Version

> 5.1

Y Supports Through

Android 4.3! r

r
ﬂ‘\/\/~"

The Busy Coder’s Guide to

Android

Development

2

Mark L. Murphy

CoMMONSWARE

The Busy Coder's Guide to Android Development

by Mark L. Murphy

CoMMONSWARE

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Busy Coder's Guide to Android Development
by Mark L. Murphy

Copyright © 2008-2013 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
September 2013: Version 5.1 ISBN: 978-0-9816780-0-9

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of
the information contained herein.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Table of Contents

Headings formatted in bold-italic have changed since the last version.

* Preface
o Welcome to the Book!cccoooviiiiiiiiiiieeeeeeeee XXXi
o The BOOK’S StIUCLUTEcceevuiriiriiriiiieieiesieseeee e XXXi
0 TRE TTAILS .cuuueeeeerininiiiiiiiiiiiiiiinintree e eeeeesesssssesens xxxii
o About the Updatescoevuiriiririiieieereeeee e XXXVi
© WareSCIIPLIONeeiiiieiiiiiieriteeiteeite ettt ettt XXXVii
o Getting Help ..ooeeieieiiiieeeeee e XXXVii
° BOOK BUZ BOUNLY ..ot XXXVviii
o Source Code And Its LiCenseccccevueveruereeienieniineseeeeeeeenee XXXiX
o Creative Commons and the Four-to-Free (42F) Guarantee . xxxix
o ACknowledg@mentscccooeviririeiienienireee e x1
+ Key Android Concepts
o Android APPliCAtIONScceevuiriiririeieierieeeee e 1
o ANAroid DEVICESccoviieuiieiiietiecreeeeeeeteeeee ettt e eae e 7
o Don’t Be SCaredccoceeeriiiiieieciee e 10
* Choosing Your IDE
0 ECIPSE .ottt 11
o Alternative IDEScccoeiriiiiiieierieceeee et 12
o IDEs... ANd This BOOKccciriiiiiiieiecieceeteeeee st 13
o ADOUt APP INVENLOTooviiiiiiiiiiiieeeeeee e 13
+ Tutorial #1 - Installing the Tools
o Step #1 - Checking Your Hardware Requirementsc.ccccceeveunnee 15
o Step #2 - Setting UP Java ...ccceevierieriiiniieieeeceeeeeeeee e 16
o Step #3 - Install the Android SDKccccoevvvvvvrriiiiiinnineinnnnanns 16
o Step #4 - Install the ADT for Eclipseccccocevvieiieienenenieieeieene, 18
o Step #5 - Install Apache Antccoceviriiinienieeeee e 20
o Step #6 - Set Up the EMulatorcocecvevievenininieieeececeeeeen 21
o Step #7 - Set Up the Deviceccoovvvvvverieiiiiiiiiiiiiiiiiinieneeeneennnns 28
o In Our Next EPiSOde... ...cccuevieriiriiririeieieriereeee e 31
+ Tutorial #2 - Creating a Stub Project
o About Our Tutorial Projectccccoccevereririienienieneneeeeceieeieeeene 33
o About the Rest of the Tutorialscccceeceerieriecieieceeeeeeeeee e 34
o About the Eclipse INStructionsc.cceceveveneririeenienieneneneeeeeenen 34
o Step #1: Creating the Projecteeeeeeiiiieiiiiiieeienneeeneennnns 35
o Step #2: Running the Projectccocoeivieieninininicceeeeee 43

Subscribe to updates at https://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

o In Our Next EpiSode...cccooiviriiiiiiiriineneneeeseeneeetee e 46
+ Contents of Android Projects

S 00 To) @) 3 1 =) 11 RSP 47
o The Sweat Off YOUT BIOWccccociiriieiieiicieececeeeeee e 48
O RESOUICESeevviieiiiiieeeeieee e ettt e ee st e e e e sate e e e s ataeeesssaaeeesssaeeesennsneeeas 48
o What You Get Out Of Itccoviiiiiiiiieeeeeeeeeeeee 49
* Inside the Manifest
o An Application For Your Applicationccccccevevevieiienveneenieneennnene, 53
o SPecifying VEISIONScccevirereririeieieriesienieetete et 53
o Supporting Multiple Screensccoceeveeiriieieninienneeeeeee 54
o Other StULT ..o 55
+ Tutorial #3 - Changing Our Manifest
o Step #1: SUPPOTtING SCIEENScovviiiiiriiiniiiiieniieiee e 57
o Step #2: Validating our Minimum and Target SDK Versions 61
o In Our Next EPiSOde...ccoviviririiiiiiiieseeceteeeeeeeeete e 63
+ Some Words About Resources
0 StriNg TREOTY .cc.oiiiiiiiiereee e 65
0 GOL the PICLUTE?uevvreevrvnneeiiirieerneneeeeesieeeennnnsessssssssnnnsssssnss 69
© DIMENSIONS .eoouiiiiiiiiiiiieetee ettt ettt et 73
o The Resource That Shall Not Be Named... Yetcccccevvrrieriieneennnnns 75
+ Tutorial #4 - Adjusting Our Resources
o Step #1: Changing the Namecccooceiiiiiiiiiiinnceee, 77
o Step #2: Changing the [concccccoceiiiiiniiiiiieeee, 79
o Step #3: Running the Resultccccooooiiiiiiiiiiieee, 87
o In Our Next Episode...cccooeviriiiiiiiiinieneneeeeeseeeee e 88
+ The Theory of Widgets
o What Are WId@ets?ccoooiiiiririeiiieieereneeeee et 89
o Size, Margins, and Paddingcccceeereniniiiniinininenceeeeees 91
o What Are CONtaiNers?cccceeeeeviereerieerienieneenteeseeeeesseesseeaesaeesseenns o1
o The Absolute Positioning Anti-Patternc.ccccevevenenennienienenenne. 92
+ The Android User Interface
0 THhE ACHIVILY .evereieiiiieieriesieri ettt et 95
o Dissecting the ACHIVILYccoceviriiiiiiierierereeeeeeeeeeee e 96
o Using XML-Based Layoutscccccoerereneninienienieneneeceteieeeseeaene 97
+ Basic Widgets
° CommMON CONCEPLS ..cooouriiiiiiiiiieeeiie ettt et eree e e e 103
o Assigning Labelscccooiiiiiiiiiii e 105
o A Commanding BUttonccccecceviiiierenininiiieeseeeeeeeee e 110
o Fleeting IMAagesccoceeeeiiiieriiieee e 13
o Fields of Green. Or Other Colors.ccceceviiiiiiinininnieeeeee, u8
o More Common CONCEPLScccceerruiieriieeriiieenieeeeee et e e eaeees 121
ii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Visit the Trails!ccceevieiieieieeceeee e 123
+ Debugging Crashes

o Get Thee To a Stack Tracecccceceevievienienenenieieeeeeeee e 126
o The Case of the Confounding Class Castc..ccccevuevenenenienieeniennens 129
© POINt Breakc.oooviviiiieiieieieeeeeeteeee et 129
+ LinearLayout and the Box Model
o Concepts and PrOPertiesccoceveevvereeneesienieeneenieeieseesseeeeennenne 131
o Eclipse Graphical Layout Editorcccceceviiriiiiiinininennieieeeee, 135
+ Other Common Widgets and Containers
o Just @a BoX t0 Checkcccovieiiiiiieiieeceee e 137
> Don'’t Like Checkboxes? How About Toggles?c..cccecerviiiiinnnens 140
o Turn the Radio UP ...cccevieviiiiirieiiceceeeeeeeeeee e 142
o All Things Are Relativecccoceeiiiiiieiininineeeeeeeee 144
© Tabula RASa ...cceeieriiiiieiecieecee et 151
0 SCIOIIWOTK vttt 155
o Making Progress with ProgressBarsccccocevevininiiniencncnennnn. 158
o Visit the Trails!ccceevieiieieeieeceeeeee e 159
+ Tutorial #5 - Making Progress
o Step #1: Removing The “Hello, World”ccccooniniiiiiiiiininee. 161
o Step #2: Adding a ProgressBarcccoceeiiiiniiiinininneee 163
o Step #3: Seeing the Resultsccccceveiinininiiiiiee 165
o In Our Next EpiSode...cooeviriniiiiieiiieneseeeteeeeeeeeee 166
+ GUI Building, Continued
o Making Your Selectioncccceeieiienienenenenieteeeeseseeee e 167
o Including Includescooviiiriiiiiiiiiie e 167
o 'Wrap It Up (In @ CONtAINET) ...oceeveuiereririeiiieieieieieieeee e 169
o Morphing Widgetscccoereriririiiiieiereeeeteee e 169
o Preview of Coming Attractionsc.cceceeeevierienieneneneneeieeseeseenne 170
+ AdapterViews and Adapters
o Adapting to the Circumstancesc..cocceceeveeeeieneneneneneeeeeeseeees 171
o Lists of Naughty and Niceccccoceeviiiiiiininininieeeeeeeeen 173
o Clicks versus Selectionscccceeeevieevienieneeiienieseecie e 175
o SPIN CONLTOL .eviiiiiieiicece e 179
o Grid Your Lions (Or Something Like That...)ccccecveririreruereennen 182
o Fields: Now With 35% Less Typing!cccccoceveninininiinienenenenn. 185
o Galleries, Give Or Take The Artc.ccccevveririieiiiniinineneeeeee 190
o Customizing the Adapter ... 191
o Visit the Trails!ccceevieiieieeieeceeeeee e 199
+ The WebView Widget
o Role Of WEDVIEW ..c..oouiiiiiiiiiiiiieeee e 201
o WebView and WeDbKitccccoviiiiiiiiiiiieeeeceeee 202
iii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Adding the Widgetccovuiririiiiiiieeeee e 202

> Loading Content Via a URLcccccvininiiiiininiiinccccncee, 203
o Supporting JavaSCTiPtccccceeviiriiiiiiniiiiceeee e 205
o Alternatives for Loading Contentccccceceverieriienienenenenceeenes 206
o Listening for EVENtScccccociviiririiiiirineneneeeenes e 207
o Visit the TrailS!cccooiriiiiiie e 210
* Defining and Using Styles
o Styles: DIY DRY oot 213
o Elements Of Styleccocoiiiiiiiiiine e 215
o Themes: Would a Style By Any Other Name...ccceceeciiiiiinnnen. 218
* JARs and Library Projects
o The Dalvik VM ...ccoiiiiiieeeee e 220
o The Easy Partcccooiiiiiiiiiiinie e 220
o The Outer LIMItSccccecieiiiiierininieieieeesee e 221
o OK, So What is a Library Project?c..ccccccevenininininiinenenenen 222
o Creating a Library Projectc..cccoccoveiininniniininineneeeee 222
o Using a Library Projectcccoeviiiiiieiininineeeeeeceeeee 223
o Limitations of Library Projectscccceceveeiiiiineninnicnnieieseene 224
o The Android Support Packagecccceevereriiiiiniinininnneeee 225
o JAR Dependency Managementc..cocceceeeeienienienenenennieneeneeneenne 227
+ Tutorial #6 - Adding a Library
o Step #1: Downloading and Unpacking ActionBarSherlock 229
o Step #2: Adding the Library to Your Projectccccoceveniiniinninnnnens 230
o In Our Next EpiSode...ccoeviririiiiiiiiieneneeeeteeeeeeeeee 234
+ Options Menus and the Action Bar
o Bar Hopping (a.k.a., Terminology)ccceceeereereeneennereeieeenenenes 235
o Yet Another HiStory Lessoncccccevereniniiiiieniencninecceieieens 240
° Your Action Bar OPtionscceeiiiiiiiiiniiiiiiieeeieeeeee e 241
o Setting the Targetccccooeveririnieieee e 245
o Minding NAITOWcccovceririiiiieniereneeeete et 246
o Defining the ReSourceccccocoviiiiiiiininniecceeeeceeeee 246
o Applying the ReSourceccccoeeieiiiienieninieneneceeeceeee 250
o Responding to EVENtSscccoceviiiiiiiiinininieteeeee e 250
o Attaching to Action Layoutsc..cccccceverenenienieiienienencneeceeeeeen 251
o The Rest of the Sample ACtIVILYccccovvereriiriieiieninerereeeeeen 251
o Floating Action Barscccoveeiiiiiineninneeeees e 259
o Visit the TrailS!cccooiiiiiiii e 262
+ Tutorial #7 - Adding the Action Bar
o Step #1: Setting the Theme and Splitting the Barcccccceeenee. 263
o Step #2: Changing to SherlockFragmentActivity 265
o Step #3: Defining Some OPLioNsScooeeveevreeiiiiiiiiiiiiiiieeeenens 267
iv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Step #4: Loading and Responding to Our Optionsc..ccceeueeee. 269

o Step #5: Running the Resultcccooiiiiininiiiee, 271
o In Our Next EpiSode...cooeviririniiiiiiieeseeeeteeeenee e 273
* Android’s Process Model
o When Processes Are Createdcccoceveeveecienieneenieeiesieneeieene 275
o BACK, HOME, and Your Processccccevuiiiiiviueiiiiiiieeeceieeeeeeenns 276
SR S5 0 0103 F= 1 (o) o N TR 277
o Foreground Means “I Love You”ccccceviiiiiiiinininencniiieeneene 277
o You and YOUr Heapcccevevieriiniieiicieseeieeteetescee e 278
+ Activities and Their Lifecycles
o Creating Your Second (and Third and...) ACtIVItYcccecerreerreuenene 280
o Warning! Contains Explicit Intents!cccccoevenininiinninenenennn. 285
o Using IMplicit INLENLSccccovvvviiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiieeeeeenes 287
o Extral EXtral .o 202
o Asynchronicity and Resultscccccocerininininiinininneeee 294
o Schroedinger’s ACLIVILYccccovereririeiienienieneseeeete e 294
o Life, Death, and Your ACtiVItycccccoverereriniienienieneneneeeeeeeee 295
o When Activities Di€ccceceriierieiieiienieseeieeiesceeese e 297
o Walking Through the Lifecycleccccocoiiiiiiiinininiiicen, 298
o Recycling ACHIVItIEScccuevierierieriieiieieeie e 301
+ Tutorial #8 - Setting Up An Activity
o Step #1: Creating the Stub Activity Classc.ccccevevenenininiicnenn, 303
o Step #2: Adding the Activity to the Manifestc.cccceceeiiiinnnnn. 305
o Step #3: Launching Our Activitycccocevevieienininenneieeseene 307
o In Our Next EpiSode...ccoeviriniiiiieierieneneeeteeeeeeeeee e 308
+ The Tactics of Fragments
° The SiX QUESTIONSecveriierierieriiertieie ettt esre e e eeseeesaeeneens 309
o Your First Fragmentccocceoviiiiiiiiiniiiiiiiccceceteeeceeee e 31
o The Fragment Lifecycle Methodsccceceeviiiinininniniiiien 316
o Your First Dynamic Fragmentcccccoccevviiiiiiniiinicnniinieneccieee 317
o Fragments and the Action Barcccoooeviniiiiiinininneeee, 321
o Fragments Within Fragments: Just Say “Maybe”ccccoceiininns 322
o Fragments and Multiple Activitiesc..c.ccoceveninieniniiniienenenenn 323
+ Tutorial #9 - Starting Our Fragments
o Step #1: Copy In WebViewFragmentcccocevveiiiiinininininneenns 325
o Step #2: Examining WebViewFragmentc..cccccceveninninninennn, 329
o Step #3: Creating AbstractContentFragmentcc.cccecevvieiiinenen. 329
o Step #4: Examining AbstractContentFragmentc..ccccecceveeuennene. 331
o In Our Next EpiSode...cccooeviriiiiiiiiinieneneeeeeeecete e 331
+ Swiping with ViewPager
o Swiping Design Patternscc.ccccceeveiviiniiiiieniiinieciicneeeeeeeeene 333
v

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Paging Fragmentscc.cccoceiiiiiiiiiiiiiiiniiiiccecccceeee e 334

o Paging Other Stuffcccccoviiiniiiiceee 338
0 INAICALOTS .eevieeiieiieieeieeteeeestee ettt ste et e e e saeeteensesseeseens 338
o Fragment-Free Pagingc.ccocceviiiiiiiiiiniiniieniicieneececceeeeee 342
o Hosting ViewPager in a Fragmentcccoccevviiniiniiiininnenieennens 342
o Pages and the Action Barc.ccceveiiiininieniniiccee e 344
> ViewPagers and Scrollable Contentsccccoceeerienienienenenieneenens 346
+ Tutorial #10 - Rigging Up a ViewPager
o Step #1: Add a ViewPager to the Layoutcccceceeveeienenencnicenenns 349
o Step #2: Obtaining Our ViewPagerc..cccovevininninnincnenennn. 350
o Step #3: Creating a ContentSAdaptercccocceveveveneeiienienenenenne. 351
o Step #4: Setting Up the ViewPagerccccccevevininniinienenencnn 352
o In Our Next Episode...cooeririniniiiieiinieeseeeteeeeseeeeeee 353
* Resource Sets and Configurations
o What'’s a Configuration? And How Do They Change? 355
o Configurations and Resource Setsccccoceveveneneneniienienenennenn 356
o Screen Size and Orientationccceceveereerieneeneenieeeeseeseeseeenees 357
o Coping with COmPIeXityccccocevieiiinieriinininieeeeeeeeee e 360
o Choosing The Right ReSourceccccceeveeriviiiiiiiiiiiceeeeeeennens 361
o Default Change Behaviorc..cccooiviiinininiiiiiieceecee 365
> Your Options for Configuration Changesccccccecevevveceriencnencne 367
o Blocking ROtationsccccovereririiiiiiiiniineeeeeee e 380
* Dealing with Threads
o The Main Application Threadccccccevcievierincenieeeeeeeeeee, 381
o Getting to the Backgroundccooevvvvviviiiiiiiiiiiieiienennnnns 382
o Asyncing Feelingcccooeiiririiiiiiiiiieeee e 383
o Alternatives to ASyncTaskccccocevievienininiiniiiiicceee e 391
o And Now, The Caveatsccceeveeiereenieeiieeiereeieere e eee e 393
+ Requesting Permissions
o Mother, May I7? ..o 396
o New Permissions in Old Applicationsccccoeceeveevierceeneeniencienen. 397
o Permissions: Up Front Or Not At Allccccooviiiiiiiiiiinieiens 398
o Signature PermiSSIONScccccceevieriiiirieriieniieiiieeieceie et 399
o Requiring Permissionsc...cccceevueiriiiniiniiniieniecnieneeereeieeeeeene 399
* Assets, Files, and Data Parsing
o Packaging Files with YOUTr APDccoevireniniiiiiieneceeeeee 401
o Files and ANdroidcccecervieriinieiienieseeeeeeeeeee e 403
o Working with Internal Storageccccecevieiiiieniinieniniieecen, 404
o Working with External Storageccccoceeveevieienenienienieeieeeen, 407
o Multiple USer ACCOUNLSceveeeeerennneeirrinneennnnnscisssseesnnnsnnnnns 411
o Linux Filesystems: You Sync, You Wincccccevvennniiiiencncncnenne. 411
vi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o StrictMode: Avoiding Janky Codeccoceeiiiiiinininnineecee, 413

o XML Parsing OPtiONScccceeecuieriieriiiiniieenieeieenieeieeere e 419
o JSON Parsing OPtiOnscccccceceevieriiienieiiiienieeseeeieeeeesre e 420
o Visit the TrailS!couueeeieuniiiiinniiiiieneeeeeeneeeeeenneeeeenneeeeenns 421
+ Tutorial #11 - Adding Simple Content
o Step #1: Adding Some CONtentcccceceeeeieienienieneneneeieeeneeneenne 423
o Step #2: Create a SimpleContentFragmentccccoceeereniiiiinennen. 424
o Step #3: Examining SimpleContentFragmentccccecceveeiiinienen. 425
o Step #4: Using SimpleContentFragmentc..ccceoeveneninniinennn. 425
o Step #5: Launching Our Activities, For Real This Time 426
o In Our Next EpiSode...ccoeviriniiiiiiiiieneneeeeteeeeneeeee e 428
+ Tutorial #12 - Displaying the Book
o Step #1: Adding @ Bookccccoovvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieenns 429
o Step #2: Defining Our Model ..o 430
o Step #3: Examining Our Model ..o 432
o Step #4: Creating a ModelFragmentcccccceveveniniinicnenencnnn 432
o Step #5: Examining the ModelFragmentc..cccccoevinniniinnnn. 435
o Step #6: Supplying the Contentccceeceeiiiiiiinininineeee 436
o Step #7: Adapting the Contentccoceeveiviiiiiiiinininineeeee 437
o Step #8: Going Home, AGQINcuuueeeeeruiiiiinnniiiiennnniieennnnees 439
o In Our Next Episode... ...ccoveierieniiiiieieseeieeieeeeeeie e 440
+ Using Preferences
o Getting What You Wantcocceeeiiiieniineneneieeeeeceeeeee 441
o Stating Your Preferencecccocoviiiieiinininniiiieeeeeeee 442
o Introducing PreferenceActivitycccccoeeereeviieiiiiiiiiiineeennnns 443
o Types of Preferencescccooeeeeieiiineneninieieeeseseeee e 455
o Intents for Headers or Preferencesccccceveecienvieneeneesieneeneenne. 458
o Conditional HeAderTsSceevveeeeeennnceerrineeennnnnesesseeeennnnnnnes 459
o Option #2: Go Directly to the Fragmentc..c..cccceoenininininnnnns 463
+ Tutorial #13 - Using Some Preferences
o Step #1: Adding a StockPreferenceFragmentccccoceceieniennne. 468
o Step #2: Defining the Preference XML Filesccccocceceiiiiiinennenne. 469
o Step #3: Creating Our PreferenceActivityc...cccoveveveecerencnenne 471
o Step #4: Adding To Our Action Barcccceceveninincniiniienenenen 472
o Step #5: Launching the PreferenceActivityccccceeeee. 474
o Step #6: Loading Our Preferencesc.ccccevuevenenenenieenienenennenn 478
o Step #7: Saving the Last-Read Positionc.ccccecevenenenienienienne. 480
o Step #8: Restoring the Last-Read Positioncccccocvenniniinnnnns 481
o Step #9: Keeping the Screen Onccccoeiiiiiiiiiininininicee 481
o In Our Next Episode...ccoevirininiiiiiiiineneeeeteeeeneeeeee 482

+ SQLite Databases

vii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Introducing SQLIteccccceeveviiiiiiiiiiiiiiiiiiiiiiieiiiiiiiieeeeeeeeens 483
o Thinking About SChemasc..cccevereneniniiiieeeeeeens 484
o Start with @ Helpercccooviivienieieeieeeeeeeeeeeee e 484
o Getting Data Out ..o, 489
o The Rest of the CRUDcccccuiiiiiiiiiieiecieeeeeeeeee e 494
o Hey, What About Hibernate?ccccocoiiiiiiininnnieeeeen, 500
o Visit the Trails!ccceevieiiieieeieeeeceeee e 501
+ Tutorial #14 - Saving Notes
o Step #1: Adding a DatabaseHelperc.cccooinininniniincnincnne 503
o Step #2: Examining DatabaseHelperccccocooiiiiinininninnnns 505
o Step #3: Creating a NoteFragmentcoeeeveevnnniveennnnnnnes 506
o Step #4: Examining NoteFragmentcccccoeceriiiniinniinienneennnenns 508
o Step #5: Creating the NOteACtivitycccceceevieviinenineninieeenen 508
o Step #6: Loading and Saving NOtesc..ccccevevereneniiniienenenennn. 510
o Step #7: Add Notes to the Action Barccccccceevvevienieieniienieieeene 513
o Step #8: Support Deleting NOtesccceceririienieneneneneeieeee. 515
o In Our Next Episode...ccoevirininiiiiiiiineneeeeteeeeneeeeee 523
* Internet Access
O DIY HTTP ettt 525
o HTTP via DownloadManagercccceeeerieienienenenenenieeeseeenne 536
o Using Third-Party JARSccccocririiiiiiiiieneneeeeeeeeee e 537
O L ettt et et e b e e as 537
o Using HTTP Client Librariescccccevvvvirieiiiiiiiiiiiieiieeennnns 544
+ Intents, Intent Filters, Broadcasts, and Broadcast Receivers
o What's YOUT INEENE?oceeeiieiieiieiieieeieeeeieete et 563
o Stating Your INtent(10MnS)ccceceeverieenieerieeieieisieesieeseeeseeeeeeeenes 565
o Responding to Implicit Intentscccceceeieiienieninieniniiieieeeens 566
o Requesting IMplicit INLENLSccccovvvvevrieirieiiiiiiiiiiiiiineeeennes 568
o Broadcasts and ReCEIVETSccecueeieriieiiieiienieieeiecie e 572
o Example System Broadcastscccccocererereriniienieneneneneeeeenne 574
o Downloading Filesccccooevvviiiiiiiiiiiniiiiiiiiiiiiiiiiiciieeeeeenees 581
o The Order of Thingsccccovereririiiiiininennee e 593
o Keeping [t Local ..o 594
+ Tutorial #15 - Sharing Your Notes
o Step #1: Adding a Share Action Bar [temcccccccenininiiiiincnnne. 599
o Step #2: Sharing the Notec.ccocoiiiiiininie, 600
o Step #3: Tying Them Togethercccooeeiiiiiiiiiininneeee 601
o Step #4: Testing the Resultccoouiiiiininniiiiiiee 601
o In Our Next EpiSode...ccoeiiiiniiiiieiiieneneeeeteeeesee e 602
+ Services and the Command Pattern
o WHRY SeIVICEST?oiiiiiiiieiteteiertee ettt 603

Subscribe to updates at https://commonsware.com

viii

Special Creative Commons BY-NC-SA 4.0 License Edition

o Setting UpP @ SEIVICEcoovuiriiiiriiiiiiiiiiieeitcteecete et 604

o Communicating To SeIVICesccocceeveiriiiiiieniieinieeieeiieeieceneae 606
o Scenario: The Music Playerc.ccccoereriniiiieneneneneeeeieeene 608
o Communicating From Servicesccccceevirviiniiiniinniinnenneenieene 611
o Scenario: The Downloaderc.ccecerienienieniienieneciececeeeeie e 613
+ Tutorial #16 - Updating the Book
o Step #1: Adding a Stub DownloadCheckServicecccccoevinenens 620
o Step #2: Tying the Service Into the Action Barccccecceceeveiinenen. 621
o Step #3: Adding a Stub DownloadCompleteReceiver 622
o Step #4: Completing the DownloadCheckServiceccocceuence. 623
o Step #5: Adding a Stub DownloadInstallServicec.cccccceenenen. 627
o Step #6: Completing the DownloadCompleteReceiver 628
o Step #7: Completing the DownloadInstallServiceccccceuencn. 629
o Step #8: Updating ModelFragmentcccccoevenineninnienencnennn 631
o Step #9: Adding a BroadcastReceiver to EmPubLiteActivity 634
o Step #10: Discussing the FIawsccccoooniiiiiiiiininneeee 638
o In Our Next EPiSOde...uueeeererieeeennnecienninenennnnssessssseeennnnnnnes 638
+ AlarmManager and the Scheduled Service Pattern
© SCEOMATIOS .uutieeiutieieiieeeite ettt ettt e et e e et e e et e e ebe e e et e e e bt e e s bt e e e beeesanees 639
O OPLIOMIS .eiiiiieiiiieeitee ettt ettt ettt e et e st e e st e s bt e e e bee e s nee e e nees 640
o A Simple EXampleccooeeviiiieiieiceceeeeeeeeeeeee e 642
o The Three Repeat Varietiescccoceeverviereenersieneeneeieeeeseesieennes 644
o The Four Types of Alarmsc..cccevuevienenenininieieeneeeeeeee e 645
o When to Schedule Alarmsccccoeverienieiiniereeececeeeeee e 645
o Get Moving, First Thingcccoceeiminiiiininincnncccecnceeeen 647
o Archetype: Scheduled Service Pollingc..cccceceeviiiinininninnennns 650
o Staying Awake at Workcccccovvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicecenens 654
o Warning: Not All Android Devices Play Niceccceceeveriiininennens 657
o Debugging Alarmsccocevereririiiiee e 658
o WakefulBroadcastReceiverccccouvvvriiiriiiiiiiiiiiiiiiieecnnnnns 665
+ Tutorial #17 - Periodic Book Updates
o Step #1: Adding a Stub UpdateReceiverc.ccccooeveneneneenicnncnne. 669
o Step #2: Scheduling the Alarmsccccoceeveiiiiiiinininnneee 671
o Step #3: Adding the WakefullntentServiceccccceee. 672
o Step #4: Using WakefullntentServicecccceceeveeienieninenienicneennns 673
o Step #5: Completing the UpdateReceivercccccoceverveniennenennns 674
o In Our Next Episode... ...cccoceevirvierieniiiieieeieceeieeeeeesee e 674
+ Notifications
o What's @ NOtification?ccccceevierienienieeieeieseeieee e 675
o Showing a Simple Notificationcceceeveriiiiienininiennieeee 677
> Notifications and Foreground Servicesc..ccceeevenenenenieeeennns 682
ix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Seeking SOme Ordercccccvverivieiininineieineneeneeceeee e 683

o Big (and Rich) NOtifiCationsccceceerueerieerieererieisieeneeeneeeseenens 689
o Disabled NotifiCationsccceceevievieerienienieieeiereeee et 696
+ Tutorial #18 - Notifying the User
o Step #1: Adding the InstallReceivercocevrviiiiiicninicncnnieene. 699
o Step #2: Completing the InstallReceiverc..cccceveneninininnnnnns 701
o In Our Next EpiSode...cooevininiiiiiiiiieneneeeeteeeeseeee e 702
+ Large-Screen Strategies and Tactics
o Objective: Maximum Gain, Minimum Painc.ccceceevervveneenennen. 703
o The Fragment Strateqycccceevvviiiiiniiiiiiiiiiiiiiiieiieeeeeeeeees 703
o Fragment Example: The List-and-Detail Pattern 712
o Other European Flavorsccccceceevieniiniieieneeeeeeiesceseee e 724
o Showing More Pagesccceeririiiiininineeeeee e 737
o Fragment FAQSccccooviiiiiiiiiiiiiecececte e 741
o Screen Size and Density TacCtiCSccceevereriieiienieneneneneeieieseeeene 742
o Other ConsSiderationscccceeeieeeieeeiieesee e eeee e e ere e 745
+ Tutorial #19 - Supporting Large Screens
o Step #1: Creating Our Layoutscccccoecerviiniiiiniinniinneniienieceene 749
o Step #2: Loading Our Sidebar Widgetscccceceevieneninenininnenns 753
o Step #3: Opening the Sidebarccccooeniiiiiiiinie 754
o Step #4: Loading Content Into the Sidebarccococniiiiiiniin, 755
o Step #5: Removing Content From the Sidebarc..ccccoceiiinnens 758
+ Backwards Compatibility Strategies and Tactics
o Think Forwards, Not Backwardscccceeeiiiiiiiieiieeiieecieeieeeie, 761
o Aim Where You Are GOINGccccceeveirinenieininienieieinceeeenaeeeeenes 763
o A Target-Rich Environmentcccccccovveneniiniinniininenenneeenee 763
o Lint: It’s Not Just For Belly BUttonsc..cccceoevenincniinienenincnnn 765
o A Little Help From Your Friendsccccoccenvirviivciencieniiieeieeeeenee, 765
o Avoid the New on the Oldccccovieiiiniiinieieeeeeee e, 766
0 TESEING .eeeeuriiiieiieiie ettt s 770
o Keeping Track of Changesc..ccccocevevinenininiiieneeeeeeeeeee 770
+ Getting Help
o Questions. Sometimes, With ANSWETS.ccceeveeeviienieecrienieeieenns 773
o Heading to the SOUTICeccccoviiiiiiiiiiiieee e 774
o Getting Your News FiXccccccooviiiiiiiiiniiiniiiiinicieeccceeeee 775
+ Introducing GridLayout
© PrereqUISILESccooiuiiiiiiiiiiiieeetee ettt 777
o Issues with the Classic CONtAINEeTScccccceeevieeiieerieeceeeieeciee e, 777
o The New Contender: GridLayoutcc.ccccevevienenenenenieenienenenenn 779
o GridLayout and the Android Support Packagecccocceueinenenene. 780
o Eclipse and GridLayoutccccoccceeimenenieineneniecnenicieeeeneeeeenes 781
X

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Trying to Have Some Rhythmccccooiiiiiiiiiii 781

O OUL TSt APP cueieeeiieieiteeete ettt ettt ettt et e e 782
o Replacing the Classicsccooreririiiiinieneneneeeeeee 784
o Implicit Rows and Columnsccecevierieieriienienecccee e 791
o Row and Column SPansccccceevuereenieenieeiienieseeieeee e eve e 793
o Should You Use GridLayout?ccccccevemeniniienienieneneneeeeeeeeenne 797
+ Dialogs and DialogFragments
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 799
o DatePickerDialog and TimePickerDialog 799
0 AlertDIalog ..c..eoueeuieiiieiieieee e 805
o DialogFragmentscocceeririiiiienieneneeeteeee e 806
o DialogFragment: The Other Flavorcccocovininniiiinininennn. 810
o Dialogs: Modal, Not Blockingcccceeeverniniiinininencneeeeeenee, 81
*+ Advanced ListViews
© PrereqUISILESccooiuiiiiiiiiiiiieeetee ettt 813
o Multiple Row Types, and Self Inflationc..ccceceiininnininnnnns 813
o Choice Modes and the Activated Stylecocceceeiiiiininiininiien, 819
o Custom Mutable Row CONtentscceceeeeieienieneneneneeieienenaenne 820
o From Head To TOEccccceiiiiiiriiiirieeeeeteeee e 826
+ Action Bar Navigation
© PrereqUISILESccooiuiiiiiiiiiiiieeetee ettt 831
o List NaVIgationccccceveiiiiiiiiiiiiiiienieeeceie e 831
o Tabs (And Sometimes List) Navigationc.ccceeeverveereererenreennen. 836
o Custom NavIgatiOnccccceeeiiriiiiiieniiiirieeieeeieeee et 842
+ Action Modes and Context Menus
© Prer@qUISILEScocociiiiiiiiiiieiiee ettt e 844
o Another Wee Spot O’ HiStOTYcccocevererieieiienieneneeeeeeieienieins 844
o Manual Action MoOdescccceevuerienienieeieeieceeieee e 845
o Multiple-Modal-Choice Action Modesccceceevieviercieneenieniennen. 850
o Split ACtION MOAESoovvieiieieriiiieeieeeetesie et 855
o What Came Before: Context Menuscccceeveeveeeieneenieeneeeeeneenne 857
+ ActionBarCompat: The Official Action Bar Backport
© PrereqUISILESccooiuiiiiiiiiieiieeetee ettt 861
o Using the ActionBarCompatccoeveeveeieeeiiiiiiiiiieeeeeeeeenens 861
° Choosing a Backportccccoovvvviiiiiiiiiininiiininiiinniiniineeeeenens 868
+ Advanced Uses of WebView
© PrereqUISILESccooiuiiiiiiiiiiiieeetee ettt 871
o Friends with Benefitscccooieviiiiiiciieeceeecee e 871
o Turnabout is Fair Playcccceceieiiiiininineeeeeeeee 877
o Navigating the Watersccccocevieiiiiiiineneneneeeeeeeee e 881
o Settings, Preferences, and Options (Oh, My!)cccceceveireeniereennen. 881
Xi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* The Input Method Framework

© PrereqUISILESccooiuiiiiiiiieiieeetee ettt 883
o Keyboards, Hard and Softc..ccccooiiiiinininiiiieneeee 883
o Tailored To Your Needscccoeeuieiriieieeiieeieeeeeeieeeee e 884
o Tell Android Where It Can GOccccovererieiieiieniineneeeeeeeieens 888
o FItHNG IN coeeiiiiiie e 890
o Jane, Stop This Crazy Thing!ccccoveriniiiiiininnneece, 892
* Fonts
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 895
o Love The One You're Withcccccevirviiriiinieieieceeeeeeeeeen 895
o Here a Glyph, There a Glyphcccoooiiiiiiiiiie, 899
+ Rich Text
© PrereqUISILESccooiuiiiiiiiiiiiieeeitee ettt st 901
© The Span CONCEPLccceveerierierieieeieeteeeerte et et see e sae e sseesaeeneens 901
o Loading Rich TeXtcceviiriiniriniiiiieee e 903
o Editing Rich TeXtcccooiriiiiiiiiiiiineeeeeeeeeee e 905
o Saving RiCh TeXtccueriiiiiiiiiiee e 910
o Manipulating Rich TeXtcccoeviriiiiiiieninineeeeeeeee o11
+ Mapping with Maps V2
© PrereqUISILESccooiuiiiiiiiiiiieeeeee ettt 913
o A Brief History of Mapping on Androidc..ccccccevenenenicniinniennnn. 914
o Where You Can Use Maps V2c.ccccoverineninniinienineneneeeeeeee 915
o Licensing Terms for Maps V2cccccccverinininiiinienieneneneeeeeeene 915
o What You Need t0 Startcccecceevierveereerieeieniereeieeiesee e 916
o The Book Samples... And You!cccoovvieriienienieienieeeeeeeee 920
o Setting Up a Basic Mapccccceeviiiiiiiiiiniiiiccitciccccieeeceeceee 920
o Playing with the Mapcccoocoiiiiiiiieeeee 926
o Placing Simple Markersccccoceeieieiienieneneneneeeeieeeeeeeeeee 931
o Sprucing Up Your “Info Windows”cccceeevenenineniinnenienenenenn 934
o Setting the Marker [CONccoceeiiiiiiiiiininineeee e 939
o Responding to Tapscccccerereririeiierieereetee e 941
o Dragging Markersccocooeririiiiiiiiinieeeee e 943
o The “Final” Limitationsccccccceeviervieneesieeieneeseeieeie e 945
o A Bit More About IPCccoociiiieiieieeieeeeeeceeee e 949
o Finding the USerccoceiiiiiiiieniinineecteeeeeeee e 950
o Drawing Lines and ATeasc..coceverererenieieiienienieseeeeeeeeseeneens 954
o Gestures and CONtIOlScccoceveririiiieiierieneree e 957
o Tracking Camera Changesc.ccocoverenenieiienieneneneeeeeeeeens 958
o Maps in Fragments and Pagerscccceceeieiieiienenenicniniieieicneen, 960
o Maps, of the Indoor Varietycccooveveniniiienineneneeeeieieens 965
o MapFragment vs. MapVIewccccocceeiiiniiiiiiniieenicniecciccieceeee 965
Xii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Maps and ActionBarSherlockccoccoeveriieniininiiniiieeeeeeee, 966

o About That AbstractMapActivity Class... ...cccceceevierenenenienieieenne. 968
o Problems with Maps V2 at Runtimeccccoecevvieeiienieneenieeienenee, 973
o Problems with Maps V2 Deploymentc..cccceceeviiiienenenienicnneenns 973
o What Non-Compliant Devices SHOWcccuuueeeiirreeveennnnnnn. 974
o Mapping Alternativescocceceevierierereneriieiereese e 974
o News and Getting Helpccccooeriiiiiiiiinice 975
+ Mapping with the Legacy MapView
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 978
o Terms, Not of Endearmentccccceevuerienieenieesienienieeeeeseesieenen 978
0 PIliNG ON .o 978
o The Key To It All ...coooiiiiiiieeeee e 979
© The Bare BONESccccceveeiiieiiirienieeieeieceeseee et 980
o Exercising Your CONtrolcccoceeiiieiieneneninieeiesiesieeeeeeeeee s 982
o Layers UPOn Layersccccccocuerviiriieriiiinieiieeeieceecieceee e 983
o My, Myself, and MyLocationOverlaycccceceevieiienenenenicnneeneenne. 986
o Rugged Terrainccocoveveriiiiieierieneeeeeetee e 988
o Maps and Fragmentscccoceeriiieiienenenenieeteesesieeeeeeeee s 989
o Get to the POINL ..cc.coiiiiiiiiiiiee e 993
o Not-So-Tiny Bubblescccooiiiiiiiiiiieeeee 995
o Sign, Sign, Everywhere a Signcccccocovininininiiiiniee, 1006
o In A New York Minute. Or Hopefully a Bit Faster.cccccouc... 1012
o A Little Touch of NOO YaWKoccuveeuiiiiiiiiicieceeeceee e 1014
+ Custom Drawables
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1023
o AnimationDrawableccccoooiiiiiiiiiiiee e 1024
o StateListDrawableccccooiiiiiniiiiii e 1026
o LayerDrawablecccooiiiiiiiiii e 1028
o TransitionDrawableccccoeviiriiiiiieniiieeeeeeee e 1029
o LevelListDrawableccccoeverieiiiiiieieeeeeeeeeeeeee e 1030
o ScaleDrawable and ClipDrawablecccooevevirieninniiniinieeene, 1031
o INSetDrawableccoiioiiiiiiiiieeee e 1040
o ShapeDrawablecccooiiiieiirieieeceee e 1041
o BitmapDrawableccccoovieiiiiiiinieee e 1051
o Composite Drawablesccceceriiriniiieiiinieeeeceeee e 1058
o XML Drawables and EclipSeccccccevirriiriienienieieeienieieeeen, 1062
o A Stitch In Time Saves Ninecccccocriiiiiiininenineeeerenee 1062
+ Animators
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1071
o ViewPropertyAnimatorccccoceriiiniiiniennieinieeiecnieeeeeee e 1071
o The Foundation: Value and Object Animators 1076
xiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Hardware Accelerationccceceevievieeiieniieneesieeeeseesee e 1079

o The Three-Fragment Problemcccccceeevvviiiinieennnnnnes 1080
+ Legacy Animations
© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt e 1001
o It’s Not Just For Toons ANYmMOTec..ccceeievienienenenenieieieneenienaens 1001
o A Quirky Translationcccoceeeeiiiiiiiinineneereeeee e 1092
o Fading To Black. Or Some Other Color.ccccovcereririnnienicienenne. 1096
o When It’s All Said And Doneccccceveeviiecienieieieceeeeeee e, 1098
0 L00SE Fill .eeoiieiiieieeieeeeeee e 1099
o Hit The ACCEleratorccceeeevierierieeieeiesteseeete e 1099
o Animate. Set. MatCh.cccooiiiiiniiiiiieeeeeeeeee s 1100
o Active ANIMALIONS ...ccceiiiiiiiiiiiiiiieniterieeie et 1101
+ Crafting Your Own Views
© Prer@qUISILEScocovuiiiiiiiiiiieiiee ettt 1103
o Pick YOUT POISON ..cccvivuiiiiiiieiecieseeeetesteseee e 1103
o Colors, Mixed How You Like Themccccceevveiirienieeiiiniecenne, 1105
o ReverseChronometer: Simply a Custom Subclassccccceeuenen. 1115
o AspectLockedFrameLayout: A Custom Containerc..cccccuce... 1120
o Mirror and MirroringFrameLayout: Draw It Yourself 1123
+ Custom Dialogs and Preferences
© PrereqUISILESccooiuiiiiiiiiiiiieeetee ettt 133
> Your Dialog, Chocolate-Coveredcccceceeviiienenineninieieiereene 1133
o Preferring Your Own Preferences, Preferably 1137
* Progress Indicators
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 145
© Progress Bars ..ot 1145
o ProgressBar and Threadsc..ccccooeverenininiiiienineneneeeeene 1148
o Tailoring Progress Barsccccoeviiieiieniinenineneceeeceeee 1151
o Progress Dialogscccoceeiriiiiiiienienineeeeee e 1159
o Title Bar and Action Bar Progress Indicatorsccccecceceeveenienicnnen. 1161
o Action Bar Refresh-and-Progress Itemsc..cccccooenenininiincnnne. 163
o Direct Progress Indicationc..cccceoereniniiiieneneneneeccieieene 166
+ Advanced Notifications
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 169
o Custom Views: or How Those Progress Bars Work 169
o Seeing It IN ACION ...cccceoviiiiiiiiiiiciiiceeeceeee e 171
o Life After DEleteccoveeiiiieiieieeeeeeeeeeee e 1176
o The Mysterious Case of the Missing Numberc..ccccccenenne 177
* More Fun with Pagers
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt et 179
o ViewPager with Action Bar Tabsc..cccceceiiiininininiiiciecen, 179
Xiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Using ViewPagerIndicatorc..coccoveneneniniienienenenceceteieens 183

o Columns for Large, Pages for Smallccccoceniniiiiiinininene, 187
o Introducing ArrayPagerAdapterccccoeeeveiiiiiiiiiieiecennnnns 1193
o Columns for Large Landscape, Pages for the Restc.cc....... 196
o Adding, Removing, and Moving Pagescccecevenenenenienieneennn. 1201
o Inside ArrayPagerAdapterc.cccooeverenenieiieiienieneneeeeteeene 1205
+ Focus Management and Accessibility
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1219
o Prepping for TeStiNgccccoceveririiiiiiiienienereeeeeseseeee e 1220
o Controlling the FOCUScccooevvviiiiiiiiiiiiiniiiiiiiniiiiieieeeeeeeeens 1220
o Accessibility and FOCUScccooceririiiiinininiicceeeee 1229
o Accessibility Beyond FOCUSccoiininininiiiiiieccccce 1230
o Accessibility Beyond Impairmentccccecevieveninieneninnienienenee. 1240
+ Secondary Screens via a Presentation
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1243
o A History of Secondary Screenscocceeevievieneneneneenienienenenans 1243
o What is a Presentation?ccccccceeviieiieeiieenieeieeeee e 1244
o Playing with Secondary Screensccccceevvevvrieiiiiieiiiienneeenns 1245
o Detecting DisSplayscccocevierireniniiieiererese e 1250
o A Simple Presentationccccocceeeevieeiienieneesieeieseeie e 1252
o A Simpler PreSentationooeeeeeeeeeeierrreeeeennnseessseesennnnnnes 1258
o Presentations and Configuration Changesccccocevveevievieniennenne. 1263
o Presentations as Fragmentscccccoeveriiiniiiiiinninnicnneenieenee. 1264
o Device Support for Presentationcccccecceeveeveevieereeneeneeseeneenne. 1274
* Miscellaneous Ul Tricks
© Prer@qUISILEScocociiiiiiiiiiieiiee ettt e 1275
o Full-Screen and Lights-Out Modescccccoeevrininineninnenieenncn, 1275
o Offering a Delayed Timeoutcccoceveriiiieneneneniiieeereeeee 1286
+ Home Screen App Widgets
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1201
o East is East, and West is WeSt...cccccecvereeriienieriienieneeieeeeeeeniens 12092
o The Big Picture for a Small App Widgetccocevviriiniiiiiincnenenne. 1292
o Crafting App Widgetsccccoevvvvviiiiiiiiiiiiiiiiiiiiniiininnnincnneeens 1293
o Another and ANOtherccccooveiieiiniiineeceeeee e 1302
o App Widgets: Their Life and Timesccccoceveervieiiencniencnicnieene. 1303
o Controlling Your (App Widget’s) DeStinyccceeeerverererrererreennen 1303
o Change Your LOoKcocoiiiiiiniiiiieeeeeeeeeee e 1304
o One Size May Not Fit Allccccovvvvviviiiiiiiininiininiiiinnnnnnnns 1305
o Lockscreen Widgetscccccoevevviiiiiiiiiiininiiiiiniinniininieeieeceenens 1312
o Being a Good HOSLc.coveoieiriniiiiiricicicccccccee 1318

+ Adapter-Based App Widgets

XV

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt 1319

o New Widgets for App Widgetscccecererieiieiienenenenieieieienens 1319
o Preview ImMagescccceviiiiiiiiiiniiiiieeiecceereeee e 1320
o Adapter-Based App Widgetsccccoovvvvvvriiiriiiiiniiiniiinnnennns 1322
+ Content Provider Theory
© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt 1337
o Using a Content Providerc..cocoovevenenininienienieneneneeteieiens 1337
o Building Content Providerscccccocvveririieiienieneneneeeeieieens 1343
o Issues with Content Providerscccceeevvieneeniencienieneeieeeeseene. 1350
+ Content Provider Implementation Patterns
© PrereqUISILESccooiuiiiiiiiiieiieeetee ettt 1351
o The Single-Table Database-Backed Content Provider 1351
o The Local-File Content Providercccccoccevveeveeviencieneeneeieneenne. 1359
o The Protected Providerccoceeeeeueeeieenieeeennnnseeesnneeeennnnnnes 1363
© The Stream Providercccouvieeeeuneeeeiinnniereenneceesseneeennnnes 1366
O FIlEPTOVIAETceveuueeiiiiriiiennnneeierneerennnnesesssssessnnssssssssssssssnnnes 1369
+ The Loader Framework
© Prer@qUISILEScocociiiiiiiiiiieiiee ettt 1375
o Cursors: Issues with Managementcccccoceveriniienenenicncnceeene. 1376
o Introducing the Loader Frameworkcccoceriieiiinineninicnnccniene. 1376
o Honeycomb... Or NOtccccceviriiniiiiiiniiiiiinccccceeeceee 1378
o Using CursorLoaderccovirereriiiieiienieneneeeeeeeseseeeeee s 1379
o Using SQLiteCursorLoadercccoevereriniienienieneneneeieeens 1381
o Inside SQLiteCursorLoaderccccevervierieneesienieneeieeeeeeeseeenes 1382
o What Else Is MiSSING?ccccceveririiiiinienieneneteeese et 1386
o ISSUES, ISSUES, ISSUES ...uueiiiiiiiiiiieee ettt e e et 1386
o Loaders Beyond CUISOTScccceceeierienierienenieieiesieseeeeteee e 1386
o What Happens When...?cccccoeiiriinieiinieeeeceeeeeee e 1390
+ The ContactsContract Provider
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1393
o Introducing You to Your CONtactscccceceeveeeeveeneenenenenieseeneennes 1394
o Pick a Peck of Pickled Peoplecccooveievienieicieieeeeeeeee, 1395
o Spin Through Your Contactsccccevererieiienienenenceieieiereeeee 1398
© MaKin’ CONtACES ...cceeevvieeiieiiecieecie ettt et neeeaee s 1407
+ The CalendarContract Provider
© Prer@qUISILEScccoiiiiiiiiiiiieiiee ettt 1414
o You Can’t Be @ FaKerccooovieiieiiiciceeeeceeeee e 1414
> Do You Have Room on Your Calendar?cccccoeeeiveveeeiienneenen. 1414
o Penciling In an Eventcccocoviiiiiiiiiinneeeeeeeeeene 1419
+ The MediaStore Provider
O PreTeqQUISILEScccuuuiieuniiienniiinniiiiniiiiiiiiueiienietnseeaneseansseanens 1421
XVi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o What Is the MediaStore?ccuuueeeeieenneeeeeenneereennnceeeeennnenns 1422
o MediaStore and “Other” External Storage 1423
o How Does My Content Get Indexed?cccceeevveeeeeeeennnns 1424
o How Do I Retrieve Video from the MediaStore? 1424
+ Encrypted Storage
© PrereqUISILEScccooiiiiiiiiiiiieieeeeee ettt 1434
o Scenarios for ENCryptionc..cccocevenenenienienienencncnceeeeesee 1434
o Obtaining SQLCIPRETccccoeviiiiiiiiiiiiiiiiiiiiiiiiiiiiinnceececeeeeees 1435
o Employing SQLCIPRETcoooiiiiiiiiieeeeeeeececeeene 1435
° SQLCipher LIMitationsccccoeeeeeeeeneeierrreerennnnseessssessnnnnnnes 1438
o Passwords and SESSIONSccceevereerieerienienieenieeeeneesieeeeeeeeseeene 1439
o About Those Passphrases...ccccceeevereeniieiienienieieeeeseeee e 1439
o Encrypted Preferencescccoceveiineneneniniieneneseneeeeeee 1444
S (0 @575 o =) SRS 1446
+ Tutorial: Upgrading to SQLCipher
© PrereqUISILESccuuvieuniiienniiinniiiiniiiiiiiitaniiieaietaseeaneseansssennes 1449
o Step #1: Getting Your Starting Pointcccccoeiiiiiiiiiiiinnnnnn, 1449
o Step #2: Adding SQLCipher for Androidcccocerveriiiiiencncnenne. 1462
o Step #3: Adding a New Launcher Activitycccoceveeiienencncnncnne. 1462
o Step #4: Collect Passphrase For New Encryptionccccccceeuneene. 1464
o Step #5: Create or Encrypt the Database 1469
o Step #6: Collect Passphrase For Decryptionc..cecceceevievieniennenne. 1474
+ Packaging and Distributing Data
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1477
o Packing a Database To GOccceevievienienenenieieeeeseeeeeeeene 1477
+ Audio Playback
© PrereqUISILEScccociiiiiiiiiiiieiee ettt 1483
o Get YOUr Media Oncc.cooieiiiiieniiniiieieeeneeeetee e 1483
o MediaPlayer for AUiOccccoceririiiiininineneeee e 1484
o Other Ways to Make NOiS€ccceeerereriiiienienenenceeeeeeeee 1490
+ Audio Recording
© PrereqUISILEScccocuiiiiiiiiiiiieiee ettt ettt e 1493
o Recording by INteNtcccooeveririiiiiiiiriineneeeeeseeeee e 1493
o Recording to Files ... 1496
o Recording to Streamsccoceeceevieiienienenenieteeeseseeeee e 1499
© RaW AUdiO INPUL oottt 1502
o Requesting the Microphoneccocooiiiiiiiiiniininincceen, 1502
+ Video Playback
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1505
° MOVING PICUTIES ...cuviiiiiiiiiiiiiiiiieciieeccece et 1505

+ Using the Camera via 3rd-Party Apps

Subscribe to updates at https://commonsware.com

XVii

Special Creative Commons BY-NC-SA 4.0 License Edition

© PrereqUISILESccooiuiiiiiiiiiiiiieeeee ettt 1511

o Being Specific About Featuresccccoceeeriiiiiniininenennieeene 1511
o Still Photos: Letting the Camera App Do Itccccoeveniiiiiicncnenne. 1512
o Scanning wWith ZXingccccviveniiiiiiineneneneeeeeeeeeeee e 1514
> Videos: Letting the Camera App Do Itccccoceviiiiiiiinininicicnee, 1515
o Directly Working with the Cameracccocvcieiiiiicnninnenee. 1516
+ Working Directly with the Camera
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1517
o Basic CameraFragment Usageccccccoeeirieiiiiniiinicinecniccieennene 1518
o Simple CameraFragment Configurationccccecevevenenieneennenne. 1519
o Core Camera CONCEPLScuceveuniiinniiiinnirinniiinnisieniiianneeanens 1521
o Advanced CWAC-Camera Featurescceuueeeeeernneennennnnnn. 1539
*+ Advanced Permissions
© Prer@qUISILEScocovuiiiiiiiiiiieiiee ettt 1543
o Securing Yourselfc..cocoiiiiiiiiinine e 1543
o Signature PermiSSIONSccccecervieiriiiniieniieniieeieceie st 1546
* Restricted Profiles and UserManager
© PrereqUISILESccuuvieuniiienniiinniiiinniiiiiiitaisienietnsseaneseansesennes 1549
o Android Tablets and Multiple User Accounts 1549
o Determining What the User Can Docccceeeveeeiieeeeennnnns 1555
o Impacts of Device-Level ReStTictionscccceeeeeeeeieeeeeenns 1558
o Enabling Custom ReStTiCLIONScccovvvvvveriiireeieiiiniiiiineenenns 1558
o Implicit Intents May Go “Boom”cccccoevvvvvriiiiiiiiiiiiinnnennns 1569
© The Future: APP OPS?uueeeeeeeiiirrieirenneneessseesemensssssssssssssnnnes 1569
+ Tapjacking
© Prer@qUISILEScocociiiiiiiiiiieiiee ettt e 1571
o What is Tapjacking?ccccoerireniiiiiirerereseeeteeeseseeeeeeene 1571
o Detecting Potential Tapjackersccccoceeieiiinieniniininiiiciccnen, 1576
o Defending Against Tapjackersccoceveeieiieieniinienininieieeens 1579
o Why Is This Being Discussed?ccceverieiienienenienienenieieienenns 1582
o What Changed in 4.0.37 ..o 1582
* Accessing Location-Based Services
© Prer@qUISILEScccoiiiiiiiiiiiieiiee ettt 1585
o Location Providers: They Know Where You're Hiding 1586
o Finding Yourselfcccoiiiiiiiinieeeeeee 1586
0 ON the MOVEooiiiiiiieiieeeeeeestee e 1588
o Are We There Yet? Are We There Yet? Are We There Yet? 1589
o Testing... TEStING... cc.eeoviiriiiiiiiiiiinieetete e 1590
o Alternative Flavors of Updatescccceevuevvienienincieneeeeceeeeseenne. 1501
o The Fused OPLtioNncoceviiieiiiiienienineeteeeeeeeee e 1592

* The Fused Location Provider

Xviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt 1593

o Why Use the Fused Location Provider?ccccocevenennicncnenne. 1593
o Why Not Use the Fused Location Provider?cccccecererennnene 1504
o Finding Our Location, ONeeccocovvererieienenenenceeeeeieseeeene 1594
o Requesting Location Updatescccoeevereririenienenenencneeienen 1602
o Gaps in the Fused Location Providerccccooevvnniniiinicncnenne. 1604
+ Working with the Clipboard
© PrereqUISILEScccoceiiiiiieiiiieieeeeee ettt 1605
o Using the Clipboard on Android 1.X/2.Xcccccevveveeiiiiiiieeenennns 1605
> Advanced Clipboard on Android 3.x and Higher 1608
o Monitoring the Clipboardcccccoevvvivriiriiiiiiiiiiiiiieennnnns 1613
o The Android 4.3 Clipboard Bugccooeevvevveviiiiieiieieeennnnns 1615
+ Telephony
© Prer@qUISILEScocovuiiiiiiiiiiieiiee ettt 1617
o Report To The Managerccccoceeveeieiieneninenieieieseeeeeeeeeee s 1618
o You Make the Calllcocooiiiiiie e 1618
> No, Really, You Make the Call!ccocoriiiiiiiiininineeee, 1621
+ Working With SMS
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1623
> Sending Out an SOS, Give or Take a Letterccccceceevecerenennencns 1623
o You Can’t Get There From Herecccoocvevirviieciinienieiecieeeeens 1630
* NFC
© Prer@qUISILEScocovuiiiiiiiiiiieiiee ettt 1633
o What IS NFC? ..ottt 1633
o To NDEF, Or Not to NDEFcccccooiiiiiiiiiiiiiiiieciceicceececeee 1635
o NDEF MOdalitiescccccerieiiirierienieeieeieseeieeie et 1635
o NDEF Structure and Android’s Translationccccecceeevervennennnen. 1636
o The Reality of NDEFccccoovviiiiiiiiiiiiiiiiiiiiiiiiiiiceeeeeeeeeeeenens 1637
° SoUTCES Of TAGS ..eeuvvevneiiiiiiiiiiiiiiiiiiiiiicenneneecenccecceecceceeeeeeeeeees 1639
°© WIItINGg t0 @ TQg ..ceovveeiiiiiiiiiiiiiciectceceeecceceee e 1639
o Responding to @ Tagcccceeevereriiiieierieneeeeeeseeee e 1647
o Expected Pattern: BOOtStIapccccccevveeveeiieneeneenieniesceieeee e 1648
o Mobile Devices are Mobilecccccecvevieiiieiienieieieceeeeee, 1649
o Enabled and Disabledccccccoriiniiiiiniiiiecceceeee e 1649
° ANAroid Beamcccceeviieiiniieiieieseeee e 1650
o Beaming Filescccooimiiiiiiiii e 1656
o Another Sample: SecretAgentMancccceceveveneneneniennienieniene. 1658
o Additional RESOUICEScccueeevieeiieeiieeieecteeee et 1667
*+ Device Administration
© PrereqUISILEScccociiiiiiiiiiiieiee ettt 1669
o Objectives and SCOPEccceevverierieriieieeiereeseee et 1669
Xix

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Defining and Registering an Admin Componentc..cc.c...... 1670

o Going Into Lockdowncccoceviviiiiininiiincncicnecececces 1676
o Mandating Quality of Securityccccoevveririiiienenenneneeeees 1683
o Getting Along with Othersccccccocniniiiinininceee 1684
+ PowerManager and Wakel.ocks
© PrereqUISILEScccooiiiiiiiiiiiieieeeeee ettt 1685
o Keeping the Screen On, UI-Stylecccoceviveiiniinincnninincnieee. 1685
o The Role of the WakeLockccccoinininiiiiininininiceieeee 1686
o What WakefullntentService Do€sc.cccooveeieeerienieeceeeieeereeene. 1687
* Push Notifications with GCM
© PrereqUISILEScccociiiiiiiiiiieiiee ettt e 1689
o The Precursor: C2DMcccccceeierieniirieeienteieee et 1690
o The Replacement: GCMccccociiiiiinininenieteeeseeeeee e 1690
o The Re-Replacement: GCM 2013 ...ccccoeverierinieiienienenenceceeeene 1690
o The Pieces of PUShcccoooiiriiniiiieeeeeeeeeeeeee e 1691
o A Simple Pushcoccooiieiii e 1697
o Message Options and Advanced Featurescccoceevvevinvenenenene 1711
o Re-RegiStrationccccecceiiiiriiiiniiiiiiiieeieeieceecieeee e 1712
o Pre-Release FEaturescccccoveeviieiieeieniesieciesceseereeeeseeee e 1713
o Considering ENCIYPLIONccccoceeiiiiiiniereneninieteiesieneeeieeceeeeeeens 1715
o IssueS With GCM ...ccoioiiiiiiiieiecieeeeee et 1716
o Amazon Simple Notification Service and GCM 1717
+ Basic Use of Sensors
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1719
o The Sensor Abstraction Modelcccoeereienieniniinieeeeeeenee, 1719
o Considering RAtesc..cocevieiiiieneninieieeeees e 1720
o Reading SeNSOTScccoeririiiiiieiereneete e 1721
+ Other System Settings and Services
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1731
o Setting EXPectationsccccceceivieriiiniiiiniienieeiceieceeeiecsee e 1731
> Can You Hear Me Now? OK, How About Now?ccccecererinnnen. 1736
o The Rest of the Gangccccceeveriiiiiiiene e 1739
* Dealing with Different Hardware
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1741
o Filtering Out Devicescccooeveriiieiieiineneneeeeeeeeeeeeeeene 1741
o Runtime Capability Detectionccccecevieiiiiieninenenieieieeneen, 1744
o Dealing with Device Bugsccccoceeiieienininiiieeeeeeeeteeene 1745
* Responding to URLs
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1747
o Manifest ModifiCationsccceevveeeiieeieeiiecieeeee e 1747
o Creating a Custom URLccccciiiiiiiiiiiiiicieeceeeeee 1749
XX

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Reacting to the Linkc..cccooiiiniiiiiiiiiieeeeeceeene 1749
+ Plugin Patterns

© PreTeqQUISILEScccuuuiieuniiienniiinniiiiniiiiiiiiaeiienietaeteaneseassseanens 1753
o Definitions, Scenarios, and SCOPEcceeceevervierciereerieeieneeseeeaene 1753
o The Keys to Any Plugin Systemcc.cececeeiiinienenenienieieieneneens 1754
o Case Study: DashClockccoocoveriiiiiiiininneeeeeeeeene 1762
o Other Plugin Examplesccccocoiiiiiiiinininiieieeeeeceeens 1765
+ PackageManager Tricks
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1785
o ASKiNg ATOUNAoceoiiiiiiiiiiieeeee e 1785
o Preferred ACHIVITIESoccvevveevierieniieieeie et 1789
o Middle Managementccocceeeeevienienenenenieieiese et 1794
+ Searching with SearchManager
© Prer@qUISILEScocovuiiiiiiiiiiieiiee ettt 1797
o HUunting S@asOMcoceiiiiiiiiiiiiieeiieeicceececsee e 1797
o Search Yourselfcccooveeiirienieieeceeeeeee e 1799
o Searching for Meaning In Randomnesscccceceveriiiienicnicnenne. 1806
o May I Make a Suggestion?ccccoevererenienienenenceeeeeeesee 1807
o Putting Yourself (Almost) On Par with Googlecccccecvrreruennce. 1811
+ Handling System Events
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1817
o [Sense a Connection Between Us...ccoccueiiiiiiniiiinnieeniieeeieene 1817
o Feeling Drainedcccoceveriiiiiienienineeeeee e 1819
+ Remote Services and the Binding Pattern
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1827
o The Binding Patterncccoceeeeiiiiiiininneeeeseeeeeeeeen 1828
o When IPC Attacks!ccoceevieiieiieieieeieeeeeeee e 1836
o Service From Afarccoceevieienienieiecieseeeee e 1838
o Servicing the Service ... 1843
o Thinking About SeCUTItYccccecteiiiriirireriiieeeere e 1849
o The “Everlasting Service” Anti-Patternc.ccocecevveriiiiiencncnene. 1849
* Advanced Manifest Tips
© Prer@qUISILEScccoiiiiiiiiiiiieiiee ettt 1851
o Just Looking For Some Elbow Roomcccceceiiiiiiiinincnnicnen. 1851
o USING an ALIAS ...cocueiieiiirieriieieieeeese e 1860
o Getting Meta (Data)cccoveeveerirereeieinirieieeere et 1862
* Miscellaneous Integration Tips
© PrereqUISILEScccocueiiiiiiiiiiietie ettt 1865
o Take the SROTECULocueevvieiieieieeeeee e 1865
o Homing Beacons for INtentscccecevverienienenenicncnieenesenee 1872
o ShareActionProvidercccccoceevieeiieiieeieeeeeee e 1872
XXi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

* Reusable Components

© PrereqUISILEScccociiiiiiiiiiiieiee ettt 1877
o Where Do I Find Them?cccoooiiiiiioiieieeeeeeee e, 1877
o How Are They Packaged?c.ccooevininininiiieinceeeeeeeee 1878
o How Do I Create Them?cccccoevievierieeiieniereeieceeseeeee e 1879
o The Future: AARoooiiiiieee s 1882
o QOther Considerations for Publishing Reusable Code 1882
+ The Role of Scripting Languages
© Prer@qUISILEScccociiiiiiiiiiiieiee ettt 1887
0 Al GTOWN UD ittt 1887
o Following the Scriptcccoooiriririiiiiiiieeeeeee e 1888
o GOING Off-SCIIPL ..ot 1889
+ The Scripting Layer for Android
© Prer@qUISILEScccooiiiiiiiiiieieieee ettt ettt 1893
© The Role Of SLAAooeeeeeeeeeeee et 1893
o Getting Started with SLAAocooiiiiiieeeeee 1894
o Writing SL4A SCIiPtScocviiiiiiiiiiiiieeieeeeecececeeee e 1902
o Running SLAA SCIIPES ...cocueiriiriiiiriiiiiieiiceieceececee e 1907
o Potential ISSUESccccceevuieiiieiiirienieieeieeeeseete et 1910
« JVM Scripting Languages
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1913
o Languages on Languagesccccceeieriiiiiiniiinieniicecececeee 1913
o A Brief History of JVM Scriptingc..cccccecevenenieniienenenenenceeenes 1914
© LIMItAtIONS ..eeioiiiiiiiiiiiiieeeeeeeee ettt ettt 1915
o SL4A and JVM Languagesc.ccecevererenenieieienienenieeeeeeieee s 1916
o Embedding JVM Languagescccceeerererienienieneneneeeeieieneenaens 1916
o Other JVM Scripting Languagescoceceeerienieneneneneneeeeeenen 1930
* JUnit and Android
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1933
> You Get What They Give YOUccccceveririiiiiiiiniineneneeeeeeens 1933
© YOUT TESt CASES .eeiruuiiieiiiiiiiiieitee ettt ettt ettt 1936
© YOUT TESt SUILE ..eooiiiiiiiiieiieiee ettt et 1941
o Running Your Testsccccceevueriiiniiiiiiiiiiieciceieceeeeceeee e 1942
* MonkeyRunner and the Test Monkey
© Prer@qUISILEScccooiiiiiiiiiiiiieiie ettt ettt 1945
o MONKeYRUNNEToouiiiiiiiiiiiiiieieeeee s 1945
o Monkeying Aroundcccceeereriiiinieneneneeeee e 1947
+ Testing with UlAutomator
© PrereqUISILEScccociiiiiiieiiiieieee ettt et 1949
o What Is UTAULOMALOT? ...cceovuiriiriiiieieienierieeeeete et 1949
o Why Choose UlAutomator Over Alternatives?cccceceevueneee 1949
xXii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Creating Some TeStsccoccerviiriiiiiiiiiiiiiececee e 1950

o Running Your Testsccccceevieriiiniiiiiiniiiiececeicceeeeceece e 1959
o Finding Your Widgetsccceceveriiiiinienenenieteeesieseeeeeee e 1960
o Limitations of LiautOMAtOrcccevieriierieeiereeeeie e 1960
+ Advanced Emulator Capabilities
© PrereqUISILEScccooiiiiiiiiiiiieieeeeee ettt 1963
© X806 IMAZES ...eveivieiiiiiiiiiteteetce et 1963
o Hardware Graphics Accelerationcccoeceeveevierieeneenieesieneenenns 1966
o Defining New DevViCesccccoceririiiiinienenenieieeeseseeeee e 1969
o Keyboard Behaviorccccocoviriniiiiiiiiinineeeeeeeeee e 1972
o Headless OPerationcccoeeerieiienienienenenieeeseseseeee e 1972
« Using Lint
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 1973
0 WHRAt TEIS ittt e 1973
°© When It RUNSoooviiiiieeceeceeeeeee e 1974
0 WHat t0 FiX covieieeieiieieeeeeeeeeeeeeeee sttt 1976
o What to CONfigUIecccciiviirieriniiieieiereeeee s 1976
+ Using Hierarchy View
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 1981
o Launching Hierarchy Viewccciiiniiiiinineceees 1981
o Viewing the View Hierarchycccocoiiiiiiiinnniieeenee, 1982
© VIWSEIVET ..eoiuiiiiiiiieiitee et et et e ettt e e e bt e e st e e e st e e s e e 1985
+ Using DDMS
© PrereqUISILEScccociiiiiiiiiieeeiieetee ettt e 1987
o Starting DDMS ... 1987
o File Push and Pullccccooieiiiiiiieeeeeeeee e 1988
0 SCIEENSNOLS ..ccuviiiiiieiieieceeeeee e 1989
o Location UPdAtescccceceevierereniriiieieneseeeeeee e 1989
o Placing Calls and MeSSagesccccocerererieienieneneneeeeeeieseenenes 1990
* Android Development in Intelli] IDEA
© PrereqUISILESccuuuvieuniiienniiinniiiiniiiiniiitairienieinsseaneseansseanes 1993
o Creating a New Projectceeuuviiiennniiiiinnnieriennniieeennnnens 1993
o Importing an EXisting Projectceeeeuuveeiirenniceeennnnnne 1996
o ALtAChing @ JARovveiiiiiiiiiiiiiiiiiiiiiiiniinneennnnnnceeeceeeeeeeeeees 2006
o Accessing Android ToOlscccouvvvvviviiiiiiiiiiiiiiiiiiiiieenennns 2008
° Run and Debug a Projectcccooevvviiiiiiiiiiiiiiniinieininnnneenns 2010
o Editing Android-Specific Filescccccoevvvvvriiiiiniiinninnnnnnnns 2011
o IDEA-SPecific Filescccccevvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeennens 2013
N 0/31 1T L7 7 2013
+ Signing Your App
© Prer@qUISILEScccoiiiiiiiiiiiieiiee ettt 2015
xxiii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Role of Code Signingcccceeeveririiiiereneneneeeeeeseeeeeeene 2015

o What Happens In Debug Modecccoeoeriniiiiincnininniiieenees 2016
o Creating a Production Signing Keyc..ccccocevinininininncncnenne. 2016
+ Distribution
© Prer@qUISILEScccocuiiiiiiiiiiiieiee ettt 2023
o Get Ready To GO To Marketcccccevirinieniiineneniiincneieenenenes 2023
+ Issues with Speed
© PrereqUISILEScccoceiiiiiieiiiieieeeeee ettt 2029
o Getting Things Donecccccoeviviiininiininineienececeeseeeeen 2029
o Your Ul Seems... Jankyccccceenieiiiiinininiiinincieinencieeeenciees 2030
o Not Far Enough in the Backgroundccccocovininnnininnnnne. 2030
o Playing with Speedccoiiiiiiniiii s 2031
+ Finding CPU Bottlenecks
© Prer@qUISILEScccooiiiiiiiiiieieieee ettt ettt 2033
© TTACEVIEW ..eetiiiiiieeiiee ettt ettt ettt e e s bt e e et e e e bt e e e e e 2034
o QOther General CPU Measurement Techniquesc..cccceceeueeneee 2043
o Ul “Jank” Measurementcccccveeeeeereeeireeseeeireeeeeeereeeveessneenens 2045
+ Focus On: NDK
© PrereqUISILEScccocuiiiiiiiiiiiietieetee ettt 2061
o The Role of the NDK cccoiiiiiiiiiiieeeeeeeeee 2062
o NDK Installation and Project Setupcc.cccevevereneneniennienienenne. 20065
o 'Writing Your MaKefile(S)c.cccveverieerieeinieinieisieeneeeeeeevenane 2069
o Building Your Libraryccccoceeiiiinininnneeenceeeeeeen 2071
o Using Your Library Via JNIccccoiiiininiiieeneeeee 2071
o Building and Deploying Your Projectc.ccccceverenencninnicnicnenne. 2077
+ Improving CPU Performance in Java
© PrereqUISILEScccociiiiiiiiiiiieiee ettt 2079
o Reduce CPU Utilizationc.cocevevinininenieieeneneseeeeeeeee 2079
> Reduce Time on the Main Application Threadc..cceuvenuen.ee. 2084
o Improve Throughput and Responsivenessc.ccecceeeevvevenennenne. 2092
+ Finding and Eliminating Jank
© PrereqUISILEScccocuiiiiiiiiiiiieiee ettt ettt e 2095
o The Case: ThreePaneDemoBCccccoovvevirveriienienieieeieneeiens 2095
o Are We JanKy? ..ot e 2096
o Finding the Source of the Jankcccocoiiiiiiiiinne 2096
o Where Things Went WIongcccceceverieiienenencncneeeienenene 2106
o Removing the Jank ..o 2107
+ Issues with Bandwidth
© PrereqUISILEScccociiiiiiieiiiieieee ettt et 2109
> You're Using Too Much of the Slow Stuffcccccoceveiiinininnn, 2110
> You're Using Too Much of the Expensive Stuffc..cccccecennenies 2110
XXiv

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

> You're Using Too Much of Somebody Else’s Stuffccc.c...... 2111

> You're Using Too Much... And There Is Nonecccccceeeveinennnee. 2112
+ Focus On: TrafficStats
© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt e 2113
o TrafficStats BaSiCScccevveeriieriirieniesieeie ettt 2113
o Example: TrafficMONitorcccoevieviievieriienieiecieceeiceee e 2115
o Other Ways to Employ TrafficStatsccceceverieiienenenicncnieeenee. 2123
* Measuring Bandwidth Consumption
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 2125
o On-Device Measurementccocceeeiieeiiieeniieennieeeniee e seeeeae 2125
o Off-Device MeaSUIemMEeNLcccueeereeeireeeieeireeeeeeeteeereeeseeesseesseeens 2127
o Tactical Measurement in DDMScccocviiiiiriieniieneeiecieeeeiens 2129
*+ Being Smarter About Bandwidth
© Prer@qUISILEScocovuiiiiiiiiiiieiiee ettt 2133
o Bandwidth Savingsc..cccccceririeniiiiiiee e 2133
o Bandwidth Shaping ..o 2139
o Avoiding Metered CONNECLIONScoeruereeruerieienienenienenceeeeenees 2142
+ Issues with Memory
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 2145
o You Are in a Heap of Troublecccocveviivienieiiiiiieeeeeeeeee, 2145
o Warning: Contains Graphic Imagescccoceeecinvencnccninencnne. 2146
o In Too Deep (on the Stack)cccceeveieirieieieieeeeeeeeeeee e 2147
+ Finding Memory Leaks with MAT
© PrereqUISILEScccociiiiiiiiiieeeiieetee ettt e 2149
o Setting Up MAT ...c.ooiiiiiiiieeeteeteeet e 2149
o Getting Heap DUMPSccceeiviiiiiiiiiiiiiiiicicececeieceeeeceeeieee 2150
o Basic MAT OPerationccccceceevieriieirieniiieniieiieeieesieesreesee e 2156
o Some Leaks and Their MAT Analysisc..ccccevevenencneniienienicnenne. 2162
+ Issues with Battery Life
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 2171
o Youre Getting Blamedc.cccooeeiiininiiiiininicce 2172
o Stretching Out the Last mWh ..o 2173
+ Focus On: MDP and Trepn
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 2175
o What Are You Talking About?ccccoceeiiiiiiiiinineneneeeieeen, 2175
o Running Trepn Testscccceeviiiiiiiiiiiiiiiiicceccecececee e 2177
o Recording Application Statesccoceveeeeieiienenenieneeeeeens 2178
o Examining Trepn Resultsc.ccocoiiiinininiiniiiiiineneeceeene 2179
+ Other Power Measurement Options
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt et 2183
0 POWETITULOT ..coniiiiiiiiiiee e s 2183
XXV

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Battery Screen in Settings Applicationc.ccocvcerviiiiiiiencncnenne. 2187

o BatteryInfo DUMPcccociiiiiiiiiiiiieeeeee e 2189
+ The Role of Alternative Environments
© Prer@qUISILEScccoceiiiiiiiiiieiiee ettt e 2193
o In the Beginning, There Was Java...ccccecerviiviinenincninieeieenee, 2194
o AN It Was OK ..o 2194
o Bucking the Trend ..o 2195
© SUPPOTIt, SETUCLUTE ...ooouiiiiiiiiiiieeiiee ettt 2195
o Caveat DevelOPerccooeeviieieiieieeceseeee et 2196
+ HTMLs
© PrereqUISILEScccociiiiiiiiiiieiiee ettt e 2197
o Offline Applicationsccceecverierieniieieeiereeeee e 2197
0 WeD Storage ...cc.eoiiiiieiieee e 2204
o Going To Productionccccoeeeeieinenicninineneicnenceeceeseceenees 2207
o Issues You May Encountercc.ccocceevieriiiniennicnnennicniecnneeee. 2208
o HTMLs5: The Baselineccccoeveevieviieiinieieeieceeeeeeceeseee e 2211
+ PhoneGap
© Prer@qUISILEScocociiiiiiiiiiieiiee ettt 2213
o What Is PhoneGap?cccooiiiririiiiieeereeeeeeseeieeeeeeene 2213
o Using PhoneGapccccoieieiiiiininineeeeee e 2216
o PhoneGap and the Checklist Samplecccocerviiiiiineniniienee. 2221
o Issues You May Encounterc..ccocceevieriiiniiennicnncnnicnecnieeee. 2226
o For More INformationcccecceeeeniriieeiienieneesieeeeseeee e 2229
+ Other Alternative Environments
© Prer@qUISILEScccoviiiiiiiiiiieiiee ettt 2231
0 RROAES ..ootieiiieieeieeeece ettt s 2231
o Flash, Flex, and AIRoooo oot eeeee e 2232
o JRuby and RUDOLOccccociiiiiiiiiiiieee e 2232
© APP INVENTOTeiiiiiiiiiieee e 2233
o Titanium MODbileccooieiiiiiirieiceee e 2235
o Other JVM Compiled Languagescccceceeerierienenenenenieieienes 2236
 Anti-Patterns
© PrereqUISILEScccoceiiiiiieiiiieieee ettt 2239
o Leak Threads... Or Things Attached to Threadsccccceevuneee. 2239
o Use Large Heap Unnecessarilyc..ccccceveverieiinnincnnicncncnneene. 2241
o Misuse the MENU BUttonc..cccccoeveneniniienienenenceeeeeeesee 2243
o Interfere with Navigationc..ccccevverereneniienieneneneneeeeeeeeseee 2244
o Use android:sharedUserldccccccooeeeiiiiiiiiieiiieeeceeeeeeeee, 2246
o Implement a “Quit” BUttONccceecveveiiriieiieiereeeee e 2247
o Terminate YOUT Processcccoccceiriiiiiiiiiiiiiiiiieiceeeeeeeeeee 2249
o Try to Hide from the Userccccooivinininiiiiininnneeceee 2250
XXVi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Use Multiple Processesccecereeviieiienieniesieeieneeseeeieseeneeesae s 2251

> Do Not Hog System Resourcescccceeeuervieniieinienneeniccneennnen. 2253
+ Widget Catalog: AdapterViewFlipper

o Key Usage TIPScooieeiiiiiiiiiiiiiciececiececcecee et 2255

o A Sample USAgecccoceeiriiiiriinienieiteteeesenee s 2256

o Visual Representationccocceeceereerieesieneeneenieseeseeseeeeeseeenseens 2256
+ Widget Catalog: CalendarView

o Key Usage TIPS ...ccccevuiiiiiiiiiiiiiiiiiicicicccc e 2257

o A Sample USAgecccoeeiriiiiriinienieiteteeesenee s 2258

o Visual Representationccccceeceereerieesieneeneesieseeseeseeeseesneenseens 2259
+ Widget Catalog: DatePicker

o Key Usage TIPS ...cccceviiiiiiiiiiiiiciiiiiicccece s 2261

o A Sample USAGecccoceviiiiiriinieiiinicicictneceeteetceteee e 2261

o Visual Representationcccceeceereerieerieneeneesieeieeseesieeseseeesseens 2263
+ Widget Catalog: ExpandableListView

o Key Usage TIPS ...ccccevuiiiiiiiiiiiiiciciiiicccccce e 2267

o A Sample USAGecccoceviiiiiriinieiiinieieictneceteescetee e 2268

o Visual Representationcccceeceeveerieesieneeneesieseeseeneeeseseeenseens 2274
+ Widget Catalog: SeekBar

o Key Usage TIPS ...cccccoeviiiiiiiiiiiiiiiiiiiiccccc e 2277

o A Sample USAgecccoeeiriiiiiiiinieeteteee e 2277

o Visual Representationccocceeceereerieesieneeneenieeeeneeseeeseseeesseens 2279
+ Widget Catalog: SlidingDrawer

o Key Usage TIPS ...ccccceviiiiiiiiiiiiiiiiiiiicciccccc e 2281

o A Sample USAGeccoeviiiririinieiiinicrieictnecteteesteeteesreneeaeas 2282

o Visual Representationcccceeceeeeevieesieneeneesieeeeseeseeeseseeesseens 2283
+ Widget Catalog: StackView

o Key Usage TIPS ...ccccceviiiiiiiiiiiiiiiiiicicccccc e 2285

o A Sample USAGeccoeviiiiuiriiniiiiinicicictneceeteeteetee e 2286

o Visual Representationccocceeceeeeerieerieneeseesieeeeseeseeeeeseeenseens 2287
+ Widget Catalog: TabHost and TabWidget

o Deprecation NOLEScccovuiiiiiiiiiiiieiieeeieeeeee et 2289

o Key Usage TIPS ...cccceviiiiiiiiiiiiiciiiiiicccece s 2289

o A Sample USAgecccoceeiriiiiiieniirieiteteeieresee e 2290

o Visual Representationccocceeceereerieeiieneeneenieseeseeseeeseseeenseens 2292
+ Widget Catalog: TimePicker

o Key Usage TIPScooieeiiiiiiiiiiiiiciececiececcecee et 2295

o A Sample USAgeccceeeiriiiiiiniinieeitetee et 2295

o Visual Representationccccceeceereerieesieneeneesieeeeseeseeeeesseeneeenns 2297
+ Widget Catalog: ViewFlipper

o Key Usage TIPScooieeiiiiiiiiiiiiiciececiececcecee et 2299

XXVii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o A Sample USAgeccoeeieiiiiiinierieteteteesesee s 2300

o Visual RePresSentationccccocceeceeveevieneeneesienieeneesieeseseeesseessesnnas 2301
+ Device Catalog: Google TV
© PrereqUISILEScccociiiiiiiiiiiieiee ettt 2303
o What Features and Configurations Does It Use?c..cccecueneee. 2304
o What Is Really Different?ccooininininiiiiineeeeeen 2305
o Getting Your Development Environment Established 2309
o How Does Distribution Work?cccceecevvienieniriienieneeeeeeseene 2312
o Getting Help ..ooeoiiiiiiee e 2313
* Device Catalog: OUYA
© Prer@qUISILEScccociiiiiiiiiiieiiee ettt 2317
o What Features and Configurations Does It Use?c.cccceceeuenee. 2317
o What Is Really Different?cccooiiinininiiiiieeneneeeeeeieene 2319
o Getting Your Development Environment Established 2322
° YOUr OUYA PIrOjJECt ..ccueeiiiiiiiiiiiiiiiiiceeciececcceeeeeee e 2323
o How Does Distribution WOork?ccccoeeeviereriienieneenieeieneeniens 2326
o Getting Help ..ooeoiiiiiee e 2326
+ Device Catalog: Kindle Fire
© PrereqUISILEScccocuiiiiiiiiiiiietieetee ettt 2327
o Introducing the Kindle Fire seriesc..ccceceveveninennneicenne. 2327
o What Features and Configurations Does It Use?c..cccccueneee. 2328
o What Is Really Different?cccooininniniiiinneeeeenee 2330
o Getting Your Development Environment Established 2335
o How Does Distribution WOork?ccccoeveriereriieniieneenieeieneeniens 2339
o Amazon Equivalents of Google Servicescccocerviriiiiiniencnenne. 2340
o Getting Help with the Kindle Firecccoovniiiiiininnne, 2341
* Device Catalog: Barnes & Noble NOOK Tablet
© PrereqUISILEScccociiiiiiiiiiieieiee ettt et e 2343
o What Features and Configurations Does It Use?c..cccccueneee. 2344
o What Is Really Different?ccooininininiiiiinneeeeeee 2344
o Getting Your Development Environment Established 2346
o How Does Distribution WOork?ccccoeeeeviereriienieneeieeeeneeniens 2348
+ Device Catalog: RIM Blackberry Playbook
o What Features and Configurations Does It Use?c..cccccueneee. 2349
o What Is Really Different?ccooivinininiiiinneeeeeeee, 2350
o Getting Your Development Environment Established 2351
o How Does Distribution WOork?cccceeerieneriienienieieeieneeniens 2353
* Accessory Catalog: SONY SmartWatch
© PrereqUISILEScccociiiiiiieiiiieieee ettt et 2355
o What Can This Thing Really Do?c.ccoiriiriiiiiininneeee, 2355
o What Are You Really Writing?cccovirininiiniiininineneceeeen 2356
xxviii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

o Getting Your Development Environment Established 2357

o How Does Distribution WOork?ccccoeceeriereriienieneenieeieseeniens 2358

o Example: WatchAUthcccoooiviiiiiieeceeeeeeeeee e 2358

o Getting Help ..ooooiiiie e 2372
XXiX

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Preface

Welcome to the Book!

Thanks!

Thanks for your interest in developing applications for Android! Android has grown
from nothing to arguably the world’s most popular smartphone OS in a few short
years. Whether you are developing applications for the public, for your business or
organization, or are just experimenting on your own, I think you will find Android to
be an exciting and challenging area for exploration.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful and at least occasionally entertaining.

The Book’s Structure

Once upon a time, CommonsWare published a few books on Android development.
What you are reading represents the merger of those separate titles into a single
omnibus title.

To make the equivalent of 2,000+ pages of material manageable, the chapters are
divided into the core chapters and a series of trails.

The core chapters represent many key concepts that Android developers need to
understand in order to build an app. While an occasional “nice to have” topic will
drift into the core — to help illustrate a point, for example — the core chapters
generally are fairly essential.

XXXi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

The core chapters are designed to be read in sequence and will interleave both
traditional technical book prose with tutorial chapters (in the style of
CommonsWare’s former Android Programming Tutorials), to give you hands-on
experience with the concepts being discussed. Most of the tutorials can be skipped,
though the first two — covering setting up your SDK environment and creating a
project — everybody should read.

The bulk of the chapters are divided into trails, covering some particular general
topic, from data storage to advanced Ul effects to performance measurement and
tuning. Each trail will have several chapters. However, those chapters, and the trails
themselves, are not necessarily designed to be read in any order. Each chapter in the
trails will point out prerequisite chapters or concepts that you will want to have
covered in advance. Hence, these chapters are mostly reference material, for when
you specifically want to learn something about a specific topic.

The core chapters will link to chapters in the trails, to show you where you can find
material related to the chapter you just read. So between the book’s table of
contents, this preface, the search tool in your digital book reader, and the cross-
chapter links, you should have plenty of ways of finding the material you want to
read.

You are welcome to read the entire book front-to-back if you wish. The trails will
appear after the core chapters. Those trails will be in a reasonably logical order,
though you may have to hop around a bit to cover all of the prerequisites.

The Trails

Here is a list of all of the trails and the chapters that pertain to those trails, in order
of appearance (except for those appearing in the list multiple times, where they span
major categories):

Advanced Ul

+ Introducing GridLayout
+ Dialogs and DialogFragments
« Advanced ListViews

 Action Bar Navigation
« Action Modes and Context Menus

+ ActionBarCompat: The Official Action Bar Backport
« Advanced Uses of WebView

XXXii

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

Home

The Input Method Framework
Fonts

Rich Text

Mapping with Maps V2

Mapping with the Legacy MapView
Custom Drawables

Animators

Legacy Animations

Crafting Your Own Views

Custom Dialogs and Preferences
Progress Indicators

Advanced Notifications

More Fun with Pagers

Focus Management and Accessibility

Secondary Screens via a Presentation
Miscellaneous UI Tricks

Screen Effects

Home Screen App Widgets
Adapter-Based App Widgets

Data Storage and Retrieval

Media

Content Provider Theory

Content Provider Implementation Patterns

The Loader Framework

The ContactsContract Provider
The CalendarContract Provider
The MediaStore Provider

Encrypted Storage
Tutorial: Upgrading to SQLCipher
Packaging and Distributing Data

Audio Playback

Audio Recording

Video Playback

Using the Camera via 3rd-Party Apps

Subscribe to updates at https://commonsware.com

xXxxiii

Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

+ Working Directly with the Camera
* The MediaStore Provider

Security

+ Encrypted Storage

* Advanced Permissions

* Restricted Profiles and UserManager
+ Tapjacking

Hardware and System Services

* Accessing Location-Based Services
* The Fused Location Provider

+ Working with the Clipboard

+ Telephony

+ Working With SMS
« NFC

* Device Administration

+ PowerManager and Wakel.ocks
» Push Notifications with GCM

» Basic Use of Sensors

+ Other System Settings and Services
* Dealing with Different Hardware

Integration and Introspection

* Responding to URLs

+ Plugin Patterns

+ PackageManager Tricks

* Searching with SearchManager

+ System Events

+ Remote Services and the Binding Pattern
* Advanced Manifest Tips

* Miscellaneous Integration Tips

* Reusable Components

Scripting Languages

+ The Role of Scripting L.anguages

XXXIV

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

+ The Scripting Layer for Android
« JVM Scripting Languages

Testing

» JUnit and Android
* MonkeyRunner and the Test Monkey
+ Testing with UIAutomator

Tools

+ Advanced Emulator Capabilities

+ Using Lint

* Using Hierarchy View

+ Using DDMS

+ Finding CPU Bottlenecks

+ Finding Memory Leaks with MAT

+ Android Development with Intelli] IDEA

Production

+ Signing Your App
 Distribution

Tuning Android Applications

+ Issues with Speed

+ Finding CPU Bottlenecks

« NDK

+ Improving CPU Performance in Java
+ Finding and Eliminating Jank

 Issues with Bandwidth
« Focus On: TrafficStats

* Measuring Bandwidth Consumption
+ Being Smarter About Bandwidth

+ Issues with Memory

+ Finding Memory Leaks with MAT

+ Issues with Battery Life

+ Focus On: MDP and Trepn

+ Other Power Measurement Options

XXXV

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

Alternatives for App Development

» The Role of Alternative Environments

- HTMl5

+ PhoneGap
* Other Alternative Environments

Miscellaneous Topics

* Anti-Patterns

Widget Catalog

+ AdapterViewFlipper
+ CalendarView

« DatePicker

+ ExpandableListView
+ SeekBar

+ SlidingDrawer
+ StackView

« TabHost
+ TimePicker

+ ViewFlipper
Device Catalog

* Google TV
+ OUYA

« Kindle Fire
« Barnes & Noble NOOK Tablet

+ RIM Blackberry Playbook

Accessory Catalog

* SONY SmartWatch

About the Updates

This book is updated frequently, typically once per month.

XXXVi

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

PREFACE

Each release has notations to show what is new or changed compared with the
immediately preceding release:

+ The Table of Contents shows sections with changes in bold-italic font
+ Those sections have changebars on the right to denote specific paragraphs
that are new or modified

Warescription

You (hopefully) are reading this digital book by means of a Warescription.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats. You also have access to other titles that CommonsWare may publish during
that subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available. For example, when new releases of the Android SDK
are made available, this book will be quickly updated to be accurate with changes in
the APIs.

However, you can only download the books if either you have an active
Warescription, or until the book is updated after your Warescription expires. Hence,
please download your updates as they come out. You can find out when new
releases of this book are available via:

1. The commonsguy Twitter feed

2. The CommonsBlog
3. The Warescription newsletter, which you can subscribe to off of your

Wiarescription page

Subscribers also have access to “office hours” — online chats to help you get answers
to your Android application development questions. You will find a calendar for
these on your Warescription page.

Getting Help

If you have questions about the book examples, visit StackOverflow and ask a
question, tagged with android and commonsware.

XXXVil

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://twitter.com/commonsguy
http://commonsware.com/blog
http://wares.commonsware.com
http://stackoverflow.com

PREFACE

If you have general Android developer questions, visit StackOverflow and ask a
question, tagged with android (and any other relevant tags, such as java).

Book Bug Bounty

Find a problem in one of our books? Let us know!

Be the first to report a unique concrete problem in the current digital edition, and
we'll give you a coupon for a six-month Warescription as a bounty for helping us
deliver a better product. You can use that coupon to get a new Warescription, renew
an existing Warescription, or give the coupon to a friend, colleague, or some random
person you meet on the subway.

By “concrete” problem, we mean things like:

1. Typographical errors

2. Sample applications that do not work as advertised, in the environment
described in the book

3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

1. Places where you think we are in error, but where we feel our interpretation
is reasonable

2. Places where you think we could add sample applications, or expand upon
the existing material

3. Samples that do not work due to “shifting sands” of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty

consideration, should be sent to bounty@commonsware.com.

XXXVili

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://commonsware.com/Android/errata
mailto:bounty@commonsware.com

PREFACE

Source Code And Its License

The source code samples shown in this book are available for download from the
book’s GitHub repository. All of the Android projects are licensed under the Apache
2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear in mind
that the projects are set up to be built by Eclipse. Many are also set up to be built by
Ant from the command line. However, for command-line builds, you will need to
update the build files to match your local environment. To do this, delete build.xml
in your project directory, then run android update project -p . from that same
directory. See the GitHub repo home page for more details.

If you are using Eclipse, please do NOT import all of the projects from the repo into
your main workspace. There are hundreds of these projects, and they may cause your
Eclipse environment to become very slow, particularly when starting it up. Instead,
import only those specific projects that you want to work with “live” as opposed to
simply reading about them in the book.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee

Each CommonsWare book edition will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date, or when 4,000 copies of the edition have been
sold, whichever comes first. That means that, once four years have elapsed (perhaps
sooner!), you can use this prose for non-commercial purposes. That is our Four-to-
Free Guarantee to our readers and the broader community. For the purposes of this
guarantee, new Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 September 2017. Of course, watch the CommonsWare Web
site, as this edition might be relicensed sooner based on sales.

XXXIX

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-omnibus
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

PREFACE

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition or based on sales of that specific edition.
Releasing one edition under the Creative Commons license does not automatically
release all editions under that license.

Acknowledgments

I would like to thank the Android team, not only for putting out a good product, but
for invaluable assistance on the Android Google Groups and StackOverflow.

[would also like to thank the thousands of readers of past editions of this book, for
their feedback, bug reports, and overall support.

Of course, thanks are also out to the overall Android ecosystem, particularly those
developers contributing their skills to publish libraries, write blog posts, answer
support questions, and otherwise contribute to the strength of Android.

Portions of this book are reproduced from work created and shared by the Android
Open Source Project and used according to terms described in the Creative
Commons 2.5 Attribution License.

x|

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Core Chapters

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Key Android Concepts

No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.

However, before we dive into getting tools set up and starting in on actual
programming, it is important that we “get on the same page” with respect to several
high-level Android concepts. This will simplify further discussions later in the book.

Android Applications

This book is focused on writing Android applications. An application is something
that a user might install from the Play Store or otherwise download to their device.
That application should have some user interface, and it might have other code
designed to work in the background (multi-tasking).

This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek other resources.

This book assumes that you have some hands-on experience with Android devices,
and therefore you are familiar with buttons like HOME and BACK, the built-in
Settings application, the concept of a home screen and launcher, and so forth. If you
have never used an Android device, you are strongly encouraged to get one (e.g., a
used one on eBay, Craigslist, etc.) and spend some time with it before starting in on
learning Android application development.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

Programming Language

The vast majority of Android applications are written exclusively in Java. Hence, that
is what this book will spend most of its time on and will demonstrate with a
seemingly infinite number of examples.

However, there are other options:

* You can write parts of the app in C/C++, for performance gains, porting over
existing code bases, etc.

* You can write an entire app in C/C++, mostly for games using OpenGL for
3D animations

* You can write the guts of an app in HTML, CSS, and JavaScript, using tools
to package that material into an Android application that can be distributed
through the Play Store and similar venues

* And so on

Coverage of these non-Java alternatives will be found in the trails of this book, as the
bulk of this book is focused on Java.

The author assumes that you know Java at this point. If you do not, you will need to
learn Java before you go much further. You do not need to know everything about
Java, as Java is vast. Rather, focus on:

+ Language fundamentals (flow control, etc.)
* Classes and objects

* Methods and data members

* Public, private, and protected

+ Static and instance scope

+ Exceptions
* Threads

+ Collections
* Generics
« File I/O
* Reflection
 Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikibooks.org/wiki/Java_Programming/Language_Fundamentals
http://en.wikibooks.org/wiki/Java_Programming/Classes_and_Objects
http://en.wikibooks.org/wiki/Java_Programming/Methods
http://en.wikibooks.org/wiki/Java_Programming/Data_and_Variables
http://en.wikibooks.org/wiki/Java_Programming/Access_Modifiers
http://en.wikibooks.org/wiki/Java_Programming/Using_Static_Members
http://en.wikibooks.org/wiki/Java_Programming/Exceptions
http://en.wikibooks.org/wiki/Java_Programming/Threads_and_Runnables
http://en.wikibooks.org/wiki/Java_Programming/Collections
http://en.wikibooks.org/wiki/Java_Programming/Generics
http://en.wikibooks.org/wiki/Java_Programming/BasicIO
http://en.wikibooks.org/wiki/Java_Programming/Reflection
http://en.wikibooks.org/wiki/Java_Programming/Interfaces

KEY ANDROID CONCEPTS

Components

When you first learned Java — whether that was yesterday or back when dinosaurs
roamed the Earth — you probably started off with something like this:

class SillyApp {
public static void main(String[] args) {
System.out.println("Hello World!");

b
¥

In other words, the entry point into your application was a public static void
method named main() that took a String array of arguments. From there, you were
responsible for doing whatever was necessary.

However, there are other patterns used elsewhere in Java. For example, you do not
usually write a main() method when writing a Java servlet. Instead, you extend a
particular class supplied by a framework (e.g., HttpServlet) to create a component,
then write some metadata that enumerated your components and tell the
framework when and how to use them (e.g., WEB. XML).

Android apps are closer in spirit to the servlet approach. You will not write a
public static void main() method. Instead, you will create subclasses of some
Android-supplied base classes that define various application components. In
addition, you will create some metadata that tells Android about those subclasses.

There are four types of components, all of which will be covered extensively in this
book:

Activities

The building block of the user interface is the activity. You can think of an activity as
being the Android analogue for the window or dialog in a desktop application, or
the page in a classic Web app.

Normally, an activity will take up most of the screen, leaving space for some
“chrome” bits like the clock, signal strength indicators, and so forth.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

@ Action Bar Demo
lorem
ipsum
dolor
sit
amet

Activity

consectetuer

adipiscing

elit

morbi

Figure 1: Activity on the screen

Services

Activities are short-lived and can be shut down at any time, such as when the user
presses the BACK button. Services, on the other hand, are designed to keep running,
if needed, independent of any activity, for a short period of time. You might use a
service for checking for updates to an RSS feed, or to play back music even if the
controlling activity is no longer operating. You will also use services for scheduled
tasks (akin to Linux or OS X “cron jobs”) and for exposing custom APIs to other
applications on the device, though the latter is a relatively advanced capability.

Content Providers

Content providers provide a level of abstraction for any data stored on the device
that is accessible by multiple applications. The Android development model
encourages you to make your own data available to other applications, as well as
your own — building a content provider lets you do that, while maintaining a degree
of control over how your data gets accessed.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

Broadcast Receivers

The system, or applications, will send out broadcasts from time to time, for
everything from the battery getting low, to when the screen turns off, to when
connectivity changes from WiFi to mobile data. A broadcast receiver can arrange to
listen for these broadcasts and respond accordingly.

Widgets, Containers, Resources, and Fragments

Most of the focus on Android application development is on the Ul layer and
activities. Most Android activities use what is known as “the widget framework” for
rendering their user interface, though you are welcome to use the 2D (Canvas) and
3D (OpenGL) APIs as well for more specialized GUIs.

In Android terms, a widget is the “micro” unit of user interface. Fields, buttons,
labels, lists, and so on are all widgets. Your activity’s Ul, therefore, is made up of one
or more of these widgets. For example, here we see label (TextView), field
(EditText), and push-button (Button) widgets:

Bl B 12:34 AM

RelativeLayoutDemo

TextView widget EditText widget

Button widgets

Figure 2: Activity with widgets

If you have more than one widget — which is fairly typical — you will need to tell
Android how those widgets are organized on the screen. To do that, you will use

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

various container classes referred to as layout managers. These will let you put
things in rows, columns, or more complex arrangements as needed.

To describe how the containers and widgets are connected, you will typically create a
layout resource file. Resources in Android refer to things like images, strings, and
other material that your application uses but is not in the form of some
programming language source code. Ul layouts are another type of resource. You will
create these layouts either using a structured tool, such as Eclipse’s drag-and-drop
GUI builder, or by hand in XML form.

Sometimes, your Ul will work across all sorts of devices: phones, tablets, televisions,
etc. Sometimes, your Ul will need to be tailored for different environments. You will
be able to put resources into resource sets that indicate under what circumstances
those resources can be used (e.g., use these for normal-sized screens, but use those
for larger screens).

Sometimes, supporting larger screens means you will want to “snap together” parts
of your smaller-screen UI. For example, Gmail on a tablet will show your list of
labels, the list of conversations in a selected label, and the list of messages in a
selected conversation, all in one activity. However, Gmail on a phone cannot do that,
as there is not enough screen space, so it shows each of those (labels, conversations,
messages) in separate activities. Android supplies a construct called the fragment to
help make it easier for you to implement these sorts of effects.

We will be examining all of these concepts, in much greater detail, as we get deeper
into the book.

Apps and Packages

Given a bucket of source code and a basket of resources, the Android build tools will
give you an application as a result. The application comes in the form of an APK file.
It is that APK file that you will upload to the Play Store or distribute by other means.

Each Android application has a package name. A package name must fulfill three
requirements:

1. It must be a valid Java package name, as some Java source code will be
generated by the Android build tools in this package.

2. No two applications can exist on a device at the same time with the same
package.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

3. No two applications can be uploaded to the Play Store having the same
package.

When you create your Android project — the repository of that source code and
those resources — you will declare what package name is to be used for your app.
Typically, you will pick a package name following the Java package name “reverse
domain name” convention (e.g., com.commonsware.android.foo). That way, the
domain name system ensures that your package name prefix (com.commonsware) is
unique, and it is up to you to ensure that the rest of the package name distinguishes
one of your apps from any other.

Android Devices

There are well in excess of 100 million Android devices in use today, representing
hundreds of different models from dozens of different manufacturers. Android itself
has evolved since Android 1.0 in 2008. Between different device types and different
Android versions, many a media pundit has lobbed the term “fragmentation” at
Android, suggesting that creating apps that run on all these different environments
is impossible.

In reality, it is not that bad. Some apps will have substantial trouble, but most apps
will work just fine if you follow the guidance presented in this book and in other
resources.

Types

Android devices come in all shapes, sizes, and colors. However, there are three
dominant “form factors”:

* the phone
* the tablet
* the television (TV)

You will often hear developers and pundits refer to these form factors, and this book
will do so from time to time as well. However, it is important that you understand
that Android has no built-in concept of a device being a “phone” or a “tablet” or a
“TV”. Rather, Android distinguishes devices based on capabilities and features. So,
you will not see an isPhone() method anywhere, though you can ask Android:

* what is the screen size?

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

* does the device have telephony capability?
. etc.

Similarly, as you build your applications, rather than thinking of those three form
factors, focus on what capabilities and features you need. Not only will this help you
line up better with how Android wants you to build your apps, but it will make it
easier for you to adapt to other form factors that will come about such as:

+ watches and other types of wearable devices
* airplane seat-back entertainment centers

* in-car navigation and entertainment devices
+ and so on

The Emulator

While there are hundreds of millions of Android devices representing hundreds of
models, you probably do not have one of each model. You may only have a single
piece of Android hardware. And if you do not even have that, you most certainly will
want to acquire one before trying to publish an Android app.

To help fill in the gaps between the devices you have and the devices that are
possible, the Android developer tools ship an emulator. The emulator behaves like a
piece of Android hardware, but it is a program you run on your development
machine. You can use this emulator to emulate many different devices, with
different screen sizes and Android OS versions, by creating one or more Android
virtual devices, or AVDs.

In an upcoming chapter, we will discuss how you install the Android developer tools
and how you will be able to create these AVDs and run the emulator.

OS Versions and API Levels

Android has come a long way since the early beta releases from late 2007. Each new
Android OS version adds more capabilities to the platform and more things that
developers can do to exploit those capabilities.

Moreover, the core Android development team tries very hard to ensure forwards
and backwards compatibility. An app you write today should work unchanged on
future versions of Android (forwards compatibility), albeit perhaps missing some
features or working in some sort of “compatibility mode”. And there are well-trod

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

KEY ANDROID CONCEPTS

paths for how to create apps that will work both on the latest and on previous
versions of Android (backwards compatibility).

To help us keep track of all the different OS versions that matter to us as developers,
Android has API levels. A new API level is defined when an Android version ships
that contains changes that affect developers. When you create an emulator AVD to
test your app, you will indicate what API level that emulator should emulate. When
you distribute your app, you will indicate the oldest API level your app supports, so
the app is not installed on older devices.

At the time of this writing, the API levels of significance to most Android developers
are:

* API Level 3 (Android 1.5)

+ API Level 4 (Android 1.6)

+ API Level 7 (Android 2.1)

» API Level 8 (Android 2.2)

+ API Level 10 (Android 2.3.3)
+ API Level 12 (Android 3.1)

+ API Level 13 (Android 3.2)

+ API Level 15 (Android 4.0.3)
 API Level 16 (Android 4.1)

+ API Level 17 (Android 4.2)

Dalvik

You probably are thinking that Dalvik is a village in Iceland. That, however, is Dalvik.

In terms of Android, Dalvik is a virtual machine (VM). Virtual machines are used by
many programming languages, such as Java, Perl, and Smalltalk. The Dalvik VM is
designed to work much like a Java VM, but optimized for embedded Linux
environments.

So, what really goes on when somebody writes an Android application is:

1. Developers write Java-syntax source code, leveraging class libraries published
by the Android project and third parties.

2. Developers compile the source code into Java VM bytecode, using the javac
compiler that comes with the Java SDK.

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://goo.gl/4j7Go

KEY ANDROID CONCEPTS

3. Developers translate the Java VM bytecode into Dalvik VM bytecode, which
is packaged with other files into a ZIP archive with the . apk extension (the
APK file).

4. An Android device or emulator runs the APK file, causing the bytecode to be
executed by an instance of a Dalvik VM.

From your standpoint, most of this is hidden by the build tools. You pour Java source
code into the top, and the APK file comes out the bottom.

However, there will be places from time to time where the differences between the
Dalvik VM and the traditional Java VM will affect application developers, and this
book will point out some of them where relevant.

Processes and Threads

When your application runs, it will do so in its own process. This is not significantly
different than any other traditional operating system. Part of Dalvik’s magic is
making it possible for many processes to be running many Android applications at
one time without consuming ridiculous amounts of RAM.

Android will also set up a batch of threads for running your app. The thread that
your code will be executed upon, most of the time, is variously called the “main
application thread” or the “Ul thread”. You do not have to set it up, but, as we will
see later in the book, you will need to pay attention to what you do and do not do on
that thread. You are welcome to fork your own threads to do work, and that is fairly
common, though in some places Android handles that for you behind the scenes.

Don’t Be Scared

Yes, this chapter threw a lot of terms at you. We will be going into greater detail on
all of them in this book. However, Android is like a jigsaw puzzle with lots of
interlocking pieces. To be able to describe one concept in detail, we will need to at
least reference some of the others. Hence, this chapter was meant to expose you to
terms, in hopes that they will sound vaguely familiar as we dive into the details.

10

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Choosing Your IDE

Before you go much further in your Android endeavors (or, possibly, endeavours,
depending upon your preferred spelling), you will need to determine what tools you
will use to build your Android applications. Many developers are used to using an
integrated development environment (IDE). Android has excellent support for
Eclipse, and other IDEs offer varying degrees of Android integration. You do not
necessarily have to use an IDE, though, if you do not wish to.

This chapter will outline your options in this area.

Eclipse

Eclipse is an extremely popular IDE, particularly for Java development. It is also
designed to be extensible via an add-in system. To top it off, Eclipse is open source.
That combination made it an ideal choice of IDE to get attention from the core
Android developer team.

Specifically, to go alongside the Android SDK, Google has published some add-ins

for the Eclipse environment. Primary among these is the Android Developer Tools
(ADT) add-in, which gives the core of Eclipse awareness of Android.

What the ADT Gives You

The ADT add-in, in essence, takes regular Eclipse operations and extends them to
work with Android projects. For example, with Eclipse, you get:

+ New project wizards to create regular Android projects, Android test
projects, etc.

11

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CHOOSING YOUR IDE

+ The ability to run an Android project just like you might run a regular Java
application — via the green “run” button in the toolbar — despite the fact
that this really involves pushing the Android application over to an emulator
or device, possibly even starting up the emulator if it is not running

* Tooltip support for Android classes and methods

Eclipse and the ADT also offers preliminary support for drag-and-drop GUI editing.
While this book will also cover the XML files that Eclipse will generate, Eclipse now
lets you assemble those XML files by dragging Ul components around on the screen,
adjusting properties as you go.

The next chapter contains a section with instructions on how to set up Eclipse for
Android development, as part of getting an overall Android development

environment established.

Out of all the shortcut key-combinations for Eclipse, two of the most important for
readers of this book, particularly if you are following the tutorials, are:

* <Ctrl>-<Shift>-<0> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

* <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

Alternative IDEs

Other IDEs are slowly getting their equivalents of the ADT, albeit with minimal
assistance from Google. For example, Intelli]’s IDEA has a module for Android -
originally commercial, it is part of the open source community edition of IDEA as of
version 10. Also, NetBeans has support via the NBAndroid add-on, and reportedly
this has advanced substantially in the past year or two.

And, of course, you do not need to use an IDE at all. While this may sound
sacrilegious to some, IDEs are not the only way to build applications. Much of what
is accomplished via the ADT can be accomplished through command-line
equivalents, meaning a shell and an editor is all you truly need. For example, the
author of this book did not use an IDE for Android development until 2011.

12

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/eclipse-cheatsheet/downloads/list

CHOOSING YOUR IDE

IDEs... And This Book

You are welcome to use Eclipse as you work through this book. You are welcome to
use another IDE if you wish. You are even welcome to skip the IDE outright and just
use an editor.

This book is focused primarily on demonstrating Android capabilities and the APIs
for exploiting those capabilities. Hence, the sample code will work with any IDE.
However, this book will cover some Eclipse-specific instructions, since it is so
popular.

About App Inventor

You may also have heard of a tool named App Inventor and wonder where it fits in
with all of this.

App Inventor was originally created by an education group within Google, as a
means of teaching students how to think about programming constructs (branches,
loops, etc.) and create interesting output (Android apps) without classic
programming in Java or other syntax-based languages. App Inventor is purely drag-
and-drop, both of widgets and application logic, the latter by means of “blocks” that
snap together to form logic chains.

App Inventor was donated by Google to MIT, who has recently re-opened it to the
public.

However, App Inventor is a closed system — at the present time, it does not
somehow generate Java code that you can later augment. That limits you to whatever
App Inventor is natively capable of doing, which, while impressive in its own right,
offers a small portion of the total Android SDK capabilities.

This book does not cover the use of App Inventor.

13

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://appinventor.mit.edu/
http://appinventor.mit.edu/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #1 - Installing the Tools

Now, let us get you set up with the pieces and parts necessary to build an Android
app.

NOTE: The instructions presented here are accurate as of the time of this writing.
However, the tools change rapidly, and so these instructions may be out of date by
the time you read this. Please refer to the Android Developers Web site for current
instructions, using this as a base guideline of what to expect.

Step #1 - Checking Your Hardware Requirements

Compiling and building an Android application, on its own, is not especially
hardware-intensive, except for very large projects. However, there are two
commonly-used tools that demand more from your development machine: Eclipse
and the Android emulator. Of the two, the emulator poses the bigger problem.

The more RAM you have, the better. 3GB or higher is a very good idea if you intend
to use Eclipse and the emulator together.

A faster CPU is also a good idea. However, the Android emulator only utilizes a
single core from your development machine. Hence, it is the single-core speed that
matters. The best CPU to use is one that can leverage multiple cores to give what
amounts to a faster single core, such as Intel’s Core i7 with Turbo Boost. For an
emulator simulating a larger-screened device (e.g., tablet, television), a Core i7 that
can “boost” up to 3.4GHz makes development much more pleasant. Conversely, a
CPU like a Core 2 Duo with a 2.5GHz clock speed results in a tablet emulator that is

nearly unusable. Smaller screens (e.g., phones) can run acceptably on 2.5GHz and
(slightly) slower CPUs.

15

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com

TUTORIAL #1 - INSTALLING THE TOOLS

Step #2 - Setting Up Java

When you write Android applications, you typically write them in Java source code.
That Java source code is then turned into the stuff that Android actually runs
(Dalvik bytecode in an APK file).

Hence, the first thing you need to do is get set up with a Java development
environment and be ready to start writing Java classes.

Install the JDK

You need to obtain and install the official Sun/Oracle Java SE SDK (JDK). You can
obtain this from the Oracle Java Web site for Windows and Linux, and presumably
from Apple for OS X. The plain JDK (sans any “bundles”) should suffice. Follow the
instructions supplied by Oracle or Apple for installing it on your machine. At the
time of this writing, Android supports Java 6 and Java 7, though the latter will
require you to configure your IDE to compile your Java code to Java 6 bytecode.

Android also supports the Open]DK, particularly on Linux environments.

What Android does not support are any other Java compilers, including the GNU
Compiler for Java (GCJ).

Step #3 - Install the Android SDK

The Android SDK gives you all the tools you need to create and test Android
applications. It comes in two parts: the base tools, plus version-specific SDKs and
related add-ons.

Install the Base Tools

The Android developer tools can be found on the Android Developers Web site.

The default option at present is for you to download the “ADT Bundle”. This includes
a complete copy of Eclipse, along with the base tools and the latest SDK files. If you
want a temporary Android development environment, this is probably a fine choice.

Otherwise, you will want to click on “Using an Existing IDE” (even if you have not
yet installed Eclipse) and download the ZIP or TGZ file presented to you, unpacking

16

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.oracle.com/technetwork/java/index.html
http://developer.android.com/sdk/index.html

TUTORIAL #1 - INSTALLING THE TOOLS

it in some likely spot — there is no specific path that is required. Windows users
also have the option of running a self-installing EXE file.

Install the SDKs and Add-Ons

Inside the tools/ directory of your Android SDK installation from the previous step,
you will see an android batch file or shell script. On Windows, you may see an “SDK
Manager.exe” file, perhaps in the root of your ADT bundle installation. In either
case, if you run that, you will be presented with the Android SDK Manager:

Packages Tools

SDK Path: Chadt-bundle-windows-86\sdk

Packages

Name APT Rev. Status i

[F1(Tools

[¥ Android SDK Tools 211 9 Installed A

¥ Android SDK Platform-tools 16 + Update available: rev, 16.0.1 3
] =] Android 4.2 (API17)

[=) Documentation for Android SDK 17 1 -+ Not installed

|} SDK Platform 17 1 9 Installed

= & Samples for SDK 17 1 -+ Mot installed

[] % ARM EABIv7a System Image 17 1 Shinstalled

[Intel x86 Atom System Image 17 1 ¥ Not installed

[] % MIPS System Image 17 1 -+ Not installed

= 'E]- Google APls i7 1 -+ Not installed

B Sources for Android SDK 17 1 + Mot installed

[L£] Android 4.1.2 (API16)
[T (2] Android 4.0.3 (API15) =

Show: [V/]Updates/New [J|Installed [Obsolete Select Mew or Updates Install 2 packages...
Sort by: @1 (©) Repository Deselect All Delete 1 package...

Done. Mothing was installed.

Figure 3: Android SDK Manager

At this point, while you have some of the build tools, you may lack the Java files
necessary to compile an Android application. You also lack a few additional build
tools, plus the files necessary to run an Android emulator. The checkboxes indicate
which packages you want to install — by default, it pre-checks a number of them. If
you chose the “ADT Bundle”, some things will already be pre-installed for you.

You will want to check the following items:
1. “SDK Platform” for all Android SDK releases you want to test against — for

this book API 15 (Android 4.0.3) is recommended, along with any others
with which you wish to experiment.

17

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

6.
7.

“ARM EABI v7a System Image’, if there is an option for that for the API level
you chose. You can also download the “Intel x86 Atom System Image”, if one
is available to you, though setting that up is a bit of an advanced topic.
“Documentation for Android SDK” for the latest Android SDK release.
“Samples for SDK” for the latest Android SDK release, and perhaps for older
releases if you wish.

“Google APIs” for each Android SDK release for which you are downloading
the platform (see first bullet).

Android SDK Tools and Platform-tools.

Android Support Library (in the Extras group at the bottom of the tree).

Then, click the Install button beneath the tree on the right, which brings up a
license confirmation dialog:

@ cChoose Packages to Install

Packages Package Description & License
w Package Description
? Google APIs by Google Inc., Andn Android SDK Platform 2.2 r1
Revision 2

Dependencies

This package is a dependency for:

- Google APIs by Google Inc., Android API 8, revision
2

® Accept Reject Accept All

| Install | Cancel

Figure 4: Android SDK Manager Installing Packages

Review and accept the licenses, then click the Install button. At this point, this is a
fine time to go get lunch. Or, perhaps dinner. Unless you have a substantial Internet
connection, downloading all of this data and unpacking it will take a fair bit of time.

When the download is complete, you can close up the SDK Manager if you wish,
though we will use it to set up the emulator in a later step of this chapter.

Step #4 - Install the ADT for Eclipse

If you will not be using Eclipse for your Android development, you can skip to the
next section. Similarly, if you downloaded the “ADT Bundle” and therefore already
have a completely-configured Eclipse environment, you can skip to the next section.

18

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

If you have not yet installed Eclipse, you will need to do that first. Eclipse can be
downloaded from the Eclipse Web site. The “Eclipse IDE for Java Developers”
package will work fine. Note that the Android tools require Eclipse 3.6 (Helios) or
newer at the time of this writing.

If you already had Eclipse installed, it is a good idea for you to go in and check your
compiler compliance level (Preferences > Java > Compiler). That should be set to 1.6.
Notably, this allows the use of @0verride annotations to indicate methods that are
implementing a Java interface, rather than truly overriding a superclass method.
This annotation is very common in Java code in Android projects (including many of
the samples in this book).

Next, you need to install the Android Developer Tools (ADT) plug-in. To do this, go
to Help | Install New Software... in the Eclipse main menu. Then, click the Add
button to add a new source of plug-ins. Give it some name (e.g., Android) and
supply the following URL: https://dl-ssl.google.com/android/eclipse/. That
should trigger Eclipse to download the roster of plug-ins available from that site:

Available software
Check the items that you wish to install. _’:J.l'__

Work with: |Android - https://dl-ssl.google.com/android/eclipse/ v Add...

Find more software by working with the "Available Software Sites" preferences.

Name Version

¥ [000 Developer Tools
g Android DDMS 8.0.1.v201012062107-82219
4t Android Development Tools 8.0.1.v201012062107-82219
4 Android Hierarchy Viewer 8.0.1.v201012062107-82219

Select All Deselect All

Details

& show only the latest versions of available software Hide items that are already installed

[Group items by category What is already installed?

& Contact all update sites during install to find required software

3
@ Cancel

Figure 5: Eclipse ADT plug-in installation

Check the checkbox to the left of “Developer Tools” and click the Next button.
Follow the rest of the wizard to review the tools to be downloaded and their

19

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.eclipse.org/downloads/

TUTORIAL #1 - INSTALLING THE TOOLS

respective license agreements. When the Finish button is enabled, click it, and
Eclipse will download and install the plug-ins. When done, Eclipse will ask to restart
— please let it.

Then, you need to teach ADT where your Android SDK installation is from the
preceding section. This should occur on your next restart of Eclipse, via a “welcome
wizard”. Otherwise, to do this, choose Window | Preferences from the Eclipse main
menu (or the equivalent Preferences option for OS X). Click on the Android entry in
the list on the left:

Preferences

as| @ Value must be an existing directory f=r -

General
Android

Ant

Help
Install/Update
Java
Run/Debug
Tasks

Team

Android Preferences

SDK Location: Browse...

Note: The list of SDK Targets below is only reloaded once you hit 'Apply® or "OK".

¥ ¥ ¥V ¥V ¥V ¥ ¥ ¥V ¥ ¥

Usage Data Collecto
Validation
= XML

Restore Defaults
'ﬁ':' Cancel

Figure 6: Eclipse ADT configuration

Then, click the Browse... button to find the directory where you installed the SDK.
After choosing it, click Apply on the Preferences window, and you should see the
Android SDK versions you installed previously. Then, click OK, and the ADT will be
ready for use.

Step #5 - Install Apache Ant

If you will be doing all of your development from Eclipse, you can skip to the next
section.

20

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

If you wish to develop using command-line build tools, you will need to install
Apache Ant. You may have this already from previous Java development work, as it is
fairly common in Java projects. However, you will need Ant version 1.8.1 or higher, so
double-check your current copy (e.g., ant -version) to ensure you are on the
proper edition.

If you do not have Ant, you can obtain it from the Apache Ant Web site. They have
full installation instructions in the Ant manual, but the basic steps are:

* Unpack the ZIP archive wherever it may make sense on your machine

+ Add a JAVA_HOME environment variable, pointing to where your JDK is
installed, if you do not have one already

+ Add an ANT_HOME environment variable, pointing to the directory where you
unpacked Ant in the first step above

+ Add $JAVA_HOME/bin and $ANT_HOME/bin to your PATH (note: Windows users
would add %JAVA_HOME%\bin and %ANT_HOME%\bin)

* Run ant -version to confirm that Ant is installed properly

Step #6 - Set Up the Emulator

The Android tools include an emulator, a piece of software that pretends to be an
Android device. This is very useful for development — not only does it mean you
can get started on Android without a device, but the emulator can help test device
configurations that you do not own.

The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs. From the command line, you can bring up
the AVD Manager via the android avd command from your SDK’s tools/ directory.
From Eclipse, you start the AVD Manager via its toolbar button or via the Window |
AVD Manager main menu option. It starts up on a screen listing the AVDs you have
available - initially, the list will be empty:

21

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/installlist.html

TUTORIAL #1 - INSTALLING THE TOOLS

[1
R nciroid Virtusl Deven ey s e o]

: Android Virtual Devices | Device Deﬁnitions|

List of existing Android Virtual Devices located at C:\Users\Mark Murphy'.android\avd

AVD Name Target Name

No AVD available

New...

Edit...

API Level CPU/ABL

Delete...

Repair...

Details...

Start...

s Avalid Android Virtual Device. Q A repairable Android Virtual Device.
¥ An Android Virtual Device that failed to load. Click 'Details' to see the error,

Figure 7: AVD Manager

You will notice that there is a “Device Definitions” tab. This provides a catalog of
device hardware configurations that you can use as the starting point for your

emulator:

[1
R nciroid Virtusl Deven ey s e o]

Android Virtual Devices |} Device Definitions |

List of known device definitions. This can later be used to create Android Virtual Devices,

Device

Mexus S by Google
Screen: 4.0", 480 = 800, Normal hdpi
RAM: 343 MiB

Mexus One by Google
Screen: 3.7", 480 = 720, Normal hdpi
RAM: 512MiE

Nexus 7 by Google
Screen: 7.3", 800 = 1280, Large tvdpi
RAM: 1024 MiB

Galaxy Nexus by Google
Screen: 47", 720 = 1280, Mormal xhdpi
RAM: 1024 MiB

10.1" WXGA (Tablet)
Screen: 101", 1280 x 800, X-Large mdpi
RAM: 512 MiB

7.0" WSVGA (Tablet)
Screen: 7.0", 1024 =< 600, Large mdpi
RAM: 512 MiE

54" FPWVGA

* | | New Device...

Edit...

Delete...

Create AVD...

= -
g A user-created device definition. D A generic device definition.

Figure 8: AVD Manager, Device Definitions Tab

Subscribe to updates at https://commonsware.com

22

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

For now, though, on the “Android Virtual Devices” tab, click the New... button to

create a new AVD file. This brings up a dialog where you can configure what this
AVD should look and work like:

= — 7
@ Create new Android Virtual Device (AVD) I&
AVD Name: 4.0.3-WVGAB00
Device: [Nexus § (4.0°, 480 800: hdlpi) -
Target: [Android 4.0.3 - API Level 15 -
CPU/ABE: [ARM (armeabi~7a) -
Keyboard: V| Hardware keyboard present
Skin: | Display a skin with hardware controls
Front Camera: ‘None V‘
Back Camera: ‘Nune "
Memory Options: | gppy. 343 VM Heap: 32
Internal Storage: .
200 MiB -
sD Card:
@ Size: 32 MiE -
File: Browse
[Eow e @pifane Snapshot Use Host GPU
Override the existing AVD with the same name
[OK] ‘ Cancel |

Figure 9: Adding a New AVD

You need to provide the following:

1. A name for the AVD. Since the name goes into files on your development
machine, you will be limited by filename conventions for your operating
system (e.g., no backslashes on Windows).

2. Which one of the available device templates from the “Device Definitions”
tab you wish to use. Since the emulator runs slower with higher resolution
screens, the Nexus S is a likely candidate — it is a fairly common resolution
that will not be too terribly slow.

3. The Android version you want the emulator to run (a.k.a., the “target”).
Choose one of the SDKs you installed via the drop-down list. Note that in
addition to “pure” Android environments, you will have options based on the
third-party add-ons you selected. For example, you probably have some
options for setting up AVDs containing the Google APIs, and you will need
such an AVD for testing an application that uses Google Maps.

23

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

4. The CPU architecture your emulator will emulate. The vast majority of
Android devices have ARM CPUs, while the vast majority of development
machines have x86 CPUs. However, since setting up the x86 emulator
support is a bit complicated, for now, choose ARM. Later on, though, you
really will want to consider an x86 emulator, as they tend to run much faster.

5. Whether or not a hardware keyboard is present. Having this checked can
ease your data entry on the emulator, as your development machine’s
keyboard will act as a keyboard for the emulated device.

6. Whether there should be a portion of the emulator window set aside to
show hardware controls, such as a D-pad. This is usually a good idea,
particularly while you are getting familiar with the Android environment.

7. Values for the memory and internal storage — the defaults are perfectly fine
selections.

8. Details about the SD card the emulator should emulate. Since Android
devices invariably have some form of “external storage”, you probably want to
set up an SD card, by supplying a size in the associated field. However, since
a file will be created on your development machine of whatever size you
specify for the card, you probably do not want to create a 2GB emulated SD
card. 32MB is a nice starting point, though you can go larger if needed.

9. Whether or not “snapshot” mode is enabled. This can speed up restarting
the emulator at the cost of hard disk space. For now, leave it unchecked.

10. Whether or not you wish to use the development machine’s graphics card
(GPU) to accelerate the emulator’s graphics. Usually, this helps emulator
performance, so checking that is worth trying. If you encounter problems
running the emulator, try editing the AVD definition and unchecking this
value.

Click the OK button, and your AVD stub will be created.

To start the emulator, highlight it in the list and click “Start...”. You can skip the
launch options for now and just click Launch. The first time you launch a new AVD,
it will take a long time to start up. The second and subsequent times you start the
AVD, it will come up a bit faster, and usually you only need to start it up once per
day (e.g., when you start development). You do not need to stop and restart the
emulator every time you want to test your application, in most cases. Also, Eclipse
will automatically start an emulator if you do not have one started and you try
running an application.

The emulator will go through a few startup phases, typically first with a plain-text
“ANDROID” label (for pre-Android 4.0) or a blank screen (for Android 4.0+):

24

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

OO 5554:4.2-WVGAS00

Figure 10: Android emulator, initial startup segment

... then a graphical Android logo:

25

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

@ 5554:4.2-WVGAS00

Figure 11: Android emulator, secondary startup segment

before eventually landing at the home screen, a welcome page (shown below, for
Android 4.0), or the keyguard:

26

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

5554:4.2-WVGCAS200

You can put your favorite apps here.

To see all your apps, touch the circle.

(&) =

Figure 12: Android 4.0 emulator welcome page

If you get the keyguard (shown below), press the MENU button, or slide the lock on
the screen to the right, to get to the emulator’s home screen:

27

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

@ © 5554:4.2-WVGAS00

ANDROID

Figure 13: Android keyguard

Step #7 - Set Up the Device

You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device — maybe that is
what is spurring your interest in developing for Android.

If you do not have an Android device that you wish to set up for development, skip
this step.

The first step to make your device ready for use with development is to go into the
Settings application on the device. What happens now depends a bit on your
Android version:

+ On Android 1.x/2.x, go into Applications, then into Development
* On Android 3.0 through 4.1, go into “Developer options” from the main
Settings screen

28

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

* On Android 4.2 and higher, go into About, tap on the build number seven
times, then press BACK, and go into “Developer options” (which was
formerly hidden)

= Developer options

USB debugging

Debug mode when USB is connected

Development device ID
B6CM-4DQT-GQAX-7

SEVEVELE 7
Screen will never sleep while charging

Allow mock locations
Allow mock locations

Desktop backup password
Desktop full backups aren't currently protected.

USER INTERFACE

Strict mode enabled

Flash screen when apps do long
operations on main thread

Pointer location

Screen overlay showing current touch
data

Figure 14: Android 4.0 device development settings

You may need to slide a switch in the upper-right corner of the screen to the “ON”
position to modify the values on this screen.

Generally, you will want to enable USB debugging, so you can use your device with
the Android build tools. You can leave the other settings alone for now if you wish,
though you may find the “Stay awake” option to be handy; as it saves you from
having to unlock your phone all of the time while it is plugged into USB.

Note that on Android 4.2.2 and higher devices, before you can actually use the
setting you just toggled, you will be prompted to allow USB debugging with your
specific development machine via a dialog box:

29

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #1 - INSTALLING THE TOOLS

The computer's RSA key fingerprint is:
OA:A8:61:07:C6:DE:ED:B9:3A:78:5B:2B:CB:9C:5F:FC

Always allow from this computer

Figure 15: Allow USB Debugging Dialog

This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the
driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, here are some options for getting one.

Windows Update

Some versions of Windows (e.g., Vista) will prompt you to search Windows Update
for drivers. This is certainly worth a shot, though not every device will have supplied
its driver to Microsoft.

Standard Android Driver

In your Android SDK installation, if you chose to install the “Google USB Driver”
package from the SDK Manager, you will find an extras/google/usb_driver/
directory, containing a generic Windows driver for Android devices. You can try
pointing the driver wizard at this directory to see if it thinks this driver is suitable
for your device.

Manufacturer-Supplied Driver

If you still do not have a driver, the OEM USB Drivers in the developer
documentation may help you find one for download from your device manufacturer.
Note that you may need the model number for your device, instead of the model

30

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/tools/extras/oem-usb.html

TUTORIAL #1 - INSTALLING THE TOOLS

name used for marketing purposes (e.g., GT-P3113 instead of “Samsung Galaxy Tab 2
7.0”).

OS X and Linux

Odds are decent that simply plugging in your device will “just work”. You can see if
Android recognizes your device via running adb devices in a shell (e.g., OS X
Terminal), where adb is in your platform-tools/ directory of your SDK. If you get
output similar to the following, Android detected your device:

List of devices attached
HT9CPP809576 device

If you are running Ubuntu (or perhaps other Linux variants), and this command did
not work, you may need to add some udev rules. For example, here is a
51-android.rules file that will handle the devices from a handful of manufacturers:

SUBSYSTEM=="usb", SYSFS{idVendor}=="0bb4", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="22b8", MODE="0666"

SUBSYSTEM=="usb", SYSFS{idVendor}=="18d1", MODE="0666"

SUBSYSTEMS=="usb", ATTRS{idVendor}=="18d1", ATTRS{idProduct}=="0c01",
MODE="0666", OWNER="[me]"

SUBSYSTEM=="usb", SYSFS{idVendor}=="19d2", SYSFS{idProduct}=="1354", MODE="0666"
SUBSYSTEM=="usb", SYSFS{idVendor}=="04e8", SYSFS{idProduct}=="681c", MODE="0666"

Drop that in your /etc/udev/rules.d directory on Ubuntu, then either reboot the
computer or otherwise reload the udev rules (e.g., sudo service udev reload).
Then, unplug and re-plug in the device and see if it is detected.

The CyanogenMod project maintains a page on their wiki with more on these udev
rules, including rules from a variety of manufacturers and devices.

In Our Next Episode...

... we will create an Android project that will serve as the basis for all our future
tutorials.

31

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://wiki.cyanogenmod.org/w/UDEV

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #2 - Creating a Stub Project

Creating an Android application first involves creating an Android “project”. As with
many other development environments, the project is where your source code and
other assets (e.g., icons) reside. And, the project contains the instructions for your
tools for how to convert that source code and other assets into an Android APK file
for use with an emulator or device, where the APK is Android’s executable file
format.

Hence, in this tutorial, we kick off development of a sample Android application, to
give you the opportunity to put some of what you are learning in this book in
practice.

About Our Tutorial Project

The application we will be building in these tutorials is called EmPubLite. EmPubLite
will be a digital book reader, allowing users to read a digital book like the one that
you are reading right now.

EmPubLite will be a partial implementation of the EmPub reader used for the APK
version of this book. EmPub itself is a fairly extensive application, so EmPubLite will
have only a subset of its features. The main EmPub app, however, will be used
elsewhere in this book to illustrate more advanced Android capabilities.

The “Em” of EmPub and EmPubLite stands for “embedded”. These readers are not
designed to read an arbitrary EPUB or MOBI formatted book that you might
download from somewhere. Rather, the contents of the book (largely an unpacked
EPUB file) will be “baked into” the reader APK itself, so by distributing the APK, you
are distributing the book.

33

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/empub
http://github.com/commonsguy/empub

TUTORIAL #2 - CREATING A STUB PROJECT

About the Rest of the Tutorials

Of course, you may have little interest in writing a digital book reader app.

The tutorials presented in this book are certainly optional. There is no expectation
that you have to write any code in order to get value from the book. These tutorials
are here simply as a way to help those of you who “learn by doing” have an
opportunity to do just that.

Hence, there are any number of ways that you can use these tutorials:

* You can ignore them entirely. That is not the best answer, but you are
welcome to do it.

* You can read the tutorials but not actually do any of the work. This is the
best low-effort answer, as it is likely that you will learn things from the
tutorials that you might have missed by simply reading the non-tutorial
chapters.

* You can follow along the steps and actually build the EmPubLite app.

* You can download the answers from the book’s GitHub repository. There,
you will find one directory per tutorial, showing the results of having done
the steps in that tutorial. For example, you will find a T2-Project/ directory
containing a copy of the EmPubLite sample app after having completed the
steps found in this tutorial. You can import these projects into Eclipse,
examine what they contain, cross-reference them back to the tutorials
themselves, and run them.

Any of these are valid options — you will need to choose for yourself what you wish
to do.

All that being said, it is a pretty good idea to do at least this tutorial, so you learn
how to create an Android project.

About the Eclipse Instructions

The instructions found in this book assume that you are using the R21 version of the
Android developer tools and the ADT plugin for Eclipse.

34

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #2 - CREATING A STUB PROJECT

Step #1: Creating the Project

First, we need to create the Android project for EmPubLite. You need to decide
whether you are going to work with this project from inside the Eclipse IDE or
through other tools. If you wish to use Eclipse, follow the instructions in the
“Eclipse” section below. If you wish to use a simple editor, follow the “Command
Line” instructions below. If you wish to use some other IDE, read through both
sections plus the documentation for your IDE to determine how to create a project
with the proper settings.

Eclipse

From the Eclipse main menu, choose File > New > Project... to bring up the first page
of the “New Project” wizard:

© New Project

Select a wizard ——

Create an Android Application Project

Wizards:

[@

2% Java Project
Java Project from Existing Ant Buildfile
% Plug-in Project
* (= General
¥ = Android
& Android Application Project
& Android Project from Existing Code
& Android sample Project

% Andraid Teck Praiark -

@ | Next> | cancel

Figure 16: Eclipse New Project Wizard

Choose “Android Application Project” from the types of projects and click “Next >”
to proceed to the next page of the wizard:

35

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android Application
New Android Application q
@ Enter an application name (shown in launcher)

Application Name: @

Project Name:®

Package Name:®@

Minimum Required SDK:8| API 8: Android 2.2 (Froyo)
Target SDK:@| API 16: Android 4.1 (Jelly Bean)
Compile With:2| API 17: Android 4.2

Theme:@| Holo Light with Dark Action Bar

@ | <Back | Cancel

Figure 17: Eclipse New Android Application Project Wizard, As Initially Launched

Fill in the following items:

+ For “Application Name” and “Project Name”, fill in EmPubLite

+ For “Package Name”, fill in com.commonsware.empublite

* For “Minimum Required SDK”, choose “API 9: Android 2.3 (Gingerbread)”

* For “Target SDK”, choose “API 15: Android 4.0.3 (IceCreamSandwich)”

+ For “Compile With”, choose “API 15: Android 4.0.3 (IceCreamSandwich)” (if

you do not have that version, any higher API level should be fine)

The remaining defaults should be fine, leaving you with a dialog akin to this:

36

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android Application
New Android Application ? %
Creates a new Android Application

Application Name:8| EmPubLite

Project Name:&| EmPubLite

Package Name:®| com.commonsware.empublite

Minimum Required SDK:8| API 9: Android 2.3 (Gingerbread) =

Target SDK:@| API 15: Android 4.0.3 (IceCreamSandwict 2 |

Compile with:6| API 15: Android 4.0.3 (lceCreamSandwict 2 J

Theme:@| Holo Light with Dark Action Bar -

W Choose a target API to compile your code against, from your installed SDKs. This is
typically the most recent version, or the first version that supports all the APIs you
want to directly access without reflection.

@ | <Back | mMext> || cancel | ——

Figure 18: Eclipse Wizard, With Data

Then, click “Next >” to move to the next page of the wizard:

37

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android Application
New Android Application f \
Configure Project

[Create custom launcher icon

[Create activity
Mark this project as a library

[Create Projectin Workspace

Working sets
& Add project to working sets

Working sets: | EmPubLite - Select...

@ <Back | Next= | Cancel

Figure 19: Eclipse Wizard, Other Project Settings, As Initially Launched

Here:

* Uncheck “Create custom launcher icon”, as we will do this separately later

* Leave “Create activity” checked

* Leave “Mark this project as a library” unchecked

+ Choose where you want the project files to be placed, either by leaving
“Create Project in Workspace” checked, or unchecking it and choosing a
directory on your development machine in which to place the files

+ If you are using Eclipse’s working sets, choose your working set (if you do not
know what working sets are in Eclipse, you are not using them, and so you
can safely ignore this option)

38

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android Application
New Android Application

Configure Project @

Create custom launcher icon

[Create activity
Mark this project as a library

[Create Projectin Workspace

Working sets
& Add project to working sets

Working sets: | Omnibus || select..

@ | <Back | MNext> J | Cancel

Figure 20: Eclipse Wizard, Other Project Settings, With Data

Then, click “Next >” to move to the next page of the wizard:

39

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android Application

Create Activity {
Select whether to create an activity, and if so, what kind of activity.

[& Create Activity

BlankActivity
FullscreenActivity
LoginActivity
MasterDetailFlow

Il A
SettingsActivity
New Blank Activity
Creates a new blank activity, with optional inner navigation.
@:l | <Back ‘ Mext > Cancel Finish

Figure 21: Eclipse New Android Project Wizard, Create Activity Page

Here, you choose which template project you want to use as a starting point. Leave

the “Create Activity” checkbox checked, and choose “BlankActivity” from the
template list.

Then, click “Next >” to move to the next page of the wizard:

40

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android Application

New Blank Activity {
Creates a new blank activity, with optional inner navigation.

Activity Nameﬁ[MainActivity]

Layout Name® | activity_main

Navigation Type®| None =

& The name of the activity class to create

@:l < Back Cancel | Finish |

Figure 22: Eclipse New Android Project Wizard, New Blank Activity Page

Fill in the following details:

* For “Activity Name”, fill in EmPubLiteActivity
+ For “Layout Name”, fill in main

Leave the rest of the defaults alone.

41

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ New Android Application

Blank Activity 4
Creates a new blank activity, with an action bar and optional navigational

elements such as tabs or horizontal swipe.

Activity Name®| EmPubLiteActivity

Layout Nameﬁ[main|]

Navigation Type®| None =]

'+ The name of the layout to create for the activity

@ < Back Mext > Cancel | l Finish J

Figure 23: Eclipse New Android Project Wizard, New Blank Activity Page, With Data

At this point, you can click the “Finish” button to complete the wizard. Your new
EmPubLite project should appear in the Eclipse Package Explorer view:

b Esrc

» {2 gen [Generated Java Files]

* =4 Android 4.0.3

® =i Android Dependencies
& assets

» & bin

» & libs

» = res
ia] AndroidManifest.xml
proguard-project.txt
project.properties

Figure 24: Eclipse Package Explorer, Showing EmPubLite

Command Line

First, choose where you want to create the project on your filesystem.

42

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

Then, execute the following command:

android create project -n EmPubLite -t android-15 -p ... -k
com.commonsware.empublite -a EmPubLiteActivity

(replacing the ... with the path to your desired project directory)
This will:

* Create the directory you specified
+ Create a bunch of files in that directory, using the package name and activity
name that you supplied

If android create project is not recognized as a command, be sure that you added
your SDK’s tools/ and platform-tools/ directories to your PATH environment
variable (and restarted your command line, if needed).

If you get a complaint that you do not have android-15, either use the SDK
Manager to install the SDK for Android’s API Level 15 (Android 4.0.3) or adjust that
parameter to some SDK that you have (e.g., android-18).

Step #2: Running the Project

Now, we can confirm that our project is set up properly by running it on a device or
emulator. Once again, there are separate sections of instructions below for Eclipse
versus command-line development — please follow the instructions that are
appropriate for you.

Eclipse

Press the Run toolbar button (usually depicted as a white “play” triangle in a green
circle). The first time you run the project, you will see a “Run As” dialog, prompting
you to declare how you want to run the app:

43

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

Select a way to run'EmPublLite":

Ji Android JUnit Test
Java Applet

Java Application
Ju Junit Test

Description
Runs an Android Application

@ | cancel | OK]
Figure 25: Eclipse Run As Dialog

Click on “Android Application” and click “OK” to proceed.

At this point, if you have a compatible running emulator or device, the app will be
installed and run on it. Otherwise, Eclipse will start up a suitable emulator, from the
AVDs you created in the previous tutorial, then will install and run the app on it:

5554:4.0.3-x86-WV GAB00

Q EmPubLite

ﬁ.— -
VERV
AWl S RO,

Hello world! 1 (203 lalsle |7 18 lo [0 |
PSR NN N) S [o e
e e e e e e

= i

Figure 26: Android 4.0.3 Emulator with EmPubLite

44

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

Note that you will have to unlock your device or emulator to actually see the app
running — it will not unlock automatically for you.

Command Line

First, you need to either attach a device or start up a 4.0.3 emulator (we will add
support for earlier versions of Android in an upcoming tutorial). If you did not
create a 4.0.3 AVD in the first tutorial, and you do not have an Android device
running 4.0.3 or higher, go ahead and create the 4.0.3 emulator AVD.

To start the emulator, execute the android avd command to bring up the AVD
Manager:

Android Virtual Device Manager

Tools

List of existing Android Virtual Devices located at /home/mmurphy/.android/avd

AVD Name Target Name Platform | APlILevel CPU/ABI | New.. |
2.1-WVGABO0 Google APIs (Google In 2.1 7 ARM (armeabi) ;

~ WIMMOne WIMM One Add-On (W| 2.1 7 ARM (armeabi))
~ 2.2-HVGA Google APIs (GoogleIn 2.2 8 ARM (armeabi) |Delete... |
w 2.2-WVGABO Google APIs (GoogleIn 2.2 8 ARM (armeabi)

~ KindleFire Android 2.3.3 233 10 ARM (armeabi) —

~ 2.3.3-WVGA! Google APIs (Google In 2.3.3 10 ARM (armeabi) | petails... |
~ 3.1-TV-1808f Google TV Addon (Goo 3.1 12 Intel Atom (x86 —
~ 3.1TV-720p Google TV Addon (Goo 3.1 12 Intel Atom (xge | S8t |
~ 3.2-WXGA Google APIs (GoogleIn 3.2 13 ARM (armeabi)

~ 4.0-BOGUS Google APIs (Google In 4.0.3 15 ARM (armeabi-

~ 4.0-WVGA Google APIs (Google In 4.0.3 15 ARM (armeabi-

~ 4.0-WXGA Google APIs (Google In 4.0.3 15 ARM (armeabi-

| Refresh |

~ Avalid Android virtual Device. 1 Arepairable Android Virtual Device.
X An Android Virtual Device that Failed to load. Click 'Details' to see the error.

Figure 27: Android AVD Manager

Highlight the AVD you wish to run, then click “Start...”:

45

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #2 - CREATING A STUB PROJECT

@ Launch Options

Skin: WWVGABO00 (480x800)
Density: High (240)

Scale display to real size

Wipe user data

| Launch | Cancel

Figure 28: Android AVD Manager Launch Options

You can, if you wish, just click “Launch” to start up the emulator. Or, you can tailor
the output, such as by checking the “Scale display to real size” checkbox, then filling
in the desired diagonal size of the emulator screen and the dots-per-inch (dpi) of
your development machine’s monitor. Clicking the “?” will bring up an assistant that
will help you calculate your monitor’s dots-per-inch.

Once your emulator is launched, from your project directory, run the ant clean
debug install command. This will:

* Clean out any pre-compiled stuff from previous builds
+ Create a debug build of your app
+ Install that debug build on your emulator

If you navigate to the launcher of the emulator, you will see your EmPubLite icon —
tapping that will bring up the do-nothing stub application.

In Our Next Episode...

... we will modify the AndroidManifest.xml file of our tutorial project.

46

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Contents of Android Projects

The Android build system is organized around a specific directory tree structure for
your Android project, much like any other Java project. The specifics, though, are
fairly unique to Android — the Android build tools do a few extra things to prepare
the actual application that will run on the device or emulator. Here is a quick primer
on the project structure, to help you make sense of it all, particularly for the sample
code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project), you get
several items in the project’s root directory, including:

1. AndroidManifest.xml, which is an XML file describing the application being
built and what components — activities, services, etc. — are being supplied
by that application

2. bin/, which holds the application once it is compiled (note: this directory
will be created when you first build your application)

3. res/, which holds “resources”, such as icons, GUI layouts, and the like, that
get packaged with the compiled Java in the application

4. src/, which holds the Java source code for the application

In addition to the files and directories shown above, you may find any of the
following in Android projects:

1. assets/, which holds other static files you wish packaged with the
application for deployment onto the device
2. gen/, where Android’s build tools will place source code that they generate

47

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

CONTENTS OF ANDROID PROJECTS

3. libs/, which holds any third-party Java JARs your application requires
(NOTE: this directory may not be created for you by Eclipse, though it is by
the command-line option, and you can add it yourself to your Eclipse project
when needed)

4. build.xml and *.properties, which are used as part of the Ant-based
command-line build process, if you are not using Eclipse

5. proguard.cfg or proguard-project.txt, which are used for integration with
ProGuard for obfuscating your Android code

6. Eclipse project files (e.g., .classpath), if you are using Eclipse

The Sweat Off Your Brow

When you created the project (e.g., via android create project), you supplied the
fully-qualified class name of the “main” activity for the application (e.g.,

com. commonsware.android.SomeDemo). You will then find that your project’s src/
tree already has the package’s directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/
SomeDemoActivity.java). You are welcome to modify this file and add others to the
src/ tree as needed to implement your application, and we will demonstrate that
countless times as we progress through this book.

The first time you compile the project (e.g., via ant), out in the project’s package’s
directory, the Android build chain will create R. java. This contains a number of
constants tied to the various resources you placed out in the res/ directory tree. You
should not modify R. java yourself, letting the Android tools handle it for you. You
will see throughout many of the samples where we reference things in R. java (e.g.,
referring to a layout’s identifier via R. layout.main).

Resources

You will also find that your project has a res/ directory tree. This holds “resources”
— static files that are packaged along with your application, either in their original
form or, occasionally, in a preprocessed form. Some of the subdirectories you will
find or create under res/ include:

1. res/drawable/ for images (PNG, JPEG, etc.)
2. res/layout/ for XML-based Ul layout specifications
3. res/menu/ for XML-based menu specifications

48

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://proguard.sourceforge.net/

CONTENTS OF ANDROID PROJECTS

4. res/raw/ for general-purpose files (e.g., an audio clip, a CSV file of account
information)

5. res/values/ for strings, dimensions, and the like

6. res/xml/ for other general-purpose XML files you wish to ship

Some of the directory names may have suffixes, like res/drawable-hdpi/. This
indicates that the directory of resources should only be used in certain
circumstances — in this case, the drawable resources should only be used on devices
with high-density screens.

We will cover all of these, and more, later in this book.

What You Get Out Of It

When you compile your project (via ant or the IDE), the results go into the bin/
directory under your project root. Specifically:

1. bin/classes/ holds the compiled Java classes

2. bin/classes.dex holds the executable created from those compiled Java
classes

3. bin/yourapp.ap_ holds your application’s resources, packaged as a ZIP file
(where yourapp is the name of your application)

4. bin/yourapp-*.apk is the actual Android application (where * varies)

The .apk file is a ZIP archive containing the . dex file, the compiled edition of your
resources (resources.arsc), any un-compiled resources (such as what you put in
res/raw/) and the AndroidManifest.xml file. If you build a debug version of the
application — which is the default — you will have yourapp-debug.apk as your APK.

49

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Inside the Manifest

The foundation for any Android application is the manifest file:
AndroidManifest.xml in the root of your project. Here is where you declare what is
inside your application — the activities, the services, and so on. You also indicate
how these pieces attach themselves to the overall Android system; for example, you
indicate which activity (or activities) should appear on the device’s main menu
(a.k.a., launcher).

When you create your application, you will get a starter manifest generated for you.
For a simple application, offering a single activity and nothing else, the auto-
generated manifest will probably work out fine, or perhaps require a few minor
modifications. On the other end of the spectrum, the manifest file for the Android
API demo suite is over 1,000 lines long. Your production Android applications will
probably fall somewhere in the middle.

In The Beginning, There Was the Root, And It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.cwac.richedit.demo"
android:versionCode="1"
android:versionName="1.0">

Note the android namespace declaration. You will only use the namespace on many
of the attributes, not the elements (e.g., <manifest>, not <android:manifest>).

The biggest piece of information you need to supply on the <manifest> element is
the package attribute. Here, you can provide the name of the Java package that will
be considered the “base” of your application. Your package is a unique identifier for

51

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

your application. A device can only have one application installed with a given
package, and the Play Store will only list one project with a given package.

Your manifest also specifies android:versionName and android:versionCode
attributes. These represent the versions of your application. The
android:versionName value is what the user will see for a version indicator in the
Applications details screen for your app in their Settings application:

“l B 05:40

[TMM Barcode Scanner
LY version 4.2

Force stop Uninstall

STORAGE

Total 0.96MB
App 0.91MB
USB storage app 0.00B
Data 56.00KB
USB storage data 0.00B

Clear data

CACHE

Cache

LAUNCH BY DEFAULT

P

Figure 29: Barcode Scanner App Screen in Settings, Showing Version 4.2

Also, the version name is used by the Play Store listing, if you are distributing your
application that way. The version name can be any string value you want. The
android:versionCode, on the other hand, must be an integer, and newer versions
must have higher version codes than do older versions. Android and the Play Store
will compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical approach
is to start the version code at 1 and increment it with each production release of
your application, though you can choose another convention if you wish. During
development, you can leave these alone, but when you move to production, these
attributes will matter greatly.

52

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

An Application For Your Application

In your initial project’s manifest, the primary child of the <manifest> element is an
<application> element.

By default, when you create a new Android project, you get a single <activity>
element inside the <application> element:

<?xml version="1.0"?>
<manifest package="com.commonsware.android.skeleton"
xmlns:android="http://schemas.android.com/apk/res/android">

<application>
<activity android:label="Now"
android:name="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (sometimes) an
<intent-filter> child element describing under what conditions this activity will
be displayed. The stock <activity> element sets up your activity to appear in the
launcher, so users can choose to run it. As we'll see later in this book, you can have
several activities in one project, if you so choose.

The android:name attribute, in this case, has a bare Java class name (Now).
Sometimes, you will see android:name with a fully-qualified class name (e.g.,
com.commonsware.android.skeleton.Now). Sometimes, you will see a Java class
name with a single dot as a prefix (e.g., .Now). Both Now and .Now refer to a Java class
that will be in your project’s package — the one you declared in the package
attribute of the <manifest> element.

Specifying Versions

As was noted earlier in this chapter, your manifest already contains some version
information, about your own application’s version. It also contains a <uses-sdk>
element as a child of the <manifest> element to your AndroidManifest.xml file, to
specify what versions of Android you are supporting.

53

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

The most important attribute for your <uses-sdk> element is
android:minSdkVersion. This indicates what is the oldest version of Android you are
testing with your application. The value of the attribute is an integer representing
the Android API level. So, if you are only testing your application on Android 2.1 and
newer versions of Android, you would set your android:minSdkVersion to be 7.

You should also specify an android: targetSdkVersion attribute. This indicates what
version of Android you are thinking of as you are writing your code. If your
application is run on a newer version of Android, Android may do some things to try
to improve compatibility of your code with respect to changes made in the newer
Android. In particular, to get the new “Honeycomb” look-and-feel when running on
an Android 3.0 (or higher) device, you need to specify a target SDK version of 11 or
higher:

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="11" />

Supporting Multiple Screens

Android devices come with a wide range of screen sizes, from 2.8” tiny smartphones
to 46” Google TVs. Android divides these into four buckets, based on physical size
and the distance at which they are usually viewed:

Small (under 3”)

Normal (3” to around 4.5”)
Large (4.5” to around 10”)
Extra-large (over 10”)

W N A

By default, your application will not support small screens, will support normal
screens, and may support large and extra-large screens via some automated
conversion code built into Android.

To truly support all the screen sizes you want, you should consider adding a
<supports-screens> element to your manifest. This enumerates the screen sizes you
have explicit support for. For example, if you want to support small screens, you will
need the <supports-screens> element. Similarly, if you are providing custom UI
support for large or extra-large screens, you will want to have the
<supports-screens> element. So, while the starting manifest file works, handling
multiple screen sizes is something you will want to think about.

54

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

INSIDE THE MANIFEST

Much more information about providing solid support for all screen sizes, including
samples of the <supports-screens> element, will be found later in this book as we
cover large-screen strategies.

Other Stuff

As we proceed through the book, you will find other elements being added to the
manifest, such as:

* <uses-permission>, to tell the user that you need permission to use certain
device capabilities, such as accessing the Internet

+ <uses-feature>, to tell Android that you need the device to have certain
features (e.g., a camera), and therefore your app should not be installed on
devices lacking such features

* <uses-library>, to tell Android that you need the device to support a
certain library in firmware (e.g., Google Maps), and therefore your app
should not be installed on devices lacking that library

These and other elements will be introduced elsewhere in the book.

55

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #3 - Changing Our Manifest

As we build EmPubLite, we will need to make a number of changes to our project’s
manifest. In this tutorial, we will take care of a couple of these changes, to show you
how to manipulate the AndroidManifest.xml file. Future tutorials will make yet
more changes.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Supporting Screens

Our application will restrict its supported screen sizes. Tablets make for ideal ebook
readers. Phones can also be used, but the smaller the phone, the more difficult it
will be to come up with a Ul that will let the user do everything that is needed, yet
still have room for more than a sentence or two of the book at a time.

We will get into screen size strategies and their details later in this book. For the
moment, though, we will add a <supports-screens> element to keep our
application off “small” screen devices (under 3” diagonal size).

If you wish to make this change using Eclipse’s structured manifest editor, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

57

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T2-Project
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #3 - CHANGING OUR MANIFEST

Eclipse

In the Package Explorer view in Eclipse, find the AndroidManifest.xml entry and
double-click on it.

f2 Package Explorer 2 =8

E
> @ src
» &3 gen [Generated Java Files]
b =) Android 4.0.3
& assets
*» & bin
» B res
7 AndroidManifest.xml
proguard.cfg
project.properties

Figure 30: Eclipse Package Explorer, Showing EmPubLite

Double-clicking on the file will bring the file up in Eclipse’s default editor for that
type of file. In the case of AndroidManifest.xml, this will be a structured editor for
manifest settings:

58

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com

TUTORIAL #3 - CHANGING OUR MANIFEST

< EmPubLite Manifest 22

=0
De:ﬂnes general information about the AndroidManifest.xml
Package com.commonsware.empublite Browse...
Version code 1
Versionname 1.0 Browse...
Shared userid Browse...
Shared user label Browse...

Install location

OOPOEOO®O -

@ uses sdk Add...

To export the application for distribution, you have the following options:
* Use the Export Wizard to export and signan APK
* Export anunsigned APK and sign it manually

The content of the Android Manifest is made up of three sections. You can also edit the XML directly.
[®) Application: Activities, intent filters, providers, services and receivers.

(P) Permission: Permissions defined and permissions used.

[0 Instrumentation: Instrumentation defined.

=] XML Source: Directly edit the AndroidManifest.xml file.

Documentation: Documentation from the Android SDK for AndroidManifest.xml.
[= Manifest [a) Application| [P Permissions | (1] Instrumentation | =] AndroidManifest.xml.

Figure 31: Eclipse Manifest Editor

You will notice that there is a series of sub-tabs at the bottom of the editor, labeled
“Manifest”, “Application”, “Permissions”, and so on. These allow you to adjust
different portions of the manifest file. The right-most sub-tab,
“AndroidManifest.xml”, allows you to edit the raw XML of this file directly, if you so
choose. This is a fairly typical pattern with the Eclipse editors: one or more sub-tabs

providing a structured way of editing the data, and the right-most sub-tab providing
raw access to the underlying XML.

In the “Manifest Extras” area of the “Manifest” sub-tab in our open manifest editor,

click the “Add..” button to the right of the extras list, to bring up a dialog of what
sort of extras we can add:

59

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

Create a new element at the top level, in Manifest.

[|
[€) Compatible Screens

© Original Package

® Package Verifier

() Protected Broadcast

(® supports Screens

@ Uses Configuration

@ Uses Feature

L) Uses sdk

Cancel | OK |

Figure 32: Eclipse Manifest Extras Options

Click on “Supports Screens”, then click “OK” to close the dialog and add a “Supports
Screens” entry in the “Manifest Extras” list. That entry will be pre-selected by the
editor, showing the available configuration options on the right:

(ONONONUNERONONONE

(® The supports-screens specifies the screen dimensions an

@ Uses sdk Add... application supports.

® Supports Screens Requires smallest width dp

Remove...
Compatible width limit dp

up Largest width limit dp
Small screens v
Normal screens v
Large screens v

Figure 33: Eclipse Supports Screens Options

Note that the attributes list on the right may have vertical scrollbar, as there are
several things we can stipulate on the <supports-screens> element, and not all can
fit on the editor at once given the editor’s design.

Using that scrollbar as needed, toggle the “Small screens” value to false and the
“Normal screens”, “Large screens”, and “Xlarge screens” values to true:

60

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

(&) The supports-screens specifies the screen dimensions an -
application supports.

Requires smallest width dp
Compatible width limit dp
Largest width limit dp

Small screens false v
Normal screens true v
Large screens true v
Xlarge screens true 7 v

Figure 34: Eclipse Supports Screens Options, Adjusted
Then you can save the file, via the main menu, the Save toolbar icon, or <Ctr1>-<S>.

Outside of Eclipse

As a child of the root <manifest> element, add a <supports-screens> element as
follows:

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

Step #2: Validating our Minimum and Target SDK
Versions

If you created your project from Eclipse, then in the “Manifest Extras” area of the
“Manifest” sub-tab in our open manifest editor, you should have a Uses Sdk entry.
Clicking on that should show that your minimum SDK version is set to g and that
your target SDK version is 15 (or whatever you chose in Tutorial #2):

61

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

Manifest Extras OO PEOEDE @ A: Attributes for Uses Sdk
(@ Theiuses-sdk tag describes the SDK features that the containing package
@ uses sdk Add... must be running on to operate correctly.
® supports sereens Remove Min SDK version 9 Browse...
Target SDK version |15 Browse...

Max SDK version
Down

Figure 35: Eclipse Uses Sdk Options

If you created your project from the command line, though, this data may not exist.
You will need to add a <uses-sdk android:minSdkVersion="9"
android:targetSdkVersion="15"/> element to your manifest, as a child of the root
<manifest> element.

The entire manifest file, at this point should look a bit like:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application

android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity

android:name="EmPubLiteActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

62

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #3 - CHANGING OUR MANIFEST

</manifest>

In Our Next Episode...

... we will make some changes to the resources of our tutorial project

63

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Some Words About Resources

It is quite likely that by this point in time, you are “chomping at the bit” to get into
actually writing some code. This is understandable. That being said, before we dive
into the Java source code for our stub project, we really should chat briefly about
resources.

Resources are static bits of information held outside the Java source code. Resources
are stored as files under the res/ directory in your Android project layout. Here is
where you will find all your icons and other images, your externalized strings for
internationalization, and more.

These are not only separate from the Java source code because they are different in
format. They are separate because you can have multiple definitions of a resource, to
use in different circumstances. For example, with internationalization, you will have
strings for different languages. Your Java code will be able to remain largely oblivious
to this, as Android will choose the right resource to use, from all candidates, in a
given circumstance (e.g., choose the Spanish string if the device’s locale is set to
Spanish).

We will cover all the details of these resource sets later in the book. Right now, we
need to discuss the resources in use by our stub project, plus one more.

String Theory

Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization (I18N) and localization (LioN). Even if you are not going to
translate your strings to other languages, it is easier to make corrections if all the
strings are in one spot instead of scattered throughout your source code.

65

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

Plain Strings

Generally speaking, all you need to do is have an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root
element, and one child string element for each string you wish to encode as a
resource. The string element takes a name attribute, which is the unique name for
this string, and a single text element containing the text of the string:

<resources>
<string name="quick">The quick brown fox...</string>
<string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quote or an apostrophe. In those
cases, you will want to escape those values, by preceding them with a backslash (e.g.,
These are the times that try men\'s souls). Or, if it is just an apostrophe, you
could enclose the value in quotes (e.g., "These are the times that try men's
souls.").

For example, our stub project’s strings.xml file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">EmPubLite</string>
<string name="hello_world">Hello world!</string>
<string name="menu_settings">Settings</string>

</resources>

We will reference these string resources from various locations, in our Java source
code and elsewhere. For example, the app_name string resource is used in our
AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"

66

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

android:smallScreens="false"
android:xlargeScreens="true"/>

<application

android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity

android:name="EmPubLiteActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Here, the android:label attribute of our <application> element refers to the
app_name string resource. This will appear in a few places in our application, notably
in the list of installed applications in Settings. So, if you wish to change how your
application’s name appears in these places, simply adjust the app_name string
resource to suit.

The syntax @string/app_name tells Android “find the string resource named
app_name”. This causes Android to scan the appropriate strings.xml file (or any
other file containing string resources in your res/values/ directory) to try to find
app_name.

Styled Text

Many things in Android can display rich text, where the text has been formatted
using some lightweight HTML markup, such as , <i>, and <u>. Your string
resources support this, simply by using the HTML tags as you would in a Web page:

<resources>
<string name="b">This has bold in it.</string>
<string name="i">Whereas this has <i>italics</i>!</string>
</resources>

Unfortunately, the list of supported tags is undocumented. Based on recent Android
implementations, it will mostly be your inline markup rules (e.g., <tt>, <h1>,
<small>, <strike>).

67

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

The Directory Name

Our string resources in our stub project are in the res/values/strings.xml file.
This directory (res/values/) means that the string resources in that directory will
be valid for any sort of situation, including any locale for the device. We will need
additional directories, with distinct strings.xml files, to support other languages.
We will cover how to do that later in this book.

String Resources and Eclipse

When you double-click on a string resource file, like res/values/strings.xml, you
will be greeted with a list of all the string resources that have been defined:

a strings.xml &2

(ONGRORONFNONE RIS

(® app_name (String) Add...
(® hello_world (string)

(® menu_settings (String)

(® title_activity_em_pub_lite (String)

=l Resources | (=] strings.xml

Figure 36: Eclipse, Showing String Resources

Clicking on a resource allows you to edit its name and value:

68

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

2 strings.xml &2 =8

@O0OOEOE N A

(® Strings, with optional simple Formatting, can be stored and retrieved as

(8 app_name (String) Add... resources. You can add formatting to your string by using three standard
® hello_world (String) HTML tags:_b, i,and u. If'you use an apostrophe ora q'uote inyour s_tring,
(® menu_settings (tring) Remove... you must either escape it or enclose the whole string in the other kind of

. L .) enclosing quotes.
® title_activity_em_pub_lite (String) Name |app_name
Down Value* EmPublLite

Figure 37: Eclipse, Editing Existing String Resources

Clicking the “Add..” button to the right of the list of strings brings up a dialog where
you can add another resource to this file, typically a string:

Create a new element at the top level, in Resources.

[|
© color

(@ Dimension

@ Drawable

[Integer Array

@ Item

(8 string

[§) string Array

[5) style/Theme

Cancel | OK |

Figure 38: Eclipse, Add String Resource Dialog

Choosing “String” in that dialog and clicking OK will add another (empty) string
resource to the list, where you can fill in the name and value.

You can always click on the strings.xml sub-tab to bring up an XML editor on the
resources if you prefer.

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is officially
discouraged, however; PNG is the overall preferred format. Android also supports

69

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

some proprietary XML-based image formats, though we will not discuss those at
length until later in the book.

The default directory for these so-called drawable resources is res/drawable/. Any
images found in there can be referenced from Java code or from other places (such
as the manifest), regardless of device characteristics.

However, your stub project does not have a res/drawable/ directory.
Instead, it has directories like res/drawable-mdpi/ and res/drawable-hdpi/.

These refer to distinct resource sets. The suffixes (e.g., -mdpi, -hdpi) are filters,
indicating under what circumstances the images stored in those directories should
be used. Specifically, -1dpi indicates images that should be used on devices with
low-density screens (around 120 dots-per-inch, or “dpi”). The -mdpi suffix indicates
resources for medium-density screens (around 160dpi), -hdpi indicates resources
for high-density screens (around 240dpi). -xhdpi indicates resources extra-high-
density screens (around 320dpi), --xxhdpi indicates extra-extra-high-density
screens (around 480dpi), -xxxhdpi indicates extra-extra-extra-high-density screens
(around 640dpi), and so on.

Inside each of those directories, you will see an ic_launcher.png file (along with
perhaps other icons). This is the stock icon that will be used for your application in
the home screen launcher. Each of the images is of the same icon, but the higher-
density icons have more pixels. The objective is for the image to be roughly the same
physical size on every device, using higher densities to have more detailed images.

For example, our EmPubLite tutorial project has res/drawable-hdpi/, res/
drawable-xhdpi/, res/drawable-mdpi/, and res/drawable-1dpi/ directories,
containing stock launcher icons (ic_launcher.png) for some of those densities
(along with perhaps other icons).

Our AndroidManifest.xml file then references our ic_launcher icon:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

70

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher
android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity
android:name="EmPubLiteActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Note that the manifest simply refers to @drawable/ic_launcher, telling Android to
find a drawable resource named ic_launcher. The resource reference does not
indicate the file type of the resource — there is no .png in the resource identifier.
This means you cannot have ic_launcher.png and ic_launcher.jpg in the same
project, as they would both be identified by the same identifier. You will need to
keep the “base name” (filename sans extension) distinct for all of your images.

Also, the @drawable/ic_launcher reference does not mention what screen density
to use. That is because Android will choose the right screen density to use, based
upon the device that is running your app. You do not have to worry about it
explicitly, beyond having multiple copies of your icon.

If Android detects that the device has a screen density for which you lack an icon
(e.g., an extra-high-density device with our stub project), Android will take the next-
closest one and scale it. So, for our stub project, Android would take the -hdpi icon
and scale it up to work on an -xhdpi display, such as that found on the Samsung
Galaxy Nexus.

Drawable Resources and Eclipse

Eclipse does not ship with any sort of image editor that you could use for PNG and
JPEG files. Hence, you will find yourself editing these images using other tools

4l

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

outside of Eclipse. Double-clicking on an image in the Package Explorer in Eclipse
should bring up your default editor for that file type.

Using Android System Drawables

Android has many icons and other images that are considered to be part of the SDK,
in addition to many drawables that ship with the OS but are not considered to be
part of the SDK. You are welcome to use these if you wish, though there are some
things that you will wish to consider.

Directly Referencing SDK Drawables

Just as we can reference an @drawable/ic_launcher resource from our own project
in places like the manifest (and, later on, from ImageView and ImageButton widgets),
we can reference an Android system drawable. Instead of @drawable/, though, we
use @android:drawable/, indicating that the icon in question comes from the SDK,
not from our project.

You can find a list of drawables that are part of the Android SDK in, of all places, the
JavaDocs for a strange little android.R.drawable class.

So, for example, ic_menu_share is listed as a constant on that class, and so we can
reference @android:drawable/ic_menu_share anywhere that we would want to use a
drawable resource.

However, there is a risk: device manufacturers are welcome to replace these
drawables with their own artwork. That is not directly a problem, but if you are
using some of your own icons in addition to icons that come from the SDK, you
could get in trouble. Even though your icons might match those you see from the
SDK in the emulator, or on some devices, it is entirely possible that on other devices,
the SDK-supplied icons will look different than your custom ones. Your custom ones
might be grayscale, while the device’s icons are in color, for example.

Hence, you should only directly reference SDK drawables this way in situations
where, even if the device’s drawable is slightly different than you expect, your app
will still look OK.

72

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/R.drawable.html
http://developer.android.com/reference/android/R.drawable.html

SoME WORDS ABOUT RESOURCES

Copying Android System Drawables

You can find the actual artwork for these SDK drawables, and many others, in your
SDK installation itself:

*+ Go to the directory where you installed the Android SDK

* In there, go into platforms/

* In there, choose an API level (as icons may look different in Android from
OS version to version)

* In there, go into data/res/

* In there, look at the various drawable- directories, such as drawable-hdpi/

These icons are licensed under the Apache License 2.0, the same license that is used
for the rest of Android, and therefore you are welcome to copy them for your own
project, under the terms of that license.

This is a safer approach than directly referencing these system resources, because by
copying them into your project and using your own local copies (with normal
@drawable/ references), you are insulated from any changes that might be made by
device manufacturers. On the other hand, it does require a bit more work, and it will
make your app a tiny bit larger.

Dimensions

Dimensions are used in several places in Android to describe distances, such as a
widget’s size. There are several different units of measurement available to you:

1. px means hardware pixels, whose size will vary by device, since not all
devices have the same “screen density” (the ~4” Galaxy Nexus and the ~10”
Motorola XOOM have almost the same number of pixels in vastly different
sizes)

2. inand mm for inches and millimeters, respectively, based on the actual size of
the screen

3. pt for points, which in publishing terms is 1/72nd of an inch (again, based on
the actual physical size of the screen)

4. dip for device-independent pixels — one dip equals one hardware pixel for a
~160dpi resolution screen, but one dip equals two hardware pixels on a
~320dpi screen

73

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

Dimension resources, by default, are held in a dimens.xml file in the res/values/
directory that also holds your strings.

To encode a dimension as a resource, add a dimen element to dimens.xml, with a
name attribute for your unique name for this resource, and a single child text
element representing the value:

<resources>
<dimen name="thin">10dip</dimen>
<dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/. . ., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
sample above). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

While our stub project does not use dimension resources, we will be seeing them
soon enough.

Dimension Resources and Eclipse

Much like editing string resources, when you double-click on a dimension resource
file (e.g., res/values/dimens.xml), you will be presented with a list of existing
dimensions. Clicking on one will let you change its definition:

o dimens.xml &3 =8

@O0O0OEHOE N -

@ You can create common dimensions to use For various screen elements

© padding_small (Dimension) Add by defining dimension values in XML. A dimension resource is a number
©® padding_medium (Dimension) followed by a unit of measurement. Supported units are px (pixels), in
@padding_large (Dimension) Remove... (inches), mm (millimeters), pt (points at 72 DPI), dp (density-independent

pixels) and sp (scale-independent pixels)
Name padding_small

Down Value* 8dp

Figure 39: Eclipse, Editing Existing Dimension Resources

Clicking the “Add..” button to the right of the list of dimensions brings up a dialog
where you can add another resource to this file, typically a dimension. Choosing
“Dimension” and clicking “OK” will add an empty dimension resource to the file, for
which you can supply the name and value.

74

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SoME WORDS ABOUT RESOURCES

And, as always, you can click on a sub-tab with the name of your file (e.g.,
dimens.xml) to bring up an XML editor on your resources:

a dimens.xml 23

1 <resources>

2

3 <dimen name="padding small">8dp</dimen>
4 <dimen name="padding medium">8dp</dimen>
5 <dimen name="padding large">16dp</dimen>
6
7

</resources>

Figure 40: Eclipse, Dimension Resources in XML Editor

The Resource That Shall Not Be Named... Yet

Your stub project also has a res/layout/ directory, in addition to the ones described
above. That is for Ul layouts, describing what your user interface should look like.
We will get into the details of that type of resource as we start examining our user

interfaces in an upcoming chapter.

75

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #4 - Adjusting Our Resources

Our EmPubLite project has some initial resources, put there by the Android build
tools when we created the project. However, the defaults are not what we want for
the long term. So, in addition to adding new resources in future tutorials, we will fix
the ones we already have in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Changing the Name

Our application shows up everywhere as “EmPubLite”:

* In the title bar of our activity

* As the caption under our icon in the home screen launcher
* In the Application list in the Settings app

+ And so on

We should change that to be “EmPub Lite”, adding a space for easier reading, and to
illustrate that this is a “lite” version of the full EmPub application.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

77

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T3-Manifest
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Eclipse

In the Package Explorer, open up the res/values/ folder — you should see a
strings.xml file in there:

b #src
» &2 gen [Generated Java Files]
> =) Android 4.0.3
» =) Android Dependencies
& assets
» & bin
» & libs
v &L res
» = drawable-hdpi
= drawable-ldpi
» = drawable-mdpi
* = drawable-xhdpi
* = layout
* = menu
¥ =values
[x] strings.xml
[x] styles.xml
» = values-v11
» =values-vig
a AndroidManifest.xml
proguard-projeck.txt
project.properties

Figure 41: Eclipse Package Explorer, Showing EmPubLite
Double-click on strings.xml to open it in the string resources editor:

o skrings.xml &
Android Resources (default)

Resources Elements @006 O©E NP A:

(® app_name (string) Add_
® hello_world (string)
(® menu_settings (String)

Figure 42: Eclipse String Resources Editor

This shows a list of the defined string resources (denoted by the green S in the
circle) in this file.

78

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Click the app_name resource, to bring up its details on the right:

4 strings.xml &2 =0

[ONCRONONHNONE RIS

® app_name (String) Add. You can add formatting to your string by using three standard HTML tags: b, i, and
(® hello_world (String) u. Ifyouuse an apest[cpt_we ora quote_in your strinq_,you must either escapeitor
@ menu_settings (String) Remove... enclose the whole string in the other kind of enclosing quotes.

Name app_name
Value* EmPublLite
Down

Figure 43: Eclipse String Resources Editor with Details

The app_name name for the resource is fine, as that is how this string is referenced
from the manifest. Change the value to be “EmPub Lite” (adding the space).

Outside of Eclipse

Open up res/values/strings.xml in your favorite editor. You will find an element
that looks like:

<string name="app_name">EmPublLite</string>

Change the text node in this element to EmPub Lite. Repeat the process for the
title_activity_em_pub_lite resource, if there is one (depending on your tools
version and such, there may not be one). Then save your changes, giving you
something like:

<resources>
<string name="app_name">EmPub Lite</string>
<string name="hello_world">Hello world!</string>
<string name="menu_settings">Settings</string>

</resources>

Step #2: Changing the Icon

The build tools provide us with a stock icon to use for the launcher — the actual
image used varies by Android tools release. However, we can change it to something
else. For example, we could use the icon portion of the CommonsWare logo:

79

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Figure 44: CommonsWare

First, download the original image and save it somewhere on your development
machine.

Then, follow the instructions for Eclipse or non-Eclipse users below.

Eclipse

From the Eclipse main menu, choose File > New > Other > Android. In the resulting
dialog, choose “Android Icon Set” and press Next.

@ Create Asset Set

Choose Icon Set Type

Select the type of icon set to create:

@ Launcher Icons
Action Bar and Tab Icons (Android 3.04)
Notification Icons
Pre-Android 3.0 Tab Icons

Pre-Android 3.0 Menu Icons

Project: | EmPublLite -

Icon Name: [m]
Resource: @drawablefic_launcher | Copy Name to Clipboard |
@ | <Back \{ Next > J | cancel | Finish

Figure 45: Eclipse Icon Set Wizard, First Page

80

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/molecule.png

TUTORIAL #4 - ADJUSTING OUR RESOURCES

The defaults on the first page of the icon set wizard are to create launcher icons,
with a file base name of ic_launcher, to be added to the EmPubLite project. If the
values that you see in the wizard do not match that, adjust the wizard, then press

Next.

@ Create Asset Set

Configure Icon Set

Configure the attributes of the icon set

Preview:

Foreground: |Image cliparl:'TextI

a
=l

Texk: “aA I

Font: | Arial Bold

Trim Surrounding Blank Space

Additional Padding:
{0 +15%

Foreground Scaling: | Crop‘ Center

Shape |None || square | Circle

Background Color: -
Foreground Color:| [N

@ <Back cancel || Finish |

Figure 46: Eclipse Icon Set Wizard, Second Page

In the second page of the icon set wizard, click the “Image” button in the
“Foreground” row. This will change the wizard slightly, giving you a space to supply
the path to some image:

81

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

@ Create Asset Set

Configure Icon Set
@ selectanimage

Preview:

Foreground: [Imagel Clipart | Text

Browse...

Image File:

Trim Surrounding Blank Space

Additional Padding:
+15%

Foreground Scaling: | C.rop‘ Center

Shape |None || square | Circle

Background Color:

Foreground Color:

@ <Back Cancel Finish

Figure 47: Eclipse Icon Set Wizard, Second Page, Image Mode

Click the “Browse...” button and open the molecule.png file you downloaded above.
That will display the results in the wizard:

82

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

@ Create Asset Set

Configure Icon Set

Configure the attributes of the icon set

Preview:

Foreground: | Image' Clipart | Text [dpi:

Image File: | /home/mmurphy/stuff/Common Bruwse...|

Trim Surrounding Blank Space
Additional Padding:

Foreground Scaling: | Crop‘ Center

Shape |None || square | Circle

Background Color: -
Foreground Color:| [N

@ <Back

*)15%

Cancel Finish

Figure 48: Eclipse Icon Set Wizard, Second Page, Image Mode, Showing Molecule

Click the “None” button in the “Shape” row, to remove the square background. Then,
click Finish. You will be prompted for whether you want to overwrite the existing

images — click “Yes to All”.

You may wind up with a bunch of error markers on your project for all of the new
images in the Package Explorer. If this occurs, choose Project > Clean from the
Eclipse main menu, ensure that EmPublLite is checked in the project list, and choose
OK. This should get rid of those error markers.

If you run the resulting app, you will see that it shows up with the new name and

icon, such as in the launcher:

Subscribe to updates at https://commonsware.com

83

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

WIDGETS

API Demos

72w

Browser

Camera

¥

Downloads

&

Gestures
Builder

Latitude

A

Navigation

Calculator

S

Custom
Locale

Calendar

®

)
"

EmPub Lite

Y

1]

People

Messaging

Figure 49: EmPubLite with New Icons

Outside of Eclipse

We can use the Android Asset Studio to create launcher icons out of this image, if

you have the Chrome browser.

Visit the Android Asset Studio Web site in Chrome. Then, click the “Launcher icons”
link in the “Icon generators” portion of the home page.

84

Subscribe to updates at https://commonsware.com

Special Creative Commons BY-NC-SA 4.0 License Edition

http://j.mp/androidassetstudio
http://j.mp/androidassetstudio

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Launcher lcon Generator
Foreground IMAGE CLIPART TEXT

TRIM m DON'TTRIM

PADDING —@———— 0%
Color .‘—
Scaling CROP
Shape m SQUARE CIRCLE
Background

xhdpi hdpi mdpi ldpi web, hi-res

See the source at the android-ui-utils Google Code project.
All generated art s licensed under a Creative Commons Attribution 3.0 Unported License. Attribution info

Figure 50: Android Asset Studio, Launcher Icon Generator
Click on the “Image” button in the “Foreground” row. This will bring up a “file open”
dialog — find and open the molecule.png file you downloaded previously.
Automatically, the Studio will generate the icons we need:

85

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Foreground CLIPART TEXT —
TRIM DON'TTRIM W

Color

Scaling CROP
Shape SQUARE CIRCLE

Background

xhdpi hdpi mdpi Idpi web, hi-res
o &g

Figure 51: Android Asset Studio with Generated Icons

Click the “Download .ZIP” button to download a ZIP archive file containing all the
generated icons.

If you are having difficulty using the Android Asset Studio, you can download the
icons directly.

If you examine that ZIP file, you will see that it contains a res/ directory with a
series of drawable subdirectories, each containing a copy of ic_launcher.png for a
given screen density. The ZIP file also contains a high-resolution image that we
might use if we planned on uploading this app to Google Play, but we will not need
that for the tutorials.

Copy the four ic_launcher.png files from the ZIP archive’s directories into the
corresponding directories in your project. You may have to copy the whole
drawable-xhdpi/ directory, as that may not already exist in your project. If you are
using Eclipse, you can drag-and-drop into the Package Explorer directly. If you
prefer, you can drag-and-drop into the project as found on your development
machine’s file system, but then you will need to press <F5> on your project in Eclipse
to get it to reflect the changes you made behind Eclipse’s back.

86

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://misc.commonsware.com/ic_launcher.zip
http://misc.commonsware.com/ic_launcher.zip

TUTORIAL #4 - ADJUSTING OUR RESOURCES

Step #3: Running the Result

If you run the resulting app, you will see that it shows up with the new name and
icon, such as in the launcher:

WIDGETS

APl Demos Browser Calculator Calendar

O #

Camera Clock Custom
Locale

1: . .‘:"i".

Downloads Email EmPub Lite

B =

Gestures Latitude Messaging
Builder

o

Music Navigation People

Figure 52: EmPubLite with New Icons

However, Eclipse users may encounter some problems in running the result. When
you wish to run an Android project from Eclipse, you must pay close attention to
what part of the Eclipse UI has the focus. The focus cannot be on an editor for a
resource. So, for example, had you gone back to the string resource editor, done
some changes there, then attempted to run the project, nothing would have
happened.

Instead, the focus has to be pretty much anywhere else for the Run option in the
toolbar to work:

* On the manifest
* On some Java code
* On the Package Explorer

87

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #4 - ADJUSTING OUR RESOURCES

This is a bug, one that will hopefully get fixed someday.

In Our Next Episode...

... we will add a progress indicator to the Ul of our tutorial project.

88

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Theory of Widgets

There is a decent chance that you have already done work with widget-based Ul
frameworks. In that case, much of this chapter will be review, though checking out
the section on the absolute positioning anti-pattern should certainly be worthwhile.

There is a chance, though, that your Ul background has come from places where you
have not been using a traditional widget framework, where either you have been
doing all of the drawing yourself (e.g., game frameworks) or where the Ul is defined
more in the form of a document (e.g., classic Web development). This chapter is
aimed at you, to give you some idea of what we are talking about when discussing
the notion of widgets and containers.

What Are Widgets?

Wikipedia has a nice definition of a widget:

In computer programming, a widget (or control) is an element of a
graphical user interface (GUI) that displays an information arrangement
changeable by the user, such as a window or a text box. The defining
characteristic of a widget is to provide a single interaction point for the
direct manipulation of a given kind of data. In other words, widgets are
basic visual building blocks which, combined in an application, hold all the
data processed by the application and the available interactions on this
data.

Take, for example, this Android screen:

89

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/GUI_widget

THE THEORY OF WIDGETS

M @ 4:25 PM

Edit contact

u Phone-only (unsynced..

Jim

Family name

®
Phone o
[N CEEE ©

i Done M Revert L

Figure 53: A Sample Android Screen

Ignoring the gray horizontal bars across the top of this screen, we see:

* anicon of a contact “Rolodex” card

+ some text (“Phone-only (unsynced..)”)

* a thin horizontal divider line

+ another icon, showing a placeholder for a contact photo, in a frame

* two data entry fields

* an icon that looks like a downward-pointing arrowhead in a circle

+ another thin horizontal divider line

« another piece of text (“Phone”)

* two more icons, that look like plus and minus signs in circles

* a button (“Home”)

+ another data entry field

+ two more buttons (“Done” and “Revert”) in some sort of bar across the
bottom

Everything listed above is a widget. The user interface for most Android screens
(“activities”) is made up of one or more widgets.

This does not mean that you cannot do your own drawing. In fact, all the existing
widgets are implemented via low-level drawing routines, which you can use for
everything from your own custom widgets to games.

90

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE THEORY OF WIDGETS

This also does not mean that you cannot use Web technologies. In fact, we will see

later in this book a widget designed to allow you to embed Web content into an
Android activity.

However, for most non-game applications, your Android user interface will be made
up of several widgets.

Size, Margins, and Padding

Widgets have some sort of size, since a zero-pixel-high, zero-pixel-wide widget is not
especially user-friendly. Sometimes, that size will be dictated by what is inside the
widget itself, such as a label (TextView) having a size dictated by the text in the
label. Sometimes, that size will be dictated by the size of whatever holds the widget
(a “container”, described in the next section), where the widget wants to take up all
remaining width and/or height. Sometimes, that size will be a specific set of
dimensions.

Widgets can have margins. As with CSS, margins provide separation between a
widget and anything adjacent to it (e.g., other widgets, edges of the screen). Margins
are really designed to help prevent widgets from running right up next to each other,
so they are visually distinct. Some developers, however, try to use margins as a way
to hack “absolute positioning” into Android, which is an anti-pattern that we will

examine later in this chapter.

Widgets can have padding. As with CSS, padding provides separation between the
contents of a widget and the widget’s edges. This is mostly used with widgets that
have some sort of background, like a button, so that the contents of the widget (e.g.,
button caption) does not run right into the edges of the button, once again for visual
distinction.

What Are Containers?

Containers are ways of organizing multiple widgets into some sort of structure.
Widgets do not naturally line themselves up in some specific pattern — we have to
define that pattern ourselves.

In most GUI toolkits, a container is deemed to have a set of children. Those children
are widgets, or sometimes other containers. Each container has its basic rule for how
it lays out its children on the screen, possibly customized by requests from the
children themselves.

91

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE THEORY OF WIDGETS

Common container patterns include:

+ put all children in a row, one after the next

+ put all children in a column, one below the next

+ arrange the children into a table or grid with some number of rows and
columns

+ anchor the children to the sides of the container, according to requests made
by those children

+ anchor the children to other children in the container, according to requests
made by those children

+ stack all children, one on top of the next

+ and so on

In the sample activity above, the dominant pattern is a column, with things laid out
from top to bottom. Some of those things are rows, with contents laid out left to
right. However, as it turns out, the area with most of those widgets is scrollable —
you can see a thin scrollbar on the right side of the screen. The “Done” and “Revert”
buttons, along with the scrollable container, are themselves anchored to sides of
their parent container (e.g., the “Done”/“Revert” bar is anchored to the bottom).

Android supplies a handful of containers, designed to handle most common
scenarios, including everything in the list above. You are also welcome to create your
own custom containers, to implement business rules that are not directly supported
by the existing containers.

Note that containers also have size, padding, and margins, just as widgets do.

The Absolute Positioning Anti-Pattern

You might wonder why all of these containers and such are necessary. After all, can’t
you just say that such-and-so widget goes at this pixel coordinate, and this other
widget goes at that pixel coordinate, and so on?

Many developers have taken that approach — known as absolute positioning — over
the years, to their eventual regret.

For example, many of you may have used Windows apps, back in the 1990’s, where
when you would resize the application window, the app would not really react all
that much. You would expand the window, and the UI would not change, except to
have big empty areas to the right and bottom of the window. This is because the

92

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE THEORY OF WIDGETS

developers simply said that such-and-so widget goes at this pixel coordinate, and
this other widget goes at that pixel coordinate, regardless of the actual window
size.

In modern Web development, you see this in the debate over fixed versus fluid Web
design. The consensus seems to be that fluid designs are better, though frequently
they are more difficult to set up. Fluid Web designs can better handle differing
browser window sizes, whether those window sizes are because the user resized
their browser window manually, or because those window sizes are dictated by the
screen resolution of the device viewing the Web page. Fixed Web designs —
effectively saying that such-and-so element goes at such-and-so pixel coordinate and
so on — tend to be easier to build but adapt more poorly to differing browser
window sizes.

In mobile, particularly with Android, we have a wide range of possible screen
resolutions, from QVGA (320x240) to beyond 1080p (1920x1080), and many values in
between. Moreover, any device manufacturer is welcome to create a device with
whatever resolution they so desire - there are no rules limiting manufacturers to
certain resolutions. Hence, as developers, having the Android equivalent of fluid
Web designs is critical, and the way you will accomplish that is by sensible use of
containers, avoiding absolute positioning. The containers (and, to a lesser extent,
the widgets) will determine how extra space is employed, as the screens get larger
and larger.

93

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://coding.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/
http://coding.smashingmagazine.com/2009/06/02/fixed-vs-fluid-vs-elastic-layout-whats-the-right-one-for-you/

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Android User Interface

The project you created in an earlier tutorial was just the default files generated by
the Android build tools — you did not write any Java code yourself. In this chapter,
we will examine the basic Java code and resources that makes up an Android activity.

The Activity

An Android project’s src/ directory contains the standard Java-style tree of
directories based upon the Java package you chose when you created the project
(e.g., com. commonsware.android results in src/com/commonsware/android/). If you
checked the checkbox in the Eclipse new-project wizard to create an activity — or if
you used the command-line tools to create your project — you will have, in the
innermost directory, a Java source file representing an activity class.

For the stub project we created earlier in this book, that sample class looks like this:

package com.commonsware.empublite;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class EmPubLiteActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

b

@Override
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu, this adds items to the action bar

95

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

// If it iIs present.
getMenuInflater().inflate(R.menu.activity_main, menu);
return true;

}

Dissecting the Activity

Let’s examine this Java code piece by piece:

package com.commonsware.empublite;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

The package declaration needs to be the same as the one you used when creating
the project. And, like any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

Remember that not every Java SE class is available to Android programs! Visit the
Android class reference to see what is and is not available.

public class EmPubLiteActivity extends Activity {

Activities are public classes, inheriting from the android.app.Activity base class
(or, possibly, from some other class that itself inherits from Activity). You can have
whatever data members you decide that you need, though the initial code has none.

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

The onCreate() method is invoked when the activity is started. We will discuss the
Bundle parameter to onCreate() in a later chapter. For the moment, consider it an
opaque handle that all activities receive upon creation.

The first thing you should do in onCreate() is chain upward to the superclass, so the
stock Android activity initialization can be done. The only other statement in our
stub project’s onCreate() is a call to setContentView(). This is where we tell
Android what the user interface is supposed to be for our activity.

96

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/packages.html

THE ANDROID USER INTERFACE

This raises the question: what does R.layout.main mean? Where did this R come
from?

To explain that, we need to start thinking about layout resources and how resources
are referenced from within Java code. We will get to that momentarily.

@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu, this adds items to the action bar
// If it iIs present.
getMenuInflater().inflate(R.menu.activity_main, menu);
return true;

}

The onCreateOptionsMenu() is used in Android to populate the action bar, or the
options menu on older devices. We will discuss the action bar in an upcoming
chapter. For now, just ignore this method.

Now, back to this mysterious R...

Using XML-Based Layouts

As noted earlier, Android uses a series of widgets and containers to describe your
typical user interface. These all inherit from an android.view.View base class, for
things that can be rendered into a standard widget-based activity.

While it is technically possible to create and attach widgets and containers to our
activity purely through Java code, the more common approach is to use an XML-
based layout file. Dynamic instantiation of widgets is reserved for more complicated
scenarios, where the widgets are not known at compile-time (e.g., populating a
column of radio buttons based on data retrieved off the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android
activity contents that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets’
relationships to each other — and to containers — encoded in XML format.
Specifically, Android considers XML-based layouts to be resources, and as such
layout files are stored in the res/layout/ directory inside your Android project (or,

97

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

as we will see later, other layout resource sets, like res/layout-1land/ for layouts to
use when the device is held in landscape).

Each XML file contains a tree of elements specifying a layout of widgets and
containers that make up one View. The attributes of the XML elements are
properties, describing how a widget should look or how a container should behave.
For example, if a Button element has an attribute value of android: textStyle =
"bold", that means that the text appearing on the face of the button should be
rendered in a boldface font style.

For example, here is the res/layout/main.xml file that came with our stub project:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_world"/>

</RelativelLayout>

The class name of a widget or container — such as Relativelayout or TextView —
forms the name of the XML element. Since TextView is an Android-supplied widget,
we can just use the bare class name. If you create your own widgets as subclasses of
android.view.View, you would need to provide a full package declaration as well
(e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace
(xmlns:android="http://schemas.android.com/apk/res/android"). All other
elements will be children of the root and will inherit that namespace declaration.

The attributes are properties of the widget or container, describing what it should
look and work like. For example, the android:layout_centerHorizontal="true"
attribute on the TextView element indicates that the TextView should be centered
within its RelativelLayout parent.

We will get into details about these attributes, their possible values, and their uses,
in upcoming chapters. Note that those attributes in the tools namespace (e.g.,

98

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

tools:context) are there solely to support the Android build tools, Eclipse in
particular, and do not affect the runtime execution of your project.

Android’s SDK ships with a tool (aapt) which uses the layouts. This tool should be
automatically invoked by your Android tool chain (e.g., Eclipse, Ant’s build.xml). Of
particular importance to you as a developer is that aapt generates an R. java source
file within your project’s gen/ directory, allowing you to access layouts and widgets
within those layouts directly from your Java code. In other words, this is where that
magic R value used in setContentView() comes from. We will discuss that a bit

more later in this chapter.

XML Layouts and Eclipse

If you are using Eclipse, and you double-click on the res/layout/main.xml file in
your project, you will not initially see that XML. Instead, you will be taken to the
graphical layout editor:

a mainxml & =a

‘ Palette defauts | @N o — Structure 3
eraultv exus Onev v W leme v
= Palette - PP # outline

& Form Widget B & QaaQ qQa

5] TextView - "Hello world!"

exien Large

=1 Properties %18,
1d
5l Layout Paramet... []
Gravity
Width match_parent

Hello world!

Height match_parent
® Margins 1
Background
Padding Left
Content Descri...
= RelativeLayout]
() Text Fields Gravity
Ignore Gravity
= View
Style
(1 Images & Media Tag

CJ Layouts
CJ Composite

(J Time & Date Background
() Transitions Padding

(£ Advanced Padding Left

= = Padding Top
Custom & Library Views v Baddina Rinht

B Graphical Layout | = main.xml

Figure 54: Eclipse Graphical Layout Editor

The “main.xml” sub-tab will show you the raw XML. The default “Graphical Layout”
sub-tab, though, shows you a preview of what your layout would look like, if it were
to be used for an activity. The “Palette” on the left shows all sorts of widgets and

99

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE ANDROID USER INTERFACE

containers, which you can drag into the preview area to add an instance of your
chosen widget or container to your layout. Right-clicking over a widget or container
will give you an extensive context menu to configure the item, and the toolbar
immediately above the preview area will let you configure common properties of a
selected widget or container.

We will go into much more detail about using the graphical layout editor in an
upcoming chapter, as we start to work more with specific widgets and containers.

Why Use XML-Based Layouts?

Almost everything you do using XML layout files can be achieved through Java code.
For example, you could use setText() to have a button display a certain caption,
instead of using a property in an XML layout. Since XML layouts are yet another file
for you to keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition,
such as the aforementioned graphical layout editor in Eclipse. Such GUI builders
could, in principle, generate Java code instead of XML. The challenge is re-reading
the definition in to support edits — that is far simpler if the data is in a structured
format like XML than in a programming language. Moreover, keeping the generated
bits separated out from hand-written code makes it less likely that somebody’s
custom-crafted source will get clobbered by accident when the generated bits get re-
generated. XML forms a nice middle ground between something that is easy for
tool-writers to use and easy for programmers to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
XAML, Adobe’s Flex, Google’s GWT, and Mozilla’s XUL all take a similar approach to
that of Android: put layout details in an XML file and put programming smarts in
source files (e.g., JavaScript for XUL). Many less-well-known GUI frameworks, such
as ZK, also use XML for view definition. While “following the herd” is not necessarily
the best policy, it does have the advantage of helping to ease the transition into
Android from any other XML-centered view description language.

Using Layouts from Java

Given that you have painstakingly set up the widgets and containers for your view in
an XML layout file named main.xml stored in res/layout/, all you need is one
statement in your activity’s onCreate() callback to use that layout, as we saw in our
stub project’s activity:

100

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Extensible_Application_Markup_Language
http://www.adobe.com/products/flex/
http://code.google.com/webtoolkit/
http://www.mozilla.org/projects/xul/
http://www.zkoss.org/

THE ANDROID USER INTERFACE

setContentView(R.layout.main);

Here, R.layout.main tells Android to load in the layout (layout) resource (R) named
main.xml (main).

101

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, etc. Android’s
toolkit is no different in scope, and the basic widgets will provide a good
introduction as to how widgets work in Android activities. We will examine a
number of these in this chapter.

Common Concepts

There are a few core features of widgets that we need to discuss at the outset, before
we dive into details on specific types of widgets.

Widgets and Attributes

As mentioned in a previous chapter, widgets have attributes that describe how they
should behave. In an XML layout file, these are literally XML attributes on the
widget’s element in the file. Usually, there are corresponding getter and setter
methods for manipulating this attribute at runtime from your Java code.

If you visit the JavaDocs for a widget, such as the JavaDocs for TextView, you will see
an “XML Attributes” table near the top. This lists all of the attributes defined
uniquely on this class, and the “Inherited XML Attributes” table that follows lists all
those that the widget inherits from superclasses, such as View. Of course, the
JavaDocs also list the fields, constants, constructors, and public/protected methods
that you can use on the widget itself.

This book does not attempt to explain each and every attribute on each and every
widget. We will, however, cover the most popular widgets and the most commonly-
used attributes on those widgets.

103

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html

BAsic WIDGETS

Referencing Widgets By ID

Many widgets and containers only need to appear in the XML layout file and do not
need to be referenced in your Java code. For example, a static label (TextView)
frequently only needs to be in the layout file to indicate where it should appear.

Anything you do want to use in your Java source, though, needs an android: id.

The convention is to use @+id/ . .. as the id value, where the ... represents your
locally-unique name for the widget in question, for the first occurrence of a given id
value in your layout file. The second and subsequent occurrences in the same layout
file should drop the + sign.

Android provides a few special android: id values, of the form @android:id/... —
we will see some of these in various chapters of this book.

To access our identified widgets, use findviewById(), passing it the numeric
identifier of the widget in question. That numeric identifier was generated by
Android in the R class as R.1id.something (where something is the specific widget
you are seeking).

This concept will become important as we try to attach listeners to our widgets (e.g.,
finding out when a checkbox is checked) or when we try referencing widgets from
other widgets in a layout XML file (e.g., with RelativelLayout). All of this will be
covered later in this chapter.

Size

Most of the time, we need to tell Android how big we want our widgets to be.
Occasionally, this will be handled for us — we will see an example of that with
TablelLayout in an upcoming chapter. But generally we need to provide this
information ourselves.

To do that, you need to supply android: layout_width and android:layout_height
attributes on your widgets in the XML layout file. These attributes’ values have three
flavors:

1. You can provide a specific dimension, such as 125dip to indicate the widget
should take up exactly a certain size (here, 125 density-independent pixels)

104

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

2. You can provide wrap_content, which means the widget should take up as
much room as its contents require (e.g., a TextView label widget’s content is
the text to be displayed)

3. You can provide match_parent, which means the widget should fill up all
remaining available space in its enclosing container

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

Note that you will also see fill_parent. This is an older synonym for match_parent.
match_parent is the recommended value going forward, but fill_parent will
certainly work.

This chapter focuses on individual widgets. Size becomes much more important
when we start combining multiple widgets on the screen at once, and so we will be
spending more time on sizing scenarios in later chapters.

The layout_ prefix on these attributes means that these attributes represent
requests by the widget to its enclosing container. Whether those requests will be
truly honored will depend a bit on what other widgets there are in the container and
what their requests are.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. Like in most
GUI toolkits, labels are bits of text not editable directly by users. Typically, they are
used to identify adjacent widgets (e.g., a “Name:” label before a field where one fills
in a name).

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to
the layout, with an android: text property to set the value of the label itself. If you
need to swap labels based on certain criteria, such as internationalization, you may
wish to use a string resource reference in the XML instead (e.g., @string/label).

For example, in our last tutorial, we still are using the automatically-generated res/
layout/main.xml file, containing, among other things, a TextView:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

105

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_world"/>

</RelativelLayout>

Eclipse Graphical Layout Editor

The TextView widget is available in the “Form Widgets” portion of the Palette in the
Eclipse graphical layout editor:

1 Palette
Palette -

= Form Widgets

tentvize | @rge Medium small | Bulton

Small QOFF " Checkfing

® RadinButton Chacked TextView

Spinner

* -

L

Figure 55: Form Widgets Palette, TextView in Upper Left

You can drag that TextView from the palette into a layout file in the main editing
area to add the widget to the layout. Or, drag it over the top of some container you
see in the Outline pane of the editor to add it as a child of that specific container:

106

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Structure >
%3 Outline

v [H] RelativeLayout
(&) TextView - "Hello world!"

Figure 56: Outline Pane

Clicking on the resulting TextView in the Outline pane will set up the Properties
pane with the various attributes of the widget, ready for you to change as needed:

E Properties

Id
= Layout Paramet... []
To Left OF
To Right OF
Above
Below
Align Baseline
Align Left
Align Top
Align Right
Align Bottom
Align Parent Left|[F]
Align Parent Top |[E
Align ParentRi... |[F]
Align Parent B... |[F]
Center In Parent [
Center Horizon... [ltrue
Center Vertical [“]true
Align withPar... [
width wrap_content
Height wrap_content
Margins [l
Text @string/hello_world (Hell... [~
Hint
Text Color
Text Appearance ?android:attr/textAppeara...(~
Text Size
Content Descri...
= TexktView [l
Text @string/hello_world (Hell... [
Hint
Text Color
Text Color Hint W ®@android:color/hint_for... (=
Text Appearance ?android:attr/textAppeara...[~

TavkCiza &

E
—
p)
&

T

Figure 57: Properties Pane, for a TextView Inside a RelativeLayout

107

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Editing the Text

The “Text” property will allow you to choose or define a string resource to serve as
the text to be displayed. By default, it brings up a list of existing string resources:

@ Resource Chooser

Choose a string resource

@® Project Resources

System Resources

[

app_name
hello

New String...
@:‘ Clear Cancel | oK |

Figure 58: String Resource Chooser

You can highlight one of those resources and click “OK” to use it, or you can click
the “New String...” button to define a brand-new string resource.

Editing the ID

The “Id” property will allow you to change the android: id value of the widget. Be
sure to include the @+id/ prefix, as Android will not add that automatically for you.

Notable TextView Attributes

TextView has numerous other attributes of relevance for labels, such as:

1. android:typeface to set the typeface to use for the label (e.g., monospace)

108

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

2. android:textStyle to indicate that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold_italic)

3. android:textColor to set the color of the label’s text, in RGB hex format
(e.g., #FF0000 for red) or ARGB hex format (e.g., #88FF0000 for a translucent
red)

These attributes, like most others, can be modified through the Properties pane.

For example, in the Basic/Label sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/profound"
/>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

You were expecting something profound?

Figure 59: The LabelDemo Sample Application

109

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Label

BAsic WIDGETS

A Commanding Button

Android has a Button widget, which is your classic push-button “click me and
something cool will happen” widget. As it turns out, Button is a subclass of
TextView, so everything discussed in the preceding section in terms of formatting
the face of the button still holds.

For example, in the Basic/Button sample project, you will find the following layout
file:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<Button
android:id="@+id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/button"/>

</LinearlLayout>

Just that layout alone, with the stub Java source provided by Android’s project
builder (e.g., android create project) and appropriate string resources, gives you:

110

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Button

BAsiC WIDGETS

Figure 60: Button Widget

Eclipse Graphical Layout Editor

As with the TextView widget, the Button widget is available in the “Form Widgets”
portion of the Palette in the Eclipse graphical layout editor:

111

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

1 Palette

= Palette =
= Form Widgets

tentvize | @rge Medium small | Bulton
Small aFF " Check3na

® RadinButton Chacked TextView

Spinner

Figure 61: Form Widgets Palette, Button in Upper Right

You can drag that Button from the palette into a layout file in the main editing area
to add the widget to the layout. The Properties pane will then let you adjust the
various attributes of this Button. Since Button inherits from TextView, most of the
options are the same (e.g., “Text”).

Tracking Button Clicks

Buttons are command widgets — when the user presses a button, they expect
something to happen.

To define what happens when you click a Button, you can:

1. Define some method on your Activity that holds the button that takes a
single View parameter, has a void return value, and is public

2. In your layout XML, on the Button element, include the android:onClick
attribute with the name of the method you defined in the previous step

For example, we might have a method on our Activity that looks like:

public void someMethod(View theButton) {
// do something useful here
}

112

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Then, we could use this XML declaration for the Button itself, including
android:onClick:

<Button
android:onClick="someMethod"

/>

This is enough for Android to “wire together” the Button with the click handler.
When the user clicks the button, someMethod() will be called.

Another approach is to skip android:onClick, instead calling

setOnClickListener () on the Button object in Java code. When a Button is used
directly by an activity, this is not typically used — android:onClick is a bit cleaner.
However, when we start to talk about fragments, you will see that android:onClick
does not work that well with fragments, and so we will use setOnClickListener() at
that point.

Fleeting Images

Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView
and Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify what
picture to use. These usually reference a drawable resource (e.g., @drawable/icon).

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot.

For example, take a peek at the main.xml layout from the Basic/ImageView sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule"/>

The result, just using the code-generated activity, is simply the image:

113

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ImageView

BAsic WIDGETS

Figure 62: The ImageViewDemo sample application

Eclipse Graphical Layout Editor

The ImageView widget can be found in the “Images & Media” portion of the Palette
in the Graphical Layout editor:

=- Images & Media
ImageView
(| ImageButton
Gallery
[»] MediaController
O videoview
Figure 63: Images & Media Widgets Palette, ImageView in Upper Left

The ImageButton widget is adjacent to the ImageView widget in the Palette.

You can drag these into a layout file, then use the Properties pane to set their
attributes. Like all widgets, you will have an “Id” option to set the android:id value

114

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

for the widget. Two others of importance, though, are more unique to ImageView
and ImageButton:

+ “Src” allows you to choose a drawable resource to use as the image to be
displayed

+ “Scale Type” opens a drop-down menu where you can choose how the image
is to be scaled:

E Properties 13 7 B
Align Parent B... |[F =) [~
Center In Parent |[[]

Center Horizon... [¥]true
Center Vertical |[£]
Align with Par... |
Width wrap_content
Height wrap_content
= Margins 1
Src
Scale Type
Content Descri...

= ImageView I
Src
Adjust View Bo...| matrix
Max width FEXY
Max Height .

Baseline Align ... f!tSta[t
Crop To Padding| fitCenter
SRV FitEnd =
center
centerCrop]
PR S N P P ol

Figure 64: Scale Types in Eclipse Properties Pane

These values can be seen in the JavaDocs in the ImageView.ScaleType class. The
default (“fitCenter”) simply scales up the image to best fit the available space.

Of note, a choice of “center” will center the image in the available space but will not
scale up the image:

115

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/reference/android/widget/ImageView.ScaleType.html
http://developer.android.com/reference/android/widget/ImageView.ScaleType.html

BAsic WIDGETS

Figure 65: The ImageViewDemo Sample, Set to center

A choice of “centerCrop” will scale the image so that its shortest dimension fills the
available space and crops the rest:

116

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Figure 66: The ImageViewDemo Sample, Set to centerCrop

A choice of “fitXY” will scale the image to fill the space, ignoring the aspect ratio:

Figure 67: The ImageViewDemo Sample, Set to fitXY

117

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third “anchor” of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView attributes (e.g., android: textStyle), EditText
has others that will be useful for you in constructing fields, notably
android:inputType, to describe what sort of input your EditText expects (numbers?
email addresses? phone numbers?). A thorough explanation of android: inputType
and its interaction with input method editors (a.k.a., “soft keyboards”) will be
discussed in an upcoming chapter.

For example, from the Basic/Field sample project, here is an XML layout file
showing an EditText:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:inputType="textMultilLine"
android:text="@string/license"
/>

Note that we have android: inputType="textMultilLine", so users will be able to
enter in several lines of text. We also have defined the initial text to be the value of a

license string resource.

The result, once built and installed into the emulator, is:

118

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/Field

BAsic WIDGETS

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file except in compliance
with the License. You may obtain a
copy of the License at http://www.
apache.org/licenses/LICENSE-2.0

Figure 68: The FieldDemo sample application

Eclipse Graphical Layout Editor

The Graphical Layout’s Palette has a whole section dedicated primarily to EditText
widgets, named “Text Fields™

119

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

= Text Fields

I | Plain Text

I | Person Name

1| Password

I | Password (Numeric)

I | E-mail X Phone

I | Postal Address

I | Multiline Text 2| Time
1| Date 1| Mumber

| Number (Signed)

I | Number (Decimal)

a | AutoCompleteTextView
a:| MultiaAutoCompleteText

Figure 69: Text Fields Palette

The first entry is a general-purpose EditText. The rest come pre-configured for
various scenarios, such as a person’s name or a postal address.

You can drag any of these into your layout, then use the Properties pane to configure
relevant attributes. The “Id” and “Text” attributes are the same as found on
TextView, as are many other properties, as EditText inherits from TextView.

Notable EditText Attributes

The “Request Focus” item in the context menu (right-click over the EditText widget)
allows you to indicate that this EditText should be the widget that receives the
focus when this layout is loaded onto the screen. By default, the focus goes to the
focusable widget that is first (i.e., closest to the upper-left corner), but you can
override that using this attribute.

The “Hint” item in the Properties pane allows you to set a “hint” for this EditText.
The “hint” text will be shown in light gray in the EditText widget when the user has
not entered anything yet. Once the user starts typing into the EditText, the “hint”
vanishes. This might allow you to save on screen space, replacing a separate label
TextView.

120

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

The “Input Type” item in the Properties pane allows you to describe what sort of
input you are expecting to receive in this EditText, lining up with many of the types
of fields you can drag from the Palette into the layout:

® select Flag Values

text
textCapCharacters
textCapWords
textCapSentences
textAutoCorrect
textAutoComplete
& textMultiLine
textimeMultiLine
textNoSuggestions
textUri
textEmailAddress

Cancel | OK |

Figure 70: Text Fields InputType Dialog

More Common Concepts

All widgets, including the ones shown above, extend View. The View base class gives
all widgets an array of useful attributes and methods beyond those already
described.

Padding

Widgets have a minimum size, one that may be influenced by what is inside of
them. So, for example, a Button will expand to accommodate the size of its caption.
You can control this size using padding. Adding padding will increase the space
between the contents (e.g., the caption of a Button) and the edges of the widget.

Padding can be set once in XML for all four sides (android:padding) or on a per-
side basis (android:paddingLeft, etc.). Padding can also be set in Java via the
setPadding() method.

The value of any of these is a dimension — a combination of a unit of measure and a
count. So, 5px is 5 pixels, 10dip is 10 density-independent pixels, or 2mm is 2
millimeters.

121

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Margins

By default, widgets are tightly packed, one next to the other. You can control this via
the use of margins, a concept that is reminiscent of the padding described
previously.

The difference between padding and margins comes in terms of the background. For
widgets with a transparent background — like the default look of a TextView —
padding and margins have similar visual effect, increasing the space between the
widget and adjacent widgets. However, for widgets with a non-transparent
background — like a Button — padding is considered inside the background while
margins are outside. In other words, adding padding will increase the space between
the contents (e.g., the caption of a Button) and the edges, while adding margin
increases the empty space between the edges and adjacent widgets.

Margins can be set in XML, either on a per-side basis (e.g.,
android:layout_marginTop) or on all sides via android: layout_margin. Once again,
the value of any of these is a dimension — a combination of a unit of measure and a
count, such as 5px for 5 pixels.

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android: textColor on TextView (and subclasses) can
take a ColorStatelist, including via the Java setter (in this case, setTextColor()).

A ColorStateList allows you to specify different colors for different conditions. For
example, when you get to selection widgets in an upcoming chapter, you will see
how a TextView has a different text color when it is the selected item in a list
compared to when it is in the list but not selected. This is handled via the default
ColorStateList associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

» Use ColorStatelList.valueOf(), which returns a ColorStatelList in which
all states are considered to have the same color, which you supply as the
parameter to the valueOf() method. This is the Java equivalent of the
android: textColor approach, to make the TextView always a specific color
regardless of circumstances.

122

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

* Create a ColorStatelList with different values for different states, either via
the constructor or via an XML drawable resource.

Other Useful Attributes
Some additional attributes on View most likely to be used include:

1. android:visibility, which controls whether the widget is initially visible

2. android:nextFocusDown, android:nextFocuslLeft,
android:nextFocusRight, and android:nextFocusUp, which control the
focus order if the user uses the D-pad, trackball, or similar pointing device

3. android:contentDescription, which is roughly equivalent to the alt
attribute on an HTML tag, and is used by accessibility tools to help
people who cannot see the screen navigate the application — this is very
important for widgets like ImageView

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if it is
enabled via isEnabled(). One common use pattern for this is to disable some
widgets based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via
isFocused(). You might use this in concert with disabling widgets as mentioned
above, to ensure the proper widget has the focus once your disabling operation is
complete.

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use:

1. getParent() to find the parent widget or container

2. findVviewById() to find a child widget with a certain ID

3. getRootView() to get the root of the tree (e.g., what you provided to the
activity via setContentView())

Visit the Trails!

You can learn more about Android’s input method framework — what you might
think of as soft keyboards — in a later chapter.

123

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

BAsic WIDGETS

Another chapter in the trails covers the use of fonts, to tailor your TextView widgets
(and those that inherit from them, like Button).

Yet another chapter in the trails covers rich text formatting, both for presenting
formatted text in a TextView (e.g., inline boldface) and for collecting formatted text
from the user via a customized EditText.

124

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Debugging Crashes

Now that we are starting to manipulate layouts and Java code more significantly, the
odds increase that we are going to somehow do it wrong, and our app will crash.

Unfortunately, com.
commonsware.android.

skeleton has stopped.

OK

Figure 71: A Crash Dialog on Android 4.0.3

In this chapter, we will cover a few tips on how to debug these sorts of issues.

125

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

Get Thee To a Stack Trace

If you see one of those “Force Close” or “Has Stopped” dialogs, the first thing you will
want to do is examine the Java stack trace that is associated with this crash. These
are logged to a facility known as LogCat, on your device or emulator.

To view LogCat, you have three choices:

1. Use the adb logcat command at the command line (or something that uses
adb logcat, such as various colorizing scripts available online)

2. Use the LogCat tab in the standalone Android Device Monitor utility (run
monitor from the command line)

3. Use the LogCat view in Eclipse

There are also LogCat apps on the Play Store, such as aLogCat, that will display the
contents of LogCat. However, for security and privacy reasons, on Jelly Bean and
higher devices, such apps will only be able to show you their LogCat entries, not
those from the system, your app, or anyone else. Hence, for development purposes,
it is better to use one of the other alternatives outlined above.

The LogCat view is available at any time, from pretty much anywhere in Eclipse, by
means of clicking on the LogCat icon in the status bar of your Eclipse window:

Figure 72: Scaled Up Rendition of LogCat Icon

LogCat will show your stack traces, diagnostic information from the operating
system, and anything you wish to include via calls to static methods on the
android.util.Log class. For example, Log.e () will log a message at error severity,
causing it to be displayed in red.

126

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

DDMS - Now/src/com/commonsware/android/skeleton/Now.java - Eclipse Platform

File Edit Run Source Navigate Search Project Refactor Window Help

3w 8@ | & s & |3 0Oy @ o [@ooms|
& ¥ ® v

& LogCat & =&

SavedFilters # = @ verbose 3| H B [m) n

All messages (no Filters) (¢

L¢ Time PID Application Tag Text

com.commonsware.andr¢
D 03-28 08:47:34.353 645 | com.commonsware.android.skele dalvikvm Not late-enabling CheckINI (already on)
D 03-28 08:47:34.833 645 com.commonsware.android.skele; AndroidRuntime Shutting down VM
E 03-28 08:47:34.873 | 645 | com.commonsware.android.skele AndroidRuntime | FATAL EXCEPTION: main
E03-28 08:47:34.873 645 com.commonsware.android.skele; AndroidRuntime java.lang.RuntimeException: Unable to s
E 03-28 08:47:34.873 | 645 | com.commonsware.android.skele AndroidRuntime at android.app.ActivityThread.p
E|03-28 08:47:34.873 645 | com.commonsware.android.skele AndroidRuntime at android.app.ActivityThread.h
E | 03-28 08:47:34.873 645 com. commonsware.android.skele; AndroidRuntime at android.app.ActivityThread.a
E|03-28 08:47:34.873 645 | com.commonsware.android.skele| AndroidRuntime at android.app.ActivityThreadsh
E|03-28 08:47:34.873 | 645 | com.commonsware.android.skele AndroidRuntime at android.os.Handler.dispatchi
E | 03-28 08:47:34.873 645 com. commonsware.android.skele; AndroidRuntime at android.os.Looper.loop(Loope
E | 03-28 08:47:34.873 | 645 | com.commonsware.android.skele AndroidRuntime at android.app.ActivityThread.m
E|03-28 08:47:34.873 645 | com.commonsware.android.skele| AndroidRuntime at java.lang.reflect.Method.inv
E | 03-28 08:47:34.873 645 com. commonsware.android.skelej AndroidRuntime at java.lang.reflect.Method.inv
E|03-28 08:47:34.873 645 | com.commonsware.android.skele| AndroidRuntime at com.android.internal.os.Zygo
E03-28 08:47:34.873 645 com. commonsware.android.skele AndroidRuntime at com.android.internal.os.Zygc
E | 03-28 08:47:34.873 645 com.commonsware.android.skele; AndroidRuntime at dalvik.system.Nativestart.ma
E 03-28 08:47:34.873 | 645 | com.commonsware.android.skele AndroidRuntime | Caused by: java.lang.NullPointerExcepti
E | 03-28 08:47:34.873 645 com. commonsware.android.skele; AndroidRuntime at com.commonsware.android.skel
E|03-28 08:47:34.873 | 645 | com.commonsware.android.skele| AndroidRuntime at android.app.Activity.perform
E103-28 08:47:34.873 1645 | com.commonsware.android.skele AndroidRuntime at android.app.Instrumentation.
E|03-28 08:47:34.873 | 645 | com.commonsware.android.skele AndroidRuntime at android.app.ActivityThread.p
E|03-28 08:47:34.873 645 | com.commonsware.android.skele| AndroidRuntime ©.. 11 more

0 s (@

Figure 73: Eclipse Window with LogCat View Maximized

By default, when developing your app, if your app crashes, LogCat will display
messages from your app alone, via a filter on the left, with the name of your app’s
package (e.g., com.commonsware.android.skeleton). Switching the filter to “All
messages (no filters)” will show all LogCat messages, regardless of origin.

There is a scrollbar towards the bottom of the main log area that will let you see
more of your stack trace:

127

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

DDMS - Now/src/com/commonsware/android/skeleton/Now.java - Eclipse Platform

File Edit Run Source Navigate Search Project Refactor Window Help
8 @y |8 FE| O @r £ |@DDMS
® &~ ® e

2 LogCat 3 =8
savedFilters 4 = gf verbose :| K & |m| n
All messages (no Filters) (¢
com.commonsware.andrc

Text
Not late-enabling CheckJNI (already on)
Shutting down VM

FATAL EXCEPTION: main
java.lang.RuntimeException: Unable to start activity ComponentInfo{com.commonsware.android.skeleton/com.commonsware
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1956)
at android.app.ActivityThread.handlelaunchActivity(ActivityThread.java:1981)
at android.app.ActivityThread.access$600(ActivityThread. java:123)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java: 1147)
at android.os.Handler.dispatchMessage(Handler.java:99)
at android.os.Looper.loop(Looper.java:137)
at android.app.ActivityThread.main(ActivityThread.java:4424)
at java.lang.reflect.Method.invokeNative(Native Method)
at java.lang.reflect.Method.invoke(Method.java:511)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller. run(ZygoteInit.java:784)
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:551)
at dalvik.system.NativeStart.main(Native Method)
Caused by: java.lang.NullPointerException
at com.commonsware.android.skeleton.Now.onCreate(Now.java:31)
at android.app.Activity.performCreate(Activity.java:4465)
at android.app.Instrumentation.callActivityonCreate(Instrumentation.java:1049)
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:1920)
.. 11 more

& 3

Figure 74: Eclipse Window with LogCat View Scrolled Right

Your stack trace will typically consist of two or more “stanzas”. Your own code will
typically be in the last of these. So, in the screenshot above, we have
java.lang.RuntimeException: Unable to start activity..., followed by
Caused by: java.lang.NullPointerException, as a pair of stanzas. The point
where our code crashed shows up in that second stanza (at
com.commonsware.android.skeleton.Now.onCreate(Now.java:31)).

If you double-click on a line in the stack trace corresponding with your code, you
will be taken to a Java editor on that source file and line, so you can see what code
triggered the exception.

If you wish to save one of these stack traces as a file, to attach to an issue in an issue
tracker or something, highlight the lines you want in LogCat (click on the first line,
then <Shift>-click on the last line), then click on the “Export Selected Items to Text
File” icon (looks like a 3.5-inch floppy disk or a classic “save” icon). This will bring up
your platform’s “Save As” dialog, where you can specify where to write out the file.

The icon immediately to the right is the “clear” icon:

128

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

HE

Figure 75: LogCat Save and Clear Icons

Clicking it will appear to clear LogCat. It definitely clears your LogCat view, so you
will only see messages logged after you cleared it. Note, though, that this does not
actually clear the logs from the device or emulator.

The Case of the Confounding Class Cast

If you crash, the stack trace might suggest that there is a problem tied to your
resources. One common flavor of this is a ClassCastException when you call
findviewById(). For example, you might call (Button)findviewById(R.id.button),
yet get a ClassCastException: android.widget.LinearLayout as a result,
indicating that while you thought your findviewById() call would return a Button,
it really returned a LinearLayout.

Often times, this is not your fault. Sometimes, the R values get out of sync with pre-
compiled classes from previous builds. This most often occurs just after you change
your mix of resources (e.g., add a new layout).

To resolve this, you need to clean your project. In Eclipse, this is a matter of
selecting the project, then choosing Project > Clean from the Eclipse main menu.
Outside of Eclipse, ant clean accomplishes much the same thing.

So, if you get a strange crash that seems like it might be related to resources, clean

your project. If the problem goes away, you are set — if the problem persists, you
will need to do a bit more debugging.

Point Break

If you are an experienced Eclipse user, you are welcome to use any of Eclipse’s
standard debugging capabilities with your Android app, such as breakpoints.

129

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEBUGGING CRASHES

Whether you debug on an emulator or on a device (with “USB Debugging” enabled
in Settings), your breakpoints and such should work normally.

Note, however, that if you set up Eclipse to catch all unhandled exceptions, those
exceptions will not be logged to LogCat unless you allow execution to proceed past
the point of the exception. While this may not matter much to you during
development, the LogCat stack trace is often easier for other developers to read,
away from your Eclipse environment. So, if you wish to post a stack trace on an issue
or on a support forum (e.g., StackOverflow), use the LogCat stack trace.

130

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LinearLayout and the Box Model

LinearLayout represents Android’s approach to a box model — widgets or child
containers are lined up in a column or row, one after the next. This works similarly
to vbox and hbox in Flex and XUL, etc.

Flex and XUL use the box as their primary unit of layout. If you want, you can use
LinearLayout in much the same way, eschewing some of the other containers.
Getting the visual representation you want is mostly a matter of identifying where
boxes should nest and what properties those boxes should have, such as alignment
vis-a-vis other boxes.

Concepts and Properties

To configure a LinearLayout, you have four main areas of control besides the
container’s contents: the orientation, the fill model, the weight, the gravity.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just
add the android:orientation property to your LinearLayout element in your XML
layout, setting the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearLayout, supplying it either HORIZONTAL or VERTICAL.

131

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE Box MODEL

Fill Model

The point behind a LinearLayout — or any of the Android container classes - is to
organize multiple widgets. Part of organizing those widgets is determining how
much space each gets.

LinearLayout takes an “eldest child wins” approach towards allocating space. So, if
we have a LinearLayout with three children, the first child will get its requested
space. The second child will get its requested space, if there is enough room
remaining, and likewise for the third child. So if the first child asks for all the space
(e.g., thisis a horizontal LinearLayout and the first child has
android:layout_width="match_parent"), the second and third children will wind
up with zero width.

Weight

But, what happens if we have two or more widgets that should split the available free
space? For example, suppose we have two multi-line fields in a column, and we want
them to take up the remaining space in the column after all other widgets have been
allocated their space.

To make this work, in addition to setting android: layout_width (for rows) or
android:layout_height (for columns), you must also set android: layout_weight.
This property indicates what proportion of the free space should go to that widget. If
you set android:layout_weight to be the same non-zero value for a pair of widgets
(e.g., 1), the free space will be split evenly between them. If you set it to be 1 for one
widget and 2 for another widget, the second widget will use up twice the free space
that the first widget does. And so on.

The weight for a widget is zero by default.

Another pattern for using weights is if you want to allocate sizes on a percentage
basis. To use this technique for, say, a horizontal layout:

1. Set all the android:layout_width values to be 0 for the widgets in the layout

2. Set the android:layout_weight values to be the desired percentage size for
each widget in the layout

3. Make sure all those weights add up to 100

If you want to have space left over, not allocated to any widget, you can add an
android:weightSum attribute to the LinearLayout, and ensure that the sum of the

132

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE Box MODEL

android:layout_weight attributes of the children are less than that sum. The
children will each get space allocated based upon the ratio of their
android:layout_weight compared to the android:weightSum, not compared to the
sum of the weights. And there will be empty space that takes up the rest of the room
not allocated to the children.

To see android:layout_weight in action, take a look at the Containers/
LinearPercent sample project. Here, we have a res/layout/main.xml file containing
a vertical LinearLayout with three Button widgets as children:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="50"
android:text="@string/fifty_percent"/>

<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="30"
android:text="@string/thirty_percent"/>

<Button
android:layout_width="match_parent"
android:layout_height="0dip"
android:layout_weight="20"
android:text="@string/twenty_percent"/>

</LinearlLayout>

Each of the three Button widgets declares its height to be 0dip. However, each also
has an android:layout_weight attribute, with the top Button requesting a weight of
50, the middle Button a weight of 30, and the bottom Button a weight of 20.

The result is that the Button widgets’ heights are allocated based solely upon those
weights:

133

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/LinearPercent

LINEARLAYOUT AND THE Box MODEL

T Ml @ 9:29am

Fifty Percent

I

Thirty Percent

P

Twenty Percent

Figure 76: The LinearPercent Sample Application

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a
row of widgets via a horizontal LinearLayout, the row will start flush on the left side
of the screen.

If that is not what you want, you need to specify a gravity. Unlike the physical world,
Android has two types of gravity: the gravity of a widget within a LinearLayout, and
the gravity of the contents of a widget or container.

The android:gravity property of some widgets and containers — which also can be
defined via setGravity() in Java — tells Android to slide the contents of the widget
or container in a particular direction. For example, android:gravity="right" says
to slide the contents of the widget to the right; android:gravity="right |bottom"
says to slide the contents of the widget to the right and the bottom.

Here, “contents” varies. TextView supports android:gravity, and the “contents” is
the text held within the TextView. LinearLayout supports android:gravity, and the
“contents” are the widgets inside the container. And so on.

134

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE Box MODEL

Children of a LinearLayout also have the option of specifying
android:layout_gravity. Here, the child is telling the LinearLayout “if there is
room, please slide me (and me alone) in this direction”. However, this only works in
the direction opposite the orientation of the LinearLayout - the children of a
vertical LinearLayout can use android:layout_gravity to control their
positioning horizontally (left or right), but not vertically.

For a row of widgets, the default is for them to be aligned so their texts are aligned
on the baseline (the invisible line that letters seem to “sit on”), though you may wish
to specify a gravity of center_vertical to center the widgets along the row’s vertical
midpoint.

Eclipse Graphical Layout Editor

The LinearLayout container can be found in the “Layouts” portion of the Palette of
the Eclipse graphical layout editor:

(= Layouts

I | GridLayout

| LinearLayout (Vertical)

(1] LinearLayout (Horizontal

RelativeLayout

[C] FrameLayout

¢ } Include Other Layout

£ 1 Fragment

-] TableLayout

=] TableRow | | Space
Figure 77: Layouts Palette in Eclipse Graphical Layout Editor

You can drag either the “LinearLayout (Vertical)” or “LinearLayout (Horizontal)” into
a layout XML resource, then start dragging in children to go into the container.

When your LinearLayout is the selected widget, a toolbar will appear over the
preview:

135

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

LINEARLAYOUT AND THE Box MODEL

| & [
Figure 78: LinearLayout Toolbar in Eclipse Graphical Layout Editor

The left two buttons toggle your LinearLayout between vertical and horizontal
modes. The two immediately to the right of the divider toggle the width and height
between match_parent and wrap_content.

When one of the children of the LinearLayout is the selected widget, the toolbar
changes:

m = HEEBE IOBE @
Figure 79: LinearLayout Contents Toolbar in Eclipse Graphical Layout Editor

The left two buttons still toggle the orientation of the LinearLayout. The width and
height buttons to their right toggle the width and height of the selected widget.

The right-most six buttons, from left to right, allow you to:

+ Change the margins on the selected widget

+ Change the gravity of the selected widget

* Give all widgets in the LinearLayout equal weight

* Give the selected widget all the weight

* Manually assign the weight to the selected widget

* Clear all weights from all widgets in the LinearLayout

The button that we have ignored — the one that looks like a lowercase ‘y’ on a
dashed line — is supposed to be tied to aligning things on the baseline, but the
button appears to be broken in the R20 and R21 version of the tools.

The Properties pane for the selected widget also allows you to get to the
LinearLayout container to make adjustments to its attributes.

136

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Other Common Widgets and
Containers

In the chapter on basic widgets, we left out all of the classic “two-state” widgets,
such as checkboxes and radio buttons. We will examine those and other related
widgets in this chapter.

Beyond LinearLayout, Android supports a range of containers providing different
layout rules. In this chapter, we will look at two other commonly-used containers:
Relativelayout (a rule-based model) and TableLayout (the grid model), along with
ScrollView and HorizontalScrollView, containers that allow their contents to
scroll. We will examine all of these containers in this chapter as well.

Just a Box to Check

The classic checkbox has two states: checked and unchecked. Clicking the checkbox
toggles between those states to indicate a choice (e.g., “Add rush delivery to my
order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an
ancestor, so you can use TextView properties like android: textColor to format the
widget.

Within Java, you can invoke:
1. isChecked() to determine if the checkbox has been checked

2. setChecked() to force the checkbox into a checked or unchecked state
3. toggle() to toggle the checkbox as if the user clicked upon it

137

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox changes.

For example, from the Basic/CheckBox sample project, here is a simple checkbox
layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/unchecked" />

The corresponding CheckBoxDemo. java retrieves and configures the behavior of the
checkbox:

package com.commonsware.android.checkbox;

import android.app.Activity;

import android.os.Bundle;

import android.widget.CheckBox;
import android.widget.CompoundButton;

public class CheckBoxDemo extends Activity implements
CompoundButton.OnCheckedChangelListener {
CheckBox cb;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewById(R.id.check);
cb.setOnCheckedChangelListener(this);
}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText(R.string.checked);
}
else {
cb.setText(R.string.unchecked);
}
}
}

Note that the activity serves as its own listener for checkbox state changes since it
implements the OnCheckedChangeListener interface (set via
cb.setOnCheckedChangelListener (this)). The callback for the listener is

138

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/CheckBox

OTHER COMMON WIDGETS AND CONTAINERS

onCheckedChanged(), which receives the checkbox whose state has changed and
what the new state is. In this case, we update the text of the checkbox to reflect what
the actual box contains.

The result? Clicking the checkbox immediately updates its text, as shown below:

ChEl & 1:38PMm

CheckBoxDemo

-This checkbox is: unchecked

Figure 8o: The CheckBoxDemo sample application, with the checkbox unchecked

M & 1:38PM

CheckBoxDemo

This checkbox is: checked

Figure 81: The same application, now with the checkbox checked

139

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Eclipse Graphical Layout Editor

The CheckBox widget appears in the “Form Widgets” section of the Palette in the
Graphical Layout editor. You can drag it into the layout and configure it as desired
using the Properties pane. As CheckBox inherits from TextView, most of the settings
are the same as those you would find on a regular TextView.

Don’t Like Checkboxes? How About Toggles?

A similar widget to CheckBox is ToggleButton. Like CheckBox, ToggleButton is a
two-state widget that is either checked or unchecked. However, ToggleButton has a
distinct visual appearance:

Figure 82: The ToggleButtonDemo sample, showing an unchecked ToggleButton

140

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

9:09

Figure 83: The same application, showing the ToggleButton when checked

Otherwise, ToggleButton behaves much like CheckBox. You can put it in a layout file,
as seen in the Basic/ToggleButton sample:

<?xml version="1.0" encoding="utf-8"?>

<ToggleButton xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/toggle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

You can also set up an OnCheckedChangeListener to be notified when the user
changes the state of the ToggleButton.

Eclipse Graphical Layout Editor

Like CheckBox, the ToggleButton widget appears in the “Form Widgets” section of
the Palette in the Graphical Layout editor. It looks like a button with the word “OFF”
towards the top. You can drag it into the layout and configure it as desired using the
Properties pane.

141

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/ToggleButton

OTHER COMMON WIDGETS AND CONTAINERS

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android’s radio
buttons are two-state, like checkboxes, but can be grouped such that only one radio
button in the group can be checked at any time.

CheckBox, ToggleButton, and RadioButton all inherit from CompoundButton, which
in turn inherits from TextView. Hence, all the standard TextView properties for font
face, style, color, etc. are available for controlling the look of radio buttons. Similarly,
you can call isChecked() on a RadioButton to see if it is selected, toggle() to
change its checked state, and so on, like you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside of a RadioGroup.
The RadioGroup is a LinearLayout that indicates a set of radio buttons whose state
is tied, meaning only one button out of the group can be selected at any time. If you
assign an android: id to your RadioGroup in your XML layout, you can access the
group from your Java code and invoke:

1. check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

2. clearCheck() to clear all radio buttons, so none in the group are checked

3. getCheckedRadioButtonId() to get the ID of the currently-checked radio
button (or -1 if none are checked)

Note that the mutual-exclusion feature of RadioGroup only applies to RadioButton
widgets that are immediate children of the RadioGroup. You cannot have other
containers between the RadioGroup and its RadioButton widgets.

For example, from the Basic/RadioButton sample application, here is an XML
layout showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<RadioButton android:id="@+id/radiol1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/rock" />

<RadioButton android:id="@+id/radio2"

142

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton
http://github.com/commonsguy/cw-omnibus/tree/master/Basic/RadioButton

OTHER COMMON WIDGETS AND CONTAINERS

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get:

ChEl @ 1:39PMm

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 84: The RadioButtonDemo sample application

Note that the radio button group is initially set to be completely unchecked at the
outset. To preset one of the radio buttons to be checked, use either setChecked() on
the RadioButton or check() on the RadioGroup from within your onCreate()
callback in your activity. Alternatively, you can use the android: checked attribute on
one of the RadioButton widgets in the layout file.

Eclipse Graphical Layout Editor

Both RadioButton and RadioGroup appear in the “Form Widgets” section of the
Palette in the Graphical Layout editor. The RadioButton widget has a radio button
with the text “RadioButton” to the right. The RadioGroup widget looks like three
radio buttons (sans text) side-by-side.

143

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Since RadioGroup extends LinearLayout, when you drag it into the layout, you will
get the same sorts of options as a vertical LinearLayout, such as setting the gravity.
Note, though, that dragging a RadioGroup into a layout automatically gives you three
RadioButton child widgets — a departure from any other container in the Palette.
You can configure those RadioButton widgets, delete them, add more, etc.

All Things Are Relative

Relativelayout, as the name suggests, lays out widgets based upon their
relationship to other widgets in the container and the parent container. You can
place Widget X below and to the left of Widget Y, or have Widget Z’s bottom edge
align with the bottom of the container, and so on.

This is reminiscent of James Elliot’s RelativeLayout for use with Java/Swing.

Concepts and Properties

To make all this work, we need ways to reference other widgets within an XML
layout file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container
The easiest relations to set up are tying a widget’s position to that of its container:

1. android:layout_alignParentTop says the widget’s top should align with the
top of the container

2. android:layout_alignParentBottom says the widget’s bottom should align
with the bottom of the container

3. android:layout_alignParentLeft says the widget’s left side should align
with the left side of the container

4. android:layout_alignParentRight says the widget’s right side should align
with the right side of the container

5. android:layout_centerHorizontal says the widget should be positioned
horizontally at the center of the container

6. android:layout_centerVertical says the widget should be positioned
vertically at the center of the container

7. android:layout_centerInParent says the widget should be positioned both
horizontally and vertically at the center of the container

All of these properties take a simple boolean value (true or false).

144

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.onjava.com/pub/a/onjava/2002/09/18/relativelayout.html

OTHER COMMON WIDGETS AND CONTAINERS

Note that the padding of the widget is taken into account when performing these
various alignments. The alignments are based on the widget’s overall cell
(combination of its natural space plus the padding).

Relative Notation in Properties

The remaining properties of relevance to RelativelLayout take as a value the identity
of a widget in the container. To do this:

* Put identifiers (android: id attributes) on all elements that you will need to
address
* Reference other widgets using the same identifier value

The first occurrence of an id value should have the plus sign (@+id/widget_a); the
second and subsequent times that id value is used in the layout file should drop the
plus sign (@id/widget_a). This allows the build tools to better help you catch typos
in your widget id values — if you do not have a plus sign for a widget id value that
has not been seen before, that will be caught at compile time.

For example, if Widget A appears in the RelativelLayout before Widget B, and
Widget A is identified as @+id/widget_a, Widget B can refer to Widget A in one of
its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets
There are four properties that control position of a widget vis-a-vis other widgets:

1. android:layout_above indicates that the widget should be placed above the
widget referenced in the property

2. android:layout_below indicates that the widget should be placed below the
widget referenced in the property

3. android:layout_toLeftOf indicates that the widget should be placed to the
left of the widget referenced in the property

4. android:layout_toRightOf indicates that the widget should be placed to
the right of the widget referenced in the property

Beyond those four, there are five additional properties that can control one widget’s
alignment relative to another:

145

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

1. android:layout_alignTop indicates that the widget’s top should be aligned
with the top of the widget referenced in the property

2. android:layout_alignBottom indicates that the widget’s bottom should be
aligned with the bottom of the widget referenced in the property

3. android:layout_alignLeft indicates that the widget’s left should be aligned
with the left of the widget referenced in the property

4. android:layout_alignRight indicates that the widget’s right should be
aligned with the right of the widget referenced in the property

5. android:layout_alignBaseline indicates that the baselines of the two
widgets should be aligned (where the “baseline” is that invisible line that text
appears to sit on)

The last one is useful for aligning labels and fields so that the text appears “natural”.
Since fields have a box around them and labels do not, android:layout_alignTop
would align the top of the field’s box with the top of the label, which will cause the
text of the label to be higher on-screen than the text entered into the field.

So, if we want Widget B to be positioned to the right of Widget A, in the XML
element for Widget B, we need to include android: layout_toRightOf =
"@id/widget_a" (assuming @id/widget_a is the identity of Widget A).

Order of Evaluation

It used to be that Android would use a single pass to process Relativelayout-
defined rules. That meant you could not reference a widget (e.g., via
android:layout_above) until it had been declared in the XML. This made defining
some layouts a bit complicated. Starting in Android 1.6, Android uses two passes to
process the rules, so you can now safely have forward references to as-yet-undefined
widgets.

Example

With all that in mind, let’s examine a typical “form” with a field, a label, plus a pair
of buttons labeled “OK” and “Cancel”.

Here is the XML layout, pulled from the Containers/Relative sample project:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content">

146

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Relative

OTHER COMMON WIDGETS AND CONTAINERS

<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"
android:text="@string/url"/>

<EditText
android:id="@id/entry"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_toRightOf="@id/label"
android: inputType="text"/>

<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignRight="@id/entry"
android:layout_below="@id/entry"
android:text="@string/ok"/>

<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignTop="@id/ok"
android:layout_tolLeftOf="@id/ok"
android:text="@string/cancel"/>

</RelativelLayout>

First, we open up the Relativelayout. In this case, we want to use the full width of
the screen (android:layout_width = "match_parent") and only as much height as
we need (android:layout_height = "wrap_content").

Next, we define the label as a TextView. We indicate that we want its left edge
aligned with the left edge of the RelativelLayout
(android:layout_alignParentLeft="true") and that we want its baseline aligned
with the baseline of the yet-to-be-defined EditText. Since the EditText has not
been declared yet, we use the + sign in the ID
(android:layout_alignBaseline="@+id/entry").

After that, we add in the field as an EditText. We want the field to be to the right of
the label, have the field be aligned with the top of the RelativelLayout, and for the

147

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

field to take up the rest of this “row” in the layout. Those are handled by three
properties:

1. android:layout_toRightOf = "@id/label"
2. android:layout_alignParentTop = "true"
3. android:layout_width = "match_parent"

Then, the OK button is set to be below the field (android:layout_below =
"@id/entry") and have its right side align with the right side of the field
(android:layout_alignRight = "@id/entry"). The Cancel button is set to be to the
left of the OK button (android:layout_toLeft = "@id/ok") and have its top aligned
with the OK button (android:layout_alignTop = "@id/ok").

With no changes to the auto-generated Java code, the emulator gives us:

Chlflll @ 12:34 AM

RelativeLayoutDemo

II-I :‘l_:_
Cancel m

Figure 85: The RelativeLayoutDemo sample application

Overlap

Relativelayout also has a feature that LinearLayout lacks — the ability to have
widgets overlap one another. Later children of a RelativeLayout are “higher in the Z
axis” than are earlier children, meaning that later children will overlap earlier
children if they are set up to occupy the same space in the layout.

148

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

This will be clearer with an example. Here is a layout, from the Containers/
RelativeOverlap sample, with a RelativelLayout holding two Button widgets:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">

<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/big"
android:textSize="120dip"
android:textStyle="bold"/>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:text="@string/small"/>

</RelativelLayout>

The first Button is set to fill the screen. The second Button is set to be centered
inside the parent, but only take up as much space as is needed for its caption.
Hence, the second Button will appear to “float” over the first Button:

149

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/RelativeOverlap

OTHER COMMON WIDGETS AND CONTAINERS

IA

Lam small

BIG

Figure 86: The RelativeOverlap sample application

Both Button widgets can still be clicked, though clicking on the smaller Button does
not also click the bigger Button. Your clicks will be handled by the widget on top in
the case of an overlap like this.

Eclipse Graphical Layout Editor

You will find RelativeLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource.

And, at this point, you can start getting frustrated. To paraphrase an old American
candy commercial, drag-and-drop GUI building and RelativelLayout are two great
tastes that do not taste great together.

The problem is that the complexity of the RelativelLayout rules makes it very
difficult for the Graphical Layout editor to guess what you really mean when you
drag a widget into the RelativelLayout. It will guess as best it can — for example, if
you are dropping the widget near the edge of the Relativelayout, it will assume you
mean for the widget to be aligned with that edge. However, frequently, it will guess
wrong, forcing you to modify the RelativeLayout XML directly via the other editor
sub-tab or via the Properties pane to get the rules that you want.

150

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Tabula Rasa

If you like HTML tables, you will like Android’s TableLayout — it allows you to
position your widgets in a grid to your specifications. You control the number of
rows and columns, which columns might shrink or stretch to accommodate their
contents, and so on.

TablelLayout works in conjunction with TableRow. TableLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

Concepts and Properties

For all this to work, we need to figure out how widgets work with rows and columns,
plus how to handle widgets that live outside of rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a
TableRow inside the overall TableLayout. You, therefore, control directly how many
rows appear in the table.

The number of columns are determined by Android; you control the number of
columns in an indirect fashion.

First, there will be at least one column per widget in your longest row. So if you have
three rows, one with two widgets, one with three widgets, and one with four
widgets, there will be at least four columns.

However, a widget can take up more than one column by including the
android:layout_span property, indicating the number of columns the widget spans.
This is akin to the colspan attribute one finds in table cells in HTML:

<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>

In the above XML layout fragment, the field spans three columns.

151

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Ordinarily, widgets are put into the first available column. In the above fragment,
the label would go in the first column (column 0, as columns are counted starting
from 0), and the field would go into a spanned set of three columns (columns 1
through 3). However, you can put a widget into a different column via the
android:layout_column property, specifying the 0-based column the widget belongs
to:

<TableRow>
<Button
android:id="@+id/cancel"
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="0K" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the
fourth column.

Non-Row Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
TableLayout behaves a bit like LinearLayout with vertical orientation. The widgets
automatically have their width set to match_parent, so they will fill the same space
that the longest row does.

One pattern for this is to use a plain View as a divider (e.g., <View
android:layout_height = "2dip" android:background = "#0000FF" /> as a two-
pixel-high blue bar across the width of the table).

Stretch, Shrink, and Collapse

By default, each column will be sized according to the “natural” size of the widest
widget in that column (taking spanned columns into account). Sometimes, though,
that does not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The value
should be a single column number (again, 0-based) or a comma-delimited list of
column numbers. Those columns will be stretched to take up any available space yet
on the row. This helps if your content is narrower than the available space.

152

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Conversely, you can place an android: shrinkColumns property on the TableLayout.
Again, this should be a single column number or a comma-delimited list of column
numbers. The columns listed in this property will try to word-wrap their contents to
reduce the effective width of the column — by default, widgets are not word-
wrapped. This helps if you have columns with potentially wordy content that might
cause some columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TablelLayout,
again with a column number or comma-delimited list of column numbers. These
columns will start out “collapsed”, meaning they will be part of the table information
but will be invisible. Programmatically, you can collapse and un-collapse columns by
calling setColumnCollapsed() on the TableLayout. You might use this to allow
users to control which columns are of importance to them and should be shown
versus which ones are less important and can be hidden.

You can also control stretching and shrinking at runtime via
setColumnStretchable() and setColumnShrinkable().

Example

The XML layout fragments shown above, when combined, give us a TableLayout
rendition of the “form” we created for RelativelLayout, with the addition of a divider
line between the label/field and the two buttons (found in the Containers/Table
demo):

<?xml version="1.0" encoding="utf-8"?>

<TablelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1">

<TableRow>
<TextView android:text="@string/url"/>
<EditText
android:id="@+id/entry"
android:layout_span="3"
android: inputType="text"/>
</TableRow>

<View
android:layout_height="2dip"
android:background="#0000FF" />

<TableRow>
<Button
android:id="@+id/cancel"

153

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Table

OTHER COMMON WIDGETS AND CONTAINERS

android:layout_column="2"
android:text="@string/cancel"/>
<Button
android:id="@+id/ok"
android:text="@string/ok"/>
</TableRow>

</TablelLayout>

When compiled against the generated Java code and run on the emulator, we get:

Ml @ 12:35 aM

TableLayoutDemo

Figure 87: The TableLayoutDemo sample application

Eclipse Graphical Layout Editor

You will find TableLayout in the “Layouts” section of the Palette in the Eclipse
Graphical Layout editor. You can drag that into your layout XML resource and start
configuring it via the context menu, notably editing the android:stretchColumns
and android:shrinkColumns values.

In addition, the toolbar above the layout will now sport an add-row button:

Figure 88: Eclipse Layout Toolbar for TableLayout

154

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Clicking that adds a TableRow child to the TableLayout, though you will not
necessarily see a visible change. However, now if you start dragging in other widgets,
they will go in that row.

Once you have started to populate the row and can select it, you will get some more
toolbar buttons:

HE BE- DDBEEBE BB HAE
Figure 89: Eclipse Layout Toolbar for TableLayout, with Row Selected

The icon immediately to the right of the add-row button will remove the selected
row from the table. On the far right side of the toolbar are buttons to allow you to
toggle the height and width of the row, plus toggle on and off baseline alignment for
the contents of the row (enabled by default).

Scrollwork

Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is
to use scrolling, so only part of the information is visible at one time, the rest
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a
layout that might be too big for some screens, wrap it in a ScrollView, and still use
your existing layout logic. It just so happens that the user can only see part of your
layout at one time, the rest available via scrolling.

For example, here is a ScrollView used in an XML layout file (from the Containers/
Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content">
<TablelLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="0">
<TableRow>
<View
android:layout_height="80dip"
android:background="#000000"/>

155

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll
http://github.com/commonsguy/cw-omnibus/tree/master/Containers/Scroll

OTHER COMMON WIDGETS AND CONTAINERS

<TextView android:text="#000000"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#440000" />
<TextView android:text="#440000"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#884400" />
<TextView android:text="#884400"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#aa8844" />
<TextView android:text="#aa8844"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#ffaa88" />
<TextView android:text="#ffaa88"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#ffffaa" />
<TextView android:text="#ffffaa"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80dip"
android:background="#ffffff" />
<TextView android:text="#ffffff"
android:paddinglLeft="4dip"
android:layout_gravity="center_vertical" />
</TableRow>
</TablelLayout>
</ScrollView>

156

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Without the ScrollView, the table would take up at least 560 pixels (7 rows at 8o
pixels each, based on the View declarations). There may be some devices with
screens capable of showing that much information, but many will be smaller. The
ScrollView lets us keep the table as-is, but only present part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see:

Chiflll @ 12:36 AM

ScrollViewDemo

Figure g9o: The ScrollViewDemo sample application

Notice how only five rows and part of the sixth are visible. By pressing the up/down
buttons on the directional pad, you can scroll up and down to see the remaining
rows. Also note how the right side of the content gets clipped by the scrollbar — be
sure to put some padding on that side or otherwise ensure your own content does
not get clipped in that fashion.

Android 1.5 introduced HorizontalScrollView, which works like Scrollview... just
horizontally. This would be good for forms that might be too wide rather than too
tall. Note that Scrollview only scrolls vertically and HorizontalScrollView only
scrolls horizontally.

Also, note that you cannot put scrollable items into a ScrollView. For example, a
ListView widget — which we will see in an upcoming chapter — already knows how
to scroll. You do not need to put a ListViewin a ScrollView, and if you were to try,
it would not work very well.

157

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Eclipse Graphical Layout Editor

The Scrollview and HorizontalScrollView widgets appear in the “Composite”
section of the Palette in the Graphical Layout editor. You can drag one of these into
your layout XML resource, then drag one child into it. A ScrollView or
HorizontalScrollView can only have one child — if you want more than one, wrap
the children in a suitable LinearLayout and put that inside the Scrollview or
HorizontalScrollView.

Making Progress with ProgressBars

If you are going to fork background threads to do work on behalf of the user, you
will want to think about keeping the user informed that work is going on. This is
particularly true if the user is effectively waiting for that background work to
complete.

The typical approach to keeping users informed of progress is some form of progress
bar, like you see when you copy a bunch of files from place to place in many desktop
operating systems. Android supports this through the ProgressBar widget.

A ProgressBar keeps track of progress, defined as an integer, with 0 indicating no
progress has been made. You can define the maximum end of the range — what
value indicates progress is complete — via setMax(). By default, a ProgressBar
starts with a progress of 0, though you can start from some other position via
setProgress().

If you prefer your progress bar to be indeterminate — meaning that it will show a
general animated effect, rather than a specific amount of progress — use
setIndeterminate(), setting it to true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via
incrementProgressBy()). You can find out how much progress has been made via
getProgress().

We will see a ProgressBar in action in the next chapter, another one of our
tutorials.

158

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OTHER COMMON WIDGETS AND CONTAINERS

Visit the Trails!

The trails portion of the book contains a widget catalog, providing capsule
descriptions and samples for a number of widgets not described elsewhere in this
book.

You might also be interested in GridLayout, which is an alternative to the classic
LinearLayout, RelativelLayout, and TableLayout containers.

159

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #5 - Making Progress

When we actually get around to opening the digital book for display, there will be a
slight delay as the HTML and other assets are read into memory. To help assure the
user that their device has not frozen, we will add a ProgressBar to our user interface
in this tutorial.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Removing The “Hello, World”

Right now, our user interface consists of a highly-sophisticated “Hello, World” string,
shown in a TextView. While no doubt it is eligible for many design awards, this is
not the user interface we need. So, we need to get rid of it.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on the res/layout/main.xml file in your project in Eclipse’s Package
Explorer. If you do not have such a file, but you have some other layout resource
(e.g., res/layout/activity_main.xml), rename it to main.xml by right-clicking over
the file in the Package Explorer and choosing Refactor > Rename from the right-
mouse menu. Then double-click on the newly-renamed file.

161

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T4-Resources
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite

TUTORIAL #5 - MAKING PROGRESS

This will bring up our current user interface:

a mainxml &
4 Palette

B Palette

= Form Widgets

resien Large Mecium sral | Bullon

VVVVVVV

([Text Fields
(3 Layouts
(J Composite

(J Images & Media

(O Time & Date
([Transitions
(£ Advanced

defaulty ([@Nexusonev &+ drAppThemev

O &~ o} QA &

@ EmPub Lite

Hello world!

Custom & Library Views
= Graphical Layout| (= main.xml

=8

Structure 3

%2 Outline
v5g
(25 TextView - "Hello world!"
£ Properties LS o=
Id
= Layout Par... []
Gravity
width match_parent
Height match_parent

® Margins 1]
Background
Padding Left
Content D...
= RelativeLay... |[]
Gravity
Ignore Gra...
= View
Style
Tag
Background
Padding
PaddingL...
PaddingT...

Paddina R

Figure 91: EmPubLiteActivity, in Eclipse

Click on the “Hello World!” string, then press the <Delete> key. You can now save
your file (e.g., <Ctrl>-<S>).

Also, we no longer need the hello_world string resource. To remove it, double-click

on the res/values/strings.xml file, select the hello_world string resource, click

the “Remove..” button, click “Yes” on the confirmation dialog, and save the resulting
file.

Outside of Eclipse

Open res/layout/main.xml in your favorite text editor. If there is no such file, but
you have another layout resource (e.g., activity_main.xml), rename it to main.xml.

In res/layout/main.xml, find and delete the <TextView> element, then save the file.

The resulting XML should look like:

162

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">

</RelativelLayout>

Also, we no longer need the hello_world string resource. To remove it, open the
res/values/strings.xml file in your favorite text editor. Find the <string> element
that has a name of hello_world, delete that element, and save the file.

The resulting XML should look like:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">EmPub Lite</string>
<string name="menu_settings">Settings</string>

</resources>

Step #2: Adding a ProgressBar

Now that the TextView is out of the way, we can add our ProgressBar in its place.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Go back to res/layout/main.xml in Eclipse. In the “Form Widgets” portion of the
tool palette, you will see three ProgressBar widget representations, in the form of
circles:

163

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

1 Palette
2 Palette =

=" Form Widgets

tentvies L Arge Medium small - Bulton

Small OFF " CheckBna

® HRadinPuttnn Chacked Textview

Spinner

Figure 92: The ProgressBar Widget in the Tool Palette

Drag the largest one out of the palette and onto the preview of our activity. You will
see a tooltip pointing out the RelativelLayout rules that the drag-and-drop
operation will apply if you drop the widget in its current location. Slide the
ProgressBar around until you center it and the tooltip shows that it will use
android:layout_centerHorizontal="true" and
android:layout_centerVertical="true". If you wind up with
android:layout_centerInParent="true" instead of those other two settings, that is
fine as well.

If you are having difficulty centering it, drop it anywhere in the white part of the

preview area. Then, from the toolbar above the preview, press the center-horizontal
and center-vertical toolbar buttons in succession:

E- B E
Figure 93: The Centering Toolbar Buttons (Third and Fourth from Right)

Then, you can save your file.

164

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

Outside of Eclipse

Go back to res/layout/main.xml in your favorite text editor. Delete the <TextView>
element that was there. Replace it with a <ProgressBar> element as a child of the
<Relativelayout>, as shown below:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">

<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStylelLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>

</RelativelLayout>

Then, you can save your file.

Step #3: Seeing the Results

If you run the app in a device or emulator, you will see your ProgressBar widget,
sitting there, all alone, waiting for somebody to write more code in support of it:

165

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #5 - MAKING PROGRESS

¢’ EmPub Lite

o o =@

Figure 94: EmPubLite, With ProgressBar

In Our Next Episode...

... we will attach a third-party library to our tutorial project.

166

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI Building, Continued

If you are using Eclipse, and you have been experimenting with the Graphical Layout
editor and drag-and-drop GUI building, this chapter will cover some other general
features of this editor that you may find useful.

Even if you are not using Eclipse, you may want to at least skim this chapter, as you
will find a few tricks that will be relevant for you as well.

Making Your Selection

Clicking on a widget makes it the selected widget, meaning that the toolbar buttons
will affect that widget (or, sometimes, its container, depending upon the button).
Selected widgets have a thin blue border with blue square “grab handles” for
adjusting its size and position.

Clicking on a container selects it. However, there may or may not be a blue border
— in particular, containers that fill the screen (match_parent for width and height)
do not seem to get the border.

Sometimes, though, you want to select a container that you cannot reach, because
its contents are completely filled with widgets. That occurs with the LinearPercent
sample from a previous chapter - the entire LinearLayout is filled with the three
Button widgets. In these cases, click on the widget in the Outline pane to select it.

Including Includes

Sometimes, you have a widget or a collection of widgets that you want to reuse
across multiple layout XML resources. Android supports the notion of an “include”

167

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI BUILDING, CONTINUED

that allows this. Simply create a dedicated layout XML resource that contains the
widget(s) to reuse, then add them to your main layouts via an <include> element:

<include layout="@layout/thing_we_are_reusing" />

You can even assign the <include> element a width or height if needed, as if it were
just a widget or container.

Eclipse makes it easy for you to take widgets from an existing layout XML resource
and extract them into a separate layout XML resource, replacing them with an
<include> element. Just select the widget(s) you want to reuse, then right-click over
them and choose “Extract Include” from the context menu. This will bring up a
dialog where you can specify a name to give the new layout XML resource:

@ Extract as Include

New Layout Name: [| I

& Replace occurrences in all layouts with include to new layout

@ Provide a name for the new layout

Cancel

Figure 95: Extract as Include Dialog

By default, the tools will search all your layout files for these widgets and replace
them with the <include>, though you can uncheck the checkbox to disable this
behavior and only affect the layout XML resource you are presently editing.

If you are extracting multiple widgets that are not wrapped in their own container,
Eclipse will automatically wrap them in a <merge> element:

<?xml version="1.0" encoding="utf-8"?>

<merge xmlns:android="http://schemas.android.com/apk/res/android">
</-- widgets go here -->

</merge>

This is necessary purely from an XML standpoint — you cannot have multiple root
elements in an XML file. When the <merge> is added to another layout via
<include>, the <merge> element itself evaporates, leaving behind its children.

168

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI BUILDING, CONTINUED

Wrap It Up (In a Container)

Sometimes, after you have added a widget to your layout, you later determine that
you really needed it to be in some sort of container. For example, perhaps you
thought you only needed one TextView but later decided to stack two TextView
widgets in a vertical LinearLayout, in which case you somehow need to introduce
this LinearLayout into the mix.

The simplest way to do that is to right-click over the widget that needs a new
container (in the preview pane or the Outline pane) and choose “Wrap In
Container...” from the context menu. This will bring up a dialog allowing you to
choose the class of the container (with a reasonable default pre-selected) and give
the container an android:id value (which, for some strange reason, is mandatory).

 Wwrap in Container

Type of Container: | LinearLayout (Horizontal)

New Layout Id:

@ 1D required

Cancel

Figure 96: Wrap In Container Dialog

Similarly, if a widget is wrapped in a container, where the container is no longer
necessary, “Remove Container” will get rid of the container.

Morphing Widgets

Occasionally, you might configure a widget, only to decide later on that you really
want it to be a different type of widget. For example, perhaps you start with a
CheckBox and later want to switch it to be a ToggleButton.

To do this, right-click over the widget in Eclipse (in the preview pane or the Outline
pane) and choose “Change Widget Type” from the context menu. This will bring up
a dialog box for you to choose a replacement widget class, with a likely candidate
pre-selected for you:

169

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

GUI BUILDING, CONTINUED

© change Widget Type

New Widget Type: | CheckBox

Preview> | | oK | Cancel

Figure 97: Change Widget Type

After making the selection, Eclipse will alter your element to the new widget type.
Note that you may need to make other changes yourself, for attributes that you no
longer need or now need to add.

Preview of Coming Attractions

At the top of the Graphical Layout editor tab, you will find a series of drop-downs
that allow you to tailor what the preview looks like:

default~ [JNexusOnev &~ “Theme~

Figure 98: Preview Controls in the Graphical Layout Editor

Eclipse will choose some likely defaults based upon your project settings, but you
are welcome to change them as you see fit. Notable changes include:

* What version of Android is used for the preview (as widget styling changes
from time to time in Android releases)

+ What language is used for your string resources?

+ What size and resolution of screen is used?

+ Is it displayed in portrait or landscape?

These only affect the preview, so they show you (approximately) what your layout
will look like under those conditions, but they do not modify anything about your
layout XML itself.

170

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

AdapterViews and Adapters

If you want the user to choose something out of a collection of somethings, you
could use a bunch of RadioButton widgets. However, Android has a series of more
flexible widgets than that, ones that this book will refer to as “selection widgets”.

These include:

* ListView, which is your typical “list box”

* Spinner, which (more or less) is a drop-down list

* GridView, offering a two-dimensional roster of choices

* ExpandablelListView, a limited “tree” widget, supporting two levels in the
hierarchy

* Gallery, a horizontal-scrolling list, principally used for image thumbnails

and many more.

Eclipse users will find these mostly in the “Composite” portion of the Graphical
Layout editor palette, though Spinner is in the “Form Widgets” section and Gallery
is in “Images & Media”.

These all have a common superclass: AdapterView, so named because they partner
with objects implementing the Adapter interface to determine what choices are
available for the user to choose from.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate APIs.
More specifically, in Android’s case, adapters provide a common interface to the data
model behind a selection-style widget, such as a listbox. This use of Java interfaces is

171

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

fairly common (e.g., Java/Swing’s model adapters for JTable), and Java is far from
the only environment offering this sort of abstraction (e.g., Flex’s XML data-binding
framework accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible for providing the roster of data for a selection
widget plus converting individual elements of data into specific views to be
displayed inside the selection widget. The latter facet of the adapter system may
sound a little odd, but in reality it is not that different from other GUI toolkits’ ways
of overriding default display behavior. For example, in Java/Swing, if you want a
JList-backed listbox to actually be a checklist (where individual rows are a
checkbox plus label, and clicks adjust the state of the checkbox), you inevitably wind
up calling setCellRenderer() to supply your own ListCellRenderer, which in turn
converts strings for the list into JCheckBox-plus-JLabel composite widgets.

Using ArrayAdapter

The easiest adapter to use is ArrayAdapter — all you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully-functioning
adapter:

String[] items={"this", "is", "a", "really", "silly", "list"};

new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items);

One flavor of the ArrayAdapter constructor takes three parameters:

1. The Context to use (typically this will be your activity instance)

2. The resource ID of a view to use (such as a built-in system resource ID, as
shown above)

3. The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and
wrap each of those strings in the view designated by the supplied resource.
android.R.layout.simple_list_item_1 simply turns those strings into TextView
objects. Those TextView widgets, in turn, will be shown in the list or spinner or
whatever widget uses this ArrayAdapter. If you want to see what
android.R.layout.simple_list_item_1 looks like, you can find a copy of it in your
SDK installation — just search for simple_list_item_1.xml.

We will see in a later section how to subclass an Adapter and override row creation,
to give you greater control over how rows and cells appear.

172

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Lists of Naughty and Nice

The classic listbox widget in Android is known as ListView. Include one of these in
your layout, invoke setAdapter () to supply your data and child views, and attach a
listener via setOnItemSelectedListener() to find out when the selection has
changed. With that, you have a fully-functioning listbox.

However, if your activity is dominated by a single list, you might well consider
creating your activity as a subclass of ListActivity, rather than the regular
Activity base class. If your main view is just the list, you do not even need to supply
a layout — ListActivity will construct a full-screen list for you. If you do want to
customize the layout, you can, so long as you identify your ListView as
@android:id/list, so ListActivity knows which widget is the main list for the
activity.

For example, here is a layout pulled from the Selection/List sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" >
<TextView
android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"/>
<ListView
android:id="@android:id/1list"
android:layout_width="match_parent"
android:layout_height="match_parent"
/>
</LinearlLayout>

It is just a list with a label on top to show the current selection.

The Java code to configure the list and connect the list with the label is:

package com.commonsware.android.list;

import android.app.ListActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

173

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/List

ADAPTERVIEWS AND ADAPTERS

public class ListViewDemo extends ListActivity {
private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
items));
selection=(TextView)findViewById(R.id.selection);

}

@Override
public void onListItemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);

b
b

With ListActivity, you can set the list adapter via setListAdapter() — in this
case, providing an ArrayAdapter wrapping an array of nonsense strings. To find out
when the list selection changes, override onListItemClick() and take appropriate
steps based on the supplied child view and position (in this case, updating the label
with the text for that position).

The results?

174

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

lorem

ipsum

dolor

sit

amet

consectetuer

adipiscing

Figure 99: The ListViewDemo sample application

The second parameter to our ArrayAdapter —
android.R.layout.simple_list_item_1 — controls what the rows look like. The
value used in the preceding example provides the standard Android list row: big
font, lots of padding, white text.

Clicks versus Selections

One thing that can confuse some Android developers is the distinction between
clicks and selections. One might think that they are the same thing — after all,
clicking on something selects it, right?

Well, no. At least, not in Android. At least not all of the time.

Android is designed to be used with touchscreen devices and non-touchscreen
devices. Historically, Android has been dominated by devices that only offered
touchscreens. However, Google TV devices are not touchscreens at present. And
some Android devices offer both touchscreens and some other sort of pointing
device — D-pad, trackball, arrow keys, etc.

175

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

To accommodate both styles of device, Android sometimes makes a distinction
between selection events and click events. Widgets based off of the “spinner”
paradigm — including Spinner and Gallery — treat everything as selection events.
Other widgets — like ListView and GridView — treat selection events and click
events differently. For these widgets, selection events are driven by the pointing
device, such as using arrow keys to move a highlight bar up and down a list. Click
events are when the user either “clicks” the pointing device (e.g., presses the center
D-pad button) or taps on something in the widget using the touchscreen.

Selection Modes

By default, ListView is set up simply to collect clicks on list entries. Sometimes,
though, you want a list that tracks a user’s selection, or possibly multiple selections.
ListView can handle that as well, but it requires a few changes.

First, you will need to call setChoiceMode() on the ListView in Java code to set the
choice mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE as the
value. You can get your ListView from a ListActivity via getListView(). You can
also declare this via the android: choiceMode attribute in your layout XML.

Then, rather than use android.R.layout.simple_list_item_1 as the layout for the
list rows in your ArrayAdapter constructor, you will need to use either
android.R.layout.simple_list_item_single_choice or
android.R.layout.simple_list_item_multiple_choice for single-choice or
multiple-choice lists, respectively.

For example, here is an activity layout from the Selection/Checklist sample
project:

<?xml version="1.0" encoding="utf-8"?>

<ListView

xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:drawSelectorOnTop="false"
android:choiceMode="multipleChoice"

/>

It is a full-screen ListView, with the android:choiceMode="multipleChoice"
attribute to indicate that we want multiple choice support.

176

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Checklist

ADAPTERVIEWS AND ADAPTERS

Our activity just uses a standard ArrayAdapter on our list of nonsense words, but
uses android.R.layout.simple_list_item_multiple_choice as the row layout:

package com.commonsware.android.checklist;
import android.app.ListActivity;

import android.os.Bundle;

import android.widget.ArrayAdapter;

public class ChecklistDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_multiple_choice,
items));
}
}

What the user sees is the list of words with checkboxes down the right edge:

177

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

amet

consectetuer

adipiscing

Figure 100: Multiple-select mode

If we wanted, we could call methods like getCheckedItemPositions() on our
ListView to find out which items the user checked, or setItemChecked() if we
wanted to check (or un-check) a specific entry ourselves.

Clicks versus Selections, Revisited

If the user clicks a row in a ListView, a click event is registered, triggering things
like onListItemClick() in an OnItemClickListener. If the user uses a pointing
device to change a selection (e.g., pressing up and down arrows to move a highlight
bar in the ListView), that triggers onItemSelected() in an
OnItemSelectedListener.

Many times, particularly if the ListView is the entire Ul at present, you only care
about clicks. Sometimes, particularly if the ListView is adjacent to something else
(e.g., on a TV, where you have more screen space and do not have a touchscreen),
you will care more about selection events. Either way, you can get the events you
need.

178

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you might find
in other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the
D-pad pops up a selection dialog for the user to choose an item from. You basically
get the ability to select from a list without taking up all the screen space of a
ListView, at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via
setAdapter () and hook in a listener object for selections via
setOnItemSelectedListener ().

If you want to tailor the view used when displaying the drop-down perspective, you
need to configure the adapter, not the Spinner widget. Use the
setDropDownViewResource() method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML
layout for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
<Spinner android:id="@+id/spinner"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
</LinearlLayout>

This is the same view as shown in a previous section, just with a Spinner instead of a
ListView.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity
implements AdapterView.OnItemSelectedListener {
private TextView selection;
private static final String[] items={"lorem", "ipsum", "dolor",

179

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Spinner

ADAPTERVIEWS AND ADAPTERS

"sit", "amet",

"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",

"etiam", "vel", "erat", "placerat", "ante",

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

Spinner spin=(Spinner)findViewById(R.id.spinner);
spin.setOnItemSelectedListener(this);

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);
spin.setAdapter(aa);
}

@Override
public void onItemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);
}

@0override
public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

b
b

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)), as Spinner widgets only support
selection events, not click events. This works because the activity implements the
OnItemSelectedListener interface. We configure the adapter not only with the list
of fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also note the use of
android.R.layout.simple_spinner_item as the built-in View for showing items in
the spinner itself. Finally, we implement the callbacks required by
OnItemSelectedListener to adjust the selection label based on user input.

What we get is:

180

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Figure 101: The SpinnerDemo sample application, as initially launched

consectetuer

adipiscing

Figure 102: The same application, with the spinner drop-down list displayed

181

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Grid Your Lions (Or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items to choose
from. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the
supplied adapter says are available for viewing.

There are a few properties which, when combined, determine the number of
columns and their sizes:

1. android:numColumns spells out how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of columns
based on available space and the properties listed below.

2. android:verticalSpacing and android:horizontalSpacing indicate how
much whitespace there should be between items in the grid.

3. android:columnWidth indicates how wide each column should be, in terms
of some dimension value (e.g., 40dp or @dimen/grid_column_width).

4. android:stretchMode indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not taken
up by columns or spacing — this should be columnWidth to have the
columns take up available space or spacingWidth to have the whitespace
between columns absorb extra space.

Otherwise, the Gridview works much like any other selection widget — use
setAdapter () to provide the data and child views, invoke
setOnItemSelectedListener() to register a selection listener, etc.

For example, here is an XML layout from the Selection/Grid sample project,
showing a GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<TextView
android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"

182

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Grid

ADAPTERVIEWS AND ADAPTERS

android:layout_width="match_parent"
android:layout_height="match_parent"
android:verticalSpacing="40dip"
android:horizontalSpacing="5dip"
android:numColumns="auto_fit"
android:columnWidth="100dip"
android:stretchMode="columnWidth"
android:gravity="center"
/>

</LinearlLayout>

For this grid, we take up the entire screen except for what our selection label
requires. The number of columns is computed by Android (android:numColumns =
"auto_fit") based on our horizontal spacing (android:horizontalSpacing =
"5dip") and columns width (android:columnWidth = "100dip"), with the columns
absorbing any “slop” width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is:

package com.commonsware.android.grid;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;

public class GridDemo extends Activity
implements AdapterView.OnItemClickListener {
private TextView selection;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};
@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);

GridView g=(GridView) findViewById(R.id.grid);
g.setAdapter(new ArrayAdapter<String>(this,
R.layout.cell,
items));
g.setOnItemClickListener(this);

183

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

@Override
public void onItemClick(AdapterView<?> parent, View v,
int position, long id) {
selection.setText(items[position]);
}
}

The grid cells are defined by a separate res/layout/cell.xml file, referenced in our
ArrayAdapter as R.layout.cell:

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="14dip"

/>

With the vertical spacing from the XML layout (android:verticalSpacing =
"40dip"), the grid overflows the boundaries of the emulator’s screen:

h 6:40

lorem ipsum
consectetuer
adipiscing i morbi
ligula
aliquet mollis

etiam

placerat porttitor

sodales pellentesque augue

Figure 103: The GridDemo sample application, as initially launched

184

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

consectetuer

adipiscing morbi

ligula

aliquet mollis

etiam

placerat porttitor

sodales pellentesque augue

purus

Figure 104: The same application, scrolled to the bottom of the grid

Gridview, like ListView, supports both click events and selection events. In this
sample, we register an OnItemClickListener to listen for click events.

Fields: Now With 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With auto-completion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are
shown in a selection list that folds down from the field. The user can either type out
an entry (e.g., something not in the list) or choose an entry from the list to be the

value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard
look-and-feel aspects, such as font face and color.

In addition, AutoCompleteTextView has an android:completionThreshold property,
to indicate the minimum number of characters a user must enter before the list
filtering begins.

185

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

You can give AutoCompleteTextView an adapter containing the list of candidate
values via setAdapter (). However, since the user could type something not in the
list, AutoCompleteTextView does not support selection listeners. Instead, you can
register a TextWatcher, like you can with any EditText, to be notified when the text
changes. These events will occur either because of manual typing or from a selection
from the drop-down list.

Below we have a familiar-looking XML layout, this time containing an
AutoCompleteTextView (pulled from the Selection/AutoComplete sample

application):

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>

<TextView
android:id="@+id/selection"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearlLayout>

The corresponding Java code is:

package com.commonsware.android.auto;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;

import android.text.TextWatcher;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;
import android.widget.TextView;

public class AutoCompleteDemo extends Activity
implements TextWatcher {
private TextView selection;
private AutoCompleteTextView edit;

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
186

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/AutoComplete

ADAPTERVIEWS AND ADAPTERS

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewById(R.id.selection);
edit=(AutoCompleteTextView)findViewById(R.id.edit);
edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1line,
items));
}

@Override
public void onTextChanged(CharSequence s, int start, int before,
int count) {
selection.setText(edit.getText());
}

@Override
public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

}

@Override
public void afterTextChanged(Editable s) {
// needed for interface, but not used

b
b

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged(), beforeTextChanged(), and afterTextChanged(). In this case, we
are only interested in the first, and we update the selection label to match the
AutoCompleteTextView’s current contents.

Here we have the results:

187

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Figure 105: The AutoCompleteDemo sample application, as initially launched

188

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Figure 106: The same application, after a few matching letters were entered, showing
the auto-complete drop-down

189

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

AutoCompleteDemo

Iorem|

Figure 107: The same application, after the auto-complete value was selected

Galleries, Give Or Take The Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a
horizontally-laid-out listbox. One choice follows the next across the horizontal
plane, with the currently-selected item highlighted. On an Android device, one
rotates through the options through the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space while still
showing multiple choices at one time (assuming they are short enough). Compared
to the Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview — given a
collection of photos or icons, the Gallery lets people preview the pictures in the
process of choosing one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout,
you have a few properties at your disposal:

1. android:spacing controls the number of pixels between entries in the list

190

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

2. android:spinnerSelector controls what is used to indicate a selection - this
can either be a reference to a Drawable (see the resources chapter) or an RGB
value in #AARRGGBB or similar notation

3. android:drawSelectorOnTop indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected child - if
you choose true, be sure that your selector has sufficient transparency to
show the child through the selector, otherwise users will not be able to read
the selection

Note that the Gallery widget is now marked as deprecated, meaning that ideally
you use something else. One likely candidate — ViewPager — will be covered in an

upcoming chapter.

Customizing the Adapter

The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call or an email
message to forward or an ebook to read, ListView widgets are employed in a wide
range of activities.

Of course, it would be nice if they were more than just plain text.

The good news is that they can be as fancy as you want, within the limitations of a
mobile device’s screen, of course. However, making them more elaborate takes some
work.

Note that while this section will be using ListView as the AdapterView, the same
techniques hold for any AdapterView.

The Single Layout Pattern

The simplest way of creating custom ListView rows (or GridView cells or whatever)
is when they all have the same basic structure and can be created from the same
layout XML resource. This does not mean they have to be strictly identical, but that
you can make whatever changes you need just by configuring the widgets (e.g., make
some things VISIBLE or GONE).

This is not especially difficult, though it does take a few more steps than what we
have seen previously.

191

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Step #0: Get Things Set Up Simply

First, create your activity (e.g., ListActivity), get your data (e.g., array of Java
strings), and set up your AdapterView with a simple adapter following the steps
outlined in the preceding sections.

Here, we will examine the Selection/Dynamic sample project. We will use a simple
ListActivity (taking the default layout of a full-screen ListView) and use the same
list of 25 nonsense words used in earlier samples. However, this time, we want to
have a more elaborate row, taking into account the length of the nonsense word.

Step #1: Design Your Row

Next, create a layout XML resource that will represent one row in your ListView (or
cell in your GridView or whatever).

For example, our res/layout/row.xml resource will use a pair of nested
LinearLayout containers to organize two TextView widgets and an ImageView:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical"
android:padding="2dip"
android:src="@drawable/ok"
android:contentDescription="@string/icon"/>

<LinearlLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical">

<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="25sp"
android:textStyle="bold"/>

<TextView
android:id="@+id/size"

192

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/Dynamic

ADAPTERVIEWS AND ADAPTERS

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textSize="15sp"/>
</LinearlLayout>

</LinearlLayout>

The ImageView will use one of two drawable resources, one for short words, and
another for long words.

Step #2: Extend ArrayAdapter

If you just used R.layout.row with a regular ArrayAdapter, it would work, insofar as
it would not crash. However, ArrayAdapter only knows how to update a single
TextView in a row, so it would ignore our other TextView, let alone the ImageView.

So, we need to create our own ListAdapter, by creating our own subclass of
ArrayAdapter.

Since an Adapter is tightly coupled to the AdapterView that uses it, it is typically
simplest to make the custom ArrayAdapter subclass be an inner class of whoever
manages the AdapterView. Hence, in our sample, we will create an IconicAdapter
inner class of our ListActivity.

Step #3: Override the Constructor and getView()

The IconicAdapter constructor can chain to the superclass and supply the necessary
data, such as our Java array of nonsense words. The real fun comes when we override
getView():

package com.commonsware.android.fancylists.three;

import android.app.ListActivity;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.TextView;

public class DynamicDemo extends ListActivity {

private static final String[] items={"lorem", "ipsum", "dolor",
"sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
193

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

"porttitor", "sodales", "pellentesque", "augue", "purus"};

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setListAdapter(new IconicAdapter());

}

class IconicAdapter extends ArrayAdapter<String> {
IconicAdapter() {
super(DynamicDemo. this, R.layout.row, R.id.label, items);
}

@Override
public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ImageView icon=(ImageView)row.findViewById(R.id.icon);

if (items[position].length()>4) {
icon.setImageResource(R.drawable.delete);

}

else {
icon.setImageResource(R.drawable.ok);

}
TextView size=(TextView)row.findViewById(R.id.size);

size.setText(String.format(getString(R.string.size_template),
items[position].length()));

return(row);
h
}
¥

Our getView() implementation does three things:

+ It chains to the superclass’ implementation of getView(), which returns to
us an instance of our row View, as prepared by ArrayAdapter. In particular,
our word has already been put into one TextView, since ArrayAdapter does
that normally.

+ It finds our ImageView and applies a business rule to set which icon should
be used, referencing one of two drawable resources (R.drawable.ok and
R.drawable.delete).

+ It finds our other TextView and populates it as well, by pulling in the value
of a string resource and using String.format() to pour in our word length.

194

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

Note that we call findviewById() not on the activity, but rather on the row returned
by the superclass’ implementation of getView(). Always call findviewById() on
something that is guaranteed to give you a unique result. In the case of an
AdapterView, there will be many rows, cells, etc. — calling findviewById() on the
activity might return widgets with the right name but from other rows or cells.

This gives us:

lorem
Size: 5
ipsum
Size: 5
dolor
Size: 5

v sit

Size: 3

amet

Size: 4
consectetuer
Size: 12

adipiscing

Size: 10

elit
Size: 4
PN orhs

Figure 108: The Dynamic Sample Application

The approach of overriding getView() works for ArrayAdapter, but some other
types of adapters would have alternatives. We will see that mostly with
CursorAdapter, profiled in upcoming chapters.

Optimizing with the ViewHolder Pattern

A somewhat expensive operation we do a lot with more elaborate list rows is call
findviewById(). This dives into our row and pulls out widgets by their assigned
identifiers, so we can customize the widget contents (e.g., change the text of a
TextView, change the icon in an ImageView). Since findViewById() can find widgets
anywhere in the tree of children of the row’s root View, this could take a fair number

195

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

of instructions to execute, particularly if we keep having to re-find widgets we had
found once before.

In some GUI toolkits, this problem is avoided by having the composite View objects,
like our rows, be declared totally in program code (in this case, Java). Then,
accessing individual widgets is merely the matter of calling a getter or accessing a
field. And you can certainly do that with Android, but the code gets rather verbose.
What would be nice is a way where we can still use the layout XML yet cache our
row’s key child widgets so we only have to find them once.

That’s where the holder pattern comes into play, in a class we will call ViewHolder.

All View objects have getTag() and setTag() methods. These allow you to associate

an arbitrary object with the widget. What the holder pattern does is use that “tag” to
hold an object that, in turn, holds each of the child widgets of interest. By attaching

that holder to the row View, every time we use the row, we already have access to the
child widgets we care about, without having to call findviewById() again.

So, let’s take a look at one of these holder classes (taken from the Selection/
ViewHolder sample project, a revised version of the Selection/Dynamic sample from
before):

package com.commonsware.android.fancylists.five;

import android.view.View;
import android.widget.ImageView;
import android.widget.TextView;

class ViewHolder {
ImageView icon=null;
TextView size=null;

ViewHolder (View row) {
this.icon=(ImageView)row.findViewById(R.id.icon);
this.size=(TextView)row.findViewById(R.id.size);

}

}

ViewHolder holds onto the child widgets, initialized via findviewById() in its
constructor. The widgets are simply package-protected data members, accessible
from other classes in this project... such as a ViewHolderDemo activity. In this case,
we are only holding onto two widgets — the icon and the second label - since we
will let ArrayAdapter handle our first label for us. In our case, we are holding onto
the TextView and ImageView widgets that we want to populate in getView().

196

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder
http://github.com/commonsguy/cw-omnibus/tree/master/Selection/ViewHolder

ADAPTERVIEWS AND ADAPTERS

Using ViewHolder is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView(), found in ViewHolderDemo:

@Override
public View getView(int position, View convertView,
ViewGroup parent) {
View row=super.getView(position, convertView, parent);
ViewHolder holder=(ViewHolder)row.getTag();

if (holder==null) {
holder=new ViewHolder (row);
row.setTag(holder);

}

if (getModel(position).length()>4) {
holder.icon.setImageResource(R.drawable.delete);

s
else {
holder.icon.setImageResource(R.drawable.ok);

}

holder.size.setText(String.format(getString(R.string.size_template),
items[position].length()));

return(row);
s

If the call to getTag() on the row returns null, we know we need to create a new
ViewHolder, which we then attach to the row via setTag() for later reuse. Then,
accessing the child widgets is merely a matter of accessing the data members on the
holder.

This takes advantage of the fact that rows in a ListView get recycled - a 25,000-row
list does not create 25,000 rows. The recycling itself is handled for us by
ArrayAdapter, so we simply have to create our ViewHolder when needed and reuse
the existing ViewHolder when a row gets recycled. The first time the ListView is
displayed, all new rows need to be created, and we wind up creating a ViewHolder
for each. As the user scrolls, rows get recycled, and we can reuse their corresponding
ViewHolder widget caches. We will cover this recycling process in greater detail in a

later chapter.

Note that the getModel() method shown here retrieves our model String for a given
position, by using getListAdapter() (to retrieve our IconicAdapter from the
activity’s ListView) and getItem() (to retrieve the data, held by the adapter,
represented by the position):

197

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

private String getModel(int position) {
return(((IconicAdapter)getListAdapter()).getItem(position));

}
Dealing with Multiple Row Layouts

The story gets significantly more complicated if our mix of rows is more
complicated. For example, here is the Sound screen in the Settings application:

Volumes

Silent mode
lolii

RINGTONE & NOTIFICATIONS

Phone ringtone
Silent

Default notification
Silent

Vibrate and ring

SYSTEM

Dial pad touch tones

Figure 109: Sound Settings Screen

It may not look like it, but that is a ListView. However, not all the rows look the
same:

+ Some have one line of text (e.g., “Volumes”)

+ Some have two lines of text (e.g., “Silent mode” plus “Off”)

+ Some have one line of text and a CheckBox (e.g., “Vibrate and ring”)

+ Some are headings with totally different text formatting (e.g., “RINGTONE &
NOTIFICATIONS”)

This is handled by having more than one row layout XML resource used by the
adapter. The complexity comes not only in managing those different resources and
determining which to use when, but in just having more than one resource - after

198

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ADAPTERVIEWS AND ADAPTERS

all, we only teach ArrayAdapter how to use one. We will examine how to handle this
scenario in a later chapter.

Visit the Trails!

To learn more about ListView, you can turn to Advanced ListViews, which covers
other tricks you can do with a ListView.

199

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The WebView Widget

HTML has come a long way from Sir Tim Berners-Lee’s original vision of using it to
publish physics papers.

Not surprisingly, displaying HTML, CSS, and JavaScript in mobile applications is
fairly popular, not only for creating full-fledged Web browsers, but for rendering
HTML content from RSS/Atom feeds, from HTML-formatted email messages,
ebooks (like the one you are reading), and so forth.

There are a couple of ways to display HTML in Android, with the most powerful
being the WebView widget, the focus of this chapter.

Role of WebView

If your HTML is fairly limited in scope, such as what you might find in the body of a
status update on Twitter, you can use the static fromHtm1() method on the Html
utility class to parse an HTML-formatted string into something that you can put
into a TextView. TextView can render simple formatting like styles (bold, italic, etc.),
font faces (serif, sans serif, etc.), colors, links, and so forth.

However, sometimes your needs for HTML transcend what TextView can handle.
You will not be browsing Facebook using TextView, for example.

In those cases, WebView will be the more appropriate widget, as it can handle a much
wider range of HTML tags. WebView can also handle CSS and JavaScript, which
Html.fromHtml() would simply ignore. WebView can also assist you with common
“browsing” metaphors, such as history list of visited URLSs to support backwards and
forwards navigation.

201

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

On the other hand, webView is a much more expensive widget to use, in terms of
memory consumption, than is TextView.

WebView and WebKit

The reason for the memory cost of WebView is the fact that WebView is powered by a
fairly complete copy of WebKit. WebKit is an open source Web rendering engine
that forms the heart of major Web browsers, such as Chrome and Safari. While the
version of WebKit that lives in Android is one optimized for mobile use, it still
represents a fairly substantial code base, and rendering complex Web pages takes up
a fair amount of RAM (as anyone with lots of browser tabs on their desktop knows
all too well).

Because WebView is powered by WebKit, content that renders in Chrome and Safari
probably renders the same in WebView. The emphasis on the word “probably” is for a
few reasons:

+ As mentioned, WebKit in Android is a mobile-optimized version, which
introduces some differences compared to its desktop brethren

+ WebKit, like any software project, has its own upgrade cycles and versioning,
so different browsers (Chrome vs. Safari vs. WebView) will use different
versions of the WebKit engine, introducing some differences

* Android has tweaked WebKit for its own purposes, introducing yet other
potential differences

Adding the Widget

For simple stuff, WwebView is not significantly different than any other widget in
Android — pop it into a layout, tell it what URL to navigate to via Java code, and you
are done.

As you can see in the WebKit/Browser1 sample application, here is a simple layout
with a WebView:

<?xml version="1.0" encoding="utf-8"?>

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webkit"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>

202

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://www.webkit.org/
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser1

THE WEBVIEW WIDGET

As with any other widget, you need to tell it how it should fill up the space in the
layout (in this case, it fills all remaining space).

And, just as with other widgets, you can drag a WebView out of the “Composite”
section of the Eclipse tool palette and into a layout XML resource in the Graphical
Layout editor:

Z| Paletke =

[0 Form Widgets

[0 Text Fields

[0 Layouts
Composite

ListView
Sub [iey

= Expandablelist

Subr [Ler
B Gridview B scrollview
M HorizontalscrollView
searchView
B8 slidingDrawer

B webview

Figure 110: WebView in Eclipse Tool Palette

Note that WebView knows how to scroll its own contents, so you do not need to put it
ina ScrollView or HorizontalScrollView.

Loading Content Via a URL

There are a number of ways to load HTML content into a WebView widget.

The simplest is to use the loadUr1() method, which takes a URL and retrieves its
contents over the Internet. For example, here is the activity source code for the
WebKit/Browser1 sample application:

package com.commonsware.android.browser”;

203

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.1id.webkit);

browser.loadUrl("http://commonsware.com");

b
b

However, we also have to make one change to AndroidManifest.xml, adding a line
where we request permission to access the Internet:

<uses-permission android:name="android.permission.INTERNET"/>

If we fail to add this permission, the browser will refuse to load pages. We will
discuss more about this “permission” concept in a later chapter.

The resulting activity looks like a Web browser, just with hidden scrollbars:

204

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

& 7:22

€@ CoMMONSWARE

1600+ Pages... Anc
Growing!

The original Android
Sy programming book
The Busy Coder's Guide to keeps getting better!

AndrOld The Busy Coder's
Developmenl Guide to Android
Development is
d updated several times
per year, with fresh content and updates to
reflect changes in Android and the developmer

tools. Never be caught with an out-of-date prir
book again!

Figure 111: The Browser1 Sample Application (image from July 2012)

As with a regular Android Web browser, you can pan around the page by dragging it,
while the directional pad moves you around all the focusable elements on the page.

What is missing is all the extra stuff that make up a Web browser, such as a
navigational toolbar. WebView does not provide any of that — if you want those sorts
of UI features, you will need to implement those yourself (e.g., use an EditText or
AutoCompleteTextView for a browser address bar).

Supporting JavaScript

Now, you may be tempted to replace the URL in the above source code with
something else, such as Google’s home page or something else that relies upon
JavaScript. You will find that such pages do not work especially well by default. That
is because, by default, JavaScript is turned off in WebView widgets.

If you want to enable JavaScript, call getSettings().setJavaScriptEnabled(true);
on the WebView instance. At this point, any JavaScript referenced by your Web page
should work normally.

205

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

There are some fancy tricks you can perform with webView and JavaScript, such as
having JavaScript call Java code or vice versa. These techniques will be covered in a

later chapter.

Alternatives for Loading Content

Instead of loadurl(), you can also use loadData(). Here, you supply the HTML for
the WebView to display. You might use this to:

1. display a manual that was installed as a file with your application package

2. display snippets of HTML you retrieved as part of other processing, such as
the description of an entry in an Atom feed

3. generate a whole user interface using HTML, instead of using the Android
widget set

There are two flavors of loadData(). The simpler one allows you to provide the
content, the MIME type, and the encoding, all as strings. Typically, your MIME type
will be text/html and your encoding will be UTF-8 for ordinary HTML.

For example, if you replace the loadUrl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

You get:

206

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

Hello, world!

Figure 112: The Browserz sample application

This is also available as a fully-buildable sample, as WebKit/Browser?2.

There is also a loadDataWithBaseURL () method. This takes, among other
parameters, the “base URL” to use when resolving relative URLs in the HTML. Any
relative URL (e.g.,) will be interpreted as being
relative to the base URL supplied to loadDataWithBaseURL(). If you find that you
have content that refuses to load properly with loadData(), try
loadDataWithBaseURL () with a null base URL, as sometimes that works better, for
unknown reasons.

Listening for Events

Particularly if you are going to use the WebView as a local user interface (vs. browsing
the Web), you will want to be able to get control at key times, particularly when
users click on links. You will want to make sure those links are handled properly,
either by loading your own content back into the WebView, by submitting an Intent
to Android to open the URL in a full browser, or by some other means. We will
discuss using an Intent to launch a Web browser in a later chapter.

207

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser2

THE WEBVIEW WIDGET

One hook into the WebView activity is via setWebViewClient(), which takes an
instance of a WebViewClient implementation as a parameter. The supplied callback
object will be notified of a wide range of events, ranging from when parts of a page
have been retrieved (onPageStarted(), etc.) to when you, as the host application,
need to handle certain user- or circumstance-initiated events, such as:

1. onTooManyRedirects()
2. onReceivedHttpAuthRequest()
3. etc.

A common hook will be shouldOverrideUrlLoading(), where your callback is
passed a URL (plus the WebView itself) and you return true if you will handle the
request or false if you want default handling (e.g., actually fetch the Web page
referenced by the URL). In the case of a feed reader application, for example, you
will probably not have a full browser with navigation built into your reader, so if the
user clicks a URL, you probably want to use an Intent to ask Android to load that
page in a full browser. But, if you have inserted a “fake” URL into the HTML,
representing a link to some activity-provided content, you can update the WebView
yourself.

For example, let’s amend the first browser example to be an application that, upon a
click, shows the current time.

From WebKit/Browser3, here is the revised Java:

package com.commonsware.android.webkit;

import android.app.Activity;

import android.os.Bundle;

import android.text.format.DateUtils;
import android.webkit.WebView;

import android.webkit.WebViewClient;
import java.util.Date;

public class BrowserDemo3 extends Activity {
WebView browser;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewById(R.1id.webkit);
browser.setWebViewClient(new Callback());

loadTime();

208

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3
http://github.com/commonsguy/cw-omnibus/tree/master/WebKit/Browser3

THE WEBVIEW WIDGET

void loadTime() {
String page=
"<html><body>"
+ DateUtils.formatDateTime(this, new Date().getTime(),
DateUtils.FORMAT_SHOW_DATE
| DateUtils.FORMAT_SHOW_TIME)
+ "</body></html>";

browser.loadData(page, "text/html", "UTF-8");
}

private class Callback extends WebViewClient {
@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);
h
}
¥

Here, we load a simple Web page into the browser (1oadTime()) that consists of the
current time, made into a hyperlink to the /clock URL. We also attach an instance
of a WebViewClient subclass, providing our implementation of
shouldOverrideUrlLoading(). In this case, no matter what the URL, we want to just
reload the WebView via loadTime().

Running this activity gives us:

209

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

9:20am, March 25

Figure 113: The Browser3 Sample Application

Selecting the link and clicking the D-pad center button will “click” the link, causing
us to rebuild the page with the new time.

Note that we are using a DateUtils utility class supplied by Android for formatting
our date and time. The big advantage of using DateUtils is that this class is aware of
the user’s settings for how they prefer to see the date and time (e.g., 12- versus
24-hour mode).

There is also a WebChromeClient that you can register with a WebView via a call to
setWebChromeClient (). This object will be called when various things occur in the
WebView that might pertain to a browser’s “chrome” (i.e., the things outside the
HTML rendering area). For example, onJSAlert() will be called on your
WebChromeClient when JavaScript code calls alert().

Visit the Trails!

You can learn more about powerful tricks with WebView, including integrating the
Java and JavaScript environments, in a later chapter.

210

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE WEBVIEW WIDGET

You can also create apps that run totally in the browser using HTMLs, or app
frameworks that use WebView to render their Ul, such as PhoneGap.

21

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Defining and Using Styles

If you have done development using modern-day HTML, you will be familiar with
Cascading Style Sheets (CSS). These provide two capabilities:

1. They let you define common characteristics of HTML elements in one place,
applying them wherever as needed, to reduce repetition and simplify
maintenance; and

2. They allow you to configure things about the HTML elements that pure
HTML alone does not support

Android has similar constructs — styles and themes — for achieving similar ends.
Styles and themes are another type of resource, akin to the layouts and strings and
such that we have seen so far. Hence, the syntax of styles and themes is XML, rather
than in CSS notation. However, the concepts and how they are employed are much
like what you see with CSS.

This chapter will briefly explore the concept of styles, how you can create them, and
how you can apply them to your own widgets.

Styles: DIY DRY

The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise wish to keep separate from your layouts
proper. The primary use case is “don’t repeat yourself” (DRY) — if you have a bunch
of widgets that look the same, use a style to use a single definition for “look the
same’, rather than copying the look from widget to widget.

And that paragraph will make a bit more sense if we look at an example, specifically
the Styles/NowStyled sample project. This is a trivial project, with a full-screen

213

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled
http://github.com/commonsguy/cw-omnibus/tree/master/Styles/NowStyled

DEFINING AND USING STYLES

button that shows the date and time of when the activity was launched or when the
button was pushed. This time, though, we want to change the way the text on the
face of the button appears, and we will do so using a style.

The res/layout/main.xml file in this project is the same as it was, with the addition
of a style attribute:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button"
android:text=""
android:layout_width="match_parent"
android:layout_height="match_parent"
style="@style/bigred"

/>

Note that the style attribute is part of stock XML and therefore is not in the
android namespace, so it does not get the android: prefix.

The value, @style/bigred, points to a style resource. Style resources are values
resources and can be found in the res/values/ directory in your project, or in other
resource sets (e.g., res/values-v11/ for values resources only to be used on API
Level 11 or higher). The convention is for styles resources to be held in a styles.xml
file, such as the one from the NowStyled project:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="bigred">
<item name="android:textSize">30sp</item>
<item name="android:textColor">#FFFF0000</item>
</style>
</resources>

The <style> element supplies the name of the style, which is what we use when
referring to the style from a layout. The <item> children of the <style> element
represent values of attributes to be applied to whatever the style is applied towards
— in our example, our Button widget. So, our Button will have a comparatively large
font (android:textSize set to 30sp) and have the text appear in red
(android:textColor set to #FFFF0000).

There are no changes needed elsewhere in the project — nothing needs to be
adjusted in the manifest, in the Java code of the activity, etc. Just defining the style
and applying it to the widget gives us results:

214

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEFINING AND USING STYLES

%5 Ml € 8:16am

Wed Mar 30 08:04:49
EDT 2011

Figure 114: The Styles/NowStyled sample application

Elements of Style

There are four elements to consider when applying a style:

* Where do you put the style attributes to say you want to apply a style?

* What attributes can you define via a style?

* How do you inherit from a previously-defined style (one of your own or one
from Android)?

* What values can those attributes have in a style definition?

Where to Apply a Style
The style attribute can be applied to a widget, to only affect that widget.

The style attribute can be applied to a container, to affect that container. However,
doing this does not automatically style its children. For example, suppose res/
layout/main.xml looked instead like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"

215

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEFINING AND USING STYLES

android:layout_width="match_parent"
android:layout_height="match_parent"
style="@style/bigred">

<Button
android:id="@+id/button"
android:text=""
android:layout_width="match_parent"
android:layout_height="match_parent"

/>

</LinearlLayout>

The resulting Ul would not have the Button text in a big red font, despite the style
attribute. The style only affects the container, not the contents of the container.

You can also apply a style to an activity or an application as a whole, though then it
is referred to as a “theme”, which will be covered a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it shows up in the “XML Attributes” or “Inherited
XML Attributes” portions of the Android JavaDocs, you can put it in a style.

Note that Android will ignore invalid styles. So, had we applied the bigred style to
the LinearLayout as shown above, everything would run fine, just with no visible
results. Despite the fact that LinearLayout has no android: textSize or
android:textColor attribute, there is no compile-time failure nor a runtime
exception.

Also, layout directives, such as android: layout_width, can be put in a style.

Inheriting a Style

You can also indicate that you want to inherit style attributes from another style, by
specifying a parent attribute on the <style> element.

For example, take a look at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/
activatedBackgroundIndicator</item>
</style>
</resources>

216

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEFINING AND USING STYLES

(note: in some renditions of this book, you may see the <item> element split over
two lines — this is caused by word-wrapping, as this element should be all on one
line)

Here, we are indicating that we want to inherit the Theme .Holo style from within
Android. Hence, in addition to all of our own attribute definitions, we are specifying
that we want all of the attribute definitions from Theme.Holo as well.

In many cases, this will not be necessary. If you do not specify a parent, your
attribute definitions will be blended into whatever default style is being applied to
the widget or container.

The Possible Values

Typically, the value that you will give those attributes in the style will be some
constant, like 30sp or #FFFF0000.

Sometimes, though, you want to perform a bit of indirection — you want to apply
some other attribute value from the theme you are inheriting from. In that case, you
will wind up using the somewhat cryptic ?android:attr/ syntax, along with a few
related magic incantations.

For example, let’s look again at this style resource:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="activated" parent="android:Theme.Holo">
<item name="android:background">?android:attr/
activatedBackgroundIndicator</item>
</style>
</resources>

Here, we are indicating that the value of android:background is not some constant
value, or even a reference to a drawable resource (e.g., @drawable/my_background).
Instead, we are referring to the value of some other attribute —
activatedBackgroundIndicator — from our inherited theme. Whatever the theme
defines as being the activatedBackgroundIndicator is what our background should
be.

This portion of the Android style system is very under-documented, to the point
where Google itself recommends you look at the Android source code listing the
various styles to see what is possible.

217

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles
http://developer.android.com/guide/topics/ui/themes.html#PlatformStyles

DEFINING AND USING STYLES

This is one place where inheriting a style becomes important. In the example shown
in this section, we inherited from Theme.Holo, because we specifically wanted the
activatedBackgroundIndicator value from Theme.Holo. That value might not exist
in other styles, or it might not have the value we want.

Themes: Would a Style By Any Other Name...

Themes are styles, applied to an activity or application, via an android: theme
attribute on the <activity> or <application> element. If the theme you are
applying is your own, just reference it as @style/.. ., just as you would in a style
attribute of a widget. If the theme you are applying, though, comes from Android,
typically you will use a value with @android:style/ as the prefix, such as
@android:style/Theme.Dialog or @android:style/Theme.Light.

In a theme, your focus is not so much on styling widgets, but styling the activity
itself. For example, here is the definition of @android:style/
Theme.NoTitleBar.Fullscreen:

<!-- Variant of the default (dark) theme that has no title bar and
fills the entire screen -->
<style name="Theme.NoTitleBar.Fullscreen">
<item name="android:windowFullscreen">true</item>
<item name="android:windowContentOverlay">@null</item>
</style>

It specifies that the activity should take over the entire screen, removing the status
bar on phones (android:windowFullscreen set to true). It also specifies that the
“content overlay” — a layout that wraps around your activity’s content view —
should be set to nothing (android:windowContentOverlay set to @null), having the
effect of removing the title bar.

218

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARs and Library Projects

Java has as many, if not more, third-party libraries than any other modern
programming language. Here, “third-party libraries” refer to the innumerable JARs
that you can include in a server or desktop Java application — the things that the
Java SDKs themselves do not provide.

In the case of Android, the Dalvik VM at its heart is not precisely Java, and what it
provides in its SDK is not precisely the same as any traditional Java SDK. That being
said, many Java third-party libraries still provide capabilities that Android lacks
natively and therefore may be of use to you in your project, for the ones you can get
working with Android’s flavor of Java. This chapter explains what it will take for you
to leverage such libraries and the limitations on Android’s support for arbitrary
third-party code.

You might think that JARs are the primary model of code reuse within Android.
That’s not really the case. The primary model of code reuse within Android is the
Android library project. Many reusable components and frameworks are distributed
as library projects, and we will see several in the course of this book.

The example described in this chapter is the Android Support package, a key piece
of reusable code from Google itself, distributed partly as JARs and partly as an
Android library project.

But first, let’s talk a bit more about Dalvik.

219

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

The Dalvik VM

When you are writing Android applications, you are writing Java source code. You
might be thinking that your Android device is running Java bytecode, just as your
Web browser might when it runs a Java applet.

Alas, you would be mistaken.
Android does not have a Java VM. Android has the Dalvik VM.

The Dalvik VM is a virtual machine, along the lines of the Java VM, the Parrot VM
(Perl), Microsoft’s CLR, and so forth. Since each VM has its own bytecode, the Dalvik
VM bytecode is not the same as the Java VM bytecode (or the Parrot VM bytecode,
etc.).

When you build your project, your Java source code is initially compiled using the
standard javac compiler. Then, however, the Java VM bytecodes created by javac
are cross-compiled into Dalvik VM bytecodes, and it is those bytecodes that are
packaged into your APK file and are executed by Android.

Most of the time, you will not notice the difference. Every now and then, though,
you will encounter some issues related to Android’s use of Dalvik, and the most
prominent of these comes when you try repurposing existing Java code.

The Easy Part

You have two choices for integrating third-party Java code into your project: use
source code, or use pre-packaged JARs.

If you choose to use their source code, all you need to do is copy it into your own
source tree (under src/ in your project), so it can sit alongside your existing code,
then let the compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the
source code, place the JAR in the 1ibs/ directory in your Android project.

And that’s it, at least for Eclipse and Ant. Your JAR will be automatically added to
your build path, and your JAR will be automatically bundled into the APK file that is
your Android application. Note that other IDEs might require other steps - please
consult the documentation for that IDE.

220

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

Also note that the R22 version of the ADT plugin for Eclipse may force you to make
some adjustments to the “Order & Export” portion of your project’s build path. If it
seems like your JAR is not being picked up (e.g., you try referring to classes from the
JAR and you get runtime ClassNotFoundExceptions), then try this recipe:

1. Right-click on the project in Eclipse’s Package Explorer and choose Build
Path > Configure Build Path from the context menu

2. Switch to the “Order and Export” tab

3. Check the “Android Private Libraries” entry in the list, if it is not already
checked

Hence, adding third-party code to your Android application is usually fairly easy.

Getting a library to actually work may be somewhat more complicated, however.

The Outer Limits

Not all available Java code will work well with Android. There are a number of
factors to consider, including:

1. Expected Platform APIs: Does the code assume a newer JVM than the one
Android is based on? Or, does the code assume the existence of Java APIs
that ship with J2SE but not with Android, such as Swing?

2. Size: Existing Java code designed for use on desktops or servers need not
worry too much about on-disk size, or, to some extent, even in-RAM size.
Android, of course, is short on both. Using third-party Java code, particularly
when pre-packaged as JARs, may balloon the size of your application.

3. Performance: Does the Java code effectively assume a much more powerful
CPU than what you may find on many Android devices? Just because a
desktop can run it without issue does not mean your average mobile phone
will handle it well.

4. Interface: Does the Java code assume a console interface? Or is it a pure API
that you can wrap your own interface around?

5. Operating System: Does the Java code assume the existence of certain
console programs? Does the Java code assume it can use a Windows DLL?

6. Language Version: Was the JAR compiled with an older version of Java (1.4.2
or older)? Was the JAR compiled with a different compiler than the official
one from Sun (e.g., GCJ)? Was the JAR compiled with the new Java 7 release
and has Java 7 bytecodes rather than Java 67?

221

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

7. Dependencies: Does the Java code depend on other third-party JARs that
might have some of these problems as well? Does the Java code depend upon
third-party libraries (e.g., the org.json JSON library) that are built into
Android, but the third party expects a different version of that library?

One trick for addressing some of these concerns is to use open source Java code, and
actually work with the code to make it more Android-friendly. For example, if you
are only using 10% of the third-party library, maybe it’'s worthwhile to recompile the
subset of the project to be only what you need, or at least removing the unnecessary
classes from the JAR. The former approach is safer, in that you get compiler help to
make sure you are not discarding some essential piece of code, though it may be
more tedious to do.

OK, So What is a Library Project?

An Android library project is a special type of Android project designed to share
code and resources between Android application projects. It is specifically aimed at
developers or teams creating multiple applications from the same code base. The
original occurrence of this pattern is the “paid/free” application pair: two
applications, one offered for free, one with richer functionality that requires a
payment. Via a library project, the common portions of those two applications can
be consolidated, even if those “common portions” include things like resources.
Library projects can also be used for reusable components, such as distributing
custom widgets, activities, or frameworks to third parties.

The biggest difference between an Android library project and a JAR is that an
Android library project is designed to distribute resources as well as Java code. If all
you are looking to distribute is Java code, a JAR works just as well as an Android
library project. But if you need to distribute layouts, themes, and the like, an
Android library project is the solution.

Creating a Library Project

An Android library project, in many respects, looks like a regular Android project. It
has source code and resources. It has a manifest. It supports third-party JAR files
(e.g., libs/).

What it does not do, though, is build an APK file. Instead, it represents a basket of
programming assets that the Android build tools know how to blend in with regular
Android projects.

222

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

To create a library project in Eclipse, start by creating a normal Android project.
Then, in the project properties window (e.g., right-click on the project and choose
Properties), in the Android area, check the “Is Library” checkbox. Click “Apply”, and
you are done.

Library
& Is Library

Reference Project Add...

Figure 115: Android Library Project Properties, Library Section

To create a library project for use with Ant, you can use the android create
lib-project command. This has the net effect of putting an android.library=true
entry in your project’s project.properties file.

Using a Library Project

Once you have a library project, you can attach it to a regular Android project, so the
regular Android project has access to everything in the library.

To do this in Eclipse, go into the project properties window (e.g., right-click on the
project and choose Properties). Click on the Android entry in the list on the left,
then click the “Add” button in the Library area. This will let you browse to the
directory where your library project resides. You can add multiple libraries and
control their ordering with the “Up” and “Down” buttons, or remove a library with
the “Remove” button.

Library
Is Library

Reference Project Add...
CWAC-Wakefullnten

Figure 116: Android Library Project Consumer Properties, Library Section

223

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

For developing using Ant, you can use android update project command with the
--library switch. This adds an entry like android.library.reference.1=... to
your project’s project.properties file, where . .. is the relative path to your library
project. You can add several such libraries, controlling their ordering via the
numeric suffix at the end of each property name (e.g., 1in the previous example).

Now, if you build the main project, the Android build tools will:

* Include the src/ directories of the main project and all of the libraries
(libs/) in the source being compiled.

* Include all of the resources of the projects, with the caveat that if more than
one project defines the same resource (e.g., res/layout/main.xml), the
highest priority project’s resource is included. The main project is top
priority, and the priority of the remainder are determined by their order as
defined in Eclipse or project.properties.

This means you can safely reference R. constants (e.g., R.layout.main) in your
library source code, as at compile time it will use the value from the main project’s
generated R class(es).

Limitations of Library Projects

While library projects are useful for code organization and reuse, they do have their
limits, such as:

* As noted above, if more than one project (main plus libraries) defines the
same resource, the higher-priority project’s copy gets used. Generally, that is
a good thing, as it means that the main project can replace resources defined
by a library (e.g., change icons). However, it does mean that two libraries
might collide. It is important to keep your resource names distinct to
minimize the odds of this occurrence.

+ While you can define entries in the manifest file for a library, at present, they
are not used.

+ Since you are using the source code of the other project, you are subject to
the limitations of its code. For example, if the third-party project is using
@Override annotations on its implementations of interface methods, you
will need to ensure that, in Eclipse, you have the compiler compliance level
set to 1.6 — sometimes, this is set to 1.5, which complains about such
annotations.

224

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

The Android Support Package

The Android Support package is distributed by Google, containing classes (in JARs
and an Android library project) that are not part of the Android SDK, but are
available to Android developers.

What’s In There?

You can roughly divide the contents of the Android Support package into two major
areas:

1. “Backports” of capabilities added to newer versions of Android and the
Android SDK, so they can be used on older devices as well. By using the
backported classes, you can get the same abilities on a wider range of devices
than you could if you only used the classes in the Android SDK.

2. New widgets, containers, or other classes that are not going to be in the
Android SDK (for ill-defined reasons) but that Google wishes to make
available for Android developers.

About the Names

What this book refers to as the “Android Support package” has many names.

It was originally referred to as the Android Compatibility Library, at a time when it
only contained backports. Once they started adding in things that were not strictly
related to “compatibility”, they started changing the name to try to be more generic.
Right now, “Android Support” seems to be fairly consistent, either used standalone
or in the form of “Android Support package” or “Android Support library”.

Getting It

You will find the Android Support package in your SDK Manager, in the “Extras”
category towards the bottom of the tree:

225

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

) Android SDK Manager

Packages Tools

SDK Path:
Packages
Name APl | Rev. | Status =

b Extras

@ Android Support 7 & Installed

@ Google AdMob Ads SDK 4 ¥ Notinstalled

@ Google Analytics SDK 2 ¥ Notinstalled

[# Google Play APK Expansion Library 1 ¥ Notinstalled

8 Google Play Billing Library 1 ¥ Notinstalled

@ Google Play Licensing Library 2 ¥ Notinstalled

B8 Google USB Driver 4 ¥ Not compatible with Linux

@ Google Web Driver 2 ¥ Notinstalled

@ Intel Hardware Accelerated Execution Man 1 % Not compatible with Linux =
show: & Updates/New [Installed Obsolete select New or Updates
Sortby: @ API level Repository Deselect All

Done loading packages.

Figure 117: SDK Manager and Android Support Package

To install it, check the checkbox and click the “Install” button, just as you might
install an SDK itself.

This will add an extras/ directory to wherever your SDK installation resides, and
the Android Support package will go into subdirectories inside of extras/.

Attaching It To Your Project

From Eclipse, you can add the Android Support package to a project by right-
clicking over the project and choosing Android Tools > Add Support library from the
context menu.

Outside of Eclipse, you will want to find the android-support-v4.jar file installed
in your extras/ directory tree and add a copy to your project’s 1ibs/ directory.
There is also an android-support-v13.jar and an Android library project associated
with the Android Support package. However, unless specifically mentioned
otherwise, this book will be referring to android-support-v4.jar when it refers to
the Android Support package.

226

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

JARS AND LIBRARY PROJECTS

JAR Dependency Management

Suppose we have Project A that depends on Library B and Library C, where the B

and C are Android library projects. Further suppose that Project A, Library B, and
Library C all need the Android Support package, so their projects are set up with

access to it (e.g., having android-support-v4.jar in libs/).

You might think that we would somehow wind up with three copies of this support
JAR in our APK. Fortunately, that is not the case. Android recognizes, based on
filename, that these are the same JAR and therefore will only include one.

However, what happens if Google releases an update to the Android Support
package, and you download the update?

Initially, nothing happens, if the support JARs are copied into your projects. If,
however, you copy a fresh JAR into, say, Library C, without updating Library B or
Project A, you will get a build error. Android will detect that while all three projects
refer to the same JAR by name, the JARs themselves are different (based on SHA1
hash), and the build will fail. You will need to ensure that all three projects get the
updated JAR.

The general rule of thumb is:

+ Every Android library project needing the JAR should have the latest JAR,
either in its own libs/ directory or because it depends upon another
Android library project needing the JAR

* An Android app that depends upon an Android library project that can
supply the JAR should not have its own copy of that JAR in its own libs/
directory

227

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #6 - Adding a Library

We will want to use a library named ActionBarSherlock in our project. This Android
library project gives us a backwards-compatible edition of a UI construct known as
the action bar, which we will examine in greater detail in the next chapter. So, in this
tutorial, we will download and set up ActionBarSherlock.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Step #1: Downloading and Unpacking
ActionBarSherlock

Visit the ActionBarSherlock site and download the ZIP file (or tarball, if you prefer)
from the home page for the current ActionBarSherlock release (4.3.1 at the time of
this writing).

For the purposes of this tutorial, Eclipse users should take the actionbarsherlock/
directory out of the ZIP file and place it on your desktop. Non-Eclipse users should

take the actionbarsherlock/ directory out of the ZIP file and place it in a directory
parallel to your EmPubLite/ directory.

While the ZIP file will contain other directories, such as actionbarsherlock-i18n/,
you do not need them for these tutorials.

Note that a copy of a compatible version of ActionBarSherlock can be found in the
book’s GitHub repository in its proper place relative to the EmPubLite projects in

229

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T5-Progress
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://actionbarsherlock.com
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #6 - ADDING A LIBRARY

the book. Hence, if you are importing the tutorial answers directly, just import the
repo’s copy of ActionBarSherlock, and you should be set.

NOTE: If your EmPublLite project has an android-support-v4.jar file in its 1ibs/
directory, the build tools will eventually complain about your project having
references to two different copies of that JAR — one from your project and one from
ActionBarSherlock. The one in your project is probably newer than the one from
ActionBarSherlock (which will use whatever JAR was included in 1ibs/ in the
project’s GitHub repo). Copy the android-support-v4.jar from your project’s 1libs/
directory into the 1ibs/ directory of ActionBarSherlock, so both projects work off of
the same JAR contents. You can learn more about this in the chapter on libraries.

Step #2: Adding the Library to Your Project

Of course, merely downloading ActionBarSherlock does not somehow magically
make it available to us. We need to add it to the EmPubLite project if we want to
take advantage of its capabilities.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

First, we need to create a second Eclipse project, this one to hold ActionBarSherlock.
Since ActionBarSherlock does not ship with Eclipse project files, we will have to load
it from source.

To do that:

+ Choose File > New > Project... from the Eclipse main menu

+ Choose “Android Project from Existing Code” from the list of project types
and click “Next >”

* Click the “Browse...” button next to the “Root Directory” field, browse to the
actionbarsherlock directory you created above, then click OK

+ Check the “Copy projects into workspace” checkbox

* Click “Finish” to create the project

You may see a red error message in the console about “not able to find android-14".
This is because ActionBarSherlock ships with API Level 14 as the build target; if you

230

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #6 - ADDING A LIBRARY

do not have this, you will get this message. However, the Android build tools in
Eclipse will automatically fix up your project to use another available build target,
and so usually there is nothing that you need to do to address this error message.

If you see some red “X” error indicators over the src/ and res/ folders, right-click
over the project and choose Properties from the context menu. In the Properties
window, choose Android, then set the build target to API Level 14 or higher. Click
“OK” to close up the Properties window. Then, from the Eclipse main menu, choose
Project > Clean, ensure the ActionBarSherlock project is checked in the list of
projects, and click “OK”. This should eliminate the error indicators.

If you are still getting errors, and an examination of the ActionBarSherlock code
indicates that the complaints are about @0verride annotations on methods that are
implementing an interface, rather than truly overriding a superclass method, you
need to adjust your Eclipse compiler compliance level to be 1.6, instead of 1.5. Even if
you already did this at the workspace level, you may need to do it at a project level.
To do this:

1. Right click over the project name and choose Properties from the context
menu

2. Click on “Java Compiler” in the tree on the left

3. Choose 1.6 from the “Compiler compliance level” drop-down

4. Click “Apply”, then “OK”

Note that if you use the copy of ActionBarSherlock in this book’s GitHub repository,
then you can skip the above steps and just import the project directly into Eclipse

(e.g., File > Import from the main menu).

To add the project as a library on EmPublLite, right-click over the EmPubLite project
and choose Properties from the context menu. In the Properties window, choose
Android, then click “Add..” in the Library group box, towards the bottom, on the
right. In the list of library projects that appears, choose ActionBarSherlock, then
click “OK”. The Library group box should then resemble the following:

231

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #6 - ADDING A LIBRARY

© Pproperties for EmPublLite

| Android =

* Resource Android 2.1 AAndroid Open Source Project 21 7
Android Google APIs Google Inc. 2.1 7
Android Lint Preferen WIMM One Add-On WIMM Labs, Inc. 21 7
Builders Android 2.2 Android Open Source Project 22 8
Java Build Path NOOKcolor Barnes &Noble, Inc. 22 8

» Java Code style Google APIs Google Inc. 22 8

> Java Compiler Android 2.3.1 Android Open Source Project 234 [}

» Java Editor Google APIs Google Inc. 231 9
Javadoc Location Android 2.3.3 Android Open Source Project 233 10
Project References NOOK Tablet SDK Barnes and Noble 233 10
Run/Debug Settings Google APIs Google Inc. 233 10
Task Tags Intel Atom x86 System Ir Intel Corporation 233 10
XML syntax Android 3.0 Android Open Source Project 3.0 1

Google APIs Google Inc. 3.0 1
Android 3.1 ‘Android Open Source Project 3.1 12
Google APIs Google Inc. 31 12
Google TV Addon Google Inc. 31 12
Android 3.2 Android Open Source Project 32 13
Google APIs Google Inc. 32 13
Android 4.0 Android Open Source Project 40 14
Google APIs Google Inc. 4.0 14
@ Android 4.0.3 Android Open Source Project 403 15
Google APIs Google Inc. 403 15
Android 4.1 Android Open Source Project 41 16
Google APIs Google Inc. 41 16
Library
Is Library
Reference Project | Add... |
« ../../stuff/CommonsWare/books/Omi ActionBarSherlock
Restore Defaults Apply
@ cancel oK

Figure 18: EmPubLite, with ActionBarSherlock Attached

Click “OK” to close up the Properties window.

Then, right-click over the EmPublLite project and choose Build Path > Configure
Build Path from the context menu. In the Order and Export tab, ensure that
“Android Private Libraries” appears and is checked. If this item does not appear at
all, you may be on an earlier version of the ADT plugin, and you should be OK.

232

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #6 - ADDING A LIBRARY

@ Properties for EmPubLite-T6

“ @] Java Build Path -
* Resource . -

Android #@source | =SProjects | EiLibraries | %-Order and Export

Android Lint Preferen Build class path order and exported entries:

Builders (Exported entries are contributed to dependent projects)

@ * EmPubLite-T6/src
@ # EmPubLite-T6/gen
Eh Android 4.0.3
& =k Android Private Libraries
& =\ Android Dependencies

Java Build Path
Java Code Style

v

Down

v

Java Compiler
Java Editor
Javadoc Location

v

Project References Bottom

Refactoring History
Run/Debug Settings

Task Tags Deselect All
XML Syntax

select all

@] Cancel ‘ OK ‘

Figure 119: EmPublLite, Android Private Libraries in the Order and Export Tab

If you see error messages in the Eclipse console, complaining about JARs with the
same name and different contents, please read the note at the end of Step #1 of this
tutorial.

Outside of Eclipse

Switch to the ActionBarSherlock project directory and run:
android update lib-project --path .

This will create the build.xml and other necessary files for command-line builds
with ActionBarSherlock.

If you get an error message about missing a build target, run the android list
targets command to list all of the available build targets on your development
machine. Then, run:

android update lib-project --path . --target

where the . .. is replaced by the name of your newest build target (e.g., android-14).
This is necessary if ActionBarSherlock is shipped with a build target that is

233

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #6 - ADDING A LIBRARY

unavailable on your development machine. Any build target for API Level 14 or
higher should work fine.

Then, switch to the EmPubLite project directory and run:
android update project --path . --library ../actionbarsherlock

This tells Android to update your project.properties file to contain something
resembling the following:

target=android-15
android.library.reference.1=../actionbarsherlock

In Our Next Episode...

... we will configure the action bar on our tutorial project

234

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Options Menus and the Action Bar

Like applications for the desktop and some mobile operating systems, Android
supports activities with “application” menus. Some Android devices will have a
dedicated MENU key for popping up the menu; other devices will offer alternate
means for triggering the menu to appear, such as an on-screen soft button.

However, the preferred approach nowadays is to have your menu choices be part of
what Android calls the action bar. The action bar is a strip across the top of your
activity that provides users with ways of performing actions within that activity,
such as toolbar buttons. While the action bar is only native to Android in Android
3.0 and higher, there are ways to get an action bar in Android 2.x devices as well,
through an Android library project known as ActionBarSherlock.

Bar Hopping (a.k.a., Terminology)

Android has had many patterns for various “bars” as part of its Ul. So, to help
explain what an action bar is, it helps if we review the history and role of Android’s
various bars.

Android 1.x/2.x

In the beginning, there was the status bar and the title bar.

The status bar was a thin strip across the top of the screen, used for things like the
clock, signal strength, battery charge, and notification icons (for events like new
unread email messages). This bar is technically part of the OS, not your app’s UL

235

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

The title bar was a thin gray strip beneath the status bar that, by default, would hold
the name of your application, much like the title bar of a browser might show the
name of a Web site.

LM € 1057AM T Staws Bar

} Title Bar

Content

Graphics

Media

0S

Figure 120: Status Bar and Title Bar

Android 3.0-4.1, Tablets

When official support for tablets arrived with Android 3.0 in February 2011, the story
changed.

The status bar was replaced by the system bar, appearing at the bottom of the
screen. This had all of the contents of the old status bar, but also had the soft keys
for BACK, HOME, etc. Android 1.x and 2.x required that devices have off-screen
affordances for those operations; now, device manufacturers could skip those and
have the system bar offer them.

The action bar, by default, appears at the top of your activity, replacing the old title
bar. You can define what goes in the action bar (icon, title, toolbar buttons, etc.).

236

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

| oo | Action Bar

Animation
App
Content
Graphics
Media

NFC

0s
Preference
Telephony

Text

Views

" . System Bar

Figure 121: Action Bar and System Bar

The icon on the far left of the action bar also serves as a toolbar button, if you wish.
A common pattern for using this is take the user back to the “main” or “home”
activity of your application.

Sometimes, the far right side of the action bar will contain a “..” affordance. This is
known as the “action overflow” or “overflow menu”:

237

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

B App/Menu/Inflate from XML :

Title only

If you want to choose another menu resource, go back and re-run this activity

Figure 122: Action Bar with Open Overflow Menu

Tapping it will give the user access to actions that might have been toolbar buttons
on a larger screen, but there was insufficient room. Also, low-priority actions may be
tucked into the overflow, rather than clutter up the screen with too many toolbar
buttons.

Android 4.0+, Phones

Phone-sized devices were not supported by Android 3.x. They jumped from Android
2.3 to 4.0, and along the way adopted some of the Android 3.x UI features:

+ Phone apps could have an action bar, like their tablet counterparts

+ Device manufacturers could skip the BACK, HOME, etc. buttons and let a
partial system bar handle those

* The status bar remained intact from the Android 2.x approach

238

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

@ 11:17 l Status Bar
B APl Demos Action Bar

Accessibility

Animation
App
Content
Graphics
Media
NFC

0S

[YOO SRS

L) | —! I System Bar

Figure 123: Status Bar, Action Bar, and System Bar

Android 4.2, Tablets

The Nexus 7, introduced in the summer of 2012, was a 7” tablet that did not follow
the tablet UI structure that all other standard Android tablets used. Instead, it
looked a bit like a really large phone, having a top status bar along with a bottom
system bar solely for the navigation buttons (BACK, HOME, etc.). Apps, as before,
could have an action bar as well.

Initially, it was thought that the Nexus 7 was going to be distinctive in that regard.
Instead, with Android 4.2, Google switched all tablets to this model, restoring the
status bar and relegating the system bar purely for navigation buttons.

239

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

B — Status Bar
APPS WIDGETS } Action Bar

Figure 124: Status Bar, Action Bar, and System Bar, on Nexus 7 Emulator

Yet Another History Lesson

Back in the dawn of Android time, referred to by some as “the year 2007”, we had
options menus. These would rise up from the bottom of the screen based on the
user pressing a MENU button:

240

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

M & 2:37em
;

lorem
ipsum

dolor

sit

amet

consectetuer

_ e
@ [¥
Add Reset

Figure 125: Legacy Options Menu

This is why you will see references to “options menu” scattered throughout the
Android SDK and in (::cough::) older Android books.

The action bar pattern was first espoused by Google at the 2010 Google I|O
conference. However, at the time, there was no actual implementation of this, except
in scattered apps, and definitely not in the Android SDK.

Android 3.0 — a.k.a., API Level 11 — added the action bar to the SDK, and apps
targeting that API level will get an action bar when running on such devices.

Your Action Bar Options

You have two ways of getting an action bar into your apps. In the long term, you will
be able to simply use Android’s native implementation. In the short term, however,
most likely you will want to use ActionBarSherlock.

241

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Pure Native

As mentioned above, devices running Android 3.0 and higher have support for the
action bar as part of their firmware, and that support is exposed through the
Android SDK. For example, there is an ActionBar class, and you can get an instance
of it for your activity’s action bar via getActionBar ().

However, this only works on devices running Android 3.0 and higher. If you try
calling getActionBar () on an older device, you will crash with a VerifyError
runtime exception. VerifyError is Android’s way of telling you “while you compiled
fine, something your compiled code refers to does not exist”.

If your app will only ever run on Android 3.0 or higher devices, using the native
action bar is a fine choice. However, at the time of this writing, relatively few devices
run Android 3.0 and higher. You can find out how many devices are running various
versions of Android via the “Platform Versions” portion of the “Device Dashboard”
section of the Android Developers Web site. This is updated monthly and shows
who is using what, in the form of a table and a pie chart:

Figure 126: Platform Versions Chart from November 2012 (image courtesy of Google)

Until a preponderance of devices runs Android 3.0 or higher, you would be stuck
with the legacy options menus on older devices, and that would be sad.

ActionBarSherlock

You might think that the Android Support package, with its focus on backports,
would have some facility for adding an action bar to apps running on older devices.
Alas, it does not.

Various third-party projects implemented action bars to try to fill this gap, and none
has done nearly as well as has ActionBarSherlock.

242

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/about/dashboards/index.html
http://actionbarsherlock.com/

OPTIONS MENUS AND THE ACTION BAR

ActionBarSherlock, in effect, extends the Android Support package, adding a
backported action bar for apps running on devices prior to API Level 14 (Ice Cream
Sandwich). While native action bars became available with API Level 11, there were
enough differences that ActionBarSherlock uses its own implementation from API
Level 13 on down to API Level 7 (Android 2.1).

To use ActionBarSherlock, you need to do a few things, above and beyond what you
would ordinarily need to do to use the native action bar implementation.

Installation

You will need to download ActionBarSherlock, such as by downloading a ZIP file or
by cloning the project’s GitHub repository.

Inside of the ActionBarSherlock distribution is a library/ directory, containing an
Android library project that you will need to add to your application’s project as
described in a previous chapter. We will go through all the steps of this process in an
upcoming tutorial.

Base Activity Class

You will need to adjust your project to inherit from SherlockActivity or one of its
kin (e.g., SherlockListActivity). This is mostly a matter of adding the Sherlock
prefix and adjusting your imports to refer to the com.actionbarsherlock.app
package instead of android. app.

Theme

You will also need to apply an ActionBarSherlock-flavored theme to your activities,
either on a per-activity basis, or for the application as a whole. The Sherlock theme
that most closely resembles the default theme is Theme.Sherlock.

The ActionBar/ActionBarDemo sample project applies Theme.Sherlock to the whole
application, via an android: theme attribute on the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">

<supports-screens
android:anyDensity="true"
android:largeScreens="true"

243

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/JakeWharton/ActionBarSherlock
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/ActionBarDemo

OPTIONS MENUS AND THE ACTION BAR

android:normalScreens="true"
android:smallScreens="true"/>

<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="14"/>

<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">
<activity

android:name=".ActionBarDemoActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

NOTE: If you use this sample app, or any other one that uses ActionBarSherlock,
you will need to update its configuration to point to your own copy of
ActionBarSherlock’s Android library project.

What We Will Be Doing

In this book, we will generally be using ActionBarSherlock. Right now, most
developers should still be targeting Android 2.x devices, and that will remain the
case well into 2013. By late 2013, Android 2.x may have a small enough user base that
you could consider dropping ActionBarSherlock... assuming nothing new shows up
that ActionBarSherlock fixes.

For apps that are only targeting API Level 11 or higher, you can elect to skip
ActionBarSherlock and use the pure native action bar implementation. A few
examples in this book — mostly ones that for other reasons only work on API Level
11+ — will go that route.

244

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Setting the Target

Whether you are using ActionBarSherlock or not, you will want to arrange to target
API Level 11 or higher at runtime. That involves setting the
android:targetSdkVersion attribute of the <uses-sdk> element of your manifest.

We see this in the same ActionBar/ActionBarDemo manifest originally shown above:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.inflation">

<supports-screens
android:anyDensity="true"
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>

<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="14"/>

<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">
<activity

android:name=".ActionBarDemoActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>
</intent-filter>
</activity>
</application>

</manifest>

Specifically, we have android: targetSdkVersion set to 14. While 11 or higher will
give you an action bar, 14 or higher will solve a particular UI quirk related to menu
choices. Some Android 4.0+ devices, but not all, will show two ways of getting at
overflow menu items if you have your android: targetSdkVersion set to a value
between 11 and 13. You will have the “.” affordance in the action bar itself and a
second one in the system bar, on devices that have one. Setting

android:targetSdkVersion to 14 or higher seems to resolve this.

245

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Doing nothing else but the preceding steps would give us an action bar, but one with
no toolbar icons or action overflow menu. While perhaps visually appealing, this is
not terribly useful for the user, so we need to do some more work to give the user
actions to perform from the action bar.

Minding Narrow

The native action bar debuted with Honeycomb, which was only available for
tablets. Here, we had lots of room, even with the device in portrait mode.

Once Ice Cream Sandwich (Android 4.0) rolled around, and the native action bar
became available for phones, it was readily apparent that it was too small in portrait
mode to do very much.

To help with this, you can enable a mode for your application (or specific activities)
that gives you a “split” action bar: one at the top of your activity, and another at the
bottom. Your toolbar buttons and the action overflow area will appear at the bottom,
leaving the top available for your icon, application name, and other stuff that we
have not talked about just yet.

To enable this feature, add android:uiOptions="splitActionBarWhenNarrow" to
your <application> or a specific <activity> in the manifest. In the sample
application manifest shown above, you will see this in the <application> element.
In Eclipse’s manifest editor, this appears as the “Ul options” field on the Application
tab or in the details for a specific selected activity.

Defining the Resource

The easiest way to get toolbar icons and action overflow items into the action bar is
by way of a menu XML resource. This is called a “menu” resource for historical
reasons, as these resources originally were used for things like the options menu.

You can add a res/menu/ directory to your project and place in there menu XML
resources.

Through Eclipse, if you create a new file in there (e.g., actions.xml), you will be able
to manipulate the menu items using a structured editor, using the “Add” to add a
new item and configuring it via the options on the right:

246

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

i@ Android Menu

Menu Elements M@ A= Attributes for add (Item)

(1) Base attributes that are available to all Item objects.

(L add (item) Add... Id @+id/add Browse...
[0 reset (Item)
Remove... Menu category v
Up Order in category

Down Title @string/add Browse...
Title condensed Browse...

lcon @android:drawable/ic_menu_add
Alphabetic shortcut Browse...
Numeric shortcut Browse...
Checkable v
Checked v
Visible -
Enabled -
on click Browse...
Show as action iFRoom select...
Action layout Browse...
Actionview class Browse...
Action provider class Browse...

Figure 127: Eclipse Menu Resource Editor

Or, you can work with the raw XML, such as res/menu/actions.xml from
ActionBar/ActionBarDemo:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item
android:id="@+id/add"
android:actionLayout="@layout/add"
android:icon="@android:drawable/ic_menu_add"
android:showAsAction="ifRoom"
android:title="@string/add"/>

<item
android:id="@+id/reset"
android:icon="@android:drawable/ic_menu_revert"
android:showAsAction="always |withText"
android:title="@string/reset"/>

<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">

</item>

</menu>

247

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

There are four things you will want to configure on every menu item (<item>
element in the XML):

1. The ID of the item (via the Id field in Eclipse or the android:id attribute in
XML). This will create another R.id value, associated with this menu item,
much like the R. id values for our widgets in our layouts. We will use this ID
to determine when the user clicks on one of our toolbar buttons or action
overflow items.

2. The title of the item (via the Title field in Eclipse or the android:title
attribute in XML). If this item winds up in the action overflow menu, or
optionally as part of its toolbar button, this text will appear. Typically, you
will use a string resource reference (e.g., @string/add), to better support
internationalization.

3. The icon for the item (via the Icon field in Eclipse or the android:icon
attribute in XML). If your item will appear as a toolbar button, this icon is
used with that button.

4. Flags indicating how this item should be portrayed in the action bar (via the
“Show as action” field in Eclipse or the android: showAsAction attribute in
XML). You will choose to have it be always a toolbar button, only be a
toolbar button ifRoom, or have it never be a toolbar button. You can also
elect to append |withText to either always or ifRoom, to indicate that you
want the toolbar button to be both the icon and the title, not just the icon.

Action Layouts

What happens if you want something other than a button to appear in the toolbar?
Suppose you want a field instead?

Fortunately, this is supported. Otherwise, this would be a completely pointless
section of the book.

In addition to the menu item configuration options mentioned above, you can also
specify android:actionLayout (the “Action layout” field in Eclipse). This will be a
reference to a layout XML resource that you want to have inflated into the action bar
instead of a toolbar button. Obviously, since the action bar is only so big, you will
need to be judicious about your use of space, which is why the res/layout/add.xml
resource, referred to from our “add” item, is just a LinearLayout holding onto a
TextView label and an EditText field:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"

248

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Word:"
android:textAppearance="@android:style/TextAppearance.Medium" />

<EditText
android:id="@+id/title"
android:layout_width="0px"
android:layout_weight="1"
android:layout_height="wrap_content"
android:layout_marginLeft="4dip"
android:layout_marginTop="4dip"
android:imeActionId="1337"
android:imeOptions="actionDone"
android:inputType="text"
android:width="100sp"/>

</LinearlLayout>

Some notable features of our layout include:

1. We add an android: textAppearance attribute to the TextView representing
our “Word:” caption. The android: textAppearance attribute allows us to
define the font type, size, color, and weight (e.g., bold) in one shot. We
specifically use a “magic value” of @android:style/TextAppearance.Medium,
so the caption matches the styling of the “Reset” label on our other menu
item we promoted to the action bar.

2. We specify android:width="100sp" for the EditText widget, to provide
room for other contents within our split action bar.

3. We specify android: inputType="text" on the EditText widget, which,
among other things, will restrict us to a single line of text.

4. We also specify android:imeActionId and android:imeOptions on the
EditText widget to control the “action button” of the soft keyboard, so we
get control when the user presses <Enter> on the soft keyboard.

So, given our menu resource XML listed earlier in this chapter, we are requesting:

A custom action view (@layout/add), if there is room, and
* An action overflow item, named @id/reset

249

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

Applying the Resource

From your activity, you teach Android about these action bar items by overriding an
onCreateOptionsMenu() method, such as this one from the ActionBarDemoActivity
of the ActionBar/ActionBarDemo sample project:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.actions, menu);

configureActionItem(menu);

return(super.onCreateOptionsMenu(menu));

}

Here, we create a MenuInflater and tell it to inflate our menu XML resource
(R.menu.actions) and pour them into the supplied Menu object. We then chain to
the superclass, returning its result. We will discuss that configureActionItem()
method call shortly.

Note that the specific implementations of Menu and MenuInflater will depend upon
whether you are using ActionBarSherlock or not — if you are, you will need to use
the Sherlock versions (com.actionbarsherlock.view.Menu and
com.actionbarsherlock.view.MenuInflater) instead of the standard Android SDK
ones (android.view.Menu and android.view.MenuInflater).

Responding to Events

To find out when the user taps on one of these things, you will need to override
onOptionsItemSelected(), such as the ActionBarDemoActivity implementation
shown below:

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId() == R.id.reset) {
initAdapter();
return(true);
}

return(super.onOptionsItemSelected(item));
}

You will be passed a MenuItem (either android.view.MenuItem or
com.actionbarsherlock.view.MenuItem). You can call getItemId() on it and

250

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

compare that value to the ones from your menu XML resource (R.id.add and
R.id.reset). If you handle the event, return true; otherwise, return the value of
chaining to the superclass’ implementation of the method.

If you wish to respond to taps on your application icon, on the left of the action bar,
compare getItemId() to android.R.id.home, as that will be the MenuItem used for
that particular toolbar button. Note that if you have your
android:targetSdkVersion set to 14 or higher, you will also need to call
setHomeButtonEnabled(true) on the ActionBar (obtained via a call to
getActionBar () or getSupportActionBar(), depending on whether you are using
ActionBarSherlock), to enable this behavior.

Attaching to Action Layouts

This works nicely for our reset action overflow item. What about that other menu
item, where we requested our custom action view layout?

That is where that configureActionItem() method comes into play, that we called
from onCreateOptionsMenu():

private void configureActionItem(Menu menu) {
EditText add=
(EditText)menu.findItem(R.id.add).getActionView()
.findViewById(R.id.title);

add.setOnEditorActionListener(this);
}

Here, we ask the Menu to find the MenuItem object associated with our given item ID
(@id/add). We then retrieve our inflated layout by a call to getActionView(). Finally,
we get at the EditText widget by means of our old standby, findviewById(). Note
that we have to call findviewById() on the inflated layout, not the activity.

Given this widget, we can now configure it as we see fit. In this case, we call
setOnEditorActionListener (), indicating to Android that we want to get control

when the user presses <Enter> or clicks the action button in the lower right corner
of most soft keyboards. We will see what we do on that event shortly.

The Rest of the Sample Activity

So, what is it that we really are doing here in ActionBarDemoActivity?

251

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

In many respects, this is reminiscent of the ListActivity demos from an earlier
chapter. We have an array of 25 nonsense words, and we want to display these in a
list. However, in addition, we want to allow the user to add words to the list and
revert the list to its original state.

ActionBarDemoActivity is a SherlockListActivity — an ActionBarSherlock
equivalent of the ListActivity. However, rather than set up our ArrayAdapter
directly in the onCreate() method as some of the other samples have done, we
delegate that work to an initAdapter () method. Moreover, that initAdapter()
method does its work a bit differently than what those other samples did:

private void initAdapter() {
words=new ArraylList<String>();

for (String s : items) {
words.add(s);
}

adapter=
new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1,
words) ;

setListAdapter(adapter);
¥

Rather than create the ArrayAdapter straight out of the static items array, we create
a fresh ArrayList and pour the items into it, then create the ArrayAdapter on the
ArrayList. This may seem superfluous, but we will take advantage of this approach
with our action bar items.

When the user clicks the Reset item in the action overflow menu, we call
initAdapter () again, which gives our ListActivity a fresh set of nonsense words to
display:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId() == R.id.reset) {
initAdapter();
return(true);
}

return(super.onOptionsItemSelected(item));
}

When the user presses <Enter> or clicks the “Done” button on the soft keyboard
while typing in our EditText, control routes to our activity’s onEditorAction()

252

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

method, which is required of a TextView.OnEditorActionListener, which itself is
required because we are supplying the activity as the parameter to
setOnEditorActionListener():

@Override
public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
if (event == null || event.getAction() == KeyEvent.ACTION_UP) {
adapter.add(v.getText().toString());
v.setText("");

InputMethodManager imm=
(InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(v.getWindowToken(), 0);
h

return(true);
¥

We know the user has completed entering a word when onEditorAction() is
invoked and the supplied KeyEvent is null or is ACTION_UP (meaning the user lifted
their finger off of the key). At that point, we do three things:

1. We grab the nonsense word out of the field (supplied to us as a TextView
parameter to onEditorAction()) and we add() it to our ArrayAdapter. The
add() method appends this word to the end of the words in our list. This
works because we used an ArrayList for the ArrayAdapter, and ArraylList
objects’ contents can be modified at runtime (unlike static string arrays). A
side effect of calling add() is that the ArrayAdapter will tell its attached
ListView that the contents of the list changed, so the ListView will redraw
itself and our new word appears at the bottom.

2. We clear out the field, so the user knows that we have accepted the new
word.

3. We use the InputMethodManager to hide the soft keyboard, which will not
automatically go away if the user presses <Enter>.

The net result of all of this is that we have an activity with our customized action
bar:

253

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

*g” Action Bar Demo
lorem
ipsum
dolor
sit
amet
consectetuer

adipiscing

Word:

S [
Figure 128: ActionBarDemo, As Initially Launched, on Android 4.0.3

where the user can also type in a nonsense word into the field:

254

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

B | 1:17em

*g" Action Bar Demo

lorem
ipsum

dolor

wors:

q w e

o By Bull RIS ol Fp

a| st idi Bt e P B

£

2123

’

1z x cv.bnm &

DEL

Figure 129: ActionBarDemo, With User Data Entry, on Android 2.2

If the user presses <Enter> or clicks that “Done” button in the lower right corner of
the soft keyboard, the nonsense word is added to the end of the list:

Subscribe to updates at https://commonsware.com

255

Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

M| 1:18em

*g" Action Bar Demo

porttitor

sodales
pellentesque
augue

purus

snicklefritz

Figure 130: ActionBarDemo, With Additional Word, on Android 2.2

Among our action bar items is an “About” one that will always be in the overflow
menu. This will have three possible visual outcomes.

First, on devices without an off-screen MENU button, the overflow menu is
represented by a “..” button, which displays the overflow menu when clicked:

256

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

» .
®@ Action Bar Demo) ReseT

sit

amet
consectetuer
adipiscing
elit

morbi

vel

ligula

vitae

arcu

aliquet

—

Figure 131: ActionBarDemo, on Android 4.0.3 Large Screen, with Overflow

On Android 4.x devices with an off-screen MENU button, pressing the MENU
button will cause the overflow menu to rise up from the bottom of the screen:

257

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

@ 10:54

*g” Action Bar Demo
lorem
ipsum
dolor
sit
amet

consectetuer

adipiscing

0

Worc About

Figure 132: ActionBarDemo, on Android 4.0.3 Normal Screen, with Overflow

Finally, on Android 2.x devices, pressing the MENU button will cause a classic
options menu to appear:

258

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

% wl B 1056

*@" Action Bar Demo

lorem

ipsum

dolor
sit
amet

consectetuer

N

Figure 133: ActionBarDemo, on Android 2.3.3, with Overflow

Floating Action Bars

By default, your action bar (or action bars, if you are using
splitActionBarWhenNarrow) will be separate from the main content area of your
activity. Normally, that is what you want.

But, sometimes, you may want to have the action bar(s) float over the top of your
activity, as can be seen in Google Maps:

259

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

q 3

o
Entr. i <
Entrance / EXt-® ® Handbags <

Fashion Jewe!
® Dreg

5. ™ FronteraFresco

shings = n Lguis Vilition
“itting Room =

*
it

%, Union Square Park
7,

Goog le

=) - =

Figure 134: Google Maps, with Floating Action Bar (image courtesy of Google)

To accomplish this, you can use FEATURE_ACTION_BAR_OVERLAY, as is illustrated in
the ActionBar/0Overlay sample project.

This is nearly identical to the ActionBar/ActionBarDemo sample project, with just a
few changes, mostly in the onCreate() method of our activity:

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
getWindow().requestFeature(Window.FEATURE_ACTION_BAR_OVERLAY);
initAdapter();

Drawable d=
getResources().getDrawable(R.drawable.action_bar_background);

getSupportActionBar().setBackgroundDrawable(d);

getSupportActionBar().setSplitBackgroundDrawable(d);
}

In addition to the original logic, we:

260

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/Overlay
http://github.com/commonsguy/cw-omnibus/tree/master/ActionBar/Overlay

OPTIONS MENUS AND THE ACTION BAR

+ Call requestFeature() on our Window (obtained via a call to getWindow()),
asking for FEATURE_ACTION_BAR_OVERLAY

+ (Call setBackgroundDrawable() on our ActionBar (obtained via a call to
getSupportActionBar(), since we are using ActionBarSherlock, supplying a
reference to a drawable resource to use for the background of the floating
action bar

+ (all setSplitBackgroundDrawable() on our ActionBar to set the same
drawable resource for the background of the bottom action bar, if and when
one is used

The drawable resource is a ShapeDrawable, defined in XML:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">

<solid android:color="#AAFFFFFF"/>

</shape>

We will discuss ShapeDrawable in much greater detail later in this book . For the
moment, take it on faith that our resource is defining a rectangle, with a translucent
white fill. The alpha channel (AA) for our translucence is important, so the user can
see a bit of our activity underneath the floating action bar.

The result is that our action bars float over the top of the list:

261

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

OPTIONS MENUS AND THE ACTION BAR

ipsum
dolor
sit
amet

consectetuer

adipiscing

elit

morbi

vel

)
Figure 135: Floating Action Bar

In this case, the effect is not very good, as the words will blend in too strongly with
the overlaid action bars. However, that is a question of organizing the screen content
and using this overlay feature only in cases where you will see good results, such as
in the Google Maps example shown above.

Visit the Trails!

In addition to this chapter, you can learn more about navigation options in the
action bar (e.g., tabs) and learn about action modes, which temporarily replace the

action bar with new items for use with contextual operations.

262

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #7 - Adding the Action Bar

Now that we have added ActionBarSherlock to our project, it is time to put it to use,
adding the action bar to our EmPubLite application.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Starting in this tutorial, we will now begin editing Java source files. Eclipse users
should try to remember two useful shortcut key combinations:

* <Ctrl>-<Shift>-<0> will organize your Java import statements, including
finding imports for any classes or interfaces you have referenced in your code
but have not yet imported

* <Ctrl>-<Shift>-<F> will reformat the Java or XML in the current editing
window, in accordance with either the default styles in Eclipse or whatever
you have modified them to via the Preferences window.

Step #1: Setting the Theme and Splitting the Bar

In order to use ActionBarSherlock, we need to apply a theme to our activities. As
discussed previously, a theme applies a certain look and feel to the activities, such as
color scheme. We need to use a theme from ActionBarSherlock itself for our action

263

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T6-Library
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #7 - ADDING THE ACTION BAR

bar to work. And, since we need the theme for all of our activities, we will set up the
theme application-wide.

Also, over time, we may add enough items to our action bar that, on phones in
portrait mode, things get too crowded. To combat this threat, we will also tell
Android to split our action bar on narrow screens, giving us space at the top and
bottom of the screen for our items.

If you wish to make this change using Eclipse’s wizards and tools, follow the

instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Back in AndroidManifest.xml, click over to the Application sub-tab of the editor.
Click the “Browse...” button to the right of the Theme field, choose
“Theme.Sherlock.Light.DarkActionBar” from the list, then click OK.

Also, click the “Select...” button next to the “Ui options” field, check the checkbox
next to “splitActionBarWhenNarrow”, and click “OK” to accept that change.

Your Application sub-tab’s “Application Attributes” area should now resemble:

Defines the attributes specific to the application.

Name Browse... | Vm safe mode v
Theme @style/Theme.Sherlock.Light.DarkActionBa Browse... Hardware accelerated v
Label @skring/app_name Browse... | Manage space activity Browse...
Icon @drawable/ic_launcher Browse... | Allow clear user data v
Logo Browse... | Test only v
Description Browse... | Backup agent Browse...
Permission v | Allow backup v
Process Browse... | Kill after restore v
Task affinity Browse... Restore needs application v
Allow task reparenting v | Restore any version v
Has code ¥ | Never encrypt v
Persistent v | Large heap v
Enabled * | Cant save state v
Debuggable v | Ui options splitActionBarwhenMarrow Seleck...

Figure 136: Eclipse Manifest Editor, Application Sub-Tab

You can now save your changes (e.g., <Ctrl>-<S>).

264

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

Outside of Eclipse

Back in AndroidManifest.xml, add android:theme="@style/
Theme.Sherlock.Light.DarkActionBar" and
android:uiOptions="splitActionBarWhenNarrow" attributes to the <application>
element, replacing any existing attributes with the same name. Your resulting
manifest should resemble:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application

android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar"
android:uiOptions="splitActionBarWhenNarrow">
<activity

android:name="EmPubLiteActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Step #2: Changing to SherlockFragmentActivity

The final step to simply have an action bar is to have our activity inherit from a
suitable ActionBarSherlock base class. Ordinarily, we might choose
SherlockActivity. However, in a future tutorial, we will start working with

265

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

fragments, and so with that in mind, we will set up EmPubLiteActivity to inherit
from SherlockFragmentActivity.

If you open up EmPubLiteActivity, you will see that our current implementation is
untouched from what Android code-generated for us when we created our project:

package com.commonsware.empublite;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class EmPubLiteActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu, this adds items to the action bar
// If it iIs present.
getMenuInflater().inflate(R.menu.activity_main, menu);
return true;

}

Simply change it from extends Activity to extends SherlockFragmentActivity.
You will need to adjust your imports to import
com.actionbarsherlock.app.SherlockFragmentActivity (Eclipse users can simply
press <Ctrl>-<Shift>-<0> to automatically fix up the imports). Also, delete the
onCreateOptionsMenu() implementation that was code-generated for you.

The result should resemble:

package com.commonsware.empublite;

import android.os.Bundle;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class EmPubLiteActivity extends SherlockFragmentActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}
}

266

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

If Eclipse starts complaining about your having an “inconsistent hierarchy” for
EmPubLiteActivity, that is because your EmPubLite project has a different
android-support-v4.jar file in it than does the ActionBarSherlock library project.
Copy the android-support-v4.jar from your project’s 1libs/ directory into the
libs/ directory of ActionBarSherlock, so both projects work off of the same JAR
contents. You can learn more about this in the chapter on libraries.

Step #3: Defining Some Options

Of course, our current action bar is very boring.
Very, very boring.

To make it more useful and worthy of its screen space, we need to start adding some
action items. Right now, we will add a couple of low-priority action items, for a help
screen and an “about” screen.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse
Open the res/menu/ folder in your project.

In there, you should find a single file, whose name may vary (main.xml,
activity_main.xml, em_pub_lite.xml, etc.). Whatever it is called, right-click over it,
choose Refactor > Rename from the context menu, and rename it to options.xml.
Then, double-click on this file to open it in an Eclipse resource editor.

Click on the code-generated menu item (e.g., action_settings, menu_settings)
and change the following values:

« In “Id”, enter @+id/help
* Delete the 100 from “Order in category”
* In “Icon”, enter @android:drawable/ic_menu_help

Note that there is an unpleasant bug, whereby copy-and-paste in structured editors
like this one is broken, so you will have to type in the values by hand, or paste things
in the XML directly.

267

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=33965

TUTORIAL #7 - ADDING THE ACTION BAR

Also, click the “Browse...” button to the right of the Title field. Click the “New
String...” button towards the bottom of the dialog, to bring up the string resource
editor:

@ Create New Android String

New String
String

New R.string. [l v

XML resource to edit
Configuration:
Available Qualifiers Chosen Qualifiers
i Country Code

EQ Network Code

58 Language

¥# Region

B smallest Screen'w
++ Screen Width

1 ScreenHeight

1 Size

& Ratio

¥ orientation

Resource file: |/res/values/strings.xml v

Options
Replace inall Java files

Replace in all XML files for different configuration

@ Pplease provide a resource ID.

Cancel

Figure 137: The String Resource Editor

Fill in Help in the String field and help in the “New R.string.” field, then click “OK”
to define this string resource. Choose the help string resource in the resource
chooser, then click “OK” to use it. Save your file (e.g., <Ctr1l>-<S>).

Next, we want to add a new menu item, so click the “Add..” button to the right of
the list of menu options. Note that when you click the “Add...” button, you will
initially be offered to create a child of the currently-selected item — click the “Create
a new element at the top level, in Menu” radio button to be able to create a new
item.

This time, use the following values:
* In “Id”, enter @+id/about

+ In “Title”, create a new R.string.about string resource, with a value of About
* In “Icon”, enter @android:drawable/ic_menu_info_details

268

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

* In “Show as action’, click the “Select..” button and choose “never” from the
list
+ Save your changes (e.g., <Ctrl>-<S>)

Outside of Eclipse

Delete the existing file in res/menu/ and create a new res/menu/options.xml file,
filling in the following XML content:

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item
android:id="@+id/help"
android:icon="@android:drawable/ic_menu_help"
android:showAsAction="never"
android:title="@string/help"/>

<item
android:id="@+id/about"
android:icon="@android:drawable/ic_menu_info_details"
android:showAsAction="never"
android:title="@string/about">

</item>

</menu>

Also, you will need to add string resources for help and about, by adding
appropriate <string> elements to your existing res/values/strings.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">EmPub Lite</string>
<string name="menu_settings">Settings</string>
<string name="help">Help</string>

<string name="about">About</string>

</resources>

Step #4: Loading and Responding to Our Options

Simply defining res/menu/options.xml is insufficient. We need to actually tell
Android to use what we defined in that file, and we need to add code to respond to
when the user taps on our items.

269

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

To do that, you will need to add a Sherlock-flavored version of
onCreateOptionsMenu() and an onOptionsItemSelected() method to
EmPubLiteActivity, as follows:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
new MenuInflater(this).inflate(R.menu.options, menu);

return(super.onCreateOptionsMenu(menu));
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case android.R.id.home:
return(true);

case R.id.about:
return(true);

case R.id.help:
return(true);
h

return(super.onOptionsItemSelected(item));
}

NOTE: Copying and pasting this code may or may not work, depending on what you
are using to read the book. For the PDF, some PDF viewers (e.g., Adobe Reader)
should copy the code fairly well; others may do a much worse job.

In onCreateOptionsMenu(), we are inflating res/menu/options.xml and pouring its
contents into the supplied Menu object, which will be used by Android (and
ActionBarSherlock on Android 2.x) to populate our action bar.

In onOptionsItemSelected(), we examine the supplied MenuItem and route to
different branches of a switch statement based upon the item’s ID. In addition to
R.id.about and R.id.help — for the two items we defined in res/menu/
options.xml, we also watch for android.R.id.home, which will be triggered by a tap
on our icon, on the left side of the action bar.

To get this to compile, you will need to add some imports as well:

import com.actionbarsherlock.view.Menu;
import com.actionbarsherlock.view.MenuInflater;
import com.actionbarsherlock.view.Menultem;

270

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

(Eclipse users can just use <Ctrl>-<Shift>-<0> to import these, choosing the
“Sherlock” versions of the classes when prompted)

Also, the pasted code may be poorly formatted. Eclipse users can press
<Ctrl>-<Shift>-<F> to format the code into something reasonable.

Step #5: Running the Result

If you run this in a device or emulator, you may see no initial difference. That would
be for devices or emulators that have a MENU button. To display our options, you
would need to press MENU:

*%" EmPub Lite

Help
About

Figure 138: EmPubLite, With Options Via the MENU Button

2

On devices that lack a dedicated MENU button, the action bar will have a “..
somewhere on the split action bar:

"icon

271

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

¢’ EmPub Lite

Figure 139: EmPubLite, Showing the ... Overflow Button

Pressing that brings up a menu showing our items:

272

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #7 - ADDING THE ACTION BAR

¢’ EmPub Lite

Figure 140: EmPubLite, Showing the Overflow Options

In Our Next Episode...

... we will define our first new activity on the tutorial project.

273

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Android’s Process Model

So far, we have been treating our activity like it is our entire application. Soon, we
will start to get into more complex scenarios, involving multiple activities and other
types of components, like services and content providers.

But, before we get into a lot of that, it is useful to understand how all of this ties into
the actual OS itself. Android is based on Linux, and Linux applications run in OS
processes. Understanding a bit about how Android and Linux processes inter-relate
will be useful in understanding how our mixed bag of components work within
these processes.

When Processes Are Created

A user installs your app, goes to their home screen’s launcher, and taps on an icon
representing your activity. Your activity dutifully appears on the screen.

Behind the scenes, what happened is that Android created a process. That process
contains:

* A copy of the Dalvik VM, shared among all such processes via Linux copy-
on-write memory sharing

* A copy of the Android framework classes, like Activity and Button, also
shared via copy-on-write memory

* A copy of your own classes, loaded out of your APK

+ Any objects created by you or the framework classes, such as the instance of
your Activity subclass

275

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ANDROID’S PROCESS MODEL

BACK, HOME, and Your Process

Suppose, with your activity in the foreground, the user presses BACK.

At this point, the user is telling the OS that she is done with your activity. Control
will return to whatever preceded that activity — in this case, the home screen’s
launcher.

You might think that this would cause your process to be terminated. After all, that
is how most desktop operating systems work. Once the user closes the last window
of the application, the process hosting that application is terminated.

However, that is not how Android works. Android will keep your process around, for
a little while at least. This is done for speed and power: if the user happens to want
to return to your app sooner rather than later, it is more efficient to simply bring up
another copy of your activity again in the existing process than it is to go set up a
completely new copy of the process. This does not mean that your process will live
forever; we will discuss when your process will go away later in this chapter.

Now, instead of the user pressing BACK, let’s say that the user pressed HOME
instead. Visually, there is little difference: the home screen re-appears. Depending
on the home screen implementation there may be a visible difference, as BACK
might return to a launcher whereas HOME might return to something else on the
home screen. However, in general, they feel like very similar operations.

The difference is what happens to your activity.

When the user presses BACK, your foreground activity is destroyed. We will get into
more of what that means in the next chapter. However, the key feature is that the
activity itself — the instance of your subclass of Activity — will never be used again,
and hopefully is garbage collected.

When the user presses HOME, your foreground activity is not destroyed. It remains
in memory. If the user launches your app again from the home screen launcher, and
if your process is still around, Android will simply bring your existing activity
instance back to the foreground, rather than having to create a brand-new one (as is
the case if the user pressed BACK and destroyed your activity).

What HOME literally is doing is bringing the home screen activity back to the
foreground, not otherwise directly affecting your process much.

276

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ANDROID’S PROCESS MODEL

Termination

Processes cannot live forever. They take up a chunk of RAM, for your classes and
objects, and these mobile devices only have so much RAM to work with. Eventually,
therefore, Android has to get rid of your process, to free up memory for other
applications.

How long your process will stick around depends on a variety of factors, including:

* What else the device is doing, either in the foreground (user using apps) or
in the background (e.g., automated checks for new email)

* How much memory the device has

+ What is still running inside your process

Going back to the scenario from above, we have an application with a single activity,
where the user can return to the home screen either by pressing BACK or by
pressing HOME. You might think that this has no difference at all on when the
process would be terminated, but that would be incorrect. Pressing HOME would
keep the process around perhaps a bit longer than would pressing BACK.

Why?

When the user presses BACK, your one and only activity is destroyed. When the user
presses HOME, your activity is not destroyed. Android will tend to keep processes
around longer if they have active (i.e., not destroyed) components in them.

The key word there is “tend”. Android’s algorithms for determining when to get rid
of what processes are baked into the OS and are, at best, lightly documented. There
is evidence to suggest that other criteria, such as process age, are also taken into
account, and so there may be times when a process that has an activity running (but
not in the foreground) might be terminated where a process with no running
activity might not. However, in general, processes with active (not destroyed)
components will stick around a bit longer than processes without such components.

Foreground Means “l Love You”

Just because Android terminates processes to free up memory does not mean that it
will terminate just any process to free up memory. A foreground process - the most
common of which is a process that has an activity in the foreground - is the least
likely of all to be terminated. In fact, you can pretty much assume that if Android

277

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ANDROID’S PROCESS MODEL

has to kill off the foreground process, that the phone is very sick and will crash in a
matter of moments.

(and, fortunately, that does not happen very often)

So, if you are in the foreground, you are safe. It is only when you are not in the
foreground that you are at risk of having the process be terminated.

You and Your Heap

Processes take up RAM. A significant chunk of that RAM represents the objects you
create (a.k.a., “the heap”).

Those of you with significant Java backgrounds know that the Java VM loves RAM
(“can’t get enough of it!”). Java VMs routinely grab 64MB or 128MB of heap space
upon creating the process and will grow as big as you wish to let them (e.g., -Xmx
switch to the java command).

Android heap sizes are not that big, because Android is designed to run on mobile
devices with constrained amounts of RAM.

Your heap limit may be as low as 16MB, though values in the 32-48MB range are
more typical with current-generation devices. How much the heap limit will be
depends a bit on what version of Android is on the device. It depends quite a lot,
though, on the screen size, as bigger screens will tend to want to display bigger
bitmap images, and bitmap images can consume quite a bit of RAM.

The key is that the heap is small, and (generally speaking) you cannot adjust it
yourself. It is what it is. Small applications will rarely run into a problem with heap
space, but larger applications might. We will discuss tools and techniques for
measuring and coping with memory problems later in this book.

278

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Activities and Their Lifecycles

An Android application will have multiple discrete Ul facets. For example, a
calendar application needs to allow the user to view the calendar, view details of a
single event, edit an event (including adding a new one), and so forth. And on
smaller-screen devices, like most phones, you may not have room to squeeze all of
this on the screen at once.

To handle this, you can have multiple activities. Your calendar application may have
one activity to display the calendar, another to add or edit an event, one to provide
settings for how the calendar should work, another for your online help, etc.

This, of course, implies that one of your activities has the means to start up another
activity. For example, if somebody clicks on an event from the view-calendar activity,
you might want to show the view-event activity for that event. This means that,
somehow, you need to be able to cause the view-event activity to launch and show a
specific event (the one the user clicked upon).

This can be further broken down into two scenarios:

* You know what activity you want to launch, probably because it is another
activity in your own application

* You have a reference to... something (e.g., a Web page), and you want your
users to be able to do... something with it (e.g., view it), but you do not know
up front what the options are

This chapter will cover both of those scenarios.

In addition, frequently it will be important for you to understand when activities are
coming and going from the foreground, so you can automatically save or refresh

279

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

data, etc. This is the so-called “activity lifecycle”, and we will examine it in detail as
well in this chapter.

Creating Your Second (and Third and...) Activity

Unfortunately, activities do not create themselves. On the positive side, this does
help keep Android developers gainfully employed.

Hence, given a project with one activity, if you want a second activity, you will need
to add it yourself. The same holds true for the third activity, the fourth activity, and
SO on.

The sample we will examine in this section is Activities/Explicit. Our first
activity, ExplicitIntentsDemoActivity, started off as just the default activity code
generated by the build tools. Now, though, its layout contains a Button:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<Button
android:layout_width="match_parent"
android:layout_height="match_parent"
android:textSize="20sp"
android:text="@string/hello"
android:onClick="showOther"/>

</LinearlLayout>

That Button is tied to a showOther () method in our activity implementation, which
we will examine shortly.

Defining the Class and Resources

To create your second (or third or whatever) activity, you first need to create the Java
class. Outside of Eclipse, you can just create a new Java source file, containing a
public Java class that extends Activity directly or indirectly.

From Eclipse, you also have the option of using the new-class dialog, which you get
by right-clicking over the Java package you want to contain this activity and
choosing New > Class from the context menu:

280

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Explicit

ACTIVITIES AND THEIR LIFECYCLES

@ New Java Class
Java Class =)
Create a new Java class. @

Source folder: ExplicitintentsDemo/src Browse...
Package: com.commonsware.android.exint Browse...

Enclosing type:

Name: ||

Modifiers: @® public default

abstract final
Superclass: java.lang.Object Browse...
Interfaces: Add...

Which method stubs would you like to create?
public static void main(String[] args)
Constructors from superclass
¥ Inherited abstract methods

Do you want to add comments? (Configure templates and default value here)
Generate comments

\/'—_7:‘ cancel

Figure 141: The Eclipse New-Class Dialog

Supply your class name (e.g., OtherActivity) and indicate its superclass (e.g.,
com.actionbarsherlock.app.SherlockActivity), then click “Finish” to add the
empty class.

You can then add an onCreate() method to the activity, filling in all the details (e.g.,
setContentView()), just like you did with your first activity. Your new activity may
need a new layout XML resource or other resources, which you would also have to
create.

In Activities/Explicit, our second activity is OtherActivity, with pretty much
the standard bare-bones implementation:

package com.commonsware.android.exint;

import android.app.Activity;
import android.os.Bundle;

public class OtherActivity extends Activity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.other);

281

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

b
b

and a similarly simple layout, res/layout/other.xml:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/other"
android:textColor="#FFFF0000"
android:textSize="20sp"/>

</LinearlLayout>

Augmenting the Manifest

Simply having an activity implementation is not enough. We also need to add it to
our AndroidManifest.xml file.

If you are using Eclipse, and you bring up the manifest in the editor, you can switch
over to the Application sub-tab and look at the bottom half of the screen at the
“Application Nodes” area:

Application Nodes GF®RK R @O A Attributes For .OtherActivity

— — [A] The activity tag declares an android.app.Activity class that is

» [A] .ExplicitintentsDemoActivity Add... available as part of the package's application components,

[&] .otherActivity implementing a part of the application's user interface.

Remove... Name* .OtherActivity Browse...
up Theme Browse...
Label @string/app_name Browse...
Icon Browse...
Launch mode v
Screen orientation v

=] Manifest |[A] Application |[B) Permissions | (L] Instrumentation | (=] AndroidManifest.xml

Figure 142: The Eclipse Manifest Editor Application Nodes

Clicking the “Add..” button will allow you to choose to add “a new element at the
top level, in Application” and add an activity:

282

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

@® Create a new element at the top level, in Application.

Create a new element in the selected element, Application > .OtherActivity.

@ Activity Alias
(M Meta Data
[P] Provider

[R] Receiver

(5] service

@ Uses Library

| cancel | [oK J

Figure 143: The Eclipse Manifest Editor Add Application Node Dialog

Clicking “OK” will give you a blank entry in the “Application Nodes” list, and you can
fill in the details on the right. The only one that is essential is the “Name”, which will
be the name of your activity — you can pick it out of a list via the “Browse...” button
to the right of the “Name” field.

283

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

select class name for element Application > .OtherActivity: -

%k @
Matching items:
@ ExplicitintentsDemoActivity

‘€ OtherActivity - com.commonsware.android.exint

Display classes from sources of project 'ExplicitintentsDemo’ only

f# com.commonsware.android.exint - ExplicitintentsDemo/src

@ | cancel | OK]
Figure 144: The Eclipse Manifest Editor Choose Activity Class Dialog

You can also elect to supply a “Label”, pointing to a string resource which will

populate the gray title bar of your activity. By default, you will inherit the label from
the <application> element.

Outside of Eclipse, adding an activity to the manifest is a matter of adding another
<activity> element to the <application> element:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.exint"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="7"
android:targetSdkVersion="11"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"/>

<application
android:icon="@drawable/ic_launcher"
android:label="@string/app_name">
<activity
android:name="ExplicitIntentsDemoActivity"
android:label="@string/app_name">

284

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name="OtherActivity"/>
</application>

</manifest>

You need the android:name attribute at minimum. Note that we do not include an
<intent-filter> child element, the way the original activity has. For now, take it on
faith that the original activity’s <intent-filter> is what causes it to appear as a
launchable activity in the home screen’s launcher. We will get into more details of
how that <intent-filter> works and when you might want your own in a later

chapter.

Warning! Contains Explicit Intents!

An Intent encapsulates a request, made to Android, for some activity or other
receiver to do something.

If the activity you intend to launch is one of your own, you may find it simplest to
create an explicit Intent, naming the component you wish to launch. For example,
from within your activity, you could create an Intent like this:

new Intent(this, HelpActivity.class);

This would stipulate that you wanted to launch the HelpActivity. This activity
would need to be named in your AndroidManifest.xml file.

In Activities/Explicit, ExplicitIntentsDemoActivity hasa showOther () method
tied to its Button widget’s onClick attribute. That method will use startActivity()
with an explicit Intent, identifying OtherActivity:

package com.commonsware.android.exint;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class ExplicitIntentsDemoActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {

285

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

public void showOther(View v) {
startActivity(new Intent(this, OtherActivity.class));
}
}

Our launched activity shows the button:

*@" Explicit Intents Demo

| am the first activity!

Figure 145: The Explicit Intents Demo, As Launched

Clicking the button brings up the other activity:

286

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

*g’" Explicit Intents Demo

S O =@

Figure 146: The Explicit Intents Demo, After Clicking the Button

Clicking BACK would return us to the first activity. In this respect, the BACK button
in Android works much like the BACK button in your Web browser.

Using Implicit Intents

The explicit Intent approach works fine when the activity to be started is one of
yours.

However, you can also start up activities from the operating system or third-party
apps. In those cases, though, you will not have a Java Class object representing the
other activity in your project, so you cannot use the Intent constructor that takes a
Class.

Instead, you will use what are referred as the “implicit” Intent structure, which
looks an awful lot like how the Web works.

If you have done any work on Web apps, you are aware that HTTP is based on verbs
applied to URIs:

287

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

+ We want to GET this image

* We want to POST to this script or controller
+ We want to PUT to this REST resource

- Etc.

Android’s implicit Intent model works much the same way, just with a lot more
verbs.

For example, suppose you get a latitude and longitude from somewhere (e.g., body
of a tweet, body of a text message). You decide that you want to display a map on
those coordinates. There are ways that you can embed a Google Map directly in your
app — and we will see how in a later chapter — but that is complicated and assumes
the user wants Google Maps. It would be better if we could create some sort of
generic “hey, Android, display an activity that shows a map for this location” request.

As it turns out, we can, as is illustrated in the Activities/Launch sample project.

We have a LaunchDemo activity that uses a layout containing two EditText widgets
and a Button, among other things:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<LinearlLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal">

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:paddinglLeft="2dip"
android:paddingRight="4dip"
android:text="@string/location"/>

<EditText
android:id="@+id/lat"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"
android:inputType="numberDecimal |numberSigned"
android:hint="@string/lat"/>

<EditText
android:id="@+id/lon"

288

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Launch

ACTIVITIES AND THEIR LIFECYCLES

android:layout_width="0dip"
android:layout_height="wrap_content"
android:layout_weight="1"
android: inputType="numberDecimal |numberSigned"
android:hint="@string/lon"/>

</LinearlLayout>

<Button
android:id="@+id/map"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:onClick="showMe"
android:text="@string/show_me" />

</LinearlLayout>

The Button is tied to a showMe() method on the activity itself, where we want to
bring up a map on the latitude and longitude entered into the EditText widgets:

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class LaunchDemo extends Activity {
private EditText lat;
private EditText lon;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

lat=(EditText)findViewById(R.id.lat);
lon=(EditText)findViewById(R.id.lon);
}

public void showMe(View v) {
String _lat=lat.getText().toString();
String _lon=lon.getText().toString();
Uri uri=Uri.parse("geo:"+_lat+",6"+_lon+"?z=15");

startActivity(new Intent(Intent.ACTION_VIEW, uri));
}
}

Just as HTTP uses a verb and a URI, Android uses an action and a Uri. The
standard Uri structure to express a location is one that uses the geo: scheme,

289

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

followed by the latitude and longitude in decimal degrees, followed by a zoom level
from 1 to 21, with higher values representing tighter levels of zoom (e.g.,
geo0:37.760829,-122.416111?z=15). Assembling this as a string is a matter of
concatenation, but afterwards we need to convert it to a Uri via calling
Uri.parse(). Then, we can use an action called ACTION_VIEW to try to display a
map on that location.

When launched, the user is presented with our data entry form:

*3" LaunchDemo

Location: [atitude Longitude

Show Me!

Figure 147: The Launch Demo, As Initially Launched

”»

We can fill in a latitude and longitude, replacing the values displayed as the “hints
(supplied by the android:hint attributes):

290

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

@ 9:59

*@ LaunchDemo

Location: 37.760829 -122.416111

Show Me!

Figure 148: The Launch Demo, After Data Entry

If the device has one application that responds to an ACTION_VIEW Intent on a geo:
scheme, clicking the “Show Me!” button will bring up a map on that location:

291

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

& 10:00

Z@- |

1S |12MI0US|

Electronic Frontier |
Foundation

Figure 149: A Map Showing the Electronic Frontier Foundation

We will discuss what happens if there are no applications set up to handle this
Intent, or if there is more than one, in a later chapter.

Note that previous versions of this book used a simpler geo:latitude, longitude
Uri, but that no longer seems to be supported by the Google Maps application.

Extra! Extra!

Sometimes, we may wish to pass some data from one activity to the next. For
example, we might have a ListActivity showing a collection of our model objects
(e.g., books) and we have a separate DetailActivity to show information about a

specific model object. Somehow, DetailActivity needs to know which model object
to show.

One way to accomplish this is via Intent extras.
There is a series of putExtra() methods on Intent to allow you to supply key/value

pairs of data to be bundled into the Intent. While you cannot pass arbitrary objects,
most primitive data types are supported, as are strings and some types of lists.

292

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://code.google.com/p/android/issues/detail?id=58980

ACTIVITIES AND THEIR LIFECYCLES

Any activity can call getIntent() to retrieve the Intent used to start it up, and then
can call various forms of get... Extra() (with the ... indicating a data type) to
retrieve any bundled extras.

For example, let’s take a look at the Activities/Extras sample project.

This is mostly a clone of the Activities/Explicit sample from earlier in this
chapter. However, this time, our first activity will pass an extra to the second:

package com.commonsware.android.extra;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class ExtrasDemoActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

public void showOther(View v) {
Intent other=new Intent(this, OtherActivity.class);

other.putExtra(OtherActivity.EXTRA_MESSAGE, getString(R.string.other));
startActivity(other);

b
b

We create the Intent as before, but then call putExtra(), supplying a key (a static
string named OtherActivity.EXTRA_MESSAGE) and a value (the R.string.other
string resource). Then, and only then, do we call startActivity().

Our revised OtherActivity then retrieves that extra, along with the inflated
TextView (via findViewById()) and pours that text in:

package com.commonsware.android.extra;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class OtherActivity extends Activity {
public static final String EXTRA_MESSAGE="msg";

@Override
public void onCreate(Bundle savedInstanceState) {

293

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Extras

ACTIVITIES AND THEIR LIFECYCLES

super.onCreate(savedInstanceState);
setContentView(R.layout.other);

TextView tv=(TextView)findViewById(R.id.msg);

tv.setText(getIntent().getStringExtra(EXTRA_MESSAGE));
}
¥

Visually, the result is the same. Functionally, the text to be shown is passed from one
activity to the next.

Asynchronicity and Results

Note that startActivity() is asynchronous. The other activity will not show up
until sometime after you return control of the main application thread to Android.

Normally, this is not much of a problem. However, sometimes one activity might
start another, where the first activity would like to know some “results” from the
second. For example, the second activity might be some sort of “chooser”, to allow
the user to pick a file or contact or song or something, and the first activity needs to
know what the user chose. With startActivity() being asynchronous, it is clear
that we are not going to get that sort of result as a return value from
startActivity() itself.

To handle this scenario, there is a separate startActivityForResult() method.
While it too is asynchronous, it allows the newly-started activity to supply a result
(via a setResult() method) that is delivered to the original activity via an
onActivityResult() method. We will examine startActivityForResult() in

greater detail in a later chapter.

Schroedinger’s Activity

An activity, generally speaking, is in one of four states at any point in time:

1. Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

2. Paused: the activity was started by the user, is running, and is visible, but
another activity is overlaying part of the screen. During this time, the user
can see your activity but may not be able to interact with it. This is a

294

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

relatively uncommon state, as most activities are set to fill the screen, not
have a theme that makes them look like some sort of dialog box.

3. Stopped: the activity was started by the user, is running, but it is hidden by
other activities that have been launched or switched to.

4. Dead: the activity was destroyed, perhaps due to the user pressing the BACK
button.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the four states
listed above.

Note that for all of these, you should chain upward and invoke the superclass’
edition of the method, or Android may raise an exception.

onCreate() and onDest roy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This will get called in two primary situations:

* When the activity is first started (e.g., since a system restart), onCreate()
will be invoked with a null parameter.

+ If the activity had been running and you have set up your activity to have
different resources based on different device states (e.g., landscape versus
portrait), your activity will be re-created and onCreate() will be called. We
will discuss this scenario in greater detail later in this book.

Here is where you initialize your user interface and set up anything that needs to be
done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the activity is
shutting down, such as because the activity called finish() (which “finishes” the
activity) or the user presses the BACK button. Hence, onDestroy() is mostly for
cleanly releasing resources you obtained in onCreate() (if any), plus making sure
that anything you started up outside of lifecycle methods gets stopped, such as
background threads.

Bear in mind, though, that onDestroy() may not be called. This would occur in a
few circumstances:

295

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

* You crash with an unhandled exception

* The user force-stops your application, such as through the Settings app

* Android has an urgent need to free up RAM (e.g., to handle an incoming
phone call), wants to terminate your process, and cannot take the time to
call all the lifecycle methods

Hence, onDestroy() is very likely to be called, but it is not guaranteed.

Also, bear in mind that it may take a long time for onDestroy() to be called. It is
called quickly if the user presses BACK to finish the foreground activity. If, however,
the user presses HOME to bring up the home screen, your activity is not
immediately destroyed. onDestroy() will not be called until Android does decide to
gracefully terminate your process, and that could be seconds, minutes, or hours
later.

onStart(), onRestart(), and onStop()

An activity can come to the foreground either because it is first being launched, or
because it is being brought back to the foreground after having been hidden (e.g., by
another activity, by an incoming phone call).

The onStart() method is called in either of those cases. The onRestart() method is
called in the case where the activity had been stopped and is now restarting.

Conversely, onStop() is called when the activity is about to be stopped. It too may
not be called, for the same reasons that onDestroy() would not be called. However,
onStop() is usually called fairly quickly after the activity is no longer visible, so the
odds that onStop() will be called are even higher than that of onDestroy().

onPause() and onResume()

The onResume () method is called just before your activity comes to the foreground,
either after being initially launched, being restarted from a stopped state, or after a
pop-up dialog (e.g., incoming call) is cleared. This is a great place to refresh the Ul
based on things that may have occurred since the user last was looking at your
activity. For example, if you are polling a service for changes to some information
(e.g., new entries for a feed), onResume() is a fine time to both refresh the current
view and, if applicable, kick off a background thread to update the view (e.g., via a
Handler).

296

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

Conversely, anything that steals your user away from your activity — mostly, the
activation of another activity — will result in your onPause() being called. Here, you
should undo anything you did in onResume(), such as stopping background threads,

releasing any exclusive-access resources you may have acquired (e.g., camera), and
the like.

Once onPause() is called, Android reserves the right to kill off your activity’s process
at any point. Hence, you should not be relying upon receiving any further events.

So, what is the difference between onPause() and onStop()? If an activity comes to
the foreground that fills the screen, your current foreground activity will be called
with onPause() and onStop(). If, however, an activity comes to the foreground that
does not fill the screen, your current foreground activity will only be called with
onPause().

Stick to the Pairs

If you initialize something in onCreate(), clean it up in onDestroy().
If you initialize something in onStart(), clean it up in onStop().
If you initialize something in onResume(), clean it up in onPause().

In other words, stick to the pairs. For example, do not initialize something in
onStart() and try to clean it up on onPause(), as there are scenarios where
onPause() may be called multiple times in succession (i.e., user brings up a non-full-
screen activity, which triggers onPause() but not onStop(), and hence not
onStart()).

Which pairs of lifecycle methods you choose is up to you, depending upon your

needs. You may decide that you need two pairs (e.g., onCreate()/onDestroy() and
onResume()/onPause()). Just do not mix and match between them.

When Activities Die

So, what gets rid of an activity? What can trigger the chain of events that results in
onDestroy() being called?

First and foremost, when the user presses the BACK button, the foreground activity
will be destroyed, and control will return to the previous activity in the user’s

297

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

navigation flow (i.e., whatever activity they were on before the now-destroyed
activity came to the foreground).

You can accomplish the same thing by calling finish() from your activity. This is
mostly for cases where some other Ul action would indicate that the user is done
with the activity (e.g., the activity presents a list for the user to choose from —
clicking on a list item might close the activity). However, please do not artificially
add your own “exit’, “quit”, or other menu items or buttons to your activity — just
allow the user to use normal Android navigation options, such as the BACK button.

If none of your activities are in the foreground any more, your application’s process
is a candidate to be terminated to free up RAM. As noted earlier, depending on
circumstances, Android may or may not call onDestroy() in these cases (onPause()
and onStop () would have been called when your activities left the foreground).

If the user causes the device to go through a “configuration change”, such as
switching between portrait and landscape, Android’s default behavior is to destroy
your current foreground activity and create a brand new one in its place. We will
cover this more in a later chapter.

And, if your activity has an unhandled exception, your activity will be destroyed,

though Android will not call any more lifecycle methods on it, as it assumes your
activity is in an unstable state.

Walking Through the Lifecycle

To see when these various lifecycle methods get called, let’s examine the
Activities/Lifecycle sample project.

This project is the same as the Activities/Extras project, except that our two
activities no longer inherit from Activity directly. Instead, we introduce a
LifecycleLoggingActivity as a base class and have our activities inherit from it:

package com.commonsware.android.lifecycle;

import android.app.Activity;
import android.os.Bundle;
import android.util.lLog;

public class LifecyclelLoggingActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

298

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

ACTIVITIES AND THEIR LIFECYCLES

Log.d(getClass().getSimpleName(), "onCreate()");
b

@0verride
public void onRestart() {
super.onRestart();

Log.d(getClass().getSimpleName(), "onRestart()");
b

@0verride
public void onStart() {
super.onStart();

Log.d(getClass().getSimpleName(), "onStart()");
b

@0verride
public void onResume() {
super.onResume();

Log.d(getClass().getSimpleName(), "onResume()");
b

@Override
public void onPause() {
Log.d(getClass().getSimpleName(), "onPause()");

super.onPause();
}

@Override
public void onStop() {
Log.d(getClass().getSimpleName(), "onStop()");

super.onStop();
b

@Override
public void onDestroy() {
Log.d(getClass().getSimpleName(), "onDestroy()");

super.onDestroy();
}
}

All LifecycleLoggingActivity does is override each of the lifecycle methods
mentioned above and emit a debug line to LogCat indicating who called what.

When we first launch the application, our first batch of lifecycle methods is invoked,
in the expected order:

299

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

04-01 11:47:21.437: D/ExplicitIntentsDemoActivity(1473): onCreate()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:47:21.827: D/ExplicitIntentsDemoActivity(1473): onResume()

If we click the button on the first activity to start up the second, we get:

04-01 11:47:54.776: D/ExplicitIntentsDemoActivity(1473): onPause()
04-01 11:47:54.877: D/OtherActivity(1473): onCreate()
04-01 11:47:54.947: D/OtherActivity(1473): onStart()
04-01 11:47:54.974: D/OtherActivity(1473): onResume()
04-01 11:47:55.347: D/ExplicitIntentsDemoActivity(1473): onStop()

Notice that our first activity is paused before the second activity starts up, and that
onStop() is delayed on the first activity until after the second activity has appeared.

If we press the BACK button on the second activity, returning to the first activity, we
see:

04-01 11:48:54.807: D/OtherActivity(1473): onPause()

04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onRestart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onStart()
04-01 11:48:54.857: D/ExplicitIntentsDemoActivity(1473): onResume()
04-01 11:48:55.257: D/OtherActivity(1473): onStop()

04-01 11:48:55.257: D/OtherActivity(1473): onDestroy()

Notice how, once again, going onto the screen happens in between onPause() and
onStop() of the activity leaving the screen. Also notice that onDestroy() is called
immediately after onStop(), because the activity was finished via the BACK button.

If we now press the HOME button, to bring the home screen activity to the
foreground, we see:
04-01 11:50:30.347: D/ExplicitIntentsDemoActivity(1473): onPause()

04-01 11:50:32.227: D/ExplicitIntentsDemoActivity(1473): onStop()

There is a delay between onPause() and onStop() as the home screen does its
display work, and there is no onDestroy(), because the application is still running

300

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

and nothing finished the activity. Eventually, the device will terminate our process,
and if that happens normally, we would see the onDestroy() LogCat message.

Recycling Activities

Let us suppose that we have three activities, named A, B, and C. A starts up an
instance of B based on some user input, and B later starts up an instance of C
through some more user input.

Our “activity stack” is now A-B-C, meaning that if we press BACK from C, we return
to B, and if we press BACK from B, we return to A.

Now, let’s suppose that from C, we wish to navigate back to A. For example, perhaps
the user pressed the icon on the left of our action bar, and we want to return to the
“home activity” as a result, and in our case that happens to be A. If C calls
startActivity(), specifying A, we wind up with an activity stack that is A-B-C-A.

That’s because starting an activity, by default, creates a new instance of that activity.
So, now we have two independent copies of A.

Sometimes, this is desired behavior. For example, we might have a single
ListActivity that is being used to “drill down” through a hierarchical data set, like
a directory tree. We might elect to keep starting instances of that same
ListActivity, but with different extras, to show each level of that hierarchy. In this
case, we would want independent instances of the activity, so the BACK button
behaves as the user might expect.

However, when we navigate to the “home activity”, we may not want a separate
instance of A.

How to address this depends a bit on what you want the activity stack to look like
after navigating to A.

If you want an activity stack that is B-C-A — so the existing copy of A is brought to
the foreground, but the instances of B and C are left alone — then you can add
FLAG_ACTIVITY_REORDER_TO_FRONT to your Intent used with startActivity():

Intent i=new Intent(this, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_REORDER_TO_FRONT);
startActivity(i);

301

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ACTIVITIES AND THEIR LIFECYCLES

If, instead, you want an activity stack that is just A — so if the user presses BACK,
they exit your application — then you would add two flags:
FLAG_ACTIVITY_CLEAR_TOP and FLAG_ACTIVITY_SINGLE_TOP:

Intent i=new Intent(this, HomeActivity.class);

i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.FLAG_ACTIVITY_SINGLE_TOP);
startActivity(i);

This will finish all activities in the stack between the current activity and the one
you are starting — in our case, finishing C and B.

302

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #8 - Setting Up An Activity

Of course, it would be nice if those “Help” and “About” menu choices that we added
in the previous tutorial actually did something.

In this tutorial, we will define another activity class, one that will be responsible for
displaying simple content like our help text and “about” details. And, we will arrange
to start up that activity when those action bar items are selected. The activity will
not actually display anything meaningful yet, as that will be the subject of the next
few tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also

need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project

as a library.

Step #1: Creating the Stub Activity Class

First, we need to define the Java class for our new activity, SimpleContentActivity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

303

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T7-ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #8 - SETTING UP AN ACTIVITY

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. That will bring up a dialog

box for defining the new class:

© New Java Class

Java Class =
Create a new Java class. @

Source folder: EmPubLite/src Browse...
Package: com.commonsware.empublite Browse...

Enclosing type:

Name: ||
Modifiers: @ public default
abstract final
Superclass: java.lang.Object Browse...
Interfaces: Add...

Which methed stubs would you like to create?
public static void main(String[] args)
Constructors from superclass
& Inherited abstract methods

Do youwant to add comments? (Configure templates and default value here)
Generate comments

@:.‘ Cancel

Figure 150: Eclipse New Class Activity

Fill in SimpleContentActivity in the “Name” field. Then, click the “Browse...” button
next to the “Superclass” field, and type in Sherlock in the field at the top of the

resulting dialog:

Subscribe to updates at https://commonsware.com

304

Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

@ superclass Selection

Choose a type: -

sherlock| @
| |

Matching items:

@A

@ sherlockDialogFragment

" sherlockExpandableListActivity
© sherlockFragment

©*" sherlockFragmentActivity

®" sherlockListActivity

® sherlockListFragment

@" sherlockPreferenceActivity

com.actionbarsherlock.app - /heme/mm...us/samples/EmPubLite/ABS/bin/abs.jar

'f_?:' Cancel | OK |

Figure 151: Eclipse Superclass Selection Dialog

Choose SherlockFragmentActivity from the list, and click “OK” to close up that
dialog. Then, click “Finish” to close up the new-class dialog. This will create your
new Java class, albeit with no methods. That is OK, as we do not need any methods
at this time.

Outside of Eclipse

Create a src/com/commonsware/empublite/SimpleContentActivity.java source
file, with the following content:

package com.commonsware.empublite;
import com.actionbarsherlock.app.SherlockFragmentActivity;
public class SimpleContentActivity extends SherlockFragmentActivity {

}

Step #2: Adding the Activity to the Manifest

If an activity was created in a forest and nobody was there to see it, does the activity
really exist?

305

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

Or, to be a bit less oblique, simply creating the activity class is insufficient for it to
be used. We also need to add an <activity> element to the manifest, so other parts
of our code can start up the activity.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Double-click on AndroidManifest.xml in your project, and click over to the
Application sub-tab. Scroll down to the “Application Nodes” list, then click the
“Add..” button adjacent to that list. Choose “Activity” from the list of available items,
and click “OK” to close up the dialog. This adds an empty activity entry in your
manifest:

BE®AR®O A
[A] The activity tag declares an android.app.Activity class that is

» (A] EmPubLiteActivity Add._. available as part of the package's application components,
[A) Activity implementing a part of the application's user interface.
Remove... Name* Browse...
Up Theme Browse...
Label Browse...

Figure 152: Manifest Application Nodes, With New Activity

Click the “Browse...” button to the right of the “Name” field. There will be a short
pause while Eclipse scans your project for subclasses of Activity. In a moment, a
list should appear, with SimpleContentActivity in it. Click on
SimpleContentActivity, then click the “OK” button to make this choice. At this
point, you can save your file (e.g., <Ctrl>-<S>).

Outside of Eclipse

Open up the AndroidManifest.xml file in an editor and add an <activity> element,
as a child of the <application> element, with an
android:name="SimpleContentActivity" attribute, to the file. The result should
resemble:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.empublite"

306

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="15"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="false"
android:xlargeScreens="true"/>

<application

android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock.Light.DarkActionBar"
android:uiOptions="splitActionBarWhenNarrow">
<activity

android:name="EmPubLiteActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name="SimpleContentActivity">
</activity>
</application>

</manifest>

Step #3: Launching Our Activity

Now that we have declared that the activity exists and can be used, we can start
using it.

Go into EmPubLiteActivity and modify onOptionsItemSelected() to add in some
logic in the R.id.about and R.1id.help branches, as shown below:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case android.R.id.home:
return(true);

case R.id.about:
Intent i=new Intent(this, SimpleContentActivity.class);
startActivity(i);

307

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #8 - SETTING UP AN ACTIVITY

return(true);

case R.id.help:
i=new Intent(this, SimpleContentActivity.class);
startActivity(i);

return(true);
h

return(super.onOptionsItemSelected(item));
}

In those two branches, we create an Intent, pointing at our new
SimpleContentActivity. Then, we call startActivity() on that Intent. Right now,
both help and about do the same thing — we will add some smarts to have them
load up different content later in this book.

You will need to add an import for android.content.Intent to get this to compile.
If you run this app in a device or emulator, and you choose either the Help or About
menu choices, what appears to happen is that the ProgressBar vanishes. In reality,

what happens is that our SimpleContentActivity appeared, but empty, as we have
not given it a full Ul yet.

In Our Next Episode...

... we will begin using fragments in our tutorial project.

308

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

The Tactics of Fragments

Fragments are an optional layer you can put between your activities and your
widgets, designed to help you reconfigure your activities to support screens both
large (e.g., tablets) and small (e.g., phones).

This chapter will cover basic uses of fragments, including supporting fragments on
pre-Android 3.0 devices.

The Six Questions

In the world of journalism, the basics of any news story consist of six questions, the
Five Ws and One H. Here, we will apply those six questions to help frame what we
are talking about with respect to fragments.

What?

Fragments are not activities, though they can be used by activities.

Fragments are not containers (i.e., subclasses of ViewGroup), though typically they
create a ViewGroup.

Rather, you should think of fragments as being units of Ul reuse. You define a
fragment, much like you might define an activity, with layouts and lifecycle methods
and so on. However, you can then host that fragment in one or several activities, as
needed.

Functionally, fragments are Java classes, extending from a base Fragment class. As we
will see, there are two versions of the Fragment class, one native to API Level 1 and
one supplied by the Android Support package.

309

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/Five_Ws
http://en.wikipedia.org/wiki/Five_Ws

THE TACTICS OF FRAGMENTS

Where??

Since fragments are Java classes, your fragments will reside in one of your
application’s Java packages. The simplest approach is to put them in the same Java
package that you used for your project overall and where your activities reside,
though you can refactor your Ul logic into other packages if needed.

Who?!?

Typically, you create fragment implementations yourself, then tell Android when to
use them. Some third-party Android library projects may ship fragment
implementations that you can reuse, if you so choose.

When?!!?

Some developers start adding fragments from close to the outset of application
development — that is the approach we will take in the tutorials. And, if you are
starting a new application from scratch, defining fragments early on is probably a
good idea. That being said, it is entirely possible to “retrofit” an existing Android
application to use fragments, though this may be a lot of work. And, it is entirely
possible to create Android applications without fragments at all.

Fragments were introduced with Android 3.0 (API Level 11, a.k.a., Honeycomb).

Ah, this is the big question. If we have managed to make it this far through the book
without fragments, and we do not necessarily need fragments to create Android
applications, what is the point? Why would we bother?

The primary rationale for fragments was to make it easier to support multiple screen
sizes.

Android started out supporting phones. Phones may vary in size, from tiny ones
with less than 3” diagonal screen size (e.g., Sony Ericsson X10 mini), to monsters that
are over 5” (e.g., Samsung Galaxy Note). However, those variations in screen size pale
in comparison to the differences between phones and tablets, or phones and TVs.

Some applications will simply expand to fill larger screen sizes. Many games will
take this approach, simply providing the user with bigger interactive elements,

310

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

bigger game boards, etc. The ever-popular Angry Birds game, for example, gives you
bigger birds.

However, another design approach is to consider a tablet screen to really be a
collection of phone screens, side by side.

Selecting an item Selecting an item

(updates Fragment B —l ‘ starts Activity B \l

Activity A contains Activity A contains Activity B contains
Fragment A and Fragment B Fragment A Fragment B

Figure 153: Tablets vs. Handsets (image courtesy of Android Open Source Project)

The user can access all of that functionality at once on a tablet, whereas they would
have to flip back and forth between separate screens on a phone.

For applications that can fit this design pattern, fragments allow you to support
phones and tablets from one code base. The fragments can be used by individual
activities on a phone, or they can be stitched together by a single activity for a
tablet.

Details on using fragments to support large screen sizes is a topic for a later chapter

in this book. This chapter is focused on the basic mechanics of setting up and using
fragments.

OMGOMGOMG, HOW?!?!??

WEell, answering that question is what the rest of this chapter is for, plus coverage of
more advanced uses of fragments elsewhere in this book.

Your First Fragment

In many ways, it is easier to explain fragments by looking at an implementation,
more so than trying to discuss them as abstract concepts. So, in this section, we will

31

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

take a look at the Fragments/Static sample project. This is a near-clone of the
Activities/Lifecycle sample project from the previous chapter. However, we have
converted the launcher activity from one that will host widgets directly itself to one
that will host a fragment, which in turn manages widgets.

The Project

We have two choices with fragments: use the native ones in API Level 11, or use a
backport supplied by the Android Support package. So this sample can work on
older versions of Android, we will use the Android Support package, adding it to the
project.

We also add in ActionBarSherlock. That is not strictly required to use fragments,
whether those are native API Level 11 fragments or are ones from the Android
Support package. However, you may want to have an action bar in addition to
fragments, in which case you would want to use ActionBarSherlock if you are using
the backported fragments implementation. Also, using fragments with
ActionBarSherlock requires some minor changes to your code, which this project
will illustrate.

The Fragment Layout

Our fragment is going to manage our Ul, so we have a res/layout/mainfrag.xml
layout file containing our Button:

<?xml version="1.0" encoding="utf-8"?>

<Button xmlns:android="http://schemas.android.com/apk/res/android”
android:id="@+id/showOther™
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/hello"
android:textSize="20sp"/>

Note, though, that we do not use the android:onClick attribute. We will explain
why we dropped that attribute from the previous editions of this sample shortly.

The Fragment Class

The project has a ContentFragment class that will use this layout and handle the
Button. This class extends SherlockFragment — the Fragment implementation from
ActionBarSherlock, which itself inherits from android. support.v4.app.Fragment

312

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Static
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
http://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle

THE TACTICS OF FRAGMENTS

from the Android Support package. If you wish to use the native API Level n
fragments, you would inherit from android.app.Fragment instead.

As with activities, there is no constructor on a typical Fragment subclass. The
primary method you override, though, is not onCreate() (though, as we will see
later in this chapter, that is possible). Instead, the primary method to override is
onCreateView(), which is responsible for returning the Ul to be displayed for this
fragment:

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.mainfrag, container, false);

result.findViewById(R.id.showOther).setOnClickListener(this);

return(result);
}

We are passed a LayoutInflater that we can use for inflating a layout file, the
ViewGroup that will eventually hold anything we inflate, and the Bundle that was
passed to the activity’s onCreate() method. While we are used to framework classes
loading our layout resources for us, we can “inflate” a layout resource at any time
using a LayoutInflater. This process reads in the XML, parses it, walks the element
tree, creates Java objects for each of the elements, and stitches the results together
into a parent-child relationship.

Here, we inflate res/layout/mainfrag.xml, telling Android that its contents will
eventually go into the ViewGroup but not to add it right away. While there are
simpler flavors of the inflate() method on LayoutInflater, this one is required in
case the ViewGroup happens to be a Relativelayout, so we can process all of the
positioning and sizing rules appropriately.

We also use findviewById() to find our Button widget and tell it that we, the
fragment, are its OnClickListener. ContentFragment must then implement the
View.OnClickListener interface to make this work. We do this instead of
android:onClick to route the Button click events to the fragment, not the activity.

Since we implement the View.OnClickListener interface, we need the
corresponding onClick() method implementation:

@Override
public void onClick(View v) {

313

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

((StaticFragmentsDemoActivity)getActivity()).showOther(v);
}

Any fragment can call getActivity() to find the activity that hosts it. In our case,
the only activity that will possibly host this fragment is
StaticFragmentsDemoActivity, so we can cast the result of getActivity() to
StaticFragmentsDemoActivity, so that we can call methods on our activity. In
particular, we are telling the activity to show the other activity, by means of calling
the showOther () method that we saw in the original Activities/Lifecycle sample
(and will see again shortly).

That is really all that is needed for this fragment. However, ContentFragment also
overrides many other fragment lifecycle methods, and we will examine these later in

this chapter.

The Activity Layout

Originally, the res/layout/main.xml used by the activity was where we had our
Button widget. Now, the Button is handled by the fragment. Instead, our activity
layout needs to account for the fragment itself.

In this sample, we are going to use a static fragment. Static fragments are easy to add
to your application: just use the <fragment> element in a layout file, such as our
revised res/layout/main.xml:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:name="com.commonsware.android.sfrag.ContentFragment"/>

Here, we are declaring our Ul to be completely comprised of one fragment, whose
implementation (com.commonsware.android.sfrag.ContentFragment) is identified
by the android:name attribute on the <fragment> element. Instead of android:name,
you can use class, though most of the Android documentation has now switched
over to android:name.

Eclipse users can drag a fragment out of the “Layouts” section of the graphical editor
tool palette, if desired, rather than setting up the <fragment> element directly in the
XML.

314

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

The Activity Class

StaticFragmentsDemoActivity — our new launcher activity — looks identical to
the previous version, with the exception of the class name:

package com.commonsware.android.sfrag;

import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class StaticFragmentsDemoActivity extends
LifecycleLoggingActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
}

public void showOther(View v) {
Intent other=new Intent(this, OtherActivity.class);

other.putExtra(0therActivity.EXTRA_MESSAGE,
getString(R.string.other));
startActivity(other);
}
}

However, there is one change hidden in the new LifecycleLoggingActivity. We no
longer inherit from Activity, but instead inherit from SherlockFragmentActivity:

package com.commonsware.android.sfrag;

import android.os.Bundle;
import android.util.Log;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class LifecyclelLoggingActivity extends SherlockFragmentActivity {

There are three primary possible base classes for your fragment-powered activities:

1. If you are using native API Level 11 fragments and action bar, you can inherit
from the ordinary Activity class as you normally would.

2. Ifyou are using the Android Support package for your fragments but are not
using ActionBarSherlock (e.g., you are skipping an action bar on pre-API
Level 11 devices), you would inherit from
android.support.v4.app.FragmentActivity. This is the fragment-capable
activity base class supplied by the Android Support package.

315

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

3. Ifyou are using ActionBarSherlock, inherit from
SherlockFragmentActivity.

The Result

Visually, there is no difference between this version and the previous one, except
that we now have an action bar:

% wl B 1053

¢’ Static Fragment Demo

I am the first activity!

Figure 154: A Static Fragment on Android 2.3.3

The Fragment Lifecycle Methods

Fragments have lifecycle methods, just like activities do. In fact, they support all the
same lifecycle methods as activities:

* onCreate()

* onStart() and onRestart()
* onResume()

* onPause()

* onStop()

* onDestroy()

316

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

By and large, the same rules apply for fragments as do for activities with respect to
these lifecycle methods (e.g., onDestroy() may not be called).

In addition to those and the onCreateView() method we examined earlier in this
chapter, there are four other lifecycle methods that you can elect to override if you
so choose.

onAttach() will be called first, even before onCreate(), letting you know that your
fragment has been attached to an activity. You are passed the Activity that will host
your fragment.

onActivityCreated() will be called after onCreate() and onCreateView(), to
indicate that the activity’s onCreate() has completed. If there is something that you
need to initialize in your fragment that depends upon the activity’s onCreate()
having completed its work, you can use onActivityCreated() for that initialization
work.

onDestroyView() is called before onDestroy(). This is the counterpart to
onCreateView() where you set up your UI. If there are things that you need to clean
up specific to your Ul, you might put that logic in onDestroyView().

onDetach() is called after onDestroy(), to let you know that your fragment has been
disassociated from its hosting activity.

Your First Dynamic Fragment

Static fragments are fairly simple, once you have the Fragment implementation: just
add the <fragment> element to where you want to have the fragment appear in your
activity’s layout.

That simplicity, though, does come with some costs. We will review some of those
limitations in the next chapter.

Those limitations can be overcome by the use of dynamic fragments. Rather than
indicating to Android that you wish to use a fragment by means of a <fragment>
element in a layout, you will use a FragmentTransaction to add a fragment at
runtime from your Java code.

With that in mind, take a look at the Fragments/Dynamic sample project.

317

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/Dynamic

THE TACTICS OF FRAGMENTS

This is the same project as the one for static fragments, except this time we will
adjust OtherActivity to use a dynamic fragment, specifically a ListFragment.

The ListFragment Class

ListFragment serves the same role for fragments as ListActivity does for activities.
It wraps up a ListView for convenient use. So, to have a more interesting
OtherActivity, we start with an OtherFragment that is a ListFragment, designed to
show our favorite 25 nonsense words as seen in previous examples.

However, since we are using ActionBarSherlock in this project, we need to use
SherlockListFragment, to ensure that we will work well with the replacement
action bar.

Just as a ListActivity does not need to call setContentView(), a ListFragment
does not need to override onCreateView(). By default, the entire fragment will be
comprised of a single ListView. And just as ListActivity hasa setListAdapter()
method to associate an Adapter with the ListView, so too does ListFragment:

package com.commonsware.android.dfrag;

import android.app.Activity;

import android.os.Bundle;

import android.util.lLog;

import android.widget.ArrayAdapter;

import com.actionbarsherlock.app.SherlockListFragment;

public class OtherFragment extends SherlockListFragment {

private static final String[] items= { "lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque™, "augue", "purus" };

@Override

public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);

setListAdapter(new ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1, items));
¥

We call setListAdapter() in onActivityCreated(). In principle, we could call it
any time after onCreateView() is processed, such as in onResume().

318

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

This class also overrides many fragment lifecycle methods, logging their results, akin
to our other Fragment and LifecyclelLoggingActivity.

The Activity Class

Now, OtherActivity no longer needs to load a layout — we have removed res/
layout/other.xml from the project entirely. Instead, we will use a
FragmentTransaction to add our fragment to the UI:

package com.commonsware.android.dfrag;
import android.os.Bundle;

public class OtherActivity extends LifecyclelLoggingActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if (getSupportFragmentManager().findFragmentById(android.R.id.content) ==

null) {
getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,
new OtherFragment()).commit();
¥
¥

¥

To work with a FragmentTransaction, you need the FragmentManager. This object
knows about all of the fragments that exist in your activity. If you are using the
native API Level 11 edition of fragments, you can get your FragmentManager by
calling getFragmentManager (). If you are using the Android Support package, as we
are here, you need to call getSupportFragmentManager () instead.

Given a FragmentManager, you can start a FragmentTransaction by calling
beginTransaction(), which returns the FragmentTransaction object.
FragmentTransaction operates on the builder pattern, so most methods on
FragmentTransaction return the FragmentTransaction itself, so you can chain a
series of method calls one after the next.

We call two methods on our FragmentTransaction: add() and commit(). The add()
method, as you might guess, indicates that we want to add a fragment to the UIl. We
supply the actual fragment object, in this case by creating a new OtherFragment. We
also need to indicate where in our layout we want this fragment to reside. Had we
loaded a layout, we could drop this fragment in any desired container. In our case,
since we did not load a layout, we supply android.R.id.content as the ID of the

319

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

container to hold our fragment’s View. Here, android.R.id.content identifies the
container into which the results of setContentView() would go — it is a container
supplied by Activity itself and serves as the top-most container for our content.

Just calling add() is insufficient. We then need to call commit() to make the
transaction actually happen.

You might be wondering why we are trying to find a fragment in our
FragmentManager before actually creating the fragment. We do that to help deal with
configuration changes, and we will be exploring that further in the next chapter.

The Result

Our OtherActivity looks identical to the Selection/List sample from an earlier
chapter, except that it sports the action bar courtesy of our ActionBarSherlock
implementation:

*@" Dynamic Fragment Demo

lorem

ipsum

dolor

sit

amet
consectetuer
adipiscing

elit

Figure 155: A Dynamic Fragment on Android 4.0.3

320

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

Fragments and the Action Bar

Fragments can add items to the action bar by calling setHasOptionsMenu(true)
from onActivityCreated() (or any earlier lifecycle method). This indicates to the
activity that it needs to call onCreateOptionsMenu() and onOptionsItemSelected()
on the fragment.

The Fragments/ActionBar sample application demonstrates this. This is the same as
the ActionBar/ActionBarDemo sample from the chapter on the action bar, just with
the activity converted into a dynamic fragment.

In onActivityCreated() of ActionBar fragment, we call setHasOptionsMenu(true):

@0verride
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);

setRetainInstance(true);
setHasOptionsMenu(true);

if (adapter == null) {
initAdapter();
s
ks

(we will discuss that setRetainInstance(true) call in a later chapter)

That will trigger our fragment’s onCreateOptionsMenu() and
onOptionsItemSelected() methods to be called at the appropriate time:

@Override
public void onCreateOptionsMenu(Menu menu, Menulnflater inflater) {
inflater.inflate(R.menu.actions, menu);

configureActionItem(menu);

super.onCreateOptionsMenu(menu, inflater);

}

@0verride
public boolean onOptionsItemSelected(MenuItem item) {
if (item.getItemId() == R.id.reset) {
initAdapter();
return(true);

}

return(super.onOptionsItemSelected(item));

}

321

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/Fragments/ActionBar

THE TACTICS OF FRAGMENTS

Here, we initialize our action bar from the R.menu.actions menu XML resource,
including setting up our EditText widget, plus the logic to respond to the reset
action overflow item.

Our activity does not need to do anything special to allow the fragment to
contribute to the action bar — it just sets up the dynamic fragment:

package com.commonsware.android.abf;

import android.os.Bundle;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class ActionBarFragmentActivity extends SherlockFragmentActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if
(getSupportFragmentManager().findFragmentById(android.R.id.content)==null) {
getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,
new ActionBarFragment()).commit();

Fragments Within Fragments: Just Say “Maybe”

Historically, one major limitation with fragments is that they could not contain
other fragments. In most cases, this does not pose a major problem. However, there
will be times when you might trip over this limitation, such as when using a
ViewPager, as will be described in a later chapter.

Android 4.2 — and a new edition of the Android Support package also released in
November 2012 — added support for nested fragments. Whereas an activity works
with fragments via a FragmentManager obtained via getFragmentManager () or
getSupportFragmentManager (), fragments can work with nested fragments via a call
to getChildFragmentManager ().

However, Android 3.0 through 4.1 have a version of fragments that does not have
getChildFragmentManager (). Hence, you have two options:

1. Use the Android Support package’s backport of fragments, until such time as
you can drop support for Android 4.1 and earlier (perhaps 2015), or
2. Do not use nested fragments for the time being.

322

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

THE TACTICS OF FRAGMENTS

We will see how getChildFragmentManager () works in the chapter on ViewPager.

Fragments and Multiple Activities

A fragment should handle functionality purely within the fragment itself. Anything
outside the fragment should be the responsibility of the calling activity. For example,
if the user taps on an item in a ListFragment, and the effects of that event might go
beyond what is inside the ListFragment itself, the ListFragment should forward the
event to the hosting activity, so it can perhaps perform additional steps (e.g., launch
an activity, update another fragment hosted by the activity).

As we will see in a later chapter, it is entirely possible — perhaps even likely — that
some of our fragments will be hosted by multiple different activities. For example,
we might have a fragment that is hosted in one case by an activity designed for
larger screens (e.g., tablets) and in another case by an activity designed for smaller
screens (e.g., phones).

In these cases, the fragment does not know at compile time which activity class will
be hosting it at runtime. For those cases, you have two major options:

1. Have the activities implement a common interface, and have the fragment
cast the result of calling getActivity() to that interface, so it can call
methods on the hosting activity without knowing its exact implementation.

2. Have the activities supply a listener object, with a common interface, to the
fragment via a setter, and have the fragment use that listener for raising
events and so on.

We will see much more on this subject when we get into large-screen strategies in a
later chapter.

323

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #9 - Starting Our Fragments

Much of the content of a digital book to be viewed in EmPubLite will be in the form
of HTML and related assets (CSS, images, etc.). Hence, we will eventually need to
render our content in a WebView widget, for best results with semi-arbitrary HTML
content.

To do this, we will set up fragments for the bits of content:

* each chapter
+ other material, like our “help” and “about” pages

Right now, we will focus on just setting up some of the basic classes for these
fragments — we will load them up with content and display them over the next few
tutorials.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also

need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project

as a library.

Step #1: Copy In WebViewFragment

Android has, as of Android 3.0, a WebViewFragment class. Just as ListFragment wraps
a ListViewin a Fragment, WebViewFragment wraps a WebView in a Fragment.

325

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T8-Activities
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T9-Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #9 - STARTING OUR FRAGMENTS

However, for unclear reasons, WebViewFragment was not put in the Android Support
package. Nor does ActionBarSherlock contain a SherlockWebViewFragment.

Fortunately, Android is open source.

So, we will incorporate a slightly-modified version of the open source
WebViewFragment into our application, to use as the basis for our fragments showing
book content.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in WebViewFragment in
the “Name” field. Then, click the “Browse...” button next to the “Superclass” field and
find SherlockFragment to set as the superclass. Click “Finish” on the new-class
dialog to create the mostly-empty WebViewFragment.

Then, with the newly-created WebViewFragment open in the editor, replace its entire
contents with the following:

N
*

Copyright (C) 2010 The Android Open Source Project
Portions Copyright (c) 2012 CommonsWare, LLC

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

274

% % Gk R % Gk R % Ok O % % %

//package android.webkit,
package com.commonsware.empublite;

import android.annotation.TargetApi;
import android.os.Build;

326

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #9 - STARTING OUR FRAGMENTS

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.webkit.WebView;

import com.actionbarsherlock.app.SherlockFragment;

/7(-7(-
* A fragment that displays a WebView.
* <p>
* The WebView is automatically paused or resumed when the
* Fragment 1s paused or resumed.
7
public class WebViewFragment extends SherlockFragment {
private WebView mWebView;
private boolean mIsWebViewAvailable;

public WebViewFragment() {
}

/7(-7(-
* Called to instantiate the view. Creates and returns the
* WebView.
*/
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
if (mWebView != null) {
mWebView.destroy();
}

mWebView=new WebView(getActivity());
mIsWebViewAvailable=true;
return mwWebView;

}

/7(-7(-
* Called when the fragment is visible to the user and
* actively running. Resumes the WebView.
7
@TargetApi(11)
@Override
public void onPause() {
super.onPause();

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mwWebView.onPause();

¥
b

/7(-7(-
* Called when the fragment is no longer resumed. Pauses
* the WebView.

327

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #9 - STARTING OUR FRAGMENTS

*/
@TargetApi(11)
@Override
public void onResume() {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
mwWebView.onResume();
}

super.onResume();
}

/7(-7(-
* Called when the WebView has been detached from the
* fragment. The WebView is no longer available after this
* time.
*/
@Override
public void onDestroyView() {
mIsWebViewAvailable=false;
super.onDestroyView();
}

/7(-7(-
* Called when the fragment is no longer in use. Destroys
* the internal state of the WebView.
*/
@Override
public void onDestroy() {
if (mWebView != null) {
mWebView.destroy();
mWebView=null;

}
super.onDestroy();

}

/7(-7(-
* Gets the WebView.
*/
public WebView getWebView() {
return mIsWebViewAvailable ? mWebView : null;
}
}

Outside of Eclipse

Create a src/com/commonsware/empublite/WebViewFragment.java source file, with
the content shown in the code listing above.

328

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #9 - STARTING OUR FRAGMENTS

Step #2: Examining WebViewFragment

The implementation of WebViewFragment we just created is almost identical to the
one you will find in the Android open source project. Here are the highlights:

+ onCreateView(), when first run, will create a new WebView object via its
constructor, holding onto it as mWebView. onCreateView() also has an
optimization to speed things up in situations such as when the screen is
rotated, but the details of this are beyond the scope of this chapter.

* onPause() and onResume() invoke their corresponding methods on the
WebView object. However, onPause() and onResume() were only added to the
Android SDK with API Level 11. Since we want to use WebViewFragment on
older devices, we use some tricks to make sure we only call onPause() and
onResume() on the WebView when we are running on API Level 11 or higher.
We will discuss the particular techniques shown here in an upcoming
chapter on backwards compatibility.

+ onDestroyView() sets a flag to indicate that we should no longer be using
the WebView — this flag is used by the getWebView() method that provides
the WebView to subclasses of WebViewFragment.

+ onDestroy() calls destroy() on the WebView, to proactively clean up some
memory that it holds

Also, please forgive the erroneous JavaDoc comments for the onPause() and
onResume () methods, which are flipped. That is the way the code appears in the
Android Open Source Project, and those flaws were left intact in the backport of this
class.

Step #3: Creating AbstractContentFragment

WebViewFragment is nice, but it is mostly just a manager of various lifecycle
behaviors. We need to further customize the way we use that webView widget, so we
will add those refinements in another class, AbstractContentFragment.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

329

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #9 - STARTING OUR FRAGMENTS

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in
AbstractContentFragment in the “Name” field. Then, click the “Browse...” button
next to the “Superclass” field and find WebViewFragment to set as the superclass —
but make sure you choose the one in the com.commonsware.empublite package, not
the one in android.webkit. Then, click “Finish” on the new-class dialog to create the
AbstractContentFragment class.

Then, with the newly-created AbstractContentFragment open in the editor, replace
its entire contents with the following:

package com.commonsware.empublite;

import android.annotation.SuppressLint;
import android.os.Bundle;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

abstract public class AbstractContentFragment extends WebViewFragment {
abstract String getPage();

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setRetainInstance(true);

s

@SuppressLint("SetJavaScriptEnabled")
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View result=
super.onCreateView(inflater, container, savedInstanceState);

getWebView().getSettings().setJavaScriptEnabled(true);
getWebView().getSettings().setSupportZoom(true);
getWebView().getSettings().setBuiltInZoomControls(true);
getWebView().loadUrl(getPage());

return(result);

330

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #9 - STARTING OUR FRAGMENTS

Outside of Eclipse

Create a src/com/commonsware/empublite/AbstractContentFragment.java source
file, with the content shown in the code listing above.

Step #4: Examining AbstractContentFragment

AbstractContentFragment has but two methods:

+ onCreate(), where we call setRetainInstance(true) — the utility of this
will be examined in greater detail in an upcoming chapter.

* onCreateView(), where we chain to the superclass (to have it create the
WebView), then configure it to accept JavaScript and support zoom
operations. We then have it load some content, retrieved in the form of a
URL from an abstract getPage() method. Finally, we return what the
superclass returned from onCreateview() — effectively, we are simply
splicing in our own configuration logic.

In Our Next Episode...

... we will set up horizontal swiping of book chapters in our tutorial project.

331

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Swiping with ViewPager

Android, over the years, has put increasing emphasis on Ul design and having a fluid
and consistent user experience (UX). While some mobile operating systems take
“the stick” approach to UX (forcing you to abide by certain patterns or be forbidden
to distribute your app), Android takes “the carrot” approach, offering widgets and
containers that embody particular patterns that they espouse. The action bar, for
example, grew out of this and is now the backbone of many Android activities.

Another example is the ViewPager, which allows the user to swipe horizontally to
move between different portions of your content. However, ViewPager is not
distributed as part of the firmware, but rather via the Android Support package,
alongside the backport of the fragments framework. Hence, even though ViewPager
is a relatively new widget, you can use it on Android 1.6 and up.

This chapter will focus on where you should apply a ViewPager and how to set one
up.

Swiping Design Patterns

In 2012, Google released the Android Design Web site as an adjunct to the existing
developer documentation. This site outlines many aspects of Ul and UX design for
Android, from recommended sizing to maintaining platform fidelity instead of
mimicking another mobile operating system.

They have a page dedicated to “swipe views”, where they outline the scenario for
using horizontal swiping: moving from peer to peer in sequence in a collection of

content:

+ Email messages in a folder or label

333

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/design/index.html
http://developer.android.com/design/patterns/swipe-views.html

SWIPING WITH VIEWPAGER

+ Chapters in an ebook
« Tabs in a collection of tabs

The primary way to implement this pattern in Android is the ViewPager.

Paging Fragments

The simplest way to use a ViewPager is to have it page fragments in and out of the
screen based on user swipes. Android has some built-in support for using fragments
inside of ViewPager that make it fairly easy to use.

To see this in action, this section will examine the ViewPager/Fragments sample
project.

The Prerequisites

The project has a dependency on the Android Support package, in order to be able
to use ViewPager. And, as do most of this book’s samples from this point forward, it
also depends upon ActionBarSherlock, so we can have an action bar while still
supporting Android 2.1 and beyond.

The Activity Layout

The layout used by the activity just contains the ViewPager. Note that since
ViewPager is not in the android.widget package, we need to fully-qualify the class
name in the element:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/
res/android"
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent">
</android.support.v4.view.ViewPager>

The Activity

As you see, the ViewPagerFragmentDemoActivity itself is blissfully small:

package com.commonsware.android.pager;

import android.os.Bundle;
import android.support.v4.view.ViewPager;

334

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Fragments

SWIPING WITH VIEWPAGER

import com.actionbarsherlock.app.SherlockFragmentActivity;

public class ViewPagerFragmentDemoActivity extends
SherlockFragmentActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

ViewPager pager=(ViewPager)findViewById(R.id.pager);

pager.setAdapter(new SampleAdapter (getSupportFragmentManager()));
¥
¥

All we do is load the layout, retrieve the ViewPager via findviewById(), and provide
a SampleAdapter to the ViewPager via setAdapter().

The PagerAdapter

AdapterView classes, like ListView, work with Adapter objects, like ArrayAdapter.
ViewPager, however, is not an AdapterView, despite adopting many of the patterns
from AdapterView. ViewPager, therefore, does not work with an Adapter, but instead
with a PagerAdapter, which has a slightly different API.

Android ships two PagerAdapter implementations in the Android Support package:
FragmentPagerAdapter and FragmentStatePagerAdapter. The former is good for
small numbers of fragments, where holding them all in memory at once will work.
FragmentStatePagerAdapter is for cases where holding all possible fragments to be
viewed in the ViewPager would be too much, where Android will discard fragments
as needed and hold onto the (presumably smaller) states of those fragments instead.

For the moment, we will focus on FragmentPagerAdapter.

Our SampleAdapter inherits from FragmentPagerAdapter and implements two
required callback methods:

+ getCount(), to indicate how many pages will be in the ViewPager, and
+ getItem(), which returns a Fragment for a particular position within the
ViewPager (akin to getView() in a classic Adapter)

package com.commonsware.android.pager;

import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager ;
import android.support.v4.app.FragmentPagerAdapter;

335

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

public class SampleAdapter extends FragmentPagerAdapter {
public SampleAdapter (FragmentManager mgr) {
super(mgr);
¥

@0verride

public int getCount() {
return(10);

}

@Override
public Fragment getItem(int position) {
return(EditorFragment.newInstance(position));

b
b

Here, we say that there will be 10 pages total, each of which will be an instance of an
EditorFragment.

The Fragment

EditorFragment will host a full-screen EditText widget, for the user to enter in a
chunk of prose, as is defined in the res/layout/editor.xml resource:

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/editor"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:inputType="textMultilLine"
android:gravity="1left|top"
/>

We want to pass the position number of the fragment within the ViewPager, simply
to customize the hint displayed in the EditText before the user types in anything.
With normal Java objects, you might pass this in via the constructor, but it is not a
good idea to implement a constructor on a Fragment. Instead, the recipe is to create
a static factory method (typically named newInstance()) that will create the

Fragment and provide the parameters to it by updating the fragment’s “arguments”
(a Bundle):

static EditorFragment newlInstance(int position) {
EditorFragment frag=new EditorFragment();
Bundle args=new Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

336

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

return(frag);
}

In onCreateView() we inflate our R.layout.editor resource, get the EditText from
it, get our position from our arguments, format a hint containing the position (using
a string resource), and setting the hint on the EditText:

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.editor, container, false);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(String.format(getString(R.string.hint), position + 1));

return(result);

The Result

When initially launched, the application shows the first fragment:

*@ Pager Fragment Demo

[Editor #1

Figure 156: A ViewPager on Android 4.0.3

337

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

However, you can horizontally swipe to get to the next fragment:

ager Fragment Demo

he Emergency Editor #2
m|
P N

Figure 157: A ViewPager in Use on Android 4.0.3

Swiping works in both directions, so long as there is another fragment in your
desired direction.

Paging Other Stuff

You do not have to use fragments inside a ViewPager. A regular PagerAdapter
actually hands View objects to the ViewPager. The supplied fragment-based
PagerAdapter implementations get the View from a fragment and use that, but you
are welcome to create your own PagerAdapter that eschews fragments. The primary
reason for this would be to allow you to have the ViewPager itself be inside a
fragment.

Indicators

By itself, there is no visual indicator of where the user is within the set of pages
contained in the ViewPager. In many instances, this will be perfectly fine, as the
pages themselves will contain cues as to position. However, even in those cases, it

338

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

may not be completely obvious to the user how many pages there are, which
directions for swiping are active, etc.

Hence, you may wish to attach some other widget to the ViewPager that can help
clue the user into where they are within “page space”.

PagerTitleStrip and PagerTabStrip

The primary built-in indicator options available to use are PagerTitleStrip and
PagerTabStrip. As the name suggests, PagerTitleStrip is a strip that shows titles of
your pages. PagerTabStrip is much the same, but the titles are formatted somewhat
like tabs, and they are clickable (switching you to the clicked-upon page), whereas
PagerTitleStrip is non-interactive.

To use either of these, you first must add it to your layout, inside your ViewPager, as
shown in the res/layout/main.xml resource of the ViewPager/Indicator sample
project, a clone of the ViewPager/Fragments project that adds a PagerTabStrip to
our Ul:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager xmlns:android="http://schemas.android.com/apk/
res/android”

android:id="@+id/pager"

android:layout_width="match_parent"

android:layout_height="match_parent">

<android.support.v4.view.PagerTabStrip
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>

</android.support.v4.view.ViewPager>

Here, we set the android: layout_gravity of the PagerTabStrip to top, so it appears
above the pages. You could similarly set it to bottom to have it appear below the

pages.

Our SampleAdapter needs another method: getPageTitle(), which will return the
title to display in the PagerTabStrip for a given position:

package com.commonsware.android.pager2;

import android.content.Context;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentManager ;
import android.support.v4.app.FragmentPagerAdapter;

339

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Indicator

SWIPING WITH VIEWPAGER

public class SampleAdapter extends FragmentPagerAdapter {
Context ctxt=null;

public SampleAdapter(Context ctxt, FragmentManager mgr) {
super(mgr);
this.ctxt=ctxt;

¥

@0verride

public int getCount() {
return(10);

}

@Override

public Fragment getItem(int position) {
return(EditorFragment.newInstance(position));

}

@Override
public String getPageTitle(int position) {
return(EditorFragment.getTitle(ctxt, position));
}
}

Here, we call a static getTitle() method on EditorFragment. That is a refactored
bit of code from our former onCreateView() method, where we create the string for
the hint — we will use the hint text as our page title:

package com.commonsware.android.pager2;

import android.content.Context;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.EditText;

import com.actionbarsherlock.app.SherlockFragment;

public class EditorFragment extends SherlockFragment {
private static final String KEY_POSITION="position";

static EditorFragment newInstance(int position) {
EditorFragment frag=new EditorFragment();
Bundle args=new Bundle();

args.putInt(KEY_POSITION, position);
frag.setArguments(args);

return(frag);
}

static String getTitle(Context ctxt, int position) {

340

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

return(String.format(ctxt.getString(R.string.hint), position + 1));
}

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.editor, container, false);
EditText editor=(EditText)result.findViewById(R.id.editor);
int position=getArguments().getInt(KEY_POSITION, -1);

editor.setHint(getTitle(getActivity(), position));

return(result);

*g’ Pager Fragment Demo

ditor #7 Editor #8 Editor #9

Editor #8

Figure 158: A ViewPager and PagerTabStrip on Android 4.0.3

Note that PagerTabStrip was added after the original version of the Android
Support package. If you are encountering problems finding PagerTabStrip, you may
be using an older copy of the Android Support package (e.g., one that may have
shipped with ActionBarSherlock).

341

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

Third-Party Indicators

If you want something else for your indicators, besides a strip of page titles, you
might wish to check out the ViewPagerIndicator library, brought to you by the
author of ActionBarSherlock. This library contains a series of widgets that serve in
the same role as PagerTitleStrip, with different looks. We will look at one such
indicator, TabPageIndicator, later in this book.

Fragment-Free Paging

What if you want ViewPager to page things other than fragments?

The solution is to not use FragmentPagerAdapter or FragmentStatePagerAdapter,
but instead create your own implementation of the PagerAdapter interface, one that
avoids the use of fragments.

We will see an example of this in a later chapter, where we also examine how to have
more than one page of the ViewPager be visible at a time.

Hosting ViewPager in a Fragment

Classically, the primary restriction on ViewPager was that you could not both have
ViewPager be in a fragment and have ViewPager host fragments as its pages. You
could do one or the other, but not both simultaneously.

As noted in a previous chapter, Android 4.2 natively, and the latest Android Support
package backport, does support nested fragments. Now you can have ViewPager be
in a fragment and host fragments as its pages. However, it requires a minor
modification to the way we set up our PagerAdapter, as is illustrated in the
ViewPager/Nested sample project. This is the same project as ViewPager/Indicator,
with the twist that the pages are fragments and the ViewPager is inside a fragment.

Our activity now implements the standard add-the-fragment-if-it-does-not-exist
pattern that we have seen previously:

package com.commonsware.android.pagernested;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class ViewPagerIndicatorActivity extends FragmentActivity {

342

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://viewpagerindicator.com/
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Nested
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/Nested

SWIPING WITH VIEWPAGER

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if (getSupportFragmentManager().findFragmentById(android.R.id.content) ==

null) {
getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,
new PagerFragment()).commit();
}
}

}

This loads a PagerFragment, which contains most of the logic from our original
activity:

package com.commonsware.android.pagernested;

import android.os.Bundle;

import android.support.v4.app.Fragment;
import android.support.v4.view.PagerAdapter;
import android.support.v4.view.ViewPager;
import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class PagerFragment extends Fragment {
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.pager, container, false);
ViewPager pager=(ViewPager)result.findViewById(R.id.pager);

pager.setAdapter(buildAdapter());

return(result);
}

private PagerAdapter buildAdapter() {
return(new SampleAdapter(getActivity(), getChildFragmentManager()));
}
}

The biggest difference is that our call to the constructor of SampleAdapter no longer
uses getSupportFragmentManager (). Instead, it uses getChildFragmentManager ().
This allows SampleAdapter to use fragments hosted by PagerFragment, rather than
ones hosted by the activity as a whole.

No other code changes are required, and from the user’s standpoint, there is no
visible difference.

343

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

Pages and the Action Bar

Fragments that are pages inside a ViewPager can participate in the action bar,
supplying items to appear as toolbar buttons, in the overflow menu, etc. This is not

significantly different than how any fragment participates in the action bar:

+ (all setHasOptionsMenu() early in the fragment lifecycle (e.g.,
onCreateView()) to state that the fragment wishes to contribute to the
action bar contents

« Override onCreateOptionsMenu() and onOptionsItemSelected(), much as
you would with an activity

ViewPager and FragmentManager will manage the contents of the action bar, based
upon the currently-visible page. That page’s contributions will appear in the action
bar, then will be removed when the user switches to some other page.

To see this in action, take a look at the ViewPager/ActionBar sample project. This is
the same as the ViewPager/Indicator project from before, except:

*+ In onCreateView(), for even-numbered page positions (o, 2, etc.), we call
setHasOptionsMenu(true):

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
View result=inflater.inflate(R.layout.editor, container, false);
EditText editor=(EditText)result.findViewById(R.id.editor);

position=getArguments().getInt(KEY_POSITION, -1);
editor.setHint(getTitle(getActivity(), position));

if ((position % 2)==0) {
setHasOptionsMenu(true);

}

return(result);

* In onCreateOptionsMenu(), we inflate a res/menu/actions.xml menu
resource:

@Override
public void onCreateOptionsMenu(Menu menu, Menulnflater inflater) {
inflater.inflate(R.menu.actions, menu);

344

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/ActionBar
http://github.com/commonsguy/cw-omnibus/tree/master/ViewPager/ActionBar

SWIPING WITH VIEWPAGER

super.onCreateOptionsMenu(menu, inflater);

}

Normally, we would also implement onOptionsItemSelected(), to find out when
the action bar item was tapped, though this is skipped in this sample.

The result is that when we have an even-numbered page position — equating to an
odd-numbered title and hint — we have items in the action bar:

@ 11:46

»n .
~@ Pager Action Bar Demo @ SOMETHING

Editor #1 Editor #2

Editor #1

Figure 159: A ViewPager, PagerTabStrip, and Action Bar Item on Android 4.1

...but as soon as we swipe to an odd-numbered page position — equating to an even-
numbered title and hint — our action bar item is removed, as that fragment did not
call setHasOptionsMenu(true):

345

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

*@” Pager Action Bar Demo

Editor #1 Editor #2 Editor #3

Editor #2

Figure 160: A ViewPager and PagerTabStrip, Sans Action Bar Item on Android 4.1

ViewPagers and Scrollable Contents

There are other things in Android that can be scrolled horizontally, besides a
ViewPager:

* HorizontalScrollView

* WebView, for content that is wider than the width of the screen
* Gallery

* maps from many mapping engines, such as Google Maps

* various third-party widgets

The challenge then comes in terms of dealing with horizontal swipe events. The
ideal situation is for you to be able to swipe horizontally on the material inside the
page, until you hit some edge (e.g., end of the HorizontalScrollView), then have
swipe events move you to the adjacent page.

You can assist ViewPager in handling this scenario by subclassing it and overriding
the canScroll() method. This will be called on a horizontal swipe, and it is up to
you to indicate if the contents can be scrolled (returning true) or not (returning
false). If the built-in logic is insufficient, tailoring canScroll() to your particular
needs can help.

346

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

SWIPING WITH VIEWPAGER

We will see an example of this later in the book, when we put some maps into a
ViewPager.

347

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Tutorial #10 - Rigging Up a ViewPager

A ViewPager is a fairly slick way to present a digital book. You can have individual
chapters be accessed by horizontal swiping, with the prose within a chapter accessed
by scrolling vertically. While not offering “page-at-a-time” models used by some
book reader software, it is much simpler to set up.

So, that’s the approach we will use with EmPubLite. Which means, among other
things, that we need to add a ViewPager to the app.

This is a continuation of the work we did in the previous tutorial.

You can find the results of the previous tutorial and the results of this tutorial in the
book’s GitHub repository.

Note that if you are importing the previous code to begin work here, you will also
need the copy of ActionBarSherlock in this book’s GitHub repository, and to make
sure that your imported EmPubLite project references the ActionBarSherlock project
as a library.

Step #1: Add a ViewPager to the Layout

Right now, the layout for EmPubLiteActivity just has a ProgressBar. We need to
augment that to have our ViewPager as well, set up such that we can show either the
ProgressBar (while we load the book) or the ViewPager as needed.

Unfortunately, this is the sort of change that the Eclipse drag-and-drop GUI building
is not particularly well-suited for. Hence, even Eclipse users are going to have to dive
into the layout XML this time.

349

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T9-Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite/T10-ViewPager
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
http://github.com/commonsguy/cw-omnibus/tree/master/EmPubLite
https://github.com/commonsguy/cw-omnibus/tree/master/external/ActionBarSherlock

TUTORIAL #10 - RIGGING UP A VIEWPAGER

Open up res/layout/main.xml (and, if you are using Eclipse, switch to the
“main.xml” sub-tab of the editor, to see the raw XML). As a child of the
<Relativelayout>, after the <ProgressBar>, add a
<android.support.v4.view.ViewPager> element as follows:

<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>

This adds the ViewPager, also having it fill the parent, but with the visibility initially
set to gone, meaning that the user will not see it.

The entire layout should now resemble:

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".EmPubLiteActivity">

<ProgressBar
android:id="@+id/progressBar1"
style="?android:attr/progressBarStylelLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"/>

<android.support.v4.view.ViewPager
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:visibility="gone"/>

</RelativelLayout>

Step #2: Obtaining Our ViewPager

We will be referencing the ViewPager from a few places in the activity, so we may as
well get a reference to it and hold onto it in a data member, for easy access.

Add a data member to EmPubLiteActivity:

private ViewPager pager=null;

350

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #10 - RIGGING UP A VIEWPAGER

You will also need to add an import for android. support.v4.view.ViewPager to get
this to compile.

Then, in onCreate(), after the call to setContentView(R.layout.main), use
findViewById() to retrieve the ViewPager and store it in the pager data member:

pager=(ViewPager)findViewById(R.1id.pager);

If you are using Eclipse, you will see a warning that pager is not used - do not worry,
as we will be using it soon enough.

Step #3: Creating a ContentsAdapter

A ViewPager needs a PagerAdapter to populate its content, much like a ListView
needs a ListAdapter. We cannot completely construct a PagerAdapter yet, as we
still need to learn how to load up our book content from files. But, we can get part-
way towards having a useful PagerAdapter now.

If you wish to make this change using Eclipse’s wizards and tools, follow the
instructions in the “Eclipse” section below. Otherwise, follow the instructions in the
“Outside of Eclipse” section (appears after the “Eclipse” section).

Eclipse

Right click over the com.commonsware.empublite package in the src/ folder of your
project, and choose New > Class from the context menu. Fill in ContentsAdapter in
the “Name” field. Then, click the “Browse...” button next to the “Superclass” field and
find FragmentStatePagerAdapter to set as the superclass. Then, click “Finish” on the
new-class dialog to create the ContentsAdapter class.

This will immediately show an error in the Eclipse editor, as
FragmentStatePagerAdapter requires a public constructor, and we do not have one
yet. So, add the following constructor implementation to the class:

public ContentsAdapter(SherlockFragmentActivity ctxt) {
super(ctxt.getSupportFragmentManager());
¥

This simply chains to the superclass, supplying the requisite FragmentManager
instance, culled from our parent activity.

351

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #10 - RIGGING UP A VIEWPAGER

You will need to import com.actionbarsherlock.app.SherlockFragmentActivity
for this to compile.

Outside of Eclipse

Create a src/com/commonsware/empublite/ContentsAdapter.java source file, with
the following content:

package com.commonsware.empublite;

import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentStatePagerAdapter;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class ContentsAdapter extends FragmentStatePagerAdapter {
public ContentsAdapter(SherlockFragmentActivity ctxt) {
super(ctxt.getSupportFragmentManager());
b

@Override

public Fragment getItem(int position) {
return null;

b

@Override
public int getCount() {
return O;
¥
¥

Step #4: Setting Up the ViewPager

Let’s add a few more lines to the bottom of onCreate() of EmPubLiteActivity, to set
up ContentsAdapter and attach it to the ViewPager:

adapter=new ContentsAdapter(this);
pager.setAdapter(adapter);
findViewById(R.id.progressBar1).setVisibility(View.GONE);
findViewById(R.id.pager).setVisibility(View.VISIBLE);

This will require a new data member:
private ContentsAdapter adapter=null;

It will also require an import for android.view.View.

352

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

TUTORIAL #10 - RIGGING UP A VIEWPAGER

What we are doing is creating our ContentsAdapter instance, associating it with the
ViewPager, and toggling the visibility of the ProgressBar (making it GONE) and the
ViewPager (making it VISIBLE).

The net effect, if you run this modified version of the app, is that we no longer see
the ProgressBar. Instead, we have a big blank area, taken up by our empty
ViewPager:

¢’ EmPub Lite

Figure 161: EmPubLite, With Empty ViewPager

The vViewPager is empty simply because our ContentsAdapter returned 0 from
getCount(), indicating that there are no pages to be displayed.

In Our Next Episode...

... we will finish our “help” and “about” screens in our tutorial project.

353

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Resource Sets and Configurations

Devices sometimes change while users are using them, in ways that our application
will care about:

* The user might rotate the screen from portrait to landscape, or vice versa

* The user might put the device in a car or desk dock, or remove it from such a
dock

* The user might put the device in a “netbook dock” that adds a full QWERTY
keyboard, or remove it from such a dock

* The user might switch to a different language via the Settings application,
returning to our running application afterwards

* And so on

In all of these cases, it is likely that we will want to change what resources we use.
For example, our layout for a portrait screen may be too tall to use in landscape
mode, so we would want to substitute in some other layout.

This chapter will explore how to provide alternative resources for these different

scenarios — called “configuration changes” — and will explain what happens to our
activities when the user changes the configuration while we are in the foreground.

What’s a Configuration? And How Do They
Change?
Different pieces of Android hardware can have different capabilities, such as:

+ Different screen sizes
+ Different screen densities (dots per inch)

355

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

+ Different number and capabilities of cameras

+ Different mix of radios (GSM? CDMA? GPS? Bluetooth? WiFi? NFC?
something else?)

* And so on

Some of these, in the eyes of the core Android team, might drive the selection of
resources, like layouts or drawables. Different screen sizes might drive the choice of
layout. Different screen densities might drive the choice of drawable (using a higher-
resolution image on a higher-density device). These are considered part of the
device’s “configuration”.

Other differences — ones that do not drive the selection of resources — are not part
of the device’s configuration but merely are “features” that some devices have and
other devices do not. For example, cameras and Bluetooth and WiFi are features.

Some parts of a configuration will only vary based on different devices. A screen will
not change density on the fly, for example. But some parts of a configuration can be
changed during operation of the device, such as orientation (portrait vs. landscape)
or language. When a configuration switches to something else, that is a
“configuration change”, and Android provides special support for such events to help
developers adjust their applications to match the new configuration.

Configurations and Resource Sets

One set of resources may not fit all situations where your application may be used.
One obvious area comes with string resources and dealing with internationalization
(18N) and localization (LioN). Putting strings all in one language works fine —
probably at least for the developer — but only covers one language.

That is not the only scenario where resources might need to differ, though. Here are
others:

1. Screen orientation: is the screen in a portrait orientation? Landscape? Is the
screen square and, therefore, does not really have an orientation?

2. Screen size: is this something sized like a phone? A tablet? A television?

3. Screen density: how many dots per inch does the screen have? Will we need a
higher-resolution edition of our icon so it does not appear too small?

4. Touchscreen: does the device have a touchscreen? If so, is the touchscreen
set up to be used with a stylus or a finger?

356

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

5. Keyboard: what keyboard does the user have (QWERTY, numeric, neither),
either now or as an option?

6. Other input: does the device have some other form of input, like a
directional pad or click-wheel?

The way Android currently handles this is by having multiple resource directories,
with the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file named
res/values/strings.xml. To support both English and Spanish, you would create
two folders, res/values-en/ and res/values-es/, where the value after the hyphen
is the ISO 639-1 two-letter code for the language you want. Your English-language
strings would go in res/values-en/strings.xml and the Spanish ones in res/
values-es/strings.xml. Android will choose the proper file based on the user’s
device settings.

An even better approach is for you to consider some language to be your default,
and put those strings in res/values/strings.xml. Then, create other resource
directories for your translations (e.g., res/values-es/strings.xml for Spanish).
Android will try to match a specific language set of resources; failing that, it will fall
back to the default of res/values/strings.xml. This way, if your app winds up on a
device with a language that you do not expect, you at least serve up strings in your
chosen default language. Otherwise, if there is no such default, you will wind up
with a ResourceNotFoundException, and your application will crash.

This, therefore, is the bedrock resource set strategy: have a complete set of resources
in the default directory (e.g., res/layout/), and override those resources in other
resource sets tied to specific configurations as needed (e.g., res/layout-land/).

Screen Size and Orientation

Perhaps the most important resource set qualifiers that we have not yet seen are the
ones related to screen size and orientation. Here, “orientation” refers to how the
device is being held: portrait or landscape.

Orientation is fairly easy, as you can just use -port or -land as resource set qualifiers
to restrict resources in a directory to a specific orientation. The convention is to put
landscape resources in a -1and directory (e.g., res/layout-1land/) and to put

357

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://en.wikipedia.org/wiki/ISO_639-1

RESOURCE SETS AND CONFIGURATIONS

portrait resource in the default directory (e.g., res/layout/). However, this is merely
a convention, and you are welcome to use -port if you prefer.

Screen size is a bit more complicated, simply because the available approaches have
changed over the years.

The Original: Android-Defined Buckets

Way back in the beginning, with Android 1.0, all screen sizes were created equal...
mostly because there was only one screen size, and that mostly because there was
only one device.

Android 1.5, however, introduced three screen sizes and associated resource set
qualifiers, with a fourth (-x1large) added later:

+ -small for screens at or under 3” in diagonal size
+ -normal for screens between 3” and 5” in diagonal size
*+ -large for screens between 5” and 10” in diagonal size
*+ -xlarge for screens at or over 10” in diagonal size

So, a res/layout-small/ directory would hold resources related to small-screen
devices. The convention was to put -normal resources in default directories (e.g.,
res/layout/) and use the resource set qualifiers for the other buckets as needed. For
maximum backwards compatibility, though, Android will “cheat” in one case: if you
have a -1arge resource set, but no -xlarge resource set, an -xlarge device will use
-large instead of the default set.

The Modern: Developer-Defined Buckets

The problem with the classic size buckets is that they were fairly inflexible. What if
you think that so-called “phablets”, like the Samsung Galaxy Note series, should have
layouts more like phones, while larger tablets, such as the 8.9” Kindle Fire HD,
should have layouts more like 10” tablets? That was not possible given the fixed
buckets.

Android 3.2 gave us more control. We can have our own buckets for screen size,
using the somewhat-confusing - swNNNdp resource set qualifier. Here, the NNN is
replaced by you with a value, measured in dp, for the shortest width of the screen.
“Shortest width” basically means the width of the screen when the device is held in
portrait mode. Hence, rather than measuring based on diagonal screen size, as with

358

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

the classic buckets, your custom buckets are based on the linear screen size of the
shortest screen side.

For example, suppose that you wish to consider a dividing line between resources to
be at the 7” point — 7” and smaller devices would get one set of layouts, while larger
devices would get a different set of layouts. 7” tablets usually have a shortest width of
around 3.5” to 3.75”. Since 1 dp is 1/160th of an inch, those shortest widths equate to
560-600 dp. Hence, you might set up a -sw600dp resource set for your larger layouts,
and put the smaller layouts in a default resource set.

Mashups: Width and Height Buckets

Using - swNNNdp does not address orientation, as the shortest width is the same
regardless of whether the device is held in portrait or landscape. Hence, you would
need to add -swNNNdp-1land as a resource set for landscape resources for your chosen
dividing line.

An alternative is to use -wNNNdp or -hNNNdp. These resource set qualifiers work much
like - swNNNdp, particularly in terms of what NNN means. However, whereas - swNNNdp
refers to the shortest width, -wNNNdp refers the current width, and -hNNNdp refers to
the current height. Hence, these change with orientation changes.

About That API Level

-swNNNdp, -wNNNdp, and -hNNNdp were added in API Level 13. Hence, older devices
will ignore any resource sets with those qualifiers.

In principle, this might seem like a big problem, for those developers still supporting
older devices.

In practice, it is less of an issue than you might expect, simply because the vast
majority of those older devices were phones, not tablets. The only Android 2.x
tablets that sold in any significant quantity were three 7” models:

* the original Kindle Fire
* the original Barnes & Noble NOOK series
* the original Samsung Galaxy Tab

Of those, only the Galaxy Tab had the then-Android Market (now the Play Store).
Hence, if you are only distributing via the Play Store, you might be in position to
simply ignore pre-API Level 13 tablets. Use - swNNNdp to create your dividing line for

359

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

larger devices, and the Galaxy Tab will simply use the layouts for your smaller
devices.

If this concerns you, or you are also supporting the Kindle Fire and early NOOKs,
you can use layout aliases to minimize code duplication. For example, suppose that
you have a res/layout/main.xml that you wanted to have different versions for
phones and tablets, and you want to use - swNNNdp for your dividing line as to where
the tablet layouts get used, but you also want to have the older tablets, like the
Galaxy Tab, use the following recipe:

* Put your tablet-sized layouts in res/layout/, but with different filenames
(e.g., res/layout/main_to_be_used_for_tablets.xml)

* In res/values-swNNNdp/layouts.xml, for your chosen value of NNN, put
aliases (via <item> elements) for the original names (via the name attribute)
pointing to the resources you want to use for -swNNNdp devices:

<resources>
<item name="main" type="layout">@layout/main_to_be_used_for_tablets</item>
</resources>

* Inres/values-large/layouts.xml, put those same aliases

Now, both older and newer devices, when referencing the same resource name, will
get routed to the right layouts for their screen size.

Coping with Complexity

Where things start to get complicated is when you need to use multiple disparate
criteria for your resources.

For example, suppose that you have drawable resources that are locale-dependent,
such as a stop sign. You might want to have resource sets of drawables tied to
language, so you can substitute in different images for different locales. However,
you might also want to have those images vary by density, using higher-resolution
images on higher-density devices, so the images all come out around the same
physical size.

To do that, you would wind up with directories with multiple resource set qualifiers,
such as:

* res/drawable-1dpi/

360

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

* res/drawable-mdpi/

* res/drawable-hdpi/

* res/drawable-xhdpi/

* res/drawable-en-rUK-1dpi/
* res/drawable-en-rUK-mdpi/
* res/drawable-en-rUK-hdpi/
* res/drawable-en-rUK-xhdpi/
* And so on

(with the default language being, say, US English, using a US stop sign)

Once you get into these sorts of situations, though, a few rules come into play, such
as:

1. The configuration options (e.g., -en) have a particular order of precedence,
and they must appear in the directory name in that order. The Android
documentation outlines the specific order in which these options can
appear. For the purposes of this example, screen size is more important than
screen orientation, which is more important than screen density, which is
more important than whether or not the device has a keyboard.

2. There can only be one value of each configuration option category per
directory.

3. Options are case sensitive

For example, you might want to have different layouts based upon screen size and
orientation. Since screen size is more important than orientation in the resource
system, the screen size would appear in the directory name ahead of the orientation,
such as:

* res/layout-sw600dp-land/
* res/layout-sw600dp/

* res/layout-land/

* res/layout/

Choosing The Right Resource

Given that you can have N different definitions of a resource, how does Android
choose the one to use?

361

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

RESOURCE SETS AND CONFIGURATIONS

First, Android tosses out ones that are specifically invalid. So, for example, if the
language of the device is -ru, Android will ignore resource sets that specify other
languages (e.g., -zh). The exceptions to this are density qualifiers and screen size
qualifiers — we will get to those exceptions later.

Then, Android chooses the resource set that has the desired resource and has the
most important distinct qualifier. Here, by “most important”, we mean the one that
appears left-most in the directory name, based upon the directory naming rules
discussed above. And, by “distinct”, we mean where no other resource set has that
qualifier.

If there is no specific resource set that matches, Android chooses the default set —
the one with no suffixes on the directory name (e.g., res/layout/).

With those rules in mind, let’s look at some scenarios, to cover the base case plus
the aforementioned exceptions.

Scenario #1: Something Simple
Let’s suppose that we have a main.xml file in:

* res/layout-land/
* res/layout/

When we call setContentView(R.layout.main), Android will choose the main.xml
in res/layout-1land/ if the device is in landscape mode. That particular resource set
is valid in that case, and it has the most important distinct qualifier (-1and). If the
device is in portrait mode, though, the res/layout-1land/ resource set does not
qualify, and so it is tossed out. That leaves us with res/layout/, so Android uses
that main.xml version.

Scenario #2: Disparate Resource Set Categories

It is possible, though bizarre, for you to have a project with main.xml in:
* res/layout-en/
* res/layout-land/

* res/layout/

In this case, if the device’s locale is set to be English, Android will choose res/
layout-en/, regardless of the orientation of the device. That is because -en is a more

362

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

important resource set qualifier — “Language and region” appears higher in the
“Table 2. Configuration qualifier names” from the Android documentation than does
“Screen orientation” (for -1and). If the device is not set for English, though, Android
will toss out that resource set, at which point the decision-making process is the
same as in Scenario #1 above.

Scenario #3: Multiple Qualifiers
Now let’s envision a project with main.xml in:

* res/layout-en/
* res/layout-land-v11/
* res/layout/

You might think that res/layout-land-v11/ would be the choice, as it is more
specific, matching on two resource set qualifiers versus the one or none from the
other resource sets.

(in fact, the author of this book thought this was the choice for many years)

In this case, though, language is more important than either screen orientation or
Android API level, so the decision-making process is the similar to Scenario #2
above: Android chooses res/layout-en/ for English-language devices, res/
layout-land-v11/ for landscape API Level u1+ devices, or res/layout/ for
everything else.

Scenario #4: Multiple Qualifiers, Revisited
Let’s change the resource mix, so now we have a project with main.xml in:

* res/layout-land-night/
* res/layout-land-v11/
* res/layout/

Here, while -1and is the most important resource set qualifier, it is not distinct — we
have more than one resource set with -1land. Hence, we need to check which is the
next-most-important resource set qualifier. In this case, that is -night, as night
mode is a more important category than is Android API level, and so Android will
choose res/layout-land-night/ if the device is in night mode. Otherwise, it will
choose res/layout-land-v11/ if the device is running API Level 11 or higher. If the

363

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

device is not in night mode and is not running API Level 11 or higher, Android will
go with res/layout/.

Scenario #5: Screen Density
Now, let’s look at the first exception to the rules: screen density.

Android will always accept a resource set that contains a screen density, even if it
does not match the density of the device. If there is an exact density match, of course,
Android uses it. Otherwise, it will use what it feels is the next-best match, based
upon how far off it is from the device’s actual density and whether the other density
is higher or lower than the device’s actual density.

The reason for this is that for drawable resources, Android will downsample or
upsample the image automatically, so the drawable will appear to be the right size,
even though you did not provide a image in that specific density.

The catch is two-fold:

1. Android applies this logic to all resources, not just drawables, so even if there
is no exact density match on, say, a layout, Android will still choose a
resource from another density bucket for the layout

2. As aside-effect of the previous bullet, if you include a density resource set
qualifier, Android will ignore any lower-priority resource set qualifiers

So, now let’s pretend that our project has main.xml in:

* res/layout-mdpi/
* res/layout-nonav/
* res/layout/

Android will choose res/layout-mdpi/, even for -hdpi devices that do not have a
“non-touch navigation method”. While -mdpi does not match -hdpi, Android will
still choose -mdpi. If we were dealing with drawables resources, Android would
upsample the -mdpi image.

Scenario #6: Screen Sizes

If you have resource sets tied to screen size, Android will choose the one that is
closest to the actual screen size yet smaller than the actual screen size. Resource sets
for screen sizes larger than the actual screen size are ignored.

364

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

This works for - swNNNdp, -wNNNdp, and -hNNNdp for all devices. On -large or -xlarge
devices, Android applies the same logic for the classic screen size qualifiers (-small,
-normal, -large, -xlarge). However, Android does not apply this logic for -small or
-normal devices — a -normal device will not load a -small resource.

Now let’s pretend that our project has main.xml in:

* res/layout-normal/
* res/layout-land/
* res/layout/

Android will choose res/layout-normal/ if the device is not -small. Otherwise,
Android will choose res/layout-1land/ if the device is landscape. If all else fails,
Android will choose res/layout/.

Similarly, if we have:

* res/layout-w320dp/
* res/layout-land/
* res/layout/

Android will choose res/layout-w320dp/ for devices whose current screen width is
320dp or higher. Otherwise, Android will choose res/layout-1land/ if the device is
landscape. If all else fails, Android will choose res/layout/.

Default Change Behavior

When you call methods in the Android SDK that load a resource (e.g., the
aforementioned setContentView(R.layout.main)), Android will walk through those
resource sets, find the right resource for the given request, and use it.

But what happens if the configuration changes after we asked for the resource? For
example, what if the user was holding their device in portrait mode, then rotates the
screen to landscape? We would want a -1and version of our layouts, if such versions
exist. And, since we already requested the resources, Android has no good way of
handing us revised resources on the fly... except by forcing us to re-request those
resources.

So, this is what Android does, by default, to our foreground activity, when the
configuration changes on the fly.

365

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

Destroy and Recreate the Activity

The biggest thing that Android does is destroy and recreate our activity. In other
words:

* Android calls onPause(), onStop(), and onDestroy() on our original
instance of the activity

*+ Android creates a brand new instance of the same activity class, using the
same Intent that was used to create the original instance

*+ Android calls onCreate(), onStart(), and onResume() of the new activity
instance

* The new activity appears on the screen

This may seem... invasive. You might not expect that Android would wipe out a
perfectly good activity, just because the user flicked her wrist and rotated the screen
of her phone. However, this is the only way Android has that guarantees that we will
re-request all our resources.

Rebuild the Fragments

If your activity is using fragments, the new instance of the activity will contain the
same fragments that the old instance of the activity does. This includes both static
and dynamic fragments.

By default, Android destroys and recreates the fragments, just as it destroys and
recreates the activities. However, as we will see, we do have an option to tell Android
to retain certain dynamic fragment instances — for those, it will have the new
instance use the same fragment instances as were used by the old activity, instead of
creating new instances from scratch.

Recreate the Views

Regardless of whether or not Android recreates all of the fragments, it will call
onCreateView() of all of the fragments (plus call onDestroyView() on the original
set of fragments). In other words, Android recreates all of the widgets and
containers, to pour them into the new activity instance.

366

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

Retain Some Widget State

Android will hold onto the “instance state” of some of the widgets we have in our
activity and fragments. Mostly, it holds onto obviously user mutable state, such as:

* What has been typed into an EditText

* Whether a CompoundButton, like a CheckBox or RadioButton, is checked or
not

* Etc.

Android will collect this information from the widgets of the old activity instance,
carry that data forward to the new activity instance, and update the new set of
widgets to have that same state.

Your Options for Configuration Changes

As noted, a configuration change is fairly invasive on your activity, replacing it
outright with all new content (albeit with perhaps some information from the old
activity’s widgets carried forward into the new activity’s widgets).

Hence, you have several possible approaches for handling configuration changes in
any given activity.

Do Nothing

The easiest thing to do, of course, is to do nothing at all. If all your state is bound up
in stuff Android handles automatically, you do not need to do anything more than
the defaults.

For example, the ViewPager/Fragments demo from the preceding chapter works
correctly “out of the box”. All of our “state” is tied up in EditText widgets, which
Android handles automatically. So, we can type in stuff in a bunch of those widgets,
rotate the screen (e.g., via <Ctr1>-<F11> in the emulator on a Windows or Linux
PC), and our entered text is retained.

Alas, there are plenty of cases where the built-in behavior is either incomplete or
simply incorrect, and we will need to do more work to make sure that our
configuration changes are handled properly.

367

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

Retain Your Fragments

The best approach nowadays for handling these sorts of configuration changes is to
have Android retain a dynamic fragment.

Here, “retain” means that Android will keep the same fragment instance across the
configuration change, detaching it from the original hosting activity and attaching it
to a new hosting activity. Since it is the same fragment instance, anything contained
inside that instance is itself retained and, therefore, is not lost when the activity is
destroyed and recreated.

To see this in action, take a look at the ConfigChange/Fragments sample project.

The business logic for this demo (and for all the other demos in this chapter) is that
we want to allow the user to pick a contact out of the roster of contacts found on
their device or emulator. We will do that by having the user press a “Pick” button, at
which time we will display an activity that will let the user pick the contact and
return the result to us. Then, we will enable a “View” button, and let the user view
the details of the selected contact. The key is that our selected contact needs to be
retained across configuration changes — otherwise, the user will rotate the screen,
and the activity will appear to forget about the chosen contact.

The activity itself just loads the dynamic fragment, following the recipe seen
previously in this book:

package com.commonsware.android.rotation.frag;

import android.os.Bundle;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class RotationFragmentDemo extends SherlockFragmentActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if
(getSupportFragmentManager().findFragmentById(android.R.id.content)==null) {
getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,
new RotationFragment()).commit();

368

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Fragments

RESOURCE SETS AND CONFIGURATIONS

The reason for checking for the fragment’s existence should now be clearer. Since
Android will automatically recreate (or retain) our fragments across configuration
changes, we do not want to create a second copy of the same fragment when we
already have an existing copy.

The fragment is going to use an R.layout.main layout resource, with two
implementations. One, in res/layout-1land/, will be used in landscape:

<?xml version="1.0" encoding="utf-8"?>

<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent"
>

<Button android:id="@+id/pick"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"

/>

<Button android:id="@+id/view"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/view"
android:enabled="false"

/>

</LinearlLayout>

The portrait edition, in res/layout/, is identical save for the orientation of the
LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<Button android:id="@+id/pick"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/pick"
android:enabled="true"
/>
<Button android:id="@+id/view"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
android:text="@string/view"

369

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

android:enabled="false"

/>

</LinearlLayout>

Here is the complete implementation of RotationFragment:

package com.commonsware.android.rotation.frag;

import
import
import
import
import
import
import
import
import

public

android.app.Activity;
android.content.Intent;

android.net.Uri;

android.os.Bundle;
android.provider.ContactsContract;
android.view.LayoutInflater;
android.view.View;

android.view.ViewGroup;
com.actionbarsherlock.app.SherlockFragment;

class RotationFragment extends SherlockFragment implements

View.OnClickListener {
static final int PICK_REQUEST=1337;
Uri contact=null;

@0override
public View onCreateView(LayoutInflater inflater, ViewGroup parent,

Bundle savedInstanceState) {

setRetainInstance(true);

View result=inflater.inflate(R.layout.main, parent, false);

result.findViewById(R.id.pick).setOnClickListener(this);

View v=result.findViewById(R.id.view);

v.setOnClickListener(this);
v.setEnabled(contact != null);

return(result);

}

@Override
public void onActivityResult(int requestCode, int resultCode,

if

¥
b

Intent data) {
(requestCode == PICK_REQUEST) {

if (resultCode == Activity.RESULT_OK) {

contact=data.getData();
getView().findViewById(R.id.view).setEnabled(true);

@Override
public void onClick(View v) {

370

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

if (v.getld() == R.id.pick) {
pickContact(v);

}
else {
viewContact(v);

¥
b

public void pickContact(View v) {
Intent i=
new Intent(Intent.ACTION_PICK,
ContactsContract.Contacts.CONTENT_URTI);

startActivityForResult(i, PICK_REQUEST);
}

public void viewContact(View v) {
startActivity(new Intent(Intent.ACTION_VIEW, contact));

b
b

In onCreateView(), we hook up the “Pick” button to a pickContact() method.
There, we call startActivityForResult() with an ACTION_PICK Intent, indicating
that we want to pick something from the ContactsContract.Contacts.CONTENT_URI
collection of contacts. We will discuss ContactsContract in greater detail later in
this book. For the moment, take it on faith that Android has such an ACTION_PICK
activity, one that will display to the user the list of available contacts:

371

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

SE A X

Jane Smith

John Doe

A i —!

Figure 162: ACTION_PICK of a Contact

If the user picks a contact, control returns to our activity, with a call to
onActivityResult().onActivityResult() is passed:

* the unique ID we supplied to startActivityForResult(), to help identify
this result from any others we might be receiving

* RESULT_OK if the user did pick a contact, or RESULT_CANCELED if the user
abandoned the pick activity

* an Intent containing the result from the pick activity, which, in this case,
will contain a Uri representing the selected contact, retrieved via getData()

We store that Uri in a data member, plus we enable the “View” button, which, when
clicked, will bring up an ACTION_VIEW activity on the selected contact via its Uri:

372

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Subscribe to updates at https://commonsware.com

RESOURCE SETS AND CONFIGURATIONS

*

1212-555-1212 =§
MOBILE

jsmith@thisissofake.com
HOME

Figure 163: ACTION_VIEW of a Contact

Up in onCreateView(), we called setRetainInstance(true). This tells Android to
keep this fragment instance across configuration changes. Hence, we can pick a
contact in portrait mode, then rotate the screen (e.g., <Ctr1>-<F11> in the emulator
on Windows or Linux), and view the contact in landscape mode. Even though the
activity and the buttons were replaced as a result of the rotation, the fragment was
not, and the fragment held onto the Uri of the selected contact.

Note that setRetainInstance() only works with dynamic fragments, not static
fragments. Static fragments are always recreated when the activity is itself destroyed
and recreated.

Model Fragment

A variation on this theme is the “model fragment”. While fragments normally are
focused on supplying portions of the Ul to a user, that is not really a requirement. A
model fragment is one that simply uses setRetainInstance(true) to ensure that it
sticks around as configurations change. This fragment then holds onto any model
data that its host activity needs, so as that activity gets destroyed and recreated, the
model data stick around in the model fragment.

373

Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

This is particularly useful for data that might not otherwise have a fragment home.
For example, imagine an activity whose Ul consists entirely of a ViewPager, (like the
tutorial app). Even though that ViewPager might hold fragments, there will be many
pages in most pagers. It may be simpler to add a separate, Ul-less model fragment
and have it hold the activity’s data model for the ViewPager. This allows the activity
to still be destroyed and recreated, and even allows the ViewPager to be destroyed
and recreated, while still retaining the already-loaded data.

Add to the Bundle

However, you may not be using fragments, in which case setRetainInstance(true)
will not be available to you. In that case, you will have to turn to some alternative
approaches.

The best of those is to use onSaveInstanceState() and onRestoreInstanceState().

You can override onSaveInstanceState() in your activity. It is passed a Bundle, into
which you can store data that should be maintained across the configuration
change. The catch is that while Bundle looks a bit like it is a HashMap, it actually
cannot hold arbitrary data types, which limits the sort of information you can retain
via onSaveInstanceState(). onSaveInstanceState() is called around the time of
onPause() and onStop().

The widget state maintained automatically by Android is via the built-in
implementation of onSaveInstanceState(). If you override it yourself, typically you
will want to chain to the superclass to get this inherited behavior, in addition to
putting things into the Bundle yourself.

That Bundle is passed back to you in two places:

* onCreate()
* onRestorelInstanceState()

Since onCreate() is called in many cases other than due to a configuration change,
frequently the passed-in Bundle is null. onRestoreInstanceState(), on the other
hand, is only called when there is a Bundle to be used.

To see how this works, take a look at the ConfigChange/Bundle sample project.

Here, RotationBundleDemo is an activity with all the same core business logic as was
in our fragment in the preceding demo. Since the activity will be destroyed and

374

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Bundle

RESOURCE SETS AND CONFIGURATIONS

recreated on a configuration change, we override onSaveInstanceState() and
onRestoreInstanceState() to retain our contact, if one was selected prior to the
configuration change:

@Override
protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);

if (contact != null) {
outState.putString("contact"”, contact.toString());

¥
b

@Override
protected void onRestorelnstanceState(Bundle state) {
String contactUri=state.getString("contact");

if (contactUri != null) {
contact=Uri.parse(contactUri);
viewButton.setEnabled(true);
}
}

The big benefit of this approach is that onSaveInstanceState() is used for another
scenario, beyond configuration changes.

Suppose, while the user is using one of your activities, a text message comes in. The
user taps on the notification and goes into the text messaging client, while your
activity is paused and stopped. While texting, the other party sends over a URL in
one of the messages. The user taps on that URL to open up a Web browser. And,
right at that moment, a phone call comes in.

Android may not have enough free RAM to handle launching the browser and the
phone applications, because too many things are happening at once. Hence,
Android may terminate your process, to free up RAM. Yet, it is entirely possible that
the user could return to your activity via the BACK button.

If the user does return to your activity via BACK, Android will fork a fresh process
for your application, will create a new instance of your activity, and will supply to
that activity the Bundle from onSaveInstanceState() of the old activity. This way,
you can help retain context from what the user had been doing, despite your entire
process having been gone for a while.

375

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

Fragments and a Bundle

Fragments also have an onSaveInstanceState() method that they can override. It
works just like the Activity equivalent — you can store data in the supplied Bundle
that will be supplied back to you later on. The biggest difference is that there is no
onRestoreInstanceState() method — instead, you are handed the Bundle in other
lifecycle methods:

* onCreate()
* onCreateView()
* onActivityCreated()

We can see this in the ConfigChange/FragmentBundle sample project. This is
effectively a mashup of the previous two samples: fragments, but using
onSavelnstanceState() instead of setRetainInstance(true).

Our RotationFragment now has an onSaveInstanceState() method that looks a lot
like the one from the ConfigChange/Bundle sample’s activity:

@0verride
public void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);

if (contact != null) {
outState.putString("contact", contact.toString());
}
}

Our onCreateView() method examines the passed-in Bundle, and if it is not null
tries to obtain our contact from it:

@0verride
public View onCreateView(LayoutInflater inflater, ViewGroup parent,
Bundle state) {
View result=inflater.inflate(R.layout.main, parent, false);
result.findViewById(R.id.pick).setOnClickListener(this);
View v=result.findViewById(R.id.view);

v.setOnClickListener(this);

if (state != null) {
String contactUri=state.getString("contact");

if (contactUri != null) {
contact=Uri.parse(contactUri);

376

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/FragmentBundle
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/FragmentBundle

RESOURCE SETS AND CONFIGURATIONS

b
¥

v.setEnabled(contact != null);

return(result);
}

This does not allow our fragment to hold onto arbitrary data, the way
setRetainInstance(true) does. However, as with onSaveInstanceState() at the
activity level, there are scenarios that onSaveInstanceState() handles that retained
fragments will not, such as terminating your process due to low memory;, yet the
user later uses BACK to return to what should have been your activity (and its
fragments).

Retain Other Objects

The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s
because this callback is also used in cases where your whole process might be
terminated (e.g., low memory), so the data to be saved has to be something that can
be serialized and has no dependencies upon your running process.

For some activities, that limitation is not a problem. For others, though, it is more
annoying. Take an online chat, for example. You have no means of storing a socket in
a Bundle, so by default, you will have to drop your connection to the chat server and
re-establish it. That not only may be a performance hit, but it might also affect the
chat itself, such as you appearing in the chat logs as disconnecting and

reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of
onSavelInstanceState() for “light” changes like a rotation. Your activity’s
onRetainNonConfigurationInstance() callback can return an Object, which you
can retrieve later via getLastNonConfigurationInstance(). The Object can be just
about anything you want — typically, it will be some kind of “context” object
holding activity state, such as running threads, open sockets, and the like. Your
activity’s onCreate() can call getLastNonConfigurationInstance() - ifyou geta
non-null response, you now have your sockets and threads and whatnot.

The biggest limitation is that you do not want to put in the saved context anything
that might reference a resource that will get swapped out, such as a Drawable loaded
from a resource.

377

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

RESOURCE SETS AND CONFIGURATIONS

The second-biggest limitation is that you do not want to put in the saved context
anything that has a reference back to your original activity instance. Otherwise, the
new activity will hold an indirect reference back to the old activity, and the old
activity will not be able to be garbage-collected.

The general strategy, therefore, is to use onSaveInstanceState() for everything that
it can handle, since it covers other scenarios beyond configuration changes. Use

onRetainNonConfigurationInstance() for everything else.

To see this approach, take a look at the ConfigChange/Retain sample project.

This is the same as the previous sample, except that RotationRetainDemo
implements onRetainNonConfigurationInstance(), returning the Uri that
represents our selected contact:

@Override

public Object onRetainNonConfigurationInstance() {
return(contact);

}

In onCreate(), we call getLastNonConfigurationInstance(). This will either be
null or our Uri from a preceding instance. In either case, we store the value in
contact and use it:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

viewButton=(Button)findViewById(R.1id.view);
contact=(Uri)getlLastNonConfigurationInstance();
viewButton.setEnabled(contact != null);

DIY

In a few cases, even onRetainNonConfigurationInstance() is insufficient, because
transferring and re-applying the state would be too complex or too slow. Or, in some
cases, the hardware will get in the way, such as when trying to use the Camera for
taking pictures — a concept we will cover later in this book.

If you are completely desperate, you can tell Android to not destroy and recreate the

activity on a configuration change... though this has its own set of consequences. To
do this:

378

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Retain
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/Retain

RESOURCE SETS AND CONFIGURATIONS

* Put an android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus allowing
Android to handle for you

+ Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs

Now, for any configuration change you want, you can bypass the whole activity-
destruction process and simply get a callback letting you know of the change.

For example, take a look at the ConfigChange/DIY sample project.

In AndroidManifest.xml, we add the android:configChanges attribute to the
<activity> element, indicating that we want to handle several configuration
changes ourselves:

<activity
android:name="RotationDIYDemo"
android:configChanges="keyboardHidden|orientation|screenSize"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Many recipes for this will have you handle orientation and keyboardHidden.
However, nowadays, you need to also handle screenSize and smallestScreenSize,
if you have your android: targetSdkVersion set to 13 or higher. Note that this will
require your build target to be set to 13 or higher.

Hence, for those particular configuration changes, Android will not destroy and
recreate the activity, but instead will call onConfigurationChanged(). In the
RotationDIYDemo implementation, this simply toggles the orientation of the
LinearLayout to match the orientation of the device:

@0override
public void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged(newConfig);

LinearLayout container=(LinearlLayout)findViewById(R.id.container);
if (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {

container.setOrientation(LinearlLayout.HORIZONTAL);
}

379

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY
http://github.com/commonsguy/cw-omnibus/tree/master/ConfigChange/DIY

RESOURCE SETS AND CONFIGURATIONS

else {
container.setOrientation(LinearlLayout.VERTICAL);

¥
¥

Since the activity is not destroyed during a configuration change, we do not need to
worry at all about the Uri of the selected contact — it is not going anywhere.

The problem with this implementation is twofold:

1. We are not handling all possible configuration changes. If the user, say, puts
the device into a car dock, Android will destroy and recreate our activity, and
we will lose our selected contact.

2. We might forget some resource that needs to be changed due to a
configuration change. For example, if we start translating the strings used by
the layouts, and we include locale in android:configChanges, we not only
need to update the LinearLayout but also the captions of the Button
widgets, since Android will not do that for us automatically.

It is these two problems that are why Google does not recommend the use of this
technique unless absolutely necessary.

Blocking Rotations

No doubt that you have seen some Android applications that simply ignore any
attempt to rotate the screen. Many games work this way, operating purely in
landscape mode, regardless of how the device is positioned.

To do this, add android:screenOrientation="1landscape", or possibly
android:screenOrientation="portrait", to your manifest.

Ideally, you choose landscape, as some devices (e.g., Google TV) can only be
landscape.

Also note that Android still treats this as a configuration change, despite the fact
that there is no visible change to the user. Hence, you still need to use one of the
aforementioned techniques to handle this configuration change, along with any
others (e.g., dock events, locale changes).

380

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Dealing with Threads

Users like snappy applications. Users do not like applications that feel sluggish.

The way to help your application feel snappy is to use the standard threading
capabilities built into Android. This chapter will go through the issues involved with
thread management in Android and will walk you through some of the options for
keeping the user interface crisp and responsive.

The Main Application Thread

When you call setText() on a TextView, you probably think that the screen is
updated with the text you supply, right then and there.

You would be mistaken.

Rather, everything that modifies the widget-based Ul goes through a message queue.
Calls to setText () do not update the screen — they just place a message on a queue
telling the operating system to update the screen. The operating system pops these
messages off of this queue and does what the messages require.

The queue is processed by one thread, variously called the “main application thread”
and the “Ul thread”. So long as that thread can keep processing messages, the screen
will update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your
activity. Your onCreate(), onClick(), onListItemClick(), and similar methods are
all called on the main application thread. While your code is executing in these
methods, Android is not processing messages on the queue, and so the screen does
not update, user input is not handled, and so on.

381

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

This, of course, is bad. So bad, that if you take more than a few seconds to do work
on the main application thread, Android may display the dreaded “Application Not
Responding” dialog (ANR for short), and your activity may be killed off.

Hence, you want to make sure that all of your work on the main application thread
happens quickly. This means that anything slow should be done in a background
thread, so as not to tie up the main application thread. This includes things like:

1. Internet access, such as sending data to a Web service or downloading an
image

2. Significant file operations, since flash storage can be remarkably slow at
times

3. Any sort of complex calculations

Fortunately, Android supports threads using the standard Thread class from Java,
plus all of the wrappers and control structures you would expect, such as the
java.util.concurrent class package.

However, there is one big limitation: you cannot modify the UI from a background
thread. You can only modify the Ul from the main application thread. If you call
setText() on a TextView from a background thread, your application will crash,
with an exception indicating that you are trying to modify the Ul from a “non-UI
thread” (i.e., a thread other than the main application thread).

This is a pain.

Getting to the Background

Hence, you need to get long-running work moved into background threads, but
those threads need to do something to arrange to update the Ul using the main
application thread.

There are various facilities in Android for helping with this.
Some are high-level frameworks for addressing this issue for major functional areas.

The pre-eminent example of this is the Loader framework for retrieving
information from databases, and we will examine this in a later chapter.

382

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

Sometimes, there are asynchronous options built into other Android operations. For
example, when we discuss SharedPreferences in a later chapter, we will see that we
can persist changes to those preferences synchronously or asynchronously.

And, there are a handful of low-level solutions for solving this problem, ones that
you can apply for your own custom business logic.

Asyncing Feeling

One popular approach for handling this threading problem is to use AsyncTask.
With AsyncTask, Android will handle all of the chores of coordinating separate work
done on a background thread versus on the Ul thread. Moreover, Android itself
allocates and removes that background thread. And, it maintains a small work
queue, further accentuating the “fire and forget” feel to AsyncTask.

The Theory

Theodore Levitt is quoted as saying, with respect to marketing: “People don’t want
to buy a quarter-inch drill, they want a quarter-inch hole”. Hardware stores cannot
sell holes, so they sell the next-best thing: devices (drills and drill bits) that make
creating holes easy.

Similarly, Android developers who have struggled with background thread
management do not strictly want background threads — they want work to be done
off the UI thread, so users are not stuck waiting and activities do not get the dreaded
“application not responding” (ANR) error. And while Android cannot magically
cause work to not consume Ul thread time, Android can offer things that make such
background operations easier and more transparent. AsyncTask is one such
example.

To use AsyncTask, you must:

1. Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity)

2. Override one or more AsyncTask methods to accomplish the background
work, plus whatever work associated with the task that needs to be done on
the UI thread (e.g., update progress)

3. When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work

383

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

What you do not have to do is:

1. Create your own background thread
2. Terminate that background thread at an appropriate time

3. Call all sorts of methods to arrange for bits of processing to be done on the
UI thread

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing the
Runnable interface. AsyncTask uses generics, and so you need to specify three data

types:

1. The type of information that is needed to process the task (e.g., URLs to
download)

2. The type of information that is passed within the task to indicate progress

3. The type of information that is passed when the task is completed to the
post-task code

What makes this all the more confusing is that the first two data types are actually
used as varargs, meaning that an array of these types is used within your AsyncTask
subclass.

This should become clearer as we work our way towards an example.

The Stages of AsyncTask
There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This
will be called by AsyncTask on a background thread. It can run as long as it needs to
in order to accomplish whatever work needs to be done for this specific task. Note,
though, that tasks are meant to be finite — using AsyncTask for an infinite loop is not
recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first
of the three data types listed above — the data needed to process the task. So, if your
task’s mission is to download a collection of URLs, doInBackground() will receive
those URLSs to process.

384

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

The doInBackground() method must return a value of the third data type listed
above — the result of the background work.

You may wish to override onPreExecute(). This method is called, from the Ul
thread, before the background thread executes doInBackground(). Here, you might
initialize a ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the Ul
thread, after doInBackground() completes. It receives, as a parameter, the value
returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss
the ProgressBar and make use of the work done in the background, such as
updating the contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground()
calls the task’s publishProgress() method, the object(s) passed to that method are
provided to onProgressUpdate(), but in the UI thread. That way,
onProgressUpdate() can alert the user as to the progress that has been made on the
background work. The onProgressUpdate() method will receive a varargs of the
second data type from the above list — the data published by doInBackground() via
publishProgress().

A Quick Note About Toasts

In the sample app that follows, we use a Toast to let the user know some work has
been completed.

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently-
active Activity, so if the user is busy writing the next Great Programming Guide,
they will not have keystrokes be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it.
You get no acknowledgment from them, nor does the message stick around for a
long time to pester the user. Hence, the Toast is mostly for advisory messages, such
as indicating a long-running background task is completed, the battery has dropped
to a low-but-not-too-low level, etc.

Making a Toast is fairly easy. The Toast class offers a static makeText () method that
accepts a String (or string resource ID) and returns a Toast instance. The

makeText () method also needs the Activity (or other Context) plus a duration. The
duration is expressed in the form of the LENGTH_SHORT or LENGTH_LONG constants to

385

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

indicate, on a relative basis, how long the message should remain visible. Once your
Toast is configured, call its show() method, and the message will be displayed.

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as
implementing a Runnable. However, once you get past the generics and varargs, it is
not too bad.

To see an AsyncTask in action, this section will examine the Threads/AsyncTask
sample project.

The Fragment and its AsyncTask

We have a SherlockListFragment, named AsyncDemoFragment:

package com.commonsware.android.async;

import java.util.Arraylist;

import android.os.AsyncTask;

import android.os.Bundle;

import android.os.SystemClock;

import android.widget.ArrayAdapter;

import android.widget.Toast;

import com.actionbarsherlock.app.SherlockListFragment;

public class AsyncDemoFragment extends SherlockListFragment {

private static final String[] items= { "lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer", "adipiscing", "elit", "morbi",
"vel", "ligula", "vitae", "arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante", "porttitor", "sodales",
"pellentesque”, "augue", "purus" };

private ArraylList<String> model=null;
private ArrayAdapter<String> adapter=null;

@Override
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);

setRetainInstance(true);

if (model == null) {
model=new ArraylList<String>();
new AddStringTask().execute();
}

adapter=
new ArrayAdapter<String>(getActivity(),
android.R.layout.simple_list_item_1,

386

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/AsyncTask

DEALING WITH THREADS

model) ;

getlListView().setScrollbarFadingEnabled(false);
setListAdapter(adapter);
}

class AddStringTask extends AsyncTask<Void, String, Void> {
@Override
protected Void doInBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(400);
}

return(null);
}

@0override

protected void onProgressUpdate(String... item) {
adapter.add(item[0]);

}

@Override
protected void onPostExecute(Void unused) {
Toast.makeText(getActivity(), R.string.done, Toast.LENGTH_SHORT)
.show();
}
}
}

This is another variation on the lorem ipsum list of words, used frequently
throughout this book. This time, rather than simply hand the list of words to an
ArrayAdapter, we simulate having to work to create these words in the background
using AddStringTask, our AsyncTask implementation.

In onActivityCreated(), we call setRetainInstance(true), so Android will retain
this fragment across configuration changes, such as a screen rotation. We then
examine a model data member. If it is null, we know that this is the first time our
fragment has been used, so we initialize it to be an ArrayList of String values, plus
kick off our AsyncTask (the AddStringTask inner class, described below). We then
set up the adapter and attach it to the ListView, also preventing the ListView
scrollbars from fading away as is their norm.

In the declaration of AddStringTask, we use the generics to set up the specific types
of data we are going to leverage. Specifically:

1. We do not need any configuration information in this case, so our first type
is Void

387

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

2. We want to pass each string “generated” by our background task to
onProgressUpdate(), so we can add it to our list, so our second type is
String

3. We do not have any results, strictly speaking (beyond the updates), so our
third type is Void

The doInBackground() method is invoked in a background thread. Hence, we can
take as long as we like. In a production application, we would be, perhaps, iterating
over a list of URLs and downloading each. Here, we iterate over our static list of
lorem ipsum words, call publishProgress() for each, and then sleep 400
milliseconds to simulate real work being done.

Since we elected to have no configuration information, we should not need
parameters to doInBackground(). However, the contract with AsyncTask says we
need to accept a varargs of the first data type, which is why our method parameter is
Void....

Since we elected to have no results, we should not need to return anything. Again,
though, the contract with AsyncTask says we have to return an object of the third
data type. Since that data type is Void, our returned object is null.

The onProgressUpdate() method is called on the Ul thread, and we want to do
something to let the user know we are progressing on loading up these strings. In
this case, we simply add the string to the ArrayAdapter, so it gets appended to the
end of the list.

The onProgressUpdate() method receives a String. .. varargs because that is the
second data type in our class declaration. Since we are only passing one string per
call to publishProgress(), we only need to examine the first entry in the varargs
array.

The onPostExecute() method is called on the Ul thread, and we want to do
something to indicate that the background work is complete. In a real system, there
may be some ProgressBar to dismiss or some animation to stop. Here, we simply
raise a Toast.

Since we elected to have no results, we should not need any parameters. The
contract with AsyncTask says we have to accept a single value of the third data type.
Since that data type is Void, our method parameter is Void unused.

388

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

To use AddStringTask, we simply create an instance and call execute() on it. That
starts the chain of events eventually leading to the background thread doing its
work.

If AddStringTask required configuration parameters, we would have not used Void
as our first data type, and the constructor would accept zero or more parameters of
the defined type. Those values would eventually be passed to doInBackground().

The Activity and the Results

AsyncDemo is a SherlockFragmentActivity with the standard recipe for kicking off
an instance of a dynamic fragment:

package com.commonsware.android.async;

import android.os.Bundle;
import com.actionbarsherlock.app.SherlockFragmentActivity;

public class AsyncDemo extends SherlockFragmentActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if

(getSupportFragmentManager().findFragmentById(android.R.id.content)==null) {
getSupportFragmentManager().beginTransaction()
.add(android.R.id.content,
new AsyncDemoFragment()).commit();
}
}

}

If you build, install, and run this project, you will see the list being populated in “real
time” over a few seconds, followed by a Toast indicating completion.

Threads and Configuration Changes

One problem with the default destroy-and-create cycle that activities go through on
a configuration change comes from background threads. If the activity has started
some background work — through an AsyncTask, for example - and then the
activity is destroyed and re-created, somehow the AsyncTask needs to know about
this. Otherwise, the AsyncTask might well send updates and final results to the old
activity, with the new activity none the wiser. In fact, the new activity might start up
the background work again, wasting resources.

389

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

That is why, in the sample above, we are retaining the fragment instance. The
fragment instance holds onto its data model (in this case, the ArrayList of nonsense
words) and knows not to kick off a new AsyncTask just because the configuration
changed. Moreover, we retain that data model, so the new ListView created due to
the configuration change can work with a new adapter backed by the old data
model, so we do not lose our existing set of nonsense words.

We also have to be very careful not to try referring to the activity (via getActivity()
on the fragment) from our background thread (doInBackground()). Because,
suppose that during the middle of the doInBackground() processing, the user
rotates the screen. The activity we work with will change on the fly, on the main
application thread, independently of the work being done in the background. The
activity returned by getActivity() may not be in a useful state for us while this
configuration change is going on.

However, it is safe for us to use getActivity() from onPostExecute(), and even
from onProgressUpdate().

Why?

Most callback methods in Android are driven by messages on the message queue
being processed by the main application thread. Normally, this queue is being
processed whenever the main application thread is not otherwise busy, such as
running our code.

However, when a configuration change occurs, like a screen rotation, that no longer
holds true.

Android guarantees that, while on the main application thread, getActivity() will
return a valid Activity. Moreover, once the configuration change starts, no
messages on the message queue will be processed until after onCreate() of the
hosting activity (and onActivityCreated() of the fragment) have completed their
work.

Where Not to Use AsyncTask

AsyncTask, particularly in conjunction with a dynamic fragment, is a wonderful
solution for most needs for a background thread.

The key word in that sentence is “most”.

390

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

AsyncTask manages a thread pool, from which it pulls the threads to be used by task
instances. Thread pools assume that they will get their threads back after a
reasonable period of time. Hence, AsyncTask is a poor choice when you do not know
how long you need the thread (e.g., thread listening on a socket for a chat client,
where you need the thread until the user exits the client).

About the AsyncTask Thread Pool

Moreover, the thread pool that AsyncTask manages has varied in size.
In Android 1.5, it was a single thread.

In Android 1.6, it was expanded to support many parallel threads, probably more
than you will ever need.

In Android 4.0, it has shrunk back to a single thread, if your
android:targetSdkVersion is set to 13 or higher. This was to address concerns
about:

+ Forking too many threads and starving the CPU
* Developers thinking that there is an ordering dependency between forked
tasks, when with the parallel execution there is none

If you wish, starting with API Level 11, you can supply your own Executor (from the
java.util.concurrent package) that has whatever thread pool you wish, so you can
manage this more yourself. In addition to the serialized, one-at-a-time Executor,
there is a built-in Executor that implements the old thread pool, that you can use
rather than rolling your own. We will examine this more in a later chapter on
dealing with backwards-compatibility issues.

Alternatives to AsyncTask

There are other ways of handling background threads without using AsyncTask:

* You can employ a Handler, which has a handleMessage() method that will
process Message objects, dispatched from a background thread, on the main
application thread

* You can supply a Runnable to be executed on the main application thread to
post() on any View, or to runOnUiThread() on Activity

391

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

* You can supply a Runnable, plus a delay period in milliseconds, to
postDelayed() on any View, to run the Runnable on the main application
thread after at least that number of millisecond has elapsed

Of these, the Runnable options are the easiest to use.

These can also be used to allow the main application thread to postpone work, to be
done later on the main application thread. For example, you can use postDelayed()
to set up a lightweight polling “loop” within an activity, without needing the
overhead of an extra thread, such as the one created by Timer and TimerTask. To see
how this works, let’s take a peek at the Threads/PostDelayed sample project.

This project contains a single activity, named PostDelayedDemo:

package com.commonsware.android.post;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PostDelayedDemo extends Activity implements Runnable {
private static final int PERIOD=5000;
private View root=null;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
root=findViewById(android.R.id.content);

}

@0Override
public void onResume() {
super.onResume();

run();
}

@Override
public void onPause() {
root.removeCallbacks(this);

super.onPause();
}

@Override
public void run() {
Toast.makeText(PostDelayedDemo.this, "Who-hoo!", Toast.LENGTH_SHORT)
.show();

392

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Threads/PostDelayed
http://github.com/commonsguy/cw-omnibus/tree/master/Threads/PostDelayed

DEALING WITH THREADS

root.postDelayed(this, PERIOD);
}
}

We want to display a Toast every five seconds. To do this, in onCreate(), we get our
hands on the container for an activity’s Ul, known as android.R.id.content, via
findviewById(). Then, in onResume(), we call a run() method on our activity, which
displays the Toast and calls postDelayed() to schedule itself (as an implementation
of Runnable) to be run again in PERIOD milliseconds. While our activity is in the
foreground, the Toast will appear every PERIOD milliseconds as a result. Once
something else comes to the foreground — such as by the user pressing BACK —
our onPause() method is called, where we call removeCallbacks() to “undo” the
postDelayed() call.

And Now, The Caveats

Background threads, while eminently possible using AsyncTask and kin, are not all
happiness and warm puppies. Background threads not only add complexity, but they
have real-world costs in terms of available memory, CPU, and battery life.

To that end, there is a wide range of scenarios you need to account for with your
background thread, including:

1. The possibility that users will interact with your activity’s UI while the
background thread is chugging along. If the work that the background
thread is doing is altered or invalidated by the user input, you will need to
communicate this to the background thread. Android includes many classes
in the java.util.concurrent package that will help you communicate safely
with your background thread.

2. The possibility that the activity will be killed off while background work is
going on. For example, after starting your activity, the user might have a call
come in, followed by a text message, followed by a need to look up a
contact... all of which might be sufficient to kick your activity out of memory.

3. The possibility that your user will get irritated if you chew up a lot of CPU
time and battery life without giving any payback. Tactically, this means using
ProgressBar or other means of letting the user know that something is
happening. Strategically, this means you still need to be efficient at what you
do — background threads are no panacea for sluggish or pointless code.

4. The possibility that you will encounter an error during background
processing. For example, if you are gathering information off the Internet,
the device might lose connectivity. Alerting the user of the problem via a

393

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

DEALING WITH THREADS

Notification and shutting down the background thread may be your best
option.

394

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Requesting Permissions

In the late 1990’s, a wave of viruses spread through the Internet, delivered via email,
using contact information culled from Microsoft Outlook. A virus would simply
email copies of itself to each of the Outlook contacts that had an email address. This
was possible because, at the time, Outlook did not take any steps to protect data
from programs using the Outlook API, since that API was designed for ordinary
developers, not virus authors.

Nowadays, many applications that hold onto contact data secure that data by
requiring that a user explicitly grant rights for other programs to access the contact
information. Those rights could be granted on a case-by-case basis or all at once at
install time.

Android is no different, in that it requires permissions for applications to read or
write contact data. Android’s permission system is useful well beyond contact data,
and for content providers and services beyond those supplied by the Android
framework.

You, as an Android developer, will frequently need to ensure your applications have
the appropriate permissions to do what you want to do with other applications’
data. This chapter covers this topic.

You may also elect to require permissions for other applications to use your data or
services, if you make those available to other Android components. This will be
discussed later in this book.

395

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

REQUESTING PERMISSIONS

Mother, May 1?

Requesting the use of other applications’ data or services requires the
uses-permission element to be added to your AndroidManifest.xml file. Your
manifest may have zero or more uses-permission elements, all as direct children of
the root manifest element.

The uses-permission element takes a single attribute, android:name, which is the
name of the permission your application requires:

<uses-permission android:name="android.permission.ACCESS_LOCATION" />

The stock system permissions all begin with android.permission and are listed in
the Android SDK documentation for Manifest.permission. Third-party
applications may have their own permissions, which hopefully they have
documented for you. Here are some of the permissions we will see in this book:

1. INTERNET, if your application wishes to access the Internet through any
means, from raw Java sockets through the webview widget

2. WRITE_EXTERNAL_STORAGE, for writing data to external storage

3. ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining
where the device is

4. CALL_PHONE, to allow the application to place phone calls directly, without
user intervention

Permissions are confirmed at the time the application is installed — the user will be
prompted to confirm it is OK for your application to do what the permission calls
for.

396

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

REQUESTING PERMISSIONS

09:52

ﬁ Apps

Evernote

EVERNOTE CORP. ¢

Storage
Modify/delete USB storage contents >

System tools
Prevent phone from sleeping >

Your location
Coarse (network-based) location, fine (GPS)

location >
Phone calls
Read phone state and identity >

Hardware controls
Record audio >

Figure 164: Permission Confirmation Screen, on Android 4.0.3

Hence, it is important for you to ask for as few permissions as possible and to justify
those you ask for, so users do not elect to skip installing your application because
you ask for too many unnecessary permissions. Note that users are not asked to
confirm permissions when loading an application via USB, such as during
development.

If you do not have the desired permission and try to do something that needs it, you
should get a SecurityException informing you of the missing permission. Note that
you will only fail on a permission check if you forgot to ask for the permission — it is
impossible for your application to be running and not have been granted your
requested permissions.

New Permissions in Old Applications

Sometimes, Android introduces new permissions that govern behavior that formerly
did not require permissions. WRITE_EXTERNAL_STORAGE is one example - originally,
applications could write to external storage without any permission at all. Android
1.6 introduced WRITE_EXTERNAL_STORAGE, required before you can write to external
storage. However, applications that were written before Android 1.6 could not

397

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

REQUESTING PERMISSIONS

possibly request that permission, since it did not exist at the time. Breaking those
applications would seem to be a harsh price for progress.

What Android does is “grandfather” in certain permissions for applications
supporting earlier SDK versions.

In particular, if you have <uses-sdk android:minSdkVersion="3"> in your manifest,
saying that you support Android 1.5, your application will automatically request
WRITE_EXTERNAL_STORAGE and READ_PHONE_STATE, even if you do not explicitly
request those permissions. People installing your application on an Android 1.5
device will see these requests.

Eventually, when you drop support for the older version (e.g., switch to <uses-sdk
android:minSdkVersion="4">), Android will no longer automatically request those
permissions. Hence, if your code really does need those permissions, you will need to
ask for them yourself.

Permissions: Up Front Or Not At All

The permission system in Android is not especially flexible. Notably, you have to ask
for all permissions you might ever need up front, and the user has to agree to all of
them or abandon the installation of your app.

This means:

1. You cannot create optional permissions, ones the user could say “no, thanks”
to, that your application could react to dynamically

2. You cannot request new permissions after installation, so even if a
permission is only needed for some lightly-used feature, you have to ask for

it anyway

Hence, it is important as you come up with the feature list for your app that you
keep permissions in mind. Every additional permission that your request is a filter
that will cost you some portion of your prospective audience. Certain combinations
— such as INTERNET and READ_CONTACTS — will have a stronger effect, as users fear
what the combination can do. You will need to decide for yourself if the additional
users you will get from having the feature will be worth the cost of requiring the
permissions the feature needs to operate.

398

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

REQUESTING PERMISSIONS

Signature Permissions

Some permissions listed in the SDK you can request but will not get. These
permissions, such as BRICK, require your application to be signed by the same
signing key as is used to sign the firmware. We will discuss these signing keys and

how they work in a later chapter.

Some permissions, like REBOOT, require that your application either be signed with
the firmware’s signing key or that your application be pre-installed on the firmware.

Unfortunately, the Android developer documentation does not tell you the
requirements for any given permission. To find out, you will need to examine the
platform’s AndroidManifest.xml file and find your permission in there. For example,
here is one edition’s definition of the BRICK and REBOOT permissions:

</-- Required to be able to disable the device (very dangerous!). -->

<permission android:name="android.permission.BRICK"
android:label="@string/permlab_brick"
android:description="@string/permdesc_brick"
android:protectionLevel="signature" />

</-- Required to be able to reboot the device. -->

<permission android:name="android.permission.REBOOT"
android:label="@string/permlab_reboot"
android:description="@string/permdesc_reboot"
android:protectionlLevel="signatureOrSystem" />

The BRICK permission has an android:protectionLevel of signature, meaning the
app requesting the permission must have the same signing key as does the firmware.
Instead, the REBOOT permission has signatureOrSystem, meaning that the app could
just be installed as part of the firmware to hold this permission.

Requiring Permissions

The XML elements shown from Android’s own manifest are <permission> elements.
These define new permissions to the system.

You can use <permission> elements to define your own custom permissions for use
with your own apps. This would be important if you are planning on allowing third-
party applications to integrate with yours and possibly retrieve data that you are
storing. The user probably should “get a vote” on whether that data sharing is
allowed. To do that, you could define a permission and declare that one or more of

399

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml

REQUESTING PERMISSIONS

your components (e.g., activities) are protected by that permission. Only third

parties that request the permission via <uses-permission> will be able to use those
components.

We will get into this scenario in greater detail in a later chapter.

400

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

Assets, Files, and Data Parsing

Android offers a few structured ways to store data, notably SharedPreferences and
local SQLite databases. And, of course, you are welcome to store your data “in the
cloud” by using an Internet-based service. We will get to all of those topics shortly.

Beyond that, though, Android allows you to work with plain old ordinary files, either
ones baked into your app (“assets”) or ones on so-called internal or external storage.

To make those files work — and to consume data off of the Internet — you will
likely need to employ a parser. Android ships with several choices for XML and JSON
parsing, in addition to third-party libraries you can attempt to use.

This chapter focuses on assets, files, and parsers.

Packaging Files with Your App

Let’s suppose you have some static data you want to ship with the application, such
as a list of words for a spell-checker. Somehow, you need to bundle that data with
the application, in a way you can get at it from Java code later on, or possibly in a
way you can pass to another component (e.g., WebView for bundled HTML files).

There are three main options here: raw resources, XML resources, and assets.

Raw Resources

One way to deploy a file like a spell-check catalog is to put the file in the res/raw
directory, so it gets put in the Android application . apk file as part of the packaging
process as a raw resource.

401

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

To access this file, you need to get yourself a Resources object. From an activity, that
is as simple as calling getResources(). A Resources object offers
openRawResource() to get an InputStream on the file you specify. Rather than a
path, openRawResource() expects an integer identifier for the file as packaged. This
works just like accessing widgets via findviewById() - if you put a file named
words.xml in res/raw, the identifier is accessible in Java as R.raw.words.

Since you can only get an InputStream, you have no means of modifying this file.
Hence, it is really only useful for static reference data. Moreover, since it is
unchanging until the user installs an updated version of your application package,
either the reference data has to be valid for the foreseeable future, or you will need
to provide some means of updating the data. The simplest way to handle that is to
use the reference data to bootstrap some other modifiable form of storage (e.g., a
database), but this makes for two copies of the data in storage. An alternative is to
keep the reference data as-is but keep modifications in a file or database, and merge
them together when you need a complete picture of the information. For example, if
your application ships a file of URLSs, you could have a second file that tracks URLs
added by the user or reference URLs that were deleted by the user.

XML Resources

If, however, your file is in an XML format, you are better served not putting it in res/
raw/, but rather in res/xml/. This is a directory for XML resources - resources
known to be in XML format, but without any assumptions about what that XML
represents.

To access that XML, you once again get a Resources object by calling
getResources() on your Activity or other Context. Then, call getXml() on the
Resources object, supplying the ID value of your XML resource (e.g., R.xml.words).
This will return an Xm1ResourceParser, which implements the XmlPullParser
interface. We will discuss how to use this parser, and the performance advantage of
using XML resources, later in this chapter.

As with raw resources, XML resources are read-only at runtime.

Assets

Your third option is to package the data in the form of an asset. You can create an
assets/ directory at the root of your project directory, then place whatever files you
want in there. Those are accessible at runtime by calling getAssets() on your

402

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

Activity or other Context, then calling open() with the path to the file (e.g.,
assets/foo/index.html would be retrieved via open("foo/index.html")). As with
raw resources, this returns an InputStream on the file’s contents. And, as with all
types of resources, assets are read-only at runtime.

One benefit of using assets over raw resources is the file://android_asset/ Uri
prefix. You can use this to load an asset into a WebView. For example, for an asset
located in assets/foo/index.html within your project, calling
loadUrl("file://android_asset/foo/index.html") will load that HTML into the
WebView.

Note that assets are compressed when the APK is packaged. Unfortunately, this
compression mechanism has a 1IMB file size limit. If you wish to package an asset
that is bigger than 1MB, you either need to give it a file extension that will not be
compressed (e.g., .mp3) or actually store a ZIP file of the asset (to avoid the
automatic compression) and decompress it yourself at runtime, using the standard
java.util.zip classes.

Files and Android

On the whole, Android just uses normal Java file I/O for local files. You will use the
same File and InputStreamand OutputWriter and other classes that you have used
time and again in your prior Java development work.

What is distinctive in Android is where you read and write. Akin to writing a Java
Web app, you do not have read and write access to arbitrary locations. Instead, there
are only a handful of directories to which you have any access, particularly when
running on production hardware.

Internal vs. External

Internal storage refers to your application’s portion of the on-board, always-available
flash storage. External storage refers to storage space that can be mounted by the
user as a drive in Windows (or, possibly with some difficulty, as a volume in OS X or
Linux).

On Android 1.x and 2.x, the big advantage of external storage is size. Some Android
devices have very little internal storage (tens or hundreds of MB) that all apps must
share. External storage, on the other hand, typically is on the order of GB of
available free space.

403

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

However, on Android 1.x and 2.x, external storage is not always available - if it is
mounted as a drive or volume on a host desktop or notebook, your app will not have
access to external storage. We will examine this limitation in a bit more detail later

in this chapter.
Standard vs. Cache

On both internal and external storage, you have the option of saving files as a cache,
or on a more permanent basis. Files located in a cache directory may be deleted by
the OS or third-party apps to free up storage space for the user. Files located outside
of cache will remain unless manually deleted.

Yours vs. Somebody Else’s

Internal storage is on a per-application basis. Files you write to in your own internal
storage cannot be read or written to by other applications... normally. Users who
“root” their phones can run apps with superuser privileges and be able to access your
internal storage. Most users do not root their phones, and so only your app will be
able to access your internal storage files.

Files on external storage, though, are visible to all applications and the user. Anyone
can read anything stored there, and any application that requests to can write or
delete anything it wants.

Working with Internal Storage

You have a few options for manipulating the contents of your app’s portion of
internal storage.

One possibility is to use openFileInput() and openFileOutput() on your Activity
or other Context to get an InputStream and OutputStream, respectively. However,
these methods do not accept file paths (e.g., path/to/file.txt), just simple
filenames.

If you want to have a bit more flexibility, getFilesDir () and getCacheDir () return a
File object pointing to the roots of your files and cache locations on internal
storage, respectively. Given the File, you can create files and subdirectories as you
see fit.

To see how this works, take a peek at the Files/ReadWrite sample project.

404

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

http://github.com/commonsguy/cw-omnibus/tree/master/Files/ReadWrite
http://github.com/commonsguy/cw-omnibus/tree/master/Files/ReadWrite

ASSETS, FILES, AND DATA PARSING

This application implements an EditorFragment, containing a full-screen EditText,
hosted by a FilesDemoActivity as a static fragment. There is a CheckBox in the
action bar to toggle between using internal and external storage:

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item
android:id="@+id/location"
android:actionLayout="@layout/action_location"
android:showAsAction="always">

</item>

<item
android:id="@+id/save"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="always |withText"
android:title="@string/save">

</item>

<item
android:id="@+id/saveBackground"
android:icon="@android:drawable/ic_menu_save"
android:showAsAction="never"
android:title="@string/saveBackground">

</item>

</menu>

We get at that CheckBox in onCreateOptionsMenu() of EditorFragment, storing it in
a data member of the fragment:

@Override

public void onCreateOptionsMenu(Menu menu, Menulnflater inflater) {
inflater.inflate(R.menu.actions, menu);
external=(CheckBox)menu.findItem(R.id.location).getActionView();

}

When they go to work with the file (e.g., press a Save toolbar button), we use a
getTarget() method to return a File object pointing at the file to be manipulated.
In the case where the CheckBox is unchecked — meaning we are to use internal
storage — getTarget() uses getFilesDir():

private File getTarget() {
File root=null;

if (external != null && external.isChecked()) {
root=getActivity().getExternalFilesDir (null);
}
else {
root=getActivity().getFilesDir();
}

405

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

return(new File(root, FILENAME));
}

Note that the CheckBox may not yet exist, depending on the timing of
onCreateOptionsMenu() and onResume(). That timing varies a bit by Android
version.

Methods like 1oad() then load that File by using standard Java file I/O:

private String load(File target) throws IOException {

String result="";

try {
InputStream in=new FileInputStream(target);

if (in !'= null) {
try {
InputStreamReader tmp=new InputStreamReader(in);
BufferedReader reader=new BufferedReader (tmp);
String str;
StringBuilder buf=new StringBuilder();

while ((str=reader.readlLine()) != null) {
buf.append(str);
buf.append("\n");

}

result=buf.toString();

}
finally {
in.close();
}
}

h
catch (java.io.FileNotFoundException e) {

// that's OK, we probably haven't created it yet
¥

return(result);
}

The files stored in internal storage are accessible only to your application, by default.
Other applications on the device have no rights to read, let alone write, to this space.
However, bear in mind that some users “root” their Android phones, gaining
superuser access. These users will be able to read and write whatever files they wish.
As a result, please consider application-local files to be secure against malware but
not necessarily secure against interested users.

406

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

Working with External Storage

On most Android 1.x devices and some early Android 2.x devices, external storage
came in the form of a micro SD card or the equivalent. On the remaining Android
2.x devices, external storage was part of the on-board flash, but housed in a separate
partition from the internal storage. On most Android 3.0+ devices, external storage
is now simply a special directory in the partition that holds internal storage.

Devices will have at least 1GB of external storage free when they ship to the user.
That being said, many devices have much more than that, but the available size at
any point could be smaller than 1GB, depending on how much data the user has
stored.

Where to Write

If you have files that are tied to your application that are simply too big to risk
putting in internal storage, or if the user should be able to download the files off
their device at will, you can use getExternalFilesDir (), available on any activity or
other Context. This will give you a File object pointing to an automatically-created
directory on external storage, unique for your application. While not secure against
other applications, it does have one big advantage: when your application is
uninstalled, these files are automatically deleted, just like the ones in the
application-local file area. This method was added in API Level 8. This method takes
one parameter — typically null — that indicates a particular type of file you are
trying to save (or, later, load).

For example, the aforementioned getTarget() method of EditorFragment uses
getExternalFilesDir() if the user has checked the CheckBox in the action bar:

private File getTarget() {
File root=null;

if (external != null && external.isChecked()) {
root=getActivity().getExternalFilesDir (null);

¥

else {
root=getActivity().getFilesDir();

¥

return(new File(root, FILENAME));

407

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

There is also getExternalCacheDir (), which returns a File pointing at a directory
that contains files that you would like to have, but if Android or a third-party app
clears the cache, your app will continue to function normally.

If you have files that belong more to the user than to your app — pictures taken by
the camera, downloaded MP3 files, etc. — a better solution is to use
getExternalStoragePublicDirectory(), available on the Environment class. This
will give you a File object pointing to a directory set aside for a certain type of file,
based on the type you pass into getExternalStoragePublicDirectory(). For
example, you can ask for DIRECTORY_MOVIES, DIRECTORY_MUSIC, or
DIRECTORY_PICTURES for storing MP4, MP3, or JPEG files, respectively. These files
will be left behind when your application is uninstalled. This method was also added
in API Level 8.

You will also find a getExternalStorageDirectory() method on Environment,
pointing to the root of the external storage. This is no longer the preferred approach
— the methods described above help keep the user’s files better organized. However,
if you are supporting older Android devices, you may need to use
getExternalStorageDirectory(), simply because the newer options may not be
available to you.

When to Write

Starting with Android 1.6, you will also need to hold permissions to work with
external storage (e.g., WRITE_EXTERNAL_STORAGE), as was described in the preceding
chapter. For example, here is the sample app’s manifest, complete with the
<uses-permission> element:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android. frw"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="14"/>

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:xlargeScreens="true"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

408

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/Theme.Sherlock"
android:uiOptions="splitActionBarWhenNarrow">
<activity

android:name=".FilesDemoActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Also, external storage may be tied up by the user having mounted it as a USB storage
device. You can use getExternalStorageState() (a static method on Environment)
to determine if external storage is presently available or not. On Android 3.0 and
higher, this should be much less of an issue, as they changed how the external
storage is used by the host PC — originally, this used USB Mass Storage Mode (think
thumb drives) and now uses the USB Media Transfer Protocol (think MP3 players).
With MTP, both the Android device and the PC it is connected to can have access to
the files simultaneously; Mass Storage Mode would only allow the host PC access to
the files if external storage is mounted.

Letting the User See Your Files

The switch to MTP has one side-effect for Android developers: files you write to
external storage may not be automatically visible to the user. At the time of this
writing, the only files that will show up on the user’s PC will be ones that have been
indexed by the MediaStore. While the MediaStore is typically thought of as only
indexing “media” (images, audio files, video files, etc.), it was given the added role in
Android 3.0 of maintaining an index of all files for the purposes of MTP.

Your file that you place on external storage will not be indexed automatically simply
by creating it and writing to it. Eventually, it will be indexed, though it may be quite
some time for an automatic indexing pass to take place.

To force Android to index your file, you can use scanFile() on
MediaScannerConnection:

409

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

String[] paths={pathToYourNewFileOnExternalStorage};
MediaScannerConnection.scanFile(this, paths, null, null);

The third parameter to scanFile() is an array of MIME types, to line up with the
array of paths in the second parameter. If your file is some form of media, and you
know the MIME type, supplying that will ensure that your media will be visible as
appropriate to the right apps (e.g., images in the Gallery app). Otherwise, Android
will try to infer a MIME type from the file extension.

Permissions for External Storage

Apps have long needed to hold the WRITE_EXTERNAL_STORAGE permission to be able
to write to external storage.

Starting with Jelly Bean, though, you should consider requesting the
READ_EXTERNAL_STORAGE permission as well, to be able to read external storage. If
you hold WRITE_EXTERNAL_STORAGE, you do not also need READ_EXTERNAL_STORAGE.
But, if you are reading external storage without writing it, you will need to hold
READ_EXTERNAL_STORAGE sometime in the future. While this is not enforced by
default, it is an option for users to turn on in Developer Options in Settings, and it
will be enforced in future versions of Android.

However, the 4.1 and 4.2 emulators appear broken, insofar as they do not check the
Developer Options preference, and therefore grants access to external storage even if
you lack the permission. Hence, to truly test the behavior of this permission, you
need appropriate hardware.

Also, please be aware that READ_EXTERNAL_STORAGE affects apps that might not
realize that they are reading files from external storage, because they are being
handed Uri values from an Intent or other sources, such as a ContentProvider.

Limits on External Storage Open Files

Many Android devices will have a per-process limit of 1024 open files, on any sort of
storage. This is usually not a problem for developers.

On some devices — including probably all that are running Android 4.2 and higher
— there is a global limit of 1024 open files on external storage. In other words, all
running apps combined can only open 1024 files simultaneously on external storage.

410

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

This means that it is important for you to minimize how many open files on external
storage you have at a time. Having a few open files is perfectly reasonable; having a
few hundred open files is not.

Multiple User Accounts

On Android 4.1 and earlier, each Android device was assumed to be used by just one
person.

On Android 4.2 and higher, though, it is possible for a tablet owner to set up
multiple user accounts. Each user gets their own section of internal and external
storage for files, databases, SharedPreferences, and so forth. From your
standpoint, it is as if the users are really on different devices, even though in reality
it is all the same hardware.

However, this means that paths to internal and external storage now may vary by
user. Hence, is very important for you to use the appropriate methods, outlined in
this chapter, for finding locations on internal storage (e.g., getFilesDir()) and
external storage (e.g., getExternalFilesDir().

Some blog posts, StackOverflow answers, and the like will show the use of hard-
coded paths for these locations (e.g., /sdcard or /mnt/sdcard for the root of external
storage). Hard-coding such paths was never a good idea. And, as of Android 4.2,
those paths are simply wrong and will not work.

On Android 4.2 (and perhaps future versions), for the original user of the device,
internal storage will wind up in the same location as before, but external storage will
use a different path. For the second and subsequent users defined on the device,
both internal and external storage will reside in different paths. The various
methods, like getFilesDir (), will handle this transparently for you.

Note that, at the time of this writing, multiple accounts are not available on the
emulators, only on actual tablets. Phones usually will not have multiple-account
support, under the premise that tablets are more likely to be shared than are
phones.

Linux Filesystems: You Sync, You Win

Android is built atop a Linux kernel and uses Linux filesystems for holding its files.
Classically, Android used YAFFS (Yet Another Flash File System), optimized for use

411

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

on low-power devices for storing data to flash memory. Many devices still use YAFFS
today.

YAFFS has one big problem: only one process can write to the filesystem at a time.
For those of you into filesystems, rather than offering file-level locking, YAFFS has
partition-level locking. This can become a bit of a bottleneck, particularly as
Android devices grow in power and start wanting to do more things at the same
time like their desktop and notebook brethren.

Android 3.0 switched to ext4, another Linux filesystem aimed more at desktops/
notebooks. Your applications will not directly perceive the difference. However, ext4
does a fair bit of buffering, and it can cause problems for applications that do not
take this buffering into account. Linux application developers ran headlong into this
in 2008-2009, when ext4 started to become popular. Android developers will need
to think about it now... for your own file storage.

If you are using SQLite or SharedPreferences, you do not need to worry about this
problem. Android (and SQLite, in the case of SQLite) handle all the buffering issues
for you. If, however, you write your own files, you may wish to contemplate an extra
step as you flush your data to disk. Specifically, you need to trigger a Linux system
call known as fsync(), which tells the filesystem to ensure all buffers are written to
disk.

If you are using java.io.RandomAccessFile in a synchronous mode, this step is
handled for you as well, so you will not need to worry about it. However, Java
developers tend to use FileOutputStream, which does not trigger an fsync(), even
when you call close() on the stream. Instead, you call getFD().sync() on the
FileOutputStream to trigger the fsync(). Note that this may be time-consuming,
and so disk writes should be done off the main application thread wherever
practical, such as via an AsyncTask.

This is why, in EditorFragment, our save() implementation looks like this:

private void save(String text, File target) throws IOException {
FileOutputStream fos=new FileOutputStream(target);
OutputStreamWriter out=new OutputStreamWriter(fos);

out.write(text);
out.flush();
fos.getFD().sync();
out.close();

412

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

StrictMode: Avoiding Janky Code

Users are more likely to like your application if, to them, it feels responsive. Here, by
“responsive”, we mean that it reacts swiftly and accurately to user operations, like
taps and swipes.

Conversely, users are less likely to be happy with you if they perceive that your Ul is
“janky” — sluggish to respond to their requests. For example, maybe your lists do
not scroll as smoothly as they would like, or tapping a button does not yield the
immediate results they seek.

While threads and AsyncTask and the like can help, it may not always be obvious
where you should be applying them. A full-scale performance analysis, using
Traceview or similar Android tools, is certainly possible. However, there are a few
standard sorts of things that developers do, sometimes quite by accident, on the
main application thread that will tend to cause sluggishness:

1. Flash I/O, both for internal and external storage
2. Network I/O

However, even here, it may not be obvious that you are performing these operations
on the main application thread. This is particularly true when the operations are
really being done by Android’s code that you are simply calling.

That is where StrictMode comes in. Its mission is to help you determine when you
are doing things on the main application thread that might cause a janky user
experience.

StrictMode works on a set of policies. There are presently two categories of policies:
VM policies and thread policies. The former represent bad coding practices that
pertain to your entire application, notably leaking SQLite Cursor objects and kin.
The latter represent things that are bad when performed on the main application
thread, notably flash I/O and network I/0O.

Each policy dictates what StrictMode should watch for (e.g., flash reads are OK but
flash writes are not) and how StrictMode should react when you violate the rules,
such as:

1. Log a message to LogCat
2. Display a dialog

413

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

3. Crash your application (seriously!)

The simplest thing to do is call the static enableDefaults() method on StrictMode
from onCreate() of your first activity. This will set up normal operation, reporting
all violations by simply logging to LogCat. However, you can set your own custom
policies via Builder objects if you so choose.

However, do not use StrictMode in production code. It is designed for use when you

are building, testing, and debugging your application. It is not designed to be used
in the field.

In FilesDemoActivity, in addition to loading R.layout.main with our
EditorFragment statically defined, we configure StrictMode, if and only if we are
building a debug version of the app and are on a version of Android that supports
StrictMode:

package com.commonsware.android.frw;

import android.os.Build;

import android.os.Bundle;

import android.os.StrictMode;

import com.actionbarsherlock.app.SherlockFragmentActivity;

public class FilesDemoActivity extends SherlockFragmentActivity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

if (BuildConfig.DEBUG
&& Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
StrictMode.setThreadPolicy(buildPolicy());
}
}

private StrictMode.ThreadPolicy buildPolicy() {
return(new StrictMode.ThreadPolicy.Builder().detectAll()
.penaltylLog().build());
}
¥

Here, we are asking to flag all faults (detectAll1()), logging any violations to LogCat
(penaltyLog()).

If we press the “Save” action bar item, instead of going to the menu and using “Save
in Background”, we will do disk I/O on the main application thread and generate
StrictMode violations as a result:

414

Subscribe to updates at https://commonsware.com Special Creative Commons BY-NC-SA 4.0 License Edition

ASSETS, FILES, AND DATA PARSING

04-19 11:13:41.522: D/StrictMode(1443): StrictMode policy violation;
~duration=5 ms: android.os.StrictMode$StrictModeDiskReadViolation:
policy=31 violation=2

04-19 11:13:41.522: D/StrictMode(1443): at
android.os.StrictMode$AndroidBlockGuardPolicy.onReadFromDisk(StrictMode.
java:1089)

04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.BlockGuardOs.open(BlockGuardOs.java:106)

04-19 11:13:41.522: D/StrictMode(1443): at
libcore.io.IoBridge.open(IoBridge.java:390)

04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.<init>(FileOutputStream.java:88)

04-19 11:13:41.522: D/StrictMode(1443): at
java.io.FileOutputStream.<init>(FileOutputStream.java:73)

04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.save(EditorFragment.java:106)
04-19 11:13:41.522: D/StrictMode(1443): at
com.commonsware.android.frw.EditorFragment.onOptionsItemSelected(EditorF
ragment.java:73)

04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragment.onOptionsItemSelected(Sherloc
kFragment.java:67)

04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentManagerImpl.dispatchOptionsItemSelected(F
ragmentManager.java:1919)

04-19 11:13:41.522: D/StrictMode(1443): at
android.support.v4.app.FragmentActivity.onMenultemSelected(FragmentActiv
ity.java:357)

04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:288)

04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.ActionBarSherlock.callbackOptionsItemSelected(Acti
onBarSherlock.java:586)

04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.internal.ActionBarSherlockNative.dispatchOptionsIt
emSelected(ActionBarSherlockNative.java:78)

04-19 11:13:41.522: D/StrictMode(1443): at
com.actionbarsherlock.app.SherlockFragmentActivity.onMenuItemSelected(Sh
erlockFragmentActivity.java:191)

04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.policy.impl.PhoneWindow.onMenuIltemSelected(PhoneWin
dow. java:950)

04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenuBuilder.dispatchMenuItemSelected(Menu
Builder.java:735)

04-19 11:13:41.522: D/StrictMode(1443): at
com.android.internal.view.menu.MenultemImpl.invoke(MenuItemI