
Ian F. Darwin

 Android
Cookbook
PROBLEMS AND SOLUTIONS
FOR ANDROID DEVELOPERS

2nd Edition

Covers Android Nougat 7.0

Ian Darwin

Android Cookbook
Problems and Solutions for

Android Developers

SECOND EDITION

978-1-449-37443-3

[LSI]

Android Cookbook
by Ian F. Darwin

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://www.oreilly.com/safari). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Dawn Schanafelt and Meghan Blanchette
Production Editor: Colleen Lobner
Copyeditor: Kim Cofer
Proofreader: Rachel Head

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

May 2017: Second Edition

Revision History for the Second Edition
2017-05-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449374433 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Android Cookbook, the cover image of
a marine iguana, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://www.oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781449374433

To Dennis M. Ritchie (1941–2011), language pioneer
and co-inventor of Unix, who showed us all where
the braces go, reminded us to keep it simple, and

gave us so much more…

Table of Contents

Preface. xiii

1. Getting Started. 1
1.1 Understanding the Android Application Architecture 1
1.2 Understanding the Android Activity Life Cycle 3
1.3 Learning About Android Releases 5
1.4 Learning the Java Language 7
1.5 Creating a “Hello, World” Application from the Command Line 8
1.6 Creating a “Hello, World” App with Apache Maven 13
1.7 Choosing an IDE for Android Development 15
1.8 Setting Up Android Studio 18
1.9 Installing Platform Editions and Keeping the SDK Updated 21
1.10 Creating a “Hello, World” App Using Android Studio 25
1.11 Converting an Eclipse ADT Project to Android Studio 30
1.12 Preserving History While Converting from Eclipse to Android Studio 34
1.13 Building an Android Application with both Eclipse and Android Studio 36
1.14 Setting Up Eclipse with AndMore (Replacing ADT) 39
1.15 Creating a “Hello, World” Application Using Eclipse 46
1.16 Installing the Eclipse Marketplace Client in Your Eclipse 51
1.17 Upgrading a Project from Eclipse ADT to Eclipse AndMore 53
1.18 Controlling Emulators/Devices Using Command-Line ADB 57
1.19 Sharing Java Classes from Another Eclipse Project 59
1.20 Referencing Libraries to Implement External Functionality 62
1.21 Using New Features on Old Devices via the Compatibility Libraries 67
1.22 Using SDK Samples to Help Avoid Head Scratching 68
1.23 Taking a Screenshot/Video from the Emulator/Android Device 70
1.24 Program: A Simple CountDownTimer Example 76
1.25 Program: Tipster, a Tip Calculator for the Android OS 79

v

2. Designing a Successful Application. 97
2.1 Exception Handling 101
2.2 Requesting Android Permissions at Runtime 104
2.3 Accessing Android’s Application Object as a “Singleton” 106
2.4 Keeping Data When the User Rotates the Device 109
2.5 Monitoring the Battery Level of an Android Device 111
2.6 Creating Splash Screens in Android 113
2.7 Designing a Conference/Camp/Hackathon/Institution App 117
2.8 Using Google Analytics in an Android Application 119
2.9 Setting First-Run Preferences 122
2.10 Formatting Numbers 123
2.11 Formatting with Correct Plurals 127
2.12 Formatting the Time and Date for Display 130
2.13 Simplifying Date/Time Calculations with the Java 8 java.time API 132
2.14 Controlling Input with KeyListeners 134
2.15 Backing Up Android Application Data 137
2.16 Using Hints Instead of Tool Tips 144

3. Application Testing. 147
3.1 Setting Up an Android Virtual Device (AVD) for App Testing 148
3.2 Testing on a Wide Range of Devices with Cloud-Based Testing 154
3.3 Testing with Eclipse and JUnit 155
3.4 Testing with Android Studio and JUnit 158
3.5 Testing with Robolectric and JUnit 4 163
3.6 Testing with ATSL, Espresso, and JUnit 4 166
3.7 Troubleshooting Application Crashes 170
3.8 Debugging Using Log.d() and LogCat 173
3.9 Getting Bug Reports Automatically with Crash Reporting 175
3.10 Using a Local Runtime Application Log for Analysis of Field Errors or

Situations 178
3.11 Reproducing Activity Life-Cycle Scenarios for Testing 181
3.12 Keeping Your App Snappy with StrictMode 186
3.13 Static Code Testing with Android Lint 187
3.14 Dynamic Testing with the Monkey Program 189
3.15 Sending Text Messages and Placing Calls Between AVDs 191

4. Inter-/Intra-Process Communication. 193
4.1 Opening a Web Page, Phone Number, or Anything Else with an Intent 194
4.2 Emailing Text from a View 196
4.3 Sending an Email with Attachments 199
4.4 Pushing String Values Using Intent.putExtra() 201
4.5 Retrieving Data from a Subactivity Back to Your Main Activity 202

vi | Table of Contents

4.6 Keeping a Background Service Running While Other Apps Are on Display 205
4.7 Sending/Receiving a Broadcast Message 207
4.8 Starting a Service After Device Reboot 208
4.9 Creating a Responsive Application Using Threads 209
4.10 Using AsyncTask to Do Background Processing 210
4.11 Sending Messages Between Threads Using an Activity Thread Queue and

Handler 218
4.12 Creating an Android Epoch HTML/JavaScript Calendar 220

5. Graphics. 227
5.1 Using a Custom Font 227
5.2 Drawing a Spinning Cube with OpenGL ES 230
5.3 Adding Controls to the OpenGL Spinning Cube 234
5.4 Freehand Drawing Smooth Curves 237
5.5 Taking a Picture Using an Intent 242
5.6 Taking a Picture Using android.media.Camera 244
5.7 Scanning a Barcode or QR Code with the Google ZXing Barcode Scanner 248
5.8 Using AndroidPlot to Display Charts and Graphs 251
5.9 Using Inkscape to Create an Android Launcher Icon from

OpenClipArt.org 254
5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org 259
5.11 Using Nine Patch Files 267
5.12 Creating HTML5 Charts with Android RGraph 270
5.13 Adding a Simple Raster Animation 274
5.14 Using Pinch to Zoom 278

6. Graphical User Interface. 281
6.1 Understanding and Following User Interface Guidelines 282
6.2 Looking Good with Material Design 283
6.3 Choosing a Layout Manager (a.k.a. ViewGroup) and Arranging

Components 287
6.4 Handling Configuration Changes by Decoupling the View from the Model 288
6.5 Controlling the Action Bar 291
6.6 Adding a Share Action to Your Action Bar 295
6.7 Building Modern UIs with the Fragment API 299
6.8 Creating a Button and Its Click Event Listener 304
6.9 Enhancing UI Design Using Image Buttons 305
6.10 Using a FloatingActionButton 306
6.11 Wiring Up an Event Listener in Many Different Ways 309
6.12 Using CheckBoxes and RadioButtons 314
6.13 Using Card Widgets 318
6.14 Offering a Drop-Down Chooser via the Spinner Class 320

Table of Contents | vii

6.15 Handling Long-Press/Long-Click Events 323
6.16 Displaying Text Fields with TextView and EditText 324
6.17 Constraining EditText Values with Attributes and the TextWatcher

Interface 325
6.18 Implementing AutoCompleteTextView 328
6.19 Feeding AutoCompleteTextView Using a SQLite Database Query 330
6.20 Turning Edit Fields into Password Fields 332
6.21 Changing the Enter Key to “Next” on the Soft Keyboard 333
6.22 Processing Key-Press Events in an Activity 336
6.23 Let Them See Stars: Using RatingBar 337
6.24 Making a View Shake 341
6.25 Providing Haptic Feedback 342
6.26 Navigating Different Activities Within a TabView 346
6.27 Creating a Loading Screen that Will Appear Between Two Activities 347
6.28 Adding a Border with Rounded Corners to a Layout 349
6.29 Detecting Gestures in Android 351
6.30 Creating a Simple App Widget 358

7. GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications. 363
7.1 Alerting the User with Toast and Snackbar 364
7.2 Customizing the Appearance of a Toast 366
7.3 Creating and Displaying a Menu 367
7.4 Handling Choice Selection in a Menu 369
7.5 Creating a Submenu 370
7.6 Creating a Pop-up/Alert Dialog 372
7.7 Using a Timepicker Widget 374
7.8 Creating an iPhone-like WheelPicker for Selection 376
7.9 Creating a Tabbed Dialog 379
7.10 Creating a ProgressDialog 382
7.11 Creating a Custom Dialog with Buttons, Images, and Text 383
7.12 Creating a Reusable “About Box” Class 385
7.13 Creating a Notification in the Status Bar 389

8. Other GUI Elements: Lists and Views. 395
8.1 Building List-Based Applications with RecyclerView 395
8.2 Building List-Based Applications with ListView 399
8.3 Creating a “No Data” View for ListViews 403
8.4 Creating an Advanced ListView with Images and Text 405
8.5 Using Section Headers in ListViews 409
8.6 Keeping the ListView with the User’s Focus 413
8.7 Writing a Custom List Adapter 414
8.8 Using a SearchView to Search Through Data in a ListView 418

viii | Table of Contents

8.9 Handling Orientation Changes: From ListView Data Values to Landscape
Charting 420

9. Multimedia. 425
9.1 Playing a YouTube Video 425
9.2 Capturing Video Using MediaRecorder 426
9.3 Using Android’s Face Detection Capability 429
9.4 Playing Audio from a File 432
9.5 Playing Audio Without Interaction 435
9.6 Using Speech to Text 437
9.7 Making the Device Speak with Text-to-Speech 438

10. Data Persistence. 441
10.1 Reading and Writing Files in Internal and External Storage 442
10.2 Getting File and Directory Information 446
10.3 Reading a File Shipped with the App Rather than in the Filesystem 451
10.4 Getting Space Information About the SD Card 453
10.5 Providing a Preference Activity 454
10.6 Checking the Consistency of Default Shared Preferences 459
10.7 Using a SQLite Database in an Android Application 461
10.8 Performing Advanced Text Searches on a SQLite Database 464
10.9 Working with Dates in SQLite 470
10.10 Exposing Non-SQL Data as a SQL Cursor 472
10.11 Displaying Data with a CursorLoader 475
10.12 Parsing JSON Using JSONObject 478
10.13 Parsing an XML Document Using the DOM API 480
10.14 Storing and Retrieving Data via a Content Provider 482
10.15 Writing a Content Provider 483
10.16 Adding a Contact Through the Contacts Content Provider 487
10.17 Reading Contact Data Using a Content Provider 490
10.18 Implementing Drag and Drop 492
10.19 Sharing Files via a FileProvider 496
10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter 501
10.21 Storing Data in the Cloud with Google Firebase 510

11. Telephone Applications. 517
11.1 Doing Something When the Phone Rings 517
11.2 Processing Outgoing Phone Calls 521
11.3 Dialing the Phone 525
11.4 Sending Single-part or Multipart SMS Messages 527
11.5 Receiving an SMS Message 529
11.6 Using Emulator Controls to Send SMS Messages to the Emulator 531

Table of Contents | ix

11.7 Using Android’s TelephonyManager to Obtain Device Information 532

12. Networked Applications. 543
12.1 Consuming a RESTful Web Service Using a URLConnection 544
12.2 Consuming a RESTful Web Service with Volley 547
12.3 Notifying Your App with Google Cloud Messaging “Push Messaging” 549
12.4 Extracting Information from Unstructured Text Using Regular

Expressions 558
12.5 Parsing RSS/Atom Feeds Using ROME 559
12.6 Using MD5 to Digest Clear Text 564
12.7 Converting Text into Hyperlinks 565
12.8 Accessing a Web Page Using a WebView 566
12.9 Customizing a WebView 567
12.10 Writing an Inter-Process Communication Service 568

13. Gaming and Animation. 575
13.1 Building an Android Game Using flixel-gdx 576
13.2 Building an Android Game Using AndEngine 580
13.3 Processing Timed Keyboard Input 587

14. Social Networking. 589
14.1 Authenticating Users with OAUTH2 589
14.2 Integrating Social Networking Using HTTP 593
14.3 Loading a User’s Twitter Timeline Using HTML or JSON 596

15. Location and Map Applications. 599
15.1 Getting Location Information 599
15.2 Accessing GPS Information in Your Application 601
15.3 Mocking GPS Coordinates on a Device 603
15.4 Using Geocoding and Reverse Geocoding 606
15.5 Getting Ready for Google Maps API V2 Development 607
15.6 Using the Google Maps API V2 612
15.7 Displaying Map Data Using OpenStreetMap 618
15.8 Creating Overlays in OpenStreetMap Maps 621
15.9 Using a Scale on an OpenStreetMap Map 623
15.10 Handling Touch Events on an OpenStreetMap Overlay 624
15.11 Getting Location Updates with OpenStreetMap Maps 627

16. Accelerometer. 631
16.1 Checking for the Presence or Absence of a Sensor 631
16.2 Using the Accelerometer to Detect Shaking 632
16.3 Checking Whether a Device Is Facing Up or Down 636

x | Table of Contents

16.4 Reading the Temperature Sensor 637

17. Bluetooth. 639
17.1 Enabling Bluetooth and Making the Device Discoverable 639
17.2 Connecting to a Bluetooth-Enabled Device 641
17.3 Accepting Connections from a Bluetooth Device 644
17.4 Implementing Bluetooth Device Discovery 645

18. System and Device Control. 647
18.1 Accessing Phone Network/Connectivity Information 647
18.2 Obtaining Information from the Manifest File 648
18.3 Changing Incoming Call Notification to Silent, Vibrate, or Normal 649
18.4 Copying Text and Getting Text from the Clipboard 652
18.5 Using LED-Based Notifications 652
18.6 Making the Device Vibrate 653
18.7 Determining Whether a Given Application Is Running 654

19. All the World’s Not Java: Other Programming Languages and Frameworks. 657
19.1 Learning About Cross-Platform Solutions 658
19.2 Running Shell Commands from Your Application 659
19.3 Running Native C/C++ Code with JNI on the NDK 661
19.4 Getting Started with SL4A, the Scripting Layer for Android 667
19.5 Creating Alerts in SL4A 669
19.6 Fetching Your Google Documents and Displaying Them in a ListView

Using SL4A 673
19.7 Sharing SL4A Scripts in QR Codes 676
19.8 Using Native Handset Functionality from a WebView via JavaScript 678
19.9 Building a Cross-Platform App with Xamarin 680
19.10 Creating a Cross-Platform App Using PhoneGap/Cordova 685

20. All the World’s Not English: Strings and Internationalization. 689
20.1 Internationalizing Application Text 690
20.2 Finding and Translating Strings 693
20.3 Handling the Nuances of strings.xml 695

21. Packaging, Deploying, and Distributing/Selling Your App. 701
21.1 Creating a Signing Certificate and Using It to Sign Your Application 701
21.2 Distributing Your Application via the Google Play Store 705
21.3 Distributing Your Application via Other App Stores 707
21.4 Monetizing Your App with AdMob 708
21.5 Obfuscating and Optimizing with ProGuard 714
21.6 Hosting Your App on Your Own Server 717

Table of Contents | xi

21.7 Creating a “Self-Updating” App 718
21.8 Providing a Link to Other Published Apps in the Google Play Store 720

Index. 725

xii | Table of Contents

Preface

Android is “the open source revolution” applied to cellular telephony and mobile
computing. At least, part of the revolution. There have been many other attempts to
provide open source cell phones, most of them largely defunct, ranging from the
Openmoko Neo FreeRunner to QT Embedded, Moblin, LiMo, Debian Mobile,
Maemo, Firefox OS, and Ubuntu Mobile to the open sourced Symbian OS and the
now-defunct HP WebOS. And let’s not forget the established closed source stalwart,
Apple’s iOS, and the two minor players (by market share), Microsoft’s Windows
Phone, and the now-abandoned BlackBerry OS 10.

Amongst all these offerings, two stand out as major players. Android is definitely
here to stay! Due to its open source licensing, Android is used on many economy-
model phones around the world, and indeed, Android has been estimated to be on as
many as 90% of the world’s smartphones. This book is here to help the Android
developer community share the knowledge that will help make better apps. Those
who contribute knowledge here are helping to make Android development easier for
those who come after.

About Android
Android is a mobile technology platform that provides cell phones, tablets, and other
handheld and mobile devices (even netbooks) with the power and portability of the
Linux operating system, the reliability and portability of a standard high-level lan‐
guage and API, and a vast ecosystem of useful applications. Android apps are mostly
written in the Java language (using tools such as Eclipse and Android Studio), com‐
piled against the Android API, and translated into bytecode for an Android-specific
VM.

Android is thus related by OS family to other Linux-based cell phone projects.
Android is also related by programming language to BlackBerry’s older Java ME
phones, and to Java and the wider realm of Java Enterprise applications. Not to men‐
tion that all current BlackBerry devices can run Android applications, and, in fact,

xiii

http://money.cnn.com/2016/11/03/technology/android-global-market-share-2016/index.html
http://money.cnn.com/2016/11/03/technology/android-global-market-share-2016/index.html
https://www.android.com/

before it outsourced the remains of its smartphone business, BlackBerry’s last devices
only ran Android.

It’s now generally believed that Android has almost three-quarters of the world
smartphone market, although it has not displaced Apple’s iPad in the tablet market.
Sales figures change all the time, but it is clear that Android is, and will remain, one
of the dominant players in the mobile space.

Android is also available for several specialized platforms. Android Wear brings
Android’s programming model to the smartwatch and wearable environment for uses
such as fitness trackers. Android Auto is designed for controlling the entertainment
units in automobiles. Android TV runs in smart TVs and controllers for not-so-
smart TVs. Finally, Android Things is designed for the embedded market, now
known as “the internet of things” (IoT). Each of these platforms is fascinating, but to
keep the book to a reasonable size, we focus primarily on “regular Android,” Android
for smartphone and tablet applications.

Who This Book Is By
This book was co-written by several dozen Android developers from the Android
community at large. Development occurred in the open, on the Android Cookbook
website, which I built (using Java, of course) to allow people to contribute, view,
review, and comment on the recipes that would make up this book. A complete list
can be found in “Acknowledgments” on page xxi. I am deeply grateful to all the con‐
tributors, who have helped move this book from a dream to the reality that you have
in your hands (or onscreen if you are reading the ebook format). Thank you all!

Who This Book Is For
This book focuses on building Android applications using Java, the native language of
Android applications. It is of course possible to package up a web application as a
mobile app (see Recipe 19.10), but it will be difficult to get the all-important 100%-
correct user experience with all the current features of Android that way.

So. Java. We assume you know the basics of the Java language. If not, see Recipe 1.4.
We also assume you know the basics of the Java Standard Edition API (since this
forms the basis of Android’s runtime libraries) as well as the basics of Android. The
terms Activity, Intent, Service, and content provider, while not necessarily being what
you dream about at night, should at least be familiar to you. But if not, we’ve got you
covered: see Recipe 1.2.

This book differs from the Samples associated with the Android SDK in that it tries to
focus more on how a given piece of technology works, rather than giving you (as
many of the Samples do) a complete, working example that has both been simplified

xiv | Preface

https://developer.android.com/wear
https://developer.android.com/auto
https://developer.android.com/tv
https://developer.android.com/things
https://androidcookbook.com/
https://androidcookbook.com/
https://developer.android.com/samples/index.html

(to use very simple data) and complicated by adding in several “neat” features that are
irrelevant to the problem at hand.

What’s in This Book?
Chapter 1 takes you through the steps of setting up the Android development envi‐
ronment and building several simple applications of the well-known “Hello, World”
type pioneered by Brian Kernighan.

Chapter 2 covers some of the differences in mobile computing that will hit developers
coming from desktop and enterprise software environments, and talks about how
mobile design (in particular, Android design) differs from those other environments.

Testing is often an afterthought for some developers, so we discuss this early on, in
Chapter 3. Not so that you’ll skip it, but so that you’ll read and heed. We talk about
unit testing individual components as well as testing out your entire application in a
well-controlled way.

Android provides a variety of mechanisms for communicating within and across
applications. In Chapter 4 we discuss Intents and broadcast receivers, Services,
AsyncTasks, and handlers.

Chapter 5 covers a range of topics related to graphics, including use of the graphical
drawing and compositing facilities in Android as well as using desktop tools to
develop graphical images, textures, icons, and so on that will be incorporated into
your finished application.

Every mobile app needs a GUI, so Chapter 6 covers the main ins and outs of GUI
development for Android. Examples are given both in XML and, in a few cases, in
Java-coded GUI development.

Chapter 7 covers all the pop-up mechanisms—menus, dialogs, and toasts—and one
that doesn’t pop up but is also for interaction outside your application’s window,
Android’s notification mechanism.

Lists of items are very common in mobile applications on all platforms. Chapter 8
focuses on the “list” components in Android: the ListView and its newer replacement,
the RecyclerView.

Android is rich in multimedia capabilities. Chapter 9 shows how to use the most
important of these.

Chapter 10 shows how to save data into files, databases, and so on—and how to
retrieve it later, of course. Another communication mechanism is about allowing
controlled access to data that is usually in a SQL database. This chapter also shows
you how to make application data available to other applications through something

Preface | xv

as simple but ubiquitous (in Android) as the URL, and how to use various cloud-
based services to store data.

Android started out as an operating system for mobile telephones. Chapter 11 shows
how to control and react to the telephony component that is in most mobile devices
nowadays.

Mobile devices are, for the most part, always-on and always-connected. This has a
major impact on how people use them and think about them. Chapter 12 shows the
coding for traditional networked applications. This is followed by Chapter 13, which
discusses gaming and animation, and Chapter 14, which discusses social networking.

The now-ubiquitous Global Positioning System (GPS) has also had a major impact
on how mobile applications work. Chapter 15 discusses how to find a device’s loca‐
tion, how to get map data from Google and OpenStreetMap, and how applications
can be location-aware in ways that are just now being explored.

Chapter 16 talks about the sensors built into most Android devices and how to use
them.

Chapter 17 talks about the low-energy very-local area networking that Bluetooth ena‐
bles, going beyond connecting your Bluetooth headset to your phone.

Android devices are perhaps unique in how much control they give the developer.
Some of these angles are explored in Chapter 18. Because Android is Linux-based, a
few of the recipes in this chapter deal with traditional Unix/Linux commands and
facilities.

In Chapter 19, we explore the use of other programming languages to write all or part
of your Android application. Examples include C, Perl, Python, Lisp, and other lan‐
guages.

While this edition of this book is in English, and English remains the number-one
technical language worldwide, it is far from the only one. Most end users would
rather have an application that has its text in their language and its icons in a form
that is culturally correct for them. Chapter 20 goes over the issues of language and
culture and how they relate to Android.

xvi | Preface

Finally, most Android developers hope other people will use their applications. But
this won’t happen if users can’t find the applications. Chapter 21 shows how to pre‐
pare your application for distribution via the Google Play Store, and to use that as
well as other markets to get your application out to the people who will use it.

Content Updates—Second Edition, March 2017
Major revision for Android Nougat (7.x). As befits a major revision, there are numer‐
ous new recipes to cover all the APIs that have been added or replaced over the past
several releases of Android. Of necessity, a few older recipes were retired. Some rec‐
ipes were moved around, which resulted in renumbering of most of the chapters.

The Android O Preview was released in the final week of this edition’s proofing stage,
and a few references are made to Android O; these should be regarded as “forward-
looking statements,” as “O” is still in a preview release.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xvii

This element signifies a warning or caution.

And here is our first warning: the term “I” used in a given recipe
reflects the opinions or experience of that recipe’s contributor, not
necessarily of the book’s editor.

Getting and Using the Code Examples
The code examples in this book vary from a few lines pasted from a complete applica‐
tion through to fully working apps. For those at the “few lines” end of the spectrum,
you should not expect to be able to compile them from what we provide; these are
intended to be merged into your application. All the examples that we have code for
and that are compilable have been merged into a single GitHub repository, which is
the recommended way of getting the source code and keeping it up-to-date. This reposi‐
tory can be accessed at https://github.com/IanDarwin/Android-Cookbook-Examples.
Each directory in the repo contains one example program’s project. As you will see if
you visit this page, GitHub allows you to check out the source repository using the git
clone command. As well, the web page offers the option to download the entire repos‐
itory as a single (large) ZIP file as well as to browse portions of the repository in a
web browser. Using Git will allow you to receive corrections and updates.

Contributors of each recipe also have the option to provide a download URL for their
source code, hosted on some other public repository. These are listed as hyperlinks
for ebook users to download from at the end of each recipe. In each case the archive
file is expected to contain a complete Eclipse or Android Studio project. We have no
control over these other repositories, so if one of them is incomplete, or stops work‐
ing, please refer to the GitHub repository instead.

Almost all code examples originally written for Eclipse now also
contain a build.gradle file so they can be opened directly in
Android Studio as well (see Recipe 1.12 to see how we did this).
Code examples originally written for Android Studio can, in gen‐
eral, not be used by Eclipse without reorganizing the project struc‐
ture.

xviii | Preface

https://github.com/IanDarwin/Android-Cookbook-Examples

How to Determine How a Project Can Be Built

If a project’s top-level directory contains:

AndroidManifest.xml and .project
It is openable with Eclipse.

build.gradle
It is openable with Android Studio or buildable with
command-line Gradle.

pom.xml
It is buildable with command-line Maven (or using Maven
inside an IDE).

build.xml
It might still be buildable with the older Ant build tool.

See Figure P-1 for an example of a typical project layout.
The top level of the Git repository for the examples contains a
README file, viewable below the list of files and directories, which
summarizes which projects can be built using which tools. Please
pay attention to the Notes column, as there may at any time be
some known issues with building the examples.

Figure P-1. Project layout for typical Eclipse and Studio projects

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for

Preface | xix

https://github.com/IanDarwin/Android-Cookbook-Examples

permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: "Android Cookbook, Second Edi‐
tion, by Ian F. Darwin (O’Reilly). Copyright 2017 O’Reilly Media, Inc.,
978-1-449-37443-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xx | Preface

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/android-cookbook-2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: https://facebook.com/oreilly

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank the dozens of people from the Android community at large who
contributed so many of the recipes in the first edition of this book: Amir Alagic, Jim
Blackler, Luis Vitorio Cargnini, Rupesh Chavan, Adrian Cowham, Wagied Davids,
Nidhin Jose Davis, David Dawes, Enrique Diaz, Marco Dinacci, Claudio Esperanca,
Kurosh Fallahzadeh, Daniel Fowler, Jonathan Fuerth, Sunit Katkar, Roger Kind Kris‐
tiansen, Vladimir Kroz, Alex Leffelman, Ulysses Levy, Thomas Manthey, Emaad
Manzoor, Zigurd Mednieks, Keith Mendoza, Roberto Calvo Palomino, Federico Pao‐
linelli, Johan Pelgrim, Catarina Reis, Mike Rowehl, Pratik Rupwal, Oscar Salguero,
Ashwini Shahapurkar, Shraddha Shravagi, Rachee Singh, Saketkumar Srivastav,
Corey Sunwold, Kailuo Wang, and Colin Wilcox.

Thanks to Mike Way, who contributed the permissions recipe (Recipe 2.2) for the
second edition, and Daniel Fowler for updating several of his recipes for this second
edition.

I must also mention the many people at O’Reilly who have helped shape this book,
including my editors Mike Loukides, Courtney Nash, Meghan Blanchette, and Dawn
Schanafelt; Adam Witwer and Sarah Schneider in production; production editor Ter‐
esa Elsey, who shepherded the whole production process; external copyeditor Audrey
Doyle, who painstakingly read every word and phrase; Stacie Arellano, who proof‐
read it all again; Lucie Haskins, who added index terms to all those recipes; designers
Karen Montgomery and David Futato; illustrators Robert Romano and Rebecca
Demarest; and anyone whom I’ve neglected to mention—you know who you are! For
the second edition: Colleen Lobner, Kim Cofer, Rachel Head, and Judith McConville.

My late son Andrej Darwin helped with some administrative tasks late in the recipe
editing phase of the first edition. Thanks to all my family for their support.

Finally, a note of thanks to my two technical reviewers, Greg Ostravich and Zettie
Chinfong, without whom there would be many more errors and omissions than the

Preface | xxi

http://bit.ly/android-cookbook-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
https://facebook.com/oreilly
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia
https://darwinsys.com/andrej

ones that doubtless remain. Not only that, they both came back for the second edi‐
tion! Rick Isaacs made another pass and tested many recipes. Thanks also to the
many people who pointed out minor errors and omissions in the first printing of the
book, especially Anto Jurkovic and Joseph C. Eddy; most of these have been corrected
at this time. The errors which surely remain are my own.

To all of the above, thank you!

xxii | Preface

CHAPTER 1

Getting Started

The famous “Hello, World” pattern came about back in 1978 when Brian Kernighan
and P.J. Plauger wrote a “recipe” on how to get started in any new programming lan‐
guage and environment. Their idea was that, if you could get a computer program to
print out “Hello, World,” then you had mastered how to use the system in general:
how to create/edit a program’s source code, compile/translate/process it into a runna‐
ble program as needed, and run it. And once you’d done that you could, with elabora‐
tion, make the computer do anything! This chapter is affectionately dedicated to
these fine gentlemen, and to everyone who has ever struggled to get started in a new
programming paradigm.

This chapter is a smorgasbord of “how to get started” recipes. We show you how to
create and build an Android app using almost no tooling, using Apache Maven, using
Eclipse, using Gradle, and using Android Studio. Nobody will regularly use all these
techniques, but we chose to cover them all because some readers will like each way of
doing things. Feel free to pick and choose, and try different ways of working on your
application!

1.1 Understanding the Android Application Architecture
Ian Darwin

Problem
An Android application consists of many “moving parts” whose natures and interac‐
tions need to be understood in order to develop effectively.

1

Discussion
An Android application consists of one or more of the following components, written
as Java classes:

• An Activity comprises the visual components (“views”) for one screen as well as
the code that displays data into that screen and can respond to user events on that
screen. Almost every application has at least one Activity class.

• A Service is a component that has no user interface, and can run for a longer
period of time than an Activity. Two main uses for Services are for long-running
tasks (such as a music player), and running medium-length tasks without tying
up the user-interface thread.

• Broadcast receivers are less common, and are used to respond to system-wide
events such as the network losing or regaining connectivity, the battery running
low, the system rebooting, and so on.

• Content providers are also relatively rare, and are used when one application
needs to share its data with other applications; they can also be used with sync
adapters.

• Sync adapters synchronize data with cloud services; the best-known examples are
the Contacts and Calendar apps on the device, which can easily be synchronized
to your Google account.

Your code does not create these objects using the new operator, as in conventional Java,
but requests the invocation of Activities, Services, etc., using an Intent, an object that
specifies your intention to have something done. Intents can start Activities within
your application (by class name), start Activities in other applications (by specifying
content type and other information), start Services, and request other operations. The
interactions among these components are outlined in Figure 1-1.

Of these, the Activity is the most basic component, and the place you need to start
when learning to develop Android applications.

Reference Documentation
Every Android developer should probably save at least these bookmarks or favorites
in their browser for quick reference at any time:

• Introductory Documentation
• Android API Reference

2 | Chapter 1: Getting Started

https://developer.android.com/guide/index.html
https://developer.android.com/reference/

1.2 Understanding the Android Activity Life Cycle
Ian Darwin

Problem
Android apps do not have a “main” method; you need to understand how they get
started and how they stop or get stopped.

Solution
The class android.app.Activity provides a number of well-defined life-cycle methods
that are called when an application is started, suspended, restarted, and so on, as well
as a method you can call to mark an Activity as finished.

Figure 1-1. Android application components

Discussion
Your Android application runs in its own Unix process, so in general it cannot
directly affect any other running application. The Android Runtime interfaces with
the operating system to call you when your application starts, when the user switches
to another application, and so on. There is a well-defined life cycle for Android appli‐
cations.

An Android app can be in one of three states:

• Active, in which the app is visible to the user and is running.

1.2 Understanding the Android Activity Life Cycle | 3

• Paused, in which the app is partly obscured and has lost the input focus (e.g.,
when a dialog is in front of your Activity).

• Stopped, in which the app is completely hidden from view.

Your app will be transitioned among these states by Android calling the following
methods on the current Activity at the appropriate time:

void onCreate(Bundle savedInstanceState)
void onStart()
void onResume()
void onRestart()
void onPause()
void onStop()
void onDestroy()

You can see the state diagram for this life cycle in Figure 1-2.

Figure 1-2. Android life-cycle states

The system’s call to onCreate() is how you know that the Activity has been started. This
is where you normally do constructor-like work such as setting up the “main win‐

4 | Chapter 1: Getting Started

dow” with setContentView(), adding listeners to buttons to do work (including starting
additional Activities), and so on. This is the one method that even the simplest
Android Activity needs.

Note that most applications today base their UI on Fragments. A Fragment is a part of
the UI for an Activity. For example, in the early days of Android a typical list-detail
application would use two Activities, one for the list and one for the detail. This is still
allowed, of course, but has the drawback that, on a tablet or a large-screen phone in
landscape mode, it isn’t possible to have both views side-by-side. An Activity can be
divided into multiple Fragments (see Recipe 6.7), which solves this problem. A Frag‐
ment can only exist inside an Activity. The Fragment life cycle is similar to that of the
Activity, but has a few additional methods.

You can see the invocations of the various life-cycle methods by creating a dummy
project in Eclipse and overriding all the life-cycle methods with log “debug” state‐
ments (see also Recipe 3.11):

@Override
public void onPause() {
 Log.d(TAG, "In method onPause()");
}

1.3 Learning About Android Releases
Ian Darwin

Problem
You keep hearing about Ice Cream Sandwiches, Jelly Beans, Lollipops, KitKats,
Marshmallows, and Nougats, and need to know what it all means.

Discussion
Android has gone through many versions in its lifetime. Each version has a version
number, a code name, and an API level. The version number is a conventional ver‐
sioning system like 2.1, 2.3.3, 3.0, 4.0, 4.1, 5.0, 6.0, and so on. When the first digit of
the version changes, it’s a big deal with lots of new APIs; when the second digit
changes, it’s more evolution than revolution (and occasionally a new code name); and
if only the third digit changes, it’s a minor change. The API levels are numbered
monotonically. The code names are alphabetical and always refer to sweet foods. API
levels 1 and 2 did not officially have code names.

Note that the Android system is backward-compatible in the usual sense: an app built
for an older release will run on a newer version of Android, but not vice versa (unless
special care is taken; see Recipe 1.21). An app built for 1.5 should run without recom‐
pilation on Android 7, for example. But an app written for and compiled on Android

1.3 Learning About Android Releases | 5

7 will probably use API calls that don’t exist on the 1.5 phone, so the phone will, in
fact, refuse to install the newer app, unless you use some versioning and compatibility
tricks that we’ll touch on later (Recipe 1.21). The major versions of Android are sum‐
marized in Table 1-1.

Table 1-1. Android versions
Version number API level Name Datea Major change/Notes CM version

1.0 1 2008-09-23

1.1 2 2009-02-09

1.5 3 Cupcake 2009-04-30 3

1.6 4 Donut 2009-09-15 4

2.0 5 Eclair 2009-10-26 5

2.1 7 Eclair 2010-01-12

2.2 8 Froyo 2010-05-20 6

2.3 9 Gingerbread 2010-12-06 Long the most widely-used version 7

2.3 10 Gingerbread

3.0 11 Honeycomb 2011-02-22 Tablets only; source code release delayed

3.1 12 Honeycomb 2011-05-10

3.2 13 Honeycomb 2011-07-15

4.0 14 Ice Cream Sandwich 2011-10-19 Merge tablet and phone support 9

4.0.3 15 Ice Cream Sandwich 2011-12-16

4.1.2 16 Jelly Bean 2012-07-09 10

4.2.2 17 Jelly Bean 2012-11-13 10.1

4.3 18 Jelly Bean 2013-07-24 10.2

4.4 19 KitKat 2013-10-31 Co-marketing deal with Nestlé (makers of
KitKat chocolate bar)

11

5.0 21 Lollipop 2014-11-10 12

6.0 23 Marshmallow 2015-10-05 13

7.0 24 Nougat 2016-08-22 14.0

7.1 25 Nougat 14.1

a Date information sourced from Wikipedia.

The final column, “CM version,” shows the main version numbers of CyanogenMod,
long the leading “alternate distribution” or “community build” of Android. Based on
the Android Open Source Project, “CM” was much beloved by many open source
fans because it was independent of Google, allowed easier “root” access, and so on. As
this edition of this book was going to press, CyanogenMod, Inc. decided to terminate
its support for CyanogenMod, leading the community to fork the project and rename
it to LineageOS. There are many other community builds of Android. One focusing
on security is CopperheadOS. Several others are built by people frequenting XDA

6 | Chapter 1: Getting Started

https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/CyanogenMod#Version_history
https://LineageOS.org
https://copperhead.co/android
https://www.xda-developers.com

Developers groups. Several commercial outfits claim to offer community builds, too;
a web search will find these.

Of course, this table will continue to grow as new versions are released, and Android
continues to grow.

1.4 Learning the Java Language
Ian Darwin

Problem
Android apps are written in the Java programming language before they are con‐
verted into Android’s own class file format, DEX. If you don’t know how to program
in Java you will find it hard to write Android apps.

Solution
Lots of resources are available for learning Java. Most of them will teach you what you
need, but will also mention some API classes that are not available for Android devel‐
opment. Avoid any sections in any resource that talk about topics listed in the left‐
hand column of Table 1-2.

Table 1-2. Parts of the Java API to ignore
Java API Android equivalent
Swing, applets Android’s GUI; see Chapter 6.

Application entry point main() See Recipe 1.2.

J2ME/Java ME Most of android.* replaces the Java ME API.

Servlets/JSP/JSF, Java EE Designed for server-side use.

Discussion
Here are some books and resources on Java programming:

• Java in a Nutshell by David Flanagan (O’Reilly). This is a good introduction for
programmers, particularly those who are coming from C/C++. The book has
grown from an acorn to a coconut in size through its various editions, to keep up
with the growth of Java SE over its lifetime.

• Head First Java by Kathy Sierra and Bert Bates (O’Reilly). This provides a great
visual-learner-oriented introduction to the language.

• Thinking in Java by Bruce Eckel (Prentice-Hall).
• Learning Java by Patrick Niemeyer and Jonathan Knudsen (O’Reilly).

1.4 Learning the Java Language | 7

https://www.xda-developers.com

• “Great Java: Level 1,” by Brett McLaughlin (O’Reilly). This video provides a visual
introduction to the language.

• Java: The Good Parts by Jim Waldo (O’Reilly).
• Java Cookbook, which I wrote and O’Reilly published. This is regarded as a good

second book for Java developers. It has entire chapters on strings, regular expres‐
sions, numbers, dates and times, structuring data, I/O and directories, interna‐
tionalization, threading, and networking, all of which apply to Android. It also
has a number of chapters that are specific to Swing and to some EE-based tech‐
nologies.

• Java Testing for Developers, a video series I did on how to test out Java code as
you develop it; covers both dynamic testing (with JUnit and many others) and
static testing (with tools such as PMD and FindBugs).

Please understand that this list will probably never be completely up-to-date.

See Also
I maintain a list of Java resources online at http://www.darwinsys.com/java/.

O’Reilly has many of the best Java books around; there’s a complete list at http://
oreilly.com/pub/topic/java.

1.5 Creating a “Hello, World” Application from the
Command Line
Ian Darwin

Problem
You want to create a new Android project without using any IDEs or plug-ins.

Solution
Use the Android Software Development Kit (SDK) tool android with the create project
argument and some additional arguments to configure your project.

Discussion
This discussion assumes you have installed the Android SDK—one of the easiest
ways to do so is to follow Recipe 1.8—and installed at least one platform version.

In addition to being the name of the platform, android is also the name of a command-
line tool for creating, updating, and managing projects. To use it, you can either navi‐

8 | Chapter 1: Getting Started

http://cjp.darwinsys.com/
http://www.darwinsys.com/java/
http://oreilly.com/pub/topic/java
http://oreilly.com/pub/topic/java

gate into the android-sdk-nnn directory or set your PATH variable to include its tools
subdirectory.

You have a choice of creating your project in the old format, which is the default, or
the “new” Gradle-based format. We’ll show the old way first, then the Gradle way. To
create a new project, give the command android create project with some arguments.
Example 1-1 shows running the command in a terminal window in a Microsoft envi‐
ronment.

Example 1-1. Creating a new project—old format

C:> PATH=%PATH%;"C:\Documents and Settings\Ian\My Documents\android-sdk-windows\tools"; \
 C:\Documents and Settings\Ian\My Documents\android-sdk-windows\platform-tools"
C:> android create project --target android-21 --package com.example.foo
 --name Foo --activity HelloWorldActivity --path .\MyAndroid
Created project directory: C:\Documents and Settings\Ian\My Documents\MyAndroid
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\src\com\example\foo
Added file C:\Documents and Settings\Ian\My
Documents\MyAndroid\src\com\example\foo\HelloWorldActivity.java
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\bin
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\libs
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res\values
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\res\values\strings.xml
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res\layout
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\res\layout\main.xml
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\AndroidManifest.xml
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\build.xml
C:>

On Unix or macOS you can use something like the following:
/Users/ian/android-sdk-macosx/tools/android create project --target android-21 \
 --package com.example.foo \
 --name Foo --activity HelloWorldActivity --path MyAndroid

Table 1-3 lists the arguments for the android create project command.

Table 1-3. List of android create project arguments
Name Meaning Example
--activity Name of your “main class” and default name for the generated .apk file. --activity

HelloWorldActivity

--name Name of the project and the generated .apk file. --name MyProject

--package Name of the Java package for your classes. --package
com.example.hello

--path Path to create the project in (does not create a subdirectory under this, so
don’t use /home/you/workspace, but
rather / home / you / workspace / NewProjectName).

--path /home/ian/
workspace/MyProject
(see Example 1-1 for
Windows example)

1.5 Creating a “Hello, World” Application from the Command Line | 9

Name Meaning Example
--target API level of the Android platform to target; use android list targets

to see list of targets. A number is an “ID,” not an API level; for that, use
android- with the API level you want.

--target android-10

--gradle Use Gradle format (requires --gradle-version). --gradle

--gradle-
version

Version of Gradle plug-in to use. --gradle-version 3.3

If it cannot complete the requested operation, the android command presents a volu‐
minous “command usage” message listing all the operations it can do and the argu‐
ments for them. If successful, the android create project command creates the files and
directories listed in Table 1-4.

Table 1-4. Artifacts created by android create project
Name Content
AndroidManifest.xml Config file that tells Android about your project

bin Generated binaries (compiled class files)

build.properties Editable properties file

build.xml Ant build control file

default.properties or project.properties (depending on tools
version)

Stores SDK version and libraries used; maintained by plug-in

gen Generated stuff

libs Libraries, of course

res Important resource files (strings.xml, layouts, etc.)

src Source code for your application

src/packagename/ActivityName.java Source of “main” starting Activity

test Copies of most of the above

If we use the two Gradle-related arguments, we get a slightly different project struc‐
ture, as shown in Example 1-2.

Example 1-2. Project creation—Gradle format

$ /Users/ian/android-sdk-macosx/tools/android create project \
 --target android-23 --package com.example.foo \
 --gradle --gradle-version 2.0.0 \
 --name Foo --activity HelloWorldActivity --path HelloGradle
Created project directory: HelloGradle
Created directory /home/ian/HelloGradle/src/main/java
Created directory /home/ian/HelloGradle/src/main/java/com/example/foo
Added file HelloGradle/src/main/java/com/example/foo/HelloWorldActivity.java
Created directory /home/ian/HelloGradle/src/androidTest/java
Created directory /home/ian/HelloGradle/src/androidTest/java/com/example/foo
Added file...

10 | Chapter 1: Getting Started

 HelloGradle/src/androidTest/java/com/example/foo/HelloWorldActivityTest.java
Created directory /home/ian/HelloGradle/src/main/res
Created directory /home/ian/HelloGradle/src/main/res/values
Added file HelloGradle/src/main/res/values/strings.xml
Created directory /home/ian/HelloGradle/src/main/res/layout
Added file HelloGradle/src/main/res/layout/main.xml
Created directory /home/ian/HelloGradle/src/main/res/drawable-xhdpi
Created directory /home/ian/HelloGradle/src/main/res/drawable-hdpi
Created directory /home/ian/HelloGradle/src/main/res/drawable-mdpi
Created directory /home/ian/HelloGradle/src/main/res/drawable-ldpi
Added file HelloGradle/src/main/AndroidManifest.xml
Added file HelloGradle/build.gradle
Created directory /home/ian/HelloGradle/gradle/wrapper
$

It is a normal and recommended Android practice to create your user interface in
XML using the layout file created under res/layout, but it is certainly possible to write
all the code in Java. To keep this example self-contained, we’ll do it the “wrong” way
for now. Use your favorite text editor to replace the contents of the file Hello‐
World.java with the contents of Example 1-3.

Example 1-3. HelloWorld.java

import android.app.Activity;
import android.widget.*;

public class HelloWorld extends Activity {

 /**
 * This method gets invoked when the Activity is instantiated in
 * response to, e.g., clicking on the app's icon in the Home screen.
 * Reminder: this is NOT a best-practices way of creating the UI!
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Create a TextView for the current Activity
 TextView view = new TextView(this);
 // Make it say something
 view.setText("Hello World");
 // Put this newly created view into the Activity,
 // sort of like JFrame.getContentPane().add(view)
 setContentView(view);
 }
}

Although Google has moved from Eclipse to Android Studio, which uses the Gradle
build tool, the command-line version of generated projects still uses the Ant build
tool by default (i.e., if you omit the two Gradle-related arguments shown in
Example 1-2). Assuming you have the Apache Software Foundation Ant build tool
installed (and it is included with recent versions of the Android SDK), you can now

1.5 Creating a “Hello, World” Application from the Command Line | 11

http://ant.apache.org/

(in a command-line window) change to the project directory (…MyDocuments\MyAndroid
in Example 1-1) and issue the command:

$ ant debug

This will create an archive file named, for example, MyAndroid.apk (with “apk” stand‐
ing for Android Package) in the bin directory.

If you are using the Gradle version, you can instead type:
gradlew build

The first time you run this, it may take a long time to complete. But it should work. If
it doesn’t, use the HelloGradle project in this book’s GitHub repository.

If this is your first time here, you may need to create an Android Virtual Device
(AVD), which is just a named configuration for the Android emulator specifying tar‐
get resolution, API level, and so on. You can create an emulator using:

android create avd -n my_droid -t 21

The argument to -t is the target API level; see Recipe 1.3. For more details on creating
an AVD, see Recipe 3.1.

You can then start the Android Debug Bridge (ADB) server for communication, and
the emulator:

adb start-server
emulator -avd my_droid -t 19

Assuming you now have either the emulator running or your device plugged in and
recognized via USB, you can issue a command similar to one of the following,
depending on exactly what you built earlier. If you have both an emulator and a real
device, add an argument of -e for emulator or -d for device between the adb command
and the install operation:

$ adb install -r bin/HelloAndroid.apk # Ant build

$ adb install -r target/HelloAndroid-1.0-SNAPSHOT-debug.apk # Maven build

$ adb install -r build/outputs/apk/HelloAndroid-debug.apk # Gradle build

If you are handy with shell scripts or batch files, you’ll want to create one called, say,
download, to avoid having to type the adb invocation on every build cycle.

Finally, you can start your app! You can use the application list: tap the little icon that
looks like a 5×5 row of dots, scroll to your application by name, and tap its icon.

You will probably find it convenient to create an icon for your app on the Home
screen of the device or emulator; this icon will survive multiple install -r cycles, as
long as you don’t uninstall, so it’s the easiest way to test the running of your applica‐
tion.

12 | Chapter 1: Getting Started

https://github.com/IanDarwin/Android-Cookbook-Examples

See Also
Recipe 1.10, Recipe 1.15.

1.6 Creating a “Hello, World” App with Apache Maven
Ian Darwin

Problem
The previous recipe used Android to create a project buildable with Apache Ant.
However, many organizations are moving or have moved from Ant to Maven, due to
Maven’s dependency management. In fact, Maven is almost certainly the most widely
used build tool in the Java environment. Ant doesn’t handle dependencies on its own;
although this can be grafted in (using Apache Ivy), Maven’s shorter configuration files
make direct use of Maven a better fit most of the time.

Solution
Use Apache Maven. Use a “Maven archetype” to generate your project, and use
Maven to build and run it.

Discussion
There are several approaches to using Apache Maven to build Android projects.
Here’s one I’ve tested, based upon the akquinet maven-android-archetypes:

$ mvn archetype:generate \
-DarchetypeArtifactId=android-quickstart \
-DarchetypeGroupId=de.akquinet.android.archetypes \
-DarchetypeVersion=1.0.8 \
-DgroupId=com.androidcookbook \
-DartifactId=android-demo \
-Dplatform=17 \
-Dpackage=com.androidcookbook.hellomaven

Most of the -D arguments are obvious. platform is the API level. You can specify a
number of other parameters and variations, including test projects.

Once you’ve created your project you can build it:
$ mvn clean package

1.6 Creating a “Hello, World” App with Apache Maven | 13

Before the next step, you should plug in a device or start an emulator:
$ mvn android:deploy
(not mvn deploy!) this will package and install, but not run, the app

$ mvn android:run # This will run the app

Maven and its Android plug-in offer support for other operations, including signing
the APK for release.

There are also Eclipse plug-ins for Maven; these are included with the latest Eclipse
builds, or see Recipe 1.16 and use the Marketplace to install M2E and M2E-Android.
It is possible to “Eclipsify” a project such as the one you created using Maven. You
can create minimal Eclipse project structures using mvn eclipse:eclipse, and make it
into a full M2E project by right-clicking on the project in the Project Explorer and
selecting Configure → Convert to Maven Project. This has been done to create many
of the Eclipse files in the downloadable version of this project.

Incidentally, if you get an Eclipse error on your POM file stating “Plugin execution
not covered by lifecycle configuration,” you can turn this into a warning or even
ignore it, under Eclipse Preferences → Maven → Errors/Warnings → Plugin execu‐
tion not covered by lifecycle configuration → Warning, as shown in Figure 1-3.

Figure 1-3. Maven: Plugin execution not covered by lifecycle configuration

14 | Chapter 1: Getting Started

See Also
Akquinet’s guide to getting started with archetypes; the source code for the artifacts.

I have an experimental Maven archetype that creates a Maven project that should also
work with Eclipse and Android Studio; you can try it out by referring to GitHub.

1.7 Choosing an IDE for Android Development
Ian Darwin

Problem
Using build tools is OK, but coding with a plain-text editor is too slow to be your
regular development stream. You want to choose an integrated development environ‐
ment (IDE) to use for your Android projects: Android Studio, Eclipse, or “other.”

Solution
Weigh the pros and cons of each, then roll the dice. Try each one on a reasonable-
sized project.

Discussion
Whereas in the MS Windows world there is a single IDE that dominates, and in the
Android world there is a single IDE that is “official,” in the larger Java world there are
several that are worth considering.

Eclipse was created by IBM in the early days of Java, once it was clear that its then-
current IDE Visual Age was not going to live a long life (Visual Age was written in
Smalltalk, not in Java). In my experience teaching Java courses, about 80% of Java
developers use Eclipse, and that figure has been fairly steady over the years. Spring
Tool Suite (STS) and various IBM developer studios are based on Eclipse and
included in that figure.

Android Studio is the official Android IDE supported by Google. It is based on Intel‐
liJ IDEA, a Java IDE that has long been around but had a relatively small usage level
in the Java community until Google incorporated its plug-in into ItelliJ and renamed
this version to “Android Studio.”

NetBeans was written by a small company that Sun Microsystems acquired in 1999.
Sun Microsystems was in turn acquired by Oracle in 2009. NetBeans has been the
“official” Java IDE for a long time, but its usage was “eclipsed” by Eclipse (remember:
an eclipse occurs when another body passes in front of the Sun). Relatively few devel‐
opers use NetBeans specifically for Android, so to keep the discussion focused, Net‐
Beans will not be covered in this book.

1.7 Choosing an IDE for Android Development | 15

http://stand.spree.de/wiki_details_maven_archetypes
https://github.com/akquinet/android-archetypes
https://github.com/IanDarwin/mvn-archetype-android
http://eclipse.org
https://developer.android.com/tools/studio/index.html
https://www.jetbrains.com/idea
https://www.jetbrains.com/idea
https://netbeans.org

For the first decade of Android’s life, Google recommended use of Eclipse with its
own plug-in, called Android Development Tools (ADT). Google offered it both as a
standalone plug-in (for those who already had Eclipse up and running) and in a bun‐
dle already integrated with Eclipse. Around 2013 it announced the switch to Android
Studio based on IntelliJ. Shortly thereafter, the Eclipse Foundation announced that a
small team was picking up ADT (since it was open source) and merging in some
additional tools. This new plug-in is called AndMore. Eclipse with AndMore is equiv‐
alent to and forward-compatible with Eclipse with ADT, though some names in the
project files have to be changed (see Recipe 1.11). Note that some organizations may
choose to stay with ADT; if you’re in that camp, you can (mostly) just substitute ADT
where we say AndMore.

Your project structure and accompanying build tool might also be a factor in choos‐
ing. Eclipse supports a single-level project, which is typically what you need for an
application, with an optional second project for testing if you use the official Android
unit testing framework (see Chapter 3). ADT (and thus AndMore) does not require
an external build tool; the plug-in contains all the smarts to build any type of Android
application. It has only two project files that need to be kept under source con‐
trol: .project and .classpath. A directory .settings file can be controlled as well, but it
changes a lot and can just as easily be ignored. There is even an API in Eclipse for
manipulating project structure. Because there are only two files, hacking a project by
editing configuration files is not out of the question. As well, Eclipse is well supported
by the Maven build tool using the M2E (Maven Eclipse) and M2E-Android plug-ins
(you’ll want both). However, this setup can be a little bit quirky.

Android Studio, on the other hand, uses a maze of project files. Here is a list of the
files (not including the source of your program!) in a project created by Android Stu‐
dio 2.0:

./.gradle/2.4/taskArtifacts/cache.properties

./.gradle/2.4/taskArtifacts/cache.properties.lock

./.gradle/2.4/taskArtifacts/fileHashes.bin

./.gradle/2.4/taskArtifacts/fileSnapshots.bin

./.gradle/2.4/taskArtifacts/outputFileStates.bin

./.gradle/2.4/taskArtifacts/taskArtifacts.bin

./.idea/.name

./.idea/compiler.xml

./.idea/copyright/profiles_settings.xml

./.idea/encodings.xml

./.idea/gradle.xml

./.idea/libraries/appcompat_v7_23_0_1.xml

./.idea/libraries/design_23_0_1.xml

./.idea/libraries/hamcrest_core_1_3.xml

./.idea/libraries/junit_4_12.xml

./.idea/libraries/support_annotations_23_0_1.xml

./.idea/libraries/support_v4_23_0_1.xml

./.idea/misc.xml

./.idea/modules.xml

./.idea/runConfigurations.xml

16 | Chapter 1: Getting Started

https://projects.eclipse.org/projects/tools.andmore
http://www.stateofflow.com/journal/66/creating-java-projects-programmatically
http://www.stateofflow.com/journal/66/creating-java-projects-programmatically

./.idea/workspace.xml

./build/ - ignore

./build.gradle

./gradle/wrapper/gradle-wrapper.jar

./gradle/wrapper/gradle-wrapper.properties

./gradle.properties

./gradlew

./gradlew.bat

./local.properties

./MyApplication.iml

./settings.gradle

./mainapp/.gitignore

./mainapp/build.gradle

./mainapp/mainapp.iml

./mainapp/proguard-rules.pro

It appears to take Android Studio about 30 files to do what Eclipse does in just a few.
Admittedly not all of those have to be kept under source control, but which ones do?
To answer that, look in the .gitignore file in a project generated by Android Studio 2.x;
this lists the files that should not be included in source control.

Android Studio also expects that every project have an extra level of directory struc‐
ture, called app for the application, to cater to the relatively few applications that have
multiple modules, such as a library. In Eclipse, you just make the project using the
library depend on the library project. The extra directory structure put in by Studio
encumbers pathnames, means the directory where a Studio project is created does
not conform to the decade-old Maven project structure, and means that you can’t use
the old familiar grep -r somePattern projectname/src; you have to remember to type an
extra “app/” every time. Seemingly harmless, but annoying. Of course people who
commonly use multiple projects but forget to create them as such when they start will
appreciate the way Studio does things.

You should also consider speed. Both are fairly quick at entering code you type.
Because Studio is not a complete IDE but depends on Gradle to build, it used to be a
lot slower, but Studio 2.x is supposed to be much improved in this regard. Different
people have different ideas on how to measure speed, and different results have been
claimed, so you should try this yourself on representative development hardware.

Eclipse provides a single window with a tree-based “Package Explorer,” so you can
easily move, copy, or compare files between projects. IntelliJ/Studio opens each
project in a new window and, by default, closes the previous one.

So, there are many differences, but also many obvious similarities. It’s sort of like buy‐
ing a car: GM, Ford, Chrysler, Tesla, BMW, Toyota, and many more make automo‐
biles, but you have to pick one of these to buy. With IDEs the choice is not as exclu‐
sive, though. What if you like both? You could use Eclipse for your regular Java work
and IntelliJ/Android Studio for your Android work—especially if you need the latest
Android support—although switching back and forth might be annoying. You could

1.7 Choosing an IDE for Android Development | 17

even set up your Android projects to be openable in both IDEs—we’ve done so for
most of the projects in the samples repository. However, it’s not a very profitable
undertaking, and we don’t recommend it as a general practice.

Oh, and if you do run both, be sure to configure them to share the same “SDK” folder
—the actual Android tools, libraries, and emulator images—so you won’t have to
update everything twice.

As another path forward for the experienced Eclipse user, you could use Android
Studio but tell it to use the Eclipse key-mappings, which will make it work somewhat
like Eclipse—although many of the key sequence settings there are not quite right,
and you’ll need to fiddle with them a bit. And if you do so but another developer in
your team is a “native” user of Studio or the underlying IntelliJ, you will both get frus‐
trated when doing pair programming.

Summary
If you want the best support of new features, Android Studio may be a better choice.
If you want an IDE that is widely used across the Java community, Eclipse may be a
better choice. There is no hard and fast answer.

1.8 Setting Up Android Studio
Daniel Fowler, Ian Darwin

Problem
You want to develop your Android applications using Android Studio, so a concise
guide to setting up that IDE would be useful.

Solution
The use of the Android Studio IDE is recommended by Google for developing
Android apps. Configuring the IDE is not a single-shot install; several stages need to
be completed. This recipe provides details on those stages.

Discussion
The Android Studio integrated development environment (IDE) is provided for free
by Google to develop applications. Studio comes with the Android Software Develop‐
ment Kit (SDK), which provides essential programs to develop Android software. To
set up a development system you will need to download and run the installers for:

• The Java Standard Edition Development Kit (JDK), if not already installed

18 | Chapter 1: Getting Started

• Android Studio

Installing the JDK, if necessary
Go to the Java download page. Click the Java icon to access the JDK downloads:

The list of JDK downloads will be shown. Click the Accept License Agreement radio
button; otherwise, you will not be allowed to continue. You’ll want to download and
run one of the latest JDKs present; as of this writing, they are Java 8 builds whose ver‐
sion string ends in 8u121, but that will surely change by the time you read this.
Choose the download appropriate for your operating system: Windows x86 or 64-
bit.exe, MacOS .dmg, Linux .rpm or .tgz, and so on. Accept any security warnings that
appear, but only if you are downloading from the official Java download web page.

When the download has completed, run the installer and go through all the screens,
clicking Next until the installer has finished. You should not need to change any
options presented. When the JDK installer has completed, click the Finish button. A
product registration web page may load; you can close this or you can choose to reg‐
ister your installation.

For Android use, you do not need to download any of the “demos or samples” from
this site.

Install Android Studio
Go to the Android Studio download page.

The installation process can take some time as the installer will download additional
files. Click the Download Android Studio button, accept the terms and conditions,
and begin the download by clicking a second Download Android Studio button. On
MS Windows, the default is a file with a name like android-studio-bundle-X.X-
windows.exe, which is over 1 GB and includes both the IDE and the Android SDK. If
you already have the Android SDK installed, select Other Download Options and you
will see the page in Figure 1-4, where you have a choice of that file or one without the
SDK bundle, with a name like android-studio-ide-X.X-windows.exe. For macOS there
is only the unbundled file, android-studio-ide-X.X-mac.dmg, where X.X is Studio’s
build number (this may not match the displayed version number; e.g., Android

1.8 Setting Up Android Studio | 19

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://developer.android.com/sdk/index.html

Studio 2.0 has a build number of 143.2739321). On Windows, accept the Windows
User Account Control dialog.

On some 64-bit versions of Windows the installer may require the JAVA_HOME environ‐
ment variable to be set. Use the Control Panel to access the System settings, and open
the “Advanced systems settings” section. The Advanced tab on the System Properties
dialog should be visible. Click the Environment Variables button to add a new
JAVA_HOME system variable, and set it to the path of the Java JDK (e.g., C:\Program Files
\Java\jdk1.8.0; enter the correct path for your system).

Figure 1-4. Android Studio download page

Proceed through the installer’s dialogs. The installer configures Studio and the
Android SDK (if you installed the bundle version), and downloads an initial Android
Virtual Device (AVD). The default install location for the Android SDK is under the
logged-in user’s AppData\Local directory on Windows, or $HOME/android-sdk-nnn
under macOS or Linux. You may want to select an easier-to-remember and shallower
location (e.g., C:\AndroidSDK).

After installing Studio, further configuration (and downloading of the SDK if neces‐
sary) occurs when it is first run. Allow access through your desktop system’s configu‐
ration if required. Further SDK packages will be downloaded. As well, each time Stu‐
dio runs it checks for updates and may display a message if updates are needed. Aside
from updates to Studio itself, the Android SDK and additional SDK packages are best
updated via the Android SDK Manager program (see Recipe 1.9).

Once that’s done, Studio is now configured to build and debug Android apps. See
Recipe 3.1 to configure an Android emulator; then try a “Hello, World” app as a

20 | Chapter 1: Getting Started

sanity check. Or plug a real Android device into the computer’s USB port and use its
settings to turn on USB Debugging.

For a few Windows users Studio may not start the first time, and a
DLL error is displayed. Installing the Microsoft Visual C++ 2010
SP1 Redistributable Package has been known to clear the error.

See Also
Recipe 3.1, Recipe 1.9.

1.9 Installing Platform Editions and Keeping the SDK
Updated
Daniel Fowler

Problem
Whether using Android Studio, Eclipse, or command-line tools, you must install at
least one Platform Edition before you can compile applications. The SDK should be
kept updated so you can work with the latest APIs on the evolving Android platform.

Solution
Use the Android SDK Manager program to install, and later to update, the installed
SDK packages and to install new SDK packages.

Discussion
Android itself is constantly evolving, and therefore so is the Android Software Devel‐
opment Kit. The ongoing development of Android is driven by:

• Google’s research and development
• Phone manufacturers developing new and improved handsets
• Addressing security issues and possible exploits
• The need to support new devices
• Support for new hardware interfaces
• Fixing bugs
• Improvements in functionality (e.g., a new JavaScript engine)
• Changes in the underlying Linux kernel

1.9 Installing Platform Editions and Keeping the SDK Updated | 21

• Deprecation of redundant programming interfaces
• New uses (e.g., Android Wear, Android Auto)
• The wider Android development community

The following discussion is illustrated with screenshots from
Android Studio, but the same tooling can be invoked from within
Eclipse or by invoking the command-line tool named simply
android.

Installation of the IDEs and the Android SDK has been covered elsewhere; see Recipe
1.8 or the developer documentation. When Android Studio is run it will check for
updates to both Studio and the SDK. A message is displayed when updates are avail‐
able. Most updates will be performed via the SDK Manager program. If you OK the
update, Studio will close and the SDK Manager will run. If you don’t want to update
when the upgrade is offered, you can access the SDK Manager later from within Stu‐
dio (see Figure 1-5) or directly from the Android SDK install location.

Figure 1-5. SDK Manager toolbar icon

The following steps work through the update process.

In Studio, selecting SDK Manager from the toolbar or via the Tools → Android menu
shows the Android SDK settings, which shows what packages are installed or avail‐
able (see Figure 1-6).

22 | Chapter 1: Getting Started

https://developer.android.com/sdk/installing/index.html

Figure 1-6. Android SDK settings, showing current installation status

To actually make changes, click the Launch Standalone SDK Manager link, which
runs the external SDK Manager program shown in Figure 1-7. The Android SDK is
divided into several packages. The SDK Manager automatically scans for updates to
existing packages and will list new packages. Available updates will be shown in a list
(alongside available optional packages).

Figure 1-7. Standalone SDK Manager

Available updates will be checked ready for download and installation; uncheck the
ones not required. (Unless you’re short on disk space, you can have as many of the

1.9 Installing Platform Editions and Keeping the SDK Updated | 23

API packages installed as you wish.) Then click the “Install x packages” button. If an
update or package has license terms that require accepting, they will be listed. High‐
light each package to read the license terms, and then accept or reject the package
using the radio buttons. (Rejected packages will be marked with a red cross.) Alterna‐
tively, highlight the parent package and click Accept All to accept everything that is
available. All packages and updates ready to download and install will be shown with
a green tick. Click Install; while the download and installation is progressing, you can
view the log by clicking the log icon in the bottom right of the Android SDK Manager
dialog (see Figure 1-8).

Figure 1-8. Android SDK update log

Any errors during the download and installation will be shown in red in the log dia‐
log. Updates that affect the Android Debug Bridge (ADB) will result in a request to
restart ADB; click Yes to restart it. Obsolete packages will have been deleted during
the download and installation. When all packages have been updated and you’ve had
a chance to inspect the log, you can close the log dialog, if open, and the Android
SDK Manager dialog.

Android is an evolving platform, so checking for updates every few weeks allows you
to work with the latest tools and APIs.

See Also
Recipe 1.8, The Android Studio User Guide documentation on installation.

24 | Chapter 1: Getting Started

https://developer.android.com/sdk/installing/index.html

1.10 Creating a “Hello, World” App Using Android Studio
Ian Darwin

Problem
You want to use Android Studio to develop your Android application.

Solution
Install Java, Android Studio, and one or more SDK versions. Create your project and
start writing your app. Build it and test it under the emulator, all from within the IDE.

Discussion
Before you can create your application with Android Studio, you have to install these
two packages:

• Android Studio itself
• One or more Android SDK versions

For details on installing these items, please refer to Recipe 1.8.

Once you’ve done that, click on “Start a new Android Studio project” from the Wel‐
come screen (Figure 1-9), which appears when you don’t have any projects open.

Figure 1-9. Studio Welcome screen

1.10 Creating a “Hello, World” App Using Android Studio | 25

https://developer.android.com/sdk/

On the Create New Project screen (Figure 1-10), choose the application name and
Java code package.

Figure 1-10. Studio New Project screen

On the next page of the same dialog, you can specify what kinds of devices (phone/
tablet, Android Wear, Android TV, etc.) your project is going to target and, for
mobile devices, the minimum and target SDK API levels (Figure 1-11).

Almost every Android application has at least one Activity class defined, and the
“Hello, World” app is no exception. You can either pick Empty Activity (in which case
you’ll have to add some code) or Basic Activity; we went with the latter (Figure 1-12).

The next page asks you to pick names for your Activity and its layout file
(Figure 1-13). For a single-Activity app, the defaults are fine.

26 | Chapter 1: Getting Started

Figure 1-11. Studio device and target APIs

Figure 1-12. Defining the Activity class

1.10 Creating a “Hello, World” App Using Android Studio | 27

Figure 1-13. Studio customizing the Activity

After chugging for a while, Studio will create your project and give you a blank view
of it, since you haven’t told it how to display the project (Figure 1-14).

Figure 1-14. Studio blank view

28 | Chapter 1: Getting Started

Click the sideways label 1. Project at the upper left of the main window. Drill down
into App → Java → package-name/MainActivity, or whatever you called the Activity.
Have a brief look at the provided Java code (Figure 1-15).

Figure 1-15. Studio-generated Activity

If you don’t see a graphic representation of your Activity soon, expand Res → Layout
and double-click content_main.xml. You should see a visual UI editor (Figure 1-16).

Figure 1-16. Studio layout editor

1.10 Creating a “Hello, World” App Using Android Studio | 29

Note that the Studio Layout Editor isn’t really running your application, just inter‐
preting the user interface layout. To actually run it, click the Run button in the middle
of the top toolbar. In the process of starting the app, Studio will ask you which AVD
(emulator) to use. Eventually the application should appear in its own emulator win‐
dow (Figure 1-17).

Figure 1-17. Studio running an app in AVD

1.11 Converting an Eclipse ADT Project to Android Studio
Ian Darwin

Problem
You have existing Eclipse/ADT projects but want to or have to use Android Studio.

Solution
Use the Android Studio Import project feature. This will make a copy of the files it
needs in a new location, allowing you to build the project under Android Studio.

Discussion
Note that, at the time of writing, this works for ADT projects but not for AndMore
projects.

To convert an ADT project to Studio, close any previous projects, or start Android
Studio if it’s not running. Select “Import project” from the Welcome screen
(Figure 1-18).

30 | Chapter 1: Getting Started

Figure 1-18. Studio: Starting to convert a project

In the dialog that pops up, navigate to the root of the Eclipse folder. This will nor‐
mally have res and src folders underneath it, assuming that standard ADT layout was
used (Figure 1-19).

Figure 1-19. Studio: Location of project to convert

Now you get to pick a new location for the converted project (Figure 1-20). The
default is good for starting, unless you or your organization has a policy on where to
place projects.

1.11 Converting an Eclipse ADT Project to Android Studio | 31

Figure 1-20. Studio: Location to convert the project into

Note that you must pick a different location from where the Android project exists,
which totally destroys the project history—your Git or CVS or Subversion history
ends at the current state of the application under Eclipse, and a new history will begin
with it under Studio. For people who think Studio is the best thing since the motor
car, this will seem like a good thing. For those of us who understand that Studio is
just another tool in a long series, it will seem like an aberration, or at least an annoy‐
ance. I have files on GitHub whose revision dates precede the existence of both Java
IDEs and GitHub (and at least one repository whose creation predates the existence
of Java), and I wouldn’t want to lose that history. It’s annoying because it could be
done better, by more comprehensive integration with tools such as Git. However, it is
what it is. If you want to keep the history, you can work around this as described in
Recipe 1.12, instead of following the recipe you are now reading.

After you’ve specified the import directory more options will appear, related to
replacing JARs with references to standard ones (Figure 1-21). Again, the defaults are
usually what you want.

Finally, the converted project will appear (Figure 1-22). The editor window is filled
with a summary of what happened. If it looks similar to the one here, it has probably
succeeded.

You should now be able to run the project by selecting the “app” module and pressing
the green Run button.

32 | Chapter 1: Getting Started

Figure 1-21. Studio: Options for converting the project

Figure 1-22. Studio: The converted project

1.11 Converting an Eclipse ADT Project to Android Studio | 33

1.12 Preserving History While Converting from Eclipse to
Android Studio
Ian Darwin

Problem
As shown in Recipe 1.11, the Android Studio import mechanism creates a new
project in a new directory, causing a break in your revision control history. You want
instead to convert a project permanently from Eclipse to Android Studio, but without
losing years of valuable source control history.

Solution
One approach is to use the source control program’s “move” command to restructure
the project in place, into a form that Studio/Gradle can understand.

Eclipse can no longer process the project after it’s been rearranged
this much; there doesn’t seem to be a way to tell it the new location
for the Android manifest and the resource files. If you want to be
able to use both IDEs, see Recipe 1.13 instead of the recipe you are
now reading.

Discussion
The process will vary greatly depending on which source code management (SCM)
system you use. One of the oldest widely used SCMs was CVS, the Concurrent Ver‐
sions System. CVS did not support moving of files, so if your project is still in CVS
(or RCS or SCCS, two even older SCMs) you will want to convert it into Git first, and
learn to use Git, if you really want to preserve history. I know this process can work
well because my public GitHub repositories contain some files with modification
dates a full 10 years before Git was written. Accordingly, this example assumes you
have your Eclipse Android project in the Git SCM. And I’ll describe the steps in the
form of Unix/Linux/macOS command-line steps because that’s the most concise for‐
mat. Understand that this is only general guidance; your mileage will certainly vary!

You will also want to have a variety of both Eclipse and Android Studio projects to
compare with and to copy missing bits from; the examples from this book (see “Get‐
ting and Using the Code Examples” on page 18, or git clone https://github.com/IanDar
win/Android-Cookbook-Examples) would be a good resource to have at hand.

34 | Chapter 1: Getting Started

https://github.com/IanDarwin/Android-Cookbook-Examples
https://github.com/IanDarwin/Android-Cookbook-Examples

Plan A: Moving files around
I used this approach to convert a privately funded Android app, consisting of 30 Java
files and numerous resource files, from Eclipse format to Android Studio format; I
got it going in an hour or two, with its revision history intact.

First, create a copy, so that if the conversion messes up too badly you can delete the
whole thing and start over (a Git purist might argue that you should just use a
branch, but this is my way of doing it):

$ cp -r ~/git/myproject /tmp/myproject
$ cd /tmp/myproject

Now you need to convert the structure of the project. Eclipse used a simple src folder,
whereas modern build tools like Maven (Recipe 1.6) and Gradle (Recipe 1.10) use a
structure like src/main/java. If you have standalone (pure Java, non-Android) unit
tests, they may be in a folder called test, which has to become src/test/java. Also, the
resources folder (res) and the Android manifest file have to move to src/main:

$ rm -fr bin build gen target # Start with a cleanup
$ mkdir -p src/main/java
$ mkdir -p src/test/java
$ git mv src/com src/main/java
$ git mv test/com src/test/java/
$ git mv res src/main/
$ git mv AndroidManifest.xml src/main/
$ rmdir test

The next step is to convert the dependency information in your .classpath or pom.xml
file into the build.gradle file:

$ cat ../__SomeExistingStudioProject__/build.gradle pom.xml > build.gradle
$ vi build.gradle # Merge the dependencies by hand
$ git rm -f pom.xml
$ git add build.gradle

Create a local.properties file containing the path to the Android SDK on your dev
machine, using a command like one of the following:

$ cp ../__SomeExistingStudioProject__/local.properties .

$ echo 'sdk.dir=/Users/ian/android-sdk-macosx' > local.properties

Now you will need to copy a few files from an existing Android Studio project: at
least gradlew (for Unix/Linux/macOS) and/or gradlew.bat (for Windows cmd.exe).

If your project doesn’t have a .gitignore file, create one, and add the local.properties file
to it:

$ echo local.properties >> .gitignore

Now try building the project, either by typing gradlew build or by opening it in
Android Studio. Then hack at it until it works. When you’re comfortable, git commit.
When you’re really happy, git push.

1.12 Preserving History While Converting from Eclipse to Android Studio | 35

Plan B: Moving files into a new project
An alternative approach would be as follows. I have not tested this myself, but it
seems simpler:

1. Create a new project using the Studio New Project wizard.
2. Copy files from your existing project into the new project, using the earlier move

commands as a guide.
3. Copy your revision history into the new project, which won’t have one yet:

$ cp -r oldProject/.git newProject/.git

4. After verifying that the project is reasonably sane, save the changes, assuming
that Git will recognize the moved files (it usually will):

$ git commit -m "Reorganize project for Android Studio"

5. Hack at it as needed until it works properly.
6. git commit any last-minute changes, and git push.

See Also
Recipe 1.13.

1.13 Building an Android Application with both Eclipse
and Android Studio
Ian Darwin

Problem
Your project team may have some developers who want to stay on Eclipse and some
who want to work with Android Studio.

Solution
Make your project work with both major IDEs, by providing both Eclipse and Gradle
build files.

Discussion
Assume you have a project that is working with Eclipse. It is possible to create a
build.gradle file with all the file and directory paths set to the locations that Eclipse
uses, and thus allow coexistence. This way you can edit and build the project using

36 | Chapter 1: Getting Started

either Eclipse or Android Studio! I did this several years ago, when Studio was still in
Alpha or Beta status, and it can still be done. The basic steps are:

1. Copy the sample build.gradle file shown in Example 1-4 to the root of your
Eclipse project.

2. Edit the file, uncommenting and changing the string YOUR.PACKAGE.NAME.HERE to
your package name (as per AndroidManifest.xml) in the +applicationId line.

3. Either move the src folder to “Maven standard” src/main/java (and update
your .classpath), or add a java.src entry to build.gradle. I recommend the first way
because it’s more commonplace to use this structure today.

4. Create the directory structure gradle/wrapper and copy the files
gradle-wrapper.jar and gradle-wrapper.properties into the new directory.

5. Tell your revision control system (e.g., Git) to ignore build, .gradle, .idea, and
local.properties.

6. Start Android Studio, choose “Open an existing Android Studio project,” and
select the root of your project!

Example 1-4. Sample build.gradle starter file

apply plugin: 'com.android.application'

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:+'
 }
}

android {
 compileSdkVersion 24
 buildToolsVersion "24"

 defaultConfig {
 applicationId "YOUR.PACKAGE.NAME.HERE"
 minSdkVersion 15
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 }

 sourceSets {
 main {
 // Comment next line out if using maven/gradle str src/main/java
 java.srcDirs = ['src']
 res.srcDirs = ['res']

1.13 Building an Android Application with both Eclipse and Android Studio | 37

 assets.srcDirs = ['assets']
 manifest.srcFile 'AndroidManifest.xml'
 }

 androidTest.setRoot('tests')
 }
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:+'
}

A sample Unix/Linux/macOS shell script called add-gradle-to-eclipse that implements
this (adapting the build.gradle to your src structure), as well as the files just men‐
tioned, is provided in the Android Cookbook repository, in the subdirectory duellin‐
gIDEs (see “Getting and Using the Code Examples” on page 18).

Android Studio may need to “synchronize the project” and set up a few files the first
time it opens this project, but you should eventually wind up with a working project
structure like Figure 1-23.

Figure 1-23. Android Studio editing an Eclipse project

Of course, if you have any extra JAR files you will need to tell Android Studio about
them; if they are not already picked up by the reference to libs in the compile fileTree
statement, you can either adjust that to refer to a different directory—older Eclipse
projects used lib (singular), for example—or use the module settings as described in
“Depend on a module or project” on page 63.

At this point your project should build and run under Android Studio (you may have
to build it manually the first time, using the Build menu, to enable the green Run but‐
ton). You will probably want to add the new files to your source repository.

38 | Chapter 1: Getting Started

https://github.com/IanDarwin/Android-Cookbook-Examples

Finally, commit (and push) your changes, and you should now have a working “bilin‐
gual” project!

1.14 Setting Up Eclipse with AndMore (Replacing ADT)
Daniel Fowler, Ian Darwin

Problem
You want to develop your Android applications using Eclipse, so a concise guide to
setting up that IDE would be useful.

Solution
Many people use Eclipse for editing “standard Java” and Java Enterprise Edition (EE)
projects. Some people would like to keep using the Eclipse IDE for developing
Android apps. Configuring Eclipse is not a single-shot install; several stages need to
be completed. This recipe provides details on those stages.

Discussion
The Eclipse integrated development environment for Java is one option for develop‐
ing applications for Android. The formerly available Android Development Tools
(ADT) plug-in has been discontinued by Google—it recommends switching to
Android Studio (Recipe 1.8)—but ADT has arisen phoenix-like under the new name
AndMore, from the Eclipse foundation. Like ADT (as well as the newer Android Stu‐
dio), AndMore uses the Android Software Development Kit, which contains essential
programs for developing Android software. To set up a development system you will
need to download and install the following:

• The Java Standard Edition Development Kit (JDK, not JRE)
• The Eclipse IDE for Java Developers
• The Android Software Development Kit
• The AndMore Android plug-in (install from within Eclipse)

In the subsections that follow, we will cover these stages in detail for a PC running
Windows. These steps have been tested on Windows 7 and 10 and on Mac OS X
(though most of the screenshots and directory paths are Windows-based examples).
Installing on Linux is similar but we haven’t tested these steps in current versions of
Linux.

Installing the JDK, if necessary
Go to the Java download page. Click the Java icon to access the JDK downloads:

1.14 Setting Up Eclipse with AndMore (Replacing ADT) | 39

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The list of JDK downloads will be shown. Click the Accept License Agreement radio
button; otherwise, you will not be allowed to continue. You’ll want to download and
run one of the latest JDKs present; as of this writing, they are Java 8 builds whose ver‐
sion string ends in 8u121, but that will surely change by the time you read this.
Choose the download appropriate for your operating system: Windows x86 or 64-
bit.exe, MacOS .dmg, Linux .rpm or .tgz, and so on. Accept any security warnings that
appear, but only if you are downloading from the official Java download web page.

When the download has completed, run the installer and go through all the screens,
clicking Next until the installer has finished. You should not need to change any
options presented. When the JDK installer has completed, click the Finish button. A
product registration web page may load; you can close this or you can choose to reg‐
ister your installation.

For Android use, you do not need to download any of the “demos or samples” from
this site.

Installing Eclipse for Java development
Go to the Eclipse Downloads web page. The web page will usually autodetect your
operating system (and 32- or 64-bit variant on systems that have this distinction);
select the relevant (usually the latest) Eclipse IDE for Java Developers download link
(see Figure 1-24).

On the next page you will be prompted to make a donation to the providers, the
Eclipse Software Foundation, which is always a good thing to do when using open
source software. The next step will download and run a typical software installer pro‐
gram. Then you will be prompted to specify the install location; the default is usually
good (Figure 1-25).

40 | Chapter 1: Getting Started

http://www.eclipse.org/downloads

Figure 1-24. Choosing an Eclipse download

Figure 1-25. Setting the Eclipse install location

1.14 Setting Up Eclipse with AndMore (Replacing ADT) | 41

You will eventually wind up with a lot of files in an Eclipse folder at that location, as
shown in Figure 1-26 (obviously the exact list will vary from one release to the next).
Enable the checkboxes to add a desktop icon, start menu entry, etc., as you prefer.

Figure 1-26. Contents of the Eclipse folder

Run Eclipse so that it sets up a workspace. This will also check that both Java and
Eclipse were installed correctly. When you run Eclipse a security warning may be dis‐
played; select Run to continue. Accept the default workspace location or use a differ‐
ent directory.

You should install the SDK next, if you don’t already have it on your system.

Installing the Android SDK
Go to the Android Studio download page. The goal of this web page is to convince
you to use Android Studio, but we just need the SDK. If you think you might want to
use both Studio and Eclipse (see Recipe 1.13), you can install the “Studio and SDK”
package here and share that SDK between the two IDEs—there is no need to down‐
load the SDK and all the add-ins twice! However, if you’re a dedicated Eclipse user,
you can scroll to the very bottom of the page and get the “command line tools”
(which are what both AndMore and Studio use). See Figure 1-27.

Choose the latest installer package for your operating system and run it. The Android
SDK Tools installer will show some screens. Select the Next button on each screen;
you should not need to change any options. Since C:\Program Files is a protected
directory on some versions of MS Windows, you can either get permission to install
there (“Run As Administrator”) or, as some developers do, install to your user folder
or another directory—for example, C:\Android\android-sdk.

42 | Chapter 1: Getting Started

https://developer.android.com/studio/index.html

Figure 1-27. Downloading the standalone SDK

When you click the Install button, a progress screen will briefly display while the
Android files are copied. Click the final Next button and the Finish button at the end
of the installation. If you left the Start SDK Manager checkbox ticked the SDK Man‐
ager will run. Otherwise, select SDK Manager from the Android SDK Tools program
group (Start → All Programs → Android SDK Tools → SDK Manager). When the
SDK Manager starts, the Android packages available to download are checked. Then
a list of all available packages is shown, with some preselected for download. A Status
column shows whether a package is installed or not. In Figure 1-28, you can see that
the Android SDK Tools have just been installed but there is already an update avail‐
able, as reflected in the Status column.

Check each package that needs to be installed. Multiple packages are available. These
include SDK platform packages for each application programming interface (API)
level, application samples for most API levels, Google Maps APIs, manufacturers’
device-specific APIs, documentation, source code, and a number of Google extra
packages. From the “Extras,” you should install the Android Support Repository,
Google Play Services, Google USB Driver if offered, and Intel X86 Emulator Accelera‐
tor (HAXM) if offered, and anything else that looks interesting.

1.14 Setting Up Eclipse with AndMore (Replacing ADT) | 43

Figure 1-28. Android SDK Manager, showing installed and downloadable components

It is recommended that you download several SDK platforms to allow testing of apps
against various device configurations. If in doubt about what to download, either
accept the initial choices and rerun the SDK Manager to get other packages as and
when required, or select all packages to download everything (the download may take
a while). Click the “Install x packages” button.

The selected packages will be shown in a list; if a package has licensing terms that
require acceptance, it is shown with a question mark. Highlight each package that has
a question mark to read the licensing terms. You can accept or reject the package
using the radio buttons. Rejected packages are marked with a red ×. Alternatively,
click Accept All to accept everything that is available. Click the Install button and a
progress log will show the packages being installed, as well as any errors that occur.
On Windows a common error occurs when the SDK Manager is unable to access or
rename directories. If this happens, rerun the SDK Manager as administrator and
check that the directory does not have any read-only flags or files. When complete,
close the SDK Manager by clicking the × button in the top corner of the window.

Note that, when updates to these packages become available, the SDK will notify you.

Installing the Android Tools (AndMore) plug-in
You install the ADT plug-in via Eclipse. Depending on where you installed Eclipse
and/or the account you are using, you may need to run Eclipse with administrator
privileges. If so, bring up the context menu (usually via a right-click), select “Run as

44 | Chapter 1: Getting Started

administrator,” and accept any security warnings. On newer versions of Windows,
and on macOS, you will get a prompt that the installer wants to make changes to your
system. Say yes, as long as you’re installing from the official location.

If your Eclipse installation is so old that it lacks the “Eclipse Marketplace Client,”
install it as per the instructions in Recipe 1.16. Start the Marketplace Client from the
Help menu.

Type “andmore” in the search box on the left side of the Marketplace Client window,
and press the Go button at the right side. Select AndMore in the search results. Click
Install.

A screen displays the licenses; ensure that each license has been accepted (select the “I
accept the terms of the license agreements” radio button). Then click the Finish but‐
ton. A security warning may need to be accepted to complete the installation; select
OK when you see this warning. Eclipse will ask you for a restart. Select the Restart
Now button and Eclipse will close and reload, and then a “Welcome to Android
Development” dialog will appear. Set the SDK location in the Existing Location box
(since the SDK Manager will have already run), browse to the Android SDK folder (if
you installed it somewhere other than the default location), and click Next (see
Figure 1-29).

Figure 1-29. Connecting the newly installed SDK to the newly installed AndMore plug-in

1.14 Setting Up Eclipse with AndMore (Replacing ADT) | 45

A Google Android SDK usage monitoring question will appear; change the option if
required and click Finish. Eclipse is now configured to build and debug Android
apps. See Recipe 3.1 to configure an Android emulator; then try Recipe 1.15 as a san‐
ity check. Plug a physical device into the computer and use its settings to turn on USB
Debugging (under Development in Applications).

See Also
Recipe 1.9, Recipe 1.15, Recipe 3.1.

1.15 Creating a “Hello, World” Application Using Eclipse
Ian Darwin

Problem
You want to use Eclipse to develop your Android application.

Solution
Install Eclipse and the AndMore plug-in. Then, create your project and start writing
your app. Build it and test it under the emulator, from within Eclipse.

Discussion
Before you can start creating an app with Eclipse, you need to install these three
items:

• The Eclipse IDE
• The Android SDK
• The AndMore plug-in

For details on installing these items, please refer to Recipe 1.14.

Once you’ve done that, create a new Android project from the File → New menu, and
you should see a screen like that in Figure 1-30.

46 | Chapter 1: Getting Started

Figure 1-30. Starting to create an Eclipse project

Click Next. Give your new project a name (Figure 1-31), and click Next again.

Figure 1-31. Setting parameters for a new Eclipse project

Select an SDK version to target (Figure 1-32). Version 4.0 gives you almost all the
devices in use today; later versions give you more features. You decide.

1.15 Creating a “Hello, World” Application Using Eclipse | 47

Figure 1-32. Setting SDK to target for a new Eclipse project

Figure 1-33 shows the project structure expanded in the Project panel on the right. It
also shows the extent to which you can use Eclipse auto-completion within Android
—I added the gravity attribute for the label, and Eclipse is offering a full list of possi‐
ble attribute values. I chose center-horizontal, so the label should be centered when we
get the application running.

Figure 1-33. Using the Eclipse editor to set gravity on a TextView

48 | Chapter 1: Getting Started

In fact, if you set gravity to center_vertical on the LinearLayout and set it to
center_horizontal on the TextView, the text will be centered both vertically and horizon‐
tally. Example 1-5 is the layout file main.xml (located under res/layout) that achieves
this.

Example 1-5. The XML layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:gravity="center_horizontal"
 />
</LinearLayout>

As always, Eclipse generates a compiled version whenever you save a source file. In an
Android project it also creates the compiled, packaged APK that is ready to run, so
you only need to run it. Right-click the project itself and select Run As → Android
Application. (See Figure 1-34.)

Figure 1-34. Running an Eclipse Android project

1.15 Creating a “Hello, World” Application Using Eclipse | 49

This will start the Android emulator if it’s not already running. The emulator window
will start with the word Android by itself on the screen (Figure 1-35), then after a
while, you’ll see the Android home screen.

Figure 1-35. The Android project starting up in the emulator

After a little longer, your application should start up (Figure 1-36 only shows a
screenshot of the application itself, since the rest of the emulator view is redundant).

Figure 1-36. The Eclipse project running in the emulator

50 | Chapter 1: Getting Started

See Also
Recipe 1.5.

While a little dated, the blog “a little madness” has a detailed example of setting up
an Eclipse project.

1.16 Installing the Eclipse Marketplace Client in Your
Eclipse
Ian Darwin

Problem
The Eclipse Marketplace Client (MPC) is the best way to find and install Eclipse plug-
ins. Some installations of Eclipse include the MPC, but some do not. Since the MPC
is the easiest way to install new plug-ins into Eclipse, we document how to install it
here.

Solution
If you don’t have the MPC in your Eclipse installation, use the traditional Install New
Software mechanism to bootstrap the Marketplace Client.

Discussion
First, see if your Eclipse installation already has the Marketplace Client. Near the bot‐
tom of the Help menu, in the section with “Check for Updates,” you may or may not
see an entry for “Eclipse Marketplace.” If you do, you are done. If not, continue.

To install the Marketplace, select “Install New Software” from the above-mentioned
Eclipse menu. To see what versions of Marketplace Client are available, switch to a
web browser and visit http://www.eclipse.org/mpc (see Figure 1-37).

Mouse over the link for the version of Eclipse you are running (e.g., Mars, which also
works in Neon). Right-click, and select “copy link location” or whatever your browser
calls that function. Switch back to Eclipse, and paste the URL in the “Work with” field
on the Install dialog as shown in Figure 1-38. Click Add.

After a moment you will see some items to install. You probably don’t need the source
code for the Marketplace Client, so you can deselect that, as in Figure 1-38. Click
Next, Finish, Accept, and whatever it takes to complete this operation—remember
that it will wake up part way through to remind you that you’re installing unsigned
software.

1.16 Installing the Eclipse Marketplace Client in Your Eclipse | 51

http://www.alittlemadness.com/2010/05/31/setting-up-an-android-project-build
http://www.alittlemadness.com/2010/05/31/setting-up-an-android-project-build
http://www.eclipse.org/mpc

Figure 1-37. Download site for Eclipse Marketplace

Figure 1-38. Install dialog for Eclipse Marketplace

52 | Chapter 1: Getting Started

When it’s done, and Eclipse has restarted, go back to the Help menu, and you should
now see a menu item for the Eclipse Marketplace (see Figure 1-39). Click this, and
you should see the market, looking something like Figure 1-40.

Figure 1-39. Eclipse Marketplace now in menu

1.17 Upgrading a Project from Eclipse ADT to Eclipse
AndMore
Ian Darwin

Problem
You have projects that were based on Eclipse ADT and want to use them with Eclipse
AndMore.

Solution
Convert the projects by changing some strings in two config files, or use the And‐
More “convert project” feature.

1.17 Upgrading a Project from Eclipse ADT to Eclipse AndMore | 53

Figure 1-40. Eclipse Marketplace in action

Discussion

Editing config files
In the .project file you will see lines referring to com.android.ide.eclipse.adt, like:

<projectDescription>
 <buildSpec>
 <buildCommand>

54 | Chapter 1: Getting Started

 <name>com.android.ide.eclipse.adt.ResourceManagerBuilder</name>
 ...
 </buildCommand>
 </buildSpec>
 <natures>
 <nature>com.android.ide.eclipse.adt.AndroidNature</nature>
 <nature>org.eclipse.jdt.core.javanature</nature>
 </natures>
</projectDescription>

Change these to, for example, this:
<name>org.eclipse.andmore.ResourceManagerBuilder</name>

Similarly, in your .classpath you will see lines like:
<classpathentry kind="con" path="com.android.ide.eclipse.adt.ANDROID_FRAMEWORK"/>

Change them to, for example, this:
<classpathentry kind="con" path="org.eclipse.andmore.ANDROID_FRAMEWORK"/>

You can also make these changes globally. If you are experienced with command-line
work you may have written a script like Brian Kernighan’s replace, which changes
lines in a large number of files without your having to open each one in an editor.
You can find this script (and its helpers) in my scripts project. Then you can change
into the workspace root folder and convert tens or hundreds of projects with one
command (be sure you have a backup, in case it goes wrong!):

$ cd workspace
$ replace com.android.ide.eclipse.adt org.eclipse.andmore */.classpath */.project

I in fact used that command to bulk-convert the Eclipse projects in the book’s GitHub
repository. If you don’t like that approach, use the built-in AndMore converter to
convert one project at a time.

Using the AndMore converter
Once you have installed AndMore as per Recipe 1.14, you can convert projects in
your workspace. Open each project in Eclipse, with AndMore but not ADT installed,
and you will see several errors, mainly to the effect that the class file for
java.lang.Object cannot be found—a clear indication that the classpath is totally hosed
(Figure 1-41).

1.17 Upgrading a Project from Eclipse ADT to Eclipse AndMore | 55

https://github.com/IanDarwin/scripts

Figure 1-41. AndMore converter: Before, with classpath errors

To convert a project from ADT to AndMore, right-click the project in the Package
Explorer and select Configure → Convert Android ADT Configuration (Figure 1-42).

Figure 1-42. AndMore converter: Starting the conversion

56 | Chapter 1: Getting Started

Then just sit back and relax while the converter does its work and Eclipse rebuilds the
project. It should wind up with no errors (Figure 1-43).

Figure 1-43. AndMore converter: After, with errors resolved

You can repeat this for as many projects as you have.

1.18 Controlling Emulators/Devices Using Command-Line
ADB
Rachee Singh

Problem
You have an application’s .apk file, and you want to install it on the emulator or a real
device to check out the application, or because an application you are developing
requires it.

Solution
Use the ADB command-line tool to install the .apk file onto the running emulator;
you can also use this tool to install an .apk file onto a connected Android device,
uninstall an .apk from such a device, list running/connected devices, etc.

1.18 Controlling Emulators/Devices Using Command-Line ADB | 57

Discussion
To install the .apk file, follow these steps:

1. Find the location on your machine where you have installed the Android SDK.
In the Android SDK directory, go to the tools directory.

2. In the tools directory, look for an executable named adb. If it is not present, there
should be an adb_has_moved.txt file. The contents of this file merely state that
adb is present in the platform-tools directory instead of the tools directory.

3. Once you have located the adb program, either cd to that location in a terminal
(Linux) or command prompt (Windows), or, add that directory to your PATH,
however that’s done on your operating system.

4. Use the command adb install location of the .apk you want to install. If you get
“command not found” on macOS or Linux, try using ./adb instead of just adb.

This should start the installation on the device that is currently running (either an
emulator that is running on your desktop, or a physical Android device that is con‐
nected). You can also use adb to uninstall, but here, you must use the package name:
e.g., adb uninstall com.example.myapp.

If you have more than one connected device or running emulator, you can list them
with adb devices:

$ adb devices
List of devices attached
emulator-5554 device
ZX1G000BXB device

$

In this listing, the ZX entry is a Nexus device, and one emulator is running.

When you only have one device connected or one emulator running, you can simply
use adb -d … or adb -e …, respectively. There are also command-line options that let
you refer to an emulator by its port number (port numbers are displayed at the top of
the emulator window; they are the TCP/IP communications ports that start at 5554
and increment by 2 for each running emulator) or by its device serial number for a
real device. The emulator in the preceding adb devices output is listening on TCP port
5554 for connections from adb.

One more thing you can do: adb shell gets you a Unix command-line shell on the
device, which can be useful for developers to have access to. Unless your device is
“rooted” it will run as a nonprivileged user, but at least you can look around, copy
public files, etc.

After the installation finishes, you should see the icon of the application you just
installed in the application drawer of the Android device/emulator. In this example

58 | Chapter 1: Getting Started

we installed the HelloMaven application from Recipe 1.6, so the HelloMaven app icon
appears near the lower left of Figure 1-44.

Figure 1-44. The HelloMaven app icon in the app drawer after installation completes

The adb command with no arguments, or invalid arguments, prints a very long “help
text,” which lists all its options.

1.19 Sharing Java Classes from Another Eclipse Project
Ian Darwin

Problem
You want to use a class from another project, but you don’t want to copy and paste.

Solution
Add the project as a “referenced project,” and Eclipse (and DEX) will do the work.

Discussion
Developers often need to reuse classes from another project. In my JPSTrack GPS
tracking program, the Android version borrows classes such as the file I/O module
from the Java SE version. You surely do not want to copy and paste classes willy-nilly
from one project into another, because this makes maintenance improbable.

1.19 Sharing Java Classes from Another Eclipse Project | 59

In the simplest case, when the library project contains the source of the classes you
want to import, all you have to do is declare the project containing the needed classes
(the Java SE version in my case) as a referenced project on the build path. Select
Project → Properties → Java Build Path, select Projects, and click Add. In Figure 1-45,
I am adding the SE project “jpstrack” as a dependency on the Android project
“jpstrack.android.”

Figure 1-45. Making one Eclipse project depend on another—using standard Eclipse

Alternatively, create a JAR file using either Ant or the Eclipse wizard. Have the other
project refer to it as an external JAR in the classpath settings, or physically copy it into
the libs directory and refer to it from there.

A newer method that is often more reliable and is now officially recommended, but is
only useful if both projects are Android projects, is to declare the library one as a
library project, under Project → Properties → Android → Library tab, and use the
Add button on the other project on the same screen to list the library project as a
dependency on the main project (see Figure 1-46).

60 | Chapter 1: Getting Started

Figure 1-46. Making one project depend on another—using AndMore

For command-line fans, the first method involves editing the .classpath file, while the
second method simply creates entries in the project.properties file. For example:

Project target
target=android-7
android.library=false
android.library.reference.1=../wheel

Since you are probably keeping both projects under source control (and if these are
programs you ever intend to ship, you should be!), remember to “tag” both projects
when you release the Android project—one of the points in favor of source control is
that you are able to re-create exactly what you shipped.

See Also
The Android Studio User Guide documentation on library projects.

1.19 Sharing Java Classes from Another Eclipse Project | 61

https://developer.android.com/guide/developing/projects/index.html#LibraryProjects

1.20 Referencing Libraries to Implement External
Functionality
Rachee Singh

Problem
You need to reference an external library in your source code.

Solution
There are several solutions:

• Use Maven or Gradle to build your project. Just list a Maven or Gradle depend‐
ency, and your build tool will download and verify it.

• Depend on a module (Studio) or a library project.
• (last resort) Download the JAR file for the library that you require and add it to

your project.

Discussion
We describe here various mechanisms for downloading and including JAR files into
your projects. We do not discuss the burden of responsibility for licensing issues
when including third-party JAR files; that’s between you and your organization’s legal
department. Please be aware of, and comply with, the license requirements of JAR
files that you use!

List the dependency
Few developers want to download JAR files explicitly, when tools like Maven and
Gradle will handle dependency management for them. To use an external API, you
need only find the correct “coordinates” and list them. The coordinates consist of
three parts:

• A group ID, which is often based on the JAR developer’s domain name and
project name, such as com.darwinsys, org.apache.commons, etc.

• An artifact ID, which is the name of the particular project from the developer,
such as darwinsys-api, commons-logging-api, etc.

• A version number/string, such as 1.0.1, 1.2.3-SNAPSHOT, 8.1.0-Stable, etc.

These three parts are combined into a form like this for Maven in build.xml:

62 | Chapter 1: Getting Started

<dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging-api</artifactId>
 <version>1.1</version>
</dependency>

For Gradle you use a shorter form in build.gradle:
compile 'commons-logging:commons-logging-api:1.1'

This shorter form of the coordinates is often used in documentation, even when working
with other tools like Maven!

How do you find this information for a particular API? If you know the name of the
API, you can use the ever-popular Maven Central site. Type the API name (e.g.,
commons-logging) into the search box, pick a match from the list, select the default ver‐
sion number (unless you know you need an older version), pick your build tool if it’s
other than Maven (Maven is the default because the Maven people built up this entire
wonderful infrastructure!), and copy and paste the dependency into your build tool.
Alternatively, you can use your IDE (Studio, or Eclipse with the M2E plug-in) to
explicitly add the dependency.

Once the dependency is in your build file, just build your project! If the JAR you need
hasn’t been downloaded already, the build tool will download it and save it in a pri‐
vate repository (e.g., for Maven, in $USER_HOME/.m2/repository), so you never have
to download it again until you change the version number you’re depending on.

For more on Apache Maven, see https://maven.apache.org. For more on Gradle, see
https://gradle.org. The Gradle people are pretty zealous propagandists about their
tool; the Maven people are a bit more laid back.

Note that in the future, if you develop an API that might be useful to others and are
willing to make it available, and have a community around it or other ways of getting
the word out about it, you are encouraged to give back to this pool of software; see
http://central.sonatype.org to contribute your JAR.

Depend on a module or project
In Android Studio, right-click in the Project pane (upper left of screen) and select
Open Module Settings. Choose the Dependencies tab. Click the Add button (the “+”
sign in the lower left). Choose Library to use an existing library, File for a JAR file, or
Module for a module in your project. Suppose you want to depend on my darwinsys-
api JAR file, and have it downloaded from Maven Central so you don’t have to keep
track of the file. Select the Library choice. Enter darwinsys in the search box, and press
Enter. After a second or two, you should see the list of darwinsys projects. Click the
darwinsys-api entry (the first one in Figure 1-47). If you need to add more libraries,
repeat the Add process. When done, click OK. The build files will be updated and the
dependency downloaded, and it will be available on your classpath.

1.20 Referencing Libraries to Implement External Functionality | 63

https://search.maven.org
https://maven.apache.org
https://gradle.org
http://central.sonatype.org

Figure 1-47. Adding a dependency in Android Studio

For Eclipse:

• If you are using Maven and the M2E plug-in, you can add a Maven dependency
by editing your pom.xml file, then right-click the project and select Maven →
Update Project.

• If you are not using Maven, use the following steps to download a JAR file man‐
ually.

Download a JAR file manually
Suppose you need to use AndroidPlot, a library for plotting charts and graphs in your
application, or OpenStreetMap, a wiki project that creates and provides free geo‐
graphic data and mapping. If so, your application needs to reference these libraries.
You can do this in Eclipse in a few simple steps:

1. Download the JAR file corresponding to the library you wish to use.
2. With your Android project open in Eclipse, right-click the project name and

select Properties in the menu (Figure 1-48).
3. From the list on the left side, select Java Build Path and click the Libraries tab

(Figure 1-49).
4. Click the Add External JARs button (Figure 1-50).
5. Provide the location where you downloaded the JAR file for the library you wish

to use.

64 | Chapter 1: Getting Started

Figure 1-48. Selecting project properties

At this point you will see a Referenced Libraries directory in your project. The JARs
you added will appear.

An alternative approach is to create a libs folder in your project, physically copy the
JAR files there, and add them individually as you did earlier, but instead clicking the
Add JARs button. This keeps everything in one place (especially useful if your project
is shared via a version control system with others who might use a different operating
system and be unable to locate the external JARs in the same place).

Whichever way you do it, it’s pretty easy to add libraries to your project.

1.20 Referencing Libraries to Implement External Functionality | 65

Figure 1-49. Adding libraries to an Eclipse project

Figure 1-50. Adding the external JAR file

66 | Chapter 1: Getting Started

1.21 Using New Features on Old Devices via the
Compatibility Libraries
Ian Darwin

Problem
You want to use new features of Android but have your application run correctly on
older versions.

Solution
Use the compatibility libraries—that’s what they’re there for.

Discussion
Android is a wonderful system for users—new features are added with every release.
But there’s a problem—older devices don’t get the latest version of Android. Manufac‐
turers at the low end (low-budget devices) might not ever issue an update to their
devices. At the higher end (so-called “flagship” devices), users usually get 2 or 3 years
of updates from the manufacturer. But manufacturers (and cell phone carriers) expect
users to update often, like car manufacturers who come out with new models every
year to embarrass owners into buying upgrades they don’t really need.

The downside of this for us as developers is that some features that have been added
in modern versions, such as Android 7, will not exist on some users’ devices. If you
don’t take this into account, you may wind up calling methods that exist in modern
versions but not in the library on every user’s device. This will, of course, end badly.

The solution is the compatibility libraries. These provide replacement versions of
common classes (such as Activity) that use only features found on the older Android
version, but provide the functionality of newer versions.

Now, you might think that old versions fade away quickly, but a look at the Android
Versions dashboard reveals this to be true only from a certain point of view
(Figure 1-51).

Notice that Froyo, API 8, is at 0.1%, which is the threshold for inclusion. Thus you’d
expect it to disappear any day now, but in fact, it’s been at 0.1% for several months.
There are an estimated 1.5 billion Android devices. So 0.1% of that means there are
still a million and a half active users of Froyo devices. For Gingerbread there are still
25 million active devices. If you’re prepared to overlook 26 million potential custom‐
ers, fine. But even then it’s not that simple—there are features that were added in
Android 4, 5, 6, … How do you keep track of what features are in what versions? For
the most part, you don’t need to. That is, if you use the compatibility libraries!

1.21 Using New Features on Old Devices via the Compatibility Libraries | 67

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

Figure 1-51. Android Platform Versions dashboard (as of August 2016)

If you create a new project using Android Studio, the project will by default use the
compatibility library. If you are working on a project that doesn’t have “compat”
support, you can add it easily. One way is to add the library manually by editing your
build file to include the library with coordinates (see Recipe 1.20)
com.android.support:design:24.1.1; add this to pom.xml for Maven or app/build.gradle
for Android Studio (you may have to do a “Refresh” or “Project Sync” afterward). In
Android Studio you can also select the “app” module and select Module Properties →
Dependencies, click Add, and select the latest version of the compatibility library.

Then, the most important change is to ensure that your Activities—any that will need
the latest facilities—are based on AppCompatActivity rather than the regular Activity:

public class MainActivity extends AppCompatActivity {
 ...
}

There are some other places where the “appcompat” libraries enter into the view of
the coder; we will mostly call these out in place in the rest of this book.

1.22 Using SDK Samples to Help Avoid Head Scratching
Daniel Fowler

Problem
Sometimes it is a struggle to code up some functionality, especially when the docu‐
mentation is sketchy or does not provide any examples.

68 | Chapter 1: Getting Started

Solution
Looking at existing working code will help. The Android SDK has sample programs
that you can pick apart to see how they work.

Discussion
The Android SDK comes with many sample applications that can be useful when try‐
ing to code up some functionality. Looking through the sample code can be instruc‐
tive. Once you have installed the Android SDK, several samples become available. In
Android Studio, you can examine the list, and make a runnable copy of one, using the
Import Sample wizard (File → Import Sample). The available samples change over
time; part of the list as of late 2016 is shown in Figure 1-52. Some of the samples fea‐
ture screenshot previews, as does the Camera app currently selected. All the samples
are individual repositories that can also be directly downloaded from Google Sam‐
ples.

Figure 1-52. Google Android samples

1.22 Using SDK Samples to Help Avoid Head Scratching | 69

https://github.com/googlesamples
https://github.com/googlesamples

To open a sample project, just select it in the list, and click Next. You will be given the
option to change the application’s name and where it is stored. Click Finish and the
project will be created.

After a short time, the sample will open as a project, and you will be able to browse
the source code to see how it is all done.

See Also
The samples at Google Samples; Android Developers; and this cookbook, of course.

You can also search the web for additional programs or examples. If you still can’t
find what you need, you can seek help from Stack Overflow, using “android” as the
tag, or from the Internet Relay Chat (IRC) channel #android-dev on Freenode.

1.23 Taking a Screenshot/Video from the Emulator/
Android Device
Rachee Singh, Ian Darwin

Problem
You want to take a screenshot or video of an application running on an Android
device.

Solution
For screenshots, use any one of the following:

• The camera button in the toolbar of modern emulators
• On a physical device, your device’s hardware buttons
• The Device Screen Capture feature of the Dalvik Debug Monitor Server (DDMS)

view
• adb screencap

For videos, use adb screenrecord.

Discussion

Capturing screenshots
There are several methods of recording screen captures. Modern versions of the
Android emulator or AVD feature a toolbar with a camera button, which works as

70 | Chapter 1: Getting Started

https://github.com/googlesamples
https://developer.android.com/index.html
http://www.stackoverflow.com

long as the emulated device is based on API 14 or higher. This is shown in
Figure 1-53.

Figure 1-53. Android emulator camera button

Pictures taken with this technique are stored on your desktop computer rather than on
the device:

$ ls -lt ~/Desktop | head -2
total 12345
-rw-r--r-- 1 ian staff 254317 Nov 6 10:05 Screenshot_1478444709.png
open ~/Desktop/Screenshot_1478444709.png
$

On a Mac, the open command will normally cause the file to be opened (obvious, eh?)
in the user’s chosen image handling application (Preview by default).

If you are running on a real device, use the built-in hardware feature for screen cap‐
ture. This varies per device, but on many commercial devices long-pressing both the
Power and Volume Down (or Volume Up and Volume Down), buttons at the same
time will work—you’ll hear a camera sound, and on modern devices you’ll see a noti‐
fication. You then have to locate and pull the file from your device, either using the
Android Device Monitor in the IDE or from the command line, as shown here:

1.23 Taking a Screenshot/Video from the Emulator/Android Device | 71

$ adb -d ls /sdcard/Pictures/Screenshots
$ adb -d pull /sdcard/Pictures/Screenshots/Screenshot_20160820-104327.png x.png
copy it someplace safe
$ adb -d shell rm /sdcard/Pictures/Screenshots/Screenshot_20160820-104327.png

This gets a listing (ls) of files in the Screenshots folder (whose location may vary
slightly on different devices or versions) from the physical device (-d). Using -d avoids
you having to shut down your running emulators or specify the device’s long name.
Then we pull the file from the device to the desktop machine, picking a meaningful
name for it in the process. After backing it up, we return here and remove (rm) the file
from the device. You don’t have to do this, but if you don’t it will get harder and
harder to find the images, as the ls output will get longer and longer, and it’s not dis‐
played in any useful order.

It is believed that Android 7.1 will allow you to take a “partial screenshot” by starting
in a similar fashion (perhaps pressing Power + Volume Up?), then dragging to select a
region on the screen; the code exists but this is an unannounced feature, so we’ll have
to see whether it becomes available.

To use the DDMS Device Screen Capture feature, follow these steps:

1. Run the application in the IDE and go to the DDMS view (Window menu →
Open Perspective → Other → DDMS or Window menu → Show View → Other
→ Android → Devices); the former is shown in Figure 1-54).

Figure 1-54. Starting DDMS view

2. In the DDMS view, select the device or emulator whose screen you want to cap‐
ture.

3. In the DDMS view, click the Screen Capture icon (see Figure 1-55).

72 | Chapter 1: Getting Started

Figure 1-55. Device Screen Capture

4. A window showing the current screen of the emulator/Android device will pop
up. It should look like Figure 1-56. You can save the screenshot and use it to
document the app.

Figure 1-56. The screenshot

1.23 Taking a Screenshot/Video from the Emulator/Android Device | 73

Alternatively, to do this at a command-line level, use adb. You will have to use adb
shell to run the “mount” command to find a writable directory on your particular
device, since most Android versions do not feature the otherwise-universal /tmp
folder. Once that’s done, use adb shell to run the screencap program on the device,
then “pull” the file down to your desktop, as shown here:

$ adb shell screencap -p /mnt/asec/pic.png # Now in a file on the device
$ adb -e pull /mnt/asec/pic.png # Now in a file on my dev machine
[100%] /mnt/asec/pic.png
$ ls -l pic.png # Make sure!
-rw-r--r--@ 1 ian staff 59393 Jun 21 17:30 pic.png
$ adb shell rm /mnt/asec/pic.png # Free up storage on the device
$ # ... now do something with pic.png on the developer machine

If you create your screenshot with the on-device key sequence (usually pressing and
holding Power and Volume Down at the same time), the screenshot will be created in
a fixed directory with a datestamp in the name; you can then “list” (ls) the directory
and pull the file down and rename it to a better name:

$ adb -d ls /sdcard/Pictures/Screenshots
000041f9 00001000 57c62dd8 .
000041f9 00001000 578f7813 ..
000081b0 000a231c 55760303 Screenshot_20150608-170256.png
000081b0 0001176d 55760308 Screenshot_20150608-170303.png
000081b0 0006b9b4 557a1619 Screenshot_20150611-191328.png
000081b0 0001968a 55869982 Screenshot_20150621-070121.png
... and a bunch more ...
$ adb -d pull /sdcard/Pictures/Screenshots/Screenshot_20160714-093303.png
[100%] /sdcard/Pictures/Screenshots/Screenshot_20160714-093303.png
$ mv Screenshot_2016-07-14-09-33-03.png SomeBetterName.png
$

The datestamp portion of the filenames is, in case it isn’t obvious, in the ISO interna‐
tional standard order—year, month, and day, then a dash (-), then hour, minute, and
second—though not quite in the ISO format.

Capturing screen video
To record your device’s screen for documentation or screencast purposes, you need to
run the screenrecord program on the device, which creates a file there, then use adb
pull or other means to bring the file over to your desktop system. Remember that
both your desktop computer and your device have a similar hierarchical filesystem (if
you run Unix, including macOS, or Linux, the filesystem structure is almost identical,
since Android is based on Linux, and Linux began as a copy of Unix). Just keep in
mind which filenames are on which computer! The adb command communicates with
the device and runs a “shell” or command interpreter, which we use to run the
screenrecord command on the device, capturing output into a temporary file in the /
sdcard directory:

$ adb shell screenrecord /sdcard/tmpFileName.mp4

74 | Chapter 1: Getting Started

Now you can interact with the application to show the bug or feature that you want to
document. When you are done, stop the adb command, e.g., with Ctrl-C in the termi‐
nal window. Then pull the temporary file from the /sdcard folder on the device to
some convenient place on your desktop (you can assign it a better name at the same
time if you like, such as myScreencastSegment.mp4):

$ adb pull /sdcard/tmpFileName.mp4 myScreencastSegment.mp4

You can then view or post-process the video using whatever tools you have on your
desktop system. Figure 1-57 shows a simple video, recorded and downloaded in this
way, playing on my desktop.

Once the video is safely on your desktop (and backed up!), you’ll probably want to
remove the file from your device so you don’t run out of disk space:

$ adb rm /sdcard/tmpFileName.mp4

Figure 1-57. Captured video playing

1.23 Taking a Screenshot/Video from the Emulator/Android Device | 75

See Also
The Android Studio User Guide documentation on the screencap tool and screenrecord
tool.

1.24 Program: A Simple CountDownTimer Example
Wagied Davids

Problem
You want a simple countdown timer, a program that will count down a given number
of seconds until it reaches zero.

Solution
Android comes with a built-in class for constructing CountDownTimers. It’s easy to use,
it’s efficient, and it works (that goes without saying!).

Discussion
The steps to provide a countdown timer are as follows:

1. Create a subclass of CountDownTimer. This class’s constructor takes two arguments:
CountDownTimer(long millisInFuture, long countDownInterval). The first is the number
of milliseconds from now when the interval should be done; at this point the sub‐
class’s onFinish() method will be called. The second is the frequency in milli‐
seconds of how often you want to get notified that the timer is still running, typi‐
cally to update a progress monitor or otherwise communicate with the user. Your
subclass’s onTick() method will be called with each passage of this many milli‐
seconds.

2. Override the onTick() and onFinish() methods.
3. Instantiate a new instance in your Android Activity.
4. Call the start() method on the new instance created!

The example Countdown Timer program consists of an XML layout (shown in
Example 1-6) and some Java code (shown in Example 1-7). When run, it should look
something like Figure 1-58, though the times will probably be different.

76 | Chapter 1: Getting Started

https://developer.android.com/studio/command-line/adb.html#screencap
https://developer.android.com/studio/command-line/adb.html#screenrecord
https://developer.android.com/studio/command-line/adb.html#screenrecord

Example 1-6. main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/button"
 android:text="Start"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 <TableLayout
 android:padding="10dip"
 android:layout_gravity="center"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TableRow>
 <TextView
 android:id="@+id/timer"
 android:text="Time: "
 android:paddingRight="10dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <TextView
 android:id="@+id/timeElapsed"
 android:text="Time elapsed: "
 android:paddingRight="10dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 </TableRow>
 </TableLayout>
</LinearLayout>

Example 1-7. Main.java

package com.examples;

import android.app.Activity;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class Main extends Activity implements OnClickListener {
 private MalibuCountDownTimer countDownTimer;
 private long timeElapsed;
 private boolean timerHasStarted = false;
 private Button startB;

1.24 Program: A Simple CountDownTimer Example | 77

 private TextView text;
 private TextView timeElapsedView;

 private final long startTime = 50 * 1000;
 private final long interval = 1 * 1000;

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 startB = (Button) this.findViewById(R.id.button);
 startB.setOnClickListener(this);

 text = (TextView) this.findViewById(R.id.timer);
 timeElapsedView = (TextView) this.findViewById(R.id.timeElapsed);
 countDownTimer = new MalibuCountDownTimer(startTime, interval);
 text.setText(text.getText() + String.valueOf(startTime));
 }

 @Override
 public void onClick(View v) {
 if (!timerHasStarted) {
 countDownTimer.start();
 timerHasStarted = true;
 startB.setText("Start");
 }
 else {

 countDownTimer.cancel();
 timerHasStarted = false;
 startB.setText("RESET");
 }
 }

 // CountDownTimer class
 public class MalibuCountDownTimer extends CountDownTimer {

 public MalibuCountDownTimer(long startTime, long interval) {
 super(startTime, interval);
 }

 @Override
 public void onFinish() {
 text.setText("Time's up!");
 timeElapsedView.setText("Time Elapsed: " +
 String.valueOf(startTime));
 }

 @Override
 public void onTick(long millisUntilFinished) {
 text.setText("Time remain:" + millisUntilFinished);
 timeElapsed = startTime - millisUntilFinished;
 timeElapsedView.setText("Time Elapsed: " +
 String.valueOf(timeElapsed));
 }

78 | Chapter 1: Getting Started

 }
 }

Figure 1-58. Timer reset

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory CountDownTimerExample (see “Getting and Using the Code Examples” on
page 18).

1.25 Program: Tipster, a Tip Calculator for the Android OS
Sunit Katkar

Problem
When you go with friends to a restaurant and wish to divide the check and tip, you
can get into a lot of manual calculations and disagreements. Instead, you want to use
an app that lets you simply add the tip percentage to the total and divide by the num‐
ber of diners. Tipster is an implementation of this in Android, to show a complete
application.

Solution
This is a simple exercise that uses the basic GUI elements in Android, with some sim‐
ple calculations and some event-driven UI code to tie it all together.

1.25 Program: Tipster, a Tip Calculator for the Android OS | 79

https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
Android uses XML files for the layout of widgets. In our example project, the
Android plug-in for Eclipse generates a main.xml file for the layout. This file has the
XML-based definitions of the different widgets and their containers.

There is a strings.xml file, which has all the string resources used in the application. A
default icon.png file is provided for the application icon.

Then there is the R.java file, which is automatically generated (and updated when any
changes are made to any XML resource file). This file has the constants defined for
each layout and widget. Do not edit this file manually; the SDK tooling does it for you
when you make any changes to your XML files. In our example we have Tipster.java
as the main Java file for the Activity.

Creating the layout and placing the widgets
The end goal is to create a layout similar to the one shown in Figure 1-59. For this
screen layout we will use the following layouts and widgets:

TableLayout

THis lays out View components in tabular form. Analogous to the HTML Table tag
paradigm.

TableRow

This defines a row in the TableLayout. It’s like the HTML TR and TD tags combined.

TextView

This View provides a label for displaying static text on the screen.

EditText

This View provides a text field for entering values.

RadioGroup

This groups together “radio buttons,” only one of which can be pressed at a time
(named by analogy with the station selection button on a car radio).

RadioButton

This provides a radio button, for use in a group.

Button

This is a regular button.

View

We will use a View to create a visual separator with certain height and color
attributes.

Familiarize yourself with these widgets, as you will be using these quite a lot in appli‐
cations you build. When you go to the Javadocs for the given layout and widget com‐

80 | Chapter 1: Getting Started

ponents, look up the XML attributes. This will help you correlate the usage in the
main.xml layout file and the Java code (Tipster.java and R.java) where these are
accessed.

Also available is a visual layout editor in the IDE, which lets you create a layout by
dragging and dropping widgets from a palette, like any form designer tool. However,
it’s probably a good exercise for you to create the layout by hand in XML, at least in
your initial stages of learning Android. Later on, as you learn all the nuances of the
XML layout API, you can delegate the task to such tools.

The layout file, main.xml, has the layout information (see Example 1-8). A TableRow
widget creates a single row inside the TableLayout, so you use as many TableRows as the
number of rows you want. In this tutorial we will use eight TableRows—five for the
widgets up to the visual separator below the buttons, and three for the results area
below the buttons and separator.

Example 1-8. /res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- Using TableLayout to have HTML table-like control over layout -->
<TableLayout
 android:id="@+id/TableLayout01"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- Row 1: Text label placed in column zero,
 text field placed in column two and allowed to
 span two columns. So a total of 4 columns in this row -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl1"/>
 <EditText
 android:id="@+id/txtAmount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numeric="decimal"
 android:layout_column="2"
 android:layout_span="2"
 />
 </TableRow>
 <!-- Row 2: Text label placed in column zero,
 text field placed in column two and allowed to
 span two columns. So a total of 4 columns in this row -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl2"

1.25 Program: Tipster, a Tip Calculator for the Android OS | 81

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl2"/>
 <EditText
 android:id="@+id/txtPeople"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numeric="integer"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>
 <!-- Row 3: This has just one text label placed in column zero -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/textLbl3"/>
 </TableRow>
 <!-- Row 4: RadioGroup for RadioButtons placed at column zero
 with column span of three, thus creating one radio button
 per cell of the table row. Last cell number 4 has the
 textfield to enter a custom tip percentage -->
 <TableRow>
 <RadioGroup
 android:id="@+id/RadioGroupTips"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:layout_span="3"
 android:checkedButton="@+id/radioFifteen">
 <RadioButton android:id="@+id/radioFifteen"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxt15"
 android:textSize="15sp" />
 <RadioButton android:id="@+id/radioTwenty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxt20"
 android:textSize="15sp" />
 <RadioButton android:id="@+id/radioOther"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxtOther"
 android:textSize="15sp" />
 </RadioGroup>
 <EditText
 android:id="@+id/txtTipOther"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:numeric="decimal"/>
 </TableRow>

82 | Chapter 1: Getting Started

 <!-- Row for the Calculate and Rest buttons. The Calculate button
 is placed at column two, and Reset at column three -->
 <TableRow>
 <Button
 android:id="@+id/btnReset"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:text="@string/btnReset"/>
 <Button
 android:id="@+id/btnCalculate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="3"
 android:text="@string/btnCalculate"/>
 </TableRow>

 <!-- TableLayout allows any other views to be inserted between
 the TableRow elements. So insert a blank view to create a
 line separator. This separator view is used to separate
 the area below the buttons which will display the
 calculation results -->
 <View
 android:layout_height="2px"
 android:background="#DDFFDD"
 android:layout_marginTop="5dip"
 android:layout_marginBottom="5dip"/>

 <!-- Again TableRow is used to place the result textviews
 at column zero and the result in textviews at column two -->
 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl4"/>
 <TextView
 android:id="@+id/txtTipAmount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>

 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl5"/>
 <TextView
 android:id="@+id/txtTotalToPay"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

1.25 Program: Tipster, a Tip Calculator for the Android OS | 83

 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>

 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl6"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl6"/>
 <TextView
 android:id="@+id/txtTipPerPerson"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>
 <!-- End of all rows and widgets -->
</TableLayout>

TableLayout and TableRow
After examining main.xml, you can gather that TableLayout and TableRow are straight‐
forward to use. You create the TableLayout once, then insert a TableRow. Now you are
free to insert any other widgets, such as TextView, EditView, and so on, inside this
TableRow.

Do look at the attributes, especially android:stretchColumns, android:layout_column, and
android:layout_span, which allow you to place widgets the same way you would use a
regular HTML table. I recommend that you follow the links to these attributes and
read up on how they work for a TableLayout.

Controlling input values
Look at the EditText widget in the main.xml file at . This is the first text field for
entering the “Total Amount” of the check. We want only numbers here. We can
accept decimal numbers because real restaurant checks can be for dollars and cents—
not just dollars, so we use the android:numeric attribute with a value of decimal. This will
allow whole values like 10 and decimal values like 10.12, but will prevent any other
type of entry.

Similarly, uses android:integer because you can’t eat dinner with half a guest!

This is a simple and concise way to control input values, thus saving us the trouble of
writing validation code in the Tipster.java file and ensuring that the user does not
enter nonsensical values. This XML-based constraints feature of Android is quite
powerful and useful. You should explore all the possible attributes that go with a par‐
ticular widget to extract the maximum benefit from this XML shorthand way of set‐
ting constraints. In a future release, unless I have missed it completely in this release,

84 | Chapter 1: Getting Started

I hope that Android allows for entering ranges for the android:numeric attribute so that
we can define what range of numbers we wish to accept.

Since ranges are not currently available (to the best of my knowledge), you will see
later on that we do have to check for certain values like zero or empty values to
ensure that our tip calculation arithmetic does not fail.

Examining Tipster.java
Now we will look at the Tipster.java file, which controls our application. This is the
main class that does the layout and event handling and provides the application logic.
The Android Eclipse plug-in creates the Tipster.java file in our project with the
default code shown in Example 1-9.

Example 1-9. Code snippet 1 of TipsterActivity.java

package com.examples.tipcalc;

import android.app.Activity;

public class Tipster extends Activity {
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

The Tipster class extends the android.app.Activity class. An Activity is a single, focused
thing that the user can do. The Activity class takes care of creating the window and
then laying out the UI. You have to call the setContentView(View view) method to put
your UI in the Activity, so think of Activity as an outer frame that is empty and that
you populate with your UI.

Now look at the snippet of the Tipster.java class shown in Example 1-10. First we
define the widgets as class members. (Look at through in particular for refer‐
ence.) Then we use the findViewById(int id) method to locate the widgets. The ID of
each widget, defined in your main.xml file, is automatically defined in the R.java file
when you clean and build the project in Eclipse. (By default, Eclipse is set to build
automatically, so the R.java file is instantaneously updated when you update
main.xml.)

Each widget is derived from the View class and provides special GUI features, so a
TextView provides a way to put labels on the UI, while EditText provides a text field.
Look at through in Example 1-10. You can see how findViewById() is used to
locate the widgets.

1.25 Program: Tipster, a Tip Calculator for the Android OS | 85

Example 1-10. Code snippet 2 of TipsterActivity.java

public class Tipster extends Activity {
 // Widgets in the application
 private EditText txtAmount;
 private EditText txtPeople;
 private EditText txtTipOther;
 private RadioGroup rdoGroupTips;
 private Button btnCalculate;
 private Button btnReset;

 private TextView txtTipAmount;
 private TextView txtTotalToPay;
 private TextView txtTipPerPerson;

 // For the ID of the radio button selected
 private int radioCheckedId = -1;

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Access the various widgets by their ID in R.java
 txtAmount = (EditText) findViewById(R.id.txtAmount);
 // On app load, the cursor should be in the Amount field
 txtAmount.requestFocus();

 txtPeople = (EditText) findViewById(R.id.txtPeople);
 txtTipOther = (EditText) findViewById(R.id.txtTipOther);

 rdoGroupTips = (RadioGroup) findViewById(R.id.RadioGroupTips);

 btnCalculate = (Button) findViewById(R.id.btnCalculate);
 // On app load, the Calculate button is disabled
 btnCalculate.setEnabled(false);

 btnReset = (Button) findViewById(R.id.btnReset);

 txtTipAmount = (TextView) findViewById(R.id.txtTipAmount);
 txtTotalToPay = (TextView) findViewById(R.id.txtTotalToPay);
 txtTipPerPerson = (TextView) findViewById(R.id.txtTipPerPerson);

 // On app load, disable the Other Tip Percentage text field
 txtTipOther.setEnabled(false);

Addressing ease of use or usability concerns
Our application must try to be as usable as any other established application or web
page. In short, adding usability features will result in a good user experience. To
address these concerns, look at Example 1-10 again.

86 | Chapter 1: Getting Started

First, look at where we use the requestFocus() method of the View class. Since the
EditText widget is derived from the View class, this method is applicable to it. This is
done so that when our application loads, the Total Amount text field will receive
focus and the cursor will be placed in it. This is similar to popular web application
login screens where the cursor is present in the Username text field.

Now look at where the Calculate button is disabled by calling the setEnabled(boolean
enabled) method on the Button widget. This is done so that the user cannot click on it
before entering values in the required fields. If we allowed the user to click Calculate
without entering values in the Total Amount and No. of People fields, we would have
to write validation code to catch these conditions. This would entail showing an alert
pop-up warning the user about the empty values. This adds unnecessary code and
user interaction. When the user sees the Calculate button disabled, it’s quite obvious
that unless all values are entered, the tip cannot be calculated.

Now look at in Example 1-10. Here, the Other Tip Percentage text field is disabled.
This is done because the “15% tip” radio button is selected by default when the appli‐
cation loads. This default selection on application load is done via the main.xml file,
in the following statement:

android:checkedButton="@+id/radioFifteen"

The RadioGroup attribute android:checkedButton allows you to select one of the RadioButton
widgets in the group by default.

Most users who have used popular applications on the desktop as well as the web are
familiar with the “disabled widgets enabled in certain conditions” paradigm. Adding
such small conveniences always makes an application more usable and the user expe‐
rience richer.

Processing UI events
Like popular Windows, Java Swing, Flex, and other UI frameworks, Android provides
an event model that allows you to listen to certain events in the UI caused by user
interaction. Let’s see how we can use the Android event model in our application.

First let’s focus on the radio buttons in the UI. We want to know which radio button
the user selected, as this will allow us to determine the tip percentage in our calcula‐
tions. To “listen” to radio buttons, we use the static interface OnCheckedChangeListener().
This will notify us when the selection state of a radio button changes.

In our application, we want to enable the Other Tip Percentage text field only when
the Other radio button is selected. When the “15% tip” or “20% tip” button is
selected, we want to disable this text field. Besides this, we want to add some more
logic for the sake of usability. As we discussed before, we should not enable the Cal‐
culate button until all the required fields have valid values. In terms of the three radio

1.25 Program: Tipster, a Tip Calculator for the Android OS | 87

buttons, we want to ensure that the Calculate button gets enabled for the following
two conditions:

• The Other radio button is selected and the Other Tip Percentage text field has a
valid value.

• The “15% tip” or “20% tip” radio button is selected and the Total Amount and
No. of People text fields have valid values.

Look at Example 1-11, which deals with the radio buttons. The source code com‐
ments are quite self-explanatory.

Example 1-11. Code snippet 3 of TipsterActivity.java

/*
* Attach an OnCheckedChangeListener to the
* radio group to monitor radio buttons selected by user
*/
rdoGroupTips.setOnCheckedChangeListener(new OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 // Enable/disable Other Tip Percentage field
 if (checkedId == R.id.radioFifteen
 || checkedId == R.id.radioTwenty) {
 txtTipOther.setEnabled(false);
 /*
 * Enable the Calculate button if Total Amount and No. of
 * People fields have valid values.
 */
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0);
 }
 if (checkedId == R.id.radioOther) {
 // Enable the Other Tip Percentage field
 txtTipOther.setEnabled(true);
 // Set the focus to this field
 txtTipOther.requestFocus();
 /*
 * Enable the Calculate button if Total Amount and No. of
 * People fields have valid values. Also ensure that user
 * has entered an Other Tip Percentage value before enabling
 * the Calculate button.
 */
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0
 && txtTipOther.getText().length() > 0);
 }
 // To determine the tip percentage choice made by user
 radioCheckedId = checkedId;
 }
});

88 | Chapter 1: Getting Started

Monitoring key activity in text fields
As I mentioned earlier, the Calculate button must not be enabled unless the text fields
have valid values. So we have to ensure that the Calculate button will be enabled only
if the Total Amount, No. of People, and Other Tip Percentage text fields have valid
values. The Other Tip Percentage text field is enabled only if the Other radio button is
selected.

We do not have to worry about the type of values—that is, whether the user entered
negative values or letters—because the android:numeric attribute has been defined for
the text fields, thus limiting the types of values that the user can enter. We just have to
ensure that the values are present.

So, we use the static interface OnKeyListener(). This will notify us when a key is pressed.
The notification reaches us before the actual key pressed is sent to the EditText widget.

Look at the code in Examples 1-12 and 1-13, which deal with key events in the text
fields. As in Example 1-11, the source code comments are quite self-explanatory.

Example 1-12. Code snippet 4 of TipsterActivity.java

/*
 * Attach a KeyListener to the Tip Amount, No. of People, and Other Tip
 * Percentage text fields
 */
txtAmount.setOnKeyListener(mKeyListener);
txtPeople.setOnKeyListener(mKeyListener);
txtTipOther.setOnKeyListener(mKeyListener);

Notice that we create just one listener instead of creating anonymous/inner listeners
for each text field. I am not sure if my style is better or recommended, but I always
write in this style if the listeners are going to perform some common actions. Here
the common concern for all the text fields is that they should not be empty, and only
when they have values should the Calculate button be enabled.

Example 1-13. Code snippet 5 from KeyListener of TipsterActivity.java

/*
 * KeyListener for the Total Amount, No. of People, and Other Tip Percentage
 * text fields. We need to apply this key listener to check for the following
 * conditions:
 *
 * 1) If the user selects Other Tip Percentage, then the Other Tip Percentage text
 * field should have a valid tip percentage entered by the user. Enable the
 * Calculate button only when the user enters a valid value.
 *
 * 2) If the user does not enter values in the Total Amount and No. of People fields,
 * we cannot perform the calculations. Hence we enable the Calculate button
 * only when the user enters valid values.
 */

1.25 Program: Tipster, a Tip Calculator for the Android OS | 89

private OnKeyListener mKeyListener = new OnKeyListener() {
 @Override
 public boolean onKey(View v, int keyCode, KeyEvent event) {

 switch (v.getId()) {
 case R.id.txtAmount:
 case R.id.txtPeople:
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0);
 break;
 case R.id.txtTipOther:
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0
 && txtTipOther.getText().length() > 0);
 break;
 }
 return false;
 }
};

At in Example 1-13, we examine the ID of the View. Remember that each widget has
a unique ID, defined in the main.xml file. These values are then defined in the gener‐
ated R.java class.

At and , if the key event occurred in the Total Amount or No. of People field, we
check for the value entered in the field. We are ensuring that the user has not left both
fields blank.

At we check if the user has selected the Other radio button, and then we ensure
that the Other text field is not empty. We also check once again if the Total Amount
and No. of People fields are empty.

So, the purpose of our KeyListener is now clear: ensure that all text fields are not empty
and only then enable the Calculate button.

Listening to button clicks
Now we will look at the Calculate and Reset buttons. When the user clicks these but‐
tons, we use the static interface OnClickListener(), which will let us know when a but‐
ton is clicked.

As we did with the text fields, we create just one listener and within it we detect
which button was clicked. Depending on the button that was clicked, the calculate()
or reset() method is called. Example 1-14 shows how the click listener is added to the
buttons.

90 | Chapter 1: Getting Started

Example 1-14. Code snippet 6 of TipsterActivity.java

/* Attach listener to the Calculate and Reset buttons */
btnCalculate.setOnClickListener(mClickListener);
btnReset.setOnClickListener(mClickListener);

Example 1-15 shows how to detect which button is clicked by checking for the ID of
the View that receives the click event.

Example 1-15. Code snippet 7 of TipsterActivity.java

/**
 * ClickListener for the Calculate and Reset buttons.
 * Depending on the button clicked, the corresponding
 * method is called.
 */
private OnClickListener mClickListener = new OnClickListener() {

 @Override
 public void onClick(View v) {
 if (v.getId() == R.id.btnCalculate) {
 calculate();
 } else {
 reset();
 }
 }
};

Resetting the application
When the user clicks the Reset button, the input text fields should be cleared, the
default “15% tip” radio button should be selected, and any results calculated should
be cleared. Example 1-16 shows the reset() method.

Example 1-16. Code snippet 8 of TipsterActivity.java

/**
 * Resets the results text views at the bottom of the screen and
 * resets the text fields and radio buttons.
 */
private void reset() {
 txtTipAmount.setText("");
 txtTotalToPay.setText("");
 txtTipPerPerson.setText("");
 txtAmount.setText("");
 txtPeople.setText("");
 txtTipOther.setText("");
 rdoGroupTips.clearCheck();
 rdoGroupTips.check(R.id.radioFifteen);
 // Set focus on the first field
 txtAmount.requestFocus();
}

1.25 Program: Tipster, a Tip Calculator for the Android OS | 91

Validating the input to calculate the tip
As I said before, we are limiting what types of values the user can enter in the text
fields. However, the user could still enter a value of zero in the Total Amount, No. of
People, or Other Tip Percentage text fields, thus causing error conditions like divide
by zero in our tip calculations.

If the user enters zero, we must show an alert pop-up asking the user to enter a non‐
zero value. We handle this with a method called showErrorAlert(String errorMessage,
final int fieldId), which we will discuss in more detail later.

First, look at Example 1-17, which shows the calculate() method. Notice how the val‐
ues entered by the user are parsed as double values. Now notice and where we
check for zero values. If the user enters zero, we show a pop-up requesting a valid
value. Next, look at , where the Other Tip Percentage text field is enabled because
the user selected the Other radio button. Here, too, we must check for the tip percent‐
age being zero.

Example 1-17. Code snippet 9 of TipsterActivity.java

/**
 * Calculate the tip as per data entered by the user.
 */
private void calculate() {
 Double billAmount = Double.parseDouble(
 txtAmount.getText().toString());
 Double totalPeople = Double.parseDouble(
 txtPeople.getText().toString());
 Double percentage = null;
 boolean isError = false;
 if (billAmount < 1.0) {
 showErrorAlert("Enter a valid Total Amount.",
 txtAmount.getId());
 isError = true;
 }

 if (totalPeople < 1.0) {
 showErrorAlert("Enter a valid value for No. of People.",
 txtPeople.getId());
 isError = true;
 }

 /*
 * If the user never changes the radio selection, then it means
 * the default selection of 15% is in effect. But it's
 * safer to verify
 */
 if (radioCheckedId == -1) {
 radioCheckedId = rdoGroupTips.getCheckedRadioButtonId();
 }
 if (radioCheckedId == R.id.radioFifteen) {
 percentage = 15.00;

92 | Chapter 1: Getting Started

 } else if (radioCheckedId == R.id.radioTwenty) {
 percentage = 20.00;
 } else if (radioCheckedId == R.id.radioOther) {
 percentage = Double.parseDouble(
 txtTipOther.getText().toString());
 if (percentage < 1.0) {
 showErrorAlert("Enter a valid Tip percentage",
 txtTipOther.getId());
 isError = true;
 }
 }

 /*
 * If all fields are populated with valid values, then proceed to
 * calculate the tip
 */
 if (!isError) {
 Double tipAmount = ((billAmount * percentage) / 100);
 Double totalToPay = billAmount + tipAmount;
 Double perPersonPays = totalToPay / totalPeople;

 txtTipAmount.setText(tipAmount.toString());
 txtTotalToPay.setText(totalToPay.toString());
 txtTipPerPerson.setText(perPersonPays.toString());
 }
}

When the application loads, the “15% tip” radio button is selected by default. If the
user changes the selection, we assign the ID of the selected radio button to the mem‐
ber variable radioCheckedId, as we saw in Example 1-11, in OnCheckedChangeListener.

But if the user accepts the default selection, radioCheckedId will have the default value
of –1. In short, we will never know which radio button was selected. Of course, we
know which one is selected by default and could have coded the logic slightly differ‐
ently, to assume 15% if radioCheckedId has the value –1. But if you refer to the API, you
will see that we can call the method getCheckedRadioButtonId() only on the RadioGroup
and not on individual radio buttons. This is because OnCheckedChangeListener readily
provides us with the ID of the radio button selected.

Showing the results
Calculating the tip is simple. If there are no validation errors, the Boolean flag isError
will be false. Look at through in Example 1-17 for the simple tip calculations.
Next, the calculated values are set to the TextView widgets from to .

Showing the alerts
Android provides the AlertDialog class to show alert pop-ups. This lets us show a dia‐
log with up to three buttons and a message.

1.25 Program: Tipster, a Tip Calculator for the Android OS | 93

Example 1-18 shows the showErrorAlert() method, which uses this AlertDialog to show
the error messages. Notice that we pass two arguments to this method:
String errorMessage and int fieldId. The first argument is the error message we want to
show to the user. The fieldId is the ID of the field that caused the error condition.
After the user dismisses the alert dialog, this fieldId will allow us to request the focus
on that field, so the user knows which field has the error.

Example 1-18. Code snippet 10 of TipsterActivity.java

/**
 * Shows the error message in an alert dialog
 *
 * @param errorMessage
 * String for the error message to show
 * @param fieldId
 * ID of the field which caused the error.
 * This is required so that the focus can be
 * set on that field once the dialog is
 * dismissed.
 */
private void showErrorAlert(String errorMessage,
 final int fieldId) {
 new AlertDialog.Builder(this).setTitle("Error")
 .setMessage(errorMessage).setNeutralButton("Close",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog,
 int which) {
 findViewById(fieldId).requestFocus();
 }
 }).show();
}

When all this is put together, it should look like Figure 1-59.

Conclusion
Developing for the Android OS is not too different from developing for any other UI
toolkit, including Microsoft Windows, X Windows, or Java Swing. Of course Android
has its difference, and, overall, a very good design. The XML layout paradigm is quite
cool and useful for building complex UIs using simple XML. In addition, the event
handling model is simple, feature-rich, and intuitive to use in code.

94 | Chapter 1: Getting Started

Figure 1-59. Tipster in action

See Also
“Reference Documentation” on page 2.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory Tipster (see “Getting and Using the Code Examples” on page 18).

1.25 Program: Tipster, a Tip Calculator for the Android OS | 95

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 2

Designing a Successful Application

This chapter is about design guidelines for writing imaginative and useful Android
applications. Several recipes describe specific aspects of successful design. This sec‐
tion will list some others.

One purpose of this chapter is to explain the benefits of developing native Java
Android applications over other methods of delivering rich content on mobile
devices.

Requirements of a native handset application
There are a number of key requirements for successfully delivering any mobile hand‐
set application, regardless of the platform onto which it will be deployed:

• The application should be easy to install, remove, and update on a device.
• It should address the user’s needs in a compelling, unique, and elegant way.
• It should be feature-rich while remaining usable by both novice and expert users.
• It should be familiar to users who have accessed the same information through

other routes, such as a website.
• Key areas of functionality should be readily accessible.
• It should have a common look and feel with other native applications on the

handset, conforming to the target platform’s standards and style guidelines.
• It should be stable, scalable, usable, and responsive.
• It should use the platform’s capabilities tastefully, when it makes the user’s experi‐

ence more compelling.

97

Android application design
Colin Wilcox

The Android application we will design in this chapter will exploit the features and
functions unique to the Android OS platform. In general, the application will be an
Activity-based solution allowing independent and controlled access to data on a
screen-by-screen basis. This approach helps to localize potential errors and allows
sections of the flow to be readily replaced or enhanced independently of the rest of
the application.

Navigation will use a similar approach to that of the Apple iPhone solution in that all
key areas of functionality will be accessed from a single navigation bar control. The
navigation bar will be accessible from anywhere within the application, allowing the
user to freely move around the application.

The Android solution will exploit features inherent to Android devices, supporting
the devices’ touch-screen features, the hardware button that allows users to switch the
application to the background, and application switching capability.

Android provides the ability to jump back into an application at the point where it
was switched out. This will be supported, when possible, within this design.

The application will use only standard Android user interface controls to make it as
portable as possible. The use of themes or custom controls is outside the scope of this
chapter.

The application will be designed such that it interfaces to a thin layer of RESTful web
services that provide data in a JSON format. This interface will be the same as the one
used by the Apple iPhone, as well as applications written for other platforms.

The application will adopt the Android style and design guidelines wherever possible
so that it fits in with other Android applications on the device.

Data that is local to each view will be saved when the view is exited and automatically
restored with the corresponding user interface controls repopulated when the view is
next loaded.

A number of important device characteristics should be considered, as discussed in
the following subsections.

Screen size and density. In order to categorize devices by their screen type, Android
defines two characteristics for each device: screen size (the physical dimensions of the
screen) and screen density (the physical density of the pixels on the screen, or dpi
[dots per inch]). To simplify all the different types of screen configurations, the
Android system generalizes them into select groups that make them easier to target.

98 | Chapter 2: Designing a Successful Application

The designer should take into account the most appropriate choices for screen size
and screen density when designing the application.

By default, an application is compatible with all screen sizes and densities, because the
Android system makes the appropriate adjustments to the UI layout and image
resources. However, you should create specialized layouts for certain screen sizes and
provide specialized images for certain densities, by using alternative layout resources
and by declaring in your manifest exactly which screen sizes your application sup‐
ports.

Input configurations. Many devices provide a different type of user input mechanism,
such as a hardware keyboard, a trackball, or a five-way navigation pad. If your appli‐
cation requires a particular kind of input hardware, you must declare it in the
AndroidManifest.xml file, and be aware that the Google Play Store will not display
your app on devices that lack this feature. However, it is rare for an application to
require a certain input configuration.

Device features. There are many hardware and software features that may or may not
exist on a given Android-powered device, such as a camera, a light sensor, Bluetooth
capability, a certain version of OpenGL, or the fidelity of the touch screen. You should
never assume that a certain feature is available on all Android-powered devices (other
than the availability of the standard Android library).

A sophisticated Android application will use both types of menus provided by the
Android framework, depending on the circumstances:

• Options menus contain primary functionality that applies globally to the current
Activity or starts a related Activity. An options menu is typically invoked by a
user pressing a hard button, often labeled Menu, or a soft menu button on an
Action Bar (a vertical stack of three dots).

• Context menus contain secondary functionality for the currently selected item. A
context menu is typically invoked by a user performing a long-press (press and
hold) on an item. Like on the options menu, the selected operation can run in
either the current or another Activity. A context menu is for any commands that
apply to the current selection.

The commands on the context menu that appear when you long-press on an item
should be duplicated in the Activity you get to by a normal press on that item.

As very general guidance:

• Place the most frequently used operations first in the menu.

Designing a Successful Application | 99

• Only the most important commands should appear as buttons on the screen; del‐
egate the rest to the menu.

• Consider moving menu items to the action bar if your application uses one.

The system will automatically lay out the menus and provide standard ways for users
to access them, ensuring that the application will conform to the Android user inter‐
face guidelines. In this sense, menus are familiar and dependable ways for users to
access functionality across all applications.

Our Android application will make extensive use of Google’s Intent mechanism for
passing data between Activity objects. Intents not only are used to pass data between
views within a single application, but also allow data, or requests, to be passed to
external modules. As such, much functionality can be adopted by the Android appli‐
cation by embedded functionality from other applications invoked by Intent calls.
This reduces the development process and maintains the common look and feel and
functionality behavior across all applications.

Data feeds and feed formats. It is not a good idea to interface directly to any third-
party data source; for example, it would be a bad idea to use a Type 3 JDBC driver in
your mobile application to talk directly to a database on your server. The normal
approach would be to mediate the data, from several sources in potentially multiple
data formats, through middleware, which then passes data to an application through
a series of RESTful web service APIs in the form of JSON data streams.

Typically, data is provided in such formats as XML, SOAP, or some other XML-
derived representation. Representations such as SOAP are heavyweight, and as such,
transferring data from the backend servers in this format increases development time
significantly as the responsibility of converting this data into something more man‐
ageable falls on either the handset application or an object on the middleware server.

Mitigating the source data through a middleware server also helps to break the
dependency between the application and the data. Such a dependency has the disad‐
vantage that if, for some reason, the nature of the data changes or the data cannot be
retrieved, the application may be broken and become unusable, and such changes
may require the application to be republished. Mitigating the data on a middleware
server ensures that the application will continue to work, albeit possibly in a limited
fashion, regardless of whether the source data exists. The link between the application
and the mitigated data will remain.

100 | Chapter 2: Designing a Successful Application

2.1 Exception Handling
Ian Darwin

Problem
Java has a well-defined exception handling mechanism, but it takes some time to
learn to use it effectively without frustrating either users or tech support people.

Solution
Java offers an exception hierarchy that provides considerable flexibility when used
correctly. Android offers several mechanisms, including dialogs and toasts, for noti‐
fying the user of error conditions. The Android developer should become acquainted
with these mechanisms and learn to use them effectively.

Discussion
Java has had two categories of exceptions (actually of Exception’s parent, Throwable)
since it was introduced: checked and unchecked. In Java Standard Edition, apparently
the intention was to force the programmer to face the fact that, while certain things
could be detected at compile time, others could not. For example, if you were instal‐
ling a desktop application on a large number of PCs, it’s likely that the disk on some
of those PCs would be near capacity, and trying to save data on them could fail;
meanwhile, on other PCs some file that the application depended upon might have
gone missing, not due to programmer error but to user error, filesystem happen‐
stance, gerbils chewing on the cables, or whatever. So the category of IOException was
created as a “checked exception,” meaning that the programmer would have to check
for it, either by having a try-catch clause inside the file-using method or by having a
throws clause on the method definition. The general rule, which all well-trained Java
developers memorize, is the following:

Throwable is the root of the throwable hierarchy. Exception, and all of its subclasses
other than RuntimeException or any subclass thereof, is checked. All else is unchecked.

This means that Error and all of its subclasses are unchecked (see Figure 2-1). If you
get a VMError, for example, it means there’s a bug in the runtime. There’s nothing you
can do about this as an application programmer. RuntimeException subclasses include
things like the excessively long-named ArrayIndexOutOfBoundsException; this and friends
are unchecked because it is your responsibility to catch these exceptions at develop‐
ment time, by testing for them (see Chapter 3).

2.1 Exception Handling | 101

Figure 2-1. Throwable hierarchy

Where to catch exceptions
The (over)use of checked exceptions led a lot of early Java developers to write code
that was sprinkled with try-catch blocks, partly because the use of the throws clause
was not emphasized early enough in some training programs and books. As Java itself
has moved more to enterprise work, and newer frameworks such as Spring, Hiber‐
nate, and JPA have come along and are emphasizing the use of unchecked exceptions,
this early position has shifted. It is now generally accepted that you want to catch
exceptions as close to the user as possible. Code that is meant for reuse—in libraries
or even in multiple applications—should not try to do error handling. What it can do
is what’s called exception translation; that is, turning a technology-specific (and usu‐
ally checked) exception into a generic, unchecked exception. Example 2-1 shows the
basic pattern.

Example 2-1. Exception translation

public class ExceptionTranslation {
 public String readTheFile(String f) {
 try (BufferedReader is = new BufferedReader(new FileReader(f))) {
 String line = is.readLine();
 return line;
 } catch (FileNotFoundException fnf) {
 throw new RuntimeException("Could not open file " + f, fnf);
 } catch (IOException ex) {
 throw new RuntimeException("Problem reading file " + f, ex);
 }
 }
}

102 | Chapter 2: Designing a Successful Application

Note that prior to Java 7, you’d have had to write an explicit finally clause to close
the file:

 } finally {
 if (is != null) {
 try {
 is.close();
 } catch(IOException grr) {
 throw new RuntimeException("Error on close of " + f, grr);
 }
 }
 }
}

Note how the use of checked exceptions clutters even that code: it is virtually impos‐
sible for the is.close() to fail, but since you want to have it in a finally block (to
ensure that it gets tried if the file was opened but then something went wrong), you
have to have an additional try-catch around it. So, checked exceptions are (more often
than not) an annoyance, should be avoided in new APIs, and should be paved over
with unchecked exceptions when using code that requires them.

There is an opposing view, espoused by the official Oracle website and others. In a
comment on the website from which this book was produced, reader Al Sutton points
out the following:

Checked exceptions exist to force developers to acknowledge that an error condition
can occur and that they have thought about how they want to deal with it. In many
cases there may be little that can be done beyond logging and recovery, but it is still an
acknowledgment by the developer that they have considered what should happen with
this type of error. The example shown … stops callers of the method from differentiat‐
ing between when a file doesn’t exist (and thus may need to be re-fetched), and when
there is a problem reading the file (and thus the file exists but is unreadable), which are
two different types of error conditions.

Android, wishing to be faithful to the Java API, has a number of these checked excep‐
tions (including the ones shown in the example), so they should be treated the same
way.

What to do with exceptions
Exceptions should almost always be reported. When I see code that catches excep‐
tions and does nothing at all about them, I despair. They should, however, be
reported only once (do not both log and translate/rethrow!). The point of all normal
exceptions is to indicate, as the name implies, an exceptional condition. Since on an
Android device there is no system administrator or console operator, exceptional
conditions need to be reported to the user.

You should think about whether to report exceptions via a dialog or a toast. The
exception handling situation on a mobile device is different from that on a desktop

2.1 Exception Handling | 103

http://androidcookbook.com/r/75

computer. The user may be driving a car or operating other machinery, interacting
with people, and so on, so you should not assume you have her full attention.

I know that most examples, even in this book, use a toast, because it involves less cod‐
ing than a dialog. But remember that a toast will only appear on the screen for a few
seconds; blink and you may miss it. If the user needs to do something to correct the
problem, you should use a dialog.

Toasts simply pop up and then obliviate. Dialogs require the user to acknowledge an
exceptional condition, and either do, or give the app permission to do, something
that might cost money (such as turning on internet access in order to run an applica‐
tion that needs to download map tiles).

Use toasts to “pop up” unimportant information; use dialogs to dis‐
play important information and to obtain confirmation.

See Also
Recipe 3.9.

2.2 Requesting Android Permissions at Runtime
Mike Way

Problem
In Android 6 and later, you must check permissions at runtime in addition to specify‐
ing them in the manifest.

Solution
“Dangerous” resources are those that could affect the user’s stored information, or
privacy, etc. To access resources protected by “dangerous” permissions you must:

• Check if the user has already granted permission before accessing a resource.
• Explicitly request permissions from the user if the permissions have not previ‐

ously been granted.
• Have an alternate course of action so the application does not crash if the permis‐

sion is not granted.

104 | Chapter 2: Designing a Successful Application

Discussion
Before accessing a resource that requires permission, you must first check if the user
has already granted permission. To do this, call the Activity method
checkSelfPermission(permission). It will return either PERMISSION_GRANTED or
PERMISSION_DENIED:

if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.WRITE_EXTERNAL_STORAGE) ==
 PackageManager.PERMISSION_GRANTED) {
 // If you get here then you have the permission and can do some work
} else {
 // See below
}

If the preceding check indicates that the permission has not been granted, you must
explicitly request it by calling the Activity method requestPermissions():

void requestPermissions (String[] permissions, int requestCode)

As this will interact with the user, it is an asynchronous request. You must override
the Activity method onRequestPermissionsResult() to get notified of the response:

public void onRequestPermissionsResult(
 int requestCode, String[] permissions, int[] grantResults);

For example:
// Unique request code for the particular permissions request
private static int REQUEST_EXTERNAL_STORAGE = 1;
...
// Request the permission from the user
ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE },
 REQUEST_EXTERNAL_STORAGE);

// Callback handler for the eventual response
@Override
public void onRequestPermissionsResult(
 int requestCode, String[] permissions, int[] grantResults) {

 boolean granted = true;
 if (requestCode == REQUEST_EXTERNAL_STORAGE) {
 // Received permission result for external storage permission.
 Log.i(TAG, "Got response for external storage permission request.");

 // Check if all the permissions have been granted
 if (grantResults.length > 0) {
 for (int result : grantResults) {
 if (result != PackageManager.PERMISSION_GRANTED) {
 granted = false;
 }
 }
 } else {
 granted = false;

2.2 Requesting Android Permissions at Runtime | 105

 }
 }
 ...
 // If granted is true: carry on and perform the action. Calling
 // checkSelfPermission() will now return PackageManager.PERMISSION_GRANTED

It is usually a good idea to provide the user with information as to why the permis‐
sions are required. To do this you call the Activity method boolean

shouldShowRequestPermissionRationale(String permission). If the user has previously
refused to grant the permissions this method will return true, giving you the opportu‐
nity to display extra information as to why they should be granted:

if (ActivityCompat.shouldShowRequestPermissionRationale(this,
 Manifest.permission.WRITE_EXTERNAL_STORAGE)) {
 // Provide additional info if the permission was not granted
 // and the user would benefit from additional
 // context for the use of the permission
 Log.i(TAG, "Displaying permission rationale to provide additional context.");
 Snackbar.make(mLayout, R.string.external_storage_rationale,
 Snackbar.LENGTH_INDEFINITE)
 .setAction(R.string.ok, new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 ActivityCompat.requestPermissions(MainActivity.this,
 new String[]{
 Manifest.permission.WRITE_EXTERNAL_STORAGE,
 Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_EXTERNAL_STORAGE);
 }
 }).show();

This uses a Snackbar (see Recipe 7.1) to display the rationale, until the user clicks the
Snackbar to dismiss it.

See Also
This permission checking technique is also used in the example project in Recipe
14.1. There is more documention at the official documentation site.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory PermissionRequest (see “Getting and Using the Code Examples” on page
18).

2.3 Accessing Android’s Application Object as a
“Singleton”
Adrian Cowham

106 | Chapter 2: Designing a Successful Application

https://developer.android.com/training/permissions/requesting.html
https://github.com/IanDarwin/Android-Cookbook-Examples

Problem
You need to access “global” data from within your Android app.

Solution
The best solution is to subclass android.app.Application and treat it as a singleton with
static accessors. Every Android app is guaranteed to have exactly one
android.app.Application instance for the lifetime of the app. If you choose to subclass
android.app.Application, Android will create an instance of your class and invoke the
android.app.Application life-cycle methods on it. Because there’s nothing preventing
you from creating another instance of your subclassed android.app.Application, it isn’t a
genuine singleton, but it’s close enough.

Having global access to such objects as session handlers, web service gateways, or
anything that your application only needs a single instance of will dramatically sim‐
plify your code. Sometimes these objects can be implemented as singletons, and
sometimes they cannot because they require a Context instance for proper initializa‐
tion. In either case, it’s still valuable to add static accessors to your subclassed
android.app.Application instance so that you can consolidate all globally accessible data
in one place, have guaranteed access to a Context instance, and easily write “correct”
singleton code without having to worry about synchronization.

Discussion
When writing your Android app you may find it necessary to share data and services
across multiple Activities. For example, if your app has session data, such as the iden‐
tity of the currently logged-in user, you will likely want to expose this information.
When developing on the Android platform, the pattern for solving this problem is to
have your android.app.Application instance own all global data, and then treat your
Application instance as a singleton with static accessors to the various data and serv‐
ices.

When writing an Android app you’re guaranteed to only have one instance of the
android.app.Application class, so it’s safe (and recommended by the Google Android
team) to treat it as a singleton. That is, you can safely add a static getInstance()
method to your Application implementation. Example 2-2 provides an example.

Example 2-2. The Application implementation

public class AndroidApplication extends Application {

 private static AndroidApplication sInstance;

 private SessionHandler sessionHandler; // Generic your-application handler

2.3 Accessing Android’s Application Object as a “Singleton” | 107

 public static AndroidApplication getInstance() {
 return sInstance;
 }

 public Session Handler getSessionHandler()
 return sessionHandler;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 sInstance = this;
 sInstance.initializeInstance();
 }

 protected void initializeInstance() {
 // Do all your initialization here
 sessionHandler = new SessionHandler(
 this.getSharedPreferences("PREFS_PRIVATE", Context.MODE_PRIVATE));
 }

 /** This is a stand-in for some application-specific session handler;
 * would normally be a self-contained public class.
 */
 private class SessionHandler {
 SharedPreferences sp;
 SessionHandler(SharedPreferences sp) {
 this.sp = sp;
 }
 }
}

This isn’t the classical singleton implementation, but given the constraints of the
Android framework it’s the closest thing we have; it’s safe, and it works.

The notion of the “session handler” is that it keeps track of per-user information such
as name and perhaps password, or any other relevant information, across different
Activities and the same Activity even if it gets destroyed and re-created. Our
SessionHandler class is a placeholder for you to compose such a handler, using what‐
ever information you need to maintain across Activities!

Using this technique in this app has simplified and cleaned up the implementation.
Also, it has made it much easier to develop tests. Using this technique in conjunction
with the Robolectric testing framework (see Recipe 3.5), you can mock out the entire
execution environment in a straightforward fashion.

Also, don’t forget to add the application class’s android:"name" declaration to the exist‐
ing application element in your AndroidManifest.xml file:

<application android:icon="@drawable/app_icon"
 android:label="@string/app_name"
 android:name=".AndroidApplication">

108 | Chapter 2: Designing a Successful Application

See Also
My blog post.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory AppSingleton (see “Getting and Using the Code Examples” on page 18).

2.4 Keeping Data When the User Rotates the Device
Ian Darwin

Problem
When the user rotates the device, Android will normally destroy and re-create the
current Activity. You want to keep some data across this cycle, but all the fields in
your Activity are lost during it.

Solution
There are several approaches. If all your data comprises primitive types, consists of
Strings, or is Serializable, you can save it in onSaveInstanceState() in the Bundle that is
passed in.

Another solution lets you return a single arbitrary object. You need only override
onRetainNonConfigurationInstance() in your Activity to save some values, call
getLastNonConfigurationInstance() near the end of your onCreate() method to see if there
is a previously saved value, and, if so, assign your fields accordingly.

Discussion

Using onSaveInstanceState()
See Recipe 1.2.

Using onRetainNonConfigurationInstance()
The getLastNonConfigurationInstance() method’s return type is Object, so you can return
any value you want from it. You might want to create a Map or write an inner class in
which to store the values, but it’s often easier just to pass a reference to the current
Activity, for example, using this:

public class MyActivity extends Activity {
 ...

 /** Returns arbitrary single token object to keep alive across

2.4 Keeping Data When the User Rotates the Device | 109

http://mytensions.blogspot.com/2011/03/androids-application-object-as.html
https://github.com/IanDarwin/Android-Cookbook-Examples

 * the destruction and re-creation of the entire Enterprise.
 */
 @Override
 public Object onRetainNonConfigurationInstance() {
 return this;
 }

The preceding method will be called when Android destroys your main Activity. Sup‐
pose you wanted to keep a reference to another object that was being updated by a
running service, which is referred to by a field in your Activity. There might also be a
Boolean to indicate whether the service is active. In the preceding code, we return a
reference to the Activity from which all of its fields can be accessed (even private
fields, since the outgoing and incoming Activity objects are of the same class). In my
geotracking app JPSTrack, for example, I have a FileSaver class that accepts data from
the location service; I want it to keep getting the location, and saving it to disk, in
spite of rotations, rather than having to restart it every time the screen rotates. Rota‐
tion is unlikely if the device is anchored in a car dash mount (we hope), but quite
likely if a passenger, or a pedestrian, is taking pictures or typing notes while geotrack‐
ing.

After Android creates the new instance, it calls onCreate() to notify the new instance
that it has been created. In onCreate() you typically do constructor-like actions such as
initializing fields and assigning event listeners. You still need to do those, so leave
them alone. Near the end of onCreate(), however, you will add some code to get the old
instance, if there is one, and get some of the important fields from it. The code should
look something like Example 2-3.

Example 2-3. The onCreate() method

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 saving = false;
 paused = false;

 // Lots of other initializations...

 // Now see if we just got interrupted by, e.g., rotation
 Main old = (Main) getLastNonConfigurationInstance();
 if (old != null) {
 saving = old.saving;
 paused = old.paused;

 // This is the most important line: keep saving to same file!
 fileSaver = old.fileSaver;
 if (saving) {
 fileNameLabel.setText(fileSaver.getFileName());
 }

110 | Chapter 2: Designing a Successful Application

 return;
 }

 // I/O helper
 fileSaver = new GPSFileSaver(...);
}

The fileSaver object is the big one, the one we want to keep running and not re-create
every time. If we don’t have an old instance, we create the fileSaver only at the very
end of onCreate(), since otherwise we’d be creating a new one just to replace it with the
old one, which is (at the least) bad for performance. When the onCreate() method fin‐
ishes, we hold no reference to the old instance, so it should be eligible for Java
garbage collection. The net result is that the Activity appears to keep running nicely
across screen rotations, despite the re-creation.

An alternative possibility is to set android:configChanges="orientation" in your Android‐
Manifest.xml. This approach prevents the Activity from being destroyed and re-
created, but typically also prevents the application from displaying correctly in land‐
scape mode, and is officially regarded as not good practice—see the following refer‐
ence.

See Also
Recipe 2.3, the developer documentation on handling configuration changes.

Source Download URL
You can download the source code for this example from GitHub. Note that if you
want it to compile, you will also need the jpstrack project, from the same GitHub
account.

2.5 Monitoring the Battery Level of an Android Device
Pratik Rupwal

Problem
You want to detect the battery level on an Android device so that you can notify the
user when the battery level goes below a certain threshold, thereby avoiding unexpec‐
ted surprises.

Solution
A broadcast receiver that receives the broadcast message sent when the battery status
changes can identify the battery level and can issue alerts to users.

2.5 Monitoring the Battery Level of an Android Device | 111

https://developer.android.com/guide/topics/resources/runtime-changes.html
https://github.com/IanDarwin/jpstrack.android

Discussion
Sometimes we need to show an alert to the user when the battery level of an Android
device goes below a certain limit. The code in Example 2-4 sets the broadcast message
to be sent whenever the battery level changes and creates a broadcast receiver to
receive the broadcast message, which can alert the user when the battery gets dis‐
charged below a certain level.

Example 2-4. The main Activity

public class MainActivity extends Activity {

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /** This registers the receiver for a broadcast message to be sent
 * to when the battery level is changed. */

 this.registerReceiver(this.myBatteryReceiver,
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

 /** Intent.ACTION_BATTERY_CHANGED can be replaced with
 * Intent.ACTION_BATTERY_LOW for receiving
 * a message only when battery level is low rather than sending
 * a broadcast message every time battery level changes.
 * There is also ACTION_BATTERY_OK for when the battery
 * has been charged a certain amount above the level that
 * would trigger the low condition.
 */
 }

 private BroadcastReceiver myBatteryReceiver =
 new BroadcastReceiver() {

 @Override
 public void onReceive(Context ctx, Intent intent) {
 // bLevel is battery percent-full as an integer
 int bLevel = intent.getIntExtra("level", 0);
 Log.i("BatteryMon", "Level now " + bLevel);
 }
 };
}

The ACTION_BATTERY_LOW and ACTION_BATTERY_OK levels are not documented, and are setta‐
ble only by rebuilding the operating system, but they may be around 10 and 15, or 15
and 20, respectively.

112 | Chapter 2: Designing a Successful Application

2.6 Creating Splash Screens in Android
Rachee Singh and Ian Darwin

Problem
You want to create a splash screen that will appear while an application is loading.

Solution
You can construct a splash screen as an Activity or as a dialog. Since its purpose is
accomplished within a few seconds, it can be dismissed after a short time interval has
elapsed or upon the click of a button in the splash screen.

Discussion
The splash screen was invented in the PC era, initially as a cover-up for slow GUI
construction when PCs were slow. Vendors have kept them for branding purposes.
But in the mobile world, where the longest app start-up time is probably less than a
second, people are starting to recognize that splash screens have become somewhat
anachronistic. When I (Ian Darwin) worked at eHealth Innovation, we recognized
this by making the splash screen for our BANT application disappear after just one
second. The question arises whether we still need splash screens at all. With most
mobile apps, the name and logo appear in the app launcher, and on lots of other
screens within the app. Is it time to make the splash screen disappear altogether?

The answer to that question is left up to you and your organization. For complete‐
ness, here are two methods of handling the application splash screen.

The first version uses an Activity that is dedicated to displaying the splash screen. The
splash screen displays for two seconds or until the user presses the Menu key, and
then the main Activity of the application appears. First we use a thread to wait for a
fixed number of seconds, and then we use an Intent to start the real main Activity.
The one downside to this method is that your “main” Activity in your AndroidMani‐
fest.xml file is the splash Activity, not your real main Activity. Example 2-5 shows the
splash Activity.

Example 2-5. The splash Activity

public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {

2.6 Creating Splash Screens in Android | 113

https://ehealthinnovation.org

 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 Thread mythread = new Thread() {
 public void run() {
 try {
 while (splashActive && ms < splashTime) {
 if(!paused)
 ms=ms+100;
 sleep(100);
 }
 } catch(Exception e) {}
 finally {
 Intent intent = new Intent(SplashScreen.this, Main.class);
 startActivity(intent);
 }
 }
 };
 mythread.start();
 }

}

Example 2-6 shows the layout of the splash Activity, splash.xml.

Example 2-6. The splash layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <ImageView android:src="@drawable/background"
 android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <ProgressBar android:id="@+id/progressBar1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal">
 </ProgressBar>
</LinearLayout>

One additional requirement is to put the attribute android:noHistory="true" on the
splash Activity in your AndroidManifest.xml file so that this Activity will not appear
in the history stack, meaning if the user uses the Back button from the main app he
will go to the expected Home screen, not back into your splash screen (see
Figure 2-2).

114 | Chapter 2: Designing a Successful Application

Figure 2-2. Splash screen

Two seconds later, this Activity leads to the next Activity, which is the standard
“Hello, World” Android Activity, as a proxy for your application’s main Activity (see
Figure 2-3).

Figure 2-3. “Main” Activity

In the second version (Example 2-7), the splash screen displays until the Menu key on
the Android device is pressed, then the main Activity of the application appears. For
this, we add a Java class that displays the splash screen. We check for the pressing of
the Menu key by checking the KeyCode and then finishing the Activity (see
Example 2-7).

2.6 Creating Splash Screens in Android | 115

Example 2-7. Watching for KeyCodes

public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 }

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 super.onKeyDown(keyCode, event);
 if (KeyEvent.KEYCODE_MENU == keyCode) {
 Intent intent = new Intent(SplashScreen.this, Main.class);
 startActivity(intent);
 }
 if (KeyEvent.KEYCODE_BACK == keyCode) {
 finish();
 }
 return false;
 }
}

The layout of the splash Activity, splash.xml, is unchanged from the earlier version.

As before, after the button press this Activity leads to the next Activity, which repre‐
sents the main Activity.

The other major method involves use of a dialog, started from the onCreate() method
in your main method. This has a number of advantages, including a simpler Activity
stack and the fact that you don’t need an extra Activity that’s only used for the first
few seconds. The disadvantage is that it takes a bit more code, as you can see in
Example 2-8.

Example 2-8. The splash dialog

public class SplashDialog extends Activity {
 private Dialog splashDialog;

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 StateSaver data = (StateSaver) getLastNonConfigurationInstance();
 if (data != null) { // "All this has happened before"
 if (data.showSplashScreen) { // And we didn't already finish
 showSplashScreen();
 }
 setContentView(R.layout.main);

116 | Chapter 2: Designing a Successful Application

 // Do any UI rebuilding here using saved state
 } else {
 showSplashScreen();
 setContentView(R.layout.main);
 // Start any heavy-duty loading here, but on its own thread
 }
 }

The basic idea is to display the splash dialog at application startup, but also to redis‐
play it if you get, for example, an orientation change while the splash screen is run‐
ning, and to be careful to remove it at the correct time if the user backs out or if the
timer expires while the splash screen is running.

See Also
Ian Clifton’s blog post titled “Android Splash Screens Done Right” argues passionately
for the dialog method.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory SplashDialog (see “Getting and Using the Code Examples” on page 18).

2.7 Designing a Conference/Camp/Hackathon/Institution
App
Ian Darwin

Problem
You want to design an app for use at a conference, BarCamp, or hackathon, or inside
a large institution such as a hospital.

Solution
Provide at least the required functions listed in this recipe’s “Discussion” section, and
as many of the optional ones as you think make sense.

Discussion
A good app of this type requires some or most of the following functions, as appro‐
priate:

• A map of the building, showing the locations of meetings, food services, wash‐
rooms, emergency exits, and so on. You get extra points if you provide a visual
slider for moving up or down levels if your conference takes place on more than

2.7 Designing a Conference/Camp/Hackathon/Institution App | 117

http://blog.iangclifton.com/2011/01/01/android-splash-screens-done-right/
https://github.com/IanDarwin/Android-Cookbook-Examples

one floor or level in the building (think about a 3D fly-through of San Francisco’s
Moscone Center, including the huge escalators). Remember that some people
may know the building, but others will not. Consider having a “where am I”
function (the user will type in the name or number of a room he sees; you get
extra points if you offer visual matching or use the GPS instead of making the
user type) as well as a “where is” function (the user selects from a list and the
application jumps to the map view with a pushpin showing the desired location).
Turn-by-turn walking directions through a maze of twisty little passages?

• A map of the exhibit hall (if there is a show floor, have a map and an easy way to
find a given exhibitor). Ditto for poster papers if your conference features these.

• A schedule view. Highlight changes in red as they happen, including additions,
last-minute cancellations, and room changes.

• A sign-up button if your conference has Birds of a Feather (BOF) gatherings; you
might even want a “Suggest a new BOF” Activity.

• A local area map. This could be OpenStreetMap or Google Maps, or maybe
something more detailed than the standard map. Add folklore, points of interest,
navigation shortcuts, and other features. Limit it to a few blocks so that you can
get the details right. A university campus is about the right size.

• An overview map of the city. Again, this is not the Google map, but an artistic,
neighborhood/zone view with just the highlights.

• Tourist attractions within an hour of the site. Your mileage may vary.
• A food finder. People always get tired of convention food and set out on foot to

find something better to eat.
• A friend finder. If Google’s Latitude app were open to use by third-party apps,

you could tie into Google’s data. If it’s a security conference, implement this func‐
tionality yourself.

• Private voice chat. If it’s a small security gathering, provide a Session Initiation
Protocol (SIP) server on a well-connected host, with carefully controlled access;
it should be possible to have almost walkie talkie–like service.

• Sign-ups for impromptu group formation for trips to tourist attractions or any
other purpose.

• Functionality to post comments to Twitter, Facebook, and LinkedIn.
• Note taking! Many people will have Android on large-screen tablets, so a “Note‐

pad” equivalent, ideally linked to the session the notes are taken in, will be useful.
• A way for users to signal chosen friends that they want to eat (at a certain time, in

so many minutes, right now), including the type of food or restaurant name and
seeing if they’re also interested.

118 | Chapter 2: Designing a Successful Application

See Also
The rest of this book shows how to implement most of these functions.

Google Maps has recently started serving building maps. The article shows who to
contact to get your building’s internal locations added to the map data; if appropriate,
consider getting the venue operators to give Google their building’s data.

2.8 Using Google Analytics in an Android Application
Ashwini Shahapurkar

Problem
Developers often want to track their applications in terms of features used by users.
How can you determine which feature is most used by your app’s users?

Solution
Use Google Analytics to track the app based on defined criteria, similar to Google
Analytics’s website-tracking mechanism.

Discussion
Before we use Google Analytics in our app, we need an analytics account which you
can get for free from Google using one of two approaches to getting the Google Ana‐
lytics SDK running:

Automated Approach
For Android Studio only, you can follow the steps to get the Analytics SDK given at
https://developers.google.com/analytics/devguides/collection/android/resources, which
involve having Google generate a simple configuration file containing your Analytics
account, then adding two classpath dependencies and a Gradle plugin in your Gradle
build scripts. The plugin will read your downloaded configuration file and apply the
information to your code.

Hands-On Approach
A more hands-on approach involves creating your account directly at https://
accounts.google.com/SignUp?continue=https%3A%2F%2Fwww.google.com%2Fanalyt
ics%2Fmobile%2F&hl=en, then adding two dependencies and providing the analytics
account to the SDK. The two dependencies are com.google.gms:google-services:3.0.0
and com.google.android.gms:play-services-analytics:10.0.1.

2.8 Using Google Analytics in an Android Application | 119

https://googleblog.blogspot.com/2011/11/new-frontier-for-google-maps-mapping.html
https://developers.google.com/analytics/devguides/collection/android/resources
https://accounts.google.com/SignUp?continue=https%3A%2F%2Fwww.google.com%2Fanalytics%2Fmobile%2F&hl=en
https://accounts.google.com/SignUp?continue=https%3A%2F%2Fwww.google.com%2Fanalytics%2Fmobile%2F&hl=en
https://accounts.google.com/SignUp?continue=https%3A%2F%2Fwww.google.com%2Fanalytics%2Fmobile%2F&hl=en

Now, sign in to your analytics account and create a website profile for the app. The
website URL can be fake but should be descriptive. I recommend that you use the
reverse package name for this. For example, if the application package name is
com.example.analytics.test, the website URL for this app can be http://test.analyt
ics.example.com. After you create the website profile, a web property ID is generated
for that profile. Jot it down - save it in a safe place-as we will be using this ID in our
app. The ID, also known as the UA number of the tracking code, uniquely identifies
the website profile.

Common Steps
Next, ensure you have the following permissions in your project’s AndroidMani‐
fest.xml file:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

For both legal and licensing reasons, you must inform your users
that you are collecting anonymous user data in your app. You can
do so via a policy statement, in the end-user license agreement, or
somewhere else where users will see this information. See Recipe
2.9.

Now we are ready to track our application. Obtain the singleton instance of the
tracker by calling the GoogleAnalytics.getInstance().newTracker() method. Usually, you
will want to track more than Activities in the app. In such a scenario, it’s a good idea
to have this tracker instance in the onCreate() method of the Application class of the
app (see Example 2-9).

Example 2-9. The application implementation for tracking

public class GADemoApp extends Application {
 /*
 * Define web property ID obtained after creating a profile for the app. If
 * using the Gradle plugin, this should be available as R.xml.global_tracker.
 */
 private String webId = "UA-NNNNNNNN-Y";

 /* Analytics tracker instance */
 Tracker tracker;

 /* This is the getter for the tracker instance. This is called from
 * within the Activity to get a reference to the tracker instance.
 */
 public synchronized Tracker getTracker() {
 if (tracker == null) {
 // Get the singleton Analytics instance, get Tracker from it
 GoogleAnalytics instance = GoogleAnalytics.getInstance(this);

120 | Chapter 2: Designing a Successful Application

http://test.analytics.example.com
http://test.analytics.example.com

 // Start tracking the app with your web property ID
 tracker = instance.newTracker(webId);

 // Any app-specific Application setup code goes here...
 }
 return tracker;
 }
}

You can track page views and events in the Activity by calling the setScreenName() and
send() methods on the tracker instance (see Example 2-10).

Example 2-10. The Main Activity with tracking

public class MainActivity extends Activity {
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Track the page view for the Activity
 Tracker tracker =
 ((GADemoApp)getApplication()).getTracker();
 tracker.setScreenName("MainActivity");
 tracker.send(new HitBuilders.ScreenViewBuilder().build());

 /* You can track events like button clicks... */
 findViewById(R.id.actionButton).setOnClickListener(v -> {
 Tracker tracker =
 ((GADemoApp)getApplication()).getTracker();
 tracker.send(new HitBuilders.EventBuilder(
 "Action Event", "Button Clicked").build());
 });
 }
}

Using this mechanism, you can track all the Activities and events inside them. You
then visit the Analytics web site to see how many times each Activity or other event
has been invoked.

See Also
The main page for the Android Analytics API.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory Analytics (see “Getting and Using the Code Examples” on page 18).

2.8 Using Google Analytics in an Android Application | 121

https://developer.android.com/distribute/analyze/start.html
https://github.com/IanDarwin/Android-Cookbook-Examples

2.9 Setting First-Run Preferences
Ashwini Shahapurkar

Problem
You have an application that collects app usage data anonymously, so you are obliga‐
ted to make users aware of this the first time they run your application.

Solution
Use shared preferences as persistent storage to store a value, which gets updated only
once. Each time the application launches, it will check for this value in the preferen‐
ces. If the value has been set (is available), it is not the first run of the application;
otherwise it is the first run.

Discussion
You can manage the application life cycle by using the Application class of the Android
framework. We will use shared preferences as persistent storage to store the first-run
value.

We will store a Boolean flag in the preferences if this is the first run. When the appli‐
cation is installed and used for the first time, there are no preferences available for it.
They will be created for us. In that case the flag will return a value of true. After get‐
ting the true flag, we can update this flag with a value of false as we no longer need it
to be true. See Example 2-11.

Example 2-11. First-run preferences

public class MyApp extends Application {

 SharedPreferences mPrefs;

 @Override
 public void onCreate() {
 super.onCreate();

 Context mContext = this.getApplicationContext();
 // 0 = mode private. Only this app can read these preferences.
 mPrefs = mContext.getSharedPreferences("myAppPrefs", 0);

 // Your app initialization code goes here
 }

 public boolean getFirstRun() {
 return mPrefs.getBoolean("firstRun", true);
 }

122 | Chapter 2: Designing a Successful Application

 public void setRunned() {
 SharedPreferences.Editor edit = mPrefs.edit();
 edit.putBoolean("firstRun", false);
 edit.commit();
 }
}

This flag from the preferences will be tested in the launcher Activity, as shown in
Example 2-12.

Example 2-12. Checking whether this is the first run of this app

 if(((MyApp) getApplication()).getFirstRun()) {
 // This is the first run
 ((MyApp) getApplication()).setRunned();

 // Your code for the first run goes here

 }
 else {
 // This is not the first run on this device
 }

Even if you publish updates for the app and the user installs the updates, these prefer‐
ences will not be modified; therefore, the code will work for only the first run after
installation. Subsequent updates to the app will not bring the code into the picture,
unless the user has manually uninstalled and reinstalled the app.

You could use a similar technique for distributing shareware ver‐
sions of an Android app (i.e., limit the number of trials of the
application). In this case, you would use an integer count value in
the preferences to indicate the number of trials. Each trial would
update the preferences. After the desired value is reached, you
would block the usage of the application until the user pays the
usage fee.

2.10 Formatting Numbers
Ian Darwin

Problem
You need to format numbers, because the default formatting of Double.toString() and
friends does not give you enough control over how the results are displayed.

2.10 Formatting Numbers | 123

Solution
Use String.format() or one of the NumberFormat subclasses.

Discussion
The printf() function was first included in the C programming language in the 1970s,
and it has been used in many other languages since, including Java. Here’s a simple
printf() example in Java SE:

System.out.printf("Hello %s at %s%n", userName, time);

The preceding example could be expected to print something like this:
Hello Robin at Wed Jun 16 08:38:46 EDT 2010

Since we don’t use System.out in Android, you’ll be relieved to note that you can get
the same string that would be printed, for putting it into a view, by using:

String msg = String.format("Hello %s at %s%n", userName, time);

If you haven’t seen printf() before, the first argument is obviously the format code
string, and any other arguments here, (userName and time) are values to be formatted.
The format codes begin with a percent sign (%) and have at least one “type” code;
Table 2-1 shows some common type codes.

Table 2-1. Some common format codes
Character Meaning
s String (convert primitive values using defaults; convert objects by toString)

d Decimal integer (int, long)

f Floating point (float, double)

n Newline

t Time/date formats, Java-specific; see the discussion referred to in the “See Also” section at the end of the recipe

The default date formatting is pretty ugly, so we often need to expand on it. The
printf() formatting capabilities are actually housed in the java.util.Formatter class, to
which reference should be made for the full details of its formatting language.

Unlike printf() in other languages you may have used, all these format routines
optionally allow you to refer to arguments by their number, by putting a number plus
a dollar sign after the % lead-in but before the formatting code proper; for example,
%2$3.1f means to format the second argument as a decimal number with three charac‐
ters and one digit after the decimal place. This numbering can be used for two pur‐
poses: to change the order in which arguments print (often useful with internationali‐
zation), and to refer to a given argument more than once. The date/time format char‐

124 | Chapter 2: Designing a Successful Application

acter t requires a second character after it, such as Y for the year, m for the month, and
so on. Here we take the time argument and extract several fields from it:

msg = String.format("Hello at %1$tB %1$td, %1$tY%n", time);

This might format as July 4, 2010.

To print numbers with a specific precision, you can use f with a width and a preci‐
sion, such as:

msg = String.format("Latitude: %10.6f", latitude);

This might yield:
Latitude: -79.281818

While such formatting is OK for specific uses such as latitudes and longitudes, for
general use such as currencies, it may give you too much control.

General formatters
Java has an entire package, java.text, that is full of formatting routines as general and
flexible as anything you might imagine. Like printf(), it has an involved formatting
language, described in the online documentation page. Consider the presentation of
numbers. In North America, the number “one thousand twenty-four and a quarter” is
written 1,024.25; in most of Europe it is 1 024,25, and in some other parts of the
world it might be written 1.024,25. The formatting of currencies and percentages is
equally varied. Trying to keep track of this yourself would drive the average software
developer around the bend rather quickly.

Fortunately, the java.text package includes a Locale class. Furthermore, the Java or
Android runtime automatically sets a default Locale object based on the user’s envi‐
ronment; this code works the same on desktop Java as it does in Android. To provide
formatters customized for numbers, currencies, and percentages, the NumberFormat
class has static factory methods that normally return a DecimalFormat with the correct
pattern already instantiated. A DecimalFormat object appropriate to the user’s locale can
be obtained from the factory method NumberFormat.getInstance() and manipulated
using set methods. Surprisingly, the method setMinimumIntegerDigits() turns out to be
the easy way to generate a number format with leading zeros. Example 2-13 is an
example.

Example 2-13. Number formatting demo

import java.text.NumberFormat;

/*
 * Format a number our way and the default way.
 */
public class NumFormat2 {
 /** A number to format */

2.10 Formatting Numbers | 125

 public static final double data[] = {
 0, 1, 22d/7, 100.2345678
 };

 public static void main(String[] av) {
 // Get a format instance
 NumberFormat form = NumberFormat.getInstance();

 // Tailor it to look like 999.99[99]
 form.setMinimumIntegerDigits(3);
 form.setMinimumFractionDigits(2);
 form.setMaximumFractionDigits(4);

 // Now print using it
 for (int i=0; i<data.length; i++)
 System.out.println(data[i] + "\tformats as " +
 form.format(data[i]));
 }
}

This prints the contents of the array using the NumberFormat instance form. We show
running it as a main program instead of in an Android application just to isolate the
effects of the NumberFormat.

For example, $ java NumFormat2 0.0 formats as 000.00; with the argument 1.0 it formats
as 001.00, with 3.142857142857143 it formats as 003.1429, and with 100.2345678 it formats as
100.2346.

You can also construct a DecimalFormat with a particular pattern or change the pattern
dynamically using applyPattern(). Table 2-2 shows some of the more common pattern
characters.

Table 2-2. Common DecimalFormat pattern characters
Character Explanation
Numeric digit (leading zeros suppressed)

0 Numeric digit (leading zeros provided)

. Locale-specific decimal separator (decimal point)

, Locale-specific grouping separator (comma in English)

- Locale-specific negative indicator (minus sign)

% Shows the value as a percentage

; Separates two formats: the first for positive and the second for negative values

' Escapes one of the preceding characters so that it appears as itself

Anything else Appears as itself

The NumFormatTest program uses one DecimalFormat to print a number with only two
decimal places and a second to format the number according to the default locale, as
shown in Example 2-14.

126 | Chapter 2: Designing a Successful Application

Example 2-14. NumberFormat demo Java SE program

import java.text.DecimalFormat;
import java.text.NumberFormat;

public class NumFormatDemo {
 /** A number to format */
 public static final double intlNumber = 1024.25;
 /** Another number to format */
 public static final double ourNumber = 100.2345678;

 public static void main(String[] av) {

 NumberFormat defForm = NumberFormat.getInstance();
 NumberFormat ourForm = new DecimalFormat("##0.##");
 // toPattern() will reveal the combination of #0., etc.
 // that this particular Locale uses to format with
 System.out.println("defForm's pattern is " +
 ((DecimalFormat)defForm).toPattern());
 System.out.println(intlNumber + " formats as " +
 defForm.format(intlNumber));
 System.out.println(ourNumber + " formats as " +
 ourForm.format(ourNumber));
 System.out.println(ourNumber + " formats as " +
 defForm.format(ourNumber) + " using the default format");
 }
}

This program prints the given pattern and then formats the same number using sev‐
eral formats:

$ java NumFormatTest
defForm's pattern is #,##0.###
1024.25 formats as 1,024.25
100.2345678 formats as 100.23
100.2345678 formats as 100.235 using the default format

See Also
Chapter 10 of my book Java Cookbook and Part VI of Java I/O by Elliotte Rusty Har‐
old (both from O’Reilly).

2.11 Formatting with Correct Plurals
Ian Darwin

Problem
You’re displaying something like "Found "+ n +" reviews", but in English, “Found 1
reviews” is ungrammatical. You want "Found 1 review" for the case n==1.

2.11 Formatting with Correct Plurals | 127

Solution
For simple, English-only results, use a conditional statement. For better results that
can be internationalized, use a ChoiceFormat. On Android, you can use <plural> in an
XML resources file.

Discussion
The “quick and dirty” method is to use Java’s ternary operator (cond ? trueval :
falseval) in a string concatenation. Since in English, for most nouns, both zero and
plurals get an s appended to the noun (“no books, one book, two books”), we need
only test for n==1:

// FormatPlurals.java
public static void main(String argv[]) {
 report(0);
 report(1);
 report(2);
}
/** report -- using conditional operator */
public static void report(int n) {
 System.out.println("Found " + n + " item" + (n==1?"":"s"));
}

Running this on Java SE as a main program shows the following output:
$ java FormatPlurals
Found 0 items
Found 1 item
Found 2 items

The final println() statement is short for:
if (n==1)
 System.out.println("Found " + n + " item");
else
 System.out.println("Found " + n + " items");

This is longer, so Java’s ternary conditional operator is worth learning.

Of course, you can’t use this arbitrarily, because English is a strange and somewhat
idiosyncratic language. Some nouns, such as bus, require “es” at the end, while others,
such as cash, are collective nouns with no plural (you can have two flocks of geese or
two stacks of cash, but you cannot have “two geeses” or “two cashes”). Still other
nouns, such as fish, can be considered plural as they are, although fishes is also a cor‐
rect plural.

A better way
The ChoiceFormat class from java.text is ideal for handling plurals; it lets you specify
singular and plural (or, more generally, range) variations on the noun. It is capable of
more, but in Example 2-15 I’ll show only a couple of the simpler uses. I specify the

128 | Chapter 2: Designing a Successful Application

values 0, 1, and 2 (or more), and the string values to print corresponding to each
number. The numbers are then formatted according to the range they fall into.

Example 2-15. Formatting plurals using ChoiceFormat

import java.text.*;

/**
 * Format a plural correctly, using a ChoiceFormat.
 */
public class FormatPluralsChoice extends FormatPlurals {

 // ChoiceFormat to just give pluralized word
 static double[] limits = { 0, 1, 2 };
 static String[] formats = { "reviews", "review", "reviews"};
 static ChoiceFormat pluralizedFormat =
 new ChoiceFormat(limits, formats);

 // ChoiceFormat to give English text version, quantified
 static ChoiceFormat quantizedFormat = new ChoiceFormat(
 "0#no reviews|1#one review|1<many reviews");

 // Test data
 static int[] data = { -1, 0, 1, 2, 3 };

 public static void main(String[] argv) {
 System.out.println("Pluralized Format");
 for (int i : data) {
 System.out.println("Found " + i + " " +
 pluralizedFormat.format(i));
 }

 System.out.println("Quantized Format");
 for (int i : data) {
 System.out.println("Found " +
 quantizedFormat.format(i));
 }
 }
}

Either of these loops generates output similar to the basic version. The code using the
ChoiceFormat is slightly longer, but more general, and lends itself better to internation‐
alization. Put the string for the “quantized” form constructor into strings.xml and it
will be part of your localization actions.

The best way (Android only)
Create a file in /res/values$$/ containing something like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <plurals name="numberOfSongsAvailable">
 <item quantity="one">One item found.</item>

2.11 Formatting with Correct Plurals | 129

 <item quantity="other">%d items found.</item>
 </plurals>
</resources>

In your code, you can then use the following:
int count = getNumberOfsongsAvailable();
Resources res = getResources();
String songsFound =
 res.getQuantityString(R.plurals.numberOfSongsAvailable, count);

This use of XML resources was suggested by Tomas Persson.

See Also
For the Android-specific way, see the developer documentation on quantity strings.

Source Download URL
You can download the source code for this example from GitHub.

2.12 Formatting the Time and Date for Display
Pratik Rupwal

Problem
You want to display the time and date in different standard formats.

Solution
The DateFormat class provides APIs for formatting time and date in a custom format.
Using these APIs requires minimal effort.

Discussion
Example 2-16 adds five different TextViews for showing the time and date in different
formats.

Example 2-16. The TextView layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

130 | Chapter 2: Designing a Successful Application

https://developer.android.com/guide/topics/resources/string-resource.html#Plurals
https://github.com/IanDarwin/javasrc/blob/master/src/main/java/numbers/FormatPluralsChoice.java

 android:id="@+id/textview1"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 />

</LinearLayout>

Example 2-17 obtains the current time and date using the java.util.Date class and
then displays it in different formats (please refer to the comments for sample output).

Example 2-17. The date formatter Activity

package com.sym.dateformatdemo;

import java.util.Date;
import android.app.Activity;
import android.os.Bundle;
import android.text.format.DateFormat;
import android.widget.TextView;

public class TestDateFormatterActivity extends Activity {
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 TextView textView1 = (TextView) findViewById(R.id.textview1);
 TextView textView2 = (TextView) findViewById(R.id.textview2);
 TextView textView3 = (TextView) findViewById(R.id.textview3);
 TextView textView4 = (TextView) findViewById(R.id.textview4);
 TextView textView5 = (TextView) findViewById(R.id.textview5);

 String delegate = "MM/dd/yy hh:mm a"; // 09/21/2011 02:17 pm
 Date noteTS = new Date();
 textView1.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

2.12 Formatting the Time and Date for Display | 131

 delegate = "MMM dd, yyyy h:mm aa"; // Sep 21,2011 02:17 pm
 textView2.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "MMMM dd, yyyy h:mmaa"; // September 21,2011 02:17pm
 textView3.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "E, MMMM dd, yyyy h:mm:ss aa";//Wed, September 21,2011 02:17:48 pm
 textView4.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate =
 "EEEE, MMMM dd, yyyy h:mm aa"; //Wednesday, September 21,2011 02:17:48 pm
 textView5.setText("Found Time :: "+DateFormat.format(delegate,noteTS));
 }
}

See Also
Recipe 2.13. Also, the classes shown in the following table, in the package
android.text.format, may be of use in this type of application.

Name Usage
DateUtils This class contains various date-related utilities for creating text for things like elapsed time and date ranges,

strings for days of the week and months, and a.m./p.m. text.

Formatter This is a utility class to aid in formatting common values that are not covered by java.util.Formatter.

Time This class is a faster replacement for the java.util.Calendar and java.util.GregorianCalendar
classes.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory DateFormatDemo (see “Getting and Using the Code Examples” on page 18).

2.13 Simplifying Date/Time Calculations with the Java 8
java.time API
Ian Darwin

Problem
You’ve heard that the JSR-310 date/time API, included in Java SE 8, simplifies date
and time calculations, and you’d like to use it in Android.

Solution
You can use the new java.time API in Android O and later. Since Android did not
become fully compliant with JDK 8 even in Android Nougat, despite being “based
on” OpenJDK 8, for Android Nougat and earlier, you must use a third-party library

132 | Chapter 2: Designing a Successful Application

https://github.com/IanDarwin/Android-Cookbook-Examples

such as the JSR-310 “backport” to access the java.time facilities, albeit with a different
package name.

Discussion
There is a long history to the java.time API that I won’t bore you with here; suffice it
to say that we are all indebted to Steven Colbourne for inventing it and for his con‐
stancy in urging first Sun, then Oracle, to incorporate it into Java, which finally hap‐
pened in Java 8. For licensing reasons, the backport of JSR-310—by its original author
—to Java 6/7 was placed in a non-Java package, org.threeten.bp.

Since Android N didn’t provide full compatibility with Java 8, we use an external
library. We’ll use an Android-specific version of this “backport” library, by Jake
Wharton, is available on GitHub. You can add it to any Gradle or Maven project just
by adding the coordinates compile 'com.jakewharton.threetenabp:threetenabp:1.0.3' to
your build script (the version number may change over time, of course).

Here is an example to show you the level of complexity of the kinds of calculations
that are built in. I’ve omitted the imports because they differ from the backport libra‐
ries and “standard Java” and Android O. The example shows how little code is needed
to figure out the day of the month on which the next weekly and monthly paydays
occur:

LocalDateTime now = LocalDateTime.now();
LocalDateTime weeklyPayDay =
 now.with(TemporalAdjusters.next(DayOfWeek.FRIDAY));
weekly.setText("Weekly employees' payday is Friday " +
 weeklyPayDay.getMonth() + " " +
 weeklyPayDay.getDayOfMonth());
LocalDateTime monthlyPayDay =
 now.with(TemporalAdjusters.lastInMonth(DayOfWeek.FRIDAY));
monthly.setText("Monthly employees are paid on " +
 monthlyPayDay.getMonth() + " " +
 monthlyPayDay.getDayOfMonth());

The API includes LocalDate objects, which just represent one particular day; LocalTime
objects, which represent a time of day; and LocalDateTime objects, which represent a
date and a time. As the names imply, all three are local, not meant to represent time
across the world’s time zones. For that, you want to use one of several classes that rep‐
resent time zones. See the java.time documentation for details of all the classes.

To use the backport library on Android N and earlier, you need one extra call to initi‐
alize it, either in your Application class (see Recipe 2.3) or in your Activity. In the main
Activity’s onCreate() method you’d say:

AndroidThreeTen.init(getApplication());

The result should look like Figure 2-4.

2.13 Simplifying Date/Time Calculations with the Java 8 java.time API | 133

https://github.com/JakeWharton/ThreeTenABP
https://developer.android.com/reference/java/time/package-summary.html

Figure 2-4. Java time example

See Also
The new API is covered in Chapter 6 of my Java Cookbook and in some tutorials on
the web. Make sure you use the version of the tutorial corresponding to the API you
are using. The Java 8 version differs slightly from “ThreeTen” versions, and these both
differ from the original Joda Time versions.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory JavaTimeDemo (see “Getting and Using the Code Examples” on page 18).

2.14 Controlling Input with KeyListeners
Pratik Rupwal

Problem
Your application contains text boxes in which you want to restrict users to entering
only numbers; also, in some cases you want to allow only positive numbers, or inte‐
gers, or dates.

Solution
Android provides KeyListener classes to help you restrict users to entering only num‐
bers, positive numbers, integers, positive integers, and much more.

134 | Chapter 2: Designing a Successful Application

http://javacook.darwinsys.com
https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
The Android.text.method package includes a KeyListener interface, along with some
classes such as DigitsKeyListener and DateKeyListener that implement this interface.

Example 2-18 is a sample application that demonstrates a few of these classes. This
layout file creates five TextViews and five EditTexts; the TextViews display the input type
allowed for their respective EditTexts.

Example 2-18. Layout with TextViews and EditTexts

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview1"
 android:text="digits listener with signs and decimal points"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText1"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 android:text="digits listener without signs and decimal points"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText2"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 android:text="date listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText3"
 />

2.14 Controlling Input with KeyListeners | 135

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 android:text="multitap listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText4"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 android:text="qwerty listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText5"
 />
</LinearLayout>

Example 2-19 is the code for the Activity that restricts the EditText inputs to numbers,
positive integers, and so on (refer to the comments for groups of keys allowed).

Example 2-19. The main Activity

import android.app.Activity;
import android.os.Bundle;
import android.text.method.DateKeyListener;
import android.text.method.DigitsKeyListener;
import android.text.method.MultiTapKeyListener;
import android.text.method.QwertyKeyListener;
import android.text.method.TextKeyListener;
import android.widget.EditText;

public class KeyListenerDemo extends Activity {
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 // Allows digits with positive/negative signs and decimal points
 EditText editText1=(EditText)findViewById(R.id.editText1);
 DigitsKeyListener digkl1=DigitsKeyListener.getInstance(true,true);
 editText1.setKeyListener(digkl1);

 // Allows positive integers only (no decimal values allowed)
 EditText editText2=(EditText)findViewById(R.id.editText2);
 DigitsKeyListener digkl2=DigitsKeyListener.getInstance();
 editText2.setKeyListener(digkl2);

136 | Chapter 2: Designing a Successful Application

 // Allows dates only
 EditText editText3=(EditText)findViewById(R.id.editText3);
 DateKeyListener dtkl=new DateKeyListener();
 editText3.setKeyListener(dtkl);

 // Allows multitap with 12-key keypad layout
 EditText editText4=(EditText)findViewById(R.id.editText4);
 MultiTapKeyListener multitapkl =
 new MultiTapKeyListener(TextKeyListener.Capitalize.WORDS,true);
 editText4.setKeyListener(multitapkl);

 // Allows qwerty layout for typing
 EditText editText5=(EditText)findViewById(R.id.editText5);
 QwertyKeyListener qkl =
 new QwertyKeyListener(TextKeyListener.Capitalize.SENTENCES,true);
 editText5.setKeyListener(qkl);
 }
}

To use MultiTapKeyListener, your phone should support the 12-key layout and it needs
to be activated. To activate the 12-key layout, go to Settings → Language and Key‐
board → On-screen Keyboard Layout and then select the “Phone layout” options.

See Also
The Listener types in the following table will be of use in writing this type of applica‐
tion.

Name Usage
BaseKeyListener This is an abstract base class for key listeners.

DateTimeKeyListener This is for entering dates and times in the same text field.

MetaKeyKeyListener This base class encapsulates the behavior for tracking the state of meta keys such as SHIFT, ALT,
and SYM, as well as the pseudo-meta state of selecting text.

NumberKeyListener This is for numeric text entry.

TextKeyListener This is the key listener for typing normal text.

TimeKeyListener This is for entering times in a text field.

2.15 Backing Up Android Application Data
Pratik Rupwal

Problem
When a user performs a factory reset or converts to a new Android-powered device,
the application loses stored data or application settings.

2.15 Backing Up Android Application Data | 137

Solution
Android’s Backup Manager helps to automatically restore backup data or application
settings when the application is reinstalled.

Discussion
Android’s Backup Manager basically operates in two modes: backup and restore.
During a backup operation, the Backup Manager (BackupManager class) queries your
application for backup data, then hands it to a backup transport, which then delivers
the data to cloud-based storage. During a restore operation, the Backup Manager
retrieves the backup data from the backup transport and returns it to your applica‐
tion so that your application can restore the data to the device. It’s possible for your
application to request a restore, but not necessary because Android performs a
restore operation when your application is installed and backup data associated with
the user exists. The primary scenario in which backup data is restored happens when
a user resets her device or upgrades to a new device and her previously installed
applications are reinstalled.

Example 2-20 shows how to implement the Backup Manager for your application so
that you can save the current state of your application.

Example 2-20. The backup/restore layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <ScrollView
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView android:text="@string/filling_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <RadioGroup android:id="@+id/filling_group"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

138 | Chapter 2: Designing a Successful Application

 android:layout_marginLeft="20dp"
 android:orientation="vertical">

 <RadioButton android:id="@+id/bacon"
 android:text="@string/bacon_label"/>
 <RadioButton android:id="@+id/pastrami"
 android:text="@string/pastrami_label"/>
 <RadioButton android:id="@+id/hummus"
 android:text="@string/hummus_label"/>

 </RadioGroup>

 <TextView android:text="@string/extras_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/mayo"
 android:text="@string/mayo_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/tomato"
 android:text="@string/tomato_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 </LinearLayout>

 </ScrollView>

</LinearLayout>

Here is a basic description of the procedure in step-by-step form:

1. Create a BackupManagerExample project in Eclipse.
2. Open the layout/backup_restore.xml file and insert the code in Example 2-20 into

it.
3. Open the values/string.xml file and insert into it the code shown in Example 2-21.
4. Your manifest file will look like the code shown in Example 2-22.
5. The code in Example 2-23 completes the implementation of the Backup Manager

for your application.

2.15 Backing Up Android Application Data | 139

Example 2-21. Strings for the example

<resources>
 <string name="hello">Hello World, BackupManager!</string>
 <string name="app_name">BackupManager</string>
 <string name="filling_text">Choose Settings for your application:</string>
 <string name="bacon_label">Sound On</string>
 <string name="pastrami_label">Vibration On</string>
 <string name="hummus_label">Backlight On</string>
 <string name="extras_text">Extras:</string>
 <string name="mayo_text">Use Orientation?</string>
 <string name="tomato_text">Use Camera?</string>
</resources>

Example 2-22. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.sym.backupmanager"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="9" />

 <application android:label="Backup/Restore" android:icon="@drawable/icon"
 android:backupAgent="ExampleAgent"> <!--Here you specify the backup agent-->

 <!--Some backup transports may require API keys or other metadata-->
 <meta-data android:name="com.google.android.backup.api_key"
 android:value="INSERT YOUR API KEY HERE" />

 <activity android:name=".BackupManagerExample">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity> </application>

</manifest>

Example 2-23. The backup/restore Activity

package com.sym.backupmanager;

import android.app.Activity;
import android.app.backup.BackupManager;
import android.os.Bundle;
import android.util.Log;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.RadioGroup;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;

140 | Chapter 2: Designing a Successful Application

public class BackupManagerExample extends Activity {
 static final String TAG = "BRActivity";

 static final Object[] sDataLock = new Object[0];

 static final String DATA_FILE_NAME = "saved_data";

 RadioGroup mFillingGroup;
 CheckBox mAddMayoCheckbox;
 CheckBox mAddTomatoCheckbox;

 File mDataFile;

 BackupManager mBackupManager;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.backup_restore);

 mFillingGroup = (RadioGroup) findViewById(R.id.filling_group);
 mAddMayoCheckbox = (CheckBox) findViewById(R.id.mayo);
 mAddTomatoCheckbox = (CheckBox) findViewById(R.id.tomato);

 mDataFile = new File(getFilesDir(), BackupManagerExample.DATA_FILE_NAME);

 mBackupManager = new BackupManager(this);

 populateUI();
 }

 void populateUI() {
 RandomAccessFile file;

 int whichFilling = R.id.pastrami;
 boolean addMayo = false;
 boolean addTomato = false;

 synchronized (BackupManagerExample.sDataLock) {
 boolean exists = mDataFile.exists();
 try {
 file = new RandomAccessFile(mDataFile, "rw");
 if (exists) {
 Log.v(TAG, "datafile exists");
 whichFilling = file.readInt();
 addMayo = file.readBoolean();
 addTomato = file.readBoolean();
 Log.v(TAG, " mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 } else {
 Log.v(TAG, "creating default datafile");
 writeDataToFileLocked(file,
 addMayo, addTomato, whichFilling);

2.15 Backing Up Android Application Data | 141

 mBackupManager.dataChanged();
 }
 } catch (IOException ioe) {
 // Do some error handling here!
 }
 }

 mFillingGroup.check(whichFilling);
 mAddMayoCheckbox.setChecked(addMayo);
 mAddTomatoCheckbox.setChecked(addTomato);

 mFillingGroup.setOnCheckedChangeListener(
 new RadioGroup.OnCheckedChangeListener() {
 public void onCheckedChanged(RadioGroup group,
 int checkedId) {
 Log.v(TAG, "New radio item selected: " + checkedId);
 recordNewUIState();
 }
 });

 CompoundButton.OnCheckedChangeListener checkListener
 = new CompoundButton.OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 Log.v(TAG, "Checkbox toggled: " + buttonView);
 recordNewUIState();
 }
 };
 mAddMayoCheckbox.setOnCheckedChangeListener(checkListener);
 mAddTomatoCheckbox.setOnCheckedChangeListener(checkListener);
 }

 void writeDataToFileLocked(RandomAccessFile file,
 boolean addMayo, boolean addTomato, int whichFilling)
 throws IOException {
 file.setLength(0L);
 file.writeInt(whichFilling);
 file.writeBoolean(addMayo);
 file.writeBoolean(addTomato);
 Log.v(TAG, "NEW STATE: mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 }

 void recordNewUIState() {
 boolean addMayo = mAddMayoCheckbox.isChecked();
 boolean addTomato = mAddTomatoCheckbox.isChecked();
 int whichFilling = mFillingGroup.getCheckedRadioButtonId();
 try {
 synchronized (BackupManagerExample.sDataLock) {
 RandomAccessFile file = new RandomAccessFile(mDataFile, "rw");
 writeDataToFileLocked(file, addMayo, addTomato, whichFilling);
 }
 } catch (IOException e) {
 Log.e(TAG, "Unable to record new UI state");
 }

142 | Chapter 2: Designing a Successful Application

 mBackupManager.dataChanged();
 }
}

Data backup is not guaranteed to be available on all Android-powered devices. How‐
ever, your application is not adversely affected in the event that a device does not pro‐
vide a backup transport. If you believe that users will benefit from data backup in
your application, you can implement it as described in this recipe, test it, and then
publish your application without any concern about which devices actually perform
backups. When your application runs on a device that does not provide a backup
transport, the application will operate normally but will not receive callbacks from
the Backup Manager to back up data.

Although you cannot know what the current transport is, you are always assured that
your backup data cannot be read by other applications on the device. Only the
Backup Manager and backup transport have access to the data you provide during a
backup operation.

Because the cloud storage and transport services can differ among
devices, Android makes no guarantees about the security of your
data while using backup. You should always be cautious about
using backup to store sensitive data, such as usernames and pass‐
words.

Testing your backup agent
Once you’ve implemented your backup agent, you can use the bmgr command to test
the backup and restore functionality by following these steps:

1. Install your application on a suitable Android system image, running any current
emulator or device with Google Play Services.

2. Ensure that backup capability is enabled. If you are using the emulator, you can
enable backup with the following command from your SDK tools/path:

$ adb shell bmgr enable true

3. If you are using a device, open the system settings, select Privacy, and then enable
“Back up my data” and “Automatic restore.”

4. Open your application and initialize some data.
If you’ve properly implemented backup capability in your application, it should
request a backup each time the data changes. For example, each time the user
changes some data, your app should call dataChanged(), which adds a backup
request to the Backup Manager queue. For testing purposes, you can also make a
request with the following ++bmgr++ command:

2.15 Backing Up Android Application Data | 143

$ adb shell bmgr backup your.package.name

5. Initiate a backup operation:
$ adb shell bmgr run

This forces the Backup Manager to perform all backup requests that are in its
queue.

6. Uninstall your application:
$ adb uninstall your.package.name

7. Reinstall your application.
If your backup agent is successful, all the data you initialized in step 4 is restored.

2.16 Using Hints Instead of Tool Tips
Daniel Fowler

Problem
Android devices can have small screens, so there may not be room for help text, and
tool tips are not part of the platform.

Solution
Android provides the hint attribute for Views.

Discussion
Sometimes an input field needs clarification with regard to the value that should be
entered. For example, a stock-ordering application asking for item quantities may
need to state the minimum order size. In desktop programs, with large screens and
the use of a mouse, extra messages can be displayed in the form of tool tips (a pop-up
label over a field when the mouse moves over it). Alternatively, long descriptive labels
may be used. With Android devices, the screen may be small and no mouse is gener‐
ally used. The alternative here is to use the android:hint attribute on a View. This causes
a “watermark” containing the hint text to be displayed in the input field when it is
empty; this disappears when the user starts typing in the field. The corresponding
function for android:hint is setHint(int resourceId). Figure 2-5 shows an example hint.

144 | Chapter 2: Designing a Successful Application

Figure 2-5. An example with hints

You can set the color of the hint text with android:textColorHint, with
setHintTextColor(int color) being the associated function.

Using hints can also help with screen layouts when space is tight. A screen design can
sometimes be improved by removing a label and using a hint, as shown in Figure 2-6.

The EditText definition in Figure 2-6 is shown in the following code so that you can
see android:hint in use:

<EditText android:id="@+id/etQuantity"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="Number of boxes of ten"
 android:textSize="18sp"/>

Figure 2-6. A hint and no label

Hints can guide users as they are filling in app fields, though as with any feature over‐
use is possible. Hints should not be used when it is obvious what is required; a field
with a label of “First Name” would not need a hint such as “Enter your first name
here,” for example. Figure 2-6 shows our hypothetical ordering application improved
somewhat by removing the redundant label.

2.16 Using Hints Instead of Tool Tips | 145

CHAPTER 3

Application Testing

“Test early and often” is a common cry among advocates of testing, as is the all-
important question, “If you don’t have a test, how do you know your code works?”

There are many types of testing. Unit testing checks out individual components
(“units” such as methods) in isolation (not hitting the network or the database),
whereas integration testing tests the entire system, or at least large swaths of it. JUnit
and TestNG are the leading unit testing frameworks for Java. Mock objects are used
where interaction with other components is required; there are several good mocking
frameworks for Java. Android provides a number of specific testing techniques, many
of which are discussed in this chapter.

In the broader scheme of things, software verification tools can be categorized as
static or dynamic. JUnit is one example of a widely used method of dynamic testing,
as is integration testing. Static code analysis works by examining the code rather than
running it. Two well-known static analysis tools are FindBugs and PMD, which are
covered in my book and my video series on testing. This site also has a bibliography
of testing books/papers and a list of Java-specific testing tools. Android has its own
static analysis tool, Android Lint, covered in Recipe 3.13.

Android apps can be run on a vast array of devices, including small phones, mid-
sized tablets, large phones, large tablets, and (as of ChromeOS Release 53) most
Chromebooks. They also run on many proprietary readers such as the Amazon Kin‐
dle Fire tablets. Although we show how to test using the emulator in Recipe 3.1, you
will want to have several real devices for testing, because the emulator is, after all, an
emulator.

The terms NPE, ANR, and FC are used throughout this chapter. NPE is a “traditional
Java” acronym for Null Pointer Exception. ANR is an Android-specific acronym; it
stands for Application Not Responding, the first few words of a dialog you get when

147

http://cjp.darwinsys.com/

your application is judged to be taking too long to respond to a request. FC stands for
Force Close, which occurs when Android requests that you close a failed application.

Entering Developer Mode on a real device

To put a real device into “developer mode,” go into Settings →
“About phone” (or tablet). At the bottom you will see a “Build num‐
ber” entry. Tap seven times on “Build number” and it will say
something like “Congratulations, you are now a developer!” and
will enable the developer options in the main Settings screen.

3.1 Setting Up an Android Virtual Device (AVD) for App
Testing
Daniel Fowler

Problem
Successful apps must run on a wide range of Android devices and versions, so you
need to test them on a range of devices.

Solution
Use the Android SDK’s device emulation toolkit to configure combinations of devices
and operating systems. Testing on various combinations reduces issues related to
hardware differences in devices.

Discussion
Android devices are manufactured to cover a wide market, from low cost to high
specification and high value. Android has also been in the marketplace for more than
a couple of years. For these reasons, a wide range of devices with a wide range of
hardware options and operating system versions are in use. A successful application
will be one that can run on a broad array of devices. An app developer will usually
only be able to test on a very small range of physical devices, but fortunately, a devel‐
oper can boost the confidence he has in his app by using an Android Virtual Device.

A compiled app can be tested on a physical device or on a virtual device. An AVD is
an emulation of an Android platform on a host machine, usually the development
machine. AVDs simplify testing for these reasons:

• Multiple AVD configurations can be created to test an app on different versions
of Android.

148 | Chapter 3: Application Testing

• Different (emulated) hardware configurations can be used—for example, GPS or
no GPS.

• An AVD is automatically launched and your compiled app is installed onto it
when the Run button is clicked in your IDE.

• You can test your app on many more combinations of Android versions and
hardware versions than physical devices you possess.

• Testing on AVDs greatly reduces the amount of testing required on physical devi‐
ces.

• AVDs can be used alongside a physical device.
• You don’t need to handicap your physical device to induce error conditions—for

example, to test on a device with no Secure Digital (SD) card, just set up an AVD
with no SD card.

• An AVD can simulate network events without the costs involved in using a phys‐
ical device; for example, you can simulate phone calls or send an SMS message
between two AVDs.

• You can simulate GPS data from an AVD from different physical locations
without moving from your desk.

• When app users report bugs you can try to mimic their hardware configurations
using AVDs.

• Testing on an AVD can avoid messing up your real device.

Please note that on underconfigured development machines and when emulating
larger Android devices the performance of an AVD will often be less than that of a
physical device.

You can configure an AVD using the SDK Manager program (opened directly from
the filesystem or from within Eclipse). It is also possible to create AVDs from the
command line. Note that the screenshots in this recipe, and the options they carry,
will vary depending on what release of the Android SDK tools you have installed.

To create an AVD with the SDK Manager, you must first load the program. When
using most IDEs, there is an AVD Manager icon, the Studio version of which is
shown in Figure 3-1.

Figure 3-1. Selecting the AVD Manager

You can also start the program directly from the filesystem. For example, in Win‐
dows, open C:\Program Files\Android\android-sdk\SDK Manager.exe. If you started

3.1 Setting Up an Android Virtual Device (AVD) for App Testing | 149

the program directly from the filesystem, the SDK Manager will check for SDK
updates, in which case select Cancel to go to the main window, titled “Android SDK
and AVD Manager.” If you opened the program from your IDE, the main window
will appear without the check for updates to the SDK.

The Virtual Device Configuration wizard loads. Choose an existing profile or create a
new one (Figure 3-2).

Figure 3-2. Creating an AVD—Part 1

The following fields are used to define an AVD:

Name
Give a name to the new Android device that is to be emulated. Make the name
descriptive—for example, if you’re emulating a device with a version 5.1 operat‐
ing system and medium-resolution screen (HVGA), a name such as Android-
v5.1-HVGA is better than AndroidDevice. The name may not contain spaces.

Target
This is the version of the Android operating system that will be running on the
emulated device. As an example, for a device running version 6.0 this will be set
to “Android 6.0-API Level 23.”

SD Card
Here you specify the size of the device’s emulated SD card, or select an existing
SD card image (allowing the ability to share SD card data among different AVD
emulations). To specify a new SD card, enter the size in megabytes (MB).
Remember: the bigger the number, the bigger the file created on the host com‐

150 | Chapter 3: Application Testing

puter system to mimic the SD card. Alternatively, select the File option and
browse to an existing SD card image (on a Windows machine the sdcard.img files
will be found in the subfolders of the avd directory under the .android directory
in the logged-on user’s folder).

Snapshot
Check the Enabled box if you want the runtime state of the emulated device to
persist between sessions, which is useful if a long-running series of tests is being
performed and when the AVD is closed you do not want to have to start the tests
from the beginning. It also speeds up the start-up time of an AVD.

Skin
Here you select the screen size for the device; a list of common screen sizes is
presented (e.g., HVGA, QVGA, etc.). The list will vary depending on the operat‐
ing system version. Alternatively, a custom resolution can be entered.

The following table lists the major choices you have to make in creating an AVD.

Name Data type Value Description
Device Choice One of listed List of known devices

Target Choice One of listed List of API levels

CPU/ABI Choice One of listed List of CPUs: ARM, Intel, etc.

Keyboard Boolean Yes or no Controls emulation of a physical keyboard (as opposed to
an onscreen one)

Skin Choice One of listed Size of screen, e.g., QVGA, WVGA, etc.

Front Camera Choice One of None, Emulated,
Webcam

User-facing camera

Back Camera Choice One of None, Emulated,
Webcam

Outward-facing camera

Memory Options:
RAM

Integer Megabytes Determines the size of the AVD’s total main memory

Memory Options:
VM Heap

Integer Megabytes Determines the size of the AVD’s heap memory, for
allocations

Internal Storage Integer Megabytes Determines the size of the AVD’s internal memory, for
running applications

SD card support Size or File - SD card allocated (if MB specified) or existing file used

Emulation options Radio Snapshot or Use Host GPU Enable one of two performance options

When you have selected a device and pressed Next, you will see the System Image
selection screen (Figure 3-3). Choose your operating system version here, and click
the Finish button to generate the AVD. The AVD will now be listed in the “Android
SDK and AVD Manager” window (see Figure 3-4).

3.1 Setting Up an Android Virtual Device (AVD) for App Testing | 151

Figure 3-3. Creating an Android AVD—Part 2

Figure 3-4. Starting the new AVD

The AVD is ready to be launched using the Start button. It is also ready to be selected
in a project configuration to test an app under development. When the Start button is
clicked, the Launch Options window is shown (see Figure 3-5).

152 | Chapter 3: Application Testing

Figure 3-5. Launch options for the AVD

The options at launch are:

Scale display to real size
On larger computer monitors you will not normally need to change the AVD
scale. The dpi of the Android screen is greater than the standard dpi on com‐
puter monitors; therefore, the AVD screen will appear larger than the physical
device. If necessary this can be scaled back to save screen space. Use this option
to get the AVD to display at an approximate real size on the computer monitor.
The values need to be set so that the AVD screen and keyboard are not too small
to be used.

Wipe user data
When the AVD is started the user data file is reset and any user data generated
from previous runs of the AVD is lost.

Launch from snapshot
If Snapshot has been enabled for an AVD, after it has been first launched subse‐
quent launches are quicker. The AVD is loaded from a snapshot and the Android
operating system does not need to start up again. However, when the AVD is
closed the shutdown takes longer because the snapshot has to be written to disk.

Save to snapshot
When the AVD is closed the current state is saved for quicker launching next
time; the downside is that it takes longer to close as the snapshot is written to
disk. Once you have a snapshot you can uncheck this option so that closing an
AVD is quick as well, though any changes since the last snapshot will be lost.

3.1 Setting Up an Android Virtual Device (AVD) for App Testing | 153

Use the Launch button to start the AVD. Once loaded it can be used like any other
Android device and driven from the keyboard and mouse of the host computer. See
Figure 3-6.

Figure 3-6. The AVD in action

AVDs combined with physical devices are a useful combination for testing apps in a
variety of scenarios.

See Also
The developer documentation on running apps on the emulator.

3.2 Testing on a Wide Range of Devices with Cloud-Based
Testing
Ian Darwin

Problem
You need to test your app on a wide variety of devices.

Solution
Use one of several web-based or cloud-based app testing services.

Discussion
When Android was young, it was perhaps feasible to own one of each kind of device,
to be able to say you had tested it on everything. I have half a dozen Android devices,
most of them semiexpired, for this purpose. Yet today there are hundreds of different

154 | Chapter 3: Application Testing

https://developer.android.com/studio/run/emulator.html

devices to test on, some with two or three different OS versions, different cell radios,
and so on. It’s just not practical for each developer to own enough devices to test on
everything. That leaves two choices: either set up a hundred different AVDs, as dis‐
cussed elsewhere in this chapter, or use a cloud-based or web-based testing service.

The basic idea is that these test-hosting companies buy lots of devices, and put them
in server rooms with a webcam pointed at the screen and USB drivers that transfer
keystrokes and touch gestures from your web browser–based control program to the
real devices. These devices are in cities around the world, so you can test while online
with various mobile service providers, get GPS coordinates from the real location,
and so on.

Here are some of the providers in this space, listed in alphabetical order. Some are
Android-specific while some also cover iOS, BlackBerry, and other devices. Listing
them here does not constitute an endorsement of their products or services; caveat
emptor!

• Bitbar TestDroid
• Bsquare
• Experitest
• Jamo Solutions
• Perfecto Mobile

3.3 Testing with Eclipse and JUnit
Adrián Santalla

Problem
You need to create and use a new Eclipse test project to test your Android application.

Solution
Here’s how to create and use a test project:

1. Within Eclipse, create a new Android project associated with your Android
application project.

2. Configure the AndroidManifest.xml file of your test project with the necessary
lines to test your Android application.

3. Write and run your tests.

3.3 Testing with Eclipse and JUnit | 155

http://bitbar.com/
http://www.bsquare.com/
https://experitest.com/
http://www.jamosolutions.com/
https://www.perfectomobile.com

Discussion
The following subsections describe the preceding steps in more detail.

Step 1: Create a new Android test project alongside your Android application project
First of all, you need to create a new Android project alongside the main application
project to store your tests. This new Eclipse project should have an explicit depend‐
ency on your main application project. The Eclipse New Android Project wizard will
create this and set it up correctly when you create the original project, if you remem‐
ber to click the “Create Test Project” checkbox. Figure 3-7 shows the Eclipse project
structure: two projects.

Figure 3-7. Target and Test projects in Eclipse

156 | Chapter 3: Application Testing

HelloTestingTarget is the target of our tests; that is, the main application.
HelloTestingTestProject is, of course, the test project.

Step 2: Configure the AndroidManifest.xml file of the test project
Once you have created your new test project, you should properly set all the values of
the project’s AndroidManifest.xml file. It’s necessary to set the package name of the
main source of the application that you would like to test.

Imagine that you are testing an application whose package name is my.pkg.app. You
should create a test project, and your AndroidManifest.xml file should look like the
code in Example 3-1.

Example 3-1. The AndroidManifest.xml file for testing

 <?xml version="1.0" encoding="utf-8"?>

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="my.pkg.app.tests"
 android:versionCode="1"
 android:versionName="1.0">

 <application>
 <uses-library android:name="android.test.runner" />
 </application>

 <instrumentation android:name="android.test.InstrumentationTestRunner"
 android:targetPackage="my.pkg.app"
 android:label="Tests for my.pkg.app"/>
 </manifest>

The package attribute of the manifest tag stores the package name of the test project;
more importantly, the android:targetPackage attribute of the instrumentation tag stores
the package name that you would like to test. Again, the Eclipse wizard will set this
up if you create the main and test projects at the same time. The resulting structure
was shown in Figure 3-7.

Step 3: Write and run your tests
Now you can write your tests. The Android testing API has traditionally been based
on the JUnit 3.8 API (although it is now possible to use JUnit 4, as in Recipe 3.4)
and provides several types of test classes, including AndroidTestCase,
ActivityInstrumentationTestCase2, ApplicationTestCase, and InstrumentationTestCase.

When you create your first test case with your IDE, it is useful to create a test case
that inherits from ActivityInstrumentationTestCase2. This kind of test class allows you to
create functional tests. Example 3-2 shows a simple functional test.

3.3 Testing with Eclipse and JUnit | 157

Example 3-2. A test case

public class MainTest extends ActivityInstrumentationTestCase2 <Main> {

 public MainTest() {
 super("my.pkg.app", Main.class);
 }

 public void test() {
 TextView textView = (TextView) getActivity().findViewById(R.id.textView);

 assertEquals("Hello World!", textView.getText());
 }
}

The Main class that appears as a type parameter in the test class is the main Activity of
the main application project. The test constructor uses the main application package
name and the class of the main Activity. From now on, you can create test cases using
the standard methods of the Android API to get references to the Activity elements.
In the preceding test we are testing that the main Activity has a TextView with the text
“Hello World!” associated with it.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory HelloTestingTarget (see “Getting and Using the Code Examples” on page 18);
the test project is in HelloTestingTestProject.

3.4 Testing with Android Studio and JUnit
Ian Darwin

Problem
You want to use JUnit to test your Android Studio–based application.

Solution
For standalone unit testing, use the test folder; for full Android unit testing, use the
androidTest folder.

Discussion
For the purposes of this exercise, we’ll create a new Android Studio project (see
Recipe 1.10). Name the project “HelloStudioTesting” and use a package name like
com.example. On the next screen, select “Phone and Tablet” and pick your favorite API

158 | Chapter 3: Application Testing

https://github.com/IanDarwin/Android-Cookbook-Examples

level. After Gradle gets through grinding, you will see a project structured rather like
Figure 3-8.

Figure 3-8. Android Studio project structure

Note in particular the presence of two test folders, with the same package name,
labeled test and androidTest. The project is set up to support the two most common
types of testing: plain Java JUnit testing and Android-specific testing. The latter uses
JUnit but is more like an integration test than a unit test. Unit tests test code in isola‐
tion; the androidTest mechanism supports testing the common Android components,
and runs them in a test application running on an AVD emulator or on a real device.
We’ll use both in this recipe.

Out of the box, the test folder contains an example test. We’ll replace that with this
test case:

public class DataModelTest {
 @Test
 public void NameCorrect() throws Exception {
 assertEquals("Robin Good", new DataModel().getName());
 }
}

Note the modern JUnit conventions: use of arbitrary method names and the @Test
annotation to mark test methods. To make this test work we’ve created a class called
DataModel with a hardcoded getName() method. The key thing to understand is that this
test methodology uses standard JUnit and runs it in a standard Java Virtual Machine
(JVM), so you can test any “normal” Java component, but you cannot test anything

3.4 Testing with Android Studio and JUnit | 159

that depends on the Android framework! We’ll cover that type of testing in a few
paragraphs.

Note first that the sample JUnit test has a code comment—which I left in in
Figure 3-9—that says To work on unit tests, switch the Test Artifact in the Build
Variants view.

Figure 3-9. A non-example test in test

In practice, I find it easier just to right-click the test module, as in Figure 3-10.

At this stage of trivial examples you should expect your test to pass the first time, but
it’s still reassuring to see the green bar appear (see Figure 3-11), which indicates that
100% of the tests passed.

The androidTest package is for testing Android-specific functionality, such as Activity
code. This testing mechanism is based on JUnit 3.8, where inheritance from TestCase
is required and annotations are not used. You could use JUnit 4 here by adding a test
runner and creating an alternate test configuration; we’ll use this approach in Recipe
3.6. There are several base test classes, some of which are now deprecated. We’ll use
the ActivityInstrumentationTestCase2 class and ignore the deprecation warnings.

160 | Chapter 3: Application Testing

Figure 3-10. Running tests in test

Figure 3-11. Unit tests—success

3.4 Testing with Android Studio and JUnit | 161

Our example test looks like this:
public class MainTest extends ActivityInstrumentationTestCase2<MainActivity> {

 public MainTest() {
 super("my.pkg.app", MainActivity.class);
 }

 public void test() {
 TextView textView = (TextView) getActivity().findViewById(R.id.textView);

 assertEquals("Hello World!", textView.getText());
 }
}

This code is creating the main Activity, finding the TextView, and asserting that the
TextView contains the correct text. We run this by right-clicking the androidTest folder
(not the test folder as in Figure 3-10) and selecting the Run menu item, as shown in
Figure 3-12.

Figure 3-12. Running androidTest tests

Again, something this simple should pass on the first run, and we should get a green
bar as in Figure 3-13.

162 | Chapter 3: Application Testing

Figure 3-13. Android tests—success

These are both trivial tests of the “Hello, World” variety, but they show what you need
to build up and run tests of greater complexity of both types: plain JUnit and
Android-specific tests.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory HelloStudioTesting (see “Getting and Using the Code Examples” on page
18).

See Also
The Android Studio User Guide documentation on testing.

3.5 Testing with Robolectric and JUnit 4
Ian Darwin

Problem
You like unit testing, but Android’s original test framework was based on the ancient
Android 3.8, and it runs in the emulator so it’s slow.

3.5 Testing with Robolectric and JUnit 4 | 163

https://github.com/IanDarwin/Android-Cookbook-Examples
https://developer.android.com/tools/testing/testing_android.html

Solution
Use Robolectric, a fast JUnit 4 test runner.

Discussion
These instructions are set up for Eclipse.

Assuming you have your “main” project set up as a normal Android project, create a
folder called, e.g., test in this project (do not mark it as as source folder), and then do
the following:

1. Create a separate project using the New Project wizard (not using the New
Android Test Project wizard).

2. Make this project depend on your main project (Build Path → Configure).
3. Remove the default source folder, src, from the new project’s build path.
4. Still in the build path, click “Link additional source”; browse to and select /Main‐

Project/test.
5. Add Robolectric-3.1.jar to the new project’s classpath, either by copying it into libs

or by specifying it in your build script (Maven or Gradle).
6. Add JUnit 4 (not 3.8!) to your new project’s classpath, either explicitly, or implic‐

itly by choosing JUnit 4 from the “New Class → JUnit Test” wizard.
7. Annotate your JUnit 4 tests to run with the Robolectric test runner (see the fol‐

lowing example).
8. Use Robolectric “shadow” classes where needed.

Next, create an Eclipse run configuration with the following special attributes (this
section is adapted from the Robolectric website):

1. Choose Run → Run Configurations.
2. Double-click JUnit (not Android JUnit Test).
3. Name the project “MyProjectTestConfiguration.”
4. Select the “Run all tests in the selected project, package or source folder” radio

button.
5. Click the Search button.
6. Select MyProjectTest.
7. Choose JUnit 4 as the test runner.
8. Click the link “Multiple launchers available Select one” at the bottom of the dia‐

log.

164 | Chapter 3: Application Testing

http://robolectric.org

9. Check the “Use configuration specific settings” box.
10. Select Eclipse JUnit Launcher.
11. Click OK.
12. Click the Arguments tab.
13. Under “Working directory,” select the Other radio button.
14. Click Workspace.
15. Select MyProject (not MyProjectTest; the value inside the Other edit box should

be ${workspace_loc:MyProject}).
16. Click OK.
17. Click Close.

Now run your new run configuration. Example 3-3 is a sample Robolectric unit test.

Example 3-3. Robolectric test

@RunWith(RobolectricTestRunner.class)
public class HistoryActivityTest {

 private HistoryActivity activity;
 private Button listButton;

 @Before
 public void setup() {
 activity = new HistoryActivity();
 activity.onCreate(null);
 listButton = (Button) activity.findViewById(R.id.listButton);
 }

 @Test
 public void didWeGetTheRightButton() {
 assertEquals("History Log (Morning)", (String) listButton.getText());
 }

 @Test
 public void listButtonShouldLaunchListActivity() throws InterruptedException {

 assertNotNull(listButton);
 boolean clicked = listButton.performClick();
 assertTrue("performClick", clicked);

 ShadowActivity shadowActivity = Robolectric.shadowOf(activity);
 Intent startedIntent = shadowActivity.getNextStartedActivity();
 assertNotNull("shadowActivity.getNextStartedActivity == null?",
 startedIntent);
 ShadowIntent shadowIntent = Robolectric.shadowOf(startedIntent);
 assertEquals(WeightListActivity.class.getName(),
 shadowIntent.getComponent().getClassName());

3.5 Testing with Robolectric and JUnit 4 | 165

 }
}

See Also
Robolectric.

3.6 Testing with ATSL, Espresso, and JUnit 4
Ian Darwin

Problem
You want to use the latest official testing software.

Solution
Use Espresso, part of the Android Testing Support Library (ATSL). Espresso uses
JUnit 4 (as does Robolectric), but still requires that the tests be packaged and run on
an emulator or device.

Discussion
Espresso is a relatively new testing framework that’s designed to bring the advantages
of JUnit 4 and Hamcrest matching styles to Android testing. As with the previous
generation of Android tests, Espresso tests are packaged into an APK and sent to an
emulator or real device. Robolectric (Recipe 3.5) may be faster since it runs on a spe‐
cialized JVM on the development machine, but Espresso is usually easier to use. And
since (as the name ATSL implies) it is a support library, Espresso tests can run on
devices as old as API 8. The official documentation emphasizes UI interaction exam‐
ples, but Espresso is not limited to this use.

To configure Espresso, you need to add some entries to the build.gradle for your
application (usually this is in the app folder). Typically, you need to add the
testInstrumentationRunner, compile, and androidTestCompile settings shown in
Example 3-4.

Example 3-4. Gradle setup for Espresso

apply plugin: 'com.android.application'

android {
 compileSdkVersion 22
 buildToolsVersion "22"

 defaultConfig {
 applicationId "com.example.myapp"

166 | Chapter 3: Application Testing

http://robolectric.org/
https://developer.android.com/tools/testing-support-library/index.html

 minSdkVersion 10
 targetSdkVersion 22.0.1
 versionCode 1
 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"
 }
}

dependencies {
 compile 'com.android.support:support-annotations:22.2.0'

 androidTestCompile 'com.android.support.test:runner:0.5'
 androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
}

Now you can write your tests. Every test class will need the
@RunWith(AndroidJUnit4.class) annotation.

For our “Hello, World” test, we are going to test a simple application that displays a
text field, a button, and a second text field. When you click the button, the text from
the first text field is copied to the second, to simulate starting some long-running
Activity. Here is the core of the Activity:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 TextView tv = (TextView) findViewById(R.id.tvTarget);
 EditText et = (EditText) findViewById(R.id.tf);
 Button b = (Button) findViewById(R.id.startButton);
 b.setOnClickListener(v -> {
 tv.setText(et.getText());
 });
}

To test this, we will simulate the user typing something in the text field and clicking
the button. We also need to close the soft keyboard to ensure that it doesn’t remain on
screen, hiding the target text field. Then we check to ensure that the text in the target
has changed. Example 3-5 shows the complete test code, including imports—unusual
for this book, but these are a bit complex to guess at. The @Rule is explained shortly.

Example 3-5. Espresso test case

package com.example.helloespressotesting;

import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidJUnit4;

import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

import static android.support.test.espresso.Espresso.closeSoftKeyboard;

3.6 Testing with ATSL, Espresso, and JUnit 4 | 167

import static android.support.test.espresso.Espresso.onView;
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.action.ViewActions.typeText;
import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

/**
 * Demonstrate use of Espresso testing.
 */
@RunWith(AndroidJUnit4.class)
public class MainActivityTest {

 @Rule
 public ActivityTestRule<MainActivity> mActivityRule =
 new ActivityTestRule<>(MainActivity.class);

 @Test
 public void changeText_sameActivity() {
 final String MESG = "Hello Down There!";

 // Simulate typing text into 'tf'
 onView(withId(R.id.tf))
 .perform(typeText(MESG));
 closeSoftKeyboard();

 // Simulate clicking the Button 'startButton'
 onView(withId(R.id.startButton)).perform(click());

 // Find the target, and check that the text was changed
 onView(withId(R.id.tvTarget))
 .check(matches(withText(MESG)));
 }
}

Most Activity-testing classes will need a @Rule (a JUnit annotation) to specify the
ActivityTestRule rule and to identify which Activity is needed. This rule handles all the
grunt work of setting up the Activity, running on the correct thread, etc. It is run
before the @Before (if any) and each @Test-annotated method so you get a clean Activ‐
ity instance for each test:

@Rule
public ActivityTestRule<MainActivity> mActivityRule =
 new ActivityTestRule(MainActivity.class);

In your test method you can do the expected operations: find a view, click a button,
and check the results. To run your test, you have to configure the AVD and create a
test runner configuration. On the AVD or device you want to test, go into Settings →
“Developer options” and turn off the following three options:

• Window animation scale
• Transition animation scale

168 | Chapter 3: Application Testing

• Animator duration scale

If you want to run the tests from the command line, you can just type ./gradlew
connectedAndroidTest, which will run all the tests in androidTest. To run under Android
Studio, you need to create a test runner configuration (see Figure 3-14):

1. Select Run → Edit Configurations.
2. Add a new Android Tests configuration (click the + button in the upper left).
3. Assign a meaningful name such as “Espresso Tests.”
4. Choose a module (usually it’s just “app”).
5. Add android.support.test.runner.AndroidJUnitRunner as an instrumentation test run‐

ner.

Figure 3-14. Studio: Creating an Espresso test/run configuration

Now you can run your tests using this configuration. As always, you should get a
green bar, as shown in Figure 3-15.

3.6 Testing with ATSL, Espresso, and JUnit 4 | 169

Figure 3-15. Studio: Espresso tests passing

See Also
There is more detail on some aspects of Espresso in the “Automating UI Tests”
Android training guide. There is a collection of test examples in different styles at the
on GitHub.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory HelloEspressoTesting (see “Getting and Using the Code Examples” on page
18).

3.7 Troubleshooting Application Crashes
Ulysses Levy

Problem
Your app crashes and you are not sure why (see Figure 3-16).

Solution
Begin by viewing the log.

170 | Chapter 3: Application Testing

https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://github.com/googlesamples/android-testing
https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 3-16. What an app crash looks like

Discussion
We can use the adb logcat command or the IDE LogCat window to view our AVD’s
log. Example 3-6 shows how to find the failure location by looking in the stack trace
using adb logcat.

Example 3-6. The permission denied stack trace

E/DatabaseUtils(53): Writing exception to `parcel
E/DatabaseUtils(53): java.lang.SecurityException: Permission Denial: writing
 com.android.providers.settings.SettingsProvider uri content://settings/system
 from pid=430, uid=10030 requires android.permission.WRITE_SETTINGS
E/DatabaseUtils(53): at android.content.ContentProvider$Transport.
 enforceWritePermission(ContentProvider.java:294)
E/DatabaseUtils(53): at android.content.ContentProvider$Transport.
 insert(ContentProvider.java:149)
E/DatabaseUtils(53): at android.content.ContentProviderNative.
 onTransact(ContentProviderNative.java:140)
E/DatabaseUtils(53): at android.os.Binder.execTransact(Binder.java:287)
E/DatabaseUtils(53): at com.android.server.SystemServer.init1(Native Method)
E/DatabaseUtils(53): at com.android.server.SystemServer.main(SystemServer.java:497)
E/DatabaseUtils(53): at java.lang.reflect.Method.invokeNative(Native Method)
E/DatabaseUtils(53): at java.lang.reflect.Method.invoke(Method.java:521)
E/DatabaseUtils(53): at com.android.internal.os.

3.7 Troubleshooting Application Crashes | 171

 ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860)
E/DatabaseUtils(53): at com.android.internal.os
 .ZygoteInit.main(ZygoteInit.java:618)
E/DatabaseUtils(53): at dalvik.system.NativeStart.main(Native Method)
D/AndroidRuntime(430): Shutting down VM
W/dalvikvm(430): threadid=3: thread exiting with uncaught exception
...

In Example 3-6, we have a permission issue. The solution in this particular instance is
to add the WRITE_SETTINGS permission to our AndroidManifest.xml file:

<manifest ... >
 <application ... />
 <uses-permission android:name="android.permission.WRITE_SETTINGS" />
</manifest>

Another fairly common error is the Null Pointer Exception (NPE). Example 3-7
shows the LogCat output you might see when getting an NPE.

Example 3-7. LogCat output

I/ActivityManager(53): Displayed activity com.android.launcher/.Launcher:
 28640 ms (total 28640 ms)
I/ActivityManager(53): Starting activity: Intent { act=android.intent.action.MAIN
 cat=[android.intent.category.LAUNCHER] flg=0x10200000 cmp=com.aschyiel.disp/.Disp }
I/ActivityManager(53): Start proc com.aschyiel.disp for
 activity com.aschyiel.disp/.Disp: pid=214 uid=10030 gids={1015}
I/ARMAssembler(53): generated scanline__00000177:03515104_00000001_00000000 [73 ipp]
 (95 ins) at [0x47c588:0x47c704] in 2087627 ns
I/ARMAssembler(53): generated scanline__00000077:03545404_00000004_00000000 [47 ipp]
 (67 ins) at [0x47c708:0x47c814] in 1834173 ns
I/ARMAssembler(53): generated scanline__00000077:03010104_00000004_00000000 [22 ipp]
 (41 ins) at [0x47c818:0x47c8bc] in 653016 ns
D/AndroidRuntime(214): Shutting down VM
W/dalvikvm(214): threadid=3: thread exiting with uncaught exception (group=0x4001b188)
E/AndroidRuntime(214): Uncaught handler: thread main exiting due to uncaught exception
E/AndroidRuntime(214): java.lang.RuntimeException: Unable to start activity
 ComponentInfo{com.aschyiel.disp/com.aschyiel.disp.Disp}:java.lang.NullPointerException
E/AndroidRuntime(214): at android.app.ActivityThread.performLaunchActivity(
 ActivityThread.java:2496)
E/AndroidRuntime(214): at android.app.ActivityThread.handleLaunchActivity(
 ActivityThread.java:2512)
E/AndroidRuntime(214): at android.app.ActivityThread.access$2200(
 ActivityThread.java:119)
E/AndroidRuntime(214): at android.app.ActivityThread$H.handleMessage(
 ActivityThread.java:1863)
E/AndroidRuntime(214): at android.os.Handler.dispatchMessage(Handler.java:99)
E/AndroidRuntime(214): at android.os.Looper.loop(Looper.java:123)
E/AndroidRuntime(214): at android.app.ActivityThread.main(ActivityThread.java:4363)
E/AndroidRuntime(214): at java.lang.reflect.Method.invokeNative(Native Method)
E/AndroidRuntime(214): at java.lang.reflect.Method.invoke(Method.java:521)
E/AndroidRuntime(214): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(
 ZygoteInit.java:860)
E/AndroidRuntime(214): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618)

172 | Chapter 3: Application Testing

E/AndroidRuntime(214): at dalvik.system.NativeStart.main(Native Method)
E/AndroidRuntime(214): Caused by: java.lang.NullPointerException
E/AndroidRuntime(214): at com.aschyiel.disp.Disp.onCreate(Disp.java:66)
E/AndroidRuntime(214): at android.app.Instrumentation.callActivityOnCreate(
 Instrumentation.java:1047)
E/AndroidRuntime(214): at android.app.ActivityThread.performLaunchActivity(
 ActivityThread.java:2459)
E/AndroidRuntime(214): ... 11 more

The example code with the error looks like this:
public class Disp extends Activity {
 private TextView foo;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 foo.setText("bar");
 }
}

The preceding code fails because we forgot to call findViewById() to assign “foo” a ref‐
erence to the TextView instance. Here is the example code with the fix:

public class Disp extends Activity {
 private TextView foo;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 foo = (TextView) findViewById(R.id.id_foo);
 foo.setText("bar");
 }
}

This code should make the error go away.

See Also
Justin Mattson’s Google I/O 2009 presentation “Debugging Arts of the Ninja Masters,”
Android Developers discussion on processes stopping unexpectedly.

3.8 Debugging Using Log.d() and LogCat
Rachee Singh

Problem
Usually the Java code compiles without errors, but sometimes a running application
crashes, giving a “Force Close” (or similar) error message.

3.8 Debugging Using Log.d() and LogCat | 173

https://www.youtube.com/watch?v=Dgnx0E7m1GQ
https://groups.google.com/d/topic/android-developers/kup3bP1CqkU

Solution
Debugging the code using LogCat messages is a useful technique for developers who
find themselves in such a situation.

Discussion
Those who are familiar with traditional Java programming have probably used
System.out.println statements while debugging their code. Similarly, debugging an
Android application can be facilitated by using the Log.d() method. This enables you
to print necessary values and messages in the LogCat window. Start by importing the
Log class:

import android.util.Log;

Then, insert the following line at places in the code where you wish to check the sta‐
tus of the application:

 Log.d("Testing", "Checkpoint 1");

Testing is the tag that appears in the “tag” column in the LogCat window, as shown in
Figure 3-17; normally this would be defined as a constant in the main class to ensure
consistent spelling. Checkpoint 1 is the message that appears in the Message column in
the LogCat window. Log.d() takes these two arguments. Corresponding to these, an
appropriate message is displayed in the LogCat window. So, if you have inserted this
Log.d statement as a checkpoint and you get the Checkpoint 1 message displayed in the
LogCat window, it implies that the code works fine up to that point.

Figure 3-17. Debugging output

174 | Chapter 3: Application Testing

The Log.d() method does not accept variable arguments, so if you wish to format
more than one item, use string concatenation or String.format() (but omit the trailing
%n):

 Log.d("Testing", String.format("x0 = %5.2f, x1=%5.2f", x0, x1));

3.9 Getting Bug Reports Automatically with Crash
Reporting
Ian Darwin

Problem
Users don’t necessarily inform you every time your app crashes, and when they do,
often important details are omitted. You’d like a service that catches every exception
and reports it in detail.

Solution
There are both open source and commercial technologies for reporting application
crashes. One of the widely used open source ones is Application Crash Reports for
Android (ACRA). ACRA provides its own backend reporting tool but also supports
Google Docs and many other backends. If you have your own Java EE server, you can
use the author’s own CrashBurnFree service, which also works on non-Android
implementations of Java. Alternatively, you can sign up for one of the commercial
services. With most of these, you just add one JAR file and one call to your app. Then
sit back and await notifications, or view the appropriate web dashboard for lists of
errors and detail pages.

Discussion
There is no magic to crash reporting, and it doesn’t provide anything that you can’t do
yourself. But it’s already done for you, so just use it!

The basic steps to use ACRA are:

1. Decide on which server/backend you’re going to use.
2. Add one JAR file to your project.
3. Annotate your Application class (see Recipe 2.3) to indicate that it’s an ACRA-

enabled application.

The basic steps to use CrashBurnFree are:

1. Download the server JAR, or, build it, or deploy it to your server.

3.9 Getting Bug Reports Automatically with Crash Reporting | 175

https://github.com/ACRA/acralyzer
https://github.com/IanDarwin/CrashBurnFree

2. Configure a security key for your own use on the server.
3. Add one JAR file to your project.
4. Add one call (using the security key) into your Application class or main Activity’s

onCreate() method.

Step 1 is out of scope for this book; if you have a Java EE server you can probably
handle it.

To use one of the commercial services, use these steps (for example, Splunk MINT,
formerly BugSense—the process is similar):

1. Create an account.
2. Register your app and retrieve its unique key from the service’s website.
3. Download a JAR file from the website and add it to your project.
4. Add one call (using the app’s unique key) into your Application class or main Acti‐

vity’s onCreate() method.

After these steps are done, you can distribute your app to users. The first one or two
steps are straightforward, so we won’t discuss them further. The remaining steps
require a little more detail, and we discuss them in the following subsections.

Project setup
The JAR file for ACRA can be added using the following Maven coordinates (if you
use Gradle, you know how to trim this down):

<dependency>
 <groupId>ch.acra</groupId>
 <artifactId>acra</artifactId>
 <version>v4.9.0</version>
</dependency>

Similarly, for CrashBurnFree:
<dependency>
 <groupId>com.darwinsys</groupId>
 <artifactId>crashburnfree-javaclient</artifactId>
 <version>1.0.2</version>
</dependency>

The JAR file for Splunk MINT is mint-5.2.1.jar. You probably know how to add JARs
to your project; if not, see Recipe 1.20.

Because this mechanism reports errors via the internet, the following should go
without saying (but let me say it anyway): you need internet permission to use it! Add
the following code to your AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET" />

176 | Chapter 3: Application Testing

https://mint.splunk.com
https://docs.splunk.com/Documentation/MintAndroidSDK/5.2.x/DevGuide/Requirementsandinstallation

Requesting crash reporting at app start
You usually only need to make one call, in your Application class or Activity’s
onCreate() method.

For ACRA, you annotate your Application class:
import org.acra.*;
import org.acra.annotation.*;

@ReportsCrashes(formUri = "http://somereportingbackend.com/somereportpath")
public class MyApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 ACRA.init(this);
 ...
 }
}

Here is the code in the onCreate() method for CrashBurnFree:
final long KEY = 12345;
final String PASS = "some enchanted evening";
final String url = "https://REST URL to your server";
@Override
public void onCreate() {
 super.onCreate();
 setContentView(R.layout.main);
 CrashBurnFree.register(url, key, pass);
 ...
}

And here is the code in the onCreate() method for BugSense:
private static final String KEY = "... your key here ...";

@Override
public void onCreate() {
 super.onCreate();
 setContentView(R.layout.main);
 Mint.setApplicationEnvironment(Mint.appEnvironmentStaging);
 Mint.initAndStartSession(this.getApplication(), "YOUR_API_KEY");
 ...
}

See Also
To learn how these programs catch uncaught exceptions, see Recipe 14.10 in Java
Cookbook, Third edition, “Catching and Formatting GUI Exceptions,” where the tech‐
nique is used for similar reporting in desktop applications. See also the source code
for CrashBurnFree, available on GitHub.

3.9 Getting Bug Reports Automatically with Crash Reporting | 177

https://github.com/IanDarwin/CrashBurnFree

You can get some crash reports using only the Google Play Console web reporting
page, which is accessible after you log in. There are other tools in the same problem
space, listed in the online version of this book.

3.10 Using a Local Runtime Application Log for Analysis of
Field Errors or Situations
Atul Nene

Problem
Users reported something about your app that you don’t think should happen, but
now that the release mode app is on the market, you have no way to find out what’s
going on in the users’ environment, and bug reports end up in a “cannot reproduce”
scenario.

Solution
LogCat output is great as far as it goes, but a longer-term logging mechanism will be
more useful in some circumstances. Design a built-in mechanism for your app that
will give additional insight in such cases. You know the important events or state
changes and resource needs of your app, and if you log them in a runtime application
log from the app, the log becomes an additional much-needed resource that goes to
the heart of the issue being reported and investigated. This simple preventive measure
and mechanism goes a long way toward reducing low user ratings caused by unfore‐
seen situations, and improves the quality of the overall user experience.

One solution is to use the Java standard java.util.logging package. This recipe pro‐
vides an example RuntimeLog, which uses java.util.logging to write to a logfile on the
device, and gives the developer extensive control over what level of detail is recorded.

Discussion
You have designed, developed, and tested your application and released it on the
Google Play Store, so now you think you can take a vacation. Not so fast! Apart from
the simplest cases, one cannot take care of all possible scenarios during app testing,
and users are bound to report some unexpected app behavior. It doesn’t have to be a
bug; it might simply be a runtime situation you didn’t encounter in your testing. Pre‐
pare for this in advance by designing a runtime application log mechanism into your
app.

Log the most important events from your app—for example, a state change, a
resource timeout (internet access, thread wait), or a maxed-out retry count. It might

178 | Chapter 3: Application Testing

http://androidcookbook.com/r/5139

even be worthwhile to defensively log an unexpected code path execution in a strange
scenario, or some of the most important notifications that are sent to the user.

Only create log statements that will provide insight into how the
app is working. Otherwise, the large size of the log itself may
become a problem, and while Log.d() calls are ignored at runtime
in signed apps, too many log statements may still slow down the
app.

You may be wondering why we don’t use LogCat, or tools like BugSense and ACRA
(see Recipe 3.9), to handle this task. These solutions do not suffice in all cases, for the
following reasons:

• The standard LogCat mechanism isn’t useful in end-user runtime scenarios since
the user is unlikely to have the ability to attach a debugger to her device. Too
many Log.d and Log.i statements in your code may negatively impact app perfor‐
mance. In fact, for this reason, you shouldn’t have Log.* statements compiled into
the released app.

• Tools like ACRA and BugSense work well when the device is connected to the
internet, but it may not always have a connection, and some classes of applica‐
tions may not require one at all except for ACRA. Also, the ACRA stack trace
provides only the details (in the stack trace) at the instant the exception was
thrown, while this recipe provides a longer-term view while the app is running.

The RuntimeLog class is shown in Example 3-8.

Example 3-8. The RuntimeLog class

import java.util.logging.*;

/** Runtime file-based logging, using standard java.util.logging (JUL).
 * It is REALLY too bad that JUL was added before Java enums!
 */
public class RuntimeLog {
 // The JUL log levels are:
 // SEVERE (highest value)
 // WARNING
 // INFO
 // CONFIG
 // FINE
 // FINER
 // FINEST (lowest value)

 // Change this to MODE_DEBUG to use for in-house debugging
 enum Mode {
 MODE_DEBUG,
 MODE_RELEASE

3.10 Using a Local Runtime Application Log for Analysis of Field Errors or Situations | 179

 }
 private static final Mode mode = Mode.MODE_RELEASE;
 private static String logfileName = "/sdcard/YourAppName.log";
 private static Logger logger;

 // Initialize the log on first use of the class and
 // create a custom log formatter

 static {
 try {
 FileHandler fh = new FileHandler(logfileName, true);
 fh.setFormatter(new Formatter() {
 public String format(LogRecord rec) {
 java.util.Date date = new java.util.Date();
 return new StringBuffer(1000)
 .append((date.getYear())).append('/')
 .append(date.getMonth()).append('/')
 .append(date.getDate())
 .append(' ')
 .append(date.getHours())
 .append(':')
 .append(date.getMinutes()).append(':')
 .append(date.getSeconds())
 .append('\n')
 .toString();
 }
 });
 logger = Logger.getLogger(logfileName);
 logger.addHandler(fh);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 // The log method
 public static void log(Level logLevel, String msg) {
 // Don't log DEBUG and VERBOSE statements in release mode
 if (mode == Mode.MODE_RELEASE &&
 logLevel.intValue() >= Level.FINE.intValue())
 return;
 final LogRecord record = new LogRecord(logLevel, msg);
 record.setLoggerName(logfileName);
 logger.log(record);
 }

 /**
 * Reveal the logfile path, so part of your app can read the
 * logfile and either email it to you, or
 * upload it to your server via REST
 * @return
 */
 public static String getFileName() {
 return logfileName;
 }
}

180 | Chapter 3: Application Testing

This code has the advantage of automatically dropping verbose-level log calls when in
production mode. There are, of course, variations that could be used:

• You can use the same mechanism to uncover complex runtime issues while you
are developing the app. To do so, set the Mode variable to MODE_DEBUG.

• For a complex app with many modules, it might be useful to add the module
name to the log call, as an additional parameter.

• You can also extract the ClassName and MethodName from the LogRecord and add them
to the log statements; however, it is not recommended that you do this for run‐
time logs.

Example 3-9 shows that basic use of this facility is as simple as regular Log.d() calls.

Example 3-9. Using the RuntimeLog class

RuntimeLog.log(Level.ERROR, "Network resource access request failed");
RuntimeLog.log(Level.WARNING, "App changed state to STRANGE_STATE");
...

The filename shouldn’t be hardcoded, but should be obtained as in Recipe 10.1. Even
better, create a directory, with logfile rotation (delete logfiles that are older than a cer‐
tain age deemed no longer useful) to limit the disk storage of the logfiles.

To allow users to send the logfile(s) from their devices to your support team, you
would certainly want to write code to automate this, using the getLogfileName()
method to access the file. Or you could use the same Java language hooks as the crash
recorders (see Recipe 3.9) use, and send the file automatically upon detecting an
application crash.

This mechanism does not have to be in an “always on” state. You can log based on a
user-settable configuration option and enable it only when end users are trying to
reproduce problem scenarios.

See Also
Recipe 3.8, Recipe 3.9.

3.11 Reproducing Activity Life-Cycle Scenarios for Testing
Daniel Fowler

Problem
Apps should be resilient to the Activity life cycle. Developers need to know how to
reproduce different life-cycle scenarios.

3.11 Reproducing Activity Life-Cycle Scenarios for Testing | 181

Solution
Use logging to get a good understanding of the Activity life cycle. Life-cycle scenarios
are then easier to reproduce for app testing.

Discussion
Android is designed for life on the go, where a user is engaged in multiple tasks: tak‐
ing calls, checking email, sending SMS messages, engaging in social networking, tak‐
ing pictures, accessing the internet, running apps—maybe even getting some work
done! As such, a device can have multiple apps, and hence many Activities, loaded in
memory.

The foreground app and its current Activity can be interrupted and paused at any
moment. Apps, and hence Activities, that are paused can be removed from memory
to free up space for newly started apps. An app has a life cycle that it cannot control,
as it is the Android operating system that starts, monitors, pauses, resumes, and
destroys the app’s Activities. Yet an Activity does know what is going on, because as
Activities are instantiated, hidden, and destroyed, various functions are called. This
allows the Activity to keep track of what the operating system is doing to the app, as
discussed in Recipe 1.2.

Because of all this, app developers become familiar with the functions invoked when
an Activity starts:

• onCreate(Bundle savedInstanceState){…};

• onStart(){…};

• onResume(){…};

and with the functions called when an Activity is paused and then removed from
memory (destroyed):

• onPause(){…};

• onStop(){…};

• onDestroy(){…};

It is easy to see these functions in action. Create a simple app in Android Studio and,
in the first loaded Activity, override the preceding functions, calling through to the
superclass versions. Add a call to Log.d() to pass in the name of the app and the func‐
tion being invoked. (Here, for a basic app, the application name is set to MyAndroid and
an empty Activity is used. Note that by default Studio uses the AppCompatActivity class,
which is derived from Activity.) The MainActivity code will look like Example 3-10.

182 | Chapter 3: Application Testing

Example 3-10. Life-cycle logging

public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Log.d("MyAndroid", "onCreate");
 }
 @Override
 public void onStart() {
 super.onStart();
 Log.d("MyAndroid", "onStart");
 }
 @Override
 public void onResume() {
 super.onResume();
 Log.d("MyAndroid","onResume");
 }
 @Override
 public void onPause() {
 super.onPause();
 Log.d("MyAndroid","onPause");
 }
 public void onStop() {
 super.onStop();
 Log.d("MyAndroid","onStop");
 }
 public void onDestroy() {
 super.onDestroy();
 Log.d("MyAndroid","onDestroy");
 }
}

(There are other ways to print the program name and function name in Java, but
hardcoded strings are used here for convenience and simplicity.)

Run the program on a device (virtual or physical) to see the debug messages in Log‐
cat. If Logcat isn’t visible, open the Android Monitor (click the button at the bottom
of the main Studio window, or use the View → Tool Windows menu, or press Alt-6).
When the Back button is pressed, the three teardown messages are seen, as in
Figure 3-18.

To see only the messages from the app, add a Logcat filter: use the last drop-down
above the Logcat display area to select Edit Filter Configuration. In the Create New
Logcat Filter dialog, give the filter a name; here we used “MyAndroid.” The Log Tag is
used for filtering (the first parameter of the Log.d() call; again set to “MyAndroid”).
Logcat will now show only the messages explicitly sent from the app (see
Figure 3-19).

3.11 Reproducing Activity Life-Cycle Scenarios for Testing | 183

Figure 3-18. The Android Monitor

Figure 3-19. Filtering with Logcat

The Logcat output can be further simplified by changing the header configuration
(use the gear icon to the left of the Logcat area). The LogCat output can be cleared by
clicking the trash can icon to the left of the Logcat area. It is useful to have a clean
sheet before performing an action to watch for more messages.

To see the functions called when a program is paused, open another application while
the MyAndroid program is running. The code for the onRestart() method is key here.
Create the function for onRestart(), and this debug message:

@Override
public void onRestart() {
 super.onRestart();

184 | Chapter 3: Application Testing

 Log.d("MyAndroid","onRestart");
}

Run the program, click the Home button, and then launch the program again from
the device (or emulator). You should see output similar to that in Figure 3-20.

Figure 3-20. Filtered, with onRestart()

Logcat shows the usual start-up function sequence; then, when the Home button is
clicked, onPause() and onStop() run, but not onDestroy(). The program is not ending but
effectively sleeping. When the program is run again it isn’t reloaded, so no onCreate()
executes; instead, onRestart() is called.

Run the program again, then swipe it from the screen in tiled view to kill it (or go
into Apps via Settings, select the program, and then press the Force Close button).
Then start the app again.

The usual start-up functions (onStart() and onResume()) are invoked, and then the
Activity “sleeps.” No onDestroy() is seen as the second instance is run (see Figure 3-21).

Figure 3-21. Force-stop messages

3.11 Reproducing Activity Life-Cycle Scenarios for Testing | 185

In this recipe, we discussed the following different life-cycle scenarios:

• Normal start-up and then finish
• Start-up, pause, and then restart
• Start-up, pause, forced removal from memory, and then start-up again

These scenarios result in different sequences of life-cycle functions being executed.
Using these scenarios when testing ensures that an app performs correctly for a user.
You can extend the techniques described here when implementing additional over‐
ridden functions. These techniques also apply to using Fragments in an Activity and
testing their life cycle.

See Also
Recipe 1.2, Recipe 1.15, and the developer documentation on the Activity class, the
Log class, and Fragments.

Source Download URL
The code for this recipe can be downloaded from Tek Eye.

3.12 Keeping Your App Snappy with StrictMode
Adrian Cowham

Problem
You want to make sure your app’s GUI is as snappy as possible.

Solution
Android has a tool called StrictMode that will detect all cases where an “Application
Not Responding” (ANR) error might occur. For example, it will detect and log to
Logcat all database reads and writes that happen on the main thread (i.e., the GUI
thread).

Discussion
I wish I could have used a tool like StrictMode back when I was doing Java Swing desk‐
top development. Making sure our Java Swing app was snappy was a constant chal‐
lenge: green and seasoned engineers alike would invariably perform database opera‐
tions on the UI thread that would cause the app to hiccup. Typically, we found these
hiccups when QA (or customers) used the app with a larger data set than the engi‐
neers were testing with. Having QA find these little defects was unacceptable, and

186 | Chapter 3: Application Testing

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/guide/topics/fundamentals/fragments.html
http://tekeye.uk/android/examples/download/lifecycletesting.zip

ultimately a waste of everyone’s time (and the company’s money). We eventually
solved the problem by investing more heavily in peer reviews, but having a tool like
StrictMode would have been comparatively cheaper.

The following example code illustrates how easy it is to turn on StrictMode in your
app:

// Make sure you import StrictMode
import android.os.StrictMode;

// In your app's Application or Activity instance, add the following
// lines to the onCreate() method
if (Build.VERSION.SDK_INT >= 9 && isDebug()) {
 StrictMode.enableDefaults();
}

Please note that I have intentionally omitted the isDebug() implementation, as the
logic of that depends on your application. I recommend only enabling StrictMode
when your app is in debug mode; it’s unwise to put your app in the Google Play Store
with StrictMode running in the background and consuming resources unnecessarily.

See Also
StrictMode is highly configurable, allowing you to customize what problems to look
for. For detailed information on customizing StrictMode policies, see the developer
documentation.

3.13 Static Code Testing with Android Lint
Ian Darwin

Problem
Your code looks OK, but you want to see if it passes muster when subjected to expert
scrutiny.

Solution
Run your code through Android Lint (included with modern versions of the Android
SDK and supported by the relevant versions of the IDE plug-ins). Examine the warn‐
ings, and improve the code where it needs it.

Discussion
The first “lint” program originated at Bell Laboratories, in Seventh Edition Unix.
Steve Johnson wrote it as an offshoot of his development of the first Portable C Com‐
piler, in the late 1970s. It was covered in my little book Checking C Programs with Lint

3.13 Static Code Testing with Android Lint | 187

https://developer.android.com/reference/android/os/StrictMode.html
https://developer.android.com/reference/android/os/StrictMode.html

(O’Reilly). Ever since, people have been writing lint-like tools. Some well-known ones
for Java code include PMD, FindBugs, and Checkstyle. The first two, plus a number
of other tools, are covered in my 2007 book Checking Java Programs (O’Reilly). The
most recent one that’s relevant to us is, of course, Android Lint, a part of the standard
Android SDK.

What each of these tools does is examine your code, and offer opinions based on
expert-level knowledge of the language and libraries. The hard part is to bear in mind
that they are only opinions. There will be cases where you think you know better than
the tool, and you later find out that you’re wrong. But there will be cases where you’re
right. And, of course, it’s impossibly hard for the computer to know which, so there is
no substitute for the judgment of an experienced developer!

These tools typically find a lot of embarrassing issues in your code the first time you
run them. One very common error is to create a toast by calling makeText(), and forget
to call the new toast’s show() method; the toast is created but never pops up! The stan‐
dard compiler cannot catch this kind of error, but Android Lint can, and that is just
one of its many capabilities. After laughing at yourself for a minute, you can edit (and
test!) your code, and run lint again. You repeat this process until you no longer get
any messages that you care about.

To run Android Lint, you can use the command-line version in $SDK_HOME/tools/
lint. Under Eclipse, you invoke Android Lint by right-clicking the project in the
Project Explorer and selecting Android Tools → Run Lint. The warnings appear as
code markers just like the ones from Eclipse itself. Since they are not managed by the
Eclipse compiler, you may need to run lint again after editing your code. If you get
tired of the game, you can use the same menu to remove the lint markers. Under
Android Studio, the Analyze → Inspect Code tool actually runs Android Lint.
Example 3-11 shows the command-line version of lint since that’s the clearest way to
show in print some examples of the errors it catches; rest assured it will catch the
same errors when run under an IDE, though the messages may be less verbose.

Example 3-11. Running lint from the command line

$ cd MyAndroidProject
$ lint .
Scanning .:
Scanning . (Phase 2): ..
AndroidManifest.xml:16: Warning: <uses-sdk> tag should specify a target API level
 (the highest verified version; when running on later versions, compatibility
 behaviors may be enabled) with android:targetSdkVersion="?" [UsesMinSdkAttributes]
 <uses-sdk android:minSdkVersion="7" />
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
AndroidManifest.xml:16: Warning: <uses-sdk> tag appears after <application> tag
[ManifestOrder]
    <uses-sdk android:minSdkVersion="7" />
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

188 | Chapter 3: Application Testing

AndroidManifest.xml:6: Warning: Should explicitly set android:allowBackup to true or
false (it's true by default, and that can have some security implications for the
application's data) [AllowBackup]
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 ^
res/values/strings.xml:5: Warning: The resource R.string.addAccounrSuccess appears to
 be unused [UnusedResources]
 <string name="addAccounrSuccess">Account created</string>
            ~~~~~~~~~~~~~~~~~~~~~~~~
res/values/strings.xml:6: Warning: The resource R.string.addAccounrFailure appears to
 be unused [UnusedResources]
    <string name="addAccounrFailure">Account creation failed</string>
            ~~~~~~~~~~~~~~~~~~~~~~~~
res: Warning: Missing density variation folders in res: drawable-xhdpi
 [IconMissingDensityFolder]
0 errors, 6 warnings
$

Nothing serious was found in this project, but several things can be cleaned up
quickly and easily. Of course the unused string resources don’t need any action if they
are intended for future use, but if they are old and have fallen out of use, you should
remove them to keep your app clean. As with any automated tool, you know your app
better than the tool does, at least for making such decisions.

See Also
The developer documentation on checking code with lint, my book Checking Java
Programs, my video training series Java Testing for Developers, and my older book
Checking C Programs with Lint (all from O’Reilly Media).

3.14 Dynamic Testing with the Monkey Program
Adrian Cowham

Problem
You want some good random usage testing of your application.

Solution
Use the Android Monkey command-line tool to test applications you are developing.

Discussion
Testing is so easy a monkey can do it, literally. Despite the limitations of testing tools
for Android, I have to admit that the Monkey is pretty cool. The Android Monkey is
a testing tool (included with the Android SDK) that simulates a monkey (or perhaps a

3.14 Dynamic Testing with the Monkey Program | 189

https://developer.android.com/tools/debugging/improving-w-lint.html

child) using an Android device. Imagine a monkey sitting at a keyboard and flailing
away—get the idea? What better way to flush out those hidden ANR messages?

Running the Monkey is as simple as starting the emulator (or connecting your devel‐
opment device to your development machine) and launching the Monkey script. I
hate to admit this, but by running the Monkey on a daily basis, we’ve repeatedly
found defects that probably would’ve escaped a normal QA pass and would’ve been
very challenging to troubleshoot if found in the field—or, worse yet, caused users to
stop using our app.

Here are a few best practices for using the Monkey in your development process:

• Create your own Monkey script that wraps Android’s Monkey script. This is to
ensure that all the developers on your team are running the Monkey with the
same parameters. If you’re a team of one, this helps with predictability (discussed
shortly).

• Configure the Monkey so that it runs long enough to catch defects but not so
long that it’s a productivity killer. In our development process, we configured the
Monkey to run for a total of 50,000 events. This took about 40 minutes on a Sam‐
sung Galaxy Tab. Not too bad, but I would’ve liked it to be in the 30-minute
range. Obviously, faster tablets will have a higher throughput.

• The Monkey is random, so when we first started running it, every developer was
getting different results and we were unable to reproduce defects. We then fig‐
ured out that the Monkey allows you to set the seed for its random number gen‐
erator. So, configure your wrapper script to set the Monkey’s seed. This will
ensure uniformity and predictability across Monkey runs in your development
team.

• Once you gain confidence in your app with a specific seed value, change it,
because you’ll never know what the Monkey will find.

• Never run the Monkey on your production (“daily driver”) phone, as it will occa‐
sionally escape from the program under test and “creatively” alter settings in
other apps!

Here is a Monkey script wrapper, followed by a description of its arguments:
#!/bin/bash
Utility script to run monkey
#
See: https://developer.android.com/studio/test/monkey.html

rm tmp/monkey.log
adb shell monkey -p package_name --throttle 100 -s 43686 -v 50000 |
 tee tmp/monkey.log

• -p package_name will ensure that the Monkey only targets the package specified.

190 | Chapter 3: Application Testing

• --throttle is the delay between events.
• -s is the seed value.
• -v is the VERBOSE option.
• 50000 is the number of events the Monkey will simulate.

Many more configuration options are available for the Monkey; we deliberately chose
not to mess around with what types of events the Monkey generates because we
appreciate the pain. For example, the seed value we chose causes the Monkey to dis‐
able WiFi about halfway through the run. This was really frustrating at first because
we felt like we weren’t getting the coverage we wanted. It turns out that the Monkey
did us a favor by disabling WiFi and then relentlessly playing with our app. After dis‐
covering and fixing a few defects, we soon had complete confidence that our app
operated as expected without a network connection.

Good Monkey.

See Also
The developer documentation on the Monkey.

3.15 Sending Text Messages and Placing Calls Between
AVDs
Johan Pelgrim

Problem
You have developed an app that needs to place or listen for calls or send or receive
text messages, and you want to test this behavior.

Solution
Fire up two Android Virtual Devices and use the port number to send text messages
and place calls.

Discussion
When you create an app that listens for incoming calls or text messages—similar to
the one in Recipe 11.1—you can, of course, use the DDMS perspective in Eclipse to
simulate placing calls or sending text messages. But you can also fire up another
AVD!

If you look at the AVD window’s title, you will see a number before your AVD’s name.
This is the port number that you can use to telnet to your AVD’s shell (e.g., telnet

3.15 Sending Text Messages and Placing Calls Between AVDs | 191

https://developer.android.com/studio/test/monkey.html

localhost 5554). Fortunately, for testing purposes this number is your AVD’s phone
number as well, so you can use this number to place calls (see Figure 3-22) or to send
a text (Figure 3-23).

See Also
Recipe 11.1.

Figure 3-22. Calling from one AVD to another

Figure 3-23. Sending a text message (SMS) from one AVD to another

192 | Chapter 3: Application Testing

CHAPTER 4

Inter-/Intra-Process Communication

Android offers a unique collection of mechanisms for inter-application (and intra-
application) communication. This chapter discusses the following:

Intents
Specify what you intend to do next: either to invoke a particular class within your
application, or to invoke whatever application the user has configured to process
a particular request on a particular type of data

Broadcast receivers
In conjunction with Intent filters, allow you to define an application as able to
process a particular request on a particular type of data (i.e., the target of an
Intent)

AsyncTasks

Allow you to specify long-running code that should not be on the “GUI thread”
or “main event thread” to avoid slowing the app to the point that it gets ANR
(“Application Not Responding”) errors

Handlers
Allow you to queue up messages from a background thread to be handled by
another thread such as the main Activity thread, usually to cause information to
update the screen safely

193

4.1 Opening a Web Page, Phone Number, or Anything Else
with an Intent
Ian Darwin

Problem
You want one application to have some entity processed by another application
without knowing or caring what that other application is.

Solution
Invoke the Intent constructor; then invoke startActivity() on the constructed Intent.

Discussion
The Intent constructor takes two arguments: the action to take and the entity to act
on. Think of the first as the verb and the second as the object of the verb. The most
common action is Intent.ACTION_VIEW, for which the string representation is
android.intent.action.VIEW. The second will typically be a URL or, in Android, a URI
(uniform resource identifier). URI objects can be created using the static parse()
method in the Uri class (note the two lowercase letters in the class name do not use
the URI class from java.net). Assuming that the string variable data contains the loca‐
tion we want to view, the code to create an Intent for it might be something like the
following:

Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(data));

That’s all! The beauty of Android is shown here—we don’t know or care if data con‐
tains a web page URL with http:, a phone number with tel:, or even something we’ve
never seen. As long as there is an application registered to process this type of Intent,
Android will find it for us, after we invoke it. How do we invoke the Intent? Remem‐
ber that Android will start a new Activity to run the Intent. Assuming the code is in
an Activity, we just call the inherited startIntent() method. For example:

startActivity(intent);

If all goes well, the user will see the web browser, phone dialer, maps application, or
whatever.

Google defines many other actions, such as ACTION_OPEN (which tries to open the
named object). In some cases VIEW and OPEN will have the same effect, but in other
cases the former may display data and the latter may allow the user to edit or update
the data.

194 | Chapter 4: Inter-/Intra-Process Communication

If the request fails because your particular device doesn’t have a single Activity in all
its applications that has said it can handle this particular Intent, the user will not see
another Activity, but instead the startActivity() call will throw the unchecked
ActivityNotFoundException.

And even if things do work, we won’t find out about it. That’s because we basically
told Android that we don’t care whether the Intent succeeds or fails. To get feedback,
we would instead call startActivityForResult():

startActivityForResult(intent, requestCode);

The requestCode is an arbitrary number used to keep track of multiple Intent requests;
you should generally pick a unique number for each Intent you start, and keep track
of these numbers to track the results later (if you only have one Intent whose results
you care about, just use the number 1).

Just making this change will have no effect, however, unless we also override an
important method in Activity:

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 // Do something with the results...
}

It may be obvious, but it is important to note that you cannot know the result of an
Intent until the Activity that was processing it is finished, which may be an arbitrary
time later. However, onActivityResult() will eventually be called.

The resultCode is, of course, used to indicate success or failure. There are defined con‐
stants for these, notably Activity.RESULT_OK and Activity.RESULT_CANCELED. Some Intents
provide their own, more specific result codes; for one example, see Recipe 9.7. For
information on use of the passed Intent, please refer to recipes on passing extra data,
such as Recipe 4.4.

The sample program attached to this recipe allows you to type in a URL and either
OPEN or VIEW it, using the actions defined previously. Some example URLs that you
might try are shown in the following table.

URL Meaning Note
http://www.google.com/ Web page

content://contacts/people/ List of contacts

content://contacts/people/1 Contact details for one person

geo:50.123,7.1434?z=10 Location and zoom Need Google API

geo:39.0997,-94.5783 Location Need Google API

4.1 Opening a Web Page, Phone Number, or Anything Else with an Intent | 195

http://www.google.com/

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory IntentsDemo (see “Getting and Using the Code Examples” on page 18).

4.2 Emailing Text from a View
Wagied Davids

Problem
You want to send an email containing text or images from a view.

Solution
Pass the data to be emailed to the mail app as a parameter using an Intent.

Discussion
The steps for emailing text from a view are pretty straightforward:

1. Modify the AndroidManifest.xml file to allow for an internet connection so that
email can be sent. This is shown in Example 4-1.

2. Create the visual presentation layer with an Email button that the user clicks. The
layout is shown in Example 4-2, and the strings used to populate it are shown in
Example 4-3.

3. Attach an OnClickListener to allow the email to be sent when the user clicks the
Email button. The code for this is shown in Example 4-4.

Example 4-1. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-permission
 android:name="android.permission.INTERNET" />

 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity
 android:name=".Main"
 android:label="@string/app_name">

196 | Chapter 4: Inter-/Intra-Process Communication

https://github.com/IanDarwin/Android-Cookbook-Examples

 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
</manifest>

Example 4-2. Main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Button
 android:id="@+id/emailButton"
 android:text="Email Text!"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>

 <TextView
 android:id="@+id/text_to_email"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/my_text" />

</LinearLayout>

Example 4-3. Strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string
 name="hello">Hello World, Main!</string>
 <string
 name="app_name">EmailFromView</string>
 <string
 name="my_text">
 Lorem Ipsum is simply dummy text of the printing and typesetting industry.
 Lorem Ipsum has been the industry's standard dummy text ever since the 1500s,
 when an unknown printer took a galley of type and scrambled it to make a
 type specimen book. It has survived not only five centuries, but also the
 leap into electronic typesetting, remaining essentially unchanged. It was
 popularized in the 1960s with the release of Letraset sheets containing Lorem
 Ipsum passages, and more recently with desktop publishing software like
 Aldus PageMaker including versions of Lorem Ipsum.

4.2 Emailing Text from a View | 197

</string>
</resources>

Example 4-4. Main.java

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class Main extends Activity implements OnClickListener {
 private static final String TAG = "Main";
 private Button emailButton;

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set the view layer
 setContentView(R.layout.main);

 // Get reference to Email button
 this.emailButton = (Button) this.findViewById(R.id.emailButton);

 // Set the onClick event listener
 this.emailButton.setOnClickListener(this);

 }

 @Override
 public void onClick(View view) {
 if (view == this.emailButton) {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setType("text/html");
 emailIntent.putExtra(Intent.EXTRA_TITLE, "My Title");
 emailIntent.putExtra(Intent.EXTRA_SUBJECT, "My Subject");

 // Obtain reference to String and pass it to Intent
 emailIntent.putExtra(Intent.EXTRA_TEXT,
 getString(R.string.my_text));
 startActivity(emailIntent);
 }
 }
 }

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory EmailTextView (see “Getting and Using the Code Examples” on page 18).

198 | Chapter 4: Inter-/Intra-Process Communication

https://github.com/IanDarwin/Android-Cookbook-Examples

4.3 Sending an Email with Attachments
Marco Dinacci

Problem
You want to send an email with attachments.

Solution
Create an Intent, add extended data to specify the file you want to include, and start a
new Activity to allow the user to send the email.

Discussion
The easiest way to send an email is to create an Intent of type ACTION_SEND:

Intent intent = new Intent(Intent.ACTION_SEND);
intent.putExtra(Intent.EXTRA_SUBJECT, "Test single attachment");
intent.putExtra(Intent.EXTRA_EMAIL, new String[]{recipient_address});
intent.putExtra(Intent.EXTRA_TEXT, "Mail with an attachment");

To attach a single file, we add some extended data to our Intent:
intent.putExtra(Intent.EXTRA_STREAM, Uri.fromFile(new File("/path/to/file")));
intent.setType("text/plain");

The MIME type can always be set as text/plain, but you may want to be more specific
so that applications parsing your message will work properly. For instance, if you’re
including a JPEG image you should write image/jpeg.

To send an email with multiple attachments, the procedure is slightly different, as
shown in Example 4-5.

Example 4-5. Multiple attachments

Intent intent = new Intent(Intent.ACTION_SEND_MULTIPLE);
intent.setType("text/plain");
intent.putExtra(Intent.EXTRA_SUBJECT, "Test multiple attachments");
intent.putExtra(Intent.EXTRA_TEXT, "Mail with multiple attachments");
intent.putExtra(Intent.EXTRA_EMAIL, new String[]{recipient_address});

ArrayList<Uri> uris = new ArrayList<Uri>();
uris.add(Uri.fromFile(new File("/path/to/first/file")));
uris.add(Uri.fromFile(new File("/path/to/second/file")));

intent.putParcelableArrayListExtra(Intent.EXTRA_STREAM, uris);

First, you need to use Intent.ACTION_SEND_MULTIPLE, which has been available since
Android 1.6. Second, you need to create an ArrayList with the URIs of the files you

4.3 Sending an Email with Attachments | 199

want to attach to the mail and call putParcelableArrayListExtra(). If you are sending dif‐
ferent types of files you may want to use multipart/mixed as the MIME type.

Finally, in both cases, don’t forget to start the desired Activity with the following code:
startActivity(this, intent);

Which mail program will be used if there’s more than one on the device? If the user
has previously made a choice that will be respected, but if the user hasn’t selected an
application to handle this type of Intent a chooser will be launched.

The example in the source download shows both the single attachment and multiple
attachment options, each connected to a Button with obvious labeling. The multiple
attachment button looks like Figure 4-1 in my email client.

Figure 4-1. Email with multiple attachments

200 | Chapter 4: Inter-/Intra-Process Communication

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory EmailWithAttachments (see “Getting and Using the Code Examples” on
page 18).

4.4 Pushing String Values Using Intent.putExtra()
Ulysses Levy

Problem
You need to pass some parameters into an Activity while launching it.

Solution
A quick solution is to use Intent.putExtra() to push the data. Then use
getIntent().getExtras().getString() to retrieve it.

Discussion
Example 4-6 shows the code to push the data.

Example 4-6. The push data

import android.content.Intent;
 ...

 Intent intent =
 new Intent(
 this,
 MyActivity.class);
 intent.putExtra("paramName", "paramValue");
 startActivity(intent);

This code might be inside the main Activity. MyActivity.class is the second Activity we
want to launch and it must be explicitly included in your AndroidManifest.xml file:

<activity android:name=".MyActivity" />

Example 4-7 shows the code to pull the data in the target (receiving) Activity.

Example 4-7. The code to pull the data

import android.os.Bundle;

 ...

 Bundle extras = getIntent().getExtras();

4.4 Pushing String Values Using Intent.putExtra() | 201

https://github.com/IanDarwin/Android-Cookbook-Examples

 if (extras != null) {
 String myParam = extras.getString("paramName");
 }
 else {
 //Oops!
 }

In this example, the code would be inside your main Activity.java file.

In addition to Strings, the Bundle (the “extras”) can contain several other types of
data; see the documentation for Bundle for a complete list.

See Also
The blog post “Playing with Intents”, the developer documentation on
Intent.putExtra().

4.5 Retrieving Data from a Subactivity Back to Your Main
Activity
Ulysses Levy

Problem
Your main Activity needs to retrieve data from another Activity, sometimes infor‐
mally called a “subactivity.”

Solution
Use startActivityForResult(), onActivityResult() in the main Activity, and setResult() in
the subactivity.

Discussion
In this example, we return a string from a subactivity (MySubActivity) back to the main
Activity (MyMainActivity). The first step is to “push” data from MyMainActivity via the
Intent mechanism (see Example 4-8).

Example 4-8. The push data from the Activity

public class MyMainActivity extends Activity
{
 //For logging
 private static final String TAG = "MainActivity";

 //The request code is supposed to be unique
 public static final int MY_REQUEST_CODE = 123;

202 | Chapter 4: Inter-/Intra-Process Communication

http://mylifewithandroid.blogspot.com/2007/12/playing-with-intents.html
https://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String,%20android.os.Bundle)
https://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String,%20android.os.Bundle)

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 }

 private void pushFxn() {
 Intent intent =
 new Intent(
 this,
 MySubActivity.class);

 startActivityForResult(intent, MY_REQUEST_CODE);
 }

 protected void onActivityResult(
 int requestCode,
 int resultCode,
 Intent pData) {
 if (requestCode == MY_REQUEST_CODE) {
 if (resultCode == Activity.RESULT_OK) {
 final String zData = pData.getExtras().getString
 (MySubActivity.EXTRA_STRING_NAME);

 //Do something with our retrieved value

 Log.v(TAG, "Retrieved Value zData is "+zData);
 //Logcats "Retrieved Value zData is returnValueAsString"

 }
 }

 }
}

There will be a button with an event listener that calls the pushFxn() method; this starts
the subactivity. In Example 4-8, the following occurs:

• The main Activity’s onActivityResult() method gets called after
MySubActivity.finish().

• The retrieved value is technically an Intent, and so we could use it for more com‐
plex data (such as a URI to a Google contact). However, in Example 4-8, we are
only interested in a string value via Intent.getExtras().

• The requestCode (MY_REQUEST_CODE) is supposed to be unique, and is used to differen‐
tiate among multiple outstanding subactivity calls.

The second major step is to “pull” data back from MySubActivity to MyMainActivity (see
Example 4-9).

4.5 Retrieving Data from a Subactivity Back to Your Main Activity | 203

Example 4-9. The pull data from the subactivity

public class MySubActivity extends Activity
{
 public static final String EXTRA_STRING_NAME = "extraStringName";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 }

 private void returnValuesFxn() {
 Intent iData = new Intent();
 iData.putExtra(
 EXTRA_STRING_NAME,
 "returnValueAsString");

 setResult(
 android.app.Activity.RESULT_OK,
 iData);

 //Returns us to the parent "MyMainActivity"
 finish();
 }
}

Again, something in the MySubActivity will call the returnValuesFxn() method in
Example 4-9. Note the following:

• Once again, Intents are used as data (i.e., iData).
• setResult() requires a result code such as RESULT_OK.
• finish() essentially pushes the result from setResult().
• The data from MySubActivity doesn’t get “pulled” until we’re back on the other side

with MyMainActivity, so arguably it is more similar to a second “push.”
• We don’t have to use a public static final String variable for our “extra” field

name, but I chose to do so because I thought it was a good style.

Use case (informal)
In my app, I have a ListActivity with a ContextMenu (the user long-presses a selection to
do something), and I wanted to let the MainActivity know which row the user had
selected for the ContextMenu action (my app only has one action). I ended up using
Intent extras to pass the selected row’s index as a string back to the parent Activity;
from there I could just convert the index back to an int and use it to identify the
user’s row selection via ArrayList.get(index). This worked for me; however, I am sure
there is another/better way.

204 | Chapter 4: Inter-/Intra-Process Communication

See Also
Recipe 4.4, resultCode “gotcha”, startActivityForResultExample (under “Returning a
Result from a Screen”); Activity.startActivityForResult().

4.6 Keeping a Background Service Running While Other
Apps Are on Display
Ian Darwin

Problem
You want part of your application to continue running in the background while the
user switches to interact with other apps.

Solution
Create a Service class to do the background work; start the Service from your main
application. Optionally provide a Notification icon to allow the user either to stop the
running Service or to resume the main application.

Discussion
A Service class (android.app.Service) runs as part of the same process as your main
application, but keeps running even if the user switches to another app or goes to the
Home screen and starts up a new app.

As you know by now, Activity classes can be started either by an Intent that matches
their content provider or by an Intent that mentions them by class name. The same is
true for Services. This recipe focuses on starting a Service directly; Recipe 4.1 covers
starting a Service implicitly. The following example is taken from JPSTrack, a GPS
tracking program for Android. Once you start tracking, you don’t want the tracking
to stop if you answer the phone or have to look at a map(!), so we made it into a Ser‐
vice. As shown in Example 4-10, the Service is started by the main Activity when you
click the Start Tracking button, and is stopped by the Stop button. Note that this is so
common that startService() and stopService() are built into the Activity class.

Example 4-10. The onCreate{} method

@Override
public void onCreate(Bundle savedInstanceState) {
 ...
 Intent theIntent = new Intent(this, TrackService.class);
 Button startButton = (Button) findViewById(R.id.startButton);
 startButton.setOnClickListener(new OnClickListener() {
 @Override

4.6 Keeping a Background Service Running While Other Apps Are on Display | 205

http://androidforums.com/application-development/102689-startactivityforresult.html
https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)

 public void onClick(View v) {
 startService(theIntent);
 Toast.makeText(Main.this, "Starting", Toast.LENGTH_LONG).show();
 }
 });
 Button stopButton = (Button) findViewById(R.id.stopButton);
 stopButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 stopService(theIntent);
 Toast.makeText(Main.this, "Stopped", Toast.LENGTH_LONG).show();
 }
 });
 ...
}

The TrackService class directly extends Service, so it has to implement the abstract
onBind() method. This is not used when the class is started directly, so it can be a stub
method. You will typically override at least the onStartCommand() and onUnbind() meth‐
ods, to begin and end some Activity. Example 4-11 starts the GPS service sending us
notifications that we save to disk, and we do want that to keep running, hence this
Service class.

Example 4-11. The TrackService (GPS-using service) class

public class TrackService extends Service {
 private LocationManager mgr;
 private String preferredProvider;

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 initGPS(); // Sets up the LocationManager mgr

 if (preferredProvider != null) {
 mgr.requestLocationUpdates(preferredProvider, MIN_SECONDS * 1000,
 MIN_METRES, this);
 return START_STICKY;
 }
 return START_NOT_STICKY;
 }

 @Override
 public boolean onUnbind(Intent intent) {
 mgr.removeUpdates(this);
 return super.onUnbind(intent);
 }

206 | Chapter 4: Inter-/Intra-Process Communication

You may have noticed the different return values from onStartCommand(). If you return
START_STICKY, Android will restart your Service if it gets terminated. If you return
START_NOT_STICKY, the Service will not be restarted automatically. These values are dis‐
cussed in more detail in the online documentation for the Service class. Remember to
declare the Service subclass in the Application part of your AndroidManifest.xml:

<service android:enabled="true" android:name=".TrackService">

4.7 Sending/Receiving a Broadcast Message
Vladimir Kroz

Problem
You want to create an Activity that receives a simple broadcast message sent by
another Activity.

Solution
Set up a broadcast receiver, instantiate the message receiver object, and create an
IntentFilter. Then register your receiver with an Activity that must receive the broad‐
cast message.

Discussion
The code in Example 4-12 sets up the broadcast receiver, instantiates the message
receiver object, and creates the IntentFilter.

Example 4-12. Creating and registering the BroadcastReceiver

// Instantiate message receiver object. You should
// create this class by extending android.content.BroadcastReceiver.
// The method onReceive() of this class will be called when broadcast is sent.
MyBroadcastMessageReceiver _bcReceiver = new MyBroadcastMessageReceiver();

// Create IntentFilter
IntentFilter filter = new IntentFilter(MyBroadcastMessageReceiver.class.getName());

// Register your receiver with your Activity, which must receive broadcast messages.
// Now whenever this type of message is generated somewhere in the system the
// _bcReceiver.onReceive() method will be called within main thread of myActivity.
myActivity.registerReceiver(_bcReceiver, filter);

The code in Example 4-13 shows how to publish the broadcast event.

4.7 Sending/Receiving a Broadcast Message | 207

https://developer.android.com/reference/android/app/Service.html

Example 4-13. Publishing the broadcast event

Intent intent = new Intent(MyBroadcastMessageReceiver.class.getName());
intent.putExtra("some additional data", choice);
someActivity.sendBroadcast(intent);

4.8 Starting a Service After Device Reboot
Ashwini Shahapurkar

Problem
You have a Service in your app and you want it to start after the phone reboots.

Solution
Listen to the Intent for boot events and start the Service when the event occurs.

Discussion
Whenever a platform boot is completed, an Intent is broadcast with the
android.intent.action.BOOT_COMPLETED action. You need to register your application to
receive this Intent, and to request permission for it. To do so, add the following code
to your AndroidManifest.xml file:

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<application>
 <receiver android:name=".ServiceManager">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
...

For ServiceManager to be the broadcast receiver that receives the Intent for the boot
event, the ServiceManager class would be coded as shown in Example 4-14.

Example 4-14. The BroadcastReceiver implementation

public class ServiceManager extends BroadcastReceiver {

 Context mContext;
 private final String BOOT_ACTION = "android.intent.action.BOOT_COMPLETED";

 @Override
 public void onReceive(Context context, Intent intent) {
 // All registered broadcasts are received by this
 mContext = context;
 String action = intent.getAction();
 if (action.equalsIgnoreCase(BOOT_ACTION)) {
 // Check for boot complete event & start your service

208 | Chapter 4: Inter-/Intra-Process Communication

 startService();
 }
 }

 private void startService() {
 // Here, you will start your service
 Intent mServiceIntent = new Intent();
 mServiceIntent.setAction("com.bootservice.test.DataService");
 mContext.startService(mServiceIntent);
 }
}

4.9 Creating a Responsive Application Using Threads
Amir Alagic

Problem
You have an application that performs long tasks, and you don’t want your applica‐
tion to appear nonresponsive while these are ongoing.

Solution
By using threads, you can create an application that is responsive even when it is han‐
dling time-consuming operations.

Discussion
To make your application responsive while time-consuming operations are running
on the Android OS you have a few options. If you already know Java, you know you
can create a class that extends the Thread class and overrides the public void run()
method and then call the start() method on that object to run the time-consuming
process. If your class already extends another class, you can implement the Runnable
interface. Another approach is to create your own class that extends Android’s
AsyncTask class, but we will talk about AsyncTask in Recipe 4.10.

In the early days of Java and Android, we were taught about direct use of the Thread
class. This pattern was coded as follows:

Thread thread = new Thread(new Runnable() { // Deprecated, do not use!
 public void run() {
 getServerData();
 }
});
thread.start();

There are many issues around this usage of threads, but the biggest strike against it is
the overhead of creating threads. For all but the simplest cases, it is now recom‐

4.9 Creating a Responsive Application Using Threads | 209

mended to use thread pools, which have been in Java for half of its lifetime.
Example 4-15 shows the pool-based implementation of this class.

Example 4-15. The networked Activity implementation

public class NetworkConnection extends Activity {

 ExecutorService pool = Executors.newSingleThreadExecutor();

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 pool.submit(new Runnable() {
 public void run() {
 getServerData();
 }
 });
 }
}

As you can see, when we start our Activity in the onCreate() method we create and
submit a Runnable object. The Runnable method run() will be executed some time after
we call the submit() method on the pool. From here you can call another method or a
few other methods and operations that are time-consuming and that would otherwise
block the main thread and make your application look unresponsive.

Often when we are done with the thread we get results that we want to present to the
application user. If you try to update the GUI from the thread that you started (not
the main thread) your application will crash. The Android UI is not thread safe—this
was done deliberately, for performance reasons—so that if you try to change any UI
component (even a single call to, e.g, someTextView.setText()) from a thread other than
the main thread, your app will crash.

Of course, there are several ways to send data from background threads to the UI.
One way is to use a Handler class; see Recipe 4.11. Alternatively, you can divide your
code differently using AsyncTask (see Recipe 4.10).

4.10 Using AsyncTask to Do Background Processing
Johan Pelgrim

Problem
You have to do some heavy processing, or load resources from the network, and you
want to show the progress and results in the UI.

210 | Chapter 4: Inter-/Intra-Process Communication

Solution
Use AsyncTask and ProgressDialog.

Discussion
As explained in the Processes and Threads” section of the Android Developers
API Guides, you should never block the UI thread, or access the Android UI toolkit
from outside the UI thread. Bad things will happen if you do.

You can run processes in the background and update the UI inside the UI thread
(a.k.a. the main thread) in several ways, but using the AsyncTask class is very conve‐
nient and every Android developer should know how to do so.

The steps boil down to creating a class that extends AsyncTask. AsyncTask itself is
abstract and has one abstract method, Result doInBackground(Params… params);. The
AsyncTask simply creates a callable working thread in which your implementation of
doInBackground() runs. Result and Params are two of the types we need to define in our
class definition. The third is the Progress type, which we will talk about later.

Our first implementation will do everything in the background, showing the user a
spinner in the title bar and updating the ListView once the processing is done. This is
the typical use case, not interfering with the user’s task at hand and updating the UI
when we have retrieved the result.

The second implementation will use a modal dialog to show the processing progress‐
ing in the background. In some cases we want to prevent the user from doing any‐
thing else when some processing takes place, and this is a good way to do just that.

We will create a UI that contains three Buttons and a ListView. The first button is to
start our first refresh process. The second is for the other refresh process and the
third is to clear the results in the ListView (see Example 4-16).

Example 4-16. The main layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:text="Refresh 1" android:id="@+id/button1"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_weight="1"></Button>
 <Button android:text="Refresh 2" android:id="@+id/button2"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_weight="1"></Button>
 <Button android:text="Clear" android:id="@+id/button3"

4.10 Using AsyncTask to Do Background Processing | 211

https://developer.android.com/guide/topics/fundamentals/processes-and-threads.html
https://developer.android.com/guide/topics/fundamentals/processes-and-threads.html

 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_weight="1"></Button>
 </LinearLayout>
 <ListView android:id="@+id/listView1" android:layout_height="fill_parent"
 android:layout_width="fill_parent"></ListView>
</LinearLayout>

We assign these UI elements to various fields in onCreate() and add some click listen‐
ers (see Example 4-17).

Example 4-17. The onCreate() and onItemClick() methods

ListView mListView;
Button mClear;
Button mRefresh1;
Button mRefresh2;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mListView = (ListView) findViewById(R.id.listView1);
 mListView.setTextFilterEnabled(true);
 mListView.setOnItemClickListener(this);

 mRefresh1 = (Button) findViewById(R.id.button1);

 mClear = (Button) findViewById(R.id.button3);
 mClear.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 mListView.setAdapter(null);
 }
 });

}

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
 Datum datum = (Datum) mListView.getItemAtPosition(position);
 Uri uri = Uri.parse("http://androidcookbook.com/Recipe.seam?recipeId=" +
 datum.getId());
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 this.startActivity(intent);
}

The following subsections describe two use cases: processing in the background and
processing in the foreground.

Use case 1: Processing in the background
First we create an inner class that extends AsyncTask:

212 | Chapter 4: Inter-/Intra-Process Communication

protected class LoadRecipesTask1 extends AsyncTask<String, Void, ArrayList<Datum>> {
...
}

As you can see, we must supply three types to the class definition. The first is the type
of the parameter we will provide when starting this background task—in our case a
String, containing a URL. The second type is used for progress updates (we will use
this later). The third type is the type returned by our implementation of the
doInBackground() method, and typically is something with which you can update a spe‐
cific UI element (a ListView in our case).

Let’s implement the doInBackground() method:
@Override
protected ArrayList<Datum> doInBackground(String... urls) {
 ArrayList<Datum> datumList = new ArrayList<Datum>();
 try {
 datumList = parse(urls[0]);
 } catch (IOException e) {
 e.printStackTrace();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }
 return datumList;
}

As you can see, this is pretty simple. The parse() method—which creates a list of Datum
objects—is not shown as it’s related to a specific data format in one application. The
result of the doInBackground() method is then passed as an argument to the
onPostExecute() method in the same (inner) class. In this method we are allowed to
update the UI elements in our layout, so we set the adapter of the ListView to show our
result:

@Override
protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(MainActivity.this,
 R.layout.list_item, result));
}

Now we need a way to start this task. We do this in mRefresh1’s onClickListener() by call‐
ing the execute(Params… params) method of AsyncTask (execute(String… urls) in our case):

mRefresh1.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 LoadRecipesTask1 mLoadRecipesTask = new LoadRecipesTask1();
 mLoadRecipesTask.execute(
 "http://androidcookbook.com/seam/resource/rest/recipe/list");
 }
});

4.10 Using AsyncTask to Do Background Processing | 213

Now, when we start the app it indeed retrieves the recipes and fills the ListView, but
the user has no idea that something is happening in the background. In order to
notify the user of ongoing activity, we can set the window state to “indefinite pro‐
gress”; this displays a small progress animation in the top right of our app’s title bar.
We request this feature by calling the following method in onCreate():
requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS). (Be aware that this feature is
deprecated; we will show a better way to keep the user informed on progress in use
case 2, next.)

Then we can start the progress animation by calling the set

ProgressBarIndeterminateVisibility(boolean visibility) method from within a new
method in our inner class, the onPreExecute() method:

protected void onPreExecute() {
 MainActivity.this.setProgressBarIndeterminateVisibility(true);
}

We stop the spinning progress bar in our window title by calling the same method
from within our onPostExecute() method, which will become:

protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(MainActivity.this,
 R.layout.list_item, result));
 MainActivity.this.setProgressBarIndeterminateVisibility(false);
}

We’re done! Take your app for a spin (pun intended). See Figure 4-2.

Figure 4-2. The AsyncTask demo in action

As you can see, this is a nifty feature for creating a better user experience!

Use case 2: Processing in the foreground
In this example, we show a modal dialog to the user that displays the progress of
loading the recipes in the background. Such a dialog is called a ProgressDialog. First we
add it as a field to our Activity:

214 | Chapter 4: Inter-/Intra-Process Communication

ProgressDialog mProgressDialog;

Then we add the onCreateDialog() method to be able to answer showDialog() calls and
create our dialog:

protected Dialog onCreateDialog(int id) {
 switch (id) {
 case DIALOG_KEY:
 mProgressDialog = new ProgressDialog(this);
 mProgressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
 mProgressDialog.setMessage("Retrieving recipes...");
 mProgressDialog.setCancelable(false);
 return mProgressDialog;
 }
 return null;
 }

We should handle the request and creation of all dialogs here. The DIALOG_KEY is an
int constant with an arbitrary value (we used 0) to identify this dialog.

We set the progress style to STYLE_HORIZONTAL, which shows a horizontal progress
bar. The default is STYLE_SPINNER.

We set our custom message, which is displayed above the progress bar.

By calling setCancelable() with the argument false we disable the Back button,
making this dialog modal.

Our new implementation of AsyncTask is as shown in Example 4-18.

Example 4-18. The AsyncTask implementation

protected class LoadRecipesTask2 extends AsyncTask<String, Integer, ArrayList<Datum>>{

 @Override
 protected void onPreExecute() {
 mProgressDialog.show();
 }

 @Override
 protected ArrayList<Datum> doInBackground(String... urls) {
 ArrayList<Datum> datumList = new ArrayList<Datum>();
 for (int i = 0; i < urls.length; i++) {
 try {
 datumList = parse(urls[i]);
 publishProgress((int) (((i+1) / (float) urls.length) * 100));
 } catch (IOException e) {
 e.printStackTrace();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }

4.10 Using AsyncTask to Do Background Processing | 215

 }
 return datumList;
 }

 @Override
 protected void onProgressUpdate(Integer... values) {
 mProgressDialog.setProgress(values[0]);
 }

 @Override
 protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(
 MainActivity.this, R.layout.list_item, result));
 mProgressDialog.dismiss();
 }
 }

We see a couple of new things here:

Before we start our background process we show the modal dialog.

In our background process we loop through all the URLs, expecting to receive
more than one. This will give us a good indication of our progress.

We can update the progress by calling publishProgress(). Notice that the argument
is of type int, which will be auto-boxed to the second type defined in our class
definition, Integer.

The call to publishProgress() will result in a call to onProgressUpdate(), which again
has arguments of type Integer. You could, of course, use String or something else
as the argument type by simply changing the second type in the inner class defi‐
nition to String and, of course, in the call to publishProgress().

We use the first Integer to set the new progress value in our ProgressDialog.

We dismiss the dialog, which removes it.

Now we can bind this all together by implementing our onClickListener() for our sec‐
ond refresh button.:

mRefresh2.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 LoadRecipesTask2 mLoadRecipesTask = new LoadRecipesTask2();
 String url =
 "http://androidcookbook.com/seam/resource/rest/recipe/list";
 showDialog(DIALOG_KEY);
 mLoadRecipesTask.execute(url, url, url, url, url);

216 | Chapter 4: Inter-/Intra-Process Communication

 }
});

We show the dialog by calling showDialog() with the DIALOG_KEY argument, which
will trigger our previously defined onCreateDialog() method.

We execute our new task with five URLs, simply to show a little bit of progress.

It will look something like Figure 4-3.

Figure 4-3. Retrieving recipes in the background

Implementing background tasks with AsyncTask is very simple and should be done for
all long-running processes that also need to update your user interface.

See Also
The developer documentation on processes and threads.

4.10 Using AsyncTask to Do Background Processing | 217

https://developer.android.com/guide/topics/fundamentals/processes-and-threads.html

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory RecipeList (see “Getting and Using the Code Examples” on page 18).

4.11 Sending Messages Between Threads Using an
Activity Thread Queue and Handler
Vladimir Kroz

Problem
You need to pass information or data from a Service or other background task to an
Activity. Because Activities run on the UI thread, it is not safe to call them from a
background thread.

Solution
You can write a nested class that extends Android’s Handler class, then override the
handleMessage() method that will read messages from the thread queue. Pass this han‐
dler to the worker thread, usually via the worker class’s constructor; in the worker
thread, post messages using the various obtainMessage() and sendMessage() methods.
This will cause the Activity to be called in the handleMessage() method, but on the event
thread so that you can safely update the GUI.

Discussion
There are many situations in which you must have a thread running in the back‐
ground and send information to the main Activity’s UI thread. At the architectural
level, you can take one of the following two approaches:

• Use Android’s AsyncTask class.
• Start a new thread.

Though using AsyncTask is very convenient, sometimes you really need to construct a
worker thread by yourself. In such situations, you likely will need to send some infor‐
mation back to the Activity thread. Keep in mind that Android doesn’t allow other
threads to modify any content of the main UI thread. Instead, you must wrap the data
into messages and send the messages through the message queue.

To do this, you must first add an instance of the Handler class to, for example, your
MapActivity instance (see Example 4-19).

218 | Chapter 4: Inter-/Intra-Process Communication

https://github.com/IanDarwin/Android-Cookbook-Examples

Example 4-19. The handler

public class MyMap extends MapActivity {
 .
 public Handler _handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 Log.d(TAG, String.format("Handler.handleMessage(): msg=%s", msg));
 // This is where the main Activity thread receives messages
 // Put incoming message handling posted by other threads here
 super.handleMessage(msg);
 }

 };
.
}

Now, in the worker thread, post a message to the Activity’s main queue whenever you
need to add the Handler class instance to your main Activity instance (see
Example 4-20).

Example 4-20. Posting a Runnable to the queue

 /**
 * Performs background job
 */
 class MyThreadRunner implements Runnable {
 // @Override
 public void run() {
 while (!Thread.currentThread().isInterrupted()) {
 // Dummy message -- real implementation
 // will put some meaningful data in it
 Message msg = Message.obtain();
 msg.what = 999;
 MyMap.this._handler.sendMessage(msg);
 // Dummy code to simulate delay while working with remote server
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 }

4.11 Sending Messages Between Threads Using an Activity Thread Queue and Handler | 219

4.12 Creating an Android Epoch HTML/JavaScript Calendar
Wagied Davids

Problem
You need a custom calendar written in JavaScript, and you want it to understand how
to interact between JavaScript and Java.

Solution
Use a WebView component to load an HTML file containing the Epoch JavaScript calen‐
dar component.

An epoch is a contiguous set of years, such as the years of recorded
history BC or BCE, the years AD or CE, or the years since “time
zero,” the beginning of modern computer timekeeping (January 1,
1970 in Unix, macOS, Java 1.0’s Date class, some MS Windows time
functions, and so on). The “Epoch” discussed here is a JavaScript
calendaring package that takes its name from the conventional
meaning of epoch.

Briefly, here are the steps in creating this calendar app:

1. Download the Epoch DHTML/JavaScript calendar.
2. Create an assets directory under your Android project folder (e.g., TestCalendar/

assets/).
3. Code your main HTML file for referencing the Epoch calendar.
4. Create an Android Activity for launching the Epoch calendar.

Files placed in the Android assets directory are referenced as file:///android_asset/
(note the triple leading slash and the singular spelling of asset).

Discussion
To enable interaction between the JavaScript-based view layer and the Java-based
logic layer, a Java‒JavaScript bridge interface is required: the MyJavaScriptInterface
inner class. The onDayClick() function, shown in Example 4-21, shows how to
call a JavaScript function from an Android Activity—for example,
webview.loadUrl("javascript: popup();");. The HTML/JavaScript component is shown in
Example 4-21, and the Java Activity code is shown in Example 4-22.

220 | Chapter 4: Inter-/Intra-Process Communication

http://www.javascriptkit.com/script/script2/epoch/index.shtml

Example 4-21. calendarview.html

<html>
 <head>
 <title>My Epoch DHTML JavaScript Calendar</title>
 <style type="text/css">
 dateheader {
 -background-color: #3399FF;
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 -border-radius: 10px;
 -padding: 5px;
 }
 </style>

 <style type="text/css">
 html {height:100%;}
 body {height:100%; margin:0; padding:0;}
 #bg {position:fixed; top:0; left:0; width:100%; height:100%;}
 #content {position:relative; z-index:1;}
 </style>
 <!--[if IE 6]>
 <style type="text/css">
 html {overflow-y:hidden;}
 body {overflow-y:auto;}
 #page-background {position:absolute; z-index:-1;}
 #content {position:static;padding:10px;}
 </style>
 <![endif]-->

 <link rel="stylesheet" type="text/css" href="epoch_v106/epoch_styles.css" />
 <script type="text/javascript" src="epoch_v106/epoch_classes.js"></script>

 <script type="text/javascript">
 /*You can also place this code in a separate
 file and link to it like epoch_classes.js*/
 var my_cal;

 window.onload = function () {
 my_cal = new Epoch('epoch_basic','flat',
 document.getElementById('basic_container'));
 };

 function popup() {
 var weekday=new Array("Sun","Mon","Tue","Wed","Thur","Fri","Sat");
 var monthname=new Array("Jan","Feb","Mar","Apr","May","Jun",
 "Jul","Aug","Sep","Oct","Nov","Dec");
 var date = my_cal.selectedDates.length > 0 ?
 my_cal.selectedDates[0] :
 null;
 if (date != null) {
 var day = date.getDate();
 var dayOfWeek= date.getDay();
 var month = date.getMonth();
 var yy = date.getYear();
 var year = (yy < 1000) ? yy + 1900 : yy;

4.12 Creating an Android Epoch HTML/JavaScript Calendar | 221

 /* Set the user-selected date in HTML form */
 var dateStr= weekday[dayOfWeek] + ", " + day + " " +
 monthname[month] + " " + year;
 document.getElementById("selected_date").value= dateStr;

 /* IMPORTANT:
 * Call Android JavaScript->Java bridge setting a
 * Java-field variable
 */
 window.android.setSelectedDate(date);
 window.android.setCalendarButton(date);
 }
 }
 </script>
 </head>
 <body>
 <div id="bg"></div>
 <div id="content">
 <div class="dateheader" align="center">
 <form name="form_selected_date">
 Selected day:
 <input id="selected_date" name="selected_date" type="text"
 readonly="true">
 </form>
 </div>
 <div id="basic_container" onClick="popup()"></div>
 </div>
 </body>
</head>>

Example 4-22. CalendarViewActivity.java

import java.util.Date;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.webkit.JsResult;
import android.webkit.WebChromeClient;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.Toast;

import com.pfizer.android.R;
import com.pfizer.android.utils.DateUtils;
import com.pfizer.android.view.screens.journal.CreateEntryScreen;

public class CalendarViewActivity extends Activity {

222 | Chapter 4: Inter-/Intra-Process Communication

 private static final String tag = "CalendarViewActivity";
 private ImageView calendarToJournalButton;
 private Button calendarDateButton;
 private WebView webview;
 private Date selectedCalDate;

 private final Handler jsHandler = new Handler();

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 Log.d(tag, "Creating View ...");
 super.onCreate(savedInstanceState);

 // Set the view layer
 Log.d(tag, "Setting-up the View Layer");
 setContentView(R.layout.calendar_view);

 // Go to CreateJournalEntry
 calendarToJournalButton = (ImageView) this.findViewById
 (R.id.calendarToJournalButton);
 calendarToJournalButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 Log.d(tag, "Re-directing -> CreateEntryScreen ...");
 Intent intent = intent =
 new Intent(getApplicationContext(),
 CreateEntryScreen.class);
 startActivity(intent);
 }
 });

 // User-selected calendar date
 calendarDateButton =
 (Button) this.findViewById(R.id.calendarDateButton);

 // Get access to the WebView holder
 webview = (WebView) this.findViewById(R.id.webview);

 // Get the settings
 WebSettings settings = webview.getSettings();

 // Enable JavaScript
 settings.setJavaScriptEnabled(true);

 // Enable ZoomControls visibility
 settings.setSupportZoom(true);

 // Add JavaScript interface
 webview.addJavaScriptInterface(new MyJavaScriptInterface(), "android");

 // Set the Chrome client
 webview.setWebChromeClient(new MyWebChromeClient());

 // Load the URL of the HTML file
 webview.loadUrl("file:///android_asset/calendarview.html");

4.12 Creating an Android Epoch HTML/JavaScript Calendar | 223

 }

 public void setCalendarButton(Date selectedCalDate) {
 Log.d(tag, jsHandler.obtainMessage().toString());
 calendarDateButton.setText(
 DateUtils.convertDateToSectionHeaderFormat(
 selectedCalDate.getTime()));
 }

 /**
 *
 * @param selectedCalDate
 */
 public void setSelectedCalDate(Date selectedCalDate) {
 this.selectedCalDate = selectedCalDate;
 }

 /**
 *
 * @return
 */
 public Date getSelectedCalDate() {
 return selectedCalDate;
 }

 /**
 * JAVA->JAVASCRIPT INTERFACE
 *
 * @author wagied
 *
 */
 final class MyJavaScriptInterface {
 private Date jsSelectedDate;
 MyJavaScriptInterface() {
 // EMPTY;
 }

 public void onDayClick() {
 jsHandler.post(new Runnable() {
 public void run() {
 // Java telling JavaScript to do things
 webview.loadUrl("javascript: popup();");
 }
 });
 }

 /**
 * NOTE: THIS FUNCTION IS BEING SET IN JAVASCRIPT
 * User-selected date in WebView
 *
 * @param dateStr
 */
 public void setSelectedDate(String dateStr) {
 Toast.makeText(getApplicationContext(), dateStr,
 Toast.LENGTH_SHORT).show();

224 | Chapter 4: Inter-/Intra-Process Communication

 Log.d(tag, "User Selected Date: JavaScript -> Java : " + dateStr);

 // Set the user-selected calendar date
 setJsSelectedDate(new Date(Date.parse(dateStr)));
 Log.d(tag, "java.util.Date Object: " +
 Date.parse(dateStr).toString());
 }
 private void setJsSelectedDate(Date userSelectedDate) {
 jsSelectedDate = userSelectedDate;
 }
 public Date getJsSelectedDate() {
 return jsSelectedDate;
 }
 }

 /**
 * Alert pop-up for debugging purposes
 *
 * @author wdavid01
 *
 */
 final class MyWebChromeClient extends WebChromeClient {
 @Override
 public boolean onJsAlert(WebView view, String url,
 String message, JsResult result) {
 Log.d(tag, message);
 result.confirm();
 return true;
 }
 }

 @Override
 public void onDestroy() {
 Log.d(tag, "Destroying View!");
 super.onDestroy();
 }
 }

For debugging purposes, a MyWebChromeClient is created—this is the final inner class
extending WebChromeClient defined near the end of the main class—and in particular
the onJsAlert() method is overridden.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory EpochJSCalendar (see “Getting and Using the Code Examples” on page 18).

4.12 Creating an Android Epoch HTML/JavaScript Calendar | 225

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 5

Graphics

Computer graphics are used for any kind of display for which there isn’t a GUI com‐
ponent: charting, displaying pictures, and so on. Graphics tools are used to create
GUI components as well as to draw shapes, lines, pictures, etc. Android is well provi‐
sioned for graphics, including a full implementation of OpenGL ES, a subset of
OpenGL intended for smaller devices.

This chapter starts with a recipe for using a custom font for special text effects, fol‐
lowed by some recipes on OpenGL graphics and one on graphical “touch” input.
From there we continue the input theme with various image capture techniques.
Then we have some recipes on graphics files, and one to round out the chapter dis‐
cussing “pinch to zoom,” using user touch input to scale graphical output.

5.1 Using a Custom Font
Ian Darwin

Problem
The range of fonts on Android devices is pretty small. You want something better.

Solution
Install a TTF or OTF version of your font in assets/fonts (creating this directory
if necessary). In your code, create a typeface from the “asset” and call the View’s
setTypeface() method. You’re done!

227

Discussion
You can provide one or more fonts with your application. We have not yet discovered
a documented way to install system-wide fonts. Beware of huge font files, as they will
be downloaded with your application, increasing its size.

Your custom font’s format should be TTF or OTF (TrueType or OpenType, a TTF
extension). You need to create a fonts subdirectory under assets in your project, and
install the font there.

While you can refer to the predefined fonts just using XML, you cannot refer to your
own fonts using XML. This may change someday, but for now the content model of
the android:typeface attribute is an XML enumeration containing only normal, sans,
serif, and monospace—that’s it! Therefore, you have to use code.

There are several Typeface.create() methods, including:

• create(String familyName, int style)

• create(TypeFace family, inst style)

• createFromAsset(AssetManager mgr, String path)

• createFromFile(File path)

• createFromFile(String path)

You can see how most of these should work. The parameter style is, as in Java, one of
several constants defined on the class representing fonts, here Typeface. You can create
representations of the built-in fonts, and variations on them, using the first two forms
in the list. The code in Example 5-2 uses the createFromAsset() method, so we don’t
have to worry about font locations. If you have stored the file on internal or external
storage (see Recipe 10.1), you could provide a File object or the font file’s absolute
path using the last two forms in the list. If the font file is on external storage, remem‐
ber to request permission in AndroidManifest.xml.

I used the nice Iceberg font, from SoftMaker Software GmbH. This font is copyrigh‐
ted and I do not have permission to redistribute it, so when you download the project
and want to run it, you will need to install a TrueType font file at assets/fonts/font‐
demo.ttf. Note that if the font is missing, the createFromAsset() method will return null;
the online version of the code provides error handling. If the font is invalid, Android
will silently ignore it and use a built-in font.

In this demo we provide two text areas, one using the built-in serif font and one using
a custom font. They are defined, and various attributes added, in main.xml (see
Example 5-1).

228 | Chapter 5: Graphics

http://www.softmaker.de

Example 5-1. XML layout with font specification

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/PlainTextView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/plain"
 android:textSize="36sp"
 android:typeface="serif"
 android:padding="10sp"
 android:gravity="center"
 />
<TextView
 android:id="@+id/FontView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/nicer"
 android:textSize="36sp"
 android:typeface="normal"
 android:padding="10sp"
 android:gravity="center"
 />
</LinearLayout>

Example 5-2 shows the source code.

Example 5-2. Setting a custom font

public class FontDemo extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView v = (TextView) findViewById(R.id.FontView);
 Typeface t = Typeface.createFromAsset(getAssets(),
 "fonts/fontdemo.ttf");
 v.setTypeface(t, Typeface.BOLD_ITALIC);
 }
}

Find the View you want to use your font in.

Create a Typeface object from one of the Typeface class’s static create() methods.

5.1 Using a Custom Font | 229

Message the Typeface into the View’s setTypeface() method.

If all is well, running the app should look like Figure 5-1.

Figure 5-1. Custom font

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory FontDemo (see “Getting and Using the Code Examples” on page 18).

5.2 Drawing a Spinning Cube with OpenGL ES
Marco Dinacci

Problem
You want to create a basic OpenGL ES application.

Solution
Create a GLSurfaceView and a custom Renderer that will draw a spinning cube.

Discussion
Android supports 3D graphics via the OpenGL ES API, a flavor of OpenGL specifi‐
cally designed for embedded devices. This recipe is not an OpenGL tutorial; it
assumes the reader already has basic OpenGL knowledge. The final result will look
like Figure 5-2.

230 | Chapter 5: Graphics

https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 5-2. OpenGL graphics sample

First we write a new Activity, and in the onCreate() method we create the two funda‐
mental objects we need to use the OpenGL API: a GLSurfaceView and a Renderer (see
Example 5-3).

Example 5-3. OpenGL demo Activity

public class OpenGLDemoActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 GLSurfaceView view = new GLSurfaceView(this);
 view.setRenderer(new OpenGLRenderer());
 setContentView(view);
 }
}

Example 5-4 is the code for our Renderer; it uses a simple Cube object we’ll describe later
to display a spinning cube.

Example 5-4. The renderer implementation

class OpenGLRenderer implements Renderer {

 private Cube mCube = new Cube();
 private float mCubeRotation;

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f);

5.2 Drawing a Spinning Cube with OpenGL ES | 231

 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_NICEST);

 }

 @Override
 public void onDrawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, 0.0f, -10.0f);
 gl.glRotatef(mCubeRotation, 1.0f, 1.0f, 1.0f);

 mCube.draw(gl);

 gl.glLoadIdentity();

 mCubeRotation -= 0.15f;
 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width, height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
 gl.glViewport(0, 0, width, height);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }
}

Our onSurfaceChanged() and onDrawFrame() methods are basically the equivalent of the
GLUT glutReshapeFunc() and glutDisplayFunc(). The first is called when the surface is
resized—for instance, when the phone switches between landscape and portrait
modes. The second is called at every frame, and that’s where we put the code to draw
our cube (see Example 5-5).

Example 5-5. The Cube class

class Cube {

 private FloatBuffer mVertexBuffer;
 private FloatBuffer mColorBuffer;
 private ByteBuffer mIndexBuffer;

 private float vertices[] = {
 -1.0f, -1.0f, -1.0f,

232 | Chapter 5: Graphics

 1.0f, -1.0f, -1.0f,
 1.0f, 1.0f, -1.0f,
 -1.0f, 1.0f, -1.0f,
 -1.0f, -1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,
 -1.0f, 1.0f, 1.0f
 };
 private float colors[] = {
 0.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f, 1.0f,
 1.0f, 0.5f, 0.0f, 1.0f,
 1.0f, 0.5f, 0.0f, 1.0f,
 1.0f, 0.0f, 0.0f, 1.0f,
 1.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f, 1.0f,
 1.0f, 0.0f, 1.0f, 1.0f
 };

 private byte indices[] = {
 0, 4, 5, 0, 5, 1,
 1, 5, 6, 1, 6, 2,
 2, 6, 7, 2, 7, 3,
 3, 7, 4, 3, 4, 0,
 4, 7, 6, 4, 6, 5,
 3, 0, 1, 3, 1, 2
 };

 public Cube() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 mVertexBuffer = byteBuf.asFloatBuffer();
 mVertexBuffer.put(vertices);
 mVertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(colors.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 mColorBuffer = byteBuf.asFloatBuffer();
 mColorBuffer.put(colors);
 mColorBuffer.position(0);

 mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
 mIndexBuffer.put(indices);
 mIndexBuffer.position(0);
 }

 public void draw(GL10 gl) {
 gl.glFrontFace(GL10.GL_CW);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer);
 gl.glColorPointer(4, GL10.GL_FLOAT, 0, mColorBuffer);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE,

5.2 Drawing a Spinning Cube with OpenGL ES | 233

 mIndexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
 }
}

The Cube uses two FloatBuffer objects to store vertex and color information and a
ByteBuffer to store the face indexes. In order for the buffers to work it is important to
set their order according to the endianness of the platform, using the order() method.
Once the buffers have been filled with the values from the arrays, the internal cursor
must be restored to the beginning of the data using buffer.position(0).

See Also
OpenGL ES.

5.3 Adding Controls to the OpenGL Spinning Cube
Marco Dinacci

Problem
You want to interact with an OpenGL polygon using your device’s keyboard.

Solution
Create a custom GLSurfaceView and override the onKeyUp() method to listen to the
KeyEvent created from a directional pad (D-pad).

Discussion
This recipe builds on Recipe 5.2 to show how to control the cube using a D-pad.
We’re going to increment the speed rotation along the x-axis and y-axis using the D-
pad’s directional keys. The biggest change from that recipe is that we now have our
custom class that extends the SurfaceView. We do this so that we can override the
onKeyUp() method and be notified when the user uses the D-pad.

The onCreate() method of our Activity looks like Example 5-6.

Example 5-6. The spinning cube Activity

public class SpinningCubeActivity2 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // go fullscreen

234 | Chapter 5: Graphics

https://www.khronos.org/opengles

 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // create our custom view
 GLSurfaceView view = new OpenGLSurfaceView(this);
 view.setRenderer((Renderer)view);
 setContentView(view);
 }
}

Our new GLSurfaceView also implements the Renderer interface. The onSurfaceCreated()
and onSurfaceChanged() methods are exactly the same as in Recipe 5.2; most of the
changes occur in onDrawFrame() as we introduce four new parameters: mXrot and mYrot to
control the rotation of the cube along the x-axis and y-axis, and mXspeed and mYSpeed to
store the speed of the rotation along the x-axis and y-axis. Each time the user clicks a
D-pad button we alter the speed of the cube by modifying these parameters.

Example 5-7 shows the full code of our new class.

Example 5-7. The GLSurfaceView implementation

class OpenGLSurfaceView extends GLSurfaceView implements Renderer {

 private Cube mCube;
 private float mXrot;
 private float mYrot;
 private float mXspeed;
 private float mYspeed;

 public OpenGLSurfaceView(Context context) {
 super(context);

 // give focus to the GLSurfaceView
 requestFocus();
 setFocusableInTouchMode(true);

 mCube = new Cube();
 }

 @Override
 public void onDrawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, 0.0f, -10.0f);

 gl.glRotatef(mXrot, 1.0f, 0.0f, 0.0f);
 gl.glRotatef(mYrot, 0.0f, 1.0f, 0.0f);

 mCube.draw(gl);

 gl.glLoadIdentity();

5.3 Adding Controls to the OpenGL Spinning Cube | 235

 mXrot += mXspeed;
 mYrot += mYspeed;
 }

 @Override
 public boolean onKeyUp(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_DPAD_LEFT)
 mYspeed -= 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_RIGHT)
 mYspeed += 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_UP)
 mXspeed -= 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_DOWN)
 mXspeed += 0.1f;

 return true;
 }

 // unchanged
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f);

 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_NICEST);
 }

 // unchanged
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width, height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
 gl.glViewport(0, 0, width, height);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }
}

The Cube is inherited from Recipe 5.2. Don’t forget to call requestFocus() and
setFocusableInTouchMode(true) in the constructor of the view, or else the key events will
not be received.

See Also
Recipe 5.2.

236 | Chapter 5: Graphics

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory SpinningCubeDemo (see “Getting and Using the Code Examples” on page
18).

5.4 Freehand Drawing Smooth Curves
Ian Darwin

Problem
You want to allow the user to draw smooth curves, such as freehand Bezier curves,
legal signatures, and so on.

Solution
Create a custom View with a carefully written OnTouchListener that handles the case
where input arrives faster than your code can process it; save the results in an array,
and draw them in onDraw().

Discussion
This code was originally written by Eric Burke of Square Inc., for signatures when
people use the Square app to capture credit card purchases. To be legally acceptable as
proof of purchase, the captured signatures have to be of good quality. Square has gra‐
ciously placed this code under the Apache Software License 2.0, but was not able to
provide a description of it as part of this recipe.

I have since adapted the signature code for use in JabaGator, my very simple, general-
purpose drawing program for the Java desktop and for Android (the fact that the
name rhymes with a well-known illustration program from Adobe is, of course,
purely coincidental).

Eric’s initial “by the book” drawing code worked but was very jerky and very slow.
Upon investigation, Square learned that Android’s graphics layer sends touch events
in “batches” when it cannot deliver them quickly enough individually. Each
MotionEvent delivered to onTouchEvent() may contain a number of touch coordinates—as
many as were captured since the last onTouchEvent() call. To draw a smooth curve, you
must get all of the points. You do this using the number of coordinates from
the TouchEvent method getHistorySize(), iterating over that count and calling
getHistoricalX(int) and getHistoricalY(int) to get the point locations (see Example 5-8).

5.4 Freehand Drawing Smooth Curves | 237

https://github.com/IanDarwin/Android-Cookbook-Examples

Example 5-8. Drawing all the points

// in onTouchEvent(TouchEvent):
for (int i=0; i < event.getHistorySize(); i++) {
 float historicalX = event.getHistoricalX(i);
 float historicalY = event.getHistoricalY(i);
 // add point (historicalX, historicalY) to your path...
}
// add point (eventX, eventY) to your path...

This provides significant improvements, but it still is too slow for people to draw with
—many nongeeks will wait for the drawing code to catch up with their finger if it
doesn’t draw quickly enough! The problem is that this simple solution calls
invalidate() after each line segment, which is correct but very slow as it forces
Android to redraw the entire screen. The solution to this problem is to call
invalidate() with just the region that you drew the line segment into, and it involves a
bit of arithmetic to get the region correct; see the expandDirtyRect() method in
Example 5-9. Here’s Eric’s description of the dirty-region algorithm:

1. Create a rectangle representing the dirty region.

2. Set the points for the four corners to the X and Y coordinates from the ACTION_DOWN
event.

3. For ACTION_MOVE and ACTION_UP, expand the rectangle to encompass the new
points. (Don’t forget the historical coordinates!)

4. Pass just the dirty rectangle to invalidate(). Android won’t redraw the rest.

This set of steps makes the drawing code responsive and the application usable.

Example 5-9 shows my version of the final code. I have several OnTouchListeners: one
for drawing curves, one for selecting objects, one for drawing rectangles, and so on.
That code is not complete at present, but the curve-drawing part works nicely.

Example 5-9. DrawingView.java

// This code is dual-licensed under Creative Commons and Apache Software License 2.0
public class DrawingView extends View {

 private static final float STROKE_WIDTH = 5f;

 /** Need to track this so the dirty region can accommodate the stroke. **/
 private static final float HALF_STROKE_WIDTH = STROKE_WIDTH / 2;

 private Paint paint = new Paint();
 private Path path = new Path();

 /**
 * Optimizes painting by invalidating the smallest possible area.
 */
 private float lastTouchX;

238 | Chapter 5: Graphics

 private float lastTouchY;
 private final RectF dirtyRect = new RectF();

 final OnTouchListener selectionAndMoveListener = // not shown;

 final OnTouchListener drawRectangleListener = // not shown;

 final OnTouchListener drawOvalListener = // not shown;

 final OnTouchListener drawPolyLineListener = new OnTouchListener() {

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 // Log.d("jabagator", "onTouch: " + event);
 float eventX = event.getX();
 float eventY = event.getY();

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 path.moveTo(eventX, eventY);
 lastTouchX = eventX;
 lastTouchY = eventY;
 // No end point yet, so don't waste cycles invalidating.
 return true;

 case MotionEvent.ACTION_MOVE:
 case MotionEvent.ACTION_UP:
 // Start tracking the dirty region.
 resetDirtyRect(eventX, eventY);

 // When the hardware tracks events faster than
 // they can be delivered to the app, the
 // event will contain a history of those skipped points.
 int historySize = event.getHistorySize();
 for (int i = 0; i < historySize; i++) {
 float historicalX = event.getHistoricalX(i);
 float historicalY = event.getHistoricalY(i);
 expandDirtyRect(historicalX, historicalY);
 path.lineTo(historicalX, historicalY);
 }

 // After replaying history, connect the line to the touch point.
 path.lineTo(eventX, eventY);
 break;

 default:
 Log.d("jabagator", "Unknown touch event " + event.toString());
 return false;
 }

 // Include half the stroke width to avoid clipping.
 invalidate(
 (int) (dirtyRect.left - HALF_STROKE_WIDTH),
 (int) (dirtyRect.top - HALF_STROKE_WIDTH),
 (int) (dirtyRect.right + HALF_STROKE_WIDTH),
 (int) (dirtyRect.bottom + HALF_STROKE_WIDTH));

5.4 Freehand Drawing Smooth Curves | 239

 lastTouchX = eventX;
 lastTouchY = eventY;

 return true;
 }

 /**
 * Called when replaying history to ensure the dirty region
 * includes all points.
 */
 private void expandDirtyRect(float historicalX, float historicalY) {
 if (historicalX < dirtyRect.left) {
 dirtyRect.left = historicalX;
 } else if (historicalX > dirtyRect.right) {
 dirtyRect.right = historicalX;
 }
 if (historicalY < dirtyRect.top) {
 dirtyRect.top = historicalY;
 } else if (historicalY > dirtyRect.bottom) {
 dirtyRect.bottom = historicalY;
 }
 }

 /**
 * Resets the dirty region when the motion event occurs.
 */
 private void resetDirtyRect(float eventX, float eventY) {

 // The lastTouchX and lastTouchY were set when the ACTION_DOWN
 // motion event occurred.
 dirtyRect.left = Math.min(lastTouchX, eventX);
 dirtyRect.right = Math.max(lastTouchX, eventX);
 dirtyRect.top = Math.min(lastTouchY, eventY);
 dirtyRect.bottom = Math.max(lastTouchY, eventY);
 }
 };

 /** DrawingView constructor */
 public DrawingView(Context context, AttributeSet attrs) {
 super(context, attrs);

 paint.setAntiAlias(true);
 paint.setColor(Color.WHITE);
 paint.setStyle(Paint.Style.STROKE);
 paint.setStrokeJoin(Paint.Join.ROUND);
 paint.setStrokeWidth(STROKE_WIDTH);

 setMode(MotionMode.DRAW_POLY);
 }

 public void clear() {
 path.reset();

 // Repaints the entire view.
 invalidate();

240 | Chapter 5: Graphics

 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawPath(path, paint);
 }

 /**
 * Sets the DrawingView into one of several modes, such
 * as "select" mode (e.g., for moving or resizing objects),
 * or "draw polyline" (smooth curve), "draw rectangle", etc.
 */
 private void setMode(MotionMode motionMode) {
 switch(motionMode) {
 case SELECT_AND_MOVE:
 setOnTouchListener(selectionAndMoveListener);
 break;
 case DRAW_POLY:
 setOnTouchListener(drawPolyLineListener);
 break;
 case DRAW_RECTANGLE:
 setOnTouchListener(drawRectangleListener);
 break;
 case DRAW_OVAL:
 setOnTouchListener(drawOvalListener);
 break;
 default:
 throw new IllegalStateException("Unknown MotionMode " + motionMode);
 }
 }
}

Figure 5-3 shows JabaGator running, showing my attempt at legible handwriting
(don’t worry, that’s not my legal signature).

Figure 5-3. Touch drawing sample

5.4 Freehand Drawing Smooth Curves | 241

This gives good drawing performance and smooth curves. The code to capture the
curves into the drawing data model is not shown as it is application-specific.

See Also
You can find the original code and Eric’s description on the Square Corner blog.

Source Download URL
You can download the source code for this example from GitHub.

5.5 Taking a Picture Using an Intent
Ian Darwin

Problem
You want to take a picture from within your app and don’t want to write a lot of code.

Solution
Create an Intent for MediaStore.ACTION_IMAGE_CAPTURE, tailor it a little, and call
startActivityForResult on this Intent. Provide an onActivityResult() callback to get noti‐
fied when the user is done with the camera.

Discussion
Example 5-10 shows code excerpted from the camera Activity in my JPSTrack appli‐
cation. Assuming that you want to save the image with your application’s data
(instead of in the Media Gallery location), you want to provide a file-based URI refer‐
ring to the target location, using intent.putExtra(MediaStore.EXTRA_OUTPUT, uri). Note
that the Intent handler may give different results on different vendors’ platforms.

Example 5-10. The camera capture Activity

public class MainActivity extends Activity {
 private static final String TAG = "CameraLaunchingActivity";
 private final static int ACTION_TAKE_PICTURE = 123;

 private File pictureFile;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void takePicture(View v) {

242 | Chapter 5: Graphics

https://medium.com/square-corner-blog/smooth-signatures-9d92df119ff8
https://github.com/IanDarwin/jabagator.android/

 public void takePicture(View v) {
 Log.d(TAG, "Starting Camera Activity");
 try {
 // Use an Intent to get the Camera app going.
 Intent imageIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 // Set up file to save image into.
 File baseDir = Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES);
 File pictureFile = new File(baseDir, "picture1234.jpg");
 imageIntent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 1);
 imageIntent.putExtra(MediaStore.EXTRA_OUTPUT,
 Uri.fromFile(pictureFile));
 // And away we go!
 startActivityForResult(imageIntent, ACTION_TAKE_PICTURE);
 } catch (Exception e) {
 Toast.makeText(this,
 getString(R.string.cant_start_activity) + ": " + e,
 Toast.LENGTH_LONG).show();
 }
 }

 /** Called when an Activity we started for Result is complete */
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 switch (requestCode) {
 case ACTION_TAKE_PICTURE:
 switch (resultCode) {
 case Activity.RESULT_OK:
 if (pictureFile.exists()) {
 final String message =
 getString(R.string.picture_saved) +
 " " + pictureFile.getAbsoluteFile();
 Log.d(TAG, message);
 Toast.makeText(this, message, Toast.LENGTH_LONG).show();
 } else {
 final String message =
 getString(R.string.picture_created_but_missing);
 Toast.makeText(this, message, Toast.LENGTH_LONG).show();
 }
 break;
 case Activity.RESULT_CANCELED:
 Toast.makeText(this, "Done", Toast.LENGTH_LONG).show();
 break;
 default:
 Toast.makeText(this, "Unexpected resultCode: " + resultCode,
 Toast.LENGTH_LONG).show();
 break;
 }
 break;
 default:
 Toast.makeText(
 this, "Unexpected requestCode: " + requestCode,
 Toast.LENGTH_LONG).show();
 }

5.5 Taking a Picture Using an Intent | 243

 }
}

This code will fail if you set the target API to 24 or higher, since
API 24 enforces a restriction on exporting URIs to another applica‐
tion via ClipData (the theory being that the other app might not
have READ_EXTERNAL_STORAGE data). It is recommended to use a
content:// URI, which requires either a content provider (Recipe
10.15) or a file provider (Recipe 10.19), both of which are sort of
overkill for this project.

See Also
Recipe 5.6.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory CameraIntent (see “Getting and Using the Code Examples” on page 18).

5.6 Taking a Picture Using android.media.Camera
Marco Dinacci

Problem
You want to have more control of the various stages involved when taking a picture.

Solution
Create a SurfaceView and implement the callbacks fired when the user takes a picture
in order to have control over the image capture process.

Discussion
Sometimes you may want more control over the stages involved when taking a pic‐
ture, or you may want to access and modify the raw image data acquired by the cam‐
era. In these cases, using a simple Intent to take a picture is not enough.

We’re going to create a new Activity and customize the view to make it full-screen
inside the onCreate() method (Example 5-11).

Example 5-11. The take picture Activity

public class TakePictureActivity extends Activity {
 private Preview mCameraView;

244 | Chapter 5: Graphics

https://github.com/IanDarwin/Android-Cookbook-Examples

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Force screen to landscape mode as showing a video in
 // portrait mode is not easily doable on all devices
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 // Hide window title and go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN);

 mCameraView= new Preview(this);
 setContentView(mCameraView);
 }
}

The Preview class is the bulk of the recipe. It handles the Surface where the pixels are
drawn, and the Camera object.

We define a ClickListener in the constructor so that the user can take a picture by just
tapping once on the screen. Once we get the notification of the click, we take a pic‐
ture, passing as parameters four (all optional) callbacks (see Example 5-12).

Example 5-12. The SurfaceView implementation

class Preview extends SurfaceView implements SurfaceHolder.Callback, PictureCallback
{

 private SurfaceHolder mHolder;
 private Camera mCamera;
 private RawCallback mRawCallback;

 public Preview(Context context) {
 super(context);

 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 mRawCallback = new RawCallback();

 setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 mCamera.takePicture(mRawCallback, mRawCallback, null,
 Preview.this);
 }
 });
 }

5.6 Taking a Picture Using android.media.Camera | 245

The Preview class implements the SurfaceHolder.Callback interface in order to be noti‐
fied when the underlying surface is created, changed, and destroyed. We’ll use these
callbacks to properly handle the Camera object (see Example 5-13).

Example 5-13. The surfaceChanged() method

 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {

 Camera.Parameters parameters = mCamera.getParameters();
 parameters.setPreviewSize(width, height);
 mCamera.setParameters(parameters);

 mCamera.startPreview();
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 mCamera = Camera.open();

 configure(mCamera);

 try {
 mCamera.setPreviewDisplay(holder);
 } catch (IOException exception) {
 closeCamera();
 }
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 closeCamera();
 }

As soon as the camera is created we call configure() in order to set the parameters the
camera will use to take a picture—things like flash mode, effects, picture format, pic‐
ture size, scene mode, and so on (Example 5-14). Since not all devices support all
kinds of features, always ask which features are supported before setting them.

Example 5-14. The configure() method

 private void configure(Camera camera) {
 Camera.Parameters params = camera.getParameters();

 // Configure image format. RGB_565 is the most common format.
 List<Integer> formats = params.getSupportedPictureFormats();
 if (formats.contains(PixelFormat.RGB_565))
 params.setPictureFormat(PixelFormat.RGB_565);
 else
 params.setPictureFormat(PixelFormat.JPEG);

246 | Chapter 5: Graphics

 // Choose the biggest picture size supported by the hardware
 List<Size> sizes = params.getSupportedPictureSizes();
 Camera.Size size = sizes.get(sizes.size()-1);
 params.setPictureSize(size.width, size.height);

 List<String> flashModes = params.getSupportedFlashModes();
 if (flashModes.size() > 0)
 params.setFlashMode(Camera.Parameters.FLASH_MODE_AUTO);

 // Action mode takes pictures of fast-moving objects
 List<String> sceneModes = params.getSupportedSceneModes();
 if (sceneModes.contains(Camera.Parameters.SCENE_MODE_ACTION))
 params.setSceneMode(Camera.Parameters.SCENE_MODE_ACTION);
 else
 params.setSceneMode(Camera.Parameters.SCENE_MODE_AUTO);

 // If you choose FOCUS_MODE_AUTO remember to call autoFocus() on
 // the Camera object before taking a picture
 params.setFocusMode(Camera.Parameters.FOCUS_MODE_FIXED);

 camera.setParameters(params);
 }

When the surface is destroyed, we close the camera and free its resources
(Example 5-15):

Example 5-15. The closeCamera() method

 private void closeCamera() {
 if (mCamera != null) {
 mCamera.stopPreview();
 mCamera.release();
 mCamera = null;
 }
 }

The jpeg callback is the last one called; this is where we restart the preview and save
the file on disk (Example 5-16):

Example 5-16. Restarting the preview

 @Override
 public void onPictureTaken(byte[] jpeg, Camera camera) {
 // Now that all callbacks have been called it is safe to resume preview
 mCamera.startPreview();

 saveFile(jpeg);
 }
}

Finally, we implement the ShutterCallback and we again implement the PictureCallback
to receive the uncompressed raw image data (see Example 5-17).

5.6 Taking a Picture Using android.media.Camera | 247

Example 5-17. The ShutterCallback implementation

class RawCallback implements ShutterCallback, PictureCallback {

 @Override
 public void onShutter() {
 // Notify the user, normally with a sound, that the picture has
 // been taken
 }

 @Override
 public void onPictureTaken(byte[] data, Camera camera) {
 // Manipulate uncompressed image data
 }
}

See Also
Recipe 5.5.

5.7 Scanning a Barcode or QR Code with the Google ZXing
Barcode Scanner
Daniel Fowler

Problem
You want your app to be able to scan a barcode or QR code (“QR” originally stood for
Quick Response).

Solution
Use an Intent to access the scanning functionality exposed by the Google ZXing bar‐
code scanner.

Discussion
One of the great features of Android is how easy it is to tap into existing functionality.
Scanning barcodes and QR codes is a good example. Google has a free scanning app
that you can access via an Intent; thus, an app can easily add scanning functionality,
opening up new interface, communication, and feature possibilities.

248 | Chapter 5: Graphics

The program in this recipe is an example of how to access the Google barcode
scanner via an Intent. First, make sure the Google barcode scanner is installed. In
Figure 5-4 there are three buttons that let the user choose to scan either a QR code, a
product barcode, or something else. There are two TextViews to display the type of bar‐
code scanned and the data it contains. The layout is conventional, a vertical
LinearLayout, so we don’t need to reproduce it here.

Figure 5-4. Barcode scanner application

The Activity code is shown in Example 5-18; depending on which button is pressed,
the program puts the relevant parameters into the Intent before starting the ZXing
Activity, and waits for the result.

Example 5-18. Scan program main Activity

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
 public void HandleClick(View arg0) {
 Intent intent = new Intent("com.google.zxing.client.android.SCAN");
 switch(arg0.getId()) {
 case R.id.butQR:
 intent.putExtra("SCAN_MODE", "QR_CODE_MODE");
 break;
 case R.id.butProd:
 intent.putExtra("SCAN_MODE", "PRODUCT_MODE");
 break;
 case R.id.butOther:

5.7 Scanning a Barcode or QR Code with the Google ZXing Barcode Scanner | 249

https://market.android.com/details?id=com.google.zxing.client.android

 intent.putExtra("SCAN_FORMATS",
 "CODE_39,CODE_93,CODE_128,DATA_MATRIX,ITF,CODABAR");
 break;
 }
 try {
 startActivityForResult(intent, 0); // Barcode scanner to scan for us
 } catch (ActivityNotFoundException e) {
 Toast.makeText(this, "Please install the ZXing Barcode Scanner app",
 Toast.LENGTH_LONG).show();
 }
 }
 public void onActivityResult(int requestCode, int resultCode, Intent intent) {
 if (requestCode == 0) {
 TextView tvStatus=(TextView)findViewById(R.id.tvStatus);
 TextView tvResult=(TextView)findViewById(R.id.tvResult);
 if (resultCode == RESULT_OK) {
 tvStatus.setText(intent.getStringExtra("SCAN_RESULT_FORMAT"));
 tvResult.setText(intent.getStringExtra("SCAN_RESULT"));
 } else if (resultCode == RESULT_CANCELED) {
 tvStatus.setText("Press a button to start a scan.");
 tvResult.setText("Scan cancelled.");
 }
 }
 }
}

Notice, in the table that follows, how it’s possible to scan for a family of barcodes
(using SCAN_MODE) or for a specific type of barcode (using SCAN_FORMATS). If you know
what type of barcode is being decoded, setting SCAN_FORMATS to that particular type may
result in faster decoding (because the ZXing app won’t try to run through all the bar‐
code decoding algorithms). For example, you could use intent.putExtra("SCAN_FORMATS",
"CODE_39"). To use multiple formats, you’d pass a comma-separated list; refer back to
Example 5-18.

SCAN_MODE SCAN_FORMATS

QR_CODE_MODE QR_CODE

PRODUCT_MODE EAN_13

EAN_8

RSS_14

UPC_A

UPC_E

ONE_D_MODE As for PRODUCT_MODE, plus:

CODE_39

CODE_93

CODE_128

ITF

DATA_MATRIX_MODE DATA_MATRIX

250 | Chapter 5: Graphics

SCAN_MODE SCAN_FORMATS

AZTEC_MODE AZTEC (beta)

PDF417_MODE PDF_417 (beta)

Now go and make that scanning inventory control or grocery list app you’ve been
thinking of!

See Also
XZing, the developer documentation on intents and intent filters.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory ScanBarcode (see “Getting and Using the Code Examples” on page 18).

5.8 Using AndroidPlot to Display Charts and Graphs
Rachee Singh

Problem
You want to display data graphically in an Android application.

Solution
Use one of the many third-party graph libraries available for Android. In this example
we will use AndroidPlot, an open source library, to depict a simple graph.

Discussion
You can either download the AndroidPlot library and add it to your libs folder or,
preferably, add the coordinates com.androidplot:androidplot-core:jar:1.2.1 to your build
scripts or add this as a module dependency in Android Studio.

In our sample application, we are hardcoding some data and showing the plot corre‐
sponding to the data in the application. So, we need to add an (x,y) plot to our XML
layout (main.xml). Example 5-19 shows what main.xml looks like with an XYPlot com‐
ponent in a linear layout.

Example 5-19. The XML layout with XYPlot

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"

5.8 Using AndroidPlot to Display Charts and Graphs | 251

https://github.com/zxing/zxing
https://developer.android.com/guide/topics/intents/intents-filters.html
https://github.com/IanDarwin/Android-Cookbook-Examples
http://androidplot.com/wiki/Download

 android:layout_height="fill_parent"
 >
 <com.androidplot.xy.XYPlot
 android:id="@+id/mySimpleXYPlot"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 title="Stats"/>
</LinearLayout>

Now, in the application code, get a reference to the XYPlot defined in the XML:
mySimpleXYPlot = (XYPlot) findViewById(R.id.mySimpleXYPlot);

Initialize two arrays of numbers for which the plot will be displayed:
// Create two arrays of y-values to plot:
Number[] series1Numbers = {1, 8, 5, 2, 7, 4};
Number[] series2Numbers = {4, 6, 3, 8, 2, 10};

Turn the arrays into XYSeries:
XYSeries series1 = new SimpleXYSeries(
 // SimpleXYSeries takes a List, so turn our array into a List
 Arrays.asList(series1Numbers),
 // Y_VALS_ONLY means use the element index as the x-value
 SimpleXYSeries.ArrayFormat.Y_VALS_ONLY,
 // Set the display title of the series
 "Series1");

Create a formatter to use for drawing a series using LineAndPointRenderer:
LineAndPointFormatter series1Format = new LineAndPointFormatter(
 Color.rgb(0, 200, 0), // line color
 Color.rgb(0, 100, 0), // point color
 Color.rgb(150, 190, 150)); // fill color (optional)

Add series1 and series2 to the XYPlot:
mySimpleXYPlot.addSeries(series1, series1Format);
mySimpleXYPlot.addSeries(series2,
 new LineAndPointFormatter(Color.rgb(0, 0, 200),
 Color.rgb(0, 0, 100), Color.rgb(150, 150, 190)));

And make it look cleaner:
// Reduce the number of range labels
mySimpleXYPlot.setTicksPerRangeLabel(3);

// By default, AndroidPlot displays developer guides to aid in laying out
// your plot. To get rid of them call disableAllMarkup().
mySimpleXYPlot.disableAllMarkup();

mySimpleXYPlot.getBackgroundPaint().setAlpha(0);
mySimpleXYPlot.getGraphWidget().getBackgroundPaint().setAlpha(0);
mySimpleXYPlot.getGraphWidget().getGridBackgroundPaint().setAlpha(0);

Run the application! It should look like Figure 5-5.

252 | Chapter 5: Graphics

Figure 5-5. AndroidPlot display

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory AndroidPlot (see “Getting and Using the Code Examples” on page 18).

About Android Launcher Icons
One important step in getting an application ready for publishing is creating the
launcher icon. The icon will usually be the most common graphical representation of
the app that a user encounters. It will represent the app on the Applications screen, in
Manage Applications, and as a shortcut if added to the Home screen. A good icon fos‐
ters a positive first impression of the app, and helps the app stand out in the crowd.

These files must be in the PNG (often pronounced “ping”) or Portable Network
Graphics file format, a format supported by most graphical applications nowadays.
They also should be in a range of sizes, which we’ll discuss here.

Android supports different screen densities, measured in dots per inch (dpi). These
are grouped into densities such as medium density (mdpi), high density (hdpi), extra-
high density (xhdpi), and so on. When a new project is created in Android Studio,
default launcher icons are generated in the mipmap folders; older projects used the
drawable folder, which is still used for drawables other than the application’s launcher
icon. For best results (sharp images with no pixelation), a project should include an
icon for all the possible screen densities that the app will encounter. To do this, place
icon files of the correct size into the mipmap folders, as shown in Table 5-1.

5.8 Using AndroidPlot to Display Charts and Graphs | 253

https://github.com/IanDarwin/Android-Cookbook-Examples

Table 5-1. Launcher icon sizes

Size Folder Purpose
36×36-pixel icon res/mipmap-ldpi (optional) Low-density screens (approx. 120 dpi)

48×48-pixel icon res/mipmap-mdpi Medium-density screens (approx. 160 dpi)

72×72-pixel icon res/mipmap-hdpi High-density screens (approx. 240 dpi)

96×96-pixel icon res/mipmap-xhdpi Extra-high-density screens (approx. 320 dpi)

144×144-pixel icon res/mipmap-xxhdpi Extra-extra-high density screens (approx. 480 dpi)

192×192-pixel icon res/mipmap-xxxhdpi Extra-extra-extra-high-density screens (approx. 640 dpi)

Each icon must include a border around the central image, used for onscreen spacing
and minor image protrusions (see Figure 5-6). The recommended border is one-
twelfth of the icon size. This means that the space the actual icon image occupies is
smaller than the icon pixel size:

• For a 36×36 icon, the image size is 30×30 pixels
• For a 48×48 icon, the image size is 40×40 pixels
• For a 72×72 icon, the image size is 60×60 pixels
• For a 96×96 icon, the image size is 80×80 pixels
• For a 144×144 icon, the image size is 120×120 pixels
• For a 192×192 icon, the image size is 160×160 pixels

Figure 5-6. Icon with border

We discuss programs that can be used to create launcher icons in Recipe 5.9 and
Recipe 5.10.

5.9 Using Inkscape to Create an Android Launcher Icon
from OpenClipArt.org
Daniel Fowler

Problem
You want to set your app apart from others and make it look professional with a good
launcher icon.

254 | Chapter 5: Graphics

Solution
Inkscape is a free and feature-rich graphics program that can export to a bitmap file;
you can use it to create the variously sized icons needed for an app.

Discussion
You need a graphics program to design the graphical resources used in an Android
application. Inkscape is a free, multiplatform graphics program with some very pow‐
erful features. You can use it to generate high-quality vector graphics that can then be
exported to any required resolution. This is ideal for generating Android launcher
icons (and other graphical resources). See the Inkscape website for more information
on the program and to download the latest version.

The required sizes are described in “About Android Launcher Icons” on page 253.
When designing an icon, it’s better to work with images that are larger than the
required size. A larger image is easier to work with in a graphics program and easily
scaled down when completed. An image that is 576×576 pixels is divisible equally by
all the icon sizes, and this is a reasonable size in which to design. For a vector-based
graphics package such as Inkscape, the image size is irrelevant; it can be scaled up and
down without losing quality. Inkscape uses the open Scalable Vector Graphics (SVG)
format. Image detail is only lost when the final bitmap images are produced from the
vector image.

If you want to learn how to design images in Inkscape, you can use the many tutorials
that are available both via the Help menu and online; the Inkscape Tutorials Blog is a
good tutorial reference.

Once you have designed an image in Inkscape, you can export it to a PNG file for use
as an app icon. In the following example, the image to be converted to icons came
from the “Creating a Coffee Cup with Inkscape” tutorial. If you follow the tutorial,
you’ll create the image shown in Figure 5-7.

Figure 5-7. A cup of java

If you don’t want to follow the tutorial, you can obtain a coffee cup image from
Openclipart, a great source of free images (see Figure 5-8). Search for “coffee” and
you’ll see various coffee-related images, including the one shown in Figure 5-7,

5.9 Using Inkscape to Create an Android Launcher Icon from OpenClipArt.org | 255

https://inkscape.org/en/
https://inkscapetutorials.org/
http://vector.tutsplus.com/tutorials/illustration/creating-a-coffee-cup-with-inkscape/
https://openclipart.org/

uploaded by this recipe’s author. Select the image, click the View SVG button, and
then use your browser’s File → Save menu to save the image.

Figure 5-8. Searching for the perfect cup

You can now convert the image to an icon for whatever coffee-related app is currently
in the pipeline. The required icon sizes are generated from the image using the Ink‐
scape Export to PNG option. The image is opened and correctly proportioned for the
export. This can be done for any image designed or opened in Inkscape. Remember
that images should not be overly detailed or have too many colors (detail is reduced
during resizing), and that they should try to fill (or fit) a square area. It’s worth read‐
ing the Android Design guidelines, including those on launcher icons.

With the image open, resize the document to 576×576 pixels. To do this, use the
Document Properties option under the File menu (see Figure 5-9). In the “Custom
size” section, set Width and Height to 576 and check that Units is set to “px” (for pix‐
els). Also, make sure that the “Show page border” checkbox is ticked.

Close the Document Properties dialog, then drag two vertical and two horizontal
guides from the rulers (click and drag from any part of the page ruler; if the rulers
aren’t visible, use the View → Show/Hide → Rulers menu option to display them.)
Drag the guides inside each page border approximately one-twelfth of the width and
height of the visible page border. You’ll now set the accurate position of the guides
using the guide properties. Double-click each guide and set the following positions:

Guide x y
Top horizontal 0 528

Bottom horizontal 0 48

Left vertical 48 0

Right vertical 528 0

256 | Chapter 5: Graphics

https://developer.android.com/design/index.html
https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

Figure 5-9. The Document Properties dialog

At this point, you should be able to easily adjust the image to fit within the guides.
(Minor protrusions into the border area are allowed if required for image balance.)
Use the Edit → Select All menu item or press Ctrl-A to select the image, drag the
image into position, and then resize it as appropriate to fit within the box outlined by
the guides (see Figure 5-10).

With the image created and correctly proportioned, you can now create the bitmaps
for an Android project. In Inkscape, ensure that the image is not selected (click out‐
side the image), and then use the File → Export PNG Image menu option to bring up
the Export PNG Image dialog (see Figure 5-11). Select Page, then under “Image size”
set Width and Height as per Table 5-1; you do not need to change the dpi setting (it
will change as Width and Height are changed). Under Filename, browse to the project
directory for the icon and enter ic_launcher.png for the filename. Finally, click the
Export button to generate the icon. Repeat this process for all the icon resolutions.

5.9 Using Inkscape to Create an Android Launcher Icon from OpenClipArt.org | 257

Figure 5-10. Resizing in Inkscape

You should test the application on physical and virtual devices to ensure that the
icons display as expected (see Figure 5-12).

The icon files do not need to be called ic_launcher.png; see Recipe 5.10 for informa‐
tion on changing the launcher icon filename.

258 | Chapter 5: Graphics

Figure 5-11. The Export PNG Image dialog

Figure 5-12. Icon in use

See Also
Recipe 5.10; Inkscape, Inkscape Tutorials Blog, “Creating a Coffee Cup with Ink‐
scape” tutorial, Openclipart, Android design guidelines for launcher icons.

5.10 Using Paint.NET to Create Launcher Icons from
OpenClipArt.org
Daniel Fowler

Problem
You want to set your app apart from others and make it look professional with a good
launcher icon.

5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org | 259

https://inkscape.org/en/
http://inkscapetutorials.org/
https://design.tutsplus.com/tutorials/creating-a-coffee-cup-with-inkscape—vector-30
https://design.tutsplus.com/tutorials/creating-a-coffee-cup-with-inkscape—vector-30
https://openclipart.org/
https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

Solution
Openclipart.org is a good source of free graphics that you can adapt for use as an icon
for your app. Paint.NET is a good application for generating launcher icons.

Discussion
Developers with access to a graphic artist, either professionally or through friends, or
who are good artists themselves will have finer control over the graphics within their
applications. However, many developers find creating the graphics in an app a chore.
This recipe shows how to generate a good icon quickly, by compromising on the fine
control provided by a dedicated artist.

Android Studio comes with the Image Asset utility, which is good for creating basic
images at various densities, including launcher icons. To run the utility, with the app
folder highlighted in Studio, use the File → New → Image Asset menu option. To use
an existing clip art image as your starting point, click the tiny “Clip Art” icon in the
left panel. In Figure 5-13 we have selected the Heart icon (about one-third of the way
down in the All category), clicked OK, and changed the foreground and background
colors.

For a more complex icon, a good source of free images is Openclipart. The graphics
provided are in vector format, which makes them great for scaling to icon size. Icons
are a raster format, so once a suitable graphic has been chosen it needs to be con‐
verted to the Android icon format, Portable Network Graphics (PNG).

For this recipe, we will add an icon to the example “Hello, World” app created in
Recipe 1.15.

First, find a suitable free graphic as a starting point. Go to https://openclipart.org/ and
use the Search box. The search results may include graphics that don’t seem logical.
This is because the search not only includes the name of the graphic, but also tags and
descriptions, as well as partial words; therefore, graphics unrelated to the major
search term will appear, as will contributions with misspellings or whose names are in
a different language. But this also means that you may find an unexpected but suit‐
able graphic.

260 | Chapter 5: Graphics

https://openclipart.org/
https://openclipart.org/

Figure 5-13. Studio Image Asset tool—Generate Icons

Page through the search results, which are provided as thumbnails with title, contrib‐
utor name, date of submission, and number of downloads. When looking for a
graphic to use as an icon, keep these pointers in mind:

• Figure 5-14 shows the recommended color palette to fit in with the Android
theme; this is only a recommendation, but it is a useful guide. Avoid any color
that is too extreme.

5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org | 261

Figure 5-14. Color palette

• The graphic will be scaled down dramatically, so avoid graphics with too much
detail. The search result thumbnail itself is a good indicator.

• Clear and simple designs with smooth lines and bright, neutral colors will scale
well and look good on device screens.

• Keep in mind the Android design guidelines on launcher icons; graphical repre‐
sentations should be face on (viewed straight on), with a small drop shadow and
top lighting.

• Icons are square, so look for an image that, if bounded by a square, would fill
most of that square.

For the “Hello, World” app I used the search term earth (see Figure 5-15).

Figure 5-15. Clip art search results

262 | Chapter 5: Graphics

https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

I chose the graphic titled “A simple globe.” Click the graphic to bring up its details.
You can save the graphic to the local machine by clicking it (or clicking the View SVG
button) and using the browser’s File menu. However, using the browser’s File → Save
menu option or typing Ctrl-S will save the file as a vector file, which, as discussed ear‐
lier, is not a good format for an icon. Fortunately, the image’s Openclipart page has an
option to obtain the file as a PNG file; click the image you want, and the dialog in
Figure 5-16 will appear.

Figure 5-16. Convert to PNG with given size

On this page, we can use the PNG button to obtain PNG files in the image sizes
required (refer back to “About Android Launcher Icons” on page 253 for details on
sizes). In the box next to the PNG button type in the first image size required, 30 (for
the low-density icon; see Figure 5-16). We cannot put in the full icon size, 36, because
that would not leave any border.

Click the PNG button and then use the browser’s File menu (or Ctrl-S) to save the
generated PNG file. Then click the browser’s Back button. Clear the box next to the
PNG button and enter the size of the next icon graphic required: in this case, 40 for
the medium-density icon. Again click the PNG button and save the generated file. Do
the same for all the other sizes. When you are done, you should have five or six files,
each containing the same image at a different resolution (Figure 5-17). The graphics
files may not be perfectly square—for example, they may be 39×40 instead of 40×40
pixels—but the small difference does not matter.

Figure 5-17. Icons of Earth in some of the required sizes

You now need to resize the files to the correct icon sizes by adding the empty border.
You can do this in a graphics application such as GIMP, Inkscape, or Paint.NET
(Windows only). For this recipe, we will use Paint.NET.

5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org | 263

https://www.gimp.org/
http://inkscape.org/
http://www.getpaint.net

In Paint.NET, open the first graphics file. Set the secondary (background) color to
transparent by selecting the Window menu option → Colors or pressing F8; in the
Colors dialog, ensure that Secondary is selected in the drop-down, and then click the
More button to see the advanced options. Set the Transparency option in the bottom
right of the Colors dialog to zero (see Figure 5-18).

Figure 5-18. Color selection palette

Next, open the Canvas Size dialog by selecting the Image → Canvas Size menu option
or pressing Ctrl-Shift-R. Select the “By absolute size” radio button, but ignore the
“Maintain aspect ratio” checkbox (if the graphic is square, this checkbox can be
checked, but if not it should be unchecked). In the “Pixel size” options, set the correct
Width and Height for the icon for the given graphic—both 36 for the 30×30 graphic,
both 48 for the 40×40 graphic, both 72 for the 60×60 graphic, and so on for the other
sizes. Set the Anchor option to Middle. When you’re done, click OK (see
Figure 5-19). Save the resized image and repeat for the remaining sizes.

With a project open in Android Studio, under the res folder there will exist some mip‐
map folders for the launcher icon (the older drawable folders are used for all graphics
other than the launcher icons). Copy the new PNG files into the correct density fold‐
ers as ic_launcher.png, creating the required folder under res if needed. Table 5-2 pro‐
vides a summary.

Table 5-2. Icon formatting summary
Folder Icon size Image size dpi Android density Example screen Notes
mipmap-ldpi 36×36 30×30 120 ldpi Small QVGA

mipmap-mdpi 48×48 40×40 160 mdpi Normal HVGA Default icon in absence of
anything else

mipmap-hdpi 72×72 60×60 240 hdpi Normal WVGA800

mipmap-xhdpi 96×96 80×80 320 xhdpi WXGA720

264 | Chapter 5: Graphics

Folder Icon size Image size dpi Android density Example screen Notes
mipmap-xxhdpy 144×144 120×120 160 xxdpi Nexus 5

mipmap-xxxhdpy 192×192 160×160 160 xxxhdpi Nexus 6

Figure 5-19. Setting canvas size

Figure 5-20 illustrates the effect of adding a border around the image by specifying
the larger icon size; this allows for appropriate spacing between icons and accommo‐
dates any minor image protrusions.

Figure 5-20. An 80x80-pixel icon, with and without the recommended border

Note that QVGA stands for “Quarter VGA” (VGA was the “advanced” 640×480 video
on a model of the original IBM PC in the last century), HVGA is Half VGA, and
so on.

5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org | 265

The AndroidManifest.xml file references the icon file via the application element’s
android:icon attribute (here, android:icon="@mipmap/ic_launcher"). This is shown in
Figure 5-21.

Figure 5-21. The icon file setting in the AndroidManifest.xml file

The icon files do not need to be called ic_launcher.png. As long as
all the filenames in all the resource folders are valid and the same,
they can be named something else. For example, you might call
these icon files globe.png. If you change the filename from the
default, however, you will also need to change the value of the
android:icon attribute in the application element in the manifest
file (for example, from android:icon="@mipmap/ic_launcher" to
android:icon="@mipmap/globe").

Now you should be all set—you should see icons in each of the mipmap subdirecto‐
ries. Be sure to test the icons on various devices to make sure they look okay.

Remember to give thanks for free stuff; in this case I thank Open Clipart Library con‐
tributor jhnri4.

See Also
Recipe 1.15; Android design guidelines for icons, Openclipart, Paint.NET, Inkscape,
GIMP.

266 | Chapter 5: Graphics

https://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
https://openclipart.org/
http://www.getpaint.net/
http://inkscape.org/
https://www.gimp.org/

5.11 Using Nine Patch Files
Daniel Fowler

Problem
When designing a user interface, you want to change the default view backgrounds to
fit in with an app’s overall style. The backgrounds must be able to scale correctly for
variously sized views.

Solution
Use Android’s NinePatch files to provide support for scaling of backgrounds as view
sizes change.

Discussion
In the following picture, the word “Text” has a background that is a rounded rectan‐
gle (a black border with a gray background). The rectangle has then been uniformly
scaled to fit “Longer Text.” As a result of the scaling, the corners and vertical edges
have been distorted, giving the rounded rectangle an unbalanced look. Compare that
to the second “Longer Text,” where the background has maintained its balance:

To correctly scale the background, selected parts of the image are scaled in a particu‐
lar direction, or not scaled at all. Which parts are scaled and in which direction are
shown in this diagram:

The Xs indicate that corners are not scaled, while the vertical edges are scaled verti‐
cally, the horizontal edges are scaled horizontally, and the central area is scaled in
both directions. Hence the name NinePatch:

4 corners +
2 vertical edges +
2 horizontal edges +
1 central area

5.11 Using Nine Patch Files | 267

9 areas (patches) in total

In the following example, the default black border and gray gradient background of
an EditText is replaced with a solid turquoise background and a black border. The
required rounded rectangle can be drawn in a graphics program such as GIMP or
Paint.NET. The rectangle should be drawn as small as possible (resembling a circle) to
support small views, with a 1-pixel border and a transparent background. I’ve also
drawn a version of the rectangle with an orange border to support focus indication
used with keypad navigation:

Android needs to know which proportions of the vertical and horizontal edges need
to be scaled, as well as where the view content sits in relation to the background.
These factors are determined from indicators drawn within the image. To apply these
indicators, use the draw9patch program supplied with the Android SDK tools. Start
the program and open the background image (drag and drop it onto the draw9patch
dialog). The program will expand the image by one pixel all around, as per
Figure 5-22. You’re going to draw indicator lines on this extra 1-pixel edging. Enlarge
the image using the Zoom slider. In the lefthand and top edges, draw the indicator
lines to mark which of the vertical and horizontal pixels can be duplicated for scaling.
In the righthand and bottom edges, draw the indicator lines to show where content
can be positioned.

Figure 5-22. The draw9patch program in action

268 | Chapter 5: Graphics

Figure 5-23 shows the right and bottom markers for content placement. If content
does not fit in the indicated rectangle, the background image is stretched using the
area shown by the left and top markers.

Figure 5-23. draw9patch: Markers for content placement

Save the marked-up file in the res/drawable folder for a project. Android determines
whether an image is scaled using NinePatch scaling instead of uniform scaling via the
filename; it must have .9 before the .png file extension. For example, an image file
named turquoise.png would be named turquoise.9.png. To use the background image,
reference it in a layout with android:background="@drawable/turquoise". If you are also
using another image to indicate view focus, use a selector file—for example, save this
XML file in the drawable folder as selector.xml:

<?xml version="1.0" encoding="utf-8"?>
 <selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_focused="true"
 android:drawable="@drawable/turqfocus" />
 <item android:drawable="@drawable/turquoise" />
 </selector>

Then reference this as android:background="@drawable/selector". Figure 5-24 shows the
results.

Figure 5-24. NinePatch file used as selector and background

5.11 Using Nine Patch Files | 269

Notice that the new view background is using a little less space than the default (this
is useful to know if a project needs a little bit more screen area).

NinePatch files are not restricted to simple view backgrounds. This NinePatch file is
used to frame a photograph:

Notice how the left and top scaling indicators are split where detail that must not be
scaled (because it would distort) is located. Here’s the result:

See Also
The developer documentation on NinePatch.

5.12 Creating HTML5 Charts with Android RGraph
Wagied Davids

270 | Chapter 5: Graphics

https://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch

Problem
You need to visualize data in a plot or chart and be able to interact with the chart via
JavaScript.

Solution
As an alternative to creating Android charts in pure Java, create charts using RGraph,
an HTML5 JavaScript charts library.

RGraph will not work on Android prior to 2.1, but that shouldn’t
be a problem today.

Discussion
To create a chart with RGraph, follow these steps:

1. Create an assets directory for HTML files; Android internally maps it to file:///
android_asset/ (note the triple slash and singular spelling of “asset”).

2. Copy rgraphview.html (see Example 5-20) into it: res/assets/rgraphview.html.
3. Create a JavaScript directory: res/assets/RGraph.
4. Create the layout (Example 5-21) and the Activity (Example 5-22) as in any other

Android project.

Example 5-20 shows the HTML using the RGraph library. Figure 5-25 shows the
RGraph output.

Example 5-20. HTML using the RGraph library

<html>
<head>
<title>RGraph: HTML5 canvas graph library - pie chart</title>

 <script src="RGraph/libraries/RGraph.common.core.js" ></script>
 <script src="RGraph/libraries/RGraph.common.annotate.js" ></script>
 <script src="RGraph/libraries/RGraph.common.context.js" ></script>
 <script src="RGraph/libraries/RGraph.common.tooltips.js" ></script>
 <script src="RGraph/libraries/RGraph.common.zoom.js" ></script>
 <script src="RGraph/libraries/RGraph.common.resizing.js" ></script>
 <script src="RGraph/libraries/RGraph.pie.js" ></script>

 <script>
 window.onload = function () {
 /**

5.12 Creating HTML5 Charts with Android RGraph | 271

https://www.rgraph.net/

 * These are not angles - these are values.
 * The appropriate angles are calculated.
 */
 var pie1 = new RGraph.Pie('pie1', [41,37,16,3,3]); // Create pie object
 pie1.Set('chart.labels', ['MSIE 7 (41%)', 'MSIE 6 (37%)',
 'Firefox (16%)', 'Safari (3%)', 'Other (3%)']);
 pie1.Set('chart.gutter', 30);
 pie1.Set('chart.title', "Browsers (tooltips, context, zoom)");
 pie1.Set('chart.shadow', false);
 pie1.Set('chart.tooltips.effect', 'contract');
 pie1.Set('chart.tooltips', [
 'Internet Explorer 7 (41%)',
 'Internet Explorer 6 (37%)',
 'Mozilla Firefox (16%)',
 'Apple Safari (3%)',
 'Other (3%)'
]
);
 pie1.Set('chart.highlight.style', '3d'); // 2d or 3d; defaults to 3d

 if (!RGraph.isIE8()) {
 pie1.Set('chart.zoom.hdir', 'center');
 pie1.Set('chart.zoom.vdir', 'up');
 pie1.Set('chart.labels.sticks', true);
 pie1.Set('chart.labels.sticks.color', '#aaa');
 pie1.Set('chart.contextmenu', [['Zoom in', RGraph.Zoom]]);
 }

 pie1.Set('chart.linewidth', 5);
 pie1.Set('chart.labels.sticks', true);
 pie1.Set('chart.strokestyle', 'white');
 pie1.Draw();

 var pie2 = new RGraph.Pie('pie2', [2,29,45,17,7]); // Create pie object
 pie2.Set('chart.gutter', 45);
 pie2.Set('chart.title', "Some data (context, annotatable)");
 pie2.Set('chart.linewidth', 1);
 pie2.Set('chart.strokestyle', '#333');
 pie2.Set('chart.shadow', true);
 pie2.Set('chart.shadow.blur', 3);
 pie2.Set('chart.shadow.offsetx', 3);
 pie2.Set('chart.shadow.offsety', 3);
 pie2.Set('chart.shadow.color', 'rgba(0,0,0,0.5)');
 pie2.Set('chart.colors', ['red', 'pink', '#6f6', 'blue', 'yellow']);
 pie2.Set('chart.contextmenu', [['Clear',
 function () {RGraph.Clear(pie2.canvas); pie2.Draw();}]]);
 pie2.Set('chart.key', ['John (2%)', 'Richard (29%)',
 'Fred (45%)', 'Brian (17%)', 'Peter (7%)']);
 pie2.Set('chart.key.background', 'white');
 pie2.Set('chart.key.shadow', true);
 pie2.Set('chart.annotatable', true);
 pie2.Set('chart.align', 'left');
 pie2.Draw();
 }
 </script>
</head>

272 | Chapter 5: Graphics

<body>

 <div style="text-align: center">
 <canvas id="pie1" width="420" height="300">[No canvas support]</canvas>
 <canvas id="pie2" width="440" height="300">[No canvas support]</canvas>
 </div>

</body>
</html>

Figure 5-25. RGraph output

Example 5-21. The main.xml file

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FFFFFF">

 <WebView
 android:id="@+id/webview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 </WebView>
</LinearLayout>

5.12 Creating HTML5 Charts with Android RGraph | 273

Example 5-22. The main Activity

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebChromeClient;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class Main extends Activity {

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Obtain reference to the WebView holder
 WebView webview = (WebView) this.findViewById(R.id.webview);

 // Get the settings
 WebSettings webSettings = webview.getSettings();

 // Enable JavaScript for user interaction clicks
 webSettings.setJavaScriptEnabled(true);

 // Display zoom controls
 webSettings.setBuiltInZoomControls(true);
 webview.requestFocusFromTouch();

 // Set the client
 webview.setWebViewClient(new WebViewClient());
 webview.setWebChromeClient(new WebChromeClient());

 // Load the URL
 webview.loadUrl("file:///android_asset/rgraphview.html");
 }

 }

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory RGraphDemo (see “Getting and Using the Code Examples” on page 18).

5.13 Adding a Simple Raster Animation
Daniel Fowler

Problem
You need to add an animated image to a screen.

274 | Chapter 5: Graphics

https://github.com/IanDarwin/Android-Cookbook-Examples

Solution
Android has good support for user interface animation; it is easy to sequence images
using the AnimationDrawable class.

Discussion
To create the animation, first generate the images to be sequenced, using a graphics
program. Each image represents one frame of the animation; the images will usually
be the same size, with changes between each frame as required.

This animation recipe will sequence some traffic light images. The images can be gen‐
erated using the open source vector graphics program Inkscape. A copy of the image
used is available from the Open clipart library; search for “traffic lights turned off,”
select the image, click the View SVG button, and save the file from your browser.
Then open the file in Inkscape.

The animation will comprise four images showing the sequence of traffic lights as
used in the United Kingdom: red, red and yellow, green, yellow, and back to red. The
SVG image has all the lights available—they are just hidden behind translucent cir‐
cles. To generate the first image, select the circle covering the red light and delete it.
Then use the Edit → Select All menu option to highlight the whole image. Select
Export to PNG from the File menu. In the Export to PNG dialog, under “Bitmap
size,” enter 150 in the Height box, and choose a directory and filename for the file to
be generated—for example, red.png (see Figure 5-26).

Click the Export button to export the bitmap. Delete the circle covering the yellow
light, click Edit → Select All again, and export as before to a file; for example, red_yel‐
low.png. Use the Edit → Undo menu option (twice) to cover the red light and yellow
light, and then delete the circle covering the green light. Export to green.png. Again
use Undo to cover the green light, and delete the circle covering the yellow light.
Export the bitmap to yellow.png.

5.13 Adding a Simple Raster Animation | 275

http://inkscape.org
https://openclipart.org/

Figure 5-26. The Export to PNG dialog

The files are now ready for the animation:

Start an Android project. Copy the four generated files into the res/drawable direc‐
tory. An animation-list needs to be defined in the same directory. Create a new file in
res/drawable called uktrafficlights.xml. In this new file, add the following:

<?xml version="1.0" encoding="utf-8"?>
<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/red" android:duration="2000" />
 <item android:drawable="@drawable/red_yellow" android:duration="2000" />
 <item android:drawable="@drawable/green" android:duration="2000" />
 <item android:drawable="@drawable/yellow" android:duration="2000" />
</animation-list>

This lists the images to be animated in the order of the animation and how long each
one needs to be displayed (in milliseconds). If the animation needs to stop after run‐
ning through the images, set the attribute android:oneshot to true.

In the layout file for the program, add an ImageView whose source is given as @drawable/
uktrafficlights (i.e., pointing to the created file):

276 | Chapter 5: Graphics

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView android:id="@+id/imageView1"
 android:src="@drawable/uktrafficlights"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"/>
</LinearLayout>

In the Activity class, create an instance of AnimationDrawable (the Android class that
performs the animation) called lightsAnimation. In onCreate(), assign it to the Drawable
that the ImageView uses. Finally, start the animation by calling the AnimationDrawable
start() method (there is a stop() method available to end the animation if required).
We do this in onWindowFocusChanged to ensure that everything has loaded before the ani‐
mation starts (it could easily have been started with a button or other type of input).
Example 5-23 shows the code for the main Activity.

Example 5-23. The main Activity

public class main extends Activity {
 AnimationDrawable lightsAnimation;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ImageView lights = (ImageView) findViewById(R.id.imageView1);
 lightsAnimation=(AnimationDrawable) lights.getDrawable();
 }
 @Override
 public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 lightsAnimation.start();
 }
}

Image animations can be useful to add interest to screens and can be used in games
or cartoons.

5.13 Adding a Simple Raster Animation | 277

See Also
Inkscape, Openclipart.

5.14 Using Pinch to Zoom
Pratik Rupwal

Problem
You want to use touch capability to change the position of an image viewed on the
screen, and use pinch-in and pinch-out movements for zoom-in and zoom-out oper‐
ations.

Solution
Scale the image as a matrix to apply transformations to it, to show different visual
effects.

Discussion
First, add a simple ImageView inside a FrameLayout in main.xml, as shown here:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
<ImageView android:id="@+id/imageView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:src="@drawable/nature"
 android:scaleType="matrix" >
</ImageView>
</FrameLayout>

Example 5-24 scales the ImageView as a matrix to apply transformations on it.

Example 5-24. Touch listener with scaling

 public class Touch extends Activity implements OnTouchListener {
 private static final String TAG = "Touch";

 // These matrixes will be used to move and zoom image
 Matrix matrix = new Matrix();
 Matrix savedMatrix = new Matrix();

 // We can be in one of these 3 states
 static final int NONE = 0;
 static final int DRAG = 1;
 static final int ZOOM = 2;

278 | Chapter 5: Graphics

http://inkscape.org
https://openclipart.org/

 int mode = NONE;

 // Remember some things for zooming
 PointF start = new PointF();
 PointF mid = new PointF();
 float oldDist = 1f;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ImageView view = (ImageView) findViewById(R.id.imageView);
 view.setScaleType(ImageView.ScaleType.FIT_CENTER);
 // Make the image fit to the center
 view.setOnTouchListener(this);
 }

 public boolean onTouch(View v, MotionEvent event) {
 ImageView view = (ImageView) v;
 // Make the image scalable as a matrix
 view.setScaleType(ImageView.ScaleType.MATRIX);
 float scale;

 // Handle touch events here...
 switch (event.getAction() & MotionEvent.ACTION_MASK) {

 case MotionEvent.ACTION_DOWN: // First finger down only
 savedMatrix.set(matrix);
 start.set(event.getX(), event.getY());
 Log.d(TAG, "mode=DRAG");
 mode = DRAG;
 break;
 case MotionEvent.ACTION_UP: // First finger lifted
 case MotionEvent.ACTION_POINTER_UP: // Second finger lifted
 mode = NONE;
 Log.d(TAG, "mode=NONE");
 break;
 case MotionEvent.ACTION_POINTER_DOWN: // Second finger down
 // Calculates the distance between two points where user touched
 oldDist = spacing(event);
 Log.d(TAG, "oldDist=" + oldDist);
 // Minimal distance between both the fingers
 if (oldDist > 5f) {
 savedMatrix.set(matrix);
 // Sets mid-point of line between two points where user touched
 midPoint(mid, event);
 mode = ZOOM;
 Log.d(TAG, "mode=ZOOM");
 }
 break;

 case MotionEvent.ACTION_MOVE:
 if (mode == DRAG) { // Movement of first finger
 matrix.set(savedMatrix);
 if (view.getLeft() >= -392) {
 matrix.postTranslate(event.getX() - start.x, event.getY() - start.y);

5.14 Using Pinch to Zoom | 279

 }
 }
 else if (mode == ZOOM) { // Pinch zooming
 float newDist = spacing(event);
 Log.d(TAG, "newDist=" + newDist);
 if (newDist > 5f) {
 matrix.set(savedMatrix);
 // Thinking I need to play around with this value to limit it
 scale = newDist/oldDist;
 matrix.postScale(scale, scale, mid.x, mid.y);
 }
 }
 break;
 }

 // Perform the transformation
 view.setImageMatrix(matrix);

 return true; // Indicate event was handled
 }

 private float spacing(MotionEvent event) {
 float x = event.getX(0) - event.getX(1);
 float y = event.getY(0) - event.getY(1);
 return FloatMath.sqrt(x * x + y * y);
 }

 private void midPoint(PointF point, MotionEvent event) {
 float x = event.getX(0) + event.getX(1);
 float y = event.getY(0) + event.getY(1);
 point.set(x / 2, y / 2);
 }
}

See Also
The reference documentation for Matrix, used in the calculations.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory PinchAndZoom (see “Getting and Using the Code Examples” on page 18).

280 | Chapter 5: Graphics

https://developer.android.com/reference/android/graphics/Matrix.html
https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 6

Graphical User Interface

When Android was being invented, its designers faced many choices whose outcome
would determine the success or failure of their project. Once they had rejected all the
other smartphone operating systems, both closed and open source, and decided to
build their own atop the Linux kernel, they were faced with somewhat of a blank can‐
vas. One important choice was which programming language to use; they wisely
chose Java. But once that choice was made, there was the choice of user interface
technology to deploy: Java ME, Swing, the Standard Widget Toolkit (SWT), or none
of the above.

Java ME is the Java Micro Edition, Sun/Oracle’s official standard API for cell phones
and other small devices. Java ME was once a pretty big success story: tens if not hun‐
dreds of millions of cell phones have a Java ME runtime inside. Also, all BlackBerry
devices made from around 2000 to around 2010, and all BlackBerry smartphone
applications for BlackBerry OSes 5, 6 and 7 (but not including BlackBerry OS 10),
were based on Java ME. But the Java ME GUI was regarded as too limiting by the
Android team, having been designed for the days when cell phones had really tiny
screens and limited functionality (it’s noteworthy that BlackBerry came to a similar
conclusion, dropping Java ME when it came time to produce BlackBerry 10).

Swing is the Java Standard Edition (desktop Java, Java SE, a.k.a. JDK or JRE) GUI. It is
based on Java’s earlier widget toolkit, the Abstract Window Toolkit (AWT). Swing can
make some beautiful GUI music in the right hands, but is rather large and uses too
much overhead for Android.

SWT is the GUI layer developed for use in the Eclipse IDE itself and in Eclipse rich
clients. It is an abstraction layer, and depends on the underlying operating system–
specific toolkit (e.g., Win32 in the Microsoft arena, GTK under Unix/Linux, etc.).

281

http://www.oracle.com/technetwork/java/javame/
http://java.sun.com/javase/6/docs/technotes/guides/swing/index.html
https://java.net/projects/swinglabs/sources/svn/content/trunk/website/web/docs/presentations/2007/DesktopMatters/FilthyRichClients.pdf?rev=340
http://www.eclipse.org/

The final option, and the one ultimately chosen, was to go it alone. The Android
designers thus built their own GUI toolkit designed specifically for smartphones. But
they took many good ideas from the other toolkits, and learned from the mistakes
that had been made along the way.

To learn any new GUI framework is, necessarily, a lot of work. Making your apps
work well in the community of apps for that UI is even more work. Recognizing this,
Google has set up the Android Design site. Another set of guidelines that can help is
the Android Patterns site, which is not about coding but about showing designers
how the Android visual experience is supposed to work. Illustrated, crowdsourced,
and recommended!

One word of terminological warning: the term “widget” has two distinct meanings.
All GUI controls such as buttons, labels, and the like are widgets and appear in the
android.widget package. This package also contains the “layout containers” (ViewGroup
subclasses), which are rather like a combination of JPanel and LayoutManager in Swing.
Simple widgets and layouts are subclassed from View, so collectively they are often
referred to as a view. The other kind of widget is one that can appear on an Android
Home screen; these are now called “app widgets” to distinguish them from the basic
ones and are in their own package, android.appwidget. This type of widget is commonly
used for status displays such as news and weather updates, updates from friends/
social streams, and the like. We have a recipe on app widgets (Recipe 6.30), at the end
of this chapter. While we’ll try to use the terms widget and app widget correctly, you
sometimes have to infer from the context which meaning is intended.

This chapter covers the main GUI elements in Android. The following chapter covers
the “things that go bump in your device”: menus, dialogs, toasts, and notifications.
The one after that treats the all-important topic of list views (ListView and
RecyclerView).

6.1 Understanding and Following User Interface
Guidelines
Ian Darwin

Problem
Lots of developers, even good ones, are very bad at user interface design.

Solution
Use the user interface guidelines. But which ones?

282 | Chapter 6: Graphical User Interface

https://developer.android.com/design/index.html
http://androidpatterns.com

Discussion
UI guidelines have been around almost since Xerox PARC invented GUIs in the
1980s and showed them to Microsoft and Apple. A given set of guidelines must be
appropriate to the platform. General guidelines for mobile devices are available from
several sources. Android.com publishes advice too.

The official Android UI Guidelines are probably as good a starting place as any, espe‐
cially if you already have some background in UI design. If not, some of the other
works discussed in this recipe may help you understand UI design issues.

For some thoughtful UI pattern notes, see the Android Developers blog.

One of the oldest GUI guides is Microsoft’s The Gui Guide: International Terminology
for the Windows Interface. This was less about UI design than about internationaliza‐
tion; it came with a floppy disk (remember those?) containing recommended transla‐
tions for common Microsoft Windows GUI element names into a dozen or so com‐
mon languages. This book is rather dated today.

In the 1980s and 1990s Sun’s user interface development was heavily influenced by
Xerox PARC, in XView, Sun’s long-defunct Unix implementation of OPEN LOOK,
and in the “Java Look and Feel,” respectively. A classic but technology-specific work
from this time and place is the Java Look and Feel Design Guidelines (Addison-
Wesley).

A more general work is Designing Visual Interfaces: Communication-Oriented Techni‐
ques by Kevin Mullet and Darrell Sano (Prentice Hall). This is a thorough discussion
of the design issues, mostly from a desktop perspective (Mac, Unix, Windows), but
the principles spelled out here are useful in dealing with human–computer interac‐
tion issues.

Concluding the desktop front is the more recent Microsoft-oriented book About Face:
The Essentials of Interaction Design (Wiley). Now in its third edition, this book was
originally written by Alan Cooper, known as the “Father of Visual Basic.”

6.2 Looking Good with Material Design
Ian Darwin

Problem
You want your app to look like a modern Android application.

Solution
Use Material Design, Android’s new visual paradigm for application development—
or, as Android puts it, “a comprehensive guide for visual, motion, and interaction

6.2 Looking Good with Material Design | 283

https://developer.android.com/guide/practices/ui_guidelines/index.html
http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html

design across platforms and devices.” You can make your apps look great using this
modern set of visual approaches.

Discussion
The main steps you need to implement in creating or updating an app for Material
Design include the following:

• Read the official Material Design specification.
• Apply the material theme to your app.
• Create or update your layouts following Material Design guidelines.
• Add elevation to your View objects, causing them to cast shadows.
• Consider using new features, such as card widgets, and new versions of widgets

such as the RecyclerView in place of the older ListView.
• Add or customize animations in your app.
• And do all this while maintaining backward compatibility!

Google introduced the material design approach in Android 50. It is also used in
Google web applications, supported by a web toolkit called Material Design Lite. The
name comes from the analogy with physical material, e.g., either “physical stuff ” or
“fabric.” Material Design is a largely two-dimensional framework, except that objects
(such as View objects in Android) have elevation, which causes them to cast shadows
(drop-shadow effects have been with us for decades, but this formalizes them a bit),
and can be animated on entry, activation, or exit.

The basic step in using a material theme is to base your application’s theme on mate‐
rial rather than the older Holo-based themes. You will typically tailor the colors used
in your theme. For example, in the AndroidManifest.xml file, you might have:

<application
 android:name=".AndroidApplication"
 android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 android:allowBackup="true">
 ...
</application>

You would then have a styles.xml file defining AppTheme, based on android:Theme.Material,
as per Example 6-1. The five main colors you can set are shown in Figure 6-1.

Example 6-1. res/values/styles.xml

<resources>
 <style name="AppTheme" parent="android:Theme.Material">
 <item name="android:colorPrimary">@color/primary</item>

284 | Chapter 6: Graphical User Interface

https://material.io/guidelines/
https://getmdl.io/

 <item name="android:colorPrimaryDark">@color/primary_dark</item>
 <item name="android:colorAccent">@color/accent</item>
 </style>
</resources>

Figure 6-1. Material Design colors

The actual values of these colors must be defined in an XML file. We’ll choose colors
from the palettes listed in the specification—here we’re using the 300, 500, and 700
colors of the Orange palette:

<resources>
 <color name="primary">#FF9800</color>
 <color name="primary_dark">#F57C00</color>
 <color name="accent">#FFCC80</color>
</resources>

Creating your layouts is a matter of applying the design prescriptions as you go along,
paying attention to sizes, distances, and the like.

Adding elevation is partly a matter of using the new android:elevation attribute:
<Button
 ...
 android:elevation="5sp"/>

Elevation is used to represent the fact that material has thickness and, for example, if
you place a book on a table, the book will cast a shadow. Material Design recom‐
mends that the action bar (see Recipe 6.5) always have an elevation of 4dp. Purely for
demonstration purposes (we don’t recommend ever doing this in a real app),
Example 6-2 shows code that produces various elevations; this code allows you, by
dragging the slider, to view the effects of different elevations on the drop shadow (see
Figure 6-2).

6.2 Looking Good with Material Design | 285

https://www.google.com/design/spec/style/color.html

Example 6-2. Elevation/displacement example

public void onCreate(Bundle b) {

 Button raisable = (Button) findViewById(R.id.elevator);
 SeekBar control = (SeekBar) findViewById(R.id.elevatorControl);

 control.setOnSeekBarChangeListener(new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,
 int progress, boolean fromUser) {
 raisable.setElevation(progress);
 raisable.setText(getString(R.string.raise_me) + " " + progress);
 }
 // Two methods from SeekBar.OnSeekBarChangeListener interface omitted
 });
}

Figure 6-2. Elevation variation and drop shadow

Please refer to other recipes on using new features such as Card widgets (Recipe 6.13)
and new versions of widgets such as the RecyclerView (Recipe 8.1) in place of the older
ListView.

There are even new icons for Material Design. Quoting its download page:
Material design system icons are simple, modern, friendly, and sometimes quirky. Each
icon is created using our design guidelines to depict in simple and minimal forms the
universal concepts used commonly throughout a UI. Ensuring readability and clarity
at both large and small sizes, these icons have been optimized for beautiful display on
all common platforms and display resolutions.

286 | Chapter 6: Graphical User Interface

http://google.github.io/material-design-icons/

As if to emphasize that Material isn’t just for Android, the icons are available in sev‐
eral forms, for web view (as images or as a web font), for Android, and even for iOS.
See https://design.google.com/icons/ for information on the Material Icons package.

See Also
Google’s Android team has published, well, a lot of “material” on Material Design,
including the following:

• The developer documentation on Material Design for Android
• Material Design for Developers
• Using the Material Theme
• Creating Lists and Cards

As well, several good third-party discussions have been published, including these by
Greg Nudelman:

• “7 Insights Every Serious Designer Needs to Know”
• “8 Mobile UX Trends You Can’t Afford to Ignore”
• The $1 Prototype Book (DesignCaffeine Press)

6.3 Choosing a Layout Manager (a.k.a. ViewGroup) and
Arranging Components
Ian Darwin

Problem
You want to know how to arrange your GUI components within your view.

Solution
Use one of the many layout managers or ViewGroups that are available.

Discussion
As in the case of Java SE and most other GUI packages, there are multiple compo‐
nents you can use to control the layout of individual GUI components. Java SE’s AWT
and Swing provide two classes that work together: Container and LayoutManager. A
Container has a LayoutManager instance to perform layout calculations on its behalf.
Android, having been conceived for smaller devices, combines these two functions
into a single class, android.view.ViewGroup. There are many subclasses of ViewGroup

6.3 Choosing a Layout Manager (a.k.a. ViewGroup) and Arranging Components | 287

https://design.google.com/icons/
https://developer.android.com/design/material/
https://developer.android.com/training/material/
https://developer.android.com/training/material/theme.html
https://developer.android.com/training/material/lists-cards.html
http://www.designcaffeine.com/articles/visual-guide-to-android-l-material-design-7-insights-every-serious-designer-needs-to-know/
http://www.designcaffeine.com/articles/8-mobile-ux-trends-you-cant-afford-to-ignore-in-2015/?
http://www.designcaffeine.com/overview-the-1-dollar-prototype/

intended for you to use. While LinearLayout is the most well-known, there are many
others. There are also some subclasses that are not intended for use as arbitrary lay‐
out managers, such as the drop-down–like Spinner (see Recipe 6.14). The following
table should help you get a handle on which one(s) to use.

Name Basic idea AbsoluteLayout

Absolute positioning; almost
never the right choice!

FrameLayout Multiple Views in a stack

GridLayout Equal-sized Views in rows and columns LinearLayout

Views in a row or column RelativeLayout Complex layouts, like HTML tables;
more efficient than nesting

TableLayout A set of rows, each with some number of columnsa TabHost

Tabbed view SlidingDrawer(deprecated) Vertical divide of the screen

a See also Recipe 1.25.

All modern IDEs for Android come with a built-in drag-and-drop visual layout edi‐
tor that lets you drag and drop GUI components to arrange the layout as you want it.
There also used to be a standalone GUI builder tool called DroidDraw, but it seems to
have been abandoned by its original author, left behind when Google shut down Goo‐
gleCode. There have been multiple attempts to revive DroidDraw; you can find them
with a GitHub search if you have some reason for not using the tools that come with
your IDE.

6.4 Handling Configuration Changes by Decoupling the
View from the Model
Alex Leffelman

Problem
When your device’s configuration changes (most frequently due to an orientation
change), your Activity is destroyed and re-created, making state information difficult
to maintain.

Solution
Decouple your user interface from your data model so that the destruction of your
Activity doesn’t affect your state data.

288 | Chapter 6: Graphical User Interface

https://github.com/search?utf8=%E2%9C%93&q=droiddraw

Discussion
It’s a situation that all Android developers (except those who read this part of this
book in time) run into with their very first applications: “My application works great,
but when I change my phone’s orientation everything resets!”

By design, when a device’s configuration (read: orientation) changes, the Android UI
framework destroys the current Activity and re-creates it for the new configuration.
This enables the designer to optimize the layout for different screen orientations and
sizes. However, this causes a problem for the developer who wishes to maintain the
state of the Activity as it was before the orientation change destroyed the screen.
Attempting to address this problem can lead to many complicated solutions, some
more graceful than others. But if we take a step back and design our applications
wisely, we can write cleaner, more robust code that makes life easier for everyone.

A graphical user interface is exactly what its name describes. It is a graphical repre‐
sentation of an underlying data model that allows the user to interface with and
manipulate the data. It is not the data model itself. Let’s talk our way through an
example to illustrate why that is an important point to make.

Consider a tic-tac-toe application. A simple main Activity for this would most likely
include at bare minimum a GridView (with appropriate Adapter) to display the board
and a TextView to tell the user whose turn it is. When the user clicks a square in the
grid, an appropriate X or O is placed in that grid cell. As new Android developers, we
find it logical to also include a two-dimensional array containing a representation of
the board to store its data so that we can determine if the game is over, and if so, who
won (see Example 6-3).

Example 6-3. First version of the TicTacToe Activity class

public class TicTacToeActivity extends Activity {

 private TicTacToeState[][] mBoardState;

 private GridView mBoard;
 private TextView mTurnText;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 setContentView(R.layout.main);

 mBoardState = new TicTacToeState[3][3];

 mBoard = (GridView)findViewById(R.id.board);
 mTurnText = (TextView)findViewById(R.id.turn_text);

 // Set up Adapter, OnClickListeners, etc., for mBoard

6.4 Handling Configuration Changes by Decoupling the View from the Model | 289

 }
}

This is easy enough to imagine and implement, and everything works great—except
that when you turn your phone sideways in the middle of an intense round of tic-tac-
toe, you have a fresh board staring you in the face and your inevitable victory is post‐
poned. As described earlier, the UI framework just destroyed your Activity and re-
created it, calling onCreate() and resetting the board data.

While reading the code in Example 6-3, you might have said to yourself, “Hey, that
Bundle savedInstanceState looks promising!” And you’d be right. For this painfully sim‐
ple example, you could stick your board data into a Bundle and use it to reload your
screen. There’s even a pair of methods, onRetainNonConfigurationInstance() and
getLastNonConfigurationInstance(), that let you pass any Object you want from your old,
destroyed Activity to your newly created one. For this example you could just pass
your mBoardState array to your new Activity, and you’d be all set. But you’re going to be
writing big, successful, amazing apps any day now, and that just doesn’t scale well
with complicated interfaces. We can do better!

This is why separating your GUI from your data model is so handy. Your GUI can be
destroyed, re-created, and changed, but the underlying data can survive unharmed
through as many UI changes as you can throw at it. Let’s separate our game state out
into a separate data class (see Example 6-4).

Example 6-4. The TicTacToe class divided

public class TicTacToeGame {

 private TicTacToeState[][] mBoardState;

 public TicTacToeGame() {
 mBoardState = new TicTacToeState[3][3];
 // Initialize
 }

 public TicTacToeState getCellState(int row, int col) {
 return mBoardState[row][col];
 }
 public void setCellState(int row, int col, TicTacToeState state) {
 mBoardState[row][col] = state;
 }

 // Other methods to determine whose turn it is, if the game is over, etc.
}

This will not only help us maintain our application state but is generally just good
object-oriented design.

290 | Chapter 6: Graphical User Interface

Now that we have our data safely outside of the volatile Activity, how do we access it
to build our interface? There are two common approaches: we can declare all vari‐
ables in TicTacToeGame as static and access them through static methods; or we can
design TicTacToeGame as a singleton, allowing access to one global instance to be used
throughout our application.

I prefer the second option purely from a design perspective. We can turn TicTacToeGame
into a singleton by making the constructor private and adding the following lines to
the top of the class:

private static TicTacToeGame instance = new TicTacToeGame();
public static TicTacToeGame getInstance() {
 return instance;
};

Now all we have to do is obtain the game data and set our UI elements to appropri‐
ately display the data. It’s most useful to wrap this in its own function—refreshUI(),
perhaps—so that it can be used whenever our Activity makes a change to the data.
For example, when a user clicks a cell of the board, there need only be two lines of
code in the listener: one call to modify the data model (via our TicTacToeGame single‐
ton), and one call to refresh the UI.

It may be obvious, but it is worth mentioning that your data classes survive only as
long as your application’s process is running. If it is killed by the user or the system,
naturally the data is lost. That situation necessitates more persistent storage through
the filesystem or databases and is outside the scope of this recipe.

This approach very effectively decouples your visual representation of the data from
the data itself, and makes orientation changes trivial. Simply calling refreshUI() in
your onCreate(Bundle) method is enough to ensure that whenever your Activity is
destroyed and re-created, it can access the data model and display itself correctly.
And as an added bonus, you’re now practicing better object-oriented design and will
see your code base become cleaner, more scalable, and easier to maintain.

6.5 Controlling the Action Bar
Ian Darwin

Problem
The action bar is an important part of most modern Android applications. You need
to know how to create, configure, and, when necessary, hide the action bar.

Solution
Use either a Toolbar or the older ActionBar in your layout, and use a mixture of XML
and code to control the action bar’s functionality.

6.5 Controlling the Action Bar | 291

Discussion
The action bar was introduced in Android Honeycomb (3.0, API 11) as a standard
component for most normal applications. The one common use case for an app that
doesn’t have an action bar is full-screen applications such as cameras, photo display/
editing apps, or video games.

The action bar consists of a full-width rectangle about 5% of the vertical size of the
screen, with an icon and program name at the left, an “overflow menu” icon (replac‐
ing the hard Menu button present on older Android hardware) at the right (three
dots in a vertical row), and optionally actions to the left of the overflow menu. A typi‐
cal layout is shown in Figure 6-3.

There are several ways to get an ActionBar. Assuming you are targeting modern ver‐
sions (4.0 and later), you will automatically have an action bar unless you provide an
application theme that is not derived directly or indirectly from the Holo theme. This
will be implemented by the “standard” android.app.ActionBar class. One downside of
this is that some features have been added since the time the ActionBar was introduced
(Android 3.0), in modern versions such as Android 7.0; thus you may be calling
methods that exist in modern versions but will not exist in the library on the user’s
device if the device is running an older version of Android. This would, of course,
end badly.

Figure 6-3. Action bar general layout

Accordingly, the current recommendation is to use the “v7 appcompat” library. This
library provides two different ActionBar implementations, the appcompat ActionBar and
the recommended appcompat ToolBar class. The ToolBar is more general than the
ActionBar and can be used in different places, though we’ll only consider its use as an
action bar here.

The recommended steps for your action bar are thus:

292 | Chapter 6: Graphical User Interface

https://developer.android.com/reference/android/app/ActionBar.html
https://developer.android.com/reference/android/support/v7/app/ActionBar.html
https://developer.android.com/reference/android/support/v7/widget/Toolbar.html

1. Ensure that v7 appcompat is included; the coordinates for this library as of API
24 are com.android.support:appcompat-v7:24.1.1. But use the latest one for the API
you are targeting.

2. Make your Activities extend AppCompatActivity, not Activity.
3. In the AndroidManifest.xml file, set the application element to use a NoActionBar

theme so you don’t get a native ActionBar added (two action bars will not coexist
well).

4. In the layout file, use an android.support.v7.widget.Toolbar (as in Example 6-5) and
position it at the top of your layout so it will look like a standard action bar.

5. In your Activity startup code, set this toolbar as the action bar using
setCompatActionBar().

Example 6-5 is the layout file with a ToolBar, as generated by Android Studio.

Example 6-5. XML layout using appcompat ToolBar as action bar

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="com.androidcookbook.actionbarcompat.MainActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.AppBarLayout>

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:layout_behavior="@string/appbar_scrolling_view_behavior">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

6.5 Controlling the Action Bar | 293

 android:text="Hello World!"
 android:padding="5dp"/>
 </LinearLayout>

</android.support.design.widget.CoordinatorLayout>

The CoordinatorLayout is part of the appcompat library, and
requires use of the app:layout_behavior attribute on its immediate
children; without it, they are ignored.

Example 6-6 is the Activity code for this sample application.

Example 6-6. Activity code for appcompat ToolBar

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 }
 ...
}

Once you have created your action bar, you can control it in various ways. To make
your action bar disappear or reappear, you can use:

getCompatActionBar().hide()
getCompatActionBar().show()

In fact, any of the standard appcompat ActionBar methods can be used. The
getCompatActionBar() method doesn’t return the toolbar directly, but returns it wrapped
in a ToolbarActionBar which, as the name implies, provides all the ActionBar methods.

In the first paragraphs of this recipe, I referred to the “overflow menu” without
explaining that. The traditional Android Options menu (described in Recipe 7.3)
appears in response to the “Menu button,” but modern Android devices are not
required to have a physical button for this purpose. Instead, the three dots at the right
of the action bar (see Figure 6-3) call up the menu. However—and this is one of the
original uses for the action bar—you can “promote” menu items from the Activity’s
menu to the action bar! All you have to do is add the showAsAction attribute in the
menu.xml file. This attribute can take the value never (which is the default), ifRoom
(whose meaning is obvious), or always (which is also obvious, but whose use is not
recommended; you should use ifRoom in preference to this last choice).

Here is a Help menu item added to the default menu file:

294 | Chapter 6: Graphical User Interface

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context="com.androidcookbook.actionbarcompat.MainActivity">
 <item
 android:id="@+id/action_settings"
 android:orderInCategory="100"
 android:title="@string/action_settings"
 app:showAsAction="never"
 />
 <item
 android:id="@+id/action_help"
 android:title="Help"
 app:showAsAction="ifRoom"
 />
</menu>

This produces the layout shown in Figure 6-4.

Figure 6-4. Action bar with menu item

As with other menu items, you can use text, icons, or both.

See Also
You will find more information in the official documentation. The “Share action” in
the action bar is treated specially, in Recipe 6.6.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory ActionBarCompat (see “Getting and Using the Code Examples” on page 18).

6.6 Adding a Share Action to Your Action Bar
Ian Darwin

6.6 Adding a Share Action to Your Action Bar | 295

https://developer.android.com/training/appbar/index.html
https://github.com/IanDarwin/Android-Cookbook-Examples

Problem
You want to add the standard Share icon to your action bar and have it handle an
application-provided Intent.

Solution
Use the actionProviderClass attribute in a menu item, set up an Intent for it to process,
and pass the Intent into the ActionProvider. It really is that simple!

Discussion
Sharing information is one of the canonical uses of mobile and computing devices.
Having one application use another to handle data is a prime feature of the Android
platform. Android offers a “Share” menu that lets you pass text, images, or almost
anything else off to any of a number of applications to be handled.

For example, let’s examine how to export (share) a short string as “plain text”; this will
be sharable to (acceptable by) quite a few applications, but Android will choose the
“most popular” to put at the top of the Share menu.

We start by adding a menu item that will go into the ActionBar:
<menu xmlns:android="http://schemas.android.com/apk/res/android" >

 <item android:id="@+id/menu_item_share"
 android:showAsAction="ifRoom"
 android:title="@string/action_share"
 android:actionProviderClass="android.widget.ShareActionProvider" />
...
</menu>

In our onCreate() method, we create an Intent with an action of ACTION_SEND, a content
type of plain text, and an Extra of the string we want to share. There is nothing special
about text—this mechanism can share almost any kind of data, as long as there’s at
least one app that has registered with an Intent filter for the given content type:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mShareIntent = new Intent();
 mShareIntent.setAction(Intent.ACTION_SEND);
 mShareIntent.setType("text/plain");
 mShareIntent.putExtra(Intent.EXTRA_TEXT,
 "From me to you, this text is new.");
}

Finally, in our menu creation method, we find the MenuItem by its ID and ask it for its
ActionProvider (this is where API level 14 is required!). If we find that, we just add the
share Intent to it:

296 | Chapter 6: Graphical User Interface

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present
 getMenuInflater().inflate(R.menu.main, menu);

 // Find the MenuItem that we know has the ShareActionProvider
 MenuItem item = menu.findItem(R.id.menu_item_share);

 // Get its ShareActionProvider
 mShareActionProvider = (ShareActionProvider) item.getActionProvider();

 // Connect the dots: give the ShareActionProvider its Share Intent
 if (mShareActionProvider != null) {
 mShareActionProvider.setShareIntent(mShareIntent);
 }

 // Return true so Android will know we want to display the menu
 return true;
 }

That really is all there is to it.

When you first run the app, it looks like Figure 6-5.

Figure 6-5. Share action in action

Tap the Share icon and the Share menu appears—all courtesy of the
ShareActionProvider! As mentioned, the most likely apps are at the top of the list; the
rest are delegated to the “See all” section (Figure 6-6).

6.6 Adding a Share Action to Your Action Bar | 297

I picked the Messaging app and, just as a quick reality check, sent it to myself, as in
Figure 6-7.

Figure 6-6. Share menu

Figure 6-7. Sending a message to myself

298 | Chapter 6: Graphical User Interface

The message arrives, as in Figure 6-8!

Figure 6-8. Message arrives

Note that if you later go back to the app that started the sharing, if there is room in
the action bar, the app you chose to share with (in my case, Messaging) appears
beside the Share icon—a neat optimization!

6.7 Building Modern UIs with the Fragment API
Ian Darwin

Problem
You want a more flexible arrangement of parts of your screen. Or, you need to use
some newer APIs that only work with Fragments.

Solution
Use the FragmentManager and layouts to arrange Fragment views.

Discussion
Fragments were introduced with Android 3.0 and have become increasingly common
since. It’s possible to use them in a simple Activity, as in Example 6-7.

6.7 Building Modern UIs with the Fragment API | 299

Example 6-7. Portion of MainActivity.java

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
}

Surprisingly, for the simplest use of a single Fragment, there is no code needed. The
work is done in the layout, as in Example 6-8.

Example 6-8. layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="com.androidcookbook.fragmentsimple.MainActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />
 </android.support.design.widget.AppBarLayout>

 <fragment
 android:id="@+id/fragment"
 android:name=".MainActivityFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:layout="@layout/fragment_main" />

</android.support.design.widget.CoordinatorLayout>

Notice that unlike with regular Views (such as Button and TextView), where the name is
the simple name of the class, the fragment element is not capitalized, but treated spe‐
cially; you always subclass Fragment, so the actual class name must be provided by the
android:name attribute.

300 | Chapter 6: Graphical User Interface

The Fragment itself is a class in our application, so it exists as a Java class, shown in
Example 6-9. And a Fragment has a View, so it has a layout XML file, shown in
Example 6-10.

Example 6-9. Simple Fragment code

public class MainActivityFragment extends Fragment {

 public MainActivityFragment() {
 // Constructor with arguments may be needed in more sophisticated apps
 }

 /** Like Menus, Fragments must be inflated by the developer */
 @Override
 public View onCreateView(
 LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_main, container, false);
 }
}

Example 6-10. Simple Fragment layout

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.androidcookbook.fragmentsdemos.MainActivityFragment"
 tools:showIn="@layout/activity_main">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

</RelativeLayout>

In more sophisticated Activities, one will typically use the FragmentManager to load
Fragments into the Activity dynamically. The FragmentManager is transaction-based; a
simple use might be something like:

Fragment frag = new MyDemoFragment();
FragmentTransaction tx = getFragmentManager();
tx.beginTransaction();
tx.add(container, frag); // Or: tx.replace(container, newFragment);
tx.commit();

This can also be written in a fluent API style, as:
getFragmentManager().beginTransaction()
 .add(container, new MyDemoFragment())
 .commit();

6.7 Building Modern UIs with the Fragment API | 301

In a support library–based Activity, use getSupportFragmentManager() instead of
getFragmentManager().

One main use of the Fragment subclasses is to have multiple views in place concur‐
rently. Consider a list-detail application. In a small-screen device, or in a device that is
narrow when in portrait mode, it makes sense to have a single view—either the list of
items or the details of one item—onscreen at a time. However, on a tablet in land‐
scape mode, where you have lots of width available, it makes sense to have the list and
one item’s details side-by-side (see Figure 6-9).

Figure 6-9. Portrait or landscape layout

As you can only have one Activity onscreen in an application, this would require a lot
of shuffling around of View objects if you were to try to implement it using a single
Activity. Using Fragments, however, makes it much easier.

Fragments can be thought of as mini-Activities in some ways, but they must reside
within an actual Activity. In our list-detail example, we will have a DisplayActivity,
with both a ListFragment and a DetailFragment contained within it. In portrait mode,
only the ListFragment will be shown, but in landscape mode on any device of reason‐
able size, the two Fragments will display side-by-side. This is commonly performed
by using different view configurations based on the resources system, and triggering
on this in the code to either use the FragmentManager to install the second Fragment, or
to start the detail view as an Activity so it appears in front of the List. In our demo we
have a TaskListActivity, which is launched from the Tasks menu item in the action bar;
TaskListActivity contains the code in Example 6-11 (slightly simplified).

302 | Chapter 6: Graphical User Interface

Example 6-11. Showing the detail in either a Fragment or an Activity

holder.mView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // This view will be created (but empty) on wide devices; show DetailFragment
 if (findViewById(R.id.task_detail_container) != null) {
 Bundle arguments = new Bundle();
 arguments.putString(TaskDetailFragment.ARG_ITEM_ID, holder.mItem.id);
 TaskDetailFragment fragment = new TaskDetailFragment();
 fragment.setArguments(arguments);
 // Replace the empty container with the actual DetailFragment
 getSupportFragmentManager().beginTransaction()
 .replace(R.id.task_detail_container, fragment)
 .commit();
 } else {
 // Not on a wide device, show the DetailActivity
 Context context = v.getContext();
 Intent intent = new Intent(context, TaskDetailActivity.class);
 intent.putExtra(TaskDetailFragment.ARG_ITEM_ID, holder.mItem.id);
 context.startActivity(intent);
 }
 }
});

The layout configuration for the container is as follows:

res/layout/task_list.xml
Contains the List (RecyclerView; see Recipe 8.1) with no ViewGroup around it.

res/layout-w900dpi/task_list.xml
Contains the List in a horizontal LinearLayout, which also has an empty FrameLayout
with android:id="@+id/task_detail_container" and android:layout_width="0dp", the lat‐
ter causing it not to show until it is replaced by the Fragment. The fact that
task_detail_container only exists in the wide view is tested in the code to control
the switch between Fragment and Activity, so the code will display correctly if the
user switches the device orientation while the app is running.

Note that a Fragment is not an Activity. All the same life-cycle methods (Recipe 1.2)
are available, but there are several additional ones. The following should be kept in
mind:

• Call getActivity() in the Fragment for API calls that need a Context or Activity
reference.

• Implement onCreateView() to connect your View with that of the Activity.
• Implement onActivityCreated() to be notified when your owning Activity is com‐

pletely set up.

6.7 Building Modern UIs with the Fragment API | 303

Note that onCreateView() (rather than onCreate()) is where you should create your View,
and that you are responsible for inflating the View yourself. For example:

public View onCreateView(LayoutInflater inf, ViewGroup container) {
 return inf.inflate(R.layout.This_Fragment's_Layout, container, false);
}

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory FragmentsDemos (see “Getting and Using the Code Examples” on page 18).

6.8 Creating a Button and Its Click Event Listener
Ian Darwin

Problem
You need to do something when the user presses a button.

Solution
Create a button in your layout, and use an OnClickListener implementation to make it
perform the relevant action when clicked.

Discussion
Creating a button in your layout is simple. In the XML layout, you can create a button
like so:

<Button android:id="@+id/start_button"
 android:text="@string/start_button_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

In your Activity’s onCreate() method, find the button by its ViewID (in this example,
R.id.start_button). Call its setOnClickListener() method with an OnClickListener.

In the OnClickListener implementation, check for the ViewID and perform the relevant
action:

public class MainActivity extends Activity implements OnClickListener {
 public void onCreate() {
 startButton = findViewById(R.id.start_button);
 startButton.setOnClickListener(this);
 ...
 }

 @Override
 public void onClick(View v) {
 switch (v.getId()) {

304 | Chapter 6: Graphical User Interface

https://github.com/IanDarwin/Android-Cookbook-Examples

 case R.id.start_button:
 // Start whatever it is the start button starts...
 ...
 case R.id.some_other_button:
 // etc.
 }
 }
}

An experienced Java programmer would expect to use an anonymous inner class for
the onClickListener, as has been done in AWT and Swing since Java 1.1. For perfor‐
mance reasons, early Android documentation recommended against this, suggesting
instead that you have the Activity implement OnClickListener and check the ViewID (i.e.,
analogous to the Java 1.0 way of doing things). As with Swing, as the power of devices
has increased such old-style ways of doing things are becoming less popular, though
you will likely still see both styles in use for some time.

6.9 Enhancing UI Design Using Image Buttons
Rachee Singh

Problem
You want to enhance your UI design, but without adding a lot of descriptive text.

Solution
Use an image button. This requires less effort than a text view with descriptive text,
since an image can explain the scenario much better than a lot of words can.

Discussion
Making your own image button requires defining the characteristics of the button in
an XML file that should be placed in /res/drawable. This file specifies the three states
of an image button:

• Pressed state
• Focused state
• Other states (optional)

For instance:
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/play_pressed"
 android:state_checked="true" />
 <item android:drawable="@drawable/play" />
</selector>

6.9 Enhancing UI Design Using Image Buttons | 305

So, for each of these states, the ID of an image is specified (the image present in /res/
drawable as a .png file). When the button is pressed, the play_pressed image is dis‐
played. There are two such buttons in the sample application: the Play button and the
Settings button. In the .java file of the application, the onClick aspect of the buttons
can be taken care of. In this recipe, a toast is displayed with some appropriate text.
Programmers can start a new Activity from here, or broadcast an Intent, or do many
other things based on their requirements.

In Figure 6-10, the left screenshot shows the Play button not pressed, and the right
screenshot shows the Play button pressed.

Figure 6-10. Play button not pressed (left) and pressed (right)

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory ImageButtonDemo (see “Getting and Using the Code Examples” on page
18).

6.10 Using a FloatingActionButton
Ian Darwin

Problem
You want a round graphic button that will appear in front of your application (similar
to the “Add” button found on many Google apps, such as the GMail app in
Figure 6-11), and you want to respond to this button being pressed.

306 | Chapter 6: Graphical User Interface

https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 6-11. GMail “Add” floating action button

Solution
Use a FloatingActionButton.

Discussion
The FloatingActionButton appears in the lower right of your application window and is
often used for a rounded “+” button with an associated action such as adding a con‐
tact, creating a new message to be sent, and so on. While there have always been ways
to provide this functionality, it is now available as a supported component (in the
support library; see Recipe 1.21) in Android. It is as easy to use as a regular button;
just add it to your XML layout, like so:

<android.support.design.widget.FloatingActionButton
 android:id="@+id/floatingButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 android:src="@android:drawable/ic_dialog_info" />

Because this button is in the support library rather than in android.widget, we have to
list its full class in the layout file. We give it an id so we can refer to it. The gravity and
padding are recommended for the button to appear in the lower right. We use src to
indicate the drawable to display inside the circular button (it’s named as it is to

6.10 Using a FloatingActionButton | 307

remind us that we’re not providing the complete drawable, unlike with an
ImageButton), and use either android:onClick in the XML or findViewById() and
setOnclickListener() in code to specify what to do when the button is tapped. This
example uses android:onClick="runMe" in the XML and the following code:

public void runMe(View v) {
 final String msg = "You pressed my button";
 Log.d(TAG, msg);
 Toast.makeText(this, msg, Toast.LENGTH_SHORT).show();
}

The result is shown in Figure 6-12.

Figure 6-12. FloatingActionButton in action

See Also
The new Snackbar component, introduced at around the same time as the
FloatingActionButton, is discussed in Recipe 7.1.

Android Studio’s New Activity wizard includes a “Basic Activity”
choice that provides a preconfigured FloatingActionButton, which
out of the box shows a Snackbar.

308 | Chapter 6: Graphical User Interface

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory FloatingButtonSnackbarDemo (see “Getting and Using the Code Examples”
on page 18).

6.11 Wiring Up an Event Listener in Many Different Ways
Daniel Fowler

Problem
You need to be familiar with the different ways to code event handlers, both to know
when to use which approach and because you will come across the various methods
in this Cookbook and elsewhere.

Solution
When writing software, very rarely is there only one way to do things. This holds true
when wiring up View events; half a dozen techniques are shown in this recipe.

Discussion
When a View fires an event, an application will not respond to it unless the app is lis‐
tening for it. To detect the event, a listener is instantiated and assigned to the View.
Take, for example, the onClick event, the most widely used event in Android apps.
Nearly every View that can be added to an app screen will fire the event when the user
taps it (on touch screens) or presses the trackpad/trackball when the View has focus.
This event is listened to by a class implementing the OnClickListener interface. The
class instance is then assigned to the required View using the View’s setOnClickListener()
method. In the following section, the HandleClick inner class sets the text of a TextView
(textview1) when a Button (button1) is pressed.

Technique 1. The Member class
In Example 6-12, a nested class called HandleClick implementing OnClickListener is
declared as a member of the Activity (main). This is useful when several listeners
require similar processing that can be handled by a single class.

Example 6-12. The Member class

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

6.11 Wiring Up an Event Listener in Many Different Ways | 309

https://github.com/IanDarwin/Android-Cookbook-Examples

 // Attach an instance of HandleClick to the Button
 findViewById(R.id.button1).setOnClickListener(new HandleClick());
 }
 private class HandleClick implements OnClickListener{
 public void onClick(View arg0) {
 Button btn = (Button)arg0; // Cast view to a button
 // Get a reference to the TextView
 TextView tv = (TextView) findViewById(R.id.textview1);
 // Update the TextView text
 tv.setText("You pressed " + btn.getText());
 }
 }
}

A variation on this would involve making the inner class public and putting it in its
own source file. In theory, any Activity that needed a copy of such a class could create
its own instance thereof. It is relatively rare, however, that action listeners are generic
enough to be shared in this way.

Technique 2. The interface type
In Java an interface can be used as a type. A variable is declared as an OnClickListener
and assigned using new OnClickListener() {}, while behind the scenes Java is creating an
object (an anonymous class) that implements OnClickListener. This has similar benefits
to the first technique (see Example 6-13). When an instance is being saved, many Java
developers (including this Cookbook’s main author) consider it a good practice to use
interface variables rather than the specific implementation type for the variable.

Example 6-13. The interface type

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 // Use the handleClick variable to attach the event listener
 findViewById(R.id.button1).setOnClickListener(handleClick);
 }
 private OnClickListener handleClick = new OnClickListener() {
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
 };
}

Technique 3. The anonymous inner class
Declaring the OnClickListener within the call to the setOnClickListener() method is com‐
mon. This method is useful when each listener does not have functionality that could

310 | Chapter 6: Graphical User Interface

be shared with other listeners, though some novice developers find this type of code
difficult to understand. Again, Java is creating an object that implements the interface
behind the scenes for new OnClickListener() {} (see Example 6-14).

Example 6-14. The anonymous inner class

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
 });
 }
}

Technique 4. Implementation in Activity
The Activity itself can implement the OnClickListener (see Example 6-15). Since the
Activity object (main) already exists, this saves a small amount of memory by not
requiring another object to host the onClick() method. It does make public a method
that is unlikely to be used elsewhere, however, and implementing multiple events will
make the declaration of main long.

Example 6-15. Implementation in Activity

public class MainActivity extends Activity implements OnClickListener{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(this);
 }
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
}

Technique 5. Lambda expression (requires the Java 8 toolchain)
In Android 7 and later, using an up-to-date SDK which should include the Java 8
tooling, you can use a lambda expression to shorten the code. Lambdas can be recog‐

6.11 Wiring Up an Event Listener in Many Different Ways | 311

nized by the -> syntax, introduced into the Java language with Java SE version 8. An
example use of a lambda expression is shown in Example 6-16.

Example 6-16. Lambda expression

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 View v = findViewById(R.id.button1);
 v.setOnClickListener(v->{
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 });
 }
}

One restriction is that a lambda expression can only be used to implement a func‐
tional interface—that is, an interface that has only a single abstract method in it—
since the name of the method (as well as the name of the interface itself) is inferred
by the compiler. Fortunately, most “action event” listener interfaces are functional.

Technique 6. Attribute in View layout for onClick events
The name of a method defined in the Activity can be assigned to the android:onClick
attribute in a layout file (see Example 6-17). This can save you from having to write a
lot of boilerplate code.

Example 6-17. Class named in manifest

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 public void handleClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
}

312 | Chapter 6: Graphical User Interface

In the layout file the Button would be declared with the android:onClick attribute:
<Button android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 1"
 android:onClick="handleClick"/>

The first five techniques for handling events can be used with other event types
(onLongClick, onKey, onTouch, onCreateContextMenu, onFocusChange). The technique described
in this subsection only applies to the onClick event. The layout file in Example 6-18
declares an additional two buttons. Using the android:onClick attribute, you don’t need
an additional code is required than that defined earlier; that is, no additional
findViewById() and setOnClickListener() method for each button. This should appear as
in Figure 6-13.

Example 6-18. Multiple uses of android:onClick

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click a button."
 android:textSize="20dp"/>
 <LinearLayout android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 1"
 android:onClick="HandleClick"/>
 <Button android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 2"
 android:onClick="HandleClick"/>
 <Button android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 3"
 android:onClick="HandleClick"/>
 </LinearLayout>
</LinearLayout>

6.11 Wiring Up an Event Listener in Many Different Ways | 313

Deciding which technique to use to wire up a listener will depend on the functional‐
ity required, how much code is reusable across Views, and how easy the code will be
for future maintainers to understand. Ideally the code should be succinct and easy
to read.

Figure 6-13. onClick event from android:onClick

6.12 Using CheckBoxes and RadioButtons
Blake Meike

Problem
You want to offer the user a set of choices that is more limited than a list.

Solution
Use CheckBoxes or RadioButtons as appropriate.

Discussion
These views are probably familiar to you from other user interfaces. They allow the
user to choose from multiple options. CheckBox is typically used when you want to
offer multiple selections with a yes/no or true/false choice for each. RadioButton is used
when only one choice is allowed at a time. Android has adapted these familiar com‐
ponents to make them more useful in a touch-screen environment. Figure 6-14 shows
these multiple-choice views laid out in an Android application.

314 | Chapter 6: Graphical User Interface

Figure 6-14. A checkbox and three radio buttons

The layout XML file that created the screen in Figure 6-14 looks like this:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <CheckBox
 android:id="@+id/cbxBox1"
 android:layout_width="32dp"
 android:layout_height="32dp"
 android:checked="false" />

 <TextView
 android:id="@+id/txtCheckBox"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="CheckBox: Not checked" />

 <RadioGroup
 android:id="@+id/rgGroup1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical" >

6.12 Using CheckBoxes and RadioButtons | 315

 <RadioButton
 android:id="@+id/RB1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Button1" />

 <RadioButton
 android:id="@+id/RB2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Button2" />

 <RadioButton
 android:id="@+id/RB3"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Button3" />

 </RadioGroup>

 <TextView
 android:id="@+id/txtRadio"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="RadioGroup: Nothing picked" />

</LinearLayout>

The XML file just lists each view we want on the screen along with the attributes we
want. A RadioGroup is also a ViewGroup, so it can contain the appropriate RadioButton
views.

Example 6-19 is the Java file that responds to user clicks.

Example 6-19. The Chooser examples

package com.androidcookbook.checkboxradiobutton;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.widget.CheckBox;
import android.widget.RadioButton;
import android.widget.RadioGroup;
import android.widget.TextView;

public class SelectExample extends Activity {
 private CheckBox checkBox;
 private TextView txtCheckBox, txtRadio;

 /** Called when the Activity is first created. */
 @Override

316 | Chapter 6: Graphical User Interface

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_select_example);
 checkBox = (CheckBox) findViewById(R.id.cbxBox1);
 txtCheckBox = (TextView) findViewById(R.id.txtCheckBox);

 // React to events from the CheckBox
 checkBox.setOnClickListener(new CheckBox.OnClickListener() {
 public void onClick(View v) {
 if (checkBox.isChecked()) {
 txtCheckBox.setText("CheckBox: Box is checked");
 } else {
 txtCheckBox.setText("CheckBox: Not checked");
 }
 }
 });

 final RadioGroup rg = (RadioGroup) findViewById(R.id.rgGroup1);
 // React to events from the RadioGroup
 rg.setOnCheckedChangeListener(new RadioGroup.OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 RadioButton rb =
 (RadioButton) findViewById(rg.getCheckedRadioButtonId());
 txtRadio.setText(rb.getText() + " picked");
 }
 });
 txtRadio = (TextView) findViewById(R.id.txtRadio);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_select_example, menu);
 return true;
 }
}

These views work as follows:

CheckBox

The CheckBox view takes care of flipping its state back and forth and displaying a
checkmark when the state is true, but not when it is false. All you have to do is
create an OnClickListener to catch click events, and you can add whatever code you
want to react.

RadioGroup

As mentioned earlier, the RadioGroup view is really a ViewGroup that contains any
number of RadioButton views. The user can select only one of the buttons at a time,
and you capture the selection either by setting a RadioGroup.OnCheckedChangeListener
on the group or by setting OnClickListeners for each RadioButton.

6.12 Using CheckBoxes and RadioButtons | 317

RadioButton

A RadioButton is one of the buttons to be placed into a RadioGroup; it displays its
given text as well as a circle to indicate which one of the buttons in the group is
currently selected.

Taken together, these views let you provide a short set of choices and have the user
select one or multiple choices from those offered.

6.13 Using Card Widgets
Ian Darwin

Problem
Card widgets are a relatively new form of UI control, and you want to learn when and
how to use them.

Solution
Use a Card when you want self-contained ViewGroups with a nice border, commonly
many of them in a ListView or a RecyclerView.

Discussion
Card is a new ViewGroup, subclassing FrameLayout, that provides a border and shadow. It is
part of the compatibility package, so that it can work with old as well as new versions
of Android. Card is easy to use as long as you remember that it is a FrameLayout (see
Recipe 6.3). Items placed directly in a FrameLayout appear in a stack, and if they are dif‐
ferent sizes, parts of various ones will be visible. In our example, which is drawn from
a hypothetical real estate home listing project, we place a RelativeLayout with a photo‐
graph (ImageView) and some descriptive text (TextView) together in a Card, and place the
Card in our main layout. We are using default shadow and border settings, but over‐
riding the size and corner radius. The Card’s layout file is shown in Example 6-20.

Example 6-20. Layout file for Card

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/card_view"
 android:layout_gravity="center"
 android:layout_width="300dp"
 android:layout_height="340dp"
 card_view:cardCornerRadius="6dp"
 tools:context="com.androidcookbook.carddemo.CardActivity">

318 | Chapter 6: Graphical User Interface

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ImageView
 android:id="@+id/house_front_view"
 android:layout_alignParentTop="true"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 <TextView
 android:id="@+id/house_descr"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true" />

 </RelativeLayout>

</android.support.v7.widget.CardView>

The code that shows this Card’s layout only populates one Card (see Example 6-21), but
it would be easy to turn that into an adapter for use on a ListView or RecyclerView, and
the layout file is also already suitable for such use.

Example 6-21. Java setup for Card

public class CardActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.card_layout);

 // Dynamically set the image and text

 ImageView img = (ImageView) findViewById(R.id.house_front_view);
 Drawable d = ContextCompat.getDrawable(this,R.drawable.fixer_upper_1);
 img.setImageDrawable(d);

 TextView descr = (TextView) findViewById(R.id.house_descr);
 descr.setText("Beautiful fixer-upper! Only used on weekends
 by respectable Hobbit couple!");
 }
}

The results of these few lines of code can be seen in Figure 6-15.

6.13 Using Card Widgets | 319

Figure 6-15. CardDemo in action

See Also
The developer documentation on creating lists and cards.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory CardDemo (see “Getting and Using the Code Examples” on page 18).

6.14 Offering a Drop-Down Chooser via the Spinner Class
Ian Darwin

Problem
You want to offer a drop-down choice.

Solution
Use a Spinner object; you can pass the list of selections as an adapter.

320 | Chapter 6: Graphical User Interface

https://developer.android.com/training/material/get-started.html
https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
Generally known as a combo box, the spinner is the analog of the HTML select ele‐
ment or the Swing JComboBox. It provides a drop-down chooser whose values appear to
float over the screen when the spinner is clicked. One item can be selected and the
floating version will pop down, displaying the selection in the spinner (see
Figure 6-16).

Like all standard components, the spinner can be created and customized in XML or
in code. In this example, the term “context” or “reading context” is used to indicate
when a patient’s blood pressure reading was taken (after breakfast, after lunch, etc., as
shown in Figure 6-16), so that the health care practitioner can understand the value
in context of the patient’s day. Here is an excerpt from res/layout/main.xml:

<Spinner android:id="@+id/contextChooser"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:prompt="@string/context_choice"/>

Figure 6-16. Spinner (drop-down) demonstration

Ideally the list of values will come from a resource file, so as to be internationalizable.
Here is the file res/values/contexts.xml containing the XML values for the list of times
to choose:

6.14 Offering a Drop-Down Chooser via the Spinner Class | 321

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="context_choice">When Reading Taken</string>
 <string-array name="context_names">
 <item>Breakfast</item>
 <item>Lunch</item>
 <item>Dinner</item>
 <item>Snack</item>
 </string-array>
</resources>

To tie the list of strings to the spinner at compile time, just use <Spinner

android:entries="@array/context_names" …> in the layout file. This is the simplest way to
hook the list into the spinner, and is used for “Chooser1” in the example code.

To tie the list of strings to the spinner at runtime, just look up the Spinner object and
set the values, as shown in Example 6-22. You might want to do so if you need to
modify any of the list entries at runtime, for example, or if the list is coming from a
Java language enum. “Chooser2” in Example 6-22 gets the list from the XML, and
“Chooser3” gets it from the Java enum.

Example 6-22. The Spinner code

// Spinner 1 gets its labels automatically from an XML array
Spinner contextChooser1 = (Spinner) findViewById(R.id.contextChooser1);
contextChooser1.setOnItemSelectedListener(listener);

// Spinner 2 gets its labels programmatically from the XML array
Spinner contextChooser2 = (Spinner) findViewById(R.id.contextChooser2);
ArrayAdapter<CharSequence> adapter2 = ArrayAdapter.createFromResource(this,
 R.array.reading_context_names, android.R.layout.simple_spinner_item);
contextChooser2.setAdapter(adapter2);
contextChooser2.setOnItemSelectedListener(listener);

// Spinner 3 gets its labels programmatically from a Java language enum
Spinner contextChooser3 = (Spinner) findViewById(R.id.contextChooser3);
ArrayAdapter<ReadingContext> adapter3 = new ArrayAdapter<ReadingContext>(
 this, android.R.layout.simple_spinner_item, ReadingContext.values());
contextChooser3.setAdapter(adapter3);
contextChooser3.setOnItemSelectedListener(listener);

That is all you need in order for the spinner to appear, and to allow the user to select
items (see Figure 6-16). If you want to know the chosen value as soon as the user has
selected it, you can send an OnItemSelectedListener instance to the Spinner class’s
setOnItemSelectedListener() method. This interface has two callback methods,
setItemSelected() and setNothingSelected(). Both are called with the Spinner (but the
argument is declared as a ViewAdapter); the former method is called with two integer
arguments, the list position and the identity of the selected item, like so:

OnItemSelectedListener listener = new OnItemSelectedListener() {

322 | Chapter 6: Graphical User Interface

 @Override
 public void onItemSelected(AdapterView<?> spinner, View arg1,
 int pos, long id) {
 Toast.makeText(SpinnerDemoActivity.this,
 "You selected " + spinner.getSelectedItem(),
 Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onNothingSelected(AdapterView<?> spinner) {
 Toast.makeText(SpinnerDemoActivity.this,
 "Nothing selected.", Toast.LENGTH_SHORT).show();
 }
};

On the other hand, you may not need the value from the spinner until the user fills in
multiple items and clicks a button. In this case, you can simply call the Spinner class’s
getSelectedItem() method, which returns the item placed in that position by the
Adapter. Assuming you placed strings in the list, you can just call toString() to get
back the given String value.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory SpinnerDemo (see “Getting and Using the Code Examples” on page 18).

6.15 Handling Long-Press/Long-Click Events
Ian Darwin

Problem
You want to listen for long-press/long-click events and react to them, without having
to manually check for multiple events.

Solution
Use the View class’s setLongClickable() and setOnLongClickListener() methods, and pro‐
vide an OnLongClickListener.

Discussion
The View class has a method to enable/disable long-click support, set

LongClickable(boolean), and the corresponding setOnLongClickListener(On

LongClickListener) method. In Example 6-23 we listen for long-clicks on a View and
respond by popping up a PopupMenu, which will be modal and will appear in front of
the ListView.

6.15 Handling Long-Press/Long-Click Events | 323

https://github.com/IanDarwin/Android-Cookbook-Examples

Example 6-23. A LongClickListener

final View myView = findViewById(R.id.myView);
...
myView.setOnLongClickListener(new OnLongClickListener() {
 @Override
 public boolean onLongClick(View view) {
 PopupMenu p = new PopupMenu(Main.this, view);
 p.getMenuInflater().inflate(
 R.layout.main_popup_menu, p.getMenu());
 p.show();
 return true;
 }
});

The pop-up menu will be dismissed when you click one of its items; the list of menu
items comes from the XML file res/menu/main_popup_menu.xml, which just contains
a series of item elements with the text for the menu items.

Note that calling setOnLongClickListener() has the side effect of calling
setLongClickEnabled(true).

Note also that adding an OnClickListener to a ListView (or other multi-item view) does
not work as you might expect; the list items simply get dispatched as per a normal
click. Instead, you must use the setOnItemLongClickListener() method that takes, unsur‐
prisingly, an instance of OnItemLongClickListener(), which will be invoked when you
long-press on an item in the list.

In fact, you can even simplify this for a ListView by preinflating your menu and pass‐
ing it to the Activity’s setContextMenu(view, menu) method.

6.16 Displaying Text Fields with TextView and EditText
Ian Darwin

Problem
You want to display text on the screen, either read-only or editable.

Solution
Use a TextView when you want the user to have read-only access to text; this includes
what most other GUI API packages call a Label, there being no explicit Label class in
android.widget. Use an EditText when you want the user to have read/write access to
text; this includes what other packages may call a TextField or a TextArea.

324 | Chapter 6: Graphical User Interface

Discussion
EditText is a direct subclass of TextView. Note that EditText has many direct and indirect
subclasses, many of which are GUI controls in their own right, such as CheckBox,
RadioButton, and the like. A further subclass is the AutoCompleteTextView, which, as the
name implies, allows for auto-completion when the user types the first few letters of
some data item. As with the recipes in Chapter 8, there is an adapter to provide the
completable text items.

Placing an EditText or TextView is trivial using the XML layout. Assigning the initial
value to be displayed is also simple using XML. It is possible to set the value directly
using the following:

<TextView android:text="Welcome!"/>

However, it is preferable to use a value like "@string/welcome_text" and define the string
in strings.xml so that it can be changed and internationalized more readily.

Since TextView and EditText are used throughout this book, we do not have a sample
application that uses them. One is provided with the Android API Examples, called
LabelView, if you need it.

6.17 Constraining EditText Values with Attributes and the
TextWatcher Interface
Daniel Fowler

Problem
You need to limit the range and type of values that users can input.

Solution
Use appropriate attributes on the EditText views in the layout XML and enhance them
by implementing the TextWatcher interface.

Discussion
When an application needs input from a user, sometimes only a specific type of value
is required; maybe a whole number, a decimal number, a number between two values,
or words that are capitalized. When defining an EditText in a layout, attributes such as
android:inputType can be used to constrain what the user is able to type. This automati‐
cally reduces the amount of code required later on because there are fewer checks to
perform on the data that was entered. The TextWatcher interface is also useful for
restricting values. In the following example an EditText only allows a value between 0

6.17 Constraining EditText Values with Attributes and the TextWatcher Interface | 325

and 100—for example, to represent a percentage. There is no need to check the value
because it is all done as the user types.

Here is a simple layout with one such EditText:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/percent"
 android:text="0"
 android:maxLength="3"
 android:inputType="number"/>
</LinearLayout>

The EditText is given a starting value of zero with android:text="0", and the number of
characters that can be typed has been limited to three with android:maxLength="3"
because the largest number we need, 100, only has three digits. Finally, the user is
restricted to only positive numbers with android:inputType="number". It is a good idea to
review the attributes that Android views support, because defining views in the XML
layout can reduce the amount of code you need to write. For further details on the
attributes supported by EditText see the Android documentation on the TextView, from
which EditText is subclassed.

Within Example 6-24’s Activity class, an inner class can be used to implement the
TextWatcher interface (or, for example, the Activity class itself could implement the
interface). The afterTextChanged() method is overridden and will be called when the
text changes as the user types. In this method the value being typed is checked to see
if it is greater than 100. If so, it is set to 100. There is no need to check for values less
than zero because they cannot be entered, because of the XML attributes. The
try-catch is needed for when all the numbers are deleted, in which case the test for
values greater than 100 would cause an exception (trying to parse an empty string).

TextWatcher also has a beforeTextChanged() and an onTextChanged()
method that you can override, but they are not used in this
example.

Example 6-24. The TextWatcher implementation

class CheckPercentage implements TextWatcher{
 @Override
 public void afterTextChanged(Editable s) {
 try {
 Log.d("Percentage", "input: " + s);
 if(Integer.parseInt(s.toString())>100)

326 | Chapter 6: Graphical User Interface

https://developer.android.com/reference/android/widget/TextView.html

 s.replace(0, s.length(), "100");
 }
 catch(NumberFormatException nfe) {
 // Empty
 }
 }
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 // Not used, details on text just before it changed
 // Used to track in detail changes made to text, e.g. to implement an undo
 }
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 // Not used, details on text at point change made
 }
}

Finally, in the onCreate() method for the Activity, the inner class implementing
TextWatcher is connected to the EditText using its addTextChangedListener() method:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 EditText percentage=(EditText) findViewById(R.id.percent);
 percentage.addTextChangedListener(new CheckPercentage());
}

Note that it is fine to change the EditText value in afterTextChanged() as its internal
Editable class is passed in. However, you cannot change it by altering the CharSequence
passed into beforeTextChanged() and onTextChanged().

Running this example, with Logcat running, should show the values being set, as
shown in Figure 6-17.

Also remember that if you change the value in the EditText, it will cause the
afterTextChanged() method to be called again. Care must be taken to ensure that the
code using TextWatcher does not result in endless looping.

6.17 Constraining EditText Values with Attributes and the TextWatcher Interface | 327

Figure 6-17. TextWatcher in action

See Also
The developer documentation on the TextView class, EditText class, and TextWatcher
interface.

6.18 Implementing AutoCompleteTextView
Rachee Singh

Problem
You want to save the user from typing entire words, and instead auto-complete
entries based on the first few characters the user enters.

Solution
Use the AutoCompleteTextView widget that acts as a cross between an EditText and a
Spinner, enabling auto-completion.

328 | Chapter 6: Graphical User Interface

https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/EditText.html
https://developer.android.com/reference/android/text/TextWatcher.html
https://developer.android.com/reference/android/text/TextWatcher.html

Discussion
The demo layout here includes a TextView that supports auto-completion. Auto-
completion is done using an AutoCompleteTextView widget. Example 6-25 shows the lay‐
out XML code.

Example 6-25. The auto-completion layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/field"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <AutoCompleteTextView
 android:id="@+id/autocomplete"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="2"/>

</LinearLayout>

The completionThreshold field in the AutoCompleteTextView sets the minimum number of
characters that the user has to enter in the TextView so that auto-completion options
corresponding to his input to show up.

The Activity in which we are implementing auto-completion should implement
TextWatcher so that we can override the onTextChanged() method:

public class AutoComplete extends Activity implements TextWatcher {

We need to override the unimplemented methods: onTextChanged(), beforeTextChanged(),
and afterTextChanged(). We also require three fields:

• A handle onto the TextView
• A handle onto the AutoCompleteTextView
• A list of String items from which the auto-completion will choose

These three items are shown here:
private TextView field;
private AutoCompleteTextView autocomplete;
String autocompleteItems [] = {"apple", "banana", "mango", "pineapple","apricot",
 "orange", "pear", "grapes"};

6.18 Implementing AutoCompleteTextView | 329

Our onTextChanged() method, shown next, simply copies the current value of the text
field into another text field—this is not mandatory, but in this demo it will show you
what values are being set in the auto-completion component:

@Override
public void onTextChanged(CharSequence arg0, int arg1, int arg2, int arg3) {
 field.setText(autocomplete.getText());
}

In the onCreate() method of the same Activity, we get a handle on the TextView and the
AutoCompleteTextView components of the layout. We also set a String adapter for the
AutoCompleteTextView:

setContentView(R.layout.main);
field = (TextView) findViewById(R.id.field);
autocomplete = (AutoCompleteTextView)findViewById(R.id.autocomplete);
autocomplete.addTextChangedListener(this);
autocomplete.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line, autocompleteItems));

Source Download URL
You can download the source code for this example from Google Docs.

6.19 Feeding AutoCompleteTextView Using a SQLite
Database Query
Jonathan Fuerth

Problem
Although the Android documentation contains a complete working example of
using AutoCompleteTextView with an ArrayAdapter, just substituting a SimpleCursorAdapter
into the example does not work.

Solution
There are two extra twists to using SimpleCursorAdapter instead of ArrayAdapter:

• You need to tell the Adapter which column to use to fill the TextView after the user
selects a completion.

• You need to tell the Adapter how to requery based on the user’s latest input in the
text field. Otherwise, it shows all rows returned by the cursor and the list never
shrinks to include the items of actual interest.

330 | Chapter 6: Graphical User Interface

https://docs.google.com/leaf?id=0B_rESQKgad5LYzVkOTdlOGUtODg5My00ZTRmLWIyNTYtMDdiMzA0NjhiNGRk&hl=en_US

Discussion
The following example code would typically be found in the onCreate() method of the
Activity that contains the AutoCompleteTextView. It retrieves the AutoCompleteTextView from
the Activity’s layout, creates a SimpleCursorAdapter, configures that SimpleCursorAdapter to
work with the AutoCompleteTextView, and then assigns the Adapter to the View.

The two important differences from the ArrayAdapter example in the Android Devel‐
opers Guide are marked in Example 6-26.

Example 6-26. The onCreate() code

final AutoCompleteTextView itemName =
 (AutoCompleteTextView) findViewById(R.id.item_name_view);

SimpleCursorAdapter itemNameAdapter = new SimpleCursorAdapter(
 this, R.layout.completion_item, itemNameCursor, fromCol, toView);

itemNameAdapter.setStringConversionColumn(
itemNameCursor.getColumnIndexOrThrow(GroceryDBAdapter.ITEM_NAME_COL));

itemNameAdapter.setFilterQueryProvider(new FilterQueryProvider() {

 public Cursor runQuery(CharSequence constraint) {
 String partialItemName = null;
 if (constraint != null) {
 partialItemName = constraint.toString();
 }
 return groceryDb.suggestItemCompletions(partialItemName);
 }
});

itemName.setAdapter(itemNameAdapter);

With ArrayAdapter, there is no need to specify how to convert the user’s selection
into a String. However, SimpleCursorAdapter supports using one column for the text
of the suggestion, and a different column for the text that’s fed into the text field
after the user selects a suggestion. Although the most common case is to use the
same text for the suggestion as you get in the text field after picking it, this is not
the default. The default is, as is often the case in Java, to use toString(), e.g., to fill
the text view with the toString() representation of your cursor—something like
android.database.sqlite.SQLiteCursor@f00f00d0. That is not what you want!

With ArrayAdapter, the system takes care of filtering the alternatives to display only
those strings that start with what the user has typed into the text field so far. The
SimpleCursorAdapter is more flexible, but again, the default behavior is not useful. If
you fail to write a FilterQueryProvider for your adapter, the AutoCompleteTextView will

6.19 Feeding AutoCompleteTextView Using a SQLite Database Query | 331

simply show the initial set of suggestions no matter what the user types. With the
FilterQueryProvider, the suggestions work as expected.

6.20 Turning Edit Fields into Password Fields
Rachee Singh

Problem
You need to designate an EditText as a password field so that characters the user types
will not be visible to “shoulder surfers.”

Solution
Android provides the password attribute on the EditText class, which provides the
needed behavior.

Discussion
If your application requires the user to enter a password, the EditText being used
should be special. It should hide the characters entered. This can be done by adding
this property to the EditText in XML:

android:inputType="textPassword"

Figure 6-18 shows how the password EditText would look.

Figure 6-18. EditText with password

332 | Chapter 6: Graphical User Interface

6.21 Changing the Enter Key to “Next” on the Soft
Keyboard
Jonathan Fuerth

Problem
Several apps, including the Browser and Contacts apps, replace the Enter key on the
onscreen keyboard with a Next key that gives focus to the next data entry view. You
want to add this kind of polish to your own apps.

Solution
Set the appropriate input method editor (IME) attribute on the views in question.

Discussion
Figure 6-19 shows a simple layout with three text fields (EditText views) and a Submit
button.

Figure 6-19. Three text fields and a Submit button

Note the Enter key at the bottom right. Pressing it causes the currently focused text
field to expand vertically to accommodate another line of text. This is not what you
normally want!

6.21 Changing the Enter Key to “Next” on the Soft Keyboard | 333

Here is the code for the layout in Figure 6-19:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 1" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 2" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 3" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Submit" />
</LinearLayout>

Figure 6-20 shows a better version of the same UI, with a Next key where Enter was.

Figure 6-20. Improved UI: Next key

334 | Chapter 6: Graphical User Interface

Besides being more convenient for users, this also prevents people from entering
multiple lines of text into a field that was only intended to hold a single line.

Here’s how to tell Android to display a Next button on your keyboard. Note the
android:imeOptions attributes on each of the three EditText views:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 1"
 android:singleLine="true"
 android:imeOptions="actionNext" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 2"
 android:singleLine="true"
 android:imeOptions="actionNext" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 3"
 android:singleLine="true"
 android:imeOptions="actionDone" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Submit" />
</LinearLayout>

Finally, notice the actionDone on the third text field: the button that follows is not
focusable in touch mode, and if it were, it wouldn’t display a keyboard anyway. As
you might guess, actionDone puts a Done button where the Enter key normally goes.
Pressing the Done button simply hides the keyboard.

The android:singleLine attribute is required for the imeOptions to take effect. The official
Android documentation says that this “constrains the text to a single horizontally
scrolling line instead of letting it wrap onto multiple lines, and advances focus instead
of inserting a newline when you press the enter key.” This is marked as deprecated in
the current SDK, but the replacement (android:maxLines="1") does not cause the
imeOptions to take effect.

There are a number of refinements you can make to the appearance of the software
keyboard, including hints about the input type, suggested capitalization, and even
select-all-on-focus behavior. They are all worth investigating. Every little touch can
make your app more pleasurable to use.

6.21 Changing the Enter Key to “Next” on the Soft Keyboard | 335

See Also
The Android API documentation for TextView, especially the section on imeOptions.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory SoftKeyboardEnterNext (see “Getting and Using the Code Examples” on
page 18).

6.22 Processing Key-Press Events in an Activity
Rachee Singh

Problem
You want to intercept the keys pressed by the user and perform actions correspond‐
ing to them.

Solution
Override the onKeyDown() method in an Activity.

Discussion
If the application must react differently to different key-presses, you need to override
the onKeyDown() method in the Activity’s Java code. This method takes the KeyCode as an
argument so that, within a switch-case block, different actions can be carried out (see
Example 6-27).

Example 6-27. The onKeyDown() method

public boolean onKeyDown(int keyCode, KeyEvent service) {
 switch(keyCode) {
 case KeyEvent.KEYCODE_HOME:
 keyType.setText("Home Key Pressed!");
 break;
 case KeyEvent.KEYCODE_DPAD_CENTER :
 keyType.setText("Center Key Pressed!");
 break;
 case KeyEvent.KEYCODE_DPAD_DOWN :
 keyType.setText("Down Key Pressed!");
 break;
 // And so on...
 }
}

336 | Chapter 6: Graphical User Interface

https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/TextView.html#attr_android:imeOptions
https://github.com/IanDarwin/Android-Cookbook-Examples

Source Download URL
You can download the source code for this example from Google Docs.

6.23 Let Them See Stars: Using RatingBar
Ian Darwin

Problem
You want the user to choose from a number of identical GUI elements in a group to
indicate a value such as a “rating” or “evaluation.”

Solution
Use the RatingBar widget; it lets you specify the number of stars to appear and the
default rating, notifies you when the user changes the value, and lets you retrieve the
rating.

Discussion
RatingBar provides the now-familiar “rating” user interface experience, where a user is
asked to rank or rate something using star classification (the RatingBar doesn’t display
the thing to be rated; that’s up to the rest of your app). RatingBar is a subclass of
ProgressBar, extended to display a whole number of icons (the stars) in the bar. Its pri‐
mary properties are:

numStars

The number of stars to display (int)

rating

The user’s chosen rating (float, because of stepSize)

stepSize

The increment for selection (float; common values are 1.0 and 0.5, depending on
how fine-grained you want the rating to be)

isIndicator

A boolean, set to true to make this read-only

These properties are normally set in the XML:
<RatingBar
 android:id="@+id/serviceBar"
 android:gravity="center"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="5"
 android:rating="3"

6.23 Let Them See Stars: Using RatingBar | 337

https://docs.google.com/leaf?id=0B_rESQKgad5LMDdhMDllYmYtOWE5Mi00MDU0LWE4YWEtODkwNGYwMWVkOTNl&hl=en_US

 android:stepSize="1.0"
 android:isIndicator='false'
 />

The RatingBar maintains its rating value internally. You can find out how the user has
rated the item in two ways:

• Invoke the getRating() method.
• Provide a change notification listener of type OnRatingBarChangeListener.

The OnRatingBarChangeListener has a single method, onRatingChanged(), called with three
arguments:

RatingBar rBar

The event source, a reference to the particular RatingBar

float fRating

The rating that was set

boolean fromUser

true if set by a user, false if set programmatically

Example 6-28 simulates a customer survey; it creates two RatingBars, one to rate ser‐
vice and another to rate price (the XML for both is identical except for the android:id).
In the main program, an OnRatingBarChangeListener is created to display touchy-feely–
sounding feedback for the given rating (the rating is converted to an int and a switch
statement is used to generate a message for the toast).

Example 6-28. The RatingBar demo app

public class MainActivity extends Activity {
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 OnRatingBarChangeListener barChangeListener =
 new OnRatingBarChangeListener() {
 @Override
 public void onRatingChanged(RatingBar rBar,
 float fRating, boolean fromUser) {
 int rating = (int) fRating;
 String message = null;
 switch(rating) {
 case 1: message = "Sorry you're really upset with us"; break;
 case 2: message = "Sorry you're not happy"; break;
 case 3: message = "Good enough is not good enough"; break;
 case 4: message = "Thanks, we're glad you liked it."; break;
 case 5: message = "Awesome - thanks!"; break;
 }
 Toast.makeText(Main.this,

338 | Chapter 6: Graphical User Interface

 message,
 Toast.LENGTH_LONG).show();
 }
 };
 final RatingBar sBar = (RatingBar) findViewById(R.id.serviceBar);
 sBar.setOnRatingBarChangeListener(barChangeListener);
 final RatingBar pBar = (RatingBar) findViewById(R.id.priceBar);
 pBar.setOnRatingBarChangeListener(barChangeListener);

 Button doneButton = (Button) findViewById(R.id.doneButton);
 doneButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View arg0) {
 String message = String.format(
 "Final Answer: Price %.0f/%d, Service %.0f/%d%nThank you!",
 sBar.getRating(), sBar.getNumStars(),
 pBar.getRating(), pBar.getNumStars()
);
 // Thank the user
 Toast.makeText(Main.this,
 message,
 Toast.LENGTH_LONG).show();
 // And upload the numbers to a database, hopefully...

 // That's all for this Activity, and hence this App
 finish();
 }
 });
 }
}

There is more than one RatingBar, so we don’t save the value in the listener, because an
incomplete survey is not useful; in the Done button action listener we fetch both val‐
ues and display them, and this would be the place to save them. Your mileage may
vary: it may make more sense to save them in the OnRatingBarChangeListener.

If you’re not used to printf-like formatting, the String.format call uses %.0f to format
the float as an int, instead of casting it (since we have to do nice formatting anyway).
Ideally the format message should be from the XML strings, but this is only a demo
program.

The main UI is shown in Figure 6-21.

When the user clicks the Done button, she will see the Farewell message displayed in
the desktop window (see Figure 6-22).

6.23 Let Them See Stars: Using RatingBar | 339

Figure 6-21. Displaying a feedback rating

Figure 6-22. Completion of the rating/survey

When you wish to both display the current “average” or similar measure ratings from
a community and allow users to enter their own ratings, it is customary to display the
current ratings read-only and to create a pop-up dialog where a user can enter her
particular rating. This is described on the Android Patterns website.

340 | Chapter 6: Graphical User Interface

https://unitid.nl/androidpatterns/uap_pattern/rating-stars

See Also
The reference documentation page.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory RatingBarDemo (see “Getting and Using the Code Examples” on page 18).

6.24 Making a View Shake
Ian Darwin

Problem
You want a View component to shake for a few seconds to catch the user’s attention.

Solution
Create an animation in the XML, then call the View object’s startAnimation() method,
using the convenience routing loadAnimation() method to load the XML.

Discussion
The animation specification is created in XML files in the anim directory. In this
example, we want the text entry field to be able to shake either left to right (to emulate
a person shaking his head from side to side, which means “no” or “I disagree” in
many parts of the world) or up and down (a person nodding in agreement). So, we
create two animations, horizontal.xml and vertical.xml. Here is horizontal.xml:

<?xml version="1.0" encoding="utf-8"?>
<translate
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromXDelta="0"
 android:toXDelta="10"
 android:duration="1000"
 android:interpolator="@anim/cycler"
 />

The file vertical.xml is identical except it uses fromYDelta and toYDelta.

The Interpolator—the function that drives the animation—is contained in another
file, cycler.xml, shown here:

<?xml version="1.0"?>
<cycleInterpolator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:cycles="5"/>

6.24 Making a View Shake | 341

https://developer.android.com/reference/android/widget/RatingBar.html
https://github.com/IanDarwin/Android-Cookbook-Examples

To apply one of the two animations to a View component, you need a reference to it.
You can, of course, use the common findViewById(R.id.*). You can also use the Activity
method getCurrentFocus() if you are dealing with the current input (focused) View com‐
ponent; this avoids coupling to the name of a particular component, if you know that
your animation will always apply to the current input object. In my code I know this
is true because the animation startup is done in an onClick() method. Alternatively,
you could use the View that is passed into the onClick() method, but that would make
the button shake, not the text field.

I won’t show the whole application, but here is the onClick() method that contains all
the animation code (see Example 6-29).

Example 6-29. The animation code

@Override
public void onClick(View v) {
 String answer = answerEdit.getText().toString();
 if ("yes".equalsIgnoreCase(answer)) {
 getCurrentFocus().startAnimation(
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.vertical));
 return;
 }
 if ("no".equalsIgnoreCase(answer)) {
 getCurrentFocus().startAnimation(
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.horizontal));
 return;
 }
 Toast.makeText(this, "Try to be more definite, OK?",
 Toast.LENGTH_SHORT).show();
}

The shaking effect is convenient for drawing the user’s attention to an input that is
incorrect, but it can easily be overdone. Use judiciously!

6.25 Providing Haptic Feedback
Adrian Cowham

Problem
You want to provide haptic feedback with your application.

Solution
Use Android’s haptic controls to provide instant physical feedback.

342 | Chapter 6: Graphical User Interface

Discussion
Building confidence among users that their actions had an effect is a requirement for
any app on any platform. The canonical example is displaying a progress bar to let
users know an action is being processed. For touch interfaces this technique still
applies, but the advantage of a touch interface is that developers have the opportunity
to provide physical feedback, as users are capable of actually feeling the device react
to their actions.

Android has some stock haptic controls, but if these don’t satisfy your needs you can
gain control of the device’s vibrator for custom feedback.

Custom control of the device’s vibrator requires permission. This is
something you’ll have to explicitly list in your AndroidManifest.xml
file. If you’re paranoid about asking for permission or if you
already have a long list of permissions, you may want to use the
stock Android haptic feedback options.
Also be aware that some devices don’t have a vibrator; when you
run the examples in this recipe on such devices, you will not
receive haptic feedback.

I’ll start by showing the more complicated example first, custom haptic feedback.

Custom haptic feedback using the device’s vibrator
Your first step is to request the necessary permission. Add the following line to your
AndroidManifest.xml file:

<uses-permission android:name="android.permission.VIBRATE" />

Now define a listener to respond to touch events. The CustomHapticListener shown in
Example 6-30 is implemented as a private nonstatic inner class of the main Activity
because it needs access to the Context method getSystemService().

Example 6-30. The haptic feedback listener implementation

private class CustomHapticListener implements View.OnClickListener {

 // Duration in milliseconds to vibrate
 private final int durationMs;

 public CustomHapticListener(int ms) {
 durationMs = ms;
 }

 @Override
 public void onClick(View v) {
 Vibrator vibe = (Vibrator) getSystemService(VIBRATOR_SERVICE);

6.25 Providing Haptic Feedback | 343

 vibe.vibrate(durationMs);
 }
}

 and are the important lines. gets a reference to the Vibrator service and
vibrates the device. If you have not requested the vibrate permission, will throw an
exception.

Now register the listener. In your Activity’s onCreate() method, you’ll need to get a ref‐
erence to the GUI element you want to attach haptic feedback to and then register the
OnClickListener defined earlier:

@Override
public void onCreate(Bundle savedInstance) {
 Button customBtn = (Button) findViewById(R.id.btn_custom);
 customBtn.setOnTouchListener(new CustomHapticListener(100));
}

That’s it; you’re in control of the haptic feedback. Now we’ll move on to using stock
Android haptic feedback.

Stock haptic feedback events
First things first: to use stock Android haptic feedback events you must enable this on
a view-by-view basis. That is, you must explicitly enable haptic feedback for each
view. You can enable haptic feedback declaratively in your layout file or programmati‐
cally in Java. To enable haptic feedback in your layout, simply add the
android:hapticFeedbackEnabled="true" attribute to your view(s). Here’s an abbreviated
example:

<button android:hapticFeedbackEnabled="true">
</button>

Here’s how you do the same thing in code:
Button keyboardTapBtn = (Button) findViewById(btnId);
keyboardTapBtn.setHapticFeedbackEnabled(true);

Now that haptic feedback has been enabled, the next step is to register a listener in
which to then perform the actual feedback. For this example we’ll use a touch listener
so that touch events will invoke the feedback; Example 6-31 shows how to register an
OnTouchListener and perform haptic feedback when a user touches the view.

Example 6-31. Haptic feedback demo app

// Initialize some buttons with the stock Android haptic feedback values
private void initializeButtons() {
 // Initialize the buttons with the standard haptic feedback options
 initializeButton(R.id.btn_keyboardTap, HapticFeedbackConstants.KEYBOARD_TAP);
 initializeButton(R.id.btn_longPress, HapticFeedbackConstants.LONG_PRESS);
 initializeButton(R.id.btn_virtualKey, HapticFeedbackConstants.VIRTUAL_KEY);

344 | Chapter 6: Graphical User Interface

}

// Helper method to initialize single buttons and register an OnTouchListener
// to perform the haptic feedback
private void initializeButton(int btnId, int hapticId) {
 Button btn = (Button) findViewById(btnId);
 btn.setOnTouchListener(new HapticTouchListener(hapticId));
}

// Class to handle touch events and respond with haptic feedback
private class HapticTouchListener implements OnTouchListener {

 private final int feedbackType;

 public HapticTouchListener(int type) { feedbackType = type; }

 public int feedbackType() { return feedbackType; }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 // Only perform feedback when the user touches the view, as opposed
 // to lifting a finger off the view
 if(event.getAction() == MotionEvent.ACTION_DOWN) {
 // Perform the feedback
 v.performHapticFeedback(feedbackType());
 }
 return true;
 }
}

You’ll notice that in lines through , I’m initializing three different buttons with
three different haptic feedback constants. These are Android’s stock values; two of the
three seem to provide exactly the same feedback.

Example 6-31 is part of a test app I wrote to demonstrate haptic feedback, and I could
not tell the difference between HapticFeedbackConstants.LONG_PRESS and
HapticFeedbackConstants.KeyboardTap. HapticFeedbackConstants.VIRTUAL_KEY, when tested,
does not appear to provide any feedback. is where the haptic feedback is per‐
formed. All in all, providing haptic feedback is pretty simple, but remember that if
you want control of the device’s vibrator you must request permission in your
AndroidManifest.xml file. If you choose to use the stock Android haptic feedback
options, make sure you enable haptic feedback for your views either in the layout or
programmatically.

See Also
The blog post by the author of this recipe, entitled “Android’s Haptic Feedback”.

6.25 Providing Haptic Feedback | 345

http://mytensions.blogspot.com/2011/03/androids-haptic-feedback.html

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory HapticFeedback (see “Getting and Using the Code Examples” on page 18).

6.26 Navigating Different Activities Within a TabView
Pratik Rupwal

Problem
You want to change from an Activity within a TabView to another Activity within the
same tab.

Solution
Replace the content view of the tab with the new Activity you want to move to.

Discussion
When a “calling” Activity within a TabView calls another Activity through an Intent, the
TabView gets replaced by the view of the called Activity. To show the called Activity
within the TabView, we can replace the view of the calling Activity with the view of the
called Activity so that the TabView remains stable. To achieve this we need to extend
the calling Activity from ActivityGroup rather than Activity.

In Example 6-32 the Calling Activity extended from ActivityGroup has been set within a
TabView.

Example 6-32. Replacing the Activity within a tab

// 'Calling' Activity
public class Calling extends ActivityGroup implements OnClickListener
{
 Button b1;
 Intent i1;
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.calling);
 b1=(Button)findViewById(R.id.changeactivity);
 b1.setOnClickListener();
 }
 public void onClick(View view) {
 // Create an intent to call the 'Called' Activity
 i1=new Intent(this.getBaseContext(),Called.class);
 // Call the method to replace the view.
 replaceContentView("Called", i1);

346 | Chapter 6: Graphical User Interface

https://github.com/IanDarwin/Android-Cookbook-Examples

 }
 // This replaces the view of the 'Calling' Activity with the 'Called' Activity.
 public void replaceContentView(String id, Intent newIntent) {
 // Obtain the view of the 'Called' Activity using its Intent 'newIntent'
 View view = getLocalActivityManager().startActivity(id,
 newIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP)) .getDecorView();
 // Set the above view to the content of the 'Calling' Activity.
 this.setContentView(view);
 }
}

The “called Activity” can also call another Activity (say CalledSecond), as shown here:
// 'Called Activity'
public class Called extends Activity implements OnClickListener
{
 Button b1;
 Intent i1;
 Calling caller;
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.called);
 b1=(Button)findViewById(R.id.changeactivity);
 b1.setOnClickListener();
 }
 public void onClick(View view) {
 // Create an Intent to call the 'CalledSecond' Activity
 i1=new Intent(this.getBaseContext(),CalledSecond.class);
 /**
 * 'CalledSecond' can be any Activity, even
 * 'Calling' (in case backward navigation is required)
 */

 // Initialize the object of the 'Calling' class
 caller=(Calling)getParent();
 // Call the method to replace the view.
 caller.replaceContentView("CalledSecond", i1);
 }
}

6.27 Creating a Loading Screen that Will Appear Between
Two Activities
Shraddha Shravagi

Problem
You are getting a black screen before loading an Activity.

6.27 Creating a Loading Screen that Will Appear Between Two Activities | 347

Solution
Create a simple Activity that shows a loading image instead of a black screen.

Discussion
Sometimes it takes time for an Activity to fetch user-requested data from a database
or the internet, and then to load the data onto the user’s screen. In such cases, usually
the screen goes black while the user waits for the data to load. The following scenario
illustrates this:

ProfileList (the user selects one profile) → black screen → ProfileData

Instead of showing the user a black screen while she waits for the data to load, you
can show an image, as illustrated in the following scenario:

ProfileList (the user selects one profile) → LoadingScreenActivity → ProfileData

In this recipe we will create a simple loading screen that appears for 2.5 seconds while
the next Activity loads.

To do this, you need to start by creating a LoadingScreen layout file. This layout creates
a screen that displays a “loading” message and a progress bar:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:gravity="center" android:orientation="vertical"
 android:layout_height="fill_parent" android:background="#E5E5E5">

 <TextView android:text="Please wait while your data is being loaded..."
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:textColor="#000000">
 </TextView>
 <ProgressBar android:id="@+id/mainSpinner1" android:layout_gravity="center"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:indeterminate="true"
 style="?android:attr/progressBarStyleInverse">
 </ProgressBar>

</LinearLayout>

Next, create a LoadingScreen class file (see Example 6-33).

Example 6-33. The LoadingScreen class

public class LoadingScreenActivity extends Activity {

 // Introduce a delay
 private final int WAIT_TIME = 2500;
 @Override

348 | Chapter 6: Graphical User Interface

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 System.out.println("LoadingScreenActivity screen started");
 setContentView(R.layout.loading_screen);
 findViewById(R.id.mainSpinner1).setVisibility(View.VISIBLE);

 new Handler().postDelayed(new Runnable() {
 @Override
 public void run() {
 // Simulating a long-running task
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // Can't happen
 }
 System.out.println("Going to Profile Data");
 /* Create an Intent that will start the ProfileData Activity */
 Intent mainIntent =
 new Intent(LoadingScreenActivity.this, ProfileData.class);
 LoadingScreenActivity.this.startActivity(mainIntent);
 LoadingScreenActivity.this.finish();
 }
 }, WAIT_TIME);
 }
}

This will load the next Activity once WAIT_TIME has elapsed.

Now all you need to do is to create an Intent to launch the loading screen Activity:
protected void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

 Intent intent = new Intent(ProfileList.this, LoadingScreenActivity.class);
 startActivity(intent);
}

6.28 Adding a Border with Rounded Corners to a Layout
Daniel Fowler

Problem
You need to put a border around an area of the screen or add interest to a user inter‐
face.

Solution
Define an Android shape in an XML file and assign it to a layout’s background attribute.

6.28 Adding a Border with Rounded Corners to a Layout | 349

Discussion
The drawable folder, under res in an Android project, is not restricted to bitmaps
(PNG or JPG files); it can also hold shapes defined in XML files. These shapes can
then be reused in the project. A shape can be used to put a border around a layout.
This example shows how to make a rectangular border with curved corners.

Create a new file called customborder.xml in the drawable folder. Right-click on the
drawable folder and select New → Drawable Resource File from the context menu (or,
with that folder selected, use the File menu). In the New Drawable Resource File dia‐
log, enter a filename of customborder. Set the “Root element” to shape, and click OK.
Enter the following XML, defining the border shape, into the customborder.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <corners android:radius="20dp"/>
 <padding android:left="10dp" android:right="10dp"
 android:top="10dp" android:bottom="10dp"/>
 <solid android:color="#CCCCCC"/>
</shape>

The attribute android:shape is set to rectangle (shape files also support oval, line, and
ring). rectangle is the default value, so you can leave out this attribute if you’re defin‐
ing a rectangle. For detailed information on shape files, refer to the Android docu‐
mentation on shapes.

The element corners sets the rectangle corners to be rounded; it is possible to set a
different radius on each corner (see the Android reference).

The padding attributes are used to move the contents of the view to which the shape is
applied, to prevent the contents from overlapping the border.

The border color here is set to a light gray (the hexadecimal RGB value #CCCCCC).

Shapes also support gradients, but that is not used in our example; again, see the
Android documentation to see how a gradient is defined.

The shape is applied using android:background="@drawable/customborder".

Within the layout other views can be added as usual. In this example a single TextView
has been added, and the text is white (hexadecimal RGB value #FFFFFF). The back‐
ground is set to blue, plus some transparency to reduce the brightness (hexadecimal
alpha RGB value #A00000FF).

Finally, the layout is offset from the screen edge by placing it into another layout with
a small amount of padding. The full layout file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"

350 | Chapter 6: Graphical User Interface

https://developer.android.com/guide/topics/resources/drawable-resource.html#Shape
https://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="5dp">
 <LinearLayout android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/customborder">
 <TextView android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Text View"
 android:textSize="20dp"
 android:textColor="#FFFFFF"
 android:gravity="center_horizontal"
 android:background="#A00000FF" />
 </LinearLayout>
</LinearLayout>

This produces the result shown in Figure 6-23.

Figure 6-23. Curved border

See Also
The developer documentation on shapes.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory LayoutBorder (see “Getting and Using the Code Examples” on page 18).

6.29 Detecting Gestures in Android
Pratik Rupwal

Problem
You want the user to be able to traverse through different screens using simple ges‐
tures, such as flipping/scrolling the page.

6.29 Detecting Gestures in Android | 351

https://developer.android.com/guide/topics/resources/drawable-resource.html#Shape
https://github.com/IanDarwin/Android-Cookbook-Examples

Solution
Use the GestureDetector class to detect simple gestures such as tapping, scrolling, swip‐
ing, or flipping.

Discussion
The sample application in this recipe has four views, each a different color. It also has
two modes: SCROLL and FLIP. The application starts in FLIP mode. In this mode,
when you perform the swipe/fling gesture in a left-to-right or top-to-bottom direc‐
tion, the view changes back and forth. When a long-press is detected, the application
changes to SCROLL mode, in which you can scroll the displayed view. While in this
mode, you can double-tap the screen to bring the screen back to its original position.
When a long-press is detected again, the application changes to FLIP mode.

This recipe focuses on gesture detection, hence the animation between those views is
not discussed. Refer to Recipe 6.24 for an example of shaking a view using an anima‐
tion, as well as the Android documentation for android.view.animation.

Example 6-34 provides an introduction to simple gesture detection in Android. Our
GestureDetector class detects gestures using the supplied MotionEvent class. We use this
class along with the onTouchEvent() method. Inside this method we call
GestureDetector.onTouchEvent(). The GestureDetector class identifies the gestures or events
that occurred and reports back to us using the GestureDetector.OnGestureListener call‐
back interface. We create an instance of the GestureDetector class by passing the Context
and GestureDetector.OnGestureListener listener. The double-tap event is not present in
the GestureDetector.OnGestureListener callback interface; this event is reported using
another callback interface, GestureDetector.OnDoubleTapListener. To use this callback
interface we have to register a GestureDetector.OnDoubleTapListener for these events. The
MotionEvent class contains all the values corresponding to a movement and touch
event. This class holds values such as the x- and y- positions at which the event occur‐
red, the timestamp at which the event occurred, and the mouse pointer index.

Example 6-34. Gesture detection

...
import android.view.GestureDetector;
...
import android.view.animation.OvershootInterpolator;
import android.view.animation.TranslateAnimation;

public class FlipperActivity extends Activity
 implements GestureDetector.OnGestureListener,
 GestureDetector.OnDoubleTapListener {

 final private int SWIPE_MIN_DISTANCE = 100;
 final private int SWIPE_MIN_VELOCITY = 100;

352 | Chapter 6: Graphical User Interface

https://developer.android.com/reference/android/view/animation/package-summary.html

 private ViewFlipper flipper = null;
 private ArrayList<TextView> views = null;
 private GestureDetector gesturedetector = null;
 private Vibrator vibrator = null;
 int colors[] = { Color.rgb(255,128,128),
 Color.rgb(128,255,128),
 Color.rgb(128,128,255),
 Color.rgb(128,128,128) };

 private Animation animleftin = null;
 private Animation animleftout = null;

 private Animation animrightin = null;
 private Animation animrightout = null;

 private Animation animupin = null;
 private Animation animupout = null;

 private Animation animdownin = null;
 private Animation animdownout = null;

 private boolean isDragMode = false;
 private int currentview = 0;

/ ** Initializes the first screen and animation to be applied to the screen
 * after detecting the gesture. */

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 flipper = new ViewFlipper(this);
 gesturedetector = new GestureDetector(this, this);
 vibrator = (Vibrator)getSystemService(VIBRATOR_SERVICE);
 gesturedetector.setOnDoubleTapListener(this);

 flipper.setInAnimation(animleftin);
 flipper.setOutAnimation(animleftout);
 flipper.setFlipInterval(3000);
 flipper.setAnimateFirstView(true);

 prepareAnimations();
 prepareViews();
 addViews();
 setViewText();

 setContentView(flipper);
 }

 private void prepareAnimations() {
 animleftin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, +1.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animleftout = new TranslateAnimation(

6.29 Detecting Gestures in Android | 353

 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, -1.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animrightin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, -1.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animrightout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, +1.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animupin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, +1.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animupout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, -1.0f);

 animdownin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, -1.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animdownout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, +1.0f);

 animleftin.setDuration(1000);
 animleftin.setInterpolator(new OvershootInterpolator());
 animleftout.setDuration(1000);
 animleftout.setInterpolator(new OvershootInterpolator());

 animrightin.setDuration(1000);
 animrightin.setInterpolator(new OvershootInterpolator());
 animrightout.setDuration(1000);
 animrightout.setInterpolator(new OvershootInterpolator());

 animupin.setDuration(1000);
 animupin.setInterpolator(new OvershootInterpolator());
 animupout.setDuration(1000);
 animupout.setInterpolator(new OvershootInterpolator());

 animdownin.setDuration(1000);
 animdownin.setInterpolator(new OvershootInterpolator());
 animdownout.setDuration(1000);
 animdownout.setInterpolator(new OvershootInterpolator());
 }

 private void prepareViews() {
 TextView view = null;

 views = new ArrayList<TextView>();

 for (int color: colors) {
 view = new TextView(this);

354 | Chapter 6: Graphical User Interface

 view.setBackgroundColor(color);
 view.setTextColor(Color.BLACK);
 view.setGravity(
 Gravity.CENTER_HORIZONTAL | Gravity.CENTER_VERTICAL);

 views.add(view);
 }
 }

 private void addViews() {
 for (int index=0; index<views.size(); ++index) {
 flipper.addView(views.get(index),index,
 new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));
 }
 }

 private void setViewText() {
 String text = getString(isDragMode ? R.string.app_info_drag :
 R.string.app_info_flip);
 for (int index=0; index<views.size(); ++index) {
 views.get(index).setText(text);
 }
 }

 /** Gets invoked when a screen touch is detected. */
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 return gesturedetector.onTouchEvent(event);
 }

 /** The onDown() method is called when the user first touches the screen;
 * the MotionEvent parameter represents the event that corresponds to
 * the touch event. */
 @Override
 public boolean onDown(MotionEvent e) {
 return false;
 }

 /** The onFling() method is called whenever the user swipes the screen
 * in any direction (i.e., touches the screen and immediately
 * moves the finger in any direction). */
 @Override
 public boolean onFling(MotionEvent event1, MotionEvent event2,
 float velocityX,float velocityY) {
 if(isDragMode)
 return false;

 final float ev1x = event1.getX();
 final float ev1y = event1.getY();
 final float ev2x = event2.getX();
 final float ev2y = event2.getY();
 final float xdiff = Math.abs(ev1x - ev2x);
 final float ydiff = Math.abs(ev1y - ev2y);
 final float xvelocity = Math.abs(velocityX);
 final float yvelocity = Math.abs(velocityY);

6.29 Detecting Gestures in Android | 355

 if (xvelocity > this.SWIPE_MIN_VELOCITY &&
 xdiff > this.SWIPE_MIN_DISTANCE) {
 if(ev1x > ev2x) { // Swipe left
 --currentview;

 if (currentview < 0) {
 currentview = views.size() - 1;
 }

 flipper.setInAnimation(animleftin);
 flipper.setOutAnimation(animleftout);
 }
 else { // Swipe right
 ++currentview;

 if(currentview >= views.size()) {
 currentview = 0;
 }

 flipper.setInAnimation(animrightin);
 flipper.setOutAnimation(animrightout);
 }

 flipper.scrollTo(0,0);
 flipper.setDisplayedChild(currentview);
 }
 else if (yvelocity > this.SWIPE_MIN_VELOCITY &&
 ydiff > this.SWIPE_MIN_DISTANCE) {
 if(ev1y > ev2y) { // Swipe up
 --currentview;

 if(currentview < 0) {
 currentview = views.size() - 1;
 }

 flipper.setInAnimation(animupin);
 flipper.setOutAnimation(animupout);
 }
 else { // swipe down
 ++currentview;

 if(currentview >= views.size()) {
 currentview = 0;
 }
 flipper.setInAnimation(animdownin);
 flipper.setOutAnimation(animdownout);
 }

 flipper.scrollTo(0,0);
 flipper.setDisplayedChild(currentview);
 }

 return false;
 }

356 | Chapter 6: Graphical User Interface

 /** The onLongPress() method is called when the user touches the screen
 * and holds it for a period of time. The MotionEvent parameter represents
 * the event that corresponds to the touch event. */
 @Override
 public void onLongPress(MotionEvent e) {
 vibrator.vibrate(200);
 flipper.scrollTo(0,0);

 isDragMode = !isDragMode;

 setViewText();
 }

 /** The onScroll() method is called when the user touches the screen
 * and moves their finger to another location on the screen. */
 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2,
 float distanceX,float distanceY) {
 if(isDragMode)
 flipper.scrollBy((int)distanceX, (int)distanceY);

 return false;
 }

 /** The onShowPress() method is called when the user touches the screen,
 * before they lift or move their finger. This event is mostly used for
 * giving visual feedback to the user to show their action. */
 @Override
 public void onShowPress(MotionEvent e) {
 }

 /** The onSingleTapUp() method is called when the user taps the screen. */
 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 return false;
 }

 /** The onDoubleTap() method is called when a double-tap event has occurred.
 * The only parameter, MotionEvent, corresponds to the double-tap
 * event that occurred. */
 @Override
 public boolean onDoubleTap(MotionEvent e) {
 flipper.scrollTo(0,0);

 return false;
 }

 /** The onDoubleTapEvent() method is called for all events that occurred
 * within the double-tap; i.e., down, move, and up events. */

 @Override
 public boolean onDoubleTapEvent(MotionEvent e) {
 return false;
 }

 /** The onSingleTapConfirmed() method is called when a single tap

6.29 Detecting Gestures in Android | 357

 * has occurred and been confirmed, but this is not same as the
 * single-tap event in the GestureDetector.OnGestureListener. This
 * is called when the GestureDetector detects and confirms that
 * this tap does not lead to a double-tap. */
 @Override
 public boolean onSingleTapConfirmed(MotionEvent e) {
 return false;
 }
}

When the mode of the application changes the user is notified with a vibration. To
use the Vibrator service, set the following permission in your application’s Android‐
Manifest.xml file:

<uses-permission android:name="android.permission.VIBRATE"></uses-permission>

The application uses some strings, which are declared under res/values/string.xml:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_info_drag">
 GestureDetector sample.\n\nCurrent Mode:
 SCROLL\n\nDrag the view using finger.\nLong press to change
 the mode to FLIP.\nDouble tap to reposition the view to normal.</string>
 <string name="app_name">Gesture Detector Sample</string>
 <string name="app_info_flip">
 GestureDetector sample.\n\nCurrent Mode: FLIP\n\nSwipe left, right, up, down
 to change the views\nLong
 press to change to mode to SCROLL</string>
</resources>

See Also
The documentation for the GestureOverlayView class for handling complex gestures in
Android.

6.30 Creating a Simple App Widget
Catarina Reis

Problem
You want to enable users to more easily interact with your application.

Solution
Create an Application widget, which is a simple GUI control that appears on the Home
screen and allows users to easily interact with an existing application (Activity and/or
Service).

358 | Chapter 6: Graphical User Interface

https://developer.android.com/reference/android/gesture/GestureOverlayView.html

Discussion
In this recipe we will create a widget that starts a Service that updates its visual com‐
ponents. The widget, called CurrentMoodWidget, presents the user’s current mood in the
form of a text smiley. The current mood smiley changes to a random mood smiley
whenever the user clicks the smiley image button. In Figure 6-24, the screenshot on
the left shows the initial view, and the screenshot on the right shows the view after a
random change.

Figure 6-24. Initial mood widget (left) and current mood widget (right)

Here’s how to create this simple app widget:

1. Start by creating a new Android project (CurrentMoodWidgetProject). Use “Current
Mood” as the application name and “oreillymedia.cookbook.android.spikes” as
the package name. Do not create an Activity. Set the minimum SDK version to
anything modern (technically the minimum API level is 8, for Android 2.2, the
version that introduced app widgets).

2. Add the string definitions for the widget in the file res/values/string.xml, accord‐
ing to the following name/value pairs:

• widgettext—current mood

• widgetmoodtext—:)

6.30 Creating a Simple App Widget | 359

3. Add the images that will appear in the widget’s button (smile_icon.png). Place
these under the res/drawable structure.

4. Create a new layout file inside res/layout, under the project structure, that will
define the widget layout (widgetlayout.xml) according to the following structure:

<TextView android:text="@string/widgettext"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.8"
 android:layout_gravity="center_vertical"
 android:textColor="#000000"></TextView>
<TextView android:text="@string/widgetmoodtext"
 android:id="@+id/widgetMood" android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.3"
 android:layout_gravity="center_vertical"
 android:textColor="#000000"></TextView>
<ImageButton android:id="@+id/widgetBtn" android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.5" android:src="@drawable/smile_icon"
 android:layout_gravity="center_vertical"></ImageButton>

5. Provide the widget provider setup configuration by first creating the res/xml
folder under the project structure and then creating an XML file (widgetprovider‐
info.xml) with the following parameters:

<appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="220dp"
 android:minHeight="72dp"
 android:updatePeriodMillis="86400000"
 android:initialLayout="@layout/widgetlayout">
</appwidget-provider>

6. Create the Service that reacts to the user interaction with the smiley image button
(CurrentMoodService.java); see Example 6-35.

Example 6-35. Widget’s Service implementation

@Override
public int onStartCommand(Intent intent, int flags, int startId) {
 super.onStart(intent, startId);
 updateMood(intent);
 stopSelf(startId);
 return START_STICKY;
}

private void updateMood(Intent intent) {
 if (intent != null) {

360 | Chapter 6: Graphical User Interface

 String requestedAction = intent.getAction();
 if (requestedAction != null && requestedAction.equals(UPDATEMOOD)) {
 this.currentMood = getRandomMood();
 int widgetId =
 intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, 0);
 AppWidgetManager appWidgetMan = AppWidgetManager.getInstance(this);
 RemoteViews views =
 new RemoteViews(this.getPackageName(),R.layout.widgetlayout);
 views.setTextViewText(R.id.widgetMood, currentMood);
 appWidgetMan.updateAppWidget(widgetId, views);
 }
 }
}

7. Implement the widget provider class (CurrentMoodWidgetProvider.java); see
Example 6-36.

Example 6-36. Widget provider class

@Override
public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 super.onUpdate(context, appWidgetManager, appWidgetIds);

 for (int i=0; i<appWidgetIds.length; i++) {
 int appWidgetId = appWidgetIds[i];
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.widgetlayout);
 Intent intent = new Intent(context, CurrentMoodService.class);
 intent.setAction(CurrentMoodService.UPDATEMOOD);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,appWidgetId);
 PendingIntent pendingIntent =
 PendingIntent.getService(context, 0, intent, 0);
 views.setOnClickPendingIntent(R.id.widgetBtn, pendingIntent);
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
}

8. Finally, declare the Service and the app widget provider in the manifest file
(AndroidManifest.xml):

<service android:name=".CurrentMoodService">
</service>
<receiver android:name=".CurrentMoodWidgetProvider">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/widgetproviderinfo"/>
</receiver>

6.30 Creating a Simple App Widget | 361

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory CurrentMoodWidget (see “Getting and Using the Code Examples” on page
18).

362 | Chapter 6: Graphical User Interface

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 7

GUI Alerts: Menus, Dialogs, Toasts,
Snackbars, and Notifications

User interface toolkits as diverse as Java Swing, the Apple Macintosh toolbox, Micro‐
soft Windows, and browser JavaScript all feature the ubiquitous “pop-up menu,” usu‐
ally in the window-frame version and the context (in-window) form. Android follows
this convention, with some variations to be expected due to the smaller screens used
on many devices (e.g., pop-up or context menus cover a large portion of the screen).

Those other window systems also feature the ubiquitous “dialog,” a window smaller
than the main screen that pops up to notify you of some condition or occurrence and
asks you to confirm your acceptance, or asks you to make one of several choices, pro‐
vide some information, and so on.

Android provides a fairly standard dialog mechanism, as well as a smaller, lighter
“pop-up” called a toast. This only appears on the screen for a few seconds, and fades
away on its own. Intended for passive notification of low-importance events, it is
often used for error notification, although I advise against this usage. There is also a
Snackbar, which looks like an action bar at the bottom of the screen, but behaves like a
toast—it pops up, and then disappears after a few seconds.

And it doesn’t stop there. Android also provides a notification mechanism, which
allows you to put text and/or an icon in the notifications bar (top left of the screen).
A notification can optionally be accompanied by any combination of LED flashing,
audio sounds, and device vibration.

Each of these interactive mechanisms is discussed in this chapter. The chapter pro‐
ceeds in the same order as this introduction, from menus, to dialogs and toasts, to
notifications.

363

7.1 Alerting the User with Toast and Snackbar
Ian Darwin

Problem
You want to notify the user of some occurrence, using a short-lived, onscreen notifi‐
cation mechanism.

Solution
Use a toast for a short notification that appears in front of your application, or a
Snackbar for a short notification that occupies the bottom part of your application’s
screen.

Discussion
The toast mechanism is so basic that it is used everywhere. So named because its “pop
up” action reminded an early developer of how an electric toaster pops up the bread
when it’s toasted, the toast was designed to be easy to use:

Toast.makeText(context, message, length).show();

The Context argument can be an Activity or a Service. The message argument is a String
(or a CharSequence), or the R.id of a String resource. The length argument is an integer,
with one of the values Toast.LENGTH_SHORT or Toast.LENGTH_LONG.

In older code you will often see the use of the nonfluent style:
Toast myTemporaryToastVariable = Toast.makeText(context, message, length);
myTemporaryToastVariable.show();

When I see code like this, I tend to ask: “But why create a temporary variable that’s
only ever used once? Do you get paid by the keystroke?” If you like this style, use it,
but most developers will use the shorter style.

For a slightly neater effect, you may want to use a Snackbar. While the normal action
bar appears at the top of an Activity, the Snackbar appears at the bottom. Like a toast,
a Snackbar is normally used to indicate something that you want the user to see, but
that’s not critical for them to they see—if it’s critical, and you want confirmation that
they’ve seen it, you need them to make a choice, etc., then use a dialog instead
(Recipe 7.6).

364 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

The Snackbar is used in a similar fashion to the toast, but the first argument is a View:
Snackbar.make(view, message, length).show();

It is common to set an Action with the Snackbar. This is not done using the normal
setOnClickListener() but instead using setAction(), whose second argument is the famil‐
iar OnClickListener (here implemented as a lambda; see Recipe 1.18):

Snackbar.make(view, pickRandomMessage(), Snackbar.LENGTH_LONG)
 .setAction("Tap Me!", e->Log.d(TAG, "We should do something here"))
 .show();

The message argument, a String or CharSequence, is displayed at the end of the Snackbar,
and if the user taps on it, the OnClickListener will be invoked. If the user does nothing,
the entire Snackbar will disappear in a few seconds (based on the length argument).

Figure 7-1 shows our example Snackbar in action.

Figure 7-1. Snackbar in action

7.1 Alerting the User with Toast and Snackbar | 365

7.2 Customizing the Appearance of a Toast
Rachee Singh

Problem
You want to customize the look of toast notifications.

Solution
Define an XML layout for the toast and then inflate the view in Java.

Discussion
First, we will define the layout of the custom toast in an XML file, toast_layout.xml. It
contains an ImageView and a TextView, as shown in Example 7-1.

Example 7-1. Toast layout in XML

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toast_layout_root"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:background="#f0ffef"
 >
 <ImageView android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:layout_marginRight="10dp"
 />
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#000000"
 />
</LinearLayout>

Then, in the Java code, we inflate this view using LayoutInflater. We set the gravity and
duration of the toast. The setGravity() method modifies the position at which the
toast will be displayed. On the click of the customToast button, we show the toast (see
Example 7-2).

Example 7-2. Inflating the view

customToast = (Button)findViewById(R.id.customToast);

366 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

LayoutInflater inflater = getLayoutInflater();
View layout = inflater.inflate(R.layout.toast_layout,
 (ViewGroup) findViewById(R.id.toast_layout_root));

ImageView image = (ImageView) layout.findViewById(R.id.image);
image.setImageResource(R.drawable.icon);
TextView text = (TextView) layout.findViewById(R.id.text);
text.setText("Hello! This is a custom toast!");

final Toast toast = new Toast(getApplicationContext());
toast.setGravity(Gravity.CENTER_VERTICAL, 0, 0);
toast.setDuration(Toast.LENGTH_LONG);
toast.setView(layout);
customToast.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 toast.show();
 }
});

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory CustomToast (see “Getting and Using the Code Examples” on page 18).

7.3 Creating and Displaying a Menu
Rachee Singh

Problem
You want to show a menu when the user presses the Menu button on an Android
device. On ancient versions of Android such as Gingerbread, most devices had a
physical Menu button, whereas modern applications generally use an ActionBar (see
Recipe 6.5), which exposes a “soft” Menu button consisting of three dots in a vertical
stack.

Solution
Implement a menu by setting it up in the XML and attaching it to your Activity by
overriding onCreateOptionsMenu().

Discussion
First, create a directory named menu in the res directory of the project. In the menu
directory, create a Menu.xml file. Example 7-3 shows the code for Menu.xml.

7.3 Creating and Displaying a Menu | 367

https://github.com/IanDarwin/Android-Cookbook-Examples

Example 7-3. The menu definition

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/icon1"
 android:title="One"
 android:icon="@drawable/first" />
 <item android:id="@+id/icon2"
 android:title="Two"
 android:icon="@drawable/second" />
 <item android:id="@+id/icon3"
 android:title="Three"
 android:icon="@drawable/three" />
 <item android:id="@+id/icon4"
 android:title="Four"
 android:icon="@drawable/four" />
</menu>

In this XML code, we add a menu and to it we add as many items as our application
requires. We can also provide an image for each menu item (in this example, default
images have been used).

Now, in the Java code for the Activity, override the onCreateOptionsMenu():
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu, menu);
 return true;
}

Figure 7-2 shows how the menu should look.

Figure 7-2. The custom menu

368 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

7.4 Handling Choice Selection in a Menu
Rachee Singh

Problem
After creating a menu, you want to react when the user chooses a menu item.

Solution
Override the onOptionsItemSelected() method.

Discussion
In the Java Activity, we need to override onOptionsItemSelected(). This method takes in
a MenuItem and checks for its ID. Based on the ID of the item that is clicked, a switch-
case can be used. Depending on the case selected, an appropriate action can be taken.
The custom menu might look something like Figure 7-2 from the previous recipe.

For this example, the code just displays one of several toasts indicating which menu
item was selected. Here’s the source code:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.icon1:
 Toast.makeText(this, "Icon 1 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon2:
 Toast.makeText(this, "Icon 2 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon3:
 Toast.makeText(this, "Icon 3 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon4 :
 Toast.makeText(this, "Icon 4 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 }
 return true;
}

Figure 7-3 shows the result.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory MenuAction (see “Getting and Using the Code Examples” on page 18).

7.4 Handling Choice Selection in a Menu | 369

https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 7-3. Menu choice confirmed

7.5 Creating a Submenu
Rachee Singh

Problem
You want to display additional options to the user from within an existing menu, a
sort of “nested menu.”

Solution
Use a submenu implementation to provide additional options to the user.

Discussion
A submenu is a part of a menu that displays options in a hierarchical manner. On
desktop operating systems, submenus appear to “cascade” down and to the side (usu‐
ally to the right side). Android devices may not have room for that, so submenus
appear like dialogs in that they float over the main screen of the application, rather
like a spinner (see Recipe 6.14). You can create the menu hierarchy in the following
ways:

• By inflating an XML layout
• By creating the menu items in the Java code

370 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

While the first approach is by far the most common, in this recipe we will follow the
second approach to show that it’s possible, creating the menu/submenu items in the
onCreateOptionsMenu() method.

First we add the submenu to the menu using the addSubMenu() method. In order to pre‐
vent conflicts with other items in the menu, we explicitly provide the group ID and
item ID to the submenu we are creating (specifying constants for the item ID and
group ID). Then we set an icon for the header of the submenu with the seHeadertIcon()
method and an icon for the submenu with setIcon() (see Example 7-4).

To add items to the submenu, we use the add() method. As arguments to the method,
the group ID, item ID, position of the item in the submenu, and text associated with
each item are specified:

private static final int OPTION_1 = 0;
private static final int OPTION_2 = 1;
private int GROUP_ID = 4;
private int ITEM_ID =3;

Example 7-4. The menu creation and listener methods

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 MenuItem mi = menu.add("Main Menu, Option 1");
 mi.setShowAsAction(SHOW_AS_ACTION_IF_ROOM);
 SubMenu sub1 = menu.addSubMenu(GROUP_ID, ITEM_ID, Menu.NONE, R.string.submenu);
 sub1.setHeaderIcon(R.drawable.icon);
 sub1.setIcon(R.drawable.icon);
 sub1.add(GROUP_ID, OPTION_1, 0, "Submenu Option 1");
 sub1.add(GROUP_ID, OPTION_2, 1, "Submenu Option 2");
 return super.onCreateOptionsMenu(menu);
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case OPTION_1:
 Toast.makeText(this, "Submenu 1, Option 1", Toast.LENGTH_LONG).show();
 break;
 case OPTION_2:
 Toast.makeText(this, "Submenu 1, Option 2", Toast.LENGTH_LONG).show();
 break;
 }
 return true;
}

The onOptionItemSelected() method is called when an item on the menu/submenu is
selected. In this method, using a switch-case we check for the item that is clicked and
an appropriate message is displayed.

7.5 Creating a Submenu | 371

Figure 7-4 shows the application before and after you press the Menu button, then
the message that appears when you click a submenu item (#2 in this screen capture).

Figure 7-4. Custom submenu: Main menu active, submenu active, submenu item chosen

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory CustomSubMenu (see “Getting and Using the Code Examples” on page 18).

7.6 Creating a Pop-up/Alert Dialog
Rachee Singh

Problem
You would like a way to prompt the user about things such as unsaved changes in the
application through an alerting mechanism.

Solution
Use AlertDialog, a class that enables you to provide suitable options to the user. In the
case of an “unsaved changes” scenario, for example, the options would be:

• Save
• Discard changes
• Cancel

372 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
Through the AlertDialog class, you can provide the user with up to three options that
can be used in any scenario:

• Positive reaction
• Neutral reaction
• Negative reaction

If the user has entered some data in an EditText and is then attempting to cancel that
Activity, the application should prompt the user to either save his changes, discard
them, or cancel the alert dialog, which should also cancel the cancellation of the
Activity.

Here is the code that would implement this kind of AlertDialog, along with appropri‐
ate click listeners on each button on the dialog:

alertDialog = new AlertDialog.Builder(this)
 .setTitle(R.string.unsaved)
 .setMessage(R.string.unsaved_changes_message)
 .setPositiveButton(R.string.save_changes, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 saveInformation();
 }
 })
 .setNeutralButton(R.string.discard_changes, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
 })
 .setNegativeButton(android.R.string.cancel_dialog,
 new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 Dialog.cancel();
 }
 })
 .create();
 alertDialog.show();

7.6 Creating a Pop-up/Alert Dialog | 373

7.7 Using a Timepicker Widget
Pratik Rupwal

Problem
You need to ask the user to enter the time for processing some element in the applica‐
tion. Accepting times in text boxes is not graceful, and requires validation.

Solution
You can use the standard Timepicker widget to accept a time from the user. It makes
the app appear graceful and reduces the requirement of validation. The Datepicker
widget works in a similar fashion for choosing dates.

Discussion
The code in Example 7-5 shows how to reveal the current time on the screen and
shows a button that, when clicked, produces the Timepicker widget through which the
user can accept the time.

Example 7-5. The main Activity

public class Main extends Activity {

 private TextView mTimeDisplay;
 private Button mPickTime;

 private int mHour;
 private int mMinute;

 static final int TIME_DIALOG_ID = 0;

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Capture our View elements
 mTimeDisplay = (TextView) findViewById(R.id.timeDisplay);
 mPickTime = (Button) findViewById(R.id.pickTime);

 // Add a click listener to the button
 mPickTime.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 showDialog(TIME_DIALOG_ID);
 }
 });

374 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

 // Get the current time
 final Calendar c = Calendar.getInstance();
 mHour = c.get(Calendar.HOUR_OF_DAY);
 mMinute = c.get(Calendar.MINUTE);

 // Display the current date
 updateDisplay();
 }

 // The overridden method shown below gets invoked when
 // showDialog() is called inside the onClick() method defined
 // for handling the click event of the "Change the time" button

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case TIME_DIALOG_ID:
 return new TimePickerDialog(this,
 mTimeSetListener, mHour, mMinute, false);
 }
 return null;
 }

 // Update the time we display in the TextView
 private void updateDisplay() {
 mTimeDisplay.setText(
 new StringBuilder()
 .append(pad(mHour)).append(":")
 .append(pad(mMinute)));
 }

 // The callback received when the user "sets" the time in the dialog
 private TimePickerDialog.OnTimeSetListener mTimeSetListener =
 new TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(TimePicker view, int hourOfDay, int minute) {
 mHour = hourOfDay;
 mMinute = minute;
 updateDisplay();
 }
 };

 private static String pad(int c) {
 if (c >= 10)
 return String.valueOf(c);
 else
 return "0" + String.valueOf(c);
 }
}

Figure 7-5 shows the timepicker that appears onscreen after the user clicks the
“Change the time” button.

7.7 Using a Timepicker Widget | 375

Figure 7-5. Setting the time

7.8 Creating an iPhone-like WheelPicker for Selection
Wagied Davids

Problem
You want a selection UI component similar to the iPhone’s picker wheel.

Solution
Create a scroll-wheel picker with the third-party widget Android-Wheel, the iPhone-like
picker wheel widget for Android.

Discussion
You can download Android-Wheel from the Google Code Archive. Unfortunately, instal‐
lation requires more than just installing a JAR file in your libs directory, because
resources needed for drawing must be in the res directory. You can extract the
android-wheel-xx.zip file and copy the wheel/src and wheel/res folders into your
project. Alternatively, create a new Android project from the wheel subdirectory
(Android will automatically make it an Android library project) and make your main
project depend on that (see Recipe 1.19). Then you can add one or more WheelView
objects to your Layout, using the full class name. This class and its friends are found

376 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

https://code.google.com/archive/p/android-wheel

in the kankan.wheel.widget package; the adapters subpackage provides the
WheelViewAdapter interface and some implementations. The widget package provides two
interfaces that follow the standard setListener pattern on the WheelView component:

• wheel.addChangingListener(OnWheelChangedListener)

• wheel.addScrollingListener(OnWheelScrollListener)

The code in Example 7-6, which comes from a medical app, lets you choose a body
part and location (R or L for Right or Left, respectively). The choices are hardcoded
here; in a real-world app, they would come from an XML file to allow for internation‐
alization. The app should appear as shown in Figure 7-6. This code uses the “kankan”
wheel components, whose Java top-level package is kankan.wheel.widget and whose
Maven/Gradle coordinates are com.googlecode.android-wheel:datetime-picker:1.1.

Figure 7-6. Picker wheel in action

Example 7-6. The ScrollWheel example code

public class WheelDemoActivity extends Activity {

 private final static String TAG = "WheelDemo";

 private final static String[] wheelMenu1 = {
 "Right Arm", "Left Arm",
 "R-Abdomen", "L-Abdomen",
 "Right Thigh", "Left Thigh"
 };
 private final static String[] wheelMenu2 = {
 "Upper", "Middle", "Lower"
 };
 private final static String[] wheelMenu3 = {"R", "L"};

 // Wheel scrolled flag
 private boolean wheelScrolled = false;
 private TextView resultText;

7.8 Creating an iPhone-like WheelPicker for Selection | 377

 private EditText text1;
 private EditText text2;
 private EditText text3;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wheel_picker);
 initWheel(R.id.p1, wheelMenu1);
 initWheel(R.id.p2, wheelMenu2);
 initWheel(R.id.p3, wheelMenu3);
 text1 = (EditText) this.findViewById(R.id.r1);
 text2 = (EditText) this.findViewById(R.id.r2);
 text3 = (EditText) this.findViewById(R.id.r3);
 resultText = (TextView) this.findViewById(R.id.resultText);
 }

 /**
 * Wheel scrolled listener
 */
 OnWheelScrollListener scrolledListener = new OnWheelScrollListener() {
 @Override
 public void onScrollingStarted(WheelView wheel) {
 wheelScrolled = true;
 }
 @Override
 public void onScrollingFinished(WheelView wheel) {
 wheelScrolled = false;
 updateStatus();
 }
 };

 /**
 * Wheel changed listener
 */
 private final OnWheelChangedListener changedListener =
 new OnWheelChangedListener() {
 @Override
 public void onChanged(WheelView wheel, int oldValue, int newValue) {
 Log.d(TAG, "onChanged, wheelScrolled = " + wheelScrolled);
 if (!wheelScrolled) {
 updateStatus();
 }
 }
 };

 /**
 * Updates entered status
 */
 private void updateStatus() {
 text1.setText(wheelMenu1[((WheelView) findViewById(R.id.p1)).getCurrentItem()]);
 text2.setText(wheelMenu2[((WheelView) findViewById(R.id.p2)).getCurrentItem()]);
 text3.setText(wheelMenu3[((WheelView) findViewById(R.id.p3)).getCurrentItem()]);
 resultText.setText(
 wheelMenu1[((WheelView) findViewById(R.id.p1)).getCurrentItem()] + " - " +
 wheelMenu2[((WheelView) findViewById(R.id.p2)).getCurrentItem()] + " - " +

378 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

 wheelMenu3[((WheelView) findViewById(R.id.p3)).getCurrentItem()]);
 }

 /**
 * Initializes one wheel
 * @param id
 * the wheel widget ID
 */
 private void initWheel(int id, String[] wheelMenu1) {
 WheelView wheel = (WheelView) findViewById(id);
 wheel.setViewAdapter(new ArrayWheelAdapter<String>(this, wheelMenu1));
 wheel.setVisibleItems(2);
 wheel.setCurrentItem(0);
 wheel.addChangingListener(changedListener);
 wheel.addScrollingListener(scrolledListener);
 }
}

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory WheelPickerDemo (see “Getting and Using the Code Examples” on page
18).

7.9 Creating a Tabbed Dialog
Rachee Singh

Problem
You want to categorize the display of information in a custom dialog.

Solution
Use a tabbed layout within a custom dialog.

Discussion
The CustomDialog class extends the Dialog class:

public class CustomDialog extends Dialog

The constructor of the class has to be initialized:
public CustomDialog(final Context context) {
 super(context);

 setTitle("My First Custom Tabbed Dialog");
 setContentView(R.layout.custom_dialog_layout);

7.9 Creating a Tabbed Dialog | 379

https://github.com/IanDarwin/Android-Cookbook-Examples

To create two tabs, insert the Example 7-7 code within the constructor: place
tab_image1 and tab_image2 in /res/drawable. These images are placed on the tabs of the
tabbed custom dialog.

Example 7-7. Constructor code to create and add the tabs

// Get our tabHost from the xml
TabHost tabHost = (TabHost)findViewById(R.id.TabHost01);
tabHost.setup();

// Create tab 1
TabHost.TabSpec spec1 = tabHost.newTabSpec("tab1");
spec1.setIndicator("Profile",
 context.getResources().getDrawable(R.drawable.tab_image1));
spec1.setContent(R.id.TextView01);
tabHost.addTab(spec1);
// Create tab2
TabHost.TabSpec spec2 = tabHost.newTabSpec("tab2");
spec2.setIndicator("Profile",
 context.getResources().getDrawable(R.drawable.tab_image2));
spec2.setContent(R.id.TextView02);
tabHost.addTab(spec2);

This is a simple tabbed dialog. It requires the addition of just a few lines to the con‐
structor’s code. To implement something like a list view, a list view adapter would be
required. A variety of tabs can be inserted based on the application’s requirements.

As shown in Example 7-8, the XML code for a tabbed dialog requires TabHost tags
enclosing the entire layout. Within these tags you place the locations of various parts
of the tabbed dialog. You must use a frame layout to place the content of the different
tabs. In this case, we are creating two tabs, both with a scroll view containing text
(stored in strings.xml and named lorem_ipsum).

Example 7-8. The custom_dialog_layout.xml file

<TabHost
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/TabHost01"
 android:layout_width="fill_parent"
 android:layout_height="500dip">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <TabWidget
 android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

380 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

 <FrameLayout
 android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <ScrollView android:id="@+id/ScrollView01"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView01"
 android:text="@string/lorem_ipsum"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>

 <ScrollView android:id="@+id/ScrollView02"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView02"
 android:text="@string/lorem_ipsum"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>
 </FrameLayout>
 </LinearLayout>
</TabHost>

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory TabHostDemo (see “Getting and Using the Code Examples” on page 18).

7.9 Creating a Tabbed Dialog | 381

https://github.com/IanDarwin/Android-Cookbook-Examples

7.10 Creating a ProgressDialog
Rachee Singh

Problem
You want to be able to alert the user of background processing occurring in the appli‐
cation.

Solution
Show a ProgressDialog while the processing is being carried out.

Discussion
In this recipe we will provide a button that shows a ProgressDialog when clicked. In the
ProgressDialog we set the title as “Please Wait” and the content as “Processing Informa‐
tion.” After this we create a new thread and start the thread’s execution. In the run()
method (which gets executed once the thread gets started) we call the sleep() method
for four seconds. After these four seconds expire the ProgressDialog is dismissed and
the text in the TextView gets changed:

complete = (TextView) this.findViewById(R.id.complete);
complete.setText("Press the Button to start Processing");
processing = (Button)findViewById(R.id.processing);
processing.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 progressDialog = ProgressDialog.show(ProgressDialogExp.this,
 "Please Wait", "Processing Information...", true,false);
 Thread thread = new Thread(ProgressDialogExp.this);
 thread.start();
 }
});

We use a Handler to update the UI once thread execution finishes. We send an empty
message to the Handler after thread execution completes, and then in the Handler we
dismiss the ProgressDialog and update the text of the TextView:

public void run() {
 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 handler.sendEmptyMessage(0);
}

private Handler handler = new Handler() {

382 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

 @Override
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 complete.setText("Processing Finished");
 }
};

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory ProgressDialogDemo (see “Getting and Using the Code Examples” on page
18).

7.11 Creating a Custom Dialog with Buttons, Images, and
Text
Rachee Singh

Problem
Your application requires a dialog-like structure in place of a full-fledged Activity to
show some information. Text, images, and a button are required on this custom dia‐
log.

Solution
Create a custom dialog with tabs. Since everything can be squeezed into a dialog in
place of an entire Activity, the application will seem more compact.

Discussion
The CustomDialog class can directly extend Dialog:

public class CustomDialog extends Dialog

The following lines of code in the CustomDialog class’s onCreate() method add a title and
get handles for the buttons in the dialog:

 setTitle("Dialog Title");
 setContentView(R.layout.custom_dialog_layout);
 // OnClickListeners for the buttons present in the Dialog
 Button button1 = (Button) findViewById(R.id.button1);
 Button button2 = (Button) findViewById(R.id.button2);

For the two buttons that are added, OnClickListeners are defined in the next lines of
code. On being clicked, button1 dismisses the dialog and button2 starts a new Activity:

 button1.setOnClickListener(new View.OnClickListener() {

 @Override

7.11 Creating a Custom Dialog with Buttons, Images, and Text | 383

https://github.com/IanDarwin/Android-Cookbook-Examples

 public void onClick(View v) {
 dismiss(); // To dismiss the Dialog
 }
 });

 button2.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 // Fire an Intent on click of this button
 Intent showQuickInfo =
 New Intent("com.android.oreilly.QuickInfo");
 showQuickInfo.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(showQuickInfo);
 }
 });

Here is the XML layout of the dialog, present in /res/layout custom_dialog_layout.xml.
The entire code is enclosed in a LinearLayout. Within the LinearLayout, a RelativeLayout is
used to position two buttons. Then, below the RelativeLayout is another RelativeLayout
containing a scroll view. android_button and thumbsup are the names of the images
in /res/drawable:

<LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingBottom="10dip">
 <Button
 android:id="@+id/button1"
 android:background="@drawable/android_button"
 android:layout_height="80dip"
 android:layout_width="80dip"
 android:layout_alignParentLeft="true"
 android:layout_marginLeft="10dip"
 android:gravity="center"/>

 <Button
 android:id="@+id/button2"
 android:background="@drawable/thumbsup"
 android:layout_height="80dip"
 android:layout_width="80dip"
 android:layout_alignParentRight="true"
 android:layout_marginRight="10dip"
 android:gravity="center"/>
 </RelativeLayout>

 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

384 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

 android:paddingBottom="10dip">

 <ScrollView android:id="@+id/ScrollView01"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView01"
 android:text="@string/lorem"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>
 </RelativeLayout>
</LinearLayout>

7.12 Creating a Reusable “About Box” Class
Daniel Fowler

Problem
About boxes are common in applications; it is useful not to have to recode them for
each new app.

Solution
Write an AboutBox class that can be installed into any new app.

Discussion
Whatever the operating system, whatever the program, chances are it has an About
option. This is useful for support:

Customer: “Hello, there is a problem with my application.”
Help Desk: “Hi, can you press ‘About’ and tell me the version number?”

Since it is likely to be required again and again, it is worth having a ready-made
AboutBox class that you can easily add to any new app that you develop. At a minimum,
the About option should display a dialog with a title (such as About My App), the version
name from the manifest, some descriptive text (loaded from a string resource), and
an OK button.

7.12 Creating a Reusable “About Box” Class | 385

The version name can be read from the PackageInfo class. (PackageInfo is obtained from
PackageManager, which itself is available from the app’s Context). Here is a method to
read an app’s version name string:

static String VersionName(Context context) {
 try {
 return context.getPackageManager().getPackageInfo(
 context.getPackageName(),0).versionName;
 }
 catch (NameNotFoundException e) {
 return "Unknown";
 }
 }

PageInfo can throw a NameNotFoundException (for when the class is used to find informa‐
tion on other packages). The exception is unlikely to occur; here it is just consumed
by returning an error string. (To return the version code, the app’s internal version
number, swap versionName for versionCode and return an integer.)

With an AlertDialog.Builder and the setTitle(), setMessage(), and show() methods, you
will soon have an About option up and running; but you can improve the About
option by using the Android Linkify class and a custom layout. In the About text, any
web addresses (such as app help pages on the web) and email addresses (useful for a
support email link) can be made clickable. The layout shown in Example 7-9 is the
contents of the file aboutbox.xml.

Example 7-9. The aboutbox.xml file

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/aboutView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout android:id="@+id/aboutLayout"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="5dp">
 <TextView android:id="@+id/aboutText"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#888"/>
 </LinearLayout>
</ScrollView>

A ScrollView is required for when the About text is long and the screens are small (e.g.,
QVGA; see Table 5-2).

The AboutBox class uses a Spannable to hold the text; the TextView containing the spanned
text is be passed to android.text.util.Linkify. The layout is inflated, the About text is

386 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

set, and then AlertBuilder.Builder is used to create the dialog. Example 7-10 shows the
full code for the AboutBox class.

You could also load the text from a static HTML file shipped with
the application (see Recipe 10.3).

Example 7-10. The AboutBox class

public class AboutBox {
 static String VersionName(Context context) {
 try {
 return context.getPackageManager().getPackageInfo(
 context.getPackageName(),0).versionName;
 }
 catch (NameNotFoundException e) {
 return "Unknown";
 }
 }

 public static void show(Activity callingActivity) {
 // Use a Spannable to allow for link highlighting
 SpannableString aboutText = new SpannableString("Version " +
 VersionName(callingActivity)+ "\n\n" +
 callingActivity.getString(R.string.about));
 // Generate views to pass to AlertDialog.Builder and to set the text
 View about;
 TextView tvAbout;
 try {
 // Inflate the custom view
 LayoutInflater inflater = callingActivity.getLayoutInflater();
 about = inflater.inflate(R.layout.aboutbox,
 (ViewGroup) callingActivity.findViewById(R.id.aboutView));
 tvAbout = (TextView) about.findViewById(R.id.aboutText);
 }
 catch(InflateException e) {
 // Unchecked exception - unlikely, but default to TextView if it occurs
 about = tvAbout = new TextView(callingActivity);
 }
 // Set the about text
 tvAbout.setText(aboutText);
 // Now Linkify the text
 Linkify.addLinks(tvAbout, Linkify.ALL);
 // Build and show the dialog
 new AlertDialog.Builder(callingActivity)
 .setTitle("About " + callingActivity.getString(R.string.app_name))
 .setCancelable(true)
 .setIcon(R.drawable.icon)
 .setPositiveButton("OK", null)
 .setView(about)
 .show(); // Builder method returns allow for method chaining

7.12 Creating a Reusable “About Box” Class | 387

 }
}

The app’s icon can be shown in the About box title using setIcon(R.drawable.icon).

String resources for the About text can be placed in a separate file for easier mainte‐
nance, such as res/values/about_strings.xml. The name of this file is irrelevant, as
string resources are identified by their ID:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="about">This is our App, please see
 http://www.example.com. Email support at support@example.com.</string>
</resources>

Showing the About box requires only one line of code, shown here on a button click:
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 AboutBox.show(Main.this);
 }
 });
 }
}

The result should look something like Figure 7-7.

Figure 7-7. The About box in action

388 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

To reuse this About box, just copy the aboutbox.xml file into a project’s res/layout
folder, copy about_strings.xml to res/values (adjusting its text as needed), and copy the
AboutBox.java file into the source folder (adjusting the package name as needed).
Then call AboutBox.show() from a button or menu listener. Web addresses and email
addresses highlighted in the text can be clicked and invoke the browser or email cli‐
ent, which makes it easier for the user to contact you using those means.

See Also
The developer documentation for Linkify and dialogs.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory AboutBoxDemo (see “Getting and Using the Code Examples” on page 18).

7.13 Creating a Notification in the Status Bar
Ian Darwin

Problem
You want to place a notification icon in the status bar to call the user’s attention to an
event that occurred, or to remind her of a Service that is running in the background.

Solution
Create a Notification object, and provide it with a PendingIntent that wraps a real Intent
for what to do when the user selects the notification. At the same time you pass in the
PendingIntent you also pass a title and text to be displayed in the notification area. You
should set the AUTO_CANCEL flag unless you want to remove the notification from the
status bar manually. Finally, find and ask the NotificationManager to display (notify)
your notification, associating with it an ID so that you can refer to it later (e.g., to
remove it).

Discussion
Notifications are normally used from a running Service class to notify (hence the
name) the user of some fact, either because an event has occurred (receipt of a mes‐
sage, loss of contact with a server, or whatever) or just to remind the user that a long-
running Service is still running. The notification is commonly used to start an Activ‐
ity and is, in fact, the only recommended way for a background Service to start an
Activity (Services should never start Activities directly!).

7.13 Creating a Notification in the Status Bar | 389

https://developer.android.com/reference/android/text/util/Linkify.html
https://developer.android.com/guide/topics/ui/dialogs.html
https://github.com/IanDarwin/Android-Cookbook-Examples

Create a Notification object; the constructor takes an Icon ID, the text to display briefly
in the status bar, and the time at which the event occurred (a timestamp in milli‐
seconds). Before you can show the notification, you have to provide it with a
PendingIntent for what to do when the user selects the notification, and ask the
NotificationManager to display your notification. Example 7-11 shows the notification
code.

The following code shows doing the right thing in the (usually)
wrong place. Notifications are frequently shown from Services; this
recipe just focuses on the Notification API.

Example 7-11. The notification code

public class Main extends Activity {

 private static final int NOTIFICATION_ID = 1;

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 int icon = R.drawable.icon; // Preferably a distinct icon

 // Create the notification itself
 String noticeMeText = getString(R.string.noticeMe);
 Notification n =
 new Notification(
 icon, noticeMeText, System.currentTimeMillis());

 // And the Intent of what to do when user selects notification
 Context applicationContext = getApplicationContext();
 Intent notifyIntent = new Intent(this, NotificationTarget.class);
 PendingIntent wrappedIntent =
 PendingIntent.getActivity(this, 0,
 notifyIntent, Intent.FLAG_ACTIVITY_NEW_TASK);

 // Condition the notification
 String title = getString(R.string.title);
 String message = getString(R.string.message);
 n.setLatestEventInfo(applicationContext, title,
 message, wrappedIntent);
 n.flags |= Notification.FLAG_AUTO_CANCEL;

 // Now invoke the Notification service
 String notifService = Context.NOTIFICATION_SERVICE;
 NotificationManager mgr =
 (NotificationManager) getSystemService(notifService);
 mgr.notify(NOTIFICATION_ID, n);

390 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

 }
}

The following is the file strings.xml:
<resources>
 <string name="app_name">NotificationDemo</string>
 <string name="hello">Hello World, Main!</string>
 <string name="noticeMe">Lookie Here!!</string>
 <string name="title">My Notification</string>
 <string name="message">This is my message</string>
 <string name="target_name">Notification Target</string>
 <string name="thanks">Thank you for selecting the notification.</string>
</resources>

The noticeMe string may appear briefly (only for a few seconds) in the status bar. Noti‐
fication text and icons appear in the very upper left of the screen, as shown in
Figure 7-8. The tiny Android logo is this application’s icon.

When the user drags the status bar down, it expands to show the details, which
include the icons and the title and message strings (see Figure 7-9). You can also
use a custom view here; refer to the official Android documentation.

Figure 7-8. Notification demo

7.13 Creating a Notification in the Status Bar | 391

https://developer.android.com/guide/topics/ui/notifiers/notifications.html

Figure 7-9. Notification “pulled down”

If you have auto-clear set, the notification will no longer appear in the status bar. If
the user selects the notification box, the PendingIntent becomes current. Ours simply
shows a basic “Thank you” notification (Figure 7-10). If the user clicks the Clear but‐
ton, however, the Intent does not get run (even with auto-clear, which can leave you
in a bit of a lurch).

Figure 7-10. Response to choosing a notification

392 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

Sounds and other irritants
If the user’s attention is needed right away, you can specify a sound to be played when
the notification is first displayed. Or you can make the device vibrate, where sup‐
ported.

The user’s default notification sound can be played as follows:
notification.defaults |= Notification.DEFAULT_SOUND;

Alternatively, you can provide a Uri to a sound file, either on the SD card or in your
application:

notification.sound = Uri.parse("file:///sdcard/mydata/annoy_the_user.mp3");

Note that if you both set DEFAULT_SOUND and provide a “sound” URI, only the default
will be used.

To really annoy the user, you can make the sound play repeatedly; just add the flag
FLAG_INSISTENT to the flags field:

notification.defaults |= Notification.FLAG_INSISTENT;

Invoking device vibration when your notification is displayed is as simple as:
notification.defaults |= Notification.DEFAULT_VIBRATE;

Lighting the LED
As a final flourish, on devices with a signaling LED (on most phones it’s near the bot‐
tom of the physical screen or otherwise in the controls area), you can make the LED
flash in various colors and patterns. At a bare minimum, you need:

notification.ledARGB = color;
notification.defaults |= Notification.FLAGS_SHOW_LIGHTS;

The +color+ is a four-byte integer containing, as the name suggests, alpha (transpar‐
ency), red, green, and blue values. This is similar to traditional web color syntax, but
for the transparency part; thus, 0xff0000ff is bright blue (full opacity/no transparency;
no red or green).

You can also specify a flashing pattern using notification.ledOnMS and
notification.ledOffMS, which are the times in milliseconds for the LED to be on and off
as it flashes. Again, if you set any of these values but don’t specify FLAGS_SHOW_LIGHTS,
nothing will happen.

See Also
The developer documentation on notifications.

7.13 Creating a Notification in the Status Bar | 393

https://developer.android.com/guide/topics/ui/notifiers/notifications.html

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory NotificationDemo (see “Getting and Using the Code Examples” on page 18).

394 | Chapter 7: GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 8

Other GUI Elements: Lists and Views

It may seem odd to have a separate chapter for the RecyclerView and ListView compo‐
nents. But these are, in fact, among the most important GUI components, being used
in probably 80% of all Android applications. And these list components are very flex‐
ible; you can do a lot with them, but figuring out how to do it is sometimes not as
intuitive as it could be.

In this chapter we cover topics from basic RecyclerView and ListView uses through to
advanced uses.

So why are there two list components? ListView has been around since the beginning
of Android time. RecyclerView was introduced around 2015 as a more modern replace‐
ment, but many applications still use the original ListView, so we discuss both.

A good overview of ListView can be found in a Google I/O 2010 talk that’s available on
Google’s YouTube channel; this was presented by Google employees Romain Guy and
Adam Powell, who work on the code for ListView.

8.1 Building List-Based Applications with RecyclerView
Ian Darwin

Problem
RecyclerView is a modern reinterpretation of the classical ListView. You want to learn
when and how to use the new paradigm.

Solution
Use a RecyclerView.

395

https://www.youtube.com/watch?v=wDBM6wVEO70

Discussion
You could argue that RecyclerView is badly named. It should have been called ListView2
or something similar, to tie it in to the ListView, which it aims to replace. Paraphrasing
Dr. Seuss: “But they didn’t, and now it’s too late.” It’s called RecyclerView because it is
better at recycling View objects than its predecessor. Thus, it is more efficient, espe‐
cially for dealing with large lists.

To build a RecyclerView application, you need to do the following:

• Provide an Activity with a RecyclerView as part of its view layout.
• Provide a RecyclerView.Adapter implementation with several methods.
• Provide a ViewHolder class as part of your adapter implementation.

Our simple example has the following layout:
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.androidcookbook.recyclerviewdemo.ListActivity">

 <android.support.v7.widget.RecyclerView
 android:id="@+id/recyclerView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</RelativeLayout>

The containing RelativeLayout is not needed, but you will usually have at least one
other control in a real example.

Our simple Activity class using this layout contains the obvious imports and fields,
and the following in its onCreate() method:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_list);

 mRecyclerView = (RecyclerView) findViewById(R.id.recyclerView);
 mAdapter =
 new MyListAdapter(getResources().getStringArray(R.array.foodstuffs));
 mRecyclerView.setAdapter(mAdapter);

 mLayoutManager = new LinearLayoutManager(this);
 mRecyclerView.setLayoutManager(mLayoutManager);
}

396 | Chapter 8: Other GUI Elements: Lists and Views

The Adapter class, like any other adapter, is responsible for converting data between its
internal form in the application and the View components used to display it. The
inheritance is different from the normal Adapter class, however. The
RecyclerView.Adapter must implement the following:

public class MyListAdapter
 extends RecyclerView.Adapter<MyListAdapter.ViewHolder> {
 public ViewHolder onCreateViewHolder(ViewGroup parent, int viewType);
 public void onBindViewHolder(ViewHolder holder, int position);
 public int getItemCount();
}

The first method is called to actually create a new ViewHolder, which will usually
encapsulate the actual View class to be used for one “row” in the list—it may be a
ViewGroup of course, since a ViewGroup is a View.

The second method is where the “recycling” happens—in this method, we must pop‐
ulate a ViewHolder. Obviously it will be one that we previously created in
onCreateViewHolder(), but we make no assumptions about whether it’s previously been
populated. All we know is that it’s our time to populate it with the data at the supplied
position within the list of data.

Of course, getItemCount() returns the size of our list. Our example is simple, just a list
of String values which are statically allocated, so this method is trivial to implement.

Both ListView and RecyclerView need a separate XML layout to specify the View object(s)
comprising the individual rows. Our example, like most introductory list recipes,
contains just a TextView; the XML for this appears in Example 8-1.

Example 8-1. row_item.xml (complete)

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/textview"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

Here is the actual code for these methods in our RecyclerView.Adapter implementation:
public class MyListAdapter
 extends RecyclerView.Adapter<MyListAdapter.ViewHolder> {

 private static final String TAG = "CustomAdapter";
 String[] mData;

 public MyListAdapter(String[] data) {
 mData = data;
 }

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup viewGroup, int viewType) {

8.1 Building List-Based Applications with RecyclerView | 397

 final Context context = viewGroup.getContext();
 return new ViewHolder(context, LayoutInflater.from(context)
 .inflate(R.layout.row_item, viewGroup, false));
 }

 @Override
 public void onBindViewHolder(ViewHolder holder, int position) {
 Log.d(TAG, "onBindViewHolder(" + position + ")");
 TextView v = holder.getView();
 v.setText(mData[position]);
 }

 @Override
 public int getItemCount() {
 return mData.length;
 }
 ...
}

Finally, here is the code for our ViewHolder implementation, whose job is to hold onto a
View on behalf of the RecyclerView. We pass the Context into our ViewHolder constructor
only for use in generating a toast to show when the user taps an item (this is arguably
not best practice, just an expedient to make the example shorter):

class ViewHolder extends RecyclerView.ViewHolder {

 private TextView mTextView; // The View we hold

 public ViewHolder(final Context context, View itemView) {
 super(itemView);
 itemView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(context, "You clicked " + mData[getPosition()],
 Toast.LENGTH_SHORT).show();
 }
 });
 mTextView = (TextView) itemView.findViewById(R.id.textview);
 }

 public TextView getView() {
 return mTextView;
 }
}

See Also
The developer documentation on RecyclerView.

398 | Chapter 8: Other GUI Elements: Lists and Views

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

8.2 Building List-Based Applications with ListView
Jim Blackler

Problem
Many mobile applications follow a similar pattern, allowing users to browse and
interact with multiple items in a list. How can you use standard Android UI classes to
quickly build an app that works the way users will expect, providing them a list-based
view of their data?

Solution
Use a ListView, an extremely versatile control that is well suited to the screen size and
control constraints of a mobile application, displaying information in a vertical stack
of rows. This recipe shows how to set up a ListView, including rows that contain any
combination of standard UI views.

Discussion
Many Android applications are based on the ListView control. It solves the problem of
how to present a lot of information in a way that’s easy for the user to browse, display‐
ing information in a vertical stack of rows that the user can scroll through. As the
user approaches the results at the end of the list, more results can be generated and
added. This allows result paging in a natural and intuitive manner.

Android’s ListView helps organize your code by separating browsing and editing oper‐
ations into separate Activities. A ListView simply requires the user to press somewhere
in the row, which works well on a small, finger-operated screen. When the row is
clicked, a new Activity can be launched that can contain further options to manipu‐
late the data shown in the row.

Another advantage of the ListView format is that it allows paging in an uncomplicated
way. Paging is where all the information requested by a user cannot feasibly be shown
at once. For instance, the user may be browsing his email inbox, which contains 2,000
messages; it would not be feasible to download all 2,000 from the email server, and
nor would it be required, as the user will probably only scan the first 10 or so mes‐
sages.

Most web applications handle this problem by segmenting the results into pages, and
having controls in the footer that allow the user to navigate through them. With a
ListView, the application can retrieve an initial batch of results, which are shown to the
user in a list. When the user reaches the end of the list, a final row is seen, containing
an indeterminate progress bar. As this comes into view, the application can fetch the

8.2 Building List-Based Applications with ListView | 399

next batch of results in the background. When they are ready to be shown, the last
progress bar row is replaced with rows containing the new data. The user’s view of the
list is not interrupted, and new data is fetched purely on demand.

To implement a ListView in your Android application, you need an Activity layout to
host it. This should contain a ListView control configured to take up most of the
screen layout. This allows other elements such as progress bars and extra overlaid
indicators to be included in the layout.

While many Android experts (including most of the other contributors to this chap‐
ter) recommend using the ListActivity, I personally do not recommend this. It sup‐
plies little extra logic over a plain Activity, but using it restricts the form of the inheri‐
tance tree your application’s Activities can take. For instance, it is very common that
all Activities will inherit from a single common Activity, such as ApplicationActivity,
supplying common functionality such as an About box or Help menu. This pattern
isn’t possible if some Activities are inherited from ListActivity and some are directly
inherited from Activity. That said, you will see most of the examples in this book
doing it the “official” way. As with all such things, choose one way or the other, and
try to stick with it.

An application controls the data added to a ListView by supplying a ListAdapter using
the setListAdapter() method. There are 13 functions that a ListAdapter is expected to
supply. However, if a BaseAdapter is used, this reduces the number of functions sup‐
plied to four, representing the minimum functionality that must be supplied. The
adapter specifies the number of item rows in the list, and is expected to supply a View
object to represent any item given its row number. It is also expected to return both
an object and an object ID to represent any given row number. This is to aid
advanced list features such as row selection (not covered in this recipe).

I suggest starting with the most versatile type of ListAdapter, the BaseAdapter

(android.widget.BaseAdapter). This allows any layout to be specified for a row (multiple
layouts can be matched to multiple row types). These layouts can contain any View
elements that a layout would normally contain.

Rows are created on demand by the adapter as they come onto the screen. The
adapter is expected to either inflate a view of the appropriate type, or recycle the
existing view and then customize it to display a row of data.

This “recycling” is a technique employed by the Android OS to improve perfor‐
mance. When new rows come onscreen, Android will pass into the adapter method
the View of a row that has moved offscreen. It is up to the method to decide whether
it’s appropriate to reuse that View to create the new row. For this to be the case, the View
has to represent the layout of the new row. One way to check this is to write the lay‐
out ID into the Tag of each View inflated with setTag(). When checking to see whether
it’s appropriate to reuse a given View, use getTag() to determine whether the View was

400 | Chapter 8: Other GUI Elements: Lists and Views

inflated with the correct type. If an application is able to recycle a view, the scrolling
appears smoother because CPU time is saved inflating the view.

Another way to make scrolling smoother is to do as little as possible on the UI thread.
This is the default thread that your getView() method will be invoked on. If time-
intensive operations need to be invoked, these can be done on a new background
thread created especially for the operation. Then, when the UI thread is required
again so that controls can be updated, operations can be invoked on it with
activity.runOnUiThread(Runnable) or using a handler (see the discussions of inter-thread
communication in Chapter 4). Care must be taken to ensure that the View to be modi‐
fied has not been recycled for another row. This can happen if the row has moved off
the screen in the time it took the operation to complete; this is quite possible if the
operation was a lengthy download operation.

Setting up a basic ListView
Use the Eclipse New Android Project wizard to create a new Android project with a
starting Activity called MainActivity. In the main.xml layout, replace the existing
TextView section with the following:

<ListView android:id="@+id/ListView01"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"/>

At the bottom of the MainActivity.onCreate() method, insert the code shown in
Example 8-2. This will declare a dummy anonymous class extending BaseAdapter, and
apply an instance of it to the ListView. The code in Example 8-2 illustrates the meth‐
ods that need to be supplied in order to populate the ListView with data.

Example 8-2. The adapter implementation

ListView listView = (ListView) findViewById(R.id.ListView01);
listView.setAdapter(new BaseAdapter(){

 public int getCount() {
 return 0;
 }

 public Object getItem(int position) {
 return null;
 }

 public long getItemId(int position) {
 return 0;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 return null;
 }
});

8.2 Building List-Based Applications with ListView | 401

By customizing the anonymous class members, you can modify the data shown by
the control. However, before any data can be shown, a layout must be supplied to
present the data in rows. Add a file called list_row.xml to your project’s res/layout
directory with the following content:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content" android:layout_height="wrap_content">
 <TextView android:text="@+id/TextView01" android:id="@+id/TextView01"
 android:layout_width="fill_parent" android:layout_height="wrap_content"/>
</LinearLayout>

In your MainActivity, add the following static array field containing just three strings:
static String[] words = {"one", "two", "three"};

Now customize your existing anonymous BaseAdapter as shown in Example 8-3, to dis‐
play the contents of the words array in the ListView.

Example 8-3. The adapter implementation

listView.setAdapter(new BaseAdapter() {

 public int getCount() {
 return words.length;
 }

 public Object getItem(int position) {
 return words[position];
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 LayoutInflater inflater =
 (LayoutInflater) getSystemService(LAYOUT_INFLATER_SERVICE);
 View view = inflater.inflate(R.layout.list_row, null);
 TextView textView = (TextView) view.findViewById(R.id.TextView01);
 textView.setText(words[position]);
 return view;
 }
});

The getCount() method is customized to return the number of items in the list. Both
getItem() and getItemId() supply the ListView with unique objects and IDs to identify
the data in the rows. Finally, getView() creates and customizes an Android view to rep‐
resent the row. This is the most complex step, so let’s break down what’s happening.
First, the system LayoutInflater is obtained. This is the Service that creates views:

 LayoutInflater inflater =
 (LayoutInflater) getSystemService(LAYOUT_INFLATER_SERVICE);

402 | Chapter 8: Other GUI Elements: Lists and Views

Next, the new layout we created earlier is inflated:
 View view = inflater.inflate(R.layout.list_row, null);

Then the TextView is located:
 TextView textView = (TextView) view.findViewById(R.id.TextView01);

and customized with the appropriate item in the words array:
 textView.setText(words[position]);

This allows the user to view elements from the words array in a ListView:
 return view;

Other recipes will discuss more details of ListView usage.

8.3 Creating a “No Data” View for ListViews
Rachee Singh

Problem
When a ListView has no items to show, the screen on an Android device is blank. You
want to show an appropriate message, indicating the absence of data.

Solution
Use the “No Data” view from the XML layout.

Discussion
Often we need to use a ListView in an Android app. Before a user has loaded any data
into the application, the list of data that the ListView shows is empty, generally result‐
ing in a blank screen. In order to make the user feel more comfortable with the appli‐
cation, we might want to display an appropriate message (or even an image) stating
that the list is empty. For this purpose, we can use a No Data view. This simply
requires the addition of a few lines of code in the XML layout of the Activity that con‐
tains the ListView:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

<TextView
 android:id="@+id/textView1"
 android:text="@string/app_name"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"/>

8.3 Creating a “No Data” View for ListViews | 403

<ListView
 android:id="@id/android:list"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/textView1"/>
 <TextView
 android:id="@id/android:empty"
 android:text = "@string/list_is_empty"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_below = "@id/textView1"
 android:textSize="25sp"
 android:gravity="center_vertical|center_horizontal"/>
 </RelativeLayout>

The important line is android:id="@id/android:empty". This line ensures that when the
list is empty, the TextView with this ID will be displayed on the screen. In this TextView,
the string “List is Empty” is displayed (see Figure 8-1).

Figure 8-1. Empty list

A less important but interesting and relevant technique is the use of a RelativeLayout
and the android:layout_below attribute to make the huge, empty text area appear
directly below the tiny TextView at the top when the list is empty (effectively making
the ListView and the “empty” message TextView the same size; only one will be visible at
a time).

404 | Chapter 8: Other GUI Elements: Lists and Views

8.4 Creating an Advanced ListView with Images and Text
Marco Dinacci

Problem
You want to write a ListView that shows an image next to a string.

Solution
Create an Activity that inherits from ListActivity, prepare the XML resource files, and
create a custom view adapter to load the resources into the view.

Discussion
The Android documentation says that the ListView widget is easy to use. This is true if
you just want to display a simple list of strings, but as soon as you want to customize
your list things become more complicated.

This recipe shows you how to write a ListView that displays a static list of images and
strings, similar to the settings list on your phone. Figure 8-2 shows the final result.

Figure 8-2. ListView with icons

Let’s start with the Activity code. First, we inherit from ListActivity instead of Activity
so that we can easily supply our custom adapter (see Example 8-4).

8.4 Creating an Advanced ListView with Images and Text | 405

Example 8-4. The ListActivity implementation

public class AdvancedListViewActivity extends ListActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Context ctx = getApplicationContext();
 Resources res = ctx.getResources();

 String[] options = res.getStringArray(R.array.country_names);
 TypedArray icons = res.obtainTypedArray(R.array.country_icons);

 setListAdapter(new ImageAndTextAdapter(ctx,
 R.layout.main_list_item, options, icons));
 }
}

In the onCreate() method we also create an array of strings, which contains the coun‐
try names, and a TypedArray, which will contain our Drawable flags. The arrays are cre‐
ated from an XML file. Here is the content of the countries.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="country_names">
 <item>Bhutan</item>
 <item>Colombia</item>
 <item>Italy</item>
 <item>Jamaica</item>
 <item>Kazakhstan</item>
 <item>Kenya</item>
 </string-array>
 <array name="country_icons">
 <item>@drawable/bhutan</item>
 <item>@drawable/colombia</item>
 <item>@drawable/italy</item>
 <item>@drawable/jamaica</item>
 <item>@drawable/kazakhstan</item>
 <item>@drawable/kenya</item>
 </array>
</resources>

Now we’re ready to create the adapter. The official documentation for Adapter says:
An Adapter object acts as a bridge between an AdapterView and the underlying data for
that view. The Adapter provides access to the data items. The Adapter is also responsi‐
ble for making a View for each item in the data set.

There are several subclasses of Adapter; we’re going to extend ArrayAdapter, which is a
concrete BaseAdapter that is backed by an array of arbitrary objects (see Example 8-5).

406 | Chapter 8: Other GUI Elements: Lists and Views

https://developer.android.com/reference/android/widget/Adapter.html

Example 8-5. The ImageAndTextAdapter class

public class ImageAndTextAdapter extends ArrayAdapter<String> {

 private LayoutInflater mInflater;

 private String[] mStrings;
 private TypedArray mIcons;

 private int mViewResourceId;

 public ImageAndTextAdapter(Context ctx, int viewResourceId,
 String[] strings, TypedArray icons) {
 super(ctx, viewResourceId, strings);

 mInflater = (LayoutInflater)ctx.getSystemService(
 Context.LAYOUT_INFLATER_SERVICE);

 mStrings = strings;
 mIcons = icons;

 mViewResourceId = viewResourceId;
 }

 @Override
 public int getCount() {
 return mStrings.length;
 }

 @Override
 public String getItem(int position) {
 return mStrings[position];
 }

 @Override
 public long getItemId(int position) {
 return 0;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 convertView = mInflater.inflate(mViewResourceId, null);

 ImageView iv = (ImageView)convertView.findViewById(R.id.option_icon);
 iv.setImageDrawable(mIcons.getDrawable(position));

 TextView tv = (TextView)convertView.findViewById(R.id.option_text);
 tv.setText(mStrings[position]);

 return convertView;
 }
}

8.4 Creating an Advanced ListView with Images and Text | 407

The constructor accepts a Context, the id of the layout that will be used for every row
(more on this soon), an array of strings (the country names), and a TypedArray (our
flags).

The getView() method is where we build a row for the list. We first use a LayoutInflater
to create a View from XML, and then we retrieve the country flag as a Drawable and the
country name as a String; we use them to populate the ImageView and TextView that
we’ve declared in the layout. Here is the layout for the list rows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android">
 <ImageView
 android:id="@+id/option_icon"
 android:layout_width="48dp"
 android:layout_height="fill_parent"/>
 <TextView
 android:id="@+id/option_text"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:textSize="16dp" >
 </TextView>
</LinearLayout>

And this is the content of the main layout:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ListView android:id="@android:id/list"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 />
</LinearLayout>

Note that the ListView ID must be exactly @android:id/list or you’ll get a
RuntimeException.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory ListViewAdvanced (see “Getting and Using the Code Examples” on page
18).

408 | Chapter 8: Other GUI Elements: Lists and Views

https://github.com/IanDarwin/Android-Cookbook-Examples

8.5 Using Section Headers in ListViews
Wagied Davids

Problem
You want to display categorized items—for example, by time/day, by product cate‐
gory, or by sales/price.

Solution
Implement section headers yourself, using a custom list adapter, or use Jeff Sharkey’s
implementation to display a list with headers.

Discussion
The “do it yourself ” technique consists of creating a custom list adapter, and having
its createView() method return either the standard layout or the header layout,
depending on which layout is appropriate. This method will also work with the newer
RecyclerView. Tutorials are available on using this approach with ListView and
RecyclerView.

However, you may find it easier to use a packaged solution. Jeff Sharkey packaged his
into a downloadable JAR file: the original section headers solution has been around
since Android 0.9, which is basically the beginning of time. The intention was to
duplicate the look of the standard Settings app, which at the time featured a look sim‐
ilar to the following image, which we will develop in this recipe:

8.5 Using Section Headers in ListViews | 409

http://stacktips.com/tutorials/android/listview-with-section-header-in-android
https://androidtutorialmagic.wordpress.com/android-material-design-tutorial/sectionheader-with-recyclerview-and-swipe-to-addeditdelete/
http://jsharkey.org/blog/2008/08/18/separating-lists-with-headers-in-android-09/

The reusable part of this application is Jeff ’s SeparatedListAdapter class, which imple‐
ments the Composite design pattern by holding multiple adapters inside it and figur‐
ing out the correct one in its getItem() method.

We start with four XML files, one for the main layout (see Example 8-6) and three for
the list entries. Jeff credited Romain Guy of Google with figuring out the built-in but
rather occult styles used.

Example 8-6. main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <ListView
 android:id="@+id/add_journalentry_menuitem"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 <ListView
 android:id="@+id/list_journal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

The list_header layout (see Example 8-7) is used for the smaller list separators (e.g.,
“Security”).

Example 8-7. list_header.xml

<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_header_title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="2dip"
 android:paddingBottom="2dip"
 android:paddingLeft="5dip"
 style="?android:attr/listSeparatorTextViewStyle" />

The list_item and list_complex layouts are, of course, used for individual items (see
Examples 8-8 and 8-9).

Example 8-8. list_item.xml

<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_title"

410 | Chapter 8: Other GUI Elements: Lists and Views

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingTop="10dip"
 android:paddingBottom="10dip"
 android:paddingLeft="15dip"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />

Example 8-9. list_complex.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:paddingTop="10dip"
 android:paddingBottom="10dip"
 android:paddingLeft="15dip"
 >
 <TextView
 android:id="@+id/list_complex_title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 <TextView
 android:id="@+id/list_complex_caption"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceSmall"
 />
</LinearLayout>

The add_journalentry_menuitem layout is used to add new entries, and is shown in action
here (Example 8-10).

Example 8-10. add_journalentry_menuitem.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- list_item.xml -->
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_title"
 android:gravity="right"
 android:drawableRight="@drawable/ic_menu_add"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingTop="0dip"
 android:paddingBottom="0dip"
 android:paddingLeft="10dip"
 android:textAppearance="?android:attr/textAppearanceLarge" />

8.5 Using Section Headers in ListViews | 411

Finally, Example 8-11 contains the Java Activity code.

Example 8-11. ListSample.java

public class ListSample extends Activity {

 public final static String ITEM_TITLE = "title";
 public final static String ITEM_CAPTION = "caption";

 // Section headers
 private final static String[] days =
 new String[]{"Mon", "Tue", "Wed", "Thur", "Fri"};

 // Section contents
 private final static String[] notes = new String[]
 {"Ate Breakfast", "Ran a Marathon ...yah really", "Slept all day"};

 // Menu - ListView
 private ListView addJournalEntryItem;

 // Adapter for ListView contents
 private SeparatedListAdapter adapter;

 // ListView contents
 private ListView journalListView;

 public Map<String, ?> createItem(String title, String caption) {
 Map<String, String> item = new HashMap<String, String>();
 item.put(ITEM_TITLE, title);
 item.put(ITEM_CAPTION, caption);
 return item;
 }

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 // Sets the view layer
 setContentView(R.layout.main);

 // Interactive tools
 final ArrayAdapter<String> journalEntryAdapter =
 new ArrayAdapter<String>(this, R.layout.add_journalentry_menuitem,
 new String[]{"Add Journal Entry"});

 // addJournalEntryItem
 addJournalEntryItem = (ListView) this.findViewById(
 R.id.add_journalentry_menuitem);
 addJournalEntryItem.setAdapter(journalEntryAdapter);
 addJournalEntryItem.setOnItemClickListener(new OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long duration) {
 String item = journalEntryAdapter.getItem(position);
 Toast.makeText(getApplicationContext(), item,

412 | Chapter 8: Other GUI Elements: Lists and Views

 Toast.LENGTH_SHORT).show();
 }
 });

 // Create the ListView adapter
 adapter = new SeparatedListAdapter(this);
 ArrayAdapter<String> listadapter = new ArrayAdapter<String>(this,
 R.layout.list_item, notes);

 // Add sections
 for (int i = 0; i < days.length; i++) {
 adapter.addSection(days[i], listadapter);
 }

 // Get a reference to the ListView holder
 journalListView = (ListView) this.findViewById(R.id.list_journal);

 // Set the adapter on the ListView holder
 journalListView.setAdapter(adapter);

 // Listen for click events
 journalListView.setOnItemClickListener(new OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long duration) {
 String item = (String) adapter.getItem(position);
 Toast.makeText(getApplicationContext(), item,
 Toast.LENGTH_SHORT).show();
 }
 });
 }

}

Unfortunately, we could not get copyright clearance from Jeff Sharkey to include the
code, so you will have to download his SeparatedListAdapter, which ties all the pieces
together; the link appears in the following “See Also” section.

See Also
Jeff ’s original article on section headers.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory ListViewSectionedHeader (see “Getting and Using the Code Examples” on
page 18).

8.6 Keeping the ListView with the User’s Focus
Ian Darwin

8.6 Keeping the ListView with the User’s Focus | 413

http://jsharkey.org/blog/2008/08/18/separating-lists-with-headers-in-android-09/
https://github.com/IanDarwin/Android-Cookbook-Examples

Problem
You don’t want to distract the user by moving the ListView to its beginning, away from
what the user just did.

Solution
Keep track of the last thing you did in the List, and move the view there in onCreate().

Discussion
One of my biggest peeves is list-based applications that are always going back to the
top of the list. Here are a few examples, some of which may have been fixed in recent
years:

The standard Contacts manager
When you edit an item, it forgets about it and goes back to the top of the list.

The OpenIntents File Manager
When you delete an item from the bottom of a long list, it goes back to the top of
the list to redisplay it, ignoring the fact that if I deleted an item, I may be cleaning
up, and would like to keep working in the same area.

The HTC SenseUI for Tablets mail program
When you select a large number of emails using the per-message checkboxes and
then delete them as one, it leaves the scrolling list in its previous position, which
is now typically occupied by mail from yesterday or the day before!

It’s actually pretty simple to set the focus where you want it. Just find the item’s index
in the adapter (using theList.getAdapter(), if needed), and then call:

theList.setSelection(index);

This will scroll to the given item and select it so that it becomes the default to act
upon, though it doesn’t invoke the action associated with the item.

You can calculate this anyplace in your action code and pass it back to the main list
view with Intent.putExtra(), or set it as a field in your main class and scroll the list in
your onCreate() method or elsewhere.

8.7 Writing a Custom List Adapter
Alex Leffelman

Problem
You want to customize the content of a ListView.

414 | Chapter 8: Other GUI Elements: Lists and Views

Solution
In the Activity that will host your ListView, define a private class that extends
Android’s BaseAdapter class. Then override the base class’s methods to display custom
views that you define in an XML layout file.

Discussion
This code is lifted from a media application I wrote that allowed the user to build
playlists from the songs on the SD card. We’ll extend the BaseAdapter class inside my
MediaListActivity:

private class MediaAdapter extends BaseAdapter {
 ...
}

Querying the phone for the media info is outside the scope of this recipe, but the data
to populate the list was stored in a MediaItem class that kept standard artist, title,
album, and track number information, as well as a Boolean field indicating whether
the item was selected for the current playlist. In certain cases, you may want to con‐
tinually add items to your list—for example, if you’re downloading information and
displaying it as it comes in—but in this recipe we’re going to supply all the required
data to the adapter at once in the constructor:

public MediaAdapter(ArrayList<MediaItem> items) {
 mMediaList = items;
 ...
}

If you’re developing in Eclipse you’ll notice that it wants us to override BaseAdapter’s
abstract methods; if you’re not, you’ll find this out as soon as you try to compile the
code without them. Let’s take a look at those abstract methods:

public int getCount() {
 return mMediaList.size();
}

The framework needs to know how many views it needs to create in your list. It finds
out by asking your adapter how many items you’re managing. In our case we’ll have a
view for every item in the media list:

public Object getItem(int position) {
 return mMediaList.get(position);
}
public long getItemId(int position) {
 return position;
}

We won’t really be using these methods, but for completeness, getItem(int) is what
gets returned when the ListView hosting this adapter calls getItemAtPosition(int), which
won’t happen in our case. getItemId(int) is what gets passed to the

8.7 Writing a Custom List Adapter | 415

ListView.onListItemClick(ListView, View, int, int) callback when you select an item. It
gives you the position of the view in the list and the ID supplied by your adapter. In
our case they’re the same.

The real work of your custom adapter will be done in the getView() method. This
method is called every time the ListView brings a new item into view. When an item
goes out of view, it is recycled by the system to be used later. This is a powerful mech‐
anism for providing potentially thousands of View objects to our ListView while using
only as many views as can be displayed on the screen. The getView() method provides
the position of the item it’s creating, a view that may be not-null that the system is
recycling for you to use, and the ViewGroup parent. You’ll return either a new view for
the list to display, or a modified copy of the supplied convertView parameter to con‐
serve system resources. Example 8-12 shows the code.

Example 8-12. The getView() method

public View getView(int position, View convertView, ViewGroup parent) {
 View V = convertView;

 if(V == null) {
 LayoutInflater vi =
 (LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 V = vi.inflate(R.layout.media_row, null);
 }

 MediaItem mi = mMediaList.get(position);
 ImageView icon = (ImageView)V.findViewById(R.id.media_image);
 TextView title = (TextView)V.findViewById(R.id.media_title);
 TextView artist = (TextView)V.findViewById(R.id.media_artist);

 if(mi.isSelected()) {
 icon.setImageResource(R.drawable.item_selected);
 }
 else {
 icon.setImageResource(R.drawable.item_unselected);
 }

 title.setText(mi.getTitle());
 artist.setText("by " + mi.getArtist());

 return V;
}

We start by checking whether we’ll be recycling a view (which is a good practice) or
need to generate a new view from scratch. If we weren’t given a convertView, we’ll call
the LayoutInflater Service to build a view that we’ve defined in an XML layout file.

Using the view that we’ve ensured was built with our desired layout resource (or is a
recycled copy of one we previously built), it’s simply a matter of updating its UI ele‐
ments. In our case, we want to display the song title, artist, and an indication of

416 | Chapter 8: Other GUI Elements: Lists and Views

whether the song is in our current playlist. (I’ve removed the error checking, but it’s a
good practice to make sure any UI elements you’re updating are not null—you don’t
want to crash the whole ListView if there was a small mistake in one item.) This
method gets called for every (visible) item in the ListView, so in this example we have
a list of identical View objects with different data being displayed in each one. If you
wanted to get really creative, you could populate the list with different view layouts
based on the list item’s position or content.

That takes care of the required BaseAdapter overrides. However, you can add any func‐
tionality to your adapter to work on the data set it represents. In my example, I want
the user to be able to click a list item and toggle it on/off for the current playlist. This
is easily accomplished with a simple callback on the ListView and a short function in
the adapter.

This function belongs to ListActivity:
protected void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

 mAdapter.toggleItem(position);
}

This is a member function in our MediaAdapter:
public void toggleItem(int position) {
 MediaItem mi = mMediaList.get(position);

 mi.setSelected(!mi.getSelected());
 mMediaList.set(position, mi);

 this.notifyDataSetChanged();
}

First we simply register a callback for when the user clicks an item in our list. We’re
given the ListView, the View, the position, and the ID of the item that was clicked, but
we’ll only need the position, which we simply pass to the MediaAdapter.toggleItem(int)
method. In that method we update the state of the corresponding MediaItem and make
an important call to notifyDataSetChanged(). This method lets the framework know that
it needs to redraw the ListView. If we don’t call it, we can do whatever we want to the
data, but we won’t see anything change until the next redraw (e.g., when we scroll the
list).

When all is said and done, we need to tell the parent ListView to use our adapter to
populate the list. That’s done with a simple call in the ListActivity’s onCreate(Bundle)
method:

MediaAdapter mAdapter = new MediaAdapter(getSongsFromSD());
this.setListAdapter(mAdapter);

First we instantiate a new adapter with data generated from a private function that
queries the phone for the song data, and then we tell the ListActivity to use that

8.7 Writing a Custom List Adapter | 417

adapter to draw the list. And there it is—your own list adapter with a custom view
and extensible functionality.

8.8 Using a SearchView to Search Through Data in a
ListView
Ian Darwin

Problem
You want a search box (with a magnifying glass icon and an X to clear the text) to
filter the content displayed in a ListView.

Solution
Use a SearchView in your layout. Call setTextFilterEnabled(true) on the ListView.
Call setOnQueryTextListener() on the SearchView, passing an instance of
SearchView.OnQueryTextListener. In the listener’s onQueryTextChanged() method, pass the
argument along to the ListView’s setFilterText(), and you’re done!

Discussion
SearchView is a powerful control that is often overlooked in designing list applications.
It has two modes: inline and Activity-based. In the inline mode, which we’ll demon‐
strate here, the SearchView can be added to an existing list-based application with mini‐
mal disruption. In the Activity-based mode, a separate Activity must be created to
display the results; that is not covered here but is in the official documentation.

The ListView class has a filter mechanism built in. If you enable it and call
setFilterText("string"), then only items in the list that contain +string+ will be visible.
You can call this many times, e.g., as each character is typed, for a dynamic effect.

Assuming you have a working ListView-based application, you need to take the fol‐
lowing steps:

1. Add a SearchView to the layout file and give it an id such as searchView.
2. In your list Activity’s onCreate() method, find the ListView if needed, and call its

setTextFilterEnabled(true) method.
3. In your list Activity’s onCreate() method, find the SearchView by ID and call several

methods on it, the important one being setOnQueryTextListener().
4. In the QueryTextListener’s onQueryTextChanged() method, if the passed CharSequence is

empty, clear the ListView’s filter text (so it will display all the entries). If the passed

418 | Chapter 8: Other GUI Elements: Lists and Views

https://developer.android.com/training/search/index.html

CharSequence is not empty, convert it to a String and pass it to the ListView’s
setFilterText() method.

It really is that simple! The following code snippets are taken from a longer ListView
example that was made to work with a SearchView by following this recipe.

In the Activity’s onCreate() method:
// Tailor the adapter for the SearchView
mListView.setTextFilterEnabled(true);

// Tailor the SearchView
mSearchView = (SearchView) findViewById(R.id.searchView);
mSearchView.setIconifiedByDefault(false);
mSearchView.setOnQueryTextListener(this);
mSearchView.setSubmitButtonEnabled(false);
mSearchView.setQueryHint(getString(R.string.search_hint));

And in the Activity’s implementation of SearchView.OnQueryTextListener:
public boolean onQueryTextChange(String newText) {
 if (TextUtils.isEmpty(newText)) {
 mListView.clearTextFilter();
 } else {
 mListView.setFilterText(newText.toString());
 }
 return true;
}

public boolean onQueryTextSubmit(String query) {
 return false;
}

The ListView does the work of filtering; we just need to control its filtering using the
two methods called from onQueryTextChange(). There is a lot more to the SearchView,
though; consult the Javadoc page or the developer documentation for more informa‐
tion.

See Also
The Android training guide on adding search functionality, the developer documen‐
tation on SearchView.

Source Download URL
This code is in the MainActivity class of TodoAndroid, a simple to-do list manager.

8.8 Using a SearchView to Search Through Data in a ListView | 419

https://developer.android.com/training/search/index.html
https://developer.android.com/reference/android/widget/SearchView.html
https://github.com/IanDarwin/TodoAndroid.git

8.9 Handling Orientation Changes: From ListView Data
Values to Landscape Charting
Wagied Davids

Problem
You want to react to orientation changes in layout-appropriate ways. For example,
data values to be plotted are contained in a portrait list view, and upon device rota‐
tion to landscape, a graph of the data values in a chart/plot is displayed.

Solution
Do something in reaction to physical device orientation changes. A new View object is
created on orientation changes. You can override the Activity method
onConfigurationChanged(Configuration newConfig) to accommodate orientation changes.

Discussion
In this recipe, data values to be plotted are contained in a portrait list view. When the
device/emulator is rotated to landscape, a new Intent is launched to change to a plot/
charting View to graphically display the data values. Charting is accomplished using
the free DroidCharts package.

Note that for testing this in the Android emulator, the Ctrl-F11 key combination will
result in a portrait to landscape (or vice versa) orientation change.

The most important trick is to modify the AndroidManifest.xml file (shown in
Example 8-13) to allow for the following:

android:configChanges="orientation|keyboardHidden"
android:screenOrientation="portrait"

Example 8-13. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples"
 android:versionCode="1"
 android:versionName="1.0">
 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:debuggable="true">
 <activity
 android:name=".DemoList"
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden"

420 | Chapter 8: Other GUI Elements: Lists and Views

https://code.google.com/archive/p/droidcharts

 android:screenOrientation="portrait">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".DemoCharts"
 android:configChanges="orientation|keyboardHidden"></activity>
 </application>
</manifest>

The main Activity in this example is DemoCharts, shown in Example 8-14. It does the
usual onCreate() stuff, but also—if a parameter was passed—it assumes our app was
restarted from the DemoList class shown in Example 8-15 and sets up the data accord‐
ingly. (A number of methods have been elided here as they aren’t relevant to the core
issue, that of configuration changes. These are in the online source for this recipe.)

Example 8-14. DemoCharts.java

...
import net.droidsolutions.droidcharts.core.data.XYDataset;
import net.droidsolutions.droidcharts.core.data.xy.XYSeries;
import net.droidsolutions.droidcharts.core.data.xy.XYSeriesCollection;

public class DemoCharts extends Activity {
 private static final String tag = "DemoCharts";
 private final String chartTitle = "My Daily Starbucks Allowance";
 private final String xLabel = "Week Day";
 private final String yLabel = "Allowance";

 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Access the Extras from the Intent
 Bundle params = getIntent().getExtras();

 // If we get no parameters, we do nothing
 if (params == null) { return; }

 // Get the passed parameter values
 String paramVals = params.getString("param");

 Log.d(tag, "Data Param:= " + paramVals);
 Toast.makeText(getApplicationContext(), "Data Param:= " +
 paramVals, Toast.LENGTH_LONG).show();

 ArrayList<ArrayList<Double>> dataVals = stringArrayToDouble(paramVals);

8.9 Handling Orientation Changes: From ListView Data Values to Landscape Charting | 421

 XYDataset dataset =
 createDataset("My Daily Starbucks Allowance", dataVals);
 XYLineChartView graphView = new XYLineChartView(this, chartTitle,
 xLabel, yLabel, dataset);
 setContentView(graphView);
 }

 private String arrayToString(String[] data) {
 ...
 }

 private ArrayList<ArrayList<Double>> stringArrayToDouble(String paramVals) {
 ...
 }

 /**
 * Creates a sample data set.
 */
 private XYDataset createDataset(String title,
 ArrayList<ArrayList<Double>> dataVals) {

 final XYSeries series1 = new XYSeries(title);
 for (ArrayList<Double> tuple : dataVals) {
 double x = tuple.get(0).doubleValue();
 double y = tuple.get(1).doubleValue();

 series1.add(x, y);
 }

 // Create a collection to hold various data sets
 final XYSeriesCollection dataset = new XYSeriesCollection();
 dataset.addSeries(series1);
 return dataset;
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 Toast.makeText(this, "Orientation Change", Toast.LENGTH_SHORT);

 // Let's go to our DemoList view
 Intent intent = new Intent(this, DemoList.class);
 startActivity(intent);

 // Finish current Activity
 this.finish();
 }
 }

The DemoList view is the portrait view. Its onConfigurationChanged() method passes con‐
trol back to the landscape DemoCharts class if a configuration change occurs.

422 | Chapter 8: Other GUI Elements: Lists and Views

Example 8-15. DemoList.java

public class DemoList extends ListActivity implements OnItemClickListener {
 private static final String tag = "DemoList";
 private ListView listview;
 private ArrayAdapter<String> listAdapter;

 // Want to pass data values as parameters to next Activity/View/Page
 private String params;

 // Our data for plotting
 private final double[][] data = {
 { 1, 1.0 }, { 2.0, 4.0 }, { 3.0, 10.0 }, { 4, 2.0 },
 { 5.0, 20 }, { 6.0, 4.0 }, { 7.0, 1.0 },
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set the view layer
 setContentView(R.layout.data_listview);

 // Get the default declared ListView @android:list
 listview = getListView();

 // List for click events to the ListView items
 listview.setOnItemClickListener(this);

 // Get the data
 ArrayList<String> dataList = getDataStringList(data);

 // Create an adapter for viewing the ListView
 listAdapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, dataList);

 // Bind the adapter to the ListView
 listview.setAdapter(listAdapter);

 // Set the parameters to pass to the next view/page
 setParameters(data);
 }

 private String doubleArrayToString(double[][] dataVals) {
 ...
 }

 /**
 * Sets parameters for the Bundle
 * @param dataList
 */
 private void setParameters(double[][] dataVals) {
 params = toJSON(dataVals);
 }

 public String getParameters() {

8.9 Handling Orientation Changes: From ListView Data Values to Landscape Charting | 423

 return this.params;
 }

 /**
 * @param dataVals
 * @return
 */
 private String toJSON(double[][] dataVals) {
 ...
 }

 private ArrayList<String> getDataStringList(double[][] dataVals) {
 ...
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 // Create an Intent to switch view to the next page view
 Intent intent = new Intent(this, DemoCharts.class);

 // Pass parameters along to the next page
 intent.putExtra("param", getParameters());

 // Start the Activity
 startActivity(intent);

 Log.d(tag, "Orientation Change...");
 Log.d(tag, "Params: " + getParameters());
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long duration) {

 // Upon clicking item in list, pop up a toast
 String msg = "#Item: " + String.valueOf(position) +
 " - " + listAdapter.getItem(position);
 Toast.makeText(getApplicationContext(), msg, Toast.LENGTH_LONG).show();
 }
}

The XYLineChartView class is not included here as it relates only to the plotting. It is
included in the online version of the code, which you can download.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory OrientationChanges (see “Getting and Using the Code Examples” on page
18).

424 | Chapter 8: Other GUI Elements: Lists and Views

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 9

Multimedia

Android is a rich multimedia environment. The standard Android load includes
music and video players, and most commercial devices ship with these or fancier ver‐
sions as well as YouTube players and more. The recipes in this chapter show you how
to control some aspects of the multimedia world that Android provides.

9.1 Playing a YouTube Video
Marco Dinacci

Problem
You want to play a video from YouTube on your device.

Solution
Given a URI to play the video, create an ACTION_VIEW Intent with it and start a new
Activity.

Discussion
Example 9-1 shows the code required to start a YouTube video with an Intent.

For this recipe to work, the standard YouTube application (or one
compatible with it) must be installed on the device.

425

Example 9-1. Starting a YouTube video with an Intent

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 String video_path = "http://www.youtube.com/watch?v=opZ69P-0Jbc";
 Uri uri = Uri.parse(video_path);

 // With this line the YouTube application, if installed, will launch immediately.
 // Without it you will be prompted with a list of applications to choose from.
 uri = Uri.parse("vnd.youtube:" + uri.getQueryParameter("v"));

 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 startActivity(intent);
}

The example uses a standard YouTube.com URL. The uri.getQueryParameter("v") is
used to extract the video ID from the URI itself; in our example, the ID is opZ69P-0Jbc.

9.2 Capturing Video Using MediaRecorder
Marco Dinacci

Problem
You want to capture video using the built-in device camera and save it to disk.

Solution
Capture a video and record it on the phone by using the c class provided by the
Android framework.

Discussion
The MediaRecorder is normally used to perform audio and/or video recording. The class
has a straightforward API, but because it is based on a simple state machine, the
methods must be called in the proper order to avoid IllegalStateExceptions from pop‐
ping up.

Create a new Activity and override the onCreate() method with the code shown in
Example 9-2.

Example 9-2. The onCreate() method of the main Activity

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.media_recorder_recipe);

426 | Chapter 9: Multimedia

// We shall take the video in landscape orientation
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

mSurfaceView = (SurfaceView) findViewById(R.id.surfaceView);
 mHolder = mSurfaceView.getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mToggleButton = (ToggleButton) findViewById(R.id.toggleRecordingButton);
 mToggleButton.setOnClickListener(new OnClickListener() {
 @Override
 // Toggle video recording
 public void onClick(View v) {
 if (((ToggleButton)v).isChecked())
 mMediaRecorder.start();
 else {
 mMediaRecorder.stop();
 mMediaRecorder.reset();
 try {
 initRecorder(mHolder.getSurface());
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 });
}

The preview frames from the camera will be displayed on a SurfaceView. Recording is
controlled by a toggle button. After the recording is over, we stop the MediaRecorder.
Since the stop() method resets all the state machine variables in order to be able to
grab another video, we reset the state machine and call our initRecorder() method
once more. initRecorder() is where we configure the MediaRecorder and the camera, as
shown in Example 9-3.

Example 9-3. Setting up the MediaRecorder

/* Init the MediaRecorder. The order the methods are called in is vital to
 * its correct functioning.
 */
private void initRecorder(Surface surface) throws IOException {
 // It is very important to unlock the camera before calling setCamera(),
 // or it will result in a black preview
 if(mCamera == null) {
 mCamera = Camera.open();
 mCamera.unlock();
 }

 if(mMediaRecorder == null)
 mMediaRecorder = new MediaRecorder();

 mMediaRecorder.setPreviewDisplay(surface);

9.2 Capturing Video Using MediaRecorder | 427

 mMediaRecorder.setCamera(mCamera);

 mMediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
 mMediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
 File file = createFile();

 mMediaRecorder.setOutputFile(file.getAbsolutePath());

 // No limit. Don't forget to check the space on disk.
 mMediaRecorder.setMaxDuration(-1);
 mMediaRecorder.setVideoFrameRate(15);

 mMediaRecorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);

 try {
 mMediaRecorder.prepare();
 } catch (IllegalStateException e) {
 // This is thrown if the previous calls are not made in the
 // proper order
 e.printStackTrace();
 }

 mInitSuccesful = true;
}

It is important to create and unlock a Camera object before the creation of a
MediaRecorder. setPreviewDisplay, and setCamera() must be called immediately after the
creation of the MediaRecorder. The choice of the format and output file is obligatory.
Other options, if present, must be called in the order outlined in Example 9-3.

The MediaRecorder is best initialized when the surface has been created. We register our
Activity as a SurfaceHolder.Callback listener in order to be notified of this and override
the surfaceCreated() method to call our initialization code:

@Override
public void surfaceCreated(SurfaceHolder holder) {
 try {
 if(!mInitSuccessful)
 initRecorder(mHolder.getSurface());
 } catch (IOException e) {
 e.printStackTrace(); // Better error handling?
 }
}

When you’re done with the surface, don’t forget to release the resources, as the Cam‐
era is a shared object and may be used by other applications:

private void shutdown() {
 // Release MediaRecorder and especially the Camera as it's a shared
 // object that can be used by other applications
 mMediaRecorder.reset();
 mMediaRecorder.release();
 mCamera.release();

428 | Chapter 9: Multimedia

 // Once the objects have been released they can't be reused
 mMediaRecorder = null;
 mCamera = null;
}

Override the surfaceDestroyed() method so that the preceding code can be called auto‐
matically when the user is done with the Activity:

@Override
public void surfaceDestroyed(SurfaceHolder holder) {
 shutdown();
}

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory MediaRecorderDemo (see “Getting and Using the Code Examples” on page
18).

9.3 Using Android’s Face Detection Capability
Wagied Davids

Problem
You want to find out whether a given image contains any human faces and, if so,
where they’re located.

Solution
Use Android’s built-in face detection capability.

Discussion
This recipe illustrates how to implement face detection in images. Face detection is a
cool and fun hidden API feature of Android. In essence, face detection is the act of
recognizing the parts of an image that appear to be human faces. It is part of a
machine learning technique of recognizing objects using a set of features.

Note that this is not face recognition; it detects the parts of the image that are faces,
but does not tell you who the faces belong to. Android 4.0 and later feature face rec‐
ognition for unlocking the phone.

The main Activity (see Example 9-4) creates an instance of our FaceDetectionView. In
this example, we hardcode the file to be scanned, but in real life you would probably
want to capture the image using the camera, or choose the image from a gallery.

9.3 Using Android’s Face Detection Capability | 429

https://github.com/IanDarwin/Android-Cookbook-Examples

Example 9-4. The main Activity

import android.app.Activity;
import android.os.Bundle;

public class Main extends Activity
{
 /** Called when the Activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(new FaceDetectionView(this, "face5.JPG"));
 }
}

FaceDetectionView is our custom class used to manage the face detection code using
android.media.FaceDetector. The init() method conditions some graphics used to mark
the faces—in this example, we know where the faces are, and hope that Android will
find them. The real work is done in detectFaces(), where we call the FaceDetector’s
findFaces() method, passing in our image and an array to contain the results. We then
iterate over the found faces. Example 9-5 shows the code, and Figure 9-1 shows
the result.

Example 9-5. FaceDetectionView.java

...
import android.media.FaceDetector;

public class FaceDetectionView extends View {
 private static final String tag = FaceDetectionView.class.getName();
 private static final int NUM_FACES = 10;
 private FaceDetector arrayFaces;
 private final FaceDetector.Face getAllFaces[] = new FaceDetector.Face[NUM_FACES];
 private FaceDetector.Face getFace = null;

 private final PointF eyesMidPts[] = new PointF[NUM_FACES];
 private final float eyesDistance[] = new float[NUM_FACES];

 private Bitmap sourceImage;

 private final Paint tmpPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 private final Paint pOuterBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);
 private final Paint pInnerBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);

 private int picWidth, picHeight;
 private float xRatio, yRatio;
 private ImageLoader mImageLoader = null;

 public FaceDetectionView(Context context, String imagePath) {
 super(context);
 init();
 mImageLoader = ImageLoader.getInstance(context);

430 | Chapter 9: Multimedia

 sourceImage = mImageLoader.loadFromFile(imagePath);
 detectFaces();
 }

 private void init() {
 Log.d(tag, "Init()...");
 pInnerBullsEye.setStyle(Paint.Style.FILL);
 pInnerBullsEye.setColor(Color.RED);
 pOuterBullsEye.setStyle(Paint.Style.STROKE);
 pOuterBullsEye.setColor(Color.RED);
 tmpPaint.setStyle(Paint.Style.STROKE);
 tmpPaint.setTextAlign(Paint.Align.CENTER);
 BitmapFactory.Options bfo = new BitmapFactory.Options();
 bfo.inPreferredConfig = Bitmap.Config.RGB_565;
 }

 private void loadImage(String imagePath) {
 sourceImage = mImageLoader.loadFromFile(imagePath);
 }

 @Override
 protected void onDraw(Canvas canvas) {
 Log.d(tag, "onDraw()...");

 xRatio = getWidth() * 1.0f / picWidth;
 yRatio = getHeight() * 1.0f / picHeight;
 canvas.drawBitmap(
 sourceImage, null, new Rect(0, 0, getWidth(), getHeight()), tmpPaint);
 for (int i = 0; i < eyesMidPts.length; i++) {
 if (eyesMidPts[i] != null) {
 pOuterBullsEye.setStrokeWidth(eyesDistance[i] / 6);
 canvas.drawCircle(eyesMidPts[i].x * xRatio,
 eyesMidPts[i].y * yRatio, eyesDistance[i] / 2, pOuterBullsEye);
 canvas.drawCircle(eyesMidPts[i].x * xRatio,
 eyesMidPts[i].y * yRatio, eyesDistance[i] / 6, pInnerBullsEye);
 }
 }
 }

 private void detectFaces() {
 Log.d(tag, "detectFaces()...");

 picWidth = sourceImage.getWidth();
 picHeight = sourceImage.getHeight();

 arrayFaces = new FaceDetector(picWidth, picHeight, NUM_FACES);
 arrayFaces.findFaces(sourceImage, getAllFaces);

 for (int i = 0; i < getAllFaces.length; i++) {
 getFace = getAllFaces[i];
 try {
 PointF eyesMP = new PointF();
 getFace.getMidPoint(eyesMP);
 eyesDistance[i] = getFace.eyesDistance();
 eyesMidPts[i] = eyesMP;

9.3 Using Android’s Face Detection Capability | 431

 Log.i("Face",
 i + " " + getFace.confidence() + " " +
 getFace.eyesDistance() + " " +
 "Pose: (" + getFace.pose(FaceDetector.Face.EULER_X) + "," +
 getFace.pose(FaceDetector.Face.EULER_Y) + "," +
 getFace.pose(FaceDetector.Face.EULER_Z) + ")" +
 "Eyes Midpoint: (" + eyesMidPts[i].x + "," +
 eyesMidPts[i].y + ")");
 } catch (Exception e) {
 Log.e("Face", i + " is null");
 }
 }
 }
}

Figure 9-1. Face detection in action

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory FaceFinder (see “Getting and Using the Code Examples” on page 18).

9.4 Playing Audio from a File
Marco Dinacci

432 | Chapter 9: Multimedia

https://github.com/IanDarwin/Android-Cookbook-Examples

Problem
You want to play an audio file stored on the device.

Solution
Create and properly configure a MediaPlayer and a MediaController, provide the path of
the audio file to play, and enjoy the music.

Discussion
Playing an audio file is as easy as setting up a MediaPlayer and a MediaController. First,
create a new Activity that implements the MediaPlayerControl interface (see
Example 9-6).

Example 9-6. The MediaPlayerControl class header

public class PlayAudioActivity extends Activity implements MediaPlayerControl {
 private MediaController mMediaController;
 private MediaPlayer mMediaPlayer;
 private Handler mHandler = new Handler();

In the onCreate() method, we create and configure a MediaPlayer and a MediaController.
The first is the object that performs the typical operations on an audio file, such as
playing, pausing, and seeking. The second is a view containing the buttons that
launch the aforementioned operations through our MediaPlayerControl class.
Example 9-7 shows the onCreate() code.

Example 9-7. The MediaPlayer’s onCreate() method

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mMediaPlayer = new MediaPlayer();
 mMediaController = new MediaController(this);
 mMediaController.setMediaPlayer(PlayAudioActivity.this);
 mMediaController.setAnchorView(findViewById(R.id.audioView));

 String audioFile = "" ;
 try {
 mMediaPlayer.setDataSource(audioFile);
 mMediaPlayer.prepare();
 } catch (IOException e) {
 Log.e("PlayAudioDemo",
 "Could not open file " + audioFile + " for playback.", e);
 }

 mMediaPlayer.setOnPreparedListener(new OnPreparedListener() {

9.4 Playing Audio from a File | 433

 @Override
 public void onPrepared(MediaPlayer mp) {
 mHandler.post(new Runnable() {
 public void run() {
 mMediaController.show(10000);
 mMediaPlayer.start();
 }
 });
 }
 });
}

In addition to configuring our MediaController and MediaPlayer, we create an anony‐
mous OnPreparedListener in order to start the player only when the media source is
ready for playback. Remember to clean up the MediaPlayer when the Activity is
destroyed (see Example 9-8).

Example 9-8. The MediaPlayer cleanup

@Override
protected void onDestroy() {
 super.onDestroy();
 mMediaPlayer.stop();
 mMediaPlayer.release();
}

Lastly, we implement the MediaPlayerControl interface. The code is straightforward, as
shown in Example 9-9.

Example 9-9. The MediaPlayerControl implementation

@Override
public boolean canPause() {
 return true;
}

@Override
public boolean canSeekBackward() {
 return false;
}

@Override
public boolean canSeekForward() {
 return false;
}

@Override
public int getBufferPercentage() {
 return (mMediaPlayer.getCurrentPosition() * 100) / mMediaPlayer.getDuration();
}

434 | Chapter 9: Multimedia

 // Remaining methods just delegate to the MediaPlayer
}

As a final touch, we override the onTouchEvent() method in order to show the
MediaController buttons when the user clicks the screen. Since we create our
MediaController programmatically, the layout is very simple:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/audioView"
 >
</LinearLayout>

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory MediaPlayerInteractive (see “Getting and Using the Code Examples” on
page 18).

9.5 Playing Audio Without Interaction
Ian Darwin

Problem
You want to play an audio file with no interaction (e.g., no user-settable volume,
pause/play controls, etc.).

Solution
All you need to do to play a file with no interaction is create a MediaPlayer for the file
and call its start() method.

Discussion
This is the simplest way to play a sound file. In contrast with Recipe 9.4, this version
offers the user no controls to interact with the sound. You should therefore usually
offer at least a Stop or Cancel button, especially if the audio file is (or might be) long.
If you’re just playing a short sound effect within your application, no such control is
needed.

9.5 Playing Audio Without Interaction | 435

https://github.com/IanDarwin/Android-Cookbook-Examples

You must have a MediaPlayer created for your file. The audio file may be on the SD
card or in your application’s res/raw directory. If the sound file is part of your applica‐
tion, store it under res/raw. Suppose it is in res/raw/alarm_sound.3gp; then the refer‐
ence to it is R.raw.alarm_sound, and you can play it as follows:

MediaPlayer player = MediaPlayer.create(this, R.raw.alarm_sound);
player.start();

In the SD card case, use the following invocation:
MediaPlayer player = new MediaPlayer();
player.setDataSource(fileName);
player.prepare();
player.start();

There is also a convenience routine, MediaPlayer.create(Context, URI), that you can use;
in all cases, create() calls prepare() for you.

To control the player from within your application, you can call the relevant methods
such as player.stop(), player.pause(), and so on. If you want to reuse a player after
stopping it, you must call prepare() again. To be notified when the audio is finished,
use an OnCompletionListener:

player.setOnCompletionListener(new OnCompletionListener() {
 @Override
 public void onCompletion(MediaPlayer mp) {
 Toast.makeText(Main.this,
 "Media Play Complete", Toast.LENGTH_SHORT).show();
 }
});

When you are truly done with any MediaPlayer instance, you should call its release()
method to free up memory; otherwise, you will run out of resources if you create a lot
of MediaPlayer objects.

See Also
To really use the MediaPlayer effectively, you should understand its various states
and transitions, as this will help you to understand what methods are valid. The
developer documentation contains a complete state diagram for the MediaPlayer.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory MediaPlayerDemo (see “Getting and Using the Code Examples” on page
18).

436 | Chapter 9: Multimedia

https://developer.android.com/reference/android/media/MediaPlayer.html
https://github.com/IanDarwin/Android-Cookbook-Examples

9.6 Using Speech to Text
Corey Sunwold

Problem
You want to accept speech input and process it as text.

Solution
One of Android’s unique features is native speech-to-text processing. This provides
an alternative form of text input for the user, who in some situations might not have
her hands free to type in information.

Discussion
Android provides an easy API for using its built-in voice recognition capability
through the RecognizerIntent. Our example layout will be very simple (see
Example 9-10). I’ve only included a TextView called speechText and a Button called
getSpeechButton. The Button will be used to launch the voice recognizer, which will
remain listening and recognizing until the user stops talking for a few seconds. When
results are returned they will be displayed in the TextView.

Example 9-10. The speech recognizer demo program

public class Main extends Activity {

 private static final int RECOGNIZER_RESULT = 1234;

 /** Called when the Atctivity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button startSpeech = (Button)findViewById(R.id.getSpeechButton);
 startSpeech.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT, "Speech to text");
 startActivityForResult(intent, RECOGNIZER_RESULT);
 }

 });

9.6 Using Speech to Text | 437

 }

 /**
 * Handle the results from the recognition Activity.
 */
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == RECOGNIZER_RESULT && resultCode == RESULT_OK) {
 ArrayList<String> matches = data.getStringArrayListExtra(
 RecognizerIntent.EXTRA_RESULTS);

 TextView speechText = (TextView)findViewById(R.id.speechText);
 speechText.setText(matches.get(0).toString());
 }

 super.onActivityResult(requestCode, resultCode, data);
 }
}

See Also
The developer documentation on RecognizerIntent.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory SpeechRecognizerDemo (see “Getting and Using the Code Examples” on
page 18).

9.7 Making the Device Speak with Text-to-Speech
Ian Darwin

Problem
You want your application to pronounce words of text so that the user can perceive
them without watching the screen (e.g., when driving).

Solution
Use the TextToSpeech API.

Discussion
The TextToSpeech (TTS) API is built into Android (though you may have to install
the voice files, depending on the version you are using). To get started you just need a
TextToSpeech object. In theory, you could simply do this:

private TextToSpeech myTTS = new TextToSpeech(this, this);
myTTS.setLanguage(Locale.US);

438 | Chapter 9: Multimedia

https://developer.android.com/reference/android/speech/RecognizerIntent.html
https://github.com/IanDarwin/Android-Cookbook-Examples

myTTS.speak(textToBeSpoken, TextToSpeech.QUEUE_FLUSH, null);
myTTS.shutdown();

However, to ensure success, you actually have to use a couple of Intents: one to check
that the TTS data is available and install it if not, and another to start the TTS mecha‐
nism. So, in practice, the code needs to look something like Example 9-11. This
quaint little application chooses one of half a dozen banal phrases to utter each time
the Speak button is pressed.

Example 9-11. The text-to-speech demo program

public class Main extends Activity implements OnInitListener {

 private TextToSpeech myTTS;
 private List<String> phrases = new ArrayList<String>();

 public void onCreate(Bundle savedInstanceState) {

 phrases.add("Hello Android, Goodbye iPhone");
 phrases.add("The quick brown fox jumped over the lazy dog");
 phrases.add("What is your mother's maiden name?");
 phrases.add("Etaoin Shrdlu for Prime Minister");
 phrases.add(
 "The letter 'Q' does not appear in 'antidisestablishmentarianism')");
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button startButton = (Button) findViewById(R.id.start_button);
 startButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 Intent checkIntent = new Intent();
 checkIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(checkIntent, 1);
 }
 });
 }

 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == 1) {

 if (resultCode == TextToSpeech.Engine.CHECK_VOICE_DATA_PASS) {
 myTTS = new TextToSpeech(this, this);
 myTTS.setLanguage(Locale.US);
 } else {
 // TTS data not yet loaded, try to install it
 Intent ttsLoadIntent = new Intent();
 ttsLoadIntent.setAction(TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(ttsLoadIntent);
 }
 }
 }

 public void onInit(int status) {

9.7 Making the Device Speak with Text-to-Speech | 439

 if (status == TextToSpeech.SUCCESS) {

 int n = (int)(Math.random() * phrases.size());
 myTTS.speak(phrases.get(n), TextToSpeech.QUEUE_FLUSH, null);

 } else if (status == TextToSpeech.ERROR) {
 myTTS.shutdown();
 }
 }
}

The first argument is a Context (the Activity) and the second is an OnInitListener,
also implemented by the main Activity in this case. When the initialization of the
TextToSpeech object is done, it calls the listener, whose onInit() method is meant to
notify that the TTS is ready. In this trivial Speaker program, we simply do the
speaking. In a longer example, you would probably want to start a thread or Ser‐
vice to do the speaking operation.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory Speaker (see “Getting and Using the Code Examples” on page 18).

440 | Chapter 9: Multimedia

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 10

Data Persistence

Data persistence is a wide subject area. In this chapter we focus on selected topics,
including:

• Filesystem topics relating to the app-accessible parts of the filesystems (/sdcard
and friends)—but we assume you know the basics of reading/writing text files in
Java.

• Persisting data in a database, commonly but not exclusively SQLite.
• Reading data from the database, and doing various conversions on it.
• Reading and writing the Preferences data, used to store small per-application

customization values.
• Some data format conversions (e.g., JSON and XML conversions) that don’t fit

naturally into any of the other chapters.
• The Android ContentProvider, which allows unrelated applications to share data in

the form of a SQLite cursor. We’ll focus specifically on the Android Contacts pro‐
vider.

• Drag and drop, which might seem to be a GUI topic but typically involves using a
ContentProvider.

• FileProvider, a simplification of the ContentProvider that allows unrelated applica‐
tions to share individual files.

• The SyncAdapter mechanism, which allows data to be synchronized to/from a
backend database; we discuss one example, that of synchronizing “todo list”
items.

• Finally, we cover a new cloud database called Firebase from Google.

441

10.1 Reading and Writing Files in Internal and External
Storage
Ian Darwin

Problem
You want to know how to store files in internal versus external storage. Files can be
created and accessed in several different places on the device (notably, application
private data and SD card–style data). You need to learn the APIs for dealing with
these sections of the filesystem.

Solution
Use the Context methods getFilesDir(), openFileInput(), and openFileOutput() for
“internal” storage, and use the methods Context.getExternalFilesDir() or
Environment.getExternalStoragePublicDirectory() for shared storage.

Discussion
Every Android device features a fairly complete Unix/Linux filesystem hierarchy.
Parts of it are “off-limits” for normal applications, to ensure that the device’s integrity
and functionality are not compromised. Storage areas available for reading/writing
within the application are divided into “internal” storage, which is private per applica‐
tion, and “public” storage, which may be accessed by other applications.

Internal storage is always located in the device’s “flash memory” area—part of the 8
GB or 32 GB of “storage” that your device was advertised with—under /data/data/
PKG_NAME/. External storage may be on the SD card (which should technically be
called “removable storage,” as it might be a MicroSD card or even some other media
type). However, there are several complications.

First, some devices don’t have removable storage. On these, the external storage
directory always exists—it is just in a different partition of the same flash memory
storage as internal storage.

Second, on devices that do have removable storage, the storage might be removed at
the time your application checks it. There’s no point trying to write it if it’s not there.

On these devices, as well, the storage might be “read-only” as most removable media
memory devices have a “write-protect” switch that disables power to the write circui‐
try.

442 | Chapter 10: Data Persistence

The Files API
Internal storage can be accessed using the Context methods openFileInput(String

filename), which returns a FileInputStream object, or openFileOutput(String filename, int
mode), which returns a FileOutputStream. The mode value should either be 0 for a new file,
or Context.MODE_APPEND to add to the end of an existing file. Other mode values are depre‐
cated and should not be used. Once obtained, these streams can be read using stan‐
dard java.io classes and methods (e.g., wrap the FileInputStream in an InputStreamReader
and a BufferedReader to get line-at-a-time access to character data). You should close
these when finished with them.

Alternatively, the Context method getFilesDir() returns the root of this directory, and
you can then access it using normal java.io methods and classes.

Example 10-1 shows a simple example of writing a file into this area and then reading
it back.

Example 10-1. Writing and reading internal storage

 try (FileOutputStream os =
 openFileOutput(DATA_FILE_NAME, Context.MODE_PRIVATE)) {
 os.write(message.getBytes());
 println("Wrote the string " + message + " to file " +
 DATA_FILE_NAME);
 } catch (IOException e) {
 println("Failed to write " + DATA_FILE_NAME + " due to " + e);
 }

 // Get the absolute path to the directory for our app's internal storage
 File where = getFilesDir();
 println("Our private dir is " + where.getAbsolutePath());

 try (BufferedReader is = new BufferedReader(
 new InputStreamReader(openFileInput(DATA_FILE_NAME)))) {
 String line = is.readLine();
 println("Read the string " + line);
 } catch (IOException e) {
 println("Failed to read back " + DATA_FILE_NAME + " due to " + e);
 }

Accessing the external storage is, predictably, more complicated. The mental model of
external storage is a removable flash-memory card such as an SD card. Initially most
devices had an SD card or MicroSD card slot. Today most do not, but some still do, so
Android always treats the SD card as though it might be removable, or might be
present but the write-protect switch might be enabled. You should not access it by the
directory name /sdcard, but rather through API calls. On some devices the path may
change when an SD card is inserted or removed. And, Murphy’s Law being what it is,
a removable card can be inserted or removed at any time; the users may or may not

10.1 Reading and Writing Files in Internal and External Storage | 443

know that they’re supposed to unmount it in software before removing it. Be pre‐
pared for IOExceptions!

For external storage you will usually require the READ_EXTERNAL_STORAGE or
WRITE_EXTERNAL_STORAGE permission (note that WRITE implies READ, so you don’t need
both):

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

The first thing your application must do is check if the external storage is even avail‐
able. The method static String Environment.getExternalStorageState() returns one of
almost a dozen String values, but unless you are writing a File Manager–type applica‐
tion, you only care about two: MEDIA_MOUNTED and MEDIA_MOUNTED_READ_ONLY. Any other val‐
ues imply that the external storage directory is not currently usable. You can verify
this as follows:

String state = Environment.getExternalStorageState();
println("External storage state = " + state);
if (state.equals(Environment.MEDIA_MOUNTED_READ_ONLY)) {
 mounted = true;
 readOnly = true;
 println("External storage is read-only!!");
} else if (state.equals(Environment.MEDIA_MOUNTED)) {
 mounted = true;
 readOnly = false;
 println("External storage is usable");
} else {
 println("External storage NOT USABLE");
}

Once you’ve ascertained that the external storage is usable, you can create files and/or
directories in it. The Environment class exposes a bunch of public directory types, such
as DIRECTORY_MUSIC for playable music, DIRECTORY_RINGTONES for music files that should
only be used as telephone ringtones, DIRECTORY_MOVIES for videos, and so on. If you use
one of these your files will be placed in the correct directory for the stated purpose.
You can create subdirectories here using File.mkdirs():

// Get the external storage folder for Music
final File externalStoragePublicDirectory =
 Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_MUSIC);
// Get the directory for the user's public pictures directory.
// We want to use it, for example, to create a new music album.
File albumDir = new File(externalStoragePublicDirectory, "Jam Session 2017");
albumDir.mkdirs();
if (!albumDir.isDirectory()) {
 println("Unable to create music album");
} else {
 println("Music album exists as " + albumDir);
}

444 | Chapter 10: Data Persistence

https://developer.android.com/reference/android/os/Environment.html

You could then create files in the subdirectory that would show up as the “album”
“Jam Session 2017.”

The final category of files is “private external storage.” This is just a directory with
your package name in it, for convenience, and offers zero security—any application
with the appropriate EXTERNAL_STORAGE permission can read or write to it. However, it
has the advantage that it will be removed if the user uninstalls your app. This category
is thus intended for use for configuration and data files that are specific to your appli‐
cation, and should not be used for files that logically “belong” to the user.

Directories in this category are accessed by passing null to the
getExternalStorageDirectory() method, as in Example 10-2.

Example 10-2. Reading and writing “private” external storage

 // Finally, we'll create an "application private" file on /sdcard,
 // Note that these are accessible to all other applications!
 final File privateDir = getExternalFilesDir(null);
 File semiPrivateFile = new File(privateDir, "fred.jpg");
 try (OutputStream is = new FileOutputStream(semiPrivateFile)) {
 println("Writing to " + semiPrivateFile);
 // Do some writing here...
 } catch (IOException e) {
 println("Failed to create " + semiPrivateFile + " due to " + e);
 }

The sample project FilesystemDemos includes all this code plus a bit more. Running it
will produce the result shown in Figure 10-1.

See Also
For getting information about files, and directory listings, see Recipe 10.2. To read
static files that are shipped (read-only) as part of your application, see Recipe 10.3.
For more information on data storage options in Android, refer to the official docu‐
mentation.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory FilesystemDemos (see “Getting and Using the Code Examples” on page 18).

10.1 Reading and Writing Files in Internal and External Storage | 445

https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/guide/topics/data/data-storage.html
https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 10-1. FilesystemDemos in action

10.2 Getting File and Directory Information
Ian Darwin

Problem
You need to know all you can about a given file “on disk,” typically in internal mem‐
ory or on the SD card, or you need to list the filesystem entries named in a directory.

Solution
Use a java.io.File object.

Discussion
The File class has a number of “informational” methods. To use any of these, you
must construct a File object containing the name of the file on which it is to operate.
It should be noted up front that creating a File object has no effect on the permanent
filesystem; it is only an object in Java’s memory. You must call methods on the File

446 | Chapter 10: Data Persistence

object in order to change the filesystem; there are numerous “change” methods, such
as one for creating a new (but empty) file, one for renaming a file, and so on, as well
as many informational methods. Table 10-1 lists some of the informational methods.

Table 10-1. File class informational methods
Return type Method name Meaning
boolean exists() True if something of that name exists

String getCanonicalPath() Full name

String getName() Relative filename

String getParent() Parent directory

boolean canRead() True if file is readable

boolean canWrite() True if file is writable

long lastModified() File modification time

long length() File size

boolean isFile() True if it’s a file

boolean isDirectory() True if it’s a directory (note: might be neither file nor directory)

String[] list() List contents if it’s a directory

File[] listFiles() List contents if it’s a directory

You cannot change the name stored in a File object; you simply create a new File
object each time you need to refer to a different file.

Standard Java as of JDK 1.7 includes java.nio.Files, which is a
newer replacement for the File class, but Android does not yet ship
with this class.

Example 10-3 is drawn from desktop Java, but the File object operates the same in
Android as in Java SE.

Example 10-3. A file information program

import java.io.*;
import java.util.*;

/**
 * Report on a file's status in Java
 */
public class FileStatus {

 public static void main(String[] argv) throws IOException {
 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {

10.2 Getting File and Directory Information | 447

 System.err.println("Usage: FileStatus filename");
 System.exit(1);
 }

 for (int i = 0; i< argv.length; i++) {
 status(argv[i]);
 }
 }

 public static void status(String fileName) throws IOException {
 System.out.println("---" + fileName + "---");

 // Construct a File object for the given file
 File f = new File(fileName);

 // See if it actually exists
 if (!f.exists()) {
 System.out.println("file not found");
 System.out.println(); // Blank line
 return;
 }

 // Print full name
 System.out.println("Canonical name " + f.getCanonicalPath());

 // Print parent directory if possible
 String p = f.getParent();
 if (p != null) {
 System.out.println("Parent directory: " + p);
 }

 // Check our permissions on this file
 if (f.canRead()) {
 System.out.println("File is readable by us.");
 }
 // Check if the file is writable
 if (f.canWrite()) {
 System.out.println("File is writable by us.");
 }

 // Report on the modification time
 Date d = new Date();
 d.setTime(f.lastModified());
 System.out.println("Last modified " + d);

 // See if file, directory, or other. If file, print size.
 if (f.isFile()) {
 // Report on the file's size
 System.out.println("File size is " + f.length() + " bytes.");
 } else if (f.isDirectory()) {
 System.out.println("It's a directory");
 } else {
 System.out.println("So weird, man! Neither a file nor a directory!");
 }

 System.out.println(); // Blank line between entries

448 | Chapter 10: Data Persistence

 }
}

Take a look at the output produced when the program is run (on MS Windows) with
the three command-line arguments shown, it produces the output shown here:

C:\javasrc\dir_file> java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name C:\
File is readable.
File is writable.
Last modified Thu Jan 01 00:00:00 GMT 1970
It's a directory

---/tmp/id---
file not found

---/autoexec.bat---
Canonical name C:\AUTOEXEC.BAT
Parent directory: \
File is readable.
File is writable.
Last modified Fri Sep 10 15:40:32 GMT 1999
File size is 308 bytes.

As you can see, the so-called canonical name not only includes a leading directory
root of C:\, but also has had the name converted to uppercase. You can tell I ran that
on an older version of Windows. On Unix, it behaves differently, as you can see here:

$ java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name /
File is readable.
Last modified October 4, 1999 6:29:14 AM PDT
It's a directory

---/tmp/id---
Canonical name /tmp/id
Parent directory: /tmp
File is readable.
File is writable.
Last modified October 8, 1999 1:01:54 PM PDT
File size is 0 bytes.

---/autoexec.bat---

file not found

$

This is because a typical Unix system has no autoexec.bat file. And Unix filenames
(like those on the filesystem inside your Android device, and those on a Mac) can
consist of upper- and lowercase characters: what you type is what you get.

10.2 Getting File and Directory Information | 449

The java.io.File class also contains methods for working with directories. For exam‐
ple, to list the filesystem entities named in the current directory, just write:

String[] list = new File(".").list()

To get an array of already constructed File objects rather than strings, use:
File[] list = new File(".").listFiles();

You can display the result in a ListView (see Recipe 8.2).

Of course, there’s lots of room for elaboration. You could print the names in multiple
columns across or down the screen in a TextView in a monospace font, since you know
the number of items in the list before you print. You could omit filenames with lead‐
ing periods, as does the Unix ls program, or you could print the directory names
first, as some “file manager"–type programs do. By using listFiles(), which constructs
a new File object for each name, you could print the size of each, as per the MS-DOS
dir command or the Unix ls -l command. Or you could figure out whether each
object is a file, a directory, or neither. Having done that, you could pass each directory
to your top-level function, and you would have directory recursion (the equivalent of
using the Unix find command, or ls -R, or the DOS DIR /S command). Quite the mak‐
ings of a file manager application of your own!

A more flexible way to list filesystem entries is with list(FilenameFilter ff).
FilenameFilter is a tiny interface with only one method: boolean accept(File inDir,
String fileName). Suppose you want a listing of only Java-related files (*.java, *.class,
*.jar, etc.). Just write the accept() method so that it returns true for these files and false
for any others. Example 10-4 shows the Ls class warmed over to use a FilenameFilter
instance.

Example 10-4. Directory lister with FilenameFilter

import java.io.*;

/**
 * FNFilter - directory lister modified to use FilenameFilter
 */
public class FNFilter {
 public static String[] getListing(String startingDir) {
 // Generate the selective list, with a one-use File object
 String[] dir = new java.io.File(startingDir).list(new OnlyJava());
 java.util.Arrays.sort(dir); // Sorts by name
 return dir;
}

/** FilenameFilter implementation:
 * The accept() method only returns true for .java , .jar, and .class files.
 */
class OnlyJava implements FilenameFilter {
 public boolean accept(File dir, String s) {
 if (s.endsWith(".java") || s.endsWith(".jar") || s.endsWith(".dex"))

450 | Chapter 10: Data Persistence

 return true;
 // Others: projects, ... ?
 return false;
 }
}

We could make the FilenameFilter a bit more flexible; in a full-scale application, the list
of files returned by the FilenameFilter would be chosen dynamically, possibly automat‐
ically, based on what you were working on. File chooser dialogs implement this as
well, allowing the user to select interactively from one of several sets of files to be lis‐
ted. This is a great convenience in finding files, just as it is here in reducing the num‐
ber of files that must be examined.

For the listFiles() method, there is an additional overload that accepts a FileFilter.
The only difference is that FileFilter’s accept() method is called with a File object,
whereas FileNameFilter’s is called with a filename string.

See Also
See Recipe 8.2 to display the results in your GUI. Chapter 11 of Java Cookbook, writ‐
ten by me and published by O’Reilly, has more information on file and directory
operations.

10.3 Reading a File Shipped with the App Rather than in
the Filesystem
Rachee Singh

Problem
The standard file-oriented Java I/O classes can only open files stored on “disk,” as
described in Recipe 10.1. If you want to read a file that is a static part of your applica‐
tion (installed as part of the APK rather than downloaded), you can access it in one of
two special places.

Solution
If you’d like to read a static file, you can place it either in the assets directory or in res/
raw. For res/raw, open it with the getResources() and openRawResource() methods, and
then read it normally. For assets, you access the file as a filesystem entry (see Recipe
10.1); Android maps this directory to file:///android_asset/ (note the triple slash and
singular spelling of “asset”).

10.3 Reading a File Shipped with the App Rather than in the Filesystem | 451

Discussion
We wish to read information from a file packaged with the Android application, so
we will need to put the relevant file in the res/raw directory or the assets directory
(and probably create the directory, since it is often not created by default).

If the file is stored in res/raw, the generated R class will have an ID for it, which we
pass into openRawResource(). Then we will read the file using the returned
InputStreamReader wrapped in a BufferedReader. Finally, we extract the string from the
BufferedReader using the readLine() method.

If the file is stored in assets, it will appear to be in the file:///android_asset/ directory,
which we can just open and read normally.

In both cases the IDE will ask us to enclose the readLine() function within a try-catch
block since there is a possibility of it throwing an IOException.

For res/$$raw the file is named samplefile and is shown in Example 10-5.

Example 10-5. Reading a static file from res/raw

InputStreamReader is =
 new InputStreamReader(this.getResources().openRawResource(R.raw.samplefile));
BufferedReader reader = new BufferedReader(is);
StringBuilder finalText = new StringBuilder();
String line;
try {
 while ((line = reader.readLine()) != null) {
 finalText.append(line);
 }
} catch (IOException e) {
 e.printStackTrace();
}
fileTextView = (TextView)findViewById(R.id.fileText);
fileTextView.setText(finalText.toString());

After reading the entire string, we set it to the TextView in the Activity.

When using the assets folder, the most common use is for loading a web resource into
a WebView. Suppose we have samplefile.html stored in the assets folder; the code in
Example 10-6 will load it into a web display.

Example 10-6. Reading from assets

webView = (WebView)findViewById(R.id.about_html);
webview.loadUrl("file:///android_asset/samplefile.html");

Figure 10-2 shows the result of both the text and HTML files.

452 | Chapter 10: Data Persistence

Figure 10-2. File read from application resource

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory StaticFileRead (see “Getting and Using the Code Examples” on page 18).

10.4 Getting Space Information About the SD Card
Amir Alagic

Problem
You want to find out the amount of total and available space on the SD card.

Solution
Use the StatFs and Environment classes from the android.os package to find the total and
available space on the SD card.

Discussion
Here is some code that obtains the information:

StatFs statFs = new StatFs(Environment.getExternalStorageDirectory().getPath());
double bytesTotal = (long) statFs.getBlockSize() * (long) statFs.getBlockCount();
double megTotal = bytesTotal / 1048576;

To get the total space on the SD card, use StatFs in the android.os package. Use
Environment.getExternalStorageDirectory().getPath() as a constructor parameter.

Then, multiply the block size by the number of blocks on the SD card:

10.4 Getting Space Information About the SD Card | 453

https://github.com/IanDarwin/Android-Cookbook-Examples

(long) statFs.getBlockSize() * (long) statFs.getBlockCount();

To get size in megabytes, divide the result by 1048576. To get the amount of available
space on the SD card, replace statFs.getBlockCount() with statFs.getAvailableBlocks():

(long) statFs.getBlockSize() * (long) statFs.getAvailableBlocks();

If you want to display the value with two decimal places you can use a DecimalFormat
object from java.text:

DecimalFormat twoDecimalForm = new DecimalFormat("#.##");

10.5 Providing a Preference Activity
Ian Darwin

Problem
You want to let the user specify one or more preferences values, and have them per‐
sisted across runs of the program.

Solution
Have your Preferences or Settings menu item or button load an Activity that sub‐
classes PreferenceActivity; in its onCreate() method, load an XML PreferenceScreen.

Discussion
Android will happily maintain a SharedPreferences object for you in semipermanent
storage. To retrieve settings from it, use:

sharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);

This should be called in your main Activity’s onCreate() method, or in the onCreate() of
any Activity that needs to view the user’s chosen preferences.

You do need to tell Android what values you want the user to be able to specify, such
as name, Twitter account, favorite color, or whatever. You don’t use the traditional
view items such as ListView or Spinner, but instead use the special Preference items. A
reasonable set of choices are available, such as Lists, TextEdits, CheckBoxes, and so on,
but remember, these are not the standard View subclasses. Example 10-7 uses a List, a
TextEdit, and a CheckBox.

Example 10-7. XML PreferenceScreen

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

 <ListPreference
 android:key="listChoice"

454 | Chapter 10: Data Persistence

 android:title="List Choice"
 android:entries="@array/choices"
 android:entryValues="@array/choices"
 />

 <PreferenceCategory
 android:title="Personal">

 <EditTextPreference
 android:key="nameChoice"
 android:title="Name"
 android:hint="Name"
 />

 <CheckBoxPreference
 android:key="booleanChoice"
 android:title="Binary Choice"
 />

 </PreferenceCategory>

</PreferenceScreen>

The PreferenceCategory in the XML allows you to subdivide your panel into labeled
sections. It is also possible to have more than one PreferenceScreen if you have a large
number of settings and want to divide it into “pages.” Several additional kinds of
UI elements can be used in the XML PreferenceScreen; see the official documentation
for details.

The PreferenceActivity subclass can consist of as little as this onCreate() method:
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.layout.prefs);
}

When activated, the PreferenceActivity looks like Figure 10-3.

When the user clicks, say, Name, an Edit dialog opens, as in Figure 10-4.

In the XML layout for the preferences screen, each preference setting is assigned a
name or “key,” as in a Java Map or Properties object. The supported value types are the
obvious String, int, float, and boolean. You use this to retrieve the user’s values, and
you provide a default value in case the settings screen hasn’t been put up yet or in case
the user didn’t bother to specify a particular setting:

String preferredName =
 sharedPreferences.getString("nameChoice", "No name");

10.5 Providing a Preference Activity | 455

https://developer.android.com/reference/android/preference/PreferenceScreen.html

Figure 10-3. Preferences screen

Figure 10-4. String edit dialog

456 | Chapter 10: Data Persistence

Since the preferences screen does the editing for you, there is little need to set prefer‐
ences from within your application. There are a few uses, though, such as remember‐
ing that the user has accepted an end-user license agreement, or EULA. The code for
this would be something like the following:

sharedPreferences.edit().putBoolean("accepted EULA", true).commit();

When writing, don’t forget the commit()! And, for this particular use case, the EULA
option should obviously not appear in the GUI, or the user could just set it there
without having a chance to read and ignore the text of your license agreement.

Like many Android apps, this demo has no Back button from its preferences screen;
the user simply presses the system’s Back button. When the user returns to the main
Activity, a real app would operate based on the user’s choices. My demo app simply
displays the values. This is shown in Figure 10-5.

Figure 10-5. Values the main Activity uses

There is no “official” way to add a Done button to an XML PreferenceScreen, but some
developers use a generic Preference item:

<Preference android:title="@string/done"
 android:key="settingsDoneButton"
 />

10.5 Providing a Preference Activity | 457

You can then make this work like a Button just by giving it an OnClickListener (from
Preference, not the normal one from View):

 // Set up our Done preference to function as a Button
 Preference button = findPreference("settingsDoneButton"); // NOI18N
 button.setOnPreferenceClickListener(
 new Preference.OnPreferenceClickListener() {
 @Override
 public boolean onPreferenceClick(Preference arg0) {
 finish();
 return true;
 }
 });

When building a full-size application, I like to define the keys used as strings, for sty‐
listic reasons and to prevent misspellings. I create a separate XML resource file for
these strings called, say, keys.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string translatable="false" name="key_enable_sync">KEY_ENABLE_SYNC</string>
<string translatable="false" name="key_sync_interval">KEY_SYNC_INTERVAL</string>
<string translatable="false" name="key_username">KEY_USERNAME</string>
<string translatable="false" name="key_password">KEY_PASSWORD</string>
...
</resources>

Note the use of translatable="false" to prevent translation accidents.

I can use these strings directly in the prefs.xml file, and in code using the Activity
method getString():

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

 <PreferenceCategory android:title="Synchronization">
 <CheckBoxPreference
 android:key="@string/key_enable_synch"
 android:title="Enable Sync"
 android:hint="Sync"
 />

 <EditTextPreference
 android:key="@string/key_sync_interval"
 android:title="Sync Interval (minutes)"
 android:inputType="number"
 android:defaultValue="60"
 />
 ...
</PreferenceScreen>

Basically, that’s all you need: an XML PreferenceScreen to define the properties and
how the user sets them; a call to getDefaultSharedPrefences(); and calls to getString(),
getBoolean(), and so on on the returned SharedPreferences object. It’s easy to handle

458 | Chapter 10: Data Persistence

preferences this way, and it gives the Android system a feel of uniformity, consistency,
and predictability that is important to the overall user experience.

10.6 Checking the Consistency of Default Shared
Preferences
Federico Paolinelli

Problem
Android provides a very easy way to set up default preferences by defining a
PreferenceActivity and providing it a resource file, as discussed in Recipe 10.5. What is
not clear is how to perform checks on preferences given by the user.

Solution
You can implement the PreferenceActivity method onSharedPreferenceChanged():

public void onSharedPreferenceChanged(SharedPreferences prefs, String key)

You perform your checks in this method’s body. If the check fails you can restore a
default value for the preference. Be aware that even though the SharedPreferences will
contain the right value, you won’t see it displayed correctly; for this reason, you need
to reload the PreferenceActivity.

Discussion
If you have a default PreferenceActivity that implements On

SharedPreferenceChangeListener, your PreferenceActivity can implement the on

SharedPreferenceChanged() method, as shown in Example 10-8.

Example 10-8. PreferenceActivity implementation

public class MyPreferenceActivity extends PreferenceActivity
 implements OnSharedPreferenceChangeListener {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Context context = getApplicationContext();
 prefs = PreferenceManager.getDefaultSharedPreferences(context);
 addPreferencesFromResource(R.xml.userprefs);
 }

10.6 Checking the Consistency of Default Shared Preferences | 459

The onSharedPreferenceChanged() method will be called after the change is committed, so
every other change you perform will be permanent.

The idea is to check whether the value is appropriate, and if not replace it with a
default value or disable it.

To arrange to have this method called at the appropriate time, you have to register
your Activity as a valid listener. A good way to do so is to register in onResume() and
unregister in onPause():

 @Override
 protected void onResume() {
 super.onResume();
 prefs.registerOnSharedPreferenceChangeListener(this);
 }

 @Override
 protected void onPause() {
 super.onPause();
 prefs.unregisterOnSharedPreferenceChangeListener(this);
 }

Now it’s time to perform the consistency check. For example, if you have an option
whose key is MY_OPTION_KEY, you can use the code in Example 10-9 to check and allow/
disallow the value.

Example 10-9. Checking and allowing/disallowing the supplied value

public void onSharedPreferenceChanged(SharedPreferences prefs, String key) {
 SharedPreferences.Editor prefEditor = prefs.edit();

 if(key.equals(MY_OPTION_KEY)) {
 String optionValue = prefs.getString(MY_OPTION_KEY, "");
 if(dontLikeTheValue(optionValue)) {
 prefEditor.putString(MY_OPTION_KEY, "Default value");
 prefEditor.commit();
 reload();
 }
 }
 return;
}

Of course, if the check fails the user will be surprised and will not know why you
refused his option. You can then show an error dialog and perform the reload action
after the user confirms the dialog (see Example 10-10).

Example 10-10. Explaining rejection

private void showErrorDialog(String errorString) {
 String okButtonString = context.getString(R.string.ok_name);
 AlertDialog.Builder ad = new AlertDialog.Builder(context);
 ad.setTitle(context.getString(R.string.error_name));

460 | Chapter 10: Data Persistence

 ad.setMessage(errorString);
 ad.setPositiveButton(okButtonString,new OnClickListener() {
 public void onClick(DialogInterface dialog, int arg1) {
 reload();
 }
 });
 ad.show();
 return;
}

In this way, the dontLikeTheValue() “if ” becomes:
 if(dontLikeTheValue(optionValue)) {
 if(!GeneralUtils.isPhoneNumber(smsNumber)) {
 showErrorDialog("I dont like the option");
 prefEditor.putString(MY_OPTION_KEY, "Default value");
 prefEditor.commit();
 }
 }

What’s still missing is the reload() function, but it’s pretty obvious. It relaunches the
Activity using the same Intent that fired it:

private void reload() {
 startActivity(getIntent());
 finish();
}

10.7 Using a SQLite Database in an Android Application
Rachee Singh

Problem
You want data you save to last longer than the application’s run, and you want to
access that data in a standardized way.

Solution
SQLite is a popular relational database using the SQL model that you can use to store
application data. To access it in Android, create and use a class that subclasses
SQLiteOpenHelper.

Discussion
SQLite is used in many platforms, not just Android. While SQLite provides an API,
many systems (including Android) develop their own APIs for their particular needs.

10.7 Using a SQLite Database in an Android Application | 461

Getting started
To use a SQLite database in an Android application, it is necessary to create a class
that inherits from the SQLiteOpenHelper class, a standard Android class that arranges to
open the database file:

public class SqlOpenHelper extends SQLiteOpenHelper {

It checks for the existence of the database file and, if it exists, it opens it; otherwise, it
creates one.

The constructor for the parent SQLiteOpenHelper class takes in a few arguments—the
context, the database name, the CursorFactory object (which is most often null), and
the version number of your database schema:

 public static final String DBNAME = "tasksdb.sqlite";
 public static final int VERSION =1;
 public static final String TABLE_NAME = "tasks";
 public static final String ID= "id";
 public static final String NAME="name";

 public SqlOpenHelper(Context context) {
 super(context, DBNAME, null, VERSION);
 }

To create a table in SQL, you use the CREATE TABLE statement. Note that Android’s API
for SQLite assumes that your primary key will be a long integer (long in Java). The
primary key column can have any name for now, but when we wrap the data in a
ContentProvider in a later recipe (Recipe 10.15) this column is required to be named _id,
so we’ll start on the right foot by using that name now:

CREATE TABLE some_table_name (
 _id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
 name TEXT);

The SQLiteOpenHelper method onCreate() is called to allow you to create (and possibly
populate) the database. At this point the database file exists, so you can use the
passed-in SQLiteDatabase object to invoke SQL commands, using its execSql(String)
method:

 public void onCreate(SQLiteDatabase db) {
 createDatabase(db);
 }

 private void createDatabase(SQLiteDatabase db) {
 db.execSQL("create table " + TABLE_NAME + "(" +
 ID + " integer primary key autoincrement not null, " +
 NAME + " text "
 + ");"
);
 }

462 | Chapter 10: Data Persistence

The table name is needed to insert or retrieve data, so it is customary to identify it in
a final String field named TABLE or TABLE_NAME.

To get a “handle” to write to or read from the SQL database you created, instantiate
the SQLiteOpenHelper subclass, passing the Android Context (e.g., Activity) into the con‐
structor, then call its getReadableDatabase() method for read-only access or
getWritableDatabase() for read/write access:

 SqlOpenHelper helper = new SqlOpenHelper(this);
 SQLiteDatabase database= helper.getWritableDatabase();

Inserting data
Now, the SQLiteDatabase database methods can be used to insert and retrieve data. To
insert data, we’ll use the SQLiteDatabase insert() method and pass an object of type
ContentValues.

ContentValues is similar to a Map<String,Object>, a set of key/value pairs. Android does
not provide an object-oriented API to the database; you must decompose your object
into a ContentValues. The keys must map to the names of columns in the database. For
example, NAME could be a final string containing the key (the name of the “Name” col‐
umn), and Mangoes could be the value. We could pass this to the insert() method to
insert a row in the database with the value Mangoes in it. SQLite returns the ID for the
newly created row in the database (id):

ContentValues values = new ContentValues();
values.put(NAME, "Mangoes");
long id = (database.insert(TABLE_NAME, null, values));

Reading data
Now we want to retrieve data from the existing database. To query the database, we
use the query() method along with appropriate arguments, most importantly the table
name and the column names for which we are extracting values (see Example 10-11).
We’ll use the returned Cursor object to iterate over the database and process the data.

Example 10-11. Querying and iterating over results

ArrayList<Food> foods = new ArrayList();
Cursor listCursor = database.query(TABLE_NAME,
 new String [] {ID, NAME},
 null, null, null, null, NAME);
while (listCursor.moveToNext()) {
 Long id = listCursor.getLong(0);
 String name= listCursor.getString(1);
 Food t = new Food(name);
 foods.add(t);
}
listCursor.close();

10.7 Using a SQLite Database in an Android Application | 463

1 There are other signatures; see the official documentation for details.

The moveToNext() method moves the Cursor to the next item and returns true if there is
such an item, rather like the JDBC ResultSet.next() in standard Java (there is also
moveToFirst() to move back to the first item in the database, a moveToLast() method, and
so on). We keep checking until we have reached the end of the database Cursor. Each
item of the database is added to an ArrayList. We close the Cursor to free up resources.

There is considerably more functionality available in the query() method, whose most
common signature is:1

Cursor query(String tableName, String[] columns, String selection,
 String[] selectionArgs, String groupBy, String having, String orderBy)

The most important of these are the selection and orderBy arguments. Unlike in stan‐
dard JDBC, the selection argument is just the selection part of the SELECT statement.
However, it does use the ? syntax for parameter markers, whose values are taken from
the following selectionArgs parameter, which must be an array of Strings regardless of
the underlying column types. The orderBy argument is the ORDER BY part of a standard
SQL query, which causes the database to return the results in sorted order instead of
making the application do the sorting. In both cases, the keywords (SELECT and ORDER
BY) must be omitted as they will be added by the database code. Likewise for the SQL
keywords GROUP BY and HAVING, if you are familiar with those; their values without the
keywords appear as the third-to-last and second-to-last arguments, which are usually
null. For example, to obtain a list of customers aged 18 or over living in the US state
of New York, sorted by last name, you might use something like this:

Cursor custCursor =
 db.query("customer", "age > ? AND state = ? and COUNTRY = ?",
 new String[] { Integer.toString(minAge), "NY", "US" },
 null, null, "lastname ASC");

I’ve written the SQL keywords in uppercase in the query to identify them; this is not
required as SQL keywords are not case-sensitive.

10.8 Performing Advanced Text Searches on a SQLite
Database
Claudio Esperanca

Problem
You want to implement an advanced “search” capability, and you need to know how
to build a data layer to store and search text data using SQLite’s full-text search exten‐
sion.

464 | Chapter 10: Data Persistence

https://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#pubmethods

Solution
Use a SQLite Full-Text Search 3 (FTS3) virtual table and the MATCH function from
SQLite to build such a mechanism.

Discussion
By following these steps, you will be able to create an example Android project with a
data layer where you will be able to store and retrieve some data using a SQLite data‐
base:

1. Create a new Android project (AdvancedSearchProject) targeting a current API level.
2. Specify AdvancedSearch as the application name.
3. Use com.androidcookbook.example.advancedsearch as the package name.
4. Create an Activity with the name AdvancedSearchActivity.
5. Create a new Java class called DbAdapter within the package

com.androidcookbook.example.advancedsearch in the src folder.

To create the data layer for the example application, enter the Example 10-12 source
code in the created file.

Example 10-12. The DbAdapter class

public class DbAdapter {
 public static final String APP_NAME = "AdvancedSearch";
 private static final String DATABASE_NAME = "AdvancedSearch_db";
 private static final int DATABASE_VERSION = 1;
 // Our internal database version (e.g., to control upgrades)
 private static final String TABLE_NAME = "example_tbl";
 public static final String KEY_USERNAME = "username";
 public static final String KEY_FULLNAME = "fullname";
 public static final String KEY_EMAIL = "email";
 public static long GENERIC_ERROR = -1;
 public static long GENERIC_NO_RESULTS = -2;
 public static long ROW_INSERT_FAILED = -3;
 private final Context context;
 private DbHelper dbHelper;
 private SQLiteDatabase sqlDatabase;

 public DbAdapter(Context context) {
 this.context = context;
 }

 private static class DbHelper extends SQLiteOpenHelper {
 private boolean databaseCreated=false;
 DbHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

10.8 Performing Advanced Text Searches on a SQLite Database | 465

 @Override
 public void onCreate(SQLiteDatabase db) {
 Log.d(APP_NAME, "Creating the application database");

 try {
 // Create the FTS3 virtual table
 db.execSQL(
 "CREATE VIRTUAL TABLE ["+TABLE_NAME+"] USING FTS3 (" +
 "["+KEY_USERNAME+"] TEXT," +
 "["+KEY_FULLNAME+"] TEXT," +
 "["+KEY_EMAIL+"] TEXT" +
 ");"
);
 this.databaseCreated = true;
 } catch (Exception e) {
 Log.e(APP_NAME,
 "An error occurred while creating the database: " + e.toString(), e);
 this.deleteDatabaseStructure(db);
 }
 }
 public boolean databaseCreated() {
 return this.databaseCreated;
 }
 private boolean deleteDatabaseStructure(SQLiteDatabase db) {
 try {
 db.execSQL("DROP TABLE IF EXISTS ["+TABLE_NAME+"];");
 return true;
 } catch (Exception e) {
 Log.e(APP_NAME,
 "An error occurred while deleting the database: " + e.toString(), e);
 }
 return false;
 }
 }

 /**
 * Open the database; if the database can't be opened, try to create it
 *
 * @return {@link Boolean} true if database opened/created OK, false otherwise
 * @throws {@link SQLException] if an error occurred
 */
 public boolean open() throws SQLException {
 try {
 this.dbHelper = new DbHelper(this.context);
 this.sqlDatabase = this.dbHelper.getWritableDatabase();
 return this.sqlDatabase.isOpen();
 } catch (SQLException e) {
 throw e;
 }
 }

 /**
 * Close the database connection
 * @return {@link Boolean} true if the connection was terminated, false otherwise
 */
 public boolean close() {

466 | Chapter 10: Data Persistence

 this.dbHelper.close();
 return !this.sqlDatabase.isOpen();
 }

 /**
 * Check if the database was opened
 *
 * @return {@link Boolean} true if it was, false otherwise
 */
 public boolean isOpen() {
 return this.sqlDatabase.isOpen();
 }

 /**
 * Check if the database was created
 *
 * @return {@link Boolean} true if it was, false otherwise
 */
 public boolean databaseCreated() {
 return this.dbHelper.databaseCreated();
 }

 /**
 * Insert a new row i3n the table
 *
 * @param username {@link String} with the username
 * @param fullname {@link String} with the fullname
 * @param email {@link String} with the email
 * @return {@link Long} with the row ID or ROW_INSERT_FAILED (value < 0) on error
 */
 public long insertRow(String username, String fullname, String email) {
 try{
 // Prepare the values
 ContentValues values = new ContentValues();
 values.put(KEY_USERNAME, username);
 values.put(KEY_FULLNAME, fullname);
 values.put(KEY_EMAIL, email);

 // Try to insert the row
 return this.sqlDatabase.insert(TABLE_NAME, null, values);
 }catch (Exception e) {
 Log.e(APP_NAME,
 "An error occurred while inserting the row: "+e.toString(), e);
 }
 return ROW_INSERT_FAILED;
 }

 /**
 * The search() method uses the FTS3 virtual table and
 * the MATCH function from SQLite to search for data.
 * @see http://www.sqlite.org/fts3.html to know more about the syntax.
 * @param search {@link String} with the search expression
 * @return {@link LinkedList} with the {@link String} search results
 */
 public LinkedList<String> search(String search) {

10.8 Performing Advanced Text Searches on a SQLite Database | 467

 LinkedList<String> results = new LinkedList<String>();
 Cursor cursor = null;
 try {
 cursor = this.sqlDatabase.query(true, TABLE_NAME, new String[] {
 KEY_USERNAME, KEY_FULLNAME, KEY_EMAIL }, TABLE_NAME + " MATCH ?",
 new String[] { search }, null, null, null, null);

 if(cursor!=null && cursor.getCount()>0 && cursor.moveToFirst()) {
 int iUsername = cursor.getColumnIndex(KEY_USERNAME);
 int iFullname = cursor.getColumnIndex(KEY_FULLNAME);
 int iEmail = cursor.getColumnIndex(KEY_EMAIL);

 do {
 results.add(
 new String(
 "Username: "+cursor.getString(iUsername) +
 ", Fullname: "+cursor.getString(iFullname) +
 ", Email: "+cursor.getString(iEmail)
)
);
 } while(cursor.moveToNext());
 }
 } catch(Exception e) {
 Log.e(APP_NAME,
 "An error occurred while searching for "+search+": "+e.toString(), e);
 } finally {
 if(cursor!=null && !cursor.isClosed()) {
 cursor.close();
 }
 }

 return results;
 }
}

Now that the data layer is usable, the AdvancedSearchActivity can be used to test it.

To define the application strings, replace the contents of the res/values/strings.xml file
with the following:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="label_search">Search</string>
 <string name="app_name">AdvancedSearch</string>
</resources>

The application layout can be set within the file res/layout/main.xml. This contains
the expected EditText (named etSearch), a Button (named btnSearch), and a TextView
(named tvResults) to display the results, all in a LinearLayout.

Finally, Example 10-13 shows the AdvancedSearchActivity.java code.

468 | Chapter 10: Data Persistence

Example 10-13. AdvancedSearchActivity.java

public class AdvancedSearchActivity extends Activity {
 private DbAdapter dbAdapter;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 dbAdapter = new DbAdapter(this);
 dbAdapter.open();

 if(dbAdapter.databaseCreated()) {
 dbAdapter.insertRow("test", "test example", "example_test@example.com");
 dbAdapter.insertRow("lorem", "lorem ipsum", "lorem.ipsum@example2.com");
 dbAdapter.insertRow("jdoe", "Jonh Doe", "j.doe@example.com");
 }

 Button button = (Button) findViewById(R.id.btnSearch);
 final EditText etSearch = (EditText) findViewById(R.id.etSearch);
 final TextView tvResults = (TextView) findViewById(R.id.tvResults);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 LinkedList<String> results =
 dbAdapter.search(etSearch.getText().toString());

 if(results.isEmpty()) {
 tvResults.setText("No results found");
 } else {
 Iterator<String> i = results.iterator();
 tvResults.setText("");
 while(i.hasNext()) {
 tvResults.setText(tvResults.getText()+i.next()+"\n");
 }
 }
 }
 });
 }
 @Override
 protected void onDestroy() {
 dbAdapter.close();
 super.onDestroy();
 }
}

See Also
See the SQLite website to learn more about the Full-Text Search 3 extension module’s
capabilities, including the search syntax, and localizeandroid to learn about a project
with an implementation of this search mechanism.

10.8 Performing Advanced Text Searches on a SQLite Database | 469

http://www.sqlite.org/fts3.html
https://github.com/cesperanc/localizeandroid

10.9 Working with Dates in SQLite
Jonathan Fuerth

Problem
Android’s embedded SQLite3 database supports date and time data directly, including
some useful date and time arithmetic. However, getting these dates out of the data‐
base is troublesome: there is no Cursor.getDate() in the Android API.

Solution
Use SQLite’s strftime() function to convert between the SQLite timestamp format and
the Java API’s “milliseconds since the epoch” representation.

Discussion
This recipe demonstrates the advantages of using SQLite timestamps over storing raw
millisecond values in your database, and shows how to retrieve those timestamps
from your database as java.util.Date objects.

Background
The usual representation for an absolute timestamp in Unix is time_t, which histori‐
cally was just an alias for a 32-bit integer. This integer represented the date as the
number of seconds elapsed since UTC 00:00 on January 1, 1970 (the Unix epoch). On
systems where time_t is still a 32-bit integer, the clock will roll over partway through
the year 2038.

Java adopted a similar convention, but with a few twists. The epoch remains the
same, but the count is always stored in a 64-bit signed integer (the native Java long
type) and the units are milliseconds rather than seconds. This method of timekeeping
will not roll over for another 292 million years.

Android example code that deals with persisting dates and times tends to simply store
and retrieve the raw milliseconds since the epoch values in the database. However, by
doing this, it misses out on some useful features built into SQLite.

The advantages
There are several advantages to storing proper SQLite timestamps in your data: you
can default timestamp columns to the current time using no Java code at all; you can
perform calendar-sensitive arithmetic such as selecting the first day of a week or
month, or adding a week to the value stored in the database; and you can extract just
the date or time components and return those from your data provider.

470 | Chapter 10: Data Persistence

All of these code-saving advantages come with two added bonuses: first, your data
provider’s API can stick to the Android convention of passing timestamps around as
long values; second, all of this date manipulation is done in the natively compiled
SQLite code, so the manipulations don’t incur the garbage collection overhead of cre‐
ating multiple java.util.Date or java.util.Calendar objects.

The code
Without further ado, here’s how to do it.

First, create a table that defines a column of type timestamp:
CREATE TABLE current_list (
 item_id INTEGER NOT NULL,
 added_on TIMESTAMP NOT NULL DEFAULT current_timestamp,
 added_by VARCHAR(50) NOT NULL,
 quantity INTEGER NOT NULL,
 units VARCHAR(50) NOT NULL,
 CONSTRAINT current_list_pk PRIMARY KEY (item_id)
);

Note the default value for the added_on column. Whenever you insert a row into this
table, SQLite will automatically fill in the current time, accurate to the second, for the
new record (this is shown here using the command-line SQLite program running on
a desktop; we’ll see later in this recipe how to get these into a database under
Android):

sqlite> insert into current_list (item_id, added_by, quantity, units)
 ...> values (1, 'fuerth', 1, 'EA');
sqlite> select * from current_list where item_id = 1;
1|2020-05-14 23:10:26|fuerth|1|EA
sqlite>

See how the current date was inserted automatically? This is one of the advantages
you get from working with SQLite timestamps.

How about the other advantages?

Select just the date part, forcing the time back to midnight:
sqlite> select item_id, date(added_on,'start of day')
 ...> from current_list where item_id = 1;
1|2020-05-14
sqlite>

Or adjust the date to the Monday of the following week:
sqlite> select item_id, date(added_on,'weekday 1')
 ...> from current_list where item_id = 1;
1|2020-05-17
sqlite>

10.9 Working with Dates in SQLite | 471

Or the Monday before:
sqlite> select item_id, date(added_on,'weekday 1','-7 days')
 ...> from current_list where item_id = 1;
1|2020-05-10
sqlite>

These examples are just the tip of the iceberg. You can do a lot of useful things with
your timestamps once SQLite recognizes them as such.

Last, but not least, you must be wondering how to get these dates back into your Java
code. The trick is to press another of SQLite’s date functions into service—this time
strftime(). Here is a Java method that fetches a row from the current_list table we’ve
been working with:

Cursor cursor = database.rawQuery(
 "SELECT item_id AS _id," +
 " (strftime('%s', added_on) * 1000) AS added_on," +
 " added_by, quantity, units" +
 " FROM current_list", new String[0]);
long millis = cursor.getLong(cursor.getColumnIndexOrThrow("added_on"));
Date addedOn = new Date(millis);

That’s it: using strftime()’s %s format, you can select timestamps directly into your
Cursor as Java milliseconds since the epoch values. Client code will be none the wiser,
except that your content provider will be able to do date manipulations for free that
would otherwise take significant amounts of Java code and extra object allocations.

See Also
SQLite’s documentation for its date and time functions.

10.10 Exposing Non-SQL Data as a SQL Cursor
Ian Darwin

Problem
You have non-SQL data, such as a list of files, and want to present it as a Cursor.

Solution
Subclass AbstractCursor and implement various required methods.

Discussion
It is common to have data in a form other than a Cursor, but to want to present it as a
Cursor for use in a ListView with an Adapter or a CursorLoader.

472 | Chapter 10: Data Persistence

http://www.sqlite.org/lang_datefunc.html

The AbstractCursor class facilitates this. While Cursor is an interface that you could
implement directly, there are a number of routines therein that are pretty much the
same in every implementation of Cursor, so they have been abstracted out and made
into the AbstractCursor class.

In this short example we expose a list of filenames with the following structure:

• _id is the sequence number.
• filename is the full path.
• type is the filename extension.

This list of files is hardcoded to simplify the demo. We will expose this as a Cursor and
consume it in a SimpleCursorAdapter. First, the start of the DataToCursor class:

/**
 * Provide a Cursor from a fixed list of data
 * column 1 - _id
 * column 2 - filename
 * column 3 - file type
 */
public class DataToCursor extends AbstractCursor {

 private static final String[] COLUMN_NAMES = {"_id", "filename", "type"};

 private static final String[] DATA_ROWS = {
 "one.mpg",
 "two.jpg",
 "tre.dat",
 "fou.git",
 };

As you can see, there are two arrays: one for the column names going across, and one
for the rows going down. In this simple example we don’t have to track the ID values
(since they are the same as the index into the DATA_ROWS array) or the file types (since
they are the same as the filename extension).

There are a few structural methods that are needed:
@Override
public int getCount() {
 return DATA.length;
}

@Override
public int getColumnCount() {
 return COLUMN_NAMES.length;
}

@Override
public String[] getColumnNames() {
 return COLUMN_NAMES;
}

10.10 Exposing Non-SQL Data as a SQL Cursor | 473

The getColumnCount() method’s value is obviously derivable from the array, but since it’s
constant, we override the method for efficiency reasons—probably not necessary in
most applications.

Then there are some necessary get methods, notably getType() for getting the type of a
given column (whether it’s numeric, string, etc.):

@Override
public int getType(int column) {
 switch(column) {
 case 0:
 return Cursor.FIELD_TYPE_INTEGER;
 case 1:
 case 2:
 return Cursor.FIELD_TYPE_STRING;
 default: throw new IllegalArgumentException(Integer.toString(column));
 }
}

The next methods have to do with getting the value of a given column in the current
row. Nicely, the AbstractCursor handles all the moveToRow() and related methods, so we
just have to call the inherited (and protected) method getPosition():

/**
* Return the _id value (the only integer-valued column).
* Conveniently, rows and array indices are both 0-based.
*/
@Override
public int getInt(int column) {
 int row = getPosition();
 switch(column) {
 case 0: return row;
 default: throw new IllegalArgumentException(Integer.toString(column));
 }
}

/** SQLite _ids are actually long, so make this work as well.
* This direct equivalence is usually not applicable; do not blindly copy.
*/
@Override
public long getLong(int column) {
 return getInt(column);
}

@Override
public String getString(int column) {
 int row = getPosition();
 switch(column) {
 case 1: return DATA_ROWS[row];
 case 2: return extension(DATA_ROWS[row]);
 default: throw new IllegalArgumentException(Integer.toString(column));
 }
}

474 | Chapter 10: Data Persistence

The remaining methods aren’t interesting; methods like getFloat(), getBlob(), and so
on merely throw exceptions as, in this example, there are no columns of those types.

The main Activity shows nothing different than the other ListView examples in Chap‐
ter 8: the data from the Cursor is loaded into a ListView using a SimpleCursorAdapter (this
overload of which is deprecated, but works fine for this example).

The result is shown in Figure 10-6.

Figure 10-6. Main Activity with synthetic Cursor data

We have successfully shown this proof-of-concept of generating a Cursor without
using SQLite. It would obviously be straightforward to turn this into a more dynamic
file-listing utility, even a file manager. You’d want to use a CursorLoader instead of a
SimpleCursorAdapter to make it complete, though; CursorLoader is covered in the next
recipe.

10.11 Displaying Data with a CursorLoader
Ian Darwin

Problem
You need to fetch information via a database Cursor and display it in a graphical user
interface with correct use of threads to avoid blocking the UI thread.

10.11 Displaying Data with a CursorLoader | 475

Solution
Use a CursorLoader.

Discussion
Loader is a top-level class that provides a basic capability for loading almost any type of
data. AsyncTaskLoader<T> provides a specialization of Loader to handle threading. Its
important subclass is CursorLoader, which is used to load data from a database Cursor
and, typically in conjunction with a Fragment or Activity, to display it. The Android
documentation for AsyncTaskLoader<T> shows a comprehensive example of loading the
list of all applications installed on a device, and keeping that information up-to-date
as it changes. We will start with something a bit simpler, which reads (as CursorLoader
classes are expected to) a list of data from a ContentProvider implementation, and dis‐
plays it in a list. To keep the example simple, we’ll use the preinstalled Browser Book‐
marks content provider. (Note that this content provider is not available in Android 7
or later). The application will provide a list of installed bookmarks, similar to that
shown in Figure 10-7.

Figure 10-7. CursorLoader showing Browser Bookmarks

476 | Chapter 10: Data Persistence

To use the Loader, you have to provide an implementation of the
LoaderManager.LoaderCallbacks<T> interface, where T is the type you want to load from; in
our case, Cursor. While most examples have the Activity or Fragment directly imple‐
ment this, we’ll make it an inner class just to isolate it, and make more of the argu‐
ment types explicit.

We start off in onCreate() or onResume() by creating a SimpleCursorAdapter. The construc‐
tor for this adapter—the mainstay of many a list-based application in prior releases of
Android—is now deprecated, but calling it with an additional flags argument (the
final 0 argument here) for use with the Loader family is not deprecated. Other than the
final flags arg, and passing null for the Cursor, the code is largely the same as our non-
Loader-based example, ContentProviderBookmarks, which has been left in the Android
Cookbook repository to show “the old way.” With the extra flags argument the Cursor
may be null, as we will provide it later, in the LoaderCallbacks code (Example 10-14):

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 String[] fromFields = new String[] {
 Browser.BookmarkColumns.TITLE,
 Browser.BookmarkColumns.URL
 };
 int[] toViews = new int[] { android.R.id.text1, android.R.id.text2 };
 mAdapter = new SimpleCursorAdapter(this, android.R.layout.simple_list_item_2,
 null, fromFields, toViews, 0);
 setListAdapter(mAdapter);

 // Prepare the loader: reconnects an existing one or reuses one
 getLoaderManager().initLoader(0, null, new MyCallbacks(this));
}

Note also the last line, which will find a Loader instance and associate our callbacks
with it. The callbacks are where the actual work gets done. There are three required
methods in the LoaderCallbacks object:

onCreateLoader()

Called to create an instance of the actual loader; the framework will start it,
which will perform a ContentProvider query

onLoadFinished()

Called when the loader has finished loading its data, to set its cursor to the one
from the query

onLoaderReset()

Called when the loader is done, to disassociate it from the view (by setting its
cursor back to null)

10.11 Displaying Data with a CursorLoader | 477

Our implementation is fairly simple. As we want all the columns and don’t care about
the order, we only need to provide the bookmarks Uri, which is predefined for us (see
Example 10-14).

Example 10-14. The LoaderCallbacks implementation

class MyCallbacks implements LoaderCallbacks<Cursor> {
 Context context;

 public MyCallbacks(Activity context) {
 this.context = context;
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle stuff) {
 Log.d(TAG, "MainActivity.onCreateLoader()");
 return new CursorLoader(context,
 // Normal CP query: url, proj, select, where, having
 Browser.BOOKMARKS_URI, null, null, null, null);
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor data) {
 // Load has finished, swap the loaded cursor into the view
 mAdapter.swapCursor(data);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 // The end of time: set cursor to null to prevent bad ending
 mAdapter.swapCursor(null);
 }
}

The Loader family is quite sophisticated; it lets you load a Cursor in the background
then adapt it to the GUI. The AsyncTaskLoader<T>, as the name implies, uses an AsyncTask
(see Recipe 4.10) to do the data loading on a background thread and runs the updat‐
ing on the UI thread. Its subclass, the CursorLoader, is now the tool of choice for load‐
ing lists of data.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory CursorLoaderDemo (see “Getting and Using the Code Examples” on page
18).

10.12 Parsing JSON Using JSONObject
Rachee Singh

478 | Chapter 10: Data Persistence

https://github.com/IanDarwin/Android-Cookbook-Examples

Problem
JavaScript Object Notation (JSON) is a simple text format for data interchange. Many
websites provide data in JSON, and many applications need to parse and provide
JSON data.

Solution
While there are a couple of dozen Java APIs for JSON listed on the JSON website,
we’ll use the built-in JSONObject class to parse JSON and retrieve the data values con‐
tained in it.

Discussion
For this recipe, we will use a method to generate JSON code. In a real application you
would likely obtain the JSON data from some web service. In this method we make
use of a JSONObject class object to put in values and then to return the corresponding
string (using the toString() method). Creating an object of type JSONObject can throw a
JSONException, so we enclose the code in a try-catch block (see Example 10-15).

Example 10-15. Generating mock data in JSON format

private String getJsonString() {
 JSONObject string = new JSONObject();
 try {
 string.put("name", "John Doe");
 string.put("age", new Integer(25));
 string.put("address", "75 Ninth Avenue, New York, NY 10011");
 string.put("phone", "8367667829");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 return string.toString();
}

We need to instantiate an object of class JSONObject that takes the JSON string as an
argument. In this case, the JSON string is being obtained from the getJsonString()
method. We extract the information from the JSONObject and print it in a TextView (see
Example 10-16).

Example 10-16. Parsing the JSON string and retrieving values

try {
 String jsonString = getJsonString();
 JSONObject jsonObject = new JSONObject(jsonString);
 String name = jsonObject.getString("name");
 String age = jsonObject.getString("age");
 String address = jsonObject.getString("address");

10.12 Parsing JSON Using JSONObject | 479

http://json.org/

 String phone = jsonObject.getString("phone");
 String jsonText = name + "\n" + age + "\n" + address + "\n" + phone;
 json = (TextView)findViewById(R.id.json);
 json.setText(jsonText);
} catch (JSONException e) {
 // Display the exception...
}

See Also
For more information on JavaScript Object Notation, see the JSON website.

There are about two dozen JSON APIs for Java alone. One of the more powerful ones
—which includes a data-binding package that will automatically convert between Java
objects and JSON—is JackSON.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory JSONParsing (see “Getting and Using the Code Examples” on page 18).

10.13 Parsing an XML Document Using the DOM API
Ian Darwin

Problem
You have data in XML, and you want to transform it into something useful in your
application.

Solution
Android provides a fairly good clone of the standard DOM API used in the Java Stan‐
dard Edition. Using the DOM API instead of writing your own parsing code is clearly
the more efficient approach.

Discussion
Example 10-17 is the code that parses the XML document containing the list of rec‐
ipes in this book, as discussed in Recipe 12.1. The input file has a single recipes root
element, followed by a sequence of recipe elements, each with an id and a title with
textual content.

The code creates a DOM DocumentBuilderFactory, which can be tailored, for example, to
make schema-aware parsers. In real code you could create this in a static initializer
instead of re-creating it each time. The DocumentBuilderFactory is used to create a docu‐
ment builder, a.k.a. parser. The parser expects to be reading from an InputStream, so we

480 | Chapter 10: Data Persistence

http://json.org/
https://github.com/FasterXML/jackson
https://github.com/IanDarwin/Android-Cookbook-Examples

convert the data that we have in string form into an array of bytes and construct a
ByteArrayInputStream. Again, in real life you would probably want to combine this code
with the web service consumer so that you could simply get the input stream from
the network connection and read the XML directly into the parser, instead of saving it
as a string and then wrapping that in a converter as we do here.

Once the elements are parsed, we convert the document into an array of data (the sin‐
gular of data is datum, so the class is called Datum) by calling tDOM API methods such
as getDocumentElement(), getChildNodes(), and getNodeValue(). Since the DOM API was not
invented by Java people, it doesn’t use the standard Collections API but has its own
collections, like NodeList. In DOM’s defense, the same or similar APIs are used in a
really wide variety of programming languages, so it can be said to be as much a stan‐
dard as Java’s Collections.

Example 10-17 shows the code.

Example 10-17. Parsing XML code

/** Convert the list of Recipes in the String result from the
 * web service into an ArrayList of Datum objects.
 * @throws ParserConfigurationException
 * @throws IOException
 * @throws SAXException
 */
public static ArrayList<Datum> parse(String input) throws Exception {

 final ArrayList<Datum> results = new ArrayList<Datum>(1000);
 final DocumentBuilderFactory dbFactory =
 DocumentBuilderFactory.newInstance();
 final DocumentBuilder parser = dbFactory.newDocumentBuilder();

 final Document document =
 parser.parse(new ByteArrayInputStream(input.getBytes()));

 Element root = document.getDocumentElement();
 NodeList recipesList = root.getChildNodes();
 for (int i = 0; i < recipesList.getLength(); i++) {
 Node recipe = recipesList.item(i);
 NodeList fields = recipe.getChildNodes();
 String id = ((Element) fields.item(0)).getNodeValue();
 String title =
 ((Element) fields.item(1)).getNodeValue();
 Datum d = new Datum(Integer.parseInt(id), title);
 results.add(d);
 }
 return results;
}

In converting this code from Java SE to Android, the only change we had to make
was to use getNodeValue() in the retrieval of id and title instead of Java SE’s
getTextContent(), so the API really is very close.

10.13 Parsing an XML Document Using the DOM API | 481

See Also
The web service is discussed in Recipe 12.1. There is much more in the XML chapter
of my Java Cookbook (O’Reilly).

Should you wish to process XML in a streaming mode, you can use the XMLPull‐
Parser, documented in the online version of this Cookbook.

10.14 Storing and Retrieving Data via a Content Provider
Ian Darwin

Problem
You want to read from and write to a ContentProvider such as Contacts.

Solution
One way is to create a Content Uri using constants provided by the ContentProvider and
use Activity.getContentResolver().query(), which returns a SQLite Cursor object.
Another way, useful if you want to select one record such as a single contact, is to
create a PICK Uri, open it in an Intent using startActivityForResult(), extract the URI
from the returned Intent, then perform the query as just described.

Discussion
This is part of the contact selection code from TabbyText, my SMS-over-WiFi text
message sender (the rest of its code is in Recipe 10.17).

First, the main program sets up an OnClickListener to use the Contacts app as a
chooser, from a Find Contact button:

b.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 Uri uri = ContactsContract.Contacts.CONTENT_URI;
 System.out.println(uri);
 Intent intent = new Intent(Intent.ACTION_PICK, uri);
 startActivityForResult(intent, REQ_GET_CONTACT);
 }
});

The URI is predefined for us; it actually has the value content://com.android.contacts/
contacts. The constant REQ_GET_CONTACT is arbitrary; it’s just there to associate this Intent
start-up with the handler code, since more complex apps will often start more than
one Intent and they need to handle the results differently. Once this button is pressed,
control passes from our app out to the Contacts app. The user can then select a con‐
tact she wishes to send an SMS message to. The Contacts app then is backgrounded

482 | Chapter 10: Data Persistence

https://androidcookbook.com/r/2217

and control returns to our app at the onActivityResult() method, to indicate that the
Activity we started has completed and delivered a result.

The next bit of code shows how the onActivityResult() method converts the response
from the Activity into a SQLite cursor (see Example 10-18).

Example 10-18. onActivityResult()

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQ_GET_CONTACT) {
 switch(resultCode) {
 case Activity.RESULT_OK:
 // The Contacts API is about the most complex to use.
 // First retrieve the Contact, as we only get its URI from the Intent.
 Uri resultUri = data.getData(); // E.g., content://contacts/people/123
 Cursor cont = getContentResolver().query(resultUri, null, null, null, null);
 if (!cont.moveToNext()) { // Expect exactly one row
 Toast.makeText(this, "Cursor has no data", Toast.LENGTH_LONG).show();
 return;
 }
 ...

There are a few key things to note here. First, make sure the request Code is the one
you started, and the resultCode is RESULT_OK or RESULT_CANCELED (if not, pop up a warning
dialog). Then, extract the URL for the response you picked—the Intent data from the
returned Intent—and use that to create a query, using the inherited Activity method
getContentResolver() to get the ContentResolver and its query() method to make up a
SQLite cursor.

We expect the user to have selected one contact, so if that’s not the case we error out.
Otherwise, we’d go ahead and use the SQLite cursor to read the data. The exact for‐
matting of the Contacts database is a bit out of scope for this recipe, so it’s been
deferred to Recipe 10.17.

To insert data, we need to create a ContentValues object and populate it with the fields.
Once that’s done, we use the ContentContracts-provided base Uri value, along with the
ContentValues, to insert the values, somewhat like the following:

mNewUri = getContentResolver().
 insert(ContactsContract.Contacts.CONTENT_URI, contentValues);

You could then put the mNewUri into an Intent and display it.

This is shown in more detail in Recipe 10.16.

10.15 Writing a Content Provider
Ashwini Shahapurkar, Ian Darwin

10.15 Writing a Content Provider | 483

Problem
You want to expose data from your application without giving direct access to your
application’s database.

Solution
Write a ContentProvider that will allow other applications to access data contained in
your app.

Discussion
ContentProviders allow other applications to access the data generated by your app. A
custom ContentProvider is effectively a wrapper around your existing application data
(typically but not necessarily contained in a SQLite database; see Recipe 10.7).
Remember that just because you can do so doesn’t mean that you should; in particu‐
lar, you generally do not need to write a ContentProvider just to access your data from
within your application.

To make other apps aware that a ContentProvider is available, we need to declare it in
AndroidManifest.xml as follows:

<application ...>
 <activity .../>
 <provider
 android:authorities="com.example.contentprovidersample"
 android:name="MyContentProvider" />
</application>

The android:authorities attribute is a string used throughout the system to identify
your ContentProvider; it should also be declared in a public static final String variable in
your provider class. The android:name attribute refers to the class MyContentProvider,
which extends the ContentProvider class. We need to override the following methods in
this class:

onCreate();
getType(Uri);

insert(Uri, ContentValues);
query(Uri, String[], String, String[], String);
update(Uri, ContentValues, String, String[]);
delete(Uri, String, String[]);

The onCreate() method is for setup, as in any other Android component. Our example
just creates a SQLite database in a field:

mDatabase = new MyDatabaseHelper(this);

The getType() method assigns MIME types to incoming Uri values. This method will
typically use a statically allocated UriMatcher to determine whether the incoming Uri

484 | Chapter 10: Data Persistence

refers to a list of values (does not end with a numeric ID) or a single value (ends with
a / and a numeric ID, indicated by “/#” in the pattern argument). The method must
return either ContentResolver.CURSOR_ITEM_BASE_TYPE + "/" + MIME_VND_TYPE for a single
item or ContentResolver.CURSOR_DIR_BASE_TYPE + "/" + MIME_VND_TYPE for a multiplicity,
where MIME_VND_TYPE is an application-specific MIME type string; in our example that’s
“vnd.example.item”. It must begin with “vnd,” which stands, throughout this para‐
graph, for “Vendor,” as these values are not provided by the official MIME type com‐
mittee but by Android. The UriMatcher is also used in the four data methods shown
next to sort out singular from plural requests. Example 10-19 contains the declara‐
tions and code for the matcher and the getType() method.

Example 10-19. Declarations and code for the UriMatcher and the getType() method

public class MyContentProvider extends ContentProvider {

 /** The authority name. MUST be as listed in
 * <provider android:authorities=...> in AndroidManifest.xml
 */
 public static final String AUTHORITY = "com.example.contentprovidersample";

 public static final String MIME_VND_TYPE = "vnd.example.item";

 private static final UriMatcher matcher = new UriMatcher(UriMatcher.NO_MATCH);

 private static final int ITEM = 1;
 private static final int ITEMS = 2;
 static {
 matcher.addURI(AUTHORITY, "items/#", ITEM);
 matcher.addURI(AUTHORITY, "items", ITEMS);
 }

 @Override
 public String getType(Uri uri) {
 int matchType = matcher.match(uri);
 Log.d("ReadingsContentProvider.getType()", uri + " --> " + matchType);
 switch (matchType) {
 case ITEM:
 return ContentResolver.CURSOR_ITEM_BASE_TYPE + "/" + MIME_VND_TYPE;
 case ITEMS:
 return ContentResolver.CURSOR_DIR_BASE_TYPE + "/" + MIME_VND_TYPE;
 default:
 throw new IllegalArgumentException("Unknown or Invalid URI " + uri);
 }
 }

The last four methods are usually wrapper functions for SQL queries on the SQLite
database; note that they have the same parameter lists as the like-named SQLite
methods, with the insertion of a Uri at the front of the parameter list. These methods
typically parse the input parameters, do some error checking, and forward the opera‐
tion on to the SQLite database, as shown in Example 10-20.

10.15 Writing a Content Provider | 485

Example 10-20. The ContentProvider: data methods

 /** The C of CRUD: insert() */
 @Override
 public Uri insert(Uri uri, ContentValues values) {
 Log.d(Constants.TAG, "MyContentProvider.insert()");
 switch(matcher.match(uri)) {
 case ITEM: // Fail
 throw new RuntimeException("Cannot specify ID when inserting");
 case ITEMS: // OK
 break;
 default:
 throw new IllegalArgumentException("Did not recognize URI " + uri);
 }

 long id = mDatabase.getWritableDatabase().insert(
 TABLE_NAME, null, values);
 uri = Uri.withAppendedPath(uri, "/" + id);
 getContext().getContentResolver().notifyChange(uri, null);
 return uri;
 }

 /** The R of CRUD: query() */
 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 Log.d(Constants.TAG, "MyContentProvider.query()");
 switch(matcher.match(uri)) {
 case ITEM: // OK
 selection = "_id = ?";
 selectionArgs = new String[]{ Long.toString(ContentUris.parseId(uri)) };
 break;
 case ITEMS: // OK
 break;
 default:
 throw new IllegalArgumentException("Did not recognize URI " + uri);
 }
 // Build the query with SQLiteQueryBuilder
 SQLiteQueryBuilder qBuilder = new SQLiteQueryBuilder();
 qBuilder.setTables(TABLE_NAME);

 // Query the database and get result in cursor
 final SQLiteDatabase db = mDatabase.getWritableDatabase();
 Cursor resultCursor = qBuilder.query(db,
 projection, selection, selectionArgs, null, null, sortOrder,
 null);
 resultCursor.setNotificationUri(getContext().getContentResolver(), uri);
 return resultCursor;
 }
}

The remaining methods, update() and delete(), are parallel in structure and so have
been omitted from this book to save space, but the online example is fully fleshed out.

486 | Chapter 10: Data Persistence

Providing a ContentProvider lets you expose your data without giving other developers
direct access to your database and also reduces the chances of database inconsistency.

Source Download URL
The source code for this recipe is in the Android Cookbook repository, in the subdir‐
ectory ContentProviderSample (see “Getting and Using the Code Examples” on page
18).

10.16 Adding a Contact Through the Contacts Content
Provider
Ian Darwin

Problem
You have a person’s contact information that you want to save for use by the Contacts
application and other apps on your device.

Solution
Set up a list of operations for batch insert, and tell the persistence manager to run it.

Discussion
The Contacts database is, to be sure, “flexible.” It has to adapt to many different kinds
of accounts and contact management uses, with different types of data. And it is, as a
result, somewhat complicated.

The classes named Contacts (and, by extension, all their inner
classes and interfaces) are deprecated, meaning “don’t use them in
new development.” The classes and interfaces that take their place
have names beginning with the somewhat cumbersome and
tongue-twisting ContactsContract.

10.16 Adding a Contact Through the Contacts Content Provider | 487

https://github.com/IanDarwin/Android-Cookbook-Examples

We’ll start with the simplest case of adding a person’s contact information. We want to
insert the following information, which we either got from the user or found on the
network someplace:

Name Jon Smith

Home Phone 416-555-5555

Work Phone 416-555-6666

Email jon@jonsmith.domain

First we have to determine which Android account to associate the data with. For
now we will use a fake account name (darwinian is both an adjective and my name,
so we’ll use that).

For each of the four fields, we’ll need to create an account operation.

We add all five operations to a List, and pass that into
getContentResolver().applyBatch().

Example 10-21 shows the code for the addContact() method.

Example 10-21. The addContact() method

private void addContact() {
 final String ACCOUNT_NAME = "darwinian"
 String name = "Jon Smith";
 String homePhone = "416-555-5555";
 String workPhone = "416-555-6666";
 String email = "jon@jonsmith.domain";

 // Use new-style Contacts batch operations.
 // Build List of ops, then call applyBatch().
 try {
 ArrayList<ContentProviderOperation> ops =
 new ArrayList<ContentProviderOperation>();
 AuthenticatorDescription[] types = accountManager.getAuthenticatorTypes();
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.RawContacts.CONTENT_URI).withValue(
 ContactsContract.RawContacts.ACCOUNT_TYPE, types[0].type)
 .withValue(ContactsContract.RawContacts.ACCOUNT_NAME, ACCOUNT_NAME)
 .build());
 ops.add(ContentProviderOperation
 .newInsert(ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE)
 .withValue
 (ContactsContract.CommonDataKinds.StructuredName.DISPLAY_NAME,name)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(

488 | Chapter 10: Data Persistence

 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,
 homePhone).withValue(
 ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_HOME)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,
 workPhone).withValue(
 ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_WORK)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Email.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Email.DATA,email)
 .withValue(ContactsContract.CommonDataKinds.Email.TYPE,
 ContactsContract.CommonDataKinds.Email.TYPE_HOME)
 .build());

 getContentResolver().applyBatch(ContactsContract.AUTHORITY, ops);

 Toast.makeText(this, getString(R.string.addContactSuccess),
 Toast.LENGTH_LONG).show();
 } catch (Exception e) {

 Toast.makeText(this, getString(R.string.addContactFailure),
 Toast.LENGTH_LONG).show();
 Log.e(LOG_TAG, getString(R.string.addContactFailure), e);
 }
}

The resultant contact shows up in the Contacts app, as shown in Figure 10-8. If the
new contact is not initially visible, go to the main Contacts list page, press Menu,
select Display Options, and select Groups until it does appear. Alternatively, you can
search in All Contacts and it will show up.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory AddContact (see “Getting and Using the Code Examples” on page 18).

10.16 Adding a Contact Through the Contacts Content Provider | 489

https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 10-8. Contact added

10.17 Reading Contact Data Using a Content Provider
Ian Darwin

Problem
You need to extract details, such as a phone number or email address, from the Con‐
tacts database.

Solution
Use an Intent to let the user pick one contact. Use a ContentResolver to create a SQLite
query for the chosen contact, and use SQLite and predefined constants in the confus‐
ingly named ContactsContract class to retrieve the parts you want. Be aware that the
Contacts database was designed for generality, not for simplicity.

Discussion
The code in Example 10-22 is from TabbyText, my SMS/text message sender for tab‐
lets. The user has already picked the given contact (using the Contactz app; see
Recipe 10.14). Here we want to extract the mobile number and save it in a text field in

490 | Chapter 10: Data Persistence

the current Activity, so the user can post-edit it if need be, or even reject it, before
actually sending the message, so we just set the text in an EditText once we find it.

Finding it turns out to be the hard part. We start with a query that we get from the
ContentProvider, to extract the ID field for the given contact. Information such as
phone numbers and email addresses are in their own tables, so we need a second
query to feed in the ID as part of the “select” part of the query. This query gives a list
of the contact’s phone numbers. We iterate through this, taking each valid phone
number and setting it on the EditText.

A further elaboration would restrict this to only selecting the mobile number (some
versions of Contacts allow both home and work numbers, but only one mobile num‐
ber).

Example 10-22. Getting the contact from the Intent query’s ContentResolver

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQ_GET_CONTACT) {
 switch(resultCode) {
 case Activity.RESULT_OK:
 // The Contacts API is about the most complex to use.
 // First we have to retrieve the Contact, since
 // we only get its URI from the Intent.
 Uri resultUri = data.getData(); // E.g., content://contacts/people/123
 Cursor cont =
 getContentResolver().query(resultUri, null, null, null, null);
 if (!cont.moveToNext()) { // Expect 001 row(s)
 Toast.makeText(this,
 "Cursor contains no data", Toast.LENGTH_LONG).show();
 return;
 }
 int columnIndexForId =
 cont.getColumnIndex(ContactsContract.Contacts._ID);
 String contactId =
 cont.getString(columnIndexForId);
 int columnIndexForHasPhone =
 cont.getColumnIndex(ContactsContract.Contacts.HAS_PHONE_NUMBER);
 boolean hasAnyPhone =
 Boolean.parseBoolean(cont.getString(columnIndexForHasPhone));
 if (!hasAnyPhone) {
 Toast.makeText(this,
 "Selected contact seems to have no phone numbers ",
 Toast.LENGTH_LONG).show();
 }

 // Now we have to do another query to actually get the numbers!
 Cursor numbers = getContentResolver().query(
 ContactsContract.CommonDataKinds.Phone.CONTENT_URI,
 null,
 ContactsContract.CommonDataKinds.Phone.CONTACT_ID +
 "=" + contactId, // "selection",

10.17 Reading Contact Data Using a Content Provider | 491

 null, null);
 // Could further restrict to mobile number...
 while (numbers.moveToNext()) {
 String aNumber = numbers.getString(numbers.getColumnIndex(
 ContactsContract.CommonDataKinds.Phone.NUMBER));
 System.out.println(aNumber);
 number.setText(aNumber);
 }
 if (cont.moveToNext()) {
 System.out.println(
 "WARNING: More than 1 contact returned by picker!");
 }
 numbers.close();
 cont.close();
 break;
 case Activity.RESULT_CANCELED:
 // Nothing to do here
 break;
 default:
 Toast.makeText(this, "Unexpected resultCode: " + resultCode,
 Toast.LENGTH_LONG).show();
 break;
 }
 }
 super.onActivityResult(requestCode, resultCode, data);
}

Source Download URL
You can download the source code for this example from GitHub.

10.18 Implementing Drag and Drop
Ian Darwin

Problem
You want to implement drag-and-drop, similar to what the Home screen/launcher
does when you long-press on an application icon.

Solution
Use the drag and drop API, supported since Android 3.0 and even in the appcompat
library. Register a drag listener on the drop target. Start the drag in response to a UI
event in the drag source.

Discussion
The normal use of drag-and-drop is to request a change, such as uninstalling an
application, removing an item from a list, and so on. The normal operation of a drag

492 | Chapter 10: Data Persistence

https://github.com/IanDarwin/TabbyText.git

is to communicate some user-chosen data from one View to another; i.e, both the
source of the drag and the target of the drop must be View objects. To pass informa‐
tion from the source View (e.g., the list item from where you start the drag) to the drop
target, there is a special wrapper object called a ClipData. The ClipData can either hold
an Android URI representing the object to be dropped, or some arbitrary data. The
URI will usually be passed to a ContentProvider for processing.

The basic steps in a drag and drop are:

1. Implement an OnDragListener; its only method is onDrag(), in which you should be
prepared for the various action events such as ACTION_DRAG_STARTED,
ACTION_DRAG_ENTERED, ACTION_DRAG_EXITED, ACTION_DROP, and ACTION_DRAG_ENDED.

2. Register this listener on the drop target, using the View’s setOnDragListener()

method.
3. In a listener attached to the source View, usually in an onItemLongClick() or similar

method, start the drag.
4. For ACTION_DRAG_STARTED and/or ACTION_DRAG_ENTERED on the drop target, highlight the

View to direct the user’s attention to it as a target, by changing the background
color, the image, or similar.

5. For ACTION_DROP, in the drop target, perform the action.
6. For ACTION_DRAG_EXITED and/or ACTION_DRAG_ENDED, do any cleanup required (e.g.,

undo changes made in the ACTION_DRAG_STARTED and/or ACTION_DRAG_ENTERED case).

In this example (Figure 10-9) we implement a very simple drag-and-drop scenario: a
URL is passed from a button to a text field. You start the drag by long-pressing on the
button at the top, and drag it down to the text view at the bottom. As soon as you
start the drag, the drop target’s background changes to yellow, and the “drag shadow”
(by default, an image of the source View object) appears to indicate the drag position.
At this point, if you release the drag shadow outside the drop target, the drag shadow
will find its way back to the drag source, and the drag will end (the target turns white
again). On the other hand, if you drag into the drop target, its color changes to red. If
you release the drag shadow here, it is considered a successful drop, and the listener is
called with an action code of ACTION_DROP; you should perform the corresponding
action (our example just displays the Uri in a toast to prove that it arrived).

10.18 Implementing Drag and Drop | 493

Figure 10-9. Drag and drop sequence

494 | Chapter 10: Data Persistence

Example 10-23 shows the code in onCreate() to start the drag in response to a long-
press on the top button.

Example 10-23. Starting the drag-and-drop operation

// Register the long-click listener to START the drag
Button b = (Button) findViewById(R.id.button);
b.setOnLongClickListener(new View.OnLongClickListener() {

 @Override
 public boolean onLongClick(View v) {
 Uri contentUri = Uri.parse("http://oracle.com/java/");
 ClipData cd = ClipData.newUri(getContentResolver(), "Dragging", contentUri);
 v.startDrag(cd, new DragShadowBuilder(v), null, 0);
 return true;
 }
});

This version passes a Uri through the ClipData. To pass arbitrary information, you can
use another factory method such as:

ClipData.newPlainText(String label, String data)

Then you need to register your OnDragListener with the target View:
target = findViewById(R.id.drop_target);
target.setOnDragListener(new MyDrag());

The code for our OnDragListener is shown in Example 10-24.

Example 10-24. Drag-and-drop listener

public class MyDrag implements View.OnDragListener {
 @Override
 public boolean onDrag(View v, DragEvent e) {
 switch (e.getAction()) {
 case DragEvent.ACTION_DRAG_STARTED:
 target.setBackgroundColor(COLOR_TARGET_DRAGGING);
 return true;
 case DragEvent.ACTION_DRAG_ENTERED:
 Log.d(TAG, "onDrag: ENTERED e=" + e);
 target.setBackgroundColor(COLOR_TARGET_ALERT);
 return true;
 case DragEvent.ACTION_DRAG_LOCATION:
 // Nothing to do but MUST consume the event
 return true;
 case DragEvent.ACTION_DROP:
 Log.d(TAG, "onDrag: DROP e=" + e);
 final ClipData clipItem = e.getClipData();
 Toast.makeText(DragDropActivity.this,
 "DROPPED: " + clipItem.getItemAt(0).getUri(),
 Toast.LENGTH_LONG).show();
 return true;
 case DragEvent.ACTION_DRAG_EXITED:

10.18 Implementing Drag and Drop | 495

 target.setBackgroundColor(COLOR_TARGET_NORMAL);
 return true;
 case DragEvent.ACTION_DRAG_ENDED:
 target.setBackgroundColor(COLOR_TARGET_NORMAL);
 return true;
 default: // Unhandled event type
 return false;
 }
 }
}

In the ACTION_DROP case, you would usually pass the Uri to a ContentResolver; for example:
getContentResolver().delete(event.getClipData().getItemAt(0).getUri());

In some versions of Android, you must consume the
DragEvent.ACTION_DRAG_LOCATION event as shown, or you will get a
strange ClassCastException with the stack trace down in the View
class.
If you are maintaining compatibility with ancient legacy versions of
Android (anything pre-Honeycomb), you must protect the calls to
this API with a code guard; it will compile for those older releases
with the compatibility library, but calls will cause an application
failure.

10.19 Sharing Files via a FileProvider
Ian Darwin

Problem
You want to share internal-storage files (see Recipe 10.1) with another app, without
the bother of putting the data into a Cursor and creating a ContentProvider.

Solution
The FileProvider class allows you to make files available to another application, usually
in response to an Intent. It is simpler to set up than a ContentProvider (Recipe 10.15),
but is actually a subclass of ContentProvider.

Discussion
This example exposes a secrets.txt file from one application to another. For this exam‐
ple I have created an Android Studio project called FileProviderDemo, which contains
two different applications in two different packages, providerapp and requestingapp.
We’ll start by discussing the Provider app since it contains the actual FileProvider.
However, you have to run the Requester application first, as it will start the Provider

496 | Chapter 10: Data Persistence

app. Figure 10-10 shows the sequence of the Requester app, then the Provider app,
and finally the Requester app with its request satisfied.

Figure 10-10. FileProviderDemo in action: request, confirmation, completion

Unlike the ContentProvider case, you rarely have to write code for the provider itself;
instead, use the FileProvider class directly as a provider in your AndroidManifest.xml
file, as shown in Example 10-25.

Example 10-25. The provider definition

<provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.darwinsys.fileprovider"
 android:grantUriPermissions="true"
 android:exported="false">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/filepaths" />
</provider>

The provider does not have to be exported for this usage, but must have the ability to
grant Uri permissions as shown. The meta-data element gives the name of a simple
mapping file, which is required to map “virtual paths” to actual paths, as shown in
Example 10-26.

10.19 Sharing Files via a FileProvider | 497

Example 10-26. The filepaths file

<paths>
 <files-path path="secrets/" name="shared_secrets"/>
</paths>

Finally, there has to be an Activity to provide the Uri to the requested file. In our
example this is the ProvidingActivity, shown in Example 10-27.

Example 10-27. The Provider Activity

/**
 * The backend app, part of FileProviderDemo.
 * There is only one file provided; in a real app there would
 * probably be a file chooser UI or other means of selecting a file.
 */
public class ProvidingActivity extends AppCompatActivity {

 private File mRequestFile;
 private Intent mResultIntent;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mResultIntent = new Intent("com.darwinsys.fileprovider.ACTION_RETURN_FILE");
 setContentView(R.layout.activity_providing);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 // The Layout provides a text field with text like
 // "If you agree to provide the file, press the Agree button"

 Button button = (Button) findViewById(R.id.button);
 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 provideFile();
 }
 });

 mRequestFile = new File(getFilesDir(), "secrets/demo.txt");

 // On first run of application, create the "hidden" file in internal storage
 if (!mRequestFile.exists()) {
 mRequestFile.getParentFile().mkdirs();
 try (PrintWriter pout = new PrintWriter(mRequestFile)) {
 pout.println("This is the revealed text");
 pout.println("And then some.");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

498 | Chapter 10: Data Persistence

 /**
 * The provider application has to return a Uri wrapped in an Intent,
 * along with permission to read that file.
 */
 private void provideFile() {

 // The approved target is one hardcoded file in our directory
 mRequestFile = new File(getFilesDir(), "secrets/demo.txt");
 Uri fileUri = FileProvider.getUriForFile(this,
 "com.darwinsys.fileprovider",
 mRequestFile);

 // The requester is in a different app so can't normally read our files!
 mResultIntent.addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION);

 mResultIntent.setDataAndType(fileUri, getContentResolver().getType(fileUri));

 // Attach that to the result Intent
 mResultIntent.setData(fileUri);

 // Set the result to be "success" + the result
 setResult(Activity.RESULT_OK, mResultIntent);
 finish();
 }
}

The important part of this code is in the provideFile() method, which:

• Creates a Uri for the actual file (in this trivial example there is only one file, with a
hardcoded filename)

• Adds flags to the result Intent to let the receiving app read this one file (only)
with our permissions

• Sets the MIME type of the result
• Adds the file Uri as data to the result Intent
• Sets the result Intent, and the “success” flags Activity.RESULT_OK, as the result of

this Activity
• Calls finish() to end the Activity

Note that this Activity is not meant to be invoked by the user directly, so it does not
have LAUNCHER in its AndroidManifest entry. Thus when you “run” it, you will get an
error message, “Could not identify launch activity: Default Activity not found.” This
error is normal and expected. If it bothers you, build the application and install it, but
don’t try to run it. Or, you could add a dummy Activity with a trivial message
onscreen.

10.19 Sharing Files via a FileProvider | 499

Remember that the point of the FileProvider is to share files from one application to
another, running with different user permissions. Our second application also has
only one Activity, the “requesting” Activity. Most of this is pretty standard boilerplate
code. In onCreate(), we create the requesting Intent:

 mRequestFileIntent = new Intent(Intent.ACTION_PICK);
 mRequestFileIntent.setType("text/plain");

The main part of the UI is a text area, which initially suggests that you request a file
by pressing the button. That button’s action listener is only one line:

 startActivityForResult(mRequestFileIntent, ACTION_GET_FILE);

This will, as discussed in Recipe 4.5, result in a subsequent call to onActivityComplete(),
which is shown in Example 10-28.

Example 10-28. The Requester Activity: onActivityResult()

public class RequestingActivity extends AppCompatActivity {

 private static final int ACTION_GET_FILE = 1;
 private Intent mRequestFileIntent;

 ...

 @Override
 protected void onActivityResult(int requestCode,
 int resultCode, Intent resultIntent) {
 if (requestCode == ACTION_GET_FILE) {
 if (resultCode == Activity.RESULT_OK) {
 try {
 // get the file
 Uri returnUri = resultIntent.getData();
 final InputStream is =
 getContentResolver().openInputStream(returnUri);
 final BufferedReader br =
 new BufferedReader(new InputStreamReader(is));
 String line;
 TextView fileViewTextArea =
 (TextView) findViewById(R.id.fileView);
 fileViewTextArea.setText(""); // reset each time
 while ((line = br.readLine()) != null) {
 fileViewTextArea.append(line);
 fileViewTextArea.append("\n");
 }
 } catch (IOException e) {
 Toast.makeText(this, "IO Error: " + e, Toast.LENGTH_LONG).show();
 }
 } else {
 Toast.makeText(this,
 "Request denied or canceled", Toast.LENGTH_LONG).show();
 }
 return;
 }

500 | Chapter 10: Data Persistence

 // For any other Activity, we can do nothing...
 super.onActivityResult(requestCode, resultCode, resultIntent);
 }
}

Assuming that the request succeeds, you will get called here with requestCode set to the
only valid action, RESULT_OK, and the resultIntent being the one that the providing
Activity set as the Activity result—that is, the Intent wrapping the Uri that we need in
order to read the file! So we just get the Uri from the Intent and open that as an input
stream, and we can read the “secret” file from the providing application’s otherwise-
private internal storage. Just to show that we got it, we display the “secret” file in a text
area, shown in the righthand screenshot in Figure 10-10.

See Also
The official documentation on sharing files.

10.20 Backing Up Your SQLite Data to the Cloud with a
SyncAdapter
Problem
You want your SQLite or ContentProvider data to be bidirectionally synchronized with
a database running on a server.

Solution
Use a SyncAdapter, which lets you synchronize in both directions, providing the infra‐
structure to run a “merge” algorithm of your own devising.

Discussion
Assuming that you have decided to go the SyncAdapter route, you will first need to
make some design decisions:

• How will you access the remote service? (A REST API, as in Recipe 12.1? Volley,
as in Recipe 12.2? Custom socket code?)

• How will you package the remote service code? (ContentProvider, as in Recipe
10.15? DAO? Other?)

• What algorithm will you use for ensuring that all the objects are kept up-to-date
on the server and on one (or more!) mobile devices? (Don’t forget to handle
inserts, updates, and deletions originating from either end!)

Then you need to prepare (design and code) the following:

10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter | 501

https://developer.android.com/training/secure-file-sharing/index.html

1. A ContentProvider (see Recipe 10.15. You’ll need this even if you aren’t using one to
access your on-device data, but if you already have one, you can certainly use it.

2. An AuthenticatorService, which is boilerplate code, to start the Authenticator.
3. An Authenticator class, since you must have an on-device “account” to allow the

system to control syncing.
4. A SyncAdapterService, which is boilerplate code, to start the SyncAdapter.
5. And finally, the actual SyncAdapter, which can probably subclass

AbstractThreadedSyncAdapter.

The following code snippets are taken from my working todo list manager, Todo‐
More, which exists as an Android app, a JavaServer Faces (JSF) web application, a
JAX-RS REST service used by the Android app, and possibly others. Each is its own
GitHub module, so you can git clone just the parts you need.

In your main Activity’s onCreate() method you need to tell the system that you want to
be synchronized. This consists mainly of creating an Account (the first time; after that,
finding it) and requesting synchronization using this Account. You can start this in
your main Activity’s onCreate() method by calling two helper methods shown in
Example 10-29. Note that accountType is just a unique string, such as "MyTodoAccount".

Example 10-29. Sync setup code in main Activity class

public void onCreate(Bundle savedInstanceState) {
 // ...
 mAccount = createSyncAccount(this);
 enableSynching(mPrefs.getBoolean(KEY_ENABLE_SYNC, true));
}

Account createSyncAccount(Context context) {
 AccountManager accountManager =
 (AccountManager) context.getSystemService(ACCOUNT_SERVICE);
 Account[] accounts = accountManager.getAccountsByType(
 getString(R.string.accountType)); // Our account type
 if (accounts.length == 0) { // Haven't created one?
 // Create the account type and default account
 Account newAccount =
 new Account(ACCOUNT, getString(R.string.accountType));
 /*
 * Add the account and account type; no password or user data yet.
 * If successful, return the Account object; else report an error.
 */
 if (accountManager.addAccountExplicitly(
 newAccount, "top secret", null)) {
 Log.d(TAG, "Add Account Explicitly: Success!");
 return newAccount;
 } else {
 throw new IllegalStateException("Add Account failed...");
 }

502 | Chapter 10: Data Persistence

https://github.com/IanDarwin/TodoMore/
https://github.com/IanDarwin/TodoMore/

 } else { // Or we already created one, so use it
 return accounts[0];
 }
}

void enableSynching(boolean enable) {
 String authority = getString(R.string.datasync_provider_authority);
 if (enable) {
 ContentResolver.setSyncAutomatically(mAccount, authority, true);

 // Force immediate syncing at startup - optional feature
 Bundle immedExtras = new Bundle();
 immedExtras.putBoolean("SYNC_EXTRAS_MANUAL", true);
 ContentResolver.requestSync(mAccount, authority, immedExtras);

 Bundle extras = new Bundle();
 long pollFrequency = SYNC_INTERVAL_IN_MINUTES;
 ContentResolver.addPeriodicSync(
 mAccount, authority, extras, pollFrequency);
 } else {
 // Disabling, so cancel all outstanding syncs until further notice
 ContentResolver.cancelSync(mAccount, authority);
 }
}

The Authority is that of your ContentProvider, which is why you need one of those even
if you are accessing your data through a DAO (Data Access Object) that, for example,
calls SQLite directly. The Extras that you put in your call to requestSync() control some
of the optional behavior of the SyncAdapter. You can just copy my code for now, but
you’ll want to read the full documentation at some point.

Let’s turn now to the most interesting (and complex) part, the SyncAdapter itself, which
subclasses AbstractThreadedSyncAdapter and whose central mover and shaker is the
onPerformSync() method:

public class MySyncAdapter extends AbstractThreadedSyncAdapter {

 public void onPerformSync(Account account,
 Bundle extras,
 String authority,
 ContentProviderClient provider,
 SyncResult syncResult) {
 // Do some awesome work here
 syncResult.clear(); // Indicate success
 }
 }

This one method is called automatically by the synchronization subsystem when the
specified interval has elapsed, or when you call requestSync() for an immediate sync
(which is optional, but you probably want to do it at application startup, as we did in
our onCreate()).

10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter | 503

As the method signature states, it is called with an Account (which you created earlier),
a Bundle for arguments, your Authority string again, a ContentProvider wrapper called a
ContentProviderClient, and a SyncResult (which you have to use to inform the frame‐
work whether your operation succeeded or failed).

When it comes to writing the body of this method, you’re completely on your own. I
did something like the following in my todo list application:

1. Fetch the previous update timestamp.
2. Delete remotely any Tasks that were deleted locally.
3. Get a list of all the Remote tasks.
4. Get a list of all the Local tasks.
5. Step through each list, determining which Tasks need to be sent to the other side

(remote Tasks to local database, local Tasks to remote database), by such criteria as
whether they have a Server ID yet, whether their modification time is later than
the previous update timestamp, etc.

6. Save any new/modified remote Tasks into the local database.
7. Save any new/modified local Tasks into the remote database.
8. Update the timestamp.

The core of this operation is #5, “step through each list.” Because this does all the
decision making, I extracted it to a separate method, unimaginatively called
algorithm(), which does no I/O or networking, but just works on lists that are passed
in. This was done for testability: I can easily unit test this part without invoking any
Android or networking functionality. It gets passed the remote list and the local list
from steps 3 and 4, and populates two more lists (which are passed in empty) to con‐
tain the to-be-copied tasks.

The algorithm() method is called in the middle of the onPerformSync() method—after
steps 1–4 have been completed—to prepare the lists for use in steps 6 and 7, in which
the code in onPerformSync() has to do the actual work of updating the local and remote
databases. Here you can use almost any database access method for the local database
(such as a ContentProvider, a DAO, direct use of SQLite, etc.), and almost any network
method to add, update, and remove remote objects (URLConnection to the REST service,
the deprecated HttpClient, perhaps Volley, etc.). I don’t even show the code for
onPerformSync() or my inner algorithm() method, as this is something you’ll have to
work out on your own; it is in the sample GitHub download if you want to look at
mine. I will say that I used a DAO locally and a URLConnection to the REST service for
remote access.

You must have a ContentProvider, even if you’re not using it but are instead using
SQLite directly, as mentioned. A dummy ContentProvider just has to exist, it doesn’t

504 | Chapter 10: Data Persistence

have to do anything if you don’t use it. All the methods can in fact be dummied out,
as long as your dummy content provider in fact subclasses ContentProvider:

public class TodoContentProvider extends ContentProvider {
 /*
 * Always return true, indicating success
 */
 @Override
 public boolean onCreate() {
 return true;
 }

 /*
 * Return no type for MIME type
 */
 @Override
 public String getType(Uri uri) {
 return null;
 }

 /*
 * query() always returns no results
 */
 @Override
 public Cursor query(
 Uri uri,
 String[] projection,
 String selection,
 String[] selectionArgs,
 String sortOrder) {
 return null;
 }
 // Other methods similarly return null
 // or could throw UnsupportedOperationException(?)
}

You will also need a Service to start your SyncAdapter. This is pretty basic; my version
just gets the SharedPreferences because they are needed in the adapter, and passes that
to the constructor. The onBind() method is called by the system to connect things up:

public class TodoSyncService extends Service {

 private TodoSyncAdapter mSyncAdapter;
 private static final Object sLock = new Object();

 @Override
 public void onCreate() {
 super.onCreate();
 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(getApplication());
 synchronized(sLock) {
 if (mSyncAdapter == null) {
 mSyncAdapter =
 new TodoSyncAdapter(getApplicationContext(), prefs, true);
 }

10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter | 505

 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return mSyncAdapter.getSyncAdapterBinder();
 }
}

We also need an AccountAuthenticator, which can be dummied out:
public class TodoDummyAuthenticator extends AbstractAccountAuthenticator {

 private final static String TAG = "TodoDummyAuthenticator";
 public TodoDummyAuthenticator(Context context) {
 super(context);
 }

 @Override
 public Bundle editProperties(
 AccountAuthenticatorResponse response, String accountType) {
 throw new UnsupportedOperationException();
 }

 @Override
 public Bundle addAccount(
 AccountAuthenticatorResponse response, String accountType,
 String authTokenType, String[] requiredFeatures, Bundle options) {
 Log.d(TAG, "TodoDummyAuthenticator.addAccount()");
 return null;
 }

 @Override
 public Bundle confirmCredentials(
 AccountAuthenticatorResponse response, Account account, Bundle options) {
 return null;
 }

 @Override
 public Bundle getAuthToken(
 AccountAuthenticatorResponse response, Account account,
 String authTokenType, Bundle options) {
 throw new UnsupportedOperationException();
 }

 @Override
 public String getAuthTokenLabel(String authTokenType) {
 throw new UnsupportedOperationException();
 }

 @Override
 public Bundle updateCredentials(
 AccountAuthenticatorResponse response, Account account,
 String authTokenType,
 Bundle options) {
 throw new UnsupportedOperationException();

506 | Chapter 10: Data Persistence

 }

 @Override
 public Bundle hasFeatures(
 AccountAuthenticatorResponse response, Account account,
 String[] features) {
 throw new UnsupportedOperationException();
 }
}

And as with the SyncAdapter itself, you need a Service class to start this, which is pretty
simple:

public class TodoDummyAuthenticatorService extends Service {

 // Instance field that stores the authenticator object,
 // so we only create it once for multiple uses
 private TodoDummyAuthenticator mAuthenticator;

 @Override
 public void onCreate() {
 // Create the Authenticator object
 mAuthenticator = new TodoDummyAuthenticator(this);
 }
 /*
 * Called when the system binds to this Service to make the IPC call;
 * just return the authenticator's IBinder
 */
 @Override
 public IBinder onBind(Intent intent) {
 return mAuthenticator.getIBinder();
 }
}

The Services that expose the SyncAdapter and the Authenticator, as well as the
ContentProvider, are Android components, so they must all be listed in the Android
manifest:

<!-- Sync Adapter-->
<service
 android:name=".sync.TodoSyncService"
 android:exported="true"
 android:process=":sync">
 <intent-filter>
 <action android:name="android.content.SyncAdapter"/>
 </intent-filter>
 <meta-data
 android:name="android.content.SyncAdapter"
 android:resource="@xml/synchadapter" />
</service>
<!-- Dummy authenticator - needed by SyncAdapter -->
<service
 android:name=".sync.TodoDummyAuthenticatorService">
 <!-- Required filter used by the system to launch our account service. -->
 <intent-filter>
 <action android:name="android.accounts.AccountAuthenticator" />

10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter | 507

 </intent-filter>
 <!-- This points to an XML file which describes our account service. -->
 <meta-data android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />
</service>
<!-- Dummy ContentProvider also "needed" -->
<provider
 android:name="TodoContentProvider"
 android:authorities="@string/datasync_provider_authority"
 android:exported="false"
 android:syncable="true" />

With all the pieces in place, you should see your account type showing up in Settings
→ Accounts, and selecting it should allow you to trigger a sync, enable/disable sync‐
ing, see the time of the last sync, and so on (see Figure 10-11).

Figure 10-11. SyncAdapter’s user interface: Settings app

See Also
The official documentation on transferring data using sync adapters.

508 | Chapter 10: Data Persistence

https://developer.android.com

Sample Code
The sample code is available on GitHub. To use it as a distributed system you would
have to set up your own server (possibly using the TodoREST repository), then configure
the server, credentials, etc. in the Settings Activity and test it out.

SyncAdapter Versus Firebase
The ContentProvider (see Recipe 10.14 and related recipes) and the SyncAdapter
(see Recipe 10.20) have long been the traditional way of saving data on a device and
in the cloud, respectively. Recently Google has begun offering a “database as a service”
called Firebase (see Recipe 10.21, also https://firebase.google.com). It has some advan‐
tages and some disadvantages compared to the traditional methods.

First, Firebase is a cost center at Google. It is free to use in development and for very
small organizations—up to 100 users of a given application. Beyond that, the charges
start. Rates may vary over time so I won’t detail them here; they’re quite reasonable
when starting off and get more expensive as you scale up. Using a SyncAdapter
requires that you have a server on the internet, but if you already have one and it can
scale, you may save money by using that with a SyncAdapter instead of using Fire‐
base.

Of course this means that with a SyncAdapter, you are in charge of running the
server, doing data backups, etc. This imposes work and resource usage on your orga‐
nization, but means you have full control over how your data is used and where it is
stored (including what jurisdiction it is subject to government inspection in/control
over), all of which is “looked after” by Google when you use Firebase.

There is no doubt that using Firebase requires a lot less code, and it’s simply far easier
to work with. The Firebase version of my Todo application taps in at under 600 lines
of Java code. The SyncAdapter version weighs in at a more corpulent 1,800 lines (fig‐
ures as of April 2016; the two versions are not completely feature-identical, but the
SyncAdapter version even uses MetaWidget to reduce the amount of hand-
maintained user interface code). That’s about a third as much coding, testing, debug‐
ging, and polishing to get your app out the door!

Firebase is also more cross-platform–friendly. It includes a Java/Android runtime,
which can be used on Java SE, Java EE, and so on. Plus there’s an iOS version, so you
can use the same Firebase backend from Objective C when building Apple apps. But
wait! There’s more! There is also a JavaScript version, usable with Ember, Angular,
and other popular JavaScript frameworks. Finally, there’s a web-based developer con‐
sole that lets you configure your application, as well as view, enter, and modify data.

The Android service underlying the SyncAdapter works hard to conserve battery life
by batching updates from multiple SyncAdapters (in case you didn’t know, a big con‐
sumer of battery power is turning the radio modem on every time you start transmit‐

10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter | 509

https://github.com/IanDarwin/TodoAndroid/
https://firebase.google.com
https://github.com/IanDarwin/TodoAndroidFirebase/
https://github.com/IanDarwin/TodoAndroid/

ting; even though you see 2, 3, or 4 “bars of service” on your phone’s display, it’s
actually not connected much of the time, except of course when on a voice call).

Firebase, by contrast, works hard to ensure immediate updating. In my experience on
a relatively slow home internet connection, changes made in my app would typically
reflect on the developer web console, and vice versa, in a fraction of a second. I do not
know if this will become a battery hog, but my todo app only needs updating when
you think of something else you have to do or when you get something done and
check it off, so the battery life won’t be an issue for this app.

With the SyncAdapter, you have to provide authentication. It’s common to use HTTP
Basic Authentication, as we did in our SyncAdapter example. Firebase provides mul‐
tiple authentication schemes, including Google login (of course!), OAuth2, and sev‐
eral others.

The SyncAdapter lets you do full SQL-style queries including a WHERE clause and get
the results back. Firebase of course does not use SQL syntax, and offers only a single
“where” field per query.

The SyncAdapter lets you do synchronization in whatever order you like, and lets you
write code to deal with duplicate entries, records that get modified in multiple places
at the same time, and so on. Firebase manages concurrency itself, and seems to get by
without the need for a complex synchronization step.

Both work correctly when the device is moving between online and offline. But the
SyncAdapter has a slight advantage, since the local database gives it at least an always
reasonably up-to-date list. The Firebase client’s use of a data change listener means
the Firebase app will be behind until reconnection. This is not the only way to write
the Firebase code, but it’s the simplest and probably the most common.

In the end both techniques are useful, and both should be considered when designing
an app that needs to share data with a server.

10.21 Storing Data in the Cloud with Google Firebase
Ian Darwin

Problem
You need to store data from your app users’ devices into the cloud, and don’t have
time to write a SyncAdapter. You want to have access to your cloud data from Apple iOS
devices and/or a web application.

Solution
While the SyncAdapter is fine in its own way, it is a complex beast to use. Firebase, a
Google commercial product, makes it easier to develop your application.

510 | Chapter 10: Data Persistence

Discussion
Firebase is far from the first solution in this area, but it is the one that Android rec‐
ommends—unsurprisingly, since Google offers it as a commercial service. We discuss
it here not to say that it’s the best or only way to do things, but because it really is the
path of least resistance to getting an Android cloud-based database up and running,
and it’s a good example of how such things work.

A brief summary of the steps are:

1. Create an account on the Firebase website, which will give you a unique URL to
use, of the form https://nnn.firebase.com/ (the nnn will be provided when you regis‐
ter).

2. Decide how to structure the data.
3. Add the Firebase library coordinates to your pom.xml or build.gradle file (or

download the JAR and add it to your project the hard way, or use Android Studio
to add the Firebase library to your project).

4. Write code in the onCreate() method of your Activity or application (see Recipe
2.3) to create a Firebase object using your unique URL.

5. To receive the data, add a listener to the Firebase object.
6. To insert, query, update, or delete, invoke methods on the Firebase object, some of

which have additional listeners to notify you of completion and/or results.

In this example we will explore a simple “todo list” application, with data stored only
in Firebase. This is an alternate implementation of the example used in the SyncAdapter
recipe (Recipe 10.20); both are part of my “TodoMore” application family, but the two
use different backends at this point. The Firebase version shown here can be down‐
loaded from GitHub.

Creating an account is just a matter of using the website signup. It’s free to sign up
and develop your app; see the Pricing page for the various plans available.

My data is quite simple; it consists of a list of Todo Task items for each user. The Fire‐
base data is basically a hierarchy of data, effectively in JSON format. The Task class in
Java maps directly to the fields of the database. As you can see in Figure 10-12, there
are fields like name (a one-liner describing the item), description (a longer discussion if
needed, may be null), creationDate (when you entered the task, stored as a lightweight
custom Data class, not a java.util.Date), modified (simple timestamp format), priority
and status (which are enums in the Java code but represented as Strings in the JSON),
and id (a long integer used as a primary key in the relational database, but not used
here).

10.21 Storing Data in the Cloud with Google Firebase | 511

https://firebase.google.com
https://github.com/IanDarwin/TodoAndroidFirebase/

Figure 10-12. Developer console showing data

Initializing the database is done in the onCreate() method of the Application class, so
the database will be available to any Activity classes that need it:

private String mBaseUrl; // Loaded from a config file
private Firebase mDatabase; // The database connection, has a get method

@Override
public void onCreate() {
 super.onCreate();
 Firebase.setAndroidContext(this);
 String baseUrl = getBaseUrl() + TaskListActivity.mCurrentUser + "/tasks/";
 mDatabase = new Firebase(baseUrl);
}

With that out of the way, we can add a Listener to receive the data. In the Todo appli‐
cation we want to download this user’s complete list of tasks at the start of the appli‐
cation. If you had a larger database and didn’t want it all on the device, you’d use a
Query, discussed in Recipe 10.7. This is done in the onCreate() method of the main
Activity:

((ApplicationClass)getApplication()).getDatabase().
 addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(DataSnapshot snapshot) {
 System.out.println("
 There are " + snapshot.getChildrenCount() + " Todo Tasks(s)");
 ApplicationClass.sTasks.clear();

512 | Chapter 10: Data Persistence

 for (DataSnapshot dnlSnapshot: snapshot.getChildren()) {
 Task task = dnlSnapshot.getValue(Task.class);
 System.out.println(task.getName() + " - " + task.getDescription());
 String jsonKey = dnlSnapshot.getKey();
 ApplicationClass.sTasks.add(new KeyValueHolder<>(jsonKey, task));
 }
 Collections.sort(ApplicationClass.sTasks, tasksComparator);
 mAdapter.notifyDataSetChanged();
 }
 @Override public void onCancelled(FirebaseError error) {
 Toast.makeText(getBaseContext(),
 "Task read cancelled!! " + error, Toast.LENGTH_LONG).show();
 }
});

The DataSnapshot object is vaguely analogous to a SQLite Cursor or a JDBC ResultSet.
We iterate over its children, which are magically turned into Task objects when we call
getValue(Task.class). Normally that’s all you’d have to do—it really is that simple!

Except, we will later (to update or delete) need the objects’ Firebase key values—i.e.,
the -KFq… strings at the top level of each Task. We don’t want to store these inside the
Task class, because otherwise they’d be persisted as fields inside the object as well as
the keys. So we introduce a wrapper class, the KeyValueHolder (part of our application,
not the Firebase API), to map the Firebase key and the Task object. We want the data
in List format, both for speed and to preserve order; otherwise, the keys and values
could be put in a Map. Speaking of order, once we’ve added them to the list (a field in
the Application class, again to share with other Activities), we sort the list using
Collections.sort(), and notify our list adapter (see Chapter 8) that its data has
changed, so the list will now show the latest data.

When I was starting I didn’t have a save() method yet and wasn’t quite sure how the
data would look, so I created the first few entries using the “+” button in the develo‐
per’s console, to add hierarchical objects. The “+” and “×” buttons allow you to insert
and remove data at any node in the tree. If you do make changes this way after your
app has been set up—even with just the code we’ve shown so far—the list view on the
device will reflect the changes almost instantly. Nice! That’s also why the first entry
has a “1” for its key instead of the longer strings that Firebase likes to use for its keys.
Those longer keys are generated client-side, by the way, to allow you to generate them
even if the device is offline, but they have more randomness than the standard UUID
format so pretty much guarantee unique key values on the server.

What about updates and deletes? Well, yes. They work, and they’re pretty simple. Let’s
take a look at the update and delete code. This is in the EditActivity; the startup code
gets the task to edit by getting its key passed in the Intent. There is a modelToView()
method that puts it into text fields and so on in the UI, and of course viewToModel()
does the inverse. The doSave() method is called from a Button, and doDelete()—hope‐
fully less common—is called from a menu:

10.21 Storing Data in the Cloud with Google Firebase | 513

private String mKey;
private Task mTask;
private EditText nameTF, descrTF;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 int index = getIntent().getIntExtra(TaskDetailFragment.ARG_ITEM_INDEX, 0);
 KeyValueHolder<String, Task> taskWrapper =
 ApplicationClass.sTasks.get(index);
 mKey = taskWrapper.key;
 mTask = taskWrapper.value;

 setContentView(R.layout.activity_task_edit);
 nameTF = (EditText) findViewById(R.id.nameEditText);
 descrTF = (EditText) findViewById(R.id.descrEditText);

 FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 viewToModel();
 doSave();
 }
 });

 modelToView(); // Copies fields from mTask to the UI components
}

void doSave() {
 viewToModel();
 ((ApplicationClass)getApplication()).getDatabase().
 child(mKey).setValue(mTask);
 finish();
}

void doDelete() {
 ((ApplicationClass)getApplication()).getDatabase().child(mKey).removeValue();
 finish();
}

Figure 10-13 shows how the application looks in action.

514 | Chapter 10: Data Persistence

Figure 10-13. Simple “todo list” in Firebase

See Also
There are more capabilities in Firebase. The most important one that we didn’t
explore is authentication; Google provides a complete and powerful authentication
API along with an Access Control–based permissions scheme that you’ll certainly
want to enable before you make your app-specific data available to the world. This
and other features are documented on the Firebase website.

10.21 Storing Data in the Cloud with Google Firebase | 515

https://firebase.google.com/

CHAPTER 11

Telephone Applications

Android began as a platform for cellular telephone handsets, so it is no surprise that
Android apps are very capable of dealing with the phone. You can write apps that dial
the phone, or that guide the user to do so. You can write apps that verify or modify
the number the user is calling (e.g., to add a long-distance dialing prefix). You can
also write apps that send and receive SMS (Short Message Service) messages, a.k.a.
text messages, assuming the device is telephony-equipped. Nowadays, a great many
Android tablets are WiFi-only, and do not have 4G, 3G, or even 2G telephone/SMS
capabilities. For these devices, other capabilities such as SMS via internet and VoIP
(Voice over IP, usually using SIP) have to be used.

This chapter covers most of these topics; a few are discussed elsewhere in this book.

11.1 Doing Something When the Phone Rings
Johan Pelgrim

Problem
You want to act on an incoming phone call and do something with the incoming
number.

Solution
You can implement a broadcast receiver and then listen for a
TelephonyManager.ACTION_PHONE_STATE_CHANGED action.

517

Discussion
If you want to do something when the phone rings you have to implement a broadcast
receiver, which listens for the TelephonyManager.ACTION_PHONE_STATE_CHANGED Intent action.
This is a broadcast Intent action indicating that the call state (cellular) on the device
has changed. Example 11-1 shows the code for the incoming call interceptor, and
Example 11-2 shows the incoming call interceptor’s layout file.

Example 11-1. The incoming call interceptor

package nl.codestone.cookbook.incomingcallinterceptor;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.telephony.TelephonyManager;
import android.widget.Toast;

public class IncomingCallInterceptor extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 String state = intent.getStringExtra(TelephonyManager.EXTRA_STATE);
 String msg = "Phone state changed to " + state;

 if (TelephonyManager.EXTRA_STATE_RINGING.equals(state)) {
 String incomingNumber = intent.getStringExtra(
 TelephonyManager.EXTRA_INCOMING_NUMBER);
 msg += ". Incoming number is " + incomingNumber;

 // This is where you have to "Do something when the phone rings" ;-)

 Toast.makeText(context, msg, Toast.LENGTH_LONG).show();
 }

 }
}

Create an IncomingCallInterceptor class that extends BroadcastReceiver.

Override the onReceive() method to handle incoming broadcast messages.

The EXTRA_STATE Intent extra in this case indicates the new call state.

If (and only if) the new state is RINGING, a second Intent extra,
EXTRA_INCOMING_NUMBER, provides the incoming phone number as a string.

Extract the number information from the EXTRA_INCOMING_NUMBER Intent extra.

518 | Chapter 11: Telephone Applications

Additionally, you can act on a state change to OFFHOOK or IDLE when
the user picks up the phone or ends/rejects the phone call, respec‐
tively.

Example 11-2. The incoming call interceptor’s AndroidManifest() file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.incomingcallinterceptor"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon"
 android:label="Incoming Call Interceptor">

 <receiver android:name="IncomingCallInterceptor">
 <intent-filter>
 <action android:name="android.intent.action.PHONE_STATE"/>
 </intent-filter>
 </receiver>

 </application>

 <uses-permission android:name="android.permission.READ_PHONE_STATE"/>

</manifest>

We register our IncomingCallInterceptor as a receiver within the application element.

We register an intent-filter …

And an action value that registers our receiver to listen for
TelephonyManager.ACTION_PHONE_STATE_CHANGED broadcast messages.

Finally, we register a uses-permission so that we are allowed to listen to phone state
changes.

If all is well, you should see something like Figure 11-1 when the phone rings.

11.1 Doing Something When the Phone Rings | 519

Figure 11-1. Incoming call intercepted

What happens if two receivers listen for phone state changes?
In general, a broadcast message is just that: a message that is sent out to many receiv‐
ers at the same time. This is the case for a normal broadcast, which is used to send out
the ACTION_PHONE_STATE_CHANGED Intent as well. All receivers of the broadcast are run
in an undefined order, often at the same time, and for that reason order is not appli‐
cable.

In other cases the system sends out an ordered broadcast, which is described in more
detail in Recipe 11.2.

Final notes
When your BroadcastReceiver does not finish the processing in its onMessage() method
within 10 seconds, the Android framework will show the infamous Application Not
Responding (ANR) dialog, giving your users the ability to kill your program.

It is common for a BroadcastReceiver to simply start a Service. Since a BroadcastReceiver
has no user interface, it can either start an Activity (using the inherited startActivity()
method) or create and show a Notification (see Recipe 7.13).

520 | Chapter 11: Telephone Applications

See Also
Recipe 11.2, the developer documentation on BroadcastReceiver and ACTION_

PHONE_STATE_CHANGED.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory CallInterceptorIncoming (see “Getting and Using the Code Examples” on
page 18).

11.2 Processing Outgoing Phone Calls
Johan Pelgrim

Problem
You want to block certain calls, or alter the phone number about to be called.

Solution
Listen for the Intent.ACTION_NEW_OUTGOING_CALL broadcast action and set the result data of
the broadcast receiver to the new number.

Discussion
If you want to intercept a call before it is placed, you can implement a broadcast
receiver and listen for the Intent.ACTION_NEW_OUTGOING_CALL action. This recipe is similar
to Recipe 11.1, but it is more interesting since we can actually manipulate the phone
number in this case!

Example 11-3 shows the code.

Once the broadcast is finished, the result data is used as the actual number to call. If
the result data is null, no call will be placed at all!

Example 11-3. The outgoing call interceptor (a BroadcastReceiver)

package nl.codestone.cookbook.outgoingcallinterceptor;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.widget.Toast;

public class OutgoingCallInterceptor extends BroadcastReceiver {

 @Override

11.2 Processing Outgoing Phone Calls | 521

https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/telephony/TelephonyManager.html#ACTION_PHONE_STATE_CHANGED
https://developer.android.com/reference/android/telephony/TelephonyManager.html#ACTION_PHONE_STATE_CHANGED
https://github.com/IanDarwin/Android-Cookbook-Examples

 public void onReceive(Context context, Intent intent) {
 final String oldNumber = intent.getStringExtra(Intent.EXTRA_PHONE_NUMBER);
 this.setResultData("0123456789");
 final String newNumber = this.getResultData();
 String msg = "Intercepted outgoing call. Old number " +
 oldNumber + ", new number " + newNumber;
 Toast.makeText(context, msg, Toast.LENGTH_LONG).show();
 }

}

Create an OutgoingCallInterceptor class that extends BroadcastReceiver.

Override the onReceive() method.

Extract the phone number that the user originally intended to call via the
Intent.EXTRA_PHONE_NUMBER Intent extra.

Replace this number by calling setResultData() with the new number as the String
argument.

Example 11-4 shows the code in the outgoing call interceptor’s AndroidManifest.xml
file.

Example 11-4. The outgoing call interceptor’s AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.outgoingcallinterceptor"
 android:versionCode="1" android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon"
 android:label="Outgoing Call Interceptor">

 <receiver android:name="OutgoingCallInterceptor">
 <intent-filter android:priority="1">
 <action android:name="android.intent.action.NEW_OUTGOING_CALL" />
 </intent-filter>
 </receiver>

 </application>

 <uses-permission android:name="android.permission.PROCESS_OUTGOING_CALLS" />

</manifest>

We register our OutgoingCallInterceptor as a receiver within the application element.

522 | Chapter 11: Telephone Applications

We add an intent-filter element within this receiver declaration and set an
android:priority of 1.

We add an action element within the intent-filter, to only receive
Intent.ACTION_NEW_OUTGOING_CALL Intent actions.

We have to hold the PROCESS_OUTGOING_CALLS permission to receive this intent, so we
register a uses-permission to PROCESS_OUTGOING_CALLS right below the application ele‐
ment.

Now, when you try to dial the number 11111 you will actually be forwarded to
0123456789 instead! (See Figure 11-2.)

Figure 11-2. Outgoing call intercepted

What happens if two receivers process outgoing calls?
The Intent.ACTION_NEW_OUTGOING_CALL is an ordered broadcast and is a protected intent
that can only be sent by the system. Compared to normal broadcast messages,
ordered broadcast messages have three additional features:

• You can use the intent-filter element’s android:priority attribute to influence your
position in the sending mechanism. The android:priority is an integer indicating
which parent (receiver) has higher priority in processing the incoming broadcast

11.2 Processing Outgoing Phone Calls | 523

message. The higher the number, the higher the priority and the sooner that
receiver can process the broadcast message.

• You can propagate a result to the next receiver by calling the setResultData()
method.

• You can completely abort the broadcast by calling the abortBroadcast() method so
that it won’t be passed to other receivers.

Note that, according to the API, any BroadcastReceiver receiving the
Intent.ACTION_NEW_OUTGOING_CALL must not abort the broadcast by calling the
abortBroadcast() method. Doing so does not present any errors, but apparently some
system receivers still want to have a go at the broadcast message. Emergency calls
cannot be intercepted using this mechanism, and other calls cannot be modified to
call emergency numbers using this mechanism.

It is perfectly acceptable for multiple receivers to process the outgoing call in turn: for
example, a parental control application might verify that the user is authorized to
place the call at that time, and then a number-rewriting application might add an area
code if one was not specified.

If two receivers are defined with an equal android:priority attribute they will be run in
an arbitrary order (according to the API). However, in practice, when they both
reside in the same AndroidManifest.xml file it appears that the order in which the
receivers are defined determines the order in which they will receive the broadcast
message.

Furthermore, if two receivers are defined with an equal android:priority attribute but
they are defined in different AndroidManifest.xml files (i.e., they belong to different
applications), it appears that the broadcast receiver that was installed first is registered
first and thus will be the one that is allowed to process the message first. But again,
don’t count on it!

If you want to have a shot at being the very first to process a message, you can set the
priority to the maximum integer value (2147483647). Even though using this feature of
the API still does not guarantee you will be first, you will have a pretty good chance!

Also, other applications could have intercepted the phone number before your app. If
you are pretty sure you want to take action on the original number, you can use the
EXTRA_PHONE_NUMBER Intent extra as described earlier and completely ignore the result
from the receiver before you. If you simply want to fall in line and pick up where
another broadcast receiver has left off, you can retrieve the intermediary phone num‐
ber via the getResultData() method.

524 | Chapter 11: Telephone Applications

For consistency, any receiver whose purpose is to prohibit phone calls should have a
priority of 0, to ensure that it will see the final phone number to be dialed. Any
receiver whose purpose is to rewrite phone numbers to be called should have a posi‐
tive priority. Negative priorities are reserved for the system for this broadcast; using
them may cause problems.

See Also
Recipe 11.1; , the developer documentation on ACTION_NEW_OUTGOING_CALL.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory CallInterceptorOutgoing (see “Getting and Using the Code Examples” on
page 18).

11.3 Dialing the Phone
Ian Darwin

Problem
You want to dial the phone from within an application, without worrying about
details of telephony.

Solution
Start an Intent to dial the phone.

Discussion
One of the beauties of Android is the ease with which applications can reuse other
applications, without being tightly coupled to the details (or even names) of the other
programs, using the Intent mechanism. For example, to dial the phone, you only need
to create and start an Intent with an action of DIAL and a URI of “tel:” + the number
you want to dial. Thus, a basic dialer can be as simple as Example 11-5.

Example 11-5. Simple dialer Activity

public class Main extends Activity {
 String phoneNumber = "555-1212";
 String intentStr = "tel:" + phoneNumber;

 /** Standard creational callback.
 * Just dial the phone.
 */

11.3 Dialing the Phone | 525

https://developer.android.com/reference/android/content/Intent.html#ACTION_NEW_OUTGOING_CALL
https://github.com/IanDarwin/Android-Cookbook-Examples

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Intent intent = new Intent("android.intent.action.DIAL",
 Uri.parse(intentStr));

 startActivity(intent);
 }
}

You need to have the permission android.permission.CALL_PHONE to use this code. The
user will see the screen shown in Figure 11-3; users know to press the green phone
button to let the call proceed.

Figure 11-3. Simple dialer

Typically, in real life, you would not hardcode the number. In other circumstances
you might want the user to call a number from the phone’s Contacts list.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory SimpleDialer (see “Getting and Using the Code Examples” on page 18).

526 | Chapter 11: Telephone Applications

https://github.com/IanDarwin/Android-Cookbook-Examples

11.4 Sending Single-part or Multipart SMS Messages
Colin Wilcox

Problem
You want a simple way to send either a single-part or a multipart SMS/text message
from a single entry point.

Solution
Use SmsManager.

Discussion
SMS messages, also called text messages, have been part of cellular technology for
years. The Android API allows you to send an SMS message either by an Intent or in
code; we’re only covering the code approach here.

SMS messages are limited to about 160 characters, depending on the carrier (in case
you ever wondered where Twitter got the idea for 140-character messages). Text mes‐
sages above this size must be broken into chunks. To give you control over this, the
SmsManager class allows you to break a message into “parts,” and returns a list of them.

For information about how the division of longer messages into
parts works “under the hood,” see https://en.wikipedia.org/wiki/
Concatenated_SMS.

If there is only one part, the message is short enough to send directly, so we use the
sendTextMessage() method. Otherwise, we have to send the list of parts, so we pass the
list back into the sendMultipartTextMessage() method. The actual sending code is shown
in Example 11-6. The downloadable code features a trivial Activity to invoke the
sending code.

Example 11-6. The SMS sender

package com.example.sendsms;
import java.util.ArrayList;

import android.telephony.SmsManager;
import android.util.Log;

/** The code for dealing with the SMS manager;
 * called from the GUI code.
 */

11.4 Sending Single-part or Multipart SMS Messages | 527

https://en.wikipedia.org/wiki/Concatenated_SMS
https://en.wikipedia.org/wiki/Concatenated_SMS

public class SendSMS {
 static String TAG = "SendSMS";
 SmsManager mSMSManager = null;
 /* The list of message parts our message
 * gets broken up into by SmsManager */
 ArrayList<String> mFragmentList = null;
 /* Service Center - not used */
 String mServiceCentreAddr = null;

 SendSMS() {
 mSMSManager = SmsManager.getDefault();
 }

 /* Called from the GUI to send one message to one destination */
 public boolean sendSMSMessage(
 String aDestinationAddress,
 String aMessageText) {

 if (mSMSManager == null) {
 return (false);
 }

 mFragmentList = mSMSManager.divideMessage(aMessageText);
 int fragmentCount = mFragmentList.size();
 if (fragmentCount > 1) {
 Log.d(TAG, "Sending " + fragmentCount + " parts");
 mSMSManager.sendMultipartTextMessage(aDestinationAddress,
 mServiceCentreAddr,
 mFragmentList, null, null);
 } else {
 Log.d(TAG, "Sending one part");
 mSMSManager.sendTextMessage(aDestinationAddress,
 mServiceCentreAddr,
 aMessageText, null, null);
 }

 return true;
 }
}

Although sent as three parts, it arrives as a single message, as shown in Figure 11-4.

As you might expect, the application needs the android.permission.SEND_SMS permission
in its AndroidManifest.xml file.

See Also
For information on the SmsManager, see the official documentation.

528 | Chapter 11: Telephone Applications

https://developer.android.com/reference/android/telephony/SmsManager.html

Figure 11-4. The multipart message arrived

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory SendSMS (see “Getting and Using the Code Examples” on page 18).

11.5 Receiving an SMS Message
Rachee Singh

Problem
You wish to enable your application to receive incoming SMS messages.

Solution
Use a broadcast receiver to listen for incoming SMS messages and then extract the
messages.

11.5 Receiving an SMS Message | 529

https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
When an Android device receives a message, a broadcast Intent is fired (the Intent
also includes the SMS message that was received). The application can register to
receive these Intents.

The Intent has an action, android.provider.Telephony.SMS_RECEIVED. The application
designed to receive SMS messages should include the RECEIVE_SMS permission in the
manifest:

<uses-permission android:name="android.permission.RECEIVE_SMS"/>

When a message is received, the onReceive() method is called. Within this method,
you can process the message. From the Intent that is received, the SMS message has
to be extracted using the get() method. The BroadcastReceiver with the code for
extracting the message part looks like Example 11-7. The code makes a Toast to dis‐
play the contents of the received SMS message.

Example 11-7. The SMS BroadcastReceiver

public class InvitationSmsReceiver extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {

 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String message = "";
 if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get("pdus");
 msgs = new SmsMessage[pdus.length];

 for (int i=0; i<msgs.length;i++) {
 msgs[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
 message = msgs[i].getMessageBody();
 Toast.makeText(context,message,Toast.LENGTH_SHORT).show();
 }
 }
 }
}

To register the InvitationSmsReceiver class for receiving the SMS messages, add the fol‐
lowing to the manifest:

<receiver android:name=".InvitationSmsReceiver"
 android:enabled="true">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
</receiver>

530 | Chapter 11: Telephone Applications

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory SMSReceiver (see “Getting and Using the Code Examples” on page 18).

11.6 Using Emulator Controls to Send SMS Messages to
the Emulator
Rachee Singh

Problem
To interactively test an SMS message–based application before loading it onto a
device, you need to be able to send an SMS message to the emulator.

Solution
Emulator control in the DDMS perspective of Eclipse allows sending SMS messages
to the emulator.

Discussion
To test whether your application responds to incoming SMS messages, you need to
send an SMS message to the emulator. The DDMS perspective of Eclipse or the
Android Device Monitor of Android Studio provides this function. (You may wish to
maximize the Emulator Control window as otherwise the important parts of it may
be hidden and require both vertical and horizontal scrolling to access.) In the Emula‐
tor Control tab, go to Telephony Actions and provide a phone number. This number
can be any number that you want the message to appear to come from. Select the
SMS radio button. In the Message box, type the message you wish to send. Finally,
press the Send button below the message text. See Figure 11-5.

11.6 Using Emulator Controls to Send SMS Messages to the Emulator | 531

https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 11-5. Emulator control sending an SMS message

11.7 Using Android’s TelephonyManager to Obtain Device
Information
Pratik Rupwal

Problem
You want to obtain network-related and telephony information about the user’s
device.

Solution
Use Android’s standard TelephonyManager to obtain statistics about network status and
telephony information.

Discussion
Android’s TelephonyManager provides information about the Android telephony system.
It assists in collecting information such as cell location, International Mobile Equip‐
ment Identity (IMEI) number, and network provider.

The program in Example 11-8 is long and covers most of the facilities provided by
the Android TelephonyManager. It is unlikely you will need all of these in a single appli‐
cation, but they are consolidated here to provide a comprehensive example.

532 | Chapter 11: Telephone Applications

Example 11-8. The phone state sample Activity

...
import android.telephony.CellLocation;
import android.telephony.NeighboringCellInfo;
import android.telephony.PhoneStateListener;
import android.telephony.ServiceState;
import android.telephony.TelephonyManager;
import android.telephony.gsm.GsmCellLocation;

public class PhoneStateSample extends Activity {

 private static final String APP_NAME = "SignalLevelSample";
 private static final int EXCELLENT_LEVEL = 75;
 private static final int GOOD_LEVEL = 50;
 private static final int MODERATE_LEVEL = 25;
 private static final int WEAK_LEVEL = 0;

 // These are used to store Strings into an array for display
 private static final int INFO_SERVICE_STATE_INDEX = 0;
 private static final int INFO_CELL_LOCATION_INDEX = 1;
 private static final int INFO_CALL_STATE_INDEX = 2;
 private static final int INFO_CONNECTION_STATE_INDEX = 3;
 private static final int INFO_SIGNAL_LEVEL_INDEX = 4;
 private static final int INFO_SIGNAL_LEVEL_INFO_INDEX = 5;
 private static final int INFO_DATA_DIRECTION_INDEX = 6;
 private static final int INFO_DEVICE_INFO_INDEX = 7;

 // These are the IDs of the displays; must keep in sync with above constants
 private static final int[] info_ids= {
 R.id.serviceState_info,
 R.id.cellLocation_info,
 R.id.callState_info,
 R.id.connectionState_info,
 R.id.signalLevel,
 R.id.signalLevelInfo,
 R.id.dataDirection,
 R.id.device_info
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 startSignalLevelListener();
 displayTelephonyInfo();
 }

 @Override
 protected void onPause() {
 super.onPause();
 stopListening();
 }

 @Override
 protected void onResume() {

11.7 Using Android’s TelephonyManager to Obtain Device Information | 533

 super.onResume();
 startSignalLevelListener();
 }

 @Override
 protected void onDestroy() {
 stopListening();
 super.onDestroy();
 }

 private void setTextViewText(int id,String text) {
 ((TextView)findViewById(id)).setText(text);
 }
 private void setSignalLevel(int id,int infoid,int level) {
 int progress = (int) ((((float)level)/31.0) * 100);
 String signalLevelString =getSignalLevelString(progress);
 ((ProgressBar)findViewById(id)).setProgress(progress);
 ((TextView)findViewById(infoid)).setText(signalLevelString);
 Log.i("signalLevel ","" + progress);
 }

 private String getSignalLevelString(int level) {
 String signalLevelString = "Weak";
 if(level > EXCELLENT_LEVEL) signalLevelString = "Excellent";
 else if(level > GOOD_LEVEL) signalLevelString = "Good";
 else if(level > MODERATE_LEVEL) signalLevelString = "Moderate";
 else if(level > WEAK_LEVEL) signalLevelString = "Weak";
 return signalLevelString;
 }

 private void stopListening() {
 TelephonyManager tm =
 (TelephonyManager) getSystemService(TELEPHONY_SERVICE);
 tm.listen(phoneStateListener, PhoneStateListener.LISTEN_NONE);
 }

 private void setDataDirection(int id, int direction) {
 int resid = getDataDirectionRes(direction);
 ((ImageView)findViewById(id)).setImageResource(resid);
 }
 private int getDataDirectionRes(int direction) {
 int resid = R.drawable.data_none;

 switch(direction) {
 case TelephonyManager.DATA_ACTIVITY_IN:
 resid = R.drawable.data_in; break;
 case TelephonyManager.DATA_ACTIVITY_OUT:
 resid = R.drawable.data_out; break;
 case TelephonyManager.DATA_ACTIVITY_INOUT:
 resid = R.drawable.data_both; break;
 case TelephonyManager.DATA_ACTIVITY_NONE:
 resid = R.drawable.data_none; break;
 default: resid = R.drawable.data_none; break;
 }
 return resid;
 }

534 | Chapter 11: Telephone Applications

 private void startSignalLevelListener() {
 TelephonyManager tm =
 (TelephonyManager) getSystemService(TELEPHONY_SERVICE);
 int events = PhoneStateListener.LISTEN_SIGNAL_STRENGTH |
 PhoneStateListener.LISTEN_DATA_ACTIVITY |
 PhoneStateListener.LISTEN_CELL_LOCATION|
 PhoneStateListener.LISTEN_CALL_STATE |
 PhoneStateListener.LISTEN_CALL_FORWARDING_INDICATOR |
 PhoneStateListener.LISTEN_DATA_CONNECTION_STATE |
 PhoneStateListener.LISTEN_MESSAGE_WAITING_INDICATOR |
 PhoneStateListener.LISTEN_SERVICE_STATE;
 tm.listen(phoneStateListener, events);
 }
 ...

Much of the information-gathering in this program is done by the various listeners.
One exception is the method displayTelephonyInfo(), shown in Example 11-9, which
simply gathers a large number of information bits directly from the TelephonyManager
and adds them to a long string, which is displayed in the TextView.

Example 11-9. The phone state Activity (continued)

...

private void displayTelephonyInfo() {
 TelephonyManager tm = (TelephonyManager)getSystemService(TELEPHONY_SERVICE);
 GsmCellLocation loc = (GsmCellLocation)tm.getCellLocation();
 int cellid = loc.getCid();
 int lac = loc.getLac();
 String deviceid = tm.getDeviceId();
 String phonenumber = tm.getLine1Number();
 String softwareversion = tm.getDeviceSoftwareVersion();
 String operatorname = tm.getNetworkOperatorName();
 String simcountrycode = tm.getSimCountryIso();
 String simoperator = tm.getSimOperatorName();
 String simserialno = tm.getSimSerialNumber();
 String subscriberid = tm.getSubscriberId();
 String networktype = getNetworkTypeString(tm.getNetworkType());
 String phonetype = getPhoneTypeString(tm.getPhoneType());
 logString("CellID: " + cellid);
 logString("LAC: " + lac);
 logString("Device ID: " + deviceid);
 logString("Phone Number: " + phonenumber);
 logString("Software Version: " + softwareversion);
 logString("Operator Name: " + operatorname);
 logString("SIM Country Code: " + simcountrycode);
 logString("SIM Operator: " + simoperator);
 logString("SIM Serial No.: " + simserialno);
 logString("Sibscriber ID: " + subscriberid);
 String deviceinfo = "";
 deviceinfo += ("CellID: " + cellid + "\n");
 deviceinfo += ("LAC: " + lac + "\n");
 deviceinfo += ("Device ID: " + deviceid + "\n");
 deviceinfo += ("Phone Number: " + phonenumber + "\n");

11.7 Using Android’s TelephonyManager to Obtain Device Information | 535

 deviceinfo += ("Software Version: " + softwareversion + "\n");
 deviceinfo += ("Operator Name: " + operatorname + "\n");
 deviceinfo += ("SIM Country Code: " + simcountrycode + "\n");
 deviceinfo += ("SIM Operator: " + simoperator + "\n");
 deviceinfo += ("SIM Serial No.: " + simserialno + "\n");
 deviceinfo += ("Subscriber ID: " + subscriberid + "\n");
 deviceinfo += ("Network Type: " + networktype + "\n");
 deviceinfo += ("Phone Type: " + phonetype + "\n");
 List<NeighboringCellInfo> cellinfo =tm.getNeighboringCellInfo();
 if(null != cellinfo) {
 for(NeighboringCellInfo info: cellinfo) {
 deviceinfo += ("\tCellID: " +
 info.getCid() +", RSSI: " + info.getRssi() + "\n");
 }
 }
 setTextViewText(info_ids[INFO_DEVICE_INFO_INDEX],deviceinfo);
 }

 private String getNetworkTypeString(int type) {
 String typeString = "Unknown";
 switch(type) {
 case TelephonyManager.NETWORK_TYPE_EDGE:
 typeString = "EDGE"; break;
 case TelephonyManager.NETWORK_TYPE_GPRS:
 typeString = "GPRS"; break;
 case TelephonyManager.NETWORK_TYPE_UMTS:
 typeString = "UMTS"; break;
 default:
 typeString = "UNKNOWN"; break;
 }
 return typeString;
}

private String getPhoneTypeString(int type) {
 String typeString = "Unknown";
 switch(type) {
 case TelephonyManager.PHONE_TYPE_GSM:
 typeString = GSM"; break;
 case TelephonyManager.PHONE_TYPE_NONE:
 typeString = UNKNOWN"; break;
 default:typeString = "UNKNOWN"; break;
 }
 return typeString;
}

private int logString(String message) {
 return Log.i(APP_NAME,message);
}

private final PhoneStateListener phoneStateListener = new PhoneStateListener() {

 @Override
 public void onCallForwardingIndicatorChanged(boolean cfi) {
 Log.i(APP_NAME, "onCallForwardingIndicatorChanged " +cfi);
 super.onCallForwardingIndicatorChanged(cfi);
 }

536 | Chapter 11: Telephone Applications

 @Override
 public void onCallStateChanged(int state, String incomingNumber) {
 String callState = "UNKNOWN";
 switch(state) {
 case TelephonyManager.CALL_STATE_IDLE:
 callState = "IDLE"; break;
 case TelephonyManager.CALL_STATE_RINGING:
 callState = "Ringing (" + incomingNumber + ")"; break;
 case TelephonyManager.CALL_STATE_OFFHOOK:
 callState = "Offhook"; break;
 }
 setTextViewText(info_ids[INFO_CALL_STATE_INDEX],callState);
 Log.i(APP_NAME, "onCallStateChanged " + callState);
 super.onCallStateChanged(state, incomingNumber);
 }
 @Override
 public void onCellLocationChanged(CellLocation location) {
 String locationString = location.toString();
 setTextViewText(
 info_ids[INFO_CELL_LOCATION_INDEX],locationString);

 Log.i(APP_NAME, "onCellLocationChanged " + locationString);
 super.onCellLocationChanged(location);
 }

 @Override
 public void onDataActivity(int direction) {
 String directionString = "none";
 switch (direction) {
 case TelephonyManager.DATA_ACTIVITY_IN:
 directionString = "IN"; break;
 case TelephonyManager.DATA_ACTIVITY_OUT:
 directionString = "OUT"; break;
 case TelephonyManager.DATA_ACTIVITY_INOUT:
 directionString = "INOUT"; break;
 case TelephonyManager.DATA_ACTIVITY_NONE:
 directionString = "NONE"; break;
 default: directionString = "UNKNOWN: " + direction; break;
 }
 setDataDirection(info_ids[INFO_DATA_DIRECTION_INDEX],direction);
 Log.i(APP_NAME, "onDataActivity " + directionString);
 super.onDataActivity(direction);
 }

 @Override
 public void onDataConnectionStateChanged(int state) {
 String connectionState = "Unknown";
 switch(state) {
 case TelephonyManager.DATA_CONNECTED:
 connectionState = "Connected"; break;
 case TelephonyManager.DATA_CONNECTING:
 connectionState = "Connecting"; break;
 case TelephonyManager.DATA_DISCONNECTED:
 connectionState = "Disconnected"; break;
 case TelephonyManager.DATA_SUSPENDED:

11.7 Using Android’s TelephonyManager to Obtain Device Information | 537

 connectionState = "Suspended"; break;
 default:
 connectionState = "Unknown: " + state; break;
 }

 setTextViewText(
 info_ids[INFO_CONNECTION_STATE_INDEX], connectionState);

 Log.i(APP_NAME,
 "onDataConnectionStateChanged " + connectionState);

 super.onDataConnectionStateChanged(state);
 }

 @Override
 public void onMessageWaitingIndicatorChanged(boolean mwi) {
 Log.i(APP_NAME, "onMessageWaitingIndicatorChanged " + mwi);
 super.onMessageWaitingIndicatorChanged(mwi);
 }

 @Override
 public void onServiceStateChanged(ServiceState serviceState) {
 String serviceStateString = "UNKNOWN";
 switch(serviceState.getState()) {
 case ServiceState.STATE_IN_SERVICE:
 serviceStateString = "IN SERVICE"; break;
 case ServiceState.STATE_EMERGENCY_ONLY:
 serviceStateString = "EMERGENCY ONLY"; break;
 case ServiceState.STATE_OUT_OF_SERVICE:
 serviceStateString = "OUT OF SERVICE"; break;
 case ServiceState.STATE_POWER_OFF:
 serviceStateString = "POWER OFF"; break;
 default:
 serviceStateString = "UNKNOWN"; break;
 }

 setTextViewText(
 info_ids[INFO_SERVICE_STATE_INDEX], serviceStateString);

 Log.i(APP_NAME, "onServiceStateChanged " + serviceStateString);

 super.onServiceStateChanged(serviceState);
 }

 @Override
 public void onSignalStrengthChanged(int asu) {
 Log.i(APP_NAME, "onSignalStrengthChanged " + asu);
 setSignalLevel(info_ids[INFO_SIGNAL_LEVEL_INDEX],
 info_ids[INFO_SIGNAL_LEVEL_INFO_INDEX],asu);
 super.onSignalStrengthChanged(asu);
 }
 };
}

538 | Chapter 11: Telephone Applications

The main.xml layout, shown next, consists of a variety of nested linear layouts so that
all the information gathered in the preceding code can be displayed neatly:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:scrollbarStyle="insideOverlay"
 android:scrollbarAlwaysDrawVerticalTrack="false">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Service State"
 style="@style/labelStyleRight"/>
 <TextView android:id="@+id/serviceState_info"
 style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Cell Location"
 style="@style/labelStyleRight"/>
 <TextView android:id="@+id/cellLocation_info"
 style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Call State"
 style="@style/labelStyleRight"/>
 <TextView android:id="@+id/callState_info"
 style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Connection State"
 style="@style/labelStyleRight"/>
 <TextView android:id="@+id/connectionState_info"
 style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Signal Level"

11.7 Using Android’s TelephonyManager to Obtain Device Information | 539

 style="@style/labelStyleRight"/>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="0.5"
 android:orientation="horizontal">
 <ProgressBar android:id="@+id/signalLevel"
 style="@style/progressStyle"/>
 <TextView android:id="@+id/signalLevelInfo"
 style="@style/textSmallStyle"/>
 </LinearLayout>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Data"
 style="@style/labelStyleRight"/>
 <ImageView android:id="@+id/dataDirection"
 style="@style/imageStyle"/>
 </LinearLayout>
 <TextView android:id="@+id/device_info"
 style="@style/labelStyleLeft"/>
 </LinearLayout>
</ScrollView>

Our code uses some UI styles, which are declared in this file, named styles.xml:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="labelStyleRight">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|right</item>
 </style>

 <style name="labelStyleLeft">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="textStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>

540 | Chapter 11: Telephone Applications

 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="textSmallStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">fill_parent</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">10dip</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="progressStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:indeterminateOnly">false</item>
 <item name="android:minHeight">20dip</item>
 <item name="android:maxHeight">20dip</item>
 <item name="android:progress">15</item>
 <item name="android:max">100</item>
 <item name="android:gravity">center_vertical|left</item>
 <item name="android:progressDrawable">
 @android:drawable/progress_horizontal</item>
 <item name="android:indeterminateDrawable">
 @android:drawable/progress_indeterminate_horizontal</item>
 </style>

 <style name="imageStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:src">@drawable/icon</item>
 <item name="android:scaleType">fitStart</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>
</resources>

The application uses the ACCESS_COARSE_LOCATION permission (to get the approximate
location from the cell radio service), which needs to be added to your project’s
AndroidManifest.xml file:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

The application also uses some images for indicating the data communication state as
no data communication, incoming data communication, outgoing data communica‐
tion, or both-ways data communication. These images are, respectively, named
data_none.png, data_in.png, data_out.png, and data_both.png. Please add some icons
with the aforementioned names in the res/drawable folder of your project structure.

Figure 11-6 shows the result.

11.7 Using Android’s TelephonyManager to Obtain Device Information | 541

Figure 11-6. TelephonyManagerDemo in action

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory TelephonyManager (see “Getting and Using the Code Examples” on page
18).

542 | Chapter 11: Telephone Applications

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 12

Networked Applications

Networking—one could talk about it for hours. In the context of Android, it is pri‐
marily about web services, which are services accessed by another program (your
Android app) over the HTTP (“web”) protocol. Web services come in two flavors:
XML/SOAP and RESTful. XML/SOAP web services are more formal and thus have
significantly more overhead, both at development time and at runtime, but offer
more capabilities. RESTful services are more lighterweight, and are not tied to XML:
this chapter covers using JSON (JavaScript Object Notation) and other formats with
web services.

Finally, while it’s not traditionally thought of as networking, Android also offers a
more general “remote procedure” (technically an inter-process Communication or
IPC) mechanism layered on AIDL (the Android Interface Definition Language) that
is actually used for communication among processes on the same “machine”
(Android device); a recipe describing that is at the end of this chapter.

Choose your protocol wisely
While Java makes it easy to create network connections on any protocol, experience
shows that HTTP (and HTTPS) is the most universal. If you use a custom protocol to
talk to your own server, there are some users who will not be able to access your
server. Bear in mind too that in some countries high-speed data is either not yet avail‐
able or very expensive, whereas GPRS/EDGE is less expensive and more widely avail‐
able. Most GPRS service providers only allow HTTP/HTTPS connections, often
through a proxy. That being said, there may be things you need to do that can’t be
done via HTTP—for example, because the protocol demands a different port number
(e.g., SIP over port 5000). But do try to make HTTP your first choice when you can—
you’ll include more customers.

543

All recipes in this chapter require that you add the
android.permission.INTERNET permission to your AndroidMani‐
fest.xml file in order to be able to open network connections:

<uses-permission
 android:name="android.permission.INTERNET"/>

12.1 Consuming a RESTful Web Service Using a
URLConnection
Ian Darwin

Problem
You need to access a RESTful web service.

Solution
You can either use the “standard” Java URL and URLConnection objects, or use the
Android-provided Apache HttpClient library to code at a slightly higher level or to
use HTTP methods other than GET and POST.

Discussion
REST (Representational State Transfer) was originally intended as an architectural
description of the early web, in which GET requests were used and the URL fully speci‐
fied (represented) the state of the request. Today, RESTful web services are those that
eschew the overhead of XML, SOAP, WSDL, and (usually) XML Schema, and simply
send URLs that contain all the information needed to perform the request (or almost
all of it, as there is often a POST body sent for some types of requests). For example, to
support an Android client that allows offline editing of recipes for this book, there is
a (draft) web service that lets you view the list of recipes (you send an HTTP GET
request ending in /recipe/list), view the details of one recipe (using an HTTP GET
ending in /recipe/NNN, where NNN is the primary key of the entry, gotten from the
requested list of recipes), and later upload your revised version of the recipe using an
HTTP POST to /recipe/NNN, with the POST body containing the revised recipe in the same
XML document format as the “get recipe” operation downloads it.

The RESTful service used by these examples is implemented in server-side Java using
the Java EE standard JAX-RS API, provided by the RestEasy implementation.

Using URL and URLConnection
Android’s developers wisely preserved a lot of the Java Standard API, including some
widely used classes for networking, so as to make it easy to port existing code. The

544 | Chapter 12: Networked Applications

http://www.jboss.org/resteasy

converse() method shown in Example 12-1 uses a URL and URLConnection from java.net to
do a GET, and is extracted from an example in the networking chapter of my Java
Cookbook, published by O’Reilly. Comments in this version show what you’d need to
change to do a POST.

Example 12-1. The RESTful web service client—URLConnection version

public static String converse(String host, int port, String path)
 throws IOException {
 URL url = new URL("http", host, port, path);
 URLConnection conn = url.openConnection();
 // This does a GET; to do a POST, add conn.setDoOutput(true);
 conn.setDoInput(true);
 conn.setAllowUserInteraction(true); // Useless but harmless

 conn.connect();

 // To do a POST, you'd write to conn.getOutputStream();

 StringBuilder sb = new StringBuilder();
 BufferedReader in = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));
 String line;
 while ((line = in.readLine()) != null) {
 sb.append(line);
 }
 in.close();
 return sb.toString();
}

The invocation of this method can be as simple as the following, which gets the list of
recipes from this book, as long as you don’t try this on the main thread:

String host = "androidcookbook.com";
String path = "/seam/resource/rest/recipe/list";
String ret = converse(host, 80, path);

Note that the path value is expected to change to just "/rest/recipe/list" sometime in
2017.

Using HttpClient (deprecated)
Android used to support the Apache HttpClient library, but has now deprecated it
(and removed it, as of Android 6, meaning you have to add it as a project dependency
if you want to use it in projects compiled for Android 6 or later). HttpClient is widely
used in the Java world at large for communicating at a slightly higher level than the
URLConnection. I’ve used it in my PageUnit web test framework. HttpClient also lets you
use other HTTP methods that are common in RESTful services, such as PUT and
DELETE. Example 12-2 shows the same converse() method coded for a GET using
HttpClient.

12.1 Consuming a RESTful Web Service Using a URLConnection | 545

http://shop.oreilly.com/product/9780596007010.do
http://shop.oreilly.com/product/9780596007010.do
https://pageunit.darwinsys.com/

Example 12-2. The RESTful web service client—Apache HttpClient version

public static String converse(String host, int port, String path,
 String postBody) throws IOException {
 HttpHost target = new HttpHost(host, port);
 HttpClient client = new DefaultHttpClient();
 HttpGet get = new HttpGet(path);
 HttpEntity results = null;
 try {
 HttpResponse response=client.execute(target, get);
 results = response.getEntity();
 return EntityUtils.toString(results);
 } catch (Exception e) {
 throw new RuntimeException("Web Service Failure");
 } finally {
 if (results!=null)
 try {
 results.consumeContent();
 } catch (IOException e) {
 // Empty, checked exception but don't care
 }
 }
}

Usage will be exactly the same as for the URLConnection-based version.

The results
In the present version of the web service, as discussed in this recipe, the return value
comes back as an XML document, which you’d need to parse to display in a List. We
will probably add a JSON version as well, triggering on the standard content-type
header.

The output of either form should look something like the page displayed in
Figure 12-1, where we access the REST URL using a browser (a common exploration
technique for very simple, GET-based REST services).

See Also
Recipe 10.13.

546 | Chapter 12: Networked Applications

Figure 12-1. Android Cookbook contents via REST

12.2 Consuming a RESTful Web Service with Volley
Ian Darwin

Problem
You want an easy way to access a REST service and have heard that Volley might be
the answer.

Solution
Using Volley, create a RequestQueue, and submit a URL with two “callbacks”: a success
listener and a failure listener.

Discussion
Volley, a semi-official Google library, really does make it easy to use REST network‐
ing. We call it “semi-official” because it’s not part of the standard Android system, but
is hosted on Google’s official source repository (if you wish to examine the library’s
internals you can git clone https://android.googlesource.com/platform/frameworks/volley)
and documented on the official Android documentation site.

To use Volley in your app, first you have to add the Volley library to your project, as it
is not part of the standard Android distribution. At the time of this writing, the coor‐

12.2 Consuming a RESTful Web Service with Volley | 547

https://github.com/google/volley
https://developer.android.com/training/volley/

dinates were com.android.volley:volley:1.0.0, though the version might have gone up
by the time you read this.

With that done, you can initialize a Volley “request queue,” typically in your Activity’s
onCreate() method:

// Set up the Volley queue for REST processing
queue = Volley.newRequestQueue(this);

Assuming that you want to fetch data in response to a button press or similar event,
you will have a View handler to create and queue up the request. Along with the URL,
the request will contain a callback handler that Volley will run on the UI thread to
display the results, and a failure listener to handle errors.

In this example we use the well-known Google Suggest service, which the Chrome
browser uses to make suggestions when you start typing in the browser’s search box:

public void fetchResults(View v) {

 String host = "https://suggestqueries.google.com/";
 // Amusingly, client=firefox makes the output come back in JSON
 String baseUrl = "complete/search?output=toolbar&hl=en&client=firefox&q=";
 String listUrl = mSearchBox.getText().toString();

 // Some error handling here...

 // Create a String request to get information from the provided URL
 String requestUrl = host + baseUrl + listUrl;
 JsonArrayRequest request = new JsonArrayRequest(
 requestUrl, successListener, failListener);

 // Queue the request to do the sending and receiving
 queue.add(request);
}

We ask for the data in JSON as that’s the common format for REST services. As with
any JSON-based service, you need to know the format, so feel free to explore the
REST responses using your favorite REST client (if you don’t have one, we suggest
PostMan for Chrome or REST Client for Firefox). The results will be processed by the
SuccessListener defined here (for simplicity we display the strings in a large TextView
instead of a ListView; elaborating that is an obvious “exercise for the reader”):

/**
 * What we get back from this particular web service is a JSON array
 * containing:
 * 0) A JSON String containing the query string
 * 1) A JSON Array of strings with the results
 */
final Response.Listener<JSONArray> successListener =
 new Response.Listener<JSONArray>() {
 @Override
 public void onResponse(JSONArray response) {
 try {

548 | Chapter 12: Networked Applications

 String query = response.getString(0);
 mTextView.append("Original query: " + query + "\n");
 JSONArray rest = response.getJSONArray(1);
 mTextView.setText("We got " + rest.length() + " results:\n");
 for (int i = 0; i < rest.length(); i++) {
 mTextView.append(rest.getString(i) + "\n");
 }
 } catch (JSONException e) {
 mTextView.append("\n);");
 mTextView.append("FAIL: " + e);
 e.printStackTrace();
 }
 }
};

See Also
The official documentation on using Volley.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory VolleyDemo (see “Getting and Using the Code Examples” on page 18).

12.3 Notifying Your App with Google Cloud Messaging
“Push Messaging”
Ian Darwin

Problem
You want to get “push” notifications sent asynchronously from a server, without set‐
ting up your own complex infrastructure. This can be used to send short data (up to
about 4 KB), or to send a “ping” notification that will cause the app to download new
data from your server.

Solution
Consider using Google Cloud Messaging (GCM).

GCM has just been upgraded to “Firebase Cloud Messaging,” and
its documentation is now at https://firebase.google.com/docs/cloud-
messaging/.

12.3 Notifying Your App with Google Cloud Messaging “Push Messaging” | 549

https://developer.android.com/training/volley/index.html
https://github.com/IanDarwin/Android-Cookbook-Examples
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/

Discussion
GCM is a free service offered to Android developers to deliver small messages direct
to your application running on an Android device. This avoids your application hav‐
ing to poll a server, which would be either not very responsive, or very bad for battery
life. The basic operation of GCM is:

particular user’s device (e.g., new or changed data available). .You send a message to
the GCM server. .The GCM server sends the message to the user’s device, where it is
passed to a BroadcastReceiver in your app. .You do something with the information.

There are other solutions, such as intercepting incoming SMS messages (see Recipe
11.5). GCM has the advantage that it’s free, and the disadvantage that it takes a bit
longer to set up than other solutions. Note that prior to API 4.0.4, the user was
required to have a Google sign-in in order to receive GCM push messages.

The basic steps in building a GCM application are:

1. Sign up with Google to use GCM.
2. Set up your development environment for GCM.
3. Configure ProGuard to preserve GCM services in your APK.
4. Configure your client’s AndroidManifest.xml.
5. Initialize GCM in your startup code.
6. Create a BroadcastReceiver to handle the incoming notifications.
7. Configure your backend server to notify the GCM server when it has data to

send (or to send a notice to tell the client to download new data, a form of dis‐
tributed MVC).

The following sections elaborate on these steps.

Sign up with Google to use GCM
Assuming that you have a Google Play Developer account (if not, see “Signing up” in
Recipe 21.2), go to your Developer Console. If this is your first time here, or you need
to make a new project, click Create Project; otherwise, select the project. In either
case, jot down the Project Number, which appears in the URL and at the top of the
page. This number is used as your GCM Sender ID.

At the left of the page, select APIs. Then set “Google Cloud Messaging for Android”
to ON. You have to accept a license. The API will disappear from the list and reappear
at the top, with the status set to ON.

550 | Chapter 12: Networked Applications

https://console.cloud.google.com/

Back at the left, under “APIs & auth,” click Credentials, then “Create new Key” (not
“Create new Client ID”). Then select “Server key” (not “Android key”). Click Create,
and put in your server’s IP address (you can enter as many as you need). Click OK.

The reason you need a server key is that your app server will be the one contacting
GCM, not your client app.

Save the API key that is generated; you will need it in your server. This is further
described in the GCM documentation.

Set up your development environment for GCM
Ensure you have the Google Play Services SDK installed (use the Android SDK Man‐
ager in your IDE, or the android sdk command-line tool). Then select Google Play
Services, under Extras.

If this is your first use of Google Play Services, you’ll have to install the library project
from /extras/google/google_play_services/libproject/google-play-services_lib/ to a source
folder. If you’re using Eclipse, then import it using File → Import → Android →
Existing Android Code. If, like me, you prefer to keep everything in your workspace,
you can point the Import at the library project path above, but be sure to check the
“Copy files into Workspace” checkbox.

Then you need to make your client app project depend upon this library using
Project → Properties → Android → Library → Add (it is a common mistake to use
Project → Build Path → Add Library → Project instead; this does not work).

Configure ProGuard to preserve GCM Services in your APK
If you’re using ProGuard (see Recipe 21.5), add the following to your proguard-
project.txt file:

-keep class * extends java.util.ListResourceBundle {
protected Object[][] getContents();
}

-keep public class
com.google.android.gms.common.internal.safeparcel.SafeParcelable {
public static final *** NULL;
}

-keepnames @com.google.android.gms.common.annotation.KeepName class *
-keepclassmembernames class * {
@com.google.android.gms.common.annotation.KeepName *;
}

-keepnames class * implements android.os.Parcelable {
public static final ** CREATOR;
}

12.3 Notifying Your App with Google Cloud Messaging “Push Messaging” | 551

https://developer.android.com/google/gcm/

Configure your client’s AndroidManifest.xml
There are several pieces to go in your AndroidManifest.xml file. First, add the permis‐
sions android.permission.INTERNET and com.google.android.c2dm.permission.RECEIVE. Also,
add android.permission.WAKE_LOCK if you want to keep the device from sleeping between
receipt of a message and its processing. And add android.permission.GET_ACCOUNTS if the
device API is lower than 4.0.4.

You also have to build your own permission, in order to prevent other apps from
stealing your messages. Create and give yourself the permission
applicationPackage.permission.C2D_MESSAGE (for example, com.example.gcmplay

.permission.C2D_MESSAGE). You must use this exact name for your custom permission.
This might look like the following:

<permission android:name="com.example.gcmplay.permission.C2D_MESSAGE"
 android:protectionLevel="signature" />
<uses-permission android:name="com.example.gcmplay.permission.C2D_MESSAGE" />

Inside the application element, add:
<meta-data android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

Configure a BroadcastReceiver to receive the GCM Intent, protected by the GCM per‐
mission. This might look like the following:

<receiver android:name=".GcmplayBroadcastReceiver"
 android:permission="com.google.android.c2dm.permission.SEND" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 <category android:name="com.example.gcm" />
 </intent-filter>
</receiver>

Last but not least, you’ll probably want an IntentService to receive the messages from
the receiver and get them into the app:

<service android:name=".GcmIntentService"/>

Initialize GCM in your startup code
In your app’s startup code (e.g., in onCreate() or onResume()), check to see that
Google Play Services are available using the static method
GooglePlayservicesUtil.isGooglePlayServicesAvailable(Context ctx). For example:

boolean checkForGcm() {
 int ret = GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);
 if (ConnectionResult.SUCCESS == ret) {
 return true;
 } else {
 if (GooglePlayServicesUtil.isUserRecoverableError(ret)) {
 GooglePlayServicesUtil.getErrorDialog(ret, this,
 PLAY_SERVICES_RESOLUTION_REQUEST).show();
 } else {

552 | Chapter 12: Networked Applications

 Toast.makeText(this,
 "Google Message Not Supported on this device",
 Toast.LENGTH_LONG).show();
 }
 return false;
 }
}

At this point you have to decide whether you are going to use HTTP or XMPP to
communicate from the server to your client. XMPP (the Extensible Messaging and
Presence Protocol, a chat protocol now used by Google Talk) allows bidirectional
messages, whereas HTTP is simpler to set up but is only one-way. While the official
documentation uses XMPP, we’ll use HTTP because it is simpler; you can later refer
to the official documentation if you want to use XMPP.

Create a BroadcastReceiver to handle the incoming notification
The BroadcastReceiver gets the message via an Intent, and hands it off to another class
(the IntentService) to handle it. The only change it makes to the incoming Intent is to
change it to explicitly have the class name of the Service in order to pass it along.
Reusing the Intent this way causes the Intent extra—which contains the actual data
from the server—to be passed along.

The use of WakefulBroadcastReceiver (shown in the following code) is optional; if you
don’t care about the device possibly going to sleep before the Service has finished, you
can just use a plain BroadcastReceiver (and remove the call to completeWakefulIntent() in
the Service):

public class GcmReceiver extends WakefulBroadcastReceiver {
 /**
 * Called when a message is received from GCM for this app
 */
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d(GcmMainActivity.TAG, "GcmReceiver.onReceive()");
 // Recycle "intent" into an explicit Intent for the handler.
 ComponentName comp =
 new ComponentName(context.getPackageName(),
 GcmService.class.getName());
 intent.setComponent(comp);

 // Pass control to the handler. Using startWakefulService() will keep the
 // device awake so the user has a good chance of seeing the message;
 // the WakeLock is released at the end of the handler. Reusing
 // the incoming Intent this way lets us pass along Intent extras, etc.
startWakefulService(context, intent);

 // If we didn't throw an exception yet, life is good.
setResultCode(Activity.RESULT_OK);
 }
}

12.3 Notifying Your App with Google Cloud Messaging “Push Messaging” | 553

The last bit of client code is the IntentService, also known as the “do what you want
with the result” section. This trivial example merely displays the result in the LogCat
output, but that is enough to show that our “Hello, World” application is receiving
messages and handling them (a better example would show the result in a notifica‐
tion, and an even better example would update the GUI in the main Activity; these
are left as an exercise for the reader):

/**
 * A very simple program which pretends to be a "server" in that it sends
 * a notification to the Google Cloud Messaging Server to cause it to send
 * a message to our GCM Client.
 * @author Ian Darwin, http://androidcookbook.com/
 */
public class GcmMockServer {
 /** Confidential Server API key gotten from the Google Dev Console
 * -> Credentials -> Create new Key -> Server key */
 final static String AUTH_KEY;

 final static String POST_URL = "https://android.googleapis.com/gcm/send";

 public static void main(String[] args) throws Exception {

 final String[][] MESSAGE_HEADERS = {
 {"Content-Type", "application/json"},
 {"Authorization", "key=" + AUTH_KEY}
 };

 String regIdFromClientApp = "Paste GCM Client App Google ID here";
 String jsonMessage =
 "{\n" +
 " \"registration_ids\" : [\""+ regIdFromClientApp + "\"],\n" +
 " \"data\" : {\n" +
 " \"message\": \"See your doctor ASAP!\"\n" +
 " }\n" +
 "}\n";

 // Dump out the HTTP send for debugging
 for (String[] hed : MESSAGE_HEADERS) {
 System.out.println(hed[0] + "=>" + hed[1]);
 }
 System.out.println(jsonMessage);

 // Actually send it
 sendMessage(POST_URL, MESSAGE_HEADERS, jsonMessage);
 }

 private static void sendMessage(String postUrl, String[][] messageHeaders,
 String jsonMessage) throws IOException {
 HttpURLConnection conn =
 (HttpURLConnection) new URL(postUrl).openConnection();
 for (String[] h : messageHeaders) {
 conn.setRequestProperty(h[0], h[1]);
 }
 System.out.println("Connected to " + postUrl);

554 | Chapter 12: Networked Applications

 conn.setDoOutput(true);
 conn.setDoInput(true);
 conn.setUseCaches(false); // Ensure response always from server

 PrintWriter pw = new PrintWriter(
 new OutputStreamWriter(conn.getOutputStream()));

 pw.print(jsonMessage);
 pw.close();

 System.out.println("Connection status code " + conn.getResponseCode());
 }

 /** Static initializer, just load API key so it doesn't appear
 * in the commit history */
 static {
 InputStream is = null;
 try {

 is = GcmMockServer.class.getResourceAsStream("keys.properties");
 if (is == null) {
 throw new RuntimeException("could not open keys files");
 "maybe copy keys.properties.sample "
 "to keys.properties in resource?");
 }
 Properties p = new Properties();
 p.load(is);
 AUTH_KEY = p.getProperty("GCM_API_KEY");
 if (AUTH_KEY == null) {
 String message = "Could not find GCM_API_KEY in props";
 throw new ExceptionInInitializerError(message);
 }

 } catch (Exception e) {
 String message = "Error loading properties: " + e;
 throw new ExceptionInInitializerError(message);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch (IOException e) {
 // What a useless exception
 }
 }
 }
 }
}

Configure your backend server to notify the GCM server when it has data
Instead of writing a full server, here we just show a standalone main program con‐
taining the code that your server would use to send a message to the client. It just uses
a Java HttpUrlConnection to talk to the Google server.

12.3 Notifying Your App with Google Cloud Messaging “Push Messaging” | 555

In real life your app would need to send its registration ID string to your server,
which would use it as a token to identify the client to receive this particular message.
The registration ID is a unique identifier for a version of your app installed at a par‐
ticular instant on a particular device; uninstall and reinstall the same app and you get
a different client ID.

Your server also needs the API key we generated near the outset of this recipe in
order to authenticate itself. Keep this key confidential, as it will allow anybody who
finds it to send messages to your clients.

Here’s the code from my GcmMockServer application:
/**
* A very simple Java SE program which pretends to be a "server" in that it sends
* a notification to the Google Cloud Messaging Server to cause it to send
* a message to our GCM Client.
* @author Ian Darwin, http://androidcookbook.com/
*/
public class GcmMockServer {

 /** Confidential Server API key gotten from the Google Dev Console ->
 * Credentials -> Create new Key -> Server key */
 final static String AUTH_KEY; // Set in a static initializer, not shown

 final static String POST_URL = "https://android.googleapis.com/gcm/send";

 public static void main(String[] args) throws Exception {

 final String[][] MESSAGE_HEADERS = {
 {"Content-Type", "application/json"},
 {"Authorization", "key=" + AUTH_KEY}
 };

 String regIdFromClientApp = null; // Has to be set somehow!
 String jsonMessage =
 "{\n" +
 " \"registration_ids\" : [\""+ regIdFromClientApp + "\"],\n" +
 " \"data\" : {\n" +
 " \"message\": \"See your doctor ASAP!\"\n" + // THE ACTUAL MESSAGE
 " }\n" +
 "}\n";

 // Dump out the HTTP send for debugging
 for (String[] hed : MESSAGE_HEADERS) {
 System.out.println(hed[0] + "=>" + hed[1]);
 }
 System.out.println(jsonMessage);

 // Actually send it
 sendMessage(POST_URL, MESSAGE_HEADERS, jsonMessage);
 }

 private static void sendMessage(String postUrl, String[][] messageHeaders,
 String jsonMessage) throws IOException {

556 | Chapter 12: Networked Applications

 HttpURLConnection conn =
 (HttpURLConnection) new URL(postUrl).openConnection();
 for (String[] h : messageHeaders) {
 conn.setRequestProperty(h[0], h[1]);
 }
 System.out.println("Connected to " + postUrl);
 conn.setDoOutput(true);
 conn.setDoInput(true);
 conn.setUseCaches(false); // Ensure response always from server

 PrintWriter pw = new PrintWriter(
 new OutputStreamWriter(conn.getOutputStream()));

 pw.print(jsonMessage);
 pw.close();

 System.out.println("Connection status code " + conn.getResponseCode());
 }
}

So, does it all work? If everything has been set up just so, and you run the client in a
device (or maybe it will work in an emulator), and then you copy the RegistrationId
string into the server (logcat is your friend here!), and then you run the GcmMock‐
Server as a Java application, and the winds are blowing from the south, then you will
see the following, or something very like it, in the logcat output:

D/com.darwinsys.gcmdemo(7496): GcmReceiver.onReceive()
D/com.darwinsys.gcmdemo(7496): Got a message of type gcm
D/com.darwinsys.gcmdemo(7496): MESSAGE = 'See your doctor ASAP!'
 (Bundle[{from=117558675814, message=See your doctor ASAP!,
 android.support.content.wakelockid=2,
 collapse_key=do_not_collapse}])

See Also
The official GCM documentation.

Source Download URL
The source code for the client part of project is in the Android Cookbook repository,
in the subdirectory GcmClient (see “Getting and Using the Code Examples” on page
18). The mock server is in the subdirectory GcmMockServer.

12.3 Notifying Your App with Google Cloud Messaging “Push Messaging” | 557

https://developer.android.com/google/gcm/index.html
https://github.com/IanDarwin/Android-Cookbook-Examples

12.4 Extracting Information from Unstructured Text Using
Regular Expressions
Ian Darwin

Problem
You want to get information from another organization, but the organization doesn’t
make it available as information, only as a viewable web page.

Solution
Use java.net to download the HTML page, and use regular expressions to extract the
information from the page.

Discussion
If you aren’t already a big fan of regular expressions, well, you should be. Maybe this
recipe will help interest you in learning regex technology.

Suppose that I, as a published author, want to track how my book is selling in com‐
parison to others. I can obtain this information for free just by clicking the page for
my book on any of the major bookseller sites, reading the sales rank number off the
screen, and typing the number into a file—but that’s too tedious. As I wrote in one of
my earlier books, “computers get paid to extract relevant information from files; peo‐
ple should not have to do such mundane tasks.”

The program shown in Example 12-3 uses the Regular Expressions API and, in par‐
ticular, newline matching to extract a value from an HTML page on the Amazon.com
website. It also reads from a URL object (see Recipe 12.1). The pattern to look for is
something like this (bear in mind that the HTML may change at any time, so I want
to keep the pattern fairly general):

(bookstore name here) Sales Rank:
26,252

As the pattern may extend over more than one line, I read the entire web page from
the URL into a single long string using a private convenience routine, readerToString(),
instead of the more traditional line-at-a-time paradigm. The value is extracted from
the regular expression, converted to an integer value, and returned. The longer ver‐
sion of this code in Java Cookbook would also plot a graph using an external program.
The complete program is shown in Example 12-3.

558 | Chapter 12: Networked Applications

Example 12-3. Part of class BookRank

public static int getBookRank(String isbn) throws IOException {
 // The RE pattern - digits and commas allowed.
 final String pattern = "Rank: #([\\d,]+)";
 final Pattern r = Pattern.compile(pattern);

 // The url -- must have the "isbn=" at the very end, or otherwise
 // be amenable to being appended to.
 final String url = "http://www.amazon.com/exec/obidos/ASIN/" + isbn;

 // Open the URL and get a Reader from it.
 final BufferedReader is = new BufferedReader(new InputStreamReader(
 new URL(url).openStream()));
 // Read the URL looking for the rank information, as
 // a single long string, so can match RE across multiple lines.
 final String input = readerToString(is);

 // If found, append to sales data file.
 Matcher m = r.matcher(input);
 if (m.find()) {
 // Group 1 is digits (and maybe ','s) that matched; remove comma
 return Integer.parseInt(m.group(1).replace(",",""));
 } else {
 throw new RuntimeException(
 "Pattern not matched in `" + url + "'!");
 }
}

It should be noted that in general you cannot parse arbitrary HTML using regular
expressions; the reasons have to do with complexity and have been well covered
online, both seriously and humorously.

See Also
As mentioned, using the regex API is vital to being able to deal with semistructured
data that you will meet in real life. Chapter 4 of Java Cookbook, written by me and
published by O’Reilly, is all about regular expressions, as is Jeffrey Friedl’s compre‐
hensive Mastering Regular Expressions, also published by O’Reilly.

Source Download URL
You can download the source code for this example from GitHub.

12.5 Parsing RSS/Atom Feeds Using ROME
Wagied Davids

12.5 Parsing RSS/Atom Feeds Using ROME | 559

http://stackoverflow.com/questions/6751105/why-its-not-possible-to-use-regex-to-parse-html-xml-a-formal-explanation-in-la
http://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags/1732454#1732454
https://github.com/IanDarwin/javasrc/blob/master/src/main/java/regex/BookRank.java

Problem
You want to parse RSS/Atom feeds, which are commonly used to provide an updated
list of news articles on websites and often identified by the “news” icon:

Solution
This recipe shows an RSS/Atom feed parser based on ROME, a Java-based RSS syndi‐
cation feed parser. It has some useful features such as HTTP conditional GETs, ETags,
and Gzip compression. It also covers a wide range of formats, including RSS 0.90, RSS
2.0, and Atom 0.3 and 1.0. The web site for the Rome project is http://rome
tools.github.io/rome/.

Discussion
The basic steps for parsing an RSS/Atom feed with a ROME-based parser are as fol‐
lows:

1. Modify your AndroidManifest.xml file to have INTERNET permission to allow for
Internet browsing.

2. Create an Android project. Set the layout file to be the contents of Example 12-4.
3. Add the dependency rome:rome:1.0 in your build file. Or, manually download the

rome-1.0.jar and jdom-1.0.jar files and add them to your project.
4. Create the Activity shown in Example 12-5. In particular, the getRSS() method

demonstrates the use of the ROME API to parse the XML RSS feed and display
the results.

When run with the given feed URL, the output should look like Figure 12-2, except
with newer news items.

560 | Chapter 12: Networked Applications

http://rometools.github.io/rome/
http://rometools.github.io/rome/
http://rometools.github.io/rome/
http://rss.cbc.ca/lineup/topstories.xml

Figure 12-2. RSS feed in ListView

The layout is shown in Example 12-4, and the Java code in Example 12-5.

Example 12-4. main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TableLayout
 android:id="@+id/table"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="0">
 <TableRow
 android:id="@+id/top_add_entry_row"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent">

 <EditText
 android:id="@+id/rssURL"
 android:hint="Enter RSS URL"
 android:singleLine="true"
 android:maxLines="1"
 android:maxWidth="220dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </EditText>
 <Button
 android:id="@+id/goButton"
 android:text="Go"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>

12.5 Parsing RSS/Atom Feeds Using ROME | 561

 </TableRow>
 </TableLayout>

 <!-- Mid Panel -->
 <ListView
 android:id="@+id/ListView"
 android:layout_weight="1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </ListView>

 <Button
 android:id="@+id/clearButton"
 android:text="Clear"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>
</LinearLayout>

Example 12-5. AndroidRss.java

import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.Toast;
import android.widget.AdapterView.OnItemClickListener;

import com.sun.syndication.feed.synd.SyndEntry;
import com.sun.syndication.feed.synd.SyndFeed;
import com.sun.syndication.io.FeedException;
import com.sun.syndication.io.SyndFeedInput;
import com.sun.syndication.io.XmlReader;

public class AndroidRss extends Activity {
 private static final String tag="AndroidRss ";
 private int selectedItemIndex = 0;
 private final ArrayList list = new ArrayList();
 private EditText text;
 private ListView listView;
 private Button goButton;
 private Button clearButton;

562 | Chapter 12: Networked Applications

 private ArrayAdapter adapter = null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 text = (EditText) this.findViewById(R.id.rssURL);
 goButton = (Button) this.findViewById(R.id.goButton);
 goButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 String rss = text.getText().toString().trim();
 getRSS(rss);
 }
 });

 clearButton = (Button) this.findViewById(R.id.clearButton);
 clearButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 adapter.clear();
 adapter.notifyDataSetChanged();
 }
 });

 listView = (ListView) this.findViewById(R.id.ListView);
 listView.setOnItemClickListener(new OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView parent, View view,
 int position, long duration) {
 selectedItemIndex = position;
 Toast.makeText(getApplicationContext(),
 "Selected " + adapter.getItem(position) +
 " @ " + position, Toast.LENGTH_SHORT).show();
 }
 });

 adapter = new ArrayAdapter(this, R.layout.dataview, R.id.ListItemView);
 listView.setAdapter(adapter);

 }

 private void getRSS(String rss) {

 URL feedUrl;
 try {
 Log.d("DEBUG", "Entered:" + rss);
 feedUrl = new URL(rss);

 SyndFeedInput input = new SyndFeedInput();
 SyndFeed feed = input.build(new XmlReader(feedUrl));
 List entries = feed.getEntries();
 Toast.makeText(this,
 "#Feeds retrieved: " + entries.size(),
 Toast.LENGTH_SHORT).show();

12.5 Parsing RSS/Atom Feeds Using ROME | 563

 Iterator iterator = entries.listIterator();
 while (iterator.hasNext()) {
 SyndEntry ent = (SyndEntry) iterator.next();
 String title = ent.getTitle();
 adapter.add(title);
 }
 adapter.notifyDataSetChanged();

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void clearTextFields() {
 Log.d(tag, "clearTextFields()");
 this.text.setText("");
 }
}

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory AndroidRss (see “Getting and Using the Code Examples” on page 18).

12.6 Using MD5 to Digest Clear Text
Colin Wilcox

Problem
Sometimes you need to convert clear text to a nonreadable form before saving or
transmitting it.

Solution
Android provides a standard Java MD5 class to allow plain text to be replaced with an
MD5 digest of the original text. This is a one-way digest that is not believed to be
easily reversible (if you need that, use Java Cryptography (O’Reilly)).

Discussion
Example 12-6 is a simple function that takes a clear-text string and digests it using
MD5, returning the encrypted string as a return value.

564 | Chapter 12: Networked Applications

https://github.com/IanDarwin/Android-Cookbook-Examples

Example 12-6. MD5 hash

public static String md5(String s) {
 try {
 // Create MD5 hasher
 MessageDigest digest = java.security.MessageDigest.getInstance("MD5");
 digest.update(s.getBytes());
 byte messageDigest[] = digest.digest();
 // Create hex string
 StringBuffer hexString = new StringBuffer();
 for (int i = 0; i < messageDigest.length; i++) {
 hexString.append(Integer.toHexString(0xFF & messageDigest[i]));
 }
 return hexString.toString();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 return ""; // Or give the user an Exception...
 }

12.7 Converting Text into Hyperlinks
Rachee Singh

Problem
You need to turn web page URLs into hyperlinks in a TextView of your Android app.

Solution
Use the autoLink property for a TextView.

Discussion
Say you are setting the URL www.google.com as part of the text in a TextView, but you
want this text to be a hyperlink so that the user can open the web page in a browser
by clicking it. To achieve this, add the autoLink property to the TextView:

android:autoLink = "all"

Now, in the Activity’s code, you can set any text to the TextView and all the URLs will
be converted to hyperlinks! See Figure 12-3.

linkText = (TextView)findViewById(R.id.link);
linkText.setText("The link is: www.google.com");

12.7 Converting Text into Hyperlinks | 565

Figure 12-3. TextView with links auto-converted

12.8 Accessing a Web Page Using a WebView
Rachee Singh

Problem
You want to download and display a web page within your application.

Solution
Embed the standard WebView component in the layout and invoke its loadUrl() method
to load and display the web page.

Discussion
WebView is a View component that can be placed in an Activity. Its primary use is, as its
name implies, to handle web pages for you. Since WebViews usually need to access
remote web page(s), don’t forget to add the INTERNET permission into the manifest file:

<uses-permission android:name="android.permission.INTERNET" />

Then you can add the WebView to your XML layout:
<WebView
 android:id="@+id/webview"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"/>

566 | Chapter 12: Networked Applications

In the Java code for the Activity that displays the web page, we obtain a handle onto
the WebView using the findViewById() method. On the WebView we use the loadUrl()
method to provide it the URL of the website we wish to open in the application:

WebView webview = (WebView)findViewById(R.id.webview);
webview.loadUrl("http://google.com");

Source Download URL
You can download the source code for this example from Google Docs.

12.9 Customizing a WebView
Rachee Singh

Problem
You need to customize the WebView opened by your application.

Solution
Use the WebSettings class to access built-in functions for customizing the browser.

Discussion
As discussed in Recipe 12.8, to open a web page in an Android application, we use a
WebView component. Then, to load a URL in the WebView, we use, for example:

webview.loadUrl("http://www.google.com/");

We can do many things to customize the browser to suit users’ needs. To customize
the view, we need an instance of the WebSettings class, which we can get from the
WebView component:

WebSettings webSettings = webView.getSettings();

Here are some of the things we can do using WebSettings:

• Tell the WebView to block network images:
webSettings.setBlockNetworkImage(true);

• Set the default font size in the browser:
webSettings.setDefaultFontSize(25);

• Control whether the WebView supports zoom:
webSettings.setSupportZoom(true);

• Tell the WebView to enable JavaScript execution:
webSettings.setJavaScriptEnabled(true);

12.9 Customizing a WebView | 567

https://docs.google.com/leaf?id=0B_rESQKgad5LN2JhMDFjZTUtY2IwZS00NzkyLWFlNjItMzhiZWRlYTQxMWNm&hl=en_US

• Control whether the WebView will save passwords:
webSettings.setSavePassword(false);

• Control whether the WebView will save form data:
webSettings.setSaveFormData(false);

Many more methods of this kind are available. For more information, see the devel‐
oper documentation on the WebView class.

12.10 Writing an Inter-Process Communication Service
Rupesh Chavan

Problem
You want to know how to write an IPC service and access it from another application.

Solution
Android provides an AIDL-based programming interface that both the client and the
service agree upon in order to communicate with each other using inter-process
communication (IPC).

Discussion
IPC is a key feature of the Android programming model. It provides the following
two mechanisms:

• Intent-based communication
• Remote service–based communication

In this recipe we will concentrate on the remote service–based communication
approach. This Android feature allows you to make method calls that look “local” but
are executed in another process. This is somewhat similar to standard Java’s Remote
Method Invocation (RMI), and involves use of the Android Interface Definition Lan‐
guage (AIDL). The service has to declare a service interface in an AIDL files and then
the AIDL tool will automatically create a Java interface corresponding to the AIDL
file. The AIDL tool also generates a stub class that provides an abstract implementa‐
tion of the service interface methods. You have to provide a Service class, which will
extend this stub class to provide the real implementation of the methods exposed
through the interface.

The service clients will invoke the onBind() method of the Service in order to connect
to the service. The onBind() method returns an object of the stub class to the client.
Example 12-7 shows the code-related snippets.

568 | Chapter 12: Networked Applications

https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html

Example 12-7. IMyRemoteService.aidl

package com.demoapp.service;

interface IMyRemoteService {
 String getMessage();
}

Note that the AIDL file in Example 12-7 looks like Java code but must be stored with
a filename extension of .aidl in order to be processed correctly. Either Eclipse or
Android Studio will automatically generate (in the generated sources directory, since
you don’t need to modify it) the remote interface corresponding to your AIDL file;
the generated interface will also provide an abstract member class named Stub, which
must be implemented by the RemoteService class. The stub class implementation within
the service class is shown in Example 12-8.

Example 12-8. Remote service stub

public class MyService extends Service {
 private IMyRemoteService.Stub myRemoteServiceStub = new IMyRemoteService.Stub() {
 public int getMessage() throws RemoteException {
 return "Hello World!";
 }
 };
 // The onBind() method in the service class:
 public IBinder onBind(Intent arg0) {
 Log.d(getClass().getSimpleName(), "onBind()");
 return myRemoteServiceStub;
 }

Now, let’s quickly look at the meat of the service class before we move on to how the
client connects to this class. Our MyService class consists of one method, which just
returns a string. Example 12-9 shows the overridden onCreate(), onStart(), and
onDestroy() methods. The onCreate() method of the service will be called only once in a
service life cycle. The onStart() method will be called every time the service is started.
Note that the resources are all released in the onDestroy() method (see Example 12-9).
Since these just call super() and log their presence, they could be omitted from the
service class.

Example 12-9. Service class onCreate(), onStart(), and onDestroy() methods

 public void onCreate() {
 super.onCreate();
 Log.d(getClass().getSimpleName(),"onCreate()");
 }
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);
 Log.d(getClass().getSimpleName(), "onStart()");
 }

12.10 Writing an Inter-Process Communication Service | 569

 public void onDestroy() {
 super.onDestroy();
 Log.d(getClass().getSimpleName(),"onDestroy()");
 }

Let’s discuss the client class. For simplicity, I placed the start, stop, bind, release, and
invoke methods all in the same client, and will discuss each method in turn. In reality,
though, one client may start and another can bind to the already started service.

There are five buttons, one each for the start, stop, bind, release, and invoke actions,
each with an obvious listener method to invoke one of the five corresponding meth‐
ods.

A client needs to bind to a service before it can invoke any method on the service, so
we begin with Example 12-10, which shows the start method. In our simplified exam‐
ple, the code from Example 12-10 (which starts the service) to the end of this Recipe
is all in the main Activity class; in a “real” application, the service would be started in
a separate application.

Example 12-10. The startService() method

 private void startService() {
 if (started) {
 Toast.makeText(RemoteServiceClient.this, "Service already started",
 Toast.LENGTH_SHORT).show();
 } else {
 Intent i = new Intent(this, MyRemoteService.class);
 startService(i);
 started = true;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "startService()");
 }
 }

An explicit Intent is created and the service is started with the Context.startService(i)
method. The rest of the code updates some status on the UI. There is nothing specific
to a remote service invocation here; it is in the bindService() method that we see the
difference from a local service (see Example 12-11).

Example 12-11. The bindService() method

 private void bindService() {
 if(conn == null) {
 conn = new RemoteServiceConnection();
 Intent i = new Intent(this, MyRemoteService.class);
 bindService(i, conn, Context.BIND_AUTO_CREATE);
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "bindService()");
 } else {
 Toast.makeText(RemoteServiceClient.this,

570 | Chapter 12: Networked Applications

 "Cannot bind - service already bound", Toast.LENGTH_SHORT).show();
 }
 }

Here we get a connection to the remote service through the RemoteServiceConnection
class, which implements the ServiceConnection interface. The connection object is
required by the bindService() method—an intent, a connection object, and the type of
binding are to be specified. So, how do we create a connection to the RemoteService?
Example 12-12 shows the implementation.

Example 12-12. The ServiceConnection implementation

 class RemoteServiceConnection implements ServiceConnection {
 public void onServiceConnected(ComponentName className,
 IBinder boundService) {
 remoteService = IMyRemoteService.Stub.asInterface((IBinder)boundService);
 Log.d(getClass().getSimpleName(), "onServiceConnected()");
 }

 public void onServiceDisconnected(ComponentName className) {
 remoteService = null;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "onServiceDisconnected");
 }
 };

The Context.BIND_AUTO_CREATE ensures that a service is created if one did not exist,
although the onStart() method will be called only on explicit start of the service.

Once the client is bound to the service and the service has already started, we can
invoke any of the methods that are exposed by the service. In our interface and its
implementation (see Example 12-7 and Example 12-8), there is only one method,
getMessage(). In this example, the invocation is done by clicking the Invoke button.
That will return the text message and update it below the button. Example 12-13
shows the invoke method.

Example 12-13. The invokeService() method

 private void invokeService() {
 if(conn == null) {
 Toast.makeText(RemoteServiceClient.this,
 "Cannot invoke - service not bound", Toast.LENGTH_SHORT).show();
 } else {
 try {
 String message = remoteService.getMessage();
 TextView t = (TextView)findViewById(R.id.R.id.output);
 t.setText("Message: "+message);
 Log.d(getClass().getSimpleName(), "invokeService()");
 } catch (RemoteException re) {
 Log.e(getClass().getSimpleName(), "RemoteException");

12.10 Writing an Inter-Process Communication Service | 571

 }
 }
 }

Once we use the service methods, we can release the service. This is done as shown in
Example 12-14 (by clicking the Release button).

Example 12-14. The releaseService() method

 private void releaseService() {
 if(conn != null) {
 unbindService(conn);
 conn = null;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "releaseService()");
 } else {
 Toast.makeText(RemoteServiceClient.this,
 "Cannot unbind - service not bound",
 Toast.LENGTH_SHORT).show();
 }
 }

Finally, we can stop the service by clicking the Stop button. After this point, no client
can invoke this service. Example 12-15 shows the relevant code.

Example 12-15. The stopService() method

 private void stopService() {
 if (!started) {
 Toast.makeText(RemoteServiceClient.this, "Service not yet started",
 Toast.LENGTH_SHORT).show();
 } else {
 Intent i = new Intent(this, MyRemoteService.class);
 stopService(i);
 started = false;
 updateServiceStatus();
 Log.d(TAG, "stopService()");
 }
 }

If the client and the service are using different package structures,
then the client has to include the AIDL file along with the package
structure, just like the service does.

These are the basics of working with a remote service on the Android platform.

572 | Chapter 12: Networked Applications

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory IPCDemo (see “Getting and Using the Code Examples” on page 18).

12.10 Writing an Inter-Process Communication Service | 573

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 13

Gaming and Animation

Gaming is an important activity that people used to perform on “computers” and now
perform on mobile devices. Android is a perfectly capable contender in the graphics
arena, providing support for OpenGL ES.

If you want to use some advanced gaming features without having to write a lot of
code, you’re in luck, as there are many game-development frameworks in existence
today. Many of them are primarily or exclusively for desktops. The ones shown in
Table 13-1 are known to be usable on Android; if you find others, please add a
comment on this book’s website, and we will incorporate it into the online version
and eventually into a future revision of the published book.

Table 13-1. Android game frameworks
Name Open source? Cost URL
AndEngine Y Free http://www.andengine.org/

Box2D Y Free http://www.box2d.org

Corona SDK N Free and Enterprise editions available https://coronalabs.com/

Flixel-gdx Y Free http://flixel-gdx.com/

libgdx Y Free https://github.com/libgdx/libgdx/

PlayN Y Free https://github.com/playn/playn

rokon Y Free https://code.google.com/archive/p/rokon

ShiVa3D N Free, basic, and advanced licenses available http://www.shiva-engine.com/

Unity N Free and paid plans available https://unity3d.com/unity/multiplatform/

A list of Android-compatible game frameworks is also maintained on this book’s
website.

575

https://androidcookbook.com/r/1816
http://www.andengine.org/
http://www.box2d.org
https://coronalabs.com/
http://flixel-gdx.com/
https://github.com/libgdx/libgdx/
https://github.com/playn/playn
https://code.google.com/archive/p/rokon
http://www.shiva-engine.com/
https://unity3d.com/unity/multiplatform/
https://androidbookcook.com/gameframeworks.html
https://androidbookcook.com/gameframeworks.html

You will need to compare the functions that each offers before choosing one for your
project.

13.1 Building an Android Game Using flixel-gdx
Wagied Davids

Problem
You want to build an Android game using a high-level framework.

Solution
Use the flixel-gdx framework.

Discussion
The original Flixel framework was an Adobe ActionScript-based game framework
developed by Adam (“Atomic”) Saltsman. This was ported by “Wing Eraser” to make
flixel-gdx, a Java-based port that closely resembles the AS3-based Flixel in terms of
programming paradigm. Flixel-gdk on its own was not released in distribution form,
but required you to merge its source code and resources into your project. It was then
modified to use the libgdx graphics framework, and made more suitable for distribu‐
tion; in the process, it gained desktop support, so it is possible to run your games on
Android, or on the desktop using either Java SE or HTML5. Documentation on flixel-
gdk is available at http://flixel-gdx.com/documentation/, and the source code is avail‐
able on GitHub.

Due to the fact that Android doesn’t use the standard Java classpath mechanism for
“resources” such as drawables, so flixel-gdx must provide drawable and other resour‐
ces, it is not a single-JAR solution, and there are no public Maven or Gradle artifacts.
Instead, flixel-gdx provides a setup JAR file that creates three Eclipse projects (sorry
Gradle fans): one for common code, one for Android code, and one for Java Desktop
code; see Figure 13-1.

Note that after you select “Open the generation screen,” on the next screen you will
see a Launch button. When you click this button, the setup program will download
some files and create the projects. When it is all done, the text area in the upper left
will end with the words “All done”:

Finding required files... done
Decompressing projects... done
Decompressing libraries... done
Configuring libraries... done
Post-processing files... done
Copying projects... done

576 | Chapter 13: Gaming and Animation

http://flixel-gdx.com/html
http://flixel.org/
http://flixel-gdx.com/documentation/
https://github.com/flixel-gdx/flixel-gdx

Cleaning... done
All done!

Figure 13-1. The flixel-gdx project installer

You then need to import the projects into Eclipse, or just “open” them in Eclipse (by
selecting File → New Java Project) if you have created them at the top level of your
workspace. You could presumably import them into Android Studio, but I haven’t
tested this. Note that the two UI projects have a “-” in their name, which isn’t valid in
Eclipse, so I renamed them, e.g., from SimpleJumper-android to SimpleJumper.android.

At this point you can run the Android and desktop applications. The desktop version
is much quicker to start up (no need to deploy to a device or AVD) and so is useful
for quick tests, even if you don’t plan to release a desktop edition of your game.

13.1 Building an Android Game Using flixel-gdx | 577

The desktop version (either of the default app or of our app) works;
the Android version works on ARM-based (“armeabi”) devices
(most real devices) but crashes with a missing GDX runtime library
on the Intel-based emulators because the GDX library is only pre-
compiled for ARM. If you need Intel support, you could download
the code and build it.

The generated files, like most Flixel games, provide a few little classes for starting up
the program, then a PlayState class (which must have an extends FlxState clause). This
class has several main methods:

@Override public void create();
@Override public void update();
@Override public void destroy();

The purpose of create() and destroy() are obvious. The update() method is called peri‐
odically, and each call represents either a clock tick or a user interaction such as
pressing an arrow key to move the player.

As well, there can be any number of ancillary classes. Each object that moves around
the screen, such as a player, an enemy, and so on, will have its own class, which will
extend FlxSprite (a sprite is a small graphic that moves around in a graphics applica‐
tion, such as a player in a video game). The player classes can also have an update()
method.

For a simple game with only one sprite-type object, the main body of the update()
method can be in either the PlayState class or the Sprite class. For a larger game, it
makes sense to have the overall game logic in the PlayState class’s update() method, and
some sprite-specific code in the Sprite class.

In this recipe, we will create a simple “jumper” game (think Mario™). We’ll do this by
replacing code in the core and Android projects created by the setup JAR. We’ll need
a few entities, a Droid (FlxSprite subclass) to move around, a pusher, and a few eleva‐
tors. Each entity is declared as a separate class containing its own asset resources and
listeners for digital touchpad events. Example 13-1 shows the code for the Flixel-
based game Activity, from the SimpleJumper.android project.

Example 13-1. The Flixel-based game Activity

public class MainActivity extends FlxAndroidApplication {

 public MainActivity() {
 super(new FlixelGame());
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

578 | Chapter 13: Gaming and Animation

https://en.wikipedia.org/wiki/Mario

 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // ORIENTATION
 // setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
 }
}

Example 13-2 shows the code for the Flixel-based PlayState class, where we add a label
in the upper right and start an animation.

Example 13-2. The Flixel-based PlayState class

public class PlayState extends FlxState {
 @Override
 public void create() {
 add(new FlxText(0, 0, 200, "SimpleJumper 0.0"));
 add(new Droid(50, 50));
 }
}

Example 13-3 shows the code for the Flixel-based Sprite class.

Example 13-3. Droid.java, a FlxSprite implementation

public class Droid extends FlxSprite {
 private final FlxSound sound = new FlxSound();

 public Droid(int X, int Y) {
 super(X, Y);
 // loadGraphic("player", true, true);
 maxVelocity.x = 100; // Walking speed
 acceleration.y = 10; // Gravity
 drag.x = maxVelocity.x * 4; // Deceleration (sliding to a stop)

 // Tweak the bounding box for better feel
 width = 8;
 height = 10;

 offset.x = 3;
 offset.y = 3;

 addAnimation("idle", new int[] { 0 }, 0, false);
 addAnimation("walk", new int[] { 1, 2, 3, 0 }, 12);
 addAnimation("walk_back", new int[] { 3, 2, 1, 0 }, 10, true);
 addAnimation("flail", new int[] { 1, 2, 3, 0 }, 18, true);
 addAnimation("jump", new int[] { 4 }, 0, false);
 }

 @Override
 public void update() {

13.1 Building an Android Game Using flixel-gdx | 579

 // Smooth slidey walking controls
 acceleration.x = 0;
 if (FlxG.keys.LEFT)
 acceleration.x -= drag.x;
 if (FlxG.keys.RIGHT)
 acceleration.x += drag.x;

 if (isTouching(FLOOR)) {
 // Jump controls
 if (FlxG.keys.UP) {
 // sound.loadEmbedded(R.raw.jump);
 // sound.play();

 velocity.y = -acceleration.y * 0.51f;
 play("jump");

 } // Animations
 else if (velocity.x > 0) {
 play("walk");
 } else if (velocity.x < 0) {
 play("walk_back");
 } else
 play("idle");
 } else if (velocity.y < 0)
 play("jump");
 else
 play("flail");

 // Default object physics update
 //super.update();
 }
}

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory SimpleJumper (see “Getting and Using the Code Examples” on page 18).

13.2 Building an Android Game Using AndEngine
Wagied Davids

Problem
You want to design an Android game using the AndEngine game framework.

Solution
AndEngine is a game engine framework designed for producing games on Android.
Originally developed by Nicholas Gramlich, it has some advanced features for pro‐
ducing awesome games.

580 | Chapter 13: Gaming and Animation

https://github.com/IanDarwin/Android-Cookbook-Examples
http://www.andengine.org/

Discussion
For this recipe, I have designed a simple pool game with physics capabilities, such
that the effects of the accelerometer are taken into account, as are touch events. As a
result, touching a specific billiard ball and pulling down on it will cause it to shoot
into other balls, with the collision detection taken care of. Example 13-4 shows the
code for the AndEngine-based game Activity.

Example 13-4. The AndEngine-based game Activity

import org.anddev.andengine.engine.Engine;
import org.anddev.andengine.engine.camera.Camera;
import org.anddev.andengine.engine.options.EngineOptions;
import org.anddev.andengine.engine.options.EngineOptions.ScreenOrientation;
import org.anddev.andengine.engine.options.resolutionpolicy.RatioResolutionPolicy;
import org.anddev.andengine.entity.Entity;
import org.anddev.andengine.entity.primitive.Rectangle;
import org.anddev.andengine.entity.scene.Scene;
import org.anddev.andengine.entity.scene.Scene.IOnAreaTouchListener;
import org.anddev.andengine.entity.scene.Scene.IOnSceneTouchListener;
import org.anddev.andengine.entity.scene.Scene.ITouchArea;
import org.anddev.andengine.entity.shape.Shape;
import org.anddev.andengine.entity.sprite.AnimatedSprite;
import org.anddev.andengine.entity.sprite.Sprite;
import org.anddev.andengine.entity.util.FPSLogger;
import org.anddev.andengine.extension.physics.box2d.PhysicsConnector;
import org.anddev.andengine.extension.physics.box2d.PhysicsFactory;
import org.anddev.andengine.extension.physics.box2d.PhysicsWorld;
import org.anddev.andengine.extension.physics.box2d.util.Vector2Pool;
import org.anddev.andengine.input.touch.TouchEvent;
import org.anddev.andengine.opengl.texture.Texture;
import org.anddev.andengine.opengl.texture.TextureOptions;
import org.anddev.andengine.opengl.texture.region.TextureRegion;
import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;
import org.anddev.andengine.opengl.texture.region.TiledTextureRegion;
import org.anddev.andengine.sensor.accelerometer.AccelerometerData;
import org.anddev.andengine.sensor.accelerometer.IAccelerometerListener;
import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.hardware.SensorManager;
import android.util.DisplayMetrics;

import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.physics.box2d.Body;
import com.badlogic.gdx.physics.box2d.BodyDef.BodyType;
import com.badlogic.gdx.physics.box2d.FixtureDef;

public class SimplePool extends BaseGameActivity
 implements IAccelerometerListener, IOnSceneTouchListener, IOnAreaTouchListener {

 private Camera mCamera;
 private Texture mTexture;
 private Texture mBallYellowTexture;

13.2 Building an Android Game Using AndEngine | 581

 private Texture mBallRedTexture;
 private Texture mBallBlackTexture;
 private Texture mBallBlueTexture;
 private Texture mBallGreenTexture;
 private Texture mBallOrangeTexture;
 private Texture mBallPinkTexture;
 private Texture mBallPurpleTexture;
 private Texture mBallWhiteTexture;

 private TiledTextureRegion mBallYellowTextureRegion;
 private TiledTextureRegion mBallRedTextureRegion;
 private TiledTextureRegion mBallBlackTextureRegion;
 private TiledTextureRegion mBallBlueTextureRegion;
 private TiledTextureRegion mBallGreenTextureRegion;
 private TiledTextureRegion mBallOrangeTextureRegion;
 private TiledTextureRegion mBallPinkTextureRegion;
 private TiledTextureRegion mBallPurpleTextureRegion;
 private TiledTextureRegion mBallWhiteTextureRegion;

 private Texture mBackgroundTexture;
 private TextureRegion mBackgroundTextureRegion;

 private PhysicsWorld mPhysicsWorld;

 private float mGravityX;
 private float mGravityY;
 private Scene mScene;

 private final int mFaceCount = 0;

 private final int CAMERA_WIDTH = 720;
 private final int CAMERA_HEIGHT = 480;

 @Override
 public Engine onLoadEngine() {
 DisplayMetrics dm = new DisplayMetrics();
 getWindowManager().getDefaultDisplay().getMetrics(dm);

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);
 return new Engine(new EngineOptions(true, ScreenOrientation.LANDSCAPE,
 new RatioResolutionPolicy(CAMERA_WIDTH, CAMERA_HEIGHT), this.mCamera));
 }

 @Override
 public void onLoadResources() {
 this.mTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallBlackTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallBlueTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallGreenTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallOrangeTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallPinkTexture =

582 | Chapter 13: Gaming and Animation

 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallPurpleTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallYellowTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallRedTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallWhiteTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 TextureRegionFactory.setAssetBasePath("gfx/");
 mBallYellowTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallYellowTexture, this,
 "ball_yellow.png", 0, 0, 1, 1); // 64x32
 mBallRedTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallRedTexture, this,
 "ball_red.png", 0, 0, 1, 1); // 64x32
 mBallBlackTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallBlackTexture, this,
 "ball_black.png", 0, 0, 1, 1); // 64x32
 mBallBlueTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallBlueTexture, this,
 "ball_blue.png", 0, 0, 1, 1); // 64x32
 mBallGreenTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallGreenTexture, this,
 "ball_green.png", 0, 0, 1, 1); // 64x32
 mBallOrangeTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallOrangeTexture, this,
 "ball_orange.png", 0, 0, 1, 1); // 64x32
 mBallPinkTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallPinkTexture, this,
 "ball_pink.png", 0, 0, 1, 1); // 64x32
 mBallPurpleTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallPurpleTexture, this,
 "ball_purple.png", 0, 0, 1, 1); // 64x32
 mBallWhiteTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallWhiteTexture, this,
 "ball_white.png", 0, 0, 1, 1); // 64x32

 this.mBackgroundTexture = new Texture(512, 1024,
 TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBackgroundTextureRegion =
 TextureRegionFactory.createFromAsset(this.mBackgroundTexture, this,
 "table_bkg.png", 0, 0);

 this.enableAccelerometerSensor(this);

 mEngine.getTextureManager().loadTextures(mBackgroundTexture,
 mBallYellowTexture,
 mBallRedTexture, mBallBlackTexture, mBallBlueTexture,
 mBallGreenTexture, mBallOrangeTexture,
 mBallPinkTexture, mBallPurpleTexture);
 }

 @Override
 public Scene onLoadScene() {

13.2 Building an Android Game Using AndEngine | 583

 this.mEngine.registerUpdateHandler(new FPSLogger());

 this.mPhysicsWorld = new PhysicsWorld(
 new Vector2(0, SensorManager.GRAVITY_EARTH), false);

 this.mScene = new Scene();
 this.mScene.attachChild(new Entity());

 this.mScene.setBackgroundEnabled(false);
 this.mScene.setOnSceneTouchListener(this);
 Sprite background = new Sprite(0, 0, this.mBackgroundTextureRegion);
 background.setWidth(CAMERA_WIDTH);
 background.setHeight(CAMERA_HEIGHT);
 background.setPosition(0, 0);
 this.mScene.getChild(0).attachChild(background);

 final Shape ground = new Rectangle(0, CAMERA_HEIGHT, CAMERA_WIDTH, 0);
 final Shape roof = new Rectangle(0, 0, CAMERA_WIDTH, 0);
 final Shape left = new Rectangle(0, 0, 0, CAMERA_HEIGHT);
 final Shape right = new Rectangle(CAMERA_WIDTH, 0, 0, CAMERA_HEIGHT);

 final FixtureDef wallFixtureDef =
 PhysicsFactory.createFixtureDef(0, 0.5f, 0.5f);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, ground, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, roof, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, left, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, right, BodyType.StaticBody, wallFixtureDef);

 this.mScene.attachChild(ground);
 this.mScene.attachChild(roof);
 this.mScene.attachChild(left);
 this.mScene.attachChild(right);

 this.mScene.registerUpdateHandler(this.mPhysicsWorld);
 this.mScene.setOnAreaTouchListener(this);

 return this.mScene;
 }

 @Override
 public void onLoadComplete() {
 setupBalls();
 }

 @Override
 public boolean onAreaTouched(
 final TouchEvent pSceneTouchEvent, final ITouchArea pTouchArea,
 final float pTouchAreaLocalX, final float pTouchAreaLocalY) {
 if (pSceneTouchEvent.isActionDown()) {
 final AnimatedSprite face = (AnimatedSprite) pTouchArea;
 this.jumpFace(face);
 return true;

584 | Chapter 13: Gaming and Animation

 }
 return false;
 }

 @Override
 public boolean onSceneTouchEvent(
 final Scene pScene, final TouchEvent pSceneTouchEvent) {
 if (this.mPhysicsWorld != null) {
 if (pSceneTouchEvent.isActionDown()) {
 // this.addFace(pSceneTouchEvent.getX(),
 // pSceneTouchEvent.getY());
 return true;
 }
 }
 return false;
 }

 @Override
 public void onAccelerometerChanged(final AccelerometerData pAccelerometerData) {
 this.mGravityX = pAccelerometerData.getX();
 this.mGravityY = pAccelerometerData.getY();

 final Vector2 gravity = Vector2Pool.obtain(this.mGravityX, this.mGravityY);
 this.mPhysicsWorld.setGravity(gravity);
 Vector2Pool.recycle(gravity);
 }

 private void setupBalls() {
 final AnimatedSprite[] balls = new AnimatedSprite[9];

 final FixtureDef objectFixtureDef =
 PhysicsFactory.createFixtureDef(1, 0.5f, 0.5f);

 AnimatedSprite redBall =
 new AnimatedSprite(10, 10, this.mBallRedTextureRegion);
 AnimatedSprite yellowBall =
 new AnimatedSprite(20, 20, this.mBallYellowTextureRegion);
 AnimatedSprite blueBall =
 new AnimatedSprite(30, 30, this.mBallBlueTextureRegion);
 AnimatedSprite greenBall =
 new AnimatedSprite(40, 40, this.mBallGreenTextureRegion);
 AnimatedSprite orangeBall =
 new AnimatedSprite(50, 50, this.mBallOrangeTextureRegion);
 AnimatedSprite pinkBall =
 new AnimatedSprite(60, 60, this.mBallPinkTextureRegion);
 AnimatedSprite purpleBall =
 new AnimatedSprite(70, 70, this.mBallPurpleTextureRegion);
 AnimatedSprite blackBall =
 new AnimatedSprite(70, 70, this.mBallBlackTextureRegion);
 AnimatedSprite whiteBall =
 new AnimatedSprite(70, 70, this.mBallWhiteTextureRegion);

 balls[0] = redBall;
 balls[1] = yellowBall;
 balls[2] = blueBall;
 balls[3] = greenBall;

13.2 Building an Android Game Using AndEngine | 585

 balls[4] = orangeBall;
 balls[5] = pinkBall;
 balls[6] = purpleBall;
 balls[7] = blackBall;
 balls[8] = whiteBall;

 for (int i = 0; i < 9; i++) {
 Body body = PhysicsFactory.createBoxBody(this.mPhysicsWorld, balls[i],
 BodyType.DynamicBody, objectFixtureDef);
 mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(balls[i],
 body, true, true));

 balls[i].animate(new long[] { 200, 200 }, 0, 1, true);
 balls[i].setUserData(body);
 this.mScene.registerTouchArea(balls[i]);
 this.mScene.attachChild(balls[i]);
 }
 }

 private void jumpFace(final AnimatedSprite face) {
 final Body faceBody = (Body) face.getUserData();

 final Vector2 velocity =
 Vector2Pool.obtain(this.mGravityX * -50, this.mGravityY * -50);
 faceBody.setLinearVelocity(velocity);
 Vector2Pool.recycle(velocity);
 }
 }

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory SimplePool (see “Getting and Using the Code Examples” on page 18).

586 | Chapter 13: Gaming and Animation

https://github.com/IanDarwin/Android-Cookbook-Examples

13.3 Processing Timed Keyboard Input
Kurosh Fallahzadeh

Problem
You want to determine whether a user-generated action, such as a key-press/release,
has occurred within a certain time interval. This can be useful in game input han‐
dling and elsewhere.

Solution
Put the thread to sleep for the time interval and use a handler to determine whether a
key-press/release has occurred.

Discussion
The interval is a long integer that represents time in milliseconds. In Example 13-5,
we override the onKeyUp() method so that when the user releases a key, Android will
invoke our taskHandler methods, which basically continue to repeatedly execute task A
as long as the user continues to press/release any key within the one-second interval;
otherwise, they execute task B.

Example 13-5. The keyboard input timing code

// In the main class...

private long interval = 1000; // 1-second time interval

private taskHandler myTaskHandler = new TaskHandler();

class TaskHandler extends Handler {

 @Override
 public void handleMessage(Message msg) {
 MyMainClass.this.executeTaskB();
 }

 public void sleep(long timeInterval) {
 // Remove previous keyboard message in queue
 this.removeMessages(0);
 // Enqueue current keyboard message to execute after timeInterval
 sendMessageDelayed(obtainMessage(0), timeInterval);
 }
}

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {

13.3 Processing Timed Keyboard Input | 587

 // Execute TaskA and call handler to execute TaskB if
 / Key release message arrives after 'interval' has elapsed
 executeTaskA();
 myTaskHandler.sleep(interval);

 return true;
}

public void executeTaskA() {
...
}

public void executeTaskB() {
...
}

588 | Chapter 13: Gaming and Animation

CHAPTER 14

Social Networking

In the second decade of this century, nobody writing about the internet would under‐
estimate the importance of social networking. Dominated as it is by a few major sites
—Facebook and Twitter being the biggest of the big—social networking provides
both an opportunity for developers and a missed opportunity for the developer com‐
munity as a whole. Certainly there are still opportunities for creative use of social net‐
working. But what is missing (despite valiant efforts) is a single “open social network‐
ing” API that includes authorization, messaging, and media interchange.

This chapter provides a few how-tos for accessing sites such as Facebook and Twitter,
using plain HTTP (they all originated as web-based sites just before the explosion of
mobile apps) and using more comprehensive (but more specific) APIs.

14.1 Authenticating Users with OAUTH2
Ian Darwin

Problem
Most of the popular social networks use OAuth2 for authentication, so you will prob‐
ably need to connect to it sometime.

Solution
There are many APIs available for OAuth2. Here’s a short list:

• The Android code in the built-in AccountManager
• The Google Play Android code in the GoogleAuthUtil class in the Google Play

library

589

https://developer.android.com/training/id-auth/authenticate.html
https://developers.google.com/android/guides/http-auth

• The open source android-oauth-client library
• A commercial toolkit from Auth0

We’ll use the first of these in this recipe, and the third in Recipe 14.3.

Discussion
OAuth2 is the second version of the Open Authentication protocol, the core of many
sites’ user-authentication strategies. It is a multistep protocol with several variations,
so you should probably learn a bit about it. If you are new to OAuth, there’s plenty of
background reading available. For a textbook, refer to Ryan Boyd’s Getting Started
with OAuth 2.0 (O’Reilly). For online information, start with this search query or
Mitchell Anicas’s introduction to OAuth 2.

For our example, we’ll take the Tasks (todo list) API, which is a Google-hosted,
OAuth2-authenticated service. There is a user interface to this service in the GMail
web client (Figure 14-1), and some Android applications use it (although Google
Keep doesn’t).

Figure 14-1. GMail Tasks interface

Because authorization with OAuth2 requires network traffic, any API for use on
Android must be written to be asynchronous, and any application that uses it must
have INTERNET permission.

We’ll use the AccountManager to handle OAuth2. Using OAuth2 requires:

590 | Chapter 14: Social Networking

https://github.com/wuman/android-oauth-client
https://auth0.com/docs/quickstart/native/android
https://www.google.ca/search?q=understanding+oauth
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

• Identifying your application (using a clientId and a clientSecret previously
obtained from the server)

• Getting permission from the user for the identified application to work on his
behalf on the server

• An “authentication token” that represents the combination of the previous two
items

In addition, for Google APIs, you need a Google API key, also obtained from the
server (the Google API web console).

Once you’ve obtained the authentication token (we’ll show how to get it in
Example 14-1), you send it with the request you want to authorize, along with the
other information. In the case of HTTP/HTTPS, the authentication is sent as HTTP
headers, using something like this:

public void fetchTasks() {
 // Following code must not run on UI thread
 URL url = new URL(
 "https://www.googleapis.com/tasks/v1/users/@me/lists/@default/tasks?key=" +
 our_api_key);
 Map<String,String> headers = new HashMap<>();
 headers.put("accept", "text/json");
 headers.put("authorization", "OAuth " + authToken);
 headers.put("client_id", our_client_id);
 headers.put("client_secret", our_client_secret);
 final String result = ConversationURL.converse(url, null, headers);
 // Convert to List<Task> using some JSON API
 // Display list in a RecyclerView or ListView
}

Of course, before we can run that code, we have to get the auth token (Example 14-1).
Since we aren’t writing a Google app (only Google can do that!) but we want to use a
Google service, we need the GET_ACCOUNTS Android permission to be able to view arbi‐
trary accounts on the device. On Android 6 or later we will have to request this per‐
mission (see Recipe 2.2).

14.1 Authenticating Users with OAUTH2 | 591

Example 14-1. Requesting the OAuth token

public void getTasks() {

 // Code to request GET_ACCOUNTS permission not shown...

 // Find the Google account - other AccountManager calls would
 // let you choose by type
 final Account[] accounts = am.getAccounts();
 if (accounts.length == 0) {
 Toast.makeText(this,
 "Please create a Google account before using this app",
 Toast.LENGTH_LONG).show();
 finish();
 return;
 }
 for (Account acct : accounts) {
 Log.d(TAG, "Account " + acct.name + "(" + acct.type + ")");
 if (acct.type.equals("com.google")) {

 // Since the credential often expires, just get a new one
 am.invalidateAuthToken(acct.type, authToken);

 // Get the authToken. Async: doesn't return token;
 // find it in the callbacks.
 am.getAuthToken(
 // Android "Account" for Google access:
 acct,
 // Google-provided auth scope for viewing tasks:
 AUTHDOM_RO,
 // If any authenticator-specific options needed:
 new Bundle(),
 MainActivity.this,
 // Success callback:
 new OnTokenAcquired(),
 Failure callback:
 new Handler(new OnError()));
 break;
 }
 }
}

As mentioned, this is all asynchronous. The call to getAuthToken() will contact the serv‐
er’s OAuth code and get the auth token for us to use. If it succeeds, it will call our
success callback:

/**
 * Success callback indicates that OAuth2 authenticator has gotten an auth
 * token for us, so save it in a field for use in the REST service code,
 * and invoke same.
 */
private class OnTokenAcquired implements AccountManagerCallback<Bundle> {
 @Override

592 | Chapter 14: Social Networking

 public void run(AccountManagerFuture<Bundle> result) {
 Log.d(TAG, "OnTokenAcquired.run()");
 // Get the result of the operation from the AccountManagerFuture
 try {
 Bundle bundle = result.getResult();

 // The authToken arrives in the bundle, named KEY_AUTHTOKEN

 authToken = bundle.getString(AccountManager.KEY_AUTHTOKEN);

 Log.d(TAG, "Got this authToken: " + authToken);

 doFetchTasks(); // Near start of this recipe

 } catch (OperationCanceledException | IOException e) {
 // Handle this error...
 } catch (AuthenticatorException e) {
 // Handle this error...
 }
 }
}

A vulnerability in how some mobile apps use OAuth2 was discov‐
ered just as the second edition of this book was going to press; see
the original paper for details.

See Also
There is some official documentation on the techniques in this recipe. For a more
general (non-Android) API, see Google OAuth2 client library for Java. This library is
open sourced on GitHub.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory OAuth2Demo (see “Getting and Using the Code Examples” on page 18).

14.2 Integrating Social Networking Using HTTP
Shraddha Shravagi

Problem
You need a basic level of social networking support in your app.

14.2 Integrating Social Networking Using HTTP | 593

http://www.blackhat.com/docs/eu-16/materials/eu-16-Yang-Signing-Into-Billion-Mobile-Apps-Effortlessly-With-OAuth20-wp.pdf
https://developer.android.com/training/id-auth/authenticate.html
https://developers.google.com/api-client-library/java/google-api-java-client/oauth2
https://github.com/google/google-api-java-client
https://github.com/IanDarwin/Android-Cookbook-Examples

Solution
Instead of diving into the API, you can simply add social networking support. For
Facebook, Twitter, and LinkedIn integration, just follow three simple steps to get
started:

1. Download the logos for Facebook, Twitter, and LinkedIn.
2. Create image buttons for each of them.
3. Implement an event handler that, when the user presses the button, passes con‐

trol to the relevant site and displays the results in a browser window.

Discussion
Here is a simple approach to adding basic social networking.

Step 1: Get the logos
Download the logos from their respective websites, or use a web search engine.

Step 2: Create image buttons for each logo
The layout shown in Example 14-2 provides image buttons for each of the social net‐
working sites. Figure 14-2 shows the buttons.

Example 14-2. The main layout

 <!-- Facebook button -->
 <ImageView android:src="@drawable/icon_facebook"
 android:layout_width="28dip"
 android:layout_height="28dip" android:id="@+id/facebookBtn"
 android:clickable="true"
 android:onClick="facebookBtnClicked" />

 <!-- Twitter button -->
 <ImageView android:src="@drawable/icon_twitter"
 android:clickable="true"
 android:layout_width="30dip" android:layout_height="28dip"
 android:id="@+id/twitterBtn" android:layout_marginLeft="3dp"
 android:layout_marginRight="3dp" android:onClick="twitterBtnClicked"
 />

 <!-- LinkedIn button -->
 <ImageView android:src="@drawable/icon_linkedin"
 android:layout_width="28dip"
 android:layout_height="30dip" android:clickable="true"
 android:id="@+id/linkedinBtn"
 android:onClick="linkedinBtnClicked"
 />

594 | Chapter 14: Social Networking

Figure 14-2. Social networking buttons

Step 3: Implement the click event
The code in Example 14-3 provides a series of listeners, each of which will open an
Intent to the respective social networking website. These are added as OnClickListeners
by use of android:onClick attributes in the layout in Example 14-2, so the main Activity
code is fairly short.

Example 14-3. The social networking action handling code

/* The URL used here is for the application I want the user to redirect to,
* and a comment about it. For example, here I am using http://goo.gl/eRAD9
* as the URL, but you can use the URL of your app. Take the URL from
* Google Play and shorten it with bit.ly or the Google URL shortener.
*/

public void facebookBtnClicked(View v) {
 Toast.makeText(this,
 "Facebook Loading...\n +
 "Please make sure you are connected to the internet.",
 Toast.LENGTH_SHORT).show();
 String url="http://m.facebook.com/sharer.php?u=http%3A%2F%2Fgoo.gl%2FeRAD9";
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 startActivity(i);
}

14.2 Integrating Social Networking Using HTTP | 595

public void twitterBtnClicked(View v) {
 Toast.makeText(this,
 "Twitter Loading... \n Please make sure you are connected to the internet.",
 Toast.LENGTH_SHORT).show();
 String url = "http://www.twitter.com/share?text=
 Checkout+This+Demo+http://goo.gl/eRAD9+";
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 startActivity(i);
}

public void linkedinBtnClicked(View v) {
 Toast.makeText(this,
 "LinkedIn Loading... \n Please make sure you are connected to the internet",
 Toast.LENGTH_SHORT).show();
 String url="http://www.linkedin.com/shareArticle?url=
 http%3A%2F%2Fgoo.gl%2FeRAD9&mini=
 true&source=SampleApp&title=App+on+your+mobile";
 Intent intent=new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse(url));
 startActivity(intent);
}

This is how, in three simple steps, you can get a social networking feature for your
application. Here we used Intents to start the site in the user’s browser; you could also
use a WebView as shown in Recipe 12.8.

14.3 Loading a User’s Twitter Timeline Using HTML or
JSON
Rachee Singh, Ian Darwin

Problem
You want to load a user’s Twitter timeline (list of tweets) into an Android application.

Solution
Since timeline information is public, you don’t necessarily have to deal with Twitter’s
authentication. You can use a WebView or an Intent to launch a Twitter search for the
user’s screen name to get an HTML page without authenticating. Or, you can authen‐
ticate using OAuth2 (see Recipe 14.1) and use a REST API to obtain the data from the
user’s Twitter page in JSON format.

596 | Chapter 14: Social Networking

Discussion
If you just want to view a given user’s Twitter feed, for example, you can use a URL
like https://twitter.com/search?q=%40androidcook, which searches for the @AndroidCook
user. You could load this into a WebView object:

String url = "https://twitter.com/search?q=%40androidcook";
WebView wv = (WebView)findViewById(R.id.webview);
wv.loadUrl(url);

Or, to have the URL show up in its own window, just open an Intent for it:
startActivity(new Intent(url));

What if you want to be able to process the results yourself? HTML is notoriously dif‐
ficult to extract useful information from. Due to Twitter’s current permissions
scheme, the URL method described in this recipe in the first edition of this book no
longer works:

String url = "http://twitter.com/statuses/user_timeline/androidcook.json";

If you open the preceding URL today, the result comes back in JSON as:
{"errors":[{"message":"Sorry, that page does not exist","code":34}]}

Instead, you have to authenticate using OAuth2 and use the REST API to get results
back in JSON format. One of the best libraries around appears to be the wuman
OAuth library, which supports OAuth versions 1 and 2, the latter with various types
of authorization. It is also noteworthy as it ships with sample applications for Flickr,
Foursquare, GitHub, Instagram, LinkedIn, Twitter, and more, all in open source. This
API requires an external dependency:

<dependency>
 <groupId>com.wu-man</groupId>
 <artifactId>android-oauth-client</artifactId>
 <version>0.4.5</version>
</dependency>

The code is more complicated than our previous OAuth recipe, and rather than
repeat the sample application, we will just direct your attention to the project website.
The library folder contains the library, and the samples folder contains the applica‐
tions for the social sites previously listed. The wuman library is licensed under the
Apache Software License v2 so you can pretty much use it for any purpose.

14.3 Loading a User’s Twitter Timeline Using HTML or JSON | 597

https://twitter.com/search?q=%40androidcook
https://github.com/wuman/android-oauth-client

CHAPTER 15

Location and Map Applications

Not that long ago, GPS devices were either unavailable, expensive, or cumbersome.
Today, almost every smartphone has a GPS receiver, and many digital cameras do,
too. GPS is well on its way to becoming truly ubiquitous in devices. The organizations
that provide map data are well aware of this trend. Indeed, OpenStreetMap exists and
provides its “free, editable map of the world” in part because of the rise of consumer
GPS devices; most of its map data was provided by enthusiasts. Google gets much of
its data from commercial mapping services, but in Android, Google has been very
driven by the availability of GPS receivers in Android devices. This chapter thus con‐
centrates on the ins and outs of using Google Maps and OpenStreetMap in Android
devices.

15.1 Getting Location Information
Ian Darwin

Problem
You want to know where you are.

Solution
Use Android’s built-in location providers.

Discussion
Android provides two levels of location detection. If you need to know fairly precisely
where you are, you can use the FINE resolution, which is GPS-based. If you only need
to know roughly where you are, you can use the coarse resolution, which is based on
the location of the cell tower(s) your phone is talking to or in range of. The FINE reso‐

599

http://openstreetmap.org/

lution is usually accurate to a few meters; the coarse resolution may be accurate down
to the building or city block in densely built-up areas, or to the nearest 5 or 10 kilo‐
meters in very lightly populated areas with cell towers maximally spaced out.

Example 15-1 shows the setup portion of the code that gets location data. This is part
of JPSTrack, a mapping application for OpenStreetMap. For mapping purposes the
GPS is a must, so I only ask for the FINE resolution.

Example 15-1. Getting location data

// Part of JPSTrack Main.java
LocationManager mgr =
 (LocationManager) getSystemService(LOCATION_SERVICE);
for (String prov : mgr.getAllProviders()) {
 Log.i(LOG_TAG, getString(R.string.provider_found) + prov);
}

// GPS setup
Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY_FINE);
List<String> providers = mgr.getProviders(criteria, true);
if (providers == null || providers.size() == 0) {
 Log.e(JPSTRACK, getString(R.string.cannot_get_gps_service));
 Toast.makeText(this, "Could not open GPS service",
 Toast.LENGTH_LONG).show();
 return;
}
String preferred = providers.get(0); // first == preferred

After this setup, when you actually want to start the GPS sending you location data,
you have to call LocationManager.requestLocationUpdates() with the name of the provider
you looked up previously, the minimum time between updates (in milliseconds), the
minimum distance between updates (in meters), and an instance of the
LocationListener interface. You should stop updates by calling removeUpdates() with the
previously passed-in LocationListener; doing so will reduce overhead and save battery
life. In JPSTrack, the code looks like Example 15-2.

Example 15-2. Suspend and resume location updates

@Override
protected void onResume() {
 super.onResume();
 if (preferred != null) {
 mgr.requestLocationUpdates(preferred,
 MIN_SECONDS * 1000,
 MIN_METRES, this);
 }
}

@Override

600 | Chapter 15: Location and Map Applications

http://www.darwinsys.com/jpstrack/

protected void onPause() {
 super.onPause();
 if (preferred != null) {
 mgr.removeUpdates(this);
 }
}

Finally, the LocationListener’s onLocationChanged() method is called when the location
changes, and this is where you do something with the location information:

@Override
public void onLocationChanged(Location location) {
 long time = location.getTime();
 double latitude = location.getLatitude();
 double longitude = location.getLongitude();
 // Do something with latitude and longitude (and time?)...
}

The remaining few methods in LocationListener can be stub methods.

What you do with the location data depends on your application, of course. In
JPSTrack, I save it into a track file with handwritten XML-writing code. Commonly
you would use it to update your position on a map, or upload it to a location service.
There’s no limit to what you can do with it.

Source Download URL
You can download the source code for this example from GitHub.

15.2 Accessing GPS Information in Your Application
Pratik Rupwal

Problem
You need access to the GPS location in a class of your application.

Solution
Add a class that implements the LocationListener interface. Create an instance of this
class where you want to access the GPS information and retrieve the data.

Discussion
In Example 15-3, the MyLocationListener class implements LocationListener.

15.2 Accessing GPS Information in Your Application | 601

https://github.com/IanDarwin/jpstrack.android

Example 15-3. LocationListener implementation

public class MyLocationListener implements LocationListener {

 @Override
 public void onLocationChanged(Location loc) {
 loc.getLatitude();
 loc.getLongitude();
 }

 @Override
 public void onProviderDisabled(String provider) {
 // Empty
 }
 @Override
 public void onProviderEnabled(String provider) {
 // Empty
 }
 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) {
 // Empty
 }
 } // End of class MyLocationListener

Add the class file in Example 15-3 in the package of your application; you can use its
instance as shown in Example 15-4 to access GPS information in any class.

Example 15-4. Class that uses the LocationListener

public class AccessGPS extends Activity {

 // Declaration of required objects

 LocationManager mlocManager;
 LocationListener mlocListener;
 Location lastKnownLocation;
 Double latitude,longitude;
 ...
 ...

protected void onCreate(Bundle savedInstanceState) {

 ...
 ...
 // Instantiating objects for accessing GPS information

 mlocListener = new MyLocationListener();

 // Request for location updates

 mlocManager.requestLocationUpdates(
 LocationManager.GPS_PROVIDER, 0, 0, mlocListener);
 locationProvider=LocationManager.GPS_PROVIDER;
 ...

602 | Chapter 15: Location and Map Applications

 ...

 // Access the last identified location

 lastKnownLocation = mlocManager.getLastKnownLocation(locationProvider);

 // The above object can be used for accessing GPS data as below

 latitude=lastKnownLocation.getLatitude();
 longitude=lastKnownLocation.getLongitude();

 // The above GPS data can be used to carry out operations
 // specific to the location
 ...
 ...

 }
}

You can use the Location object loc in onLocationChanged() to access GPS information;
however, it is not always possible in an application to perform all the GPS informa‐
tion–related tasks in this overridden method due to issues such as data accessibility.
For example, in an application providing information on shopping malls near the
user’s current location, the app accesses the names of malls according to the user’s
location and displays them; when the user chooses a mall, the app displays the differ‐
ent stores in that mall. In this example, the application uses the user’s location to
determine which mall names to fetch from the database through a database handler
that is a private member of the class hosting the view to the display list of malls; hence
that database handler cannot be accessible in this overridden method, and therefore
this operation cannot be carried out.

15.3 Mocking GPS Coordinates on a Device
Emaad Manzoor

Problem
You need to demonstrate your application, but you’re scared it might choke when try‐
ing to triangulate your GPS coordinates. Or you’d like to simulate being in a place
you’re not.

Solution
Attach a mock location provider to your LocationManager object, and then attach mock
coordinates to the mock location provider.

15.3 Mocking GPS Coordinates on a Device | 603

Discussion
The Android LocationManager has support for testing in code. While it will often be
used in testing (see Chapter 3), we will use it directly in the application in
Example 15-5 to set mock GPS coordinates on the device.

Example 15-5. Setting mock GPS coordinates

private void setMockLocation(double latitude, double longitude, float accuracy) {
 // This coding style is a way of handling a long list of boolean parameters
 lm.addTestProvider (LocationManager.GPS_PROVIDER,
 "requiresNetwork" == "",
 "requiresSatellite" == "",
 "requiresCell" == "",
 "hasMonetaryCost" == "",
 "supportsAltitude" == "",
 "supportsSpeed" == "",
 "supportsBearing" == "",
 android.location.Criteria.POWER_LOW,
 android.location.Criteria.ACCURACY_FINE);

 Location newLocation = new Location(LocationManager.GPS_PROVIDER);

 newLocation.setLatitude(latitude);
 newLocation.setLongitude(longitude);
 newLocation.setAccuracy(accuracy);
 newLocation.setTime(System.currentTimeMillis());

 lm.setTestProviderEnabled(LocationManager.GPS_PROVIDER, true);

 lm.setTestProviderStatus(LocationManager.GPS_PROVIDER,
 LocationProvider.AVAILABLE,
 null,System.currentTimeMillis());

 lm.setTestProviderLocation(LocationManager.GPS_PROVIDER, newLocation);

}

In Example 15-5, we add a mock provider using the addTestProvider() method of the
LocationManager class. Then we create a new location using the Location object, which
allows us to set latitude, longitude, and accuracy.

We activate the mock provider by first setting a mock-enabled value for the
LocationManager using its setTestProviderEnabled() method; then we set a mock status,
and finally a mock location.

To use the setMockLocation() method, you must create a LocationManager object as you
usually would, and then invoke the method with your coordinates (see
Example 15-6).

604 | Chapter 15: Location and Map Applications

Example 15-6. Mocking location

LocationManager lm = (LocationManager)getSystemService(Context.LOCATION_SERVICE);

lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, new LocationListener(){
 @Override
 public void onStatusChanged(String provider, int status, Bundle extras){}
 @Override
 public void onProviderEnabled(String provider){}
 @Override
 public void onProviderDisabled(String provider){}
 @Override
 public void onLocationChanged(Location location){}
});

/* Set a mock location for debugging purposes */
setMockLocation(15.387653, 73.872585, 500);

• In your AndroidManifest.xml file, you’ll have to add the permission <uses-

permission android:name="android.permission.ACCESS_MOCK_LOCATION>.
• To run on a real device (as opposed to an AVD emulator), you must also enable

→ “Developer options” → “Allow mock locations” or the newer Settings →
“Developer options” → “Select mock location app” (see Entering Developer Mode
on a real device if you don’t yet have a “Developer options” item under Settings).

You may need to restart the device after using the mock GPS to
reenable the real GPS.

Example application usage
Find Me X is an Android application that takes in a search query of the form
place_type in locality, city and returns results augmented with their distance from the
user. Regardless of the chosen location, the location in this application is mocked to
be BITS–Pilani Goa Campus, Goa, India.

See Also
Recipe 15.1, the developer documentation on the LocationManager and Location classes.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory FindMeX (see “Getting and Using the Code Examples” on page 18).

15.3 Mocking GPS Coordinates on a Device | 605

https://developer.android.com/reference/android/location/LocationManager.html
https://developer.android.com/reference/android/location/Location.html
https://github.com/IanDarwin/Android-Cookbook-Examples

15.4 Using Geocoding and Reverse Geocoding
Nidhin Jose Davis

Problem
You want to geocode (convert an address to its coordinates) and reverse geocode,
(convert coordinates to an address).

Solution
Use the built-in Geocoder class.

Discussion
Geocoding is the process of finding the geographical coordinates (latitude and longi‐
tude) of a given address or location. Reverse geocoding is the opposite: taking a lati‐
tude and longitude pair and converting it into an address or location. In order to geo‐
code or reverse geocode the first thing to do is to import the Geocoder class:

import android.location.Geocoder;

The geocoding or reverse geocoding should not be done on the UI thread as it may
involve server access, and thus might cause the system to display an Application Not
Responding (ANR) dialog to the user. The work has to be done in a separate thread.
Example 15-7 shows the code for geocoding, and Example 15-8 shows the code for
reverse geocoding.

Example 15-7. To geocode

Geocoder gc = new Geocoder(context);

if(gc.isPresent()) {
 List<Address> list =
 gc.getFromLocationName("1600 Amphitheatre Parkway, Mountain View, CA", 1);

 Address address = list.get(0);

 double lat = address.getLatitude();
 double lng = address.getLongitude();
}

Example 15-8. To reverse geocode

Geocoder gc = new Geocoder(context);

if(gc.isPresent()) {
 List<Address> list = gc.getFromLocation(37.42279, -122.08506,1);

606 | Chapter 15: Location and Map Applications

 Address address = list.get(0);

 StringBuffer str = new StringBuffer();
 str.append("Name: " + address.getLocality() + "\n");
 str.append("Sub-Admin Areas: " + address.getSubAdminArea() + "\n");
 str.append("Admin Area: " + address.getAdminArea() + "\n");
 str.append("Country: " + address.getCountryName() + "\n");
 str.append("Country Code: " + address.getCountryCode() + "\n");

 String strAddress = str.toString();
}

15.5 Getting Ready for Google Maps API V2 Development
Ian Darwin

Problem
You want to get set up to use the current (V2) Google Maps API.

Solution
Download Google Play Services, get an API key, import a project or two, and start
coding! Android Studio will do most of this work for you; this recipe guides you
through the process.

Discussion

This recipe describes only the V2 API. The V1 API is deprecated;
you can still code to it, but unless you have an API key already, you
will not be able to run your application, as new API keys are no
longer being issued. We no longer discuss use of the V1 API, since
you would be unable to get a key for your application were you to
use that API. (This highlights one drawback of using a proprietary
Maps API: you are dependent upon Google for API key access. The
OpenStreetMap API, covered starting in Recipe 15.7, doesn’t have
this problem; it is entirely open source and open data.)

Note that the V2 API can only be used on devices that have Google Play installed
(e.g., official, Google-branded devices) and which have OpenGL ES 2.0 or later
(almost all devices do). Note further that this API carries a mandatory “Attribution”
requirement, which we’ll cover in Recipe 15.6.

Adding maps support to a project
You can either make a new project with Maps support, or add Maps support to an
existing project. To make a new project with Maps support using Android Studio,

15.5 Getting Ready for Google Maps API V2 Development | 607

choose File → New → Project, configure the project, and choose Google Maps Activ‐
ity on the “Add an activity to Mobile” screen of the Create New Project wizard. To add
Maps V2 support to an existing project using Android Studio, just create a new Goo‐
gle Maps Activity as shown in Figure 15-1.

Figure 15-1. Adding a Google Maps Activity to an existing project

Whichever of these two ways you add Maps support, doing so will automatically do
the following:

• Add the dependency com.google.android.gms:play-services:9.4.0 (or later) to your
build.gradle file.

• Create a string resources file named src/debug/res/values/google_maps_api.xml,
shown in Example 15-9, in which you have to enter your API key.

• Create a reference to the string resource defined in google_maps_api.xml as a
meta-data element in your application element, so that Google Maps can find it at
runtime.

Example 15-9. The auto-created google_maps_api.xml file

<resources>
 <!--
 TODO: Before you run your application, you need a Google Maps API key.

608 | Chapter 15: Location and Map Applications

 To get one, follow this link, follow the directions and press "Create":

 https://console.developers.google.com/flows/enableapi?apiid=maps_android_backend&
keyType=CLIENT_SIDE_ANDROID&r=5F:21:CC:9B:77:00:4D:4E:37:F4:98:5D:C2:A4:47:70:1F:27
:1D:DA%3Bcom.androidcookbook.mapsv2addtoproject

 You can also add your credentials to an existing key, using this line:
 5F:21:CC:9B:77:00:4D:4E:37:F4:98:5D:C2:A4:47:70:1F:27:1D:DA;com.androidcookbook.
mapsv2addtoproject

 Alternatively, follow the directions here:
 https://developers.google.com/maps/documentation/android/start#get-key

 Once you have your key (it starts with "AIza"), replace the "google_maps_key"
 string in this file.
 -->
 <string name="google_maps_key" templateMergeStrategy="preserve"
 translatable="false">
 YOUR_KEY_HERE
 </string>
</resources>

This string resource is in a file all by itself, so that if you are sharing
your source code you can choose whether to give out your API key
along with the code.

Follow the link (to console.developers.google.com) in Example 15-9 and you will be
asked to create a project (Figure 15-2).

Then you will be asked to create credentials (see Figure 15-3). Note that the “Create
credentials” screen already has one package name and key hash filled in—the only
one you need for development and debugging—courtesy of the URL provided in
Example 15-9.

Figure 15-2. Starting a project

15.5 Getting Ready for Google Maps API V2 Development | 609

Figure 15-3. Creating credentials

Then you will be presented with your API key (Figure 15-4). Paste it into the goo‐
gle_maps_api.xml file, replacing the string YOUR_KEY_HERE and (optionally) removing
the comments at the same time. Your file should now look like Example 15-10.

Example 15-10. The updated google_maps_api.xml file, with API key installed

<resources>
<string name="google_maps_key" templateMergeStrategy="preserve"
 translatable="false">
AIzaSyBgNZndPB67egfGMRukE1dVc_te1869Zkk
</string>
</resources>

Figure 15-4. Maps project

Finally, with all these steps completed, you can run the application. It should look
something like Figure 15-5.

610 | Chapter 15: Location and Map Applications

Figure 15-5. Default map application running

Note, however, that when you want to ship your application to the Google Play Store
or some other production environment, you will need to obtain a new API key, since
the one generated in this recipe is based on your debug signing key.

To create an API key, you need to provide the package name and a certificate signa‐
ture; the “signature” is in the form of a SHA1 hash of the actual production signing
key. You will typically have two signing certificates. The one for development and
debug is called debug.keystore, and lives in ~/.android (or in C:\Users\your_user_name
\.android on current Windows systems). After you cd to the correct .android directory
path, you can extract its SHA1 hash using the following:

keytool -list -v -keystore debug.keystore -alias androiddebugkey \
 -storepass android -keypass android

The debug key hash was provided for you earlier in this recipe; see
Figure 15-3.

15.5 Getting Ready for Google Maps API V2 Development | 611

For your production signing key, neither the filename, the alias, nor the keystore
password is standard, so getting the hash takes a bit more work:

keytool -list keystore YOUR_KEYSTORE

keytool -v -list -keystore YOUR_KEYSTORE -alias THE_LISTED_ALIAS

For both invocations of keytool, you will need to enter the keystore password when
prompted.

In either case, once you have done the -list with -alias, you will see lines like those in
Example 15-11 (except there will be hex digits where I have all zeros).

Example 15-11. Partial output from keytool -list

Certificate fingerprints:
 MD5: 4D:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00
 SHA1 0F:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00

To create your production API key, copy the SHA1 value and repeat the process start‐
ing from the beginning of this recipe, replacing the hexadecimal digits in the URL
with the SHA1 hash for your production signing key. This API key will be placed in
src/main/res/values/google_maps_api.xml. See more on publishing your application to
the Google Play Store in Chapter 21.

We will discuss the Maps API V2 in more detail in Recipe 15.6.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory MapsV2AddToProject (see “Getting and Using the Code Examples” on page
18).

15.6 Using the Google Maps API V2
Ian Darwin

Problem
Now that you’ve set up your environment as described in Recipe 15.5, you want to do
something with the Maps API.

Solution
This recipe will show some of the useful things you can do using the Maps API V2.

612 | Chapter 15: Location and Map Applications

https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
The main class through which you generally interact with a map is the GoogleMap class.
There is a wealth of functionality in this class. In this recipe we will show you how to:

• Add one or more Google Maps–style markers to the map.
• Move the map to a given location.
• Display the (mandatory!) internationalized attribution text.
• Add some extra UI elements.

Add markers and center the map position
First, we need to get the GoogleMap controller from the layout, in onCreate(). The
MapFragment that we used in the layout file in Recipe 15.5 has a getMap() method that
returns the GoogleMap:

map = ((MapFragment) getFragmentManager().findFragmentById(R.id.map)).getMap();

To add markers (“map pins”) to the map, create a LatLng object and call the GoogleMap
class’s addMarker() method. This is a “fluent API” with each call returning the object
operated upon, supporting what some Java people call “method call chaining,” so you
can call map.addMarker().setTitle().setSnippet() and so on. The code looks like
Example 15-12.

Example 15-12. Adding a map marker in Maps API V2

LatLng location = new LatLng(markerLat, markerLng);
map.addMarker(new MarkerOptions()
 .position(location)
 .title(markerTitle)
 .snippet(markerSnippet));

The “title” and “snippet” are the title and detail text that pop up when the user taps
the map marker.

The map can be moved and zoomed to give a convenient starting view. The Google
Maps API V2 uses the notion of a “camera” or view position, which we set with
moveCamera() (see Example 15-13).

Example 15-13. Moving and zooming the view (“camera”) in Maps API V2

// Move the "camera" (view position) to our center point with a zoom of 15
final LatLng CENTER = new LatLng(lat, lng);
map.moveCamera(CameraUpdateFactory.newLatLng(CENTER);
// Zoom in, animating the camera
map.animateCamera(CameraUpdateFactory.zoomTo(15), 1000, null);

15.6 Using the Google Maps API V2 | 613

Example 15-14 shows a complete example of creating a map with half a dozen marker
pins, taken from data stored in an array. This data originally came from a Google
Map I prepared on the Google Maps website for a computer conference at the Uni‐
versity of Toronto. A better way of getting the data—actually used in the conference
app—is to download the KML file from Google Maps and parse it yourself, or to host
the data in a simple JSON format on a server and parse that.

Example 15-14. Code for Maps API V2 demo

import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.MapFragment;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;

public class MapsActivity extends Activity {

 public static final String TAG = MainActivity.TAG;
 private GoogleMap map;
 final LatLng CENTER = new LatLng(43.661049, -79.400917);

 class Data {
 public Data(float lng, float lat, String title, String snippet) {
 super();
 this.lat = (float)lat;
 this.lng = (float)lng;
 this.title = title;
 this.snippet = snippet;
 }
 float lat;
 float lng;
 String title;
 String snippet;
 }

 Data[] data = {
 new Data(-79.400917f,43.661049f, "New New College Res",
 "Residence building (new concrete high-rise)"),
 new Data(-79.394524f,43.655796f, "Baldwin Street",
 "Here be many good restaurants!"),
 new Data(-79.402206f,43.657688f, "College St",
 "Many discount computer stores if you forgot a cable
 or need to buy hardware."),
 new Data(-79.390381f,43.659878f, "Queen's Park Subway",
 "Quickest way to the north-south (Yonge-University-Spadina)
 subway/metro line"),
 new Data(-79.403732f,43.666801f, "Spadina Subway",
 "Quickest way to the east-west (Bloor-Danforth)
 subway/metro line"),
 new Data(-79.399696f,43.667873f, "St. George Subway back door",
 "Token-only admittance, else use Spadina or
 Bedford entrances!"),
 new Data(-79.384163f,43.655083f, "Eaton Centre (megamall)",

614 | Chapter 15: Location and Map Applications

 "One of the largest indoor shopping centres in eastern
 Canada. Runs from Dundas to Queen."),
 };

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 Log.d(TAG, "MapsActivity.onCreate()");
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 map = ((MapFragment) getFragmentManager()
 .findFragmentById(R.id.map)).getMap();

 if (map==null) {
 String message = "Map Fragment Not Found or no Map in it!";
 Log.e(TAG, message);
 Toast.makeText(this, message, Toast.DURATION_LONG).show();
 return;
 }

 for (Data d : data) {
 LatLng location = new LatLng(d.lat, d.lng);
 map.addMarker(new MarkerOptions().position(location)
 .title(d.title)
 .snippet(d.snippet));
 }

 // Let the user see indoor maps if available
 map.setIndoorEnabled(true);

 // Enable my-location stuff
 map.setMyLocationEnabled(true);

 // Set the "camera" (view position) to our center point, then animate motion
 map.moveCamera(CameraUpdateFactory.zoomTo(14));
 map.animateCamera(CameraUpdateFactory.newLatLng(CENTER), 1750, null);
 }
}

The resulting map page looks something like Figure 15-6.

15.6 Using the Google Maps API V2 | 615

Figure 15-6. The map demo in action

Attribution text
The Google Android Maps API’s terms of use (which you agreed to when you got
your API key; see Recipe 15.5) require you to display the attribution text, which at
present is basically the Apache 2 License. You can get the (hopefully international‐
ized) version of the required text by calling the convenience method
GooglePlayServicesUtil.getOpenSourceSoftwareLicenseInfo(Context).

The AboutActivity for this app contains an HTML file in a WebView (loaded from the
assets folder), with a TextView below that for the attribution text. The code for this is
shown in Example 15-15.

Example 15-15. Code to display app-specific text along with Google attribution

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.about_activity);

616 | Chapter 15: Location and Map Applications

 WebView aboutView = (WebView)findViewById(R.id.about_content);
 aboutView.loadUrl("file:///android_asset/about.html");
 TextView tv = (TextView)findViewById(R.id.about_version_tv);
 tv.setText(GooglePlayServicesUtil.getOpenSourceSoftwareLicenseInfo(this));
}

Everything else
There is quite a bit more that you can do with the Android Maps API V2. Among
other things, you can:

• Add or remove various UI controls.
• Add polygons or polylines to the map.
• Add a GroundOverlay (anchored to the map) or TileOverlay (floating above it); in

these, you can do any kind of drawing.
• Add various kinds of event listeners.

This is a new API and more features may be added. For example, there are several
GUI controls that can be shown (Example 15-14 enables the “My Location” button),
but there is not yet a way to enable the “Map Type” control. You can set the map type
initially or programmatically, but you’d have to provide your own GUI for it. None‐
theless, it is quite a capable API. I urge you to explore it on your own until we get
more recipes added or updated.

See Also
The official Maps documentation.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory MapDemosV2 (see “Getting and Using the Code Examples” on page 18).

15.6 Using the Google Maps API V2 | 617

https://developers.google.com/maps/
https://github.com/IanDarwin/Android-Cookbook-Examples

15.7 Displaying Map Data Using OpenStreetMap
Rachee Singh

Problem
You want to use OpenStreetMap (OSM) map data in your application in place of
Google Maps.

Solution
Use the third-party osmdroid library to interact with OpenStreetMap data.

Discussion
OpenStreetMap is a free, editable map of the world. osmdroid is “a (almost) full/free
replacement for Android’s MapView (v1 API) class.”

To use OSM map data in your Android app, you need to include two JARs in the
Android project, namely osmdroid-android-x.xx.jar and slf4j-android-1.x.x.jar. osm‐
droid is a set of tools for OpenStreetMap data; SLF4J is (yet another) simplified log‐
ging facade. You can add the JAR files to your Maven project using this dependency:

<dependency>
 <groupId>org.osmdroid</groupId>
 <artifactId>osmdroid-android</artifactId>
 <version>${osmdroid.version}</version>
</dependency>

The version should be 4.2 to compile the examples in this chapter. The current ver‐
sion as of this writing is 5.2, but there are several incompatible changes, including the
removal (not just deprecation) of the DefaultResourceProxyImpl class and the switch
from providing JAR files to proving AAR files (requiring the extra <type>aar</type>
element). On the other hand, using 5.0 or later does eliminate the need for the extra
SLF4J logging API.

If you prefer not to use a build tool to manage dependencies, you’ll need to download
the following:

• osmdroid.
• If using a version of osmdroid prior to 5.0, you will also need slf4j-

android-1.7.5.jar. When using slf4j, you need both its API JAR file (e.g.,
slf4j-1.x.x.jar) as well as one “implementation” JAR file (such as slf4j-
android-1.x.x.jar) Note that the file on the download page is a ZIP file, which you
will have to extract the files from (slf4j-1.7.25/slf4j-api-1.7.25.jar and slf4j-
android-1.7.25.jar).

618 | Chapter 15: Location and Map Applications

https://www.openstreetmap.org
https://repo1.maven.org/maven2/org/osmdroid/osmdroid-android/4.2/osmdroid-android-4.2.jar
http://www.slf4j.org/download.html
http://www.slf4j.org/download.html

• If using SLF4J and you want to get logging output from osmdroid, you will also
need an implementation JAR such as slf4j-jdk14, from the same source and the
same version number.

See Recipe 1.20 for more information on using external libraries in your Android
project.

After adding the JARs to the project you can start coding. You need to add an OSM
MapView to your XML layout, like so:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <org.osmdroid.views.MapView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/mapview">
 </org.osmdroid.views.MapView>
</LinearLayout>

Remember that you need to include the INTERNET permission in the AndroidMani‐
fest.xml file for any app that downloads information over the internet. The osmdroid
code also needs the ACCESS_NETWORK_STATE permission:

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.INTERNET" />

Now you can use this MapView in the Activity code. The process is similar to the case of
using Google Maps (see Example 15-16).

Example 15-16. Using the MapView in the application

private MapView mapView;
private MapController mapController;
mapView = (MapView) this.findViewById(R.id.mapview);
mapView.setBuiltInZoomControls(true);
mapView.setMultiTouchControls(true);
mapController = this.mapView.getController();
mapController.setZoom(2);

Figure 15-7 shows how the application should look on initial startup, and Figure 15-8
shows how it might look after the user has touched the zoom controls.

15.7 Displaying Map Data Using OpenStreetMap | 619

Figure 15-7. An OSM map

Figure 15-8. OSM map zoomed in

620 | Chapter 15: Location and Map Applications

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory OSMIntro (see “Getting and Using the Code Examples” on page 18).

15.8 Creating Overlays in OpenStreetMap Maps
Rachee Singh

Problem
You want to display graphics such as map markers on your OpenStreetMap view.

Solution
Instantiate an Overlay class and add the overlay to the point you wish to demarcate on
the map.

Discussion
To get started with OpenStreetMap, see Recipe 15.7.

To add overlays, first we need to get a handle on the MapView defined in the XML lay‐
out of the Activity:

mapView = (MapView) this.findViewById(R.id.mapview);

Then we enable zoom controls on the MapView using the setBuiltInZoomControls method,
and set the zoom level to a reasonable value:

mapView.setBuiltInZoomControls(true);
mapController = this.mapView.getController();
mapController.setZoom(12);

Now we create two GeoPoints. The first one (mapCenter) is to center the OSM map
around the point where the application starts, and the second (overlayPoint) is where
the overlay will be placed:

GeoPoint mapCenter = new GeoPoint(53554070, -2959520);
GeoPoint overlayPoint = new GeoPoint(53554070 + 1000, -2959520 + 1000);
mapController.setCenter(mapCenter);

Note that this GeoPoint constructor uses a long value, which the osmdroid API uses;
this represents the latitude or longitude multiplied by 1e6 and cast to long. There is
also a constructor overload that takes “normal” lat/long values as doubles; e.g., new
GeoPoint(53.5547, -29.59520);.

To add the overlay, we create an ArrayList of OverlayItems. To this list, we will add the
overlays we wish to add to the OSM map:

15.8 Creating Overlays in OpenStreetMap Maps | 621

https://github.com/IanDarwin/Android-Cookbook-Examples

ArrayList<OverlayItem> overlays = new ArrayList<OverlayItem>();
overlays.add(new OverlayItem("New Overlay", "Overlay Description",
 overlayPoint));

To create the overlay item, we need to instantiate the ItemizedIconOverlay class (along
with appropriate arguments specifying the point at which the overlay has to be
placed, resource proxy, etc.). Then we add the overlay to the OSM map:

resourceProxy = new DefaultResourceProxyImpl(getApplicationContext());
this.myLocationOverlay = new ItemizedIconOverlay<OverlayItem>(
 overlays, null, resourceProxy);
this.mapView.getOverlays().add(this.myLocationOverlay);

Then, if we are updating values after onCreate(), a call to the invalidate() method is
needed to update the MapView so that the user will see the changes we made to it:

mapView.invalidate();

The end result should look like Figure 15-9, and Figure 15-10 after zooming.

Figure 15-9. OSM map with marker overlay

622 | Chapter 15: Location and Map Applications

Figure 15-10. OSM map with marker overlay after zooming

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory OSMOverlay (see “Getting and Using the Code Examples” on page 18).

15.9 Using a Scale on an OpenStreetMap Map
Rachee Singh

Problem
You need to show a map scale on your OSM map to indicate the zoom level on the
MapView.

Solution
You can add a scale on the OSM map as an overlay using the osmdroid ScaleBarOverlay
class.

15.9 Using a Scale on an OpenStreetMap Map | 623

https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
Putting a scale on your MapView helps the user keep track of the map’s zoom level (as
well as estimate distances on the map). To overlay a scale on your OSM MapView,
instantiate the ScaleBarOverlay class and add it to the list of overlays in your MapView
using the add() method. Here is how the code would look:

ScaleBarOverlay myScaleBarOverlay = new ScaleBarOverlay(this);
this.mapView.getOverlays().add(this.myScaleBarOverlay);

The scale bar overlay is shown in Figure 15-11.

Figure 15-11. OSM map with scale

15.10 Handling Touch Events on an OpenStreetMap
Overlay
Rachee Singh

Problem
You need to perform actions when the overlay on an OpenStreetMap map is tapped.

624 | Chapter 15: Location and Map Applications

Solution
Override the methods of the OnItemGestureListener class for single-tap events and long-
press events.

Discussion
To address touch events on the map overlay, we modify the way we instantiate an
overlay item (for more details on using overlays in OSM, refer back to Recipe 15.8).
While instantiating the OverlayItem, we make use of an anonymous object of the
OnItemGestureListener class as an argument and provide our own implementation of the
onItemSingleTapUp() and onItemLongPress() methods. In these methods, we simply display
a toast depicting which action took place—single-tap or long-press—and the title and
description of the overlay touched. Example 15-17 shows the code for this.

Example 15-17. Code for touch events in OSM

ArrayList<OverlayItem> items = new ArrayList<OverlayItem>();
items.add(
 new OverlayItem("New Overlay", "Overlay Sample Description", overlayPoint));

resourceProxy = new DefaultResourceProxyImpl(getApplicationContext());

this.myLocationOverlay = new ItemizedIconOverlay<OverlayItem>(items,
 new ItemizedIconOverlay.OnItemGestureListener<OverlayItem>() {
 @Override
 public boolean onItemSingleTapUp(
 final int index, final OverlayItem item) {
 Toast.makeText(getApplicationContext(), "Overlay Titled: " +
 item.mTitle + " Single Tapped" + "\n" + "Description: " +
 item.mDescription, Toast.LENGTH_LONG).show();
 return true;
 }
 @Override
 public boolean onItemLongPress(
 final int index, final OverlayItem item) {
 Toast.makeText(getApplicationContext(), "Overlay Titled: " +
 item.mTitle + " Long pressed" + "\n" + "Description: " +
 item.mDescription ,Toast.LENGTH_LONG).show();
 return false;
 }
 }, resourceProxy);
this.mapView.getOverlays().add(this.myLocationOverlay);
mapView.invalidate();

After a single-tap of the overlay, the application should look like Figure 15-12.

Figure 15-13 shows how the application might look after a long-press of the overlay.

15.10 Handling Touch Events on an OpenStreetMap Overlay | 625

Figure 15-12. OSM map with touch event

Figure 15-13. Long-press overlay reaction

626 | Chapter 15: Location and Map Applications

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory OSMTouchEvents (see “Getting and Using the Code Examples” on page 18).

15.11 Getting Location Updates with OpenStreetMap
Maps
Rachee Singh

Problem
You need to react to changes in the device’s location and move the map to display the
new location.

Solution
Using LocationListener, you can make an application request location updates (see
Recipe 15.1) and then react to these changes in location by moving the map.

Discussion
The Activity that includes the OSM MapView needs to implement LocationListener to be
able to request changes in the device’s location. An Activity implementing
LocationListener will also need to add the unimplemented (abstract) methods from the
LocationListener interface (Eclipse will do this for you). We set the center of the map to
the GeoPoint named mapCenter so that the application starts with the map focused on
that point.

Now we need to get an instance of LocationManager and use it to request location
updates using the requestLocationUpdates() method.

In one of the overridden methods (which were abstracted in the LocationListener
interface), named onLocationChanged(), we can write the code that we want to be exe‐
cuted when the location of the device changes.

In the onLocationChanged() method we obtain the latitude and longitude of the new
location and set the map’s center to the new GeoPoint. Example 15-18 shows the rele‐
vant code.

Example 15-18. Managing location changes with OSM

public class LocationChange extends Activity implements LocationListener {
 private LocationManager myLocationManager;
 private MapView mapView;
 private MapController mapController;

15.11 Getting Location Updates with OpenStreetMap Maps | 627

https://github.com/IanDarwin/Android-Cookbook-Examples

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mapView = (MapView)findViewById(R.id.mapview);
 mapController = this.mapView.getController();
 mapController.setZoom(15);
 GeoPoint mapCenter = new GeoPoint(53554070, -2959520);
 mapController.setCenter(mapCenter);
 myLocationManager = (LocationManager) getSystemService(LOCATION_SERVICE);
 myLocationManager.requestLocationUpdates(
 LocationManager.GPS_PROVIDER, 1000, 100, this);
 }

 @Override
 public void onLocationChanged(Location location) {
 int latitude = (int) (location.getLatitude() * 1E6);
 int longitude = (int) (location.getLongitude() * 1E6);
 GeoPoint geopoint = new GeoPoint(latitude, longitude);
 mapController.setCenter(geopoint);
 mapView.invalidate();

 }

 @Override
 public void onProviderDisabled(String arg0) {

 }

 @Override
 public void onProviderEnabled(String arg0) {

 }

 @Override
 public void onStatusChanged(String arg0, int arg1, Bundle arg2) {

 }
}

When the application starts, the map is centered on the mapCenter GeoPoint. Since the
application is listening to location changes, the icon in the top bar of the phone is
visible (see Figure 15-14).

Now, using the emulator controls, new GPS coordinates (–122.094095, 37.422006) are
sent to the emulator. The application reacts to this and centers the map on the new
coordinates (see Figure 15-15).

Similarly, different GPS coordinates are given from the emulator controls and the
application centers the map on the new location (see Figure 15-16).

628 | Chapter 15: Location and Map Applications

Figure 15-14. Moving the map, start of move

Figure 15-15. Moving the map, end of move

15.11 Getting Location Updates with OpenStreetMap Maps | 629

Figure 15-16. Changing the location via the emulator

Also, to allow the application to listen for location changes, include the following per‐
missions in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.INTERNET"/>

Source Download URL
You can download the source code for this recipe from Google Drive.

630 | Chapter 15: Location and Map Applications

http://bit.ly/156rruq

CHAPTER 16

Accelerometer

Accelerometers are one of the more interesting bits of hardware in smartphones. Ear‐
lier devices such as the Openmoko Neo FreeRunner smartphone and the original
Apple iPhone included them. Before Android was released I was advocating for
Openmoko at open source conferences.

One of my favorite imaginary applications was private key generation. Adhering to
the theory that “When privacy is outlawed, only outlaws will have privacy,” several
people were talking about this as early as 2008 (when I presented the idea at the
Ontario Linux Fest). The idea is: if you can’t or don’t want to exchange private keys
over a public channel, you meet on a street corner and shake hands—with each hand
having a cell phone concealed in the palm. The devices are touching each other, thus
their sensors should record exactly the same somewhat random motions. With a bit
of mathematics to filter out the leading and trailing motion of the hands moving
together, both devices should have quite a few bits’ worth of identical, random data
that nobody else has—just what you need for crypto key exchange. I’ve yet to see any‐
body implement this, but I must admit I still hope somebody will come through.

Meanwhile, we have many other recipes on accelerometers and other sensors in this
chapter…

16.1 Checking for the Presence or Absence of a Sensor
Rachee Singh

Problem
You want to use a given sensor. Before using an Android device for a sensor-based
application, you should ensure that the device supports the required sensor.

631

Solution
Check for the availability of the sensor on the Android device.

Discussion
The SensorManager class is used to manage the sensors available on an Android device.
So we require an object of this class:

SensorManager deviceSensorManager =
 (SensorManager) getSystemService(SOME_SENSOR_SERVICE);

Then, using the getSensorList() method, we check for the presence of sensors of any
type (accelerometer, gyroscope, pressure, etc.). If the list returned contains any ele‐
ments, this implies that the sensor is present. A TextView is used to show the result:
either "Sensor present!" or "Sensor absent.” Example 16-1 shows the code.

Example 16-1. Checking for the accelerometer

 List<Sensor> sensorList =
 deviceSensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER);

 if (sensorList.size() > 0) {
 sensorPresent = true;
 sensor = sensorList.get(0);

 }
 else
 sensorPresent = false;

 /* Set the face TextView to display sensor presence */
 face = (TextView) findViewById(R.id.face);

 if (sensorPresent)
 face.setText("Sensor present!");
 else
 face.setText("Sensor absent.");

16.2 Using the Accelerometer to Detect Shaking
Thomas Manthey

Problem
Sometimes it makes sense to evaluate not only onscreen input, but also gestures like
tilting or shaking the phone. You need to use the accelerometer to detect whether the
phone has been shaken.

632 | Chapter 16: Accelerometer

Solution
Register with the accelerometer and compare the current acceleration values on all
three axes to the previous ones. If the values have repeatedly changed on at least two
axes and those changes exceed a high enough threshold, you can clearly determine
shaking.

Discussion
Let’s first define shaking as a fairly rapid movement of the device in one direction fol‐
lowed by a further movement in another direction, typically (but not necessarily) the
opposite one. If we want to detect such a shake motion in an Activity, we need a con‐
nection to the hardware sensors; those are exposed by the class SensorManager. Further‐
more, we need to define a SensorEventListener and register it with the SensorManager. So
the source of our Activity starts as shown in Example 16-2.

Example 16-2. ShakeActivity—getting accelerometer data

public class ShakeActivity extends Activity {
 /* The connection to the hardware */
 private SensorManager mySensorManager;

 /* The SensorEventListener lets us wire up to the real hardware events */
 private final SensorEventListener mySensorEventListener =
 new SensorEventListener() {

 public void onSensorChanged(SensorEvent se) {
 /* We will fill this one later */
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 /* Can be ignored in this example */
 }
 };

In order to implement SensorEventListener, we have to implement two methods:
onSensorChanged(SensorEvent se) and onAccuracyChanged(Sensor sensor, int accuracy). The
first one gets called whenever new sensor data is available, and the second one when‐
ever the accuracy of the measurement changes—for example, when the location ser‐
vice switches from GPS to network-based. In our example, we just need to cover
onSensorChanged().

Before we continue, let’s define some more variables, which will store the information
about values of acceleration and some state (see Example 16-3).

16.2 Using the Accelerometer to Detect Shaking | 633

Example 16-3. Variables for acceleration

 /* Here we store the current values of acceleration, one for each axis */
 private float xAccel;
 private float yAccel;
 private float zAccel;

 /* And here the previous ones */
 private float xPreviousAccel;
 private float yPreviousAccel;
 private float zPreviousAccel;

 /* Used to suppress the first shaking */
 private boolean firstUpdate = true;

 /* What acceleration difference would we assume as a rapid movement? */
 private final float shakeThreshold = 1.5f;

 /* Has a shaking motion been started (one direction)? */
 private boolean shakeInitiated = false;

I hope that the names and comments explain enough about what is stored in these
variables; if not, it will become clearer in the next steps.

Now let’s connect to the hardware sensors and wire up their events. onCreate() is the
perfect place to do so (see Example 16-4).

Example 16-4. Initializing for accelerometer data

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mySensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);
 mySensorManager.registerListener(mySensorEventListener, mySensorManager
 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_NORMAL);
 }

We get a reference to Android’s sensor service.

We register the previously defined SensorEventListener with the service. More pre‐
cisely, we register only for events of the accelerometer and for a normal update
rate; this could be changed if we needed to be more precise.

Now let’s define what we want to do when new sensor data arrives. We have defined a
stub for the SensorEventListener’s method onSensorChanged(), so now we will fill it with
some life (see Example 16-5).

634 | Chapter 16: Accelerometer

Example 16-5. Using the sensor data

 public void onSensorChanged(SensorEvent se) {
 updateAccelParameters(se.values[0], se.values[1], se.values[2]);
 if ((!shakeInitiated) && isAccelerationChanged()) {
 shakeInitiated = true;
 } else if ((shakeInitiated) && isAccelerationChanged()) {
 executeShakeAction();
 } else if ((shakeInitiated) && (!isAccelerationChanged())) {
 shakeInitiated = false;
 }
 }

We copy the values of acceleration that we received from the SensorEvent into our
state variables. The corresponding method is declared like this:

 /* Store acceleration values from sensor */
 private void updateAccelParameters(float xNewAccel, float yNewAccel,
 float zNewAccel) {
 /* We have to suppress the first change of acceleration,
 * it results from first values being initialized with 0 */
 if (firstUpdate) {
 xPreviousAccel = xNewAccel;
 yPreviousAccel = yNewAccel;
 zPreviousAccel = zNewAccel;
 firstUpdate = false;
 } else {
 xPreviousAccel = xAccel;
 yPreviousAccel = yAccel;
 zPreviousAccel = zAccel;
 }
 xAccel = xNewAccel;
 yAccel = yNewAccel;
 zAccel = zNewAccel;
 }

We test for a rapid change of acceleration and whether any has happened before;
if not, we store the information that now has been gathered.

We test again for a rapid change of acceleration, this time with the information
from before. If this test is true, we can assume a shaking movement according to
our definition and commence action.

Finally, we reset the shake status if we detected shaking before but don’t get a
rapid change of acceleration anymore.

To complete the code, we add the last two methods. The first is the
isAccelerationChanged() method (see Example 16-6).

16.2 Using the Accelerometer to Detect Shaking | 635

Example 16-6. The isAccelerationChanged() method

 /* If the values of acceleration have changed on at least two axes,
 we are probably in a shake motion */
 private boolean isAccelerationChanged() {
 float deltaX = Math.abs(xPreviousAccel - xAccel);
 float deltaY = Math.abs(yPreviousAccel - yAccel);
 float deltaZ = Math.abs(zPreviousAccel - zAccel);
 return (deltaX > shakeThreshold && deltaY > shakeThreshold)
 || (deltaX > shakeThreshold && deltaZ > shakeThreshold)
 || (deltaY > shakeThreshold && deltaZ > shakeThreshold);
 }

Here we compare the current values of acceleration with the previous ones, and if at
least two of them have changed above our threshold, we return true.

The last method is executeShakeAction(), which does whatever we wish to do when the
phone is being shaken:

 private void executeShakeAction() {
 /* Save the cheerleader, save the world
 or do something more sensible... */
 }

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory SensorShakeDetection (see “Getting and Using the Code Examples” on page
18).

16.3 Checking Whether a Device Is Facing Up or Down
Rachee Singh

Problem
You want to check for the orientation (facing up/facing down) of the Android device.

Solution
Use a SensorEventListener to check for appropriate accelerometer values.

Discussion
To implement a SensorEventListener, the onSensorChanged() method is called when sensor
values change. Within this method, we check to see if the values lie within a particu‐
lar range for the device to be facing down or facing up. Here is the code to obtain the
sensor object for an accelerometer:

636 | Chapter 16: Accelerometer

https://github.com/IanDarwin/Android-Cookbook-Examples

List<android.hardware.Sensor> sensorList =
 deviceSensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER);
sensor = sensorList.get(0);

Example 16-7 shows the SensorEventListener implementation.

Example 16-7. The SensorEventListener implementation

private SensorEventListener accelerometerListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 float z = event.values[2];
 if (z >9 && z < 10)
 face.setText("FACE UP");
 else if (z > -10 && z < -9)
 face.setText("FACE DOWN");
 }

 @Override
 public void onAccuracyChanged(Sensor arg0, int arg1) {

 }

};

After implementing the listener along with the methods required, we need to register
the listener for a particular sensor (which in our case is the accelerometer). sensor is
an object of the Sensor class; it represents the sensor being used in the application (the
accelerometer):

deviceSensorManager.registerListener(accelerometerListener, sensor, 0, null);

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory SensorUpOrDown (see “Getting and Using the Code Examples” on page 18).

16.4 Reading the Temperature Sensor
Rachee Singh

Problem
You need to get temperature values using the temperature sensor.

Solution
Use SensorManager and SensorEventListener to track changes in temperature values detec‐
ted by the temperature sensor.

16.4 Reading the Temperature Sensor | 637

https://github.com/IanDarwin/Android-Cookbook-Examples

Discussion
We need to create an object of the SensorManager class to use sensors in an application.
Then we register a listener with the type of sensor we require. To register the listener
we provide the name of the listener, a Sensor object, and the type of delay (in this case,
SENSOR_DELAY_FASTEST) to the registerListener() method. In this listener, within the over‐
ridden onSensorChanged() method, we can print the temperature value into a TextView
named tempVal:

SensorManager sensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
sensorManager.registerListener(temperatureListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_TEMPERATURE),
 SensorManager.SENSOR_DELAY_FASTEST);

Example 16-8 shows the SensorEventListener implementation.

Example 16-8. The SensorEventListener implementation

private final SensorEventListener temperatureListener = new SensorEventListener() {
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
 @Override
 public void onSensorChanged(SensorEvent event) {

 tempVal.setText("Temperature is:"+event.values[0]);

 }
};

See Also
Recipe 16.1.

638 | Chapter 16: Accelerometer

1 Bluetooth is a trademark of the Bluetooth Special Interest Group.

CHAPTER 17

Bluetooth

Bluetooth technology allows users to connect a variety of peripherals to a computer,
tablet, or phone. Headsets, speakers, keyboards, and printers; medical devices such as
glucometers and ECG machines; these are only some of the numerous types of devi‐
ces that can be connected via Bluetooth. Some, such as headsets, are supported auto‐
matically by Android; more esoteric ones will require some programming. Some of
these other devices use the Serial Port Protocol (SPP), which is basically an unstruc‐
tured protocol that requires you to write code to format data yourself.

This chapter has recipes on how to ensure that Bluetooth is turned on, how to make
your device discoverable, how to discover other devices, and how to read from and
write to another device over a Bluetooth connection.1

A future edition of this work will provide coverage of the Bluetooth Health Device
Profile (HDP) standardized by the Continua Health Alliance.

17.1 Enabling Bluetooth and Making the Device
Discoverable
Rachee Singh

Problem
The application requires that the Bluetooth adapter be switched on, so you need to
check if this capability is enabled. If it isn’t, you need to prompt the user to enable

639

https://www.bluetooth.org/

Bluetooth. To allow remote devices to detect the host device, you must make the host
device discoverable.

Solution
Use Intents to prompt the user to enable Bluetooth and make the device discoverable.

Discussion
Before performing any action with an instance of the BluetoothAdapter class, you
should check whether the Bluetooth adapter is enabled on the device using the
isEnabled() method. If the method returns false, the user should be prompted to
enable Bluetooth:

BluetoothAdapter BT = BluetoothAdapter.getDefaultAdapter();
if (!BT.isEnabled()) {
 // Request user's permission to switch the Bluetooth adapter on.
 Intent enableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableIntent, REQUEST_ENABLE_BT);
}

The preceding code will show an AlertDialog to the user prompting her to enable
Bluetooth (see Figure 17-1).

Figure 17-1. Bluetooth enable prompt

On returning to the Activity that started the Intent, onActivityResult() is called, in
which the name of the host device and its MAC address can be extracted (see
Example 17-1).

Example 17-1. Getting the device and its Bluetooth MAC address

protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode==REQUEST_ENABLE_BT && resultCode==Activity.RESULT_OK) {
 BluetoothAdapter BT = BluetoothAdapter.getDefaultAdapter();
 String address = BT.getAddress();
 String name = BT.getName();
 String toastText = name + " : " + address;

640 | Chapter 17: Bluetooth

 Toast.makeText(this, toastText, Toast.LENGTH_LONG).show();
 }

To request the user’s permission to make the device discoverable to other Bluetooth-
enabled devices in the vicinity, you can use the following lines of code:

 // Request user's permission to make the device discoverable for 120 secs
 Intent discoverableIntent =
 new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
 startActivity(discoverableIntent);

The preceding code will show an AlertDialog to the user prompting her to make her
device discoverable by other devices for 120 seconds (Figure 17-2).

Figure 17-2. Bluetooth configuration

17.2 Connecting to a Bluetooth-Enabled Device
Ashwini Shahapurkar

Problem
You want to connect to another Bluetooth-enabled device and communicate with it.

Solution
Use the Android Bluetooth API to connect to the device using sockets. The commu‐
nication will be over the socket streams.

Discussion
For any Bluetooth application, you need to add these two permissions to the Android‐
Manifest.xml file:

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH" />

17.2 Connecting to a Bluetooth-Enabled Device | 641

You will create the socket connection to the other Bluetooth device using some varia‐
tion of the createRfcommSocket() API, as shown in Example 17-2. Then you should con‐
tinuously listen for the data from the socket stream in a thread. You can write to the
connected stream outside the thread. The Bluetooth socket connection is a blocking
call and returns only if a connection is successful or an exception occurs while con‐
necting to the device. With Bluetooth device discovery being a heavy process, this
may slow down the connection, so it is a good practice to cancel the device discovery
before trying to connect to the other device.

The BluetoothConnection will, once instantiated, create the socket connection to the
other device and start listening to the data from the connected device.

Example 17-2. Reading from and writing to a Bluetooth device

private class BluetoothConnection extends Thread {
 private final BluetoothSocket mmSocket;
 private final InputStream mmInStream;
 private final OutputStream mmOutStream;
 byte[] buffer;

 // Unique UUID for this application, you should use a different one
 private static final UUID MY_UUID = UUID
 .fromString("fa87c0d0-afac-11de-8a39-0800200c9a66");

 public BluetoothConnection(BluetoothDevice device) {

 BluetoothSocket tmp = null;

 // Get a BluetoothSocket for a connection with the given BluetoothDevice
 try {
 tmp = device.createRfcommSocketToServiceRecord(MY_UUID);
 } catch (IOException e) {
 e.printStackTrace();
 }
 mmSocket = tmp;

 // Now make the socket connection in separate thread to avoid FC
 Thread connectionThread = new Thread(new Runnable() {

 @Override
 public void run() {
 // Always cancel discovery because it will slow down a connection
 mAdapter.cancelDiscovery();

 // Make a connection to the BluetoothSocket
 try {
 // This is a blocking call and will only return on a
 // successful connection or an exception
 mmSocket.connect();
 } catch (IOException e) {
 // Connection to device failed, so close the socket
 try {

642 | Chapter 17: Bluetooth

 mmSocket.close();
 } catch (IOException e2) {
 e2.printStackTrace();
 }
 }
 }
 });

 connectionThread.start();

 InputStream tmpIn = null;
 OutputStream tmpOut = null;

 // Get the BluetoothSocket input and output streams
 try {
 tmpIn = socket.getInputStream();
 tmpOut = socket.getOutputStream();
 buffer = new byte[1024];
 } catch (IOException e) {
 e.printStackTrace();
 }

 mmInStream = tmpIn;
 mmOutStream = tmpOut;
 }

 public void run() {

 // Keep listening to the InputStream while connected
 while (true) {
 try {
 // Read the data from socket stream
 mmInStream.read(buffer);
 // Send the obtained bytes to the UI Activity
 } catch (IOException e) {
 // An exception here marks connection loss
 // Send message to UI Activity
 break;
 }
 }
 }

 public void write(byte[] buffer) {
 try {
 // Write the data to socket stream
 mmOutStream.write(buffer);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) {
 e.printStackTrace();

17.2 Connecting to a Bluetooth-Enabled Device | 643

 }
 }
}

See Also
Recipe 17.4.

17.3 Accepting Connections from a Bluetooth Device
Rachee Singh

Problem
You want to create a listening server for Bluetooth connections.

Solution
Before two Bluetooth devices can interact, one of the communicating devices must
act like a server. It obtains a BluetoothServerSocket instance and listens for incoming
requests.

Discussion
The BluetoothServerSocket instance is obtained by calling the
listenUsingRfcommWithServiceRecord() method on the Bluetooth adapter. With this
instance, we can start listening for incoming requests from remote devices through
the start() method. Listening is a blocking process, so we have to make a new thread
and call it within the thread; otherwise, the UI of the application becomes unrespon‐
sive. Example 17-3 shows the relevant code.

Example 17-3. Creating a Bluetooth server and accepting connections

// Make the host device discoverable
startActivityForResult(new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE),
 DISCOVERY_REQUEST_BLUETOOTH);
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == DISCOVERY_REQUEST_BLUETOOTH) {
 boolean isDiscoverable = resultCode > 0;
 if (isDiscoverable) {
 UUID uuid = UUID.fromString("a60f35f0-b93a-11de-8a39-08002009c666");
 String serverName = "BTserver";
 final BluetoothServerSocket bluetoothServer =
 bluetoothAdapter.listenUsingRfcommWithServiceRecord(serverName, uuid);

 Thread listenThread = new Thread(new Runnable() {

 public void run() {

644 | Chapter 17: Bluetooth

 try {
 BluetoothSocket serverSocket = bluetoothServer.accept();
 myHandleConnectionWith(serverSocket);
 } catch (IOException e) {
 Log.d("BLUETOOTH", e.getMessage());
 }
 }
 });
 listenThread.start();
 }
 }
 }

17.4 Implementing Bluetooth Device Discovery
Shraddha Shravagi

Problem
You want to display a list of Bluetooth devices that are within communication range
of your device.

Solution
Create an XML file to display the list, create a class file to load the list, and then edit
the manifest file. It’s that simple.

For security reasons, devices to be discovered must be in “discover‐
able” mode (also known as “pairing”); for Android devices there is
a Discoverable setting in the Bluetooth settings, while for “conven‐
tional” Bluetooth devices you may need to refer to the device’s
instruction manual.

Discussion
Use the following code to create the XML file to display the list:

<ListView
 android:id="@+id/pairedBtDevices"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
/>

The code in Example 17-4 creates a class file to load the list.

Example 17-4. Activity with BroadcastReceiver for connections

// IntentFilter will match the action specified
IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);

17.4 Implementing Bluetooth Device Discovery | 645

// Broadcast receiver for any matching filter
this.registerReceiver(mReceiver, filter);

// Attach the adapter
ListView newDevicesListView = (ListView)findViewById(R.id.pairedBtDevices);
newDevicesListView.setAdapter(mNewDevicesArrayAdapter);

filter = new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
this.registerReceiver(mReceiver, filter);

// Create a receiver for the Intent
private final BroadcastReceiver mReceiver = new BroadcastReceiver() {

 @Override
 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if(BluetoothDevice.ACTION_FOUND.equals(action)) {
 BluetoothDevice btDevice =
 intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 if(btDevice.getBondState() != BluetoothDevice.BOND_BONDED) {
 mNewDevicesArrayAdapter.add(btDevice.getName()+"\n"+
 btDevice.getAddress());
 }
 }
 else
 if(BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)) {
 setProgressBarIndeterminateVisibility(false);
 setTitle(R.string.select_device);
 if(mNewDevicesArrayAdapter.getCount() == 0) {
 String noDevice =
 getResources().getText(R.string.none_paired).toString();
 mNewDevicesArrayAdapter.add(noDevice);
 }
 }

 }
};

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory BluetoothDemo (see “Getting and Using the Code Examples” on page 18).

646 | Chapter 17: Bluetooth

https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 18

System and Device Control

Android provides a good compromise between the needs of the carriers for control
and the needs of developers for device access. This chapter looks at some of the infor‐
mational and control APIs that are publicly available that allow Android developers
to explore and control the extensive hardware facilities provided by the system and to
deal with the wide range of hardware it runs on, from 2-inch cell phones to 10-inch
tablets and netbooks.

18.1 Accessing Phone Network/Connectivity Information
Amir Alagic

Problem
You want to find information about the device’s current network connectivity.

Solution
Determine whether your phone is connected to the network, the type of connection,
and whether it’s in roaming territory using the ConnectivityManager class and a
NetworkInfo object.

Discussion
Often you need to know whether the device you are running on can currently con‐
nect to the internet, and, since roaming can be expensive, it is also very useful if you
can tell the user whether he is roaming. To do this and more we can use the
NetworkInfo class in the android.net package, as in Example 18-1.

647

Example 18-1. Getting network information

 ConnectivityManager connManager =
 (ConnectivityManager)this.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo ni = connManager.getActiveNetworkInfo();
 /* Indicates whether network connectivity is possible.
 A network is unavailable when a persistent or semi-persistent
 condition prevents the possibility of connecting to
 that network. */
 boolean available = ni.isAvailable();
 /* Indicates whether network connectivity exists */
 boolean connected = ni.isConnected();
 /* Indicates whether the device is currently roaming */
 boolean roaming = ni.isRoaming();
 /* Reports the type of network (currently mobile or WiFi) to which the info
 in this object pertains; will be one of ConnectivityManager.TYPE_MOBILE,
 ConnectivityManager.TYPE_WIFI, ... */
 int networkType = ni.getType(); // See also String ni.getTypeName();

See Also
The developer documentation for the NetworkInfo class.

18.2 Obtaining Information from the Manifest File
Colin Wilcox

Problem
You want to obtain project settings (e.g., app version) data from the AndroidMani‐
fest.xml file during program execution.

Solution
Use the PackageManager.

Discussion
Rather than hardcoding values into the application that need to be changed each time
the application is modified, it is easier to read the version number from the manifest
file. Other settings can be read in a similar manner.

The PackageManager is fairly straightforward to use. The two imports in the following
code need to be added to the Activity:

import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;

648 | Chapter 18: System and Device Control

https://developer.android.com/reference/android/net/NetworkInfo.html

The main part of the code is shown in Example 18-2.

Example 18-2. Code to get information from the manifest

// In the main Activity...
public String readVersionNameFromManifest() {
 PackageInfo packageInfo = null;

 // Read package name and version number from manifest
 try {
 // Load the package manager for the current context
 PackageManager packageManager = this.getPackageManager();

 // Get the package info structure and pick out the fields you want
 packageInfo = packageManager.getPackageInfo(this.getPackageName(), 0);
 } catch (Exception e) {
 Log.e(TAG, "Exception reading manifest version " + e);
 }
 return (packageInfo.versionName);
}

18.3 Changing Incoming Call Notification to Silent,
Vibrate, or Normal
Rachee Singh

Problem
You need to set the Android device to silent, vibrate, or normal mode.

Solution
Use Android’s AudioManager system service to set the phone to normal, silent, or vibrate
mode.

Discussion
This recipe presents a simple application that has three buttons to change the phone
mode to Silent, Vibrate, and Normal, as shown in Figure 18-1.

18.3 Changing Incoming Call Notification to Silent, Vibrate, or Normal | 649

Figure 18-1. Setting phone notification mode

We instantiate the AudioManager class to be able to use the setRingerMode() method. For
each of these buttons (silentButton, normalButton, and vibrateButton) we have
OnClickListeners defined in which we use the AudioManager object to set the ringer mode.
We also display a toast notifying the user of the mode change. See Example 18-3.

Example 18-3. Setting the audio mode

 am = (AudioManager) getBaseContext().getSystemService(Context.AUDIO_SERVICE);
 silentButton = (Button)findViewById(R.id.silent);
 normalButton = (Button)findViewById(R.id.normal);
 vibrateButton = (Button)findViewById(R.id.vibrate);

 // For Silent mode
 silentButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_SILENT);
 Toast.makeText(getApplicationContext(), "Silent Mode Activated.",
 Toast.LENGTH_LONG).show();
 }
 });

 // For Normal mode
 normalButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {

650 | Chapter 18: System and Device Control

 am.setRingerMode(AudioManager.RINGER_MODE_NORMAL);
 Toast.makeText(getApplicationContext(),
 "Normal Mode Activated", Toast.LENGTH_LONG).show();
 }
 });

 // For Vibrate mode
 vibrateButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_VIBRATE);
 Toast.makeText(getApplicationContext(),
 "Vibrate Mode Activated", Toast.LENGTH_LONG).show();
 }
 });

Figure 18-2 shows the application when the Silent button is clicked (notice also the
silent icon in the phone’s status bar).

Figure 18-2. Silent mode activated

18.3 Changing Incoming Call Notification to Silent, Vibrate, or Normal | 651

18.4 Copying Text and Getting Text from the Clipboard
Rachee Singh

Problem
You need to copy text to the clipboard and access the text stored on the clipboard;
this allows you to provide full copy-and-paste functionality for text.

Solution
With the help of the ClipboardManager class, you can access the items stored on the clip‐
board of an Android device.

Discussion
The ClipboardManager class allows you to copy text to the clipboard using the setText()
method and get the text stored on the clipboard using the getText() method. getText()
returns a charSequence that is converted to a String by the toString() method.

Example 18-4 demonstrates how to obtain an instance of the ClipboardManager class
and how to use it to copy text to the clipboard. Then the getText() method is used to
get the text on the clipboard, and the text is set to a TextView.

Example 18-4. Copying text to the clipboard

ClipboardManager clipboard = (ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
clipboard.setText("Using the clipboard for the first time!");
String clip = clipboard.getText().toString();
clipTextView = (TextView) findViewById(R.id.clipText);
clipTextView.setText(clip);

18.5 Using LED-Based Notifications
Rachee Singh

Problem
Most Android devices are equipped with an LED for notification purposes. You want
to flash different colored lights using the LED.

Solution
Using the NotificationManager and Notification classes allows you to provide notifica‐
tions using the LED on the device.

652 | Chapter 18: System and Device Control

Discussion
As in the case of all notifications, we begin by obtaining a reference to the
NotificationManager for our app. Then we create a Notification object. Using the method
ledARGB() we can specify the color of the LED light. The constant ledOnMS is used to
specify the duration (in milliseconds) that the LED will be on; ledOffMS specifies the
time (in milliseconds) that the LED is off. The notify() method starts the notification
process. Example 18-5 shows the code corresponding to the actions just described.

Example 18-5. Making the LED flash blue

NotificationManager notificationManager =
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
Notification notification = new Notification();
notification.ledARGB = 0xff0000ff; // Blue color light flash
notification.ledOnMS = 1000; // LED is on for 1 second
notification.ledOffMS = 1000; // LED is off for 1 second
notification.flags = Notification.FLAG_SHOW_LIGHTS;
notificationManager.notify(0, notification);

18.6 Making the Device Vibrate
Rachee Singh

Problem
You wish to notify the user of some event by means of device vibration.

Solution
Use notifications to set a vibration pattern.

Discussion
To allow device vibration, include this permission in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.VIBRATE"/>

In the Java code, we need to get an instance of the NotificationManager class and of the
Notification class:

NotificationManager notificationManager =
 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);
Notification notification = new Notification();

To set a pattern for the vibration, we assign a sequence of long value pairs (time in
milliseconds) to the Notification’s vibrate property. This sequence represents the dura‐
tion that the device will be silent and that it will vibrate. There should be an even

18.6 Making the Device Vibrate | 653

number of values in the array. For instance, the pattern used in this example will
cause the device to wait for one second and then vibrate for one second, then repeat
this pattern two more times, then stop:

notification.vibrate =
 new long[]{ 1000, 1000, 1000, 1000, 1000, 1000 };
notificationManager.notify(0, notification);

Source Download URL
You can download the source code for this example from the Android Cookbook
repository, in the subdirectory Vibrate (see “Getting and Using the Code Examples”
on page 18).

18.7 Determining Whether a Given Application Is Running
Colin Wilcox

Problem
You want to know whether a certain app is running.

Solution
The system activity manager maintains a list of all active tasks. This provides the
names of all running tasks and can be interrogated for various system-specific infor‐
mation.

Discussion
The code in Example 18-6 takes the name of an application and returns true if the
ActivityManager thinks it is currently running.

Example 18-6. Checking for a running app

import android.app.ActivityManager;
import android.app.ActivityManager.RunningAppProcessInfo;

public boolean isAppRunning (String aApplicationPackageName)
{
 ActivityManager activityManager =
 (ActivityManager) this.getSystemService(ACTIVITY_SERVICE);
 if (activityManager == null) {
 return false; // Should report: can't get Activity Manager
 }

 List<RunningAppProcessInfo> procInfos =
 activityManager.getRunningAppProcesses();
 for(int idx = 0; idx < procInfos.size(); idx++) {

654 | Chapter 18: System and Device Control

https://github.com/IanDarwin/Android-Cookbook-Examples
https://github.com/IanDarwin/Android-Cookbook-Examples

 if (procInfos.get(i).processName.equals(aApplicationPackageName)) {
 return true;
 }
 }

 return false;
}

18.7 Determining Whether a Given Application Is Running | 655

CHAPTER 19

All the World’s Not Java: Other
Programming Languages and Frameworks

Developing new programming languages is a constant process in this industry. Sev‐
eral new (or not-so-new) languages have become popular recently. These include
JVM languages like Groovy, Kotlin, Clojure, Scala as well as non-JVM languages such
as Scheme, Erlang, C#, F#, Haskell, and more. Android encourages the use of many
languages. You can write your app in pure Java using the SDK, of course—that’s the
subject of most of the rest of this book. You can also mix some C/C++ code into Java
using Android’s NDK for native code (see Recipe 19.3). People have made most of the
major compiled languages work, especially (but not exclusively) the JVM-based ones.
You can write using a variety of scripting languages such as Perl, Python, and Ruby
(see Recipe 19.4). And there’s more…

If you want a very high-level, drag-and-drop development process, look at Android
App Inventor, a Google-originated environment for building applications easily using
the drag-and-drop metaphor and “blocks” that snap together. App Inventor is now
maintained at MIT.

If you are a web developer used to working your magic in HTML, JavaScript, and
CSS, there is a route for you to become an Android developer using the tools you
already know. There are, in fact, five or six technologies that go this route, including
AppCelerator Titanium, PhoneGap/Cordova (see Recipe 19.10), and more. These
generally use CSS to build a style that looks close to the native device toolkit, Java‐
Script to provide actions, and W3 standards to provide device access such as GPS.
Most of these work by packaging up a JavaScript interpreter along with your HTML
and CSS into an APK file. Many have the further advantage that they can be packaged
to run on iPhone, BlackBerry, and other mobile platforms. The risk I see with these is
that, since they’re not using native toolkit items, they may easily provide strange-

657

http://appinventor.mit.edu

looking user interfaces that don’t conform either to the Android Guidelines or to
users’ expectations of how apps should behave on the Android platform. That is cer‐
tainly something to be aware of if you are using one of these toolkits.

One of the main design goals of Android was to keep it as an open platform. The
wide range of languages that you can use to develop Android apps testifies that this
openness has been maintained.

19.1 Learning About Cross-Platform Solutions
Ian Darwin

Problem
There is no central list of the various “other” environments and languages available to
build Android apps.

Discussion
There are many paths to cross-platform development that allow you to develop appli‐
cations that run both on Android and on iOS, and possibly other less-used platforms.
One thing to beware of is that many of these paths do not give the full native experi‐
ence. Android’s user interface is not the same as that of iOS, for example, and it’s diffi‐
cult to reconcile them; the basics are easy, but the nuances are hard. Some cross-
platform apps don’t even have the Android “Back button” working correctly! How‐
ever, on the plus side, some of these development approaches also generate desktop
apps for Microsoft Windows, macOS, or desktop Java versions. Table 19-1 lists some
of the better-known tools at the time of this writing. Before using any of these, study
it well.

Table 19-1. Cross-platform development tools
Name Language URL Notes
Appcelerator
Platform

JavaScript http://www.appcelerator.com/mobile-app-development-produc
ts/

App Inventor Blocks
(Logo)

http://www.appinventor.org/ Visual, no-code
solution

Application Craft HTML5 https://www.applicationcraft.com/ Cloud-based
development; uses
Cordova for Mobile

B4A (formerly
Basic4android)

BASIC https://www.b4x.com/

Cordova HTML5 https://cordova.apache.org/ See Recipe 19.10

Corona Lua https://coronalabs.com/

658 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

http://www.appcelerator.com/mobile-app-development-products/
http://www.appcelerator.com/mobile-app-development-products/
http://www.appinventor.org/
https://www.applicationcraft.com/
https://www.b4x.com/
https://cordova.apache.org/
https://coronalabs.com/

Name Language URL Notes
Gluon Mobile Java http://gluonhq.com/products/mobile/ Own Java API for

device/hardware
features; FOSS version

Intel XDK HTML5 https://software.intel.com/en-us/html5/tools Uses Cordova for
Mobile

Monkey X BASIC http://www.monkeycoder.co.nz/ Focus on 2D games

Kivy Python https://kivy.org/#home

MonoGame C# http://www.monogame.net/

NDK C/C++ - Standard Android
toolset for using native
code; see Recipe 19.3

NSB/AppStudio BASIC https://www.nsbasic.com/

PhoneGap HTML5 Now known as Cordova; see above

RFO BASIC! BASIC http://laughton.com/basic/

RhoMobile Suite Ruby https://rms.rhomobile.com

Xamarin C# https://www.xamarin.com/ Acquired by Microsoft

Of these, Cordova/PhoneGap is covered in Recipe 19.10 and Xamarin is covered in
Recipe 19.9.

19.2 Running Shell Commands from Your Application
Rachee Singh

Problem
You need to run a Unix/Linux command (command-line program) or shell script
from within your application (e.g., pwd, ls, etc.).

Solution
Determine the path of the program you wish to run. Use the exec() method of the
Runtime class, passing in the command (and any arguments) that you wish to run.
Sometimes you will need to read results back from the program; to do that, use
classes from java.io.

Discussion
The Runtime class is a part of standard Java (Java SE), and works the same here as it
does in Java SE. Your applications cannot create an instance of the Runtime class, but
rather can get an instance by invoking the static getRuntime() method. Using this
instance you call the exec() method, which executes the specified program in a sepa‐

19.2 Running Shell Commands from Your Application | 659

http://gluonhq.com/products/mobile/
https://software.intel.com/en-us/html5/tools
http://www.monkeycoder.co.nz/
https://kivy.org/#home
http://www.monogame.net/
https://www.nsbasic.com/
http://laughton.com/basic/
https://rms.rhomobile.com
https://www.xamarin.com/

rate native process. It takes the name of the program to execute as an argument. The
exec() method returns the new Process object that represents the native process.

Usually standard Unix/Linux programs live in /system/bin, but this path does vary on
some versions or some distributions; you can explore the paths to find commands
using a file manager application, or using adb ls. As an example, we will run the ps
command that lists all the processes running on the system. The full location of this
command (/system/bin/ps) is specified as an argument to exec().

We get the output of the command and return the string. Then process.waitFor() is
used to wait for the command to finish executing. See Example 19-1.

Example 19-1. Running a shell command

private String runShellCommand() {
 try {
 Process process = Runtime.getRuntime().exec("/system/bin/ps");
 InputStreamReader reader = new InputStreamReader(process.getInputStream());
 BufferedReader bufferedReader = new BufferedReader(reader);
 int numRead;
 char[] buffer = new char[5000];
 StringBuffer commandOutput = new StringBuffer();
 while ((numRead = bufferedReader.read(buffer)) > 0) {
 commandOutput.append(buffer, 0, numRead);
 }
 bufferedReader.close();
 process.waitFor();

 return commandOutput.toString();
 } catch (IOException e) {
 throw new RuntimeException(e);
 } catch (InterruptedException e) {
 throw new RuntimeException(e);
 }
}

Figure 19-1 shows the output of the ps command displayed in a TextView.

You could, of course, capture the output of any system command back into your pro‐
gram and either parse it for display in, for example, a ListView, or display it as text in a
TextView as was done here.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory ShellCommand (see “Getting and Using the Code Examples” on page 18).

660 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

https://github.com/IanDarwin/Android-Cookbook-Examples

Figure 19-1. Android ps(1) command output

19.3 Running Native C/C++ Code with JNI on the NDK
Ian Darwin

Problem
You need to run parts of your application natively in order to use existing C/C++
code or, possibly, to improve performance of CPU-intensive code.

Solution
Use JNI (Java Native Interface) via the NDK, the Android Native Development Kit.

Discussion
Standard Java has always allowed you to load native or compiled code into your Java
program, and the Android Runtime supports this in a way that is pretty much identi‐
cal to the original. Why would you as a developer want to do such a thing? One rea‐
son might be to access OS-dependent functionality. Another is speed: native code will
likely run faster than Java, at least at present, although there is some contention as to
how much of a difference this really makes. Search the web for conflicting answers.

19.3 Running Native C/C++ Code with JNI on the NDK | 661

https://developer.android.com/sdk/ndk/

The native code language bindings are defined for code that has been written in C or
C++. If you need to access a language other than C/C++, you could write a bit of
C/C++ and have it pass control to other functions or applications, but you should
also consider using the Scripting Layer for Android (see Recipe 19.4).

For this example I use a simple numeric calculation, computing the square root of a
double using the Newton–Raphson iterative method. The code provides both a Java
and a C version, to compare the speeds.

Ian’s basic steps: Java calling native code
To call native code from Java, follow these steps:

1. Install the NDK in addition to the Android Development Kit (ADK).
2. Write Java code that declares and calls a native method.
3. Compile this Java code.
4. Create an .h header file using javah.
5. Write a C function that includes this header file and implements the native

method to do the work.
6. Prepare the Android.mk (and optionally Application.mk) configuration file.
7. Compile the C code into a loadable object using $NDK/ndk-build.
8. Package and deploy your application, and test it.

We will now walk through the details of each of these steps. The preliminary step is to
download the NDK as a TAR or ZIP file. Extract it someplace convenient, and set the
environment variable NDK to the full path where you’ve installed it, for referring back
to the NDK install. You’ll want this to read documentation as well as to run the tools.

The next step is to write Java code that declares and calls a native method (see
Example 19-2). Use the keyword native in the method declaration to indicate that the
method is native. To use the native method, no special syntax is required, but your
application—typically in the main Activity—must provide a static code block that
loads your native method using System.loadLibrary(), as shown in Example 19-3. (The
dynamically loadable module will be created in step 6.) Static blocks are executed
when the class containing them is loaded; loading the native code here ensures that it
is in memory when needed!

Object variables that your native code may modify should carry the volatile modifier.
In my example, SqrtDemo.java contains the native method declaration (as well as a
Java implementation of the algorithm).

662 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

https://developer.android.com/tools/sdk/ndk/

Example 19-2. The Java code (SqrtDemo.java)

public class SqrtDemo {

 public static final double EPSILON = 0.05d;

 public static native double sqrtC(double d);

 public static double sqrtJava(double d) {
 double x0 = 10.0, x1 = d, diff;
 do {
 x1 = x0 - (((x0 * x0) - d) / (x0 * 2));
 diff = x1 - x0;
 x0 = x1;
 } while (Math.abs(diff) > EPSILON);
 return x1;
 }
}

Example 19-3. The Activity class Main.java uses the native code

// In the Activity class, outside any methods:
static {
 System.loadLibrary("sqrt-demo");
}

// In a method of the Activity class where you need to use it:
double d = SqrtDemo.sqrtC(123456789.0);

The next step is simple: just build the project normally, using your usual build pro‐
cess.

Next, you need to create a C-language .h header file that provides the interface
between the JVM and your native code. Use javah to produce this file. javah needs to
read the class that declares one or more native methods, and will generate an .h file
specific to the package and class name (in the following example,
foo_ndkdemo_SqrtDemo.h):

$ mkdir jni # Keep everything JNI-related here
$ javah -d jni -classpath bin foo.ndkdemo.SqrtDemo

The .h file produced is a “glue” file, not really meant for human consumption and
particularly not for editing. But by inspecting the resultant .h file, you’ll see that the C
method’s name is composed of the name “Java,"” the package name, the class name,
and the method name:

JNIEXPORT jdouble JNICALL Java_foo_ndkdemo_SqrtDemo_sqrtC
 (JNIEnv *, jclass, jdouble);

Now create a C function that does the work. You must import the .h file and use the
same function signature as is used in the .h file.

19.3 Running Native C/C++ Code with JNI on the NDK | 663

This function can do whatever it wishes. Note that it is passed two arguments before
any declared arguments: a JVM environment variable and a “this” handle for the
invocation context object. Table 19-2 shows the correspondence between Java types
and the C types (JNI types) used in the C code.

Table 19-2. Java and JNI types
Java type JNI Java array type JNI
byte jbyte byte[] jbyteArray

short jshort short[] jshortArray

int jint int[] jintArray

long jlong long[] jlongArray

float jfloat float[] jfloatArray

double jdouble double[] jdoubleArray

char jchar char[] jcharArray

boolean jboolean boolean[] jbooleanArray

void jvoid

Object jobject Object[] jobjectArray

Class jclass

String jstring

array jarray

Throwable jthrowable

Example 19-4 shows the complete C native implementation. It simply computes the
square root of the input number, and returns the result. The method is static, so the
“this” pointer is not used.

Example 19-4. The C code

// jni/sqrt-demo.c

#include <stdlib.h>

#include "foo_ndkdemo_SqrtDemo.h"

JNIEXPORT jdouble JNICALL Java_foo_ndkdemo_SqrtDemo_sqrtC(
 JNIEnv *env, jclass clazz, jdouble d) {

 jdouble x0 = 10.0, x1 = d, diff;
 do {
 x1 = x0 - (((x0 * x0) - d) / (x0 * 2));
 diff = x1 - x0;
 x0 = x1;
 } while (labs(diff) > foo_ndkdemo_SqrtDemo_EPSILON);

664 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

 return x1;
}

The implementation is basically the same as the Java version. Note that javah even
maps the final double EPSILON from the Java class SqrtDemo into a #define for use within
the C version.

The next step is to prepare the file Android.mk, also in the jni folder. For a simple
shared library, Example 19-5 will suffice.

Example 19-5. An Android.mk makefile example

Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := sqrt-demo
LOCAL_SRC_FILES := sqrt-demo.c

include $(BUILD_SHARED_LIBRARY)

Finally, you compile the C code into a loadable object. In desktop Java, the details
depend on the platform, compiler, and so on. However, the NDK provides a build
script to automate this. Assuming you have set the NDK variable to the install root of
the NDK download from step 1, you only need to type the following:

$ $NDK/ndk-build # For Linux, Unix, macOS?
> %NDK%/ndk-build # For MS-Windows

Compile thumb : sqrt-demo <= sqrt-demo.c
SharedLibrary : libsqrt-demo.so
Install : libsqrt-demo.so => libs/armeabi/libsqrt-demo.so

And you’re done! Just package and run the application normally. The output should
be similar to Figure 19-2.The full download example for this chapter includes buttons
to run the sqrt function a number of times in either Java or C and compare the times.
Note that at present it does this work on the event thread, so large numbers of repeti‐
tions will result in Application Not Responding (ANR) errors, which will mess up the
timing.

Congratulations! You’ve called a native method. Your code may run slightly faster.
However, you will have to do extra work for portability; as Android begins to run on
more hardware platforms, you will have to (at least) add them to the Application.mk
file. If you have used any assembly language (machine-specific) code, the problem is
much worse.

19.3 Running Native C/C++ Code with JNI on the NDK | 665

Figure 19-2. NDK demonstration output

Beware that problems with your native code can and will crash the runtime process
right out from underneath the Java Virtual Machine. The JVM can do nothing to pro‐
tect itself from poorly written C/C++ code. Memory must be managed by the pro‐
grammer; there is no automatic garbage collection of memory obtained by the system
runtime allocator. You’re dealing directly with the operating system and sometimes
even the hardware, so “Be careful. Be very careful.”

See Also
There is a recipe in Chapter 26 of my Java Cookbook, published by O’Reilly, that
shows variables from the Java class being accessed from within the native code. The
official documentation for Android’s NDK is found on the Android Native SDK
information page. Considerable documentation is included in the docs folder of the
NDK download. If you need more information on Java native methods, you might be
interested in the comprehensive treatment found in Essential JNI: Java Native Inter‐
face by Rob Gordon (Prentice Hall), originally written for desktop Java.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory NdkDemo (see “Getting and Using the Code Examples” on page 18).

666 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

http://shop.oreilly.com/product/9780596007010.do
https://developer.android.com/sdk/ndk/
https://developer.android.com/sdk/ndk/
https://github.com/IanDarwin/Android-Cookbook-Examples

19.4 Getting Started with SL4A, the Scripting Layer for
Android
Ian Darwin

Problem
You want to write your application in one of several popular scripting languages, or
you want to program interactively on your phone.

Solution
One of the best approaches is to use the Scripting Layer for Android (SL4A).

The original developers of SL4A appear to have abandoned it, but
there are several alternative builds still available; you can find these
by searching for “sl4a” on GitHub.

Here’s how to get started:

1. Download the Scripting Layer for Android (formerly Android Scripting Environ‐
ment) from GitHub.

2. Add the interpreter(s) you want to use.
3. Type in your program.
4. Run your program immediately—no compilation or packaging steps are needed!

Discussion
SL4A provides support for several popular scripting languages (including Python,
Perl, Lua, and BeanShell). An Android object is provided that gives access to most of
the underlying Android APIs from this language. This recipe shows how to get
started; several of the following recipes explore particular aspects of using SL4A. The
SL4A application is not in the Google Play Store, so you have to visit the website and
download it (there is a QR code for downloading on the website referenced in step 1,
so start there, in your laptop or desktop browser). Before doing that, you’ll have to go
into Settings and allow applications from “Unknown sources.” Also note that since
you are not downloading via the Play Store, you will not be notified if the Google
project releases a new binary.

19.4 Getting Started with SL4A, the Scripting Layer for Android | 667

https://github.com/search?utf8=%E2%9C%93&q=sl4a
https://github.com/damonkohler/sl4a

Once you have the SL4A binary installed, you must start it and download the particu‐
lar interpreter you want to use. The following are available as of this writing:

• Python
• Perl
• JRuby
• Lua
• BeanShell
• JavaScript
• Tcl
• Unix shell

Some of the interpreters (e.g., JRuby) run in the Android VM, while others (e.g.,
Python) run the “native” version of the language under Linux on your device. Com‐
munication happens via a little server that is started automatically when needed or
can be started from the Interpreters menu bar.

The technique for downloading new interpreters isn’t very intuitive. When you start
the SL4A application it shows a list of scripts, if you have any. Click the Menu button,
then go to the View menu and select Interpreters (while here, notice that you can also
view the LogCat, the system exception logfile). From the Interpreters list, clicking
Menu again will get you a menu bar with an Add button, and this lets you add
another interpreter.

Pick a language (Python)
Suppose you think Python is a great language (which it is).

Once your interpreter is installed, go back to the SL4A main page and click the Menu
button, then Add (in this context, Add creates a new file, not another interpreter).
Select the installed interpreter and you’ll be in Edit mode. We’re trying Python, so
type in this canonical “Hello, World” example:

import android
droid = android.Android()
droid.makeToast("Hello, Android")

Click the Menu button, and choose “Save and Run” if enabled, or “Save and Exit”
otherwise. The former will run your new app; the latter will return you to the list of
scripts, in which case you want to tap your script’s name. In the resultant pop-up, the
choices are (left to right):

• Run (DOS box icon)
• Disabled

668 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

• Edit (pencil icon)
• Save (1980s floppy disk icon)
• Delete (trash can icon)

If you long-press a filename, a pop-up gives you the choice of Rename or Delete.

When you run this trivial application, you will see the toast near the bottom of your
screen.

Source editing
If you want to keep your scripts in a source repository, and/or if you prefer to edit
them on a laptop or desktop with a traditional keyboard, just copy the files back and
forth (if your phone is rooted, you can probably run your repository directly on the
phone). Scripts are stored in sl4a/scripts on the SD card. If you have your phone
mounted on your laptop’s /mnt folder, for example, you might see the code shown in
Example 19-6 (on Windows it might be E: or F: instead of /mnt).

Example 19-6. List of scripting files

laptop$ ls /mnt/sl4a/
Shell.log demo.sh.log dialer.py.log hello_world.py.log ifconfig.py.log
notify_weather.py.log phonepicker.py.log say_chat.py.log say_time.py.log
say_weather.py.log scripts/ sms.py.log speak.py.log take_picture.py.log
test.py.log
laptop$ ls /mnt/sl4a/scripts
bluetooth_chat.py demo.sh dialer.py foo.sh hello_world.py ifconfig.py
notify_weather.py phonepicker.py say_chat.py say_time.py say_weather.py
sms.py speak.py take_picture.py test.py weather.py weather.pyc
laptop$

19.5 Creating Alerts in SL4A
Rachee Singh

Problem
You need to create an alert box or pop-up dialog using Python in the Scripting Layer
for Android.

Solution
You can create many kinds of alert dialogs using Python in SL4A. They can have but‐
tons, lists, and other features.

19.5 Creating Alerts in SL4A | 669

Discussion
Begin by starting the SL4A app on your emulator/device (see Recipe 19.4). Then add
a new Python script by clicking the Menu button and choosing Add (see Figure 19-3).

Figure 19-3. Starting to add a new script

Choose the Python 2.x option from the submenu that appears, as shown in
Figure 19-4.

Figure 19-4. Choosing the language

670 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

This opens an editor, with the first two lines (shown in Figure 19-5) already filled in
for you. Enter the name of the script (I have named mine alertdialog.py).

Figure 19-5. Composing the script

Now we are ready to enter the code to create the alert dialogs. Type in the code shown
in Example 19-7.

Example 19-7. A simple SL4A Python script

title = 'Sample Alert Dialog'
text = 'Alert Dialog Type 1!'
droid.dialogCreateAlert(title, text)
droid.dialogSetPositiveButtonText('Continue')
droid.dialogShow()

Press the Menu button and choose “Save and Run” from the menu. This runs the
script. The alert dialog should look like Figure 19-6.

19.5 Creating Alerts in SL4A | 671

Figure 19-6. Sample alert dialog

Now let’s create an alert dialog with two buttons, using the code in Example 19-8.

Example 19-8. Composing an alert with three choices

title = 'Sample Alert Dialog'
text = 'Alert Dialog Type 2 with buttons!'
droid.dialogCreateAlert(title, text)
droid.dialogSetPositiveButtonText('Yes')
droid.dialogSetNegativeButtonText('No')
droid.dialogSetNeutralButtonText('Cancel')
droid.dialogShow()

Figure 19-7 shows how this alert dialog looks.

Figure 19-7. Alert dialog with two choices in action

672 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

Now try the code in Example 19-9 to create an alert dialog with a list.

Example 19-9. Another approach to composing an alert with three choices

 title = 'Sample Alert Dialog'
 droid.dialogCreateAlert(title)
 droid.dialogSetItems(['mango', 'apple', 'strawberry'])
 droid.dialogShow()

Figure 19-8 shows how this alert dialog looks.

Figure 19-8. Dialog with three choices

19.6 Fetching Your Google Documents and Displaying
Them in a ListView Using SL4A
Rachee Singh

Problem
You need to get the details of your Google documents after logging in to Google with
your Google ID and password.

Solution
Google Docs is a widely used document editing and sharing service. Using the library
gdata.docs.service, we can log in (getting the username and password from the user)
and then get the “Google documents feed” or list of documents.

19.6 Fetching Your Google Documents and Displaying Them in a ListView Using SL4A | 673

Discussion
Fire up the Scripting Layer for Android on your device (or emulator). Open a new
Python script and add to the script the code shown in Example 19-10. If you have not
worked in Python before, be aware that indentation, rather than braces, is used for
statement grouping, so you must be very consistent about leading spaces.

Example 19-10. Composing a script to fetch Google documents

import android
import gdata.docs.service

droid = android.Android()

client = gdata.docs.service.DocsService()

username = droid.dialogGetInput('Username').result
password = droid.dialogGetPassword('Password', 'For ' _username).result

def truncate(content, length=15, suffix='...'):
 if len(content) <=length:
 return content
 else:
 return content[:length] + suffix
try:
 client.ClientLogin(username, password)
except:
 droid.makeToast("Login Failed")

docs_feed = client.GetDocumentListFeed()

documentEntries = []

for entry in docs_feed.entry:
 documentEntries.append('%-18s %-12s %s' %
 (truncate(entry.title.text.encode('UTF-8')),
 entry.GetDocumentType(), entry.resourceId.text))

droid.dialogCreateAlert('Documents:')
droid.dialogSetItems(documentEntries)
droid.dialogShow()

Note these two lines should be entered as one long line.

Figure 19-9 shows how the editor should look after you have finished entering the
code.

In this Python code, we use the gdata.docs.service.DocsService() method to connect to
the Google account of a user. The username and password are taken from the user.
Once the login is done successfully, the GetDocumentListFeed() method is used to get the
feed list of the Google documents. We format the details of each entry and append

674 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

them to a list named documentEntries. This list is then passed as an argument to the
alert dialog, which displays all the entries in a list.

Figure 19-9. Google document fetcher in action

Figure 19-10 shows how my own document list looks.

Figure 19-10. List of Google documents

19.6 Fetching Your Google Documents and Displaying Them in a ListView Using SL4A | 675

19.7 Sharing SL4A Scripts in QR Codes
Rachee Singh

Problem
You have a neat/useful SL4A script and want to distribute it packed in a Quick
Response (QR) code.

Solution
Use a tool such as ZXing’s QR Code Generator to generate a QR code that contains
your entire script in the QR code graphic, and share this image.

Discussion
Most people think of QR codes as a convenient way to share URL-type links. But the
QR code format is quite versatile, and can be used to package all sorts of things, like
VCard (name and address) information. Here we use it to wrap the “plain text” of an
SL4A script so that another Android user can get the script onto his device without
retyping it. QR codes are a great way to share your scripts if they are short (QR codes
can only encode 4,296 characters of content). Follow these simple steps to generate a
QR code for your script:

1. Visit the QR Code Generator in your mobile device’s browser.
2. Select Text from the Contents drop-down menu.
3. In the “Text content” box, put the script’s name in the first line.
4. From the next line onward, enter the script. (Or, as an alternative to steps 3 and

4, copy the script from an SL4A editor window and paste it into the “Text con‐
tent” box in the browser).

5. Choose Large for the barcode size and click Generate.

Figure 19-11 shows how this looks in action.

Many QR code readers are available for Android. Any such application can decipher
the text that the QR code encrypts. For example, with the common ZXing Barcode
Scanner, the script is copied to the clipboard (this is controlled by a “When a Barcode
is found…” entry in the Settings). Then start the SL4A editor, pick a name for your
script (ideally the same as the original, if you know it—depending on how it was pas‐
ted into the QR code generator it may appear as the first line) then long-press in the
body area and select Paste. You are now ready to save the script and run it! It should
look like Figure 19-12.

676 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

http://zxing.appspot.com/generator/
http://zxing.appspot.com/generator/

Figure 19-11. Barcode generated from the SL4A script

Figure 19-12. The script, downloaded

19.7 Sharing SL4A Scripts in QR Codes | 677

I was able to run the script from the QR code with no further work other than com‐
menting out the script name in the body and typing it into the filename field, then
clicking “Save and Run” (see Figure 19-13).

Figure 19-13. The script running, showing a notification

19.8 Using Native Handset Functionality from a WebView
via JavaScript
Colin Wilcox

Problem
The availability of HTML5 as a standard feature in many browsers means that devel‐
opers can exploit the features of the HTML5 standard to create applications much
more quickly than they can in native Java. This sounds great for many applications,
but alas, not all of the cool functionality on the device is accessible through HTML5
and JavaScript. Webkits attempt to bridge this gap, but they may not provide all the
functionality needed in all cases.

678 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

Solution
You can invoke Java code in response to JavaScript events using a bridge between the
JavaScript and Java environments.

Discussion
The idea is to tie up events within the JavaScript embedded in an HTML5 web page
and handle the event on the Java side by calling native code.

The following code creates a button in HTML5 embedded in a WebView which, when
clicked, causes the Contacts application to be invoked on the device through the
Intent mechanism.

First, we write some thin bridge code in Java, as shown in Example 19-11.

Example 19-11. The bridge code

public class JavaScriptInterface
{
 private static final String TAG = "JavaScriptInterface";
 Context iContext = null;

 /** Instantiate the interface and set the context */
 JavaScriptInterface(Context aContext) {
 // Save the local content for later use
 iContext = aContext;
 }

 public void launchContacts(); {
 iContext.startActivity(contactIntent);
 launchNativeContactsApp ();
 }
}

The Java code to actually launch the Contacts app is shown in Example 19-12.

Example 19-12. Java code to launch contacts

private void launchNativeContactsApp()
{
 String packageName = "com.android.contacts";
 String className = ".DialtactsContactsEntryActivity";
 String action = "android.intent.action.MAIN";
 String category1 = "android.intent.category.LAUNCHER";
 String category2 = "android.intent.category.DEFAULT";

 Intent intent = new Intent();
 intent.setComponent(new ComponentName(packageName, packageName + className));
 intent.setAction(action);
 intent.addCategory(category1);

19.8 Using Native Handset Functionality from a WebView via JavaScript | 679

 intent.addCategory(category2);
 startActivity(intent);
}

The JavaScript that ties this all together is shown in the following snippet. In this case
the call is triggered by a click event:

<input type="button" value="Say hello" onClick="showAndroidContacts())" />
<script type="text/javascript">
 function showAndroidContacts() {
 Android.launchContacts();
 }
</script>

The only preconditions are that the web browser has JavaScript enabled and the
interface is known. This is done by:

WebView iWebView = (WebView) findViewById(R.id.webview);
iWebView.addJavascriptInterface(new JavaScriptInterface(this), "Android");

19.9 Building a Cross-Platform App with Xamarin
Ian Darwin

Problem
You want to build an app that can run on any major platform: Android, iOS, Win‐
dows Phone, etc.

Solution
One solution is to use Xamarin.

Discussion
I have always contended—and it is a main theme of this book—that you should write
Android apps using the Android SDK, because if you write them in a generic way, the
user will not have a great experience with your app as generic interfaces don’t know
about Activities, Services, the Android Back button behavior, etc.

Xamarin is a toolchain and set of libraries that allows you to build apps in the C# or
F# programming language. Xamarin-based apps can run on Android, iOS, Windows,
and a few other platforms. Xamarin depends on the open source Mono implementa‐
tion of the .NET runtime. Xamarin Inc. began life as an independent company but
was acquired by Microsoft in March 2016 as a way to get developers up to speed on
Microsoft’s Java clone C# and on the Microsoft .NET environment.

Note that Xamarin is not a cross-platform UI toolkit. You write real Android UI code
using the Xamarin API, as shown in Example 19-13. The cross-platform aspect comes

680 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

https://xamarin.com/

in when Xamarin is able to share business logic, persistence API, and other code that
you write in C# across platforms. On Android it can import existing Java libraries
(JAR files); on other platforms it can import those platforms’ equivalent compiled
code.

Example 19-13. A “Hello, World” Android application in Xamarin

using Android.App;
using Android.Widget;
using Android.OS;

namespace HelloXamarin {
 [Activity(Label = "HelloXamarin",
 MainLauncher = true, Icon = "@mipmap/icon")]
 public class MainActivity : Activity {
 int count = 1;

 protected override void OnCreate(Bundle savedInstanceState) {
 base.OnCreate(savedInstanceState);

 // Set our view from the "main" layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.myButton);

 button.Click += delegate {
 button.Text = string.Format("{0} clicks!", count++);
 };
 }
 }
}

If you’ve read this far in the book, you can figure out what this code is doing: read
extends for “:” in a class definition, super for base, and a lambda expression or anony‐
mous class for delegate; lowercase the first letter of the method names; use the odd-
looking type parameter as a typecast instead; and so on. The general shape is quite
recognizable—unsurprising, since historically C# began as a way to get around Java’s
licensing.

When getting started with Xamarin you have your choice of two IDEs:

Xamarin Studio
Its own IDE, which stores files in a format that Visual Studio can use

Visual Studio
Xamarin plug-in-based extension to Microsoft Visual Studio

For this example we used the free Community edition of Xamarin Studio. Note that
this edition is only “free” in the sense that you don’t have to pay to license it if you are

19.9 Building a Cross-Platform App with Xamarin | 681

https://www.xamarin.com/download

an indie developer or “small team”; for “enterprise” players, there is a licensing fee.
The underlying mono toolkit is open source on GitHub, but most of the tooling is not
open source.

Installing Xamarin Studio is a bit quirky: it correctly detected that I had the Intel
HAXM emulator installed, but wasn’t able to find the several Android SDK installa‐
tions on my hard drive. Cue up some music to listen to while waiting for the 4 GB
download (see Figure 19-14).

Figure 19-14. Xamarin download

Once the download finished, the installation was standard, and it placed Xamarin in
the standard /Applications folder on macOS. Once run, it offered the choice to start a
new project (“solution”), then to create one of several types of Android applications
(see Figure 19-15).

The next few steps are pretty similar to using a Java IDE: give your application a
name, choose the Java package name, choose a version (see Figure 19-16), click Next,
and then click Finish.

682 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

https://github.com/mono/mono

Figure 19-15. Xamarin creating an Android project

Figure 19-16. Xamarin Android version

Once the project is configured and set up, you will see a fairly standard IDE editing
screen (Figure 19-17).

19.9 Building a Cross-Platform App with Xamarin | 683

Figure 19-17. Xamarin project view

Press the Run button in the top toolbar and Xamarin will start an emulator and run
your application (this took two tries the first time I ran it; the communication seemed
to time out the first time). See Figure 19-18.

Figure 19-18. Xamarin app running

684 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

I did not take the time to learn macOS or Windows Phone UI coding, so this example
doesn’t show the cross-platform aspect of Xamarin, but it does show that you can use
Xamarin Studio to build UI code and build runnable apps with it. A large amount of
documentation and many startup videos and longer examples are available on the
Xamarin website.

19.10 Creating a Cross-Platform App Using PhoneGap/
Cordova
Shraddha Shravagi and Ian Darwin

Problem
You want an application to run on different platforms, such as iOS, Android, Black‐
Berry, Bada, Symbian, and Windows Phone.

Solution
Cordova (better known as PhoneGap) is an open source mobile development frame‐
work. If you plan to develop an application for multiple platforms, PhoneGap is one
good solution—so much so that Oracle and BlackBerry, among others, either endorse
it or base products on it. PhoneGap does not use traditional platform GUI controls;
rather, you write a web page with buttons—made to approximate the native look of
Android (and other platforms) by careful use of CSS—and PhoneGap runs this
“mobile app” for you.

PhoneGap was written by Nitobi, a small company that Adobe Systems Inc. acquired
in fall 2011. Adobe has donated the framework source code to the Apache Software
Foundation, where its development continues under the name “Cordova.” However,
Adobe has continued to develop tooling for it under the name PhoneGap, and says
that “Apache Cordova is… the engine that powers PhoneGap, much like WebKit is
the engine that powers many modern web browsers. It’s the robust tools that sets
PhoneGap apart, including: our command line interface, the PhoneGap Desktop app,
the PhoneGap developer app, and PhoneGap Build.”

Cordova supports many platforms, including Android, iOS, Microsoft Windows (and
Windows Phone), BlackBerry 10, Ubuntu, and (because Cordova apps are web apps)
Firefox, and more. A matrix of supported environments versus features supported on
each is provided on the Cordova website.

Discussion
We will start with an Android application. We don’t use the normal Android layouts,
nor any Java code, nor the notion of “one activity per screen”; instead, we create

19.10 Creating a Cross-Platform App Using PhoneGap/Cordova | 685

https://xamarin.com/
https://xamarin.com/
http://cordova.apache.org/docs/en/latest/guide/support/

HTML and JavaScript files, which can run on different platforms. In fact, the app is
mostly a “mobile web app” that is packaged as an Android app.

There are two slightly different versions of the setup, depending on
whether you want to use the Adobe tooling or the Apache tooling.
We’ll use the latter here.

1. You must have NPM (the Node Package Manager) installed. NPM itself is
command-line based. If it’s not installed, visit the Node.js npm installer and fol‐
low the steps there for major operating systems. Or go straight to Node.js and
download and install Node and npm. As of May 1, 2017, the recommended ver‐
sion is v6.10.2 LTS.
After installation, check it:

$ node -v
 v6.10.2
$

2. Install cordova itself: npm install -g cordova
You either have to do this as root, or arrange to install it in your own directory.
This will run for a long time as it downloads most of the internet: 620 packages at
last check. It will print a tree of the dependencies, looking something like this
(but about 600 lines longer):

$ sudo npm install -g cordova
npm WARN deprecated node-uuid@1.4.8: Use uuid module instead
/usr/local/bin/cordova -> /usr/local/lib/node_modules/cordova/bin/cordova
/usr/local/lib
└└└ cordova@6.5.0
 └└└ cordova-common@2.0.0
 └ └└└ ansi@0.3.1
 └ └└└ bplist-parser@0.1.1
 └ └ └└└ big-integer@1.6.22
 └ └└└ cordova-registry-mapper@1.1.15
 ...
$

3. Create a project and configure it:
$ cd SomePlaceNice
$ cordova create CordovaDemo
Creating a new cordova project.
$ cd CordovaDemo
$ cordova platform add android
Adding android project...
Creating Cordova project for the Android platform:
 Path: platforms/android
 Package: io.cordova.hellocordova
 Name: HelloCordova

686 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

https://www.npmjs.com/package/cordova/tutorial
https://https://nodejs.org/en/

 Activity: MainActivity
 Android target: android-25
Subproject Path: CordovaLib
Android project created with cordova-android@6.1.2
Discovered plugin "cordova-plugin-whitelist" in config.xml. Adding it to the
 project
Fetching plugin "cordova-plugin-whitelist@1" via npm
Installing "cordova-plugin-whitelist" for android
$

4. Run your demo project:
$ cordova run android

If you get the following message:
Error: Could not find gradle wrapper within Android SDK. Might need to update your
 Android SDK.
Looked here: /Users/YOURNAME/android-sdk-macosx/tools/templates/gradle/wrapper

this is because your Android SDK is newer than the cordova you’ve installed
(newer versions no longer feature this templates directory). Try this workaround:

$ cordova platform update android@6.2.1
Updating android project...
Subproject Path: CordovaLib
Android project updated with cordova-android@6.2.1

And try the run again:
$ cordova run android
ANDROID_HOME=/Users/ian/android-sdk-macosx
JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0.jdk/Contents/Home
Starting a Gradle Daemon (subsequent builds will be faster)
:wrapper
BUILD SUCCESSFUL
Total time: 10.935 secs
Subproject Path: CordovaLib
Starting a Gradle Daemon (subsequent builds will be faster)
Download https://jcenter.bintray.com/com/android/tools/build/gradle/2.2.3/
 gradle-2.2.3.pom
Download https://jcenter.bintray.com/com/android/tools/build/gradle-core/2.2.3/
 gradle-core-2.2.3.pom
Download https://jcenter.bintray.com/com/android/tools/build/builder/2.2.3/
 builder-2.2.3.pom
Download https://jcenter.bintray.com/com/android/tools/lint/lint/25.2.3/
 lint-25.2.3.pom

Again, it may take a time-out to download another half of the Internet.
Finally it should end up building an APK: CordovaDemo/platforms/android/build/
outputs/apk/android-debug.apk

It will run it if there is an emulator running or a device connected that’s usable by
ADB, or else it will error out at this point.

5. You can build your app for any of the other supported applications just by using
cordova platform add platname followed by cordova run platname.

19.10 Creating a Cross-Platform App Using PhoneGap/Cordova | 687

6. Now that the structure is in place, you can build out your JavaScript application,
starting with the “main program” web page file www/index.html and JavaScript file
www/js/index.js. That is not detailed here since this is not a JavaScript book, but
we’ll give a brief example.
In the body of this HTML page, change the h1 element to read:

 <h1> Hello World </h1>

You can add all your HTML/jQuery mobile code in the div element named app
in the HTML file. For example, to add a button:

<a data-role="button" data-icon="grid" data-theme="b"
 onClick="showAlert()">
 Click Me!!!

7. In this JavaScript file you can add all your jQuery mobile and JavaScript code:
function showAlert() {
 alert('Hello World from Cordova using JavaScript!!! ');
}

That’s it. You should be able to run the application.

See Also
http://cordova.apache.org/ is the current home page for the Apache Cordova project.

http://phonegap.com/ is the current home page for the Adobe PhoneGap tooling for
Cordova.

Also, Building Android Apps with HTML, CSS, and JavaScript by Jonathan Stark
(O’Reilly) gives slightly older PhoneGap-centric coverage of these “background” tech‐
nologies as well as more information on PhoneGap development.

Source Download URL
The source code for this example is in the Android Cookbook repository, in the sub‐
directory CordovaDemo (see “Getting and Using the Code Examples” on page 18).

688 | Chapter 19: All the World’s Not Java: Other Programming Languages and Frameworks

http://cordova.apache.org/
http://phonegap.com/
https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 20

All the World’s Not English: Strings
and Internationalization

“All the world’s a stage,” wrote William Shakespeare. But not all the players on that
great and turbulent stage speak the great Bard’s native tongue. To be usable on a
global scale, your software needs to communicate in many different languages. The
menu labels, button strings, dialog messages, title bar/action bar titles, and error mes‐
sages must be settable to the user’s choice of language. This is the topic of internation‐
alization and localization. (Because the words “internationalization” and “localization”
take a long time to say and write, they’re often abbreviated using their first and last
letters and the count of omitted letters: I18N and L10N.)

If you’ve got your strings in a separate XML file, as we advised in Chapter 1, you have
already done part of the work of internationalizing your app. Aren’t you glad you fol‐
lowed our advice?

Android provides a Locale class to discover/control the internationalization settings.
A default Locale is inherited from the user’s language settings when your app starts up.
As a best practice, your app should never ask the users to choose a language, because
they’ll already have chosen one when setting up the device.

Note that if you know internationalization from desktop Java, it’s pretty much the
same here. We’ll explain as we go along, with examples, in this chapter.

Ian’s basic steps: Internationalization
Internationalization and localization consist of:

Sensitivity training (internationalization or I18N)
Making your software sensitive to the issues introduced in the first paragraph of
this recipe.

689

Language lessons (localization or L10N)
Writing text mapping files for each language.

Culture lessons (optional)
Customizing the presentation of numbers, fractions, dates, and message format‐
ting. Images and colors, for example, can mean different things in different cul‐
tures.

This chapter’s recipes provide examples of doing all three.

See also
Wikipedia has a good article on internalization and localization. See also Java Interna‐
tionalization by Andy Deitsch and David Czarnecki (O’Reilly).

Microsoft’s The GUI Guide: International Terminology for the Windows Interface was,
despite the title, less about UI design than about internationalization; it came with a
3.5-inch floppy disk holding suggested translations of common Microsoft Windows
GUI element names into a dozen or so common languages. This book is rather dated
today, but it might be a start for translating simple texts into some common lan‐
guages. It can often be found on the usual used-book websites.

20.1 Internationalizing Application Text
Ian Darwin

Problem
You want the text of your buttons, labels, and so on to appear in the user’s chosen
language.

Solution
Create or update the file strings.xml in the res/values subdirectory of your application.
Translate the string values into the given language.

Discussion
Every Android project created with the SDK has a file called strings.xml in the res/
values directory. This is where you are advised to place your application’s strings,
from the application title through to the button text and even down to the contents of
dialogs. You can refer to a string by name in the following two ways:

• By a reference in a layout file, to apply the correct version of the string directly to
a GUI component; for example, android:text="@string/hello"

690 | Chapter 20: All the World’s Not English: Strings and Internationalization

https://en.wikipedia.org/wiki/Internationalization_and_localization
http://www.amazon.com/dp/1556155387

• If you need the value in Java code, by using a lookup such as
getString(R.string.hello) to look up the string’s value from the file

To make all of these strings available in a different language, you need to know the
correct ISO-639 language code; a few common ones are shown in Table 20-1.

Table 20-1. Common languages and codes
Language Code
Chinese (traditional) cn-tw

Chinese (simplified) cn-zh

English en

French fr

German de

Italian it

Japanese jp

Spanish es

With this information, you can create a new subdirectory, res/values-LL (where LL is
replaced by the ISO language code). In this directory you create a copy of strings.xml,
and in it you translate the individual string values (but not the names). For example, a
simple application might have the following in strings.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MyAndroid</string>
 <string name="hello">Hello Android</string>
</resources>

You might create res/values-es/strings.xml containing the following Spanish text (see
Figure 20-1):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MiAndroid</string>
 <string name="hello">Hola Android</string>
</resources>

You might also create the file res/values-fr/strings.xml containing the following French
text:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Bonjour Android</string>
 <string name="app_name">MonAndroid</string>
</resources>

Note that the order of entries within this file does not matter.

20.1 Internationalizing Application Text | 691

Now when you look up the string "hello" using either of the methods described ear‐
lier, you will get the version based on the user’s language choice. If the user selects a
language that you don’t have a L10N file for, the app will still work, but it will get the
value from the default file—the one in the values directory with no language code.

This lookup is done per string, so if there is a string that’s not defined in a language-
specific file, the app will find the version of it in the default strings.xml file.

Is it really that simple?
Yes. Just package your application and deploy it as usual. Go into the Settings app of
your emulator or device, choose Language, select French or Spanish, and the program
title and window contents should reflect the change (Figure 20-1).

Figure 20-1. Hello app in Spanish

You just have to remember to keep all the versions of strings.xml in sync with the
“master” copy.

Regional variants
OK, so it’s not quite that simple. There are also regional variations within a language.
In English there are, for example, UK English (a.k.a. “the real thing” to some, or “the
Queen’s/King’s English”), US English, Canadian, Australian, and so on. These, fortu‐
nately, have tended to use the same vocabulary for technical terms, so using the

692 | Chapter 20: All the World’s Not English: Strings and Internationalization

regional variations is not as important for English. On the other hand, French and
Spanish, to name two that I am familiar with, are languages where there is significant
variation in vocabulary from one region to another. Parisian French and Canadian
French have used different vocabularies for many words coined since the 1500s, when
the exodus to Canada began. The many Spanish colonies were likewise largely iso‐
lated from hearing and reading one another’s words for hundreds of years—from the
time of their founding until the age of radio—and they have diverged even more than
French. So you may want to create “variant” files for these languages, as for any other
that has significant regional variation.

Android’s practice here diverges slightly from Java’s, in that Android uses a letter r to
denote regional variations; for example, you’d create a directory named values-fr-rCA
for Canadian French. Note that, as in Java, language codes are in lowercase and varia‐
tions (which are usually the two-letter ISO 3166-1 alpha-2 country codes) are written
in capital letters (except for the leading r). So, for example, we might wind up with
the set of files listed in Table 20-2.

Table 20-2. L10N directory examples
Directory Meaning
values English - default

values-es Spanish - Castilian, generic

values-es-rCU Spanish - Cuban

values-es-rCL Spanish - Chilean

values-fr French - generic

values-fr-rCA French - Canadian

See Also
There is a bit more detail in the official Android localization documentation.

20.2 Finding and Translating Strings
Ian Darwin

Problem
You need to find all the strings in your application, internationalize them, and trans‐
late them.

Solution
Use one of the several good tools for finding string literals, as well as collaborative
and commercial services that translate text files.

20.2 Finding and Translating Strings | 693

https://developer.android.com/guide/topics/resources/localization.html

Discussion
Suppose you have a mix of old and new Java code in your app; the new code was writ‐
ten specifically for Android, while the older code may have been used in some other
Java environment. You need to find every string literal, isolate them into a Strings.xml
file, and translate it into any necessary languages.

Current versions of Android Studio and Eclipse plug-ins will warn about strings that
are not internationalized, when you use them inside your app. Android Lint (see
Recipe 3.13) will do a stronger job of this.

The Android Localizer from ArtfulBits is a free and open source tool that you can use
to handle both finding and translating strings.

Imagine a slightly different scenario: suppose your organization has a “native”
(Objective-C) application from iOS and you are building the “native” Java version for
Android. Here, the properties files are in very different formats—on iOS there is a
Java properties-like file, but with the default (probably English) strings on the left and
the translations on the right. No names are used, just the actual strings, so you might
find something like the following:

You-not us-are responsible=You-not us-are responsible

You cannot translate this directly into XML, since the “name” is used as an identifier
in the generated R (Resources) class, and the hyphen (-) and straight quotes (") charac‐
ters are not valid in Java identifiers. Doing it manually, you might come up with
something like this:

<string name="you_not_us_are_responsible">You-not us-are responsible</string>

Stack Overflow user johnthuss has developed a version of a Java program that per‐
forms such translations from iOS to Android format, handling characters that are not
valid identifiers.

Now you are ready to begin translating your master resource file into other lan‐
guages. While it may be tempting to scrimp on this part of the work, it is generally
worthwhile to engage the services of a professional translation service skilled in the
particular language(s) you target. Google offers an outsourced translation service
through the Google Play Developer Console. Alternatively, you may wish to investi‐
gate the commercial collaborative translation service Crowdin.

When using any third-party translation service, especially for languages with which
you or your staff are not personally “first or second childhood language” familiar, you
should get a second opinion. Embarrassing errors in software shipped with “bad”
translations can be very expensive.

A quick web search will find many commercial services that will perform translations
for you, as well as some that can help with the internationalization part of the work.

694 | Chapter 20: All the World’s Not English: Strings and Internationalization

http://artfulbits.com/products/free/ailocalizer.aspx
http://stackoverflow.com/questions/3141118/are-there-any-tools-to-convert-an-iphone-localized-string-file-to-a-string-resou/5838915#5838915
http://stackoverflow.com/questions/3141118/are-there-any-tools-to-convert-an-iphone-localized-string-file-to-a-string-resou/5838915#5838915
https://crowdin.com/page/android-localization

20.3 Handling the Nuances of strings.xml
Daniel Fowler

Problem
On most occasions, entering text in the strings.xml file is easy enough, but sometimes
peculiar results crop up.

Solution
Understanding how some text strings and characters work in strings.xml will prevent
strange results.

Discussion
When some text is required on a screen, it can be declared in a layout file, as shown
in the following android:text attribute:

<TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is text"/>

The text can also be set in code:
TextView tview = (TextView) findViewById(R.id.textview1);
tview.setText("This is text");

However, hardcoding strings like this is not recommended, because it reduces main‐
tainability. Changing text at a later date may mean hunting down declarations across
several Java source files and layout files. Instead, text in a project can be centralized
into a strings.xml file. The file is located in the project’s res/values folder. Centralizing
text means that, if you need to change it, you only need to do so in one place. It also
makes localization much easier (see Recipe 20.1}. Here is an example of a strings.xml
file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Strings XML</string>
 <string name="text1">This is text</string>
 <string name="text2">And so is this</string>
</resources>

To access the declared string from another project’s XML file, use @string/

<string_name>. Using the preceding example, the text for two TextViews is set with the
following layout XML file:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"

20.3 Handling the Nuances of strings.xml | 695

 android:layout_height="fill_parent">
 <TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/text1"
 android:textSize="16dp"/>
 <TextView android:id="@+id/textview2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/text2"
 android:textSize="16dp"/>
</LinearLayout>

When the strings.xml file is saved in the IDE, the R.string class is generated (see R.java
in the generated sources folder for the project). This provides a static int that can be
used to reference the string in code:

tview = (TextView) findViewById(R.id.textview1);
 tview.setText(R.string.text1);

The R class should never be edited, because it is generated by the SDK and any
changes you do make will be overwritten. In Android Studio the text attribute of a
textual View object can be accessed via the Properties pane. The ellipsis button to the
right of the name field allows an existing resource to be chosen or a new one gener‐
ated (see Figure 20-2).

Figure 20-2. Assigning a string resource to the Text property of a View

In the strings.xml file, an entry can duplicate another string by referencing it the same
way as a layout file:

<string name="text1">This is text</string>
<string name="text2">@string/text1</string>

This results in:

696 | Chapter 20: All the World’s Not English: Strings and Internationalization

Since @ is used to indicate another string resource, trying to set the text to a single @
using <string name="text1">@</string> will not work. Nor will text that starts with an @,
such as <string name="text2">@mytwittername</string>:

The first @ needs to be escaped with a \ (backslash), as in \@ and \@mytwittername:

If the @ does not start a string or is being set in code, it does not need to be escaped;
you can use android:text=Twitter:@mytwittername or tview.setText("@mytwittername");, for
example. This problem of @ as the first character, or only character, also applies to
the ? (question mark). If it appears at the start of a string, it also needs escaping, as in
android:text=\?. An alternative to escaping the @ or ? is to use quotes (speech marks);
the closing quote mark is optional:

<string name="text1">"@"</string>
<string name="text2">"?"</string>

In fact, any number of quotes and any whitespace before and after the text will be
dropped. The two lines in the preceding code snippet produce an identical result to
these two lines:

<string name="text1">""""""""""@"""""""</string>
<string name="text2"> "?" </string>

There is, however, a character for which this approach will not work:

20.3 Handling the Nuances of strings.xml | 697

<string name="text1">War & Peace</string>
<string name="text2">War and Peace</string>

The first line will result in an error because of the &. This is because of the XML file
format itself. XML requires balanced pairs of tags—for example, <string> and </string>
—and each start tag and end tag is enclosed in opening (<) and closing (>) angle
brackets. Once a start tag is encountered, the editor is on the lookout for the opening
bracket of the end tag. This produces a problem if the content of the XML tags con‐
tains the open angle bracket itself:

<string name="question">Is 5 < 6?</string>

This will not work. The solution is to use an XML internal entity; this is similar to
using an escape character but is in a specific format for XML. The format is an
ampersand, &, followed by the entity name and then a semicolon. For the open angle
bracket, or less-than symbol, the name is lt, and therefore the full entity is < as in:

<string name="question">Is 5 < 6?</string>

Depending on what is required in an XML file at a particular point, there are five
internal entities defined for XML that can be used, as this table shows:

Entity Name Usage
The left angle bracket (<) lt <

The right angle bracket (>) gt >

The ampersand (&) amp &

The single quote or apostrophe (') apos '

The double quote (") quot "

Now we can see why the ampersand causes us a problem. It is used to define an inter‐
nal entity, and thus when one is required, the amp entity itself must be used. Therefore,
<string name="text1">War & Peace</string> becomes <string name="text1">War &

Peace</string>:

However, the XML internal entity apos, while valid for XML, is reported as an error
when the file is saved:

<string name="text1">This isn't working</string>
<string name="text2">This isn't working either</string>

This is another character that requires escaping or wrapping in quotes:

698 | Chapter 20: All the World’s Not English: Strings and Internationalization

<string name="text1">This\'ll work</string>
<string name="text2">"This'll work as well"</string>

To use quotes (speech marks) themselves—even the XML internal entity version—
escape them:

<string name="text1">Quote: \"to be, or not to be\"</string>
<string name="text2">Quote: \"to be, or not to be\"</string>

Either form will work, so these two lines display identically:

When defining a string that requires space before or after it, again use quotes:
<string name="text1"> No spaces before and after </string>
<string name="text2">" Two spaces before and after "</string>

The strings will support a newline by escaping the letter n:
<string name="text1">Split over\ntwo lines</string>
<string name="text2">2 TextViews\n4 Lines</string>

Escaping a t adds a tab to the defined string:
<string name="text1">Tab stops\ta\t\tb</string>
<string name="text2">\t\t\t\tc\t\td</string>

To see the escape character (backslash), use two of them:
<string name="text1">Backlash:\\</string>
<string name="text2">Slash:/</string>

20.3 Handling the Nuances of strings.xml | 699

The android:textstyle attribute of a TextView in a layout file can be used to set the text
to bold or italic (or both):

android:textStyle="bold"
android:textStyle="italic"
android:textStyle="bold|italic"

This can be achieved in the strings.xml file using a bold () or italic (<i>) tag. It also
supports an underline tag (<u>). However, instead of applying the formatting to the
whole text of the TextView, it can be used for individual portions of the text:

<string name="text1">Hey look:bold and <i>italic</i>.</string>
<string name="text2">And look: <u>underline</u> and <i><u>bold
 italic underline
</u></i>.</string>

This results in:

See Also
The developer documentation on string resources.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory StringsXML (see “Getting and Using the Code Examples” on page 18).

700 | Chapter 20: All the World’s Not English: Strings and Internationalization

https://developer.android.com/guide/topics/resources/string-resource.html
https://github.com/IanDarwin/Android-Cookbook-Examples

CHAPTER 21

Packaging, Deploying, and
Distributing/Selling Your App

The success of Android has led to a proliferation of application markets. But the offi‐
cial Google Play Store remains the largest marketplace for distributing your app, so
we will cover that here, along with information on preparing your app, making it
harder to reverse-engineer, and other information you may need along the way.

21.1 Creating a Signing Certificate and Using It to Sign
Your Application
Zigurd Mednieks

Problem
You want to publish an application, and you need a “signing key” to complete the
process. You then want to sign your application prior to uploading it to the Google
Play Store.

Solution
Use the standard JDK tool keytool to generate a self-signed certificate. An APK file is a
standard Java Archive (JAR) file, so you just use the standard JDK tool jarsigner.

Discussion
Google has stated that one of its intentions with Android was to minimize the hassle
of getting applications signed. You don’t have to go to a central signing authority to
get a signing certificate; you can create the certificate yourself. Once you generate the

701

certificate, you can sign your application using the jarsigner tool that comes with the
Java JDK. Once again, you don’t need to apply for or get anyone’s approval. As you’ll
see, it’s about as straightforward as signing can be.

In this recipe, we are going to create an encrypted signing certificate and use it to sign
an application. You can sign every Android application you develop with the same
signing certificate. You can create as many signing certificates as you want, but you
really only need one for all your applications. And using one certificate for all your
applications lets you do some things that you couldn’t do otherwise:

Simplify upgrades
Signing certificates are tied to the application package name, so if you change the
signing certificate you use with subsequent versions of your application, you’ll
have to change the package name, too. Changing certificates is manageable, but
messy.

Run multiple applications per user ID
When all your applications share the same signing certificate, they can run in the
same Linux process. You can use this to separate your application into smaller
modules (each one an Android application) that together make up the larger
application. If you were to do that, you could update the modules separately and
they could still communicate freely.

Share code/data
Android lets you enable or restrict access to parts of your application based on
the requester’s signing certificate. If all your applications share the same certifi‐
cate, it’s easy for you to reuse parts of one application in another.

When you generate a key pair and certificate, you’ll be asked for the validity period
you desire for the certificate. Although usual practice in website development is to
use 1 or 2 years, Google recommends that you set the validity period to at least 25
years, and in fact, if you’re going to use the Google Play Store to distribute your appli‐
cation, it requires that your certificate be valid at least until October 22, 2033 (25
years to the day from when Google opened the Play Store, then known as the
Android Market).

Generating a key pair (public and private keys) and a signing certificate
To generate a pair of public/private keys, use a tool called keytool, which came with
the Sun JDK when you installed it onto your development computer. keytool asks you
for some information and uses that to generate the pair of keys:

• A private key that will be kept in a keystore on your computer, secured with pass‐
words. You will use this key to sign your application, and if you need a Maps API
key for your application, you will use the MD5 fingerprint of the signing certifi‐
cate to generate that key.

702 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

• A public key that Android can use to decrypt your signing certificate. You will
send this key along with your published application so that it can be made avail‐
able in the runtime environment. Signing certificates are actually checked only at
install time, so once installed your application is good to run, even if the certifi‐
cate or keys expire.

keytool is pretty straightforward. From your operating system’s command line, enter
something like the following:

$ keytool -genkey -v -keystore myapp.keystore -alias myapp -keyalg RSA
 -validity 10000

This asks keytool to generate a key pair and self-signed certificate (-genkey) in verbose
mode (-v), so you get all the information, and put it in a keystore called myapp.keystore
(-keystore). It also says that in the future you want to refer to that key by the name
myapp (-alias), and that keytool should use the RSA algorithm for generating public/
private key pairs (-keyalg). Finally, it says that you’d like the key to be valid for 10,000
days (-validity), or about 27 years.

keytool will prompt you for some information it uses to build the key pair and certifi‐
cate:

• A password to be used in the future when you want to access the keystore
• Your first and last names
• Your organizational unit (the name for your division of your company, or some-

thing like “self ” if you aren’t developing for a company)
• Your organization’s name (the name of your company, or anything else you want

to use)
• The name of your city or locality
• The name of your state or province
• The two-letter country code where you are located

keytool will then echo all this information back to you to make sure it’s accurate, and
if you confirm the information it will generate the key pair and certificate. It will then
ask you for another password to use for the key itself (and give you the option of
using the same password you used for the keystore). Using that password, keytool will
store the key pair and certificate in the keystore.

Signing your application
Having created a key pair, and a Maps API key if needed, you are almost ready to sign
your application—but first you need to create an unsigned version that you can sign
with your digital certificate. To do that, in the Package Explorer window of Eclipse,
right-click your project name. You’ll get a long pop-up menu; toward the bottom,

21.1 Creating a Signing Certificate and Using It to Sign Your Application | 703

click Android Tools. You should see another menu that includes the item you want:
Export Unsigned Application Package. This item takes you to a dialog box where you
can pick a place to save the unsigned version of your APK file. It doesn’t matter where
you put it, just pick a spot you can remember.

Now that you have an unsigned version of your APK file, you can go ahead and sign
it using jarsigner. Open a terminal or command window in the directory where you
stored the unsigned APK file. To sign MyApp, using the key you generated earlier,
enter this command:

$ jarsigner -verbose -keystore myapp.keystore MyApp.apk myapp

You should now have a signed version of your application that can be loaded and run
on any Android device. But before you send it in to the Google Play Store, there’s one
more intervening step: you have rebuilt the application, so you must test it again, on
real devices. If you don’t have a real device, get one. If you only have one, get more, or
make friends with somebody who owns a device from a different manufacturer.

Note that in the current version of the IDE, there is an Export Signed Application
Package option that will allow you to create the keys and sign your application all
from one wizard. This option is available in the project’s context menu in the
Android Tools submenu and also in the File menu under Export, where it is known
simply as Export Android Project.

This action is so convenient that it probably makes it more likely
that you will forget where you put the keystore. Don’t do that! In
fact, you must not lose either your keystore file or the keyphrase
used to unlock it, or you will never be able to update your applica‐
tion. There is no recovery from this failure mode; it is not possible
to reverse-engineer your key from your application (or else the bad
guys would be able to do it, and install malware versions of your
app!).

See Also
If you’re not familiar with the algorithms used here, such as RSA and MD5, you don’t
actually need to know much. Assuming you’ve a modicum of curiosity, you can find
out all you need to know about them with any good web search engine.

You can get more information about security, key pairs, and the keytool utility on the
Java website.

704 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/#security
http://docs.oracle.com/javase/1.5.0/docs/tooldocs/#security

21.2 Distributing Your Application via the Google Play
Store
Zigurd Mednieks

Problem
You want to give away or sell your application via Google Play, the app store formerly
known as Android Market.

Solution
Submit your app to the Google Play Store.

Discussion

The original Android Market was combined with Google Books
and other services to create the Play Store shortly after the first edi‐
tion of this book went to press.

After you’re satisfied that your application runs as expected on real Android devices,
you’re ready to upload it to the Play Store, Google’s service for publishing and down‐
loading Android applications. The procedure is pretty straightforward:

1. Sign up as an Android developer (if you haven’t done so already).
2. Upload your signed application.

Signing up as an Android developer
Go to Google’s website, and fill out the forms provided. You will be asked to:

• Use your Google account to log in (if you don’t have a Google account, you can
get one for free by following the Create Account link on the login page),

• Agree to the Google Play Developer distribution agreement.
• Pay a one-time fee of $25 (payable by credit card via Google Checkout; again, if

you don’t have an account set up, you can do so quickly).
• If the game is being charged for, specify your payment processor (again, you can

easily sign up for a Google Payments account).

21.2 Distributing Your Application via the Google Play Store | 705

https://play.google.com/apps/publish

The forms ask for a minimal amount of information—your name, phone number,
and so on. Once you provide that info, you’re signed up.

Uploading your application
Now you can upload your application. To identify and categorize your application,
you will be asked for the following:

Application APK filename and location
This refers to the APK file of your application, signed with your private signing
certificate.

Title and description
These are very important, because they are the core of your marketing message to
potential users. Try to make the title descriptive and catchy, and describe the
application in a way that will make your target market want to download it.

Application type
There are currently two choices: Applications or Games.

Category
The list of categories varies depending on application type. The currently avail‐
able categories for apps include items such as Business, Communications, Educa‐
tion, Entertainment, Finance, Lifestyle, Maps & Navigation, Productivity, Shop‐
ping, Social, Tools, Travel & Local, Video Players & Editors, and Weather. For
games, the available categories include Action, Arcade, Card, Casino, Puzzle,
Role Playing, Sports, and more.

Price
This can be Free or a fixed price. Refer to the agreement you agreed to earlier to
see what percentage you actually get to keep.

Distribution
You can limit where your application is available, or make it available every‐
where.

Finally, you are asked to confirm that your application meets the Android Content
Ratings Guidelines and that it does not knowingly violate any export laws. After that,
you can upload your APK file, and within a few hours your application will appear on
the Google Play online catalog, accessible from any connected Android device. To
view your application, just open Google Play on your device and use its Search box,
or load in the device’s browser a file with a URL of the form market://details?
id=com.yourorg.yourprog, but with your application’s actual package name. You can
also visit the Play Store in a desktop browser and view your app’s details page.

706 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

https://play.google.com/apps/publish
https://play.google.com/

Then what?
Sit back and watch the fame or money—and the support emails—roll in. Be patient
with end users, for they do not think as we do.

21.3 Distributing Your Application via Other App Stores
Ian Darwin

Problem
There are many Android stores now. Where should you publish your app?

Discussion
To use any “unofficial” source, the user will have to enable “Unknown sources” in the
Settings app, which comes with a security warning. “Unofficial source” means an app
store that is not shipped by default with the device. For the vast majority of devices,
Google Play is the official store. However, for Amazon Kindle devices, Google Play is
not even available, and the Amazon Appstore is the only official app store. Black‐
Berry maintains its own market as well, also without Google Play. There may be some
other devices that ship with a different app store, particularly in Asia. Google does a
really good job of vetting apps for security problems; it is not known to what extent
these other stores do so (well, actually it is, but we can’t say it here; just do a web
search for which app stores have the worst security track record).

Apps using Google Maps or other Google Play Services will not
succeed in marketplaces that do not support Google Play.

From a developer point of view, you of course want to reach as many consumers as
possible, so getting your app into multiple stores makes sense. Google Play and the
Amazon Appstore are the two largest stores, so start there. To get your app into one
of the others, start with the URL from Table 21-1, look at the store carefully, and see if
you want to be associated with it. If so, look around for the “developer” or “partner”
or “publisher” link, and sign up.

Table 21-1. The Main Android app stores
Name Comments URL
Google Play Formerly Android Market https://play.google.com/apps/

Amazon Appstore Most Android apps can run unchanged https://developer.amazon.com/apps-and-games

Barnes & Noble Discontinued N/A

21.3 Distributing Your Application via Other App Stores | 707

https://play.google.com/apps/
https://developer.amazon.com/apps-and-games

Name Comments URL
BlackBerry World Most Android apps run unchanged https://appworld.blackberry.com

F-Droid Free (open source) apps only! https://f-droid.org/

GetJar Not limited to Android http://www.getjar.com/

Samsung Galaxy Apps Included in Galaxy devices http://www.samsung.com/global/galaxy/apps/galaxy-apps/

SlideME http://slideme.org/

See Also
Table 21-1, although focused only on the major stores, will probably always be out of
date, but updates are welcome. A web search on “alternative android market” will
find some smaller/newer app stores. A fairly comprehensive list can be found on the
AlternativeTo website.

21.4 Monetizing Your App with AdMob
Enrique Diaz, Ian Darwin

Problem
You want to monetize your free app by showing advertisements within it.

Solution
Using AdMob libraries, you can display ads in your free app, getting money each time
a user taps/clicks an ad.

Discussion
AdMob, which is owned by Google, is one of the world’s largest mobile advertising
networks. You can get more information and download the SDK for various plat‐
forms from the AdMob website.

The AdMob Android SDK contains the code necessary to install AdMob ads in your
application.

You can manually perform all the steps involved in integrating AdMob, but it’s easier
to let Android Studio add the code for you. Just create a project whose main Activity
already includes the AdMob code, or add an AdMob Activity to your existing app.
Figure 21-1 shows how to select the AdMob Activity.

708 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

https://appworld.blackberry.com
https://f-droid.org/
http://www.getjar.com/
http://www.samsung.com/global/galaxy/apps/galaxy-apps/
http://slideme.org/
http://alternativeto.net/software/android-market/
http://alternativeto.net/software/android-market/
https://www.google.com/admob/

Figure 21-1. Creating the AdMob Activity

Figure 21-2 shows how to customize the Activity. The main choice that’s ad-specific is
the Ad Format. You can choose from one of the following (only the first two are sup‐
ported in this AdMob Activity wizard):

Interstitial
Interstitial means “in the spaces between.” Interstitial ads appear in their own
Activity so they cover up the rest of the app, forcing the user to interact.

Banner
Banner ads appear at the top or bottom of the regular Activity; the user is more
free to ignore them.

Video
These are videos that play to drive the user to the advertiser’s site.

Native
These are graphics that are placed inside your Activity; supported with Firebase
AdMob integration.

21.4 Monetizing Your App with AdMob | 709

Figure 21-2. Configuring the Activity

Since the code is different for each type of ad, and because interstitials are usually
more profitable (even though they are more annoying), this recipe will just show the
interstitial type.

In this example, the New Activity wizard creates an app with two Activity classes, one
that simulates a game with multiple levels, and another that shows the actual ads (ini‐
tially a dummy ad) so you can get on with developing the rest of your application.
Notice the following Toast text:

public class MainActivity extends Activity {
 // Remove the following line after defining your own ad unit ID
 private static final String TOAST_TEXT = "Test ads are being shown. "
 + "To show live ads, replace the ad unit ID in "
 + "res/values/strings.xml with your own ad unit ID.";

The string TOAST_TEXT is displayed in the sample application; you can remove it after
you’ve installed your real application key, as discussed later in this recipe.

This basic Activity will work out of the box, as shown in the first image of
Figure 21-3. When the user presses the Next Level button, the ad is imposed on the
screen ahead of the next-level Activity, as shown in the second image of Figure 21-3.
The user can either press the X in the upper left to ignore the ad and go on to the next
level (third image), or tap anywhere in the ad and get taken to the ad’s website (fourth
image).

710 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

Figure 21-3. AdMob basic Activity running

21.4 Monetizing Your App with AdMob | 711

If you’d rather perform all the steps by hand, here’s a brief summary:

1. Add the Google Play “Ad Services” dependency (com.google.android.gms:play-
services-ads:10.0.1) to your build file.

2. Add an AdActivity to your AndroidManifest.xml file.
3. Add the INTERNET and ACCESS_NETWORK_STATE permissions to your AndroidMani‐

fest.xml file.
4. Add a field of type InterstitialAd to your main Activity.
5. Add code to instantiate the InterstitialAd, configure it, and load it in the back‐

ground with a listener to record completed loading (see Example 21-1).

Example 21-1. Code from main Activity to manage interstitial ad

 // In onCreate():
 mInterstitialAd = newInterstitialAd();
 loadInterstitial();

 // Method to get a new ad
 private InterstitialAd newInterstitialAd() {
 InterstitialAd interstitialAd = new InterstitialAd(this);
 interstitialAd.setAdUnitId(getString(R.string.interstitial_ad_unit_id));
 interstitialAd.setAdListener(new AdListener() {
 @Override
 public void onAdLoaded() {
 mNextLevelButton.setEnabled(true);
 }

 @Override
 public void onAdFailedToLoad(int errorCode) {
 mNextLevelButton.setEnabled(true);
 }

 @Override
 public void onAdClosed() {
 // Proceed to the next level
 goToNextLevel();
 }
 });
 return interstitialAd;
 }

 private void showInterstitial() {
 // Show the ad if it's ready; otherwise toast and reload the ad
 if (mInterstitialAd != null && mInterstitialAd.isLoaded()) {
 mInterstitialAd.show();
 } else {
 Toast.makeText(this, "Ad did not load", Toast.LENGTH_SHORT).show();
 goToNextLevel();
 }

712 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

 }

 private void loadInterstitial() {
 // Disable the next level button and load the ad
 mNextLevelButton.setEnabled(false);
 AdRequest adRequest = new AdRequest.Builder()
 .setRequestAgent("android_studio:ad_template").build();
 mInterstitialAd.loadAd(adRequest);
 }

For this code to compile, you must also provide the goToNextLevel() method, which is
highly application-dependent, but should at least have these two calls:

 mInterstitialAd = newInterstitialAd(); // Get the next ad to be displayed
 loadInterstitial(); // Start the ad loading

When your application is complete and you are ready to ship it and display ads and
generate revenue, you must open an AdMob account, which in turn requires an
AdWords account. To get these accounts, go to https://admob.com, click the signup
button, and follow the steps to create an account and set up an Android interstitial
ad.

When you have your “ad unit” set up, copy and paste the “Ad Unit ID”—a long string
that begins with ca-app-pub-—over top of the fake one ("ca-app-pub-
3940256099942544/1033173712") in the provided strings.xml.

This string resource can be put into a file all by itself, so that if you
are sharing your source code you can choose whether to give out
your map key along with the code.

Note that even with a live ID, the software will always show fake test ads when run on
the emulator. Also, do not click live ads, as that would generate false pay-per-click sta‐
tistics and can result in suspension of your AdMob account.

See Also
There is much more to AdMob, including other types of ads, monitoring, Firebase
integration, and more. See the website for details on these topics.

For more on interstitial ads and the Firebase integration, see the Firebase documenta‐
tion. For a comparison of mobile ad options, see Brittany Fleit’s blog post on the
topic. You may also want to join AdMob Publisher Discuss, the official support forum
for AdMob.

21.4 Monetizing Your App with AdMob | 713

https://admob.com
https://admob.com
https://firebase.google.com/docs/admob/android/interstitial
http://blog.kiip.me/developers/mobile-ad-options/
http://blog.kiip.me/developers/mobile-ad-options/
https://groups.google.com/d/forum/admob-publisher-discuss

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory AdMobDemo (see “Getting and Using the Code Examples” on page 18).

21.5 Obfuscating and Optimizing with ProGuard
Ian Darwin

Problem
You want to obfuscate your code, or optimize it for speed or size, or all of the above.

Solution
The optimization and obfuscation tool ProGuard is supported by the build script
provided with the Android New Project Wizard in the IDEs, needing only to be
enabled.

Discussion
Obfuscation of code is the process of trying to hide information (such as compile-
time names visible in the binary) that would be useful in reverse-engineering your
code. If your application contains commercial or trade secrets, you probably want to
obfuscate it. If your program is open source, there is probably no need to obfuscate
the code. You decide.

Optimization of code is analogous to refactoring at the source level, but it usually
aims to make the code either faster, smaller, or both.

The normal development cycle involves compilation to standard Java bytecode and
then conversion to the Android-specific DEX format. DEX is the Dalvik Executable
format (Dalvik being the old version of the Android Runtime). With Eclipse, the
compilation is done by the built-in compiler (Eclipse being a full IDE). With Android
Studio and other tools, a compiler (presumably javac) is invoked as part of the build.
In either case, the Android SDK tool dex or dx is invoked; the current usage clause
from dx explains that it is used to “Convert a set of classfiles into a dex file.” Current
versions of Android Studio provide an alternate build chain called Jack, which sup‐
ports the latest version of Java, Java 8, providing both compilation and translation to
DEX.

714 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

https://github.com/IanDarwin/Android-Cookbook-Examples

ProGuard is Eric Lafortune’s open source, free software program for optimizing and
obfuscating Java bytecode. ProGuard is not Android-specific; it works with console-
mode applications, applets, Swing applications, Java ME midlets, Android applica‐
tions, and just about any type of Java program. ProGuard works on compiled Java
(.class format), so it must be interposed in the development cycle before conversion to
DEX. This is most readily achieved using the standard Java build tool Ant. Most build
chains (see Chapter 1) include support for ProGuard. If using the older ant process,
for example, you only need to edit the file build.properties to include the following
line, which gives the name of the configuration file:

proguard.config=proguard.cfg

When using Maven, the command mvn android:proguard will run ProGuard.

At present it does not appear possible to use ProGuard with the Java 8 compiler Jack
(described in Recipe 1.18).

Configuration file
Regardless of your build process, the actual operation of ProGuard is controlled by
the configuration file (normally called proguard.cfg), which has its own syntax. Basi‐
cally, keywords begin with a - in the first character position, followed by a keyword,
followed by optional parameters. Where the parameters reference Java classes or
members, the syntax somewhat mimics Java syntax to make your life easier. Here is a
minimal ProGuard configuration file for an Android application:

-injars bin/classes
-outjars bin/classes-processed.jar
-libraryjars /usr/local/android-sdk/platforms/android-19/android.jar

-dontpreverify
-repackageclasses ''
-allowaccessmodification
-optimizations !code/simplification/arithmetic

-keep public class com.example.MainActivity

The first section specifies the paths of your project, including a temporary dir3ectory
for the optimized classes.

The Activity class (in this example com.example.MainActivity) must be present in the
output of the optimization and obfuscation process, since it is the main Activity and
is referred to by name in the AndroidManifest.xml file. This would also apply to any
components mentioned by name in AndroidManifest.xml.

21.5 Obfuscating and Optimizing with ProGuard | 715

http://proguard.sourceforge.net/

A full working proguard.cfg file will normally be generated for you by the Eclipse New
Android Project wizard. Example 21-2 is one such configuration file.

Example 21-2. Example proguard.cfg file

-optimizationpasses 5
-dontusemixedcaseclassnames
-dontskipnonpubliclibraryclasses
-dontpreverify
-verbose
-optimizations !code/simplification/arithmetic,!field/*,!class/merging/*

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference
-keep public class com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {
 native <methods>;
}

-keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet);
}

-keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);
}

-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
}

-keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;
}

The prolog is mostly similar to the earlier example. The keep,
keepclasseswithmembernames, and keepclassmembers entries specify particular classes that
must be retained. These are mostly obvious, but the enum entries may not be: the Java 5
enum methods values() and valueOf() are sometimes used with the Reflection API, so
they must remain visible, as must any classes that you access via the Reflection API.

The ILicensingService entry is only needed if you are using Android’s License Valida‐
tion Tool (LVT):

-keep class com.android.vending.licensing.ILicensingService

716 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

See Also
The ProGuard Reference Manual has many more details. There is also information
on optimization in at the Android Studio User Guide. Finally, Matt Quigley has writ‐
ten a helpful article titled “Optimizing, Obfuscating, and Shrinking your Android
Applications with ProGuard” on the Android Engineer Blog.

21.6 Hosting Your App on Your Own Server
Ian Darwin

Problem
While it may not be prudent to host your own email server, you want to host your
own application on a server.

Solution
Just put your APK up on a web server, and get users to download it from the browser
on their devices.

Discussion
You can host an application yourself on your own web server or a web server you can
upload files to. Just install the APK file and tell users to visit that URL in their device’s
browser. The browser will give the usual security warnings, but will usually allow the
user to install the application.

Hopefully most users will be skeptical of the security implications of downloading an
app from some website they’ve never heard of, but for internal-only use, this
approach is simpler than setting up an account on a major app store.

This will be especially interesting to enterprise users where it isn’t necessary or desira‐
ble to put an internal-use application out into a public marketplace like Google Play.

Here is the formula to upload an APK to a web server using scp, the secure copy pro‐
gram (use of the old unencrypted ftp being generally considered hopelessly insecure
in this day and age):

$ scp bin/*.apk testuser@myserver.com:/www/tmp
Enter password for testuser:
ShellCommand.apk 100% 15KB 14.5KB/s 00:00
$

For this example we just reused the ShellCommand APK from Recipe 19.2.

Then you can visit the site in a browser on your device (Chrome, in this example)
and ask for the file by its full URL, e.g., https://myserver.com/tmp/ShellCommand.apk.

21.6 Hosting Your App on Your Own Server | 717

https://www.guardsquare.com/en/proguard/manual/introduction
https://developer.android.com/guide/developing/tools/proguard.html
http://www.androidengineer.com/2010/07/optimizing-obfuscating-and-shrinking.html

You’ll get the expected security warning (see Figure 21-4), but if you click OK, the
app will install.

Figure 21-4. The security warning

Then you can open the app like any other app.

This whole process could be automated by having some other application open an
Intent for the URL, but that begs the question of how you would get that app onto the
users’ devices.

Because it is not in an app store, this app will not get updates automatically. You can
simply tell users to fetch it again, or you can use the fancier technique described in
Recipe 21.7.

21.7 Creating a “Self-Updating” App
Problem
Your app is not in Google Play or another full-featured market, but you still want
users to get updates when you improve the app.

718 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

Solution
You can find the last time your app was updated by use of the package manager. And
you can usually get the last time the APK on the web server was updated just by send‐
ing an HTTP HEAD request. Compare the two timestamps, and if the web file is newer,
open an Intent for the same URI used in the HTTP HEAD, and let the browser handle
things from there.

Discussion
If you are hosting your app yourself, as discussed in Recipe 21.6, you almost certainly
want a way to notify users when you update the app. Sending emails doesn’t scale well
unless you have a scheme for capturing users’ email addresses with each download.
And even then, many users will be too busy to update the app manually. Automating
this task makes sense.

The package manager knows when it last updated the app, and the web server knows
when you last updated the file containing the app. You just have to ask them both and
compare the timestamps. If the web file is newer, you have an install candidate; start
your UpdateActivity to ask the user if it’s OK to update. If she says yes, open the
browser via a URI back to the web server file. For a slightly better experience, send
her to a page about the update. The browser will ultimately prompt the user for the
final install. You will need to convince your users that it’s OK to accept the somewhat
scary warning about installing a non–Play Store app in this way, but they will have
already needed to enable the Settings option to download from unknown sources to
get your app installed in the first place.

This code in the AutoUpdater project uses a background Service (Recipe 4.6) to check
once a day for an updated APK on the web server:

protected void onHandleIntent(Intent intent) {

 Log.d(TAG, "Starting One-time Service Runner");

 /* Now the simple arithmetic: if web package was updated after
 * last time app was updated, then it's time
 * again to update!
 */
 final long appUpdatedOnDevice = getAppUpdatedOnDevice();
 final long webPackageUpdated = getWebPackageUpdated();
 if (appUpdatedOnDevice == -1 || webPackageUpdated == -1) {
 return; // FAIL, try another day
 }
 if (webPackageUpdated > appUpdatedOnDevice) {
 triggerUpdate();
 }
}

public long getAppUpdatedOnDevice() {

21.7 Creating a “Self-Updating” App | 719

 PackageInfo packageInfo = null;
 try {
 packageInfo = getPackageManager()
 .getPackageInfo(getClass().getPackage().getName(),
 PackageManager.GET_PERMISSIONS);
 } catch (NameNotFoundException e) {
 Log.d(TAG, "Failed to get package info for own package!");
 return -1;
 }
 return packageInfo.lastUpdateTime;
}

protected void triggerUpdate() {
 Log.d(TAG, "UpdateService.triggerUpdate()");
 final Intent intent = new Intent(this, UpdateActivity.class);
 intent.setData(Uri.parse("http://" + SERVER_NAME + PATH_TO_APK));
 intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(intent);
}

The code of getWebPackageUpdated() is not shown, but it basically sends a HEAD request
for the same URL handled in triggerUpdate(), and extracts the value of the Last-
Modified header from the HTTP response.

A better way to get the installer to open your file is to save it locally yourself and to
open it via an Intent. The AppDownloader project downloads the API to a local file in
an AsyncTask (Recipe 4.10) and does the following to install the file:

// Do the install
notifyFromBackground("Installing...");
Intent promptInstall = new Intent(Intent.ACTION_VIEW)
 .setDataAndType(Uri.fromFile(outputFile),
 "application/vnd.android.package-archive");
startActivity(promptInstall);

See Also
https://dzone.com/articles/12-dev-tools-to-update-your-app-instantly-skip-the discusses
several other methods for updating your app without going back to the Play market.

21.8 Providing a Link to Other Published Apps in the
Google Play Store
Daniel Fowler

Problem
Your developed app is running on a device; you want a link to your other apps on the
Play Store to encourage users to try them.

720 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

https://dzone.com/articles/12-dev-tools-to-update-your-app-instantly-skip-the

Solution
Use an Intent and a URI that contains your publisher name or the package name.

Discussion
Android’s Intent system is a great way for your application to leverage functionality
that has already been written by other developers. The Google Play application, which
is used to browse and install apps, can be called from an application using an Intent.
This allows an existing app to link to other apps on Google Play, thus allowing app
developers and publishers to encourage users to try their other apps.

To view an app in the Google Play app, the standard Intent mechanism is used, as
described in Recipe 4.1. The uniform resource identifier (URI) used is market://search?
q=search_term, where search_termis replaced with the appropriate text, such as the pro‐
gram name or keyword. The Intent action is ACTION_VIEW.

The URI can also point directly to the Google Play details page for a package by using
market://details?id=package_name, where package_name_ is replaced with the unique
package_name for the app.

The program shown in this recipe (and whose output is shown in Figure 21-5) will
allow a text search of Google Play or show the details page for a given app.
Example 21-3 is the layout.

Example 21-3. The main layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText android:id="@+id/etSearch"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:singleLine="true"/>
 <RadioGroup android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <RadioButton android:id="@+id/rdSearch"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:checked="true"
 android:text="search"
 android:textSize="20sp"/>
 <RadioButton android:id="@+id/rdDetails"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="details"
 android:textSize="20sp"/>
 </RadioGroup>

21.8 Providing a Link to Other Published Apps in the Google Play Store | 721

 <Button android:id="@+id/butSearch"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:text="Search Google Play"/>
</LinearLayout>

An EditText allows entry of the search term, and a RadioButton can be used to choose to
do a straight search or show an app’s details page (provided the full package name is
known). The Button starts the search.

Figure 21-5. Google Play search

The important point to notice in the code shown in Example 21-4 is that the search
term is URL-encoded.

Example 21-4. The main Activity

public class Main extends Activity {
 RadioButton publisherOption; // Option for straight search or details
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 // Search button press processed by inner class HandleClick
 findViewById(R.id.butSearch).setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 String searchText;
 // Reference search input
 EditText searchFor=(EditText)findViewById(R.id.etSearch);
 try {
 // URL encoding handles spaces and punctuation in search term
 searchText = URLEncoder.encode(searchFor.getText().toString(),"UTF-8");
 } catch (UnsupportedEncodingException e) {
 searchText = searchFor.getText().toString();
 }
 Uri uri; // Stores Intent Uri
 // Get search option
 RadioButton searchOption=(RadioButton)findViewById(R.id.rdSearch);
 if(searchOption.isChecked()) {

722 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

 uri=Uri.parse("market://search?q=" + searchText);
 } else {
 uri=Uri.parse("market://details?id=" + searchText);
 }
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 try {
 main.this.startActivity(intent);
 } catch (ActivityNotFoundException anfe) {
 Toast.makeText(main.this, "Please install the Google Play App",
 Toast.LENGTH_SHORT);
 }
 }
 });
 }
}

A straight text search is simply the text appended to the URI market://search?q=. To
search by publisher name use the pub: qualifier; that is, append the publisher’s name
to market://search?q=pub:.

The regular search is not case-sensitive; however, the pub: search qualifier is case-
sensitive. Thus, market://search?q=pub:IMDb returns a result but market://search?q=pub:imdb
does not.

It’s also possible to search for a specific application (if the package name is known) by
using the id: qualifier. So, if an app has a package name of com.example.myapp, the search
term will be market://search?q=id:com.example.myapp. Even better is to go straight to the
app’s details page with market://details?q=id:com.example.myapp. For example, O’Reilly
has a free app, the details of which can be shown using market://details?

id=com.aldiko.android.oreilly.isbn9781449388294.

Figure 21-6 shows the output of the search entered in Figure 21-5.

21.8 Providing a Link to Other Published Apps in the Google Play Store | 723

Figure 21-6. Google Play search results

Using these techniques, it is very easy to put a button or menu option on a screen to
allow users to go directly to other apps that you’ve published.

See Also
The developer documentation on launch checklists.

Source Download URL
The source code for this project is in the Android Cookbook repository, in the sub‐
directory MarketSearch (see “Getting and Using the Code Examples” on page 18).

724 | Chapter 21: Packaging, Deploying, and Distributing/Selling Your App

https://developer.android.com/guide/publishing/publishing.html#marketintent
https://github.com/IanDarwin/Android-Cookbook-Examples

Index

Symbols
.apk files, 57
12-key layout, 137
3D graphics, 230

A
About Face: The Essentials of Interaction

Design (Microsoft), 283
AboutBox class, 385
AbstractCursor class, 472
accelerometers

checking for device position, 636
detecting shaking, 632
unique private key generation using, 631

AccountManager API, 589
acknowledgements, xxi
action bars

creating and controlling, 291
elevation of, 285
Share icons for, 296
vs. Snackbars, 363
soft menu buttons for, 367

action buttons, 306
actionDone, 335
ActionProvider, 296
Active state, 3
Activity class

basics of, 2
changing Activities within tabs, 346
customizing in Android Studio, 26
defining in Android Studio, 26
life cycle of, 3
life-cycle scenarios, 181

ActivityManager, 654

adb logcat command, 171
addMarker(), 613
addresses, geographical coordinates for, 606
addTestProvider, 604
AdMob, 708
advertisements, displaying AdMob, 708
AlertDialog class, 372
alerts (see GUI alerts)
alternate distributions of Android, 6
Amazon Kindle devices, 707
Amazon Market, 707
AndEngine framework, 580
AndMore plug-in

configuring Eclipse with, 39
convert project feature, 53
history of, 16
installing, 44
support for project conversion, 30
upgrading projects from ADT to, 53

Android App Inventor, 657
Android app stores, 707
Android applications

application design, 97-145
application distribution, 701-724
application testing, 147-192
Bluetooth networking, 639-646
communication mechanisms, 193-225
data persistence, 441-515
development environment, 1-95
gaming and animation, 575-587
graphics, 227-280
GUI alerts, 363-394
GUI development, 281-362
lists and views, 395-424

725

location and map applications, 599-630
multimedia, 425-440
networked applications, 543-573
programming languages and frameworks,

657-688
sensors, 631-638
social networking, 589-597
strings and localization, 689-700
system and device control, 647-654
telephone applications, 517-542

Android Auto, xiv
Android Content Guidelines, 706
Android Cookbook

acknowledgments, xxi
comments and questions, xx
contributors, xiv, xviii, xxi
errata, xxi
focus of, xiv
overview of, xv-xvii
permission and attribution, xix
prerequisite knowledge, xiv
typographical conventions, xvii
website for, xiv

Android Debug Bridge (ADB)
emulator/device control using, 57
starting, 12
updating, 24

Android Design site, 282
Android Development Tools (ADT) (see also

AndMore plugin)
converting projects to Studio from, 30
history of, 16
sharing Java classes using, 59
upgrading projects to AndMore, 53

Android Interface Definition Language (AIDL),
568

Android Lint, 187, 694
Android Localizer, 694
Android Market (see Google Play Store)
Android mobile technology (see also telephone

applications)
benefits of, xiii
market share, xiii
open platform design goals, 658
programming language, xiii
release cycles, 5, 21, 67
specialized platforms, xiv
user interface technology for, 281

Android Monkey, 189

Android New Project Wizard, 714
Android Patterns site, 282
Android Runtime, 3
Android Software Development Kit (SDK)

Android Studio setup, 18
"Hello World" from command line, 8
installing, 42
Monkey testing tool, 189
ongoing development of, 21
sample programs to examine, 68

Android Studio
benefits and drawbacks of, 15
build.gradle files, xviii
compatibility libraries, 68
converting Eclipse/ADT projects to, 30
"Hello World" creation with, 25
Image Asset utility, 260
import project feature, 30
JUnit testing, 158
layout editor, 29
loss of revision control history when

importing, 32
managing dependencies with, 63
preserving history while converting from

Eclipse to, 34
providing Eclipse and Gradle build files, 36
SDK sample programs, 69
setup, 18
updating, 22

Android Testing Support Library (ASTL), 166
Android Things, xiv
Android TV, xiv
Android UI Guidelines, 283
Android Virtual Device (AVD) (see also appli‐

cation testing)
command-line ADB control of, 57
creating, 12
running applications in, 30
screen captures, 70
setup, 148
testing text messages and calls with, 191

Android Wear, xiv
android-oauth-client library, 590
android.media.Camera, 244
AndroidManifest.xml file, obtaining data from,

648
AndroidPlot graph library, 251
Android’s Backup Manager, 138
animation (see gaming and animation)

726 | Index

anonymous data collection, 122
ANR (Application Not Responding)

BroadcastReceiver and, 520
defined, 147
detecting all cases, 186
during geocoding, 606
flushing out hidden, 189

Ant build tool, 11
Apache HttpClient library, 544
Apache Software Foundation

Ant build tool, 11
Maven build tool, 13

.apk files, 57
App Inventor, 657
app widgets

creating, 358
vs. GUI control widgets, 282

AppCelerator, 657
AppInventor, 658
application architecture, 1
Application Craft, 658
Application Crash Reports for Android

(ACRA), 175, 179
application design (see also strings and localiza‐

tion)
Android-style capabilities, 98
battery level monitoring, 111
conference or institution apps, 117
data backups, 137
data feeds and feed formats, 100
data input control with KeyListeners, 134
exception handling, 101
feature availability and, 99
first-run preferences, 122
global data access, 107
Google Analytics and, 119
hints vs. tool tips, 144
input configurations, 99
native handset functionality via JavaScript,

678
native handset key requirements, 97
popular feature tracking, 119
preserving data upon device rotation, 109,

288
requesting permissions at run time, 104
screen size and density, 98
shareware versions, 123
signing certificates, 703
splash screens, 113

time/date calculations, 132
time/date formatting, 130

application distribution
code obfuscation and optimization, 714
via Google Play Store, 705
hosting your own application, 717
linking to other published apps, 720
monetization with AdMob, 708
self-updating apps, 718
signing certificates, 701
via unofficial app stores, 707

Application object, 107
application testing

Activity life-cycle scenarios, 181
Android Lint, 187, 694
Android Monkey command-line tool, 189
Android Studio and JUnit, 158
Android Virtual Device setup, 148
ASTL, Espresso, and JUnit4, 166
automatic crash reports, 175
cloud-based app testing services, 154
common terms defined, 147
debugging with Log.d and LogCat, 173
developer mode, 148
Eclipse and JUnit, 155
emulators vs. devices, 147
field errors and situation analysis, 178
GUI response, 186
prior to Google Play deployment, 704
Roboelectric and JUnit4, 163
simulating GPS coordinates, 603
software verification tools, 147
testing on wide variety of devices, 154
text messages and calls, 191
troubleshooting application crashes, 170
types of, 147

ArrayAdapter, 330
ArtfulBits, Inc., 694
assets directory, 451
AsyncTask

background processing with, 210
purpose of, 193

AsyncTaskLoader<T>, 476
attachments, sending with emails, 199
attribution for code use, xix
audio files, 433, 435
AudioManager, 649
auth0 toolkit, 590
authentication, 589

Index | 727

auto-completion
implementing, 328
using SQLite queries, 330

autoLink property, 565
automatic crash reports, 175
automatic data restoration, 137
AutoUpdater project, 719
AWT, 281, 287

B
background images, 267, 349
background tasks, 205, 210, 382
BackupManager class, 138
backups, 137
BarCamp apps, 117
barcodes, scanning, 248
BaseAdapter, 400, 415
BaseKeyListener, 137
Basic4Android, 658
batch insert, 487
battery level monitoring, 111
Bitbar TestDroid, 155
blocking phone calls, 521
Bluetooth API, 641
Bluetooth networking (see also networked

applications)
accepting Bluetooth connections, 644
connectable devices and support for, 639
connecting/communicating with enabled

devices, 641
enablement and discoverability, 639
implementing device discovery, 645

BluetoothAdapter class, 640
BluetoothServerSocket, 644
borders, rounded-corner, 349
Broadcast Receiver class

acting on incoming phone calls, 517
basics of, 2
purpose of, 193
receiving GCM messages, 553
receiving SMS messages, 529
sending/receiving messages with, 207

Bsquare, 155
BufferedReader, 452
BugSense, 176, 179
build.gradle files, xviii, 36
buttons (see also keys/keyboards)

creating, 304
in custom dialogs, 383

Done buttons, 335
floating action buttons, 306
image buttons, 305
radio buttons, 314
Submit buttons, 333

C
C# language, 680
C/C++ code, 661
calendars, creating custom, 220
call blocking, 521
calls, testing, 191
camera (see pictures/photos)
canonical names, 449
card widgets, 318
central signing authorities, 701
certificates, self-signed, 701
charSequence, 652
charts and graphs

portrait vs. landscape display, 420
using AndroidPlot, 251
using RGraph, 271

checkboxes, 314
ChoiceFormat class, 128
clear-text strings, 564
ClickListener, 245
clipart images, 254, 259
clipboard, copying to and from, 652
ClipboardManager class, 652
cloud storage, 143
cloud-based app testing services, 154
COARSE resolution (locational position), 541,

599
code examples, obtaining and using, xviii, 34
command-line programs, 659
comments and questions, xx
communication mechanisms

background processing with AsyncTask, 210
broadcast messages, 207, 520
emailing attachments, 199
emailing text from a view, 196
inter-process communication, 568
JavaScript and Java interaction, 220
opening web pages/phone numbers, 194
passing parameters during launch, 201
retrieving subactivity data, 202
running background Services, 205
sending messages between threads, 218
socket streams, 641

728 | Index

starting Services after reboots, 208
threads, 209
types of, 193

community builds, 6
Community Edition of Xamarin Studio, 681
compatibility

Android releases, 5
compatibility libraries, 67

Composite design pattern, 409
computer graphics (see graphics)
Concurrent Versions System (CVS), 34
conference/convention apps, 117
configuration changes, handling, 109, 288
ConnectivityManager, 647
contact information, xxi
Contacts database

adding information to, 487
extracting information from, 490
storing/retrieving data via ContentProvider,

482
ContactsContract class, 487, 490
Content Provider class

basics of, 2
bidirectional synchronization, 501
storing/retrieving data via, 482
vs. sharing files via FileProvider, 496
writing, 484

ContentResolver, 490
context menus (see GUI alerts)
contributors, xiv, xviii, xxi
control APIs (see system and device control)
CopperHead, 6
copy-and-paste functionality, 652
Cordova, 658, 685
Corona, 658
CountDownTimers class, 76
CrashBurnFree service, 175
crashes, troubleshooting

automatic crash reports, 175
C/C++ code, 666
debugging with LogCat and Log.d(), 173
thread/threading, 210
viewing the log, 170

create project command
"Hello World" from command line, 8
list of, 9
list of artifacts created by, 10

createRfcommSocket(), 642
cross-platform development

PhoneGap/Cordova, 685
tools for, 658
Xamarin, 680

cryptography, 564
cubes

controlling movement, 234
drawing, 230

Cupcake, 6
Cursor class, 472, 475, 496
CursorLoader class, 472, 475
curved borders, 349
curves, drawing freehand, 237
CustomDialog class, 383
CyanogenMod (CM), 6

D
Dalvik Debug Monitor Server (DDMS)

Device Screen Capture feature, 70
emulator control, 531

dangerous resources, 104
data feeds and formats (see also data persis‐

tence)
anonymous data collection, 122
automatic data restoration, 138
bidirectional data synchronization, 501
data backups, 137
data input clarification with hints, 144
data input control with KeyListeners, 134
data input limits for range/type, 325, 335
design considerations, 100
extracting information using regular expres‐

sions, 558
global data access, 107
JSON parsing using JSONObject, 479
MD5 digest of clear-text strings, 564
portrait vs. landscape display, 420
preserving data upon device rotation, 109,

288
preventing black "waiting" screens, 347, 403
pushing string values using Intent, 201
retrieving subactivity data, 202
RSS/Atom feed parsing using ROME, 560
searching through data in lists, 418
sharing files via FileProvider, 496
speech-to-text, 437
text-to-speech, 438
timed keyboard input handling, 587

data persistence

Index | 729

adding information to Contacts database,
487

checking default shared preferences, 459
displaying data with CursorLoader, 475
drag-and-drop implementation, 492
exposing data to other applications, 484
extracting information from Contacts data‐

base, 490
file and directory information, 446
Firebase cloud storage, 509-515
JSON parsing using JSONObject, 479
overview of topics covered, 441
reading static files, 451
reading/writing files in storage, 442
SD card space information, 453
shared preferences as, 122, 454
sharing files via FileProvider, 496
SQL Cursor presentation of non-SQL data,

472
SQLite databases

accessing, 461
advanced text searches, 464
cloud synchronization, 501
date/time data, 470

storing/retrieving data via ContentProvider,
482

user preference values, 454
XML parsing using DOM API, 480

databases (see data persistence; SQLite data‐
bases)

date/time calculations, 132, 470
DateFormat class, 130
DateKeyListener class, 135
Datepicker widget, 374
DateTimeKeyListener, 137
debugging (see also application testing)

Android Debug Bridge (ADB), 12
automatic crash reports, 175
with Log.d and LogCat, 173

dependencies
managing with Eclipse, 59
managing with Maven or Gradle, 62

deployment (see application distribution)
design considerations (see application design)
Designing Visual Interfaces: Communication-

Oriented Techniques (Muller and Sano),
283

desktop apps, development tools for, 658
developer mode, 148

development environment (see also Java lan‐
guage; programming languages and frame‐
works)
Android Activity lifecycle, 3
Android application architecture, 1
Android releases, 5
Android Studio setup, 18
becoming an Android developer on Ama‐

zon Market, 707
becoming an Android developer on Google

Play, 705
building applications with both Eclipse and

Studio, 36
compatibility libraries, 67
converting projects from ADT to AndMore,

53
converting projects to Studio from Eclipse,

30, 34
cross-platform development tools, 658, 680,

685
Eclipse Marketplace Client installation, 51
emulator/device control, 57
"Hello World" application

from command line, 8
with Android Studio, 25
with Apache Maven, 13
with Eclipse, 46

IDE selection, 15
Java language, 7
Platform Edition, installing/updating, 21
project layout, xix, 29
referencing external libraries, 62
sample programs, 76, 79
screen captures, 70
SDK sample programs, 68
SDK updates, 21
setting up Eclipse with AndMore, 39

device control (see system and device control)
Dialog class, 379
dialogs

Bluetooth enable prompts, 640
with buttons, images, and text, 383
creating in SL4A, 669
customizing appearance of, 379
in exception handling, 104
intended use for, 364
modal dialog, 211
pop-up alerts, 372
ProgressDialog, 210, 382

730 | Index

tabbed layout, 379
vs. Toasts, 363

DigitsKeyListener class, 135
directional pads (D-pads), 234
discoverability (Bluetooth), 639, 645
displays (see also graphics; GUI alerts; GUI

development; text)
hints vs. tool tips, 144
launcher icon files, 253
pinch-to-zoom capability, 278
running background Services, 205
scaling images, 267
screen captures, 74
screen size and density, 98
scrolling/swiping capability, 351
signaling LED, 393, 652
splash screens, 113

distribution (see application distribution)
DocumentBuilderFactory, 480
doInBackground, 211
doInBackground(Params… params);, 211
DOM API, 480
Done buttons, 335
Donut, 6
Double.toString(), 123
drag-and-drop API, 492, 657
drawable folders, 253
drawing (see graphics)
DroidCharts package, 420
DroidDraw, 288
drop-down menus, 320
drop-shadow effects, 284
dynamic testing, 147, 189

E
Eclair, 6
Eclipse

benefits and drawbacks of, 15
build.gradle files, xviii
converting projects to Android Studio, 30
"Hello World" creation with, 46
installing for Java development, 40
JUnit testing, 155
LogCat window, 171
Marketplace Client (MPC), 51
preserving history while converting to Stu‐

dio, 34
providing Eclipse and Gradle build files, 36
setting up with AndMore plugin, 39

sharing Java classes using, 59
SWT GUI layer, 281
upgrading projects to AndMore, 53

EditText class
limiting input range and type, 325
read-write access, 324

elevation, in Material Design, 284
emails

emailing text from a view, 196
sending attachments with, 199

emulators (see Android Virtual Device (AVD);
Dalvik Debug monitor Server (DDMS))

Enter keys, 333
Environment class, 453
Epoch calendar, 220
errata, xxi
Espresso, 166
evaluation stars, 337
exception handling

Android mechanisms, 101
checked exceptions, 103
exception translation, 102
Java categories, 101
reporting exceptions, 103
where to catch exceptions, 102

exec(), 659
Experitest, 155
Export Signed Application Package, 704
external file storage

getting space information about, 453
reading/writing files in, 442

F
face detection, 429
face recognition, 429
FC (Force Close), 148
feature availability, 99
field errors, 178
FileProvider class, 496
Files API

informational methods, 446
reading/writing files in, 443

fileSaver object, 111
FindBugs, 147
FINE resolution (locational position), 599
Firebase (database as a service), 509-515
first-run preferences, 122, 454
flixel-gdx framework, 576
floating action buttons, 306

Index | 731

Focused state, 305
fonts, creating custom, 227
Fragments

building modern UIs with, 299
defined, 5

frame-anchored menus, 363
freehand bezier curves, 237
Froyo, 6, 67
Full Text Search 3 (FTS3), 465

G
gaming and animation

AndEngine framework, 580
flixel-gdx framework, 576
game-development frameworks, 575
raster animation, 274
shaking View components, 341
timed keyboard input handling, 587

gdata.docs.service library, 673
Geocoder class, 606
GeoPoint, 627
gesture detection, 351
getExtras(), 201
getFilesDir(), 442
getIntent(), 201
getLastNonConfigurationInstance(), 109
getResources(), 451
getRuntime(), 659
getSensorList(), 632
getString(), 201
getText(), 652
getting started (see development environment)
Gingerbread, 6, 67, 367
global data access, 107
Gluon Mobile, 658
Google Analytics, 119
Google Cloud Messaging (GCM), 549
Google Code Archive, 376
Google Docs, fetching/displaying, 673
Google Maps API V2

additional features, 617
attribution text, 616
map pins and map centering, 613
marketplace support for, 707
setup, 607

Google Play Store
Android Content Ratings Guidelines, 706
app distribution via, 705
input hardware declarations, 99

linking to other published apps, 720
signing certificates, 701

Google ZXing barcode scanner, 248
GoogleAuthUtil class, 589
GPRS/EDGE data services, 543
GPS devices, 599

(see also location and map applications)
Gradle format

HelloGradle project, 12
project creation, 10
providing Eclipse and Gradle build files, 36

graphics
charts and graphs, 251, 271, 420
in custom dialogs, 383
custom fonts, 227
defined, 227
freehand drawing smooth curves, 237
launcher icons

design considerations, 253
with Inkscape, 254
with Paint.NET, 259

in OpenStreetMap maps, 621
picture taking

using android.media.Camera, 244
using Intents, 242

pinch-to-zoom capability, 278
raster animation, 274
scaling images, 267
scanning barcodes/QR Codes, 248, 676
spinning cubes

controlling movement, 234
creating, 230

graphs and charts
using AndroidPlot, 251
using RGraph, 271

GUI alerts
about boxes, 385
Android vs. other interfaces, 363
background processing alerts, 382
Bluetooth enable prompts, 640
creating in SL4A, 669
dialogs with buttons, images, and text, 383,

669
menu choice selection, 369
menu creation and display, 367
pop-up/alert dialog, 372
revealing/accepting time and dates, 374
scroll-wheel picker creation, 376
status bar notifications, 389

732 | Index

submenu creation, 370
tabbed dialog displays, 379
Toast and Snackbar creation, 364
Toast customization, 366

GUI development
action bar creation and control, 291
action bar Share icons, 296
Android Design site, 282
Android Patterns site, 282
Android UI Guidelines, 283
animating View components, 341
app widgets, 358
auto-completion implementation, 328
auto-completion using SQLite queries, 330
button creation, 304
card widgets, 318
changing Activities within tabs, 346
checkboxes and radio buttons, 314
data input limits for range and type, 325
drop-down menus, 320
floating action buttons, 306
using Fragments, 299
gesture detection, 351
GUI controls vs. app widgets, 282
handling configuration changes, 288
haptic (physical) user feedback, 342
image buttons, 305
key-press event processing, 336
layout manager selection, 287
loading screens between Activities, 347
long-press/long-click events, 323
using Material Design, 283
Next keys, 333
number formatting, 123
password fields, 332
plurals formatting, 127
ratings/evaluation stars, 337
read-only vs. editable text, 324
rounded-corner borders, 349
testing response time, 186
UI pattern notes, 283
user interface guidelines, 282
user interface technology, 281
View event techniques, 309

H
hackathon apps, 117
handleMessage(), 218
Handlers

activity thread queue and handler, 218
purpose of, 193

haptic feedback, 342
hashes/hashing, 564
Hello World application

origin of, 1
Spanish translation of, 692
using Android Studio, 25
using Apache Maven, 13
using command line, 8
using Eclipse, 46

HelloGradle project, 12
help text, 144
hints vs. tool tips, 144
Holo-based themes, 284
Honeycomb, 6
hosting, 717
HTML5 Charts, 271
HTML5 development tools, 658, 678
HTTP/HTTPS connections

benefits and drawbacks of, 543
social networking support using, 593
Twitter timeline loading, 596

HttpClient library, 544
HVGA (Half VGA), 265
hyperlinked text, 565

I
I18N (internationalization) (see strings and

localization)
Ice Cream Sandwich, 6, 429
IllegalStateExceptions, 426
Image Asset utility, 260
image buttons, 305
images (see graphics)
imeOptions, 335
incoming calls, interceptor code, 518
Inkscape, 254, 275
input configurations, 99
Input Method Editor (IME), 333
InputStreamReader, 452
institution apps, 117
integration testing, 147
Intel XDK, 658
IntelliJ IDEA, 15
Intent object

accessing Google barcode scanner, 249
basics of, 2
benefits of, 100

Index | 733

Bluetooth networking, 640
opening web pages/phone numbers, 194
picture taking using, 242
purpose of, 193

Intent.putExtra(), 201
IntentFilter class, 207
inter-process communication (IPC), 568

(see also communication mechanisms)
internal file storage, 442
International Mobile Equipment Identity

(IMEI) number, 532
internationalization (I18N) (see strings and

localization)
internet connectivity, determining, 647
internet of things (IoT), xiv
iOS development tools, 658, 680, 685
isEnabled(), 640
ISO-639 language codes, 691

J
Jamo Solutions, 155
JAR files

downloading manually, 64
in flixel-gdx gaming framework, 576
license requirements, 62
reusing Java classes, 60

jarsigner, 701
Java language (see also programming languages

and frameworks)
Eclipse IDE for, 39
exception handling, 101
interaction with JavaScript, 220
Java 8 java.time API, 132
learning, 7
prerequisite knowledge, xiv
reusing classes, 59
user interface technology for, 281

Java Look and Feel Design Guidelines, 283
Java ME (Java Micro Edition), 281
Java Standard Edition Development Kit (JDK)

drawbacks of, 281
installing, 18, 39

Java-JavaScript bridge interface, 220
java.io, 659
java.io.File object, 446
java.net, 558
java.util.Date objects, 470
JavaScript, 220

JavaScript Object Notation (JSON), 479, 548,
596

Jelly Bean, 6
JNI (Java Native Interface), 661
JSONObject class, 479
JSR-310 date/time API, 132
JUnit

Android Studio testing, 158
Eclipse testing, 155
JUnit 4 and Roboelectric, 163
JUnit4, ASTL, and Espresso, 166

K
kanban wheel components, 377
key pairs, 702
KeyListener classes, 134
keys/keyboards (see also buttons)

hiding, 335
key-press event processing, 336
timed keyboard input handling, 587

keystores, 704
keytool, 701
KitKat, 6
Kivy, 658

L
L10N (localization) (see strings and localiza‐

tion)
landscape charting, 420
language codes (ISO-639), 691
Launch Standalone SDK Manager link, 23
launcher icons

color palette, 261
design considerations, 253
design guidelines, 262
formatting summary, 264
using Inkscape and OpenClipArt.org, 254
using Paint.NET and OpenClipArt.org, 259

layout managers, selecting, 29, 287
LED-based notifications, 393, 652
ledARGB(), 653
ledOffMS, 653
ledOnMS, 653
libraries

Android Testing Support Library (ASTL),
166

android-oauth-client library, 590
AndroidPlot graph library, 251
Apache HttpClient library, 544

734 | Index

compatibility libraries, 67
gdata.docs.service library, 673
managing dependencies with Eclipse, 59
osmdroid library, 618
referencing external, 62
Volley library, 547

life-cycle states, 3
LineageOS, 6
lint-like tools, 187, 694
ListActivity, 400
ListAdapter, 400
listenUsingRfcommWithServiceRecord(), 644
lists and views

absence of data messages, 403
building with ListView, 399
building with RecyclerView, 395
categorized items display, 409
components handling, 395
customizing content, 414
with images and text, 405
landscape charting, 420
maintaining user's focus in, 414
searching through data in, 418

ListView
advantages of, 399
creating custom content, 414
history of, 395
with images and text, 405
list-based applications using, 399
maintaining user's focus in, 414
No Data views, 403
overview of, 395
using Section Headers in, 409
SQL Cursor presentation of non-SQL data,

472
loadAnimation(), 341
LoaderCallbacks object, 477
loading progress bars

background processing, 210
creating ProgressDialog, 382
haptic feedback, 343
rating bars, 337
splash screens, 113

loading screens, 347
loadUrl(), 566
Locale class, 689
localization (L10N) (see strings and localiza‐

tion)
location and map applications

geocoding and reverse geocoding, 606
Google Maps API V2

set up, 607
using, 612

GPS information, 601
location information, 599
OpenStreetMap

getting location updates with, 627
handling touch events, 624
overlay creation, 621
showing scale on, 623
using, 618

simulating GPS coordinates, 603
LocationListener, 601, 627
LocationManager, 603, 627
Log.d(), 174, 182
LogCat

Activity life-cycle scenarios, 183
debugging with, 173
troubleshooting application crashes with,

171
logs/logging

Activity life-cycle scenarios, 182
debugging with LogCat and Log.d(), 173
LogCat window for, 170
using local runtime application, 178

Lollipop, 6
long-press/long-click events, 323, 625

M
manifest file, obtaining data from, 648
map applications (see location and map appli‐

cations)
map pins, adding, 613, 621
MapView class, 618, 621
marketing messages, 706
Marketplace Client (MPC), 51
Marshmallow, 6
Material Design

color palette, 284
elevation in, 284
new icons for, 286
updating your app for, 283
web toolkit for, 284

Material-Lite web toolkit, 284
Maven build tool

benefits of, 13
compatibility libraries, 68
managing dependencies with, 62

Index | 735

MD5 digests (hashes), 564
MediaController class, 433
MediaPlayer class, 433, 435
MediaRecorder class, 426
Menu buttons, 367
menus

context menus, 363
creating and displaying, 367
drop-down using Spinner class, 320
frame-anchored menus, 363
handling menu choices, 369
nested menus, 370
pop-up menus, 363
submenus, 370

MetaKeyKeyListener, 137
method call chaining, 613
milliseconds since the epoch values, 470
mipmap folders, 253
mobile advertising networks, 708
mock location providers, 603
mock objects, 147
modal dialog, 211
monetization, 708
Monkey testing tool, 189
Monkey X, 658
MonoGame, 658
MoSync, 658
MotionEvent, 237
multi-platform development (see cross-

platform development)
multimedia

audio files, 433
audio files without interaction, 435
face detection, 429
speech-to-text, 437
text-to-speech, 438
video capture using MediaRecorder, 426
YouTube videos, 425

multiple-choice views, 314
MultiTapKeyListener, 137

N
native handset functionality

design requirements, 97
from WebView via JavaScript, 678

NDK (Native Development Kit), 658, 661
nested menus, 370
NetBeans, 15

networked applications (see also Bluetooth net‐
working)
accessing web pages via WebView, 566
customizing appearance of WebView, 567
extracting information using regular expres‐

sions, 558
Google Cloud Messaging (GCM), 549
hyperlinked text, 565
inter-process communication, 568
MD5 digest of clear-text strings, 564
overview of, 543
protocol choices, 543
RESTful web service access via URLConnec‐

tion, 544
RESTful web service access via Volley, 547
RSS/Atom feed parsing using ROME, 560

NetworkInfo, 647
New Project Wizard, 714
news icons, 560
Next keys, 333
NinePatch files, 267
No Data views, 403
Nomad, 658
normal broadcast messages, 520, 523
Notification class, 652
NotificationManager, 652
notifications

behavior of, 363
intended uses for, 389
LED-based notifications, 393, 652
push and ping notifications, 549
silent, vibrate, or normal, 649
status bar notifications, 389

notify(), 653
Nougat, 6
NPE (Null Pointer Exception), 147
NS BASIC, 658
NumberFormat, 124
NumberKeyListener, 137
numbers, formatting, 123

O
OAuth2, 589, 596
obfuscation, 714
obtainMessage(), 218
onAccuracyChanged(), 633
onActivityResult(), 202
OnClickListener, 304, 650
onCreate(), 110

736 | Index

onCreate(Bundle savedInstanceState), 4
onCreateOptionsMenu(), 367
onDestroy(), 4
onDraw(), 237
OnItemGestureListener, 625
onKeyDown, 336
onLocationChanged(), 601, 603, 627
OnLongClickListener, 323
onOptionsItemSelected(), 369
onPause(), 4
OnRatingBarChangeListener, 338
onRestart(), 4
onResume(), 4
onRetainNonConfigurationInstance(), 109
onSaveInstanceState(), 4, 109
onSensorChanged(), 633, 636
onSharedPreferenceChanged, 459
OnSharedPreferenceChangeListener, 459
onStart(), 4
onStop(), 4
onTouchEvent(), 237
OnTouchListener, 237
Open Authentication protocol, 590
OpenClipArt.org

and Inkscape, 254
and Paint.NET, 259
raster animation, 275

openFileInput(), 442
openFileOutput(), 442
OpenGL ES

animation using D-pads, 234
basic application creation, 230

OpenMoko, 631
openRawResource(), 451
OpenStreetMap

getting location updates with, 627
handling touch events on overlays, 624
JPStrack mapping application, 600
overlay creation, 621
scale and zoom level, 623
user-supplied data in, 599
using, 618

optimization, 714
ordered broadcast messages, 520, 523
orientation, determining, 636
OS-dependent functionality, 661
osmdroid library, 618
OTF (OpenTypeFace), 228
outgoing phone calls, 521, 525

Overlay class, 621, 625

P
PackageManager, 648, 719
packaging and deployment (see application dis‐

tribution)
paging, 399
Paint.NET, 259
pairing (Bluetooth), 639, 645
parameters, passing into Activities during

launch, 201
password fields, 332
Paused state, 4
Perfecto Mobile, 155
permission for code use, xix
permissions, requesting at run time, 104
phone calls (see telephone applications)
PhoneGap, 657, 658, 685
physical feedback, 342
pictures/photos (see also video)

accessing raw image data, 244
face detection, 429
using android.media.Camera, 244
using Intents, 242

pinch-in and pinch-out movements, 278
ping notifications, 549
Platform Editions, installing and updating, 21
Please Wait alerts, 382
plug-ins, installing, 51
plural words, correct formatting of, 127
PMD, 147
PNG (Portable Network Graphics), 253, 255
pop-up windows (see GUI alerts)
portrait list views, 420
PostMan, 548
Preference items, 454
PreferenceActivity class, 454, 459
Pressed state, 305
printf-like formatting, 124, 339
private external storage, 445
programming languages and frameworks (see

also Java language)
cross-platform solutions, 658, 680, 685
native C/C++ code, 661
overview of, 657
PhoneGap/Cordova, 685
shell commands, 659
SL4A

creating alerts in, 669

Index | 737

download and use, 667
fetching/displaying Google Docs, 673
sharing scripts in QR codes, 676

WebView, native handset functionality
using, 678

Xamarin, 680
progress bars

background processing, 210
creating ProgressDialog, 382
haptic feedback, 343
RatingBar subclass, 337
splash screens, 113

ProgressDialog, 210, 382
ProGuard, 714
project creation

using Android Studio, 25
using Apache Maven, 13
using Eclipse, 46
Gradle format, 10
IDE selection, 15
old format, 9
providing Eclipse and Gradle build files, 36
reusing Java classes, 59
sample programs to examine, 68, 76, 79

project layout, xix, 16, 29
public/private keys, 702
push notifications, 549
pushFxn(), 203

Q
QR codes

scanning, 248
sharing SL4A scripts in, 676

questions and comments, xx
QVGA (Quarter VGA), 265

R
radio buttons, 314
raster images, 274
RatingBar widget, 337
ratings/evaluation stars, 337
read-write access, 324
readLine method, 452
RecognizerIntent, 437
RecyclerView

list-based applications using, 395
using Section Headers in, 409

referenced projects, 59
regional language variations, 692

Registration ID, 556
regular expressions (regex), 558
release cycles, 5, 21, 67
Remote Methods Invocation (RMI), 568
removable storage, 442
RequestQueue class, 547
res/raw directory, 451
resources, accessing dangerous, 104
REST Client, 548
RESTful web services

access via URLConnection, 544
access via Volley, 547
Twitter timeline loading, 596

returnValuesFxn(), 204
reverse geocoding, 606
reverse-engineering, avoiding, 714
revision control history

loss of in Android Studio, 32
preserving, 34
sharing Java classes and, 61

RFO Basic, 658
RGraph, 271
RhoMobile Suite, 658
roaming, 647
Roboelectric, 163
ROME feed parser, 560
rounded-corner borders, 349
RSS/Atom feeds, 560
Runtime class, 659, 659

S
sample programs

in Android SDK, 68
Scalable Vector Graphics (SVG), 255
ScaleBarOverlay class, 623
scaling images, 267
screen captures, 70
screen size and density, 98
screen video captures, 74
Scripting Layer for Android (SL4A)

creating alerts in, 669
download and use, 667
fetching/displaying Google Docs, 673
interpreters available, 668
Python example, 668
sharing scripts in QR codes, 676
source editing, 669

scroll-wheel pickers, 376
scrolling/swiping capability, 351

738 | Index

SD cards
getting space information about, 453
reading/writing files on, 442

SDK Manager, 21, 43
search boxes, 418
SearchView, 418
section headers, 409
self-signed certificates, 701
self-updating apps, 718
sendMessage(), 218
sendTextMessage(), 527
SensorEventListener, 633, 636, 637
SensorManager class, 632, 633, 637
sensors

checking for device position, 636
checking for presence or absence of, 631
detecting shaking, 632
temperature values, 637

SeparatedListAdapter class, 409
Service class

basics of, 2
running in background, 205
starting after reboots, 208

ServiceManager, 208
session handlers, 108
setListAdapter(), 400
setLongClickable(), 323
setOnLongClickListener(), 323
setResult(), 202
setRingerMode, 650
setTestProviderEnabled(), 604
setTypeface(), 227
shadow effect, in Material Design, 284
shaking/tilting detection, 632
Share icons, 296
SharedPreferences object, 122, 454
shareware, 123
shell commands, 659
signatures, drawing legal, 237
signing certificates, 701
SimpleCursorAdapter, 330, 475, 477
single-tap events, 625
situation analysis, 178
SMS (Short Message Service) messages

receiving, 529
sending single- or multi-part, 527
testing, 191, 531

SmsManager class, 527
Snackbars

behavior of, 363
creating, 364

social networking
authentication with OAuth2, 589
support for using HTTP, 593
Twitter timeline loading, 596

socket stream communication, 641
soft menu buttons, 367
software verification tools, 147
sounds, 393
source code management (SCM) systems

moving projects with, 34
sharing Java classes and, 61

source code, obtaining and using, xviii, 34
speech-to-text, 437
Spinner class, 320
spinning cubes

controlling, 234
drawing, 230

splash screens, 113
SQLite databases

accessing, 461
advanced text searches, 464
date/time data, 470
inserting data, 463
querying, 330, 463
reading data, 463
select and order arguments, 464
SQL Cursor presentation of non-SQL data,

472
SQLiteOpenHelper class, 461
startActivity(), 194
startActivityForResult(), 202
startAnimation(), 341
startIntent(), 194
startService(), 205
state information, maintaining, 288
StatFs class, 453
static code analysis, 147, 187
static files, 451
status bars, 389
Stopped state, 4
stopService(), 205
strftime(), 470
StrictMode tool, 186
String.format(), 124
strings and localization

basic steps, 689
converting to strings, 652

Index | 739

finding and translating strings, 693
MD5 digest of clear-text strings, 564
pushing string values using Intent, 201
string handling, 695
time/date calculations, 132
time/date formatting, 130
translating application text, 690

subactivities, retrieving data from, 202
submenus, 370
Submit buttons, 333
Swing, 281, 287
SWT GUI layer, 281
SyncAdapter class, 2, 501
system activity manager, 654
system and device control

copying to and from clipboards, 652
determining active tasks and apps, 654
device vibration, 653
LED-based notifications, 652
obtaining network-related and telephony

information, 532, 647
obtaining project settings information, 648
silent, vibrate, or normal notifications, 649

T
TabView, 346
target markets, 706
telephone applications

acting on incoming phone calls, 517
calls and text messages testing, 191
obtaining network-related and telephony

information, 532, 647
outgoing phone call blocking/altering, 521
overview of, 517
phone dialing, 525
silent, vibrate, or normal notifications, 649
SMS messages

receiving, 529
sending single- or multi-part, 527
sending to the emulator, 531
testing, 191

TelephonyManager class, 532
temperature values, 637
test-hosting companies, 154
testing (see application testing)
text

advanced text searches in SQLite, 464
auto-completion implementation, 328
auto-completion using SQLite queries, 330

copying to and from clipboards, 652
in custom dialogs, 383
extracting information from unstructured,

558
help text, 144
hyperlinked text, 565
limiting input range and type, 325, 335
MD5 digest of clear-text strings, 564
password fields, 332
plurals formatting, 127
read-only vs. editable fields, 324
special effects, 227
speech-to-text, 437
string handling and localization, 689-700
text-to-speech, 438
translating into user's language, 690

text messages
receiving, 529
sending single- or multi-part, 527
sending to the emulator, 531
testing, 191

TextKeyListener, 137
TextView class, 324, 565
TextWatcher interface, 325
themes, in Material Design, 284
threads/threading

Android Development Guide, 211
vs. AsyncTask processing, 193, 211
avoiding crashes with, 210
creating responsive applications with, 209
pool-based implementation, 209
sending messages between threads, 193, 218

3D graphics, 230
time/date formatting

in SQLite database, 470
using DateFormat class, 130
using java.time API, 132

Timepicker widget, 374
timestamp format, 470
Tipster (tip calculator program), 79
Titanium, 657, 658
titling/shaking detection, 632
Toasts

creating, 364
customizing appearance of, 366
in exception handling, 104
intended uses for, 363

tool tips vs. hints, 144
toString(), 652

740 | Index

touch events, 237, 625
TrackService class, 206
translation (see strings and localization)
TTF (TrueType Fonts), 228
12-key layout, 137
Twitter timelines, 596
Typeface.create(), 228
typographical conventions, xvii

U
unit testing, 147
unsaved changes alerts, 372
UpdateActivity, 718
updates, 21, 123, 718
URLConnection objects, 544

V
versioning

Android releases, 5, 67
obtaining project settings information, 648

vibration
creating device vibrations, 393
for incoming calls, 649
setting up vibration pattern, 653
stock haptic controls, 343

video
screen captures, 74
video capture using MediaRecorder, 426
YouTube videos, 425, 425

View events
Activity implementation technique, 311
anonymous inner class technique, 310
attribute in View layout, 312
interface type technique, 310
lambda expression technique, 311
Member class technique, 309
overview of, 309

ViewGroups, 287
vocabulary, localization of, 692

voice recognition, 437
Volley library, 547

W
WakefulBroadcastReceiver, 553
WAP proxies, 543
watermarks, 144
web servers, 717
web-based app testing services, 154
WebSettings class, 567
WebView

accessing web pages via, 566
customizing appearance of, 567
native handset functionality via JavaScript,

678
wheel pickers, 376
widgets

Android-Wheel, 376
AutoCompleteTextView, 328
BaseAdapter, 400
card widgets, 318
Datepicker, 374
GUI controls vs. app widgets, 282, 358
RatingBar, 337
Timepicker, 374
widget toolkit (AWT), 281, 287

X
Xamarin, 658, 680
XDA Developers groups, 6
XML documents, 480

Y
YouTube videos, 425

Z
zoom-in and zoom-out operations, 278
ZXing barcode scanner, 248

Index | 741

About the Author
Ian Darwin has worked in the computer field for “quite a while” and has worked with
Java since before the release of JDK 1.0. He’s the author of several other O’Reilly
works, including the well-known Java Cookbook and the new video series “Java Test‐
ing for Developers: From JUnit to Findbugs and PMD; Tools and Techniques for Java
Testing.” Ian holds an MSc in Computing from Staffordshire University and has done
software development for various organizations in the Toronto area. He and his wife
live north of the city, surrounded by acres of hills and trees.

Colophon
The animal on the cover of the Android Cookbook is a marine iguana (Amblyrhynchus
cristatus). These lizards are found exclusively in the Galapagos (with a subspecies par‐
ticular to each island). They are believed to be descended from land iguanas carried
to the islands on log rafts from mainland South America.

The marine iguana is the only type of lizard that feeds in the water. Darwin found the
reptiles unattractive and awkward, labeling them “disgusting clumsy lizards” and
“imps of darkness,” but these streamlined large animals (up to 5 or 6 feet long) are
graceful in the water, with flattened tails designed for swimming.

These lizards feed on seaweed and marine algae. They can dive deeply (as far as 50
feet), though their dives are usually shallow, and they can stay underwater for up to
an hour (though 5 to 10 minutes is more typical). Like all reptiles, marine iguanas are
cold-blooded and must regulate their body temperature by basking in the sun; their
black or gray coloration maximizes their heat absorption when they come out of the
cold ocean. Though these harmless herbivores often allow humans to approach them
closely, they can be aggressive when cold.

Marine iguanas have specialized nasal glands that filter ocean salt from their blood.
They sneeze up the excess salt, which often accumulates on their heads or faces, creat‐
ing a distinctive white patch or “wig.” These iguanas are vulnerable to predation by
introduced species (including dogs and cats), as well as to ocean pollution and fluctu‐
ations in their food supply caused by weather events such as El Niño.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Getting and Using the Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	1.1 Understanding the Android Application Architecture
	Problem
	Discussion

	1.2 Understanding the Android Activity Life Cycle
	Problem
	Solution
	Discussion

	1.3 Learning About Android Releases
	Problem
	Discussion

	1.4 Learning the Java Language
	Problem
	Solution
	Discussion
	See Also

	1.5 Creating a “Hello, World” Application from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.6 Creating a “Hello, World” App with Apache Maven
	Problem
	Solution
	Discussion
	See Also

	1.7 Choosing an IDE for Android Development
	Problem
	Solution
	Discussion

	1.8 Setting Up Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.9 Installing Platform Editions and Keeping the SDK Updated
	Problem
	Solution
	Discussion
	See Also

	1.10 Creating a “Hello, World” App Using Android Studio
	Problem
	Solution
	Discussion

	1.11 Converting an Eclipse ADT Project to Android Studio
	Problem
	Solution
	Discussion

	1.12 Preserving History While Converting from Eclipse to Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.13 Building an Android Application with both Eclipse and Android Studio
	Problem
	Solution
	Discussion

	1.14 Setting Up Eclipse with AndMore (Replacing ADT)
	Problem
	Solution
	Discussion
	See Also

	1.15 Creating a “Hello, World” Application Using Eclipse
	Problem
	Solution
	Discussion
	See Also

	1.16 Installing the Eclipse Marketplace Client in Your Eclipse
	Problem
	Solution
	Discussion

	1.17 Upgrading a Project from Eclipse ADT to Eclipse AndMore
	Problem
	Solution
	Discussion

	1.18 Controlling Emulators/Devices Using Command-Line ADB
	Problem
	Solution
	Discussion

	1.19 Sharing Java Classes from Another Eclipse Project
	Problem
	Solution
	Discussion
	See Also

	1.20 Referencing Libraries to Implement External Functionality
	Problem
	Solution
	Discussion

	1.21 Using New Features on Old Devices via the Compatibility Libraries
	Problem
	Solution
	Discussion

	1.22 Using SDK Samples to Help Avoid Head Scratching
	Problem
	Solution
	Discussion
	See Also

	1.23 Taking a Screenshot/Video from the Emulator/Android Device
	Problem
	Solution
	Discussion
	See Also

	1.24 Program: A Simple CountDownTimer Example
	Problem
	Solution
	Discussion
	Source Download URL

	1.25 Program: Tipster, a Tip Calculator for the Android OS
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 2. Designing a Successful Application
	2.1 Exception Handling
	Problem
	Solution
	Discussion
	See Also

	2.2 Requesting Android Permissions at Runtime
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.3 Accessing Android’s Application Object as a “Singleton”
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.4 Keeping Data When the User Rotates the Device
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.5 Monitoring the Battery Level of an Android Device
	Problem
	Solution
	Discussion

	2.6 Creating Splash Screens in Android
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.7 Designing a Conference/Camp/Hackathon/Institution App
	Problem
	Solution
	Discussion
	See Also

	2.8 Using Google Analytics in an Android Application
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.9 Setting First-Run Preferences
	Problem
	Solution
	Discussion

	2.10 Formatting Numbers
	Problem
	Solution
	Discussion
	See Also

	2.11 Formatting with Correct Plurals
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.12 Formatting the Time and Date for Display
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.13 Simplifying Date/Time Calculations with the Java 8 java.time API
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	2.14 Controlling Input with KeyListeners
	Problem
	Solution
	Discussion
	See Also

	2.15 Backing Up Android Application Data
	Problem
	Solution
	Discussion

	2.16 Using Hints Instead of Tool Tips
	Problem
	Solution
	Discussion

	Chapter 3. Application Testing
	3.1 Setting Up an Android Virtual Device (AVD) for App Testing
	Problem
	Solution
	Discussion
	See Also

	3.2 Testing on a Wide Range of Devices with Cloud-Based Testing
	Problem
	Solution
	Discussion

	3.3 Testing with Eclipse and JUnit
	Problem
	Solution
	Discussion
	Source Download URL

	3.4 Testing with Android Studio and JUnit
	Problem
	Solution
	Discussion
	Source Download URL
	See Also

	3.5 Testing with Robolectric and JUnit 4
	Problem
	Solution
	Discussion
	See Also

	3.6 Testing with ATSL, Espresso, and JUnit 4
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	3.7 Troubleshooting Application Crashes
	Problem
	Solution
	Discussion
	See Also

	3.8 Debugging Using Log.d() and LogCat
	Problem
	Solution
	Discussion

	3.9 Getting Bug Reports Automatically with Crash Reporting
	Problem
	Solution
	Discussion
	See Also

	3.10 Using a Local Runtime Application Log for Analysis of Field Errors or Situations
	Problem
	Solution
	Discussion
	See Also

	3.11 Reproducing Activity Life-Cycle Scenarios for Testing
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	3.12 Keeping Your App Snappy with StrictMode
	Problem
	Solution
	Discussion
	See Also

	3.13 Static Code Testing with Android Lint
	Problem
	Solution
	Discussion
	See Also

	3.14 Dynamic Testing with the Monkey Program
	Problem
	Solution
	Discussion
	See Also

	3.15 Sending Text Messages and Placing Calls Between AVDs
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Inter-/Intra-Process Communication
	4.1 Opening a Web Page, Phone Number, or Anything Else with an Intent
	Problem
	Solution
	Discussion
	Source Download URL

	4.2 Emailing Text from a View
	Problem
	Solution
	Discussion
	Source Download URL

	4.3 Sending an Email with Attachments
	Problem
	Solution
	Discussion
	Source Download URL

	4.4 Pushing String Values Using Intent.putExtra()
	Problem
	Solution
	Discussion
	See Also

	4.5 Retrieving Data from a Subactivity Back to Your Main Activity
	Problem
	Solution
	Discussion
	See Also

	4.6 Keeping a Background Service Running While Other Apps Are on Display
	Problem
	Solution
	Discussion

	4.7 Sending/Receiving a Broadcast Message
	Problem
	Solution
	Discussion

	4.8 Starting a Service After Device Reboot
	Problem
	Solution
	Discussion

	4.9 Creating a Responsive Application Using Threads
	Problem
	Solution
	Discussion

	4.10 Using AsyncTask to Do Background Processing
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	4.11 Sending Messages Between Threads Using an Activity Thread Queue and Handler
	Problem
	Solution
	Discussion

	4.12 Creating an Android Epoch HTML/JavaScript Calendar
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 5. Graphics
	5.1 Using a Custom Font
	Problem
	Solution
	Discussion
	Source Download URL

	5.2 Drawing a Spinning Cube with OpenGL ES
	Problem
	Solution
	Discussion
	See Also

	5.3 Adding Controls to the OpenGL Spinning Cube
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.4 Freehand Drawing Smooth Curves
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.5 Taking a Picture Using an Intent
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.6 Taking a Picture Using android.media.Camera
	Problem
	Solution
	Discussion
	See Also

	5.7 Scanning a Barcode or QR Code with the Google ZXing Barcode Scanner
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	5.8 Using AndroidPlot to Display Charts and Graphs
	Problem
	Solution
	Discussion
	Source Download URL

	5.9 Using Inkscape to Create an Android Launcher Icon from OpenClipArt.org
	Problem
	Solution
	Discussion
	See Also

	5.10 Using Paint.NET to Create Launcher Icons from OpenClipArt.org
	Problem
	Solution
	Discussion
	See Also

	5.11 Using Nine Patch Files
	Problem
	Solution
	Discussion
	See Also

	5.12 Creating HTML5 Charts with Android RGraph
	Problem
	Solution
	Discussion
	Source Download URL

	5.13 Adding a Simple Raster Animation
	Problem
	Solution
	Discussion
	See Also

	5.14 Using Pinch to Zoom
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 6. Graphical User Interface
	6.1 Understanding and Following User Interface Guidelines
	Problem
	Solution
	Discussion

	6.2 Looking Good with Material Design
	Problem
	Solution
	Discussion
	See Also

	6.3 Choosing a Layout Manager (a.k.a. ViewGroup) and Arranging Components
	Problem
	Solution
	Discussion

	6.4 Handling Configuration Changes by Decoupling the View from the Model
	Problem
	Solution
	Discussion

	6.5 Controlling the Action Bar
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.6 Adding a Share Action to Your Action Bar
	Problem
	Solution
	Discussion

	6.7 Building Modern UIs with the Fragment API
	Problem
	Solution
	Discussion
	Source Download URL

	6.8 Creating a Button and Its Click Event Listener
	Problem
	Solution
	Discussion

	6.9 Enhancing UI Design Using Image Buttons
	Problem
	Solution
	Discussion
	Source Download URL

	6.10 Using a FloatingActionButton
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.11 Wiring Up an Event Listener in Many Different Ways
	Problem
	Solution
	Discussion

	6.12 Using CheckBoxes and RadioButtons
	Problem
	Solution
	Discussion

	6.13 Using Card Widgets
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.14 Offering a Drop-Down Chooser via the Spinner Class
	Problem
	Solution
	Discussion
	Source Download URL

	6.15 Handling Long-Press/Long-Click Events
	Problem
	Solution
	Discussion

	6.16 Displaying Text Fields with TextView and EditText
	Problem
	Solution
	Discussion

	6.17 Constraining EditText Values with Attributes and the TextWatcher Interface
	Problem
	Solution
	Discussion
	See Also

	6.18 Implementing AutoCompleteTextView
	Problem
	Solution
	Discussion
	Source Download URL

	6.19 Feeding AutoCompleteTextView Using a SQLite Database Query
	Problem
	Solution
	Discussion

	6.20 Turning Edit Fields into Password Fields
	Problem
	Solution
	Discussion

	6.21 Changing the Enter Key to “Next” on the Soft Keyboard
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.22 Processing Key-Press Events in an Activity
	Problem
	Solution
	Discussion
	Source Download URL

	6.23 Let Them See Stars: Using RatingBar
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.24 Making a View Shake
	Problem
	Solution
	Discussion

	6.25 Providing Haptic Feedback
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.26 Navigating Different Activities Within a TabView
	Problem
	Solution
	Discussion

	6.27 Creating a Loading Screen that Will Appear Between Two Activities
	Problem
	Solution
	Discussion

	6.28 Adding a Border with Rounded Corners to a Layout
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	6.29 Detecting Gestures in Android
	Problem
	Solution
	Discussion
	See Also

	6.30 Creating a Simple App Widget
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 7. GUI Alerts: Menus, Dialogs, Toasts, Snackbars, and Notifications
	7.1 Alerting the User with Toast and Snackbar
	Problem
	Solution
	Discussion

	7.2 Customizing the Appearance of a Toast
	Problem
	Solution
	Discussion
	Source Download URL

	7.3 Creating and Displaying a Menu
	Problem
	Solution
	Discussion

	7.4 Handling Choice Selection in a Menu
	Problem
	Solution
	Discussion
	Source Download URL

	7.5 Creating a Submenu
	Problem
	Solution
	Discussion
	Source Download URL

	7.6 Creating a Pop-up/Alert Dialog
	Problem
	Solution
	Discussion

	7.7 Using a Timepicker Widget
	Problem
	Solution
	Discussion

	7.8 Creating an iPhone-like WheelPicker for Selection
	Problem
	Solution
	Discussion
	Source Download URL

	7.9 Creating a Tabbed Dialog
	Problem
	Solution
	Discussion
	Source Download URL

	7.10 Creating a ProgressDialog
	Problem
	Solution
	Discussion
	Source Download URL

	7.11 Creating a Custom Dialog with Buttons, Images, and Text
	Problem
	Solution
	Discussion

	7.12 Creating a Reusable “About Box” Class
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	7.13 Creating a Notification in the Status Bar
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 8. Other GUI Elements: Lists and Views
	8.1 Building List-Based Applications with RecyclerView
	Problem
	Solution
	Discussion
	See Also

	8.2 Building List-Based Applications with ListView
	Problem
	Solution
	Discussion

	8.3 Creating a “No Data” View for ListViews
	Problem
	Solution
	Discussion

	8.4 Creating an Advanced ListView with Images and Text
	Problem
	Solution
	Discussion
	Source Download URL

	8.5 Using Section Headers in ListViews
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	8.6 Keeping the ListView with the User’s Focus
	Problem
	Solution
	Discussion

	8.7 Writing a Custom List Adapter
	Problem
	Solution
	Discussion

	8.8 Using a SearchView to Search Through Data in a ListView
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	8.9 Handling Orientation Changes: From ListView Data Values to Landscape Charting
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 9. Multimedia
	9.1 Playing a YouTube Video
	Problem
	Solution
	Discussion

	9.2 Capturing Video Using MediaRecorder
	Problem
	Solution
	Discussion
	Source Download URL

	9.3 Using Android’s Face Detection Capability
	Problem
	Solution
	Discussion
	Source Download URL

	9.4 Playing Audio from a File
	Problem
	Solution
	Discussion
	Source Download URL

	9.5 Playing Audio Without Interaction
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	9.6 Using Speech to Text
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	9.7 Making the Device Speak with Text-to-Speech
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 10. Data Persistence
	10.1 Reading and Writing Files in Internal and External Storage
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	10.2 Getting File and Directory Information
	Problem
	Solution
	Discussion
	See Also

	10.3 Reading a File Shipped with the App Rather than in the Filesystem
	Problem
	Solution
	Discussion
	Source Download URL

	10.4 Getting Space Information About the SD Card
	Problem
	Solution
	Discussion

	10.5 Providing a Preference Activity
	Problem
	Solution
	Discussion

	10.6 Checking the Consistency of Default Shared Preferences
	Problem
	Solution
	Discussion

	10.7 Using a SQLite Database in an Android Application
	Problem
	Solution
	Discussion

	10.8 Performing Advanced Text Searches on a SQLite Database
	Problem
	Solution
	Discussion
	See Also

	10.9 Working with Dates in SQLite
	Problem
	Solution
	Discussion
	See Also

	10.10 Exposing Non-SQL Data as a SQL Cursor
	Problem
	Solution
	Discussion

	10.11 Displaying Data with a CursorLoader
	Problem
	Solution
	Discussion
	Source Download URL

	10.12 Parsing JSON Using JSONObject
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	10.13 Parsing an XML Document Using the DOM API
	Problem
	Solution
	Discussion
	See Also

	10.14 Storing and Retrieving Data via a Content Provider
	Problem
	Solution
	Discussion

	10.15 Writing a Content Provider
	Problem
	Solution
	Discussion
	Source Download URL

	10.16 Adding a Contact Through the Contacts Content Provider
	Problem
	Solution
	Discussion
	Source Download URL

	10.17 Reading Contact Data Using a Content Provider
	Problem
	Solution
	Discussion
	Source Download URL

	10.18 Implementing Drag and Drop
	Problem
	Solution
	Discussion

	10.19 Sharing Files via a FileProvider
	Problem
	Solution
	Discussion
	See Also

	10.20 Backing Up Your SQLite Data to the Cloud with a SyncAdapter
	Problem
	Solution
	Discussion
	See Also
	Sample Code

	10.21 Storing Data in the Cloud with Google Firebase
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Telephone Applications
	11.1 Doing Something When the Phone Rings
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	11.2 Processing Outgoing Phone Calls
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	11.3 Dialing the Phone
	Problem
	Solution
	Discussion
	Source Download URL

	11.4 Sending Single-part or Multipart SMS Messages
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	11.5 Receiving an SMS Message
	Problem
	Solution
	Discussion
	Source Download URL

	11.6 Using Emulator Controls to Send SMS Messages to the Emulator
	Problem
	Solution
	Discussion

	11.7 Using Android’s TelephonyManager to Obtain Device Information
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 12. Networked Applications
	12.1 Consuming a RESTful Web Service Using a URLConnection
	Problem
	Solution
	Discussion
	See Also

	12.2 Consuming a RESTful Web Service with Volley
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	12.3 Notifying Your App with Google Cloud Messaging “Push Messaging”
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	12.4 Extracting Information from Unstructured Text Using Regular Expressions
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	12.5 Parsing RSS/Atom Feeds Using ROME
	Problem
	Solution
	Discussion
	Source Download URL

	12.6 Using MD5 to Digest Clear Text
	Problem
	Solution
	Discussion

	12.7 Converting Text into Hyperlinks
	Problem
	Solution
	Discussion

	12.8 Accessing a Web Page Using a WebView
	Problem
	Solution
	Discussion
	Source Download URL

	12.9 Customizing a WebView
	Problem
	Solution
	Discussion

	12.10 Writing an Inter-Process Communication Service
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 13. Gaming and Animation
	13.1 Building an Android Game Using flixel-gdx
	Problem
	Solution
	Discussion
	Source Download URL

	13.2 Building an Android Game Using AndEngine
	Problem
	Solution
	Discussion
	Source Download URL

	13.3 Processing Timed Keyboard Input
	Problem
	Solution
	Discussion

	Chapter 14. Social Networking
	14.1 Authenticating Users with OAUTH2
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	14.2 Integrating Social Networking Using HTTP
	Problem
	Solution
	Discussion

	14.3 Loading a User’s Twitter Timeline Using HTML or JSON
	Problem
	Solution
	Discussion

	Chapter 15. Location and Map Applications
	15.1 Getting Location Information
	Problem
	Solution
	Discussion
	Source Download URL

	15.2 Accessing GPS Information in Your Application
	Problem
	Solution
	Discussion

	15.3 Mocking GPS Coordinates on a Device
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	15.4 Using Geocoding and Reverse Geocoding
	Problem
	Solution
	Discussion

	15.5 Getting Ready for Google Maps API V2 Development
	Problem
	Solution
	Discussion
	Source Download URL

	15.6 Using the Google Maps API V2
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	15.7 Displaying Map Data Using OpenStreetMap
	Problem
	Solution
	Discussion
	Source Download URL

	15.8 Creating Overlays in OpenStreetMap Maps
	Problem
	Solution
	Discussion
	Source Download URL

	15.9 Using a Scale on an OpenStreetMap Map
	Problem
	Solution
	Discussion

	15.10 Handling Touch Events on an OpenStreetMap Overlay
	Problem
	Solution
	Discussion
	Source Download URL

	15.11 Getting Location Updates with OpenStreetMap Maps
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 16. Accelerometer
	16.1 Checking for the Presence or Absence of a Sensor
	Problem
	Solution
	Discussion

	16.2 Using the Accelerometer to Detect Shaking
	Problem
	Solution
	Discussion
	Source Download URL

	16.3 Checking Whether a Device Is Facing Up or Down
	Problem
	Solution
	Discussion
	Source Download URL

	16.4 Reading the Temperature Sensor
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Bluetooth
	17.1 Enabling Bluetooth and Making the Device Discoverable
	Problem
	Solution
	Discussion

	17.2 Connecting to a Bluetooth-Enabled Device
	Problem
	Solution
	Discussion
	See Also

	17.3 Accepting Connections from a Bluetooth Device
	Problem
	Solution
	Discussion

	17.4 Implementing Bluetooth Device Discovery
	Problem
	Solution
	Discussion
	Source Download URL

	Chapter 18. System and Device Control
	18.1 Accessing Phone Network/Connectivity Information
	Problem
	Solution
	Discussion
	See Also

	18.2 Obtaining Information from the Manifest File
	Problem
	Solution
	Discussion

	18.3 Changing Incoming Call Notification to Silent, Vibrate, or Normal
	Problem
	Solution
	Discussion

	18.4 Copying Text and Getting Text from the Clipboard
	Problem
	Solution
	Discussion

	18.5 Using LED-Based Notifications
	Problem
	Solution
	Discussion

	18.6 Making the Device Vibrate
	Problem
	Solution
	Discussion
	Source Download URL

	18.7 Determining Whether a Given Application Is Running
	Problem
	Solution
	Discussion

	Chapter 19. All the World’s Not Java: Other Programming Languages and Frameworks
	19.1 Learning About Cross-Platform Solutions
	Problem
	Discussion

	19.2 Running Shell Commands from Your Application
	Problem
	Solution
	Discussion
	Source Download URL

	19.3 Running Native C/C++ Code with JNI on the NDK
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	19.4 Getting Started with SL4A, the Scripting Layer for Android
	Problem
	Solution
	Discussion

	19.5 Creating Alerts in SL4A
	Problem
	Solution
	Discussion

	19.6 Fetching Your Google Documents and Displaying Them in a ListView Using SL4A
	Problem
	Solution
	Discussion

	19.7 Sharing SL4A Scripts in QR Codes
	Problem
	Solution
	Discussion

	19.8 Using Native Handset Functionality from a WebView via JavaScript
	Problem
	Solution
	Discussion

	19.9 Building a Cross-Platform App with Xamarin
	Problem
	Solution
	Discussion

	19.10 Creating a Cross-Platform App Using PhoneGap/Cordova
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 20. All the World’s Not English: Strings and Internationalization
	20.1 Internationalizing Application Text
	Problem
	Solution
	Discussion
	See Also

	20.2 Finding and Translating Strings
	Problem
	Solution
	Discussion

	20.3 Handling the Nuances of strings.xml
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Chapter 21. Packaging, Deploying, and Distributing/Selling Your App
	21.1 Creating a Signing Certificate and Using It to Sign Your Application
	Problem
	Solution
	Discussion
	See Also

	21.2 Distributing Your Application via the Google Play Store
	Problem
	Solution
	Discussion

	21.3 Distributing Your Application via Other App Stores
	Problem
	Discussion
	See Also

	21.4 Monetizing Your App with AdMob
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	21.5 Obfuscating and Optimizing with ProGuard
	Problem
	Solution
	Discussion
	See Also

	21.6 Hosting Your App on Your Own Server
	Problem
	Solution
	Discussion

	21.7 Creating a “Self-Updating” App
	Problem
	Solution
	Discussion
	See Also

	21.8 Providing a Link to Other Published Apps in the Google Play Store
	Problem
	Solution
	Discussion
	See Also
	Source Download URL

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

