our receivedData method to support the

new $score message. I have chosen to increment the enemy score within

the receivedData method. You can, of course, write a new method to

handle this functionality. In addition, we need to add a new label for

the enemy score. It will be placed directly below the local player’s score.

Figure 7-3 shows the scores in place.

else if dataDictionary["data"]?.hasPrefix("$score:") ?? false {

 �let enemyScore = Float(dataDictionary["data"]?.

replacingOccurrences(of: "$score:", with: "") ??

"") ?? 0.0

 �enemeyScoreLabel.text = String(format: "ENEMY

%05.0f", enemyScore)

 }

Tip T echnically, you don’t need to pass the score value in with the
network call because scores are always incremented by one; we can
assume a new score message means increment the value by one.

Chapter 7 Exchanging Data

206

Exercise I t would be very easy to add logic to declare a winner of
the game when either player reaches a score of ten. Try to add this
logic into the game yourself.

�Adding Network Abduction Code
The last thing that we need to handle is tying in network support for the

abduction code. We need to properly remove and respawn cows as they

are abducted, as well as show the enemy UFO using their tractor beam and

animating a cow into the ship.

Let’s begin by showing and hiding the tractor beam on each device.

Because we start a tractor beam every time a user touches the screen, and

end it when the user releases that touch, we can begin there. We have no

Figure 7-3.  Adding the score for the networked player

Chapter 7 Exchanging Data

207

values that need to be transmitted; the only thing we need to be aware of

is starting and stopping the animation itself. Modify the touchesBegan

and touchesEnd methods to send a message to the peer. The modified

methods are shown as follows:

override func touchesBegan(_ touches: Set<UITouch>, with event:

UIEvent?) {

 currentAbductee = nil

 tractorBeamOn = true

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers("$beginTractorBeam",

reliable: true)

 }

 �tractorBeamImageView?.frame = CGRect(x:

(myPlayerImageView?.frame.origin.x ?? 0.0) + 25, y:

(myPlayerImageView?.frame.origin.y ?? 0.0) + 10, width:

28, height: 318)

 tractorBeamImageView?.animationDuration = 0.5

 tractorBeamImageView?.animationRepeatCount = 99999

 �let imageArray = [UIImage(named: "Tractor1.png"),

UIImage(named: "Tractor2.png")]

 �tractorBeamImageView?.animationImages = imageArray.

compactMap { $0 }

 tractorBeamImageView?.startAnimating()

 if let tractorBeamImageView = tractorBeamImageView {

 view.insertSubview(tractorBeamImageView, at: 4)

 }

Chapter 7 Exchanging Data

208

 let cowImageView = hitTest()

 if let cowImageView = cowImageView {

 currentAbductee = cowImageView

 abductCow(cowImageView)

 }

 }

 �override func touchesEnded(_ touches: Set<UITouch>, with

event: UIEvent?) {

 tractorBeamOn = false

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers("$endTractorBeam",

reliable: true)

 }

 tractorBeamImageView?.removeFromSuperview()

 if let currentAbductee = currentAbductee {

 UIView.animate(

 withDuration: 1.0,

 delay: 0,

 �options: [.curveEaseIn,

.beginFromCurrentState],

 animations: {

 var frame = currentAbductee.frame

 frame.origin.y = 260

 �frame.origin.x = (self.myPlayerImageView?.

frame.origin.x ?? 0.0) + 15

 currentAbductee.frame = frame

 }

Chapter 7 Exchanging Data

209

)

 }

 currentAbductee = nil

 }

As you can see, we simply check to make sure that we have a network

game and then pass a message to begin or end the tractor beams. Next,

we add a handler to our receivedData function to call two new methods

that will display and animate the tractor beam on the peer’s device. These

two functions are modifications of our current tractor beam animation

methods and are shown next for your convenience:

func beginTractorFromNetwork() {

 �otherPlayerTractorBeamImageView?.frame = CGRect(x:

(otherPlayerImageView?.frame.origin.x ?? 0.0) + 25, y:

(otherPlayerImageView?.frame.origin.y ?? 0.0) + 10,

width: 28, height: 318)

 �otherPlayerTractorBeamImageView?.animationDuration = 0.5

 �otherPlayerTractorBeamImageView?.animationRepeatCount =

99999

 �let imageArray = [UIImage(named: "Tractor1.png"),

UIImage(named: "Tractor2.png")]

 �otherPlayerTractorBeamImageView?.animationImages =

imageArray.compactMap { $0 }

 otherPlayerTractorBeamImageView?.startAnimating()

 �if let otherPlayerTractorBeamImageView =

otherPlayerTractorBeamImageView {

 �view.insertSubview(otherPlayerTractorBeamImageView,

at: 4)

 }

 }

Chapter 7 Exchanging Data

210

 func endTractorFromNetwork() {

 otherPlayerTractorBeamImageView?.removeFromSuperview()

 }

If you were to run the game now, you would see that when each user

touches the screen, the tractor beam appears on both devices. We don’t

need to worry about locking the movement for the UFO while the tractor

beam is on since this is handled for us in the single-player game, and

movements are only transmitted to another device if they are acceptable

on the single-player mode. Next, we need to add additional code to handle

the hit test, so modify the hitTest function, as follows:

func hitTest() -> UIImageView? {

 if !tractorBeamOn {

 return nil

 }

 for x in 0..<(cowArray?.count ?? 0) {

 let tempCow = cowArray?[x] as? UIImageView

 let cowLayer = tempCow?.layer.presentation()

 let cowFrame = cowLayer?.frame

 �if cowFrame?.intersects(tractorBeamImageView?.frame

?? CGRect.zero) ?? false {

 tempCow?.frame = cowLayer?.frame ?? CGRect.zero

 tempCow?.layer.removeAllAnimations()

 if gameIsMultiplayer {

 �gcManager?.sendStringToAllPeers(String(for

mat: "$abductCowAtIndex:%i", x), reliable:

true)

 }

Chapter 7 Exchanging Data

211

 return tempCow

 }

 }

 return nil

 }

}

Here we are using the same trick that we used earlier when we

populated the cow array. Because we sent the data reliably to enter objects

into our array, we know that the order of the array is always going to be the

same. Because we know the order of the array, we can pass the index of the

cow we want to modify. In addition to sending the data, we also need to

write a new if statement to catch this message, as shown in the following.

You can see this method is set up a lot like the score method in which we

extract the value that we are interested in and call a new method using it:

else if dataDictionary["data"]?.hasPrefix("$abductCowAtIndex:")

?? false {

 �let index = Int(dataDictionary["data"]?.

replacingOccurrences(of: "$abductCowAtIndex:",

with: "") ?? "") ?? 0

 abductCowFromNetwork(at: index)

}

The following two functions handle the abduction animations that are

received over the network. They are both very similar to the functions that

we use to animate an abduction in the single-player mode. You could even

modify your existing functions to handle the network behavior by calling

them with a flag to indicate that they are coming from a remote device.

func abductCowFromNetwork(at x: Int) {

 �otherPlayerCurrentAbductee = cowArray?[x] as?

UIImageView

Chapter 7 Exchanging Data

212

 �//otherPlayerCurrentAbductee?.frame =

otherPlayerCurrentAbductee?.frame // Skipping

redundant initializing to itself

 otherPlayerCurrentAbductee?.layer.removeAllAnimations()

 UIView.animate(

 withDuration: 4.0,

 delay: 0,

 options: [.curveEaseIn, .beginFromCurrentState],

 animations: {

 �var frame = self.otherPlayerCurrentAbductee?.

frame

 �frame?.origin.y = self.otherPlayerImageView?.

frame.origin.y ?? 0.0

 �self.otherPlayerCurrentAbductee?.frame = frame

?? CGRect.zero

 },

 completion: finishAbductingFromNetwork

)

 }

func finishAbductingFromNetwork(_ finished: Bool) {

 �cowArray = cowArray?.filter({ ($0) as AnyObject !==

(otherPlayerCurrentAbductee) as AnyObject })

 endTractorFromNetwork()

 otherPlayerCurrentAbductee?.layer.removeAllAnimations()

 otherPlayerCurrentAbductee?.removeFromSuperview()

 otherPlayerCurrentAbductee = nil

Chapter 7 Exchanging Data

213

 if isHost {

 spawnCow()

 }

}

We also need to do some overhead to make sure we don’t create

any new bugs. For example, we add a new pointer to keep track of

which cow the enemy is currently abducting, if any. If you recall, in the

updateCowPaths method, we don’t want to update the path for the cow

that is being abducted because it will break the animation that is being

used for the abduction. We need to modify that method to also ignore

whatever cow the enemy happens to be abducting. If you were to run

the game again, you would now notice that we have a fully functional

multiplayer game, as seen in Figure 7-4.

Figure 7-4.  A fully functional multiplayer UFO game being played by
two people using a Bluetooth connection

Chapter 7 Exchanging Data

214

�Disconnections
The last step that we need to take when working with multiplayer support

is to add in logic to handle disconnections and other failures that are

unrecoverable. Luckily for us, Apple’s APIs handle most of the legwork. We

do, however, want to add a more universal call to our GameCenterManager

class to make things easier for us.

func disconnect() {

 switch matchOrSession {

 case .match(let match):

 match.disconnect()

 case .session(let session):

 session.disconnect()

 case .none:

 break

 }

}

This method should be called whenever you wish to end a multiplayer

game. It will make sure that the peers are safely disconnected and prevent

a number of issues that would be very hard to troubleshoot.

Chapter 7 Exchanging Data

215

�Summary
In this chapter, we covered a lot of information in a very condensed

manner. You learned how to send and receive data between two or more

iOS, Mac, or Apple TV devices using Game Center networking. In addition,

you learned how to handle network state changes, such as disconnections.

We put the principles learned in this chapter into use in our UFO game,

creating a multiplayer iOS game from the ground up in less than seven

chapters. In the next chapter, we will explore Game Center’s turn-based

gaming APIs, which function differently enough from real-time gaming to

warrant a completely new sample project and game.

Chapter 7 Exchanging Data

217© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_8

CHAPTER 8

Turn-Based Gaming
with Game Center
Slightly after the initial release of Game Center, Apple would later update

the framework with turn-based gaming support, in addition to the real-

time gaming functionality you are familiar with from the previous chapters

of this book. With turn-based gaming, you can now provide your users

with asynchronous gaming. Turn-based games are simply any game in

which players take turns playing, with notable examples such as in tic-tac-

toe, chess, Battleship, and Dungeons & Dragons.

Turn-based gaming on iOS, Mac, and Apple TV has become very

popular in the past several years, arguably starting with the megahit Words

with Friends. Words with Friends, shown in Figure 8-1, is an asynchronous

word game similar to Scrabble. Each player receives a selection of letters

that they must play, in turn, on a board to create a word. There are points

awarded based on the difficulty of the word, as well as layout on the

board. Turn-based gaming is traditionally done with a store and forward

network–type platform; the server holds on to the game data until the next

client logs in and retrieves it. Asynchronous games have traditionally been

more casual games and don’t require all players to be present at all times,

although some games do require immediate response and playing.

https://doi.org/10.1007/978-1-4842-7756-0_8#DOI

218

Before the introduction of turn-based gaming, Game Center had provided

real-time gaming in which all the devices involved needed to be active and

logged in continuously throughout the multiplayer experience. Turn-based

gaming adds a more casual experience, letting people run up to 20 matches at

a time and only playing when it is their turn in a particular match.

Prior to these enhancements, writing this type of game would have

required you to write and deploy your own server to handle the game

interaction. Now, you can add the networking component of turn-based

gaming and be up and running in less than a day of work. In this chapter,

we explore how to write a simple tic-tac-toe game using Game Center’s

turn-based gaming APIs.

Figure 8-1.  Words with Friends by Zynga

Chapter 8 Turn-Based Gaming with Game Center

219

�A New Sample Project
Unfortunately, our existing UFOs sample game is not a suitable experience

for testing turn-based gaming. It wouldn’t make much sense to have each

player make a move and then wait for the other player to catch up. Luckily,

there is another very simple type of game that we can build a project

around: tic-tac-toe. This classic children’s game is something almost all of

us have played and we have experience with the rules and strategy.

We begin by creating a new storyboard-based iOS App project. There

are three views that we will be working with throughout the project:

•	 Main View: This view simply contains a button that

launches the HomeViewController, which we’ll create

in the following.

•	 GKTurnBasedMatchmakerViewController: This is the

view provided by Apple to create and resume turn-

based games. You will not need to create this view

yourself.

•	 GameViewController: This is the class that handles

user input, determining winners and ties, and

populating the game board at the start of each turn.

We begin by working with the home view. These files will be created for

you when you create the new project. The very first thing we need to do is

make sure to import the proper GameKit frameworks and add our reusable

GameCenterManager class that we have been working on throughout this

book; you can include the existing one from Chapter 8. We also need to

create a single button in the view to start a new game, as shown in Figure 8-2.

Chapter 8 Turn-Based Gaming with Game Center

220

The file for the new home view controller class should match the following

code snippet. We need to adhere to the GameCenterManagerDelegate

as well as the GKTurnBasedMatchmakerViewController. As in the previous

chapters, we also need to create a class instance of GameCenterManager.

The last thing that needs to be added is an IBAction to begin a new game.

Make sure to hook up the Start New Game button to the IBAction in the

storyboard.

Figure 8-2.  The main view for our new tic-tac-toe game

Chapter 8 Turn-Based Gaming with Game Center

221

We also need to modify the viewDidLoad function to check for and

then authenticate our local user with Game Center. This is the same

approach that we followed in Chapter 2.

class HomeViewController: UIViewController {

 var gcManager: GameCenterManager?

 override func viewDidLoad() {

 super.viewDidLoad()

 NotificationCenter.default.addObserver(

 self,

 �selector: #selector(localUserAuthentication

Changed(_:)),

 �name: .GKPlayerAuthenticationDidChange

NotificationName,

 object: nil)

 gcManager = GameCenterManager()

 gcManager?.authenticateLocalUser(self)

 }

}

We also need to implement one delegate function to monitor for

successful authentication and local user changes. We are using this

function to print some debugging output.

@objc func localUserAuthenticationChanged(_ notification:

Notification?) {

 if let object = notification?.object {

 print("Authentication Changed: \(object)")

 }

}

Chapter 8 Turn-Based Gaming with Game Center

222

In the next section, we will see how to call the

GKTurnBasedMatchmakerViewController and how to handle the delegate

functions that are required in order to handle errors and resume or create

new matches.

�GKTurnBasedMatchmakerViewController
Apple provides a default class to present the GUI for creating a new turn-

based match. For programmatically creating a match, see the later section

“Programmatic Matches.”

We begin by working with a new matchmaker object in the

IBAction for the single button that we created in the previous

section. The approach that we use here is very similar to Game

Center matchmaking. Take a look at the following sample code.

This function is very similar to the previous examples of working

with real-time gaming and matchmaking, with the notable change

being switching to GKTurnBasedMatchmakerViewController and

turnBasedMatchmakerDelegate instead of their real-time peers. The user

will be presented with a view similar to the one shown in Figure 8-3.

@IBAction func showMatchmaker() {

 let match = GKMatchRequest()

 match.minPlayers = 2

 match.maxPlayers = 2

 �let turnMatchmakerVC = GKTurnBasedMatchmakerViewController(

matchRequest: match)

 turnMatchmakerVC.turnBasedMatchmakerDelegate = self

 present(turnMatchmakerVC, animated: true)

}

Chapter 8 Turn-Based Gaming with Game Center

223

Note  As with all Game Center functionality, you must first
authenticate with Game Center before you can create a new turn-
based game match.

There are four delegate functions that you need to implement to

conform to the GKTurnBasedMatchmakerViewControllerDelegate. The

first handles the user canceling in the matchmaker. The only requirement

here is to call dismiss on the game picker modal. You may add additional

logic, as required, for your app.

extension HomeViewController:

GKTurnBasedMatchmakerViewControllerDelegate {

 �func turnBasedMatchmakerViewControllerWasCancelled(_

viewController: GKTurnBasedMatchmakerViewController) {

 dismiss(animated: true)

 }

}

Important  The list of current games does not update until you
close and reopen the GKTurnBasedMatchmakerViewController.

Chapter 8 Turn-Based Gaming with Game Center

224

We also need to implement a delegate function to catch any errors

that occur during this phase. The following function is called whenever

an error is encountered during the matchmaking process. For debugging

purposes, we are printing the error to the console; however, you will want

to inform the user that an error has occurred.

Figure 8-3.  Starting a new turn-based match

Chapter 8 Turn-Based Gaming with Game Center

225

�func turnBasedMatchmakerViewController(_ viewController:

GKTurnBasedMatchmakerViewController, didFailWithError error:

Error) {

 �print("Turn Based Matchmaker Failed with Error:

\(error.localizedDescription)")

}

The last delegate function that we discuss in this section handles the

user quitting a match from the matchmaker screen. This is accomplished

by swiping from right to left across a game and selecting the quit option.

We pass in logic that the quitting player will be the losing player of the

match and that the remote player will be marked the winner. If you do not

call the proper function here, you will be able to quit a game, but it will

reappear within a few seconds.

func turnBasedMatchmakerViewController(_ viewController:

GKTurnBasedMatchmakerViewController, playerQuitFor match:

GKTurnBasedMatch) {

 �guard let localParticipant = match.participants.

first(where: { $0.player == GKLocalPlayer.local }),

 �let otherParticipant = match.participants.

first(where: {$0 != localParticipant}) else {

 return

 }

 localParticipant.matchOutcome = .quit

 otherParticipant.matchOutcome = .won

 �match.endMatchInTurn(withMatch: match.matchData ??

Data()) { error in

Chapter 8 Turn-Based Gaming with Game Center

226

 if let error = error {

 �print("An error occurred ending match: \(error.

localizedDescription)")

 }

 }

}

The final required function, didFindMatch, is discussed in the next

section, “Starting a New Game.”

�Establishing Game State
Before we can really dive into the new game, it is important for us to do

some foundation laying in order to make life easier down the road. The

first thing we will do is set up the possible states of the game. Tic-tac-toe

is a very simple game, but there can still be several active states; the first

two will be applicable to any turn-based game and covering which player

we are currently waiting on to make their move. The following three states

cover a game ending status from local player winning, remote player

winning, or a tied match:

private enum GameStatus {

 case waitingForLocalPlayer

 case waitingForOtherPlayer

 case localPlayerWon

 case otherPlayerWon

 case playersTied

}

The next piece of groundwork that needs to be laid will enable the

functionality to detect the current state of the game. We will need to

determine what the winning combinations of gameplay are to detect if

Chapter 8 Turn-Based Gaming with Game Center

227

they have occurred throughout the gameplay. We are using a brute force

approach to see if we have a winner, by checking all the rows and columns

for three matching players. We also need to check for a tie if there are no

more places to move.

private var currentGameStatus: GameStatus {

 if let localParticipant = localParticipant {

 switch localParticipant.matchOutcome {

 case .none:

 break

 case .quit, .lost, .timeExpired:

 return .otherPlayerWon

 �case .won, .first, .second, .third, .fourth,

.customRange:

 return .localPlayerWon

 case .tied:

 return .playersTied

 @unknown default:

 �print("Unknown GKTurnBasedParticipant.matchOutcome

received. Assuming game is in progress.")

 }

 }

 let winningCombinations = [

 // horizontal

 [0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

Chapter 8 Turn-Based Gaming with Game Center

228

 // vertical

 [0, 3, 6],

 [1, 4, 7],

 [2, 5, 8],

 // diagonal

 [0, 4, 8],

 [2, 4, 6],

]

 l�et winningCombination = winningCombinations.first

{ combo in

 �let filledSquares: [Player] = combo.compactMap{

gameBoard[$0] }.filter{ $0 != .none}

 �guard filledSquares.count == combo.count else { return

false }

 let uniquePlayers = Set(filledSquares)

 return uniquePlayers.count == 1

 }

 �guard let winningPlayerIndex = winningCombination?[0], let

winningPlayer = gameBoard[winningPlayerIndex] else {

 �guard gameBoard.count != 9 else { return .playersTied }

 �return localPlayerIsCurrentParticipant ?

.waitingForLocalPlayer : .waitingForOtherPlayer

 }

 �return winningPlayer == localPlayer ? .localPlayerWon :

.otherPlayerWon

}

Chapter 8 Turn-Based Gaming with Game Center

229

Finally, we need to set up some functions to encode and store the state

of the game board. This is done by simply storing the button labels into a

JSONEncoder. This allows for easy and safe storage of information as well

as easy network transmittal if our game required it.

private typealias GameBoard = [Int: Player]

 private var gameBoard: GameBoard = [:] {

 didSet {

 logGameBoard("didSet")

 }

 }

 private var gameBoardData: Data? {

 logGameBoard("Serializing")

 return try? JSONEncoder().encode(gameBoard)

 }

 private func logGameBoard(_ label: String) {

 �print((["\(label):"] + gameBoard.map{ "\($0.key): \($0.

value.buttonTitle ?? "")" }).joined(separator: "\n"))

 }

 private var logError: (Error?) -> Void = { error in

 guard let error = error else { return }

 p�rint("An error occurred updating turn: \(error.

localizedDescription)")

 }

�Starting a New Game
Starting a new match with turn-based gaming is a very straightforward

and simple process. To do so, you need to implement the following

function as part of the delegate. This new function dismisses the

GKTurnBasedMatchmakerViewController and then passes a copy of the

Chapter 8 Turn-Based Gaming with Game Center

230

match object to your Game Controller. The following code snippet is the

procedure we follow for tic-tac-toe:

�func turnBasedMatchmakerViewController(_ viewController:

GKTurnBasedMatchmakerViewController, didFind match:

GKTurnBasedMatch) {

 performSegue(withIdentifier: "PlayGame", sender: match)

 dismiss(animated: true)

}

Then we pass the match to the destination when the segue is prepared.

�override func prepare(for segue: UIStoryboardSegue,

sender: Any?) {

 guard

 segue.identifier == "PlayGame",

 let match = sender as? GKTurnBasedMatch,

 let game = segue.destination as? GameViewController

 else { return }

 game.match = match

}

Let’s now switch attention to the GameViewController class.

Important  You are strictly limited to passing only 4k of data with
each new turn. If you cannot limit your game data to less than 4k,
you can use a URL to point to a server holding the complete data set.
Alternatively, you could pass only the delta of the game state and
store the existing data locally.

Chapter 8 Turn-Based Gaming with Game Center

231

class GameViewController: UIViewController {

 var match: GKTurnBasedMatch? {

 didSet {

 loadMatchData()

 }

 }

 @IBOutlet private var buttons: [UIButton]!

 @IBOutlet private var teamLabel: UILabel!

 @IBOutlet private var statusLabel: UILabel!

 @IBOutlet private var forfeitButton: UIButton!

 @IBAction private func makeMove(_ sender: UIButton) {

 }

 @IBAction func forfeitTapped() {

 }

}

We first need to configure the actual game view (GameViewController).

We need nine spots for the user to move in the tic-tac-toe game, as well as

a forfeit option and a pair of labels to inform players whose turn it is.

We use simple UIButtons to handle user input. Modify the storyboard

with a layout similar to that pictured in Figure 8-4. You need to create

IBOutlets for each of the buttons and the label as well as new IBAction

functions for both making a move and forfeiting. Connect all the board

buttons to the makeMove function that you previously created. We also

need to set tags on the UIButtons to help us locate them. Begin with tag

1 in the upper-left corner and move left to right, up to down, numbering

them.

Chapter 8 Turn-Based Gaming with Game Center

232

You now have two new functions in your game view controller, as well

as nine button outlets and one label outlet. This covers how to begin a new

turn-based gaming match. In the next section, we look at how to make a

move and pass control to the next player.

Figure 8-4.  A view of the game board, as seen from the storyboard
editor

Chapter 8 Turn-Based Gaming with Game Center

233

�Making the First Move
The first thing we need to do in a new match-based game, before we make

a move, is determine who the player is representing. In our example game,

there are two sides: X and O. We are going to set the first person to always be

X and the second to always be O. This means that X will always make the first

move. With this setup, it becomes easy to determine who the player currently

is representing using the following code and convenience functions.

The first four pieces of code declare private variables to make

determining the local player, the remote player, the current player, and

the next player easier to retrieve. After that a new struct is created for the

player which will allow us to easily store state information on the progress

of the game. Finally, some additional variables are set up to easily work

with current player and the next player.

private var localParticipant: GKTurnBasedParticipant? {

 �match?.participants.first{ $0.player == GKLocalPlayer.

local }

}

private var otherParticipant: GKTurnBasedParticipant? {

 �guard let localParticipant = localParticipant else {

return nil }

 �return match?.participants.first{ $0 != localParticipant }

}

private var localPlayerIsCurrentParticipant: Bool {

 �guard let localParticipant = localParticipant else { return

false }

 return match?.currentParticipant == localParticipant

}

Chapter 8 Turn-Based Gaming with Game Center

234

private var nextParticipant: GKTurnBasedParticipant? {

 �guard let localParticipant = localParticipant else { return

nil }

 �return localPlayerIsCurrentParticipant ? otherParticipant :

localParticipant

}

private enum Player: String, Codable {

 case none

 case x

 case o

 var title: String {

 switch self {

 case .none: return "unknown"

 case .x: return "❌"

 case .o: return "⭕"

 }

 }

 var buttonTitle: String? {

 switch self {

 case .none: return nil

 case .x, .o: return title

 }

 }

}

private var localPlayer: Player = .none

private var otherPlayer: Player {

 switch localPlayer {

 case .none: return .none

 case .x: return .o

Chapter 8 Turn-Based Gaming with Game Center

235

 case .o: return .x

 }

}

private var currentPlayer: Player {

 �if let currentParticipant = match?.currentParticipant, let

firstParticipant = match?.participants.first {

 �return currentParticipant == firstParticipant ?

.x : .o

 }

 return .none

}

private var nextPlayer: Player {

 switch currentPlayer {

 case .x: return .o

 case .o, .none: return .x

 }

}

After we have determined who the users are, then we can allow them

to make a move. We will modify the code for the action to which the nine

game buttons are connected. First, let’s take a look at the function that will

be called when a play space button is tapped.

@IBAction private func makeMove(_ sender: UIButton) {

 �guard let index = buttons.firstIndex(of: sender) else {

return }

 gameBoard[index] = localPlayer

 sendMatchData()

}

Chapter 8 Turn-Based Gaming with Game Center

236

Next, the sendMatchData function is called, in which the current game

state is determined to either be the local player has finished their move to

end the turn, the local player has won so end the match, the players have

tied so end the match, or the remote player is currently being waited on.

private func sendMatchData() {

 switch currentGameStatus {

 case .waitingForLocalPlayer:

 endTurn()

 case .localPlayerWon:

 �endMatchInTurn(participantOutcome: .won,

nextParticipantOutcome: .lost)

 case .playersTied:

 �endMatchInTurn(participantOutcome: .tied,

nextParticipantOutcome: .tied)

 case .waitingForOtherPlayer, .otherPlayerWon:

 break

 }

}

If the game state determined that it is the next player’s turn, then

endTurn is called. Once the proper variables have been set for the match,

the next player and the current board data match.endTurn are then called

and the view is updated. This will let Game Center know it is the remote

player’s turn.

private func endTurn() {

 �guard let match = match, let nextParticipant =

nextParticipant, let gameBoardData = gameBoardData else {

return }

 �match.endTurn(withNextParticipants: [nextParticipant],

turnTimeout: GKTurnTimeoutDefault, match: gameBoardData) {

[weak self] error in

Chapter 8 Turn-Based Gaming with Game Center

237

 self?.logError(error)

 self?.updateView()

 }

}

In the event that the game is finished in a tie or a win, then

endMatchInTurn is called. participantOutcome out is passed into the

function with either win or tie depending on the game state. There are

other options available for this variable such as quit, lost, timeExpired, and

custom values, which are not used in our simple tic-tac-toe example but

may be applicable to your game.

private func endMatchInTurn(participantOutcome:

GKTurnBasedMatch.Outcome, nextParticipantOutcome:

GKTurnBasedMatch.Outcome?) {

 guard let match = match,

 �let currentParticipant = match.

currentParticipant,

 let nextParticipant = nextParticipant,

 let gameBoardData = gameBoardData else { return }

 currentParticipant.matchOutcome = participantOutcome

 if let nextParticipantOutcome = nextParticipantOutcome {

 �nextParticipant.matchOutcome =

nextParticipantOutcome

 }

 �match.endMatchInTurn(withMatch: gameBoardData)

{ [weak self] error in

 self?.logError(error)

 self?.loadMatchData()

 }

 }

Chapter 8 Turn-Based Gaming with Game Center

238

Note  The size and order of the participant’s array are determined
when the match first begins and will be the same throughout the
match and on each device.

Tip  You might see that there are nil objects in the participant array;
these are placeholders for unmatched players. Game Center will only
match new players when it is their turn to move. This means that
every time you are auto-matched, it will be your turn to move.

The last thing that we will do at the end of each move is send the new

game data to the next player. This player will, in turn, update the game

state and send it to the next player (which happens to be the first player

again).

�GKLocalPlayerListener Extensions
We will be adding two extension functions GKLocalPlayerListener in order

to monitor for changes in turn events as well as the end of a match. These

will also allow us to update the match data as the game progresses.

extension GameViewController: GKLocalPlayerListener {

 �func player(_ player: GKPlayer, receivedTurnEventFor match:

GKTurnBasedMatch, didBecomeActive: Bool) {

 �guard match.matchID == self.match?.matchID else {

return }

 self.match = match

 }

Chapter 8 Turn-Based Gaming with Game Center

239

 �func player(_ player: GKPlayer, matchEnded match:

GKTurnBasedMatch) {

 �guard match.matchID == self.match?.matchID else {

return }

 self.match = match

 }

}

�Continuing a Game in Progress
When you resume a game on your next turn, assuming it is not the first

turn of a match, you will need to first restore the game state to its current

position. To do this, we begin by modifying our viewDidLoad function to

get the current match data. We in turn call an updateView function to set

up the current game board. The first step of this process is determining the

current game state. Among other things, here we can determine if the game

is ended and, if not, whose turn it currently is. We also parse the gameboard

data and fill in the current Xs and Os to match the game history.

override func viewDidLoad() {

 super.viewDidLoad()

 GKLocalPlayer.local.register(self)

 updateView()

 }

private func updateView() {

 �teamLabel.text = "You are playing \(localPlayer.title)."

 let statusText: String

 let forfeitButtonEnabled: Bool

Chapter 8 Turn-Based Gaming with Game Center

240

 switch currentGameStatus {

 case .waitingForLocalPlayer:

 statusText = "It's your turn."

 forfeitButtonEnabled = true

 case .waitingForOtherPlayer:

 statusText = "It's \(otherPlayer.title)'s turn."

 forfeitButtonEnabled = true

 case .localPlayerWon:

 statusText = "You won!"

 forfeitButtonEnabled = false

 case .otherPlayerWon:

 statusText = "You lost."

 forfeitButtonEnabled = false

 case .playersTied:

 statusText = "It's a tie."

 forfeitButtonEnabled = false

 }

 statusLabel.text = statusText

 forfeitButton.isEnabled = forfeitButtonEnabled

 for index in 0..<9 {

 let player = gameBoard[index] ?? .none

 let button = buttons[index]

 button.setTitle(player.buttonTitle, for: .normal)

 �button.isEnabled = localPlayerIsCurrentParticipant

&& player == .none

 }

 }

private func loadMatchData() {

 �guard let match = match, let firstMatchParticipant =

match.participants.first else {

 localPlayer = .none

Chapter 8 Turn-Based Gaming with Game Center

241

 gameBoard = GameBoard()

 updateView()

 return

 }

 �localPlayer = firstMatchParticipant.player ==

GKLocalPlayer.local ? .x : .o

 match.loadMatchData { (data, error) in

 if let error = error {

 �print("Load Match Data: \(error.

localizedDescription)")

 return

 }

 �if self.otherParticipant?.matchOutcome == .quit,

self.localParticipant?.matchOutcome != .won {

 �self.endMatchInTurn(participantOutcome: .won,

nextParticipantOutcome: nil)

 return

 }

 guard let data = data else { return }

 do {

 �self.gameBoard = try JSONDecoder().

decode(GameBoard.self, from: data)

 } catch {

 self.gameBoard = GameBoard()

 }

 self.updateView()

 }

 }

Chapter 8 Turn-Based Gaming with Game Center

242

Tip  If you persist the game state locally, you will only need to
update the turns that have occurred since your last move. This
approach will help you keep packet sizes under the 4k limit.

With the code in place, you can now play through a complete round of

tic-tac-toe using two Game Center accounts; however, the game will never

detect a winner or a draw. In the next section, we look at the logic required

to detect an end-of-game event.

�Quitting and Forfeiting
A player can quit a match at any time by swiping across it from the

matchmaker view controller. However, you might want to add a path for

your users to forfeit or quit a match from inside of your game itself. To

allow a player to forfeit a match, use the following code snippet. This will

allow a player to quit a game even if it is not currently their turn:

 @IBAction func forfeitTapped() {

 if localPlayerIsCurrentParticipant {

 �endMatchInTurn(participantOutcome: .quit,

nextParticipantOutcome: .won)

 } else {

 quitMatchOutOfTurn()

 }

 }

}

 private func quitMatchOutOfTurn() {

 guard let match = match else { return }

Chapter 8 Turn-Based Gaming with Game Center

243

 �match.participantQuitOutOfTurn(with: .quit) { [weak

self] error in

 self?.logError(error)

 self?.loadMatchData()

 }

 }

�Programmatic Matches
If you want to bypass the GKTurnBasedMatchmakerViewController and

implement your own GUI, there is an option to do so. Using the following

function will create a new match without having the user go through the

matchmaker:

func findMatch() {

 let match = GKMatchRequest()

 match.minPlayers = 2

 match.maxPlayers = 2

 GKTurnBasedMatch.find(for: match) { match, error in

 if let error = error {

 �print("An error occurred when finding a match:

\(error.localizedDescription)")

 return

 }

 // Start new game with returned match.

 }

}

Chapter 8 Turn-Based Gaming with Game Center

244

In addition to creating a game, you need to be able to load a list

of existing games for your local user. You can do so with the following

function:

func loadMatches() {

 GKTurnBasedMatch.loadMatches { matches, error in

 if let error = error {

 �print("An error occurred while loading matches:

\(error.localizedDescription)")

 return

 }

 print("Existing Matches: \(matches ?? [])")

 }

}

Note  Because both of these functions use background tasks in
order to handle the request, the code that you implement within the
block needs to be thread safe.

�GKTurnBasedEventHandler
The GKTurnBasedEventHandler is a delegate protocol that is responsible

for handling important messages related to turn-based games. To set a

delegate for events, use the following code:

[[GKTurnBasedEventHandler sharedTurnBasedEventHandler]

setDelegate: self];

Chapter 8 Turn-Based Gaming with Game Center

245

The protocol has three optional functions.

•	 handleInviteFromGameCenter: When your delegate

receives this function, it should populate a new

GKMatchRequest with the playersToInvite that are passed

in through the function. You then need to begin a new

match or present the matchmaker GUI. This function is

called when the user accepts a match invite from a friend.

•	 handleTurnEventForMatch: Your delegate receives

this message when the user has accepted a push

notification for an in-progress match. You need to end

whatever task you are performing and display the game

for the match that is passed in with this function.

•	 handleMatchEnded: When your delegate receives

this message, it should display the match’s results and

game-over views to the player and allow the player the

option of removing the match data from Game Center.

�Summary
In this chapter, we learned about the new turn-based gaming in Game

Center. We worked with our existing GameCenterManager class and wrote

an entirely new sample game to work with the turn-based technology. You

should now have a firm grasp on how to create a new turn-based game,

as well as retain and send turn data between peers. With the skills learned

in this chapter, you should now be able to easily get the networking

component of turn-based gaming up and running in a few hours.

In the next chapter, we will be looking at another exciting topic: voice

chat. Apple has gone through tremendous lengths to make voice-over IP easy

to use in iOS, Mac, and Apple TV apps, and we will explore how to quickly get

VOIP up and running in your Game Center– or GameKit–enabled apps.

Chapter 8 Turn-Based Gaming with Game Center

247© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_9

CHAPTER 9

Voice Chat
Voice chat, more than any other service provided as part of Game Center,

is a true testament to Apple engineering. Apple has turned one of the

most complicated features on other platforms into one of the easiest to

implement on iOS, Mac, and Apple TV devices. When working with Voice

over Internet Protocol (VOIP) on other platforms, it is often the most

complex and daunting task of an entire project. In this chapter, we will

explore how to add voice chat services to UFOs or any Apple platform app.

The shortness of this chapter is evidence of how much work Apple has

put into this technology to bring it within the grasp of even the greenest of

developers.

Note  In this chapter, we return to the UFOs project. We’re done with
tic-tac-toe.

�Voice Chat for Game Center
We begin by looking at voice chat for Game Center. Using a GKMatch

to create a voice chat session has many advantages, such as ease of use,

quickness to implement, and reduced required overhead compared to

using GameKit or having to implement your own system. A GKMatch voice

chat can have multiple channels, each with an associated list of recipients.

For example, you could have one channel for teammates in a first-person

https://doi.org/10.1007/978-1-4842-7756-0_9#DOI

248

shooter game and another channel for all players. This would allow you to

talk about tactics for winning the match without giving away information

to the other teams.

Note  Voice chat using a GKMatch is only available to participants
who are connected to the Internet via Wi-Fi; voice chat does not
support cellular networks.

�Creating an Audio Session
Before you can begin to work with voice chat, you first need to create a new

audio session. It is important to do this before you begin any chat services.

If you create the audio session after you create the chat session, you will

not be able to send or receive voice data. In the following example, we

create a new audio session that allows our app to play and record audio

and then set it to Active.

Tip  Your app might already use an audio session for playing sound
effects; if you have already created an audio session, you are not
required to make a new one. If you are reusing an existing audio session,
make sure that you set it to allow both play and record functionality.

var error: Error? = nil

let audioSession = AVAudioSession.sharedInstance()

do {

 try audioSession.setCategory(.playAndRecord)

} catch (let err){

 error = err

}

Chapter 9 Voice Chat

249

do {

 try audioSession.setActive(true)

} catch (let err) {

 error = err

}

if let error = error {

 �print("An error occurred while starting audio session:

\(error.localizedDescription)")

}

�Creating New Voice Channels
You can have as many voice chat channels as you want in your app,

and each peer can register to be part of as many channels as they want.

Channels are created and organized by a name string. This is how we will

determine what channels we want the user to join. When two or more peers

join a channel with the same name, they are connected to the same chat.

The code snippet that follows shows an example of how to create

three different channels. Take note that the channels are created with the

GKMatch object that is returned to us when we begin a new Game Center–

based networking game:

let allChannel = match.voiceChat(withName: "allPlayers")

let teamChannel = match.voiceChat(withName: "blueTeam")

let squadChannel = match.voiceChat(withName: "BlueTeamSquad2")

In this example, we have a channel for communicating with all players,

a channel for communicating with our entire team, and a third channel

that is used to talk with our squad. Just because channels have been created

doesn’t mean that they are automatically turned on. In the next section, we

will look at how to start and stop communication on a specific channel.

Chapter 9 Voice Chat

250

�Starting and Stopping Voice Chat
In the previous section, we created three new voice channels for use with

Game Center–type voice chat. When you want to transmit and receive

voice on those channels, you need to first tell the API that you want to

begin using that channel. After you are connected to a channel, you are

able to send and receive data from that channel. If you want to connect to

a channel and do not want to transmit any voice audio, see the following

section on muting the microphone.

To begin using a voice channel, you need to call the start method on

the GKVoiceChat object that was created in the previous section.

allChannel?.start()

teamChannel?.start()

When you want to leave a channel, you simply call the stop method.

This is a better approach than simply muting all participants in the

channel because the app will not be required to receive additional network

data. A stopped channel can be restarted at any time.

allChannel?.stop()

teamChannel?.stop()

Tip  It is highly recommended that you provide both visual and
audio indicators when you are transmitting voice data, such as a
red light and a click sound. This reduces the chance that a user will
accidentally transmit voice data when they don’t intend to. Always
remember that a user’s microphone and transmitted voice should be
treated as sensitive data. As of iOS 14, there is a small indicator light
in the notch area of the iPhone which indicates the microphone is
currently live.

Chapter 9 Voice Chat

251

�Chat Volume and Muting
The voice chat volume is set on a per-channel basis. Each channel has an

associated property that can be used to lower the overall volume of that

chat. You cannot raise the volume past what the user has selected as the

device’s current volume. To modify a channel’s volume, add the following

line of code:

allChannel?.volume = 0.5 //half of max volume

In addition, you can mute individual players in a channel by

referencing their GKPlayer. Players can be muted and unmuted using the

following two lines of code:

teamChannel?.setPlayer(player, muted: true)

teamChannel?.setPlayer(player, muted: false)

There might also be circumstances in which you do not want to

transmit the user’s voice at all times. By default, a user starts a chat in

the muted state. You will need to unmute a user before he can begin to

transmit voice data.

squadChannel?.isActive = true

Note  A user can only transmit voice on one channel at a time;
if you unmute a channel, the API will automatically mute all other
channels.

This is all that is required in order to completely enable voice chat

in your Game Center–based networking app. Everything else, including

sending and receiving the data, is handled for you by the APIs.

Chapter 9 Voice Chat

252

�Monitoring Player State
I mentioned earlier in this chapter that it is important to let the user know

that they are currently transmitting data. Letting the player see who is

speaking is also an important step. By monitoring player state changes, you

can determine which users are currently transmitting voice and highlight

them in a player list or perform some other kind of indication of which

player is speaking. The following block is easy to set up when you begin

your chat and saves you from performing polling or delegate callbacks:

guard let allChannel = allChannel else {

 return

}

allChannel.playerVoiceChatStateDidChangeHandler = { player,

state in

 switch state {

 case .connected:

 print("Channel", allChannel.name, "connected.")

 case .disconnected:

 print("Channel", allChannel.name, "disconnected.")

 case .speaking:

 showSpeakingPlayer(player)

 case .silent:

 stopShowingSpeakingPlayer(player)

 case .connecting:

 print("Channel", allChannel.name, "is connecting.")

 @unknown default:

 �print("Channel", allChannel.name, "received unknown

state", state, ".")

 }

}

Chapter 9 Voice Chat

253

Note  Player state updates are handled per channel. You will
need to configure one for each channel that you wish to watch for
changes on.

�Putting It Together
In this chapter, we modify our existing code base from Chapter 8.

Begin there by creating a new audio session for your voice chat service.

Add the following block of code to the UFOGameViewController.swift

viewDidLoad() method. In addition, you need to add the AVFoundation.

framework to your project. Modify the relevant section of the viewDidLoad

method to match the following:

if gameIsMultiplayer == false {

 for _ in 0..<5 {

 spawnCow()

 }

 updateCowPaths()

 } else {

 generateAndSendHostNumber()

 var error: Error? = nil

 let audioSession = AVAudioSession.sharedInstance()

 do {

 try audioSession.setCategory(.playAndRecord)

 } catch (let err){

 error = err

 }

Chapter 9 Voice Chat

254

 do {

 try audioSession.setActive(true)

 } catch (let err) {

 error = err

 }

 if let error = error {

 �print("An error occurred while starting audio

session: \(error.localizedDescription)")

 }

 setupVoiceChat()

 }

Caution  Make sure the device you are building against has both a
speaker and a microphone available for use.

You also need to add a new method called setupVoiceChat. This

method will handle the basic configuration.

func setupVoiceChat() {

 mainChannel = peerMatch?.voiceChat(withName: "main")

 mainChannel?.start()

 mainChannel?.volume = 1.0

 mainChannel?.isActive = false

}

Chapter 9 Voice Chat

255

�Hooking Up a User Interface
The last thing we need to do is hook up an action to turn our microphone

on and off. I have decided to go with a simple toggle button for UFOs,

but you may feel the need to implement a different approach. Add a new

button, as shown in Figure 9-1, and hook up the new action posted next.

@IBAction func startVoice(_ sender: Any) {

 micOn = !micOn

 if micOn {

 micButton.setTitle("Mic On", for: .normal)

 mainChannel?.isActive = true

Figure 9-1.  Adding a microphone button to our UFO game demo

Chapter 9 Voice Chat

256

 } else {

 micButton.setTitle("Mic Off", for: .normal)

 mainChannel?.isActive = false

 }

}

This method determines the current state of the microphone (on/off)

and toggles it to the new state. When that happens, we update the button

title and turn the microphone on or off for the type of network that we are

using.

These are all the required steps to add voice chat into our UFO

example project. If you run the game on two devices, you will be able to

communicate with voice back and forth.

�Summary
In this chapter, we learned how to incorporate a traditionally very complex

technology into our iOS app with very little work. We explored the

differences with using voice chat on both GameKit and Game Center, as

well as implemented examples of both systems into our UFO demo game.

You now have the skills required to add full-featured VOIP technology to

any iPhone or iPad app. If you have been following the book along from the

beginning, you now have all the skills needed to implement all aspects of

GameKit and Game Center into your apps.

In the next chapter, we will take a look at another important technology

when writing games or apps for iOS—StoreKit. Using StoreKit technology,

we will learn how to sell additional features and add-ons to your product.

Chapter 9 Voice Chat

257© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_10

CHAPTER 10

In-App Purchase
with StoreKit
Throughout this book, we have been working with both Game Center

and GameKit to add rich social networking into your iOS, Mac, and Apple

TV apps. However, there is another important feature quickly becoming

popular in modern software: in-app purchases. Allowing your users to

purchase upgrades or additional content for your app, from directly within

your app, opens up a potentially significant new revenue stream. Over

the past decade, a new business model has emerged called Freemium.

Freemium is a type of game or product that is offered to your users for free

but is monetized through selling add-ons.

We will be taking a look at We Rule by ngmoco:) as an example. The

game is initially offered for free for both iPhone and iPad players. Each

user is in control of a virtual kingdom, in which they are responsible for

constructing buildings and growing crops. The user generates “mojo” over

time and can use that in-app currency to create new structures and farms.

However, some users want to construct faster than is normally allowed

due the restrictive nature of mojo, which slowly accumulates. These

power-users can visit the in-app store to purchase more mojo in bulk. It

offers a number of purchases ranging from very affordable to shockingly

expensive. It is important to cater to both types of users when working with

sellable add-ons. Some of your users will be interested in spending one

https://doi.org/10.1007/978-1-4842-7756-0_10#DOI

258

or two dollars occasionally, while some will be power-users who want to

spend one hundred dollars, or more, at a time.

Freemium has become such a strong business model that ngmoco:)

has stopped working on games that do not fit into the Freemium model,

going so far as to even cancel Rolando 3 in mid-development because it

couldn’t be adapted to the model. The model appears to be paying off well

for ngmoco:). As shown in Figure 10-1, the current highest selling item in

the We Rule store is a $9.99 item. This one in-app purchase is retailing for

more than most stand-alone iOS games, and the reason it was able to get

that customer is that it hooked them with a free game first.

Not all games or apps supported by in-app purchase need to be free.

You can easily add additional features or unlocks in a paid game, such as

the Mighty Eagle in Angry Birds. In-app purchase is also not only just for

games. Almost any software can benefit from it, whether you are unlocking

pro-level features or charging users a subscription for push notification

support. As we dive into this chapter, we will explore how to add a full-

featured in-app store to your iOS, Mac, and Apple TV software.

Figure 10-1.  Current listing of the best-selling in-app purchases for
We Rule by ngmoco:)

Chapter 10 In-App Purchase with StoreKit

259

�Setting Up Your App in App Store Connect
As with Game Center, we need to begin working with in-app purchases in

App Store Connect:

	 1.	 Log in to App Store Connect (https://

appstoreconnect.apple.com/login), as discussed

in Chapter 2. You will need an existing project to

work on. If you don’t have a project created in App

Store Connect yet, go ahead and create one.

	 2.	 Select the project you want to add in-app purchase

support to. Then, click the button called Manage

under In-App Purchases section.

Important  You have 90 days from creating an app to upload
a binary for review. Make sure to save the in-app purchase
configuration until you are within 90 days of finishing your project.

	 3.	 Selecting the Manage button will bring you to a

screen for setting up a new product, as shown in

Figure 10-2. Once there, click the plus (+) button.

Chapter 10 In-App Purchase with StoreKit

https://appstoreconnect.apple.com/login
https://appstoreconnect.apple.com/login

260

There are several types of in-app purchase products that you can

configure. They are detailed here for your convenience:

•	 Consumable: A consumable in-app purchase must

be purchased every time the user downloads it. These

include in-game currency, as we saw in the We Rule

example in the previous section. Figure 10-3 shows the

consumable purchase setup screen.

Figure 10-2.  Setting up your first in-app purchase in App Store
Connect

Chapter 10 In-App Purchase with StoreKit

261

•	 Non-Consumables: A non-consumable purchase

needs to be purchased only once by each user and

is often used for unlockable features. Examples of

non-consumable purchases include additional levels,

reusable power-ups, or additional content.

•	 Auto-Renewable Subscriptions: An auto-renewable

subscription allows the user to purchase in-app content

for a set duration of time. At the end of that time frame,

the subscription will automatically renew and charge

the customer unless they opt out. Magazines and

newspapers follow this model, delivering a new issue

every week or month until the user opts out. Figure 10-4

shows the auto-renewable purchase setup screen.

Figure 10-3.  Setup screen for both consumable and non-consumable
purchases in App Store Connect

Chapter 10 In-App Purchase with StoreKit

262

•	 Non-Renewing Subscriptions: For the most part,

renewable subscriptions have done away the need for

this model. A non-renewing subscription functions the

same as an auto-renewable subscription, except that a

user is required to renew it every time it is set to expire.

Note  Auto-renewable subscriptions will be sent to all devices
associated with the user’s Apple ID.

We will begin by adding a non-consumable purchase. We will be using

this item in our sample UFO game.

The first item we want to add is a paid upgrade to your current ship;

name the item com.dragonforged.ufo.newShip1. I used the same title for

both the product ID and the reference name. The reference name is for

reference only when searching in App Store Connect, whereas the product

ID is what will be used in your code base to identify this item.

Figure 10-4.  Setup screen for auto-renewable purchases in App Store
Connect

Chapter 10 In-App Purchase with StoreKit

263

After you have created a new item, you need to add at least one

localized description and title, as shown in Figure 10-5. The last thing that

you need to do is select a pricing tier for this item. You might have also

noticed that there is a section for uploading a screenshot; we discuss this

in the later section “Submitting a Purchase GUI Screenshot.”

Adding a consumable product follows the same procedure as adding

a non-consumable product. If you want to add a subscription-based

product, there are a few new fields that you need to be aware of, as shown

in Figure 10-6. When configuring a subscription, you need to define a

duration. iTunes Connect allows you to set any of the following: one week,

one month, two months, three months, six months, or one year. You also

have the ability to offer a free subscription if the user agrees to a marketing

campaign, such as providing you with their e-mail address.

Figure 10-5.  Adding a localized description to a product in App Store
Connect

Chapter 10 In-App Purchase with StoreKit

264

You should now have at least one product configured for in-app

purchase. Your screen in App Store Connect should look similar to the one

shown in Figure 10-7. This concludes the initial configuration that we need

to do in App Store Connect to get in-app purchases working. In the next

section, we begin to work with the code required to complete a purchase

on a device.

Note  Don’t worry about the “Missing Metadata” error yet; this
will be handled later in the process. You will still be able to test your
purchases while waiting to upload a screenshot.

Figure 10-6.  Configuring subscription duration in iTunes Connect

Figure 10-7.  Products set up and ready for use in our app

Chapter 10 In-App Purchase with StoreKit

265

�Adding Products to Your App
Unlike with Game Center, Apple does not offer a predesigned GUI for in-

app purchases. You, as the developer, are required to design a storefront

for your user. In this section, we learn how to get products that you add in

iTunes Connect to show up for sale in your app.

Note  It can take several hours for new purchases and changes to
be reflected. If you double-check everything and are still not seeing
products, wait a few hours and try again.

�App IDs and In-App Purchase
When working with in-app purchases, Apple requires that your App ID

does not include a wild card, such as 76P4G6KX56.*. You are required to

have a unique App ID, such as 76P4G6KX56.com.dragonforged.ufo. If you

do not have a unique App ID, you need to create one. Use the following

steps to create a new unique App ID:

	 1.	 Navigate to https://appstoreconnect.apple.com/

in your web browser, and select your app from the list.

	 2.	 Select App Information from the column on the left.

	 3.	 Fill in the required information about your app.

	 4.	 Click Submit.

	 5.	 Click Configure next to the listing, and make sure

In-App Purchase is turned on (it should be on by

default).

Chapter 10 In-App Purchase with StoreKit

http://76p4g6kx56.com
https://appstoreconnect.apple.com/

266

�Setting Up
We begin by requesting a list of products from our app. First, add the

StoreKit framework to your project. We will be modifying our existing

UFO project from the previous chapter; you can follow along in your own

project if that is more convenient.

Important  In-App Purchase does not work on the simulator; all
testing needs to be done on a device.

Create a new class called UFOStoreViewController. We will use this

class to display a store to the user. Set up the source code file to match the

following:

import UIKit

import StoreKit

class UFOStoreViewController: UIViewController {

 var productsRequest: SKProductsRequest?

 @IBOutlet var storeTable: UITableView!

}

extension UFOStoreViewController: SKProductsRequestDelegate {

}

As you can see, we imported the StoreKit header. Set up the

SKProductsRequestDelegate, and create a new object to hold on to the

product request. We need to create a way for the user to access the store, so

go ahead and add a button to the main screen and relevant code to present

the new view controller.

Chapter 10 In-App Purchase with StoreKit

267

�Retrieving the Product List
Modify the viewDidLoad function of our new store view controller to begin

a new store request using the product identifiers that we set up in App

Store Connect. You might need to modify your product identifiers to match

the ones that you set up in the previous section.

override func viewDidLoad() {

 super.viewDidLoad()

 let productIdentifiers: Set<String> = [

 "com.dragonforged.ufo.newShip1",

 "com.dragonforged.ufo.subscription",

 "com.dragonforged.ufo.newShip2"

]

 �let productsRequest = SKProductsRequest(productIdentifiers:

productIdentifiers)

 productsRequest.delegate = self

 productsRequest.start()

 self.productsRequest = productsRequest

}

The product request is released in the delegate callback, shown next.

Right now, this method just prints your product information to the console

and logs any invalid products.

func productsRequest(_ request: SKProductsRequest, didReceive

response: SKProductsResponse) {

 for product in response.products {

 print("Product title:", product.localizedTitle)

 �print("Product description:", product.

localizedDescription)

Chapter 10 In-App Purchase with StoreKit

268

 print("Product price:", product.price)

 print("Product id:", product.productIdentifier)

 print("\n\n")

 }

 for invalidProduct in response.invalidProductIdentifiers {

 print("Invalid product identifier: \(invalidProduct)")

 }

 productsRequest = nil

}

Note  Although you can retrieve a list of invalid product identifiers
using the code in this section, there are no associated errors to
determine why a product is being flagged as invalid. Under most
occurrences, the product ID is mistyped, or not enough time has
passed for the product to be distributed to the servers.

If you were to run the game now and navigate to the store, you should

get output similar to the following:

Product title: Ship+

Product description: �Paint your ship and show off to your

friends

Product price: 8.99

Product id: com.dragonforged.ufo.newShip1

Product title: Subscription

Product description: A subscription service

Product price: 1.99

Product id: com.dragonforged.ufo.subscription

Chapter 10 In-App Purchase with StoreKit

269

Note  It can take several seconds to get a response from the
product request. Best practices dictate that you should present your
user with some sort of loading indicator.

These are all the steps required to retrieve your products from Apple’s

servers. In the next section, we present this data to the user using a

standard table view.

�Presenting Your Products to the User
We begin by adding a table view to our store view controller. Don’t forget

to hook up the data source and delegates, as required. We also add a

new property to our class to hold on to the products. Create a new array

property named productArray.

var productArray: [SKProduct]?

Set the product results to it and reload the table in the productsRequest

method.

productArray = response.products

storeTable.reloadData()

Add the two required table view delegate and data source functions to

your class, as shown in the following code snippets:

extension UFOStoreViewController: UITableViewDataSource {

 static var currencyFormatter: NumberFormatter = {

 let currencyFormatter = NumberFormatter()

 currencyFormatter.numberStyle = .currency

 return currencyFormatter

 }()

Chapter 10 In-App Purchase with StoreKit

270

 �func tableView(_ tableView: UITableView,

numberOfRowsInSection section: Int) -> Int {

 return productArray?.count ?? 0

 }

 �func tableView(_ tableView: UITableView, cellForRowAt

indexPath: IndexPath) -> UITableViewCell {

 var cell: UITableViewCell

 �if let dequeuedCell = tableView.dequeueReusableCell(

withIdentifier: "Cell") {

 cell = dequeuedCell

 } else {

 �let subtitleCell = UITableViewCell(style:

.subtitle, reuseIdentifier: "Cell")

 subtitleCell.selectionStyle = .none

 cell = subtitleCell

 }

 let cellText: String

 let cellDetailText: String

 if let product = productArray?[indexPath.row] {

 Self.currencyFormatter.locale = product.priceLocale

 �let priceText = Self.currencyFormatter.string(from:

product.price)

 �let titleComponents = [product.localizedTitle,

priceText]

 �cellText = titleComponents.compactMap{ $0

}.joined(separator: " - ")

 cellDetailText = product.localizedDescription

 } else {

Chapter 10 In-App Purchase with StoreKit

271

 cellText = "Unknown Product"

 cellDetailText = ""

 }

 cell.textLabel?.text = cellText

 cell.detailTextLabel?.text = cellDetailText

 return cell

 }

}

The var at the top configures the currency formatter that will be used

by cells to format product prices. The first function simply returns the

number of products that we retrieved from Apple’s servers for the number

of rows in the table. When we display them as a cell, we use the built-in

.subtitle style. We set the main label to the product title and price

and use the detail label to display the description. All that is left is to add

a reload table method to the end of the productsRequest method. Upon

running the game again, you should have a table view that correctly list the

two in app purchases that were previously set up in App Store Connect.

Note  Although the API returns a localized title and description, it
doesn’t localize the price. You need to take this extra step yourself in
international apps.

�Purchasing a Product
In the previous section, we learned how to add products to your app.

Without the ability to purchase these products, our implementation is only

partially complete. In this section, we look at how to handle purchasing

products directly through your app.

Chapter 10 In-App Purchase with StoreKit

272

�Purchasing Code
The first thing that we need to do is make our store’s view controller class

conform to the SKPaymentTransactionObserver protocol. After that is

done, we modify our existing viewDidLoad method. We add ourselves as

a new transaction observer. Additionally, we perform a test to make sure

that we can make payments on this device and, if not, display a UIAlert to

inform the user.

override func viewDidLoad() {

 super.viewDidLoad()

 SKPaymentQueue.default().add(self)

 guard SKPaymentQueue.canMakePayments() else {

 �let alert = UIAlertController.init(title: "", message:

"Unable to make purchases with this device.",

preferredStyle: .alert)

 self.present(alert, animated: true, completion: nil)

 return

 }

 let productIdentifiers: Set<String> = [

 "com.dragonforged.ufo.newShip1",

 "com.dragonforged.ufo.subscription",

 "com.dragonforged.ufo.newShip2"

]

 �let productsRequest = SKProductsRequest(productIdentifiers:

productIdentifiers)

 productsRequest.delegate = self

 productsRequest.start()

 self.productsRequest = productsRequest

}

Chapter 10 In-App Purchase with StoreKit

273

Next, we need to add a didSelectRowAtIndexPath function to register

selection events in our table view.

extension UFOStoreViewController: UITableViewDelegate {

 �func tableView(_ tableView: UITableView, didSelectRowAt

indexPath: IndexPath) {

 guard let product = productArray?[indexPath.row] else {

 return

 }

 let payment = SKPayment(product: product)

 SKPaymentQueue.default().add(payment)

 }

}

If you were to run the app now and select a table row, you would get a

confirmation alert. However, we have not yet written any code to process

this transaction, nor have you set up a test user, so this is as far as you can

currently get.

�Purchasing Multiple Items
Apple has made it easy to allow your users to purchase multiple items at

a time. The following code snippet can be used to bulk purchase multiple

quantities of an item at one time, such as a user purchasing five packs of

100 gold.

if let product = productArray?.first(where: {

$0.productIdentifier == "com.dragonforged.rpg.100gold" }) {

 let payment = SKMutablePayment(product: product)

 payment.quantity = 5

 SKPaymentQueue.default().add(payment)

}

Chapter 10 In-App Purchase with StoreKit

274

�Processing a Transaction
After your user has requested a purchase, there are several steps that

you need to take in order to ensure that their purchase is completed

successfully. First, we implement the required method from the

SKPaymentTransactionObserver. As you can see in the following code

example, we test the current transaction state and then call some new

functions, depending on whether the transaction succeeded, failed, or

restored:

extension UFOStoreViewController: SKPaymentTransactionObserver {

 �func paymentQueue(_ queue: SKPaymentQueue,

updatedTransactions transactions: [SKPaymentTransaction]) {

 for transaction in transactions {

 switch transaction.transactionState {

 case .purchasing:

 print("Purchasing:", transaction)

 case .purchased:

 transactionDidComplete(transaction)

 case .failed:

 transactionDidFail(transaction)

 case .restored:

 transactionDidRestore(transaction)

 case .deferred:

 print("Deferred:", transaction)

 @unknown default:

 print("Unhandled case:", transaction)

 }

 }

 }

}

Chapter 10 In-App Purchase with StoreKit

275

We need to implement some convenience functions to help streamline

the process. If a transaction completed successfully or is restored, we

need to record the transaction event, unlock the content that the user

purchased, and perform some cleanup. If the transaction failed or was

cancelled, we just need to perform the cleanup and probably notify the

user that something went wrong.

func transactionDidComplete(_ transaction:

SKPaymentTransaction) {

 unlockContent(transaction.payment.productIdentifier)

 finish(transaction, withSuccess: true)

}

func transactionDidRestore(_ transaction: SKPaymentTransaction) {

 �unlockContent(transaction.original?.payment.

productIdentifier)

 finish(transaction, withSuccess: true)

}

func transactionDidFail(_ transaction: SKPaymentTransaction) {

 �if let error = transaction.error as? SKError, error.code ==

SKError.Code.paymentCancelled {

 SKPaymentQueue.default().finishTransaction(transaction)

 } else {

 finish(transaction, withSuccess: false)

 }

}

Next, we take a look at the unlockContent function. This is where

things could differ in your actual app. In this example, we set a flag in the

NSUserDefaults that we can check against to see whether the user has

purchased a feature. Depending on how your app is structured, you might

want to take a different approach, but no matter what approach you take,

remember that you need to preserve the unlocked content through app

Chapter 10 In-App Purchase with StoreKit

276

restarts. See the section “Tying Everything Together in UFOs” for a sample

on how to implement this approach.

func unlockContent(_ productId: String?) {

 switch productId {

 case "com.dragonforged.ufo.newShip1":

 �UserDefaults.standard.set(true, forKey:

"shipPlusAvailable")

 case "com.dragonforged.ufo.subscription":

 �UserDefaults.standard.set(true, forKey:

"subscriptionAvailable")

 case .some(let unknown):

 print("Unrecognized productId:", unknown)

 case .none:

 break

 }

}

The last step that we take for both successful and unsuccessful purchases

is to perform a bit of cleanup on our transaction. The most important step

in the following method is to call the finishTransaction method. We also log

the results of the transaction for debugging purposes. Until you have called

finishTransaction, the transaction remains open and in the system.

func finish(_ transaction: SKPaymentTransaction, withSuccess

success: Bool) {

 SKPaymentQueue.default().finishTransaction(transaction)

 if success {

 print("Transaction was successful:", transaction)

 } else {

 print("Transaction was unsuccessful:", transaction)

 }

}

Chapter 10 In-App Purchase with StoreKit

277

�Restoring Previously Completed Transactions
Often, your users will need to restore purchases that they have previously

made. This could happen if they have reinstalled your app or have begun

using it on a different device. It is important to always add a path for your

user to download all of their content and unlock any purchases that they

have previously made. Luckily, Apple has planned ahead for this scenario

and has provided a simple method for restoring the user’s purchases.

SKPaymentQueue.default().restoreCompletedTransactions()

This will repurchase all of your content as if the user had selected it

from your store. You will receive appropriate callbacks to the paymentQ

ueue(_:updatedTransactions:) method and can use your existing code to

unlock content.

�Test Accounts and Testing Purchases
If you were to try and purchase one of your items in the sandbox now, you

would receive an account error. You need to first create a new test account

in order to be able to test purchases without being charged for them.

To set up a new test user, you need to log in to App Store Connect

(http://appstoreconnect.apple.com). Select the Manage User section

from the main screen of App Store Connect; from here, select the option

for a new Test User.

Test users do not need to use a real e-mail address, and you will want

to select something quick to type and easy to remember, such as abc@def.

com. Although you do need to enter a date of birth and other identifying

information, there is no reason you cannot fabricate this data. Make sure

to select the App Store as the one to test your localization against. You can

make a new account for each region that you will test with.

Chapter 10 In-App Purchase with StoreKit

http://appstoreconnect.apple.com
abc@def.com
abc@def.com

278

�Signing In with a Test Account
You cannot simply sign in with your test account in the Settings App.

Doing so would result in you being forced to agree to the standard user

agreement and being prompted to enter a credit card number. In order

to resolve this issue, you need to use the Settings App to log out of your

existing App Store account. After you are logged out of an account, you will

be prompted to log in or create a new account during a purchase attempt.

This is where you will enter your test account credentials.

Note  If you are testing on your primary device, don’t forget to
revisit the Settings App to log out of your test account before making
real purchases or downloading updates.

�Submitting a Purchase GUI Screenshot
We talked briefly about this step in the earlier sections of this chapter.

Apple requires that you submit a screenshot of your in-app purchase

before it will clear it for sale. There is some confusion about what Apple is

specifically looking for in this screenshot. Apple is looking, in the simplest

terms, for a screen capture proving that your in-app purchase is working

as intended. For unlockable content, this would be a screenshot of the

item being used, such as the user playing a purchased level or using a

purchased item. However, sometimes your product might not be visible

while being used. In cases such as these, Apple has accepted a screenshot

of the store showing that the item has been purchased.

Chapter 10 In-App Purchase with StoreKit

279

Note  You will not be required to submit a screenshot until you have
finished writing and debugging your app and are ready to submit it
for review.

�Developer Approval
The last step that you need to take before your in-app purchase is ready

to go is developer approval. Return to App Store Connect in your web

browser, and navigate to the Manage In-App Purchase section of your app

review page. There will be a new green button in the upper right-hand

corner of the screen.

You will be prompted on how to submit your product. The following

two options are available:

•	 Submit with Binary: This option will turn on in-app

purchase with your next binary upload.

•	 Submit Now: This will allow you to submit a new

product to an existing app.

�Tying Everything Together in UFOs
Depending on the complexity of your in-app purchase, it could be very

easy or very difficult to integrate it into your code. In UFOs, we have a very

simple product, in which paying a one-time fee unlocks a different colored

ship. When the user purchases the product, we store a key in our user

defaults to reflect that. To unlock this purchase in code, we simply check

for that key and then perform the required steps. To do this, we need to

add some new art assets to the project. These have already been included

in the Chapter 10 sample code (available at the Apress website).

Chapter 10 In-App Purchase with StoreKit

280

After this is done, we need to modify our viewDidLoad function to

change the ship’s image. The following code snippet shows those changes:

override func viewDidLoad() {

 �purchasedUpgrade = UserDefaults.standard.bool(forKey:

"shipPlusAvailable")

 let playerFrame = CGRect(x: 100, y: 70, width: 80, height: 34)

 myPlayerImageView = UIImageView(frame: playerFrame)

 myPlayerImageView?.animationDuration = 0.75

 myPlayerImageView?.animationRepeatCount = 99999

 var imageArray: [UIImage]

 if purchasedUpgrade {

 �imageArray = [UIImage(named: "Ship1.png"),

UIImage(named: "Ship2.png")].compactMap { $0 }

 } else {

 �imageArray = [UIImage(named: "Saucer1.png"),

UIImage(named: "Saucer2.png")].compactMap { $0 }

 }

 myPlayerImageView?.animationImages = imageArray

 myPlayerImageView?.startAnimating()

 if let myPlayerImageView = myPlayerImageView {

 view.addSubview(myPlayerImageView)

 }

}

�Summary
In this chapter, we covered StoreKit and in-app purchases. By leveraging

StoreKit, you gain a number of ways to monetize your app, from

expandable content to special upgrades for your users.

Chapter 10 In-App Purchase with StoreKit

281

You should now feel confident adding a variety of products to your

own in-app store. Although StoreKit isn’t directly a part of Game Center or

GameKit, you will undoubtedly find an in-app store an invaluable addition

to your iOS, Mac, or Apple TV software.

We spent some time talking about ngmoco:) and its experiments and

successes with the Freemium model. You should now feel confident with

App Store Connect and all the actions that are required to fully set up an

in-app purchase product, as well as the required code to get that purchase

to display.

We looked at how to handle failures with purchasing and also the

path of a success. We also explored some of the advanced topics, such as

multiple purchases at once. Lastly, we saw how we integrated the entire

experience into our UFOs demo app.

Chapter 10 In-App Purchase with StoreKit

283© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0_11

CHAPTER 11

Game Controllers
To say the least, Apple has had a long and complicated history with gaming

on its platforms. When the iPhone first began to gain traction and the

world was handed the first native SDK, gaming was clearly not a priority.

Since that time and demonstrated by the technologies this very book is

written about, Apple has come a long way. iOS Game Controllers were

first announced at WWDC 2013 as part of iOS 7. Focusing on the screen

while not being able to feel where gaming controls were proved difficult.

Beginning with iOS 15, Apple would introduce new SDKs to handle on-

screen Game Controllers.

�Types of Physical Game Controllers
There are two general types of Physical Game Controllers, micro and

extended. These may also be made available in wired (dock connector)

or wireless (Bluetooth) models. Regardless of other physical and layout

differences, all controllers will conform to the same types of input. It is

important to note that extended controllers have more input controls than

the standard controllers.

Micro controllers feature a directional D-pad, two primary buttons

(A, X), and a menu button. Extended controllers feature a directional

D-pad, four primary buttons (A, B, X, Y), three additional buttons (Menu,

Options, Home), two sets of shoulder buttons, and two directional

https://doi.org/10.1007/978-1-4842-7756-0_11#DOI

284

thumb sticks. Wireless controllers also feature a player indicator LED,

which has four positions. Beginning with iOS 15, software controller

functionality has been added to the platform, which is addressed later in

this chapter.

Note  While a Game Controller can add a lot of functionality to your
iOS, Mac, or Apple TV game, it is important to remember that they
must be optional. In addition to any Game Controller support, the
game must also contain all the required functionality through the
touch screen, standard controls, or accelerometer where applicable.

When Game Controllers were first announced, very few companies

were manufacturing them. By the time iOS 15 was being released, there

were dozens of available options on the market from big names like

Logitech and Razer to smaller companies and startups. Game Controllers

with Apple compatibility now come in all shapes, sizes, and styles.

�Connecting to Game Controllers
When a non-wireless controller (dock connector) is connected to a device,

it is automatically detected. However, to detect a wireless controller,

the app must specifically begin looking for one. The sample app adds a

new button in the upper left-hand corner of the menu screen to toggle

searching for a wireless controller.

A new IBAction is created for the “Find Wireless Controller”

button. When the user first taps the button, the function

startWirelessControllerDiscovery is invoked. The second toggle will end

the search process with the class method stopWirelessControllerDiscovery.

Chapter 11 Game Controllers

285

@IBAction func findWirelessController() {

 findingWirelessController.toggle()

 if findingWirelessController {

 GCController.startWirelessControllerDiscovery {

 print("Wireless controller searching has finished")

 }

 } else {

 GCController.stopWirelessControllerDiscovery()

 print("Wireless controller stopped by user")

 }

}

When a new controller is detected, whether it is wireless or physically

connected, a notification is fired, GCControllerDidConnectNotification.

This notification and the partner notification for a Game Controller

being disconnected should be registered at the first chance possible.

In the sample project, this is done in the viewDidLoad: method of the

UFOViewController class.

NotificationCenter.default.addObserver(self, selector:

#selector(setupControllers), name: Notification.Name.

GCControllerDidConnect , object: nil)

NotificationCenter.default.addObserver(self, selector:

#selector(setupControllers), name: Notification.Name.

GCControllerDidDisconnect , object: nil)

Note  When a controller is disconnected, it is recommended that the
game automatically pause to allow the player to either correct the
issue with the controller or return to touch-based gameplay. Do not
forget to test disconnecting controllers during gameplay as part of the
quality assurance process.

Chapter 11 Game Controllers

286

Upon receiving either of these notifications, a new function will be

called setup Controllers:; this method allows the app to keep track of

which controllers, as there may be more than one, are connected at any

given time. The Game Controllers are available via the controllers function

on the GCController object; this function will return an array of all the

connected controllers. The value of the controller array is also saved to an

array property for later use in the sample app.

@objc func setupControllers(_ notification: Notification) {

 gameControllerArray = GCController.controllers()

 if gameControllerArray.isEmpty {

 print("No game controllers found")

 } else {

 �print("Game Controllers Found", gameControllerArray.

count)

 }

}

Note  It is possible for the controllers to be detected before the
notification is set up; it is therefore important to check the contents
of the controller array when the notification is added to determine if
there are any currently connected controllers.

�Reading Data Through Polling
Once a controller has been connected to a device, the input from that

controller needs to be read. In the sample app, UFOs, accelerometer

data is read every 0.05 seconds. Since not all users will have access to

Game Controllers, this behavior will still be needed even after adding

Game Controller support. This makes the accelerometer polling method

Chapter 11 Game Controllers

287

ideal for reading data from the Game Controller. Modify the existing

motionOccurred: function in UFOs to add Game Controller functionality.

First, the game must determine if the player is using a Game

Controller; this is done through determining if the device is currently

connected to any Game Controllers; in real-world applications, you may

want to provide the user with an option. In the event that one or more

Game Controllers are connected, the last one in the array is used. In

your own apps, it may also be beneficial to allow the user to select which

controller they intend to use. A new controller object is created, and the

last controller in the array is stored into it.

The UFOs game has two primary functions: the first begins the tractor

beam action, and the second moves the ship from location to location on

the screen. For the purposes of the demo, the Y button on the controller

will be used to engage the tractor beam. Since the tractor beam remains on

as long as the button is continually pressed, a bool is created to keep track

of when the button is currently pressed/depressed.

The action from the button is simply passed to the touchesBegan

function, which is the same function that controlled the tractor beam

when handling touch events. The benefit to this type of approach is that

the touch events will still work even with a controller connected. Since

both standard and extended Game Controllers have a Y button, there is no

specific code required to handle the different controllers.

When using a standard controller, the D-pad will be used for

movement. However, the thumb directional pads on the extended Game

Controller make for a better experience when controlling the ship so

the app will use those when available. This is done through the property

extendedGamePad; if this value is non-nil, then an extended controller is

currently connected.

Like the A, B, X, and Y buttons, the D-pad values can be accessed

via a property on the GCController object. However, the D-pad returns a

float value of 0.0 to 1.0 for X and Y axes. This value can be used in place

of the accelerometer value used when a Game Controller is not hooked

Chapter 11 Game Controllers

288

up. Hooking up the values for the thumb stick for the extended Game

Controller are nearly identical but are stored under the extendedGamepad

instead of the root gamepad property.

func motionOccurred(_ accelerometerData: CMAccelerometerData) {

 �if let controller = /*parentViewController.*/

gameControllerArray.last {

 //Testing for button press

 �let pressed = controller.microGamepad?.buttonX.

isPressed

 if pressed == true && gameControllerXHit == false {

 gameControllerXHit = true

 xButtonAction()

 �} else if pressed == false && gameControllerXHit ==

true {

 gameControllerXHit = false

 xButtonAction()

 }

 if let extendedGamepad = controller.extendedGamepad {

 �accel[0] = extendedGamepad.leftThumbstick.xAxis.

value * accelerometerDamp + accel[0] * (1.0 -

accelerometerDamp)

 �accel[1] = extendedGamepad.leftThumbstick.yAxis.

value * accelerometerDamp + accel[1] * (1.0 -

accelerometerDamp)

 } else if let microGamePad = controller.microGamepad {

 �accel[0] = microGamePad.leftThumbstick.xAxis.

value * accelerometerDamp + accel[0] * (1.0 -

accelerometerDamp)

Chapter 11 Game Controllers

289

 �accel[1] = microGamePad.leftThumbstick.yAxis.

value * accelerometerDamp + accel[1] * (1.0 -

accelerometerDamp)

 }

 } else {

 �accel[0] = accelerometerData.acceleration.x

* accelerometerDamp + accel[0] * (1.0 -

accelerometerDamp)

 �accel[1] = accelerometerData.acceleration.y

* accelerometerDamp + accel[1] * (1.0 -

accelerometerDamp)

 �accel[2] = accelerometerData.acceleration.z

* accelerometerDamp + accel[2] * (1.0 -

accelerometerDamp)

 }

}

Note  The 0.0 value is determined when the D-pad or thumb sticks
are at rest; previous to the Game Controller framework, developers
found it necessary to design a “dead zone” around the at rest
positions; with the Game Controllers, this is no longer necessary, and
any value above 0.0 should be considered intended movement.

�Data Callbacks
There are many circumstances where it doesn’t make sense to poll for

Game Controller input each time the game loop cycles. Luckily Apple has

provided functionality for callbacks that can be set upon a value change

on any physical button on a Game Controller. In the following snippet,

Chapter 11 Game Controllers

290

a handler is set for the right shoulder button. When the button value is

changed, this function will call the rightShoulderButtonAction:

controller.extendedGamepad?.rightShoulder.valueChangedHandler =

{ [weak self] button, value, pressed in

 if pressed {

 self?.rightShoulderButtonAction()

 }

}

In addition to setting up a callback per action, the callback can be

shared across multiple buttons at once. This can be accomplished by

creating a new block and setting it up as seen in the following code

snippet. This will cause any action on the A, B, X, and Y buttons to result in

the log statement being printed:

let buttonHandler: GCControllerButtonValueChangedHandler = {

button, value, pressed in

 �print("Handle action for \(button) pressed: \(pressed),

with value: \(value)")

}

controller.extendedGamepad?.buttonA.pressedChangedHandler =

buttonHandler

controller.extendedGamepad?.buttonB.pressedChangedHandler =

buttonHandler

controller.extendedGamepad?.buttonX.pressedChangedHandler =

buttonHandler

controller.extendedGamepad?.buttonY.pressedChangedHandler =

buttonHandler

Chapter 11 Game Controllers

291

It is also possible to set up data callbacks for dealing with changing axis

values with the D-pad or thumb sticks. This can be accomplished with the

following code snippet:

controller.extendedGamepad?.rightThumbstick.valueChangedHandler

= { stick, xValue, yValue in

 �print("Right Thumb Stick value did change: \(xValue),

\(yValue)")

}

�Pausing
If your game supports Game Controllers, it must also support the pause

button that is found on all Game Controllers. Even if your game did

not previously support pause, it becomes a requirement of having a

Game Controller connected. Working with the pause button on a Game

Controller is very simple and only requires a couple of extra lines of code.

controller.extendedGamepad?.buttonMenu.pressedChangedHandler =

{ [weak self] button, value, pressed in

 self?.togglePauseState()

}

�Player Indicator Lights
Wireless Game Controllers also feature player indicator lights, as the

Game Controller framework supports multiple controllers behind hooked

up to a single device. Your game can support multiplayer functionality

using a single device through additional wireless controllers. Each

wireless controller will feature four LED lights which will indicate the

player number. These lights are also used to let the user know they have

successfully connected a wireless controller, even in single player mode.

Chapter 11 Game Controllers

292

To illuminate the first light of the wireless controller, letting the player

know they are successfully connected, the following code can be used:

if controller.playerIndex == .indexUnset {

 controller.playerIndex = .index1

}

The playerIndex property can also be used to illuminate other player

index values, from 0 to 3. Only one player indicator light can be toggled on

at a time per controller.

�Snapshotting
It may become necessary to create a snapshot of the controller input state.

This can be useful not only for debugging but also for creating playback

profiles or sending the controller data over a network. Snapshots are stored

through an NSData representation.

let snapshot = controller.capture()

You can check if a controller is a snapshot using the isSnapshot

property, seen in the following brief code snippet:

snapshot.isSnapshot // returns true

�Virtual Controllers
Virtual controllers were introduced to the iOS platform as part of the iOS

15 updates. Virtual Controllers provide functionality and standardization

of on-screen touch controllers. While virtual controllers are not new

technology, prior to the release of iOS 15, users were responsible for rolling

their own solution or deploying a third-party solution.

Chapter 11 Game Controllers

293

In order to display a new virtual controller, a new instance of

GCVirtualController needs to be created.

let configuration = GCVirtualController.Configuration()

configuration.elements = [GCInputDirectionPad, GCInputButtonA,

GCInputButtonB]

let virtual = GCVirtualController(configuration: configuration)

Once created, it is possible to customize the image shown on a button.

let customButtonPath1 = UIBezierPath(rect: .zero)

virtual.updateConfiguration(forElement: GCInputButtonA) {

configuration in

 configuration.path = customButtonPath1

 return configuration

}

Figure 11-1.  From the WWDC announcement of virtual controllers

Chapter 11 Game Controllers

294

There may be instances where it makes sense to hide the controller

button temporarily, such as when accessing a menu or while paused.

This can be done with a quick call to the isHidden property as seen in the

following snippet:

virtual.updateConfiguration(forElement: GCInputButtonB) {

configuration in

 configuration.isHidden = true

 return configuration

}

In order to connect the controller and display it on screen, a simple call

to connect on the controller is performed. Once it is connected, the new

handlers for the input need to be set up.

virtual.connect { error in

 �guard let extendedGamepad = virtual.controller?.

extendedGamepad else {

 return

 }

 �extendedGamepad.dpad.valueChangedHandler = { dpad, xValue,

yValue in

 print("DPad value did change: \(xValue), \(yValue)")

 }

 �extendedGamepad.buttonA.pressedChangedHandler =

buttonHandler

 �extendedGamepad.buttonA.pressedChangedHandler =

buttonHandler

}

When it is time to disconnect the controller, the virtual controller

object accepts a call of disconnect.

virtual.disconnect()

Chapter 11 Game Controllers

295

These are all the steps required to create, display, interact with, and

clean up a virtual controller. Apple has once again gone to great lengths

to make implementing and working with this technology as easy and

straightforward as possible. If your game would benefit from access to on-

screen controllers, there is little reason not to implement this functionality.

�Summary
In this chapter you learned about the Game Controller functionality from

both physical and virtual controllers, beginning with the requirements of

the framework to connecting and reading data. This chapter also covered

topics such as pausing, player indicator lights, and snapshotting data.

Game Controllers can be deployed using the same principles discussed on

iOS, Mac, and Apple TV projects. You should now have a strong comfort

level with this technology and how it can be quickly and easily deployed

into your projects to give your users a standardized and universal means of

input beyond the standard controls that come with the device.

Chapter 11 Game Controllers

297© Kyle Richter and Beau G. Bolle 2022
K. Richter and B. G. Bolle, Beginning iOS Game Center and GameKit,
https://doi.org/10.1007/978-1-4842-7756-0

Index

A, B
abductCow function, 15
Accelerometer motion, 9
Achievements, 79, 80

add hooks, 100–102, 104–107
custom GUI, 111, 113,

117–119
failure, 119, 121, 122
feedback, 108, 109
notification, 111
view and label, 109, 110
Xcode, 112

App Store Connect, 84
configuration view, 86
iTunes

Connect, 85, 87–89
modify, 92, 95, 96, 98
presenting, 90–92

benefits, 81
Game Center, 82
GUI vs. custom GUI, 82, 83
reset, 99

Application Programming
Interfaces (APIs), 2

App Store Connect
add, 50
Add IDs, 265
adding products, 265

combine, 54
configure, 49
create, 50
description, 263
developer approval, 279
edit, 53, 54
product list, 267, 268
product to user, 269
purchase

code, 272, 273
GUI screenshot, 278
multiple items, 273
restore, 277
transaction, 274, 275

score format, 51, 52
set up, 259–261, 266

auto-renewable
subscriptions, 261, 262

iTunes Connect, 264
non-consumables, 261
non-renewable

subscriptions, 262
test account, 278
test users, 277
UFO, 279

App Store Connect portal, 24, 25
configuring, 26, 27

Asynchronous games, 217

https://doi.org/10.1007/978-1-4842-7756-0#DOI

298

authenticateLocalUser
method, 34, 64

Auto-matching, 139

C, D
cellForRowAtIndexPath

method, 115
Client-to-host network, 163–165

E
Exchanging data

abduction code, 206,
209–211, 213

disconnections, 214
selecting host, 193, 194
sharing scores, 204, 206
spawn cow process,

199–201, 204
UFO, 195, 196, 198

exitAction method, 59
Experience-type learners, 4

F
finishTransaction method, 276
Foursquare, 79
Freemium model, 258

G
Game Center, 4

authenticate, 31
background thread, 36

friends, 39, 40
logging, 37
players, 41, 42
status changes, 38

Game Center Groups, 76, 77
GameCenterManager class, 42, 62,

71, 72, 219
create, 30
modify, 31

Game Center–specific
information, 25

Game Controllers
connect, 284–286
data callbacks, 290, 291
pausing, 291
player indicator lights, 291, 292
reading data, 286, 287
snapshots, 292

GameKit, 3
game center, 4
networking, 3
UFO, 5
voice chat, 4

GKLeaderboard object, 57
GKLocalPlayer, 38
GKScore objects, 47
GKTurnBasedEventHandler, 244
GKTurnBasedMatchmaker

ViewController, 222
Graphical user interface (GUI), 82

H
hitTest function, 15, 20

INDEX

299

I, J, K
In-app purchase (IAP), 23, 258
insertSubview function, 14

L
Leaderboards, 45

adding button, 66
App Store Connect, 49 (see also

App Store Connect)
customize, 68–71

display, 74, 75
filter, 72, 73

display, 47
GUI, 48, 49, 67, 68
local player’s score, 75
posting score, 56, 57

failures, 60, 61, 63
UFO, 57–60

presenting, 65
purpose, 46
recurring, 55, 56

Local area network (LAN), 2

M
Matchmaking and

invitations, 125
adding player, 141, 142
auto-matching, 139
create new, 128
GUI, 129, 131–135
hosted matches, 154–157
incoming, 135, 136, 138, 139

player activity, 151, 154
player attribute limitations,

145, 146
player attributes, 144
player groups, 142, 143
programmatically, 140, 141
reinvites, 142
scenarios, 126, 127
working with player attribute,

146, 148–150
Matchmaking process, 224
Micro controllers, 283
Multiplayer match, 180–182

picking a host, 183, 184
receiving data, 189–192
sending data, 184, 185, 187, 189

N
Network designs

extrapolation, 174
format messages, 174
prediction, 173
send only, 171, 172
timeout-related

disconnections, 175
types, 161

Non-wireless controller, 284
NSNotification system, 37

O
OfRowsInSection method, 115
Optimizations, 172

INDEX

300

P, Q
Peer-to-peer

network, 161–163
Physical Game

Controllers, 283
Player groups, 142
productsRequest method, 271

R
receivedData function, 200
Recurring leaderboards, 55
Reliable data vs. unreliable data,

168, 170
Ring network, 165, 166

S
Score-based system, 58
scoreReported function, 76
Single-player game, 179, 180
Snapshots, 292
Synchronous execution, 35

T
Tic-tac-toe game, 218
Turn-based game, 217, 219,

221, 224
first move, 233, 235, 236
forfeit/quit, 242
game state, 226, 229
GKLocalPlayerListener, 238

new match, 229, 231, 232
optional functions, 245
programmatic matches,

243, 244
resume game, 239, 242

U
UFOGameViewController.swift

viewDidLoad() method, 253
UFOs

abducting, 21, 23
accelerometer motion, 9, 10
app store, 23
create player, 10
hit test, 20
player movements, 12, 13
set up objects, 11
source code, 7, 8
spawning/moving, 16, 17, 19
touch events, 13, 15, 16

UFOViewController class, 131
Uncommon networks, 166, 167
unlockContent function, 275
User-interaction

standpoint, 76

V, W, X, Y, Z
viewDidLoad function, 10, 33, 184
Virtual controllers, 292–294
Voice chat

audio session, 248

INDEX

301

configuration, 254
Game Center, 247
hook up user interface, 255
monitoring player state, 252
start/stop, 250

UFO, 256
voice channels, 249
volume/mute, 251

Voice over Internet Protocol
(VOIP), 247

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Foreword: The Legend of Kyle, Game Hero
	Introduction
	Chapter 1: Getting Started with GameKit and Game Center
	GameKit: An Overview
	Networking
	Game Center
	Voice Chat

	Sample Game: UFOs
	UFOs: Understanding the Game

	UFOs: Examining the Source Code
	Setting Up the Accelerometer Delegate
	Drawing the Player to the View
	Setting Up Cows, Beams, and Scores
	Adding Player Movements
	Watching for Touch Events
	Spawning and Moving Cows
	Performing a Hit Test with a UIImage
	Abducting a Cow
	Configuring App Store Connect for Game Center

	Getting Started with App Store Connect
	Configuring Game Center in App Store Connect

	Summary

	Chapter 2: Game Center: Configuring and Getting Started
	Creating a Game Center Manager Class
	Authenticating with Game Center
	Modifying the GameCenterManager Class
	Authenticating from UFOViewController

	Watching for Status Changes
	Working with GKLocalPlayer
	Game Center Friends
	Working with Players
	Summary

	Chapter 3: Leaderboards
	Why a Leaderboard?
	An Overview of Leaderboards in Game Center
	Benefits of Using Apple’s Leaderboard GUI vs. a Custom GUI

	Configuring a Leaderboard in App Store Connect
	Recurring Leaderboards
	Posting a Score
	Adding Score Posting to UFOs
	Handling Failures When Submitting a Score
	Presenting a Leaderboard
	Customizing the Leaderboard
	Modifying GameCenterManager
	Filtering Results on a Custom Leaderboard
	Displaying the Custom Leaderboard

	Local Player Score
	A Better Approach
	Game Center Groups
	Summary

	Chapter 4: Achievements
	Why Achievements?
	An Overview of Achievements in Game Center
	Benefits of Using Apple’s Achievement GUI vs. a Custom GUI

	Configuring Achievements in App Store Connect
	Presenting Achievements
	Modifying Achievement Progress

	Resetting Achievements
	Adding Achievement Hooks
	Achievement Completion Feedback
	Custom Achievement GUI
	Recovering from a Submit Failure

	Summary

	Chapter 5: Matchmaking and Invitations
	Why Add Matchmaking and Invitations to Your App?
	Common Matchmaking Scenarios
	Creating a New Match Request
	Presenting Match GUI
	Handling Incoming Invitations
	Auto-Matching
	Matching Programmatically
	Adding a Player to a Match
	Reinvites
	Player Groups
	Player Attributes
	Understanding Player Attribute Limitations
	Working with Player Attributes

	Player Activity
	Using Your Own Server (Hosted Matches)
	Summary

	Chapter 6: Network Design Overview
	Three Types of Networks
	Peer-to-Peer Network
	Client-to-Host Network
	Ring Network

	Less Common Networks
	Reliable Data vs. Unreliable Data
	Sending Only What Is Needed
	Prediction and Extrapolation
	Formatting Messages
	Preventing Cheating and Preventing Timeout-Related Disconnections
	What to Do When All Else Fails
	Summary

	Chapter 7: Exchanging Data
	Modifying a Single-Player Game
	Setting Up Our Engine for Multiplayer
	Picking a Host
	Sending Data
	Receiving Data

	Putting Everything Together
	Selecting the Host
	Displaying the Enemy UFO
	Spawning Cows
	Sharing Scores
	Adding Network Abduction Code

	Disconnections
	Summary

	Chapter 8: Turn-Based Gaming with Game Center
	A New Sample Project
	GKTurnBasedMatchmakerViewController
	Establishing Game State
	Starting a New Game
	Making the First Move
	GKLocalPlayerListener Extensions
	Continuing a Game in Progress
	Quitting and Forfeiting
	Programmatic Matches
	GKTurnBasedEventHandler
	Summary

	Chapter 9: Voice Chat
	Voice Chat for Game Center
	Creating an Audio Session
	Creating New Voice Channels
	Starting and Stopping Voice Chat
	Chat Volume and Muting
	Monitoring Player State

	Putting It Together
	Hooking Up a User Interface
	Summary

	Chapter 10: In-App Purchase with StoreKit
	Setting Up Your App in App Store Connect
	Adding Products to Your App
	App IDs and In-App Purchase
	Setting Up
	Retrieving the Product List
	Presenting Your Products to the User

	Purchasing a Product
	Purchasing Code
	Purchasing Multiple Items
	Processing a Transaction
	Restoring Previously Completed Transactions

	Test Accounts and Testing Purchases
	Signing In with a Test Account

	Submitting a Purchase GUI Screenshot
	Developer Approval
	Tying Everything Together in UFOs
	Summary

	Chapter 11: Game Controllers
	Types of Physical Game Controllers
	Connecting to Game Controllers
	Reading Data Through Polling
	Data Callbacks
	Pausing
	Player Indicator Lights
	Snapshotting
	Virtual Controllers
	Summary

	Index

