
Elisabeth Robson & Eric Freeman

Head First
Android

Development

Dawn Griffi ths & David Griffi ths

A Brain-Friendly Guide

Dawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsElisabeth Robson & Eric FreemanDawn Griffi ths & David Griffi thsElisabeth Robson & Eric FreemanElisabeth Robson & Eric FreemanDawn Griffi ths & David Griffi thsElisabeth Robson & Eric Freeman

A Brain-Friendly Guide
DevelopmentDevelopmentDevelopmentDevelopmentDevelopmentDevelopmentDevelopment

A Brain-Friendly Guide

Dawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsDawn Griffi ths & David Griffi thsElisabeth Robson & Eric FreemanDawn Griffi ths & David Griffi thsElisabeth Robson & Eric FreemanElisabeth Robson & Eric FreemanDawn Griffi ths & David Griffi thsElisabeth Robson & Eric Freeman

A Brain-Friendly GuideA Brain-Friendly GuideA Brain-Friendly GuideA Brain-Friendly GuideA Brain-Friendly GuideA Brain-Friendly GuideA Brain-Friendly Guide

Learn how
Constraint

Layouts can
change your life

Fool around
in the Design
Support Library

Find your way
with Android's

Location Services

Put fragments
under the
microscope

Find your way
with Android's with Android's

Location ServicesLocation ServicesLocation ServicesLocation ServicesLocation Services

Avoid
embarrassing
activities

Avoid
embarrassing
activitiesactivities

Create
out-of-this-world
services
out-of-this-world out-of-this-world out-of-this-world

2nd
Edition

Head First
Android Development

Wouldn’t it be dreamy if there
were a book on developing Android
apps that was easier to understand

than the space shuttle flight manual? I
guess it’s just a fantasy…

Dawn Griffiths
David Griffiths

Boston

Head First Android Development
by Dawn Griffiths and David Griffiths

Copyright © 2017 David Griffiths and Dawn Griffiths. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Dawn Schanafelt

Cover Designer: Karen Montgomery

Production Editor: Kristen Brown

Proofreader: Rachel Monaghan

Indexer: Angela Howard

Page Viewers: Mum and Dad, Rob and Lorraine

Printing History:
June 2015: First Edition.
August 2017: Second Edition

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Android Development, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No kittens were harmed in the making of this book, but several pizzas were eaten.

ISBN: 978-1-491-97405-6
[M]

Mum and Dad Rob and
Lorraine

To our friends and family. Thank you so
much for all your love and support.

iv

the authors

Authors of Head First Android Development

David Griffiths

David Griffiths began programming at age 12,
when he saw a documentary on the work of Seymour
Papert. At age 15, he wrote an implementation of
Papert’s computer language LOGO. After studying
pure mathematics at university, he began writing code
for computers and magazine articles for humans. He’s
worked as an Agile coach, a developer, and a garage
attendant, but not in that order. He can write code
in over 10 languages and prose in just one, and when
not writing, coding, or coaching, he spends much
of his spare time traveling with his lovely wife—and
coauthor—Dawn.

Before writing Head First Android Development, David
wrote three other Head First books—Head First Rails,
Head First Programming, and Head First C—and created
The Agile Sketchpad video course with Dawn.

You can follow us on Twitter at https://twitter.com/
HeadFirstDroid and visit the book’s website at https://
tinyurl.com/HeadFirstAndroid.

Dawn Griffiths

Dawn Griffiths started life as a mathematician at
a top UK university, where she was awarded a first-
class honors degree in mathematics. She went on to
pursue a career in software development and has over
20 years’ experience working in the IT industry.

Before writing Head First Android Development, Dawn
wrote three other Head First books (Head First Statistics,
Head First 2D Geometry, and Head First C). She also
created the video course The Agile Sketchpad with her
husband, David, to teach key concepts and techniques
in a way that keeps your brain active and engaged.

When Dawn’s not working on Head First books or
creating videos, you’ll find her honing her Tai Chi skills,
reading, running, making bobbin lace, or cooking. She
particularly enjoys spending time with her wonderful
husband, David.

table of contents

v

Table of Contents (Summary)
 Intro xxix

1 Getting Started: Diving in 1

2 Building Interactive Apps: Apps that do something 37

3 Multiple Activities and Intents: State your intent 77

4 The Activity Lifecycle: Being an activity 119

5 Views and View Groups Enjoy the view 169

6 Constraint Layouts: Put things in their place 221

7 List views and Adapters: Getting organized 247

8 Support Libraries and App Bars: Taking shortcuts 289

9 Fragments: Make it modular 339

10 Fragments for Larger Interfaces: Different size, different interface 393

11 Dynamic Fragments: Nesting fragments 433

12 Design Support Library: Swipe right 481

13 Recycler Views and Card Views: Get recycling 537

14 Navigation Drawers: Going places 579

15 SQLite Databases: Fire up the database 621

16 Basic cursors: Getting data out 657

17 Cursors and AsyncTasks: Staying in the background 693

18 Started Services: At your service 739

19 Bound Services and Permissions: Bound together 767

i Relative and Grid Layouts: Meet the relatives 817

ii Gradle: The Gradle build tool 833

iii ART: The Android Runtime 841

iv ADB: The Android debug bridge 849

v The Android Emulator: Speeding things up 857

vi Leftovers: The top ten things (we didn’t cover) 861

table of contents

vi

Table of Contents (the real thing)

Your brain on Android. Here you are trying to learn something, while

here your brain is, doing you a favor by making sure the learning doesn’t stick. Your

brain’s thinking, “Better leave room for more important things, like which wild

animals to avoid and whether naked snowboarding is a bad idea.” So how do you

trick your brain into thinking that your life depends on knowing how to develop

Android apps?

Intro

Authors of Head First Android Development iv

Who is this book for? xxx

We know what you’re thinking xxxi

We know what your brain is thinking xxxi

Metacognition: thinking about thinking xxxiii

Here’s what WE did xxxiv

Read me xxxvi

The technical review team xxxviii

Acknowledgments xxxix

Safari® Books Online xl

I wonder how
I can trick my brain
into remembering
this stuff…

table of contents

vii

Welcome to Androidville 2

The Android platform dissected 3

Here’s what we’re going to do 4

Your development environment 5

Install Android Studio 6

Build a basic app 7

How to build the app 8

Activities and layouts from 50,000 feet 12

How to build the app (continued) 13

You’ve just created your first Android app 15

Android Studio creates a complete folder structure for you 16

Useful files in your project 17

Edit code with the Android Studio editors 18

Run the app in the Android emulator 23

Creating an Android Virtual Device 24

Run the app in the emulator 27

You can watch progress in the console 28

What just happened? 30

Refining the app 31

What’s in the layout? 32

activity_main.xml has two elements 33

Update the text displayed in the layout 34

Take the app for a test drive 35

Your Android Toolbox 36

Diving In1
getting started

Android has taken the world by storm.
Everybody wants a smartphone or tablet, and Android devices are hugely popular. In

this book, we’ll teach you how to develop your own apps, and we’ll start by getting

you to build a basic app and run it on an Android Virtual Device. Along the way, you’ll

meet some of the basic components of all Android apps, such as activities and

layouts. All you need is a little Java know-how...

<Layout>

</Layout>

Activity
Device Layout

<Layout>

</Layout>

Android SDK

table of contents

viii

Apps That Do Something
Most apps need to respond to the user in some way.
In this chapter, you’ll see how you can make your apps a bit more interactive. You’ll

learn how to get your app to do something in response to the user, and how to get

your activity and layout talking to each other like best buddies. Along the way, we’ll

take you a bit deeper into how Android actually works by introducing you to R, the

hidden gem that glues everything together.

building interactive apps

2
Let’s build a Beer Adviser app 38

Create the project 40

We’ve created a default activity and layout 41

A closer look at the design editor 42

Add a button using the design editor 43

activity_find_beer.xml has a new button 44

A closer look at the layout code 45

Let’s take the app for a test drive 49

Hardcoding text makes localization hard 50

Create the String resource 51

Use the String resource in your layout 52

The code for activity_find_beer.xml 53

Add values to the spinner 56

Add the string-array to strings.xml 57

Test drive the spinner 58

We need to make the button do something 59

Make the button call a method 60

What activity code looks like 61

Add an onClickFindBeer() method to the activity 62

onClickFindBeer() needs to do something 63

Once you have a View, you can access its methods 64

Update the activity code 65

The first version of the activity 67

What the code does 68

Build the custom Java class 70

What happens when you run the code 74

Test drive your app 75

Your Android Toolbox 76

<Layout>

</Layout> <resources>

</resources>

BeerExpert

Activity

Layout

strings.xml

table of contents

ix

State Your Intent
Most apps need more than one activity.
So far we’ve just looked at single-activity apps, which is fine for simple apps. But when

things get more complicated, just having the one activity won’t cut it. We’re going to

show you how to build apps with multiple activities, and how you can get your apps

talking to each other using intents. We’ll also look at how you can use intents to go

beyond the boundaries of your app and make activities in other apps on your

device perform actions. Things are about to get a whole lot more powerful...

multiple activities and intents

3
Apps can contain more than one activity 78

Here’s the app structure 79

Get started: create the project 79

Update the layout 80

Create the second activity and layout 82

Welcome to the Android manifest file 84

An intent is a type of message 86

What happens when you run the app 88

Pass text to a second activity 90

Update the text view properties 91

putExtra() puts extra info in an intent 92

Update the CreateMessageActivity code 95

Get ReceiveMessageActivity to use the information in the intent 96

What happens when the user clicks the Send Message button 97

We can change the app to send messages to other people 98

How Android apps work 99

Create an intent that specifies an action 101

Change the intent to use an action 102

How Android uses the intent filter 106

What if you ALWAYS want your users to choose an activity? 112

What happens when you call createChooser() 113

Change the code to create a chooser 115

Your Android Toolbox 118

User
Android

CreateMessageActivity

Hey, user. Which
activity do you want
to use this time?

To: AnotherActivity

Intent

table of contents

x

How do activities really work? 120

The Stopwatch app 122

Add String resources 123

How the activity code will work 125

Add code for the buttons 126

The runTimer() method 127

The full runTimer() code 129

The full StopwatchActivity code 130

Rotating the screen changes the device configuration 136

The states of an activity 137

The activity lifecycle: from create to destroy 138

The updated StopwatchActivity code 142

What happens when you run the app 143

There’s more to an activity’s life than create and destroy 146

The updated StopwatchActivity code 151

What happens when you run the app 152

What if an app is only partially visible? 154

The activity lifecycle: the foreground lifetime 155

Stop the stopwatch if the activity’s paused 158

Implement the onPause() and onResume() methods 159

The complete StopwatchActivity code 160

What happens when you run the app 163

Your handy guide to the lifecycle methods 167

Your Android Toolbox 168

Being an Activity4
the activity lifecycle

Activities form the foundation of every Android app.
So far you’ve seen how to create activities, and made one activity start another

using an intent. But what’s really going on beneath the hood? In this chapter,

we’re going to dig a little deeper into the activity lifecycle. What happens when

an activity is created and destroyed? Which methods get called when an activity

is made visible and appears in the foreground, and which get called when the

activity loses the focus and is hidden? And how do you save and restore your

activity’s state? Read on to find out.Activity
launched

Activity
destroyed

Activity
running

onCreate()

onDestroy()

onStart()

onStop()

onRestart()

onResume()

onPause()

table of contents

xi

Enjoy the View
You’ve seen how to arrange GUI components using a linear
layout, but so far we’ve only scratched the surface.
In this chapter we’ll look a little deeper and show you how linear layouts really work.

We’ll introduce you to the frame layout, a simple layout used to stack views, and we’ll

also take a tour of the main GUI components and how you use them. By the end of

the chapter, you’ll see that even though they all look a little different, all layouts and GUI

components have more in common than you might think.

views and view groups

5
Your user interface is made up of layouts and GUI components 170

LinearLayout displays views in a single row or column 171

Add a dimension resource file for consistent padding across layouts 174

Use margins to add distance between views 176

Let’s change up a basic linear layout 177

Make a view streeeeetch by adding weight 179

Values you can use with the android:gravity attribute 183

The full linear layout code 186

Frame layouts stack their views 188

Add an image to your project 189

The full code to nest a layout 192

FrameLayout: a summary 193

Playing with views 201

Editable text view 202

Toggle button 204

Switch 205

Checkboxes 206

Radio buttons 208

Spinner 210

Image view 211

Adding images to buttons 213

Scroll views 215

Toasts 216

Your Android Toolbox 220

<Layout>

</Layout>

layout.xml
ViewGroup

View View

The linear layout

The button The editable
text field

Frame layouts let your views overlap one
another. This is useful for displaying
text on top of images, for example.

table of contents

xii

Put Things in Their Place
Let’s face it, you need to know how to create great layouts.
If you’re building apps you want people to use, you need to make sure they look

exactly the way you want. So far you’ve seen how to use linear and frame layouts, but

what if your design is more complex? To deal with this, we’ll introduce you to Android’s

new constraint layout, a type of layout you build visually using a blueprint. We’ll

show you how constraints let you position and size your views, irrespective of screen

size and orientation. Finally, you’ll find out how to save time by making Android Studio

infer and add constraints on your behalf.

constraint layouts

6
Nested layouts can be inefficient 222

Introducing the Constraint Layout 223

Make sure your project includes the Constraint Layout Library 224

Add the String resources to strings.xml 225

Use the blueprint tool 226

Position views using constraints 227

Add a vertical constraint 228

Changes to the blueprint are reflected in the XML 229

How to center views 230

Adjust a view’s position by updating its bias 231

How to change a view’s size 232

How to align views 238

Let’s build a real layout 239

First, add the top line of views 240

The Infer Constraints feature guesses which constraints to add 241

Add the next line to the blueprint... 242

Finally, add a view for the message 243

Test drive the app 244

Your Android Toolbox 245

This time, the Infer
Constraints button
added constraints to
our new EditText.

table of contents

xiii

Every app starts with ideas 248

Use list views to navigate to data 251

The drink detail activity 253

The Starbuzz app structure 254

The Drink class 256

The top-level layout contains an image and a list 258

The full top-level layout code 260

Get list views to respond to clicks with a listener 261

Set the listener to the list view 262

A category activity displays the data for a single category 267

Update activity_drink_category.xml 268

For nonstatic data, use an adapter 269

Connect list views to arrays with an array adapter 270

Add the array adapter to DrinkCategoryActivity 271

App review: where we are 274

How we handled clicks in TopLevelActivity 276

The full DrinkCategoryActivity code 278

Update the views with the data 281

The DrinkActivity code 283

What happens when you run the app 284

Your Android Toolbox 288

Getting Organized7
list views and adapters

Want to know how best to structure your Android app?
You’ve learned about some of the basic building blocks that are used to create apps,

and now it’s time to get organized. In this chapter, we’ll show you how you can take

a bunch of ideas and structure them into an awesome app. You’ll learn how lists

of data can form the core part of your app design, and how linking them together

can create a powerful and easy-to-use app. Along the way, you’ll get your first

glimpse of using event listeners and adapters to make your app more dynamic.

Display a

start screen

with a list of

options.

Display a list
of the drinks
we sell.

Show details

of each
drink.

Drink.
drinks

ListViewArray
Adapter

This is our array. This is our list view.We’ll create an array adapter to
bind our list view to our array.

table of contents

xiv

Taking Shortcuts
Everybody likes a shortcut.
And in this chapter you’ll see how to add shortcuts to your apps using app bars. We’ll

show you how to start activities by adding actions to your app bar, how to share content

with other apps using the share action provider, and how to navigate up your app’s

hierarchy by implementing the app bar’s Up button. Along the way we’ll introduce you

to the powerful Android Support Libraries, which are key to making your apps look

fresh on older versions of Android.

support libraries and app bars

8
Great apps have a clear structure 290

Different types of navigation 291

Add an app bar by applying a theme 293

Create the Pizza app 295

Add the v7 AppCompat Support Library 296

AndroidManifest.xml can change your app bar’s appearance 299

How to apply a theme 300

Define styles in a style resource file 301

Customize the look of your app 303

Define colors in a color resource file 304

The code for activity_main.xml 305

ActionBar vs. Toolbar 306

Include the toolbar in the activity’s layout 312

Add actions to the app bar 315

Change the app bar text by adding a label 318

The code for AndroidManifest.xml 319

Control the action’s appearance 322

The full MainActivity.java code 325

Enable Up navigation 327

Share content on the app bar 331

Add a share action provider to menu_main.xml 332

Specify the content with an intent 333

The full MainActivity.java code 334

Your Android Toolbox 337

AppActivity

Intent

ShareActionProvider

ACTION_SEND
type: “text/plain”
messageText: ”Hi!”

YourActivity
onCreate(Bundle)

yourMethod()

Activity
onCreate(Bundle)

onStart()

onRestart()

onResume()

onPause()

onStop()

onDestroy()

onSaveInstanceState()

FragmentActivity

AppCompatActivity

table of contents

xv

Make It Modular
You’ve seen how to create apps that work in the same way
no matter what device they’re running on.
But what if you want your app to look and behave differently depending on whether

it’s running on a phone or a tablet? In this case you need fragments, modular code

components that can be reused by different activities. We’ll show you how to create

basic fragments and list fragments, how to add them to your activities, and how to

get your fragments and activities to communicate with one another.

fragments

9
Your app needs to look great on ALL devices 340

Your app may need to behave differently too 341

Fragments allow you to reuse code 342

The phone version of the app 343

Create the project and activities 345

Add a button to MainActivity’s layout 346

How to add a fragment to your project 348

The fragment’s onCreateView() method 350

Add a fragment to an activity’s layout 352

Get the fragment and activity to interact 359

The Workout class 360

Pass the workout ID to the fragment 361

Get the activity to set the workout ID 363

The fragment lifecycle 365

Set the view’s values in the fragment’s onStart() method 367

How to create a list fragment 374

The updated WorkoutListFragment code 377

The code for activity_main.xml 381

Connect the list to the detail 384

The code for WorkoutListFragment.java 387

MainActivity needs to implement the interface 388

DetailActivity needs to pass the ID to WorkoutDetailFragment 389

Your Android Toolbox 392

MainActivity
WorkoutDetail

Fragment

onCreate()

Fragment Manager

<Layout>

</Layout>

activity_detail

Hmmm, a
<fragment> element.
I need to know what
goes here.

A list fragment
comes complete with
its own list view so
you don’t need to
add it yourself. You
just need to provide
the list fragment
with data.

table of contents

xvi

Different Size, Different Interface
So far we’ve only run our apps on devices with a small
screen. But what if your users have tablets? In this chapter you’ll see how to create

flexible user interfaces by making your app look and behave differently depending

on the device it’s running on. We’ll show you how to control the behavior of your app

when you press the Back button by introducing you to the back stack and fragment

transactions. Finally, you’ll find out how to save and restore the state of your

fragment.

fragments for larger interfaces

10
The Workout app looks the same on a phone and a tablet 394

Designing for larger interfaces 395

The phone version of the app 396

The tablet version of the app 397

Create a tablet AVD 399

Put screen-specific resources in screen-specific folders 402

The different folder options 403

Tablets use layouts in the layout-large folder 408

What the updated code does 410

We need to change the itemClicked() code 412

You want fragments to work with the Back button 413

Welcome to the back stack 414

Back stack transactions don’t have to be activities 415

Use a frame layout to replace fragments programmatically 416

Use layout differences to tell which layout the device is using 417

The revised MainActivity code 418

Using fragment transactions 419

The updated MainActivity code 423

Rotating the tablet breaks the app 427

Saving an activity’s state (revisited) 428

The updated code for WorkoutDetailFragment.java 430

Your Android Toolbox 432
MainActivity

FragmentTransaction
Tablet

I'm committed.
Make it so!

Android

<xml>
</xml>

activity_main.xml

layout-large

The device screen's
large, so I'll use the large
version of the layout.

table of contents

xvii

Adding dynamic fragments 434

The new version of the app 436

Create TempActivity 437

TempActivity needs to extend AppCompatActivity 438

The StopwatchFragment.java code 444

The StopwatchFragment layout 447

Add StopwatchFragment to TempActivity’s layout 449

The onClick attribute calls methods in the activity, not the fragment 452

Attach the OnClickListener to the buttons 457

The StopwatchFragment code 458

Rotating the device resets the stopwatch 462

Use <fragment> for static fragments... 463

Change activity_temp.xml to use a FrameLayout 464

The full code for TempActivity.java 467

Add the stopwatch to WorkoutDetailFragment 469

The full WorkoutDetailFragment.java code 476

Your Android Toolbox 480

Nesting Fragments11
dynamic fragments

So far you’ve seen how to create and use static
fragments. But what if you want your fragments to be more dynamic?

Dynamic fragments have a lot in common with dynamic activities, but there are

crucial differences you need to be able to deal with. In this chapter you’ll see how

to convert dynamic activities into working dynamic fragments. You’ll find out

how to use fragment transactions to help maintain your fragment state. Finally,

you’ll discover how to nest one fragment inside another, and how the child

fragment manager helps you control unruly back stack behavior.

Activity

Whenever I see
android:onClick, I
assume it’s all about
me. My methods run,
not the fragment’s.

Workout Details Stopwatch

I display workout
details, and I also
display the stopwatch.

The transaction to add
StopwatchFragment is nested inside the transaction to add WorkoutDetailFragment.

table of contents

xviii

The Bits and Pizzas app revisited 482

The app structure 483

Use a view pager to swipe through fragments 489

Add a view pager to MainActivity’s layout 490

Tell a view pager about its pages using a fragment pager adapter 491

The code for our fragment pager adapter 492

The full code for MainActivity.java 494

Add tab navigation to MainActivity 498

How to add tabs to your layout 499

Link the tab layout to the view pager 501

The full code for MainActivity.java 502

The Design Support Library helps you implement material design 506

Make the toolbar respond to scrolls 508

Add a coordinator layout to MainActivity’s layout 509

How to coordinate scroll behavior 510

Add scrollable content to TopFragment 512

The full code for fragment_top.xml 515

Add a collapsing toolbar to OrderActivity 517

How to create a plain collapsing toolbar 518

How to add an image to a collapsing toolbar 523

The updated code for activity_order.xml 524

FABs and snackbars 526

The updated code for activity_order.xml 528

The full code for OrderActivity.java 533

Your Android Toolbox 535

Swipe Right12
design support library

Ever wondered how to develop apps with a rich, slick UI?
With the release of the Android Design Support Library, it became much easier

to create apps with an intuitive UI. In this chapter, we’ll show you around some of

the highlights. You’ll see how to add tabs so that your users can navigate around

your app more easily. You’ll discover how to animate your toolbars so that

they can collapse or scroll on a whim. You’ll find out how to add floating action

buttons for common user actions. Finally, we’ll introduce you to snackbars, a way

of displaying short, informative messages to the user that they can interact with.

We’ll get the toolbar to scroll when the
user scrolls the content in TopFragment.

We’ll add this scrollable
content to TopFragment.

table of contents

xix

Get Recycling
You’ve already seen how the humble list view is a key part of
most apps. But compared to some of the material design components we’ve seen,

it’s somewhat plain. In this chapter, we’ll introduce you to the recycler view, a more

advanced type of list that gives you loads more flexibility and fits in with the material

design ethos. You’ll see how to create adapters tailored to your data, and how to

completely change the look of your list with just two lines of code. We’ll also show you

how to use card views to give your data a 3D material design appearance.

recycler views and card views

13
There’s still work to do on the Bits and Pizzas app 538

Recycler views from 10,000 feet 539

Add the pizza data 541

Display the pizza data in a card 542

How to create a card view 543

The full card_captioned_image.xml code 544

Add a recycler view adapter 546

Define the adapter’s view holder 548

Override the onCreateViewHolder() method 549

Add the data to the card views 550

The full code for CaptionedImagesAdapter.java 551

Create the recycler view 553

Add the RecyclerView to PizzaFragment’s layout 554

The full PizzaFragment.java code 555

A recycler view uses a layout manager to arrange its views 556

Specify the layout manager 557

The full PizzaFragment.java code 558

Make the recycler view respond to clicks 566

Create PizzaDetailActivity 567

The code for PizzaDetailActivity.java 569

Get a recycler view to respond to clicks 570

You can listen for view events from the adapter 571

Keep your adapters reusable 572

Add the interface to the adapter 573

Implement the listener in PizzaFragment.java 575

Your Android Toolbox 578

ViewHolder

CardView

Each of our ViewHolders will
contain a CardView. We created
the layout for this CardView
earlier in the chapter.

table of contents

xx

Going Places
You’ve already seen how tabs help users navigate your apps.
But if you need a large number of them, or want to split them into sections, the navigation

drawer is your new BFF. In this chapter, we’ll show you how to create a navigation drawer

that slides out from the side of your activity at a single touch. You’ll learn how to give it a

header using a navigation view, and provide it with a structured set of menu items

to take the user to all the major hubs of your app. Finally, you’ll discover how to set up a

navigation view listener so that the drawer responds to the slightest touch and swipe.

navigation drawers

14
Tab layouts allow easy navigation... 580

We’re going to create a navigation drawer for a new email app 581

Navigation drawers deconstructed 582

Create the CatChat project 584

Create InboxFragment 585

Create DraftsFragment 586

Create SentItemsFragment 587

Create TrashFragment 588

Create a toolbar layout 589

Update the app’s theme 590

Create HelpActivity 591

Create FeedbackActivity 592

Create the navigation drawer’s header 594

The full nav_header.xml code 595

How to group items together 598

Add the support section as a submenu 600

The full menu_nav.xml code 601

How to create a navigation drawer 602

The full code for activity_main.xml 603

Add InboxFragment to MainActivity’s frame layout 604

Add a drawer toggle 607

Respond to the user clicking items in the drawer 608

Implement the onNavigationItemSelected() method 609

Close the drawer when the user presses the Back button 614

The full MainActivity.java code 615

Your Android Toolbox 619

This is the CatChat app.

table of contents

xxi

Fire Up the Database
If you’re recording high scores or saving tweets, your app
will need to store data. And on Android you usually keep your data safe

inside a SQLite database. In this chapter, we’ll show you how to create a database,

add tables to it, and prepopulate it with data, all with the help of the friendly SQLite

helper. You’ll then see how you can cleanly roll out upgrades to your database

structure, and how to downgrade it if you need to undo any changes.

SQLite databases

15
Back to Starbuzz 622

Android uses SQLite databases to persist data 623

Android comes with SQLite classes 624

The current Starbuzz app structure 625

Let’s change the app to use a database 626

The SQLite helper manages your database 627

Create the SQLite helper 628

Inside a SQLite database 630

You create tables using Structured Query Language (SQL) 631

Insert data using the insert() method 632

Insert multiple records 633

The StarbuzzDatabaseHelper code 634

What the SQLite helper code does 635

What if you need to make changes to the database? 636

SQLite databases have a version number 637

What happens when you change the version number 638

Upgrade your database with onUpgrade() 640

Downgrade your database with onDowngrade() 641

Let’s upgrade the database 642

Upgrade an existing database 645

Update records with the update() method 646

Apply conditions to multiple columns 647

Change the database structure 649

Delete tables by dropping them 650

The full SQLite helper code 651

Your Android Toolbox 656

Your database,
sir. Will that
be all?

SQLite helper

SQLite database

Name: “starbuzz”
Version: 1

DRINK

onCreate()

table of contents

xxii

Getting Data Out
So how do you connect your app to a SQLite database?
 So far you’ve seen how to create a SQLite database using a SQLite helper. The

next step is to get your activities to access it. In this chapter, we’ll focus on how you

read data from a database. You’ll find out how to use cursors to get data from the

database. You’ll see how to navigate cursors, and how to get access to their data.

Finally, you’ll discover how to use cursor adapters to bind cursors to list views.

basic cursors

16
The story so far... 658

The new Starbuzz app structure 659

What we’ll do to change DrinkActivity to use the Starbuzz database 660

The current DrinkActivity code 661

Get a reference to the database 662

Get data from the database with a cursor 663

Return all the records from a table 664

Return records in a particular order 665

Return selected records 666

The DrinkActivity code so far 669

To read a record from a cursor, you first need to navigate to it 670

Navigate cursors 671

Get cursor values 672

The DrinkActivity code 673

What we’ve done so far 675

The current DrinkCategoryActivity code 677

Get a reference to the Starbuzz database... 678

How do we replace the array data in the list view? 679

A simple cursor adapter maps cursor data to views 680

How to use a simple cursor adapter 681

Close the cursor and database 682

The story continues 683

The revised code for DrinkCategoryActivity 688

The DrinkCategoryActivity code (continued) 689

Your Android Toolbox 691

CursorAdapter
Cursor

Hey, Cursor, I need
more... Cursor? Hey,
buddy, are you there?

If you close the cursor too soon, the cursor adapter won’t be able to get more data from the cursor.

table of contents

xxiii

Staying in the Background17
cursors and asynctasks

In most apps, you’ll need your app to update its data.
 So far you’ve seen how to create apps that read data from a SQLite database. But

what if you want to update the app’s data? In this chapter you’ll see how to get your

app to respond to user input and update values in the database. You’ll also find

out how to refresh the data that’s displayed once it’s been updated. Finally, you’ll

see how writing efficient multithreaded code with AsyncTasks will keep your app

speedy.
onPreExecute

doInBackground

onProgressUpdate

onPostExecute

We want our Starbuzz app to update database data 694

Add a checkbox to DrinkActivity’s layout 696

Display the value of the FAVORITE column 697

Respond to clicks to update the database 698

The full DrinkActivity.java code 701

Display favorites in TopLevelActivity 705

Refactor TopLevelActivity.java 707

The new TopLevelActivity.java code 710

Change the cursor with changeCursor() 715

What code goes on which thread? 723

AsyncTask performs asynchronous tasks 724

The onPreExecute() method 725

The doInBackground() method 726

The onProgressUpdate() method 727

The onPostExecute() method 728

The AsyncTask class parameters 729

The full UpdateDrinkTask class 730

The full DrinkActivity.java code 732

A summary of the AsyncTask steps 737

Your Android Toolbox 737

ListView CursorAdapter Database
Cursor

Latte

Cappuccino

Filter

table of contents

xxiv

At Your Service
There are some operations you want to keep on running,
irrespective of which app has the focus. If you start downloading a

file, for instance, you don’t want the download to stop when you switch to another app. In

this chapter we’ll introduce you to started services, components that run operations in the

background. You’ll see how to create a started service using the IntentService class,

and find out how its lifecycle fits in with that of an activity. Along the way, you’ll discover how

to log messages, and keep users informed using Android’s built-in notification service.

started services

18

MainActivity.java DelayedMessageService.java

1...2..3...4...5...6...7
...8...9...10... Here’s
the text.

<Layout>

</Layout>

activity_main.xml

The activity will pass
text to the service.

The service will
display the text
after 10 seconds.

MainActivity will use this layout.

Text

Services work in the background 740

We’ll create a STARTED service 741

Use the IntentService class to create a basic started service 742

How to log messages 743

The full DelayedMessageService code 744

You declare services in AndroidManifest.xml 745

Add a button to activity_main.xml 746

You start a service using startService() 747

The states of a started service 750

The started service lifecycle: from create to destroy 751

Your service inherits the lifecycle methods 752

Android has a built-in notification service 755

We’ll use notifications from the AppCompat Support Library 756

First create a notification builder 757

Issue the notification using the built-in notification service 759

The full code for DelayedMessageService.java 760

Your Android Toolbox 765

onCreate()

onDestroy()

Service created

Service destroyed

onStartCommand()

Service running

onHandleIntent()

table of contents

xxv

Bound Together
Started services are great for background operations, but
what if you need a service that’s more interactive? In this

chapter you’ll discover how to create a bound service, a type of service your activity

can interact with. You’ll see how to bind to the service when you need it, and how

to unbind from it when you’re done to save resources. You’ll find out how to use

Android’s Location Services to get location updates from your device GPS. Finally,

you’ll discover how to use Android’s permission model, including handling runtime

permission requests.

bound services and permissions

19
Bound services are bound to other components 768

Create a new service 770

Implement a binder 771

Add a getDistance() method to the service 772

Update MainActivity’s layout 773

Create a ServiceConnection 775

Use bindService() to bind the service 778

Use unbindService() to unbind from the service 779

Call OdometerService’s getDistance() method 780

The full MainActivity.java code 781

The states of a bound service 787

Add the AppCompat Support Library 790

Add a location listener to OdometerService 792

Here’s the updated OdometerService code 795

Calculate the distance traveled 796

The full OdometerService.java code 798

Get the app to request permission 802

Check the user’s response to the permission request 805

Add notification code to onRequestPermissionsResults() 809

The full code for MainActivity.java 811

Your Android Toolbox 815

It’s been great having you here in Androidville 816

OdometerService

Are we nearly
there yet?

Android

Intent

Odometer
Service

OdometerService

onBind()

table of contents

xxvi

Most Android apps are created using a build tool called
Gradle. Gradle works behind the scenes to find and download libraries, compile

and deploy your code, run tests, clean the grouting, and so on. Most of the time you

might not even realize it’s there because Android Studio provides a graphical interface

to it. Sometimes, however, it’s helpful to dive into Gradle and hack it manually. In this

appendix we’ll introduce you to some of Gradle’s many talents.

There are two more layouts you will often meet in
Androidville. In this book we’ve concentrated on using simple linear and frame

layouts, and introduced you to Android’s new constraint layout. But there are two more

layouts we’d like you to know about: relative layouts and grid layouts. They’ve largely

been superseded by the constraint layout, but we have a soft spot for them, and we

think they’ll stay around for a few more years.

Meet the Relatives
relative and grid layouts

i

The Gradle Build Tool
gradle

ii

Each of
these
areas is
a cell.

table of contents

xxvii

The Android Runtime
Ever wonder how Android apps can run on so many kinds of
devices? Android apps run in a virtual machine called the Android runtime (ART),

not the Oracle Java Virtual Machine (JVM). This means that your apps are quicker to

start on small, low-powered devices and run more efficiently. In this appendix, we’ll look

at how ART works.

art

iii

The Android Debug Bridge
In this book, we’ve focused on using an IDE for all your
Android needs. But there are times when using a command-line tool can be plain

useful, like those times when Android Studio can’t see your Android device but you just

know it’s there. In this chapter, we’ll introduce you to the Android Debug Bridge (or

adb), a command-line tool you can use to communicate with the emulator or Android

devices.

adb

iv

classes.dex

Resources

aapt

.apk

Device

Device

adb adbd

adb command adb daemon
process

table of contents

xxviii

1. Distributing your app 862

2. Content providers 863

3. Loaders 864

4. Sync adapters 864

5. Broadcasts 865

6. The WebView class 866

7. Settings 867

8. Animation 868

9. App widgets 869

10. Automated testing 870

Speeding Things Up
Ever felt like you were spending all your time waiting for the
emulator? There’s no doubt that using the Android emulator is useful. It allows

you to see how your app will run on devices other than the physical ones you have

access to. But at times it can feel a little...sluggish. In this appendix, we’ll explain why

the emulator can seem slow. Even better, we’ll give you a few tips we’ve learned for

speeding it up.

the android emulator

v

The Top Ten Things (we didn’t cover)
Even after all that, there’s still a little more.
There are just a few more things we think you need to know. We wouldn’t feel right

about ignoring them, and we really wanted to give you a book you’d be able to lift

without extensive training at the local gym. Before you put down the book, read

through these tidbits.

leftovers

vi

QEMU Emulator

AVD

All the Android Virtual Devices run
on an emulator called QEMU.

AVD AVD AVD AVD

The battery’s
running low, in case
anyone’s interested.

Android

you are here 4 xxix

the intro

how to use this book

Intro

In this section, we answer the burning question:
“So why DID they put that in a book on Android?”

I can’t believe
they put that in an

Android book.

xxx intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from Marketing: this book is for anyone with a credit card or a PayPal account]

Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

Do you want to master Android app development, create
the next big thing in software, make a small fortune, and
retire to your own private island?

2

Are you looking for a quick introduction or reference book
to developing Android apps?

1

Do you already know how to program in Java?1

Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do
you believe an Android book should cover everything,
especially all the obscure stuff you’ll never use, and if it
bores the reader to tears in the process, then so much
the better?

2

OK, maybe that one’s a little
far-fetched. But you gotta
start somewhere, right?

3

you are here 4 xxxi

the intro

“How can this be a serious book on developing Android apps?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you—what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously unimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things.
Like tigers. Like the danger of fire. Like how you should never have
posted those party photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I’m registering on the
emotional Richter scale right now, I really do want you to keep this
stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 900
more dull, dry,
boring pages.

33

xxxii intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner-party

companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this, but I can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be

boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you care about. You remember when you feel something.

No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I’m more technical than

thou” Bob from Engineering doesn’t.

you are here 4 xxxiii

the intro

Metacognit ion: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff…

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to develop Android apps. And you probably don’t want to spend a lot of time.
If you want to use what you read in this book, you need to remember what you
read. And for that, you’ve got to understand it. To get the most from this book,
or any book or learning experience, take responsibility for your brain. Your
brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat Android
development like it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but
he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

xxxiv intro

how to use this book

Here’s what WE did
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing it refers to, as opposed to in a caption or buried in the body
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included activities, because your brain is tuned to learn and remember more when
you do things than when you read about things. And we made the exercises challenging-yet-
doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, and the like, because, well, you’re a person.
And your brain pays more attention to people than it does to things.

you are here 4 xxxv

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

6 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

9 Write a lot of code!
There’s only one way to learn to develop Android
apps: write a lot of code. And that’s what you’re
going to do throughout this book. Coding is a skill,
and the only way to get good at it is to practice.
We’re going to give you a lot of practice: every
chapter has exercises that pose a problem for you
to solve. Don’t just skip over them—a lot of the
learning happens when you solve the exercises. We
included a solution to each exercise—don’t be afraid
to peek at the solution if you get stuck! (It’s easy
to get snagged on something small.) But try to solve
the problem before you look at the solution. And
definitely get it working before you move on to the
next part of the book.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

5 Talk about it. Out loud.
Speaking activates a different part of the brain. If
you’re trying to understand something, or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

4 Make this the last thing you read before bed.
Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

3 Read “There Are No Dumb Questions.”
That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The
more deeply you force your brain to think, the better
chance you have of learning and remembering.

Slow down. The more you understand, the
less you have to memorize.

1

xxxvi intro

how to use this book

Read me

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We assume you’re new to Android, but not to Java.

We’re going to be building Android apps using a combination of Java and XML. We
assume that you’re familiar with the Java prorgamming language. If you’ve never done any
Java programming at all, then you might want to read Head First Java before you start on
this one.

We start off by building an app in the very first chapter.
Believe it or not, even if you’ve never developed for Android before, you can jump right
in and start building apps. You’ll also learn your way around Android Studio, the official
IDE for Android development.

The examples are designed for learning.
As you work through the book, you’ll build a number of different apps. Some of these are
very small so you can focus on a specific part of Android. Other apps are larger so you can
see how different components fit together. We won’t complete every part of every app, but
feel free to experiment and finish them yourself. It’s all part of the learning experience. The
source code for all the apps is here: https://tinyurl.com/HeadFirstAndroid.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises.

you are here 4 xxxvii

the intro

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction.

xxxviii intro

the review teamthe review team

The technical rev iew team

Jacqui Cope started coding to avoid school netball
practice. Since then she has gathered 30 years’
experience working with a variety of financial software
systems, from coding in COBOL to test management.
Recently she has gained her MSc in Computer
Security and has moved into software Quality
Assurance in the higher education sector.

In her spare time, Jacqui likes to cook, walk in the
countryside, and watch Doctor Who from behind the
sofa.

Jacqui

Technical reviewers:

Andy Parker is currently working as a development
manager, but has been a research physicist, teacher,
designer, reviewer, and team leader at various points
in his career. Through all of his roles, he has never lost
his passion for creating top quality, well-designed, and
well-engineered software. Nowadays, he spends most
of his time managing great Agile teams and passing on
his wide range of experience to the next generation of
developers.

Andy

you are here 4 xxxix

the intro

Our editor:

Heartfelt thanks to our wonderful editor Dawn Schanafelt for
picking up the reins on the second edition. She has truly been
amazing, and a delight to work with. She made us feel valued
and supported every step of the way, and gave us invaluable
feedback and insight exactly when we needed it. We’ve
appreciated all the many times she told us our sentences had all
the right words, but not necessarily in the right order.

Thanks also to Bert Bates for teaching us to throw away the

Acknowledgments

Dawn Schanafelt

old rulebook and for letting us into his brain.

The O’Reilly team:

A big thank you goes to Mike Hendrickson for having confidence in us and
asking us to write the first edition of the book; Heather Scherer for her behind-
the-scenes organization skills and herding; the early release team for making
early versions of the book available for download; and the design team for all
their extra help. Finally, thanks go to the production team for expertly steering
the book through the production process and for working so hard behind the
scenes.

Family, friends, and colleagues:

Writing a Head First book is a rollercoaster of a ride, even when it’s a second
edition, and this one’s been no exception. We’ve truly valued the kindness and
support of our family and friends along the way. Special thanks go to Ian, Steve,
Colin, Angela, Paul B, Chris, Michael, Mum, Dad, Carl, Rob, and
Lorraine.

The without-whom list:

Our technical review team did a great job of keeping us straight, and making sure
that what we covered was spot on. We’re also grateful to Ingo Krotzky for his
valuable feedback on the early release of this book, and all the people who gave us
feedback on the first edition. We think the book’s much, much better as a result.

Finally, our thanks to Kathy Sierra and Bert Bates for creating this
extraordinary series of books.

xl intro

o’reilly safari

O’Reil ly Safari®
Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

this is a new chapter 1

getting started1

Diving In

Android has taken the world by storm.
Everybody wants a smartphone or tablet, and Android devices are hugely popular. In this

book, we’ll teach you how to develop your own apps, and we’ll start by getting you to

build a basic app and run it on an Android Virtual Device. Along the way, you’ll meet some

of the basic components of all Android apps, such as activities and layouts. All you

need is a little Java know-how...

2 Chapter 1

android overview

Welcome to Androidville
Android is the world’s most popular mobile platform. At the
last count, there were over two billion active Android devices
worldwide, and that number is growing rapidly.

Android is a comprehensive open source platform based
on Linux and championed by Google. It’s a powerful
development framework that includes everything you need
to build great apps using a mix of Java and XML. What’s
more, it enables you to deploy those apps to a wide variety of
devices—phones, tablets, and more.

So what makes up a typical Android app?

Layouts
tell Android
what the
screens in
your app
look like.

Layouts define what each screen
looks like
A typical Android app is composed of one
or more screens. You define what each
screen looks like using a layout to define its
appearance. Layouts are usually defined in
XML, and can include GUI components such
as buttons, text fields, and labels.

Activities define what the app
does
Layouts only define the appearance of the app.
You define what the app does using one or
more activities. An activity is a special Java
class that decides which layout to use and
tells the app how to respond to the user. As
an example, if a layout includes a button, you
need to write Java code in the activity to define
what the button should do when you press it.

Sometimes extra resources are needed too
In addition to activities and layouts, Android apps often need
extra resources such as image files and application data. You
can add any extra files you need to the app.

Android apps are really just a bunch of files in particular
directories. When you build your app, all of these files get
bundled together, giving you an app you can run on your
device.

We’re going to build our
Android apps using a mixture
of Java and XML. We’ll
explain things along the way,
but you’ll need to have a fair
understanding of Java to get
the most out of this book.

Activities define
what the app
should do.

Resources
can include
sound and
image files.

you are here 4 3

getting started

Applications

Home Contacts Phone Browser ...

Application Framework
Activity
Manager

Window
Manager

Content
Providers

View
System

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

Notification
Manager

Libraries

OpenGL |
ES FreeType WebKit

Surface
Manager

Media
Framework SQLite

SGL SSL libc

Android Runtime

Core
Libraries

Linux Kernel
Flash Memory

Driver
Camera
Driver

Binder (IPC)
Driver

Display
Driver

Audio
Drivers

WiFi
Driver

Power
Management

Keypad
Driver

Android comes with a
set of core applications
such as Contacts, Phone,
Calendar, and a browser.

When you build apps, you
have access to the same
APIs used by the core
applications. You use
these APIs to control
what your app looks like
and how it behaves.

Underneath the
application framework
lies a set of C and C++
libraries. These libraries
get exposed to you
through the framework
APIs.

Underneath everything
else lies the Linux kernel.
Android relies on the
kernel for drivers, and
also core services such
as security and memory
management.

The Android
runtime
comes with a
set of core
libraries that
implement
most of
the Java
programming
language.
Each Android
app runs
in its own
process.

The Android platform dissected
The Android platform is made up of a number of
different components. It includes core applications such
as Contacts, a set of APIs to help you control what your
app looks like and how it behaves, and a whole load of
supporting files and libraries. Here’s a quick look at how
they all fit together:

 Don’t worry if this seems
like a lot to take in.

We’re just giving you an
overview of what’s included in

the Android platform. We’ll explain the different
components in more detail as and when we
need to.

The great news is that all of the powerful Android libraries
are exposed through the APIs in the application framework,
and it’s these APIs that you use to create great Android
apps. All you need to begin is some Java knowledge and a
great idea for an app.

4 Chapter 1

steps

Here’s what we’re going to do
So let’s dive in and create a basic Android app. There are just
a few things we need to do:

Set up a development environment.
We need to install Android Studio, which
includes all the tools you need to develop
Android apps.

1

Build a basic app.
We’ll build a simple app using Android
Studio that will display some sample text on
the screen.

2

Change the app.
Finally, we’ll make a few tweaks to the app we
created in step 2, and run it again.

4

Run the app in the Android emulator.
We’ll use the built-in emulator to see the app
up and running.

3

Q: Are all Android apps developed
in Java?

A: You can develop Android apps in
other languages, too. Most developers use
Java, so that’s what we’re covering in this
book.

Q: How much Java do I need to know
for Android app development?

A: You really need experience with Java
SE (Standard Edition). If you’re feeling
rusty, we suggest getting a copy of Head
First Java by Kathy Sierra and Bert Bates.

Q: Do I need to know about Swing
and AWT?

A: Android doesn’t use Swing or AWT,
so don’t worry if you don’t have Java
desktop GUI experience.

you are here 4 5

getting started

Your development environment
Java is the most popular language used to develop Android applications.
Android devices don’t run .class and .jar files. Instead, to improve speed
and battery performance, Android devices use their own optimized
formats for compiled code. That means that you can’t use an ordinary
Java development environment—you also need special tools to convert
your compiled code into an Android format, to deploy them to an
Android device, and to let you debug the app once it’s running.

All of these come as part of the Android SDK. Let’s take a look at
what’s included.

The Android SDK
The Android Software Development Kit contains the libraries and tools
you need to develop Android apps. Here are some of the main points:

Android Studio is a special version of IntelliJ IDEA
IntelliJ IDEA is one of the most popular IDEs for Java development.
Android Studio is a version of IDEA that includes a version of
the Android SDK and extra GUI tools to help you with your app
development.

In addition to providing you with an editor and access to the tools and
libraries in the Android SDK, Android Studio gives you templates you
can use to help you create new apps and classes, and it makes it easy to
do things such as package your apps and run them.

Set up environment
Build app
Run app
Change app

Android SDK

SDK Tools
Tools for debugging and testing,
plus other useful utilities. The
SDK also features a set of
platform dependent tools.

Documentation
So you can access the latest
API documentation offline.

SDK Platform
There’s one of these for each
version of Android.

Sample apps
If you want practical code
examples to help you understand
how to use some of the APIs, the
sample apps might help you.

Android support
Extra APIs that aren’t available
in the standard platform.

Google Play Billing
Allows you to integrate billing
services in your app.

You are here.

6 Chapter 1

installation

Install Android Studio
Before we go any further, you need to install Android Studio on
your machine. We’re not including the installation instructions
in this book as they can get out of date pretty quickly, but you’ll
be fine if you follow the online instructions.

First, check the Android Studio system requirements here:

https://developer.android.com/sdk/installing/index.html?pkg=studio

Once you’ve installed Android Studio, open it and follow the
instructions to add the latest SDK tools and Support Libraries.

When you’re done, you should see the Android Studio welcome
screen. You’re now ready to build your first Android app.

http://developer.android.com/sdk/index.html#Requirements Google sometimes changes their
URLs. If these URLs don’t
work, search for Android Studio
and you should find them.

Set up environment
Build app
Run app
Change app

This is the Android
Studio welcome
screen. It includes a
set of options for
things you can do.

Then follow the Android Studio installation instructions here:

We’re using Android Studio version 2.3. You’ll need to use this version or above to get the most out of this book.

you are here 4 7

getting started

Q: You say we’re going to use
Android Studio to build the Android
apps. Do I have to?

A: Strictly speaking, you don’t have to
use Android Studio to build Android apps.
All you need is a tool that will let you write
and compile Java code, plus a few other
tools to convert the compiled code into a
form that Android devices can run.

Android Studio is the official Android IDE,
and the Android team recommends using
it. But quite a lot of people use IntelliJ IDEA
instead.

Q: Can I write Android apps without
using an IDE?

A: It’s possible, but it’s more work. Most
Android apps are now created using a build
tool called Gradle. Gradle projects can be
created and built using a text editor and a
command line.

Q: A build tool? So is gradle like
ANT?

A: It’s similar, but Gradle is much more
powerful than ANT. Gradle can compile and
deploy code, just like ANT, but it also uses
Maven to download any third-party libraries
your code needs. Gradle also uses Groovy as
a scripting language, which means you can
easily create quite complex builds with Gradle.

Q: Most apps are built using Gradle?
I thought you said most developers use
Android Studio.

A: Android Studio provides a graphical
interface to Gradle, and also to other tools
for creating layouts, reading logs, and
debugging.

You can find out more about Gradle in
Appendix II.

Build a basic app
Now that you’ve set up your development environment, you’re
ready to create your first Android app. Here’s what the app will look
like:

This is the name
of the application.

There’ll be a small piece
of sample text right here
that Android Studio will
put in for us.

This is a very simple
app, but that’s all you
need for your very
first Android app.

8 Chapter 1

create project

How to build the app
Whenever you create a new app, you need to create a
new project for it. Make sure you have Android Studio
open, and follow along with us.

Set up environment
Build app
Run app
Change app

You’ve completed this step
now, so we’ve checked it off.

Click on this option to start
a new Android Studio project.

1. Create a new project
The Android Studio welcome screen gives you a number of options.
We want to create a new project, so click on the option for “Start a
new Android Studio project.”

Any projects you create
will appear here. This is our
first project, so this area is
currently empty.

you are here 4 9

getting started
Set up environment
Build app
Run app
Change app

How to build the app (continued)

2. Configure the project
You now need to configure the app by telling Android Studio what
you want to call it, what company domain to use, and where you
would like to store the files.

Android Studio uses the company domain and application name to
form the name of the package that will be used for your app. As an
example, if you give your app a name of “My First App” and use
a company domain of “hfad.com”, Android Studio will derive a
package name of com.hfad.myfirstapp. The package name
is really important in Android, as it’s used by Android devices to
uniquely identify your app.

Enter an application name of “My First App”, enter a company
domain of “hfad.com”, uncheck the option to include C++ support,
and accept the default project location. Then click on the Next
button.

 The package
name must
stay the same
for the lifetime
of your app.

It’s a unique identifier for your
app and used to manage
multiple versions of the same
app.

The application name is shown
in the Google Play Store and
various other places, too.

All of the files for your project will be stored here.

The wizard forms the
package name by combining the application name and the company domain.

Use a company domain
of hfad.com.

Uncheck the option to include C++
support. If prompted, also uncheck
the option to include Kotlin support.

Some versions of Android
Studio may have an extra
option asking if you want
to include Kotlin support.
Uncheck this option if it’s
there.

10 Chapter 1

api level

How to build the app (continued)

The minimum required SDK
is the lowest version your
app will support. Your app
will run on devices with
this level API or higher. It
won’t run on devices with
a lower API.

There’s more about the
different API levels on
the next page.

Set up environment
Build app
Run app
Change app

3. Specify the minimum SDK
You now need to indicate the minimum SDK of Android your app will use.
API levels increase with every new version of Android. Unless you only want
your app to run on the very newest devices, you’ll probably want to specify one
of the older APIs.

Here, we’re choosing a minimum SDK of API level 19, which means it will be
able to run on most devices. Also, we’re only going to create a version of our
app to run on phones and tablets, so we’ll leave the other options unchecked.

When you’ve done this, click on the Next button.

you are here 4 11

getting started

You’ve probably heard a lot of things about Android that sound
tasty, like Jelly Bean, KitKat, Lollipop, and Nougat. So what’s
with all the confectionary?

Android versions have a version number and a codename. The
version number gives the precise version of Android (e.g., 7.0),
while the codename is a more generic “friendly” name that may
cover several versions of Android (e.g., Nougat). The API level
refers to the version of the APIs used by applications. As an
example, the equivalent API level for Android version 7.1.1 is 25.

When you develop Android apps, you really need to consider
which versions of Android you want your app to be compatible
with. If you specify that your app is only compatible with the
very latest version of the SDK, you might find that it can’t be
run on many devices. You can find out the percentage of devices
running particular versions here: https://developer.android.com/
about/dashboards/index.html.

Android Versions Up Close

Most devices use
one of these APIs.

Hardly anyone uses
these versions anymore.

Version Codename API level

1.0 1

1.1 2

1.5 Cupcake 3

1.6 Donut 4

2.0–2.1 Eclair 5–7

2.2.x Froyo 8

2.3–2.3.7 Gingerbread 9–10

3.0 - 3.2 Honeycomb 11–13

4.0–4.0.4 Ice Cream Sandwich 14–15

4.1 - 4.3 Jelly Bean 16–18

4.4 KitKat 19–20

5.0–5.1 Lollipop 21–22

6.0 Marshmallow 23

7.0 Nougat 24

7.1–7.1.2 Nougat 25

12 Chapter 1

50,000 feet

Layouts define how
the user interface is
presented.

Activities define
actions.

Activities and layouts from 50,000 feet
The next thing you’ll be prompted to do is add an activity to your project.
Every Android app is a collection of screens, and each screen is composed
of an activity and a layout.

An activity is a single, defined thing that your user can do. You
might have an activity to compose an email, take a photo, or find a contact.
Activities are usually associated with one screen, and they’re written in Java.

A layout describes the appearance of the screen. Layouts are written
as XML files and they tell Android how the different screen elements are
arranged.

Let’s look in more detail at how activities and layouts work together to
create a user interface:

<Layout>

</Layout>

The device launches
your app and creates
an activity object.

1

The user interacts
with the layout that’s
displayed on the device.

4

Now that you know a bit more about what activities and layouts are,
let’s go through the last couple of steps in the Create New Project
wizard and get it to create an activity and layout.

Activity
Device Layout

1

The activity object
specifies a layout.

2 2

The activity tells
Android to display the
layout onscreen.

3

<Layout>

</Layout>

3

The activity responds
to these interactions by
running application code.

5

The activity updates
the display...

6

DeviceUser
Activity

4
5

...which the user sees
on the device.

7
7

6

Set up environment
Build app
Run app
Change app

you are here 4 13

getting started
Set up environment
Build app
Run app
Change app

How to build the app (continued)

4. Add an activity
The next screen lets you choose among a series of templates you
can use to create an activity and layout. We’re going to create
an app with an empty activity and layout, so choose the Empty
Activity option and click the Next button.

There are other types
of activity you can
choose from, but for
this exercise make sure
you select the Empty
Activity option.

14 Chapter 1

customize activity

5. Customize the activity
You will now be asked what you want to call the screen’s activity and layout.
Enter an activity name of “MainActivity”, make sure the option to generate a
layout file is checked, enter a layout name of “activity_main”, and then uncheck
the Backwards Compatibility (AppCompat) option. The activity is a Java class,
and the layout is an XML file, so the names we’ve given here will create a Java
class file called MainActivity.java and an XML file called activity_main.xml.

When you click on the Finish button, Android Studio will build your app.

Name the activity
“MainActivity”
and the layout
“activity_main”.
Also make sure the
option to generate
the layout is
checked.

How to build the app (continued)

Set up environment
Build app
Run app
Change app

Uncheck the Backwards
Compatibility (AppCompat) option. You’ll find out more about this setting later in the book.

you are here 4 15

getting started

You’ve just created your first Android app
So what just happened?

Set up environment
Build app
Run app
Change app

The Create New Project wizard created a project for your app,
configured to your specifications.
You defined which versions of Android the app should be compatible with, and
the wizard created all of the files and folders needed for a basic valid app.

¥

The wizard created an activity and layout with template code.
The template code includes layout XML and activity Java code, with sample

“Hello World!” text in the layout.

¥

When you finish creating your project by going through the
wizard, Android Studio automatically displays the project for
you.

Here’s what our project looks like (don’t worry if it looks
complicated—we’ll break it down over the next few pages): This is the project in Android Studio.

16 Chapter 1

folder structure

Android Studio creates
a complete folder structure for you
An Android app is really just a bunch of valid files in a particular folder structure,
and Android Studio sets all of this up for you when you create a new app. The
easiest way of looking at this folder structure is with the explorer in the leftmost
column of Android Studio.

The explorer contains all of the projects that you currently have open. To expand
or collapse folders, just click on the arrows to the left of the folder icons.

The folder structure includes
different types of files
If you browse through the folder structure, you’ll
see that the wizard has created various types of
files and folders for you:

Java and XML source files
These are the activity and layout files for
your app.

¥

Configuration files
The configuration files tell Android what’s
actually in the app and how it should run.

¥

Resource files
These include default image files for
icons, styles your app might use, and any
common String values your app might
want to look up.

¥

Android libraries
In the wizard, you specified the minimum
SDK version you want your app to be
compatible with. Android Studio makes
sure your app includes the relevant
Android libraries for that version.

¥

Let’s take a closer look at some of the key files and
folders in Androidville.

Android-generated Java files
There are some extra Java files you
don’t need to touch that Android Studio
generates for you automatically.

¥

Click on the arrow
here and choose
the Project option
to see the files and
folders that make
up your project.

This is the
name of
the project.

These files and
folders are all
included in your
project.

Click on
these
arrows
to
expand
or
collapse
the
folders.

Set up environment
Build app
Run app
Change app

you are here 4 17

getting started

app

src

MainActivity.java

main

java

com/hfad/myfirstapp

build

R.java

generated/source

r/debug

com/hfad/myfirstapp

<xml>

</xml>

AndroidManifest.xml

Useful files in your project
Android Studio projects use the Gradle build system to compile and
deploy apps. Gradle projects have a standard structure. Here are
some of the key files and folders you’ll be working with:

Every Android app must include a
file called AndroidManifest.xml
at its root. The manifest file
contains essential information
about the app, such as what
components it contains, required
libraries, and other declarations.

You can find app resources in the
res folder. For example, the layout
subfolder contains layouts, and the
values subfolder contains resource
files for values such as Strings. You
can get other types of resources
too.

MainActivity.java defines
an activity. An activity tells
Android how the app should
interact with the user.

activity_main.xml defines a
layout. A layout tells Android
how your app should look.

Every Android project needs a file
called R.java, which is created for
you and which lives in the generated/
source folder. Android uses this file
to keep track of resources in the app.

strings.xml is a String resource
file. It includes Strings such as
the app’s name and any default
text values. Other files such as
layouts and activities can look up
text values from here.

The root folder
is the name of
your project. All
the files for your
project go in here.

The src folder contains
source code you write
and edit.

The build folder contains files that
Android Studio creates for you. You
don’t usually edit anything in this folder.

MyFirstApp

res

<xml>

</xml>

layout

activity_main.xml

<xml>

</xml>

values

strings.xml

The java folder contains any
Java code you write. Any
activities you create live here.

Set up environment
Build app
Run app
Change app

The app folder is a
module in your project.

18 Chapter 1

meet the editors

Edit code with the Android Studio editors

Set up environment
Build app
Run app
Change app

The code editor
Most files get displayed in
the code editor, which is
just like a text editor, but
with extra features such
as color coding and code
checking.

Double-click on the file
in the explorer and the
file contents appear in
the editor panel.

The design editor
If you’re editing a
layout, you have an
extra option. Rather
than edit the XML
(such as that shown on
the next page), you can
use the design editor,
which allows you to
drag GUI components
onto your layout, and
arrange them how you
want. The code editor
and design editor give
different views of the
same file, so you can
switch back and forth
between the two.

You dictate
which editor
you’re using with
these tabs.

You view and edit files using the Android Studio editors. Double-click
on the file you want to work with, and the file’s contents will appear in
the middle of the Android Studio window.

You can edit layouts using the
visual editor by dragging and
dropping components.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4 19

getting started

Here’s the code from an example layout file (not the one Android Studio
generated for us). We know you’ve not seen layout code before, but just
see if you can match each of the descriptions at the bottom of the page to the
correct lines of code. We’ve done one to get you started.

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:paddingBottom="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.myfirstapp.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>

Make the layout the same
width and height as the

screen size on the device.

Include a <TextView> GUI
component for displaying

text.

Display the String “Hello
World!”

Make the GUI component just
large enough for its content.

Add padding to the screen
margins.

20 Chapter 1

Make the layout the same
width and height as the

screen size on the device.

Include a <TextView> GUI
component for displaying

text.

Display the String “Hello
World!”

Make the GUI component just
large enough for its content.

Add padding to the screen
margins.

activity_main.xml
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:paddingBottom="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.myfirstapp.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>

Here’s the code from an example layout file (not the one Android Studio
generated for us). We know you’ve not seen layout code before, but just
see if you can match each of the descriptions at the bottom of the page to the
correct lines of code. We’ve done one to get you started.

solution

SOLUTION

lenovo
Rectangle

you are here 4 21

getting started

Now let’s see if you can do the same thing for some activity code. This
is example code, and not necessarily the code that Android
Studio will have generated for you. Match the descriptions below
to the correct lines of code.

MainActivity.java
package com.hfad.myfirstapp;

import android.os.Bundle;

import android.app.Activity;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

MainActivity extends the
Android class

android.app.Activity.

These are Android classes
used in MainActivity.

This is the package name. Implement the onCreate()
method from the Activity
class. This method is called

when the activity is first
created.

Specify which layout to use.

22 Chapter 1

another solution

Now let’s see if you can do the same thing for some activity code. This
is example code, and not necessarily the code that Android
Studio will have generated for you. Match the descriptions below
to the correct lines of code.

SOLUTION

MainActivity.java
package com.hfad.myfirstapp;

import android.os.Bundle;

import android.app.Activity;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

)

MainActivity extends the
Android class

android.app.Activity.

These are Android classes
used in MainActivity.

This is the package name. Implement the onCreate()
method from the Activity
class. This method is called

when the activity is first
created.

Specify which layout to use.

lenovo
Rectangle

you are here 4 23

getting started

Run the app in the Android emulator
So far you’ve seen what your Android app looks like in Android
Studio and got a feel for how it hangs together. But what you
really want to do is see it running, right?

You have a couple of options when it comes to running your
apps. The first option is to run them on a physical device. But
what if you don’t have one with you, or you want to see how
your app looks on a type of device you don’t have?

In that case, you can use the Android emulator that’s built
into the Android SDK. The emulator enables you to set up one
or more Android virtual devices (AVDs) and then run your
app in the emulator as though it’s running on a physical device.

So what does the emulator look like?
Here’s an AVD running in the Android emulator. It looks just
like a phone running on your computer.

Set up environment
Build app
Run app
Change app

The Android emulator allows
you to run your app on an
Android virtual device (AVD),
which behaves just like a
physical Android device. You
can set up numerous AVDs,
each emulating a different
type of device.

The emulator recreates the
exact hardware environment
of an Android device: from its
CPU and memory through to
the sound chips and the video
display. The emulator is built
on an existing emulator called
QEMU (pronounced “queue em
you”), which is similar to other
virtual machine applications you
may have used, like VirtualBox or
VMWare.

The exact appearance and
behavior of the AVD depends on
how you’ve set up the AVD in the
first place. The AVD here is set
up to mimic a Nexus 5X, so it will
look and behave just like a Nexus
5X on your computer.

Let’s set up an AVD so that you
can see your app running in the
emulator.

Once you’ve set up an
AVD, you'll be able to
see your app running
on it. Android Studio
launches the emulator
for you.

lenovo
Highlight

lenovo
Highlight

24 Chapter 1

create avd
Set up environment
Build app
Run app
Change app

There are a few steps you need to go through in order to set up an AVD
within Android Studio. We’ll set up a Nexus 5X AVD running API level
25 so that you can see how your app looks and behaves running on this
type of device. The steps are pretty much identical no matter what type
of virtual device you want to set up.

Open the Android Virtual Device Manager
The AVD Manager allows you to set up new AVDs, and
view and edit ones you’ve already created. Open it by
selecting Android on the Tools menu and choosing AVD
Manager.

If you have no AVDs set up already, you’ll be presented
with a screen prompting you to create one. Click on the

“Create Virtual Device” button.

Click on this button
to create an AVD.

Create an Android Virtual Device

Select the
hardware
On the next screen,
you’ll be prompted
to choose a device
definition. This is
the type of device
your AVD will
emulate. You can
choose a variety of
phone, tablet, wear,
or TV devices.

We’re going to see
what our app looks
like running on a
Nexus 5X phone.
Choose Phone from
the Category menu
and Nexus 5X from
the list. Then click
the Next button.

When you
select a
device, its
details
appear
here.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4 25

getting started

Select a system image
Next, you need to select a system image. The system image gives you an
installed version of the Android operating system. You can choose the
version of Android you want to be on your AVD.

You need to choose a system image for an API level that’s compatible with
the app you’re building. As an example, if you want your app to work on
a minimum of API level 19, choose a system image for at least API level 19.
We want our AVD to run API level 25, so choose the system image with a
release name of Nougat and a target of Android 7.1.1 (API level 25). Then
click on the Next button.

If you don’t
have this system
image installed,
you’ll be given
the option to
download it.

We’ll continue setting up the AVD on the next page.

Set up environment
Build app
Run app
Change app

Creating an AVD (continued)

lenovo
Highlight

lenovo
Rectangle

26 Chapter 1

check configuration

Verify the AVD configuration
On the next screen, you’ll be asked to verify the AVD configuration. This screen
summarizes the options you chose over the last few screens, and gives you the
option of changing them. Accept the options, and click on the Finish button.

These are the options
you chose over the
past few pages.

Your Nexus 5X AVD has been created.

The AVD Manager will create the AVD for you, and when it’s done, display it in
the AVD Manager list of devices. You may now close the AVD Manager.

Set up environment
Build app
Run app
Change app

Creating an AVD (continued)

you are here 4 27

getting started

Run the app in the emulator
Now that you’ve set up your AVD, let’s run the app on it. To do
this, choose the “Run ‘app’” command from the Run menu. When
you’re asked to choose a device, select the Nexus 5X AVD you just
created. Then click OK.

The AVD can take a few minutes to appear, so while we wait, let’s
take a look at what happens when you choose Run.

Compile, package, deploy, and run
The Run command doesn’t just run your app. It also handles all the
preliminary tasks that are needed for the app to run:

The Java source files get compiled to
bytecode.

1

An Android application package, or APK
file, gets created.
The APK file includes the compiled Java files,
along with any libraries and resources needed
by your app.

2

Assuming there’s not one already
running, the emulator gets launched
and then runs the AVD.

3

Once the emulator has been launched
and the AVD is active, the APK file is
uploaded to the AVD and installed.

4

The AVD starts the main activity
associated with the app.
Your app gets displayed on the AVD screen,
and it’s all ready for you to test out.

5

Run

APK
1

2

3
4

5

An APK file is an
Android application
package. It’s
basically a JAR
or ZIP file for
Android applications.

Java file Bytecode

Libraries Resources

APK file

Emulator

Emulator

This is the AVD we just created.

Set up environment
Build app
Run app
Change app

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

28 Chapter 1

be patient

03/13 10:45:41: Launching app

$ adb install-multiple -r /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/
split-apk/debug/dep/dependencies.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/
intermediates/split-apk/debug/slices/slice_1.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/
app/build/intermediates/split-apk/debug/slices/slice_2.apk /Users/dawng/AndroidStudioProjects/
MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_0.apk /Users/dawng/
AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_3.apk /Users/
dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_6.apk /
Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/slice_4.
apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/slices/
slice_5.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/debug/
slices/slice_7.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/split-apk/
debug/slices/slice_8.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/intermediates/
split-apk/debug/slices/slice_9.apk /Users/dawng/AndroidStudioProjects/MyFirstApp/app/build/outputs/
apk/app-debug.apk

Split APKs installed

$ adb shell am startservice com.hfad.myfirstapp/com.android.tools.fd.runtime.InstantRunService

$ adb shell am start -n "com.hfad.myfirstapp/com.hfad.myfirstapp.MainActivity" -a android.intent.
action.MAIN -c android.intent.category.LAUNCHER

Connected to process 2685 on device Nexus_5X_API_25 [emulator-5554]

You can watch progress in the console
It can sometimes take quite a while for the emulator to launch with your
AVD—often several minutes. If you like, you can watch what’s happening
using the Android Studio console. The console gives you a blow-by-blow
account of what the build system is doing, and if it encounters any errors,
you’ll see them highlighted in the text.

You can find the console at the bottom of the Android Studio screen
(click on the Run option at the bottom of the screen if it doesn’t appear
automatically):

Here’s the output from our console window when we ran our app:

Install the app.

The emulator launches our app by starting the main activity
for it. This is the activity the wizard created for us.

We suggest finding something else to do while waiting for the emulator to start. Like quilting, or cooking a small meal.

Set up environment
Build app
Run app
Change app

Android Studio has finished
launching the AVD we just set up.

lenovo
Highlight

you are here 4 29

getting started

Wait a bit longer, and you’ll see the app you
just created. The application name appears
at the top of the screen, and the default
sample text “Hello World!” is displayed in
the middle of the screen.

Test drive
So let’s look at what actually happens onscreen when you run
your app.

First, the emulator fires up in a separate window. The
emulator takes a while to load the AVD, but then you see
what looks like an actual Android device.

Here’s the app
running on the AVD.

The emulator
launches...

...and here’s the AVD home
screen. It looks and behaves
just like a real Nexus 5X device.

Android Studio created the
sample text “Hello World!”
without us telling it to.

This is the name of the app.

The wizard created
sample text for us.

Set up environment
Build app
Run app
Change app

lenovo
Highlight

30 Chapter 1

what happened

What just happened?
Let’s break down what happens when you run the app:

Q: You mentioned that when you create an APK file, the
Java source code gets compiled into bytecode and added to
the APK. Presumably you mean it gets compiled into Java
bytecode, right?

A: It does, but that’s not the end of the story. Things work a little
differently on Android.

The big difference with Android is that your code doesn’t actually
run inside an ordinary Java VM. It runs on the Android runtime
(ART) instead, and on older devices it runs in a predecessor to ART
called Dalvik. This means that you write your Java source code and
compile it into .class files using the Java compiler, and then the
.class files get stitched into one or more files in DEX format, which is
smaller, more efficient bytecode. ART then runs the DEX code. You
can find more details about this in Appendix III.

Q: That sounds complicated. Why not just use the normal
Java VM?

A: ART can convert the DEX bytecode into native code that can
run directly on the CPU of the Android device. This makes the app
run a lot faster, and use a lot less battery power.

Q: Is a Java virtual machine really that much overhead?

A: Yes. Because on Android, each app runs inside its own
process. If it used ordinary JVMs, it would need a lot more memory.

Q: Do I need to create a new AVD every time I create a new
app?

A: No, once you’ve created the AVD you can use it for any of
your apps. You may find it useful to create multiple AVDs in order to
test your apps in different situations. As an example, in addition to
a phone AVD you might want to create a tablet AVD so you can see
how your app looks and behaves on larger devices.

<Layout>

</Layout>

When the app gets
launched, an activity
object is created from
MainActivity.java.

2

Activity
Device Layout

2

The activity specifies
that it uses the layout
activity_main.xml.

3

3

The activity tells Android to
display the layout on the screen.
The text “Hello World!” gets displayed.

4

<Layout>

</Layout>
4

Android Studio launches the emulator,
loads the AVD, and installs the app.

1

1

In this particular
instance, we’re using
a virtual device.

Set up environment
Build app
Run app
Change app

lenovo
Rectangle

lenovo
Rectangle

you are here 4 31

getting started
Set up environment
Build app
Run app
Change app

Refine the app
Over the past several pages, you’ve built a basic Android app
and seen it running in the emulator. Next, we’re going to refine
the app.

At the moment, the app displays the sample text “Hello World!”
that the wizard put in as a placeholder. You’re going to change
that text to say something else instead. So what do we need to
change in order to achieve that? To answer that, let’s take a
step back and look at how the app is currently built.

Your app currently says
“Hello World!” but we're
going to change it to
something else instead.

<Layout>

</Layout>

MainActivity.java

activity_main.xml

The app has one activity and one layout
When we built the app, we told Android Studio how to
configure it, and the wizard did the rest. The wizard created an
activity for us, and also a default layout.

The activity controls what the app does
Android Studio created an activity for us called
MainActivity.java. The activity specifies what the app
does and how it should respond to the user.

The layout controls the app's appearance
MainActivity.java specifies that it uses the layout Android
Studio created for us called activity_main.xml. The layout
specifies what the app looks like.

We want to change the appearance of the app by changing the
text that’s displayed. This means that we need to deal with the
Android component that controls what the app looks like, so we
need to take a closer look at the layout.

Our activity
specifies what the
app does and how
it should interact
with the user.

Our layout specifies
what the app looks
like.

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

32 Chapter 1

The code editor
When you choose the code editor
option, the content of activity_main.xml
is displayed. Let’s take a closer look
at it.

the layout

What’s in the layout?
We want to change the sample “Hello World!”
text that Android Studio created for us, so let’s
start with the layout file activity_main.xml. If it
isn’t already open in an editor, open it now by
finding the file in the app/src/main/res/layout
folder in the explorer and double-clicking on it.

The design editor
As you learned earlier, there are two ways of
viewing and editing layout files in Android
Studio: through the design editor and
through the code editor.

When you choose the design option, you
can see that the sample text “Hello World!”
appears in the layout as you might expect.
But what’s in the underlying XML?

Let’s see by switching to the code editor.

You can see the design editor by choosing “Design” here.

Here’s the sample text.

The design editor

To see the code editor, click on “Text” in the bottom tab.

The code
editor

If you can’t
see the folder
structure in the
explorer, try
switching to
Project view.

Click on
this arrow
to change
how the
files and
folders are
shown.

you are here 4 33

getting started

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

 ... >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 ... />

</android.support.constraint.ConstraintLayout>

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!"

 ... />

The <TextView> element
describes the text in
the layout.

activity_main.xml has two elements
Below is the code from activity_main.xml that Android Studio
generated for us. We’ve left out some of the details you don’t
need to think about just yet; we’ll cover them in more detail
through the rest of the book.

Here’s our code:

As you can see, the code contains two elements.

The first is an <android.support.constraint.
ConstraintLayout> element. This is a type of layout
element that tells Android how to display components on
the device screen. There are various types of layout element
available for you to use, and you’ll find out more about these
later in the book.

The most important element for now is the second element,
the <TextView>. This element is used to display text to the
user, in our case the sample text “Hello World!”

The key part of the code within the <TextView> element
is the line starting with android:text. This is a text
property describing the text that should be displayed:

This element
determines
how
components
should be
displayed, in
this case the
“Hello World!”
text.

This is the <TextView> element.

This is the text that's being displayed.

Set up environment
Build app
Run app
Change app

Android Studio gave us more XML here, but
you don’t need to think about that yet.

This is the full path
of activity_main.xml.

<xml>
</xml>

app/src/main

activity_main.xml

MyFirstApp

res

layout

 Don’t worry if your
layout code looks
different from ours.

Android Studio
may give you slightly different XML
depending on which version you’re using.
You don’t need to worry about this,
because from the next chapter onward
you’ll learn how to roll your own layout
code, and replace a lot of what Android
Studio gives you.

Let’s change the text to something else.

We’ve left out some of the
<TextView> XML too.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

34 Chapter 1

...

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!Sup doge"

 ... />

...

update text

Change the text here from
“Hello World!” to “Sup doge”.

Once you’ve updated the file, go to the File menu and choose the
Save All option to save your change.

The key part of the <TextView> element is this line:

android:text="Hello World!" />

android:text means that this is the text property of
the <TextView> element, so it specifies what text should be
displayed in the layout. In this case, the text that’s being displayed
is “Hello World!”

android:text="Hello World!" />
Display the text...

...“Hello World!”

Update the text displayed in the layout

To update the text that’s displayed in the layout, simply change
the value of the text property from "Hello World!" to
"Sup doge". The new code for the <TextView> should look
like this:

<xml>
</xml>

app/src/main

activity_main.xml

MyFirstApp

res

layout

Set up environment
Build app
Run app
Change app

Q: My layout code looks different from yours. Is that OK?

A: Yes, that’s fine. Android Studio may generate slightly different
code if you’re using a different version than us, but that doesn’t
really matter. From now on you’ll be learning how to create your
own layout code, and you’ll replace a lot of what Android Studio
gives you.

Q: Am I right in thinking we’re hardcoding the text that's
displayed?

A: Yes, purely so that you can see how to update text in
the layout. There’s a better way of displaying text values than
hardcoding them in your layouts, but you’ll have to wait for the next
chapter to learn what it is.

Q: The folders in my project explorer pane look different
from yours. Why’s that?

A: Android Studio lets you choose alternate views for how to
display the folder hierarchy, and it defaults to the “Android” view.
We prefer the “Project” view, as it reflects the underlying folder
structure. You can change your explorer to the “Project” view by
clicking on the arrow at the top of the explorer pane, and selecting
the “Project” option.

We’ve left out some
of the code, as all
we’re doing for now
is changing the text
that’s displayed.

We’re
using the
Project
view.

Click on
this arrow
to change
the explorer
view.

lenovo
Rectangle

lenovo
Rectangle

you are here 4 35

getting started

Take the app for a test drive
Once you’ve edited the file, try running your app in the
emulator again by choosing the “Run ‘app’” command from
the Run menu. You should see that your app now says “Sup
doge” instead of “Hello World!”

Here’s the
updated version
of our app.

The sample text now
says “Sup doge” instead
of “Hello World!”

Set up environment
Build app
Run app
Change app

You’ve now built and updated your first Android app.

36 Chapter 1

toolbox

 � Versions of Android have a version
number, API level, and code name.

 � Android Studio is a special version of
IntelliJ IDEA that interfaces with the
Android Software Development Kit
(SDK) and the Gradle build system.

 � A typical Android app is composed of
activities, layouts, and resource files.

 � Layouts describe what your app
looks like. They’re held in the app/
src/main/res/layout folder.

 � Activities describe what your app
does, and how it interacts with the
user. The activities you write are held
in the app/src/main/java folder.

 � AndroidManifest.xml contains
information about the app itself. It
lives in the app/src/main folder.

 � An AVD is an Android Virtual Device.
It runs in the Android emulator and
mimics a physical Android device.

 � An APK is an Android application
package. It’s like a JAR file for
Android apps, and contains your
app’s bytecode, libraries, and
resources. You install an app on a
device by installing the APK.

 � Android apps run in separate
processes using the Android runtime
(ART).

 � The <TextView> element is used
for displaying text.

Your Android Toolbox

You’ve got Chapter 1 under
your belt and now you’ve

added Android basic concepts
to your toolbox.

CH
AP

T
ER

 1 You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

this is a new chapter 37

I wonder what
happens if I press
the button marked

“ejector seat”?

building interactive apps2

Apps That Do Something

Most apps need to respond to the user in some way.
In this chapter, you’ll see how you can make your apps a bit more interactive. You’ll

learn how to get your app to do something in response to the user, and how to get your

activity and layout talking to each other like best buddies. Along the way, we’ll take you

a bit deeper into how Android actually works by introducing you to R, the hidden gem

that glues everything together.

38 Chapter 2

beer adviser

In Chapter 1, you saw how to create an app using the Android
Studio New Project wizard, and how to change the text
displayed in the layout. But when you create an Android app,
you’re usually going to want the app to do something.

In this chapter, we’re going to show you how to create an app
that the user can interact with: a Beer Adviser app. In the app,
users can select the types of beer they enjoy, click a button, and
get back a list of tasty beers to try out.

Here’s how the app will be structured:

Let’s build a Beer Adviser app

The layout specifies what the app will
look like.
It includes three GUI components:

• A drop-down list of values called a spinner,
which allows the user to choose which type of
beer they want.

• A button that when pressed will return a
selection of beer types.

• A text field that displays the types of beer.

1

The file strings.xml includes any String
resources needed by the layout—for
example, the label of the button
specified in the layout and the types of
beer.

2

The custom Java class contains the
application logic for the app.
It includes a method that takes a type of beer as a
parameter, and returns a list of beers of this type.
The activity calls the method, passes it the type of
beer, and uses the response.

4

The activity specifies how the app
should interact with the user.
It takes the type of beer the user chooses, and
uses this to display a list of beers the user might
be interested in. It achieves this with the help of a
custom Java class.

3

<Layout>

</Layout> <resources>

</resources>

Custom Java

Activity

Layout

strings.xml

1 2

3

4

Choose your
beer type, click
the button...

...and the
app comes
up with a
list of beer
suggestions.

This is what the
layout looks like.

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

you are here 4 39

building interactive apps

Here’s what we’re going to do
So let’s get to work. There are a few steps you need to go
through to build the Beer Adviser app (we’ll tackle these
throughout the rest of the chapter):

Create a project.
You’re creating a brand-new app, so you’ll need to create a
new project. Just like before, you’ll need to create an empty
activity with a layout.

1

Update the layout.
Once you have the app set up, you need to amend the layout so
that it includes all the GUI components your app needs.

2

Connect the layout to the activity.
The layout only creates the visuals. To add smarts to your
app, you need to connect the layout to the Java code in your
activity.

3

Write the application logic.
You’ll add a Java custom class to the app, and use it to make
sure users get the right beer based on their selection.

4

<Layout>

</Layout>

We’ll show you the
details of how to do
this on the next page.

Layout Activity

Layout

40 Chapter 2

create project

Create the project
Let’s begin by creating the new app (the steps are similar to
those we used in the previous chapter):

Create project
Update layout
Connect activity
Write logic

The wizard will take you through these steps,
just like before. Call your application “Beer
Adviser,” make sure it uses a minimum SDK of
API 19, and then tell it to create an empty
activity called “FindBeerActivity” and a layout
called “activity_find_beer”.

 Open Android Studio and choose “Start a new Android Studio project” from
the welcome screen. This starts the wizard you saw in Chapter 1.

1

 When prompted, enter an application name of “Beer Adviser” and a
company domain of “hfad.com”, making your package name com.hfad.
beeradviser. Make sure you uncheck the option to include C++ support.

2

 We want the app to work on most phones and tablets, so choose a minimum
SDK of API 19, and make sure the option for “Phone and Tablet” is selected.
This means that any phone or tablet that runs the app must have API 19
installed on it as a minimum. Most Android devices meet this criterion.

3

 Choose an empty activity for your default activity. Call the activity
“FindBeerActivity” and the accompanying layout “activity_find_beer”.
Make sure the option to generate the layout is selected and you uncheck the
Backwards Compatibility (AppCompat) option.

4

2

3

4

Make sure you
UNCHECK the
Backwards
Compatibility
(AppCompat)
option.

Make
sure you
choose
the
Empty
Activity
option.

If your version of
Android Studio
has an option to
include Kotlin
support, uncheck
this option too.

you are here 4 41

building interactive apps

We’ve created a default activity and layout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.beeradviser.FindBeerActivity">

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

</LinearLayout>

This is used to display text.

These elements relate to the layout as a whole. They determine the layout width and height, any padding in the layout margins, and whether components
should be laid out vertically or horizontally.

<xml>
</xml>

app/src/main

activity_
find_beer.xml

BeerAdviser

res

layout

When you click on the Finish button, Android Studio creates a
new project containing an activity called FindBeerActivity.java and a
layout called activity_find_beer.xml.

Let’s start by changing the layout file. To do this, switch to the
Project view of Android Studio’s explorer, go to the app/src/main/
res/layout folder, and open the file activity_find_beer.xml. Then switch
to the text version of the code to open the code editor, and replace
the code in activity_find_beer.xml with the following (we’ve bolded all
the new code):

We’ve just changed the code Android Studio gave us so that
it uses a <LinearLayout>. This is used to display GUI
components next to each other, either vertically or horizontally.
If it’s vertically, they’re displayed in a single column, and if it’s
horizontally, they’re displayed in a single row. You’ll find out
more about how this works as we go through the chapter.

Any changes you make to a layout’s XML are reflected in
Android Studio’s design editor, which you can see by clicking on
the Design tab. We’ll look at this in more detail on the next page.

Click on the Text
tab to open the
code editor.

Click on the
Design tab to open
the design editor.

We’re replacing the code Android
Studio generated for us.

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

42 Chapter 2

design editor

A closer look at the design editor
The design editor presents you with a more visual way of editing
your layout code than editing XML. It features two different
views of the layouts design. One shows you how the layout will
look on an actual device, and the other shows you a blueprint of
its structure:

Create project
Update layout
Connect activity
Write logic

To the left of the design editor, there’s a palette that
contains components you can drag to your layout.
We’ll use this next.

These
are the
components
You'll find
out more
about them
later in the
book.

This list shows you the different categories of component you can add to your layout. You can click on them to filter the components displayed in the palette.

This view of the
design gives you an
idea of how your
layout will look on
an actual device.

This is the
blueprint
view, which
focuses more
on the layout's
structure.

The text view in our
layout's XML code
appears in both views
of the design editor.

You can increase the size of the
palette by clicking on this area
and dragging it downward.

If Android Studio doesn’t show
you both views of the layout, click
on the “Show Design + Blueprint”
icon in the design editor’s toolbar.

lenovo
Highlight

lenovo
Highlight

you are here 4 43

building interactive apps

Connect activity Add a button using the design editor
We’re going to add a button to our layout using the design editor. Find the
Button component in the palette, click on it, and then drag it into the
design editor so that it’s positioned above the text view. The button appears
in the layout’s design:

Changes in the design editor are reflected in the XML
Dragging GUI components to the layout like this is a convenient way of
updating the layout. If you switch to the code editor, you’ll see that adding
the button via the design editor has added some lines of code to the file:

Here’s the
Button
component.
Drag it into
the design
editor.

...

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

...

There’s a new <Button>
element that describes
the new button you’ve
dragged to the layout.
We’ll look at this in
more detail over the
next few pages.

The code the design editor adds depends on
where you place the button, so don't worry if
your code looks different from ours.

Put the button above
the text. You can add
it to either view of
the design.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

Create project
Update layout
Connect activity
Write logic

lenovo
Highlight

lenovo
Rectangle

44 Chapter 2

gui components are views

A button in Androidville is a pushbutton that the user can press to trigger
an action. The <Button> element includes properties controlling its
size and appearance. These properties aren’t unique to buttons—other
GUI components including text views have them too.

activity_find_beer.xml has a new button
The editor added a new <Button> element to activity_find_beer.xml:

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

 android:id="@+id/button"

 android:text="Button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

Buttons and text views are subclasses of the same Android View class

android:id
This gives the component an identifying name. The id property
enables you to control what components do via activity code:

android:layout_width, android:layout_height
These properties specify the width and height of the component.
"wrap_content" means it should be just big enough for the
content, and "match_parent" means it should be as wide as the
layout containing it:

android:text
This tells Android what text the component should display. In the
case of <Button>, it’s the text that appears on the button:

There’s a very good reason why buttons and text views have
properties in common—they both inherit from the same Android
View class. You’ll find out more about this later in the book, but for
now, here are some of the more common properties.

android.view.View

setId(int)

...

android.widget.TextView

setText(CharSequence,
 TextView.BufferType)

...

android.widget.Button

...

The View class includes lots of
different methods. We’ll look
at this later in the book.

TextView is a
type of View...

...and Button is a type
of TextView, which means
it’s also a type of View.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Rectangle

you are here 4 45

building interactive apps

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.beeradviser.FindBeerActivity">

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

</LinearLayout>

A closer look at the layout code
Let’s take a closer look at the layout code, and break it down so that
you can see what it’s actually doing (don’t worry if your code looks a
little different, just follow along with us):

The LinearLayout element
The first element in the layout code is <LinearLayout>. The
<LinearLayout> element tells Android that the different GUI
components in the layout should be displayed next to each other in a
single row or column.

You specify the orientation using the android:orientation
attribute. In this example we’re using:

The
<LinearLayout>
element

This is the
button.

This is the
text view.

There are other ways of laying
out your GUI components too.
You’ll find out more about
these later in the book.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

This closes the <LinearLayout> element.

Create project
Update layout
Connect activity
Write logic

so the GUI components are displayed in a single vertical column.

android:orientation="vertical"

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

46 Chapter 2

look close
Create project
Update layout
Connect activity
Write logic

The Button element
The first element is the <Button>:

...

 <Button

 android:id="@+id/button"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:text="Button" />

...

As this is the first element inside the <LinearLayout>, it appears
first in the layout at the top of the screen. It has a layout_width
of "match_parent", which means that it should be as wide as
its parent element, the <LinearLayout>. Its layout_height
has been set to"wrap_content", which means it should be tall
enough to display its text.

The TextView element
The final element inside the <LinearLayout> is the
<TextView>:

...

 <TextView

 android:id="@+id/textView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a text view" />

...

The button is displayed at
the top as it's the first
element in the XML.

The text view is displayed
underneath the button as it
comes after it in the XML.

Using a linear layout
means that GUI
components are
displayed in a single
row or column.

As this is the second element and we’ve set the linear layout’s
orientation to "vertical", it’s displayed underneath the button
(the first element). Its layout_width and layout_height are
set to "wrap_content" so that it takes up just enough space to
contain its text.

A closer look at the layout code (continued)
The <LinearLayout> contains two elements: a <Button> and
a <TextView>.

lenovo
Rectangle

lenovo
Highlight

you are here 4 47

building interactive apps

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.beeradviser.FindBeerActivity">

 <Spinner
 android:id="@+id/color"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="40dp"
 android:layout_gravity="center"
 android:layout_margin="16dp" />

 <Button

 android:id="@+id/button find_beer"
 android:layout_width="match_parent wrap_content"
 android:layout_height="wrap_content"

 android:layout_gravity="center"
 android:layout_margin="16dp"
 android:text="Button" />

 <TextView

 android:id="@+id/textView brands"
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"
 android:layout_margin="16dp"
 android:text="This is a text view" />

</LinearLayout>

Connect activity Changes to the XML...
You’ve seen how adding components to the design editor adds them
to the layout XML. The opposite applies too—any changes you make
to the layout XML are applied to the design.

Try this now. Update your activity_find_beer.xml code with the
following changes (highlighted in bold):

This element
displays a
spinner in the
layout.

A spinner is the
Android name for
a drop-down list
of values. It allows
you to choose a
single value from a
selection.

Update the contents of
activity_find_beer.xml
with the changes
shown here.

Do this!

Center the button
horizontally and
give it a margin.

Center the
text view and
apply a margin.

<xml>
</xml>

app/src/main

activity_
find_beer.xml

BeerAdviser

res

layout

Change the button's ID to
“find_beer”. We’ll use this later.

Change the button’s
width so it’s as wide
as its content.

Change the text view’s ID to “brands”.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

lenovo
Rectangle

lenovo
Rectangle

lenovo
Rectangle

lenovo
Rectangle

48 Chapter 2

design editor

...are reflected in the design editor

This is the spinner.
This will let the
user choose a type
of beer.

A spinner provides
a drop-down list of
values. It allows you to
choose a single value
from a set of values.

GUI components such
as buttons, spinners,
and text views have
very similar attributes,
as they are all types
of View. Behind the
scenes, they all inherit
from the same Android
View class.

We’ve shown you how to add GUI components to the layout with the
aid of the design editor, and also by adding them through XML. In
general, you’re more likely to hack the XML for simple layouts to get
the results you want without using the design editor. This is because
editing the XML directly gives you more direct control over the
layout.

The user will click
on this button...

...and relevant beers
will be displayed in
the text view.

Once you’ve changed the layout XML, switch to the design
editor. Instead of a layout containing a button with a text view
underneath it, you should now see a spinner, button, and text
view centered in a single column.

A spinner is the Android term for a drop-down list of values.
When you press it, it expands to show you the list so that you
can pick a single value.

Create project
Update layout
Connect activity
Write logic

lenovo
Rectangle

you are here 4 49

building interactive apps

Connect activity Let’s take the app for a test drive
We still have more work to do on the app, but let’s see how
it’s looking so far. Save the changes you’ve made by choosing
File→Save All, then choose the “Run ‘app’” command from
the Run menu. When prompted, select the option to launch
the emulator.

Wait patiently for the app to load, and eventually it should
appear.

Try pressing the spinner. It’s not immediately obvious, but
when you press it, the spinner presents you with a drop-down
list of values—it’s just at this point we haven’t added any
values to it.

Q: My layout looks slightly different in the
AVD compared with how it looks in the design
editor. Why’s that?

A: The design editor does its best to show you
how the layout will look on a device, but it’s not
always accurate depending on what version of
Android Studio you’re using. How the layout looks
in the AVD reflects how the layout will look on a
physical device.

This is the spinner,
but it has no
values in it.

The button and text field
are underneath the spinner,
and centered horizontally.

Here’s what we’ve done so far
Here’s a quick recap of what we’ve done so far:

<Layout>

</Layout>

Activity

Layout

1

2

We’ve created a layout that specifies
what the app looks like.
It includes a spinner, a button, and a text view.

1

The activity specifies how the app
should interact with the user.
Android Studio has created an activity for us, but
we haven’t done anything with it yet.

2

Create project
Update layout
Connect activity
Write logic

The next thing we’ll do is look at replacing the hardcoded
String values for the text view and button text.

lenovo
Highlight

lenovo
Highlight

lenovo
Highlight

50 Chapter 2

dealing with strings

android:text="Hello World!" />
Display the text...

...“Hello World!”

While this is fine when you’re just learning, hardcoding text isn’t the
best approach.

Suppose you’ve created an app that’s a big hit on your local Google
Play Store. You don’t want to limit yourself to just one country or
language—you want to make it available internationally and for
different languages. But if you’ve hardcoded all of the text in your
layout files, sending your app international will be difficult.

It also makes it much harder to make global changes to the text.
Imagine your boss asks you to change the wording in the app
because the company’s changed its name. If you’ve hardcoded all
of the text, this means that you need to edit a whole host of files in
order to change the text.

Hardcoding text makes localization hard

Put the text in a String resource file
A better approach is to put your text values into a String resource file
called strings.xml.

Having a String resource file makes it much easier to internationalize
your app. Rather than having to change hardcoded text values in a
whole host of different activity and layout files, you can simply replace
the strings.xml file with an internationalized version.

This approach also makes it much easier to make global changes to
text across your whole application as you only need to edit one file. If
you need to make changes to the text in your app, you only need to
edit strings.xml.

How do you use String resources?
In order to use a String resource in your layout, there are two things
you need to do:

Create the String resource by adding it to strings.xml.1

Use the String resource in your layout.2

Let’s see how this is done.

Put String values
in strings.xml
rather than
hardcoding them.
strings.xml is a
resource file used
to hold name/value
pairs of Strings.
Layouts and
activities can look
up String values
using their names.

Create project
Update layout
Connect activity
Write logicSo far, we’ve hardcoded the text we want to appear in our text views

and buttons using the android:text property:

lenovo
Rectangle

you are here 4 51

building interactive apps

Create the String resource
We’re going to create two String resources, one for the text that
appears on the button, and another for the default text that appears
in the text view.

To do this, use Android Studio’s explorer to find the file strings.
xml in the app/src/main/res/values folder. Then open it by double-
clicking on it.

The file should look something like this:

<resources>

 <string name="app_name">Beer Adviser</string>

</resources>

strings.xml contains one string resource named "app_name", which
has a value of Beer Adviser. Android Studio created this String
resource for us automatically when we created the project.

<string name="app_name">Beer Adviser</string>
This indicates that this is a String resource.

This String resource has a name of “app_name”,
and a value of “Beer Adviser”.

We’re first going to add a new resource called "find_beer" that
has a value of Find Beer! To do this, edit strings.xml so that you
add it as a new line like this:

<resources>

 <string name="app_name">Beer Adviser</string>

 <string name="find_beer">Find Beer!</string>

</resources>

Then add a new resource named "brands" with a value of No
beers selected:

<resources>

 <string name="app_name">Beer Adviser</string>

 <string name="find_beer">Find Beer!</string>

 <string name="brands">No beers selected</string>

</resources>

Once you’ve updated the file, go to the File menu and choose the
Save All option to save your changes. Next, we’ll use the String
resources in our layout.

This adds a new String
resource called “find_beer”.

This will be the default
text in the text view.

Create project
Update layout
Connect activity
Write logic

<xml>
</xml>

app/src/main

strings.xml

BeerAdviser

res

values

Connect activity

52 Chapter 2

use strings

android:text="@string/find_beer" />

You’ve seen the android:text part of the code before; it
specifies what text should be displayed. But what does
"@string/find_beer" mean?

Let’s start with the first part, @string. This is just a way of
telling Android to look up a text value from a String resource file.
In our case, this is the file strings.xml that you just edited.

The second part, find_beer, tells Android to look up the
value of a resource with the name find_beer. So
"@string/find_beer" means “look up the String resource
with the name find_beer, and use the associated text value.”

android:text="@string/find_beer" />
Display the text...

...for the String resource find_beer.

Use the String resource in your layout
You use String resources in your layout using code like this:

 Change the line:

 android:text="Button"

to:

 android:text="@string/find_beer"

¥

 Change the line:

 android:text="TextView"

to:

 android:text="@string/brands"

¥

We want to change the button and text view elements in our
layout XML so that they use the two String resources we’ve just
added.

Go back to the layout file activity_find_beer.xml file, and make the
following code changes:

You can see the code on the next page.

Create project
Update layout
Connect activity
Write logic

 Android
Studio
sometimes
displays the
values of

references in the code
editor in place of actual
code.

As an example, it may display
the text "Find Beer!"
instead of the real code
"@string/find_beer". Any
such substitutions should be
highlighted in the code editor.
If you click on them, or hover
over them with your mouse,
the true code will be revealed.

you are here 4 53

building interactive apps

...

 <Spinner

 android:id="@+id/color"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="40dp"

 android:layout_gravity="center"

 android:layout_margin="16dp" />

 <Button

 android:id="@+id/find_beer"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:text="Button@string/find_beer" />

 <TextView

 android:id="@+id/brands"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:text="This is a text view@string/brands" />

</LinearLayout>

This will display the value
of the find_beer String
resource on the button.

This will display the value
of the brands String
resource in the text view.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

The code for activity_find_beer.xml
Here’s the updated code for activity_find_beer.xml (changes are in
bold); update your version of the file to match ours.

We didn't need to
change the spinner.
We'll look at how you
add values to it over
the next few pages.

Delete the hardcoded text.

Delete this hardcoded text too.

When you’re done, save your changes.

We’ve put a summary of adding and using String resources on
the next page.

Connect activity

54 Chapter 2

up close

String Resource Files Up Close

<resources>

 <string name="app_name">Beer Adviser</string>

 <string name="find_beer">Find Beer!</string>

 <string name="brands">No beer selected</string>

</resources>

strings.xml is the default resource file used to hold name/value pairs
of Strings so that they can be referenced throughout your app. It has
the following format:

<string name="string_name">string_value</string>

where string_name is the identifier of the String, and
string_value is the String value itself.

A layout can retrieve the value of the String using:

There are two things that allow Android to recognize strings.xml as
being a String resource file:

The file is held in the folder app/src/main/res/values.
XML files held in this folder contain simple values, such as Strings and
colors.

¥

The file has a <resources> element, which contains one or
more <string> elements.
The format of the file itself indicates that it’s a resource file containing
Strings. The <resources> element tells Android that the file contains
resources, and the <string> element identifies each String resource.

¥

The <resources> element
identifies the contents of
the file as
resources.

The <string> element
identifies the name/value
pairs as Strings.

This means that you don’t need to call your String resource file
strings.xml; if you want, you can call it something else, or split your
Strings into multiple files.

Each name/value pair takes the form:

"@string/string_name" This is the name of the
String whose value we
want to return.“@string” tells Android to look for a

String resource of this name.

you are here 4 55

building interactive apps

Q: Do I absolutely have to put my text
values in a String resource file such as
strings.xml?

A: It’s not mandatory, but Android gives
you warning messages if you hardcode text
values. Using a String resource file might
seem like a lot of effort at first, but it makes
things like localization much easier. It’s also
easier to use String resources to start off
with, rather than patching them in afterward.

Q: How does separating out the
String values help with localization?

A: Suppose you want your application to
be in English by default, but in French if the
device language is set to French. Rather
than hardcode different languages into your
app, you can have one String resource file
for English text, and another resource file
for French text.

Q: How does the app know which
String resource file to use?

A: Put your default English Strings
resource file in the app/src/main/res/
values folder as normal, and your French
resource file in a new folder called app/src/
main/res/values-fr. If the device is set to
French, it will use the Strings in the app/
src/main/res/values-fr folder. If the device
is set to any other language, it will use the
Strings in app/src/main/res/values.

Here’s what we’ve done so far
Here’s a quick recap of where we’ve got to:

<Layout>

</Layout> <resources>

</resources>

Activity

Layout

strings.xml

1 2

3

We’ve created a layout that specifies what the app
looks like.
It includes a spinner, a button, and a text view.

1

The file strings.xml includes the String resources we
need.
We’ve added a label for the button, and default text for the list of
suggested beer brands to try.

2

The activity specifies how the app should interact with
the user.
Android Studio has created an activity for us, but we haven’t done
anything with it yet.

3

Next we’ll look at how you add a list of beers to the spinner.

Time for a test drive
Let’s see how the app’s looking now. Save the changes you’ve
made, then choose the “Run ‘app’” command from the
Run menu. When prompted, select the option to launch the
emulator.

This time when we run the app, the text for the button and
the text view has changed to the String values we added to
strings.xml. The button says “Find Beer!” and the text view says

“No beers selected.”
The text on the button and the
text view has been changed.

56 Chapter 2

array resources
Create project
Update layout
Connect activity
Write logicAt the moment, the layout includes a spinner, but it doesn’t have

anything in it. Whenever you use a spinner, you need to get it to
display a list of values so that the user can choose the value they want.

We can give the spinner a list of values in pretty much the same
way that we set the text on the button and the text view: by using a
resource. So far, we’ve used strings.xml to specify individual String
values. For the spinner, all we need to do is specify an array of String
values, and get the spinner to reference it.

Add values to the spinner

Adding an array resource is similar to adding a String
As you already know, you can add a String resource to strings.xml using:

<string name="string_name">string_value</string>

where string_name is the identifier of the String, and string_
value is the String value itself.

To add an array of Strings, you use the following syntax:

<string-array name="string_array_name">

 <item>string_value1</item>

 <item>string_value2</item>

 <item>string_value3</item>

 ...

</string-array>

where string_array_name is the name of the array, and
string_value1, string_value2, string_value3 are the
individual String values that make up the array.

Let’s add a string-array resource to our app that can be used by
the spinner.

This is the name of the array.

These are the values in the array. You can add as many as you need.

Resources are
noncode assets, such
as images or Strings,
used by your app.

you are here 4 57

building interactive apps
Create project
Update layout
Connect activity
Write logic

...

 <Spinner

 android:id="@+id/color"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="40dp"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:entries="@array/beer_colors" />
...

Get the spinner to reference a string-array
A layout can reference a string-array using similar syntax to how
it would retrieve the value of a String. Rather than use:

Use @string to reference a String, and
@array to reference an array.

"@string/string_name"

you use the syntax:

"@array/array_name"

where array_name is the name of the array.

Let’s use this in the layout. Go to the layout file activity_find_beer.xml
and add an entries attribute to the spinner like this:

This means “the entries for the
spinner come from array beer_colors”.

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

Add the string-array to strings.xml
To add the string-array, open up strings.xml, and add the
array like this:

...

 <string name="brands">No beer selected </string>

 <string-array name="beer_colors">

 <item>light</item>

 <item>amber</item>

 <item>brown</item>

 <item>dark</item>

 </string-array>

</resources>

Add this string-array to strings.xml.
It defines an array of Strings called
beer_colors with array items of light,
amber, brown, and dark.

<xml>
</xml>

app/src/main

strings.xml

BeerAdviser

res

values

Those are all the changes you need in order to get the spinner to
display a list of values. Let’s see what it looks like.

Connect activity

58 Chapter 2

test drive

Test drive the spinner
So let’s see what impact these changes have had on our app. Save
your changes, then run the app. You should get something like this:

By default
the top item in the spinner is selected. Click on

the spinner
to see its
entries.

When you click
on a value, it
gets selected.

Create project
Update layout
Connect activity
Write logic

Where we've got to
Here’s a reminder of what we’ve done so far:

<Layout>

</Layout> <resources>

</resources>

Activity

Layout

strings.xml

1 2

3

We’ve created a layout that specifies what
the app looks like.
It includes a spinner, a button, and a text view.

1

The file strings.xml includes the String
resources we need.
We’ve added a label for the button, default text for the
suggested beer brands, and an array of values for the
spinner.

2

The activity specifies how the app should
interact with the user.
Android Studio has created an activity for us, but we
haven’t done anything with it yet.

3

So what’s next?

you are here 4 59

building interactive apps

We need to make the button do something

The user chooses a type of beer
from the spinner.

The user clicks the Find Beer
button, and the layout specifies
which method to call in the
activity.

2

BeerExpert’s getBrands() method
finds matching brands for the type
of beer and returns them to the
activity as an ArrayList of Strings.

4

The activity gets a reference to
the layout text view and sets its
text value to the list of matching
beers.

5

<Layout>

</Layout>

BeerExpert

ActivityLayout

1
2

3
5

4

Device

The method in the activity
retrieves the value of the selected
beer in the spinner and passes
it to the getBrands() method
in a Java custom class called
BeerExpert.

3

getBrands("amber")
"Jack Amber"
"Red Moose"

Create project
Update layout
Connect activity
Write logic

Let’s start by getting the button to call a method.

What we need to do next is make the app react to the value
we select in the spinner when the Find Beer button is clicked.
We want our app to behave something like this:

Connect activity

After all those steps are completed, the list
is displayed on the device.

1

60 Chapter 2

onClick attribute

Once you’ve made these changes, save the file.

Now that the layout knows which method to call in the activity,
we need to write the method. Let’s take a look at the activity.

When the button is
clicked, call the method
onClickFindBeer() in the
activity. We’ll create the
method in the activity over
the next few pages.

...

 <Button

 android:id="@+id/find_beer"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center"

 android:layout_margin="16dp"

 android:text="@string/find_beer"

 android:onClick="onClickFindBeer" />

...

Make the button call a method
Whenever you add a button to a layout, it’s likely you’ll want it to do
something when the user clicks on it. To make this happen, you need
to get the button to call a method in your activity.

To get our button to call a method in the activity when it’s clicked,
we need to make changes to two files:

android:onClick="method_name"

 Change the layout file activity_find_beer.xml.
We’ll specify which method in the activity will get called
when the button is clicked.

¥

 Change the activity file FindBeerActivity.java.
We need to write the method that gets called.

¥

Let’s start with the layout.

Use onClick to say which method the button calls
It only takes one line of XML to tell Android which method a
button should call when it’s clicked. All you need to do is add an
android:onClick attribute to the <button> element, and tell
it the name of the method you want to call:

This means “when the component is clicked, call
the method in the activity called method_name”.

Let’s try this now. Go to the layout file activity_find_beer.xml, and add a
new line of XML to the <button> element to say that the method
onClickFindBeer() should be called when the button is clicked:

Create project
Update layout
Connect activity
Write logic

<xml>
</xml>

app/src/main

activity_find_beer.xml

BeerAdviser

res

layout

you are here 4 61

building interactive apps

package com.hfad.beeradviser;

import android.app.Activity;
import android.os.Bundle;

public class FindBeerActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_find_beer);
 }
}

What activity code looks like
When we first created a project for our app, we asked the wizard to create
an empty activity called FindBeerActivity. The code for this activity
is held in a file called FindBeerActivity.java. Open this file by going to the app/
src/main/java folder and double-clicking on it.

When you open the file, you’ll see that Android Studio has generated
some Java code for you. Rather than taking you through all the code that
Android Studio may (or may not) have created, we want you to replace the
code that’s currently in FindBeerActivity.java with the code shown here:

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser

Make sure class extends
the Android Activity class.

This is the onCreate() method. It’s called
when the activity is first created.

setContentView() tells Android
which layout the activity uses. In
this case, it’s activity_find_beer.

Replace the code
in your version of
FindBeerActivity.java
with the code shown
on this page.

Do this!

The above code is all you need to create a basic activity. As you can see, it’s a
class that extends the android.app.Activity class, and implements an
onCreate() method.

All activities (not just this one) have to extend the Activity class or one
of its subclasses. The Activity class contains a bunch of methods that
transform your Java class from a plain old Java class into a full-fledged, card-
carrying Android activity.

All activities also need to implement the onCreate() method. This
method gets called when the activity object gets created, and it’s used to
perform basic setup such as what layout the activity is associated with. This
is done via the setContentView() method. In the example above,
setContentView(R.layout.activity_find_beer) tells Android
that this activity uses activity_find_beer as its layout.

On the previous page, we added an onClick attribute to the button in our
layout and gave it a value of onClickFindBeer. We need to add this
method to our activity so it will be called when the button gets clicked. This
will enable the activity to respond when the user touches the button in the
user interface.

Connect activity

62 Chapter 2

onClickFindBeer()

...

import android.view.View;

public class FindBeerActivity extends Activity {

...

 //Called when the user clicks the button

 public void onClickFindBeer(View view){

 }

}

The method must be
public.

The method must have a
void return value.

The method must have a single
parameter of type View.

public void onClickFindBeer(View view) {

}

Add an onClickFindBeer() method
to the activity
The onClickFindBeer() method needs to have a particular
signature, or otherwise it won’t get called when the button specified in
the layout gets clicked. The method needs to take the following form:

Add the
onClickFindBeer()
method to
FindBeerActivity.java.

activity_find_beer.xml

<Layout>

</Layout>

FindBeerActivity.java

onClickFindBeer()

If the method doesn’t take this form, then it won’t respond when
the user presses the button. This is because behind the scenes,
Android looks for a public method with a void return value, with
a method name that matches the method specified in the layout
XML.

The View parameter in the method may seem unusual at first
glance, but there’s a good reason for it being there. The parameter
refers to the GUI component that triggers the method (in this case,
the button). As we mentioned earlier, GUI components such as
buttons and text views are all types of View.

So let’s update our activity code. Add the onClickFindBeer()
method below to your activity code (FindBeerActivity.java):

If you want a method
to respond to a button
click, it must be public,
have a void return
type, and take a single
View parameter.

Create project
Update layout
Connect activity
Write logic

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser

We're using this
class, so we need
to import it.

you are here 4 63

building interactive apps

onClickFindBeer() needs to do something
Now that we’ve created the onClickFindBeer() method in our
activity, the next thing we need to do is get the method to do something
when it runs. Specifically, we need to get our app to display a selection of
different beers that match the beer type the user has selected.

In order to achieve this, we first need to get a reference to both the spinner
and text view GUI components in the layout. This will allow us to retrieve
the value of the chosen beer type from the spinner, and display text in the
text view.

Use findViewById() to get a reference to a view
We can get references for our two GUI components using a method called
findViewById(). This method takes the ID of the GUI component as
a parameter, and returns a View object. You then cast the return value
to the correct type of GUI component (for example, a TextView or a
Button).

Here’s how you’d use findViewById() to get a reference to the text
view with an ID of brands:

TextView brands = (TextView) findViewById(R.id.brands);

brands is a TextView, so we
have to cast it as one.

We want the view with
an ID of brands.

Create project
Update layout
Connect activity
Write logic

Take a closer look at how we specified the ID of the text view. Rather
than pass in the name of the text view, we passed in an ID of the form
R.id.brands. So what does this mean? What’s R?

R.java is a special Java file that gets generated by Android Studio
whenever you create or build your app. It lives within the app/build/
generated/source/r/debug folder in your project in a package with the same
name as the package of your app. Android uses R.java to keep track of
the resources used within the app, and among other things it enables
you to get references to GUI components from within your activity code.

If you open up R.java, you’ll see that it contains a series of inner classes,
one for each type of resource. Each resource of that type is referenced
within the inner class. As an example, R.java includes an inner class
called id, and the inner class includes a static final brands
value. Android added this code to R.java when we used the code

"@+id/brands" in our layout. The line of code:

R is a special Java class
that enables you to
retrieve references to
resources in your app.

(TextView) findViewById(R.id.brands);

uses the value of brands to get a reference to the brands text view.

 R.java gets
generated
for you.

You never
change any of the code within
this file, but it’s useful to know
it’s there.

Connect activity

64 Chapter 2

view methods

When this line of code gets called, it creates a TextView object called
brands. You are then able to call methods on this TextView object.

Let’s say you wanted to set the text displayed in the brands text view
to “Gottle of geer”. The TextView class includes a method called
setText() that you can use to change the text property. You use it like
this:

Once you have a view, you can access its
methods
The findViewById() method provides you with a Java version of your
GUI component. This means that you can get and set properties in the
GUI component using the methods exposed by the Java class. Let’s take a
closer look.

brands.setText("Gottle of geer");
Set the text on the brands
TextView to “Gottle of geer”.

This gives you a Spinner object whose methods you can now access.
As an example, here’s how you retrieve the currently selected item in the
spinner, and convert it to a String:

The code:

String.valueOf(color.getSelectedItem()) This gets the selected item in the
spinner and converts it to a String.

Create project
Update layout
Connect activity
Write logic

Setting the text in a text view
As you’ve seen, you can get a reference to a text view in Java using:

TextView brands = (TextView) findViewById(R.id.brands);

Retrieving the selected value in a spinner
You can get a reference to a spinner in a similar way to how you get a
reference to a text view. You use the findViewById() method as
before, but this time you cast the result as a spinner:

Spinner color = (Spinner) findViewById(R.id.color);

color.getSelectedItem()

actually returns a generic Java object. This is because spinner values
can be something other than Strings, such as images. In our case, we
know the values are all Strings, so we can use String.valueOf() to
convert the selected item from an Object to a String.

you are here 4 65

building interactive apps

Activity Magnets
Somebody used fridge magnets to write a new onClickFindBeer()
method for us to slot into our activity. Unfortunately, a freak kitchen whirlwind
has dislodged the magnets. Can you piece the code back together again?

The code needs to retrieve the type of beer selected in the spinner, and then
display the type of beer in the text view.

TextView

(TextView)

findViewById

R.id.brands

color

(Spinner)

findViewById

R.id.color

View

beerTypegetSelectedItem()

//Called when the button gets clicked

public void onClickFindBeer(view) {

 //Get a reference to the TextView

 brands = ();

 //Get a reference to the Spinner

 Spinner = ();

 //Get the selected item in the Spinner

 String = String.valueOf(color.);

 //Display the selected item

 brands. (beerType);

}

setText

Button

findView

findView

R.view.brands

R.view.color

You won’t
need to use
all of the
magnets.

Update the activity code
You now know enough to write some code in the onClickFindBeer()
method. Rather than write all the code we need in one go, let’s start by
reading the selected value from the spinner, and displaying it in the text view.

Connect activity

66 Chapter 2

magnets solution

//Called when the button gets clicked

public void onClickFindBeer(view) {

 //Get a reference to the TextView

 brands = ();

 //Get a reference to the Spinner

 Spinner = ();

 //Get the selected item in the Spinner

 String = String.valueOf(color.);

 //Display the selected item

 brands. (beerType);

}

Activity Magnets Solution
Somebody used fridge magnets to write a new
onClickFindBeer() method for us to slot into our activity.
Unfortunately, a freak kitchen whirlwind has dislodged the magnets.
Can you piece the code back together again?

The code needs to retrieve the type of beer selected in the spinner,
and then display the type of beer in the text view.

TextView (TextView) findViewById R.id.brands

color (Spinner) findViewById R.id.color

View

beerType getSelectedItem()

setText

Button

findView

findView

R.view.brands

R.view.color

You didn’t need to use
these magnets.

you are here 4 67

building interactive apps

The first version of the activity
Our cunning plan is to build the activity in stages and test it as we go
along. In the end, the activity will take the selected value from the
spinner, call a method in a custom Java class, and then display matching
types of beer. For this first version, our goal is just to make sure that we
correctly retrieve the selected item from the spinner.

Here is our activity code, including the method you pieced together on
the previous page. Apply these changes to FindBeerActivity.java, then save
them:

package com.hfad.beeradviser;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Spinner;

import android.widget.TextView;

public class FindBeerActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_find_beer);

 }

 //Called when the button gets clicked

 public void onClickFindBeer(View view) {

 //Get a reference to the TextView

 TextView brands = (TextView) findViewById(R.id.brands);

 //Get a reference to the Spinner

 Spinner color = (Spinner) findViewById(R.id.color);

 //Get the selected item in the Spinner

 String beerType = String.valueOf(color.getSelectedItem());

 //Display the selected item

 brands.setText(beerType);

 }

}

findViewById returns a
View. You need to cast it
to the right type of View.

getSelectedItem returns
an Object. You need to
turn it into a String.

Create project
Update layout
Connect activity
Write logic

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser

We're using these
extra classes so we
need to import them.

We've not changed this method.

68 Chapter 2

what happens

What the code does
Before we take the app for a test drive, let’s look at what the code
actually does.

The layout specifies which method in the activity should be called when the button is clicked via the
button’s android:onClick property.

The activity gets references to the Spinner and TextView GUI components using calls
to the findViewById() method.

2

The activity retrieves the currently selected value of the spinner (in this case amber),
and converts it to a String.

3

The activity then sets the text property of the TextView to reflect the currently
selected item in the spinner.

4

<Layout>

</Layout>

FindBeerActivityLayout

Spinner

TextView

FindBeerActivity

SpinnerFindBeerActivity
amber

TextViewFindBeerActivity

"amber"

Create project
Update layout
Connect activity
Write logic

The user chooses a type of beer from the spinner and clicks on the Find Beer button.
This calls the public void onClickFindBeer(View) method in the activity.

1

you are here 4 69

building interactive apps

Test drive the changes
Make the changes to the activity file, save it, and then run
your app. This time when we click on the Find Beer button, it
displays the value of the selected item in the spinner.

Q: I added a String to my strings.xml file, but I can’t see it
in R.java. Why isn’t it there?

A: Android Studio, generates R.java when you save any
changes you’ve made. If you’ve added a resource but can’t see it in
R.java, check that your changes have been saved.

R.java also gets updated when the app gets built. The app builds
when you run the app, so running the app will also update R.java.

Q: The values in the spinner look like they’re static as
they’re set to the values in the string-array. Can I
change these values programmatically?

A: You can, but that approach is more complicated than just
using static values. We’ll show you later in the book how you can
have complete control over the values displayed in components
such as spinners.

Q: What type of object is returned by
getSelectedItem()?

A: It’s declared as type Object. Because we used a
string-array for the values, the actual value returned in
this case is a String.

Q: What do you mean “in this case”—isn’t it always?

A: You can do more complicated things with spinners than just
display text. As an example, the spinner might display an icon next
to each value. As getSelectedItem() returns an object,
it gives you a bit more flexibility than just returning a String.

Q: Does the name of onClickFindBeer matter?

A: All that matters is that the name of the method in the activity
code matches the name used in the button’s onClick attribute
in the layout.

Q: Why did we have to replace the activity code that
Android Studio created for us?

A: IDEs such as Android Studio include functions and utilities
that can save you a lot of time. They generate a lot of code for
you, and sometimes this can be useful. But when you’re learning a
new language or development area such as Android, we think it’s
best to learn about the fundamentals of the language rather than
what the IDE generates for you. This way you’ll develop a greater
understanding of the language.

The type of
beer selected
is displayed in
the text view.

Connect activity

70 Chapter 2

BeerExpert

Build the custom Java class
As we said at the beginning of the chapter, the Beer Adviser app
decides which beers to recommend with the help of a custom
Java class. This Java class is written in plain old Java, with no
knowledge of the fact it’s being used by an Android app.

package com.hfad.beeradviser;

import java.util.ArrayList;

import java.util.List;

public class BeerExpert {

 List<String> getBrands(String color) {

 List<String> brands = new ArrayList<>();

 if (color.equals("amber")) {

 brands.add("Jack Amber");

 brands.add("Red Moose");

 } else {

 brands.add("Jail Pale Ale");

 brands.add("Gout Stout");

 }

 return brands;

 }

}

Custom Java class spec
The custom Java class should meet the following requirements:

Build and test the Java class
Java classes can be extremely complicated and involve calls to complex
application logic. You can either build and test your own version of the
class, or use our sophisticated version of the class shown here:

 The package name should be com.hfad.beeradviser.¥
 The class should be called BeerExpert.¥
 It should expose one method, getBrands(), that takes a
preferred beer color (as a String), and return a List<String> of
recommended beers.

¥

This is pure Java code;
nothing Androidy about it.

<Layout>

</Layout> <resources>

</resources>

BeerExpert

Activity

Layout

strings.xml

We need to create
a Java class that
the activity can
use to find out
which beer brands
to suggest.

Add the BeerExpert class to your
project. Select the com.hfad.beeradviser
package in the app/src/main/java folder,
go to File→New...→Java Class, name the
file “BeerExpert”, and make sure the
package name is “com.hfad.beeradviser”.
This creates the BeerExpert.java file.

Do this!

app/src/main

BeerExpert.java

BeerAdviser

java

com.hfad.beeradviser

you are here 4 71

building interactive apps

Enhance the activity to call the custom
Java class so that we can get REAL advice

Enhance the activity so that it calls the BeerExpert
getBrands() method and displays the results in the text view.

In version two of the activity we need to enhance the onClickFindBeer() method
to call the BeerExpert class for beer recommendations. The code changes needed
are plain old Java. You can try to write the code and run the app on your own, or you
can follow along with us. But before we show you the code changes, try the exercise
below; it’ll help you create some of the activity code you’ll need.

package com.hfad.beeradviser;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Spinner;
import android.widget.TextView;
import java.util.List;

public class FindBeerActivity extends Activity {
 private BeerExpert expert = new BeerExpert();
...
 //Called when the button gets clicked
 public void onClickFindBeer(View view) {
 //Get a reference to the TextView
 TextView brands = (TextView) findViewById(R.id.brands);
 //Get a reference to the Spinner
 Spinner color = (Spinner) findViewById(R.id.color);
 //Get the selected item in the Spinner
 String beerType = String.valueOf(color.getSelectedItem());
 //Get recommendations from the BeerExpert class

 }
}

We added this line for you.

You’ll need to use the BeerExpert
class to get the beer recommendations,
so we added this line for you too.

You need to update the onClickFindBeer() method.

Create project
Update layout
Connect activity
Write logic

72 Chapter 2

17

sharpen solution

Enhance the activity so that it calls the BeerExpert
getBrands() method and displays the results in the text view.

package com.hfad.beeradviser;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Spinner;
import android.widget.TextView;
import java.util.List;

public class FindBeerActivity extends Activity {
 private BeerExpert expert = new BeerExpert();
...
 //Called when the button gets clicked
 public void onClickFindBeer(View view) {
 //Get a reference to the TextView
 TextView brands = (TextView) findViewById(R.id.brands);
 //Get a reference to the Spinner
 Spinner color = (Spinner) findViewById(R.id.color);
 //Get the selected item in the Spinner
 String beerType = String.valueOf(color.getSelectedItem());
 //Get recommendations from the BeerExpert class

 }
}

 List<String> brandsList = expert.getBrands(beerType);
 StringBuilder brandsFormatted = new StringBuilder();
 for (String brand : brandsList) {
 brandsFormatted.append(brand).append('\n');
 }
 //Display the beers
 brands.setText(brandsFormatted);

Using the BeerExpert requires pure Java code, so don’t
worry if your code looks a little different than ours.

Get a List of brands.

Build a String using
the values in the List.

Display each brand
on a new line.

Display the results in
the text view.

you are here 4 73

building interactive apps

Activity code version 2
Here’s our full version of the activity code. Apply the changes shown
here to your version of FindBeerActivity.java, make sure you’ve added
the BeerExpert class to your project, and then save your changes:

package com.hfad.beeradviser;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Spinner;

import android.widget.TextView;

import java.util.List;

public class FindBeerActivity extends Activity {

 private BeerExpert expert = new BeerExpert();

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_find_beer);

 }

 //Called when the button gets clicked

 public void onClickFindBeer(View view) {

 //Get a reference to the TextView

 TextView brands = (TextView) findViewById(R.id.brands);

 //Get a reference to the Spinner

 Spinner color = (Spinner) findViewById(R.id.color);

 //Get the selected item in the Spinner

 String beerType = String.valueOf(color.getSelectedItem());

 //Get recommendations from the BeerExpert class
 List<String> brandsList = expert.getBrands(beerType);
 StringBuilder brandsFormatted = new StringBuilder();
 for (String brand : brandsList) {
 brandsFormatted.append(brand).append('\n');
 }
 //Display the beers
 brands.setText(brandsFormatted);
 brands.setText(beerType);

 }

}

Create project
Update layout
Connect activity
Write logic

app/src/main

FindBeerActivity.java

BeerAdviser

java

com.hfad.beeradviser
We're using this extra class so we need to import it.

Add an instance of BeerExpert as a private variable.

Use the BeerExpert class to get a List of brands.

Build a String, displaying
each brand on a new line.

Display the String in the TextView.

Delete this line.

74 Chapter 2

what happens

When the user clicks on the Find Beer button, the
onClickFindBeer() method in the activity gets called.
The method creates a reference to the spinner and text view, and gets the
currently selected value from the spinner.

1

What happens when you run the code

onClickFindBeer() calls the getBrands() method in the
BeerExpert class, passing in the type of beer selected in the
spinner.
The getBrands() method returns a list of brands.

2

The onClickFindBeer() method formats the list of brands and
uses it to set the text property in the text view.

<Layout>

</Layout>

FindBeerActivityLayout
Spinner

FindBeerActivity BeerExpert

getBrands("amber")

"Jack Amber"
"Red Moose"

FindBeerActivity TextView

"Jack Amber
Red Moose"

amber

TextView

onClickFindBeer()

onClickFindBeer()

onClickFindBeer()

3

you are here 4 75

building interactive apps

This is what you get
when you select light.

Test drive your app
Once you’ve made the changes to your app, go ahead
and run it. Try selecting different types of beer and
clicking on the Find Beer button.

Create project
Update layout
Connect activity
Write logic

This is what you get
when you select amber.

When you choose different types of beer and
click on the Find Beer button, the app uses the
BeerExpert class to provide you with a selection
of suitable beers.

76 Chapter 2

toolbox

 � The <Button> element is used to add a button.

 � The <Spinner> element is used to add a spinner,
which is a drop-down list of values.

 � All GUI components are types of view. They inherit from
the Android View class.

 � strings.xml is a String resource file. It’s used to separate
out text values from the layouts and activities, and
supports localization.

 � Add a String to strings.xml using:

 <string name="name">Value</string>

 � Reference a String in the layout using:

 "@string/name"

 � Add an array of String values to strings.xml using:

 <string-array name="array">
 <item>string1</item>
 ...
 </string-array>

 � Reference a string-array in the layout using:

 "@array/array_name"

 � Make a button call a method when clicked by adding the
following to the layout:

 android:onClick="clickMethod"

There needs to be a corresponding method in the
activity:

 public void clickMethod(View view){
 }

 � R.java is generated for you. It enables you to get
references for layouts, GUI components, Strings, and
other resources in your Java code.

 � Use findViewById() to get a reference to a view.

 � Use setText() to set the text in a view.

 � Use getSelectedItem() to get the selected item
in a spinner.

 � Add a custom class to an Android project by going to
File menu→New...→Java Class.

Your Android Toolbox

You’ve got Chapter 2 under
your belt and now you’ve

added building interactive
Android apps to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CH
AP

T
ER

 2

this is a new chapter 77

I sent an intent asking who
could handle my ACTION_CALL,
and was offered all sorts of
activities to choose from.

multiple activities and intents3

State Your Intent

Most apps need more than one activity.
So far we’ve just looked at single-activity apps, which is fine for simple apps. But when

things get more complicated, just having the one activity won’t cut it. We’re going to show

you how to build apps with multiple activities, and how you can get your activities

talking to each other using intents. We’ll also look at how you can use intents to go

beyond the boundaries of your app and make activities in other apps on your

device perform actions. Things are about to get a whole lot more powerful...

78 Chapter 3

tasks

Create an app with a single activity and layout.1

Add a second activity and layout.2

Get the first activity to call the second activity.3

Get the first activity to pass data to the second activity.4

Here’s what we’re going to do in this chapter

Apps can contain more than one activity
Earlier in the book, we said that an activity is a single, defined thing
that your user can do, such as displaying a list of recipes. If your
app is simple, this may be all that’s needed.

But a lot of the time, you’ll want users to do more than just one
thing—for example, adding recipes as well as displaying a list of
them. If this is the case, you’ll need to use multiple activities: one for
displaying the list of recipes and another for adding a single recipe.

The best way of understanding how this works is to see it in action.
You’re going to build an app containing two activities. The first
activity will allow you to type a message. When you click on a button
in the first activity, it will launch the second activity and pass it the
message. The second activity will then display the message.

An activity is a single
focused thing your user
can do. If you chain
multiple activities together
to do something more
complex, it’s called a task.

The first activity lets
you enter a message. When you click on the Send

button in the first activity,
it passes the message to the
second activity. The second
activity is launched and
displays the message.

you are here 4 79

 multiple activities and intents

<Layout>

</Layout>

activity_create_message.xml

CreateMessageActivity.javaDevice

<Layout>

</Layout>

activity_receive_message.xml

ReceiveMessageActivity.java

Get started: create the project
You create a project for the app in exactly the same way you did
in previous chapters. Create a new Android Studio project for an
application named “My Messenger” with a company domain of

“hfad.com”, making the package name com.hfad.mymessenger.
The minimum SDK should be API 19 so that it will work on most
devices. You’ll need an empty activity named “CreateMessageActivity”
with a layout named “activity_create_message” so that your code
matches ours. Make sure that you untick the Backwards
Compatibility (AppCompat) option when you create the
activity.

On the next page, we’ll update the activity’s layout.

Here’s the app structure
The app contains two activities and two layouts.

Text entered via
CreateMessageActivity
is transferred to
ReceiveMessageActivity.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

When the app gets launched, it starts activity
CreateMessageActivity.
This activity uses the layout activity_create_message.xml.

1

When the user clicks a button in CreateMessageActivity,
ReceiveMessageActivity is launched.
This activity uses layout activity_receive_message.xml.

2

1

2

80 Chapter 3

update layout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.mymessenger.CreateMessageActivity">

 <EditText

 android:id="@+id/message"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="20dp"

 android:hint="@string/hint"

 android:ems="10" />

 <Button

 android:id="@+id/send"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="20dp"

 android:onClick="onSendMessage"

 android:text="@string/send" />

</LinearLayout>

Update the layout
Here’s the XML for the activity_create_message.xml file. We’re using a
<LinearLayout> to display components in a single column, and we’ve
added <Button> and <EditText> elements to it. The <EditText>
element gives you an editable text field you can use to enter data.

Change your activity_create_message.xml file to match the XML here:

The <EditText> element
defines an editable text
field for entering text. It
inherits from the same
Android View class as the
other GUI components
we’ve seen so far.

Clicking on the
button runs the
onSendMessage()
method in the
activity.

This is a String
resource we
need to create.

<xml>
</xml>

app/src/main

activity_create_
message.xml

MyMessenger

res

layout

This describes how wide the <EditText> should be. It
should be wide enough to accommodate 10 letter Ms.

This creates an editable text field.

This is the editable text field. If it's
empty, it gives the user a hint about
what text they should enter in it.

The hint attribute gives the user a hint of
what text they should type into the text
field. We need to add it as a String resource.

We're using a linear layout
with a vertical orientation.

you are here 4 81

 multiple activities and intents

Update strings.xml...
We used two String resources in our layout on the previous page. The
button has a text value of @string/send that appears on the button,
and the editable text field has a hint value of @string/hint that tells
the user what to enter in the field. This means we need to add Strings called
"send" and "hint" to strings.xml and give them values. Do this now:

...and add the method to the activity
This line in the <Button> element:

<resources>

 ...

 <string name="send">Send Message</string>
 <string name="hint">Enter a message</string>
</resources>

The text “Send Message”
will appear on the button.

android:onClick="onSendMessage"

means that the onSendMessage() method in the activity will fire when
the button is clicked. Let’s add this method to the activity now.

Open up the CreateMessageActivity.java file and replace the code Android
Studio created for you with the following:

package com.hfad.mymessenger;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;

public class CreateMessageActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_create_message);
 }

 //Call onSendMessage() when the button is clicked
 public void onSendMessage(View view) {
 }
}

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

This method will get called
when the button's clicked.
We'll complete the method
body as we work our way
through the rest of the
chapter.

Now that you’ve created the first activity, let’s move on to the
second.

<xml>
</xml>

app/src/main

strings.xml

MyMessenger

res

values

app/src/main

CreateMessage
Activity.java

MyMessenger

java

com.hfad.mymessenger

The onCreate() method gets called
when the activity is created.

The text “Enter a message”
will appear as a hint in the
text field if it’s empty.

Make sure your activity
extends the Activity class.

82 Chapter 3

create activity

Create the second activity and layout
Android Studio has a wizard that lets you add extra activities and layouts to your
apps. It’s like a scaled-down version of the wizard you use to create an app, and
you use it whenever you want to create a new activity.

To create the new activity, switch to the Project view of Android Studio’s explorer,
click on the com.hfad.mymessenger package in the app/src/main/java folder, choose
File → New → Activity, and choose the option for Empty Activity. You will be
presented with a new screen where you can choose options for your new activity.

Every time you create a new activity and layout, you need to name them. Name
the new activity “ReceiveMessageActivity” and the layout “activity_receive_
message”. Make sure that the option to generate a layout is checked, and the
Launcher Activity and Backwards Compatibility (AppCompat) options are
unchecked. Finally, confirm that the package name is com.hfad.mymessenger,
and when you’re done, click on the Finish button.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

Name the activity “ReceiveMessageActivity”,
and the layout “activity_receive_message.”

Make sure
the option
to generate
the layout is
checked.
Uncheck the
Launcher
Activity and
Backwards
Compatibility
(AppCompat)
options.

Some versions of
Android Studio may
ask you what the
source language of
your activity should
be. If prompted,
select the option for
Java.

you are here 4 83

 multiple activities and intents

What just happened?
When you clicked on the Finish button, Android Studio
created a shiny new activity file for you, along with a new
layout. If you look in the explorer, you should see that a new
file called ReceiveMessageActivity.java has appeared in the app/
src/main/java folder, and a file called activity_receive_message.
xml has appeared under app/src/main/res/layout.

<Layout>

</Layout>

activity_create_message.xml

CreateMessageActivity.java

<Layout>

</Layout>

activity_receive_message.xml

ReceiveMessageActivity.java

Behind the scenes, Android Studio also made a configuration
change to the app in a file called AndroidManifest.xml. Let’s
take a closer look.

Android Studio
added Receive
MessageActivity.

It added its
layout file too.

Your explorer
window may look
different than
ours because we’ve
switched to the
Project view.

Each activity uses a different layout.
CreateMessageActivity uses the
layout activity_create_message.xml, and
ReceiveMessageActivity uses
the layout activity_receive_message.xml:

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

84 Chapter 3

AndroidManifest.xml

Welcome to the Android manifest file
Every Android app must include a file called AndroidManifest.xml. You can
find it in the app/src/main folder of your project. The AndroidManifest.xml
file contains essential information about your app, such as what activities it
contains, required libraries, and other declarations. Android creates the file for
you when you create the app. If you think back to the settings you chose when
you created the project, some of the file contents should look familiar.

Here’s what our copy of AndroidManifest.xml looks like:
You can find
AndroidManifest.xml
in this folder.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.mymessenger">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".CreateMessageActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".ReceiveMessageActivity"></activity>

 </application>

</manifest>

 If you
develop
Android
apps
without

an IDE, you’ll
need to create
this file manually.

This is the package
name we specified.

Android Studio gave our
app default icons.

The theme affects the
appearance of the app.
We’ll look at this later.

This bit specifies
that it’s the main
activity of the app.

This says the activity can
be used to launch the app.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

This is
the first
activity,
Create
Message
Activity.

This is the second activity,
ReceiveMessageActivity. Android
Studio added this code when we
added the second activity.

<xml>
</xml>

app/src/main

AndroidManifest.xml

MyMessenger

you are here 4 85

 multiple activities and intents

Every activity needs to be declared
All activities need to be declared in AndroidManifest.xml. If an
activity isn’t declared in the file, the system won’t know it exists.
And if the system doesn’t know it exists, the activity will never run.

You declare an activity in the manifest by including an
<activity> element inside the <application> element.
In fact, every activity in your app needs a corresponding
<activity> element. Here’s the general format:

Activity

If I’m not included in
AndroidManifest.xml, then
as far as the system’s
concerned, I don’t exist
and will never run.

<application
 ...
 ...>
 <activity
 android:name=".MyActivityClassName"
 ...
 ...>
 ...
 </activity>
 ...
</application>

Each activity needs to be declared
inside the <application> element.

The following line is mandatory and is used to specify the class name
of the activity, in this example "MyActivityClassName":

android:name=".MyActivityClassName"

MyActivityClassName is the name of the class. It’s prefixed
with a “.” because Android combines the class name with the
name of the package to derive the fully qualified class name.

The activity declaration may include other properties too, such as
security permissions, and whether it can be used by activities in
other apps.

This line is mandatory; just
replace MyActivityClassName
with the name of your
activity.The activity may have

other properties too.

 The second
activity in our
app was
automatically
declared

because we added it using
the Android Studio wizard.

If you add extra activities
manually, you’ll need to edit
AndroidManifest.xml yourself.
The same may be true if you use
another IDE besides Android
Studio.

86 Chapter 3

intents

An intent is a type of message
So far we’ve created an app with two activities in it, and each activity
has its own layout. When the app is launched, our first activity,
CreateMessageActivity, will run. What we need to do next is get
CreateMessageActivity to call ReceiveMessageActivity
when the user clicks the Send Message button.

Whenever you want an activity to start a second activity, you use an intent.
You can think of an intent as an “intent to do something.” It’s a type of
message that allows you to bind separate objects (such as activities) together
at runtime. If one activity wants to start a second activity, it does it by
sending an intent to Android. Android will then start the second activity
and pass it the intent.

You can create and send an intent using just a couple of lines of code. You
start by creating the intent like this:

Intent intent = new Intent(this, Target.class);

The first parameter tells Android which object the intent is from: you can
use the word this to refer to the current activity. The second parameter is
the class name of the activity that needs to receive the intent.

Once you’ve created the intent, you pass it to Android like this:

Activity1 Activity2

“Dear Android, Please can
you tell Activity2 to start
now? Sincerely, Your old
pal, Activity1.”

Ooh, a message, I’ll
start right away.

startActivity(intent);

This tells Android to start the activity specified by the intent.

Once Android receives the intent, it checks that everything’s OK
and tells the activity to start. If it can’t find the activity, it throws an
ActivityNotFoundException.

You start an activity
by creating an
intent and using it
in the startActivity()
method.

The intent specifies the activity
you want to receive it. It’s like
putting an address on an envelope.

Android

startActivity() starts the
activity specified in the intent..

Let me see... Yep, that
seems legit. I’ll tell
Activity2 to get started.

Intent

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

To: AnotherActivity

Intent

To: Activity2

Intent

To: Activity2

you are here 4 87

 multiple activities and intents

Use an intent to start the second activity
Let’s put this into practice and use an intent to call
ReceiveMessageActivity. We want to launch the activity
when the user clicks on the Send Message button, so we’ll add
the two lines of code we discussed on the previous page to our
onSendMessage() method.

Make the changes highlighted below:

package com.hfad.mymessenger;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class CreateMessageActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_create_message);

 }

 //Call onSendMessage() when the button is clicked

 public void onSendMessage(View view) {

 Intent intent = new Intent(this, ReceiveMessageActivity.class);

 startActivity(intent);

 }

}

We need to import the Intent class
android.content.Intent as we’re using
it in onSendMessage().

Start activity ReceiveMessageActivity.

So what happens now when we run the app?

app/src/main

CreateMessage
Activity.java

MyMessenger

java

com.hfad.mymessenger

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

88 Chapter 3

what happens

<Layout>

</Layout>

activity_create_message.xml

CreateMessageActivity.javaDevice

What happens when you run the app

CreateMessageActivityDevice

CreateMessageActivity

Android

ReceiveMessageActivity

Before we take the app out for a test drive, let’s go over how the
app we’ve developed so far will function:

When the app gets
launched, the main activity,
CreateMessageActivity, starts.
When it starts, the activity specifies
that it uses layout activity_create_
message.xml. This layout gets
displayed in a new window.

1

The user types in a message
and then clicks on the button.
The onSendMessage() method
in CreateMessageActivity
responds to the click.

2

The onSendMessage()
method uses an intent to
tell Android to start activity
ReceiveMessageActivity.
Android checks that the
intent is valid, and then it tells
ReceiveMessageActivity to
start.

3

onSendMessage()

onSendMessage()

To: Receive
Message
Activity

Intent

Intent

To: ReceiveMessageActivity

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

you are here 4 89

 multiple activities and intents

<Layout>

</Layout>

activity_receive_message

CreateMessageActivity

Device
Android

ReceiveMessageActivity

When ReceiveMessageActivity
starts, it specifies that it
uses layout activity_receive_
message.xml and this layout
gets displayed in a new window.

4

Test drive the app
Save your changes, and then run the app. CreateMessageActivity
starts, and when you click on the Send Message button, it launches
ReceiveMessageActivity.

The story continues...

Enter a message,
and then click on
the Send Message
button.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

When you click on the Send
Message button, the activity
ReceiveMessageActivity starts, and
its activity fills the screen. This
activity is currently blank because
this is the default layout Android
Studio gave us.

90 Chapter 3

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.mymessenger.ReceiveMessageActivity">

</LinearLayout>

pass text

Pass text to a second activity
So far we’ve coded CreateMessageActivity to start
ReceiveMessageActivity when the Send Message button is
pressed. Next, we’ll get CreateMessageActivity to pass text to
ReceiveMessageActivity so that ReceiveMessageActivity
can display it. In order to accomplish this, we’ll do three things:

 Update CreateMessageActivity.java so that it gets the text
the user inputs, and then adds the text to the intent
before it sends it.

2

 Tweak the layout activity_receive_message.xml so that it can
display the text. At the moment it’s simply the default
layout the wizard gave us.

1

 Update ReceiveMessageActivity.java so that it displays the
text sent in the intent.

3

Let’s start with the layout
We’ll begin by changing the activity_receive_message.xml code Android
Studio created for us so that it uses a <LinearLayout>. Update
your version of the code so that it matches ours:

We need to change the layout so that it includes a text view. The text view needs to have an ID
of “message” so that we can reference it in our activity code. How should we change the layout’s
code? Think about this before looking at the next page.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

<Layout>

</Layout>

activity_create_
message.xml

CreateMessage
Activity.java

activity_receive_
message.xml

ReceiveMessage
Activity.java

<Layout>

</Layout>
1

2 3Intent

<xml>
</xml>

app/src/main

activity_receive_
message.xml

MyMessenger

res

layout

We're going to use a linear layout with a vertical
orientation as we did in activity_create_message.xml.

you are here 4 91

 multiple activities and intents

Q: Do I have to use intents? Can’t I just construct an
instance of the second activity in the code for my first
activity?

A: That’s a good question, but no, that’s not the “Android
way” of doing things. One of the reasons is that passing intents
to Android tells Android the sequence in which activities are
started. This means that when you click on the Back button on
your device, Android knows exactly where to take you back to.

Update the text view properties
We need to add a <TextView> element to the layout, and give
it an ID of “message.” This is because you have to add an ID to
any GUI components you need to reference in your activity code,
and we need to reference the text view so that we can update the
text it displays.

We’ve updated our code so that it includes a new text view.
Update your activity_receive_message.xml code so that it reflects ours
(we’ve bolded our changes):

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.mymessenger.ReceiveMessageActivity">

 <TextView

 android:id="@+id/message"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

</LinearLayout>

This line gives the text view
an ID of “message”.

We’ve not specified default text for the text
view, as the only text we’ll ever want to display
in the text view is the message passed to it by
CreateMessageActivity.

Now that we’ve updated the layout, we can get
to work on the activities. Let’s start by looking at
how we can use an intent to pass a message to
ReceiveMessageActivity.

activity_receive_
message.xml

ReceiveMessage
Activity.java

<xml>
</xml>

app/src/main

activity_receive_
message.xml

MyMessenger

res

layout
This adds the text view.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

92 Chapter 3

extra extra

putExtra() puts extra info in an intent
You’ve seen how you can create a new intent using:

Intent intent = new Intent(this, Target.class);

You can add extra information to this intent that can be picked up by
the activity you’re targeting so it can react in some way. To do this, you
use the putExtra() method like so:

intent.putExtra("message", value);

where message is a String name for the value you’re passing in, and
value is the value. The putExtra() method is overloaded so
value has many possible types. As an example, it can be a primitive
such as a boolean or int, an array of primitives, or a String. You can
use putExtra() repeatedly to add numerous extra data to the intent.
If you do this, make sure you give each one a unique name.

There are many different options
for the type of value. You
can see them all in the Google
Android documentation. Android
Studio will also give you a list as
you type code in.

How to retrieve extra information from an intent
The story doesn’t end there. When Android
tells ReceiveMessageActivity to start,
ReceiveMessageActivity needs some way of retrieving the
extra information that CreateMessageActivity sent to Android
in the intent.

There are a couple of useful methods that can help with this. The first
of these is:

getIntent();

getIntent() returns the intent that started the activity, and you
can use this to retrieve any extra information that was sent along with
it. How you do this depends on the type of information that was sent.
As an example, if you know the intent includes a String value named
"message", you would use the following:

Intent intent = getIntent();

String string = intent.getStringExtra("message");

Get the intent.

You’re not just limited to retrieving String values. As an example, you
can use:

to retrieve an int with a name of name. default_value specifies
what int value you should use as a default.

int intNum = intent.getIntExtra("name", default_value);

Get the String passed along
with the intent that has a
name of “message”.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

To: ReceiveMessageActivity
message: “Hello!”

putExtra() lets
you put extra
information in
the message
you’re sending.

To: ReceiveMessageActivity
message: “Hello!”

Intent

Intent

you are here 4 93

 multiple activities and intents

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in CreateMessageActivity.
java. You may not use the same
code snippet more than once,
and you won’t need to use all
the code snippets. Your goal is to

make the activity retrieve text from
the message <EditText> and add it
to the intent.

import

android.widget.EditText

;

;

;

;

EditText

messageView

EditText

(

)

findViewById
(

)
R.id.message

String

messageText

=

messageView

.

getText()
.

toString()

intent

.

putExtra

(

)
,

messageText

“message”putExtraString

=

package com.hfad.mymessenger;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.view.View;

public class CreateMessageActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_create_message);

 }

 //Call onSendMessage() when the button is clicked

 public void onSendMessage(View view) {

 Intent intent = new Intent(this, ReceiveMessageActivity.class);

 startActivity(intent);

 }

}

Note: each thing from
the pool can only be
used once!

94 Chapter 3

pool solution

package com.hfad.mymessenger;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.view.View;

public class CreateMessageActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_create_message);

 }

 //Call onSendMessage() when the button is clicked

 public void onSendMessage(View view) {

 Intent intent = new Intent(this, ReceiveMessageActivity.class);

 startActivity(intent);

 }

}

import android.widget.EditText;

EditText messageView = (EditText) findViewById(R.id.message);

String messageText = messageView.getText().toString();

intent.putExtra(“message”, messageText);

Pool Puzzle Solution
Your job is to take code snippets from

the pool and place them into the
blank lines in CreateMessageActivity.
java. You may not use the same
code snippet more than once,
and you won’t need to use all
the code snippets. Your goal is to

make the activity retrieve text from
the message <EditText> and add it
to the intent.

putExtraString

You need to import
the EditText class.

Get the text
from the editable
text field with an
ID of “message.”

Add the text to the intent,
giving it a name of “message”.

This code snippet
wasn't needed.

you are here 4 95

 multiple activities and intents

Pool Puzzle Solution Update the CreateMessageActivity code
We updated our code for CreateMessageActivity.java so that it
takes the text the user enters on the screen and adds it to
the intent. Here’s the full code (make sure you update your
code to include these changes, shown in bold):

package com.hfad.mymessenger;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.view.View;

import android.widget.EditText;

public class CreateMessageActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_create_message);

 }

 //Call onSendMessage() when the button is clicked

 public void onSendMessage(View view) {

 EditText messageView = (EditText)findViewById(R.id.message);

 String messageText = messageView.getText().toString();

 Intent intent = new Intent(this, ReceiveMessageActivity.class);

 intent.putExtra(ReceiveMessageActivity.EXTRA_MESSAGE, messageText);

 startActivity(intent);

 }

}

Create an intent, then add the text
to the intent. We’re using a constant
for the name of the extra information
so that we know CreateMessageActivity
and ReceiveMessageActivity are using the
same String. We’ll add this constant to
ReceiveMessageActivity on the next page,
so don't worry if Android Studio says it
doesn't exist.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

You need to import the EditText
class android.widget.EditText as
you're using it in your activity code.

Get the text that’s in
the EditText.

Start ReceiveMessageActivity
with the intent.

app/src/main

CreateMessage
Activity.java

MyMessenger

java

com.hfad.mymessenger

Now that CreateMessageActivity has added
extra information to the intent, we need to retrieve that
information and use it.

96 Chapter 3

getStringExtra()

package com.hfad.mymessenger;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.widget.TextView;

public class ReceiveMessageActivity extends Activity {

 public static final String EXTRA_MESSAGE = "message";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_receive_message);

 Intent intent = getIntent();

 String messageText = intent.getStringExtra(EXTRA_MESSAGE);

 TextView messageView = (TextView)findViewById(R.id.message);

 messageView.setText(messageText);

 }

}

We need to import
these classes.

Get the intent, and get
the message from it using
getStringExtra().

Add the text to the message text view.

Get ReceiveMessageActivity to use
the information in the intent
Now that we’ve changed CreateMessageActivity to add
text to the intent, we’ll update ReceiveMessageActivity
so that it uses that text.

We’re going to get ReceiveMessageActivity to display the
message in its text view when the activity gets created. Because
the activity’s onCreate() method gets called as soon as the
activity is created, we’ll add the code to this method.

To get the message from the intent, we’ll first get the intent using
the getIntent() method, then get the value of the message
using getStringExtra().

Here’s the full code for ReceiveMessageActivity.java (replace the code
that Android Studio generated for you with this code, and then
save all your changes):

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

CreateMessage
Activity.java

ReceiveMessage
Activity.java

Intent

We need to make
ReceiveMessageActivity
deal with the intent it
receives.

Before we take the app for a test drive, let’s run through what the
current code does.

app/src/main

ReceiveMessage
Activity.java

MyMessenger

java

com.hfad.mymessenger

This is the name of the extra value we’re passing in the intent.

Make sure your
activity extends
the Activity class.

you are here 4 97

 multiple activities and intents

What happens when the user clicks the Send Message button

CreateMessageActivity

When the user clicks on the
button, the onSendMessage()
method is called.
Code within the onSendMessage()
method creates an intent to start activity
ReceiveMessageActivity, adds
a message to the intent, and passes it to
Android with an instruction to start the
activity.

1

CreateMessageActivity

Android

ReceiveMessageActivity

Android checks that the
intent is OK, and then tells
ReceiveMessageActivity to start.

2

Android

CreateMessageActivity

Device

ReceiveMessageActivity

When ReceiveMessageActivity
starts, it specifies that it uses
layout activity_receive_message.
xml, and this gets displayed on
the device.
The activity also updates the layout so
that it displays the extra text included in
the intent.

3

<Layout>

</Layout>

activity_receive_message

onSendMessage()

ReceiveMessage
Activity.java

Intent

To: ReceiveMessage
Activity
message: ”Hi!”

Intent

To: ReceiveMessage
Activity
message: ”Hi!”

Hi!

98 Chapter 3

test drive

We can change the app to send messages to other people
Now that we have an app that sends a message to another activity, we
can change it so that it can send messages to other people. We can do
this by integrating with the message sending apps already on the device.
Depending on what apps the user has, we can get our app to send messages
via Gmail, Google+, Facebook, Twitter...

Hey, hold it right there! That sounds
like a freaky amount of work to
get our app working with all those
other apps. And how the heck do I
know what apps people have on their
devices anyway?

It’s not as hard as it sounds thanks to the way Android
is designed to work.
Remember right at the beginning of the chapter when we said that tasks
are multiple activities chained together? Well, you’re not just limited
to using the activities within your app. You can go beyond the
boundaries of your app to use activities within other apps as well.

Test drive the app
Make sure you’ve updated the two activities, save your changes, and
then run the app. CreateMessageActivity starts, and when you
enter some text and then click on the Send Message button, it launches
ReceiveMessageActivity. The text you entered is displayed in the
text view.

Here’s the text we entered, successfully
passed via the intent to the second activity.

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

These are both full-screen, but we’ve
snipped away some of the blank space.

you are here 4 99

 multiple activities and intents

How Android apps work
As you’ve seen, all Android apps are composed of one or more
activities, along with other components such as layouts. Each
activity is a single defined focused thing the user can do. As an
example, apps such as Gmail, Google+, Facebook, and Twitter all
have activities that enable you to send messages, even though they
may achieve this in different ways.

Gmail Google+ Twitter

Device

Each app is composed of a
bunch of activities. (There
are other components too,
but we’re just focusing on
the activities right now.)

Intents can start activities in other apps
You’ve already seen how you can use an intent to start a second
activity within the same app. The first activity passes an intent
to Android, Android checks it, and then Android tells the second
activity to start.

The same principle applies to activities in other apps. You get an
activity in your app to pass an intent to Android, Android checks it,
and then Android tells the second activity to start even though it’s in
another app. As an example, we can use an intent to start the activity
in Gmail that sends messages, and pass it the text we want to send.
That means that instead of writing our own activities to send emails,
we can use the existing Gmail app.

GmailMy Messenger

This means that you can build apps that perform powerful tasks by
chaining together activities across the device.

You can create an intent to start
another activity even if the
activity is within another app.

This is
the app
you’ve been
working on
throughout
the chapter.

Intent Intent

Android

Create 1st activity
Create 2nd activity
Call 2nd activity
Pass data

100 Chapter 3

use actions

Create an intent that specifies an action.
The intent will tell Android you want to use an activity that can send a message. The intent
will include the text of the message.

1

Allow the user to choose which app to use.
Chances are, there’ll be more than one app on the user’s device capable of sending
messages, so the user will need to pick one. We want the user to be able to choose one every
time they click on the Send Message button.

2

But we don’t know what apps are on the user’s device
There are three questions we need answers to before we can call activities
in other apps:

 How do we know which activities are available on the user’s device?¥
 How do we know which of these activities are appropriate for what we want to do?¥
 How do we know how to use these activities?¥

The great news is that we can solve all of these problems using actions.
Actions are a way of telling Android what standard operations activities
can perfom. As an example, Android knows that all activities registered for
a send action are capable of sending messages.

Let’s explore how to create intents that use actions to return a set of
activities that you can use in a standard way—for example, to send
messages.

Here’s what you’re going to do

you are here 4 101

 multiple activities and intents

Create an intent that specifies an action
So far you’ve seen how to create an intent that launches a specific activity using:

Intent intent = new Intent(this, ReceiveMessageActivity.class);

This intent is an example of an explicit intent; you explicitly tell Android
which class you want it to run.

If there’s an action you want done but you don’t care which activity does it, you
create an implicit intent. You tell Android what sort of action you want it to
perform, and you leave the details of which activity performs it to Android.

Intent intent = new Intent(action);

How to create the intent
You create an intent that specifies an action using the following syntax:

where action is the type of activity action you want to perform. Android
provides you with a number of standard actions you can use. As an example,
you can use Intent.ACTION_DIAL to dial a number,
Intent.ACTION_WEB_SEARCH to perform a web search, and
Intent.ACTION_SEND to send a message. So, if you want to create an
intent that specifies you want to send a message, you use:

Intent intent = new Intent(Intent.ACTION_SEND);

intent.setType("text/plain");

intent.putExtra(Intent.EXTRA_TEXT, messageText);

where messageText is the text you want to send. This tells Android that
you want the activity to be able to handle data with a MIME data-type of
text/plain, and also tells it what the text is.

You can make extra calls to the putExtra() method if there’s additional
information you want to add. As an example, if you want to specify the subject
of the message, you can use:

Adding extra information
Once you’ve specified the action you want to use, you can add extra
information to it. We want to pass some text with the intent that will form the
body of the message we’re sending. To do this, you use the following lines of
code:

intent.putExtra(Intent.EXTRA_SUBJECT, subject);

where subject is the subject of the message.

You can find out
more about the
sorts of activity
actions you can
use and the extra
information they
support in the
Android developer
reference material:
http://tinyurl.com/
n57qb5.

These attributes relate
to Intent.ACTION_SEND.
They’re not relevant for
all actions.

If subject isn’t relevant to a
particular app, it will just ignore
this information. Any apps that
know how to use it will do so.

Specify action
Create chooser

We’ve told the intent which
class it’s intended for, but
what if we don’t know?

102 Chapter 3

use an action

package com.hfad.mymessenger;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.view.View;

import android.widget.EditText;

public class CreateMessageActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_create_message);

 }

 //Call onSendMessage() when the button is clicked

 public void onSendMessage(View view) {

 EditText messageView = (EditText)findViewById(R.id.message);

 String messageText = messageView.getText().toString();

 Intent intent = new Intent(this, ReceiveMessageActivity.class);

 intent.putExtra(ReceiveMessageActivity.EXTRA_MESSAGE, messageText);

 Intent intent = new Intent(Intent.ACTION_SEND);

 intent.setType("text/plain");

 intent.putExtra(Intent.EXTRA_TEXT, messageText);

 startActivity(intent);

 }

}

Change the intent to use an action
We’ll update CreateMessageActivity.java so that we create an implicit
intent that uses a send action. Make the changes highlighted below,
and save your work:

Instead of creating an intent that’s
explicitly for ReceiveMessageActivity, we’re
creating an intent that uses a send action.

app/src/main

CreateMessage
Activity.java

MyMessenger

java

com.hfad.mymessenger

Specify action
Create chooser

Remove these
two lines.

Now that you’ve updated your code, let’s break down
what happens when the user clicks on the Send
Message button.

you are here 4 103

 multiple activities and intents

What happens when the code runs

When the onSendMessage() method
is called, an intent gets created.
The startActivity() method passes
this intent to Android.
The intent specifies an action of
ACTION_SEND, and a MIME type of
text/plain.

1

Android sees that the intent can only
be passed to activities able to handle
ACTION_SEND and text/plain data.
Android checks all the activities on the
user’s device, looking for ones that are
able to receive the intent.
If no actions are able to handle the intent, an
ActivityNotFoundException is thrown.

2

CreateMessageActivity Android

Intent

CreateMessageActivity Android

Aha, an implicit intent. I need
to find all the activities that
can handle ACTION_SEND, and
data of type text/plain, and
have a category of DEFAULT.

onSendMessage()

ACTION_SEND
type: “text/plain”
messageText: ”Hi!”

If just one activity is able to receive
the intent, Android tells that activity
to start and passes it the intent.

3a
CreateMessageActivity

Android

Activity

Intent

To: Activity
messageText: ”Hi!”

Specify action
Create chooser

104 Chapter 3

what happens

If more than one
activity is able to
receive the intent,
Android displays an
activity chooser dialog
and asks the user
which one to use.

3b

When the user
chooses the activity
she wants to use,
Android tells the
activity to start and
passes it the intent.
The activity displays the
extra text contained in
the intent in the body of
a new message.

4

CreateMessageActivity

Android

CreateMessageActivity

Android

ChosenActivity

Hey, user. All
of these activities can
send a message for you.
Which one do you want?

User

User

Intent

To: ChosenActivity
messageText: ”Hi!”

The story continues...

In order to pass the intent to an activity, Android must
first know which activities are capable of receiving the
intent. On the next couple of pages we’ll look at how it
does this.

Specify action
Create chooser

you are here 4 105

 multiple activities and intents

<activity android:name="ShareActivity">

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="text/plain"/>

 <data android:mimeType="image/*"/>

 </intent-filter>

</activity>

This tells Android the
activity can handle
ACTION_SEND.

The intent filter
must include
a category of
DEFAULT or it
won’t be able to
receive implicit
intents.

These are the types
of data the activity
can handle.

The intent filter tells Android which
activities can handle which actions
When Android is given an intent, it has to figure out which activity, or
activities, can handle it. This process is known as intent resolution.

When you use an explicit intent, intent resolution is straightforward.
The intent explicitly says which component the intent is directed
at, so Android has clear instructions about what to do. As an
example, the following code explicitly tells Android to start
ReceiveMessageActivity:

When you use an implicit intent, Android uses the information in the
intent to figure out which components are able to receive it. It does this
by checking the intent filters in every app’s copy of AndroidManifest.xml.

An intent filter specifies what types of intent each component can
receive. As an example, here’s the entry for an activity that can handle
an action of ACTION_SEND. The activity is able to accept data with
MIME types of text/plain or image:

Intent intent = new Intent(this, ReceiveMessageActivity.class);

startActivity(intent);

The intent filter also specifies a category. The category supplies extra
information about the activity such as whether it can be started by a
web browser, or whether it’s the main entry point of the app. An intent
filter must include a category of android.intent.category.
DEFAULT if it’s to receive implicit intents. If an activity has no intent
filter, or it doesn’t include a category name of android.intent.
category.DEFAULT, it means that the activity can’t be started with
an implicit intent. It can only be started with an explicit intent using the
full name (including the package) of the component.

Specify action
Create chooser

This is just an example;
there’s no activity
called “ShareActivity”
in our project.

106 Chapter 3

intent filters

Intent filters without this category will be omitted, as they can’t receive
implicit intents.

Android then matches intents to intent filters by comparing the action and
MIME type contained in the intent with those of the intent filters. As an
example, if an intent specifies an action of Intent.ACTION_SEND using:

If the MIME type is left out of the intent, Android tries to infer the type
based on the data the intent contains.

Once Android has finished comparing the intent to the component’s intent
filters, it sees how many matches it finds. If Android finds a single match, it
starts the component (in our case, the activity) and passes it the intent. If it
finds multiple matches, it asks the user to pick one.

It will also look at the category of
the intent filter if one is supplied by
the intent. However, this feature isn’t
used very often, so we don't cover
how to add categories to intents.

How Android uses the intent filter
When you use an implicit intent, Android compares the information given
in the intent with the information given in the intent filters specified in every
app’s AndroidManifest.xml file.

Android first considers intent filters that include a category of android.
intent.category.DEFAULT:

Intent intent = new Intent(Intent.ACTION_SEND);

Android will only consider activities that specify an intent filter with an action
of android.intent.action.SEND like this:

Similarly, if the intent MIME type is set to text/plain using:

<intent-filter>

 <action android:name="android.intent.action.SEND"/>

 ...

</intent-filter>

<intent-filter>

 <data android:mimeType="text/plain"/>

 ...

</intent-filter>

intent.setType("text/plain");

Android will only consider activities that can accommodate this type of data:

<intent-filter>

 <category android:name="android.intent.category.DEFAULT"/>

 ...

</intent-filter>

Specify action
Create chooser

you are here 4 107

 multiple activities and intents

BE the Intent
Your job is to play like you’re
the intent on the right and say
which of the activities described

below are compatible
with your action and
data. Say why, or why
not, for each one.

Intent intent = new Intent(Intent.ACTION_SEND);

intent.setType("text/plain");

intent.putExtra(Intent.EXTRA_TEXT, "Hello");

<activity android:name="SendActivity">

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="*/*"/>

 </intent-filter>

</activity>

<activity android:name="SendActivity">

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <category android:name="android.intent.category.MAIN"/>

 <data android:mimeType="text/plain"/>

 </intent-filter>

</activity>

<activity android:name="SendActivity">

 <intent-filter>

 <action android:name="android.intent.action.SENDTO"/>

 <category android:name="android.intent.category.MAIN"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="text/plain"/>

 </intent-filter>

</activity>

Here’s the intent.

108 Chapter 3

solution

BE the Intent Solution
Your job is to play like you’re the
intent on the right and say which
of the activities described below

are compatible with
your action and
data. Say why, or
why not, for each
one.

Intent intent = new Intent(Intent.ACTION_SEND);

intent.setType("text/plain");

intent.putExtra(Intent.EXTRA_TEXT, "Hello");

<activity android:name="SendActivity">

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="*/*"/>

 </intent-filter>

</activity>

<activity android:name="SendActivity">

 <intent-filter>

 <action android:name="android.intent.action.SEND"/>

 <category android:name="android.intent.category.MAIN"/>

 <data android:mimeType="text/plain"/>

 </intent-filter>

</activity>

<activity android:name="SendActivity">

 <intent-filter>

 <action android:name="android.intent.action.SENDTO"/>

 <category android:name="android.intent.category.MAIN"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="text/plain"/>

 </intent-filter>

</activity>

This activity accepts ACTION_SEND and
can handle data of any MIME type, so it can
respond to the intent.

This activity doesn’t have a category of
DEFAULT so can’t receive the intent.

This activity can’t accept ACTION_SEND intents, only
ACTION_SENDTO (which allows you to send a message to
someone specified in the intent’s data).

you are here 4 109

 multiple activities and intents
Specify action
Create chooser

You need to run your app on a REAL device

1. Enable USB debugging on your device
On your device, open “Developer options” (in Android 4.0
onward, this is hidden by default). To enable “Developer
options,” go to Settings → About Phone and tap the build
number seven times. When you return to the previous
screen, you should now be able to see “Developer options.”

Within “Developer options,” turn on USB debugging.

2. Set up your system to detect your device
If you’re using a Mac, you can skip this step.

If you’re using Windows, you need to install a USB driver. You can
find the latest instructions here:

http://developer.android.com/tools/extras/oem-usb.html

If you’re using Ubuntu Linux, you need to create a udev rules file.
You can find the latest instructions on how to do this here:

http://developer.android.com/tools/device.html#setting-up

Yep,
seriously.

3. Plug your device into your computer with a USB cable
Your device may ask you if you want to accept an RSA key that allows USB
debugging with your computer. If it does, you can check the “Always allow
from this computer” option and choose OK to enable this.

You need to enable USB debugging.

So far we’ve been running our apps using the emulator. The emulator only
includes a small number of apps, and there may well be just one app that
can handle ACTION_SEND. In order to test our app properly, we need to
run it on a physical device where we know there’ll be more than one app
that can support our action—for example, an app that can send emails
and an app that can send text messages.

Here’s how you go about getting your app to run on a physical device.

110 Chapter 3

running on real devices

5. Run your app on the physical device
Run the app by choosing Run → “Run ‘app’”. Android Studio will ask you to
choose which device you want to run your app on, so select your device from
the list of available devices and click OK. Android Studio will install the app
on your device and launch it.

Here's our virtual device.

Here’s our physical device.

And here’s the app running
on the physical device
You should find that your app looks about the
same as when you ran it through the emulator.
You’ll probably find that your app installs and runs
quicker too.

Now that you know how to run the apps you create
on your own device, you’re all set to test the latest
changes to your app.

Running your app on a real device (continued)

Specify action
Create chooser

4. Stop your app running on the emulator
Before you can run your app on a different device, you need to stop
it running on the current one (in this case the emulator). To do this,
choose Run → “Stop ‘app’”, or click on the “Stop ‘app’” button in the
toolbar.

Click on this button in
Android Studio’s toolbar
to stop the app running
on the current device.

you are here 4 111

 multiple activities and intents

Test drive the app
Try running the app using the emulator, and then using your own
device. The results you get will depend on how many activities you have
on each that support using the Send action with text data.

If you have one activity
Clicking on the Send Message button will take
you straight to that app.

We only have one activity available
on the emulator that can send
messages with text data, so when we
click on the Send Message button,
Android starts that activity.

We have lots of suitable activities available
on our physical device. We decided to use
the built-in Messages app. We selected the
“always” option—great if we always want to
use the same app, not so great if we want
to use a different one each time.

If you have more than one activity
Android displays a chooser and asks you to pick which one you want
to use. It also asks you whether you want to use this activity just once
or always. If you choose always, the next time you click on the Send
Message button it uses the same activity by default.

Here’s the message.

112 Chapter 3

let the user choose

What if you ALWAYS want your users to choose an activity?
You’ve just seen that if there’s more than one activity on
your device that’s capable of receiving your intent, Android
automatically asks you to choose which activity you want to use. It
even asks you whether you want to use this activity all the time or
just on this occasion.

There’s just one problem with this default behavior: what if you
want to guarantee that users can choose an activity every time they
click on the Send Message button? If they’ve chosen the option to
always use Gmail, for instance, they won’t be asked if they want to
use Twitter next time.

Fortunately, there’s a way around this. You can create a chooser
that asks users to pick an activity without giving them the option to
always use that activity.

Intent chosenIntent = Intent.createChooser(intent, "Send message via...");

This is the intent you created earlier.

You can pass in a title for the
chooser that gets displayed at the
top of the screen.

Intent.createChooser() displays a chooser dialog
You can achieve this using the Intent.createChooser()
method, which takes the intent you’ve already created and wraps it
in a chooser dialog. When you use this method, the user isn’t given
the option of choosing a default activity—they get asked to choose
one every time.

You call the createChooser() method like this:

The method takes two parameters: an intent and an optional
String title for the chooser dialog window. The Intent
parameter needs to describe the types of activity you want the
chooser to display. You can use the same intent we created earlier,
as this specifies that we want to use ACTION_SEND with textual
data.

The createChooser() method returns a brand-new Intent.
This is a new explicit intent that’s targeted at the activity chosen by
the user. It includes any extra information supplied by the original
intent, including any text.

To start the activity the user chose, you need to call:

startActivity(chosenIntent);

createChooser() allows
you to specify a title for
the chooser dialog, and
doesn’t give the user
the option of selecting
an activity to use by
default. It also lets the
user know if there are
no matching activities
by displaying a message.

Over the next couple of pages we’ll take a closer look at what
happens when you call the createChooser() method.

you are here 4 113

 multiple activities and intents

What happens when you call createChooser()

Intent chosenIntent = Intent.createChooser(intent, "Send message via...");

startActivity(chosenIntent);

Here’s what happens when you run the following two lines of code:

The createChooser() method
gets called.
The method includes an intent that
specifies the action and MIME type
that’s required.

1

CreateMessageActivity Android

createChooser()

Android checks which activities
are able to receive the intent
by looking at their intent
filters.
It matches on the actions, type of data,
and categories they can support.

2

CreateMessageActivity Android

I need to
create a chooser

for activities that
support the SEND
action and text/plain

data.

If more than one activity is
able to receive the intent,
Android displays an activity
chooser dialog and asks the
user which one to use.
It doesn’t give the user the option
of always using a particular activity,
and it displays “Send message via...”
in the title.

If no activities are found, Android
still displays the chooser but shows a
message telling the user there are no
apps that can perform the action.

3

Android
User

CreateMessageActivity

Hey, user. Which
activity do you want
to use this time?

Specify action
Create chooser

Intent

ACTION_SEND
type: “text/plain”
message: ”Hi!”

114 Chapter 3

what happens

The story continues...

The activity asks
Android to start the
activity specified in
the intent.

5

Android starts the
activity specified by
the intent, and then
passes it the intent.

6

When the user chooses
which activity she wants to
use, Android returns a new
explicit intent describing
the chosen activity.
The new intent includes any
extra information that was
included in the original intent,
such as any text.

4

Android
User

CreateMessageActivity

She wants to use
ChosenActivity.
Here’s the intent.

AndroidCreateMessageActivity

Thanks for the intent,
Android. Can you start
the activity now, bud?

Android

CreateMessageActivity

ChosenActivity

Intent

ChosenActivity
message: ”Hi!”

Intent

To: ChosenActivity
message: ”Hi!”

Intent

To: ChosenActivity
message: ”Hi!”

Specify action
Create chooser

Sure thing! Here you
go, ChosenActivity.

you are here 4 115

 multiple activities and intents

Change the code to create a chooser
Let’s change the code so that the user gets asked which activity they want to
use to send a message every time they click on the Send Message button. We’ll
add a String resource to strings.xml for the chooser dialog title, and we’ll update
the onSendMessage() method in CreateMessageActivity.java so that it calls the
createChooser() method.

...and update the onSendMessage() method
We need to change the onSendMessage() method so that it
retrieves the value of the chooser String resource in strings.xml, calls
the createChooser() method, and then starts the activity the
user chooses. Update your code as follows:

Update strings.xml...
We want the chooser dialog to have a title of “Send message via...”.
Add a String called "chooser" to strings.xml, and give it the value
Send message via... (make sure to save your changes):

...
<string name="chooser">Send message via...</string>
...

...

 //Call onSendMessage() when the button is clicked

 public void onSendMessage(View view) {

 EditText messageView = (EditText)findViewById(R.id.message);

 String messageText = messageView.getText().toString();

 Intent intent = new Intent(Intent.ACTION_SEND);

 intent.setType("text/plain");

 intent.putExtra(Intent.EXTRA_TEXT, messageText);

 String chooserTitle = getString(R.string.chooser);
 Intent chosenIntent = Intent.createChooser(intent, chooserTitle);
 startActivity(intent);
 startActivity(chosenIntent);
 }

...

The getString() method is used to get the value of a String resource. It takes
one parameter, the ID of the resource (in our case, this is R.string.chooser):

getString(R.string.chooser);

Get the
chooser title.

Display the chooser dialog.Start the activity
that the user selected.

If you look in R.java, you’ll find chooser
in the inner class called string.

Now that we’ve updated the app, let’s run the app to see our chooser in action.

<xml>
</xml>

app/src/main

strings.xml

MyMessenger

res

values

app/src/main

CreateMessage
Activity.java

MyMessenger

java

com.hfad.mymessenger

This will be displayed in the chooser dialog.

Delete
this line.

Specify action
Create chooser

116 Chapter 3

test drive

Test drive the app
Save your changes, then try running the app again on the device
or the emulator.

If you have more than one activity
Android displays a chooser, but this time it doesn’t ask us if we always
want to use the same activity. It also displays the value of the chooser
String resource in the title.

If you have one activity
Clicking on the Send Message button will take
you straight to that activity just like before.

Here’s the chooser we created
with createChooser(). It no longer
gives us the option of using a
particular activity every time.

There’s no change here—
Android continues to take
you straight to the activity.

Specify action
Create chooser

you are here 4 117

 multiple activities and intents

If you have NO matching activities
If you have no activities on your device that are capable of sending
messages, the createChooser() method lets you know by
displaying a message.

If you want to replicate this for yourself, try
running the app in the emulator, and disable
the built-in Messenger app that’s on there.

Q: So I can run my apps in the emulator or on a physical
device. Which is best?

A: Each one has its pros and cons.

If you run apps on your physical device, they tend to load a lot
quicker than using the emulator. This approach is also useful if
you’re writing code that interacts with the device hardware.

The emulator allows you to run apps against many different versions
of Android, screen resolutions, and device specifications. It saves you
from buying lots of different devices. The key thing is to make sure
you test your apps thoroughly using a mixture of the emulator and
physical devices before releasing them to a wider audience.

Q: Should I use implicit or explicit intents?

A: It comes down to whether you need Android to use a specific
activity to perform your action, or whether you just want the action
done. As an example, suppose you wanted to send an email. If you
don’t care which email app the user uses to send it, just as long as
the email gets sent, you’d use an implicit intent. On the other hand,
if you needed to pass an intent to a particular activity in your app,
you’d need to use an explicit intent to explicitly say which activity
needs to receive the intent.

Q: You mentioned that an activity’s intent filter can specify
a category as well as an action. What’s the difference between
the two?

A: An action specifies what an activity can do, and the category
gives extra detail. We’ve not gone into details about adding
categories because you don’t often need to specify a category
when you create an intent.

Q: You say that the createChooser() method
displays a message in the chooser if there are no activities
that can handle the intent. What if I’d instead used the
default Android chooser and passed an implicit intent to
startActivity()?

A: If the startActivity() method is given
an intent where there are no matching activities, an
ActivityNotFoundException is thrown. You can
check whether any activities on the device are able to receive the
intent by calling the intent’s resolveActivity() method
and checking its return value. If its return value is null, no activities
on the device are able to receive the intent, so you shouldn’t call
startActivity().

Specify action
Create chooser

118 Chapter 3

toolbox

Your Android Toolbox

You’ve got Chapter 3 under
your belt and now you’ve

added multi-activity apps and
intents to your toolbox.

 � A task is two or more activities chained together.

 � The <EditText> element defines an editable text field for entering text. It inherits from the Android View class.

 � You can add a new activity in Android Studio by choosing File → New... → Activity.

 � Each activity you create must have an entry in AndroidManifest.xml.

 � An intent is a type of message that Android components use to communicate with one another.

 � An explicit intent specifies the component the intent is targeted at. You create an explicit intent using
Intent intent = new Intent(this, Target.class);.

 � To start an activity, call startActivity(intent). If no activities are found, it throws an
ActivityNotFoundException.

 � Use the putExtra() method to add extra information to an intent.

 � Use the getIntent() method to retrieve the intent that started the activity.

 � Use the get*Extra() methods to retrieve extra information associated with the intent.
getStringExtra() retrieves a String, getIntExtra() retrieves an int, and so on.

 � An activity action describes a standard operational action an activity can perform. For example, to send a message,
use Intent.ACTION_SEND.

 � To create an implicit intent that specifies an action, use Intent intent = new Intent(action);.

 � To describe the type of data in an intent, use the setType() method.

 � Android resolves intents based on the named component, action, type of data, and categories specified in the
intent. It compares the contents of the intent with the intent filters in each app’s AndroidManifest.xml. An activity
must have a category of DEFAULT if it is to receive an implicit intent.

 � The createChooser() method allows you to override the default Android activity chooser dialog. It lets you
specify a title for the dialog, and doesn’t give the user the option of setting a default activity. If no activities can
receive the intent it is passed, it displays a message. The createChooser() method returns an Intent.

 � You retrieve the value of a String resource using getString(R.string.stringname);.

CH
AP

T
ER

 3

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

this is a new chapter 119

...so I told him that
if he didn’t onStop() soon,
I’d onDestroy() him with
a cattle prod.

the activity lifecycle4

Being an Activity

Activities form the foundation of every Android app.
So far you’ve seen how to create activities, and made one activity start another using an

intent. But what’s really going on beneath the hood? In this chapter, we’re going to dig

a little deeper into the activity lifecycle. What happens when an activity is created and

destroyed? Which methods get called when an activity is made visible and appears in

the foreground, and which get called when the activity loses the focus and is hidden?

And how do you save and restore your activity’s state? Read on to find out.

120 Chapter 4

how activities work

How do activities really work?
So far you’ve seen how to create apps that interact with the user,
and apps that use multiple activities to perform tasks. Now that
you have these core skills under your belt, it’s time to take a deeper
look at how activities actually work. Here’s a recap of what you
know so far, with a few extra details thrown in.

An app is a collection of activities, layouts, and other resources.
One of these activities is the main activity for the app.

¥

By default, each app runs within its own process.
This helps keep your apps safe and secure. You can read more about this in Appendix
III (which covers the Android runtime, a.k.a. ART) at the back of this book.

¥

App

Main Activity
Activity

Activity
Activity

Each app has a main activity,
as specified in the file
AndroidManifest.xml.

App 1

Activity
Activity

Activity
Activity

Process 1
App 2

Activity

Activity

Activity

Process 2

you are here 4 121

the activity lifecycle

But there are still lots of things we don’t yet know about how activities
function. How long does an activity live for? What happens when
your activity disappears from the screen? Is it still running? Is it still
in memory? And what happens if your app gets interrupted by an
incoming phone call? We want to be able to control the behavior of
our activities in a whole range of different circumstances, but how?

Your app can start an activity in another application by passing an
intent with startActivity().
The Android system knows about all the device’s installed apps and their activities,
and uses the intent to start the correct activity.

¥

When Android starts an activity, it calls its onCreate() method.
onCreate() is always run whenever an activity gets created.

¥

When an activity needs to start, Android checks whether there’s
already a process for that app.
If one exists, Android runs the activity in that process. If one doesn’t exist,
Android creates one.

¥

Android

Intent

App 1
Process 1

Android

I’m already
running activities for

this app in process 1. I’ll
run this one there too.

Activity
Android

onCreate()

Intent

App 1

Activity
Activity

Activity

App 2

Activity
Activity

Activity

startActivity()

122 Chapter 4

stopwatch

The Stopwatch app
In this chapter, we’re going to take a closer look at how activities
work under the hood, common ways in which your apps can break,
and how you can fix them using the activity lifecycle methods.
We’re going to explore the lifecycle methods using a simple
Stopwatch app as an example.

The Stopwatch app consists of a single activity and a single layout.
The layout includes a text view showing you how much time has
passed, a Start button that starts the stopwatch, a Stop button that
stops it, and a Reset button that resets the timer value to 0.

Create a new project for the Stopwatch app
You have enough experience under your belt to build the app
without much guidance from us. We’re going to give you just enough
code so you can build the app yourself, and then you can see what
happens when you try to run it.

Start off by creating a new Android project for an application
named “Stopwatch” with a company domain of “hfad.com”, making
the package name com.hfad.stopwatch. The minimum
SDK should be API 19 so it can run on most devices. You’ll need
an empty activity called “StopwatchActivity” and a layout called

“activity_stopwatch”. Make sure you uncheck the Backwards
Compatibility (AppCompat) checkbox.

<Layout>

</Layout>

activity_stopwatch.xml

StopwatchActivity.java

The app is composed
of one activity and
one layout.

When you click this button,
the seconds begin to increment.

This is the number
of seconds.

When you click this button,
the seconds stop incrementing.

When you click this button, the
seconds tally goes back to 0.

you are here 4 123

the activity lifecycle

Update the stopwatch layout code
Here’s the XML for the layout. It describes a single text view
that’s used to display the timer, and three buttons to control the
stopwatch. Replace the XML currently in activity_stopwatch.xml
with the XML shown here:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:padding="16dp"

 tools:context=".StopwatchActivity">

 <TextView

 android:id="@+id/time_view"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:textAppearance="@android:style/TextAppearance.Large"

 android:textSize="56sp" /> These attributes make the
stopwatch timer nice and big.

We’ll use this text view to
display the number of seconds.

The layout
code continues
over the page.

<xml>
</xml>

app/src/main

activity_
stopwatch.xml

Stopwatch

res

layout

Add String resources
We’re going to use three String values in our stopwatch layout, one
for the text value of each button. These values are String resources,
so they need to be added to strings.xml. Add the String values below
to your version of strings.xml:

...

 <string name="start">Start</string>

 <string name="stop">Stop</string>

 <string name="reset">Reset</string>

...

We’ll use these
String resources
in our layout.

<xml>
</xml>

app/src/main

strings.xml

Stopwatch

res

values

Next, let’s update the code for our layout.

124 Chapter 4

activity_stopwatch.xml

The layout code (continued)

 <Button

 android:id="@+id/start_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="20dp"

 android:onClick="onClickStart"

 android:text="@string/start" />

 <Button

 android:id="@+id/stop_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickStop"

 android:text="@string/stop" />

 <Button

 android:id="@+id/reset_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickReset"

 android:text="@string/reset" />

</LinearLayout>

Make sure you update
the layout and strings.
xml in your app before
continuing.

Do this!

<xml>
</xml>

app/src/main

activity_
stopwatch.xml

Stopwatch

res

layout

The layout is now done! Next, let’s move on to the activity.

This is for the Stop button.

When it gets clicked, the Stop button calls the
onClickStop() method.

This is for the Reset button.

When it gets clicked, the Reset button calls the
onClickReset() method.

This code is for the Start button.

When it gets clicked, the Start button calls the
onClickStart() method.

you are here 4 125

the activity lifecycle

How the activity code will work
The layout defines three buttons that we’ll use to control
the stopwatch. Each button uses its onClick attribute
to specify which method in the activity should run when
the button is clicked. When the Start button is clicked, the
onClickStart() method gets called, when the Stop
button is clicked the onClickStop() method gets called,
and when the Reset button is clicked the onClickReset()
method gets called. We’ll use these methods to start, stop, and
reset the stopwatch.

When you click this button, the
onClickStart() method is called.

When you click this button, the
onClickStop() method is called.

When you click this button, the
onClickReset() method is called.

We’ll update the stopwatch using a method we’ll create
called runTimer(). The runTimer() method will run
code every second to check whether the stopwatch is running,
and, if it is, increment the number of seconds and display the
number of seconds in the text view.

To help us with this, we’ll use two private variables to record
the state of the stopwatch. We’ll use an int called seconds
to track how many seconds have passed since the stopwatch
started running, and a boolean called running to record
whether the stopwatch is currently running.

We’ll start by writing the code for the buttons, and then we’ll
look at the runTimer() method.

Activity

runTimer()

126 Chapter 4

buttons

running=true

running=false

running=false
seconds=0

package com.hfad.stopwatch;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;

public class StopwatchActivity extends Activity {

 private int seconds = 0;
 private boolean running;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_stopwatch);
 }

 //Start the stopwatch running when the Start button is clicked.
 public void onClickStart(View view) {
 running = true;
 }

 //Stop the stopwatch running when the Stop button is clicked.
 public void onClickStop(View view) {
 running = false;
 }

 //Reset the stopwatch when the Reset button is clicked.
 public void onClickReset(View view) {
 running = false;
 seconds = 0;
 }
}

Add code for the buttons
When the user clicks on the Start button, we’ll set the running
variable to true so that the stopwatch will start. When the
user clicks on the Stop button, we’ll set running to false so
that the stopwatch stops running. If the user clicks on the Reset
button, we’ll set running to false and seconds to 0 so that
the stopwatch is reset and stops running.

To do all that, replace the contents of StopwatchActivity.java with
the code below:

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

Use the seconds and running
variables to record the number of
seconds passed and whether the
stopwatch is running.

This gets called when the
Start button is clicked.Start the stopwatch.

This gets called when the
Stop button is clicked.Stop the stopwatch.

This gets called
when the Reset
button is clicked.

Stop the stopwatch and
set the seconds to 0.

Make sure your activity
extends the Activity class.

you are here 4 127

the activity lifecycle

The runTimer() method
The next thing we need to do is create the runTimer() method.
This method will get a reference to the text view in the layout; format
the contents of the seconds variable into hours, minutes, and
seconds; and then display the results in the text view. If the running
variable is set to true, it will increment the seconds variable.

The code for the runTimer() method is below. We’ll add it to
StopwatchActivity.java in a few pages:

private void runTimer() {

 final TextView timeView = (TextView)findViewById(R.id.time_view);

 ...

 int hours = seconds/3600;

 int minutes = (seconds%3600)/60;

 int secs = seconds%60;

 String time = String.format(Locale.getDefault(),

 "%d:%02d:%02d", hours, minutes, secs);

 timeView.setText(time);

 if (running) {

 seconds++;

 }

 ...

}

We need this code to keep looping so that it increments the seconds
variable and updates the text view every second. We need to do this in
such a way that we don’t block the main Android thread.

In non-Android Java programs, you can perform tasks like this
using a background thread. In Androidville, that approach
won’t work—only the main Android thread can update the
user interface, and if any other thread tries to do so, you get a
CalledFromWrongThreadException.

The solution is to use a Handler. We’ll look at this technique on the
next page.

We’ve left
out a bit of
code here.
We’ll look at
it on the
next page.

Get the text view.

Format the seconds into
hours, minutes, and seconds.
This is plain Java code.

If running is true, increment
the seconds variable.

Set the text view text.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

128 Chapter 4

handlers

Handlers allow you to schedule code
A Handler is an Android class you can use to schedule code that
should be run at some point in the future. You can also use it to post
code that needs to run on a different thread than the main Android
thread. In our case, we’re going to use a Handler to schedule the
stopwatch code to run every second.

To use the Handler, you wrap the code you wish to schedule in
a Runnable object, and then use the Handler post() and
postDelayed() methods to specify when you want the code to run.
Let’s take a closer look at these mehods.

final Handler handler = new Handler();

handler.post(Runnable);

On the next page, we’ll use these methods to update the stopwatch
every second.

The post() method
The post() method posts code that needs to be run as soon as
possible (which is usually almost immediately). This method takes
one parameter, an object of type Runnable. A Runnable object in
Androidville is just like a Runnable in plain old Java: a job you want
to run. You put the code you want to run in the Runnable’s run()
method, and the Handler will make sure the code is run as soon as
possible. Here’s what the method looks like:

You put the code you want to run in the Runnable’s run() method.

The postDelayed() method
The postDelayed() method works in a similar way to the post()
method except that you use it to post code that should be run in
the future. The postDelayed() method takes two parameters: a
Runnable and a long. The Runnable contains the code you want
to run in its run() method, and the long specifies the number of
milliseconds you wish to delay the code by. The code will run as soon
as possible after the delay. Here’s what the method looks like:

final Handler handler = new Handler();

handler.postDelayed(Runnable, long); Use this method to delay running code
by a specified number of milliseconds.

you are here 4 129

the activity lifecycle

The full runTimer() code
To update the stopwatch, we’re going to repeatedly schedule code using
the Handler with a delay of 1 second each time. Each time the code runs,
we’ll increment the seconds variable and update the text view.

Here’s the full code for the runTimer() method, which we’ll add to
StopwatchActivity.java in a couple of pages:

private void runTimer() {

 final TextView timeView = (TextView)findViewById(R.id.time_view);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 int hours = seconds/3600;

 int minutes = (seconds%3600)/60;

 int secs = seconds%60;

 String time = String.format(Locale.getDefault(),

 "%d:%02d:%02d", hours, minutes, secs);

 timeView.setText(time);

 if (running) {

 seconds++;

 }

 handler.postDelayed(this, 1000);

 }

 });

}

Create a new Handler.
Call the post() method, passing in a new Runnable. The post() method processes code without a delay, so the code in the Runnable will run almost immediately.

The Runnable run()
method contains the code
you want to run—in our
case, the code to update
the text view.

Post the code in the Runnable to be run again
after a delay of 1,000 milliseconds. As this line
of code is included in the Runnable run() method, it will keep getting called.

Using the post() and postDelayed() methods in this way means
that the code will run as soon as possible after the required delay, which
in practice means almost immediately. While this means the code will lag
slightly over time, it’s accurate enough for the purposes of exploring the
lifecycle methods in this chapter.

We want the runTimer() method to start running when
StopwatchActivity gets created, so we’ll call it in the activity
onCreate() method:

protected void onCreate(Bundle savedInstanceState) {

 ...

 runTimer();

}

We’ll show you the full code for StopwatchActivity on the next page.

130 Chapter 4

StopwatchActivity code

The full StopwatchActivity code
Here’s the full code for StopwatchActivity.java. Update your code to match
our changes below.

package com.hfad.stopwatch;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import java.util.Locale;

import android.os.Handler;

import android.widget.TextView;

public class StopwatchActivity extends Activity {

 //Number of seconds displayed on the stopwatch.

 private int seconds = 0;

 //Is the stopwatch running?

 private boolean running;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_stopwatch);

 runTimer();

 }

 //Start the stopwatch running when the Start button is clicked.

 public void onClickStart(View view) {

 running = true;

 }

 //Stop the stopwatch running when the Stop button is clicked.

 public void onClickStop(View view) {

 running = false;

 }

Use the seconds and running
variables to record the number of
seconds passed and whether the
stopwatch is running.

We’re using a separate method to
update the stopwatch. We’re starting it
when the activity is created.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

This gets called when the
Start button is clicked.Start the stopwatch.

This gets called when the
Stop button is clicked.Stop the stopwatch.

We’re using these extra classes
so we need to import them.

you are here 4 131

the activity lifecycle

 //Reset the stopwatch when the Reset button is clicked.

 public void onClickReset(View view) {

 running = false;

 seconds = 0;

 }

 //Sets the number of seconds on the timer.

 private void runTimer() {

 final TextView timeView = (TextView)findViewById(R.id.time_view);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 int hours = seconds/3600;

 int minutes = (seconds%3600)/60;

 int secs = seconds%60;

 String time = String.format(Locale.getDefault(),

 "%d:%02d:%02d", hours, minutes, secs);

 timeView.setText(time);

 if (running) {

 seconds++;

 }

 handler.postDelayed(this, 1000);

 }

 });

 }

}

The activity code (continued)

Do this!

Make sure you update
your activity code to
reflect these changes.

This gets called
when the Reset
button is clicked.

Stop the
stopwatch and set
the seconds to 0.

Let’s look at what happens when the code runs.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

Use a Handler to post code.

Post the code again with a delay of 1 second.

Get the text view.

Format the seconds
into hours, minutes,
and seconds.

If running is true, increment
the seconds variable.

Set the text view text.

132 Chapter 4

what happens

What happens when you run the app

The user decides she wants to run the app.
On her device, she clicks on the app’s icon.

1

Android

Device
User

An intent is constructed to start this activity using startActivity(intent).
The AndroidManifest.xml file for the app specifies which activity to use as the launch
activity.

2

Android checks to see whether there’s already a process running
for the app, and if not, creates a new process.
It then creates a new activity object—in this case, for StopwatchActivity.

3

<xml>
</xml>

AndroidManifest.xml

App 1
Process 1

Android

you are here 4 133

the activity lifecycle

The onCreate() method in the activity gets called.
The method includes a call to setContentView(), specifying a layout, and then
starts the stopwatch with runTimer().

4

When the onCreate() method finishes, the layout gets displayed on the
device.
The runTimer() method uses the seconds variable to determine what text to display in
the text view, and uses the running variable to determine whether to increment the number
of seconds. As running is initially false, the number of seconds isn’t incremented.

5

The story continues

StopwatchActivity

<xml>
</xml>

Layout

runTimer()

Device

StopwatchActivity

seconds=0

running=false

Q: Why does Android run each app inside a separate
process?

A: For security and stability. This approach prevents one app
from accessing the data of another. It also means if one app
crashes, it won’t take others down with it.

Q: Why have an onCreate() method in our activity?
Why not just put that code inside a constructor?

A: Android needs to set up the environment for the activity after
it’s constructed. Once the environment is ready, Android calls
onCreate(). That’s why code to set up the screen goes
inside onCreate() instead of a constructor.

Q: Couldn’t I just write a loop in onCreate() to keep
updating the timer?

A: No, onCreate() needs to finish before the screen will
appear. An endless loop would prevent that from happening.

Q: runTimer() looks really complicated. Do I really
need to do all this?

A: It’s a little complex, but whenever you need to post code that
runs in a loop, the code will look similar to runTimer().

134 Chapter 4

test drive

Test drive the app
When we run the app in the emulator, the app works great. We
can start, stop, and reset the stopwatch without any problems at
all—the app works just as you’d expect.

But there’s just one problem...
When we ran the app on a physical device, the app worked OK
until someone rotated the device. When the device was rotated,
the stopwatch set itself back to 0.

These buttons work as you’d expect. The
Start button starts the stopwatch, the
Stop button stops it, and the Reset
button sets the stopwatch back to 0.

The stopwatch was running, but reset to
0 when the device was rotated.

In Androidville, it’s surprisingly common for apps to break when
you rotate the device. Before we fix the problem, let’s take a closer
look at what caused it.

you are here 4 135

the activity lifecycle

What just happened?
So why did the app break when the user rotated the screen?
Let’s take a closer look at what really happened.

The user starts the app, and clicks on the Start button to set the
stopwatch going.
The runTimer() method starts incrementing the number of seconds displayed in
the time_view text view using the seconds and running variables.

1

The user rotates the device.
Android sees that the screen orientation and screen size has changed, and it destroys
the activity, including any variables used by the runTimer() method.

2

StopwatchActivity is then recreated.
The onCreate() method runs again, and the runTimer() method gets called.
As the activity has been recreated, the seconds and running variables are set to
their default values.

3

Device

StopwatchActivity

seconds=14

running=true

Device

StopwatchActivity

seconds=0

running=false
Device

seconds is set to 0 and
running is set to false. This
is because the activity was
destroyed and recreated
when the device was rotated.

136 Chapter 4

device configurations

Rotating the screen changes the device configuration
When Android runs your app and starts an activity, it takes
into account the device configuration. By this we mean the
configuration of the physical device (such as the screen size, screen
orientation, and whether there’s a keyboard attached) and also
configuration options specified by the user (such as the locale).

Android needs to know what the device configuration is when
it starts an activity because the configuration can impact what
resources are needed for the application. A different layout might
need to be used if the device screen is landscape rather than portrait,
for instance, and a different set of String values might need to be
used if the locale is France.

When the device configuration changes, anything that displays a user
interface needs to be updated to match the new configuration. If you
rotate your device, Android spots that the screen orientation and
screen size have changed, and classes this as a change to the device
configuration. It destroys the current activity, and then recreates it so
that resources appropriate to the new configuration get picked up.

The device
configuration includes
options specified
by the user (such
as the locale), and
options relating to the
physical device (such
as the orientation and
screen size). A change
to any of these options
results in the activity
being destroyed and
then recreated.

Android apps can
contain multiple
resource files in the
app/src/main/res
folder. For instance, if
the device locale is set
to France, Android
will use the strings.xml
file in the values-fr
folder.

you are here 4 137

the activity lifecycle

The states of an activity

Activity launched

Activity destroyed

Activity running

An activity is running
when it’s in the
foreground of the screen.

onCreate() gets called
when the activity is first
created, and it’s where
you do your normal
activity setup.

onDestroy() gets called
just before your activity
gets destroyed.

Your activity spends
most of its life here.

At this point, your
activity no longer
exists.

When an activity moves from being launched to being destroyed,
it triggers key activity lifecycle methods: the onCreate() and
onDestroy() methods. These are lifecycle methods that your
activity inherits, and which you can override if necessary.

The onCreate() method gets called immediately after your
activity is launched. This method is where you do all your normal
activity setup such as calling setContentView(). You should
always override this method. If you don’t override it, you won’t be
able to tell Android what layout your activity should use.

The onDestroy() method is the final call you get before the
activity is destroyed. There are a number of situations in which
an activity can get destroyed—for example, if it’s been told to
finish, if the activity is being recreated due to a change in device
configuration, or if Android has decided to destroy the activity in
order to save space.

We’ll take a closer look at how these methods fit into the activity
states on the next page.

When Android creates and destroys an activity, the activity moves
from being launched to running to being destroyed.

The main state of an activity is when it’s running or active. An
activity is running when it’s in the foreground of the screen, it has
the focus, and the user can interact with it. The activity spends most
of its life in this state. An activity starts running after it has been
launched, and at the end of its life, the activity is destroyed.

The activity object has been
created but it’s not yet running.

138 Chapter 4

birth to death

The activity lifecycle: from create to destroy

Activity launched

Activity destroyed

Activity running

onCreate()

onDestroy()

The activity gets launched.
The activity object is created and its constructor
is run.

1

The onCreate() method runs immediately
after the activity is launched.
The onCreate() method is where any
initialization code should go, as this method
always gets called after the activity has launched
but before it starts running.

2

An activity is running when it’s visible in
the foreground and the user can interact
with it.
This is where an activity spends most of its life.

3

The onDestroy() method runs immediately
before the activity is destroyed.
The onDestroy() method enables you to
perform any final cleanup such as freeing up
resources.

4

After the onDestroy() method has run,
the activity is destroyed.
The activity ceases to exist.

5

Here’s an overview of the activity lifecycle from birth to death. As
you’ll see later in the chapter, we’ve left out some of the details,
but at this point we’re just focusing on the onCreate() and
onDestroy() methods.

The onCreate() and onDestroy() methods are two of the
activity lifecycle methods. So where do these methods come from?

If your device is extremely low on
memory, onDestroy() might not get
called before the activity is destroyed.

you are here 4 139

the activity lifecycle

Your activity inherits the lifecycle methods

YourActivity

onCreate(Bundle)

yourMethod()

Activity

onCreate(Bundle)

onStart()

onRestart()

onResume()

onPause()

onStop()

onDestroy()

onSaveInstanceState()

startActivity(Intent)

findViewById(Int)

setContentView(View)

ContextThemeWrapper

startActivity(Intent)

ContextWrapper

startActivity(Intent)

Context

startActivity(Intent)

Context abstract class
(android.content.Context)
An interface to global information about the application environment.
Allows access to application resources, classes, and operations.

ContextWrapper class
(android.content.ContextWrapper)
A proxy implementation for the Context.

ContextThemeWrapper class
(android.view.ContextThemeWrapper)
Allows you to modify the theme from what’s in the
ContextWrapper.

Activity class
(android.app.Activity)
The Activity class implements default versions of the lifecycle
methods. It also defines methods such as findViewById(Int)
and setContentView(View).

YourActivity class
(com.hfad.foo)
Most of the behavior of your activity is handled by superclass methods
your activity inherits. All you do is override the methods you need.

As you saw earlier in the book, your activity extends the android.
app.Activity class. It’s this class that gives your activity access to the
Android lifecycle methods. Here’s a diagram showing the class hierarchy:

Now that you know more about the activity lifecycle methods,
let’s see how you deal with device configuration changes.

These are the activity lifecycle methods. You’ll find out more about them through the rest of the chapter.

These aren’t lifecycle methods, but
they’re still very useful. You’ve already
used most of them in earlier chapters.

140 Chapter 4

saving state

Save the current state...
As you saw, our app went wrong when the user rotated the screen. The activity
was destroyed and recreated, which meant that local variables used by the activity
were lost. So how do we get around this issue?

The best way of dealing with configuration changes is to save the current state of
the activity, and then reinstate it in the onCreate() method of the activity.

To save the activity’s current state, you need to implement the
onSaveInstanceState() method. This method gets called before the
activity gets destroyed, which means you get an opportunity to save any values
you want to retain before they get lost.

The onSaveInstanceState() method takes one parameter, a Bundle. A
Bundle allows you to gather together different types of data into a single object:

@Override

public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putInt("seconds", seconds);

 savedInstanceState.putBoolean("running", running);

}

public void onSaveInstanceState(Bundle savedInstanceState) {

}

The onCreate() method gets passed the Bundle as a
parameter. This means that if you add the values of the running
and seconds variables to the Bundle, the onCreate()
method will be able to pick them up when the activity gets
recreated. To do this, you use Bundle methods to add name/
value pairs to the Bundle. These methods take the form:

bundle.put*("name", value)

where bundle is the name of the Bundle, * is the type of value you want to
save, and name and value are the name and value of the data. As an example,
to add the seconds int value to the Bundle, you’d use:

bundle.putInt("seconds", seconds);

You can save multiple name/value pairs of data to the Bundle.

Here’s our onSaveInstanceState() method in full (we’ll add it to
StopwatchActivity.java a couple of pages ahead):

Once you’ve saved variable values to the Bundle, you can use them
in our onCreate() method.

The onSaveInstanceState()
method gets called
before onDestroy().
It gives you a
chance to save your
activity’s state
before the activity
is destroyed.

Save the values of the
seconds and running
variables to the Bundle.

Activity launched

Activity destroyed

Activity running

onCreate()

onSaveInstanceState()

onDestroy()

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

you are here 4 141

the activity lifecycle

...then restore the state in onCreate()
As we said earlier, the onCreate() method takes one parameter, a
Bundle. If the activity’s being created from scratch, this parameter
will be null. If, however, the activity’s being recreated and there’s been
a prior call to onSaveInstanceState(), the Bundle object
used by onSaveInstanceState() will get passed to the activity:

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_stopwatch);

 if (savedInstanceState != null) {

 seconds = savedInstanceState.getInt("seconds");

 running = savedInstanceState.getBoolean("running");

 }

 runTimer();

}

You can get values from Bundle by using methods of the form:

protected void onCreate(Bundle savedInstanceState) {

 ...

}

bundle.get*("name");

where bundle is the name of the Bundle, * is the type of value
you want to get, and name is the name of the name/value pair you
specified on the previous page. As an example, to get the seconds
value from the Bundle, you’d use:

int seconds = bundle.getInt("seconds");

Putting all of this together, here’s what our onCreate() method
now looks like (we’ll add this to StopwatchActivity.java on the next page):

We’ll look at the full code to save and restore
StopwatchActivity’s state on the next page.

Retrieve the values of
the seconds and running
variables from the Bundle.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

Instead of *, use Int, String, and so on, to
specify the type of data you want to get.

142 Chapter 4

StopwatchActivity code

...

public class StopwatchActivity extends Activity {

 //Number of seconds displayed on the stopwatch.

 private int seconds = 0;

 //Is the stopwatch running?

 private boolean running;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_stopwatch);

 if (savedInstanceState != null) {

 seconds = savedInstanceState.getInt("seconds");

 running = savedInstanceState.getBoolean("running");

 }

 runTimer();

 }

 @Override

 public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putInt("seconds", seconds);

 savedInstanceState.putBoolean("running", running);

 }

...

The updated StopwatchActivity code
We’ve updated our StopwatchActivity code so that
if the user rotates the device, its state gets saved via the
onSaveInstanceState() method, and restored via the
onCreate() method. Update your version of StopwatchActivity.java
to include our changes (below in bold):

Save the state of the
variables in the activity’s
onSaveInstanceState() method.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

So how does this work in practice?

Restore the activity’s
state by getting values
from the Bundle.

We’ve left out some of the activity
code, as we don’t need to change it.

you are here 4 143

the activity lifecycle

What happens when you run the app

The user starts the app, and clicks on the Start button to set the
stopwatch going.
The runTimer() method starts incrementing the number of seconds displayed in
the time_view text view.

1

The user rotates the device.
Android views this as a configuration change, and gets ready to destroy the activity.
Before the activity is destroyed, onSaveInstanceState() gets called. The
onSaveInstanceState() method saves the seconds and running values to
a Bundle.

2

Device

seconds=8

running=true

Device

seconds=8

running=true

bundle
“seconds”=8
“running”=true

I’m going to
be destroyed; I
must save you...

StopwatchActivity

StopwatchActivity

144 Chapter 4

what happens, continued

Android destroys the activity, and then recreates it.
The onCreate() method gets called, and the Bundle gets passed to it.

3

The runTimer() method gets called, and the timer picks up where it
left off.
The running stopwatch gets displayed on the device
and continues to increment.

5

Device

Device

seconds=8

running=true

bundle
“seconds”=8
“running”=true

seconds=0

running=falsebundle
“seconds”=8
“running”=true

The Bundle contains the values of the seconds and running variables as
they were before the activity was destroyed.
Code in the onCreate() method sets the current variables to the values in the Bundle.

4

StopwatchActivity

StopwatchActivity

The story continues

you are here 4 145

the activity lifecycle

Test drive the app
Make the changes to your activity code, then run the app. When
you click on the Start button, the timer starts, and it continues
when you rotate the device.

When we rotate our device,
the stopwatch keeps on going.

Q: Why does Android want to
recreate an activity just because I
rotated the screen?

A: The onCreate() method is
normally used to set up the screen. If your
code in onCreate() depended upon
the screen configuration (for example, if
you had different layouts for landscape
and portrait), then you would want
onCreate() to be called every time
the configuration changed. Also, if the user
changed their locale, you might want to
recreate the UI in the local language.

Q: Why doesn’t Android
automatically store every instance
variable automatically? Why do I have
to write all of that code myself?

A: You might not want every instance
variable stored. For example, you might
have a variable that stores the current
screen width. You would want that
variable to be recalculated the next time
onCreate() is called.

Q: Is a Bundle some sort of Java
map?

A: No, but it’s designed to work like
a java.util.Map. A Bundle
has additional abilities compared to a
Map. Bundles can be sent between
processes, for example. That’s really
useful, because it allows the Android OS to
stay in touch with the state of an activity.

146 Chapter 4

stop and start

There’s more to an activity’s life than create and destroy
So far we’ve looked at the create and destroy parts of the activity
lifecycle (and a little bit in between), and you’ve seen how to deal
with configuration changes such as screen orientation. But there
are other events in an activity’s life that you might want to deal
with to get the app to behave in the way you want.

As an example, suppose the stopwatch is running and you get a
phone call. Even though the stopwatch isn’t visible, it will continue
running. But what if you want the stopwatch to stop while it’s
hidden, and resume once the app is visible again?

Start, stop, and restart
Fortunately, it’s easy to handle actions that relate to an activity’s
visibility if you use the right lifecycle methods. In addition to the
onCreate() and onDestroy() methods, which deal with the
overall lifecycle of the activity, there are other lifecycle methods
that deal with an activity’s visibility.

Specifically, there are three key lifecycle methods that deal
with when an activity becomes visible or invisible to the user:
onStart(), onStop(), and onRestart(). Just as with
onCreate() and onDestroy(), your activity inherits them
from the Android Activity class.

onStart() gets called when your activity becomes visible to the
user.

onStop() gets called when your activity has stopped being
visible to the user. This might be because it’s completely hidden
by another activity that’s appeared on top of it, or because the
activity is going to be destroyed. If onStop() is called because the
activity’s going to be destroyed, onSaveInstanceState() gets
called before onStop().

onRestart() gets called after your activity has been made
invisible, before it gets made visible again.

We’ll take a closer look at how these fit in with the onCreate()
and onDestroy() methods on the next page.

An activity has a state of
stopped if it’s completely
hidden by another activity
and isn’t visible to the
user. The activity still
exists in the background
and maintains all state
information.

Even if you don’t really want your
stopwatch to behave like this, just
play along with us. It’s a great excuse
to look at more lifecycle methods.

you are here 4 147

the activity lifecycle

The activity lifecycle: the visible lifetime
Let’s build on the lifecycle diagram you saw earlier in the chapter, this
time including the onStart(), onStop(), and onRestart()
methods (the bits you need to focus on are in bold):

The activity gets launched, and the
onCreate() method runs.
Any activity initialization code in the
onCreate() method runs. At this point, the
activity isn’t yet visible, as no call to onStart()
has been made.

1

The onStop() method runs when the
activity stops being visible to the user.
After the onStop() method has run, the activity
is no longer visible.

3

Finally, the activity is destroyed.
The onStop() method will get called before
onDestroy().

5

The onStart() method runs. It gets
called when the activity is about to
become visible.
After the onStart() method has run, the user
can see the activity on the screen.

2

If the activity becomes visible to the
user again, the onRestart() method gets
called followed by onStart().
The activity may go through this cycle many
times if the activity repeatedly becomes invisible
and then visible again.

4

Activity launched

Activity destroyed

Activity running

onCreate()

onDestroy()

onStart()

onStop()

onRestart()

1

2

3

4

5

148 Chapter 4

onStop()

We need to implement two more lifecycle methods
There are two things we need to do to update our Stopwatch app. First, we
need to implement the activity’s onStop() method so that the stopwatch
stops running when the app isn’t visible. Once we’ve done that, we need
to implement the onStart() method so that the stopwatch starts again
when the app is visible. Let’s start with the onStop() method.

Implement onStop() to stop the timer
You override the onStop() method in the Android Activity class by
adding the following method to your activity:

@Override

protected void onStop() {

 super.onStop();

 ...

}

@Override

protected void onStop() {

 super.onStop();

 running = false;

}

The line of code:

super.onStop();

calls the onStop() method in the Activity superclass. You need
to add this line of code whenever you override the onStop() method
to make sure that the activity gets to perform any other actions in the
superclass onStop() method. If you bypass this step, Android will
generate an exception. This applies to all of the lifecycle methods. If you
override any of the Activity lifecycle methods in your activity, you
must call the superclass method or Android will give you an exception.

We need to get the stopwatch to stop when the onStop() method is
called. To do this, we need to set the value of the running boolean to
false. Here’s the complete method:

When you override
any activity
lifecycle method in
your activity, you
need to call the
Activity superclass
method. If you
don’t, you’ll get an
exception.

So now the stopwatch stops when the activity is no longer visible. The next
thing we need to do is get the stopwatch to start again when the activity
becomes visible.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

This calls the onStop() method in the activity’s superclass, android.app.Activity.

you are here 4 149

the activity lifecycle

Now it’s your turn. Change the activity code so that if the
stopwatch was running before onStop() was called, it starts
running again when the activity regains the focus. Hint: you may
need to add a new variable.

public class StopwatchActivity extends Activity {

 private int seconds = 0;

 private boolean running;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_stopwatch);

 if (savedInstanceState != null) {

 seconds = savedInstanceState.getInt("seconds");

 running = savedInstanceState.getBoolean("running");

 }

 runTimer();

 }

 @Override

 public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putInt("seconds", seconds);

 savedInstanceState.putBoolean("running", running);

 }

 @Override

 protected void onStop() {

 super.onStop();

 running = false;

 }

Here’s the first part of the activity code.
You’ll need to implement the onStart() method
and change other methods slightly too.

150 Chapter 4

sharpen solution

Now it’s your turn. Change the activity code so that if the
stopwatch was running before onStop() was called, it starts
running again when the activity regains the focus. Hint: you may
need to add a new variable.

public class StopwatchActivity extends Activity {
 private int seconds = 0;
 private boolean running;
 private boolean wasRunning;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_stopwatch);
 if (savedInstanceState != null) {
 seconds = savedInstanceState.getInt("seconds");
 running = savedInstanceState.getBoolean("running");
 wasRunning = savedInstanceState.getBoolean(“wasRunning”);
 }
 runTimer();
 }

 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 savedInstanceState.putInt("seconds", seconds);
 savedInstanceState.putBoolean("running", running);
 savedInstanceState.putBoolean(“wasRunning”, wasRunning);
 }

 @Override
 protected void onStop() {
 super.onStop();
 wasRunning = running;
 running = false;
 }

 @Override
 protected void onStart() {
 super.onStart();
 if (wasRunning) {
 running = true;
 }
 }

We added a new variable, wasRunning, to record whether the stopwatch was running before the onStop() method was called so that we know whether to set it running again when the activity becomes visible again.

We’ll restore the state of the wasRunning
variable if the activity is recreated.

Save the state of the
wasRunning variable.

Record whether the stopwatch was running
when the onStop() method was called.

Implement the onStart()
method. If the stopwatch was
running, set it running again.

you are here 4 151

the activity lifecycle

public class StopwatchActivity extends Activity {
 private int seconds = 0;
 private boolean running;
 private boolean wasRunning;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_stopwatch);
 if (savedInstanceState != null) {
 seconds = savedInstanceState.getInt("seconds");
 running = savedInstanceState.getBoolean("running");
 wasRunning = savedInstanceState.getBoolean("wasRunning");
 }
 runTimer();
 }

 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 savedInstanceState.putInt("seconds", seconds);
 savedInstanceState.putBoolean("running", running);
 savedInstanceState.putBoolean("wasRunning", wasRunning);
 }

 @Override
 protected void onStop() {
 super.onStop();
 wasRunning = running;
 running = false;
 }

 @Override
 protected void onStart() {
 super.onStart();
 if (wasRunning) {
 running = true;
 }
 }
...

A new variable, wasRunning, records
whether the stopwatch was running before
the onStop() method was called.

Record whether the stopwatch was running
when the onStop() method was called.

Implement the onStart() method.
If the stopwatch was running,
we’ll set it running again.

The updated StopwatchActivity code
We’ve updated our activity code so that if the stopwatch was running before
it lost the focus, it starts running again when it gets the focus back. Make
the following changes (in bold) to your version of StopwatchActivity.java:

Restore the state of the wasRunning
variable if the activity is recreated.

Save the state of the
wasRunning variable.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

We’ve left out some of the activity
code as we don’t need to change it.

152 Chapter 4

what happens

What happens when you run the app

The user starts the app, and clicks the Start button to set the stopwatch going.
The runTimer() method starts incrementing the number of seconds displayed in the time_view
text view.

1

The user navigates back to the Stopwatch app.
The onStart() method gets called, running is set to true, and the number of seconds starts
incrementing again.

3

The user navigates to the device’s home screen so the Stopwatch app is no longer
visible.
The onStop() method gets called, wasRunning is set to true, running is set to false, and the
number of seconds stops incrementing.

2

Device

seconds=16

Device

The activity still
exists even though
it’s not visible.

Device

running is set
to false in the
onStop() method.

running is set
to true in the
onStart() method.

running=true

wasRunning=false

seconds=16

running=false

wasRunning=true

seconds=16

running=true

wasRunning=true

Stopwatch
Activity

Stopwatch
Activity

Stopwatch
Activity

running is set to true in
the onClickStart() method.

you are here 4 153

the activity lifecycle

Test drive the app
Save the changes to your activity code, then run the app. When
you click on the Start button the timer starts: it stops when the
app is no longer visible, and it starts again when the app becomes
visible again.

We set our stopwatch
going, then switched to
the device’s home screen.

Q:Could we have used the onRestart() method
instead of onStart() to set the stopwatch running again?

A: onRestart() is used when you only want code to
run when an app becomes visible after having previously been
invisible. It doesn’t run when the activity becomes visible for the
first time. In our case, we wanted the app to still work when we
rotated the device.

Q: Why should that make a difference?

A: When you rotate the device, the activity is destroyed and
a new one is created in its place. If we’d put code to set the
stopwatch running again in the onRestart() method
instead of onStart(), it wouldn’t have run when the activity
was recreated. The onStart() method gets called in both
situations.

The stopwatch started again
when we went back to it.

The stopwatch
paused while the
app wasn’t visible.

154 Chapter 4

foreground lifecycle

What if an app is only partially visible?
So far you’ve seen what happens when an activity gets created and
destroyed, and you’ve also seen what happens when an activity
becomes visible, and when it becomes invisible. But there’s one more
situation we need to consider: when an activity is visible but doesn’t
have the focus.

When an activity is visible but doesn’t have the focus, the activity is
paused. This can happen if another activity appears on top of your
activity that isn’t full-size or that’s transparent. The activity on top has
the focus, but the one underneath is still visible and is therefore paused.

There are two lifecycle methods that handle when the activity is paused
and when it becomes active again: onPause() and onResume().
onPause() gets called when your activity is visible but another
activity has the focus. onResume() is called immediately before your
activity is about to start interacting with the user. If you need your
app to react in some way when your activity is paused, you need to
implement these methods.

You’ll see on the next page how these methods fit in with the rest of the
lifecycle methods you’ve seen so far.

The stopwatch activity
is still visible, but it’s
partially obscured
and no longer has
the focus. When this
happens, it pauses.

This is an
activity from
another app
that’s appeared
on top of the
stopwatch.

An activity has a
state of paused if it’s
lost the focus but is
still visible to the
user. The activity
is still alive and
maintains all its state
information.

you are here 4 155

the activity lifecycle

Activity launched

Activity destroyed

Activity running

onCreate()

onDestroy()

onStart()

onStop()

onRestart()

onResume()

onPause()

The activity lifecycle: the foreground lifetime
Let’s build on the lifecycle diagram you saw earlier in the chapter, this
time including the onResume() and onPause() methods (the new
bits are in bold):

The activity gets launched, and the
onCreate() and onStart() methods run.
At this point, the activity is visible, but it doesn’t
have the focus.

1

The onPause() method runs when the
activity stops being in the foreground.
After the onPause() method has run, the
activity is still visible but doesn’t have the focus.

3

Finally, the activity is destroyed.
As the activity moves from running to destroyed,
the onPause() and onStop() methods get
called before the activity is destroyed.

7

The onResume() method runs. It gets
called when the activity is about to move
into the foreground.
After the onResume() method has run, the
activity has the focus and the user can interact
with it.

2

If the activity moves into the
foreground again, the onResume()
method gets called.
The activity may go through this cycle many
times if the activity repeatedly loses and then
regains the focus.

4

If the activity stops being visible to the
user, the onStop() method gets called.
After the onStop() method has run, the activity
is no longer visible.

5

If the activity becomes visible to the
user again, the onRestart() method
gets called, followed by onStart() and
onResume().
The activity may go through this cycle many times.

6

1

2

3

4

5

6

7

156 Chapter 4

rotation

Earlier on you talked about how
the activity is destroyed and a new one is
created when the user rotates the device.
What happens if the activity is paused when
the device is rotated? Does the activity go
through the same lifecycle methods?

That’s a great question, so let’s look at this in more detail
before getting back to the Stopwatch app.
The original activity goes through all its lifecycle methods, from onCreate()
to onDestroy(). A new activity is created when the original is destroyed.
As this new activity isn’t in the foreground, only the onCreate() and
onStart() lifecycle methods get called. Here’s what happens when the user
rotates the device when the activity doesn’t have the focus::

Activity launched

Activity destroyed

Activity running

onCreate()

onDestroy()

onStart()

onStop()

onResume()

onPause()

Activity launched

onCreate()

onStart()

Original Activity

Replacement Activity

The user launches the activity.
The activity lifecycle methods onCreate(),
onStart(), and onResume() get called.

1

Another activity appears in front of it.
The activity’s onPause() method gets called.

2

The user rotates the device.
Android sees this as a configuration change.
The onStop() and onDestroy()
methods get called, and Android destroys the
activity. A new activity is created in its place.

3

The activity is visible but not in the
foreground.
The onCreate() and onStart()
methods get called. As the activity is visible
but doesn’t have the focus, onResume() isn’t
called.

4

4

3

2

1

you are here 4 157

the activity lifecycle

I see, the replacement activity doesn’t reach
a state of “running” because it’s not in the
foreground. But what if you navigate away from
the activity completely so it’s not even visible?
If the activity’s stopped, do onResume() and
onPause() get called before onStop()?

Activities can go
straight from onStart()
to onStop() and
bypass onPause() and
onResume().
If you have an activity that’s
visible, but never in the
foreground and never has the
focus, the onPause() and
onResume() methods never
get called.

The onResume() method gets
called when the activity appears
in the foreground and has the
focus. If the activity is only
visible behind other activities,
the onResume() method
doesn’t get called.

Similarly, the onPause()
method gets called only when
the activity is no longer in the
foreground. If the activity is
never in the foreground, this
method won’t get called.

Activity launched

Activity destroyed

Activity running

onCreate()

onDestroy()

onStart()

onStop()

onRestart()

onResume()

onPause()

If an activity stops or gets destroyed before
it appears in the foreground, the onStart()
method is followed by the onStop() method.
onResume() and onPause() are bypassed.

158 Chapter 4

replace methods

Stop the stopwatch if the activity’s paused
Let’s get back to the Stopwatch app.

So far we’ve made the stopwatch stop if the Stopwatch app
isn’t visible, and made it start again when the app becomes
visible again. We did this by overriding the onStop() and
onStart() methods like this:

@Override

protected void onStop() {

 super.onStop();

 wasRunning = running;

 running = false;

}

@Override

protected void onStart() {

 super.onStart();

 if (wasRunning) {

 running = true;

 }

}

Let’s get the app to have the same behavior if the app is only
partially visible. We’ll get the stopwatch to stop if the activity is
paused, and start again when the activity is resumed. So what
changes do we need to make to the lifecycle methods?

We want the Stopwatch app to stop running when the activity
is paused, and start it again (if it was running) when the activity
is resumed. In other words, we want it to behave the same as
when the activity is stopped or started. This means that instead
of repeating the code we already have in multiple methods, we
can use one method when the activity is paused or stopped,
and another method when the activity is resumed or started.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

you are here 4 159

the activity lifecycle

Implement the onPause() and onResume() methods

@Override
protected void onStop() {
 super.onStop();
 wasRunning = running;
 running = false;
}
@Override
protected void onPause() {
 super.onPause();
 wasRunning = running;
 running = false;
}

We can do something similar when the activity is paused or stopped.

When the activity is paused, the activity’s onPause() lifecycle method
is called. If the activity is stopped, the activity’s onPause() method is
called prior to calling onStop(). The onPause() method is called
irrespective of whether the activity is paused or stopped, which means we
can move our onStop() code to the onPause() method:

We’ll start with when the activity is resumed or started.

When the activity is resumed, the activity’s onResume() lifecycle
method is called. If the activity is started, the activity’s onResume()
method is called after calling onStart(). The onResume() method
is called irrespective of whether the activity is resumed or started, which
means that if we move our onStart() code to the onResume()
method, our app will behave the same irrespective of whether the activity
is resumed or started. This means we can remove our onStart()
method, and replace it with the onResume() method like this:

@Override
protected void onStart() {
 super.onStart();
 if (wasRunning) {
 running = true;
 }
}
@Override
protected void onResume() {
 super.onResume();
 if (wasRunning) {
 running = true;
 }
}

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch
Activity running

onStart()

onStop()

onResume()

onPause()

Delete the
onStart()
method.

Delete the
onStop()
method.

Add the
onResume()
method.

Add the
onPause()
method.

The onResume() method is called
when the activity is started or
resumed. As we want the app to
do the same thing irrespective of
whether it’s started or resumed,
we only need to implement the
onResume() method.

The onPause() method is
called when the activity
is paused or stopped.
This means we only
need to implement the
onPause() method.

160 Chapter 4

StopwatchActivity code

The complete StopwatchActivity code
Here’s the full StopwatchActivity.java code for the finished app (with changes in bold):

package com.hfad.stopwatch;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import java.util.Locale;

import android.os.Handler;

import android.widget.TextView;

public class StopwatchActivity extends Activity {

 //Number of seconds displayed on the stopwatch.

 private int seconds = 0;

 //Is the stopwatch running?

 private boolean running;

 private boolean wasRunning;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_stopwatch);

 if (savedInstanceState != null) {

 seconds = savedInstanceState.getInt("seconds");

 running = savedInstanceState.getBoolean("running");

 wasRunning = savedInstanceState.getBoolean("wasRunning");

 }

 runTimer();

 }

 @Override

 public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putInt("seconds", seconds);

 savedInstanceState.putBoolean("running", running);

 savedInstanceState.putBoolean("wasRunning", wasRunning);

 }

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

Use seconds, running, and wasRunning respectively to
record the number of seconds passed, whether the
stopwatch is running, and whether the stopwatch was
running before the activity was paused.

Get the previous state of the
stopwatch if the activity’s been
destroyed and recreated.

Save the state of the stopwatch if
it’s about to be destroyed.

The activity
code continues
over the page.

you are here 4 161

the activity lifecycle

 @Override

 protected void onStop() {

 super.onStop();

 wasRunning = running;

 running = false;

 }

 @Override

 protected void onStart() {

 super.onStart();

 if (wasRunning) {

 running = true;

 }

 }

 @Override

 protected void onPause() {

 super.onPause();

 wasRunning = running;

 running = false;

 }

 @Override

 protected void onResume() {

 super.onResume();

 if (wasRunning) {

 running = true;

 }

 }

 //Start the stopwatch running when the Start button is clicked.

 public void onClickStart(View view) {

 running = true;

 }

The activity code (continued)

This gets called when the
Start button is clicked.

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

If the activity’s paused, stop the stopwatch.

If the activity’s resumed, start
the stopwatch again if it was
running previously.

Delete these two methods.

The activity
code continues
over the page.

162 Chapter 4

StopwatchActivity, continued

 //Stop the stopwatch running when the Stop button is clicked.

 public void onClickStop(View view) {

 running = false;

 }

 //Reset the stopwatch when the Reset button is clicked.

 public void onClickReset(View view) {

 running = false;

 seconds = 0;

 }

 //Sets the number of seconds on the timer.

 private void runTimer() {

 final TextView timeView = (TextView)findViewById(R.id.time_view);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 int hours = seconds/3600;

 int minutes = (seconds%3600)/60;

 int secs = seconds%60;

 String time = String.format(Locale.getDefault(),

 "%d:%02d:%02d", hours, minutes, secs);

 timeView.setText(time);

 if (running) {

 seconds++;

 }

 handler.postDelayed(this, 1000);

 }

 });

 }

}

This gets called when the Stop button is clicked.

This gets called when the Reset button is clicked.

The runTimer() method uses a Handler to increment
the seconds and update the text view.

The activity code (continued)

app/src/main

Stopwatch
Activity.java

Stopwatch

java

com.hfad.stopwatch

Let’s go through what happens when the code runs.

you are here 4 163

the activity lifecycle

What happens when you run the app

The user starts the app, and clicks on the Start button to set the stopwatch going.
The runTimer() method starts incrementing the number of seconds displayed in the time_view
text view.

1

Another activity appears in the foreground, leaving StopwatchActivity partially visible.
The onPause() method gets called, wasRunning is set to true, running is set to false, and the
number of seconds stops incrementing.

2

When StopwatchActivity returns to the foreground, the onResume() method gets
called, running is set to true, and the number of seconds starts incrementing
again.

3

Device

Device

The activity is paused,
as it’s visible but not
in the foreground.

Device

running is set
to false in the
onPause() method.

running is set
to true in the
onResume() method.

seconds=15

running=true

wasRunning=false

seconds=15

running=false

wasRunning=true

seconds=15

running=true

wasRunning=true

Stopwatch
Activity

Stopwatch
Activity

Stopwatch
Activity

164 Chapter 4

test drive

Test drive the app
Save the changes to your activity code, then run the app. When
you click on the Start button, the timer starts; it stops when the
app is partially obscured by another activity; and it starts again
when the app is back in the foreground.

We started our stopwatch.

The stopwatch started again
when the activity came back
into the foreground.

The stopwatch paused
when the activity was
partially obscured.

you are here 4 165

the activity lifecycle

...
class MyActivity extends Activity{

 protected void onCreate(
 Bundle savedInstanceState) {
 //Run code A
 ...
 }

 protected void onPause() {
 //Run code B
 ...
 }

 protected void onRestart() {
 //Run code C
 ...
 }

 protected void onResume() {
 //Run code D
 ...
 }

 protected void onStop() {
 //Run code E
 ...
 }

 protected void onRecreate() {
 //Run code F
 ...
 }

 protected void onStart() {
 //Run code G
 ...
 }

 protected void onDestroy() {
 //Run code H
 ...
 }
}

A

F

E

D

C

B

G

H

BE the Activity
On the right, you’ll see some activity
code. Your job is to play like you’re

the activity and say which
code will run in each
of the situations below.
We’ve labeled the code
we want you to consider.

We’ve done the first one to
start you off.

User starts the activity and starts using it.

Code segments A, G, D. The activity is created,
then made visible, then receives the focus.

User starts the activity, starts using it,
then switches to another app.

User starts the activity, starts using it,
rotates the device, switches to another
app, then goes back to the activity.

This one’s tough.

166 Chapter 4

solution

...
class MyActivity extends Activity{

 protected void onCreate(
 Bundle savedInstanceState) {
 //Run code A
 ...
 }

 protected void onPause() {
 //Run code B
 ...
 }

 protected void onRestart() {
 //Run code C
 ...
 }

 protected void onResume() {
 //Run code D
 ...
 }

 protected void onStop() {
 //Run code E
 ...
 }

 protected void onRecreate() {
 //Run code F
 ...
 }

 protected void onStart() {
 //Run code G
 ...
 }

 protected void onDestroy() {
 //Run code H
 ...
 }
}

BE the Activity Solution
On the right, you’ll see some activity
code. Your job is to play like you’re

the activity and say which
code will run in each
of the situations below.
We’ve labeled the code
we want you to consider.

We’ve done the first one to
start you off.

A

F

E

D

C

B

User starts the activity and starts using it.

Code segments A, G, D. The activity is created,
then made visible, then receives the focus.

G

H

User starts the activity, starts using it,
then switches to another app.

Code segments A, G, D, B, E. The activity is
created, then made visible, then receives the
focus. When the user switches to another app,
it loses the focus and is no longer visible to the
user.

User starts the activity, starts using it,
rotates the device, switches to another
app, then goes back to the activity.

Code segments A, G, D, B, E, H, A, G, D, B, E,
C, G, D. First, the activity is created, made
visible, and receives the focus. When the device
is rotated, the activity loses the focus, stops
being visible, and is destroyed. It’s then created
again, made visible, and receives the focus. When
the user switches to another app and back
again, the activity loses the focus, loses visibility,
becomes visible again, and regains the focus.

There’s no lifecycle
method called
onRecreate().

you are here 4 167

the activity lifecycle

Method When it’s called Next method

onCreate() When the activity is first created. Use it for normal
static setup, such as creating views. It also gives
you a Bundle that contains the previously saved
state of the activity.

onStart()

onRestart() When your activity has been stopped but just
before it gets started again.

onStart()

onStart() When your activity is becoming visible. It’s
followed by onResume() if the activity comes
into the foreground, or onStop() if the activity
is made invisible.

onResume() or
onStop()

onResume() When your activity is in the foreground. onPause()

onPause() When your activity is no longer in the foreground
because another activity is resuming. The next
activity isn’t resumed until this method finishes,
so any code in this method needs to be quick. It’s
followed by onResume() if the activity returns
to the foreground, or onStop() if it becomes
invisible.

onResume() or
onStop()

onStop() When the activity is no longer visible. This can be
because another activity is covering it, or because
this activity is being destroyed. It’s followed by
onRestart() if the activity becomes visible
again, or onDestroy() if the activity is being
destroyed.

onRestart() or
onDestroy()

onDestroy() When your activity is about to be destroyed or
because the activity is finishing.

None

Your handy guide to the lifecycle methods

168 Chapter 4

toolbox

Activity launched

Activity destroyed

Activity running

onCreate()

onDestroy()

onStart()

onStop()

onRestart()

onResume()

onPause()

 � Each app runs in its own process by default.

 � Only the main thread can update the user
interface.

 � Use a Handler to schedule code or post code
to a different thread.

 � A device configuration change results in the
activity being destroyed and recreated.

 � Your activity inherits the lifecycle methods from
the android.app.Activity class. If you
override any of these methods, you need to call up
to the method in the superclass.

 � onSaveInstanceState(Bundle)
enables your activity to save its state before the
activity gets destroyed. You can use the Bundle
to restore state in onCreate().

 � You add values to a Bundle using
bundle.put*("name", value).
You retrieve values from the bundle using
bundle.get*("name").

 � onCreate() and onDestroy() deal with
the birth and death of the activity.

 � onRestart(), onStart(), and
onStop() deal with the visibility of the activity.

 � onResume() and onPause() handle when
the activity gains and loses the focus.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CH
AP

T
ER

 4

Your Android Toolbox

You’ve got Chapter 4 under
your belt and now you’ve

added the activity lifecycle to
your toolbox.

this is a new chapter 169

views and view groups5

Enjoy the View

You’ve seen how to arrange GUI components using a linear
layout, but so far we’ve only scratched the surface.
In this chapter we’ll look a little deeper and show you how linear layouts really work.

We’ll introduce you to the frame layout, a simple layout used to stack views, and we’ll

also take a tour of the main GUI components and how you use them. By the end of

the chapter, you’ll see that even though they all look a little different, all layouts and GUI

components have more in common than you might think.

...and here′s a layout
I prepared earlier.

170 Chapter 5

the ui

Your user interface is made up of
layouts and GUI components
As you already know, a layout defines what a screen looks like, and
you define it using XML. Layouts usually contain GUI components
such as buttons and text fields. Your user interacts with these to make
your app do something.

All the apps you’ve seen in the book so far have used linear layouts,
where GUI components are arranged in a single column or row. In
order to make the most out of them, however, we need to spend a bit
of time looking at how they work, and how to use them effectively.

In this chapter, we’re going to take a closer look at linear layouts,
introduce you to their close relative the frame layout, and show
you other GUI components you can use to make your app more
interactive.

Let’s start with linear layouts.

These are all examples
of linear layouts.

you are here 4 171

views and view groups

LinearLayout displays views
in a single row or column
As you already know, a linear layout displays its views next to each other,
either vertically or horizontally. If it’s vertically, the views are displayed in
a single column. If it’s horizontally, the views are displayed in a single row.

You define a linear layout using the <LinearLayout> element like this:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 ...>

 ...

</LinearLayout>

You use
<LinearLayout>
to define a linear
layout.

The orientation specifies
whether you want to display
views vertically or horizontally.

The layout_width and layout_height specify
what size you want the layout to be.

There may be other
attributes too.

You MUST set the layout’s width and height
The android:layout_width and
android:layout_height attributes specify how wide
and high you want the layout to be. These attributes are
mandatory for all types of layout and view.

You can set android:layout_width and
android:layout_height to "wrap_content",
"match_parent" or a specific size such as 8dp—that’s 8
density-independent pixels. "wrap_content" means that
you want the layout to be just big enough to hold all of the
views inside it, and "match_parent" means that you want
the layout to be as big as its parent—in this case, as big as the
device screen minus any padding (there’s more about padding
in a couple of pages). You will usually set the layout width
and height to "match_parent".

You may sometimes see android:layout_width and
android:layout_height set to "fill_parent".
"fill_parent" was used in older versions of Android, and
it’s now replaced by "match_parent". "fill_parent"
is deprecated.

The xmlns:android attribute is used to specify the Android
namespace, and you must always set it to "http://schemas.
android.com/apk/res/android".

Geek Bits

What are density-independent pixels?

Some devices create very sharp images
by using very tiny pixels. Other devices
are cheaper to produce because they
have fewer, larger pixels. You use
density-independent pixels (dp) to
avoid creating interfaces that are overly
small on some devices, and overly large
on others. A measurement in density-
independent pixels is roughly the same
size across all devices.

LinearLayout
FrameLayout

172 Chapter 5

orientation

android:orientation="vertical"

This displays the views in a single column.

You arrange views horizontally in a single row using:

android:orientation="horizontal"

You specify the direction in which you wish to arrange views using
the android:orientation attribute.

As you’ve seen in earlier chapters, you arrange views vertically
using:

In vertical orientation,
the views are arranged
in a single column.

This is a horizontal orientation where the
language is read from left to right.

Orientation is vertical or horizontal

When the orientation is horizontal, views are displayed from left to
right by default. This is great for languages that are read from left to
right, but what if the user has set the language on their device to one
that’s read from right to left?

For apps where the minimum SDK is at least API 17, you can get
views to rearrange themselves depending on the language setting on
the device. If the user’s language is read from right to left, you can get
the views to arrange themselves starting from the right.

To do this, you declare that your app supports languages that are read
from right to left in your AndroidManifest.xml file like this:

<manifest ...>

 <application

 ...

 android:supportsRtl="true">

 ...

 </application>

</manifest>

supportsRtl means “supports right-to-left languages.”

Android Studio may add this line of code for you. It must go inside the <application> tag.

<xml>
</xml>

app/src/main

AndroidManifest.xml

MyApp

This is a horizontal orientation where the
language is read from right to left.

LinearLayout
FrameLayout

you are here 4 173

views and view groups

paddingTop

paddingLeft

paddingRightpaddingBottom

Layout

<LinearLayout ...

 android:paddingBottom="16dp"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="32dp" >

 ...

</LinearLayout>

If your app supports right-to-left languages, you can use:

Add padding to the individual edges.

Padding adds space
If you want there to be a bit of space around the edge of the layout,
you can set padding attributes. These attributes tell Android how
much padding you want between each of the layout’s sides and its
parent. Here’s how you would tell Android you want to add padding
of 16dp to all edges of the layout:

 You can
only use
start and
end
properties

with API 17 or above.

If you want your app to
work on older versions of
Android, you must use the
left and right properties
instead.

<LinearLayout ...

 android:padding="16dp" >

 ...

</LinearLayout>

padding

padding

paddingpadding

LayoutThis adds the same padding
to all edges of the layout.

If you want to add different amounts of padding to different edges,
you can specify the edges individually. Here’s how you would add
padding of 32dp to the top of the layout, and 16dp to the other
edges:

android:paddingStart="16dp"

android:paddingEnd="16dp"

and:

to add padding to the start and end edges of the layout instead of
their left and right edges.

android:PaddingStart adds padding to the start edge of the
layout. The start edge is on the left for languages that are read from
left to right, and the right edge for languages that are read from right
to left.

android:PaddingEnd adds padding to the end edge of the layout.
The end edge is on the right for languages that are read from left to
right, and the left edge for languages that are read from right to left.

LinearLayout
FrameLayout

174 Chapter 5

dimension resources

You use the dimensions you create by setting the padding
attributes in your layout file to the name of a dimension resource
like this:

Add a dimension resource file for
consistent padding across layouts
In the example on the previous page, we hardcoded the padding
and set it to 16dp. An alternative approach is to specify the
padding in a dimension resource file instead. Doing so makes it
easier to maintain the padding dimensions for all the layouts in
your app.

To use a dimension resource file, you first need to add one to
your project. To do this, first select the app/src/main/res/values
folder in Android Studio, then go to File menu and choose
New→Values resource file. When prompted, enter a name
of “dimens” and click on the OK button. This creates a new
resource file called dimens.xml.

Once you’ve created the dimension resource file, you add
dimensions to it using the <dimen> element. As an example,
here’s how you would add dimensions for the horizontal and
vertical margins to dimens.xml:

<LinearLayout ...

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 android:paddingBottom="@dimen/activity_vertical_margin">

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <dimen name="activity_horizontal_margin">16dp</dimen>

 <dimen name="activity_vertical_margin">16dp</dimen>

</resources>

With that kind of setup, at runtime, Android looks up the values
of the attributes in the dimension resource file and applies the
values it finds there.

The paddingLeft and
paddingRight attributes
are set to @dimen/activity_
horizontal_margin.
The paddingTop and
paddingBottom attributes are set to @dimen/activity_vertical_margin.

Android Studio may have already
added this file for you, but
it depends on which version of
Android Studio you’re using.

This creates
two dimension
resources.

LinearLayout
FrameLayout

<xml>
</xml>

app/src/main

dimens.xml

...

res

values

you are here 4 175

views and view groups

A linear layout displays views in the
order they appear in the layout XML
When you define a linear layout, you add views to the layout in the order
in which you want them to appear. So, if you want a text view to appear
above a button in a linear layout, you must define the text view first:

<LinearLayout ... >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/text_view1" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/click_me" />

</LinearLayout>

If you define the text view above the
button in the XML, the text view will
appear above the button when displayed.

You specify the width and height of any views using
android:layout_width and android:layout_
height. The code:

android:layout_width="wrap_content"

means that you want the view to be just wide enough for its
content to fit inside it—for example, the text displayed on a
button or in a text view. The code:

android:layout_width="match_parent"

means that you want the view to be as wide as the parent layout.

If you need to refer to a view elsewhere in your code, you need
to give it an ID. As an example, you’d give the text view an ID of
"text_view" using the code:

android:layout_width and
android:layout_height are
mandatory attributes for all
views, no matter which layout
you use.

They can take the values
wrap_content, match_parent,
or a specific dimension value
such as 16dp.

...

 <TextView

 android:id="@+id/text_view"

 ... />

...

LinearLayout
FrameLayout

dimens.xml

176 Chapter 5

margins

Use margins to add distance between views
When you position a view using a linear layout, the layout doesn’t leave much
of a gap between views. You can increase the size of the gap by adding one or
more margins to the view.

As an example, suppose you wanted to put one view below another, but add
48dp of extra space between the two. To do that, you’d add a margin of 48dp
to the top of the bottom view:

LinearLayout ... >

 <Button

 android:id="@+id/button_click_me"

 ... />

 <Button

 android:id="@+id/button_below"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="48dp"

 android:text="@string/button_below" />

</LinearLayout>

Adding a margin to
the top of the bottom
button adds extra space
between the two views.

Here’s a list of the margins you can use to give your views extra space. Add
the attribute to the view, and set its value to the size of margin you want:

48dp

Attribute What it does

layout_marginTop Adds extra space to the top of the view.

layout_marginBottom Adds extra space to the bottom of the view.

layout_marginLeft,
layout_marginStart

Adds extra space to the left (or start) of the view.

layout_marginRight,
layout_marginEnd

Adds extra space to the right (or end) of the view.

layout_margin Adds equal space to each side of the view.

android:attribute="8dp"

LinearLayout
FrameLayout

you are here 4 177

views and view groups

Let’s change up a basic linear layout
At first glance, a linear layout can seem basic and inflexible. After all,
all it does is arrange views in a particular order. To give you more
flexibility, you can tweak your layout’s appearance using some more
of its attributes. To show you how this works, we’re going to transform
a basic linear layout.

The layout is composed of two editable text fields and a button. To
start with, these text fields are simply displayed vertically on the screen
like this:

Each view takes up the
least possible amount of
vertical space.

The Message editable text field
has been given a lot more space.

The Send button
appears at the bottom-
right of the screen for
languages that are read
from left to right..

We’re going to change the layout so that the button is
displayed in the end corner of the layout, and one of the
editable text fields takes up any remaining space.

LinearLayout
FrameLayout

178 Chapter 5

get started

Here’s the starting point for the linear layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.views.MainActivity" >

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="@string/to" />

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="@string/message" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/send" />

</LinearLayout>

android:hint displays a hint to the user as to what they should type in the editable text field.

The editable text fields are as
wide as the parent layout.

The values of
these Strings
are defined
in strings.xml
as usual.

All of these views take up just as much vertical space in the
layout as they need for their contents. So how do we make the
Message text field taller?

The linear layout contains two editable text fields and a button.
The button is labeled “Send,” and the editable text fields contain
hint text values of “To” and “Message.”

Hint text in an editable text field is text that’s displayed when the
field is empty. It’s used to give users a hint as to what sort of text
they should enter. You define hint text using the android:hint
attribute:

LinearLayout
FrameLayout

The text values
displayed here come
from String resources
in strings.xml.

you are here 4 179

views and view groups

android:layout_weight="number"

All of the views in our basic layout take up just as much vertical space
as they need for their content. But what we actually want is to make
the Message text field stretch to take up any vertical space in the layout
that’s not being used by the other views.

Make a view streeeeetch by adding weight

We want to make the
Message text field stretch
vertically so that it fills any
spare space in the layout.

where number is some number greater than 0.

When you allocate weight to a view, the layout first makes sure that
each view has enough space for its content: each button has space for its
text, each editable text field has space for its hint, and so on. Once it’s
done that, the layout takes any extra space, and divides it proportionally
between the views with a weight of 1 or greater.

In order to do this, we need to allocate some weight to the Message text
field. Allocating weight to a view is a way of telling it to stretch to take
up extra space in the layout.

You assign weight to a view using:

LinearLayout
FrameLayout

180 Chapter 5

weight header

Giving the Message editable text field a weight of 1 means that it
takes up all of the extra space that’s not used by the other views
in the layout. This is because neither of the other two views has
been allocated any weight in the layout XML.

The Message view has a weight
of 1. As it’s the only view with
its weight attribute set, it
expands to take up any extra
vertical space in the layout.

By default, the Message
hint text appears in the
middle. We’ll deal with
that next.

Adding weight to one view
We need the Message editable text field to take up any extra
space in the layout. To do this, we’ll set its layout_weight
attribute to 1. As this is the only view in the layout with a weight
value, this will make the text field stretch vertically to fill the
remainder of the screen. Here’s the code:

<LinearLayout ... >

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="@string/to" />

 <EditText

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:hint="@string/message" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/send" />

</LinearLayout>

This <EditText> and the <Button>
have no layout_weight attribute set.
They’ll take up as much room as their
content needs, but no more.

This view is the only
one with any weight.
It will expand to
fill the space that’s
not needed by any
of the other views.

The height of the view will be determined by
the linear layout based on the layout_weight.
Setting the layout_height to “0dp” is more
efficient than setting it to “wrap_content”,
as this way Android doesn’t have to work out
the value of “wrap_content”.

LinearLayout
FrameLayout

you are here 4 181

views and view groups

Adding weight to multiple views
In this example, we only had one view with a weight attribute
set. But what if we had more than one?

Suppose we gave the To text field a weight of 1, and the
Message text field a weight of 2, like this:

<LinearLayout ... >

 ...

 <EditText

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:hint="@string/to" />

 <EditText

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="2"

 android:hint="@string/message" />

 ...

</LinearLayout>

The To view has a weight
of 1, so it takes up 1/3
of the extra space.

The Message view has a
weight of 2, so it takes up
2/3 of the extra space.

To figure out how much extra space each view takes up, start
by adding together the layout_weight attributes for each
view. In our case, this is 1+2=3. The amount of extra space
taken up by each view will be the view’s weight divided by the
total weight. The To view has a weight of 1, so this means
it will take up 1/3 of the remaining space in the layout. The
Message view has a weight of 2, so it will take up 2/3 of the
remaining space.

This is just an example; we’re not really going to change the layout so that it looks like this.

LinearLayout
FrameLayout

182 Chapter 5

gravity

We’ll add an android:gravity attribute to the Message text
field so that the hint text moves to the top of the view:

Gravity controls the position
of a view’s contents
The next thing we need to do is move the hint text inside the
Message text field. At the moment, it’s centered vertically
inside the view. We need to change it so that the text appears
at the top of the text field. We can achieve this using the
android:gravity attribute.

The android:gravity attribute lets you specify how you
want to position the contents of a view inside the view—for
example, how you want to position text inside a text field. If you
want the text inside a view to appear at the top, the following
code will do the trick:

<LinearLayout ... >

 ...

 <EditText

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:gravity="top"
 android:hint="@string/message" />

 ...

</LinearLayout>

android:gravity="top"

Displays the text inside the text field
at the top of the text field

Test drive
Adding the android:gravity attribute to the Message text field
moves the hint text to the top of the view, just like we want.

You’ll find a list of the other values you can use with the
android:gravity attribute on the next page.

We need to move the
Message hint text
from the center of
the view to the top.

The Message hint text
now appears at the top
of the view.

LinearLayout
FrameLayout

you are here 4 183

views and view groups

Value What it does

top Puts the view’s contents at the top of the view.

bottom Puts the view’s contents at the bottom of the view.

left Puts the view’s contents at the left of the view.

right Puts the view’s contents at the right of the view.

start Puts the view’s contents at the start of the view.

end Puts the view’s contents at the end of the view.

center_vertical Centers the view’s contents vertically.

center_horizontal Centers the view’s contents horizontally.

center Centers the view’s contents vertically and horizontally.

fill_vertical Makes the view’s contents fill the view vertically.

fill_horizontal Makes the view’s contents fill the view horizontally.

fill Makes the view’s contents fill the view vertically and horizontally.

Values you can use with the
android:gravity attribute
Here are some more of the values you can use with the
android:gravity attribute. Add the attribute to your view,
and set its value to one of the values below:

android:gravity="value"

android:gravity lets you
say where you want
the view’s contents to
appear inside the view.

start and end are
only available if
you’re using API 17
or above.

You can also apply multiple gravities to a view by separating
each value with a “|”. To sink a view’s contents to the
bottom-end corner, for example, use:

android:gravity="bottom|end"

LinearLayout
FrameLayout

184 Chapter 5

layout_gravity

android:layout_gravity="end"

Wait a sec. I thought
you said that gravity was used
to say where you wanted to
put the view’s contents, not
the view itself?

Linear layouts have two attributes that sound
similar to one another, gravity and layout_gravity.
A couple of pages ago, we used the android:gravity attribute
to position the Message text inside a text view. This is because the
android:gravity attribute lets you say where you want a view’s
contents to appear.

android:layout_gravity deals with the placement of
the view itself, and lets you control where views appear in their
available space. In our case, we want the view to move to the end of
its available space, so we’re using:

There’s a list of some of the other values you can use with the
android:layout_gravity attribute on the next page.

layout-gravity controls the
position of a view within a layout
There’s one final change we need to make to our layout. The Send
button currently appears in the bottom-left corner. We need to move
it over to the end instead (the bottom-right corner for left-to-right
languages). To do this, we’ll use the android:layout_gravity
attribute.

The android:layout_gravity attribute lets you specify where
you want a view in a linear layout to appear in its enclosing space. You
can use it to push a view to the right, for instance, or center the view
horizontally. To move our button to the end, we’d need to add the
following to the button’s code:

We’ll move the button to the
end so it appears on the right
for left-to-right languages,
and on the left for right-
to-left languages.

android:layout_gravity="end"

LinearLayout
FrameLayout

you are here 4 185

views and view groups

android:layout_gravity lets you say where you
want views to appear in their available space.

android:layout_gravity deals with the placement
of the view itself, whereas android:gravity
controls how the view’s contents are displayed.

More values you can use with the
android:layout-gravity attribute
Here are some of the values you can use with the
android:layout_gravity attribute. Add the attribute
to your view, and set its value to one of the values below:

android:layout_gravity="value"

Value What it does

top, bottom, left, right Puts the view at the top, bottom, left, or right of its
available space.

start, end Puts the view at the start or end of its available space.

center_vertical, center_horizontal Centers the view vertically or horizontally in its available
space.

center Centers the view vertically and horizontally in its
available space.

fill_vertical, fill_horizontal Grows the view so that it fills its available space vertically
or horizontally.

fill Grows the view so that it fills its available space vertically
and horizontally.

You can apply multiple layout_gravity values by
separating each one with a “|”. As an example,
use android:layout_gravity=“bottom|end” to
move a view to the bottom-end corner of its
available space.

LinearLayout
FrameLayout

186 Chapter 5

full code

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.views.MainActivity" >

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="@string/to" />

 <EditText

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:gravity="top"

 android:hint="@string/message" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="end"

 android:text="@string/send" />

</LinearLayout>

The contents of the
Message view get displayed
at the top of the view.
There’s plenty of space to
enter text.

The Send button
appears in the end
corner.

The full linear layout code
Here’s the full code for the linear layout:

android:gravity is different from
android:layout_gravity. android:gravity
relates to the contents of the view,
while android:layout_gravity relates to
the view itself.

LinearLayout
FrameLayout

you are here 4 187

views and view groups

LinearLayout: a summary
Here’s a summary of how you create linear layouts.

How you specify a linear layout
You specify a linear layout using <LinearLayout>. You must
specify the layout’s width, height, and orientation, but padding is
optional:

Views get displayed in the order they’re listed in the code

When you define a linear layout, you add views to the layout in the
order in which you want them to appear.

That’s everything we’ve covered on linear layouts. Next we’ll take a
look at the frame layout.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 ...>

 ...

</LinearLayout>

Stretch views using weight

By default, all views take up just as much space as necessary for their
content. If you want to make one or more of your views take up more
space, you can use the weight attribute to make it stretch:

android:layout_weight="1"

Use gravity to specify where a view’s contents appear within a view

The android:gravity attribute lets you specify how you want
to position the contents of a view—for example, how you want to
position text inside a text field.

Use layout-gravity to specify where a view appears in its available space

The android:layout_gravity attribute lets you specify where
you want a view in a linear layout to appear in its parent layout. You
can use it to push a view to the end, for instance, or center the view
horizontally.

LinearLayout
FrameLayout

188 Chapter 5

frame layouts

Frame layouts stack their views
As you’ve already seen, linear layouts arrange their views in a single
row or column. Each view is allocated its own space on the screen,
and they don’t overlap one another.

Sometimes, however, you want your views to overlap. As an example,
suppose you want to display an image with some text overlaid on top
of it. You wouldn’t be able to achieve this just using a linear layout.

If you want a layout whose views can overlap, a simple option is to
use a frame layout. Instead of displaying its views in a single row
or column, it stacks them on top of each other. This allows you to,
for example, display text on top of an image.

How you define a frame layout
You define a frame layout using the <FrameLayout> element like
this:

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 ...>

 ...

</FrameLayout>

You use
<FrameLayout>
to define a
frame layout.

These are the same attributes we
used for our linear layout.

Just like a linear layout, the android:layout_width and
android:layout_height attributes are mandatory and specify
the layout’s width and height.

This is where you add any views you
wish to stack in the frame layout.

Create a new project
To see how frame layouts work, we’re going to use one to overlay
text on an image. Create a new Android Studio project for an
application named “Duck” with a company name of “hfad.com”,
making the package name com.hfad.duck. The minimum SDK
should be API 19 so that it will work on most devices. You’ll need an
empty activity called “MainActivity” with a layout called “activity_
main” so that your code matches ours. Make sure you uncheck
the Backwards Compatibility (AppCompat) option when
you create the activity.

LinearLayout
FrameLayout

Frame layouts let your views overlap one
another. This is useful for displaying
text on top of images, for example.

you are here 4 189

views and view groups

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 tools:context="com.hfad.duck.MainActivity">

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:scaleType="centerCrop"

 android:src="@drawable/duck"/>

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:padding="16dp"

 android:textSize="20sp"

 android:text="It's a duck!" />

</FrameLayout>

Add an image to your project
We’re going to use an image called duck.jpg in our layout, so we need to
add it to our project.

To do this, you first need to create a drawable resource folder (if Android
Studio hasn’t already created it for you). This is the default folder for
storing image resources in your app. Switch to the Project view of
Android Studio’s explorer, select the app/src/main/res folder, go to the
File menu, choose the New... option, then click on the option to create
a new Android resource directory. When prompted, choose a resource
type of “drawable”, name the folder “drawable”, and click on OK.

Once you’ve created the drawable folder, download the file duck.jpg from
https://git.io/v9oet, then add it to the app/src/main/res/drawable folder.

We’re going to change activity_main.xml so that it uses a frame layout
containing an image view (a view that displays an image) and a text
view. To do this, replace the code in your version of activity_main.xml
with ours below:

duck.jpg

<xml>
</xml>

app/src/main

activity_main.xml

Duck

res

layout

Then run your app, and we’ll look at what the code does
on the next page.

We’re using a
frame layout.

This adds an
image to the
frame layout.
You’ll find out
more about image
views later in the
chapter.

This crops the image’s edges so
it fits in the available space.

This line tells Android to use the image
named “duck” located in the drawable folder.

This adds a text view
to the frame layout.

We’ve increased the size of the text.

LinearLayout
FrameLayout

In a real-world duck app, you’d want to add this text as a String resource.

190 Chapter 5

frame layouts stack views

A frame layout stacks views in the
order they appear in the layout XML
When you define a frame layout, you add views to the layout in
the order in which you want them to be stacked. The first view is
displayed first, the second is stacked on top of it, and so on. In our
case, we’ve added an image view followed by a text view, so the text
view appears on top of the image view:

<FrameLayout ...>

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:scaleType="centerCrop"

 android:src="@drawable/duck"/>

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:padding="16dp"

 android:textSize="20sp"

 android:text="It's a duck!" />

</FrameLayout>

Position views in the layout using layout_gravity
By default, any views you add to a frame layout appear in the top-
left corner. You can change the position of these views using the
android:layout_gravity attribute, just as you could with a
linear layout. As an example, here’s how you would move the text
view to the bottom-end corner of the image:

...

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:padding="16dp"

 android:layout_gravity="bottom|end"

 android:textSize="20sp"

 android:text="It's a duck!" />

</FrameLayout>

This is the
image view.

This is the text view.

This sinks
the text to
the bottom-
end corner.

LinearLayout
FrameLayout

you are here 4 191

views and view groups

You can nest layouts
One of the disadvantages of using a frame layout is that it’s easy
for views to overlap one another when you don’t want them to.
As an example, you may want to display two text views in the
bottom-end corner, one above the other:

It’s possible to solve this problem by adding margins or padding
to the text views. A neater solution, however, is to add them
to a linear layout, which you then nest inside the frame layout.
Doing this allows you to arrange the two text views linearly,
then position them as a group inside the frame layout:

This is the
linear layout. It
contains two
text views neatly
arranged in a
single column.

Here, the frame
layout contains an
image view and a
linear layout.

We’ll show you the full code for how to do this on the next page.

If you’re not careful, views can
overlap one another like this.

LinearLayout
FrameLayout

192 Chapter 5

full code

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 tools:context="com.hfad.duck.MainActivity">

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:scaleType="centerCrop"

 android:src="@drawable/duck"/>

 <LinearLayout

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:orientation="vertical"

 android:layout_gravity="bottom|end"

 android:gravity="end"

 android:padding="16dp" >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textSize="20sp"

 android:text="It's a duck!" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textSize="20sp"

 android:text="(not a real one)" />

 </LinearLayout>

</FrameLayout>

The full code to nest a layout
Here’s the full code to nest a linear layout in a frame layout.
Update your version of activity_main.xml to include our changes,
then run your app to see how it looks.

<xml>
</xml>

app/src/main

activity_
main.xml

Duck

res

layout

We’re adding a linear layout
that’s just big enough to
contain its text views.

This line sinks
the linear
layout to the
bottom-end
corner of the
frame layout.

Move each
text view
in the linear
layout to the
end of its
available space.

LinearLayout
FrameLayout

you are here 4 193

views and view groups

FrameLayout: a summary
Here’s a summary of how you create frame layouts.

How you specify a frame layout
You specify a frame layout using <FrameLayout>. You must specify
the layout’s width and height:

Views are stacked in the order they appear

When you define a frame layout, you add views to the layout in the
order in which you want them to be stacked. The first view you add is
displayed on the bottom of the stack, the next view is stacked on top
of it, and so on.

Now that you’ve seen how to use two simple Android layouts,
a linear layout and a frame layout, have a go at the following
exercise.

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 ...>

 ...

</FrameLayout>

Use layout-gravity to specify where a view appears

The android:layout_gravity attribute lets you specify where
you want a view in a frame layout to appear. You can use it to push a
view to the end, for instance, or sink it to the bottom-end corner.

activity_
main.xml

LinearLayout
FrameLayout

194 Chapter 5

exercise

BE the Layout
Three of the five screens below were
made from layouts on the next page.
Your job is to match each of the three

layouts to the screen that
the layout would produce.

1

2

3

4

5

you are here 4 195

views and view groups

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.views.MainActivity" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="HELLO!" />
</LinearLayout>

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.views.MainActivity" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:text="HELLO!" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="HI!" />
</LinearLayout>

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.views.MainActivity" >
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="HELLO!" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="HI!" />
</LinearLayout>

A

B

C

196 Chapter 5

solution

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.views.MainActivity" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="HELLO!" />
</LinearLayout>

A

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.views.MainActivity" >
 <Button
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:text="HELLO!" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="HI!" />
</LinearLayout>

B

BE the Layout Solution
Three of the five screens below were
made from layouts on the next page.
Your job is to match each of the three

layouts to the screen that
the layout would produce.

1

3

None of the
layouts produce
these screens.

This has one
button that
fills the screen.

This button fills the screen,
leaving space for another
one underneath it.

you are here 4 197

views and view groups

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.views.MainActivity" >
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="HELLO!" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="HI!" />
</LinearLayout>

C4

You may have noticed that all layout types have attributes in
common. Whichever type of layout you use, you must specify
the layout’s width and height using the android:layout_
width and android:layout_height attributes.
And this requirement isn’t just limited to layouts—the
android:layout_width and android:layout_
height are mandatory for all GUI components too.

This is because all layouts and GUI components are
subclasses of the Android View class. Let’s look at this in
more detail.

Layouts and GUI components have a lot in common

Both buttons have their layout_width
and layout_height properties set to
“wrap_content”, so they take up just
enough space to display their contents.

198 Chapter 5

views

GUI components are a type of View
You’ve already seen that GUI components are all types of views—behind
the scenes, they are all subclasses of the android.view.View class.
This means that all of the GUI components in your user interface have
attributes and behavior in common. They can all be displayed on the
screen, for instance, and you get to say how tall or wide they should be.
Each of the GUI components you use in your user interface takes this
basic functionality and extends it.

Layouts are a type of View called a ViewGroup
It’s not just the GUI components that are a type of view. Under the hood,
a layout is a special type of view called a view group. All layouts are
subclasses of the android.view.ViewGroup class. A view group is a
type of view that can contain other views.

android.view.View

...

android.widget.TextView

...

android.widget.Spinner

...

android.widget.EditText

...

android.widget.Button

...

android.view.View is the base
class of all the GUI components
you use to develop your apps.

android.widget.TextView
is a direct subclass of
the View class.

A spinner is a type of View that you
saw in Chapter 2. We’ll revisit it
later in this chapter.

A GUI component is a
type of view, an object
that takes up space on
the screen.

A layout is a type of
view group, which is
a special type of view
that can contain other
views.

Layouts are a type of
ViewGroup. ViewGroup
is a subclass of View.

android.view.View

...

android.view.ViewGroup

...

android.widget.
LinearLayout

...

android.widget.
FrameLayout

...

you are here 4 199

views and view groups

A View object occupies rectangular space on the screen. It includes
the functionality all views need in order to lead a happy helpful life in
Androidville. Here are some of the qualities of views that we think are the
most important:

What being a view buys you

Size and position
You specify the width and height of views so that Android knows
how big they need to be. You can also say whether any padding is
needed around the view.

Once your view has been displayed, you can retrieve the position
of the view, and its actual size on the screen.

Event handling and listeners
Views can respond to events. You can also create listeners so
that your app can react to things happening in the view. As an
example, all views can react to getting or losing the focus, and a
button (and all of its subclasses) can react to being clicked.

Focus handling
Android handles how the focus moves depending on what the
user does. This includes responding to any views that are hidden,
removed, or made visible.

Getting and setting properties
Each view is a Java object behind the scenes, and that means you
can get and set its properties in your activity code. As an example,
you can retrieve the value selected in a spinner or change the text
in a text view. The exact properties and methods you can access
depend on the type of view.

To help you get and set view properties, each view can have an
ID associated with it so that you can refer to it in your code.

As a view group is also a type of view, this means that all layouts and GUI
components share this common functionality.

android.view.View

getId()

getHeight()

getWidth()

setVisibility(int)

findViewById(int)

isClickable()

isFocused()

requestFocus()

...

Here are some of the View methods you can use in your activity code. As these are in the base View class, they’re common to all views and view groups.

200 Chapter 5

view hierarchy

The layout you define using XML gives you a hierarchical tree of views
and view groups. As an example, here’s a linear layout containing a
button and an editable text field. The linear layout is a view group, and
the button and text field are both views. The view group is the view’s
parent, and the views are the view group’s children:

A layout is really a hierarchy of Views

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 ... >

 <Button

 android:id="@+id/send"

 ... />

 <EditText

 android:id="@+id/message"

 ... />

</LinearLayout>

ViewGroup

ViewView

The linear layout

The button

The editable
text field

We’ve left out a
lot of the XML.
The key thing is
the views that the
view group contains.

Behind the scenes, when you build your app, the layout XML is
converted to a ViewGroup object containing a tree of Views. In the
example above, the button gets translated to a Button object, and
the text view gets translated to a TextView object. Button and
TextView are both subclasses of View.

<Layout>

</Layout>

layout.xml
ViewGroup

View View

This is the reason why you can manipulate the views in your layout
using Java code. Behind the scenes, all of the views are rendered to Java
View objects.

The linear layout

The button
The editable
text field

you are here 4 201

views and view groups

Playing with views
Let’s look at the most common GUI components. You’ve already seen
some of these, but we’ll review them anyway. We won’t show you the
whole API for each of these—just selected highlights to get you started.

Text view
A text view is used for displaying text.

<TextView

 android:id="@+id/text_view"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/text" />

TextView textView = (TextView) findViewById(R.id.text_view);

textView.setText("Some other String");

Defining it in XML
You define a text view in your layout using the <TextView> element.
You use android:text to say what text you want it to display,
usually by using a String resource:

Using it in your activity code
You can change the text displayed in your text view using code like this:

android.view.View

...

android.widget.TextView

...

The TextView API includes many attributes to control the text view’s
appearance, such as the text size. To change the text size, you use the
android:textSize attribute like this:

android:textSize="16sp"

You specify the text size using scale-independent pixels (sp). Scale-
independent pixels take into account whether users want to use large
fonts on their devices. A text size of 16sp will be physically larger on a
device configured to use large fonts than on a device configured to use
small fonts.

202 Chapter 5

editable text views

Editable text view
This is like a text view, but editable.

<EditText

 android:id="@+id/edit_text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:hint="@string/edit_text" />

Defining it in XML
You define an editable text view in XML using the <EditText> element.
You use the android:hint attribute to give a hint to the user as to how to
fill in the field.

You can use the android:inputType attribute to define what type of
data you’re expecting the user to enter so that Android can help them. As an
example, if you’re expecting the user to enter numbers, you can use:

android:inputType="number"

to provide them with a number keypad. Here are some more of our favorites:

EditText editText = (EditText) findViewById(R.id.edit_text);

String text = editText.getText().toString();

Using it in your activity code
You can retrieve the text entered in an editable text view like this:

android.view.View

...

android.widget.TextView

...

android.widget.EditText

...

Value What it does

phone Provides a phone number keypad.

textPassword Displays a text entry keypad, and your input is concealed.

textCapSentences Capitalizes the first word of a sentence.

textAutoCorrect Automatically corrects the text being input.

You can specify multiple input types using the | character. As an example,
to capitalize the first word of a sentence and automatically correct any
misspellings, you’d use:

android:inputType="textCapSentences|textAutoCorrect"

You can find the entire list in the
online Android developer documentation
at https://developer.android.com/
reference/android/widget/TextView.
html#attr_android:inputType.

you are here 4 203

views and view groups

Button
Buttons are usually used to make your app do something
when they’re clicked.

<Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/button_text" />

Defining it in XML
You define a button in XML using the <Button> element. You use
the android:text attribute to say what text you want the button to
display:

Using it in your activity code
You get the button to respond to the user clicking it by using the
android:onClick attribute in the layout XML, and setting it to the
name of the method you want to call in your activity code:

android:onClick="onButtonClicked"

You then define the method in your activity like this:

/** Called when the button is clicked */

public void onButtonClicked(View view) {

 // Do something in response to button click

}

android.view.View

...

android.widget.TextView

...

android.widget.Button

...

Layout

<Layout>

</Layout>

Activity

onButtonClicked()

204 Chapter 5

toggle buttons

Toggle button
A toggle button allows you to choose between two states by clicking a button.

<ToggleButton

 android:id="@+id/toggle_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textOn="@string/on"

 android:textOff="@string/off" />

Defining it in XML
You define a toggle button in XML using the <ToggleButton> element.
You use the android:textOn and android:textOff attributes to say
what text you want the button to display depending on the state of the button:

Using it in your activity code
You get the toggle button to respond to the user clicking it by using the
android:onClick attribute in the layout XML. You give it the name of the
method you want to call in your activity code:

android:onClick="onToggleButtonClicked"

You then define the method in your activity like this:

/** Called when the toggle button is clicked */

public void onToggleButtonClicked(View view) {

 // Get the state of the toggle button.

 boolean on = ((ToggleButton) view).isChecked();

 if (on) {

 // On

 } else {

 // Off

 }

}

This is what the
toggle button looks
like when it’s off.

When you click
the toggle
button, it
changes to
being on.

This returns true if the toggle button is on,
and false if the toggle button is off.

android.view.View

...

android.widget.TextView

...

android.widget.Button

...

android.widget.
CompoundButton

...

android.widget.
ToggleButton

...

This is exactly the same
as calling a method when a
normal button gets clicked.

A compound button
is a button with
two states, checked
and unchecked. A
toggle button is an
implementation of a
compound button.

you are here 4 205

views and view groups

Switch
A switch is a slider control that acts in the same way as a toggle button.

<Switch

 android:id="@+id/switch_view"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textOn="@string/on"

 android:textOff="@string/off" />

Defining it in XML
You define a switch in XML using the <Switch> element. You use the
android:textOn and android:textOff attributes to say what text
you want the switch to display depending on the state of the switch:

Using it in your activity code
You get the switch to respond to the user clicking it by using the
android:onClick attribute in the layout XML, and setting it to the
name of the method you want to call in your activity code:

android:onClick="onSwitchClicked"

You then define the method in your activity like this:

/** Called when the switch is clicked */

public void onSwitchClicked(View view) {

 // Is the switch on?

 boolean on = ((Switch) view).isChecked();

 if (on) {

 // On

 } else {

 // Off

 }

}

This code is very similar to that
used with the toggle button.

android.view.View

...

android.widget.TextView

...

android.widget.Button

...

android.widget.
CompoundButton

...

android.widget.Switch

...

This is the switch
when it's off.

This is the
switch when
it's on.

206 Chapter 5

checkboxes

Checkboxes
Checkboxes let you display multiple options to users. They can then select
whichever options they want. Each of the checkboxes can be checked or
unchecked independently of any others.

Defining them in XML
You define each checkbox in XML using the <CheckBox> element. You
use the android:text attribute to display text for each option:

<CheckBox android:id="@+id/checkbox_milk"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/milk" />

<CheckBox android:id="@+id/checkbox_sugar"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/sugar" />

Using them in your activity code
You can find whether a particular checkbox is checked using the
isChecked() method. It returns true if the checkbox is checked:

CheckBox checkbox = (CheckBox) findViewById(R.id.checkbox_milk);

boolean checked = checkbox.isChecked();

if (checked) {

 //do something

}

android.view.View

...

android.widget.TextView

...

android.widget.Button

...

android.widget.
CompoundButton

...

android.widget.CheckBox

...

Here we have two checkboxes.
Users can choose milk, sugar,
both milk and sugar, or neither.

you are here 4 207

views and view groups

 <CheckBox android:id="@+id/checkbox_milk"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/milk"

 android:onClick="onCheckboxClicked"/>

 <CheckBox android:id="@+id/checkbox_sugar"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/sugar"

 android:onClick="onCheckboxClicked"/>

Just like buttons, you can respond to the user clicking a checkbox by using
the android:onClick attribute in the layout XML, and setting it to the
name of the method you want to call in your activity code:

You then define the method in your activity like this:

public void onCheckboxClicked(View view) {

 // Has the checkbox that was clicked been checked?

 boolean checked = ((CheckBox) view).isChecked();

 // Retrieve which checkbox was clicked

 switch(view.getId()) {

 case R.id.checkbox_milk:

 if (checked)

 // Milky coffee

 else

 // Black as the midnight sky on a moonless night

 break;

 case R.id.checkbox_sugar:

 if (checked)

 // Sweet

 else

 // Keep it bitter

 break;

 }

}

Checkboxes (continued)

In this case, the onCheckboxClicked()
method will get called no matter
which checkbox gets clicked. We
could have specified a different
method for each checkbox if we’d
wanted to.

208 Chapter 5

radio buttons

Radio buttons
These let you display multiple options to the user. The user can select a single
option.

Defining them in XML
You start by defining a radio group, a special type of view group, using the
<RadioGroup> tag. Within this, you then define individual radio buttons
using the <RadioButton> tag:

<RadioGroup android:id="@+id/radio_group"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical">

 <RadioButton android:id="@+id/radio_cavemen"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/cavemen" />

 <RadioButton android:id="@+id/radio_astronauts"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/astronauts" />

</RadioGroup>

Using them in your activity code
You can find which radio button is selected using the
getCheckedRadioButtonId() method:

RadioGroup radioGroup = (RadioGroup) findViewById(R.id.radioGroup);

int id = radioGroup.getCheckedRadioButtonId();

if (id == -1){

 //no item selected

}

else{

 RadioButton radioButton = findViewById(id);

}

android.view.View

...

android.widget.TextView

...

android.widget.Button

...

android.widget.
CompoundButton

...

android.widget.
RadioButton

...

You can choose to
display the radio
buttons in a horizontal
or vertical list.

Use radio buttons to
restrict the user’s
choice to just one
option.

you are here 4 209

views and view groups

You can respond to the user clicking a radio button by using the
android:onClick attribute in the layout XML, and setting it to the
name of the method you want to call in your activity code:

You then define the method in your activity like this:

public void onRadioButtonClicked(View view) {

 RadioGroup radioGroup = (RadioGroup) findViewById(R.id.radioGroup);

 int id = radioGroup.getCheckedRadioButtonId();

 switch(id) {

 case R.id.radio_cavemen:

 // Cavemen win

 break;

 case R.id.radio_astronauts:

 // Astronauts win

 break;

 }

}

<RadioGroup android:id="@+id/radio_group"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical">

 <RadioButton android:id="@+id/radio_cavemen"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/cavemen"

 android:onClick="onRadioButtonClicked" />

 <RadioButton android:id="@+id/radio_astronauts"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/astronauts"

 android:onClick="onRadioButtonClicked" />

</RadioGroup>

Radio buttons (continued)

The radio group
containing the
radio buttons
is a subclass of
LinearLayout.
You can use the
same attributes
with a radio
group as you can
with a linear
layout.

210 Chapter 5

spinners

Spinner
As you’ve already seen, a spinner gives you a drop-down list of values
from which only one can be selected.

Defining it in XML
You define a spinner in XML using the <Spinner> element.
You add a static array of entries to the spinner by using the
android:entries attribute and setting it to an array of Strings.

<Spinner

 android:id="@+id/spinner"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:entries="@array/spinner_values" />

Using it in your activity code
You can get the value of the currently selected item by using the
getSelectedItem() method and converting it to a String:

Spinner spinner = (Spinner) findViewById(R.id.spinner);

String string = String.valueOf(spinner.getSelectedItem());

 <string-array name="spinner_values">

 <item>light</item>

 <item>amber</item>

 <item>brown</item>

 <item>dark</item>

 </string-array>

You can add an array of Strings to strings.xml like this:

android.view.View

...

android.view.ViewGroup

...

android.widget.
AdapterView

...

android.widget.
AbsSpinner

...

android.widget.Spinner

...

We saw spinners
back in Chapter 2.

There are other ways
of populating the
spinner, which you'll
see later in the book.

This is an
abstract
base class for
Spinner widgets.

An AdapterView is a view
that can use an adapter.
You’ll find out about
adapters later in the book.

you are here 4 211

views and view groups

Image view
You use an image view to display an image: android.view.View

...

android.widget.ImageView

...

The ImageView class is a
direct subclass of View.

An image view
contains an image.

Adding an image to your project
You first need to create a drawable resource folder, the default folder for storing
image resources in your app. To do this, select the app/src/main/res folder in your
project, go to the File menu, choose the New... option, then click on the option
to create a new Android resource directory. When prompted, choose a resource
type of “drawable”, name the folder “drawable”, and click on OK. You then
need to add your image to the app/src/main/res/drawable folder.

If you want, you can use different image files depending on the screen density
of the device. This means you can display higher-resolution images on higher-
density screens, and lower-resolution images on lower-density screens. To do this,
you create different drawable folders in app/src/main/res for the different screen
densities. The name of the folder relates to the screen density of the device:

drawable-ldpi Low-density screens, around 120 dpi.

drawable-mdpi Medium-density screens, around 160 dpi.

drawable-hdpi High-density screens, around 240 dpi.

drawable-xhdpi Extra-high-density screens, around 320 dpi.

drawable-xxhdpi Extra-extra-high-density screens, around 480 dpi.

drawable-xxxhdpi Extra-extra-extra high-density screens, around 640 dpi.

You then put different resolution images in each of the drawable* folders, making
sure that each of the image files has the same name. Android decides which
image to use at runtime, depending on the screen density of the device it’s
running on. As an example, if the device has an extra-high-density screen, it will
use the image located in the drawable-xhdpi folder.

If an image is added to just one of the folders, Android will use the same image
file for all devices. If you want your app to use the same image regardless of
screen density, you’d normally put it in the drawable folder.

Depending on what version of
Android Studio you're running, the
IDE may create some of these
folders for you automatically.

212 Chapter 5

image views

Image view: the layout XML
You define an image view in XML using the <ImageView> element.
You use the android:src attribute to specify what image you want to
display, and the android:contentDescription attribute to add a
String description of the image so that your app is more accessible:

<ImageView

 android:layout_width="200dp"

 android:layout_height="100dp"

 android:src="@drawable/starbuzz_logo"

 android:contentDescription="@string/starbuzz_logo" />

The android:src attribute takes a value of the form "@drawable/
image_name", where image_name is the name of the image
(without its extension). Image resources are prefixed with @drawable,
which tells Android that it’s an image resource located in one or more
of the drawable* folders.

ImageView photo = (ImageView)findViewById(R.id.photo);

int image = R.drawable.starbuzz_logo;

String description = "This is the logo";

photo.setImageResource(image);

photo.setContentDescription(description);

Using image views in your activity code
You can set the image source and description in your activity code using
the setImageResource() and setContentDescription()
methods:

This code looks for the image resource called starbuzz_logo in the
drawable* folders, and sets it as the source of an image view with an ID
of photo. When you need to refer to an image resource in your activity
code, you use R.drawable.image_name where
image_name is the name of the image (without its extension).

you are here 4 213

views and view groups

Adding images to buttons
In addition to displaying images in image views, you can also display
images on buttons.

Displaying text and an image on a button
To display text on a button with an image to the right of it, use the
android:drawableRight attribute and specify the image to be
used:

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:drawableRight="@drawable/android"

 android:text="@string/click_me" />

Display the android image resource on
the right side of the button.

If you want to display the image on the left, use the
android:drawableLeft attribute:

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:drawableLeft="@drawable/android"

 android:text="@string/click_me" />

Use the android:drawableBottom attribute to display the image
underneath the text:

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:drawableBottom="@drawable/android"

 android:text="@string/click_me" />

The android:drawableTop attribute displays the image above the
text:

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:drawableTop="@drawable/android"

 android:text="@string/click_me" />

You can also use drawableStart
and drawableEnd to support
right-to-left languages.

214 Chapter 5

image buttons

Image button
An image button is just like a button, except it contains an
image and no text.

<ImageButton

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:src="@drawable/button_icon" />

Defining it in XML
You define an image button in XML using the <ImageButton>
element. You use the android:src attribute to say what image you
want the image button to display:

Using it in your activity code
You get the image button to respond to the user clicking it by using the
android:onClick attribute in the layout XML, and setting it to the
name of the method you want to call in your activity code:

android:onClick="onButtonClicked"

You then define the method in your activity like this:

/** Called when the image button is clicked */

public void onButtonClicked(View view) {

 // Do something in response to button click

}

android.view.View

...

android.widget.ImageView

...

android.widget.
ImageButton

...

Layout

<Layout>

</Layout>

Activity

onButtonClicked()

The ImageButton class
extends the ImageView class,
not the Button class.

you are here 4 215

views and view groups

Scroll view
If you add lots of views to your layouts, you may have problems
on devices with smaller screens—most layouts don’t come with
scrollbars to allow you to scroll down the page. As an example, when
we added seven large buttons to a linear layout, we couldn’t see all of
them.

Linear layouts don't come
with scrollbars. When we
tried to display seven
buttons in a linear layout
on our device, we couldn't
see them all.

To add a vertical scrollbar to your layout, you surround your existing
layout with a <ScrollView> element like this:

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="com.hfad.views.MainActivity" >

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="16dp"

 android:paddingLeft="16dp"

 android:paddingRight="16dp"

 android:paddingTop="16dp"

 android:orientation="vertical" >

 ...

 </LinearLayout>

</ScrollView>

To add a horizontal scrollbar to your layout, wrap your existing
layout inside a <HorizontalScrollView> element instead.

Move these attributes from the original layout to the <ScrollView>, as the <ScrollView> is now the root element.

Wrapping our layout in a
<ScrollView> has added a neat
vertical scrollbar. The user can
now get to all of the views.

216 Chapter 5

toasts pop up

Toasts
There’s one final widget we want to show you in this chapter: a
toast. A toast is a simple pop-up message you can display on the
screen.

Toasts are purely informative, as the user can’t interact with them.
While a toast is displayed, the activity stays visible and interactive.
The toast automatically disappears when it times out.

Using it in your activity code
You create a toast using activity code only. You can’t define one in
your layout.

To create a toast, you call the Toast.makeText() method, and
pass it three parameters: a Context (usually this for the current
activity), a CharSequence that’s the message you want to display,
and an int duration. Once you’ve created the toast, you call its
show() method to display it.

Here’s the code you would use to create a toast that appears on
screen for a short duration:

CharSequence text = "Hello, I'm a Toast!";

int duration = Toast.LENGTH_SHORT;

Toast toast = Toast.makeText(this, text, duration);

toast.show();

java.lang.Object

...

android.widget.Toast

...

A toast isn't actually a
type of view. It’s a useful
way of displaying a short
message to the user, though,
so we're sneaking it into
this chapter.

By default, the toast appears at
the bottom of the screen.

A toast is a message
that pops up like
toast in a toaster.

you are here 4 217

views and view groups

It’s time for you to try out some of the views we’ve introduced you to this chapter. Create a
layout that will create this screen:

You probably won't want to write the
code here, but why not experiment in the
IDE?

218 Chapter 5

solution

Here’s one of the many ways in which you can create the layout. Don’t worry if your code looks
different, as there are many different solutions.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="16dp"
 android:orientation="vertical"
 tools:context="com.hfad.layoutexamples.MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="How do you like your tea served?" />

 <ToggleButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOn="Hot"
 android:textOff="Cold" />

We used a toggle button to display whether
the drink should be served hot or cold.

you are here 4 219

views and view groups

 <CheckBox android:id="@+id/checkbox_milk"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Milk" />

 <CheckBox android:id="@+id/checkbox_sugar"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Sugar" />

 <CheckBox android:id="@+id/checkbox_lemon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Lemon" />

</LinearLayout>

We used a
checkbox for
each of the
values (Milk,
Sugar, and
Lemon). We
put each one
on a separate
row.

Remember, your code may look different from
ours. This is just one way of building the layout.

220 Chapter 5

toolbox

Your Android Toolbox

You’ve got Chapter 5 under
your belt and now you’ve

added views and view groups
to your toolbox.

 � GUI components are all types of
view. They are all subclasses of the
android.view.View class.

 � All layouts are subclasses of the
android.view.ViewGroup class.
A view group is a type of view that can
contain multiple views.

 � The layout XML file gets converted to a
ViewGroup containing a hierarchical
tree of views.

 � A linear layout lists views either
horizontally or vertically. You
specify the direction using the
android:orientation attribute.

 � A frame layout stacks views.

 � Use android:padding* attributes
to specify how much padding you want
around a view.

 � In a linear layout, use
android:layout_weight if you
want a view to use up extra space in the
layout.

 � android:layout_gravity lets
you say where you want views to appear
in their available space.

 � android:gravity lets you say
where you want the contents to appear
inside a view.

 � <ToggleButton> defines a toggle
button that allows you to choose between
two states by clicking a button.

 � <Switch> defines a switch control that
behaves in the same way as a toggle
button. It requires API level 14 or above.

 � <CheckBox> defines a checkbox.

 � To define a group of radio buttons,
first use <RadioGroup> to define
the radio group. Then put individual
radio buttons in the radio group using
<RadioButton>.

 � Use <ImageView> to display an
image.

 � <ImageButton> defines a button with
no text, just an image.

 � Add scrollbars using <ScrollView>
or <HorizontalScrollView>.

 � A Toast is a pop-up message.

CH
AP

T
ER

 5

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

this is a new chapter 221

constraint layouts6

Put Things in Their Place

Let’s face it, you need to know how to create great layouts.
If you’re building apps you want people to use, you need to make sure they look exactly

the way you want. So far you’ve seen how to use linear and frame layouts, but what

if your design is more complex? To deal with this, we’ll introduce you to Android’s new

constraint layout, a type of layout you build visually using a blueprint. We’ll show you

how constraints let you position and size your views, irrespective of screen size and

orientation. Finally, you’ll find out how to save time by making Android Studio infer and

add constraints on your behalf.

Of course I’m sure, I have
the blueprint right in front
of me. It says the toe bone’s
connected to the foot bone,
and the foot bone’s connected
to the ankle bone.

222 Chapter 6

nesting inefficiencies

Nested layouts can be inefficient
You’ve seen how to build a simple user interface using linear layouts
and frame layouts, but what if you need to create something more
complex? While complex UIs are possible if you nest your linear and
frame layouts deep enough, they can slow down your app and make
your code hard to read and maintain.

As an example, suppose you wanted to create a layout containing two
rows, each containing two items. One possibility would be to create this
layout using three linear layouts: one linear layout at the root, and one
nested linear layout for each row:

LinearLayout

LinearLayout

EditTextTextView

LinearLayout

EditTextTextView

While the above hierarchy is still relatively simple, imagine if you
needed more views, more nested layouts, and a deeper hierarchy. This
could lead to bottlenecks in your app’s performance, and leave you
with a mass of code that’s difficult to read and maintain.

If you have a more complex UI that requires you to nest multiple
layouts, it’s usually better to use a different type of layout.

When Android displays a layout on the device screen, it creates a
hierarchy of views based on the layout components which helps it
figure out where each view should be placed. If the layout contains
nested layouts, the hierarchy is more complex, and Android may need
to make more than one pass through the hierarchy:

Each view and layout needs
to be initialized, measured,
laid out, and drawn. This is
a lot of work if you have
deeply nested layouts, and
it can slow down your app.

This is the root linear layout.

This is for
the first
row.

This is
for the
second
row.

Linear layouts only allow you to display views in a single column or row, so you can’t use a single linear layout to construct layouts like this. You can, however, nest linear layouts to produce the results you need.

For this layout, you
could use one linear
layout at the root,
and one nested linear
layout for each row.

you are here 4 223

constraint layouts

Introducing the constraint layout
In this chapter we’re going to focus on using a new type of layout called
a constraint layout. This type of layout is more complex than a
linear or frame layout, but it’s a lot more flexible. It’s also much more
efficient for complex UIs as it gives you a flatter view hierarchy, which
means that Android has less processing to do at runtime.

You design constraint layouts VISUALLY
Another advantage of using constraint layouts is that they’re specifically
designed to work with Android Studio’s design editor. Unlike linear
and frame layouts where you usually hack direct in XML, you build
constraint layouts visually. You drag and drop GUI components onto
the design editor’s blueprint tool, and give it instructions for how each
view should be displayed.

To see this in action, we’re going to take you on a tour of using a
constraint layout, then build the following UI:

To build constraint
layouts using the
visual tools, you need
Android Studio 2.3
or above. If you’re
using an older version,
check for updates.

Create a new project
We’ll start by creating a new Android Studio project for an application
named “My Constraint Layout” with a company domain of “hfad.com”,
making the package name com.hfad.myconstraintlayout. The
minimum SDK should be API 19 so that it will work on most devices.
You’ll need an empty activity called “MainActivity” with a layout
called “activity_main” so that your code matches ours. Make sure you
uncheck the Backwards Compatibility (AppCompat) option
when you create the activity.

This is a
TextView.

These are EditTexts that fill
the available horizontal space.
The Message EditText
fills its available space
horizontally and vertically.

The Send button appears
at the bottom of the
screen in the center.

224 Chapter 6

add library

Make sure your project includes
the Constraint Layout Library
Unlike the other layouts you’ve seen so far, constraint layouts come
in their own library, which you need to add to your project as a
dependency before you can use it. Adding a library as a dependency
means that the library gets included in your app, and downloaded to
the user’s device.

It’s likely that Android Studio added the Constraint Layout Library to
your project automatically, but let’s check. In Android Studio, choose
File→Project Structure. Then click on the app module and choose
Dependencies. You’ll be presented with the following screen:

This is the Constraint Layout Library.

If Android Studio has already added the Constraint Layout
Library for you, you will see it listed as “com.android.support.
constraint:constraint-layout,” as shown above.

If the library hasn’t been added for you, you will need to add it
yourself. To do this, click on the “+” button at the bottom or right
side of the Project Structure screen. Choose the Library Dependency
option, and select the Constraint Layout Library option from the list.
If you don’t see it listed, type the following text into the search box:

When you click on the OK button, the Constraint Layout Library
should be added to the list of dependencies. Click on OK again to
save your changes and close the Project Structure window.

Now that we know that our project contains the Constraint Layout
Library, let’s add the String resources we’ll need for our layout.

com.android.support.constraint:constraint-layout:1.0.2
You only need to type this in if
the Constraint Layout Library
hasn’t already been added to
your project as a dependency.

you are here 4 225

constraint layouts

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="com.hfad.myconstraintlayout.MainActivity">

</android.support.constraint.ConstraintLayout>

Change activity_main.xml to use a constraint layout

If Android Studio added any extra views for you, delete them.

Add the String resources to strings.xml

...

 <string name="to_label">To:</string>

 <string name="email_hint">Enter email address</string>

 <string name="subject_hint">Subject</string>

 <string name="message_hint">Message</string>

 <string name="send_button">Send</string>

...

<xml>
</xml>

app/src/main

strings.xml

MyConstraintLayout

res

values

Now that we’ve added our String resources, we’ll update the
layout.

Each of the views in our layout will display text values or hints,
so we’ll add these as String resources. Add the String values
below to strings.xml:

We’re going to use a constraint layout. To do this (and to make
sure that your layout matches ours), update your code in activity_
main.xml to match the code below (our changes are in bold):

This defines a constraint layout to which we can add views.
We’ll do this using the design editor’s blueprint tool.

This is how
you define a
constraint
layout.

<xml>
</xml>

app/src/main

activity_
main.xml

MyConstraintLayout

res

layout

226 Chapter 6

use the blueprint

Use the blueprint tool
To use the blueprint tool, first switch to the design view
of your layout code by clicking on the Design tab. Then
click on the Show Blueprint button in the design editor’s
toolbar to display the blueprint. Finally, drag a Button
widget from the design editor’s palette to the blueprint.
This adds a button to your layout:

Click on the Show Blueprint button to display
the blueprint and make it nice and big.

Here’s the
Button
widget
in the
palette. Drag a button to the blueprint

Here’s our
button.

This area
marks out
where any
bars at
the top
of your
app will be
displayed.

This marks
out an
area for
your main
device
buttons.

You can drag views
anywhere in the
blueprint’s main area.

You can
increase
the size
of the
palette
by clicking
on this
area and
dragging
downward.

you are here 4 227

constraint layouts

Position views using constraints
With a constraint layout, you don’t specify where views should be
positioned by dropping them on the blueprint in a particular place.
Instead, you specify placement by defining constraints. A constraint
is a connection or attachment that tells the layout where the view should
be positioned. For example, you can use a constraint to attach a view to
the start edge of the layout, or underneath another view.

To add a constraint, you click on one of the view’s constraint handles
and drag it to whatever you want to attach it to. In our case, we’re going
to attach the left edge of the button to the left edge of the layout, so click
on the left constraint handle and drag it to the left edge of the blueprint:

We’ll add a horizontal constraint to the button
To see how this works, let’s add a constraint to attach our button to the
left edge of the layout.

First, make sure the button’s selected by clicking it. When you select a
view, a bounding box is drawn around it, and handles are added to its
corners and sides. The square handles in the corners let you resize the
view, and the round handles on the sides let you add constraints:

This adds the constraint, and pulls the button over to the left:

That’s how you add a horizontal constraint. We’ll add a vertical
constraint to the button next.

When you select a
view, a bounding box
is drawn around it.

Use the square handles at the
corners to resize the view.
Use the round handles on the sides to add constraints.

Click on the round handle on the
button’s left side, and drag it to
the left edge of the blueprint.

The button slides to the
edge of the blueprint when you add the constraint.

228 Chapter 6

vertical constraints

Add a vertical constraint
Let’s add a second constraint to the button to attach it to the
top of the layout. To do this, click on the button’s top constraint
handle, and drag it to the top of the blueprint’s main area. This
adds the second constraint, and the button slides to the top of the
main area.

Each view in a constraint layout must have at least two
constraints—a horizontal constraint and a vertical one—in order
to specify where it should be positioned. If you omit the horizontal
constraint, the view is displayed next to the start edge of the
layout at runtime. If you omit the vertical constraint, the view
is displayed at the top of the layout. This is irrespective of
where the view is positioned in the blueprint.

Changing the view’s margins
When you add a constraint to a view, the design editor
automatically adds a margin on the same edge as the constraint.
You can set the size of the default margin in the design editor’s
toolbar by changing the number in the Default Margin box:

Change the number here (in dps) to change the default margin.

Changing the size of the default margin specifies the size
of any new margins that get added. The size of any existing
margins remain unchanged, but you can change these using the
property window.

The property window is displayed in a separate panel at the
side of the design editor. When you select a view, it displays
a diagram featuring the view’s constraints and the size of its
margins. To change the size of a margin, you change the
number next to the relevant side of the view.

You can also change the size of a view’s margins by clicking
and dragging the view in the blueprint. This technique has the
same effect as changing the size of the margin in the property
window, but it’s harder to be precise.

Try changing the size of both margins using each method
before looking at the next page.

Click on the round
handle on the
button’s top edge,
and drag it to the
top of the blueprint.

The button slides
to the top of
the blueprint’s
main area.

This is the property window.

This is the
constraint
on the view’s
left side.

This is the
size of the
margin on the
left side, in
this case 8.

This represents the view.

you are here 4 229

constraint layouts

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

 ...>

 <Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="8dp"

 android:layout_marginTop="32dp"

 android:text="Button"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

Changes to the blueprint
are reflected in the XML
When you add views to the blueprint and specify constraints, these
changes are reflected in the layout’s underlying XML. To see
this, switch to the text view of your code. Your code should look
something like this (but don’t worry if it’s slightly different):

As you can see, our XML now includes a button. Most of the
code for the button should look familiar to you, as it’s material we
covered in Chapter 5. The button’s width, height, and margins are
specified in exactly the same way as before. The only unfamiliar
code is the two lines that specify the view’s constraints on its left and
top edges:

<Button>

 ...

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

Similar code is generated if you add constraints to the button’s
remaining edges.

Next, switch your code back to design view, and we’ll look at other
techniques for positioning your views in a constraint layout.

<xml>
</xml>

app/src/main

activity_
main.xml

MyConstraintLayout

res

layout

The design editor’s added a button.

These are all
attributes you’ve
seen before.

These lines only apply
to constraint layouts.

These lines describe the constraints
on the button’s left and top edges.

230 Chapter 6

being centered

How to center views
So far you’ve seen how you can use constraints to attach a view
to the edge of its layout. This works well if you want to position a
view in the top-left corner, for example, but what if you want to
position it in the center?

To position views in the center of its layout, you add constraints
to opposite sides of the view. Let’s see how this works by centering
our button horizontally.

Make sure the button is selected, then click on the constraint
handle on its right edge, and drag it to the right edge of the layout:

This adds a constraint to the view’s right edge. As the button
now has two horizontal constraints, one on each side, the button
is pulled to the center, and the two opposing constraints are
displayed in the blueprint as springs:

As the button is now attached to both sides of the layout, it’s
displayed in the center irrespective of screen size or orientation.
You can experiment with this by running the app, or changing
the size of the blueprint by dragging the blueprint’s bottom-right
corner:

Constraints on opposite
sides of a view are
displayed as springs.

Click on the constraint handle on the
button’s right edge, and drag it to
the right edge of the blueprint.

The button moves
to the center.

You can resize the blueprint
by clicking and dragging its
bottom-right corner.

you are here 4 231

constraint layouts

Adjust a view’s position by updating its bias

To change the value of the bias, simply move the slider. If you move
the slider to the left, for example, it moves the button in the blueprint
to the left too:

Once you’ve added constraints to opposite sides of your view, you can
control where it should be positioned relative to each side by changing
its bias. This tells Android what the proportionate length of the
constraint should be on either side of the view.

To see this in action, let’s change our button’s horizontal bias so that
it’s positioned off-center. First, make sure the button’s selected, then
look in the view’s property window. Underneath the diagram of the
view, you should see a slider with a number in it. This represents the
view’s horizontal bias as a percentage:

The view maintains this relative position irrespective of screen size
and orientation.

When you add a bias to a view in the design editor, this is reflected
in the underlying XML. If you change the horizontal bias of your
view to 25%, for example, the following code gets added to the
view’s XML:

app:layout_constraintHorizontal_bias="0.25"

Now that you know how bias works, let’s look at how you specify a
view’s size.

The view’s property window shows we’ve added constraints to its left and right edges.
This slider is for the view’s
horizontal bias. It currently displays
50 as the view is displayed halfway
between its horizontal constraints.

Moving
the
slider...

...moves
the
button.

You can also move the button by clicking and dragging it, but that technique is less accurate.

232 Chapter 6

change size

How to change a view’s size
With a constraint layout, you have several different options for
specifying a view’s size:

 Make it a fixed size by specifying a specific width and height.¥
 Use wrap_content to make the view just big enough to display its contents.¥

 Specify a ratio for the width and height so that, for example, the view’s width is
twice the size of its height.

¥

 Tell it to match the size of its constraints (if you’ve added constraints to
opposite sides of the view).

¥

We’ll go through these options one-by-one.

1. Make the view a fixed size
There are a couple of ways of using the design editor to make
the view a fixed size. One way is to simply resize the view in the
blueprint by clicking and dragging the square resizing handles on its
corners. The other way is to type values into the layout_width
and layout_height fields in the properties window:

2. Make it just big enough
To make the view just large enough to display its contents, change the
view’s layout_width and layout_height properties to wrap_
content. You do this in the view’s property window as shown here:

In general, making your view a fixed size is a bad idea, as it
means the view can’t grow or shrink to fit the size of its contents or
the size of the screen.

You can resize a view
using the square resizing
handles on its corners.

You can also
hardcode the
width and height
in the view’s
property window.

Setting the width and height to
“wrap_content” makes it just large
enough to display its contents, just
as it does in other layouts.

you are here 4 233

constraint layouts

3. Match the view’s constraints
If you’ve added constraints to opposite sides of your view, you can
make the view as wide as its constraints. You do this by setting its
width and/or height to 0dp: set its width to 0dp to get the view to
match the size of its horizontal constraints, and set its height to 0dp
to get it to match the size of its vertical constraints.

In our case, we’ve added constraints to the left and right sides of
our button, so we can get the button to match the size of these
constraints. To do this, go to the view’s property window, and
change the layout_width property to 0dp. In the blueprint, the
button should expand to fill the available horizontal space (allowing
for any margins):

4. Specify the width:height ratio
Finally, you can specify an aspect ratio for the view’s width
and height. To do this, change the view’s layout_width or
layout_height to 0dp as you did above, then click in the top-left
corner of the view diagram that’s displayed in the property window.
This should display a ratio field, which you can then update:

Now that you’ve seen how to resize a view, try experimenting with the
different techniques before having a go at the exercise on the next page.

Set the width
to 0dp, and the
button is sized
to match its
constraints.

Click here to
toggle the view’s
aspect ratio.

Here the ratio is set to
1:1, which makes the view’s
width and height equal.

234 Chapter 6

exercise

BE the Constraint
Your job is to play like you’re the
constraint layout and draw the constraints
that are needed to produce each layout.

You also need to specify the
layout_width, layout_height,
and bias (when needed) for
each view. We’ve completed
the first one for you.

B

A

This is
how we
want
the
screen
to look.

You need to add the views and
constraints to each blueprint.

layout_width: wrap_content
layout_height: wrap_contentA button appears in

the top-right corner.

A button’s centered at
the bottom of the screen.

you are here 4 235

constraint layouts

C

D

The button fills the available space.

Button 1 is displayed
in the top-left corner.
Button 2 fills the
remaining horizontal space.

236 Chapter 6

solution

BE the Constraint Solution
Your job is to play like you’re the
constraint layout and draw the constraints
that are needed to produce each layout.

You also need to specify the
layout_width, layout_height,
and bias (when needed) for
each view. We’ve completed
the first one for you.

B

A

This is
how we
want
the
screen
to look.

layout_width: wrap_content
layout_height: wrap_contentA button appears in

the top-right corner.

A button’s centered at
the bottom of the screen.

layout_width: wrap_content
layout_height: wrap_content
bias: 50%

Adding
constraints to
each vertical
edge and setting
the bias to
50% will center
the button
horizontally.

you are here 4 237

constraint layouts

C

D

The button fills the available space.

layout_width: 0dp
layout_height: 0dp

The button needs to stretch
in all directions, so it requires
constraints on all edges, and
its width and height need to
be set to 0dp.

Button 1 is displayed
in the top-left corner.
Button 2 fills the
remaining horizontal space.

Button 1:
layout_width: wrap_content
layout_height: wrap_content

Button 2:
layout_width: 0dp
layout_height: wrap_content

To make Button 2 fill the
remaining horizontal space,
we add constraints to each
vertical edge and set its
width to 0dp. Its left edge is
attached to Button 1’s right
edge.

238 Chapter 6

align views

How to align views
So far you’ve seen how to position and size a single view. Next,
let’s examine how you align it with another view.

First, click on the Show Constraints button in the design edit
toolbar to display all the constraints in the blueprint (not just the
ones for the selected view). Then drag a second button from the
palette to the blueprint, and place it underneath the first:

To display the second button underneath the first when the app
runs, we need to add a constraint to the second button’s top edge,
and attach it to the first button’s bottom edge. To do this, select
the second button, and draw a constraint from its top edge to the
bottom edge of the other button:

To align the left edges of both buttons, select both buttons by
holding down the Shift key when you select each one, then click
on the Align Left Edges button in the design editor toolbar:

This adds a constraint from the left edge of the second button to
the left edge of the first, and this constraint aligns the view’s edges.

This is the Show Constraints
button. Clicking on it shows
(or hides) all the constraints
in the layout.

Add a second button
to the blueprint,
underneath the first.

This adds a constraint attaching the top of
one button to the bottom edge of the other.

Clicking on this
button gives you
different options
for aligning views.

Aligning the
view’s left
edges adds
another
constraint.

you are here 4 239

constraint layouts

Let’s build a real layout
You now know enough about constraint layouts to start building a
real one. Here’s the layout we’re going to create:

We’ll build it from scratch in activity_main.xml, so before we get
started, delete any views that are already in the layout so that the
blueprint’s empty, and make sure your activity_main.xml code looks
like this:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="com.hfad.myconstraintlayout.MainActivity">

</android.support.constraint.ConstraintLayout>

<xml>
</xml>

app/src/main

activity_
main.xml

MyConstraintLayout

res

layout

This is a
TextView.

These are EditTexts
that fill the available
horizontal space.

The Message EditText
fills its available space
horizontally and vertically.

The Send Button appears
at the bottom of the
screen in the center.

240 Chapter 6

top line

First, add the top line of views
We’re going to start by adding the views we want to appear at
the top of the layout: a text view and an editable text field.

To do this, switch to the design editor if you haven’t already
done so, then drag a TextView from the palette to the top-left
corner of the blueprint. Next, drag an E-mail component to the
blueprint so it’s positioned to the right of the text view. This
is an editable text field that uses Android’s email keyboard for
data entry. Manually resize the E-mail component so that it
lines up with the text view and fills any remaining horizontal
space:

Notice that we haven’t added any constraints to either view yet,
and we’ve positioned them where we want them to appear when
the layout’s displayed on a device. There’s a good reason for this:
to save us some work, we’re going to get the design editor
to figure out the constraints.

Get the design editor to infer the constraints
As you already know, a constraint layout uses constraints to
determine where its views should be positioned. The great news
is that the design editor has an Infer Constraints button that’s
designed to work out what it thinks the constraints should be,
and add them. To use this feature, simply click on the Infer
Constraints button in the design editor’s toolbar:

The top line of the layout
features a TextView label and an
EditText for the email address.

Place the TextView and E-mail components
in the blueprint so they reflect how you
want them to appear in the layout.

This is the Infer Constraints
button. Click it now.

you are here 4 241

constraint layouts

If you don’t like what the Infer Constraints feature has done, you can
undo the changes it’s made by choosing Undo Infer Constraints from
the Edit menu, or adjust individual constraints.

We’re going to tweak our views before adding more items to the blueprint.
First, select the text view in the blueprint, then edit its properties in
the properties panel to give it an ID of to_label and a text value
of "@string/to_label". This does the same thing as adding the
following lines of code to the <TextView> element in the XML:

The Infer Constraints feature
guesses which constraints to add
When you click on the Infer Constraints button, the design editor tries
to figure out what the constraints should be and adds them for you. It’s
not completely foolproof, as it can’t read your mind (as far as we know)
to determine how you want the layout to behave on a real device. It
simply guesses based on each view’s position in the blueprint.

Here are the changes the design editor made for us when we clicked on
the Infer Constraints button (yours may look different if you positioned
your views differently):

android:id="@+id/to_label"

android:text="@string/to_label"

Next, select the E-mail component EditText, and change its ID to
email_address, its layout_height to "wrap_content", and
its hint to "@string/email_hint". This does the same thing as
adding these lines to the <EditText> element in the XML:

When you update the ID, don’t worry
if Android Studio displays a message
telling you it’s going to make changes to
the code. We want it to do this because
we’re changing the view’s ID.

android:id="@+id/email_address"

android:layout_height="wrap_content"

android:hint="@string/email_hint"

Now that we’ve added the first line of views to the blueprint, let’s add
some more.

Clicking on the
Infer Constraints
button added
constraints to
both views.

You can check the
details of each
constraint by
selecting each view
in turn and looking
at its values in the
property window.

Android Studio adds these lines
of code when you change the
view’s ID and text value.

Android Studio adds these lines of code when you
change the view’s layout_height and hint value.

Update this property to change
the TextView’s text value.

242 Chapter 6

more lines

Add the next line to the blueprint...
The next row of the layout contains an editable text field for the
message subject. Drag a Plain Text component from the palette to
the blueprint, and position it underneath the two items we’ve already
added. This adds an EditText to the blueprint. Then change the
component’s size and position so that it lines up with the other views
and fills the horizontal space:

Then click on the Infer Constraints button again. The design editor
adds more constraints, this time positioning the new component:

...and then add the button
Next, we’ll add a button to the bottom of the layout. Drag a Button
component to the bottom of the blueprint and center it horizontally.
When you click on the Infer Constraints button this time, the design
editor adds these constraints to it:

Select the new view in the blueprint, and then change its ID to
subject, its layout_height to "wrap_content", and its hint
to "@string/subject_hint", and delete any text in the text
property that the design editor may have added.

Change the button’s ID to send_button and its text to
"@string/send_button".

We’ll add an EditText
below the first two views.

The Plain Text component adds
an EditText to the layout.

The design editor adds
constraints to the new
EditText when we click on
the Infer Constraints button.

Remember, when you click on the Infer Constraints button in your layout, it may give you different results than shown here.

The button goes at the bottom of
the layout, centered horizontally.

you are here 4 243

constraint layouts

Finally, add a view for the message
We have one more view to add to our layout, an editable text
field that we want to be able to grow to fill any remaining space.
Drag a Plain Text component from the palette to the middle of
the blueprint, change its size so that it fills the entire area, and
then click on the Infer Constraints button:

Select the new component in the blueprint, then change its
ID to message, its hint to "@string/message_hint",
and its gravity to top, and delete any text in the text
property that the design editor may have added.

Let’s take the app for a test drive and see what the layout
looks like.

You may need to click on the
“View all properties” button
to see the gravity property.

Note that we could have added all
these views in one go, and clicked the
Infer Constraints button when we
reached the end. We’ve found, however,
that building it up step-by-step gives
the best results. Why not experiment
and try this out for yourself?

We want the Message EditText
to fill the remaining area.

This time, the Infer
Constraints button
added constraints to
our new EditText.

244 Chapter 6

test drive

Test drive the app
When we run the app, MainActivity’s layout looks almost
exactly how we want it to. When we rotate the device, the
button stays centered, the email and subject editable text fields
expand to fill the horizontal space, and the message view fills the
remaining area:

Remember that your layout may look and behave differently
than ours depending on what constraints the design editor added
when you clicked on the Infer Constraints button. The feature
isn’t perfect, but it usually takes you most of the way there, and
you can undo or update any changes it makes.

The button is centered
horizontally at the bottom of
the screen irrespective of the
screen size and orientation.

The editable text
fields stretch to fill
their available space.

Test your constraint layout on a variety
of device sizes and orientations to make
sure it behaves the way you want. If it
doesn’t, you may need to change the
properties of some of your views and
their constraints.

you are here 4 245

constraint layouts
CHAPT

ER 6

Your Android Toolbox

You’ve got Chapter 6 under
your belt and now you’ve

added constraint layouts to
your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

 � Constraint layouts are designed to work
with Android Studio’s design editor. They
have their own library and can be used in
apps where the minimum SDK is API level
9 or above.

 � Position views by adding constraints. Each
view needs at least one horizontal and
one vertical constraint.

 � Center views by adding constraints to
opposite sides of the view. Change the
view’s bias to update its position between
the constraints.

 � You can change a view’s size to match its
constraints if the view has constraints on
opposing sides.

 � You can specify a width:height aspect ratio
for the view’s size.

 � Clicking on the Infer Constraints button
adds constraints to views based on their
position in the blueprint.

Q: Is a constraint layout my only
option if I want to create complex
layouts?

A: There are other types of layout as
well, such as relative and grid layouts, but
the constraint layout does everything that
these do. Also it’s designed to work with
Android Studio’s design editor, which makes
building constraint layouts much easier.

If you’re interested in finding out more
about relative and grid layouts, they're
covered in Appendix I at the back of the
book.

Q: Why do constraint layouts have a
separate library?

A: Constraint layouts are a fairly recent
addition to Android compared to other types
of layout. They’re in a separate library so
that they can be added to apps that support
older versions of Android. You’ll find out
more about backward compatibility in later
chapters.

Q: Can I still edit constraint layouts
using XML?

A: Yes, but as they’re designed to be
edited visually, we’ve concentrated on
building them using the design editor.

Q: I tried using the Infer Constraints
feature but it didn’t give me the results I
wanted. Why not?

A: The Infer Constraints feature can
only make guesses based on where you
position views in the blueprint, so it may not
always give you the results you want. You
can, however, edit the changes the Infer
Constraints feature makes to your app.

this is a new chapter 247

Sheesh! So many
ideas... However will I turn
all of these into the most
downloaded app of the year?

list views and adapters7

Getting Organized

Want to know how best to structure your Android app?
You’ve learned about some of the basic building blocks that are used to create apps,

and now it’s time to get organized. In this chapter, we’ll show you how you can take a

bunch of ideas and structure them into an awesome app. You'll learn how lists of data

can form the core part of your app design, and how linking them together can create a

powerful and easy-to-use app. Along the way, you’ll get your first glimpse of using event

listeners and adapters to make your app more dynamic.

248 Chapter 7

ideas

Every app starts with ideas
When you first come up with an idea for an app, you’ll have
lots of thoughts about what the app should contain.

As an example, the guys at Starbuzz Coffee want a new app
to entice more customers to their stores. These are some of
the ideas they came up with for what the app should include:

These are all ideas that users of the app will find useful.
But how do you take all of these ideas and organize them
into an intuitive, well-structured app?

Show details of

each drink.

Display a menu
showing all the
food you can
buy.

Show a list of all

our stores. Display the
address and
opening times of each store.

Display a list of
the drinks we
sell.

Show details of

an item of food.

Display a start
screen with a
list of options.

you are here 4 249

list views and adapters

Organize your ideas:
top-level, category, and detail/edit activities
A useful way to bring order to these ideas is to organize
them into three different types of activity: top-level
activities, category activities, and detail/edit activities.

Display
a menu
showing all
the food you
can buy.

Show a list of

all our stores.Category activities
Category activities show the data that belongs to a
particular category, often in a list. These type of activities
are often used to help the user navigate to detail/edit
activities. An example of a category activity is a list of all
the drinks available at Starbuzz.

Display a list
of the drinks
we sell.

Top-level activities
A top-level activity contains the things that are most
important to the user, and gives them an easy way of
navigating to those things. In most apps, the first activity
the user sees will be a top-level activity.

Display a
start screen
with a list of
options.

Detail/edit activities
Detail/edit activities display details for a particular
record, let the user edit the record, or allow the user to
enter new records. An example of a detail/edit activity
would be an activity that shows the user the details of a
particular drink.

Show details

of each

drink. Show details

of an item of

food.

Display the
address
and opening
times of
each store.

Once you’ve organized your activities, you can use
them to construct a hierarchy showing how the user will
navigate between activities.

Think of an app you’d like to create. What activities should it include? Organize these activities
into top-level activities, category activities, and detail/edit activities.

250 Chapter 7

organize your ideas

Display a
menu showing
all the food
you can buy.

Show a list of
all our stores.

Category activities go
between top-level and
detail/edit activities
Your users will navigate from the
top-level activity to the category
activities. In complex apps, you
might have several layers of
categories and subcategories.

Display a list
of the drinks
we sell.

Top-level activities go at
the top
These are the activities your user
will encounter first, so they go at
the top.

Display a
start screen
with a list of
options.

Detail/edit activities
These form the bottom layer
of the activity hierarchy. Users
will navigate to these from the
category activities.

Show details
of each drink.

Show details
of an item of
food.

Display the
address and
opening times
of each store.

Navigating through the activities
When you organize the ideas you have into top-level, category,
and detail/edit activities, you can use this organization scheme
to figure out how to navigate through your app. In general, you
want your users to navigate from top-level activities to detail/
edit activities via category activities.

As an example, suppose a user wanted to look at details of one
of the drinks that Starbuzz serves. To do this, she would launch
the app, and be presented with the top-level activity start screen
showing her a list of options. The user would click on the option
to display a list of drinks. To see details of a particular drink, she
would then click on her drink of choice in the list.

you are here 4 251

list views and adapters

Use list views to navigate to data
When you structure your app in this way, you need a way of navigating
between your activities. A common approach is to use list views. A
list view allows you to display a list of data that you can then use to
navigate through the app.

As an example, on the previous page, we said we’d have a category
activity that displays a list of the drinks sold by Starbuzz. Here’s what
the activity might look like:

The activity uses a list view to display all the drinks that are sold by
Starbuzz. To navigate to a particular drink, the user clicks on one of
the drinks, and the details of that drink are displayed.

We’re going to spend the rest of this chapter showing you how to use
list views to implement this approach, using the Starbuzz app as an
example.

This is a list view
containing a list
of drinks.

If you click on the Latte
option in the list view, you
get shown the details for
the latte.

252 Chapter 7

welcome to starbuzz

We’re going to build the Starbuzz app
Rather than build all the category and detail/edit activities required
for the entire Starbuzz app, we’ll focus on just the drinks.
We’re going to build a top-level activity that the user will see when
they launch the app, a category activity that will display a list of
drinks, and a detail/edit activity that will display details of a single
drink.

The top-level activity
When the user launches the app, she will
be presented with the top-level activity, the
main entry point of the app. This activity
includes an image of the Starbuzz logo, and a
navigational list containing entries for Drinks,
Food, and Stores.

When the user clicks on an item in the list, the
app uses her selection to navigate to a separate
activity. As an example, if the user clicks
on Drinks, the app starts a category activity
relating to drinks.

The drink category activity
This activity is launched when the user
chooses Drinks from the navigational list in the
top-level activity. The activity displays a list
of all the drinks that are available at Starbuzz.
The user can click on one of these drinks to see
more details of it.

The Starbuzz logo, and
a list of options. We’ll
implement the Drinks
option.

We’ll just use three drinks,
but we're sure Starbuzz
serves many more.

part of

you are here 4 253

list views and adapters

The drink detail activity
The drink detail activity is launched when the
user clicks on one of the drinks listed by the
drink category activity.

This activity displays details of the drink the
user has selected: its name, an image of it, and
a description.

How the user navigates through the app
The user navigates from the top-level activity to the drink category
activity by clicking on the Drinks item in the top-level activity. She
then navigates to the drink detail activity by clicking on a drink.

The drink detail
activity displays
details of the drink
selected by the user.

The user clicks on
the Drinks item
and this displays a
list of drinks.

When the user
clicks on a drink,
that drink is then
displayed.

254 Chapter 7

app structure

<Layout>

</Layout>

activity_top_level.xml

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

The Starbuzz app structure
The app contains three activities. TopLevelActivity is the app’s
top-level activity and allows the user to navigate through the app.
DrinkCategoryActivity is a category activity; it contains a
list of all the drinks. The third activity, DrinkActivity, displays
details of a given drink.

For now, we’re going to hold the drink data in a Java class. In a later
chapter, we’re going to move it into a database, but for now we want
to focus on building the rest of the app without teaching you about
databases too.

Here’s how the app will work:

When the app gets launched, it starts activity TopLevelActivity.
This activity uses layout activity_top_level.xml. The activity displays a list of
options for Drinks, Food, and Stores.

1

The user clicks on Drinks in TopLevelActivity, which launches
activity DrinkCategoryActivity.
This activity uses layout activity_drink_category.xml and displays a list of drinks. It
gets information about the drinks from the Drink.java class file.

2

1 2

DrinkCategoryActivity.java DrinkActivity.java

Drink.java

The user clicks on a drink in DrinkCategoryActivity, which
launches activity DrinkActivity.
The activity uses layout activity_drink.xml. This activity also gets details about the
drinks from the Drink.java class file.

3

3

<Layout>

</Layout>

activity_drink_category.xml

you are here 4 255

list views and adapters

Create TopLevelActivity and its layout.
This activity is the entry point for the app. It needs to
display the Starbuzz logo and include a navigational
list of options. TopLevelActivity needs to launch
DrinkCategoryActivity when the Drinks option is clicked.

2

Add the Drink class and image resources.
This class contains details of the available drinks,
and we’ll use images of the drinks and Starbuzz
logo in the app.

1

Create DrinkCategoryActivity and its layout.
This activity contains a list of all the drinks that are
available. When a drink is clicked, it needs to launch
DrinkCategory.

3

Here’s what we’re going to do
There are a number of steps we’ll go through to build the app:

Create the project
You create the project for the app in exactly the same way you did
in the previous chapters.

Create a new Android project for an application named “Starbuzz”
with a company domain of “hfad.com”, making the package name
com.hfad.starbuzz. The minimum SDK should be API 19.
You’ll need an empty activity called “TopLevelActivity” and a
layout called “activity_top_level”. Make sure you uncheck the
Backwards Compatibility (AppCompat) checkbox.

Create DrinkActivity and its layout.
This activity displays details of the drink the user
clicked on in DrinkCategoryActivity.

4

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

activity_drink.xml

256 Chapter 7

Drink class

The Drink class
We’ll start by adding the Drink class to the app. Drink.java is a pure Java class file that
activities will get their drink data from. The class defines an array of three drinks, where
each drink is composed of a name, description, and image resource ID. Switch to the
Project view of Android Studio’s explorer, select the com.hfad.starbuzz package in the
app/src/main/java folder, then go to File→New...→Java Class. When prompted, name
the class “Drink”, and make sure the package name is com.hfad.starbuzz. Then
replace the code in Drink.java with the following, and save your changes.

package com.hfad.starbuzz;

public class Drink {
 private String name;
 private String description;
 private int imageResourceId;

 //drinks is an array of Drinks
 public static final Drink[] drinks = {
 new Drink("Latte", "A couple of espresso shots with steamed milk",
 R.drawable.latte),
 new Drink("Cappuccino", "Espresso, hot milk, and a steamed milk foam",
 R.drawable.cappuccino),
 new Drink("Filter", "Highest quality beans roasted and brewed fresh",
 R.drawable.filter)
 };

 //Each Drink has a name, description, and an image resource
 private Drink(String name, String description, int imageResourceId) {
 this.name = name;
 this.description = description;
 this.imageResourceId = imageResourceId;
 }

 public String getDescription() {
 return description;
 }

 public String getName() {
 return name;
 }

 public int getImageResourceId() {
 return imageResourceId;
 }

 public String toString() {
 return this.name;
 }
}

Each Drink has a name, description, and image resource ID. The image resource ID refers to drink images we'll add to the project on the next page.

drinks is an array of three Drinks.

The Drink
constructor

These are getters for
the private variables.

The String representation
of a Drink is its name.

These are
images of the
drinks. We’ll
add these next.

app/src/main

Drink.java

Starbuzz

java

com.hfad.starbuzz

you are here 4 257

list views and adapters

The image files
The Drink code includes three image resources for its drinks with
IDs of R.drawable.latte, R.drawable.cappuccino, and
R.drawable.filter. These are so we can show the user images
of the drinks. R.drawable.latte refers to an image file called latte,
R.drawable.cappuccino refers to an image file called cappuccino, and
R.drawable.filter refers to a file called filter.

We need to add these image files to the project, along with an image of the
Starbuzz logo so that we can use it in our top-level activity. First, create
the app/src/main/res/drawable folder in your Starbuzz project (if it doesn’t
already exist). To do this, make sure you’ve switched to the Project view of
Android Studio’s explorer, select the app/src/main/res folder, go to the File
menu, choose the New... option, then click on the option to create a new
Android resource directory. When prompted, choose a resource type of

“drawable”, name the folder “drawable”, and click on OK.

Once your project includes the drawable folder, download the files starbuzz-
logo.png, cappuccino.png, filter.png, and latte.png from https://git.io/v9oet. Finally,
add each file to the app/src/main/res/drawable folder.

When you add images to your apps, you need to decide whether to display
different images for different density screens. In our case, we’re going to
use the same resolution image irrespective of screen density, so we’ve put a
single copy of the images in one folder. If you decide to cater to different
screen densities in your own apps, put images for the different screen
densities in the appropriate drawable* folders as described in Chapter 5.

Here are the four image files. You
need to create the drawable folder,
then add the image files to it.

When you save images to your project, Android assigns each of them
an ID in the form R.drawable.image_name (where image_
name is the name of the image). As an example, the file latte.png is
given an ID of R.drawable.latte, which matches the value of
the latte’s image resource ID in the Drink class.

Now that we’ve added the Drink class and image
resources to the project, let’s work on the activities. We’ll
start with the top-level activity.

Drink

name: "Latte"
description: "A couple of expresso
shots with steamed milk"
imageResourceId: R.drawable.latte

R.drawable.latte

The image latte.png
is given an ID of
R.drawable.latte.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

Android Studio may have already
added this folder for you. If so,
you don’t need to recreate it.

258 Chapter 7

TopLevelActivity

<resources>

 ...

 <string name="starbuzz_logo">Starbuzz logo</string>

</resources>

That’s everything we need to add the image to the layout, so let’s
move on to the list.

The top-level layout contains
an image and a list
When we created our project, we called our default activity
TopLevelActivity.java, and its layout activity_top_level.xml. We need to
change the layout so it displays an image and a list.

<ImageView

 android:layout_width="200dp"

 android:layout_height="100dp"

 android:src="@drawable/starbuzz_logo"

 android:contentDescription="@string/starbuzz_logo" />

These are the dimensions we
want the image to have.

The source of the image is the starbuzz_
logo.png file we added to the app.

Adding a content
description makes your
app more accessible.When you use an image view in your app, you use the

android:contentDescription attribute to add a description
of the image; this makes your app more accessible. In our case, we’re
using a String value of "@string/starbuzz_logo", so add this
to strings.xml:

You saw how to display images in Chapter 5 using an image view. In
this case, we need an image view that displays the Starbuzz logo, so
we’ll create one that uses starbuzz_logo.png as its source.

Here’s the code to define the image view in the layout:

This is the Starbuzz logo.
We added this image to the
project on the previous page.

We’ll add these items as
a static list of options;
then we’ll make each list
item clickable.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

<xml>
</xml>

app/src/main

strings.xml

Starbuzz

res

values

We're going to
add this to
activity_top_
level.xml. We'll
show you the
full code soon.

you are here 4 259

list views and adapters

Use a list view to display the list of options

<ListView

 android:id="@+id/list_options"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:entries="@array/options" />

This defines the list view.
The values in
the list view
are defined
by the
options array.

You define the array in exactly the same way that you did earlier in the
book, by adding it to strings.xml like this:

android.view.View

...

android.view.ViewGroup

...

android.widget.
AdapterView

...

android.widget.ListView

...

<resources>

 ...

 <string-array name="options">

 <item>Drinks</item>

 <item>Food</item>

 <item>Stores</item>

 </string-array>

</resources>

This populates the list view with three values: Drinks, Food, and Stores.

<resources>

</resources>

strings.xmlListView

@array/options

Drinks
Food
Stores

How to define a list view in XML
You add a list view to your layout using the <ListView> element.
You then add an array of entries to the list view by using the
android:entries attribute and setting it to an array of Strings. The
array of Strings then gets displayed in the list view as a list of text views.

Here’s how you add a list view to your layout that gets its values from an
array of Strings named options:

As we said earlier, a list view allows you to display a vertical list of data
that people can use to navigate through the app. We’re going to add a
list view to the layout that displays the list of options, and later on we’ll
use it to navigate to a different activity.

The entries attribute
populates the list view with
values from the options array.
Each item in the list view is a
text view.

<xml>
</xml>

app/src/main

strings.xml

Starbuzz

res

values

We're going
to add this
to activity_
top_level.xml
on the next
page.

260 Chapter 7

layout code

The full top-level layout code
Here’s the full layout code for our activity_top_level.xml; make
sure you update your code to match ours:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.starbuzz.TopLevelActivity" >

 <ImageView

 android:layout_width="200dp"

 android:layout_height="100dp"

 android:src="@drawable/starbuzz_logo"

 android:contentDescription="@string/starbuzz_logo" />

 <ListView

 android:id="@+id/list_options"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:entries="@array/options" />

</LinearLayout>

Test drive
Make sure you’ve applied all the changes to activity_top_level.xml,
and also updated strings.xml. When you run the app, you should
see the Starbuzz logo displayed on the device screen with the
list view underneath it. The list view displays the three values
from the options array.

If you click on any of the options in the list, nothing happens,
as we haven’t told the list view to respond to clicks yet. The
next thing we’ll do is see how you get list views to respond to
clicks and launch a second activity.

We’re using a linear layout with a vertical
orientation. This will display our list view
directly underneath the Starbuzz logo.

These are the values
in the options array.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

<xml>
</xml>

app/src/main

activity_
top_level.xml

Starbuzz

res

layout

you are here 4 261

list views and adapters

AdapterView.OnItemClickListener itemClickListener = new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 View itemView,

 int position,

 long id) {

 if (position == 0) {

 Intent intent = new Intent(TopLevelActivity.this, DrinkCategoryActivity.class);

 startActivity(intent);

 }

 }

};

Get list views to respond to clicks with a listener
The ListView needs to know the
Activity cares what happens to it.

The ListView tells the Activity when an item
gets clicked so the Activity can react.

ListViewActivity

You make the items in a list view respond to clicks by
implementing an event listener.

An event listener allows you to listen for events that take
place in your app, such as when views get clicked, when
they receive or lose the focus, or when the user presses a
hardware key on their device. By implementing an event
listener, you can tell when your user performs a particular
action—such as clicking on an item in a list view—and
respond to it.

OnItemClickListener is a
nested class within the
AdapterView class. A ListView
is a subclass of AdapterView.

The view that was clicked (in this case,
the list view).

These parameters give you info about
which item was clicked in the list view,
such as the item’s view and its position.

Drinks is the first item in the
list view, so it’s at position 0.

The intent is coming from
TopLevelActivity.

It needs to launch
DrinkCategoryActivity.

Once you’ve created the listener, you need to add it to the list view.

OnItemClickListener listens for item clicks
When you want to get items in a list view to respond to clicks, you
need to create an OnItemClickListener and implement
its onItemClick() method. The OnItemClickListener
listens for when items are clicked, and the onItemClick()
method lets you say how your activity should respond to the click.
The onItemClick() method includes several parameters that
you can use to find out which item was clicked, such as a reference
to the view item that was clicked, the item’s position in the list view
(starting at 0), and the row ID of the underlying data.

We want to start DrinkCategoryActivity when the first
item in the list view is clicked—the item at position 0. If the
item at position 0 is clicked, we need to create an intent to start
DrinkCategoryActivity. Here’s the code to create the
listener; we’ll add it to TopLevelActivity.java on the next page:

262 Chapter 7

setOnItemClickListener()

The full TopLevelActivity.java code
Here’s the complete code for TopLevelActivity.java. Replace the
code the wizard created for you with the code below and on the
next page, then save your changes:

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.widget.AdapterView;

import android.widget.ListView;

import android.view.View;

public class TopLevelActivity extends Activity {

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

We're using all these classes,
so we need to import them.

Set the listener to the list view
Once you’ve created the OnClickItemListener, you need
to attach it to the list view. You do this using the ListView
setOnItemClickListener() method, which takes one argument,
the listener itself:

AdapterView.OnItemClickListener itemClickListener = new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 ...

 }

};

ListView listView = (ListView) findViewById(R.id.list_options);

listView.setOnItemClickListener(itemClickListener);

Adding the listener to the list view is crucial, as it’s this step that notifies
the listener when the user clicks on items in the list view. If you don’t do
this, the items in your list view won’t be able to respond to clicks.

You’ve now seen everything you need in order to get the
TopLevelActivity list view to respond to clicks.

This is the listener we just created.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

We’ll add this to TopLevelActivity. The full code is listed
on the next couple of pages so you can see it in context.

Make sure your activity
extends the Activity class.

you are here 4 263

list views and adapters

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_top_level);
 //Create an OnItemClickListener
 AdapterView.OnItemClickListener itemClickListener =
 new AdapterView.OnItemClickListener(){
 public void onItemClick(AdapterView<?> listView,
 View itemView,
 int position,
 long id) {
 if (position == 0) {
 Intent intent = new Intent(TopLevelActivity.this,
 DrinkCategoryActivity.class);
 startActivity(intent);
 }
 }
 };
 //Add the listener to the list view
 ListView listView = (ListView) findViewById(R.id.list_options);
 listView.setOnItemClickListener(itemClickListener);
 }
}

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

What the TopLevelActivity.java code does

The onCreate() method in TopLevelActivity creates an
onItemClickListener and links it to the activity’s ListView.

1

When the user clicks on an item in the list view, the
onItemClickListener’s onItemClick() method gets called.
If the Drinks item is clicked, the onItemClickListener creates an intent to start
DrinkCategoryActivity.

2

TopLevelActivity onItemClickListenerListView

onItemClickListenerListView

onItemClick()

DrinkCategoryActivity

Intent

Create the listener.

Implement its
onItemClick()
method.

Launch DrinkCategoryActivity if the
user clicks on the Drinks item. We’ll
create this activity next, so don't worry
if Android Studio says it doesn't exist.

Add the listener to the
list view.

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

TopLevelActivity.java (continued)

We need to create
this activity.

264 Chapter 7

you are here

Where we’ve got to
So far we’ve added Drink.java to our app and created
TopLevelActivity and its layout.

<Layout>

</Layout>

activity_top_level.xml

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

DrinkCategoryActivity.java DrinkActivity.java

Drink.java

The next thing we need to do is create
DrinkCategoryActivity and its layout so that it
gets launched when the user clicks on the Drinks option in
TopLevelActivity.

We added this first.

We’ve just created
TopLevelActivity
and its layout.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

We'll create this next.

Q: Why did we have to create an event listener to get items
in the list view to respond to clicks? Couldn’t we have just
used its android:onClick attribute in the layout code?

A: You can only use the android:onClick attribute
in activity layouts for buttons, or any views that are subclasses of
Button such as CheckBoxes and RadioButtons.

The ListView class isn’t a subclass of Button, so using
the android:onClick attribute won’t work. That’s why you
have to implement your own listener.

<Layout>

</Layout>

activity_drink_category.xml

you are here 4 265

list views and adapters

Here’s some activity code from a separate project. When the user clicks on an item in a list
view, the code is meant to display the text of that item in a text view (the text view has an ID of
text_view and the list view has an ID of list_view). Does the code do what it’s meant
to? If not, why not?

package com.hfad.ch06ex;

import android.app.Activity;

import android.os.Bundle;

import android.widget.AdapterView;

import android.widget.ListView;

import android.widget.TextView;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 final TextView textView = (TextView) findViewById(R.id.text_view);

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 View v,

 int position,

 long id) {

 TextView item = (TextView) v;

 textView.setText(item.getText());

 }

 };

 ListView listView = (ListView) findViewById(R.id.list_view);

 }

}

266 Chapter 7

exercise solution

Here’s some activity code from a separate project. When the user clicks on an item in a list
view, the code is meant to display the text of that item in a text view (the text view has an ID of
text_view and the list view has an ID of list_view). Does the code do what it’s meant
to? If not, why not?

package com.hfad.ch06ex;

import android.app.Activity;

import android.os.Bundle;

import android.widget.AdapterView;

import android.widget.ListView;

import android.widget.TextView;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 final TextView textView = (TextView) findViewById(R.id.text_view);

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 View v,

 int position,

 long id) {

 TextView item = (TextView) v;

 textView.setText(item.getText());

 }

 };

 ListView listView = (ListView) findViewById(R.id.list_view);

 }

} The code doesn't work as intended because the line of code
 listView.setOnItemClickListener(itemClickListener);
is missing from the end of the code. Apart from that, the code's fine.

This is the item in the
ListView that was clicked.
It's a TextView, so we can
get its text using getText().

you are here 4 267

list views and adapters

A category activity displays the data
for a single category
As we said earlier, DrinkCategoryActivity is an example of
a category activity. A category activity is one that shows the data
that belongs to a particular category, often in a list. You use the
category activity to navigate to details of the data.

We’re going to use DrinkCategoryActivity to display a list
of drinks. When the user clicks on one of the drinks, we’ll show
them the details of that drink.

Create DrinkCategoryActivity
To work on the next step in our checklist, we’ll create an activity
with a single list view that displays a list of all the drinks. Select
the com.hfad.starbuzz package in the app/src/main/java folder, then
go to File→New...→Activity→Empty Activity. Name the activity

“DrinkCategoryActivity”, name the layout “activity_drink_category”, make
sure the package name is com.hfad.starbuzz and uncheck the
Backwards Compatibility (AppCompat) checkbox.

We’ll update the layout code on the next page.

When the user clicks on
the Drinks item, activity
DrinkCategoryActivity
is started.

DrinkCategoryActivity
displays a list of drinks.
When the user clicks on a
drink, that drink is then
displayed in DrinkActivity.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

Some versions of Android
Studio may ask you what
the source language of
your activity should be. If
prompted, select the option
for Java.

268 Chapter 7

layout code

Update activity_drink_category.xml
Here’s the code for activity_drink_category.xml. As you can see, it’s a
simple linear layout with a list view. Update your version of activity_
drink_category.xml to reflect ours below:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.starbuzz.DrinkCategoryActivity">

 <ListView

 android:id="@+id/list_drinks"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

</LinearLayout>

<xml>
</xml>

app/src/main

activity_
drink_category.xml

Starbuzz

res

layout

There’s one key difference between the list view we’re creating
here, and the one we created in activity_top_activity.xml: there’s no
android:entries attribute here. But why?

In activity_top_activity.xml, we used the android:entries
attribute to bind data to the list view. This worked because the data
was held as a static String array resource. The array was described
in strings.xml, so we could easily refer to it using:

android:entries="@array/options"

where options is the name of the String array.

Using android:entries works fine if the data is a static array
in strings.xml. But what if it isn’t? What if the data is held in an
array you’ve programmatically created in Java code, or held in a
database? In that case, the android:entries attribute won’t
work.

If you need to bind your list view to data held in something other
than a String array resource, you need to take a different approach;
you need to write activity code to bind the data. In our case, we
need to bind our list view to the drinks array in the Drink class.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

This layout only needs
to contain a ListView.

you are here 4 269

list views and adapters

For nonstatic data, use an adapter
If you need to display data in a list view that comes from a source
other than strings.xml (such as a Java array or database), you need
to use an adapter. An adapter acts as a bridge between the data
source and the list view:

Data
Source

ListViewAdapterWe’ll use an array
for our data
source, but we
could have used
a database or
a web service
instead.

The adapter bridges the gap between the list
view and the data source. Adapters allow list
views to display data from a variety of sources.

There are several different types of adapter. For now, we’re
going to focus on array adapters.

An array adapter is a type of adapter that’s used to bind
arrays to views. You can use it with any subclass of the
AdapterView class, which means you can use it with both list
views and spinners.

In our case, we’re going to use an array adapter to display data
from the Drink.drinks array in the list view.

An adapter acts as a
bridge between a view
and a data source. An
ArrayAdapter is a
type of adapter that
specializes in working
with arrays.

Drink.
drinks

ListViewArray
Adapter

This is our array. This is our list view.We’ll create an array adapter to
bind our list view to our array.

We’ll see how this works on the next page.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

270 Chapter 7

array adapter

ArrayAdapter<Drink> listAdapter = new ArrayAdapter<>(

 this,

 android.R.layout.simple_list_item_1,

 Drink.drinks);

ListView listDrinks = (ListView) findViewById(R.id.list_drinks);

listDrinks.setAdapter(listAdapter);

Behind the scenes, the array adapter takes each item in the array,
converts it to a String using its toString() method, and puts
each result into a text view. It then displays each text view as a
single row in the list view.

You then attach the array adapter to the list view using the
ListView setAdapter() method:

“this” refers to the current
activity. The Activity class
is a subclass of Context.

This is a built-in layout
resource. It tells the array
adapter to display each item in
the array in a single text view.

The array

Connect list views to arrays
with an array adapter
You use an array adapter by initializing it and then attaching it to
the list view.

To initialize the array adapter, you first specify what type of data is
contained in the array you want to bind to the list view. You then
pass the array adapter three parameters: a Context (usually the
current activity), a layout resource that specifies how to display
each item in the array, and the array itself.

Here’s the code to create an array adapter that displays drink
data from the Drink.drinks array (you’ll add this code to
DrinkCategoryActivity.java on the next page):

These are the drinks from
the drinks array. Each
row in the list view is a
single text view, each one
displaying a separate drink.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

you are here 4 271

list views and adapters

Add the array adapter to
DrinkCategoryActivity
We’ll change the DrinkCategoryActivity.java code so that the list
view uses an array adapter to get drinks data from the Drink
class. We’ll put the code in the onCreate() method so that
the list view gets populated when the activity gets created.

Here’s the full code for the activity (update your copy of
DrinkCategoryActivity.java to reflect ours, then save your changes):

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ArrayAdapter;

import android.widget.ListView;

public class DrinkCategoryActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink_category);

 ArrayAdapter<Drink> listAdapter = new ArrayAdapter<>(

 this,

 android.R.layout.simple_list_item_1,

 Drink.drinks);

 ListView listDrinks = (ListView) findViewById(R.id.list_drinks);

 listDrinks.setAdapter(listAdapter);

 }

}

These are all the changes needed to get your list view to display
a list of the drinks from the Drink class. Let’s go through what
happens when the code runs.

This populates
the list view
with data from
the drinks array.

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

We're using these classes so
we need to import them.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

Make sure your activity
extends the Activity class.

272 Chapter 7

what happens

When the user clicks on the Drinks option, DrinkCategoryActivity is launched.
Its layout has a LinearLayout that contains a ListView.

1

DrinkCategoryActivity creates an ArrayAdapter<Drink>, an array adapter
that deals with arrays of Drink objects.

2

DrinkCategoryActivity makes the ListView use the array adapter via the
setAdapter() method.
The list view uses the array adapter to display a list of the drink names.

4

The array adapter retrieves data from the drinks array in the Drink class.
It uses the Drink.toString() method to return the name of each drink.

3

DrinkCategoryActivity LinearLayout ListView

ArrayAdapter<Drink>DrinkCategoryActivity

ArrayAdapter<Drink>DrinkCategoryActivity Drink.drinks

Drink.toString()

ArrayAdapter<Drink>

DrinkCategoryActivity

Drink.drinks

Drink.toString()

ListView

What happens when you run the code

setAdapter()

you are here 4 273

list views and adapters

Test drive the app
When you run the app, TopLevelActivity gets
displayed as before. When you click on the Drinks item,
DrinkCategoryActivity is launched. It displays
the names of all the drinks from the Drink Java class.

Click on the Drinks item
to see a list of drinks.

On the next page we’ll review what we’ve done in the
app so far, and what’s left for us to do.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

274 Chapter 7

you are here

App review: where we are
So far we’ve added Drink.java to our app, and
created activities TopLevelActivity and
DrinkCategoryActivity along with their layouts.

The next thing we’ll do is get
DrinkCategoryActivity to launch
DrinkActivity, passing it details of whichever drink
was clicked.

<Layout>

</Layout>

activity_top_level.xml

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

DrinkCategoryActivity.java DrinkActivity.java

Drink.java

We haven't created
DrinkActivity yet.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

When the app gets launched, it starts activity
TopLevelActivity.
The activity displays a list of options for Drinks, Food, and
Stores.

1

The user clicks on Drinks in TopLevelActivity.
This launches activity DrinkCategoryActivity,
which displays a list of drinks.

2

1 2

3

DrinkCategoryActivity gets the values for its
list of drinks from the Drink.java class file.

3

<Layout>

</Layout>

activity_drink_category.xml

Here’s what our app currently does:

We’ve created these
activities and their layouts.

We’ve created Drink.java.

you are here 4 275

list views and adapters

Pool Puzzle
Your goal is to create an activity that binds

a Java array of colors to a spinner. Take
code snippets from the pool and place
them into the blank lines in the activity.
You may not use the same snippet
more than once, and you won’t need to
use all the snippets.

Note: each snippet
from the pool can only
be used once!

...

public class MainActivity extends Activity {

 String[] colors = new String[] {"Red", "Orange", "Yellow", "Green", "Blue"};

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Spinner spinner = () findViewById(R.id.spinner);

 ArrayAdapter< > adapter = new ArrayAdapter<>(

 ,

 android.R.layout.simple_spinner_item,

 colors);

 spinner. (adapter);

 }

}

Spinner

String

this

setAdapter

colors
colors

Answers on page 287.

This displays each value in the array
as a single row in the spinner.

Remember, we covered
spinners in Chapter 5.

We’re not using this
activity in our app.

276 Chapter 7

handling clicks

How we handled clicks in TopLevelActivity
Earlier in this chapter, we needed to get
TopLevelActivity to react to the user clicking on the
first item in the list view, the Drinks option, by starting
DrinkCategoryActivity. To do that, we had to
create an OnItemClickListener, implement its
onItemClick() method, and assign it to the list view.
Here’s a reminder of the code:

AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 View itemView,

 int position,

 long id) {

 if (position == 0) {

 Intent intent = new Intent(TopLevelActivity.this,

 DrinkCategoryActivity.class);

 startActivity(intent);

 }

 }

};

ListView listView = (ListView) findViewById(R.id.list_options);

listView.setOnItemClickListener(itemClickListener);

We had to set up an event listener in this way because list
views aren’t hardwired to respond to clicks in the way that
buttons are.

So how should we get DrinkCategoryActivity to
handle user clicks?

The list view

The item view that was clicked, its position in
the list, and the row ID of the underlying data.

Add the listener to the list view.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

Create the listener.

you are here 4 277

list views and adapters

Pass the ID of the item that was clicked
by adding it to an intent
When you use a category activity to display items in a list
view, you’ll usually use the onItemClick() method to
start another activity that displays details of the item the
user clicked. To do this, you create an intent that starts the
second activity. You then add the ID of the item that was
clicked as extra information so that the second activity can
use it when the activity starts.

In our case, we want to start DrinkActivity and pass it
the ID of the drink that was selected. DrinkActivity will
then be able to use this information to display details of the
right drink. Here’s the code for the intent:

It’s common practice to pass the ID of the item that was
clicked because it’s the ID of the underlying data. If the
underlying data is an array, the ID is the index of the item in
the array. If the underlying data comes from a database, the
ID is the ID of the record in the table. Passing the ID of the
item in this way means that it’s easier for the second activity
to get details of the data, and then display it.

That’s everything we need to make
DrinkCategoryActivity start DrinkActivity and
tell it which drink was selected. The full activity code is on
the next page.

Intent

DrinkCategoryActivity

drinkId

DrinkActivity

Intent intent = new Intent(DrinkCategoryActivity.this, DrinkActivity.class);

intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int) id);

startActivity(intent);

DrinkCategoryActivity needs to start DrinkActivity.

Add the ID of the item that
was clicked to the intent.
This is the index of the drink
in the drinks array.We’re using a constant for the name of the

extra information in the intent so that we know DrinkCategoryActivity and DrinkActivity are
using the same String. We’ll add this constant to
DrinkActivity when we create the activity.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

278 Chapter 7

package com.hfad.starbuzz;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.view.View;
import android.content.Intent;
import android.widget.AdapterView;

public class DrinkCategoryActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_drink_category);
 ArrayAdapter<Drink> listAdapter = new ArrayAdapter<>(
 this,
 android.R.layout.simple_list_item_1,
 Drink.drinks);
 ListView listDrinks = (ListView) findViewById(R.id.list_drinks);
 listDrinks.setAdapter(listAdapter);

 //Create the listener
 AdapterView.OnItemClickListener itemClickListener =
 new AdapterView.OnItemClickListener(){
 public void onItemClick(AdapterView<?> listDrinks,
 View itemView,
 int position,
 long id) {
 //Pass the drink the user clicks on to DrinkActivity
 Intent intent = new Intent(DrinkCategoryActivity.this,
 DrinkActivity.class);
 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int) id);
 startActivity(intent);
 }
 };

 //Assign the listener to the list view
 listDrinks.setOnItemClickListener(itemClickListener);
 }
}

DrinkCategoryActivity code

The full DrinkCategoryActivity code
Here’s the full code for DrinkCategoryActivity.java (add the new
method to your code, then save your changes):

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

We’ll add DrinkActivity next, so
don't worry if Android Studio
says it doesn't exist.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

We're using these extra classes
so we need to import them.

Create a listener to listen for clicks.

This gets called when an item
in the list view is clicked.

When the user clicks
on a drink, pass its ID
to DrinkActivity and
start it.

you are here 4 279

list views and adapters

package com.hfad.starbuzz;

import android.app.Activity;
import android.os.Bundle;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.view.View;
import android.content.Intent;
import android.widget.AdapterView;

public class DrinkCategoryActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_drink_category);
 ArrayAdapter<Drink> listAdapter = new ArrayAdapter<>(
 this,
 android.R.layout.simple_list_item_1,
 Drink.drinks);
 ListView listDrinks = (ListView) findViewById(R.id.list_drinks);
 listDrinks.setAdapter(listAdapter);

 //Create the listener
 AdapterView.OnItemClickListener itemClickListener =
 new AdapterView.OnItemClickListener(){
 public void onItemClick(AdapterView<?> listDrinks,
 View itemView,
 int position,
 long id) {
 //Pass the drink the user clicks on to DrinkActivity
 Intent intent = new Intent(DrinkCategoryActivity.this,
 DrinkActivity.class);
 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int) id);
 startActivity(intent);
 }
 };

 //Assign the listener to the list view
 listDrinks.setOnItemClickListener(itemClickListener);
 }
}

A detail activity displays data
for a single record
As we said earlier, DrinkActivity is an example of a detail activity. A detail
activity displays details for a particular record, and you generally navigate to it from
a category activity.

We’re going to use DrinkActivity to display details of the drink the user selects.
The Drink class includes the drink’s name, description, and image resource ID, so
we’ll display this data in our layout. We’ll include an image view for the drink image
resource, and text views for the drink name and description.

To create the activity, select the com.hfad.starbuzz package in the app/src/main/
java folder, then go to File→New...→Activity→Empty Activity. Name the activity

“DrinkActivity”, name the layout “activity_drink”, make sure the package name
is com.hfad.starbuzz, and uncheck the Backwards Compatibility
(AppCompat) checkbox. Then replace the contents of activity_drink.xml with this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.starbuzz.DrinkActivity" >

 <ImageView

 android:id="@+id/photo"

 android:layout_width="190dp"

 android:layout_height="190dp" />

 <TextView

 android:id="@+id/name"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 <TextView

 android:id="@+id/description"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

</LinearLayout>

Now that you’ve created the layout of your detail activity, we can
populate its views.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

<xml>
</xml>

app/src/main

activity_drink.xml

Starbuzz

res

layout

Make sure you create
the new activity.

If prompted for the
activity’s source language,
select the option for Java.

280 Chapter 7

get a drink

Retrieve data from the intent
As you’ve seen, when you want a category activity to start a detail
activity, you have to make items in the category activity list view
respond to clicks. When an item is clicked, you create an intent to
start the detail activity. You pass the ID of the item the user clicked
as extra information in the intent.

When the detail activity is started, it can retrieve the extra
information from the intent and use it to populate its views. In
our case, we can use the information in the intent that started
DrinkActivity to retrieve details of the drink the user clicked.

When we created DrinkCategoryActivity, we added the ID
of the drink the user clicked as extra information in the intent. We
gave it the label DrinkActivity.EXTRA_DRINKID, which we
need to define as a constant in DrinkActivity.java:

public static final String EXTRA_DRINKID = "drinkId";

As you saw in Chapter 3, you can retrieve the intent that started an
activity using the getIntent() method. If this intent has extra
information, you can use the intent’s get*() methods to retrieve
it. Here’s the code to retrieve the value of EXTRA_DRINKID from
the intent that started DrinkActivity:

int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

This gives us a Drink object containing all the information we
need to update the views attributes in the activity:

Drink drink = Drink.drinks[drinkId];

Once you’ve retrieved the information from the intent, you can use
it to get the data you need to display in your detail record.

In our case, we can use drinkId to get details of the drink the
user selected. drinkId is the ID of the drink, the index of the
drink in the drinks array. This means that you can get details
about the drink the user clicked on using:

drink

name=”Latte”
description=”A couple of espresso shots with steamed milk”
imageResourceId=R.drawable.latte

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

you are here 4 281

list views and adapters

Update the views with the data
When you update the views in your detail activity, you need to make sure
that the values they display reflect the data you’ve derived from the intent.

Our detail activity contains two text views and an image view. We need
to make sure that each of these is updated to reflect the details of the
drink. drink

name
description
imageResourceId

Drink Magnets
See if you can use the magnets below to populate the
DrinkActivity views with the correct data.

...

//Get the drink from the intent

int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

Drink drink = Drink.drinks[drinkId];

//Populate the drink name

TextView name = (TextView)findViewById(R.id.name);

name. (drink.getName());

//Populate the drink description

TextView description = (TextView)findViewById(R.id.description);

description. (drink.getDescription());

//Populate the drink image

ImageView photo = (ImageView)findViewById(R.id.photo);

photo. (drink.getImageResourceId());

photo. (drink.getName());

...

setImageResourceId

setContent

setText

setContentDescription

setImageResource

setText

282 Chapter 7

...

//Get the drink from the intent

int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

Drink drink = Drink.drinks[drinkId];

//Populate the drink name

TextView name = (TextView)findViewById(R.id.name);

name. (drink.getName());

//Populate the drink description

TextView description = (TextView)findViewById(R.id.description);

description. (drink.getDescription());

//Populate the drink image

ImageView photo = (ImageView)findViewById(R.id.photo);

photo. (drink.getImageResourceId());

photo. (drink.getName());

...

magnets solution

Drink Magnets Solution
See if you can use the magnets below to populate the
DrinkActivity views with the correct data.

setImageResourceId
setContent

Use setText()
to set the text
in a text view.

You didn't need to use these.

setText

setContentDescription

setImageResource

setText

You set the source
of the image using
setImageResource().
This is needed
to make the app
more accessible.

you are here 4 283

list views and adapters

The DrinkActivity code
Here’s the full code for DrinkActivity.java (replace the code the
wizard gave you with the code below, then save your changes):

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ImageView;

import android.widget.TextView;

public class DrinkActivity extends Activity {

 public static final String EXTRA_DRINKID = "drinkId";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink);

 //Get the drink from the intent

 int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

 Drink drink = Drink.drinks[drinkId];

 //Populate the drink name

 TextView name = (TextView)findViewById(R.id.name);

 name.setText(drink.getName());

 //Populate the drink description

 TextView description = (TextView)findViewById(R.id.description);

 description.setText(drink.getDescription());

 //Populate the drink image

 ImageView photo = (ImageView)findViewById(R.id.photo);

 photo.setImageResource(drink.getImageResourceId());

 photo.setContentDescription(drink.getName());

 }

}

Use the drinkId to get details of
the drink the user chose.

Populate
the views
with the
drink data.

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

Add EXTRA_DRINKID as a constant.

We're using these
classes so we need
to import them.

Make sure your activity
extends the Activity class.

284 Chapter 7

what happens

What happens when you run the app

When the user starts the app, it launches TopLevelActivity.1

Device

The onCreate() method in TopLevelActivity creates an
onItemClickListener and links it to the activity’s ListView.

2

When the user clicks on an item in the ListView, the
onItemClickListener’s onItemClick() method gets called.
If the Drinks item was clicked, the onItemClickListener creates an intent to start
DrinkCategoryActivity.

3

TopLevelActivity

TopLevelActivity onItemClickListenerListView

onItemClickListenerListView

onItemClick()

DrinkCategoryActivity

Intent

ArrayAdapter<Drink>

DrinkCategoryActivity

Drink.drinks

ListView

DrinkCategoryActivity displays a single ListView.
The DrinkCategoryActivity list view uses an ArrayAdapter<Drink> to
display a list of drink names.

4

Add resources
TopLevelActivity
DrinkCategoryActivity
DrinkActivity

you are here 4 285

list views and adapters

The story continues

When the user chooses a drink from DrinkCategoryActivity's ListView,
onItemClickListener’s onItemClick() method gets called.

5

ListView

onItemClick()

onItemClickListener

The onItemClick() method creates an intent to start DrinkActivity, passing
along the drink ID as extra information.

6

DrinkActivity

Intent

DrinkCategoryActivity

drinkId=0

DrinkActivity launches.
It retrieves the drink ID from the intent, and gets details for the correct drink from the Drink
class. It uses this information to update its views.

7

DrinkActivity Drink

drinks[0]

drinks[0]? That’s
a latte, a fine choice.
Here’s everything I
know about lattes.

Latte

DrinkCategoryActivity

286 Chapter 7

test drive

Test drive the app
When you run the app, TopLevelActivity gets
displayed.

When you click on the Drinks item,
DrinkCategoryActivity is launched. It
displays all the drinks from the Drink java class.

When you click on one of the drinks,
DrinkActivity is launched and details of the
selected drink are displayed.

We’ve implemented the Drinks part
of the app. The other items won’t
do anything if you click on them.

We clicked on the
Latte option...

Using these three activities, you can see how to structure
your app into top-level activities, category activities, and
detail/edit activities. In Chapter 15, we’ll revisit the
Starbuzz app to explain how you can retrieve the drinks
from a database.

...and here are
details of the
latte.

you are here 4 287

list views and adapters

Pool Puzzle Solution
Your goal is to create an activity that binds

a Java array of colors to a spinner. Take
code snippets from the pool and place
them into the blank lines in the activity.
You may not use the same snippet
more than once, and you won’t need to
use all the snippets.

...

public class MainActivity extends Activity {

 String[] colors = new String[] {"Red", "Orange", "Yellow", "Green", "Blue"};

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Spinner spinner = () findViewById(R.id.spinner);

 ArrayAdapter< > adapter = new ArrayAdapter<>(

 ,

 android.R.layout.simple_spinner_item,

 colors);

 spinner. (adapter);

 }

}

Spinner

String

this

setAdapter

colors
colors

We're using an array
of type String.

Use setAdapter() to get the
spinner to use the array adapter.

You didn’t need to use
these code snippets.

288 Chapter 7

toolbox

Your Android Toolbox

You’ve got Chapter 7 under
your belt and now you’ve

added list views and app design
to your toolbox.

 � Sort your ideas for activities into
top-level activities, category activities,
and detail/edit activities. Use the
category activities to navigate from
the top-level activities to the detail/
edit activities.

 � A list view displays items in a list.
Add it to your layout using the
<ListView> element.

 � Use android:entries in your
layout to populate the items in your
list views from an array defined in
strings.xml.

 � An adapter acts as a bridge
between an AdapterView
and a data source. ListViews
and Spinners are both types of
AdapterView.

 � An ArrayAdapter is an adapter
that works with arrays.

 � Handle click events on Buttons
using android:onClick in
the layout code. Handle click events
elsewhere by creating a listener and
implementing its click event.

CH
AP

T
ER

 7

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

this is a new chapter 289

Everybody likes a shortcut.
And in this chapter you’ll see how to add shortcuts to your apps using app bars. We’ll

show you how to start activities by adding actions to your app bar, how to share content

with other apps using the share action provider, and how to navigate up your app’s

hierarchy by implementing the app bar’s Up button. Along the way we'll introduce you to

the powerful Android Support Libraries, which are key to making your apps look fresh

on older versions of Android.

See, Whiskey,
I said we’d get
home eventually.

support libraries and app bars8

Taking Shortcuts

We’d have got
here hours ago if she’d
known about the Up
button. Harrumph!

290 Chapter 8

app structure

Great apps have a clear structure
In the previous chapter, we looked at ways of structuring an app
to create the best user experience. Remember that one way of
creating an app is to organize the screens into three types:

They also have great shortcuts
If a user’s going to use your app a lot, they’ll want quick ways to
get around. We’re going to look at navigational views that will give
your user shortcuts around your app, providing more space in your
app for actual content. Let’s begin by taking a closer look at the
top-level screen in the above Pizza app.

Bits and Pizzas

Pizzas Pasta Stores

Diavolo Spaghetti
Bolognese

Cambridge Create Order

Pizzas

Pasta

Stores

Create Order

Category screens
Category screens show
the data that belongs to a
particular category, often in
a list. They allow the user
to navigate to detail/edit
screens.

Top-level screens
This is usually the first activity in your app that
your user sees.

Detail/edit screens
These display details for a
particular record, let the user
edit the record, or allow the
user to enter new records.

This is a rough sketch of a Pizza
app. It contains details of pizzas,
pasta dishes, and stores. It also
allows the user to order a meal.

you are here 4 291

support libraries and app bars

Different types of navigation
In the top-level screen of the Pizza app, there’s a list of options
for places in the app the user can go to.

The top three options link to category activities; the first presents
the user with a list of pizzas, the second a list of pasta, and the
third a list of stores. They allow the user to navigate around the
app.

The fourth option links to a detail/edit activity that allows the
user to create an order. This option enables the user to perform
an action.

In Android apps, you can add actions to the app bar. The app
bar is the bar you often see at the top of activities; it’s sometimes
known as the action bar. You generally put your app’s most
important actions in the app bar so that they’re prominent at the
top of the screen.

In the Pizza app, we can make it easy for the user to place an
order wherever they are in the app by making sure there’s an
app bar at the top of every activity that includes a Create Order
button. This way the user will have access to it wherever they are.

Let’s look at how you create app bars.

Bits and Pizzas

Pizzas

Pasta

Create Order

Stores

This is the Pizza app’s top-level activity.

These link to category screens.

This takes you to a detail/edit screen
where you can create a new order.

This is an app bar.

This is the Create Order button.

These are like the navigation
options we looked at in Chapter 7.

292 Chapter 8

steps

Here’s what we’re going to do
There are a few things we’re going to cover in this chapter.

Add a basic app bar.
We’ll create an activity called MainActivity
and add a basic app bar to it by applying a theme.

1

Replace the basic app bar with a toolbar.
To use the latest app bar features, you need to replace the basic app bar with
a toolbar. This looks the same as the basic app bar, but you can use it to do
more things.

2

Add a Create Order action.
We’ll create a new activity called OrderActivity, and add an action to
MainActivity’s app bar that opens it.

3

Implement the Up button.
We’ll implement the Up button on OrderActivity’s app bar so that
users have an easy way of navigating back to MainActivity.

4

Add a share action provider.
We’ll add a share action provider to MainActivity’s app bar so that users
can share text with other apps and invite their friends to join them for pizza.

5

Let’s start by looking at how you add a basic app bar.

AppActivity

OrderActivity

MainActivity

Intent

ACTION_SEND
type: “text/plain”
messageText: ”Hi!”

MainActivity app bar

OrderActivity app bar

MainActivity app bar

This is the app bar we’ll add.

The Up button features a
button that (confusingly)
points to the left.

You’ll find out what
action providers are
later in the chapter.

you are here 4 293

support libraries and app bars

Add an app bar by applying a theme
An app bar has a number of uses:

 Displaying the app or activity name so that the user knows where in the
app they are. As an example, an email app might use the app bar to
indicate whether the user is in their inbox or junk folder.

¥

 Making key actions prominent in a way that’s predictable—for example,
sharing content or performing searches.

¥

 Navigating to other activities to perform an action.¥
To add a basic app bar, you need to use a theme that includes an app
bar. A theme is a style that’s applied to an activity or application so that
your app has a consistent look and feel. It controls such things as the
color of the activity background and app bar, and the style of the text.

Android comes with a number of built-in themes that you can use in
your apps. Some of these, such as the Holo themes, were introduced in
early releases of Android, and others, such as the Material themes, were
introduced much later to give apps a more modern appearance.

The Holo
themes have
been in
Android since
API level 11.

The Material
themes were
introduced in
API level 21.

But there’s a problem. You want your apps to look as modern and
up-to-date as possible, but you can only use themes from the version of
Android they were released in. As an example, you can’t use the native
Material themes on devices that are running a version of Android older
than Lollipop, as the Material themes were introduced with API level 21.

The problem isn’t just limited to themes. Every new release of Android
introduces new features that people want to see in their apps, such as
new GUI components. But not everyone upgrades to the latest version
of Android as soon as it comes out. In fact, most people are at least one
version of Android behind.

So how can you use the latest Android features and themes in your
apps if most people aren’t using the latest version? How can you give
your users a consistent user experience irrespective of what version of
Android they’re using without making your app look old-fashioned?

Basic app bar
Toolbar
Action
Up button
Share action

These themes look a bit different
from the one on the previous page,
as they haven’t had any extra
styling applied to them. You’ll find
out how to add styling later in the
chapter.

294 Chapter 8

support libraries

Support libraries allow you to use new
features in older versions of Android
The Android team solved this problem by coming up with the idea of
Support Libraries.

The Android Support Libraries provide backward compatibility with older
versions of Android. They sit outside the main release of Android, and contain
new Android features that developers can use in the apps they’re building.
The Support Libraries mean that you can give users on older devices the
same experience as users on newer devices even if they’re using different versions of
Android.

Here are some of the Support Libraries that are available for you to use:

Support lib
raries

v7 AppCompat Library
Includes support for app bars.

Constraint Layout Library
Allows you to create constraint
layouts. You used features from
this library in Chapter 6.

v4 Support Library
Includes the largest set of features, such
as support for application components
and user interface features.

v7 Cardview Library
Adds support for the CardView
widget, allowing you to show
information inside cards.

v7 RecyclerView Library
Adds support for the
RecyclerView widget.

Design Support Library
Adds support for extra
components such as tabs and
navigation drawers.

These are just some of
the Support Libraries.

Each library includes a specific set of features.

The v7 AppCompat Library contains a set of up-to-date themes that can be
used with older versions of Android: in practice, they can be used with nearly
all devices, as most people are using API level 19 or above. We’re going to
use the v7 AppCompat Library by applying one of the themes it contains
to our app. This will add an app bar that will look up-to-date and work the
same on all versions of Android that we’re targeting. Whenever you want to
use one of the Support Libraries, you first need to add it to your app. We’ll
look at how you do this after we’ve created the project.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 295

support libraries and app bars

Create the Pizza app
We’ll start by creating a prototype of the Pizza app. Create a new
Android project for an application named “Bits and Pizzas” with a
company domain of “hfad.com”, making the package name com.
hfad.bitsandpizzas. The minimum SDK should be API level
19 so that it works with most devices. You’ll need an empty activity
called “MainActivity” and a layout called “activity_main”. Make
sure you check the Backwards Compatibility (AppCompat)
checkbox (you’ll see why a few pages ahead).

Basic app bar
Toolbar
Action
Up button
Share action

Next, we’ll look at how you add a Support Library to the project.

Unlike in previous chapters, you
need to make sure the Backwards
Compatibility (AppCompat)
checkbox is ticked.

296 Chapter 8

AppCompat support library

Add the v7 AppCompat Support Library
We’re going to use one of the themes from the v7 AppCompat Library,
so we need to add the library to our project as a dependency. Doing so
means that the library gets included in your app, and downloaded to
the user’s device.

To manage the Support Library files that are included in your project,
choose File→Project Structure. Then click on the app module and
choose Dependencies. You’ll be presented with the following screen:

Android Studio may have already added the AppCompat Support
Library for you automatically. If so, you will see it listed as
appcompat-v7, as shown above.

If the AppCompat Library hasn’t been added for you, you will need to
add it yourself. Click on the “+” button at the bottom or right side of
the Project Structure screen. Choose the Library Dependency option,
select the appcompat-v7 library, then click on the OK button. Click on
OK again to save your changes and close the Project Structure window.

Once the AppCompat Support Library has been added to your project,
you can use its resources in your app. In our case, we want to apply one
of its themes in order to give MainActivity an app bar. Before we
do that, however, we need to look at the type of activity we’re using for
MainActivity.

The Dependencies option shows you the
Support Libraries that have been added to
your project. Android Studio will probably
have added some for you automatically.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 297

support libraries and app bars

AppCompatActivity lets you use AppCompat themes
So far, all of the activities we’ve created have extended the Activity class.
This is the base class for all activities, and it’s what makes your activity an
activity. If you want to use the AppCompat themes, however, you need to use a
special kind of activity, called an AppCompatActivity, instead.

The AppCompatActivity class is a subclass of Activity. It lives in the
AppCompat Support Library, and it’s designed to work with the AppCompat
themes. Your activity needs to extend the AppCompatActivity class
instead of the Activity class whenever you want an app bar that
provides backward compatibility with older versions of Android.

As AppCompatActivity is a subclass of the Activity class, everything
you’ve learned about activities so far still applies. AppCompatActivity
works with layouts in just the same way, and inherits all the lifecycle methods
from the Activity class. The main difference is that, compared to
Activity, AppCompatActivity contains extra smarts that allow it to
work with the themes from the AppCompat Support Library.

Here’s a diagram showing the AppCompatActivity class hierarchy:

YourActivity

onCreate(Bundle)

yourMethod()

Activity

onCreate(Bundle)

onStart()

onRestart()

onResume()

onPause()

onStop()

onDestroy()

onSaveInstanceState()

FragmentActivity

AppCompatActivity

Activity class
(android.app.Activity)
The Activity class implements
default versions of the lifecycle methods.

YourActivity class
(com.hfad.foo)

FragmentActivity class
(android.support.v4.app.FragmentActivity)
The base class for activities that need to use support fragments.
You’ll find out about fragments in the next chapter.

AppCompatActivity class
(android.support.v7.app.AppCompatActivity)
The base class for activities that use the Support Library app bar.

We’ll make sure MainActivity extends AppCompatActivity on the next page.

298 Chapter 8

MainActivity code

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

MainActivity needs to be an AppCompatActivity
We want to use one of the AppCompat themes, so we need to make
sure our activities extend the AppCompatActivity class instead of
the Activity class. Happily, this should already be the case if you
checked the Backwards Compatibility (AppCompat) checkbox when
you first created the activity. Open the file MainActivity.java, then make
sure your code matches ours below:

The AppCompatActivity class lives in
the v7 AppCompat Support Library.

Make sure your activity extends AppCompatActivity.

Now that we’ve confirmed that our activity extends
AppCompatActivity, we can add an app bar by applying a
theme from the AppCompat Support Library. You apply a theme
in the app’s AndroidManifest.xml file, so we’ll look at this file next.

Q: What versions of Android can the
Support Libraries be used with?

A: It depends on the version of the
Support Library. Prior to version 24.2.0,
Libraries prefixed with v4 could be used
with API level 4 and above, and those
prefixed with v7 could be used with API
level 7 and above. When version 24.2.0
of the Support Libraries was released, the
minimum API for all Support Libraries
became API level 9. The minimum API level
is likely to increase in the future.

Q: In earlier chapters, Android Studio
gave me activities that already extended
AppCompatActivity. Why’s that?

A: When you create an activity in
Android Studio, the wizard includes a
checkbox asking if you want to create
a Backwards Compatible (AppCompat)
activity. If you left this checked in
earlier chapters, Android Studio would
have generated activities that extend
AppCompatActivity.

Q: I’ve seen code that extends
ActionBarActivity. What’s
that?

A: In older versions of the
AppCompat Support Library, you used
the ActionBarActivity
class to add app bars. This was
deprecated in version 22.1 in favor of
AppCompatActivity.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 299

support libraries and app bars

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.bitsandpizzas">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:label="@string/app_name"
 android:supportsRtl="true"

 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">

 ...

 </activity>

 </application>

</manifest>

AndroidManifest.xml can change your app bar’s appearance

<xml>
</xml>

app/src/main

AndroidManifest.xml

BitsAndPizzas

The android:icon attribute assigns an icon to the app. The icon is used
as the launcher icon for the app, and if the theme you’re using displays an
icon in the app bar, it will use this icon. android:roundIcon may be
used instead on devices running Android 7.1 or above.

The icon is a mipmap resource. A mipmap is an image that can be used
for application icons, and they’re held in mipmap* folders in app/src/main/
res. Just as with drawables, you can add different images for different screen
densities by adding them to an appropriately named mipmap folder. As an
example, an icon in the mipmap-hdpi folder will be used by devices with
high-density screens. You refer to mipmap resources in your layout using @
mipmap.

The android:label attribute describes a user-friendly label that
gets displayed in the app bar. In the code above, it’s used in the
<application> tag to apply a label to the entire app. You can also add it
to the <activity> tag to assign a label to a single activity.

The android:theme attribute specifies the theme. Using this attribute in
the <application> element applies the theme to the entire app. Using it
in the <activity> element applies the theme to a single activity.

We’ll look at how you apply the theme on the next page.

App icons. Android Studio
provides icons by default.

The user-friendly name of the app

The theme

Android Studio automatically added
icons to our mipmap* folders when
we created the project.

As you’ve seen earlier in the book, an app’s AndroidManifest.xml file provides
essential information about the app, such as what activities it contains. It also
includes a number of attributes that have a direct impact on your app bars.

Here’s the AndroidManifest.xml code Android Studio created for us (we’ve
highlighted the key areas):

300 Chapter 8

apply a theme

How to apply a theme
When you want to apply a theme to your app, you have two main options:

 Hardcode the theme in AndroidManifest.xml.¥
 Apply the theme using a style.¥

1. Hardcoding the theme
To hardcode the theme in AndroidManifest.xml, you update the
android:theme attribute in the file to specify the name of the
theme you want to use. As an example, to apply a theme with a
light background and a dark app bar, you’d use:

<application

 ...

 android:theme="Theme.AppCompat.Light.DarkActionBar">

This approach works well if you want to apply a basic theme
without making any changes to it.

Let’s look at these two approaches.

2. Using a style to apply the theme
Most of the time, you’ll want to apply the theme using a style, as
this approach enables you to tweak the theme’s appearance. You
may want to override the theme’s main colors to reflect your app’s
brand, for example.

To apply a theme using a style, you update the android:theme
attribute in AndroidManifest.xml to the name of a style resource
(which you then need to create). In our case, we’re going
to use a style resource named AppTheme, so update the
android:theme attribute in your version of AndroidManifest.xml
to the following:

<application

 ...

 android:theme="@style/AppTheme">

The @style prefix tells Android that the theme the app’s using is
a style that’s defined in a style resource file. We’ll look at this
next.

<xml>
</xml>

app/src/main

AndroidManifest.xml

BitsAndPizzas

This is a simple way of applying a basic theme, but it means you can’t, for example, change its colors.

Android Studio may have already added this
to your version of AndroidManifest.xml.

you are here 4 301

support libraries and app bars

Define styles in a style resource file
The style resource file holds details of any themes and styles you
want to use in your app. When you create a project in Android
Studio, the IDE will usually create a default style resource file for
you called styles.xml located in the app/src/main/res/values folder.

If Android Studio hasn’t created the file, you’ll need to add it
yourself. Switch to the Project view of Android Studio’s explorer,
highlight the app/src/main/res/values folder, go to the File menu,
and choose New. Then choose the option to create a new Values
resource file, and when prompted, name the file “styles”. When
you click on OK, Android Studio will create the file for you.

A basic style resource file looks like this:

<resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

 </style>

</resources>

A style resource file can contain one or more styles. Each style is
defined through the <style> element.

Each style must have a name, which you define with the name
attribute; for example:

This is the theme used in the app.

<xml>
</xml>

app/src/main

styles.xml

BitsAndPizzas

res

values

name="AppTheme"

In the code above, the style has a name of "AppTheme", and
AndroidManifest.xml can refer to it using "@style/AppTheme".

The parent attribute specifies where the style should inherit its
properties from; for example:

This gives the app a theme of "Theme.AppCompat.Light.
DarkActionBar", which gives activities a light background, with
a dark app bar. We’ll look at some more of Android’s available
themes on the next page.

parent="Theme.AppCompat.Light.DarkActionBar"

The app bar has a dark
background with white text.

The main activity
background is light.

Basic app bar
Toolbar
Action
Up button
Share action

There may be extra code here to
customize the theme. We’ll look
at this a couple of pages ahead.

302 Chapter 8

themes

The theme determines the basic appearance of the app, such as the
color of the app bar and any views. But what if you want to modify
the app’s appearance?

Theme gallery
Android comes with a whole bunch of built-in themes that you
can use in your apps. Here are just a few of them:

Theme.AppCompat.Light.DarkActionBar

Theme.AppCompatTheme.AppCompat.Light

Theme.AppCompat.Light.NoActionBar Theme.AppCompat.NoActionBar

This has a light background
and app bar.

This has a light background and no app bar.

This has a light background
and the app bar is dark.

This has a dark background
and a dark app bar.

This has a dark background
and no app bar.

There's also a DayNight theme,
which uses one set of colors in the
day, and another set at night.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 303

support libraries and app bars

Customize the look of your app
You can use customize the look of your app by overriding the properties
of an existing theme in the style resource file. For example, you can
change the color of the app bar, the status bar, and any UI controls.
You override the theme by adding <item> elements to the <style>
to describe each modification you want to make.

We’re going to override three of the colors used by our theme. To do
this, make sure that your version of styles.xml matches ours below:

<xml>
</xml>

app/src/main

styles.xml

BitsAndPizzas

res

values

<resources>

 <!-- Base application theme. -->

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

 <!-- Customize your theme here. -->

 <item name="colorPrimary">@color/colorPrimary</item>

 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>

 <item name="colorAccent">@color/colorAccent</item>

 </style>

</resources>

The above code includes three modifications, each one described by a
separate <item>. Each <item> has a name attribute that indicates
what part of the theme you want to change, and a value that specifies
what you want to change it to, like this:

There are a whole host of other theme properties
you can change, but we're not going to cover them
here. To find out more, visit https://developer.
android.com/guide/topics/ui/themes.html.

name="colorPrimary" refers to the main color you
want to use for your app. This color gets used for your app
bar, and to “brand” your app with a particular color.

name="colorPrimaryDark" is a darker variant of
your main color. It gets used as the color of the status bar.

name="colorAccent" refers to the color of any UI
controls such as editable text views or checkboxes.

You set a new color for each of these areas by giving each
<item> a value. The value can either be a hardcoded
hexadecimal color value, or a reference to a color resource.
We’ll look at color resources on the next page.

<item name="colorPrimary">@color/colorPrimary</item>

This will change the colorPrimary part of the
theme so it has a value of @color/colorPrimary.

These three lines of code
modify the theme by changing
three of the colors.

colorPrimary
is the color of
the app bar.

colorPrimaryDark is the
color of the status bar.

colorAccent is the color of any UI controls.

Basic app bar
Toolbar
Action
Up button
Share action

304 Chapter 8

color resources

<color name="colorPrimary">#3F51B5</color>

The style resource file looks up colors from the color resource file
using @color/colorName. For example:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="colorPrimary">#3F51B5</color>

 <color name="colorPrimaryDark">#303F9F</color>

 <color name="colorAccent">#FF4081</color>

</resources>

Define colors in a color resource file
A color resource file is similar to a String resource file except that it
contains colors instead of Strings. Using a color resource file makes it
easy to make changes to the color scheme of your app, as all the colors
you want to use are held in one place.

The color resource file is usually called colors.xml, and it’s located in the
app/src/main/res/values folder. When you create a project in Android
Studio, the IDE will usually create this file for you.

If Android Studio hasn’t created the file, you’ll need to add it yourself.
Switch to the Project view of Android Studio’s explorer, highlight the
app/src/main/res/values folder, go to the File menu, and choose New.
Then choose the option to create a new Values resource file, and when
prompted, name the file “colors”. When you click on OK, Android
Studio will create the file for you.

Next, open colors.xml and make sure that your version of the file
matches ours below:

This says it's a color resource.

The color resource has a name of “colorPrimary”, and a value of #3F51B5 (blue).

The code above defines three color resources. Each one has a name
and a value. The value is a hexadecimal color value:

<xml>
</xml>

app/src/main

colors.xml

BitsAndPizzas

res

values

<item name="colorPrimary">@color/colorPrimary</item>

overrides the primary color used in the theme with the value of
colorPrimary in the color resource file.

Now that we’ve seen how to add an app bar by applying a theme, let’s
update MainActivity’s layout and take the app for a test drive.

Each of these is
a color resource.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 305

support libraries and app bars
Basic app bar
Toolbar
Action
Up button
Share action

The code for activity_main.xml
For MainActivity’s layout, we’re going to display some
default text in a linear layout. Here’s the code to do that;
update your version of activity_main.xml to match ours below:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:padding="16dp"

 tools:context="com.hfad.bitsandpizzas.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>
We’re just displaying some basic placeholder text in MainActivity’s layout because right now we want you to focus on app bars.

<xml>
</xml>

app/src/main

activity_
main.xml

BitsAndPizzas

res

layout

Test drive the app
When you run the app, MainActivity gets displayed. At the top
of the activity there’s an app bar.

That’s everything you need to apply a basic app bar in your activities.
Why not experiment with changing the theme and colors? Then
when you’re ready, turn the page and we’ll move on to the next step.

This is the app bar. The
default color's been
overridden so that it's blue.

The status
bar’s default
color has been
overridden so
it's a darker
shade of blue
than the app
bar.

The background is light, as we've used a theme
of Theme.AppCompat.Light.DarkActionBar. This theme also gives us dark text in the main body of the activity, and white text in the app bar.

306 Chapter 8

toolbars

ActionBar vs. Toolbar
So far, you’ve seen how to add a basic app bar to the activities in
your app by applying a theme that includes an app bar. Adding an
app bar in this way is easy, but it has one disadvantage: it doesn’t
necessarily include all the latest app bar features.

Behind the scenes, any activity that acquires an app bar via a
theme uses the ActionBar class for its app bar. The most recent
app bar features, however, have been added to the Toolbar class
in the AppCompat Support Library instead. This means that if
you want to use the most recent app bar features in your app, you
need to use the Toolbar class from the Support Library.

Using the Toolbar class also gives you more flexibility. A toolbar
is a type of view that you add to your layout just as you would any
other type of view, and this makes it much easier to position and
control than a basic app bar.

How to add a toolbar
We’re going to change our activity so that it uses a toolbar from
the Support Library for its app bar. Whenever you want to use the
Toolbar class from the Support Library, there are a number of
steps you need to perform:

Make sure your activity extends the AppCompatActivity class.
Your activity must extend AppCompatActivity (or one of its subclasses)
in order to use the Support Library toolbar.

2

Remove the existing app bar.
You do this by changing the theme to one that doesn’t include an app bar.

3

Add a toolbar to the layout.
The toolbar is a type of view, so you can position it where you want and
control its appearance.

4

Update the activity to set the toolbar as the activity’s app bar.
This allows the activity to respond to the toolbar.

5

We’ll go through these steps now.

Add the v7 AppCompat Support Library as a dependency.
This is necessary because the Toolbar class lives in this library.

1

A toolbar looks just like the app bar
you had previously, but it gives you more
flexibility and includes the most recent
app bar features.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 307

support libraries and app bars

1. Add the AppCompat Support Library
Before you can use the Toolbar class from the Support Library in
your activities, you need to make sure that the v7 AppCompat Support
Library has been added to your project as a dependency. In our
particular case, the library has already been added to our project, as we
needed it for the AppCompat themes.

To double-check that the Support Library is there, in Android Studio
choose File→Project Structure, click on the app module, and choose
Dependencies. You should see the v7 AppCompat Library listed as
shown below:

2. Extend the AppCompatActivity class
When you want to use a theme from the AppCompat
Library, you have to make sure that your activities extend the
AppCompatActivity class. This is also the case if you want to use a
toolbar from the Support Library as your app bar.

We’ve already completed this step because, earlier in this chapter, we
changed MainActivity.java to use AppCompatActivity:

...

import android.support.v7.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

 ...

}

The next thing we need to do is remove the existing app bar.

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Our MainActivity already extends AppCompatActivity.

Here's the v7 AppCompat Support Library.

Basic app bar
Toolbar
Action
Up button
Share action

308 Chapter 8

NoActionBar theme

3. Remove the app bar
You remove the existing app bar in exactly the same way that you add
one—by applying a theme.

When we wanted to add an app bar to our app, we applied a theme
that displayed one. To do this, we used the theme attribute in
AndroidManifest.xml to apply a style called AppTheme:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.bitsandpizzas">

 <application

 ...

 android:theme="@style/AppTheme">

 ...

 </application>

</manifest>

<xml>
</xml>

app/src/main

AndroidManifest.xml

BitsAndPizzas

The theme was then defined in styles.xml like this:

<resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

 ...

 </style>

</resources>

<xml>
</xml>

app/src/main

styles.xml

BitsAndPizzas

res

values

The theme Theme.AppCompat.Light.DarkActionBar gives
your activity a light background with a dark app bar. To remove the
app bar, we’re going to change the theme to Theme.AppCompat.
Light.NoActionBar instead. Your activity will look the same as it
did before except that no app bar will be displayed.

To change the theme, update styles.xml like this:

<resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkNoActionBar">

 ...

 </style>

</resources>

This looks up the theme from styles.xml.

This is the theme we’re using. It displays a dark app bar.

Change the theme from DarkActionBar to
NoActionBar. This removes the app bar.

We customized the theme by
overriding some of the colors.
You can leave this code in place.

Now that we’ve removed the current app bar, we can add the toolbar.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 309

support libraries and app bars

4. Add a toolbar to the layout
As we said earlier, a toolbar is a view that you add to your layout.
Toolbar code looks like this:

<android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" />

You start by defining the toolbar using:

<android.support.v7.widget.Toolbar

 ... />

where android.support.v7.widget.Toolbar is the fully
qualified path of the Toolbar class in the Support Library.

Once the toolbar has been defined, you then use other view attributes
to give it an ID, and specify its appearance. As an example, to make
the toolbar as wide as its parent and as tall as the default app bar size
from the underlying theme, you’d use:

android:layout_width="match_parent"

android:layout_height="?attr/actionBarSize"

The ?attr prefix means that you want to use an attribute from the
current theme. In this particular case, ?attr/actionBarSize is
the height of an app bar that’s specified in our theme.

You can also change your toolbar’s appearance so that it has a similar
appearance to the app bar that we had before. To do this, you can
change the background color, and apply a theme overlay like this:

android:background="?attr/colorPrimary"

android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"

A theme overlay is a special type of theme that alters the current theme
by overwriting some of its attributes. We want our toolbar to look
like our app bar did when we used a theme of Theme.AppCompat.
Light.DarkActionBar, so we’re using a theme overlay of
ThemeOverlay.AppCompat.Dark.ActionBar.

On the next page we’ll add the toolbar to the layout.

This defines the toolbar.

Give the toolbar an ID so you can refer to it in your activity code.
Set the toolbar's size.

These control the app bar's appearance.

The toolbar is as wide as its parent,
and as tall as the default app bar.

Make the toolbar's background the same
color as the app bar we had previously.

This gives the toolbar the same
appearance as the app bar we had
before. We have to use a theme overlay,
as the NoActionBar theme doesn't
style app bars in the same way as the
DarkActionBar theme did.

This is the full path of the Toolbar
class in the Support Library.

Basic app bar
Toolbar
Action
Up button
Share action

310 Chapter 8

we’re not doing this (in our app)

Add the toolbar to the layout...
If your app contains a single activity, you can add the toolbar to your
layout just as you would any other view. Here is an example of the
sort of code you would use in this situation (we’re using a different
approach, so don’t update your layout with the code below):

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.MainActivity">

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>

<xml>
</xml>

app/src/main

activity_
main.xml

BitsAndPizzas

res

layout

This code displays the toolbar at the top of the activity. We’ve
positioned the text view Android Studio gave us so that it’s displayed
underneath the toolbar. Remember that a toolbar is a view like
any other view, so you need to take this into account when you’re
positioning your other views.

Adding the toolbar code to your layout works well if your app contains
a single activity, as it means that all the code relating to your activity’s
appearance is in a single file. It works less well, however, if your app
contains multiple activities. If you wanted to display a toolbar in
multiple activities, you would need to define the toolbar in the layout of
each activity. This means that if you wanted to change the style of the
toolbar in some way, you’d need to edit every single layout file.

So what’s the alternative?

This code displays
the toolbar at the
top of the activity.

We’re using a linear layout, so the text view will be positioned below the toolbar.

The code here
doesn't include
any padding.
This is so that
the toolbar
fills the screen
horizontally.

Basic app bar
Toolbar
Action
Up button
Share action

Later in the chapter we’ll add a second
activity to our app, so we’re not using this
approach. So you don’t need to change your
layout code to match this example.

you are here 4 311

support libraries and app bars

activity_
main.xml

...or define the toolbar as a separate layout
An alternative approach is to define the toolbar in a separate layout,
and then include the toolbar layout in each activity. This means
that you only need to define the toolbar once, and if you want to
change the style of your toolbar, you only need to edit one file.

We’re going to use this approach in our app. Start by creating a
new layout file. Switch to the Project view of Android Studio’s explorer,
highlight the app/src/res/main/layout folder in Android Studio, then
go to the File menu and choose New → Layout resource file. When
prompted, give the layout file a name of “toolbar_main” and then click
on OK. This creates a new layout file called toolbar_main.xml.

Next, open toolbar_main.xml, and replace any code Android Studio has
created for you with the following:

<android.support.v7.widget.Toolbar

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" />

This code is almost identical to the toolbar code you’ve already seen.
The main difference is that we’ve left out the toolbar’s id attribute,
as we’ll define this in the activity’s main layout file activity_main.xml
instead.

On the next page we’ll look at how you include the toolbar layout in
activity_main.xml.

<xml>
</xml>

app/src/main

toolbar_
main.xml

BitsAndPizzas

res

layout

activity_main

<Layout>

</Layout>

MainActivity toolbar_main

<Layout>

</Layout>

MainActivity has a
layout, activity_main.

activity_main doesn't
explicitly contain the
toolbar code. Instead, it
contains a reference to
the toolbar's layout.

The toolbar's layout is
contained in a separate file.
If your activity contains
multiple activities, each one can
reference the toolbar's layout.

This toolbar code goes in a
separate layout file so multiple
activities can reference it.

Basic app bar
Toolbar
Action
Up button
Share action

312 Chapter 8

include toolbar

Include the toolbar in the activity’s layout
You can display one layout inside another using the <include> tag.
This tag must contain a layout attribute that specifies the name of the
layout you want to include. As an example, here’s how you would use
the <include> tag to include the layout toolbar_main.xml:

<include

 layout="@layout/toolbar_main" />

We want to include the toolbar_main layout in activity_main.xml.
Here’s our code; update your version of activity_main.xml to match ours:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:padding="16dp"

 tools:context="com.hfad.bitsandpizzas.MainActivity">

 <include

 layout="@layout/toolbar_main"

 android:id="@+id/toolbar" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>

<xml>
</xml>

app/src/main

activity_
main.xml

BitsAndPizzas

res

layout

Now that we’ve added the toolbar to the layout, there’s one more
change we need to make.

The @layout tells Android to look for
a layout called toolbar_main.

Include the toolbar_main layout.

We're giving the toolbar an ID so we can refer to it in our activity code.

Basic app bar
Toolbar
Action
Up button
Share action

Remove the padding so that the
toolbar fills the screen horizontally.

you are here 4 313

support libraries and app bars

5. Set the toolbar as the activity's app bar
The final thing we need to do is tell MainActivity to use the
toolbar as its app bar.

So far we’ve only added the toolbar to the layout. While this
means that the toolbar gets displayed at the top of the screen,
the toolbar doesn’t yet have any app bar functionality. As an
example, if you were to run the app at this point, you’d find that
the title of the app isn’t displayed in the toolbar as it was in the
app bar we had previously.

To get the toolbar to behave like an app bar, we need to call
the AppCompatActivity’s setSupportActionBar()
method in the activity’s onCreate() method, which takes one
parameter: the toolbar you want to set as the activity’s app bar.

Here’s the code for MainActivity.java; update your code to match
ours:

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 }

}

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

That’s all the code that you need to replace the activity’s basic
app bar with a toolbar. Let’s see how it looks.

Get a reference to the toolbar, and
set it as the activity's app bar.

If you don't update your activity code after adding a toolbar to your layout, your toolbar will just appear as a plain strip with nothing in it.

We're using the
Toolbar class, so we
need to import it.

Basic app bar
Toolbar
Action
Up button
Share action

We need to use setSupportActionBar(), as we’re
using the toolbar from the Support Library.

314 Chapter 8

test drive

Test drive the app
When you run the app, a new toolbar is displayed in place of the
basic app bar we had before. It looks similar to the app bar, but
as it’s based on the Support Library Toolbar class, it includes
all the latest Android app bar functionality.

You’ve seen how to add an app bar, and how to replace the basic
app bar with a toolbar. Over the next few pages we’ll look at how
to add extra functionaility to the app bar.

Q: You’ve mentioned app bars, action
bars, and toolbars. Is there a difference?

A: An app bar is the bar that usually
appears at the top of your activities. It’s
sometimes called an action bar because
in earlier versions of Android, the only way
of implementing an app bar was via the
ActionBar class.

The ActionBar class is used behind
the scenes when you add an app bar by
applying a theme. If your app doesn’t rely
on any new app bar features, this may be
sufficient for your app.

An alternative way of adding an app
bar is to implement a toolbar using the
Toolbar class. The result looks similar
to the default theme-based app bar, but it
includes newer features of Android.

Q: I’ve added a toolbar to my activity,
but when I run the app, it just looks like
a band across the top of the screen. It
doesn’t even include the app name.
Why’s that?

A: First, check AndroidManifest.xml and
make sure that your app has been given a
label. This is where the app bar gets the
app’s name from.

Also, check that your activity calls the
setSupportActionBar()
method in its onCreate() method, as
this sets the toolbar as the activity’s app bar.
Without it, the name of the app or activity
won’t get displayed in the toolbar.

Q: I’ve seen the <include> tag in
some of the code that Android Studio
has created for me. What does it do?

A: The <include> tag is used
to include one layout inside another.
Depending on what version of Android
Studio you’re using and what type of project
you create, Android Studio may split your
layout code into one or more separate
layouts.

Here's our new toolbar. It looks
like the app bar we had before,
but it gives you more flexibility.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 315

support libraries and app bars

Add actions to the app bar
In most of the apps you create, you’ll probably want to add actions
to the app bar. These are buttons or text in the app bar that you click
on to make something happen. We’re going to add a “Create Order”
button to the app bar. When you click on it, it will start a new activity
we’ll create called OrderActivity:

We’ll create a new
Create Order action
that will start
OrderActivity.

Create OrderActivity
We’ll start by creating OrderActivity. Select the com.hfad.
bitsandpizzas package in the app/src/main/java folder, then go
to File→New...→Activity→Empty Activity. Name the activity

“OrderActivity”, name the layout “activity_order”, make sure the
package name is com.hfad.bitsandpizzas, and check
the Backwards Compatibility (AppCompat) checkbox.

We want OrderActivity to display the same toolbar as
MainActivity. See if you can complete the code for activity_
order.xml below to display the toolbar.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.OrderActivity">

</LinearLayout>

The code for adding the
toolbar needs to go here.

Basic app bar
Toolbar
Action
Up button
Share action

If prompted for the
activity’s source language,
select the option for
Java.

316 Chapter 8

solution

<include
 layout="@layout/toolbar_main"
 android:id="@+id/toolbar" />

We want OrderActivity to display the same toolbar as
MainActivity. See if you can complete the code for activity_
order.xml below to display the toolbar.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.OrderActivity">

 <include

 layout="@layout/toolbar_main"

 android:id="@+id/toolbar" />

</LinearLayout>

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.OrderActivity">

</LinearLayout>

Update activity_order.xml
We’ll start by updating activity_order.xml so that it displays a toolbar. The
toolbar will use the same layout we created earlier.

Here’s our code; update yours so that it matches ours:

<xml>
</xml>

app/src/main

activity_
order.xml

BitsAndPizzas

res

layout

This is the same code that we had in
MainActivity. It includes the toolbar_main
layout in activity_order.

Add the toolbar layout we created earlier.

you are here 4 317

support libraries and app bars

Update OrderActivity.java
Next we’ll update OrderActivity so that it uses the toolbar we
set up in the layout as its app bar. To do this, we need to call the
setSupportActionBar() method, passing in the toolbar as a
parameter, just as we did before.

Here’s the full code for OrderActivity.java; update your version of the
code so that it matches ours:

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

public class OrderActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_order);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 }

}

app/src/main

OrderActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Make sure the activity extends AppCompatActivity.

Set the toolbar as the activity's app bar.

Add a String resource for the activity’s title
Before we move on to creating an action to start OrderActivity,
there’s one more change we’re going to make. We want to make it
obvious to users when OrderActivity gets started, so we’re going to
change the text that’s displayed in OrderActivity’s app bar to make
it say “Create Order” rather than the name of the app.

To do this, we’ll start by adding a String resource for the activity’s title.
Open the file strings.xml in the app/src/main/res/values folder, then add the
following resource:

<string name="create_order">Create Order</string>

We’ll update the text that gets displayed in the app bar on the next page.

We'll use this to
display “Create
Order” in
OrderActivity’s
app bar.

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

Basic app bar
Toolbar
Action
Up button
Share action

318 Chapter 8

add a label

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.bitsandpizzas">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 ...

 </activity>

 <activity android:name=".OrderActivity">

 </activity>

 </application>

</manifest>

Change the app bar text by adding a label
As you saw earlier in the chapter, you tell Android what text to display
in the app bar by using the label attribute in file AndroidManifest.xml.

Here’s our current code for AndroidManifest.xml. As you can see, the
code includes a label attribute of @string/app_name inside the
<application> element. This means that the name of the app gets
displayed in the app bar for the entire app.

<xml>
</xml>

app/src/main

AndroidManifest.xml

BitsAndPizzas

We want to override the label for OrderActivity so that the text
“Create Order” gets displayed in the app bar whenever OrderActivity
has the focus. To do this, we’ll add a new label attribute to
OrderActivity’s <activity> element to display the new text:

<activity

 android:name=".OrderActivity"

 android:label="@string/create_order">

</activity>

We’ll show you this code in context on the next page.

The label attribute tells
Android what text to
display in the app bar.

This is the entry for MainActivity
that we had before.

This is the entry for
OrderActivity. Android
added this for us when we
created the new activity.

Adding a label to an activity means
that for this activity,the activity’s
label gets displayed in its app bar
instead of the app’s label.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 319

support libraries and app bars

How to add an action to an app bar
To add an action to the app bar, you need to do four things:

Define the action in a menu resource file.
This tells Android what actions you want on the app bar.

2

Get the activity to add the menu resource to the app bar.
You do this by implementing the onCreateOptionsMenu() method.

3

Add code to say what the action should do when clicked.
You do this by implementing the onOptionsItemSelected() method.

4

We’ll start by adding the action’s icon and text resources.

Add resources for the action’s icon and text.1

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.bitsandpizzas">

 <application

 ...

 android:label="@string/app_name"

 ...>

 <activity android:name=".MainActivity">

 ...

 </activity>

 <activity android:name=".OrderActivity"

 android:label="@string/create_order">

 </activity>

 </application>

</manifest>

The code for AndroidManifest.xml
Here’s our code for AndroidManifest.xml. Update your code to reflect
our changes.

That’s everything we need for OrderActivity. Next we’ll look at
how you add an action to the app bar so that we can start it.

<xml>
</xml>

app/src/main

AndroidManifest.xml

BitsAndPizzasThe app's label is the
default label for the
entire app.

We don't need to change
the code for MainActivity.
MainActivity has no
label of its own, so it
will use the label in the
<application> element.

Adding a label to OrderActivity overrides the
app's label for this activity. It means that
different text gets displayed in the app bar.

Basic app bar
Toolbar
Action
Up button
Share action

320 Chapter 8

add resources

1. Add the action’s resources
When you add an action to an app bar, you generally assign it
an icon and a short text title. The icon usually gets displayed if
the action appears in the main area of the app bar. If the action
doesn’t fit in the main area, it’s automatically moved to the app
bar overflow, and the title appears instead.

We’ll start with the icon.

Add the icon
If you want to display your action as an icon, you can either
create your own icon from scratch or use one of the icons
provided by Google. You can find the Google icons here:
https://material.io/icons/.

We’re going to use the “add” icon ic_add_white_24dp,
and we’ll add a version of it to our project’s drawable* folders,
one for each screen density. Android will decide at runtime
which version of the icon to use depending on the screen
density of the device.

First, switch to the Project view of Android Studio’s explorer
if you haven’t done so already, highlight the app/src/main/res
folder, and then create folders called drawable-hdpi, drawable-mdpi,
drawable-xhdpi, drawable-xxhdpi, and drawable-xxxhdpi if they’re
not already there. Then go to https://git.io/v9oet, and download
the ic_add_white_24dp.png Bits and Pizzas images. Add the
image in the drawable-hdpi folder to the drawable-hdpi folder in
your project, then repeat this process for the other folders.

The icon for
the new action

Add the action’s title as a String resource
In addition to adding an icon for the action, we’ll also add a
title. This will get used if Android displays the action in the
overflow area of the app bar, for example if there’s no space for
the action in the main area of the app bar.

We’ll create the title as a String resource. Open the file strings.xml
in the app/src/main/res/values folder, then add the following
String resource:

<string name="create_order_title">Create Order</string>

We’ll use this as the
action item’s title.

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values
Now that we’ve added resources for the action’s icon and title,
we can create the menu resource file.

Basic app bar
Toolbar
Action
Up button
Share action

This is the app bar’s
overflow. Android
moves actions into the
overflow that don’t
fit on the main area
of the app bar.

you are here 4 321

support libraries and app bars

2. Create the menu resource file
A menu resource file tells Android what actions you want to appear on
the app bar. Your app can contain multiple menu resource files. For
example, you can create a separate menu resource file for each set of
actions; this is useful if you want different activities to display different
actions on their app bars.

We’re going to create a new menu resource file called menu_main.xml in the
folder app/src/main/res/menu. All menu resource files go in this folder.

To create the menu resource file, select the app/src/main/res folder, go to
the File menu, and choose New. Then choose the option to create a new
Android resource file. You’ll be prompted for the name of the resource
file and the type of resource. Give it a name of “menu_main” and a
resource type of “Menu”, and make sure that the directory name is menu.
When you click on OK, Android Studio will create the file for you , and
add it to the app/src/main/res/menu folder.

Here’s the code to add the new action. Replace the contents of menu_
main.xml with the code below:

Android Studio may have already
created this file for you. If it
has, simply replace its contents
with the code below.

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item android:id="@+id/action_create_order"

 android:title="@string/create_order_title"

 android:icon="@drawable/ic_add_white_24dp"

 android:orderInCategory="1"

 app:showAsAction="ifRoom" />

</menu> <xml>
</xml>

app/src/main

menu_main.xml

BitsAndPizzas

res

menu

The menu resource file has a <menu> element at its root. Inside the
<menu> element, you get a number of <item> elements, each one
describing a separate action. In this particular case, we have a single
action.

You use attributes of <item> to describe each action. The code creates
an action with an id of action_create_order. This is so that
we can refer to the action in our activity code, and respond to the user
clicking on it.

The action includes a number of other attributes that determine how
the action appears on the app bar, such as its icon and text. We’ll look at
these on the next page.

The <menu>
element
identifies
the file
as a menu
resource
file. The <item> element

defines the action.

Basic app bar
Toolbar
Action
Up button
Share action

322 Chapter 8

how your action looks

"ifRoom" Place the item in the app bar if there’s space. If there’s not space, put it in the
overflow.

"withText" Include the item’s title text.

"never" Put the item in the overflow area, and never in the main app bar.

"always" Always place the item in the main area of the app bar. This value should be
used sparingly; if you apply this to many items, they may overlap each other.

Control the action’s appearance
Whenever you create an action to be displayed on the app bar, it’s likely
you’ll want to display it as an icon. The icon can be any drawable resource.
You set the icon using the icon attribute:

android:icon="@drawable/ic_add_white_24dp"

Sometimes Android can’t display the action’s icon. This may be because the
action has no icon, or because the action is displayed in the app bar overflow
instead of in the main area. For this reason, it’s a good idea to set an action’s
title so that the action can display a short piece of text instead of an icon. You
set the action’s title using the title attribute:

android:title="@string/create_order_title"

If your app bar contains multiple actions, you might want to specify the order
in which they appear. To do this, you use the orderInCategory attribute,
which takes an integer value that reflects the action’s order. Actions with a
lower number will appear before actions with a higher number.

android:orderInCategory="1"

Finally, the showAsAction attribute is used to say how you want the
item to appear in the app bar. As an example, you can use it to get an
item to appear in the overflow area rather than the main part of the app
bar, or to place an item on the main app bar only if there’s room. The
showAsAction attribute can take the following values:

In our example, we want the action to appear on the main area of the app
bar if there’s room, so we’re using:

app:showAsAction="ifRoom"

Our menu resource file is now complete. The next thing we need to do is
implement the onCreateOptionsMenu() method in our activity.

There are other attributes
for controlling an action's
appearance, but these are
the most common ones.

This is the name of the drawable
resource we want to use as the icon.

The title doesn't always get displayed,
but it's a good idea to include it in case
the action appears in the overflow.

An action with an orderInCategory of 1 will appear
before an action with an orderInCategory of 10.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 323

support libraries and app bars

package com.hfad.bitsandpizzas;

import android.view.Menu;

...

public class MainActivity extends AppCompatActivity {

 ...

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the app bar.

 getMenuInflater().inflate(R.menu.menu_main, menu);

 return super.onCreateOptionsMenu(menu);

 }

}

3. Add the menu to the app bar with
the onCreateOptionsMenu() method
Once you’ve created the menu resource file, you add the actions
it contains to an activity’s app bar by implementing the activity’s
onCreateOptionsMenu() method. This method runs when the
app bar’s menu gets created. It takes one parameter, a Menu object
that’s a Java representation of the menu resource file.

Here’s our onCreateOptionsMenu() method for MainActivity.java
(update your code to reflect our changes):

The line:

getMenuInflater().inflate(R.menu.menu_main, menu);

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Implementing this method adds any items in
the menu resource file to the app bar.

This is the menu resource file.

This is a Menu object that’s
a Java representation of the
menu resource file.

inflates your menu resource file. This means that it creates a Menu object
that’s a Java representation of your menu resource file, and any actions
the menu resource file contains are translated to MenuItems. These are
then added to the app bar.

There’s one more thing we need to do: get our action to start
OrderActivity when it’s clicked. We’ll do that on the next page.

The onCreateOptionsMenu()
method uses the Menu class.

All onCreateOptionsMenu()
methods generally look like this.

Basic app bar
Toolbar
Action
Up button
Share action

324 Chapter 8

onOptionsItemSelected()

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_create_order:

 //Code to run when the Create Order item is clicked

 Intent intent = new Intent(this, OrderActivity.class);

 startActivity(intent);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 ...

 default:

 return super.onOptionsItemSelected(item);

 }

}

4. React to action item clicks with
the onOptionsItemSelected() method
To make your activity react when an action in the app bar is
clicked, you implement the onOptionsItemSelected()
method in your activity: The MenuItem object is the action

on the app bar that was clicked.

The full code for MainActivity.java is on the next page.

Returning true tells Android you’ve dealt with the item being clicked.

This intent is
used to start
OrderActivity when
the Create Order
action is clicked.

The onOptionsItemSelected() method runs whenever an
action gets clicked. It takes one parameter, a MenuItem object
that represents the action on the app bar that was clicked. You
can use the MenuItem’s getItemId() method to get the ID
of the action so that you can perform an appropriate action, such
as starting a new activity.

We want to start OrderActivity when our action is clicked.
Here’s the code for the onOptionsItemSelected() method
that will do this:

Get the action’s ID.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 325

support libraries and app bars

The full MainActivity.java code
Here’s the full code for MainActivity.java. Update your code so that it
matches ours. We’ve highlighted our changes.

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.support.v7.widget.Toolbar;
import android.view.Menu;
import android.view.MenuItem;
import android.content.Intent;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return super.onCreateOptionsMenu(menu);
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_create_order:
 Intent intent = new Intent(this, OrderActivity.class);
 startActivity(intent);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }
}

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

These classes are used by the
onOptionsItemSelected() method
so we need to import them.

This method gets called when an
action on the app bar is clicked.

Let’s see what happens when we run the app.

Basic app bar
Toolbar
Action
Up button
Share action

326 Chapter 8

test drive

Test drive the app
When you run the app, a new Create Order action is displayed
in the MainActivity app bar. When you click on the action
item, it starts OrderActivity.

Here’s the Create
Order action.

Clicking on the Create Order
action starts OrderActivity.
The text “Create Order” gets
displayed in the app bar.

But how do we get back to MainActivity?
To return to MainActivity from OrderActivity, we
currently need to click on the Back button on our device. But
what if we want to get back to it from the app bar?

One option would be to add an action to OrderActivity’s
app bar that starts MainActivity, but there’s a better way.
We can get OrderActivity to return to MainActivity
by enabling the Up button on OrderActivity’s app bar.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 327

support libraries and app bars

Enable Up navigation
If you have an app that contains a hierarchy of activities, you
can enable the Up button on the app bar to let users navigate
through the app using hierarchical relationships. As an example,
MainActivity in our app includes an action on its app bar that
starts a second activity, OrderActivity. If we enable the Up
button on OrderActivity’s app bar, the user will be able to
return to MainActivity by clicking on this button.

Up navigation may sound the same as using the Back button on the
device, but it’s different. The Back button allows users to work their
way back through the history of activities they’ve been to. The Up
button, on the other hand, is purely based on the app’s hierarchical
structure. If your app contains a lot of activities, implementing the
Up button gives your users a quick and easy way to return to an
activity’s parent without having to keep pressing the Back button.

We’re going to enable the Up button on OrderActivity’s app
bar. When you click on it, it will display MainActivity.

This is the
Up button.

Click on the Create Order
action to go to OrderActivity.

Then click on the
Up button... ...to go to MainActivity.

Use the Back button
to navigate back to
the previous activity.

Use the Up button to
navigate up the app’s
hierarchy.Clicking on the child’s

Up button will take you
up the hierarchy to the
activity’s parent.

The parent activity

The child activity

Basic app bar
Toolbar
Action
Up button
Share action

328 Chapter 8

responsible parenting

Set an activity’s parent
The Up button enables the user to navigate up a hierarchy of activities
in the app. You declare this hierarchy in AndroidManifest.xml by
specifying the parent of each activity. As an example, we want the user
to be able to navigate from OrderActivity to MainActivity
when they press the Up button, so this means that MainActivity is
the parent of OrderActivity.

For API level 16 and above, you specify the parent activity using the
android:parentActivityName attribute. For older versions of
Android, you need to include a <meta-data> element that includes
the name of the parent activity. Here are both approaches in our
AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.bitsandpizzas">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name=".OrderActivity"

 android:label="@string/create_order"

 android:parentActivityName=".MainActivity">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value=".MainActivity" />
 </activity>

 </application>

</manifest>

Finally, we need to enable the Up button in OrderActivity.

<xml>
</xml>

app/src/main

AndroidManifest.xml

BitsAndPizzas

Apps at API level 16 or above use this
line. It says that OrderActivity’s
parent is MainActivity.

You only need to add the <meta-data> element if you’re supporting apps below API level 16. We’ve only included it so you can see what it looks like, but including it in your code won’t do any harm.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 329

support libraries and app bars

Adding the Up button
You enable the Up button from within your activity code.
You first get a reference to the app bar using the activity’s
getSupportActionBar() method. This returns an
object of type ActionBar. You then call the ActionBar
setDisplayHomeAsUpEnabled() method, passing it a
value of true.

ActionBar actionBar = getSupportActionBar();

actionBar.setDisplayHomeAsUpEnabled(true);

We want to enable the Up button in OrderActivity, so we’ll
add the above code to the onCreate() method in OrderActivity.
java. Here’s our full activity code:

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.support.v7.app.ActionBar;

public class OrderActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_order);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 ActionBar actionBar = getSupportActionBar();

 actionBar.setDisplayHomeAsUpEnabled(true);

 }

}

That’s all the changes we need to make to enable the Up button.
Let’s see what happens when we run the app.

 If you enable the
Up button for an
activity, you
MUST specify its
parent.

If you don’t, you’ll get a null pointer
exception when you call the
setDisplayHomeAsUpEnabled()
method.

app/src/main

OrderActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

We’re using the ActionBar class, so we need to import
it. It comes from the AppCompat Support Library.

This enables the Up button. Even though we're using a toolbar for our app bar, we need to use the ActionBar class for this method.

Basic app bar
Toolbar
Action
Up button
Share action

You need to use
getSupportActionBar(),
as we’re using the toolbar
from the Support Library.

330 Chapter 8

another test drive

Test drive the app
When you run your app and click on the Create Order action
item, OrderActivity is displayed as before.

OrderActivity displays an Up button in its app bar. When
you click on the Up button, it displays its hierarchical parent
MainActivity.

Click on the Create
Order button to
start OrderActivity.

OrderActivity includes an Up button. When you click on it...
...OrderActivity’s parent
(MainActivity) is
displayed.

So far, we’ve looked at how you add an app bar to your app
and add basic actions to it. Next we’ll look at how you add
more sophisticated actions using action providers.

Basic app bar
Toolbar
Action
Up button
Share action

This is the
MainActivity
screen.

you are here 4 331

support libraries and app bars

Sharing content on the app bar
The next thing we’ll look at is how to add an action provider to
your app bar. An action provider is an action that defines its own
appearance and behavior.

We’re going to concentrate on using the share action provider,
which allows users to share content in your app with other apps
such as Gmail. As an example, you could use it to let users send
details of a particular pizza to one of their contacts.

The share action provider defines its own icon, so you don’t have
to add it yourself. When you click on it, it provides you with a list
of apps you can use to share content. It adds a separate icon for the
most commonly used app you choose to share content with.

You share the content with an intent
To get the share action provider to share content, you pass it an
intent that defines the content you want to share, and its type. As an
example, if you define an intent that passes text with an ACTION_
SEND action, the share action will offer you a list of apps on your
device that are capable of sharing text.

Here’s how the share action works (you’ll see this in action over the
next two pages):

AppActivity

Intent

ShareAction
Provider

ACTION_SEND
type: “text/plain”
messageText: ”Hi!”

Your activity creates an intent and passes it to the share action provider.
The intent describes the content that needs to be shared, its type, and an action.

1

This is what the share action looks
like on the app bar. When you click
on it, it gives you a list of apps
that you can use to share content.

YourActivity

Intent

ACTION_SEND
type: “text/plain”
messageText: ”Hi!” ShareAction

Provider

When the user clicks on the share action, the share action uses the intent
to present the user with a list of apps that can deal with the intent.
The user chooses an app, and the share action provider passes the intent to the app’s activity
that can handle it.

2

Basic app bar
Toolbar
Action
Up button
Share action

The share
action also
displays an
icon for the
app you most
commonly share
content with,
in this case
the Messenger
app. This may
not be visible
at first.

332 Chapter 8

add action provider

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item android:id="@+id/action_create_order"

 android:title="@string/create_order_title"

 android:icon="@drawable/ic_add_white_24dp"

 android:orderInCategory="1"

 app:showAsAction="ifRoom" />

 <item android:id="@+id/action_share"

 android:title="@string/action_share"

 android:orderInCategory="2"

 app:showAsAction="ifRoom"

 app:actionProviderClass="android.support.v7.widget.ShareActionProvider" />

</menu>

Add a share action provider to menu_main.xml

<string name="action_share">Share</string>

As we mentioned earlier, when you add a share action to your menu
resource file, there’s no need to include an icon. The share action
provider already defines one.

Now that we’ve added the share action to the app bar, let’s specify
what content to share.

<xml>
</xml>

app/src/main

menu_main.xml

BitsAndPizzas

res

menu

You add the share action to the menu resource file using the
<item> element as before. This time, however, you need to specify
that you’re using a share action provider. You do this by adding
an attribute of app:actionProviderClass and setting it to
android.support.v7.widget.ShareActionProvider.

Here’s the code to add the share action; update your copy of
menu_main.xml to match ours:

You add a share action to the app bar by including it in the menu
resource file.

To start, add a new action_share String to strings.xml. We’ll use
this String to add a title to the share action in case it appears in the
overflow:

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

Display the share action provider
in the app bar if there’s room.

This is the share action provider class. It comes from the
AppCompat Support Library.

Basic app bar
Toolbar
Action
Up button
Share action

you are here 4 333

support libraries and app bars

Specify the content with an intent
To get the share action to share content when it’s clicked, you need
to tell it what to share in your activity code. You do this by passing
the share action provider an intent using its setShareIntent()
method. Here’s how you’d get the share action to share some default
text when it’s clicked:

package com.hfad.bitsandpizzas;

...

import android.support.v7.widget.ShareActionProvider;
import android.support.v4.view.MenuItemCompat;

public class MainActivity extends AppCompatActivity {

 private ShareActionProvider shareActionProvider;

 ...

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.menu_main, menu);

 MenuItem menuItem = menu.findItem(R.id.action_share);
 shareActionProvider =
 (ShareActionProvider) MenuItemCompat.getActionProvider(menuItem);
 setShareActionIntent("Want to join me for pizza?");
 return super.onCreateOptionsMenu(menu);

 }

 private void setShareActionIntent(String text) {
 Intent intent = new Intent(Intent.ACTION_SEND);
 intent.setType("text/plain");
 intent.putExtra(Intent.EXTRA_TEXT, text);
 shareActionProvider.setShareIntent(intent);
 }
}

You need to call the share action provider’s setShareIntent()
method whenever the content you wish to share has changed. As an
example, if you’re flicking through images in a photo app, you need to
make sure you share the current photo.

We’ll show you our full activity code on the next page, and then we’ll
see what happens when the app runs.

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Add a ShareActionProvider private variable.

Get a reference to the share
action provider and assign it
to the private variable. Then
call the setShareActionIntent()
method.

We created the setShareActionIntent()
method. It creates an intent, and
passes it to the share action provider
using its setShareIntent() method.

Basic app bar
Toolbar
Action
Up button
Share action

We’re using these extra
classes, so we need to
import them.

334 Chapter 8

MainActivity code

The full MainActivity.java code
Here’s the full activity code for MainActivity.java. Update your code to
reflect ours.

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.view.Menu;

import android.view.MenuItem;

import android.content.Intent;

import android.support.v7.widget.ShareActionProvider;

import android.support.v4.view.MenuItemCompat;

public class MainActivity extends AppCompatActivity {

 private ShareActionProvider shareActionProvider;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.menu_main, menu);

 MenuItem menuItem = menu.findItem(R.id.action_share);

 shareActionProvider =

 (ShareActionProvider) MenuItemCompat.getActionProvider(menuItem);

 setShareActionIntent("Want to join me for pizza?");

 return super.onCreateOptionsMenu(menu);

 }

We’re using these extra classes,
so we need to import them.

This is the default
text that the share
action should share.

Basic app bar
Toolbar
Action
Up button
Share action

The code continues on the next page.

you are here 4 335

support libraries and app bars

The MainActivity.java code (continued)

 private void setShareActionIntent(String text) {

 Intent intent = new Intent(Intent.ACTION_SEND);

 intent.setType("text/plain");

 intent.putExtra(Intent.EXTRA_TEXT, text);

 shareActionProvider.setShareIntent(intent);

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_create_order:

 //Code to run when the Create Order item is clicked

 Intent intent = new Intent(this, OrderActivity.class);

 startActivity(intent);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

}

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas
This sets the default text
in the share action provider.

On the next page we’ll check what happens when the
code runs by taking the app for a test drive.

336 Chapter 8

yet another test drive
Basic app bar
Toolbar
Action
Up button
Share action

Test drive the app
When you run the app, the share action is displayed in the app
bar:

The intent we
passed to the
share action
provider says
we want to
share text using
ACTION_SEND.
It displays a list
of apps that can
do this.

When you choose an app,
it shares the default text. We chose the Messenger
app on our device, so it’s
used the text as the
body of a message.

This is the share
action icon.

The share action provider also added the Messenger icon to our app bar. We usually share this app’s content with the Messenger app, so the share action gave us a shortcut.

When you click on the share action, it gives you a list of apps
to choose from that can accept the intent you want to share:

When you choose an app to share content with, the app gets
launched and the default text is shared with it:

We decided to share content
using the Messenger app.

Click on the share action icon.

you are here 4 337

support libraries and app bars

Your Android Toolbox

You’ve got Chapter 8 under
your belt and now you’ve

added Android Support
Libraries and app bars to your

toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

 � You add a basic app bar by applying a theme
that contains one.

 � The Android Support Libraries provide
backward compatibility with older versions of
Android.

 � The AppCompatActivity class
is a type of activity that resides in the
v7 AppCompat Support Library. In
general, your activity needs to extend the
AppCompatActivity class whenever
you want an app bar that provides backward
compatibility with older versions of Android.

 � The android:theme attribute in
AndroidManifest.xml specifies which theme
to apply.

 � You define styles in a style resource file
using the <style> element. The name
attribute gives the style a name. The
parent attribute specifies where the style
should inherit its properties from.

 � The latest app bar features are in the
Toolbar class in the v7 AppCompat
Support Library. You can use a toolbar as
your app bar.

 � Add actions to your app bar by adding them
to a menu resource file.

 � Add the items in the menu resource file to
the app bar by implementing the activity’s
onCreateOptionsMenu() method.

 � You determine what items should do when
clicked by implementing the activity’s
onOptionsItemSelected()
method.

 � Add an Up button to your app bar to navigate
up the app’s hierarchy. Specify the hierarchy in
AndroidManifest.xml. Use the ActionBar
setDisplayHomeAsUpEnabled()
method to enable the Up button.

 � You can share content by adding the share
action provider to your app bar. Add it by
including it in your menu resource file. Call
its setShareIntent() method to pass
it an intent describing the content you wish
to share.

CHAPT
ER 8

this is a new chapter 339

Doing the same job in
different places... I guess
that makes me a fragment.

fragments9

Make It Modular

You’ve seen how to create apps that work in the same way no
matter what device they’re running on.
But what if you want your app to look and behave differently depending on whether

it’s running on a phone or a tablet? In this case you need fragments, modular code

components that can be reused by different activities. We’ll show you how to create

basic fragments and list fragments, how to add them to your activities, and how to

get your fragments and activities to communicate with one another.

340 Chapter 9

different screen sizes

Your app needs to look great on ALL devices

To make the phone and tablet user interfaces look different from
each other, you can use separate layouts for large devices and
small devices.

On a phone:
Take a look at this image of an app on
a phone. It displays a list of workouts,
and when you click on one, you are
shown the details of that workout.

On a tablet:
On a larger device,
like a tablet, you
have a lot more
screen space
available, so it
would be good if
all the information
appeared on the
same screen. On
the tablet, the list of
workouts only goes
partway across the
screen, and when
you click on an item,
the details appear on
the right.

One of the great things about Android development is that you
can put the exact same app on devices with completely different
screen sizes and processors, and have them run in exactly the
same way. But that doesn’t mean that they always have to look
exactly the same.

Click on an item in a list, and
it launches a second activity.

There's a lot more space on
a tablet, so we can use the
space in a different way.

you are here 4 341

fragments

Your app may need to behave differently too

But that means you might duplicate code
The second activity that runs only on phones will need to insert the
details of a workout into the layout. But that code will also need to
be available in the main activity for when the app is running on a
tablet. The same code needs to be run by multiple activities.

Rather than duplicate the code in the two activities, we can use
fragments. So what’s a fragment?

It’s not enough to simply have different layouts for different devices.
You also need different Java code to run alongside the layouts so that
the app can behave differently depending on the device. In our
Workout app, for instance, we need to provide one activity for
tablets, and two activities for phones.

On a phone:

On a tablet:

Here we have two
activities: one for
the list and one for
the details.

This is a single activity, containing
both the list and the details.

342 Chapter 9

fragments

Fragments allow you to reuse code
Fragments are like reusable components or subactivities. A
fragment is used to control part of a screen, and can be reused
between screens. This means we can create a fragment for the
list of workouts, and a fragment to display the details of a single
workout. These fragments can then be shared between layouts.

A fragment has a layout
Just like an activity, a fragment has an associated layout. If you
design it carefully, the fragment’s Java code can be used to control
everything within the interface. If the fragment code contains all
that you need to control its layout, it greatly increases the chances
that you’ll be able to reuse it elsewhere in the app.

We’re going to show you how to create and use fragments by
building the Workout app.

If we use a
fragment for the
list of workouts,
we can reuse it in
multiple activities.

We can use
a separate
fragment for
the workout
details.

you are here 4 343

fragments

The phone version of the app
We’re going to build the phone version of the app in this
chapter, and reuse the fragments we create to build the tablet
version of the app in Chapter 10. Here’s how the phone version
of the app will work:

When the app gets launched, it starts MainActivity.
MainActivity uses activity_main.xml for its layout, and contains
a fragment called WorkoutListFragment.

1

WorkoutListFragment displays a list of workouts.2

1

2

3

When the user clicks on one of the workouts, DetailActivity starts.
DetailActivity uses activity_detail.xml for its layout, and contains a fragment
called WorkoutDetailFragment.

3

WorkoutListFragment and WorkoutDetailFragment get their
workout data from Workout.java.
Workout.java contains an array of Workouts.

5

4

5
We’re not going to
use a layout for
WorkoutListFragment.
You’ll see why later on.

We’ll go through the steps for creating this app on the next page.

activity_main.xml

MainActivity.java
Phone

WorkoutDetail
Fragment.java

Workout.java

WorkoutList
Fragment.java

<Layout>

</Layout>

DetailActivity.java

activity_detail.xml

<Layout>

</Layout>

fragment_
workout_detail.xml

<Layout>

</Layout>

WorkoutDetailFragment uses fragment_workout_detail.xml for
its layout.
It displays the details of the workout the user has selected.

4

 Don’t worry
if the app
structure
looks
complex.

We’ll work through it step by
step over the course of this
chapter.

344 Chapter 9

steps

Create WorkoutListFragment.
WorkoutListFragment displays a
list of workouts. We’ll add this fragment
to MainActivity.

2

Create WorkoutDetailFragment.
WorkoutDetailFragment displays the details
of a specific workout. We’ll start by creating two
activities, MainActivity and DetailActivity,
and then we’ll add WorkoutDetailFragment to
DetailActivity. We’ll also get MainActivity
to launch DetailActivity when a button is pressed.
We’ll also add a plain old Java class, Workout.java, that
will provide the data for WorkoutDetailFragment.

1

Coordinate the fragments to
display the correct workout.
When the user clicks on an item in
WorkoutListFragment, we’ll
start DetailActivity and get
WorkoutDetailFragment to
display details of the workout the user
selected.

3

Here’s what we’re going to do
There are three main steps we’ll go through to build the app:

Let’s get started.

you are here 4 345

fragments

Create the project and activities
We’re going to start by creating a project that contains two activities,
MainActivity and DetailActivity. MainActivity will be used for
the fragment that displays a list of workouts, and DetailActivity will be
used for the fragment that displays details of one particular workout.

To do this, first create a new Android project with an empty activity for an
application named “Workout” with a company domain of “hfad.com”,
making the package name com.hfad.workout. The minimum SDK
should be API 19 so that it works on most devices. Name the activity

“MainActivity” and name the layout “activity_main”. Make sure you check
the Backwards Compatibility (AppCompat) checkbox.

Next, create a second empty activity by highlighting the com.hfad.workout
package in the app/src/main/java folder, and going to File→New...→Activity→
Empty Activity. Name the activity “DetailActivity”, name the layout “activity_
detail”, make sure the package name is com.hfad.workout, and check
the Backwards Compatibility (AppCompat) checkbox.

Add the AppCompat Support Library
We’re going to be using activities and fragments from the v7 AppCompat Library,
which means you need to make sure the library has been added to your project as a
dependency. To do this, go to the File menu and choose Project Structure. Then click
on the app module and choose Dependencies.

If Android Studio has already added the v7 AppCompat Support Library to your
project, you’ll see it listed in the list of dependencies. If it’s not there, you’ll need to
add it yourself. To do this, click on the “+” button at the bottom or right side of the
screen. When prompted, choose the Library Dependency option, then select the
appcompat-v7 library from the list of options. Finally, use the OK buttons to save
your changes.

Once you’ve made sure the v7 AppCompat Support Library has been added, you can
close the Project Structure window. On the next page we’ll update MainActivity.

activity_main.xml

MainActivity.java

<Layout>

</Layout>

DetailActivity.java

activity_detail.xml

<Layout>

</Layout>

This is the v7 AppCompat
Support Library.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

If prompted for the
activity’s source language,
select the option for Java.

346 Chapter 9

layout code

Add a button to MainActivity’s layout
We’re going to add a button to MainActivity that will start
DetailActivity. This is because we’re going to work on the
fragment for DetailActivity first, and adding a button to
MainActivity will give us an easy way of navigating from
MainActivity to DetailActivity.

We’ll start by adding the button to the layout. Open file activity_main.
xml, then update your code so that it matches ours below:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.workout.MainActivity">

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="onShowDetails"

 android:text="@string/details_button" />

</LinearLayout>

<xml>
</xml>

app/src/main

activity_main.xml

Workout

res

layout

The button uses a String resource for its text, so we need to add it to
the String resource file. Open file strings.xml, then add the following
String resource:

<resources>

 ...

 <string name="details_button">Show details</string>

</resources> <xml>
</xml>

app/src/main

strings.xml

Workout

res

values

When the button is clicked, we’ve specified that MainActivity’s
onShowDetails() method should be called. We’ll write the code
for this method next.

The button calls the
onShowDetails() method in
MainActivity when it’s clicked.
We need to write this method.

This is the button we’re adding.

This text will be
displayed on the button.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 347

fragments

package com.hfad.workout;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.content.Intent;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void onShowDetails(View view) {

 Intent intent = new Intent(this, DetailActivity.class);

 startActivity(intent);

 }

}

app/src/main

MainActivity.java

Workout

java

com.hfad.workout

Make the button respond to clicks
We need to get MainActivity’s button to start
DetailActivity when it’s clicked. To do this, we’ll add
a method called onShowDetails() to MainActivity.
The method will start DetailActivity using an intent,
just as we’ve done in previous chapters.

Here’s the full code for MainActivity.java. Update your code so
that it matches ours.

MainActivity DetailActivity

Intent

That’s everything we need to get MainActivity to start
DetailActivity. On the next page we’ll add a new
fragment to our project called WorkoutDetailFragment
that we’ll then add to DetailActivity.

The activity extends
AppCompatActivity.

This method is called when the button is
clicked. It starts DetailActivity.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

348 Chapter 9

add fragment

How to add a fragment to your project
We’re going to add a new fragment called WorkoutDetailFragment
to the project to display details of a single workout. You add a new
fragment in a similar way to how you add a new activity: by switching to
the Project view of Android Studio’s explorer, highlighting the com.hfad.
workout package in the app/src/main/java folder, going to the File menu,
and choosing New...→Fragment→Fragment (Blank).

You will be asked to choose options for your new fragment. Name the
fragment “WorkoutDetailFragment”, check the option to create layout
XML for it, and give the fragment layout a name of “fragment_workout_
detail”. Uncheck the options to include fragment factory methods and
interface callbacks; these options generate extra code that you don’t need
to use. When you’re done, click on the Finish button.

When you click on the Finish button, Android Studio creates your new
fragment and adds it to the project.

We suggest looking at the extra code
Android generates for you after
you’ve finished this book. You might
find some of it useful depending on
what you want to do.

We’re creating a
blank fragment.

This is the name
of the fragment.

This is the name of
the fragment layout.

We don’t want Android Studio
creating a load of extra code for
us, so we’re unchecking these options.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

Some versions of Android
Studio may ask you what
the source language of
your fragment should be.
If prompted, select the
option for Java.

you are here 4 349

fragments

What fragment code looks like
When you create a fragment, Android Studio creates two files for you: Java
code for the fragment itself, and XML code for the fragment’s layout. The Java
code describes the fragment’s behavior, and the layout describes the fragment’s
appearance.

We’ll look at the Java code first. Go to the com.hfad.workout package in the app/
src/main/java folder and open the file WorkoutDetailFragment.java that Android
Studio just created for us. Then replace the code that Android Studio generated
with the code below:

The above code creates a basic fragment. As you can see, the code for a
fragment looks very similar to activity code.

To create a fragment, you first need to extend the Fragment class or one of its
subclasses. We’re using fragments from the Support Library, so our fragment
needs to extend the android.support.v4.app.Fragment class. This is
because the Support Library fragments are backward compatible with earlier
versions of Android, and contain the latest fragment features.

The fragment implements the onCreateView() method, which gets called
each time Android needs the fragment’s layout, and it’s where you say which
layout the fragment uses. The onCreateView() method is optional, but as
you need to implement it whenever you’re creating a fragment with a layout,
you’ll need to implement it nearly every time you create a fragment. We’ll look
at this method in more detail on the next page.

package com.hfad.workout;

import android.support.v4.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class WorkoutDetailFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_workout_detail, container, false);

 }

}

WorkoutDetailFragment
extends the Fragment class.

This is the onCreateView() method. It’s called
when Android needs the fragment’s layout.

This tells Android which layout the fragment uses (in this case, it’s fragment_workout_detail).

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

We’re using the Fragment class from
the Android Support Library.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

350 Chapter 9

onCreateView()

This is the fragment equivalent of calling an activity’s
setContentView() method. You use it to say what layout
the fragment should use, in this case R.layout.fragment_
workout_detail.

The inflate() method’s container argument specifies the
ViewGroup in the activity that the fragment’s layout needs to be
inserted into. It gets passed to the fragment as the second parameter
in the fragment’s onCreateView() method.

Now that you’ve seen the fragment’s code, let’s have a look at its
layout.

 All fragments
must have a
public no-
argument
constructor.

Android uses it to
reinstantiate the fragment
when needed, and if it’s not
there, you’ll get a runtime
exception.

In practice, you only need
to add a public no-argument
constructor to your fragment
code if you include another
constructor with one or more
arguments. This is because
if a Java class contains
no constructors, the Java
compiler automatically
adds a public no-argument
constructor for you.

The fragment’s onCreateView() method

public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

}

The first parameter is a LayoutInflator that you can use to
inflate the fragment’s layout. Inflating the layout turns your XML
views into Java objects.

The second parameter is a ViewGroup. This is the ViewGroup in
the activity’s layout that will contain the fragment.

The final parameter is a Bundle. This is used if you’ve previously
saved the fragment’s state, and want to reinstate it.

You specify the fragment’s layout using the LayoutInflator’s
inflate() method:

public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_workout_detail,

 container,

 false);

}

This inflates the
fragment’s layout from
XML to Java objects.

The onCreateView() method
gets called when Android
needs the fragment’s layout.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

The onCreateView() method returns a View object that
represents the fragment’s user interface. It gets called when
Android is ready to instantiate the user interface, and it takes three
parameters:

you are here 4 351

fragments

Fragment layout code looks just like activity layout code

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_height="match_parent"

 android:layout_width="match_parent"

 android:orientation="vertical">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textAppearance="?android:attr/textAppearanceLarge"

 android:text="@string/workout_title"

 android:id="@+id/textTitle" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/workout_description"

 android:id="@+id/textDescription" />

</LinearLayout>

For now we’re using static String resources for the title and description
of the workout so that we can see our fragment working. Open strings.xml,
and add the following String resources:

<xml>
</xml>

app/src/main

fragment_
workout_detail.xml

Workout

res

layout

Static String resources.

We’ll display
the workout
title and
description in
two separate
TextViews.

This makes the text large.

As we said earlier, fragments use layout files to describe their appearance.
Fragment layout code looks just like activity layout code, so when you
write your own fragment layout code, you can use any of the views and
layouts you’ve already been using to write activity layout code.

We’re going to update our layout code so that our fragment contains two
text views, one for the workout title and one for the workout description.

Open the file fragment_workout_detail.xml in the app/src/res/layout folder,
and replace its contents with the code below:

We’re using a LinearLayout for
our fragment, but we could have
used any of the other layout
types we’ve looked at instead.

<resources>

 ...

 <string name="workout_title">Title</string>

 <string name="workout_description">Description</string>

</resources> <xml>
</xml>

app/src/main

strings.xml

Workout

res

values

That’s everything we need for our fragment. On the next page we’ll look
at how you add the fragment to an activity.

We’ll use these to display
default text in our fragment.

352 Chapter 9

add fragment to layout

Add a fragment to an activity’s layout

<fragment

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

You specify the fragment using the android:name attribute and giving it
a value of the fully qualified name of the fragment. In our case, we want to
display a fragment called WorkoutDetailFragment that’s in the com.
hfad.workout package, so we use:

android:name="com.hfad.workout.WorkoutDetailFragment"

When Android creates the activity’s layout, it replaces the <fragment>
element with the View object returned by the fragment’s onCreateView()
method. This view is the fragment’s user interface, so the <fragment>
element is really a placeholder for where the fragment’s layout should be
inserted.

You add the <fragment> element to your layout in the same way that you
add any other element. As an example, here’s how you’d add the fragment to
a linear layout:

This is the full name
of the fragment class.

We’re going to add our WorkoutDetailFragment to DetailActivity
so that the fragment gets displayed in the activity’s layout. To do this, we’re
going to add a <fragment> element to DetailActivity’s layout.

The <fragment> element is a view that specifies the name of the fragment
you want to display. It looks like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <fragment

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

</LinearLayout>

If your layout only contains a single fragment with no other views, however,
you can simplify your layout code.

<xml>
</xml>

app/src/main

activity_detail.xml

Workout

res

layout

This adds the fragment
to the activity’s layout.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 353

fragments

<?xml version="1.0" encoding="utf-8"?>

<fragment

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

Simplify the layout
If the layout code for your activity comprises a single fragment
contained within a layout element with no other views, you
can simplify your layout code by removing the root layout
element.

Each layout file you create must have a single root element
that’s either a view or view group. This means that if your
layout contains multiple items, these items must be contained
within a view group such as a linear layout.

If your layout contains a single fragment, the <fragment>
element can be the layout file’s root. This is because the
<fragment> element is a type of view, and Android replaces
it with the layout of the fragment at runtime.

In our code example on the previous page, we showed you
a fragment contained within a linear layout. As there are no
other views in the layout, we can remove the linear layout so
that our code looks like this:

<xml>
</xml>

app/src/main

activity_detail.xml

Workout

res

layout

This code does exactly the same thing as the code on the
previous page, but it’s much shorter.

That’s the only code we need for DetailActivity’s layout,
so replace the code you have in your version of activity_detail.xml,
with the code above and save your changes.

On the next page we’ll look at the code for the activity itself.

You can add your fragment to your layout like this if your layout ONLY contains a single fragment.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

A layout file requires
a single view or view
group as its root
element. If your
activity only contains
a fragment, the
fragment itself can
be the root element.

354 Chapter 9

AppCompatActivity extends FragmentActivity

Support Library fragments need
activities that extend FragmentActivity
When you add a fragment to an activity, you usually need to write code
that controls any interactions between the fragment and the activity.
You’ll see examples of this later in the chapter.

Currently, WorkoutDetailFragment only contains static data.
DetailActivity only has to display the fragment, and doesn’t need
to interact with it, so this means that we don’t need to write any extra
activity code to control the interaction.

There’s one important point to be aware of, however. When you’re
using fragments from the Support Library, as we are here, you must
make sure that any activity you want to use them with extends
the FragmentActivity class, or one of its subclasses. The
FragmentActivity class is designed to work with Support Library
fragments, and if your activity doesn’t extend this class, your code will
break.

In practice, this isn’t a problem. This is because the
AppCompatActivity class is a subclass of FragmentActivity,
so as long as your activity extends the AppCompatActivity class,
your Support Library fragments will work.

Here’s the code for DetailActivity.java. Update your code so that it
matches ours below:

package com.hfad.workout;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class DetailActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_detail);

 }

}

app/src/main

DetailActivity.java

Workout

java

com.hfad.workout

That’s everything we need to display the WorkoutDetailFragment
in our activity. Let’s see what happens when we run the app.

YourActivity

android.app.Activity

android.support.v7.app.
FragmentActivity

android.support.v7.app.
AppCompatActivity

As long as your activity extends
FragmentActivity, or one of its subclasses
such as AppCompatActivity, you can use
fragments from the Support Library.

DetailActivity extends AppCompatActivity.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 355

fragments

What the code does
Before we take the app for a test drive, let’s go through what
happens when the code runs.

When the app is launched, activity MainActivity gets created.
The user clicks on the button in MainActivity to start DetailActivity.

1

MainActivityDevice

WorkoutDetail
Fragment

DetailActivity

DetailActivity’s onCreate() method runs.
The onCreate() method specifies that activity_detail.xml should be used for
DetailActivity’s layout.

2

DetailActivity

<Layout>

</Layout>

activity_detail.xml

onCreate()

activity_detail.xml sees that it includes a <fragment> element that refers
to WorkoutDetailFragment.

3

<Layout>

</Layout>

activity_detail.xml

WorkoutDetailFragment’s onCreateView() method is called.
The onCreateView() method specifies that fragment_workout_detail.xml should be used for
WorkoutDetailFragment’s layout. It inflates the layout to a View object.

4

Hmmm, a
<fragment> element.
I need to know what
goes here.

<Layout>

</Layout>

fragment_
workout_detail.xml

onCreateView()

View

WorkoutDetailFragment’s View
object actually contains two
further views, the two text
views in the fragment’s layout.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

356 Chapter 9

what happens, continued

Test drive the app
When we run our app, MainActivity gets launched.

When we click on MainActivity’s button, it starts
DetailActivity. DetailActivity contains
WorkoutDetailFragment, and we see this on the device.

activity_detail.xml’s Views are inflated to View Java objects.
DetailActivity layout uses WorkoutDetailFragment’s View object in place of the
<fragment> element in its layout’s XML.

5

The story continues

<Layout>

</Layout>

activity_detail.xml

Finally, DetailActivity is displayed on the device.
Its layout contains the fragment WorkoutDetailFragment.

6

Emulator

Our WorkoutDetailFragment is displayed in DetailActivity. You’ll see this better in the test drive below.

...and placeholder text
for the workout title and description is displayed.

Click on the
button...

View

activity_detail.xml only contains the
<fragment> element. This means that
when it’s inflated, it only contains
WorkoutDetailFragment’s View object.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 357

fragments

BE the Layout
Your job is to play like you’re the layout
and say whether each of these layouts is
valid or invalid and why. Assume that

any fragments or String
resources referred to in the
layout already exist.

<?xml version="1.0" encoding="utf-8"?>

<fragment

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

<?xml version="1.0" encoding="utf-8"?>

<fragment

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/details_button" />

<?xml version="1.0" encoding="utf-8"?>

<Button

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/details_button" />

A

B

C

358 Chapter 9

solution

BE the Layout Solution
Your job is to play like you’re the layout
and say whether each of these layouts is
valid or invalid and why. Assume that

any fragments or String
resources referred to in the
layout already exist.

<?xml version="1.0" encoding="utf-8"?>

<fragment

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

<?xml version="1.0" encoding="utf-8"?>

<fragment

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/details_button" />

<?xml version="1.0" encoding="utf-8"?>

<Button

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/details_button" />

A

B

C

This layout is valid, as it
consists of a single fragment.

This layout is invalid. A layout must
have a single View or ViewGroup as
its root element. To make this layout
valid, you would need to put the
fragment and Button in a ViewGroup.

This layout is valid as it has a single View,
in this case a Button, as its root element.

you are here 4 359

fragments

Get the fragment and activity to interact

The first thing we’ll do is update the fragment’s layout to remove the
static text that’s currently displayed. Open file fragment_workout_detail.xml,
then update the code to match our changes below:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 ...

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textAppearance="?android:attr/textAppearanceLarge"

 android:text="@string/workout_title"

 android:id="@+id/textTitle" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/workout_description"

 android:id="@+id/textDescription" />

</LinearLayout>

On the next page we’ll add a new class to our project to hold the
workout data.

So far we’ve looked at how you add a basic fragment to an activity.
The next thing we’ll look at is how you get the fragment and activity
to interact.

To do this, we’ll start by changing WorkoutDetailFragment so
that it displays details of a workout instead of the placeholder text we
have currently.

<xml>
</xml>

app/src/main

fragment_
workout_detail.xml

Workout

res

layout

Delete
both
these
lines.

These are the details of one of the workouts.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

360 Chapter 9

add class

The Workout class
We’re going to hold our workout data in a file called Workout.java,
which is a pure Java class file that the app will get workout data from.
The class defines an array of four workouts, where each workout
is composed of a name and description. Select the com.hfad.workout
package in the app/src/main/java folder in your project, then go to
File→New...→Java Class. When prompted, name the class “Workout”,
and make sure the package name is com.hfad.workout. Then replace
the code in Workout.java with the following, and save your changes.

package com.hfad.workout;

public class Workout {
 private String name;
 private String description;

 public static final Workout[] workouts = {
 new Workout("The Limb Loosener",
 "5 Handstand push-ups\n10 1-legged squats\n15 Pull-ups"),
 new Workout("Core Agony",
 "100 Pull-ups\n100 Push-ups\n100 Sit-ups\n100 Squats"),
 new Workout("The Wimp Special",
 "5 Pull-ups\n10 Push-ups\n15 Squats"),
 new Workout("Strength and Length",
 "500 meter run\n21 x 1.5 pood kettleball swing\n21 x pull-ups")
 };

 //Each Workout has a name and description
 private Workout(String name, String description) {
 this.name = name;
 this.description = description;
 }

 public String getDescription() {
 return description;
 }

 public String getName() {
 return name;
 }

 public String toString() {
 return this.name;
 }
}

app/src/main

Workout.java

Workout

java

com.hfad.workout

The data will be used by the fragment to display details of a particular
workout. We’ll look at this next.

Each Workout has a name and description.

workouts is an array of four Workouts.

These are getters for the
private variables.

The String representation
of a Workout is its name.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 361

fragments

Pass the workout ID to the fragment
When you have an activity that uses a fragment, the activity will usually
need to talk to the fragment in some way. As an example, if you have
a fragment that displays detail records, you need the activity to tell the
fragment which record it needs to display details of.

In our case, we need WorkoutDetailFragment to display details of
a particular workout. To do this, we’ll add a simple setter method to the
fragment that sets the value of the workout ID. The activity will then
be able to use this method to set the workout ID. Later on, we’ll use the
workout ID to update the fragment’s views.

Here’s the revised code for WorkoutDetailFragment (update your
code with our changes):

package com.hfad.workout;

import android.support.v4.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class WorkoutDetailFragment extends Fragment {

 private long workoutId;

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_workout_detail, container, false);

 }

 public void setWorkout(long id) {

 this.workoutId = id;

 }

}

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

We need to get the DetailActivity to call the fragment’s
setWorkout() method and pass it the ID of a particular workout. In
order to do this, the activity must get a reference to the fragment. But
how?

This is the ID of the workout the user chooses.
Later, we’ll use it to set the values of the
fragment’s views with the workout details.

This is a setter method for the workout ID. The activity will use this method to set the value of the workout ID.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

362 Chapter 9

getSupportFragmentManager()

Use the fragment manager
to manage fragments

getSupportFragmentManager().findFragmentById(R.id.fragment_id)

Before an activity can talk to its fragment, the activity first needs
to get a reference to the fragment. You get a reference to an
activity’s fragments using the activity’s fragment manager.
The fragment manager is used to keep track of and deal with any
fragments used by the activity.

There are two methods for getting a reference to the
fragment manager, getFragmentManager()
and getSupportFragmentManager(). The
getSupportFragmentManager() method gets a reference
to the fragment manager that deals with fragments from the
Support Library like ours, and the getFragmentManager()
method gets a reference to the fragment manager that deals with
fragments that use the native Android fragment class instead.
You then use the fragment manager’s findFragmentById()
method to get a reference to the fragment.

We’re using fragments from the Support Library, so we’re going
to use the getSupportFragmentManager() method like
this:

This is the ID of the fragment in
the activity's layout.

findFragmentById() is a bit like
findViewById() except you use it
to get a reference to a fragment.

We’re going to use DetailActivity’s fragment manager to
get a reference to its WorkoutDetailFragment. In order to
do this, we first need to assign an ID to the fragment.

You assign an ID to an activity’s fragment in the activity’s
layout. Open the file activity_detail.xml, then add an ID to the
activity’s fragment by adding the line of code highlighted below:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:id="@+id/detail_frag"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

<xml>
</xml>

app/src/main

activity_detail.xml

Workout

res

layout

The above code gives the fragment an ID of detail_frag.
On the next page we’ll use the ID to get a reference to the
fragment.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

Add an ID to the
fragment.

you are here 4 363

fragments

Get the activity to set the workout ID
To get a reference to the fragment, we need to add the
following code:

package com.hfad.workout;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class DetailActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_detail);

 WorkoutDetailFragment frag = (WorkoutDetailFragment)

 getSupportFragmentManager().findFragmentById(R.id.detail_frag);

 frag.setWorkout(1);

 }

}

As you can see, we’ve got a reference to the fragment after
calling setContentView(). Getting the reference here is
really important, because before this point, the fragment won’t
have been created.

The next thing we need to do is get the fragment to update its
views when the fragment is displayed to the user. Before we can
do this, we need to understand the fragment’s lifecycle so that
we add our code to the correct method in the fragment.

app/src/main

DetailActivity.java

Workout

java

com.hfad.workout

This gets us a reference to
WorkoutDetailFragment. Its id in
the activity’s layout is detail_frag.

We’re going to get WorkoutDetailFragment to display details of a workout here to check that it’s working.

WorkoutDetailFragment frag = (WorkoutDetailFragment)

 getSupportFragmentManager().findFragmentById(R.id.detail_frag);

We can then call the fragment’s setWorkout() method to
tell the fragment which workout we want it to display details for.
For now, we’ll hardcode which workout we want it to display so
that we can see it working. Later on, we’ll change the code so
that the user can select which workout she wants to see.

Here’s our revised code for DetailActivity.java. Update your code
to reflect our changes:

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

364 Chapter 9

activity revision

The activity is created when its
onCreate() method runs.
At this point, the activity is initialized,
but isn’t visible.

Activity states revisited
Just like an activity, a fragment has a number of key lifecycle methods that get
called at particular times. It’s important to know what these methods do and
when they get called so your fragment works in just the way you want.

Fragments are contained within and controlled by activities, so the fragment
lifecycle is closely linked to the activity lifecycle. Here’s a reminder of the
different states an activity goes through, and on the next page we’ll show you
how these relate to fragments.

Activity created

Activity resumed

Activity started

Activity stopped

Activity paused

Activity destroyed

The activity is started when its
onStart() method runs.
The activity is visible, but doesn’t have
the focus.

The activity is resumed when its
onResume() method runs.
The activity is visible, and has the focus.

The activity is paused when its
onPause() method runs.
The activity is still visible, but no longer
has the focus.

The activity is stopped when its
onStop() method runs.
The activity is no longer visible, but still
exists.

The activity is destroyed when
its onDestroy() method runs.
The activity no longer exists.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 365

fragments

The fragment lifecycle
A fragment’s lifecycle is very similar to an activity’s, but it has a few
extra steps. This is because it needs to interact with the lifecycle of
the activity that contains it. Here are the fragment lifecycle methods,
along with where they fit in with the different activity states.

onAttach()

onDetach()

onCreate()

onDestroy()

onCreateView()

onDestroyView()

Activity created

Activity resumed

Activity started

Activity stopped

Activity paused

Activity destroyed

onActivityCreated()

onStart()

onResume()

onPause()

onStop()

Activity states Fragment callbacks
onAttach(Context)
This happens when the fragment is associated with a
context, in this case an activity.

onCreate(Bundle)
This is very similar to the activity’s onCreate() method.
It can be used to do the initial setup of the fragment.

onCreateView(LayoutInflater, ViewGroup, Bundle)
Fragments use a layout inflater to create their view at this
stage.

onActivityCreated(Bundle)
Called when the onCreate() method of the activity
has completed.

onStart()
Called when the fragment is about to become visible.

onResume()
Called when the fragment is visible and actively running.

onPause()
Called when the fragment is no longer interacting with
the user.

onStop()
Called when the fragment is no longer visible to the user.

onDestroyView()
Gives the fragment the chance to clear away any
resources that were associated with its view.

onDestroy()
In this method, the fragment can clear away any other
resources it created.

onDetach()
Called when the fragment finally loses contact with the
activity.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

366 Chapter 9

Fragment class

Fragments inherit lifecycle methods

OurFragment

onCreateView(LayoutInflater,
ViewGroup, Bundle)

yourMethod()

Fragment

onAttach(Context)

onCreate(Bundle)

onCreateView(LayoutInflater,
ViewGroup, Bundle)

onActivityCreated(Bundle)

onStart()

onResume()

onPause()

onStop()

onDestroyView()

onDestroy()

onDetach()

getView()

Object

Fragment class
(android.support.v4.app.Fragment)
The Fragment class implements default
versions of the lifecycle methods. It also defines
other methods that fragments need, such as
getView().

OurFragment class
(com.hfad.foo)
Most of the behavior of our fragment is handled
by superclass methods our fragment inherits. All
you do is override the methods you need.

As you saw earlier, our fragment extends the Android fragment
class. This class gives our fragment access to the fragment lifecycle
methods. Here’s a diagram showing the class hierarchy.

Object class
(java.lang.Object)

Even though fragments have a lot in common with activities, the Fragment class
doesn’t extend the Activity class. This means that some methods that are
available to activities aren’t available to fragments.

Note that the Fragment class doesn’t implement the Context class. Unlike an
activity, a fragment isn’t a type of context and therefore doesn’t have direct access
to global information about the application environment. Instead, fragments must
access this information using the context of other objects such as its parent activity.

Now that you understand the fragment’s lifecycle better, let’s get back to getting
WorkoutDetailFragment to update its views.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 367

fragments

Set the view’s values in the fragment’s onStart() method

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

package com.hfad.workout;

import android.support.v4.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;

public class WorkoutDetailFragment extends Fragment {
 private long workoutId;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_workout_detail, container, false);
 }

 @Override
 public void onStart() {
 super.onStart();
 View view = getView();
 if (view != null) {
 TextView title = (TextView) view.findViewById(R.id.textTitle);
 Workout workout = Workout.workouts[(int) workoutId];
 title.setText(workout.getName());
 TextView description = (TextView) view.findViewById(R.id.textDescription);
 description.setText(workout.getDescription());
 }
 }

 public void setWorkout(long id) {
 this.workoutId = id;
 }
}

We need to get WorkoutDetailFragment to update its views with
details of the workout. We need to do this when the activity becomes
visible, so we’ll use the fragment’s onStart() method. Update your
code to match ours:

As we said on the previous page, fragments are distinct from activities, and
therefore don’t have all the methods that an activity does. Fragments don’t
include a findViewById() method, for instance. To get a reference to
a fragment’s views, we first have to get a reference to the fragment’s root
view using the getView() method, and use that to find its child views.

Now that we’ve got the fragment to update its views, let’s take the app for
a test drive.

You should always call
up to the superclass
when you implement
any fragment lifecycle
methods.

We're using this class in the
onStart() method.

The getView() method gets the fragment's root
View. We can then use this to get references to the workout title and description text views.

368 Chapter 9

what happens

What happens when the code runs
Before we run the app, let’s go through what happens when the
code runs.

When the app is launched, MainActivity gets created.
The user clicks on the button in MainActivity to start DetailActivity.

1

MainActivityDevice DetailActivity

DetailActivity’s onCreate() method runs.
The onCreate() method specifies that activity_detail.xml should be used for
DetailActivity’s layout. activity_detail.xml includes a <fragment> element with an ID
of detail_frag that refers to the fragment WorkoutDetailFragment.

2

DetailActivity

<Layout>

</Layout>

activity_detail.xml

onCreate()

WorkoutDetail
Fragment

WorkoutDetailFragment’s onCreateView() method runs.
The onCreateView() method specifies that fragment_workout_detail.xml should be used for
WorkoutDetailFragment’s layout. It inflates the layout to a View object.

3

<Layout>

</Layout>

fragment_
workout_detail.xml

onCreateView()

View

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 369

fragments

activity_detail.xml’s Views are inflated to View Java objects.
DetailActivity uses WorkoutDetailFragment’s View object in place of the
<fragment> element in its layout’s XML, and gives it an ID of detail_frag.

4

<Layout>

</Layout>

activity_detail.xml View

id: detail_frag

DetailActivity’s onCreate() method continues to run.
DetailActivity gets a reference to WorkoutDetailFragment by asking the fragment
manager for the fragment with an ID of detail_frag.

5

The fragment uses the value of the workout ID in its onStart() method to
set the values of its views.

6

MainActivity
WorkoutDetail

Fragment

WorkoutDetail
Fragment

id: detail_frag
textTitle: Core Agony
textDescription: 100 Pull ups
 100 Push-ups
 100 Sit ups
 100 Squats

The story continues

onCreate()

onStart()

View

DetailActivity calls WorkoutDetailFragment’s setWorkout() method.
DetailActivity passes WorkoutDetailFragment a workout ID of 1. The fragment
sets its workoutId variable to 1.

5

MainActivity
WorkoutDetail

Fragment

setWorkout(1)
onCreate()

Fragment Manager

workoutId: 1

workoutId: 1

Let’s take the app for a test drive.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

370 Chapter 9

test drive

Test drive the app
When we run the app, MainActivity is launched.

When we click on MainActivity’s button, it starts
DetailActivity. DetailActivity contains
WorkoutDetailFragment, and the fragment displays
details of the Core Agony workout.

...and details of the
workout are displayed.

Click on the
button...

Q: Why can’t an activity get a fragment by calling the
findViewById() method?

A: Because findViewById() always returns a View
object and, surprisingly, fragments aren’t views.

Q: Why isn’t findFragmentById() an activity
method like findViewById() is?

A: That’s a good question. Fragments weren’t available before
API 11, so it uses the fragment manager as a way to add a whole
bunch of useful code for managing fragments, without having to
pack lots of extra code into the activity base class.

Q: Why don’t fragments have a findViewById()
method?

A: Because fragments aren’t views or activities. Instead, you
need to use the fragment’s getView() method to get a
reference to the fragment’s root view, and then call the view’s
findViewById() method to get its child views.

Q: Activities need to be registered in AndroidManifest.xml so
that the app can use them. Do fragments?

A: No. Activities need to be registered in AndroidManifest.xml, but
fragments don’t.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 371

fragments

Where we’ve got to
Here’s a reminder of the structure of the app, and what we
want it to do:

1

2

3

4

5

activity_main.xml

MainActivity.java
Phone

WorkoutDetail
Fragment.java

Workout.java

WorkoutList
Fragment.java

<Layout>

</Layout>

DetailActivity.java

activity_detail.xml

<Layout>

</Layout>

fragment_
workout_detail.xml

<Layout>

</Layout>

So far we’ve created both activities and their
layouts, WorkoutDetailFragment.java and its layout,
and also Workout.java. The next thing we need to
look at is WorkoutListFragment.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

When the app gets launched, it starts MainActivity.
MainActivity uses activity_main.xml for its layout, and contains a fragment
called WorkoutListFragment.

1

WorkoutListFragment displays a list of workouts.2

When the user clicks on one of the workouts, DetailActivity starts.
DetailActivity uses activity_detail.xml for its layout, and contains a fragment
called WorkoutDetailFragment.

3

WorkoutListFragment and WorkoutDetailFragment get their
workout data from Workout.java.
Workout.java contains an array of Workouts.

5

WorkoutDetailFragment uses fragment_workout_detail.xml for
its layout.
It displays the details of the workout the user has selected.

4

372 Chapter 9

list fragment

We need to create
a fragment with a list

You’ve already seen how to add a list view to an activity, so
we could do something similar for the fragment. But rather
than create a new fragment with a layout that contains a
single list view, we’re going to use a different approach that
involves a new type of fragment called a list fragment.

For now we’re building the phone UI, but later on
we’ll be able to reuse the fragments to create a
different UI for a tablet.

We need to create a second fragment,
WorkoutListFragment, that contains a list of the
different workouts that the user can choose from. Using a
fragment for this means that later on, we’ll be able to use it
to create different user interfaces for phones and tablets.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 373

fragments

A list fragment is a fragment
that contains only a list
A list fragment is a type of fragment that specializes in working with a
list. It’s automatically bound to a list view, so you don’t need to create
one yourself. Here’s what one looks like:

A list fragment comes
complete with its own list
view so you don’t need to
add it yourself. You just
need to provide the list
fragment with data.

android.support.v4.app.
Fragment

...

android.support.v4.app.
ListFragment

getListView()

getListAdapter()

setListAdapter()

onListItemClick()

...

ListFragment is a
subclass of Fragment.

There are a couple of major advantages in using a list fragment to
display categories of data:

You don’t need to create your own layout.
List fragments define their own layout programmatically, so
there’s no XML layout for you to create or maintain. The layout
the list fragment generates includes a single list view. You access
this list view in your fragment code using the list fragment’s
getListView() method. You need this in order to specify
what data should be displayed in the list view.

¥

You don’t have to implement your own event listener.
The ListFragment class automatically implements an event
listener that listens for when items in the list view are clicked.
Instead of creating your own event listener and binding it to
the list view, you just need to implement the list fragment’s
onListItemClick() method. This makes it easier to get your
fragment to respond when the user clicks on items in the list view.
You’ll see this in action later on.

¥

So what does the list fragment code look like?

A list fragment
is a type of
fragment that
specializes in
working with a
list view. It has
a default layout
that contains the
list view.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

374 Chapter 9

create a list fragment

How to create a list fragment
You add a list fragment to your project in the same way you add a
normal fragment. Highlight the com.hfad.workout package in the app/
src/main/java folder, then go to File→New...→Fragment→Fragment
(Blank). Name the fragment “WorkoutListFragment”, and then
uncheck the options to create layout XML, and also the options
to include fragment factory methods and interface callbacks (list
fragments define their own layouts programmatically, so you don’t
need Android Studio to create one for you). When you click on the
Finish button, Android Studio creates a new list fragment in a file
called WorkoutListFragment.java in the app/src/main/java folder.

Here’s what the basic code looks like to create a list fragment. As you
can see, it’s very similar to that of a normal fragment. Replace the
code in WorkoutListFragment.java with the code below:

package com.hfad.workout;

import android.os.Bundle;
import android.support.v4.app.ListFragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class WorkoutListFragment extends ListFragment {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 return super.onCreateView(inflater, container, savedInstanceState);
 }
}

The activity needs to extend
ListFragment, not Fragment.

The above code creates a basic list fragment called
WorkoutListFragment. As it’s a list fragment, it needs to
extend the ListFragment class rather than Fragment.

The onCreateView() method is optional. It gets called
when the fragment’s view gets created. We’re including it in
our code as we want to populate the fragment’s list view with
data as soon as it gets created. If you don’t need your code
to do anything at this point, you don’t need to include the
onCreateView() method.

The next thing we need to do is add data to the list view in
the onCreateView() method.

app/src/main

WorkoutList
Fragment.java

Workout

java

com.hfad.workout

Calling the superclass onCreateView() method gives you the default layout for the ListFragment.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

Uncheck these options,
as we don’t need them.
If prompted for the
fragment’s source language, select the option for Java.

Q: When we create a list fragment, why do we
choose the option for Fragment (Blank) instead of
Fragment (List)?

A: The Fragment (List) option produces code that’s
more complex, most of which we don’t need to use. The
code generated by the Fragment (Blank) is simpler.

you are here 4 375

fragments

Adapters revisited
As we said in Chapter 7, you can connect data to a list view
using an adapter. The adapter acts as a bridge between the
data and the list view. This is still the case when your list view
is in a fragment, or a list fragment:

Data
Source

ListViewAdapterOur data’s in an
array, but we
could have used
a database or
a web service
instead.

The adapter bridges the gap between the list
view and the data source. Adapters allow list
views to display data from a variety of sources.

We want to supply the list view in WorkoutListFragment
with an array of workout names, so we’ll use an array adapter
to bind the array to the list view as before. As you may
recall, an array adapter is a type of adapter that’s used to
bind arrays to views. You can use it with any subclass of the
AdapterView class, which means you can use it with both list
views and spinners.

In our case, we’re going to use an array adapter to display an
array of data from the Workout class in the list view.

An adapter acts as a
bridge between a view
and a data source. An
array adapter is a
type of adapter that
specializes in working
with arrays.

Workout
names

ListViewArray
Adapter

This is the array. This is our list view.We’ll create an array adapter to
bind our list view to an array.

We’ll see how this works on the next page.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

376 Chapter 9

array adapters revisited

setListAdapter(listAdapter);

We’ll show you the full code on the next page.

ArrayAdapter<Drink> listAdapter = new ArrayAdapter<>(

 this,

 android.R.layout.simple_list_item_1,

 Drink.drinks);

The current context. In
our Chapter 7 scenario, it
was the current activity.

This is a built-in layout
resource. It tells the array
adapter to display each item in
the array in a single text view.

The array

Our previous array adapter
As we said in Chapter 7, you use an array adapter by initializing it
and attaching it to the list view.

To initialize the array adapter, you first specify what type of data is
contained in the array you want to bind to the list view. You then
pass it three parameters: a Context (usually the current activity), a
layout resource that specifies how to display each item in the array,
and the array itself.

Here’s the code we used in Chapter 7 to create an array adapter to
displays Drink data from the Drink.drinks array:

There’s a big difference between the situation we had back in
Chapter 7 and the situation we have now. Back in Chapter 7, we
used the array adapter to display data in an activity. But this time, we
want to display data in a fragment. What difference does this make?

A fragment isn’t a subclass of Context
As you saw earlier in the book, the Activity class is a subclass of
the Context class. This means that all of the activities you create
have access to global information about the app’s environment.

But the Fragment class isn’t a subclass of the Context class. It
has no access to global information, and you can’t use this to pass
the current context to the array adapter. Instead, you need to get the
current context in some other way.

One way is to use another object’s getContext() method
to get a reference to the current context. If you create the
adapter in the fragment’s onCreateView() method, you can
use the getContext() method of the onCreateView()
LayoutInflator parameter to get the context instead.

Once you’ve created the adapter, you bind it to the ListView using
the fragment’s setListAdapter() method:

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 377

fragments

The updated WorkoutListFragment code

package com.hfad.workout;

import android.os.Bundle;

import android.support.v4.app.ListFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

public class WorkoutListFragment extends ListFragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 String[] names = new String[Workout.workouts.length];

 for (int i = 0; i < names.length; i++) {

 names[i] = Workout.workouts[i].getName();

 }

 ArrayAdapter<String> adapter = new ArrayAdapter<>(

 inflater.getContext(), android.R.layout.simple_list_item_1,

 names);

 setListAdapter(adapter);

 return super.onCreateView(inflater, container, savedInstanceState);

 }

}

We’ve updated our WorkoutListFragment.java code so that it
populates the list view with the names of the workouts. Apply
these changes to your code, then save your changes:

app/src/main

WorkoutList
Fragment.java

Workout

java

com.hfad.workout

Now that the WorkoutListFragment contains a list of
workouts, let’s add it to MainActivity.

We're using this class in the
onCreateView() method.

Create a String array of the workout names.

Get the context from
the layout inflater.

Create an array adapter.

Bind the array adapter to the list view.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

378 Chapter 9

display WorkoutListFragment

Display WorkoutListFragment
in the MainActivity layout
We’re going to add our new WorkoutListFragment
to MainActivity’s layout activity_main.xml. The layout
currently displays a button that we’re using to navigate
from MainActivity to DetailActivity:

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

What will the code be like? Have a go at the exercise on
the next page.

We want to remove the button, and display
WorkoutListFragment in its place. Here’s what the
new version of the layout will look like:

MainActivity’s
layout currently
displays a button.

We’re going to change the
layout so that it displays
WorkoutListFragment
instead of the button.

you are here 4 379

fragments

LinearLayout android:name

android:fragment

WorkoutListFragment

com.hfad.workout.

fragment Fragment

<?xml version="1.0" encoding="utf-8"?>

< xmlns:android="http://schemas.android.com/apk/res/android"

 =" "

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

Layout Magnets
Somebody put a new version of activity_main.xml on our fridge door.
Unfortunately some of the magnets fell off when we shut the door too
hard. Can you piece the layout back together again? (You won’t need to
use all of the magnets below.)

The layout needs to display WorkoutListFragment.

380 Chapter 9

solution

<?xml version="1.0" encoding="utf-8"?>

< xmlns:android="http://schemas.android.com/apk/res/android"

 =" "

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

Layout Magnets Solution
Somebody put a new version of activity_main.xml on our fridge door.
Unfortunately some of the magnets fell off when we shut the door too
hard. Can you piece the layout back together again? (You won’t need to
use all of the magnets below.)

The layout needs to display WorkoutListFragment.

LinearLayout

android:name

android:fragment

WorkoutListFragmentcom.hfad.workout.

You didn’t need to use these magnets.

fragment

Fragment

You declare a fragment with the <fragment> element.

You need to give the full
name of the fragment.

you are here 4 381

fragments

The code for activity_main.xml
As we want MainActivity’s layout to only contain a single
fragment, we can replace nearly all of the code we currently have.

Here’s the updated code for activity_main.xml. As you can see, it’s
much shorter than the original version. Update your version of
the code to reflect our changes.

<xml>
</xml>

app/src/main

activity_main.xml

Workout

res

layout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:orientation="vertical"

 tools:context="com.hfad.workout.MainActivity">

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="onShowDetails"

 android:text="@string/details_button" />

</LinearLayout>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutListFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

We’ll go through what happens when this code runs over the next
couple of pages.

We no longer need this button.

Our layout only contains a single fragment, so we can get rid of the LinearLayout.

Here’s the fragment.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

382 Chapter 9

what happens

What happens when the code runs
Here’s a runthrough of what happens when we run the app.

When the app is launched, MainActivity gets created.
MainActivity’s onCreate() method runs. This specifies that activity_main.xml should
be used for MainActivity’s layout. activity_main.xml includes a <fragment> element that
refers to WorkoutListFragment.

1

MainActivityDevice

<Layout>

</Layout>

activity_main.xml

onCreate()

WorkoutList
Fragment

WorkoutListFragment is a ListFragment, so it uses a ListView as its layout.2

ListView

WorkoutListFragment creates an ArrayAdapter<String>, an array adapter
that deals with arrays of String objects.

3

ArrayAdapter<String>WorkoutListFragment

The ArrayAdapter<String> retrieves data from the names array.4

ArrayAdapter<String>WorkoutListFragment names

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

WorkoutList
Fragment

you are here 4 383

fragments

WorkoutListFragment attaches the array adapter to the ListView using the
setListAdapter() method.
The list view uses the array adapter to display a list of the workout names.

5

ArrayAdapter<String>

WorkoutListFragment

names

ListView

The story continues

Test drive the app
When we run the app, MainActivity gets launched.

MainActivity’s layout contains the fragment
WorkoutListFragment. The fragment contains a list
of the workout names, and this is displayed in the activity.

That looks great, but when we click on one of the workouts,
nothing happens. We need to update the code so that when
we click on one of the workouts, details of that workout are
displayed.

Here’s a list of all the
workout titles from
the Workout class.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

setListAdapter()

384 Chapter 9

show the correct workout

Connect the list to the detail
There are a few ways that we can start DetailActivity
and display the details of the workout that was clicked. We’ll
use this technique:

 Add code to WorkoutListFragment that waits for a workout to be clicked.1

 When that code runs, call some code in MainActivity.java that will start
DetailActivity, passing it the ID of the workout.

2

We don’t want to write code in WorkoutListFragment
that talks directly to MainActivity. Can you think why?

The answer is reuse. We want our fragments to know as little
as possible about the environment that contains them so that
we can reuse them elsewhere. The more a fragment needs to
know about the activity using it, the less reusable it is.

Wait a minute! You’re saying you don’t
want the fragment to know about the
activity that contains it? But I thought
you said the fragment has to call code in
MainActivity. Won’t that mean we can’t
use it in another activity?

We need to use an interface to decouple
the fragment from the activity.
We have two objects that need to talk to each other—the
fragment and the activity —and we want them to talk
without one side knowing too much about the other.
The way we do that in Java is with an interface. When
we define an interface, we’re saying what the minimum
requirements are for one object to talk usefully to another. That
means that we’ll be able to get the fragment to talk to any
activity, so long as that activity implements the interface.

 Get DetailActivity to pass the ID to WorkoutDetailFragment so that
the fragment can display details of the correct workout.

3

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 385

fragments

1. Define the listener interface
We want any activities that implement the listener interface to
respond to item clicks, so we’ll define a method for the interface,
itemClicked(). The itemClicked() method has one
parameter, the ID of the item that’s clicked.

Here’s the interface:

We’re going to create an interface called Listener.
If MainActivity implements the interface,
WorkoutListFragment will be able to tell MainActivity
when one of its items has been clicked. To do this, we’ll need to make
changes to WorkoutListFragment and MainActivity.

We need to decouple the fragment
by using an interface

interface Listener {

 void itemClicked(long id);

};

What WorkoutListFragment needs to do
We’ll start with the code for WorkoutListFragment. There are a
few changes we need to make, in this order.

Define the interface.
We’ll define the listener’s interface in WorkoutListFragment.
We’re defining the interface here, as its purpose is to allow
WorkoutListFragment to communicate with any activity.

1

Register the listener (in this case MainActivity) when
WorkoutListFragment gets attached to it.
This will give WorkoutListFragment a reference to MainActivity.

2

Tell the listener when an item gets clicked.
MainActivity will then be able to respond to the click.

3

We’ll go through each change individually, then show you the full
code.

Next we’ll look at how you register the listener on the next page.

You need to go
through similar steps
to these whenever
you have a fragment
that needs to
communicate with
the activity it’s
attached to.

We’ll call the interface Listener.

Any activities that implement the Listener interface must include this method. We’ll use it to get the activity to respond to items in the fragment being clicked.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

386 Chapter 9

listen

2. Register the listener
We need to save a reference to the activity WorkoutListFragment
gets attached to. This activity will implement the Listener
interface, so we’ll add the following private variable to
WorkoutListFragment:

private Listener listener;

We need to set this variable when WorkoutListFragment gets
attached to an activity. If you look back at the fragment lifecycle, when
a fragment gets attached to an activity, the fragment’s onAttach()
method is called. We’ll use this method to set the value of the listener:

public void onAttach(Context context) {

 super.onAttach(context);

 this.listener = (Listener)context;

}

This is the context (in this case, the
activity) the fragment is attached to.

3. Respond to clicks
When an item in WorkoutListFragment gets clicked, we want to
call the listener’s itemClicked() method. This is the method we
defined in the interface on the previous page. But how can we tell when
an item’s been clicked?

Whenever an item gets clicked in a list fragment, the list fragment’s
onListItemClick() method gets called. Here’s what it looks like:

public void onListItemClick(ListView listView, View itemView, int position, long id) {

 if (listener != null) {

 listener.itemClicked(id);

 }

}

public void onListItemClick(ListView listView,

 View itemView,

 int position,

 long id) {

 //Do something

}

The onListItemClick() method has four parameters: the list view,
the item in the list that was clicked, its position, and the row ID of the
underlying data. This means we can use the method to pass the listener
the ID of the workout the user clicked on:

The list view

The item in the list view that was
clicked, its position, and its ID

Call the itemClicked() method in the activity, passing
it the ID of the workout the user selected.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 387

fragments

The code for WorkoutListFragment.java

package com.hfad.workout;

import android.os.Bundle;
import android.support.v4.app.ListFragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.content.Context;
import android.widget.ListView;

public class WorkoutListFragment extends ListFragment {

 static interface Listener {
 void itemClicked(long id);
 };

 private Listener listener;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 String[] names = new String[Workout.workouts.length];
 for (int i = 0; i < names.length; i++) {
 names[i] = Workout.workouts[i].getName();
 }
 ArrayAdapter<String> adapter = new ArrayAdapter<>(
 inflater.getContext(), android.R.layout.simple_list_item_1,
 names);
 setListAdapter(adapter);
 return super.onCreateView(inflater, container, savedInstanceState);
 }

 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 this.listener = (Listener)context;
 }

 @Override
 public void onListItemClick(ListView listView, View itemView, int position, long id) {
 if (listener != null) {
 listener.itemClicked(id);
 }
 }
}

Here’s the full code for WorkoutListFragment.java code (apply these
changes to your code, then save your work):

app/src/main

WorkoutList
Fragment.java

Workout

java

com.hfad.workout
Import these classes.

Add the listener to the fragment.

This is called when the fragment gets
attached to the activity. Remember, the
Activity class is a subclass of Context.

Tell the listener when an item in the ListView is clicked.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

388 Chapter 9

package com.hfad.workout;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.content.Intent;

public class MainActivity extends AppCompatActivity

 implements WorkoutListFragment.Listener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void onShowDetails(View view) {

 Intent intent = new Intent(this, DetailActivity.class);

 startActivity(intent);

 }

 @Override

 public void itemClicked(long id) {

 Intent intent = new Intent(this, DetailActivity.class);

 intent.putExtra(DetailActivity.EXTRA_WORKOUT_ID, (int)id);

 startActivity(intent);

 }

}

implement Listener

MainActivity needs to implement the interface
Next we need to make MainActivity implement the Listener
interface we just created. The interface specifies an itemClicked()
method, so we’ll make the method start DetailActivity, passing
it the ID of the workout the user selected.

Here’s the full code for MainActivity.java. Update your code so that it
matches ours.

app/src/main

MainActivity.java

Workout

java

com.hfad.workout

Implement the listener interface defined in WorkoutListFragment.

This is the method called by MainActivity’s
button. We’ve removed the button, so we no
longer need this method.

This method is defined by the
interface, so we need to implement it.

Pass the ID of the workout to DetailActivity.
EXTRA_WORKOUT_ID is the name of a
constant we’ll define in DetailActivity.

Those are all the changes we need to make to MainActivity.
There’s just one more code change we need to make to our app.

you are here 4 389

fragments

DetailActivity needs to pass the ID
to WorkoutDetailFragment
So far, WorkoutListFragment passes the ID of the workout
that was clicked to MainActivity, and MainActivity
passes it to DetailActivity. We need to make one more
change, which is to pass the ID from DetailActivity to
WorkoutDetailActivity.

Here’s the updated code for DetailActivity that does this.
Update your version of DetailActivity.java to reflect our changes:

package com.hfad.workout;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class DetailActivity extends AppCompatActivity {

 public static final String EXTRA_WORKOUT_ID = "id";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_detail);

 WorkoutDetailFragment frag = (WorkoutDetailFragment)

 getSupportFragmentManager().findFragmentById(R.id.detail_frag);

 frag.setWorkout(1);

 int workoutId = (int) getIntent().getExtras().get(EXTRA_WORKOUT_ID);

 frag.setWorkout(workoutId);

 }

}

app/src/main

DetailActivity.java

Workout

java

com.hfad.workout

Over the next couple of pages we’ll examine what happens when the
code runs.

We’re using a constant to pass the ID from MainActivity
to DetailActivity to avoid hardcoding this value.

We’re no
longer
hardcoding
an ID of 1,
so remove
this line.

Get the ID from the intent,
and pass it to the fragment
via its setWorkout() method.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

390 Chapter 9

what happens

What happens when the code runs
Here’s a runthrough of what happens when we run the app.

When the app is launched, MainActivity gets created.
WorkoutListFragment is attached to MainActivity, and
WorkoutListFragment’s onAttach() method runs.

1

MainActivityDevice

onAttach()

WorkoutList
Fragment

WorkoutListFragment registers MainActivity as a Listener.2

When an item is clicked in WorkoutListFragment, the fragment’s
onListItemClick() method is called.
This calls MainActivity’s itemClicked() method, passing it the ID of the workout that
was clicked, in this example 1.

3

MainActivity’s itemClicked() method starts DetailActivity, passing it the
value of the workout ID in an intent.

4

WorkoutListFragment

MainActivity

Yep, I’m
listening...

WorkoutList
Fragment MainActivity

itemClicked(1)

MainActivity DetailActivity

Intent

id: 1

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

you are here 4 391

fragments

DetailActivity WorkoutDetailFragment

setWorkout(1)

The story continues...

DetailActivity calls WorkoutDetailFragment’s setWorkout() method, passing it
the value of the workout ID.
WorkoutDetailFragment uses the workout ID, in this case 1, to display the workout title
and description in its views.

5

textTitle: Core Agony
textDescription: 100 Pull ups
 100 Push-ups
 100 Sit ups
 100 Squats

Test drive the app
When we run the app, MainActivity gets
launched. It displays a list of workouts in its fragment,
WorkoutListFragment.

When you click on one of the workouts, DetailActivity is
displayed. It shows details of the workout that we selected.

That’s everything we need to do to use the fragments we’ve
created in a user interface for a phone. In the next chapter,
you’ll see how to reuse the fragments, and create a different
user interface that will work better for tablets.

Here’s the
list of
workouts.

When you click on one
of the workouts, its
details are displayed.

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

WorkoutDetailFragment
WorkoutListFragment
Coordinate fragments

392 Chapter 9

toolbox

Your Android Toolbox

You’ve got Chapter 9 under
your belt and now you’ve

added fragments to your
toolbox.

onAttach()

onDetach()

onCreate()

onDestroy()

onCreateView()

onDestroyView()

onActivityCreated()

onStart()

onResume()

onPause()

onStop()

 � A fragment is used to control
part of a screen. It can be
reused across multiple
activities.

 � A fragment has an associated
layout.

 � The onCreateView()
method gets called each time
Android needs the fragment’s
layout.

 � Add a fragment to an
activity’s layout using the
<fragment> element and
adding a name attribute.

 � The fragment lifecycle
methods tie in with the states
of the activity that contains the
fragment.

 � The Fragment class doesn’t
extend the Activity class
or implement the Context
class.

 � Fragments don’t have a
findViewById() method.
Instead, use the getView()
method to get a reference to
the root view, then call the
view’s findViewById()
method.

 � A list fragment is a fragment
that comes complete
with a ListView. You
create one by subclassing
ListFragment.

Fragment lifecycle methods

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CH
AP

T
ER

 9

this is a new chapter 393

fragments for larger interfaces10

Different Size,
Different Interface

So far we've only run our apps on devices with a small screen.
But what if your users have tablets? In this chapter you’ll see how to create flexible user

interfaces by making your app look and behave differently depending on the device it’s

running on. We’ll show you how to control the behavior of your app when you press the

Back button by introducing you to the back stack and fragment transactions. Finally,

you’ll find out how to save and restore the state of your fragment.

They’re using a tablet?
Maybe we should
rethink the UI...

394 Chapter 10

we need a bigger screen

The Workout app looks the same on a phone and a tablet

When we run the app on a tablet, the app works in exactly
the same way. As the screen size is larger, however, there’s
lots of empty space in the user interface that we could
make better use of.

In the previous chapter, we created a version of the Workout app
designed to work on a phone.

As a reminder, when the app launches, it displays MainActivity.
This contains a fragment, WorkoutListFragment, that displays
a list of workouts. When the user clicks on one of the workouts,
DetailActivity starts, and displays details of the workout in its
fragment, WorkoutDetailFragment.

Click on an item in a list, and
it launches a second activity.

Look at all this empty space. Maybe we could use it for something.

you are here 4 395

fragments for larger interfaces

Designing for larger interfaces
One way in which we could better use the empty space is to
display details of the workout to the right of the list of workouts.
When the user clicks on one of the workouts, details of that
workout could be displayed on the same screen without us
having to start a second activity:

There's a lot more space on
a tablet, so we can use the
space in a different way.

We don’t want to change our app completely though. We still
want our app to work as it does currently if it’s running on a
phone.

We’re going to get our app to adapt to the type of device it’s
running on. If the app’s running on a phone, we’ll display details
of the workout in a separate activity (this is the app’s current
behavior). If the app’s running on a tablet, we’ll display details
of the workout next to the list of workouts.

Before we get started, let’s remind ourselves how the app’s
currently structured.

396 Chapter 10

phone version

The phone version of the app
The phone version of the app we built in Chapter 9 works in
the following way:

1

2

3

4

5

So how does it need to work differently on a tablet?

activity_main.xml

MainActivity.java
Phone

WorkoutDetail
Fragment.java

Workout.java

WorkoutList
Fragment.java

<Layout>

</Layout>

DetailActivity.java

activity_detail.xml

<Layout>

</Layout>

fragment_
workout_detail.xml

<Layout>

</Layout>

When the app gets launched, it starts MainActivity.
MainActivity uses activity_main.xml for its layout, and contains a fragment
called WorkoutListFragment.

1

WorkoutListFragment displays a list of workouts.2

When the user clicks on one of the workouts, DetailActivity starts.
DetailActivity uses activity_detail.xml for its layout, and contains a fragment
called WorkoutDetailFragment.

3

WorkoutListFragment and WorkoutDetailFragment get their
workout data from Workout.java.
Workout.java contains an array of Workouts.

5

WorkoutDetailFragment uses fragment_workout_detail.xml for
its layout.
It displays the details of the workout the user has selected.

4

you are here 4 397

fragments for larger interfaces

The tablet version of the app
Here’s how the app will work when it runs on a tablet:

1
2

3

WorkoutListFragment displays a list of workouts.
It’s a list fragment, so it has no extra layout file.

3

Both fragments get their workout data from Workout.java as
before.

5

4

5

There are two key differences.

The first is that MainActivity’s layout needs to display
both fragments, not just WorkoutListFragment.

The second difference is that we no longer need to
start DetailActivity when the user clicks on
one of the workouts. Instead, we need to display
WorkoutDetailFragment in MainActivity.

We’ll go through the steps for how to change the app on the
next page.

activity_main.xml

MainActivity.java
Tablet

WorkoutDetail
Fragment.java

Workout.java

WorkoutList
Fragment.java

fragment_
workout_detail.xml

<Layout>

</Layout>

<Layout>

</Layout>

When the app gets launched, it starts MainActivity as before.
MainActivity uses activity_main.xml for its layout.

1

MainActivity’s layout displays two fragments,
WorkoutListFragment and WorkoutDetailFragment.

2

When the user clicks on one of the workouts, its details are
displayed in WorkoutDetailFragment.
WorkoutDetailFragment uses fragment_workout_detail.xml for its layout.

4

398 Chapter 10

steps

Here’s what we’re going to do
There are a number of steps we’ll go through to change the app:

Create a tablet AVD
(Android Virtual Device).
We’re going to create a new UI
for a tablet, so we’ll create a new
tablet AVD to run it on. This will
allow us to check how the app
looks and behaves on a device
with a larger screen.

1

Create a new tablet layout.
We’ll reuse the fragments we’ve
already created in a new layout
that’s designed to work on devices
with larger screens. We’ll display
details of the first workout in the
first instance so that we can see
the fragments side by side.

2

Display details of the
workout the user selects.
We’ll update the app so that
when the user clicks on one of
the workouts, we’ll display the
details of the workout the user
selected.

3

At first, we’ll hardcode
the app so it displays the
Limb Loosener workout.

Later in the chapter, we’ll
change the code so that
it displays details of the
workout the user clicks on.Do this!

We’re going to update the Workout
app in this chapter, so open your
original Workout project from
Chapter 9 in Android Studio.

you are here 4 399

fragments for larger interfaces

Before we get into changing the app, we’re going to create a new Nexus
7 AVD running API level 25 so that you can see how the app looks and
behaves when it’s running on a tablet. The steps are nearly the same as
when you created a Nexus 5X AVD back in Chapter 1.

Open the Android Virtual Device Manager
You create AVDs using the AVD Manager. Open the
AVD Manager by selecting Android on the Tools menu
and choosing AVD Manager.

You’ll be presented with a screen showing you a list of the
AVDs you’ve already set up. Click on the Create Virtual
Device button at the bottom of the screen.

Click on the Create Virtual
Device button to create an AVD.

Create a tablet AVD

Select the
hardware
On the next screen,
you’ll be prompted
to choose a device
definition, the type
of device your AVD
will emulate.

We’re going to see
what our app looks
like running on
a Nexus 7 tablet.
Choose Tablet from
the Category menu
and Nexus 7 from
the list. Then click
the Next button. Choose the Tablet and Nexus 7 options.

Create AVD
Create layout
Show workout

400 Chapter 10

create avd

Select a system image
Next, you need to select a system image. The system image gives
you an installed version of the Android operating system. You can
choose the version of Android you want to be on your AVD.

You need to choose a system image for an API level that’s
compatible with the app you’re building. As an example, if you want
your app to work on a minimum of API level 19, choose a system
image for at least API level 19. As in Chapter 1, we want our AVD
to run API level 25, so choose the system image with a release name
of Nougat and a target of Android 7.1.1, the version number of API
level 25. Then click on the Next button.

We’ll choose
the same
system image
as we did in
Chapter 1.

Creating a tablet AVD (continued)

Create AVD
Create layout
Show workout

you are here 4 401

fragments for larger interfaces

Verify the AVD configuration
On the next screen, you’ll be asked to verify the AVD
configuration. This screen summarizes the options you chose
over the last few screens, and gives you the option of changing
them. Change the screen startup orientation to Landscape,
then click on the Finish button.

These are the options you
chose over the past few pages.

The AVD Manager will create the Nexus 7 AVD for you, and
when it’s done, display it in its list of devices. You may now
close the AVD Manager.

Now that we’ve created our tablet AVD, we can get to work
on updating the Workout app. We want to change the app so
that MainActivity uses one layout when it’s running on a
phone, and another layout when it’s running on a tablet. But
how can we do this?

Creating a tablet AVD (continued)

Choose the Landscape option
so the AVD starts up with a
landscape orientation.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

402 Chapter 10

different resources for different screens

Put screen-specific resources in
screen-specific folders
Earlier in the book, you saw how you could get different
devices to use image resources appropriate to their screen
size by putting different-sized images in the different drawable*
folders. As an example, you put images intended for devices
with high-density screens in the drawable-hdpi folder.

You can do something similar with other resources such as
layouts, menus, and values. If you want to create multiple
versions of the same resource for different screen specs, you
need to create multiple resource folders with an appropriate
name, then add the resource to that folder. The device will
then load the resource at runtime from the folder that’s the
closest match to its screen spec.

If you want to have one layout for large screen devices such as
tablets, and another layout for smaller devices such as phones,
you put the layout for the tablet in the app/src/main/res/layout-
large folder, and the layout for the phone in the app/src/main/
res/layout folder. When the app runs on a phone, it will use the
layout in the layout folder. If it’s run on a tablet, it will use the
layout in the layout-large folder instead.

On the next page, we’ll show you all the different options you
can use for your resource folder names.

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

layout-large

activity_main.xml

Large devices like tablets
will load layout files from
the layout-large folder.

All devices with smaller screens will load
the layouts from the layout folder.

This layout will be used by
devices with smaller screens.

This layout will be used by
devices with a large screen.

Android uses the names
of your resource folders to
decide which resources it
should use at runtime.

Layouts in the layout
folder can be used by any
device, but layouts in the
layout-large folder will
only be used by devices
with a large screen.

Create AVD
Create layout
Show workout

you are here 4 403

fragments for larger interfaces

You can put all kinds of resources (drawables or images, layouts,
menus, and values) in different folders to specify which types of
device they should be used with. The screen-specific folder name can
include screen size, density, orientation and aspect ratio, with each
part separated by hyphens. As an example, if you want to create a
layout that will only be used by very large tablets in landscape mode,
you would create a folder called layout-xlarge-land and put the layout
file in that folder. Here are the different options you can use for the
folder names:

Screen density
-ldpi

-mdpi

-hdpi

-xhdpi

-xxhdpi

-xxxhdpi

-nodpi

-tvdpi

Resource type
drawable

layout

menu

mipmap

values

Screen size
-small

-normal

-large

-xlarge

Orientation
-land

-port

Aspect ratio
-long

-notlong

Screen density is based
on dots per inch.

long is for screens
that have a very
high value for height.

Android decides at runtime which resources to use by checking the
spec of the device and looking for the best match. If there’s no exact
match, it will use resources designed for a smaller screen than the
current one. If resources are only available for screens larger than the
current one, Android won’t use them and the app will crash.

If you only want your app to work on devices with particular
screen sizes, you can specify this in AndroidManifest.xml using the
<supports-screens> attribute. As an example, if you don’t
want your app to run on devices with small screens, you’d use:

You must specify a resource type.

This is for density-independent
resources. Use -nodpi for any image
resources you don’t want to scale
(e.g., a folder called drawable-
nodpi).

The different folder options

For more information on

the settings on
 this page,

see:
https://develo

per.android.

com/guide/practic
es/

screens_support.html.
<supports-screens android:smallScreens="false"/>

Using the different folder names above, you can create layouts that
are tailored for phones and tablets.

A mipmap resource is
used for application
icons. Older versions
of Android Studio use
drawables instead.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

404 Chapter 10

exercise

import android.app.Activity;

import android.os.Bundle;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 ...

 }

}

A

BE the Folder Structure
Below you’ll see the code for an
activity. You want to display one
layout when it runs on devices with

large-sized screens, and
another layout when
it runs on devices with
smaller-sized screens.

Which of these folder
structures will allow you to do that?

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-large-land

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-tablet

B

Here’s the activity.

you are here 4 405

fragments for larger interfaces

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-large

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main_tablet.xml

<xml>
</xml>

app/src/main

activity_main.xml

res

layout-large

<xml>
</xml>

activity_main.xml

layout-normal

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-large-land

<xml>
</xml>

activity_main.xml

layout-large-port

C D

E F

406 Chapter 10

solution

import android.app.Activity;

import android.os.Bundle;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 ...

 }

}

A

BE the Folder Structure Solution
Below you’ll see the code for an
activity. You want to display one
layout when it runs on devices with

large-sized screens, and
another layout when
it runs on devices with
smaller-sized screens.

Which of these folder
structures will allow you to do that?

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-large-land

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-tablet

B

Android doesn't
recognize the folder
name layout-tablet.
activity_main.xml in
the layout folder will
be displayed on all
devices.

A device with a large
screen will use the layout
in the layout-large-land
folder when it's oriented
landscape. But when
the device is rotated
to portrait, it will use
the layout in the layout
folder—and that’s not
what you want.

you are here 4 407

fragments for larger interfaces

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-large

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main_tablet.xml

<xml>
</xml>

app/src/main

activity_main.xml

res

layout-large

<xml>
</xml>

activity_main.xml

layout-normal

<xml>
</xml>

app/src/main

activity_main.xml

res

layout

<xml>
</xml>

activity_main.xml

layout-large-land

<xml>
</xml>

activity_main.xml

layout-large-port

C D

E F

Devices with a large
screen will use the
layout in the layout-
large folder. Devices
with smaller screens
will use the layout in
the layout folder.

The activity uses a
layout file called
activity_main.xml.
The layout activity_
main_tablet.xml
won't be used
because it has the
wrong filename.

Devices with a large
screen will use the
layout in the layout-
large folder. Devices
with normal screens
will use the layout
in the layout-normal
folder. There's no
layout for devices
with a small screen, so
they won’t be able to
run the app.

Devices with a large
screen will use the
layout in the layout-
large-land folder when
the device is turned
landscape, and the
layout in the layout-
large-port folder when
the device is turned
portrait. Other devices
will use the layout in
the layout folder.

408 Chapter 10

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.WorkoutListFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

layout-large

Tablets use layouts in the layout-large folder

<xml>
</xml>

app/src/main

activity_main.xml

Workout

res

layout-large

To get the tablet version of our app up and running, we need to
copy our existing activity layout file activity_main.xml into the app/
src/main/res/layout-large folder and then update that version of
the file. This layout will then only be used by devices with a large
screen.

If the app/src/main/res/layout-large folder doesn’t exist in your
Android Studio project, you’ll need to create it. To do this,
switch to the Project view of Android Studio’s explorer, highlight
the app/src/main/res folder, and choose File→New...→Directory.
When prompted, give the folder a name of “layout-large”. When
you click on the OK button, Android Studio will create the new
app/src/main/res/layout-large folder.

To copy the activity_main.xml layout file, highlight the file in the
explorer, and choose the Copy command from the Edit menu.
Then highlight the new layout-large folder, and choose the Paste
command from the Edit menu. Android Studio will copy the
activity_main.xml file into the app/src/main/res/layout-large folder.

If you open the file you just pasted, it should look like this:

This is exactly the same layout that we had before. It contains
a single fragment, WorkoutListFragment, that displays
a list of workouts. The next thing we need to do is update
the layout so that it displays two fragments side by side,
WorkoutListFragment and WorkoutDetailFragment.

We've not
changed the
layout, just
copied it to
the layout-
large folder.

Here's the folder
Android Studio created.

Create AVD
Create layout
Show workout

you are here 4 409

fragments for larger interfaces

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="horizontal"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <fragment

 android:name="com.hfad.workout.WorkoutListFragment"

 android:id="@+id/list_frag"

 android:layout_width="0dp"

 android:layout_weight="2"

 android:layout_height="match_parent"/>

 <fragment

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:id="@+id/detail_frag"

 android:layout_width="0dp"

 android:layout_weight="3"

 android:layout_height="match_parent"/>

</LinearLayout>

The layout-large version of the layout
needs to display two fragments
We’re going to change the version of activity_main.xml in
the layout-large folder so that it contains the two fragments.
To do this, we’ll add the fragments to a linear layout with
the orientation set to horizontal. We’ll adjust the
width of the fragments so that WorkoutListFragment
takes up two-fifths of the available space, and
WorkoutDetailFragment takes up three-fifths.

Our version of activity_main.xml is below. Update your code
to reflect our changes. Make sure that you only edit the
tablet version of the layout that’s in the layout-large folder.

<xml>
</xml>

app/src/main

activity_main.xml

Workout

res

layout-large

We’ll run through what happens when the code runs on the
next page.

We're adding WorkoutDetailFragment
to MainActivity's layout.

Our layout already includes
WorkoutListFragment.

We're putting the fragments in a
LinearLayout with a horizontal
orientation so the two fragments will
be displayed alongside each other.

The
fragments
need IDs
so that
Android
doesn't
lose track
of where
to put
each
fragment.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

410 Chapter 10

what the code does

If the app’s running on a tablet, it uses the version of
activity_main.xml that’s in the layout-large folder.
The layout displays WorkoutListFragment and
WorkoutDetailFragment side by side.

2a

If the app’s running on a device with a smaller screen, it uses
the version of activity_main.xml that’s in the layout folder.
The layout displays WorkoutListFragment on its own.

2b

Android

<xml>
</xml>

activity_main.xml

layout-large

Android

<xml>
</xml>

activity_main.xml

layout

The device screen
isn’t large, so I’ll use
the version in the
layout folder.

What the updated code does
Before we take the app for a test drive, let’s go through what
happens when the code runs.

When the app is launched, MainActivity gets created.
MainActivity’s onCreate() method runs. This specifies that
activity_main.xml should be used for MainActivity’s layout.

1

MainActivityDevice

onCreate()

The device screen’s large,
so I’ll use the large version
of the layout.

Create AVD
Create layout
Show workout

you are here 4 411

fragments for larger interfaces

Test drive the app
When you run the app on a phone, the app looks just as it did
before. MainActivity displays a list of workout names, and
when you click on one of the workouts, DetailActivity
starts and displays its details.

On a phone, the app looks
the same as it did before.

When you run the app on a tablet, MainActivity
displays a list of workout names on the left, and details
of the first workout appear next to it.

Here are the two fragments, one next to the other.

When you click on one of the workouts, DetailActivity
still gets displayed. We need to change our code so that if the
app’s running on a tablet, DetailActivity no longer starts.
Instead, we need to display details of the workout the user selects
in MainActivity, and not just the first workout.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

Details of this workout appear
because we’ve hardcoded it to.

412 Chapter 10

itemClicked() code

We need to change the itemClicked() code
We need to change the code that decides what to do when
items in WorkoutListFragment are clicked. This means
that we need to change the itemClicked() method in
MainActivity. Here’s the current code:

But how do we update the workout details?
The WorkoutDetailFragment updates its views when it
is started. But once the fragment is displayed onscreen, how
do we get the fragment to update the details?

You might be thinking that we could play with the fragment’s
lifecycle so that we get it to update. Instead, we’ll replace
the detail fragment with a brand-new detail
fragment, each time we want its text to change.

There’s a really good reason why...

...

public class MainActivity extends AppCompatActivity

 implements WorkoutListFragment.Listener {

...

 @Override

 public void itemClicked(long id) {

 Intent intent = new Intent(this, DetailActivity.class);

 intent.putExtra(DetailActivity.EXTRA_WORKOUT_ID, (int)id);

 startActivity(intent);

 }

}

app/src/main

MainActivity.java

Workout

java

com.hfad.workout

The current code starts DetailActivity whenever
the user clicks on one of the workouts. We need to change
the code so that this only happens if the app’s running
on a device with a small screen such as a phone. If the
app’s running on a device with a large screen, when the
user picks a workout we need to display the details of
the workout shown to the right of the list of workouts in
WorkoutDetailFragment.

This is the itemClicked() method we wrote in the previous chapter. It starts DetailActivity, and passes it the ID of the workout that was clicked.

Create AVD
Create layout
Show workout

you are here 4 413

fragments for larger interfaces

Suppose you have a user that runs the app on a phone. When they click
on a workout, details of that workout are displayed in a separate activity. If
the user clicks on the Back button, they’re returned to the list of workouts:

You want fragments to work with the Back button

In every app we’ve built so far, when we’ve clicked on the Back
button, we’ve been returned to the previous activity. This is standard
Android behavior, and something that Android has handled for
us automatically. If we’re running this particular app on a tablet,
however, we don’t want the Back button to return us to the previous
activity. We want it to return us to the previous fragment state.

The user clicks on the
Limb Loosener workout. They then click on

the Wimp Special.
When the user clicks on the
device’s Back button, we
want the app to go back to
the Limb Loosener workout.

Then suppose the user runs the app on a tablet, and clicks
on one workout, followed by a second workout. If they click
on the Back button, they’re probably going to expect to be
returned to the first workout they chose:

The user
clicks on a
workout...

When the user
clicks on the Back
button, the app
goes back to the
list of workouts.

Create AVD
Create layout
Show workout

...and sees the details
in a separate activity.

414 Chapter 10

back stack

Welcome to the back stack
When you go from activity to activity in your app, Android keeps
track of each activity you’ve visited by adding it to the back
stack. The back stack is a log of the places you’ve visited on the
device, each place recorded as a separate transaction.

A back stack scenario

Activity1
 Suppose you start by visiting a fictitious activity in
your app, Activity1. Android records your visit to
Activity1 on the back stack as a transaction.

1

Activity1
Activity2 You then go to Activity2. Your visit to Activity2

is added to the top of the back stack as a separate
transaction.

2

 You then go to Activity3. Activity3 is added to the
top of the back stack.

3

Activity1
Activity2
Activity3

 When you click on the Back button, Activity3 pops off
the top of the back stack. Android displays Activity2,
as this activity is now at the top of the back stack.

4

Activity1
Activity2

Activity1
 If you click on the Back button again, Activity2 pops
off the top of the back stack, and Activity1 is displayed.

5

Create AVD
Create layout
Show workout

you are here 4 415

fragments for larger interfaces

This means that fragment changes can be reversed when you
click on the Back button, just like activity changes can.

Back stack transactions
don’t have to be activities
We’ve shown you how the back stack works with activities, but
the truth is, it doesn’t just apply to activities. It applies to any
sort of transaction, including changes to fragments.

These are two different
fragment transactions for
WorkoutDetailFragment. The top
one displays details of the Core
Agony workout, and the bottom one
displays details of the Wimp Special.

When you click on the Back button,
the transaction that contains details
of the Core Agony is popped off the
top of the back stack. Details of
the Wimp Special are displayed.

Don’t update—instead, replace
We’re going to replace the entire WorkoutDetailFragment
with a new instance of it each time the user selects a different
workout. Each new instance of WorkoutDetailFragment
will be set up to display details of the workout the user selects.
That way, we can add each fragment replacement to the back
stack as a separate transaction. Each time the user clicks on
the Back button, the most recent transaction will be popped off
the top of the stack, and the user will see details of the previous
workout they selected.

To do this, we first need to know how to replace one fragment
with another. We’ll look at this on the next page.

So how can we record changes to fragments as separate
transactions on the back stack?

Wimp Special
Core Agony

Wimp Special

Android builds the
back stack as you
navigate from one
activity to another.
Each activity is
recorded in a separate
transaction.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

416 Chapter 10

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="horizontal"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <fragment

 android:name="com.hfad.workout.WorkoutListFragment"

 android:id="@+id/list_frag"

 android:layout_width="0dp"

 android:layout_weight="2"

 android:layout_height="match_parent"/>

 <fragment

 <FrameLayout

 android:name="com.hfad.workout.WorkoutDetailFragment"

 android:id="@+id/detail_frag"

 android:id="@+id/fragment_container"

 android:layout_width="0dp"

 android:layout_weight="3"

 android:layout_height="match_parent"/>

</LinearLayout>

frame layout

Use a frame layout to replace
fragments programmatically
To replace one fragment with another in MainActivity’s
tablet user interface, we need to begin by making a change to
the activity_main.xml layout file in the layout-large folder. Instead
of inserting WorkoutDetailFragment directly using the
<fragment> element, we’ll use a frame layout.

We’ll add the fragment to the frame layout programmatically.
Whenever an item in the WorkoutListFragment list view
gets clicked, we’ll replace the contents of the frame layout with
a new instance of WorkoutDetailFragment that displays
details of the correct workout.

Here’s our new version of the code for activity_main.xml in the
layout-large folder. Update your code to include our changes.

<xml>
</xml>

app/src/main

activity_main.xml

Workout

res

layout-large

We're going to display the fragment inside a FrameLayout.

Add a fragment using
a <FrameLayout>
whenever you need
to replace fragments
programmatically, such
as when you need to
add fragment changes
to the back stack.

We'll add the fragment
to the frame layout
programmatically.

We'll give the FrameLayout an ID
of fragment_container so we can
refer to it in our activity code.

Create AVD
Create layout
Show workout

We covered
frame layouts
in Chapter 5.

you are here 4 417

fragments for larger interfaces

Use layout differences to tell
which layout the device is using
We want MainActivity to perform different actions when
the user clicks on a workout depending on whether the device is
running on a phone or a tablet. We can tell which version of the
layout’s being used by checking whether or not the layout includes
the frame layout we added on the previous page.

If the app is running on a tablet, the device will be using the version
of activity_main.xml that’s in the layout-large folder. This layout
includes a frame layout with an ID of fragment_container.
When the user clicks on a workout, we want to display a new
instance of WorkoutDetailFragment in the frame layout.

If the app’s running on a phone, the device will be using activity_
main.xml in the layout folder. This layout doesn’t include the frame
layout. If the user clicks on a workout, we want MainActivity
to start DetailActivity as it does currently.

WorkoutDetailFragment is
displayed in a frame layout with
an ID of fragment_container.

If we can get our MainActivity code to check for the
existence of a view with an ID of fragment_container,
we can get MainActivity to behave differently depending
on whether the app’s running on a phone or a tablet.

MainActivity doesn't
include the frame layout if it's running on a phone.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

418 Chapter 10

MainActivity code

The revised MainActivity code
We’ve updated MainActivity so that the itemClicked()
method looks for a view with an ID of fragment_
container. We can then perform different actions depending
on whether or not the view is found.

Here’s our full code for MainActivity.java; update your version of
the code to match ours:

package com.hfad.workout;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.content.Intent;

public class MainActivity extends AppCompatActivity

 implements WorkoutListFragment.Listener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public void itemClicked(long id) {

 View fragmentContainer = findViewById(R.id.fragment_container);

 if (fragmentContainer != null) {

 //Add the fragment to the FrameLayout

 } else {

 Intent intent = new Intent(this, DetailActivity.class);

 intent.putExtra(DetailActivity.EXTRA_WORKOUT_ID, (int) id);

 startActivity(intent);

 }

 }

}

app/src/main

MainActivity.java

Workout

java

com.hfad.workout

Get a reference to the frame layout that will contain
WorkoutDetailFragment. This will only exist if the app
is being run on a device with a large screen.

We need to write code that will run
if the frame layout exists.

If the frame layout doesn’t exist, the app must be running
on a device with a smaller screen. In that case, start
DetailActivity and pass it the ID of the workout as before.

The next thing we need to do is see how we can add
WorkoutDetailFragment to the frame layout programmatically.

We've not changed this method.

Create AVD
Create layout
Show workout

you are here 4 419

fragments for larger interfaces

Using fragment transactions
You can programmatically add a fragment to an activity’s layout so
long as the activity’s running. All you need is a view group in which
to place the fragment, such as a frame layout.

You add, replace, or remove fragments at runtime using a fragment
transaction. A fragment transaction is a set of changes relating to
the fragment that you want to apply, all at the same time.

When you create a fragment transaction, you need to do three things:

The start of the
fragment transaction

Begin the transaction.
This tells Android that you’re starting a series of changes that you
want to record in the transaction.

1

Specify the changes.
These are all the actions you want to group together in the
transaction. This can include adding, replacing, or removing a
fragment, updating its data, and adding it to the back stack.

2

Commit the transaction.
This finishes the transaction and applies the changes.

3

1. Begin the transaction
You begin the transaction by first getting a reference to the activity’s
fragment manager. As you may remember from the previous chapter,
the fragment manager is used to manage any fragments used by
the activity. If you’re using fragments from the Support Library as
we are here, you get a reference to the fragment manager using the
following method:

getSupportFragmentManager();

Once you have a reference to the fragment manager, you call its
beginTransaction() method to begin the transaction:

FragmentTransaction transaction = getSupportFragmentManager().beginTransaction();

That’s all you need to do to begin the transaction. On the next
page we’ll look at how you specify the changes you want to make.

This returns the fragment manager that deals
with fragments from the Support Library.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

420 Chapter 10

transaction changes

transaction.addToBackStack(null);

You can optionally use the setTransition() method to say
what sort of transition animation you want for this transaction:

transaction.setTransition(transition);

transition is the type of animation. Options for this are
TRANSIT_FRAGMENT_CLOSE (a fragment is being removed
from the stack), TRANSIT_FRAGMENT_OPEN (a fragment is being
added), TRANSIT_FRAGMENT_FADE (the fragment should fade in
and out), and TRANSIT_NONE (no animation). By default, there are
no animations.

Once you’ve specified all the actions you want to take as part of
the transaction, you can use the addToBackStack() method
to add the transaction to the back stack. This method takes one
parameter, a String name you can use to label the transaction.
This parameter is needed if you need to programmatically retrieve
the transaction. Most of the time you won’t need to do this, so you
can pass in a null value like this:

You don't have to set a transition.

Most of the time you won't need to retrieve
the transaction, so it can be set to null.

2. Specify the changes
After beginning the transaction, you need to say what changes the
transaction should include.

If you want to add a fragment to your activity’s layout, you call the
fragment transaction’s add() method. This takes two parameters,
the resource ID of the view group you want to add the fragment to,
and the fragment you want to add. The code looks like this:

WorkoutDetailFragment fragment = new WorkoutDetailFragment();

transaction.add(R.id.fragment_container, fragment);

To replace the fragment, you use the replace() method:

transaction.replace(R.id.fragment_container, fragment);

To remove the fragment completely, you use the remove()
method:

transaction.remove(fragment);

Create the fragment.
Add the fragment to the ViewGroup.

Replace the fragment.

Remove the fragment.

Create AVD
Create layout
Show workout

you are here 4 421

fragments for larger interfaces

transaction.commit();

3. Commit the transaction
Finally, you need to commit the transaction. This finishes the
transaction, and applies the changes you specified. You commit the
transaction by calling the transaction’s commit() method like this:

That’s everything we need to know in order to create fragment
transactions, so let’s put it into practice by getting our MainActivity
code to display an updated version of WorkoutDetailFragment
every time the user clicks on a workout.

public void itemClicked(long id) {

 View fragmentContainer = findViewById(R.id.fragment_container);

 if (fragmentContainer != null) {

 WorkoutDetailFragment details = new WorkoutDetailFragment();

 FragmentTransaction ft = getSupportFragmentManager(). ;

 details.setWorkout(id);

 ft. (R.id.fragment_container,);

 ft. (FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft. (null);

 ft. ;

 } else {

 Intent intent = new Intent(this, DetailActivity.class);

 intent.putExtra(DetailActivity.EXTRA_WORKOUT_ID, (int) id);

 startActivity(intent);

 }

}

Activity Magnets
We want to write a new version of the MainActivity's itemClicked() method. It
needs to change the workout details that are displayed in WorkoutDetailFragment
each time the user clicks on a new workout. See if you can finish the code below.

You won’t need to use
all of the magnets.

commit()
setTransitionbeginTransaction()

replace

details addToBackStack
startTransaction()endTransaction()

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

422 Chapter 10

solution

public void itemClicked(long id) {

 View fragmentContainer = findViewById(R.id.fragment_container);

 if (fragmentContainer != null) {

 WorkoutDetailFragment details = new WorkoutDetailFragment();

 FragmentTransaction ft = getSupportFragmentManager(). ;

 details.setWorkout(id);

 ft. (R.id.fragment_container,);

 ft. (FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft. (null);

 ft. ;

 } else {

 Intent intent = new Intent(this, DetailActivity.class);

 intent.putExtra(DetailActivity.EXTRA_WORKOUT_ID, (int) id);

 startActivity(intent);

 }

}

Activity Magnets Solution
We want to write a new version of the MainActivity’s itemClicked() method. It
needs to change the workout details that are displayed in WorkoutDetailFragment
each time the user clicks on a new workout. See if you can finish the code below.

commit()

setTransition

beginTransaction()

replace details

addToBackStack

startTransaction()endTransaction() You didn't need to
use these magnets.

This begins the
transaction.

Each time
the user
clicks on
a workout,
we'll
replace
the
fragment
with
a new
instance
of it.

This is a new instance of
WorkoutDetailFragment.
It displays details of the
workout the user selected.

Set the fragment
to fade in and out.Add the transaction

to the back stack.

Commit the transaction.

you are here 4 423

fragments for larger interfaces

package com.hfad.workout;

import android.support.v4.app.FragmentTransaction;

...

public class MainActivity extends AppCompatActivity

 implements WorkoutListFragment.Listener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 @Override

 public void itemClicked(long id) {

 View fragmentContainer = findViewById(R.id.fragment_container);

 if (fragmentContainer != null) {

 WorkoutDetailFragment details = new WorkoutDetailFragment();

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

 details.setWorkout(id);

 ft.replace(R.id.fragment_container, details);

 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft.addToBackStack(null);

 ft.commit();

 } else {

 Intent intent = new Intent(this, DetailActivity.class);

 intent.putExtra(DetailActivity.EXTRA_WORKOUT_ID, (int) id);

 startActivity(intent);

 }

 }

}

The updated MainActivity code
We’re going to get a new instance of WorkoutDetailFragment
(one that displays the correct workout), display the fragment in the
activity, and then add the transaction to the back stack. Here’s the full
code. Update your version of MainActivity.java to reflect our changes:

app/src/main

MainActivity.java

Workout

java

com.hfad.workout

Start the
fragment
transaction. Replace the fragment.

Get the new and old fragments
to fade in and out.Commit the transaction.

We're using a FragmentTransaction
from the Support Library as we're
using Support Library Fragments.

We haven't changed this method.

Add the
transaction
to the back
stack.

On the next page we’ll see what happens when the code runs.

Create AVD
Create layout
Show workout

424 Chapter 10

what happens

MainActivity WorkoutDetailFragment

MainActivity’s itemClicked() method sees that the app is running on a tablet.
It creates a new instance of WorkoutDetailFragment, and begins a new fragment
transaction.

3

What happens when the code runs
Here’s a runthrough of what happens when we run the app.

The app is launched on a tablet and MainActivity starts.
WorkoutListFragment is attached to MainActivity, and MainActivity is
registered as a listener on WorkoutListFragment.

1

MainActivityTablet

When an item is clicked in WorkoutListFragment, the fragment’s
onListItemClick() method is called.
This calls MainActivity’s itemClicked() method, passing it the ID of the workout that
was clicked; in this example, the ID is 1.

2

WorkoutListFragment

WorkoutList
Fragment MainActivity

itemClicked(1)

FragmentTransaction

Create AVD
Create layout
Show workout

you are here 4 425

fragments for larger interfaces

WorkoutDetailFragment

textTitle: Core Agony
textDescription: 100 Pull ups
 100 Push-ups
 100 Sit ups
 100 Squats

As part of the transaction, WorkoutDetailFragment’s views are updated with
details of the workout that was selected, in this case the one with ID 1.
The fragment is added to the FrameLayout fragment_container in
MainActivity’s layout, and the whole transaction is added to the back stack.

4

The story continues...

Core Agony

MainActivity commits the transaction.
All of the changes specified in the transaction take effect, and the
WorkoutDetailFragment is displayed next to WorkoutListFragment.

5

Let’s take the app for a test drive.

Create AVD
Create layout
Show workout

Create AVD
Create layout
Show workout

MainActivity

FragmentTransaction

MainActivity

FragmentTransaction
Tablet

I’m committed.
Make it so!

426 Chapter 10

test drive

Test drive the app
When we run the app, a list of the workouts appears on the left
side of the screen. When we click on one of the workouts, details of
that workout appear on the right. If we click on another workout
and then click on the Back button, details of the workout we chose
previously appear on the screen.

The right side of the screen
is empty when you start the
app, as the user hasn't chosen
a workout yet.

When the user clicks on the
Limb Loosener workout, its
details get displayed.

The user then
clicks on the Wimp
Special workout
and its details get
displayed.

When the user clicks on the
Back button, the app goes
back to the Limb Loosener
workout.

The app seems to be working fine as long as
we don’t rotate the screen. If we change the
screen orientation, there’s a problem. Let’s
see what happens.

Create AVD
Create layout
Show workout

you are here 4 427

fragments for larger interfaces

Rotating the tablet breaks the app
When you run the app on a phone and rotate the device, the
app works as you’d expect. Details of the workout the user
selected continue to be displayed on the screen:

Choose one of the
workouts, and its
details appear on
the right. When you rotate

the device, details
of the first
workout are shown
instead. This is the
workout with an
index of 0 in the
workouts array.

But when you run the app on a tablet, there’s a problem.
Regardless of which workout you’ve chosen, when you rotate the
device, the app displays details of the first workout in the list:

Why does the app do this? Give this some thought before
turning the page. Hint: you saw behavior similar to this
back in Chapter 4 when we looked at the activity lifecycle.

When we run the app on a
phone and rotate it, the app
continues to display details of
the workout we selected.

Create AVD
Create layout
Show workout

428 Chapter 10

saving state

Saving an activity's state (revisited)
When we first looked at the activity lifecycle back in Chapter 4,
you saw how when you rotate the device, Android destroys and
recreates the activity. When this happens, local variables used
by the activity can get lost. To prevent this from happening,
we saved the state of our local variables in the activity’s
onSaveInstanceState() method:

public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putInt("seconds", seconds);

 savedInstanceState.putBoolean("running", running);

}

We then restored the state of the variables in the activity’s
onCreate() method:

protected void onCreate(Bundle savedInstanceState) {

 ...

 if (savedInstanceState != null) {

 seconds = savedInstanceState.getInt("seconds");

 running = savedInstanceState.getBoolean("running");

 }

 ...

}

So what does this have to do with our current problem?

Fragments can lose state too
If the activity uses a fragment, the fragment
gets destroyed and recreated along with
the activity. This means that any local variables
used by the fragment can also lose their state.

In our WorkoutDetailFragment code, we
use a local variable called workoutId to store
the ID of the workout the user clicks on in the
WorkoutListFragment list view. When the
user rotates the device, workoutId loses its
current value and it’s set to 0 by default. The
fragment then displays details of the workout with
an ID of 0—the first workout in the list.

WorkoutDetailFragment

workoutId=1

WorkoutDetailFragment

workoutId=0

Before After

When you rotate the tablet,
WorkoutDetailFragment loses the
value of workoutId, and sets it
back to its default value of 0.

Earlier in the book, we used the onSaveInstanceState() method to save the state of these two variables.

We restored the state
of the variables in the
onCreate() method.

you are here 4 429

fragments for larger interfaces

public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putLong("workoutId", workoutId);

}
The onSaveInstanceState()
method gets called before
the fragment is destroyed.

We can use this Bundle to get the
previous state of the workoutId variable.

Save the fragment's state...
You deal with this problem in a fragment in a similar way to how you
deal with it in an activity.

You first override the fragment’s onSaveInstanceState()
method. This method works in a similar way to an activity’s
onSaveInstanceState() method. It gets called before the
fragment gets destroyed, and it has one parameter: a Bundle. You
use the Bundle to save the values of any variables whose state you
need to keep.

In our case, we want to save the state of our workoutId variable, so
we’d use code like this:

...then use onCreate() to restore the state
Just like an activity, a fragment has an onCreate() method
that has one parameter, a Bundle. This is the Bundle to
which you saved the state of your variables in the fragment’s
onSaveInstanceState() method, so you can use it to restore
the state of those variables in your fragment’s onCreate() method.

In our case, we want to restore the state of the workoutId variable,
so we can use code like this:

Once you’ve saved the state of any variables, you can restore it when
the fragment is recreated.

public void onCreate(Bundle savedInstanceState){

 super.onCreate(savedInstanceState);

 if (savedInstanceState != null) {

 workoutId = savedInstanceState.getLong("workoutId");

 }

}

We’ll show you the full code on the next page.

430 Chapter 10

WorkoutDetailFragment code

package com.hfad.workout;

import android.support.v4.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.TextView;

public class WorkoutDetailFragment extends Fragment {

 private long workoutId;

 @Override

 public void onCreate(Bundle savedInstanceState){

 super.onCreate(savedInstanceState);

 if (savedInstanceState != null) {

 workoutId = savedInstanceState.getLong("workoutId");

 }

 }

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_workout_detail, container, false);

 }

The updated code for
WorkoutDetailFragment.java
We’ve updated our code for WorkoutDetailFragment.java to save
the state of the workoutId variable before the fragment is
destroyed, and restore it if the fragment is recreated. Here’s our
code; update your version of WorkoutDetailFragment.java to reflect
our changes.

Set the value of the workoutId.

Add the onCreate() method.

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

The code continues
on the next page.

you are here 4 431

fragments for larger interfaces

 @Override

 public void onStart() {

 super.onStart();

 View view = getView();

 if (view != null) {

 TextView title = (TextView) view.findViewById(R.id.textTitle);

 Workout workout = Workout.workouts[(int) workoutId];

 title.setText(workout.getName());

 TextView description = (TextView) view.findViewById(R.id.textDescription);

 description.setText(workout.getDescription());

 }

 }

 @Override

 public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putLong("workoutId", workoutId);

 }

 public void setWorkout(long id) {

 this.workoutId = id;

 }

}

Save the value of the workoutId in the
savedInstanceState Bundle before the fragment gets
destroyed. We're retrieving it in the onCreate() method.

WorkoutDetailFragment.java (continued)

Test drive the app
Now, when you run the app on a tablet and rotate the device, details of
the workout the user selected continue to be displayed on the screen.

When you click on one of
the workouts, its details
continue to be displayed
when you rotate the device.

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

432 Chapter 10

toolbox

 � Make apps look different on different
devices by putting separate layouts in
device-appropriate folders.

 � Android keeps track of places you’ve
visited within an app by adding
them to the back stack as separate
transactions. Pressing the Back
button pops the last transaction off
the back stack.

 � Use a frame layout to add, replace, or
remove fragments programmatically
using fragment transactions.

 � Begin the transaction by calling
the FragmentManager
beginTransaction()
method. This creates a
FragmentTransaction
object.

 � Add, replace, and delete
fragments using the
FragmentTransaction
add(), replace(), and
remove() methods.

 � Add a transaction to the
back stack using the
FragmentTransaction
addToBackStack() method.

 � Commit a transaction using the
FragmentTransaction
commit() method. This applies all
the updates in the transaction.

 � Save the state of a fragment’s
variables in the Fragment
onSaveInstanceState()
method.

 � Restore the state of a fragment’s
variables in the Fragment
onCreate() method.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

Your Android Toolbox

You’ve got Chapter 10 under
your belt and now you’ve

added fragments for larger
interfaces to your toolbox.

CH
AP

T
ER

 10

this is a new chapter 433

The Back button was
going crazy, transactions
everywhere. So I hit them with
the getChildFragmentManager()
method and BAM! Everything
went back to normal.

dynamic fragments11

Nesting Fragments

So far you’ve seen how to create and use static fragments.
But what if you want your fragments to be more dynamic? Dynamic fragments have a lot

in common with dynamic activities, but there are crucial differences you need to be able

to deal with. In this chapter you’ll see how to convert dynamic activities into working

dynamic fragments. You’ll find out how to use fragment transactions to help maintain

your fragment state. Finally, you’ll discover how to nest one fragment inside another,

and how the child fragment manager helps you control unruly back stack behavior.

434 Chapter 11

dynamic fragments

Adding dynamic fragments
In Chapters 9 and 10, you saw how to create fragments, how to
include them in activities, and how to connect them together. To
do this, we created a list fragment displaying a list of workouts,
and a fragment displaying details of a single workout.

These fragments we’ve created so far have both been static.
Once the fragments are displayed, their contents don’t change.
We may completely replace the fragment that’s displayed with a
new instance, but we can’t update the contents of the fragment
itself.

In this chapter we’re going to look at how you deal with
a fragment that’s more dynamic. By this, we mean a
fragment whose views gets updated after the fragment is
displayed. To learn how to do, we’re going to change the
stopwatch activity we created in Chapter 4 into a stopwatch
fragment. We’re going to add our new stopwatch fragment to
WorkoutDetailFragment so that it’s displayed underneath
the details of the workout.

WorkoutListFragment
contains a list of
workouts.

WorkoutDetailFragment
displays details of the
workout the user clicks on.

We’re going to add a
stopwatch fragment to
WorkoutDetailFragment.

We’re only showing the tablet
version of the app here, but the
new stopwatch fragment will
appear in the phone version too.

These lines won’t appear in the actual
app. We’ve added them here to show
you each of the fragments.

you are here 4 435

dynamic fragments

Here’s what we’re going to do
There are a number of steps we’ll go through to change the
app to display the stopwatch:

Convert StopwatchActivity into StopwatchFragment.
We’ll take the StopwatchActivity code we created in
Chapter 4, and change it into fragment code. We’ll also display
it in a new temporary activity called TempActivity so that
we can check that it works. We’ll temporarily change the app
so that TempActivity starts when the app gets launched.

1

Test StopwatchFragment.
The StopwatchActivity included Start, Stop, and Reset
buttons.We need to check that these still work when the
stopwatch code is in a fragment.

We also need to test what happens to StopwatchFragment
when the user rotates the device.

2

Add StopwatchFragment to WorkoutDetailFragment.
Once we’re satisfied that StopwatchFragment works, we’ll
add it to WorkoutDetailFragment.

3

Let’s get started.

We’ll start by adding
StopwatchFragment
to a new activity
called TempActivity.

When we’re satisfied that StopwatchFragment works OK in TempActivity, we’ll add it to WorkoutDetailFragment.

Do this!

We’re going to update the Workout
app in this chapter, so open your
original Workout project from
Chapter 9 in Android Studio.

436 Chapter 11

app structure

Device
Stopwatch

Fragment.java

fragment_
stopwatch.xml

<Layout>

</Layout>

The new version of the app
We’re going to change our app to get StopwatchFragment
working in a new temporary activity called TempActivity. This will
emable us to confirm that StopwatchFragment works before we
add it to WorkoutDetailFragment later in the chapter.

 Here’s how the new version of the app will work:

When the app gets launched, it starts TempActivity.
TempActivity uses activity_temp.xml for its layout, and contains a
fragment, StopwatchFragment.

1

StopwatchFragment displays a stopwatch with Start, Stop,
and Reset buttons.

2

activity_temp.xml

TempActivity.java

<Layout>

</Layout>

1
2

Convert stopwatch
Test stopwatch
Add to fragment

All of the other activities and fragments we created in Chapters 9 and
10 will still exist in the project, but we’re not going to do anything with
them until later in the chapter.

you are here 4 437

dynamic fragments

Create TempActivity
We’ll start by creating TempActivity. Create a new
empty activity by switching to the Project view of Android
Studio’s explorer, highlighting the com.hfad.workout package
in the app/src/main/java folder, going to the File menu and
choosing New...→Activity→Empty Activity. Name the activity

“TempActivity”, name the layout “activity_temp”, make sure
the package name is com.hfad.workout, and check the
Backwards Compatibility (AppCompat) checkbox.

We’re going to change our app so that, when it’s launched, it
starts TempActivity instead of MainActivity. To do
this, we need to move MainActivity’s launcher intent filter
to TempActivity instead. Open the file AndroidManifest.xml
in the app/src/main folder, then make the following changes:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.workout">

 <application

 ...

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".DetailActivity" />

 <activity android:name=".TempActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

We’ll update TempActivity on the next page.

This bit specifies
that it’s the main
activity of the app.

This says the activity can
be used to launch the app.

<xml>
</xml>

app/src/main

AndroidManifest.xml

Workout

Convert stopwatch
Test stopwatch
Add to fragment

If prompted for the
activity’s source language,
select the option for Java.

438 Chapter 11

TempActivity code

We’ll add a new stopwatch fragment
We’re going to add a new stopwatch fragment called
StopwatchFragment.java that uses a layout called fragment_stopwatch.xml.
We’re going to base the fragment on the stopwatch activity we created
back in Chapter 4.

We already know that activities and fragments behave in similar
ways, but we also know that a fragment is a distinct type of object—a
fragment is not a subclass of activity. Is there some way we
could rewrite that stopwatch activity code so that it works
like a fragment?

TempActivity needs to extend
AppCompatActivity
All of the fragments we’re using in this app come from the
Support Library. As we said back in Chapter 9, all activities
that use Support Library fragments must extend the
FragmentActivity class or one of its subclasses such as
AppCompatActivity. If they don’t, the code will break.

All of the other activities we’ve created in this app extend
AppCompatActivity, so we’ll make TempActivity
extend this class too. Here’s our code for TempActivity.java.
Update your version of the code so that it matches ours below:

app/src/main

TempActivity.java

Workout

java

com.hfad.workout

package com.hfad.workout;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class TempActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_temp);

 }

}

The activity extends AppCompatActivity.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 439

dynamic fragments

Fragments and activities have similar lifecycles...
To understand how to rewrite an activity as a fragment, we
need to think a little about the similarities and differences
between them. If we look at the lifecycles of fragments and
activities, we’ll see that they’re very similar:

...but the methods are slightly different
Fragment lifecycle methods are almost the same as activity lifecycle
methods, but there’s one major difference: activity lifecycle
methods are protected and fragment lifecycle methods are
public. And we’ve already seen that the ways that activities and
fragments create a layout from a layout resource file are different.

Also, in a fragment, we can’t call methods like findViewById()
directly. Instead, we need to find a reference to a View object, and
then call the view’s findViewById() method.

With these similarities and differences in mind, it’s time you started
to write some code...

Lifecycle method Activity Fragment

onAttach()

onCreate()

onCreateView()

onActivityCreated()

onStart()

onPause()

onResume()

onStop()

onDestroyView()

onRestart()

onDestroy()

onDetach()

440 Chapter 11

exercise

This is the code for StopwatchActivity we wrote earlier. You’re going
to convert this code into a fragment called StopwatchFragment. With
a pencil, make the changes you need. Keep the following things in mind:

- Instead of a layout file called activity_stopwatch.xml, it will use a layout
called fragment_stopwatch.xml.

- Make sure the access restrictions on the methods are correct.

- How will you specify the layout?

- The runTimer() method won’t be able to call findViewById(), so
you might want to pass a View object into runTimer().

public class StopwatchActivity extends Activity {

 //Number of seconds displayed on the stopwatch.

 private int seconds = 0;

 //Is the stopwatch running?

 private boolean running;

 private boolean wasRunning;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_stopwatch);

 if (savedInstanceState != null) {

 seconds = savedInstanceState.getInt("seconds");

 running = savedInstanceState.getBoolean("running");

 wasRunning = savedInstanceState.getBoolean("wasRunning");

 }

 runTimer();

 }

 @Override

 protected void onPause() {

 super.onPause();

 wasRunning = running;

 running = false;

 }

The number of seconds that have passed

running says whether the stopwatch is running. wasRunning says whether the stopwatch was running before the stopwatch was paused.

If the activity was destroyed
and recreated, restore the
state of the variables from
the savedInstanceState Bundle.

Stop the stopwatch if the activity is paused.

Start the runTimer() method.

you are here 4 441

dynamic fragments

 @Override
 protected void onResume() {
 super.onResume();
 if (wasRunning) {
 running = true;
 }
 }

 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 savedInstanceState.putInt("seconds", seconds);
 savedInstanceState.putBoolean("running", running);
 savedInstanceState.putBoolean("wasRunning", wasRunning);
 }

 public void onClickStart(View view) {
 running = true;
 }

 public void onClickStop(View view) {
 running = false;
 }

 public void onClickReset(View view) {
 running = false;
 seconds = 0;
 }

 private void runTimer() {
 final TextView timeView = (TextView)findViewById(R.id.time_view);
 final Handler handler = new Handler();
 handler.post(new Runnable() {
 @Override
 public void run() {
 int hours = seconds/3600;
 int minutes = (seconds%3600)/60;
 int secs = seconds%60;
 String time = String.format(Locale.getDefault(),
 "%d:%02d:%02d", hours, minutes, secs);
 timeView.setText(time);
 if (running) {
 seconds++;
 }
 handler.postDelayed(this, 1000);
 }
 });
 }
}

Start the stopwatch if the activity is resumed.

Save the activity’s state before
the activity is destroyed.

Start, stop, or reset the stopwatch
depending on which button is clicked.

Use a Handler to post code to
increment the number of seconds and
update the text view every second.

442 Chapter 11

fragment

solution

This is the code for StopwatchActivity we wrote earlier. You’re going
to convert this code into a fragment called StopwatchFragment. With
a pencil, make the changes you need. Keep the following things in mind:

- Instead of a layout file called activity_stopwatch.xml, it will use a layout
called fragment_stopwatch.xml.

- Make sure the access restrictions on the methods are correct.

- How will you specify the layout?

- The runTimer() method won’t be able to call findViewById(), so
you might want to pass a View object into runTimer().

public class StopwatchActivity extends Activity {
 //Number of seconds displayed on the stopwatch.
 private int seconds = 0;
 //Is the stopwatch running?
 private boolean running;
 private boolean wasRunning;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_stopwatch);
 if (savedInstanceState != null) {
 seconds = savedInstanceState.getInt("seconds");
 running = savedInstanceState.getBoolean("running");
 wasRunning = savedInstanceState.getBoolean("wasRunning");
 }
 runTimer();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View layout = inflater.inflate(R.layout.fragment_stopwatch, container, false);
 runTimer(layout);
 return layout;
 }
 @Override
 protected void onPause() {
 super.onPause();
 wasRunning = running;
 running = false;
 }

StopwatchFragment Fragment

public

public

This is the new name.

We’re extending
Fragment, not Activity.

This method needs to be public.

This method needs to be public.

You don’t set a fragment’s layout
in its onCreate() method.

We’re not calling runTimer() yet because we’ve
not set the layout—we don’t have any views yet.

We set the fragment’s layout in
the onCreateView() method.

Pass the layout view to the runTimer() method.

We can leave this code in the
onCreate() method.

you are here 4 443

dynamic fragments

fragment
 @Override
 protected void onResume() {
 super.onResume();
 if (wasRunning) {
 running = true;
 }
 }

 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 savedInstanceState.putInt("seconds", seconds);
 savedInstanceState.putBoolean("running", running);
 savedInstanceState.putBoolean("wasRunning", wasRunning);
 }

 public void onClickStart(View view) {
 running = true;
 }

 public void onClickStop(View view) {
 running = false;
 }

 public void onClickReset(View view) {
 running = false;
 seconds = 0;
 }

 private void runTimer() {
 final TextView timeView = (TextView) findViewById(R.id.time_view);
 final Handler handler = new Handler();
 handler.post(new Runnable() {
 @Override
 public void run() {
 int hours = seconds/3600;
 int minutes = (seconds%3600)/60;
 int secs = seconds%60;
 String time = String.format(Locale.getDefault(),
 "%d:%02d:%02d", hours, minutes, secs);
 timeView.setText(time);
 if (running) {
 seconds++;
 }
 handler.postDelayed(this, 1000);
 }
 });
 }
}

public

View view
view.

This method needs to be public.

The runTimer() method now takes a View.

Use the view parameter to call findViewById().

Fragment

444 Chapter 11

StopwatchFragment code

The StopwatchFragment.java code
We’ll add StopwatchFragment to our Workout project so that we can use
it in our app. You do this in the same way you did in Chapter 9. Highlight
the com.hfad.workout package in the app/src/main/java folder, then go to
File→New...→Fragment→Fragment (Blank). Give the fragment a name of

“StopwatchFragment”, give it a layout name of “fragment_stopwatch”, and uncheck
the options for including fragment factory methods and interface callbacks.

When you click on the Finish button, Android Studio creates a new fragment for
you in a file called StopwatchFragment.java in the app/src/main/java folder. Replace
the fragment code Android Studio gives you with the following code (this is the code
you updated in the exercise on the previous page):

package com.hfad.workout;

import android.os.Bundle;

import android.os.Handler;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.TextView;

import java.util.Locale;

public class StopwatchFragment extends Fragment {

 //Number of seconds displayed on the stopwatch.

 private int seconds = 0;

 //Is the stopwatch running?

 private boolean running;

 private boolean wasRunning;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 if (savedInstanceState != null) {

 seconds = savedInstanceState.getInt("seconds");

 running = savedInstanceState.getBoolean("running");

 wasRunning = savedInstanceState.getBoolean("wasRunning");

 }

 }

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

The number of seconds that have passed

running says whether the stopwatch is running. wasRunning says whether the stopwatch was running before the stopwatch was paused.

Restore the state of the variables
from the savedInstanceState Bundle.

Convert stopwatch
Test stopwatch
Add to fragment

The code continues
on the next page.

If prompted for the
fragment’s source language,
select the option for Java.

you are here 4 445

dynamic fragments

StopwatchFragment.java (continued)

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 View layout = inflater.inflate(R.layout.fragment_stopwatch, container, false);

 runTimer(layout);

 return layout;

 }

 @Override

 public void onPause() {

 super.onPause();

 wasRunning = running;

 running = false;

 }

 @Override

 public void onResume() {

 super.onResume();

 if (wasRunning) {

 running = true;

 }

 }

 @Override

 public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putInt("seconds", seconds);

 savedInstanceState.putBoolean("running", running);

 savedInstanceState.putBoolean("wasRunning", wasRunning);

 }

 public void onClickStart(View view) {

 running = true;

 }

The code continues
on the next page.

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

Set the fragment’s layout and start the
runTimer() method, passing in the layout.

If the fragment’s paused, record whether the stopwatch was running and stop it.

If the stopwatch was running before it
was paused, set it running again.

Put the values of the
variables in the Bundle
before the activity is
destroyed. These are
used when the user
turns the device.

This code needs to run when the user
clicks on the Start button.

Convert stopwatch
Test stopwatch
Add to fragment

446 Chapter 11

code, continued

 public void onClickStop(View view) {

 running = false;

 }

 public void onClickReset(View view) {

 running = false;

 seconds = 0;

 }

 private void runTimer(View view) {

 final TextView timeView = (TextView) view.findViewById(R.id.time_view);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 int hours = seconds/3600;

 int minutes = (seconds%3600)/60;

 int secs = seconds%60;

 String time = String.format(Locale.getDefault(),

 "%d:%02d:%02d", hours, minutes, secs);

 timeView.setText(time);

 if (running) {

 seconds++;

 }

 handler.postDelayed(this, 1000);

 }

 });

 }

}

StopwatchFragment.java (continued)

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

That’s all the Java code we need for our
StopwatchFragment. The next thing we need to do is say
what the fragment should look like by updating the layout code
Android Studio gave us.

This code needs to run when the user
clicks on the Stop button.

This code needs to run when the user
clicks on the Reset button.

Putting the code in a Handler means it
can run in the background thread.

Display the number of seconds that
have passed in the stopwatch.

If the stopwatch is running, increment the number of seconds.

Run the Handler code every second.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 447

dynamic fragments

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:padding="16dp">

 <TextView

 android:id="@+id/time_view"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:textAppearance="@android:style/TextAppearance.Large"

 android:textSize="56sp" />

 <Button

 android:id="@+id/start_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="20dp"

 android:onClick="onClickStart"

 android:text="@string/start" />

 <Button

 android:id="@+id/stop_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickStop"

 android:text="@string/stop" />

The StopwatchFragment layout
We’ll use the same layout for StopwatchFragment as we
used in our original Stopwatch app. To do so, replace the
contents of fragment_stopwatch.xml with the code below:

<xml>
</xml>

app/src/main

fragment_
stopwatch.xml

Workout

res

layout

The number of hours, minutes,
and seconds that have passed.

The Start
button

The Stop button

The Reset
button code
is on the
next page.

Convert stopwatch
Test stopwatch
Add to fragment

448 Chapter 11

layout, continued

 <Button

 android:id="@+id/reset_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickReset"

 android:text="@string/reset" />

</LinearLayout>

The StopwatchFragment layout (continued)

The StopwatchFragment layout uses String values
The XML code in fragment_stopwatch.xml uses string values for the text on
the Start, Stop, and Reset buttons. We need to add these to strings.xml:

...

 <string name="start">Start</string>

 <string name="stop">Stop</string>

 <string name="reset">Reset</string>

...

These are the
button labels.

<xml>
</xml>

app/src/main

strings.xml

Workout

res

values
The Stopwatch fragment looks just like it did when it was an activity.
The difference is that we can now use it in other activities and
fragments.

The next thing we need to do is display it in TempActivity’s layout.

The Reset button

The stopwatch looks
the same as it did
when it was an activity.
But because it’s now a
fragment, we can reuse
it in different places.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 449

dynamic fragments

Add StopwatchFragment to
TempActivity's layout
The simplest way of adding StopwatchFragment to
TempActivity’s layout is to use the <fragment> element.
Using the <fragment> element means that we can add the
fragment directly into the layout instead of writing fragment
transaction code.

Here’s our code for activity_temp.xml. Replace the code that’s
currently in that file with this updated code:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.StopwatchFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

<xml>
</xml>

app/src/main

activity_
temp.xml

Workout

res

layout

This adds the fragment
to the activity.

That’s everything we need to see StopwatchFragment
running. Let’s take it for a test drive.

Test drive the app
When we run the app, TempActivity is displayed. It contains
StopwatchFragment. The stopwatch is set to 0.

The next thing we’ll do is check that
StopwatchFragment’s buttons work OK.

When we run the app,
TempActivity starts,
not MainActivity.
TempActivity displays
StopwatchFragment as
expected.

Convert stopwatch
Test stopwatch
Add to fragment

450 Chapter 11

what happened?

04-13 11:56:43.623 10583-10583/com.hfad.workout E/AndroidRuntime: FATAL EXCEPTION: main

 Process: com.hfad.workout, PID: 10583

 java.lang.IllegalStateException: Could not find method onClickStart(View) in a

 parent or ancestor Context for android:onClick attribute defined on view class

 android.support.v7.widget.AppCompatButton with id 'start_button'

 at android.support.v7.app.AppCompatViewInflater$DeclaredOnClickListener.

 resolveMethod(AppCompatViewInflater.java:327)

 at android.support.v7.app.AppCompatViewInflater$DeclaredOnClickListener.

 onClick(AppCompatViewInflater.java:284)

 at android.view.View.performClick(View.java:5609)

 at android.view.View$PerformClick.run(View.java:22262)

 at android.os.Handler.handleCallback(Handler.java:751)

 at android.os.Handler.dispatchMessage(Handler.java:95)

 at android.os.Looper.loop(Looper.java:154)

 at android.app.ActivityThread.main(ActivityThread.java:6077)

 at java.lang.reflect.Method.invoke(Native Method)

 at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.

 run(ZygoteInit.java:865)

 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:755)

The app crashes if you click on a button
When you click on any one of the buttons in the Workout app’s new
stopwatch, the app crashes:

When we converted the stopwatch activity into a fragment, we didn’t
change any of the code relating to the buttons. We know this code
worked great when the stopwatch was in an activity, so why should it
cause the app to crash in a fragment?

Here’s the error output from Android Studio. Can you see what may
have caused the problem? Yikes.

This is what happened
when we clicked on
the Start button in
StopwatchFragment.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 451

dynamic fragments

Let’s look at the StopwatchFragment layout code

This worked OK when we were using an activity, so why should we
have a problem now that we’re using a fragment?

In the layout code for the StopwatchFragment, we’re binding the
buttons to methods in the same way that we did for an activity, by
using the android:onClick attribute to say which method should
be called when each button is clicked:

<xml>
</xml>

app/src/main

fragment_
stopwatch.xml

Workout

res

layout

We’re using the same layout for the
stopwatch now that it’s a fragment
as we did when it was an activity.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 ...

 <Button

 android:id="@+id/start_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="20dp"

 android:onClick="onClickStart"

 android:text="@string/start" />

 <Button

 android:id="@+id/stop_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickStop"

 android:text="@string/stop" />

 <Button

 android:id="@+id/reset_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickReset"

 android:text="@string/reset" />

</LinearLayout>

We’re using the android:onClick
attributes in the layout to say
which methods should be called
when each button is clicked.

452 Chapter 11

use onClick in activities only

The onClick attribute calls methods
in the activity, not the fragment
There’s a big problem with using the android:onClick
attribute to say which method should be called when a view is
clicked. The attribute specifies which method should be called
in the current activity. This is fine when the views are in an
activity’s layout. But when the views are in a fragment, this leads to
problems. Instead of calling methods in the fragment, Android
calls methods in the parent activity. If it can’t find the methods in
this activity, the app crashes. That’s what Android Studio’s error
message was trying to tell us.

It’s not just buttons that have this problem. The
android:onClick attribute can be used with any views that
are subclasses of the Button class. This includes checkboxes,
radio buttons, switches, and toggle buttons.

Now we could move the methods out of the fragment and into
the activity, but that approach has a major disadvantage. It
would mean that the fragment is no longer self-contained—if we
wanted to reuse the fragment in another activity, we’d need to
include the code in that activity too. Instead, we’ll deal with it in
the fragment.

Activity

Whenever I see
android:onClick, I
assume it’s all about
me. My methods run,
not the fragment’s.

How to make button clicks call methods in the fragment

There are three things you need to do in order to get buttons in a
fragment to call methods in the fragment instead of the activity:

Remove references to android:onClick in the fragment layout.
Buttons attempt to call methods in the activity when the onClick attribute is
used, so these need to be removed from the fragment layout.

1

Bind the buttons to methods in the fragment by implementing an
OnClickListener.
This will ensure that the right methods are called when the buttons are clicked.

3

Let’s do this now in our StopwatchFragment.

Optionally, change the onClick method signatures.
When we created our onClickStart(), onClickStop(), and
onClickReset() methods, we made them public and gave them a single
View parameter. This was so they’d get called when the user clicked on a
button. As we’re no longer using the android:onClick attribute in our
layout, we can set our methods to private and remove the View parameter.

2
This step's optional, but
it's a good opportunity
to tidy up our code.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 453

dynamic fragments

1. Remove the onClick attributes
from the fragment’s layout
The first thing we’ll do is remove the android:onClick lines
of code from the fragment’s layout. This will stop Android from
trying to call methods in the activity when the buttons are clicked:

The next thing we’ll do is tidy up our onClickStart(),
onClickStop(), and onClickReset() code.

Convert stopwatch
Test stopwatch
Add to fragment

<xml>
</xml>

app/src/main

fragment_
stopwatch.xml

Workout

res

layout

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 ...

 <Button

 android:id="@+id/start_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="20dp"

 android:onClick="onClickStart"

 android:text="@string/start" />

 <Button

 android:id="@+id/stop_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickStop"

 android:text="@string/stop" />

 <Button

 android:id="@+id/reset_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:layout_marginTop="8dp"

 android:onClick="onClickReset"

 android:text="@string/reset" />

</LinearLayout>

Remove the onClick
attributes for each of the
buttons in the stopwatch.

454 Chapter 11

make methods private

2. Change the onClick... method signatures

The methods
had to be
public. The methods had to

have a void return value.
The methods had to have a single
parameter of type View.

Back in Chapter 4, when we created our onClickStart(),
onClickStop(), and onClickReset() methods in
StopwatchActivity, we had to give them a specific method
signature like this:

public void onClickStart(View view) {

}

The methods had to take this form so that they’d respond when
the user clicked on a button. Behind the scenes, when you use
the android:onClick attribute, Android looks for a public
method with a void return value, and with a name that matches
the method specified in the layout XML.

Now that our code is in a fragment and we’re no longer using the
android:onClick attribute in our layout code, we can change
our method signatures like this:

Our methods no
longer need to be
public, so we can
make them private. We no longer need the View parameter.

private void onClickStart() {

}

So let’s update our fragment code. Change the
onClickStart(), onClickStop(), and
onClickReset() methods in StopwatchFragment.java to match
ours:

...

 public private void onClickStart(View view) {
 running = true;

 }

 public private void onClickStop(View view) {
 running = false;

 }

 public private void onClickReset(View view) {
 running = false;

 seconds = 0;

 }

...

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

Change the
methods to
private. Remove the View

parameters.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 455

dynamic fragments

3. Make the fragment implement OnClickListener
To make the buttons call methods in StopwatchFragment when
they are clicked, we’ll make the fragment implement the View.
OnClickListener interface like this:

public class StopwatchFragment extends Fragment implements View.OnClickListener {

 ...

}

This turns StopwatchFragment into a type of View.
OnClickListener so that it can respond when views are clicked.

You tell the fragment how to respond to clicks by implementing the
View.OnClickListener onClick() method. This method gets
called whenever a view in the fragment is clicked.

This turns the fragment
into an OnClickListener.

@Override

public void onClick(View v) {

 ...

}

You must override the onClick() method in your fragment code.

The onClick() method has a single View parameter. This is the
view that the user clicks on. You can use the view’s getId() method
to find out which view the user clicked on, and then decide how to react.

Code Magnets
See if you can complete the
StopwatchFragment onClick()
method. You need to call the
onClickStart() method when the Start
button is clicked, the onClickStop()
method when the Stop button is clicked, and
the onClickReset() method when the
Reset button is clicked.

getName()getId()

onClickReset onClickStop

true
truetrue

v
View

@Override

public void onClick(View v) {

 switch (.) {

 case R.id.start_button:
 onClickStart();

 break;

 case :

 ();

 break;

 case R.id.reset_button:

 ();

 }

}

R.id.stop_button

456 Chapter 11

magnets solution

The StopwatchFragment onClick() method
We need to make a few changes to StopwatchFragment.java; we’ll show you the
changes one at a time, then the fully updated code a couple of pages ahead.

Here’s the code to implement the StopwatchFragment onClick()
method so that the correct method gets called when each button is clicked:

@Override

public void onClick(View v) {

 switch (v.getId()) {

 case R.id.start_button:

 onClickStart();

 break;

 case R.id.stop_button:

 onClickStop();

 break;

 case R.id.reset_button:

 onClickReset();

 break;

 }

}

There’s just one more thing we need to do to get our buttons working:
attach the listener to the buttons in the fragment.

This is the View the user clicked on.

Check which View was clicked.

If the Start button was clicked,
call the onClickStart() method.

If the Stop button was clicked,
call the onClickStop() method.

If the Reset button was clicked,
call the onClickReset() method.

Code Magnets Solution
See if you can complete the
StopwatchFragment onClick()
method. You need to call the
onClickStart() method when the Start
button is clicked, the onClickStop()
method when the Stop button is clicked, and
the onClickReset() method when the
Reset button is clicked.

You didn’t need to
use these magnets.

@Override

public void onClick(View v) {

 switch (.) {

 case R.id.start_button:
 onClickStart();

 break;

 case :

 ();

 break;

 case R.id.reset_button:

 ();

 }

}

getName()

getId()

onClickReset

onClickStop

true
truetrue

v

View

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

R.id.stop_button

you are here 4 457

dynamic fragments

To make views respond to clicks, you need to call
each view’s setOnClickListener() method.
The setOnClickListener() method takes an
OnClickListener object as a parameter. Because
StopwatchFragment implements the OnClickListener
interface, we can use the keyword this to pass the fragment as
the OnClickListener in the setOnClickListener()
method.

As an example, here’s how you attach the OnClickListener
to the Start button:

Button startButton = (Button) layout.findViewById(R.id.start_button);

startButton.setOnClickListener(this);

The call to each view’s setOnClickListener() method
needs to be made after the fragment’s views have been created.
This means they need to go in the StopwatchFragment
onCreateView() method like this:

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 View layout = inflater.inflate(R.layout.fragment_stopwatch, container, false);

 runTimer(layout);

 Button startButton = (Button)layout.findViewById(R.id.start_button);

 startButton.setOnClickListener(this);

 Button stopButton = (Button)layout.findViewById(R.id.stop_button);

 stopButton.setOnClickListener(this);

 Button resetButton = (Button)layout.findViewById(R.id.reset_button);

 resetButton.setOnClickListener(this);

 return layout;

}

We’ll show you the full StopwatchFragment code on the next
page.

Get a reference to the button.

Attach the listener to the button.

Attach the OnClickListener to the buttons

This attaches the listener to each of the buttons.
app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

Convert stopwatch
Test stopwatch
Add to fragment

458 Chapter 11

StopwatchFragment code

The StopwatchFragment code
Here’s the revised code for StopwatchFragment.java; update your
version to match ours:

package com.hfad.workout;

import java.util.Locale;
import android.os.Bundle;
import android.os.Handler;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TextView;
import android.widget.Button;

public class StopwatchFragment extends Fragment implements View.OnClickListener {
 //Number of seconds displayed on the stopwatch.
 private int seconds = 0;
 //Is the stopwatch running?
 private boolean running;
 private boolean wasRunning;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 if (savedInstanceState != null) {
 seconds = savedInstanceState.getInt("seconds");
 running = savedInstanceState.getBoolean("running");
 wasRunning = savedInstanceState.getBoolean("wasRunning");
 }
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View layout = inflater.inflate(R.layout.fragment_stopwatch, container, false);
 runTimer(layout);
 Button startButton = (Button)layout.findViewById(R.id.start_button);
 startButton.setOnClickListener(this);
 Button stopButton = (Button)layout.findViewById(R.id.stop_button);
 stopButton.setOnClickListener(this);
 Button resetButton = (Button)layout.findViewById(R.id.reset_button);
 resetButton.setOnClickListener(this);
 return layout;

 }

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

We’re using the Button class, so we’ll import it.

We’re not changing the onCreate() method.

Update the onCreateView() method to
attach the listener to the buttons.

The fragment needs to implement
the View.OnClickListener interface.

Convert stopwatch
Test stopwatch
Add to fragment

The code continues
on the next page.

you are here 4 459

dynamic fragments

 @Override

 public void onClick(View v) {

 switch (v.getId()) {

 case R.id.start_button:

 onClickStart();

 break;

 case R.id.stop_button:

 onClickStop();

 break;

 case R.id.reset_button:

 onClickReset();

 break;

 }

 }

 @Override

 public void onPause() {

 super.onPause();

 wasRunning = running;

 running = false;

 }

 @Override

 public void onResume() {

 super.onResume();

 if (wasRunning) {

 running = true;

 }

 }

 @Override

 public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putInt("seconds", seconds);

 savedInstanceState.putBoolean("running", running);

 savedInstanceState.putBoolean("wasRunning", wasRunning);

 }

The StopwatchFragment code (continued)

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

As we’re implementing the
OnClickListener interface, we need
to override the onClick() method.

Call the appropriate method
in the fragment for the
button that was clicked.

We've not changed these methods.

Convert stopwatch
Test stopwatch
Add to fragment

The code continues
on the next page.

460 Chapter 11

code, continued

 private void onClickStart() {

 running = true;

 }

 private void onClickStop() {

 running = false;

 }

 private void onClickReset() {

 running = false;

 seconds = 0;

 }

 private void runTimer(View view) {

 final TextView timeView = (TextView) view.findViewById(R.id.time_view);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 int hours = seconds/3600;

 int minutes = (seconds%3600)/60;

 int secs = seconds%60;

 String time = String.format(Locale.getDefault(),

 "%d:%02d:%02d", hours, minutes, secs);

 timeView.setText(time);

 if (running) {

 seconds++;

 }

 handler.postDelayed(this, 1000);

 }

 });

 }

}

The StopwatchFragment code (continued)

We've changed these methods
so they're private. We've also
removed the View parameter,
as we no longer needed it.

We've not changed this method.

app/src/main

Stopwatch
Fragment.java

Workout

java

com.hfad.workout

Those are all the code changes needed for StopwatchFragment.java.
Let’s see what happens when we run the app.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 461

dynamic fragments

Test drive the app
When we run the app, the stopwatch is displayed as before.
This time, however, the Start, Stop, and Reset buttons work.

When we
start the
app, the
stopwatch
is set to 0.

When we
click on
the Start
and Stop
buttons,
the
stopwatch
starts and
stops.

When we
click on
the Reset
button, the
stopwatch
is reset
back to 0.

Now that we’ve got the buttons working, the next thing we
need to test is what happens when we rotate the device.

Convert stopwatch
Test stopwatch
Add to fragment

462 Chapter 11

rotate device

Rotating the device resets the stopwatch
There’s still one more problem we need to sort out. When we
rotate our device, the stopwatch gets reset back to 0.

We encountered a similar problem when we first
created StopwatchActivity back in Chapter 4.
StopwatchActivity lost the state of any instance variables
when it was rotated because activities are destroyed and
recreated when the device is rotated. We solved this problem by
saving and restoring the state of any instance variables used by
the stopwatch.

This time, the problem isn’t due to the code in
StopwatchFragment. Instead, it’s because of how we’re
adding StopwatchFragment to TempActivity.

When we rotate the
device, the stopwatch
is reset to 0. Does
this situation sound
familiar?

The
stopwatch
is running.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 463

dynamic fragments

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.StopwatchFragment"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

<xml>
</xml>

app/src/main

activity_
temp.xml

Workout

res

layout

We did this because it was the simplest way to display our
fragment in an activity and see it working.

As we said back in Chapter 9, the <fragment> element is a
placeholder for where the fragment’s layout should be inserted.
When Android creates the activity’s layout, it replaces the
<fragment> element with the fragment’s user interface.

When you rotate the device, Android recreates the activity. If
your activity contains a <fragment> element, it reinserts a
new version of the fragment each time the activity is recreated. The old
fragment is discarded, and any instance variables are set back
to their original values. In this particular example, this means
that the stopwatch is set back to 0.

Use <fragment> for static fragments...

...but dynamic fragments need a fragment transaction

When we added StopwatchFragment to TempActivity,
we did it by adding a <fragment> element to its layout like
this:

The <fragment> element works well for fragments that
display static data. If you have a fragment that’s dynamic, like
our stopwatch, you need to add the fragment using a fragment
transaction instead.

We’re going to change TempActivity so that we no longer
display StopwatchFragment using a <fragment>.
Instead, we’ll use a fragment transaction. To do this, we need
to make changes to activity_temp.xml and TempActivity.java.

Convert stopwatch
Test stopwatch
Add to fragment

464 Chapter 11

frame layout

<?xml version="1.0" encoding="utf-8"?>

<fragment FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:name="com.hfad.workout.StopwatchFragment"

 android:id="@+id/stopwatch_container"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

Change activity_temp.xml
to use a FrameLayout
As you learned back in Chapter 10, when you want to add a
fragment to an activity using a fragment transaction, you first
need to add a placeholder for the fragment in the activity’s layout.
We did this in Chapter 10 by adding a frame layout to the layout,
and giving it an ID so we could refer to it in our Java code.

We need to do the same thing with activity_temp.xml. We’ll replace
the <fragment> element with a frame layout, and give the
frame layout an ID of stopwatch_container. Update your
version of activity_temp.xml so that it reflects ours:

<xml>
</xml>

app/src/main

activity_
temp.xml

Workout

res

layout

Add a fragment transaction to TempActivity.java

Once you’ve added the frame layout to your activity’s layout,
you can create the fragment transaction that will add the
fragment to the frame layout.

We want to add StopwatchFragment to TempActivity
as soon as TempActivity gets created. We only want to add
a new fragment, however, if one hasn’t previously been added
to it. We don’t want to override any existing fragment.

To do this, we’ll add code to TempActivity’s onCreate()
method that checks whether the savedInstanceState
Bundle parameter is null.

If savedInstanceState is null, this means that
TempActivity is being created for the first time. In that case,
we need to add StopwatchFragment to the activity.

If savedInstanceState is not null, that means that
TempActivity is being recreated after having been
destroyed. In that situation, we don’t want to add a new
instance of StopwatchFragment to the activity, as it would
overwrite an existing fragment.

Convert stopwatch
Test stopwatch
Add to fragment

Replace the
fragment
with a
FrameLayout.

Delete this line.

you are here 4 465

dynamic fragments

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in TempActivity.java.
You may not use the same code
snippet more than once, and you
won’t need to use all the code
snippets. Your goal is to create a

fragment transaction that will add
an instance of StopwatchFragment
to TempActivity.

Note: each snippet
from the pool can only
be used once!

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_temp);

 if (savedInstanceState == null) {

 StopwatchFragment stopwatch = new StopwatchFragment();

 FragmentTransaction ft = . ;

 ft.add(R.id.stopwatch_container,);

 ft. (null);

 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft. ;

 }

}

getSupportFragmentManager()
beginTransaction()

stopwatch

addToBackStackcommit()

endTransaction()

app/src/main

TempActivity.java

Workout

java

com.hfad.workout

getFragmentManager()

466 Chapter 11

solution

Pool Puzzle Solution
Your job is to take code snippets from

the pool and place them into the
blank lines in TempActivity.java.
You may not use the same code
snippet more than once, and you
won’t need to use all the code
snippets. Your goal is to create a

fragment transaction that will add
an instance of StopwatchFragment
to TempActivity.

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_temp);

 if (savedInstanceState == null) {

 StopwatchFragment stopwatch = new StopwatchFragment();

 FragmentTransaction ft = . ;

 ft.add(R.id.stopwatch_container,);

 ft. (null);

 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft. ;

 }

}

getSupportFragmentManager() beginTransaction()

stopwatch
addToBackStack

commit()

endTransaction()

app/src/main

TempActivity.java

Workout

java

com.hfad.workout

getFragmentManager()

You didn’t need
to use these
code snippets.

This begins the fragment
transaction. We need to use
getSupportFragmentManager(), not
getFragmentManager(), as we’re using
fragments from the Support Library.

Add an instance of StopwatchFragment
to TempActivity’s layout.

Add the
transaction
to the back
stack.

Commit the transaction.

you are here 4 467

dynamic fragments

The full code for TempActivity.java
We’ve added a fragment transaction to TempActivity.java that
adds StopwatchFragment to TempActivity. Our full
code is below. Update your version of TempActivity.java so that it
matches ours.

package com.hfad.workout;

import android.support.v4.app.FragmentTransaction;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

public class TempActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_temp);

 if (savedInstanceState == null) {

 StopwatchFragment stopwatch = new StopwatchFragment();

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

 ft.add(R.id.stopwatch_container, stopwatch);

 ft.addToBackStack(null);

 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft.commit();

 }

 }

}

app/src/main

TempActivity.java

Workout

java

com.hfad.workout

Those are all the code changes we need to add
StopwatchFragment to TempActivity using a fragment
transaction. Let’s see what happens when we run the code.

Convert stopwatch
Test stopwatch
Add to fragment

You need to import the
FragmentTransaction class
from the Support Library.

We only want
to add the
fragment if the
activity isn’t
being recreated
after having
been destroyed.

Begin the
fragment
transaction.

Add the stopwatch, and add the
transaction to the back stack.

Set the fragment transition
to fade in and out.Commit the

transaction. This
applies the changes.

468 Chapter 11

test drive

Test drive the app
When we run the app, the stopwatch is displayed as before.
The Start, Stop, and Reset buttons all work, and when we
rotate the app, the stopwatch keeps running.

When we rotate the
device, the stopwatch
keeps on running.

The
stopwatch
starts.

At the beginning of the chapter, we said we’d first focus on
getting StopwatchFragment working in a new temporary
activity so that we could confirm it works OK. Now that we’ve
achieved that, we can reuse it in WorkoutDetailFragment.

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 469

dynamic fragments

Add the stopwatch to WorkoutDetailFragment

Device
Stopwatch

Fragment.java
MainActivity.java WorkoutDetail

Fragment.java
WorkoutList

Fragment.java

When the app gets launched, it starts MainActivity.
MainActivity includes WorkoutListFragment, which
displays a list of workouts.

1

The user clicks on a workout and WorkoutDetailFragment is displayed.
WorkoutDetailFragment displays details of the workout, and contains
StopwatchFragment.

2

StopwatchFragment displays a stopwatch.3 We’ve simplified the
app structure here, but
these are the key points.

We’ll go through the steps on the next page.

We’re going to add StopwatchFragment to
WorkoutDetailFragment so that a stopwatch is displayed
underneath details of the workout. The stopwatch will appear along
with the workout details whenever the user chooses one of the workouts.

WorkoutListFragment
contains a list of
workouts.

When the user
clicks on a workout,
WorkoutDetailFragment
is displayed. This shows
details of the workout.

We’re going to add
StopwatchFragment to
WorkoutDetailFragment
so a stopwatch is
displayed underneath
the workout details.

Here’s how the app will work:

470 Chapter 11

steps

What we’re going to do
There are just a couple of steps we need to go through in
order to get the new version of the app up and running.

Make the app start MainActivity when it launches.
Earlier in the chapter, we temporarily changed the app so that it would
start TempActivity. We need to change the app so that it starts
MainActivity again.

1

Add StopwatchFragment to WorkoutDetailFragment.
We’ll do this using a fragment transaction.

2

Let’s get started.

Start MainActivity when the app launches
Earlier in the chapter, we updated AndroidManifest.xml to make
the app start TempActivity. This was so that we could
get StopwatchFragment working before adding it to
WorkoutDetailFragment.

Now that StopwatchFragment is working, we need to
start MainActivity again when the app launches. To do
this, update AndroidManifest.xml with the following changes:

...

 <application

 ...

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".DetailActivity" />

 <activity android:name=".TempActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

...

Remove the intent filter
from TempActivity.

Add an intent filter to
start MainActivity when
the app is launched.

<xml>
</xml>

app/src/main

AndroidManifest.xml

Workout

Convert stopwatch
Test stopwatch
Add to fragment

you are here 4 471

dynamic fragments

Add a FrameLayout where the
fragment should appear
Next we need to add StopwatchFragment to
WorkoutDetailFragment. We’ll do this by adding
a frame layout to fragment_workout_detail.xml, just as
we did in activity_temp.xml. We’ll then be able to add
StopwatchFragment to WorkoutDetailFragment
using a fragment transaction.

Here’s our code for fragment_workout_detail.xml; update your
code so that it matches ours:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_height="match_parent"

 android:layout_width="match_parent"

 android:orientation="vertical">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textAppearance="?android:attr/textAppearanceLarge"

 android:id="@+id/textTitle" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/textDescription" />

 <FrameLayout

 android:id="@+id/stopwatch_container"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

</LinearLayout>

<xml>
</xml>

app/src/main

fragment_
workout_detail.xml

Workout

res

layout

All that’s left to do is to add the fragment transaction to
WorkoutDetailFragment.

This is the FrameLayout
we’ll put the fragment in.

Convert stopwatch
Test stopwatch
Add to fragment

The workout title

The workout
description

472 Chapter 11

fragment transactions

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_temp);

 if (savedInstanceState == null) {

 StopwatchFragment stopwatch = new StopwatchFragment();

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

 ft.add(R.id.stopwatch_container, stopwatch);

 ft.addToBackStack(null);

 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft.commit();

 }

}

So far, we've only used fragment
transactions in activities
Earlier in the chapter, we added the following code to
TempActivity to add StopwatchFragment to its layout:

app/src/main

TempActivity.java

Workout

java

com.hfad.workout

The above code worked well when we wanted to add
StopwatchFragment to an activity. How will it need to
change now that we want to add StopwatchFragment to a
fragment?

Using fragment transactions in fragments
uses most of the same code
The good news is that you can use nearly all of the same code
when you want to use a fragment transaction inside a fragment.
There’s just one key difference: fragments don’t have a method
called getSupportFragmentManager(), so we need to
edit this line of code:

In order to create the fragment transaction, we need to get a
reference to a fragment manager. Fragments have two methods
you can use for this purpose: getFragmentManager() and
getChildFragmentManager(). So what’s the difference
between these two methods, and which one should we use in
our app?

FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

Convert stopwatch
Test stopwatch
Add to fragment

This code adds
StopwatchFragment
to TempActivity when
TempActivity is created.

you are here 4 473

dynamic fragments

Using getFragmentManager() creates
extra transactions on the back stack
The getFragmentManager() method gets the fragment manager
associated with the fragment’s parent activity. Any fragment transaction
you create using this fragment manager is added to the back stack as a
separate transaction.

In our case, when someone clicks on a workout, we want the app to
display the details of the workout and the stopwatch. MainActivity
creates a transaction that displays WorkoutDetailFragment. If
we use getFragmentManager() to create a transaction to display
StopwatchFragment, this will be added to the back stack as a
separate transaction.

The problem with using two transactions to display the workout and
stopwatch is what happens when the user presses the Back button.

Suppose the user clicks on a workout. Details of the workout will be
displayed, along with the stopwatch. If the user then clicks on the Back
button, they will expect the screen to go back to how it looked before
they selected a workout. But the Back button simply pops the
last transaction on the back stack. That means if we create two
transactions to add the workout detail and the stopwatch, when the
user clicks the Back button, only the stopwatch will be removed. They
have to click the Back button again to remove the workout details.

The user clicks an item
in the list just once to
display the workout
details and stopwatch.

The user has to click the Back button
twice to get back to where they
started. Clicking the Back button
once only removes the stopwatch.

Workout Details
Stopwatch

Workout Details

Clearly this behavior is less than ideal. So what about
getChildFragmentManager()?

Convert stopwatch
Test stopwatch
Add to fragment

A transaction for
WorkoutDetailFragment is added to
the back stack, followed by a separate
transaction for StopwatchFragment.

When the user hits the Back button, the
StopwatchFragment transaction is popped
off the back stack. The transaction for
WorkoutDetailFragment stays on the back stack.

474 Chapter 11

getChildFragmentManager()

This time the user has to press
the Back button just once to
undo both the workout detail
and stopwatch transactions.

Using getChildFragmentManager()
creates nested transactions instead
The getChildFragmentManager() method gets the
fragment manager associated with the fragment’s parent fragment.
Any fragment transaction you create using this fragment
manager is added to the back stack inside the parent fragment
transaction, not as a separate transaction.

In our particular case, this means that the fragment transaction
that displays WorkoutDetailFragment contains a second
transaction that displays StopwatchFragment.

Workout Details Stopwatch

I display workout
details, and I also
display the stopwatch.

WorkoutDetailFragment and StopwatchFragment
are still displayed when the user clicks on a workout, but the
behavior is different when the user clicks on the Back button. As
the two transactions are nested, both transactions are popped
off the back stack when the user presses the Back button. The
workout details and the stopwatch are both removed if the user
presses the Back button once. That’s what we want, so we’ll use
this method in our app.

Convert stopwatch
Test stopwatch
Add to fragment

The transaction to add
StopwatchFragment is nested inside the transaction to add WorkoutDetailFragment.

you are here 4 475

dynamic fragments

Q: I can see that the child fragment manager handles the
case where I put one fragment inside another. But what if I put
one fragment inside another, inside another, inside another...?

A: The transactions will all be nested within each other, leaving
just a single transaction at the activity level. So the nested set of
child transactions will be undone by a single Back button click.

Q: Fragments seem more complicated than activities.
Should I use fragments in my apps?

A: That depends on your app and what you want to achieve. One
of the major benefits of using fragments is that you can use them
to support a wide range of different screen sizes. You can, say,
choose to display fragments side by side on tablets and on separate
screens on smaller devices. You’ll also see in the next chapter that
some UI designs require you to use fragments.

What getChildFragmentManager()
fragment transaction code looks like
We’ve written code that will add StopwatchFragment
to WorkoutDetailFragment. It creates a fragment
transaction using the fragment manager returned by
getChildFragmentManager(). Here’s the code:

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 if (savedInstanceState == null) {

 StopwatchFragment stopwatch = new StopwatchFragment();

 FragmentTransaction ft = getChildFragmentManager().beginTransaction();

 ft.add(R.id.stopwatch_container, stopwatch);

 ft.addToBackStack(null);

 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft.commit();

 } else {

 workoutId = savedInstanceState.getLong("workoutId");

 }

}

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

We need to add this code to WorkoutDetailFragment.java. We’ll show
you the full code on the next page.

Convert stopwatch
Test stopwatch
Add to fragment

We’re using getChildFragmentManager()
instead of getSupportFragmentManager().

Apart from that, the
code is the same as we
had earlier.

476 Chapter 11

WorkoutDetailFragment code

package com.hfad.workout;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentTransaction;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.TextView;

public class WorkoutDetailFragment extends Fragment {

 private long workoutId;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 if (savedInstanceState != null) {

 if (savedInstanceState == null) {

 StopwatchFragment stopwatch = new StopwatchFragment();

 FragmentTransaction ft = getChildFragmentManager().beginTransaction();

 ft.add(R.id.stopwatch_container, stopwatch);

 ft.addToBackStack(null);

 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);

 ft.commit();

 } else {

 workoutId = savedInstanceState.getLong("workoutId");

 }

 }

The full WorkoutDetailFragment.java code
Here’s the full code for WorkoutDetailFragment.java. Update
your version of the code to include our changes.

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

Convert stopwatch
Test stopwatch
Add to fragment

You need to import the
FragmentTransaction class
from the Support Library.

We only want
to add the
fragment if the
activity isn’t
being recreated
after having
been destroyed.

Begin the
fragment
transaction.

Add the stopwatch, and add the
transaction to the back stack.

Set the fragment
transition to fade
in and out.

Commit the transaction.

Delete this line.

The code continues
on the next page.

you are here 4 477

dynamic fragments

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_workout_detail, container, false);

 }

 @Override

 public void onStart() {

 super.onStart();

 View view = getView();

 if (view != null) {

 TextView title = (TextView) view.findViewById(R.id.textTitle);

 Workout workout = Workout.workouts[(int) workoutId];

 title.setText(workout.getName());

 TextView description = (TextView) view.findViewById(R.id.textDescription);

 description.setText(workout.getDescription());

 }

 }

 @Override

 public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putLong("workoutId", workoutId);

 }

 public void setWorkout(long id) {

 this.workoutId = id;

 }

}

The full code (continued)

app/src/main

WorkoutDetail
Fragment.java

Workout

java

com.hfad.workout

That’s everything we need for our app. Let’s take it for a test
drive and check that it works OK.

Convert stopwatch
Test stopwatch
Add to fragment

We didn’t change any of
the methods on this page.

478 Chapter 11

test drive

Test drive the app
We’ll start by testing the app on a tablet.

When we start the app, MainActivity is displayed.

When we click on one of the workouts, details of that
workout are displayed along with a stopwatch. If we click on
a second workout and then click on the Back button, details
of the first workout are displayed.

Convert stopwatch
Test stopwatch
Add to fragment

MainActivity
starts when we
launch the app.

Choose the
Wimp Special...

...followed
by the Limb
Loosener.

Press the
Back button
once, and
details of the
Wimp Special
are displayed.

you are here 4 479

dynamic fragments

Test drive (continued)
When we click on the stopwatch buttons, they all work as expected.
When we rotate the app, the stopwatch maintains its state.

When we run the app on a phone, WorkoutDetailFragment
is displayed inside a separate activity, DetailActivity. The
stopwatch is still displayed underneath the workout details, and
functions as expected.

Convert stopwatch
Test stopwatch
Add to fragment

The stopwatch
starts running
when we click on
the Start button. When you rotate the

device, the stopwatch
keeps running.

This is the app running on a phone. StopwatchFragment is still displayed in
WorkoutDetailFragment. All the buttons work, and the stopwatch maintains its state when the device is
rotated.

When you click on the
Back button, the list of
workouts is displayed.

480 Chapter 11

toolbox

Your Android Toolbox

You’ve got Chapter 11 under
your belt and now you’ve

added dynamic fragments to
your toolbox.

CH
AP

T
ER

 11 You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

 � Fragments can contain other fragments.

 � If you use the android:onClick attribute in a fragment,
Android will look for a method of that name in the fragment’s
parent activity.

 � Instead of using the android:onClick attribute in
a fragment, make the fragment implement the View.
OnClickListener interface and implement its
onClick() method.

 � If you use the <fragment> element in your layout, the
fragment gets recreated when you rotate the device. If your
fragment is dynamic, use a fragment transaction instead.

 � Fragments contain two methods for getting a fragment
manager, getFragmentManager() and
getChildFragmentManager().

 � getFragmentManager() gets a reference to the fragment
manager associated with the fragment’s parent activity. Any
fragment transactions you create using this fragment manager
are added to the back stack as extra transactions.

 � getChildFragmentManager() gets a reference to
the fragment manager associated with the fragment’s parent
fragment. Any fragment transactions you create using this
fragment manager are nested inside the parent fragment
transaction.

this is a new chapter 481

design support library12

Swipe Right

Ever wondered how to develop apps with a rich, slick UI?
With the release of the Android Design Support Library, it became much easier to

create apps with an intuitive UI. In this chapter, we’ll show you around some of the

highlights. You’ll see how to add tabs so that your users can navigate around your app

more easily. You’ll discover how to animate your toolbars so that they can collapse or

scroll on a whim. You’ll find out how to add floating action buttons for common user

actions. Finally, we’ll introduce you to snackbars, a way of displaying short, informative

messages to the user that they can interact with.

This new snackbar’s
awesome; it does so
much more than toast.

482 Chapter 12

more pizza

The Bits and Pizzas app revisited
In Chapter 8, we showed you a sketch of the top-level screen of the Bits and
Pizzas app. It contained a list of places in the app the user could go to. The
first three options linked to category screens for pizzas, pasta, and stores,
and the final option linked to a screen where the user could create an order.

So far you’ve seen how to add actions to the app bar. These are used for
simple commands, such as Create Order or Send Feedback. But what about
the category screens? As we want to use these for navigating through the
app rather than taking an action, we’ll take a different approach.

We’re going to change the Bits and Pizzas app so that it uses tab
navigation. We’ll display a set of tabs underneath the toolbar, with each
option on a different tab. When the user clicks on a tab, the screen for that
option will be displayed. We’ll also let the user swipe left and right between
the different tabs.

Bits and Pizzas

Pizzas

Pasta

Create Order

Stores

This is the Pizza app top-level activity.

These link to category screens.

This takes you to a screen where
you can create a new order. We
moved this to the app bar.

We’ll display a set
of tabs underneath
the toolbar for
Home, Pizzas, Pasta,
and Stores.

When you click on one of the tabs, the content for that option is displayed
here. The user will also be able to swipe between the different tabs.

...Bits and Pizzas

Home Pizzas Pasta Stores

This is the toolbar.

you are here 4 483

design support library

The app structure
We’re going to change MainActivity so that it uses
tabs. The tabs will include options for Home, Pizzas,
Pasta, and Stores, so that the user can easily navigate to
the main sections of the app.

We’ll create fragments for these different options; when
the user clicks on one of the tabs, the fragment for that
option will be displayed:

The main sections of the app are all fragments,
so we can change which one is displayed
depending on which tab the user has selected.

Bits and Pizzas

Top Fragment

TopFragment

Pasta

Spaghetti Bolognese

Lasagne

PastaFragment

Pizzas

Diavolo

Funghi

PizzasFragment

Stores

Cambridge

Sebastopol

StoresFragment

MainActivity

...Bits and Pizzas

Home Pizzas Pasta Stores

When the user clicks on
each tab, the appropriate fragment will be displayed.

We’ll go through the steps for how to do this on the next page.

This is what
the new
version of
the app will
look like.

484 Chapter 12

steps

Do this!

We’re going to update the
Bits and Pizzas app in
this chapter, so open your
original Bits and Pizzas
project from Chapter 8 in
Android Studio.

Here’s what we’re going to do
There are three main steps we’ll go through to get tabs working:

Create the fragments.
We’ll create basic versions of TopFragment, PizzaFragment,
PastaFragment, and StoresFragment so that we can easily tell
which fragment is displayed on each of the tabs.

1

Enable swipe navigation between the fragments.
We’ll update MainActivity so that the user can swipe between the
different fragments.

2

Add the tab layout.
Finally, we’ll add a tab layout to MainActivity that will work in
conjunction with the swipe navigation. The user will be able to navigate
to each fragment by clicking on a tab, or swiping between them.

3

We’ll start by creating the fragments.

We’ll add a
tab layout to
MainActivity,
but the user will
still be able to
swipe between
the fragments if
they want to.

We’ll navigate
to the
different
fragments by
swiping.

We’ll create
these fragments.

you are here 4 485

design support library

Create TopFragment
We’ll use TopFragment to display content that will appear on the Home
tab. For now, we’ll display the text “Top fragment” so that we know which
fragment is displayed. Highlight the com.hfad.bitsandpizzas package in the
app/src/main/java folder, then go to File→New...→Fragment→Fragment
(Blank). Name the fragment “TopFragment” and name its layout

“fragment_top”. Then replace the code for TopFragment.java with the code
below:

package com.hfad.bitsandpizzas;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class TopFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_top, container, false);

 }

}

Then update the code for fragment_top.xml as follows:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.TopFragment">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="@string/title_top" />

</LinearLayout>

Add the following string resource to strings.xml; we’ll use this in our
fragment layout:

<string name="title_top">Top fragment</string>

<xml>
</xml>

app/src/main

fragment_top.xml

BitsAndPizzas

res

layout

app/src/main

TopFragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

TopFragment.java is a fragment
from the Support Library.

Add this to strings.xml. We’ll use
it in the layout so we know when
TopFragment is being displayed.

Add fragments
Add swiping
Add tabs

TopFragment

486 Chapter 12

create PizzaFragment

Create PizzaFragment
We’ll use a ListFragment called PizzaFragment to
display the list of pizzas. Highlight the com.hfad.bitsandpizzas
package in the app/src/main/java folder, then go to
File→New...→Fragment→Fragment (Blank). Name the fragment

“PizzaFragment”, and uncheck the option to create a layout. Why?
Because list fragments don’t need a layout—they use their own.

Next, add a new string array resource called "pizzas" to strings.
xml (this contains the names of the pizzas):

package com.hfad.bitsandpizzas;

import android.os.Bundle;

import android.support.v4.app.ListFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

public class PizzaFragment extends ListFragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 ArrayAdapter<String> adapter = new ArrayAdapter<>(

 inflater.getContext(),

 android.R.layout.simple_list_item_1,

 getResources().getStringArray(R.array.pizzas));

 setListAdapter(adapter);

 return super.onCreateView(inflater, container, savedInstanceState);

 }

}

<string-array name="pizzas">

 <item>Diavolo</item>

 <item>Funghi</item>

</string-array>

Then change the code for PizzaFragment.java so that it’s a
ListFragment. Its list view needs to be populated with the
pizza names. Here’s the updated code:

app/src/main

PizzaFragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Add the array of
pizzas to strings.xml.

We’ll use a ListFragment to
display the list of pizzas.

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

The ArrayAdapter populates
the ListFragment's ListView
with the pizza names.

Add fragments
Add swiping
Add tabs

PizzaFragment

Don’t choose the Fragment
(List) option, as this
generates more complex code.

you are here 4 487

design support library

Create PastaFragment
We’ll use a ListFragment called PastaFragment to display the list of
pasta. Highlight the com.hfad.bitsandpizzas package in the app/src/main/java
folder and create a new blank fragment named “PastaFragment”. You can
uncheck the option to create a layout, as list fragments use their own layouts.

Next, add a new string array resource called "pasta" to strings.xml (this
contains the names of the pasta):

package com.hfad.bitsandpizzas;

import android.os.Bundle;

import android.support.v4.app.ListFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

public class PastaFragment extends ListFragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 ArrayAdapter<String> adapter = new ArrayAdapter<>(

 inflater.getContext(),

 android.R.layout.simple_list_item_1,

 getResources().getStringArray(R.array.pasta));

 setListAdapter(adapter);

 return super.onCreateView(inflater, container, savedInstanceState);

 }

}

<string-array name="pasta">

 <item>Spaghetti Bolognese</item>

 <item>Lasagne</item>

</string-array>

Then change the code for PastaFragment.java so that it’s a
ListFragment that displays a list of the pasta names. Here’s
the updated code:

app/src/main

PastaFragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Add the array of
pasta to strings.xml.

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

Add fragments
Add swiping
Add tabs

PastaFragment

488 Chapter 12

create StoresFragment

Create StoresFragment
We’ll use a ListFragment called StoresFragment to display
the list of stores. Highlight the com.hfad.bitsandpizzas package in the
app/src/main/java folder and create a new blank fragment named

“StoresFragment.” Uncheck the option to create a layout, as list
fragments define their own layouts.

Next, add a new string array resource called "stores" to strings.
xml (this contains the names of the stores):

package com.hfad.bitsandpizzas;

import android.os.Bundle;

import android.support.v4.app.ListFragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

public class StoresFragment extends ListFragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 ArrayAdapter<String> adapter = new ArrayAdapter<>(

 inflater.getContext(),

 android.R.layout.simple_list_item_1,

 getResources().getStringArray(R.array.stores));

 setListAdapter(adapter);

 return super.onCreateView(inflater, container, savedInstanceState);

 }

}

<string-array name="stores">

 <item>Cambridge</item>

 <item>Sebastopol</item>

</string-array>

Then change the code for StoresFragment.java so that it’s a
ListFragment. Its list view needs to be populated with the
store names. Here’s the updated code:

app/src/main

StoresFragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Add the array of
stores to strings.xml.

We’ll use a ListFragment to
display the list of stores.

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

We’ve now added all the fragments we need, so let’s move on to
the next step.

Add fragments
Add swiping
Add tabs

StoresFragment

you are here 4 489

design support library

Use a view pager to swipe through fragments
We want to be able to swipe through the different fragments
we’ve just created. To do this, we’ll use a view pager, which is
a view group that allows you to swipe through different pages in
a layout, each page containing a separate fragment.

<android.support.v4.view.ViewPager

 android:id="@+id/pager"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

The above code defines the view pager, and gives it an ID of
pager. Every view pager you create must have an ID so that
you can get a reference to it in your activity code. Without this
ID, you can’t specify which fragments should appear on each
page of the view pager.

We’re going to add a view pager to MainActivity. We’ll
look at the full code for its layout on the next page.

What view pager layout code looks like
You add a view pager to your layout using code like this:

You use a view pager by adding it to your layout, then writing
activity code to control which fragments should be displayed. The
ViewPager class comes from the v4 Support Library, which
is included in the v7 AppCompat Support Library, so you also
need to make sure you add one of these libraries to your project
as a dependency. In our particular case, we already added the v7
AppCompat Support Library to our project in Chapter 8.

You can check which Support Libraries
are included in your project in Android
Studio by choosing Project Structure
from the File menu, clicking on the app
module, and then choosing Dependencies.

Bits and Pizzas

Top Fragment

TopFragment

Pasta

Spaghetti Bolognese

Lasagne

PastaFragment

Pizzas

Diavolo

Funghi

PizzasFragment

Stores

Cambridge

Sebastopol

StoresFragment

The view pager will let us swipe
between the different fragments.

The ViewPager class
is found in the v4
Support Library
(which is included in
the v7 AppCompat
Support Library).

You need to give the ViewPager an ID so
that you can control its behavior in your
activity code.

Add fragments
Add swiping
Add tabs

490 Chapter 12

view pager

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.MainActivity">

 <include

 layout="@layout/toolbar_main"

 android:id="@+id/toolbar" />

 <android.support.v4.view.ViewPager

 android:id="@+id/pager"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World!" />

</LinearLayout>

Add a view pager to MainActivity’s layout
We’re going to add a view pager to MainActivity’s layout,
and remove the text view that’s already there. Open the file
activity_main.xml, then update your code so that it matches ours
below (we’ve bolded our changes):

<xml>
</xml>

app/src/main

activity_
main.xml

BitsAndPizzas

res

layout

That’s everything we need to add a view pager to our layout.
To get our new view pager to display fragments, we need to
write some activity code. We’ll do that next.

Add the ViewPager
below the Toolbar.

We’re no longer displaying a
TextView in MainActivity, so
delete these lines of code.

Add fragments
Add swiping
Add tabs

you are here 4 491

design support library

Tell a view pager about its pages using
a fragment pager adapter
To get a view pager to display a fragment on each of its pages, there
are two key pieces of information you need to give it: the number
of pages it should have, and which fragment should appear on each
page. You do this be creating a fragment pager adapter, and
adding it to your activity code.

A fragment pager adapter is a type of adapter that specializes in
adding fragments to pages in a view pager. You generally use one
when you want to have a small number of pages that are fairly
static, as each fragment the user visits is kept in memory.

Fragment pager adapter code looks like this:

If you want your view pager to have a large
number of pages, you would use a fragment state
pager adapter instead. We’re not covering it
here, but the code is almost identical.

private class SectionsPagerAdapter extends FragmentPagerAdapter {

 public SectionsPagerAdapter(FragmentManager fm) {

 super(fm);

 }

 @Override

 public int getCount() {

 //The number of pages in the ViewPager

 }

 @Override

 public Fragment getItem(int position) {

 //The fragment to be displayed on each page

 }

}

When you create a fragment pager adapter, there are two key
methods you must override: getCount() and getItem().
You use getCount() to specify how many pages there should
be in the view pager, and the getItem() to say which fragment
should be displayed on each page.

We’ll show you the code for the Bits and Pizzas fragment pager
adapter on the next page.

We’re setting
this to private,
as we’re going
to add it to
MainActivity as
an inner class.

You need to extend the
FragmentPagerAdapter
class.You must have a constructor that

takes a FragmentManager parameter.

You need to override the getCount() method to
specify the number of pages in the view pager.

You need to say which fragment should appear on each page. The position gives the page number, starting at 0.

Add fragments
Add swiping
Add tabs

492 Chapter 12

FragmentPagerAdapter

The code for our fragment pager adapter
We want our view pager to have four pages. We’ll display
TopFragment on the first page, PizzaFragment
on the second, PastaFragment on the third, and
StoresFragment on the fourth.

To accomplish this, we’re going to create a fragment pager
adapter called SectionsPagerAdapter. Here’s the code
(we’ll add it to MainActivity.java in a couple of pages):

private class SectionsPagerAdapter extends FragmentPagerAdapter {

 public SectionsPagerAdapter(FragmentManager fm) {

 super(fm);

 }

 @Override

 public int getCount() {

 return 4;

 }

 @Override

 public Fragment getItem(int position) {

 switch (position) {

 case 0:

 return new TopFragment();

 case 1:

 return new PizzaFragment();

 case 2:

 return new PastaFragment();

 case 3:

 return new StoresFragment();

 }

 return null;

 }

}

That’s all the code we need for our
SectionsPagerAdapter. Next we need to get our view
pager to use it.

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

We’ll have four pages in our ViewPager, one for each of the fragments we want to be able to swipe through.

We want to display TopFragment
first, so we’ll return a new instance
of it for position 0 of the ViewPager.

The getCount()
method specifies
4 pages, so
the getItem()
method should
only request the
fragments for
these 4 page
positions.

Add fragments
Add swiping
Add tabs

you are here 4 493

design support library

Attach the fragment pager adapter
to the view pager
Finally, we need to attach our SectionsPagerAdapter
to the view pager so that the view pager can use it. You
attach a fragment pager adapter to a view pager by calling
the ViewPager setAdapter() method, and passing it a
reference to an instance of the fragment pager adapter.

Here’s the code to attach the fragment pager adapter we
created to the view pager:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 ...

 //Attach the SectionsPagerAdapter to the ViewPager

 SectionsPagerAdapter pagerAdapter =

 new SectionsPagerAdapter(getSupportFragmentManager());

 ViewPager pager = (ViewPager) findViewById(R.id.pager);

 pager.setAdapter(pagerAdapter);

}

That’s everything we need to be able to swipe through our
fragments. We’ll show you the full code for MainActivity
on the next page.

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

We’re using support fragments,
so we need to pass our
adapter a reference to the
support fragment manager.

This attaches the
FragmentPagerAdapter we
created to the ViewPager.

Q: When should I use tabs in my
app?

A: Tabs work well when you want to give
the user a quick way of navigating between
a small number of sections or categories.
You would generally put each one on a
separate tab.

Q: What if I have a large number of
categories? Can I still use tabs?

A: You can, but you may want to
consider other forms of navigation such as
navigation drawers. These are panels that
slide out from the side of the screen. We’ll
show you how to create them in Chapter 14.

Q: You mentioned the fragment state
pager adapter. What’s that?

A: It’s very similar to a fragment pager
adapter, except that it also handles saving
and restoring a fragment’s state. It uses
less memory than a fragment pager
adapter, as when pages aren’t visible, the
fragment it displays may be destroyed.
It’s useful if your view pager has a large
number of pages.

Add fragments
Add swiping
Add tabs

494 Chapter 12

MainActivity code

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.view.Menu;

import android.view.MenuItem;

import android.content.Intent;

import android.support.v7.widget.ShareActionProvider;

import android.support.v4.view.MenuItemCompat;

import android.support.v4.view.ViewPager;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentManager;

import android.support.v4.app.FragmentPagerAdapter;

public class MainActivity extends AppCompatActivity {

 private ShareActionProvider shareActionProvider;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 //Attach the SectionsPagerAdapter to the ViewPager

 SectionsPagerAdapter pagerAdapter =

 new SectionsPagerAdapter(getSupportFragmentManager());

 ViewPager pager = (ViewPager) findViewById(R.id.pager);

 pager.setAdapter(pagerAdapter);

 }

The full code for MainActivity.java
Here’s our full code for MainActivity.java. Update your version of
the code to match our changes (in bold):

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The code continues
on the next page.

We’re using these extra classes
so we need to import them.

Attach the FragmentPagerAdapter to the ViewPager.

Add fragments
Add swiping
Add tabs

you are here 4 495

design support library

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.menu_main, menu);

 MenuItem menuItem = menu.findItem(R.id.action_share);

 shareActionProvider =

 (ShareActionProvider) MenuItemCompat.getActionProvider(menuItem);

 setShareActionIntent("Want to join me for pizza?");

 return super.onCreateOptionsMenu(menu);

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_create_order:

 Intent intent = new Intent(this, OrderActivity.class);

 startActivity(intent);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

 private void setShareActionIntent(String text) {

 Intent intent = new Intent(Intent.ACTION_SEND);

 intent.setType("text/plain");

 intent.putExtra(Intent.EXTRA_TEXT, text);

 shareActionProvider.setShareIntent(intent);

 }

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The MainActivity.java code (continued)

None of the code on
this page has changed.

The code continues
on the next page.

Add fragments
Add swiping
Add tabs

496 Chapter 12

code, continued

 private class SectionsPagerAdapter extends FragmentPagerAdapter {

 public SectionsPagerAdapter(FragmentManager fm) {

 super(fm);

 }

 @Override

 public int getCount() {

 return 4;

 }

 @Override

 public Fragment getItem(int position) {

 switch (position) {

 case 0:

 return new TopFragment();

 case 1:

 return new PizzaFragment();

 case 2:

 return new PastaFragment();

 case 3:

 return new StoresFragment();

 }

 return null;

 }

 }

}

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The MainActivity.java code (continued)

Now that we’ve updated our MainActivity code,
let’s take our app for a test drive and see what happens.

The FragmentPagerAdapter passes information to the ViewPager.

Say how many pages the
ViewPager should contain.

Specify which fragment
should appear on each page.

Add fragments
Add swiping
Add tabs

you are here 4 497

design support library

Test drive the app
When we run the app, TopFragment is displayed. When we
swipe the screen to the left, PizzaFragment is displayed,
followed by PastaFragment and StoresFragment. When
we swipe the screen in the opposite direction starting from
StoresFragment, PastaFragment is displayed, followed by
PizzaFragment and TopFragment.

The ViewPager displays the
fragments in this order as
we swipe through them.

Now that we can swipe through the fragments in
MainActivity, let’s add tabs.

This is TopFragment.
It’s displayed first.

PizzaFragment
is shown next...

...followed by
PastaFragment.

StoresFragment is
last. There are no
more pages in the
ViewPager after this.

Add fragments
Add swiping
Add tabs

498 Chapter 12

add design support library

Add tab navigation to MainActivity
We’re going to add tabs to MainActivity as an additional way of
navigating through our fragments. Each fragment will be displayed on
a separate tab, and clicking on each tab will show that fragment. We’ll
also be able to swipe through the tabs using the existing view pager.

You use tabs by adding them to your layout, then writing activity code
to link the tabs to the view pager. The classes we need to do this come
from the Android Design Support Library, so you need to add this
library to your project as a dependency. To do this, choose File→Project
Structure in Android Studio, click on the app module, then choose
Dependencies. When you’re presented with the project dependencies
screen, click on the “+” button at the bottom or right side of the screen.
When prompted, choose the Library Dependency option, then select
the Design Library from the list of possible libraries. Finally, use the OK
buttons to save your changes.

We’ve added the Android Design Support
Library to our project as a dependency.

We’ll look at the Design
Support Library in more detail later in the chapter.

The tabs will be displayed underneath the toolbar.

The Home tab is highlighted,
as that’s the current tab.

The user will
still be able to
swipe through
the fragments
as before.

Add fragments
Add swiping
Add tabs

you are here 4 499

design support library

How to add tabs to your layout
You add tabs to your layout using two components from
the Design Support Library: a TabLayout and an
AppBarLayout. You use a TabLayout to add the tabs, and
the AppBarLayout to group the tabs and your toolbar together.

The code to add tabs to your layout looks like this:

<android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize" />

 <android.support.design.widget.TabLayout

 android:id="@+id/tabs"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

</android.support.design.widget.AppBarLayout>

The Toolbar and TabLayout elements both have IDs
because you need to be able to reference them in your activity
code in order to control their behavior.

The AppBarLayout contains both the Toolbar and the
TabLayout. It’s a type of vertical linear layout that’s designed
to work with app bars. The android:theme attribute is used
to style the Toolbar and TabLayout. We’ve given ours a
theme of ThemeOverlay.AppCompat.Dark.ActionBar.

On the next page we’ll show you the code to add tabs to
MainActivity’s layout.

The AppBarLayout comes from
the Design Support Library.

This line applies a
theme to the Toolbar
and TabLayout so
that they have a
consistant appearance.You include the Toolbar

inside the AppBarLayout.

The TabLayout comes from the
DesignSupportLibrary. You add
it to the AppBarLayout.

Add fragments
Add swiping
Add tabs

500 Chapter 12

layout code

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.MainActivity">

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

 <include

 layout="@layout/toolbar_main"

 android:id="@+id/toolbar" />

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize" />

 <android.support.design.widget.TabLayout

 android:id="@+id/tabs"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

 </android.support.design.widget.AppBarLayout>

 <android.support.v4.view.ViewPager

 android:id="@+id/pager"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

</LinearLayout>

Add tabs to MainActivity's layout
Here’s our code for activity_main.xml. Update your version of
the code to match our changes (in bold):

<xml>
</xml>

app/src/main

activity_
main.xml

BitsAndPizzas

res

layout

We’ve decided to put our Toolbar code in
activity_main.xml instead of including it from
a separate file. This is so that we can show
you the full code in one place. In practice,
using the <include> still works.

Add an AppBarLayout.

The Toolbar
goes inside the
AppBarLayout.

Add a TabLayout inside the AppBarLayout.

Add fragments
Add swiping
Add tabs

you are here 4 501

design support library

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

Link the tab layout to the view pager
Once you’ve added the tab layout, you need to write some activity code to
control it. Most of the tab layout’s behavior (such as which fragment appears on
which tab) comes from the view pager you’ve already created. All you need to do
is implement a method in the view pager’s fragment pager adapter to specify the
text you want to appear on each tab, then link the view pager to the tab layout.

We’re going to add the text we want to appear on each of the tabs as String
resources. Open the file strings.xml, then add the following Strings:

<string name="home_tab">Home</string>

<string name="pizza_tab">Pizzas</string>

<string name="pasta_tab">Pasta</string>

<string name="store_tab">Stores</string>

To add the text to each of the tabs, you need to implement the fragment pager
adapter’s getPageTitle() method. This takes one parameter, an int for the
tab’s position, and needs to return the text that should appear on that tab. Here’s
the code we need to add the above String resources to our four tabs (we’ll add it
to MainActivity.java on the next page):

@Override

public CharSequence getPageTitle(int position) {

 switch (position) {

 case 0:

 return getResources().getText(R.string.home_tab);

 case 1:

 return getResources().getText(R.string.pizza_tab);

 case 2:

 return getResources().getText(R.string.pasta_tab);

 case 3:

 return getResources().getText(R.string.store_tab);

 }

 return null;

}

Finally, you need to attach the view pager to the tab layout. You do this by calling
the TabLayout object’s setupWithViewPager() method, and passing in a
reference to the ViewPager object as a parameter:

TabLayout tabLayout = (TabLayout) findViewById(R.id.tabs);

tabLayout.setupWithViewPager(pager);

That’s everything we need to get our tabs working. We’ll show
you the full code for MainActivity on the next page.

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

These Strings
will be displayed
on the tabs.

This is a new
method in the
fragment pager
adapter we
created earlier.

These lines of code add the
String resources to the tabs.

This line attaches the ViewPager to the
TabLayout. The TabLayout uses the ViewPager
to determine how many tabs there should be, and what should be on each tab.

Add fragments
Add swiping
Add tabs

502 Chapter 12

MainActivity code

The full code for MainActivity.java
Here’s our full code for MainActivity.java. Update your version of
the code to match our changes (in bold):

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.view.Menu;

import android.view.MenuItem;

import android.content.Intent;

import android.support.v7.widget.ShareActionProvider;

import android.support.v4.view.MenuItemCompat;

import android.support.v4.view.ViewPager;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentManager;

import android.support.v4.app.FragmentPagerAdapter;

import android.support.design.widget.TabLayout;

public class MainActivity extends AppCompatActivity {

 private ShareActionProvider shareActionProvider;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 //Attach the SectionsPagerAdapter to the ViewPager

 SectionsPagerAdapter pagerAdapter =

 new SectionsPagerAdapter(getSupportFragmentManager());

 ViewPager pager = (ViewPager) findViewById(R.id.pager);

 pager.setAdapter(pagerAdapter);

 //Attach the ViewPager to the TabLayout

 TabLayout tabLayout = (TabLayout) findViewById(R.id.tabs);

 tabLayout.setupWithViewPager(pager);

 }

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The code continues
on the next page.

We’re using the TabLayout
class, so we need to import it.

This links the ViewPager to the TabLayout.

Add fragments
Add swiping
Add tabs

you are here 4 503

design support library

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.menu_main, menu);

 MenuItem menuItem = menu.findItem(R.id.action_share);

 shareActionProvider =

 (ShareActionProvider) MenuItemCompat.getActionProvider(menuItem);

 setShareActionIntent("Want to join me for pizza?");

 return super.onCreateOptionsMenu(menu);

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {

 case R.id.action_create_order:

 Intent intent = new Intent(this, OrderActivity.class);

 startActivity(intent);

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

 private void setShareActionIntent(String text) {

 Intent intent = new Intent(Intent.ACTION_SEND);

 intent.setType("text/plain");

 intent.putExtra(Intent.EXTRA_TEXT, text);

 shareActionProvider.setShareIntent(intent);

 }

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The MainActivity.java code (continued)

The code continues
on the next page.

None of the code on
this page has changed.

Add fragments
Add swiping
Add tabs

504 Chapter 12

code, continued

 private class SectionsPagerAdapter extends FragmentPagerAdapter {

 public SectionsPagerAdapter(FragmentManager fm) {
 super(fm);
 }

 @Override
 public int getCount() {
 return 4;
 }

 @Override
 public Fragment getItem(int position) {
 switch (position) {
 case 0:
 return new TopFragment();
 case 1:
 return new PizzaFragment();
 case 2:
 return new PastaFragment();
 case 3:
 return new StoresFragment();
 }
 return null;
 }

 @Override
 public CharSequence getPageTitle(int position) {
 switch (position) {
 case 0:
 return getResources().getText(R.string.home_tab);
 case 1:
 return getResources().getText(R.string.pizza_tab);
 case 2:
 return getResources().getText(R.string.pasta_tab);
 case 3:
 return getResources().getText(R.string.store_tab);
 }
 return null;
 }
 }
}

app/src/main

MainActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The MainActivity.java code (continued)

This method adds the text to the tabs.

Add fragments
Add swiping
Add tabs

you are here 4 505

design support library

Test drive the app
When we run the app, MainActivity includes a tab layout.
We can swipe through the fragments as before, and we can also
navigate to each fragment by clicking on the appropriate tab.

That’s all the code you need to implement
tab and swipe navigation. So what’s next?

Here’s the
TabLayout.

You can navigate to each fragment
by swiping through them as before,
or clicking on the appropriate tab.

Add fragments
Add swiping
Add tabs

506 Chapter 12

material design

The Design Support Library helps you
implement material design
So far, we’ve added tabs to our app to help the user navigate around the
app. To do this, we’ve used two components from the Design Support
Library: the TabLayout and AppBarLayout.

The Design Support Library was introduced as a way of making it
easier for developers to use material design components in their
apps. Material design was introduced with Lollipop as a way of giving a
consistent look and feel to all Android apps. The idea is that a user can
switch from a Google app like the Play Store to an app designed by a
third-party developer and instantly feel comfortable and know what to
do. It’s inspired by paper and ink, and uses print-based design principles
and movement to reflect how real-world objects (such as index cards
and pieces of paper) look and behave.

The Design Support Library lets you do more than add tabs to your
apps.

Material Design
You can find t

he full (and

evolving) specs
for material

design here:

https://material.io/guide
lines/

It lets you add floating action buttons (FABs).
These are special action buttons that float above the main screen.

¥

For the rest of this chapter, we’re going to show you how to
implement some of these features in the Bits and Pizzas app.

You can use it to animate your toolbars.
You can make your toolbar scroll off the screen, or collapse, if the user
scrolls content in another view.

¥

It includes a navigation drawer layout.
This is a slide-out drawer you can use as an alternative to using tabs.
We’ll look at this feature in Chapter 14.

¥

It includes snackbars, a way of displaying interactive
short messages to the user as an alternative to toasts.
Unlike a toast (which you learned about in Chapter 5), you can add
actions to snackbars so that the user can interact with them.

¥

This is
a FAB.

This is a snackbar. It’s like a
toast, but more interactive.

you are here 4 507

design support library

We’ll start by getting our toolbar to scroll in response to the
user scrolling the content in the view pager.

Here’s what we’ll do
We’re going to add more goodness from the Design Support Library
to the Bits and Pizzas app. Here are the steps we’ll go through:

Enable MainActivity’s toolbar to scroll.
We’ll change MainActivity so that the toolbar scrolls
up and down when the user scrolls the contents of the
view pager we added earlier. To see this working, we’ll
add content we can scroll to TopFragment.

1

Add a collapsing toolbar to OrderActivity.
We’ll start by adding a plain collapsing toolbar to
OrderActivity. The toolbar will collapse when
the user scrolls OrderActivity’s contents. After
we’ve got the plain collapsing toolbar working,
we’ll add an image to it.

2

Add a FAB to OrderActivity.
We’ll display a floating action button to the bottom-
right corner.

3

Make the FAB display a snackbar.
The snackbar will appear at the bottom of the screen
when the user clicks on the FAB. The FAB will move
up when the snackbar appears, and move back down
when the snackbar is no longer there.

4

When the user scrolls this content,
the toolbar will scroll up too.

This is a toolbar with an image.
When the user scrolls the main
content, we’ll get it to collapse.

This is the FAB we’ll
add to OrderActivity.

This is the snackbar.

508 Chapter 12

coordinator layout

Make the toolbar respond to scrolls

<android.support.design.widget.CoordinatorLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 ...

</android.support.design.widget.CoordinatorLayout>

Any views in your layout whose animations you want to coordinate
must be included in the <CoordinatorLayout> element. In
our case, we want to coordinate animations between the toolbar
and the contents of the view pager, so these views need to be
included in the coordinator layout.

Use a CoordinatorLayout to coordinate
animations between views
To get the toolbar to move when content in the fragment is
scrolled, we’ll add a coordinator layout to MainActivity. A
coordinator layout is like a souped-up frame layout that’s used to
coordinate animations and transitions between different views. In
this case, we’ll use the coordinator layout to coordinate scrollable
content in TopFragment and MainActivity’s toolbar.

You add a coordinator layout to an activity’s layout using code like
this:

We’re going to change our app so that MainActivity’s toolbar
scrolls whenever the user scrolls content in TopFragment. To
enable this, there are two things we need to do:

Change MainActivity’s layout to enable the
toolbar to scroll.

1

Change TopFragment to include scrollable
content.

2

We’ll start by changing MainActivity’s layout.

We’ll get the toolbar to scroll when the
user scrolls the content in TopFragment.

We’ll add this scrollable
content to TopFragment.

The CoordinatorLayout comes
from the Design Support Library.

You add any views whose behavior you want to
coordinate inside the CoordinatorLayout.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

A CoordinatorLayout
allows the behavior of
one view to affect the
behavior of another.

you are here 4 509

design support library

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.MainActivity">

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize" />

 <android.support.design.widget.TabLayout

 android:id="@+id/tabs"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

 </android.support.design.widget.AppBarLayout>

 <android.support.v4.view.ViewPager

 android:id="@+id/pager"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

</android.support.design.widget.CoordinatorLayout>

</LinearLayout>

Add a coordinator layout to MainActivity’s layout
We’re going to replace the linear layout in activity_main.xml with a
coordinator layout. Here’s our code; update your version to match
our changes (in bold):

<xml>
</xml>

app/src/main

activity_
main.xml

BitsAndPizzas

res

layout

We’re replacing the LinearLayout
with a CoordinatorLayout.

Add the app namespace, as we’ll need to use attributes from it over the next few pages.

We’re replacing the LinearLayout
with a CoordinatorLayout.

Delete this line, as we're no
longer using a LinearLayout.

510 Chapter 12

scroll behavior

How to coordinate scroll behavior
As well as adding views to the coordinator layout, you need to say how
you want them to behave. In our case, we want the toolbar to scroll
in response to another view’s scroll event. This means that we need
to mark the view the user will scroll, and tell the toolbar to
respond to it.

<android.support.v4.view.ViewPager

 ...

 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

<android.support.v7.widget.Toolbar

 ...

 app:layout_scrollFlags="scroll|enterAlways" />

We’ll look at the full code for MainActivity’s layout on the next page.

The toolbar MUST
be contained within
an app bar layout in
order for it to scroll.
The app bar layout
and coordinator layout
work together to enable
the toolbar to scroll.

Mark the view the user will scroll
You mark the view the user will scroll by giving it an attribute of
app:layout_behavior and setting it to the built-in String "@
string/appbar_scrolling_view_behavior". This tells the
coordinator layout that you want views in the app bar layout to be
able to respond when the user scrolls this view. In our case, we want
the toolbar to scroll in response to the user scrolling the view pager’s
content, so we need to add the app:layout_behavior attribute to
the ViewPager element:

Tell the toolbar to respond to scroll events
You tell views in the app bar layout how to respond to scroll events
using the app:layout_scrollFlags attribute. In our case,
we’re going to set the toolbar to scroll upward off the screen when
the user scrolls the view pager content up, and quickly return to its
original position when the user scrolls down. To do this, we need
to set the Toolbar app:layout_scrollFlags attribute to
"scroll|enterAlways".

The scroll value allows the view to scroll off the top of screen.
Without this, the toolbar would stay pinned to the top of the screen.
The enterAlways value means that the toolbar quickly scrolls down
to its original position when the user scrolls the corresponding view. The
toolbar will still scroll down without this value, but it will be slower.

Here’s the code we need to add to the toolbar to enable it to scroll:

You add this line to the ViewPager to
tell the CoordinatorLayout you want to
react to the user scrolling its content.

This line tells the CoordinatorLayout
(and AppBarLayout) how you want
the Toolbar to react to the user
scrolling content.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 511

design support library

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="com.hfad.bitsandpizzas.MainActivity">

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 app:layout_scrollFlags="scroll|enterAlways" />

 <android.support.design.widget.TabLayout

 android:id="@+id/tabs"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

 </android.support.design.widget.AppBarLayout>

 <android.support.v4.view.ViewPager

 android:id="@+id/pager"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior" />

</android.support.design.widget.CoordinatorLayout>

The code to enable to toolbar to scroll
Here’s our updated code for activity_main.xml. Update your
version of the code to match our changes (in bold):

<xml>
</xml>

app/src/main

activity_
main.xml

BitsAndPizzas

res

layout

Those are all the changes we need to make to MainActivity.
Next we’ll add scrollable content to TopFragment.

Add this line to enable the
Toolbar to scroll. If you
wanted the TabLayout to
scroll too, you’d add the
code to that element as well.

This line marks the view whose
content you expect the user to scroll.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

512 Chapter 12

add resources

Add scrollable content to TopFragment
We’re going to change TopFragment’s layout so that it contains
scrollable content. We’ll add an image of one of the Bits and Pizzas
restaurants, along with some text describing the company ethos.

Here’s what the new version of TopFragment will look like:

Add String and image resources
We’ll add the String resources first. Open strings.xml, then add the
following:

We’ll start by adding the String and image resources to our project.

 <string name="company_name">Bits and Pizzas</string>

 <string name="restaurant_image">Restaurant image</string>

 <string name="home_text">Since we opened our doors in 2017, Bits and Pizzas

 has built its reputation as one of America’s best Italian-Digital

 restaurants. Some people believe eating out is about being with your

 friends and family. We believe that good food is best enjoyed while

 staring at your phone.</string>

<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

Next we’ll add the restaurant image to the drawable-nodpi folder. First,
switch to the Project view of Android Studio’s explorer and check
whether the app/src/main/res/drawable-nodpi folder exists in your
project. If it’s not already there, highlight the app/src/main/res folder,
go to the File menu, choose the New... option, then click on the option
to create a new Android resource directory. When prompted, choose
a resource type of “drawable”, name it “drawable-nodpi” and click on
OK.

Once you have a drawable-nodpi folder, download the file restaurant.jpg
from https://git.io/v9oet, and add it to the drawable-nodpi folder.

You need
to add
this image
to the
drawable-
nodpi folder.

We’ll change TopFragment to include
an image and some text. We want
the user to be able to scroll the
entire contents of the fragment.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 513

design support library

Use a nested scroll view to make layout content scrollable
We’ll allow the user to scroll the contents of TopFragment using a
nested scroll view. This kind of view works just like a normal scroll
view, except that it enables nested scrolling. This is important because
the coordinator layout only listens for nested scroll events. If you use
a normal scroll view in your layout, the toolbar won’t scroll when the
user scrolls the content.

You add a nested scroll view to your layout using code like this:

Another view that enables nested
scrolling is the recycler view. You’ll find
out how to use this in the next chapter.

<android.support.v4.widget.NestedScrollView

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 ...

</android.support.v4.widget.NestedScrollView >

You add any views you want the user to be able to scroll to the nested
scroll view. If you just have one view, you can add this to the nested
scroll view directly. If you want to scroll multiple views, however,
these must be added to a separate layout inside the scroll view. This
is because a nested scroll view can only have one direct child. As an
example, here’s how you’d add two text views to a nested scroll view
with the help of a linear layout:

<android.support.v4.widget.NestedScrollView

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <LinearLayout

 ... >

 <TextView

 ... />

 <TextView

 ... />

 </LinearLayout>

</android.support.v4.widget.NestedScrollView >

Next we’ll update TopFragment’s layout so it uses a nested scroll view.

The NestedScrollView comes from
the Design Support Library.

You add any views you want the user to be
able to scroll to the NestedScrollView.

We’re just using a LinearLayout as an example—it could be
some other sort of layout instead. The key point is that the
NestedScrollView can only have one direct child. If you want to
put more than one view in the NestedScrollView, in this case
two TextViews, you must put them in another layout first.

514 Chapter 12

layout structure

How we’ll structure TopFragment’s layout
We’re going to add a restaurant image and some text to
TopFragment’s layout. Before we write the code, here’s a
breakdown of how we’ll structure it.

On the next page we’ll show you the full code for fragment_top.xml.
Once you’ve updated your code, we’ll take the app for a test drive.

 We want the entire fragment to be scrollable. This means we need to
put all the views in a nested scroll view.

1

 We’ll use two text views for the Bits and Pizzas company name and text.
We’ll put these in a vertical linear layout with a white background.

2

 We want to display the linear layout containing the two text views on
top of the image. We’ll do this by putting them both in a frame layout.

3

Putting this together, we’ll use a nested scroll view for our layout,
and this will contain a frame layout. The frame layout will include
two elements, an image view and a linear layout. The linear layout
will contain two text views to display the company name and ethos.

1

3
2We’ll put everything

in a NestedScrollView. This is an ImageView. We
want to display it behind
the text.

TopFragment

We’ll use two TextViews
in a LinearLayout to
display the text.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 515

design support library

<android.support.v4.widget.NestedScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.hfad.bitsandpizzas.TopFragment">

 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content" >

 <ImageView android:id="@+id/info_image"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:scaleType="centerCrop"
 android:src="@drawable/restaurant"
 android:contentDescription="@string/restaurant_image" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="40dp"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 android:padding="16dp"
 android:background="#FFFFFF"
 android:orientation="vertical">

 <TextView
 android:textSize="32sp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/company_name" />

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/home_text" />
 </LinearLayout>
 </FrameLayout>
</android.support.v4.widget.NestedScrollView>

The full code for fragment_top.xml
Here’s the full code for fragment_top.xml; update your code to match ours:

<xml>
</xml>

app/src/main

fragment_top.xml

BitsAndPizzas

res

layout

We want the whole fragment to be able to scroll.

We’re using a FrameLayout because we want to
position the text on top of the image.

We’re using a LinearLayout to
contain the text. We’re giving it a
white background, and the margins
will add space around the edges.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

516 Chapter 12

test drive

Test drive the app
When we run the app, TopFragment displays the new
layout. When we scroll the content, the toolbar scrolls too.

By allowing the toolbar to scroll, you free up more space for
content. An added bonus is that you don’t have to write any
activity or fragment code to control the toolbar’s behavior.
All of the functionality came from using widgets from the
Design Support Library.

This is TopFragment’s scrollable content.

When you scroll the content up,
the toolbar scrolls up too.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 517

design support library

Add a collapsing toolbar to OrderActivity

Over the next few pages, we’re going to change
OrderActivity to include a collapsing toolbar.

First add some String resources
Before we get started, we need to add some String resources to
strings.xml that we’ll use in OrderActivity’s layout. Open
strings.xml, then add the following resources:

 <string name="order_name_hint">Please enter your name</string>

 <string name="order_details_hint">Please enter your order</string>
<xml>
</xml>

app/src/main

strings.xml

BitsAndPizzas

res

values

We’ll start updating the layout on the next page.

These are both collapsing
toolbars, one plain and
one with an image. As you scroll the main

content, the collapsing
toolbar shrinks and grows.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

A variant of allowing your toolbar to scroll is the collapsing
toolbar. A collapsing toolbar is one that starts off large, shrinks
when the user scrolls the screen content up, and grows again
when the user scrolls the screen content back down. You can even
add an image to it, which disappears when the toolbar reaches
its minimum height, and becomes visible again as the toolbar
expands:

518 Chapter 12

collapsing toolbar

How to create a plain collapsing toolbar
You add a collapsing toolbar to your activity’s layout using the
collapsing toolbar layout from the Design Support Library. In order
for it to work, you need to add the collapsing toolbar layout to an app
bar layout that’s included within a coordinator layout. The collapsing
toolbar layout should contain the toolbar you want to collapse.

As the collapsing toolbar needs to respond to scroll events in a separate
view, you also need to add scrollable content to the coordinator layout,
for example using a nested scroll view.

Here’s an overview of how you need to structure your layout file in
order to use a collapsing toolbar:

<android.support.design.widget.CoordinatorLayout

 ... >

 <android.support.design.widget.AppBarLayout

 ... >

 <android.support.design.widget.CollapsingToolbarLayout

 ... >

 <android.support.v7.widget.Toolbar

 ... />

 </android.support.design.widget.CollapsingToolbarLayout>

 </android.support.design.widget.AppBarLayout>

 <android.support.v4.widget.NestedScrollView

 ...>

 ...

 </android.support.v4.widget.NestedScrollView>

</android.support.design.widget.CoordinatorLayout>

In addition to structuring your layout in a particular way, there are
some key attributes you need to use to get your collapsing toolbar to
work properly. We’ll look at these next.

You add the CollapsingToolbarLayout
to an AppBarLayout, which sits
inside a CoordinatorLayout. The
CollapsingToolbarLayout contains the Toolbar.

The scrollable content goes here.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 519

design support library

App bar layout attributes
As before, you apply a theme to your app bar layout to control the appearance
of its contents. You also need to specify a height for the contents of the app
bar layout. This is the maximum height the collapsing toolbar will be able to
expand to. In our case, we’ll apply a theme of "@style/ThemeOverlay.
AppCompat.Dark.ActionBar" as before and set the height to 300dp:

<android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="300dp"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

Toolbar attributes
If you have items on your toolbar such as an Up button, these may scroll off the
screen as the toolbar collapses. You can prevent this from happening by setting
the layout_collapseMode attribute to "pin":

<android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 app:layout_collapseMode="pin" />

Collapsing toolbar layout attributes
You want the collapsing toolbar layout to collapse and expand in response
to scroll events, so you need to set its layout_scrollFlags attribute to
control this behavior. In our case, we want the collapsing toolbar layout to
collapse until it’s the size of a standard toolbar, so we’ll set the attribute to a
value of "scroll|exitUntilCollapsed":

<android.support.design.widget.CollapsingToolbarLayout

 ...

 app:layout_scrollFlags="scroll|exitUntilCollapsed" >

Nested scroll view attributes
As before, you need to tell the coordinator layout which view you expect the user
to scroll. You do this by setting the nested scroll view’s layout_behavior
attribute to "@string/appbar_scrolling_view_behavior":

<android.support.v4.widget.NestedScrollView

 ...

 app:layout_behavior="@string/appbar_scrolling_view_behavior" >

This is the same as when we
created a scrolling toolbar.

This means we want the
toolbar to collapse until
it’s done collapsing.

This is the maximum height of the collapsing toolbar.

This pins anything that’s on the
toolbar, such as the Up button,
to the top of the screen.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

520 Chapter 12

layout code

The full code to add a collapsing
toolbar to activity_order.xml
Here’s how to add a collapsing toolbar to OrderActivity’s layout.
Replace your existing code for activity_order.xml with the code below:

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/coordinator"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="300dp"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

 <android.support.design.widget.CollapsingToolbarLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_scrollFlags="scroll|exitUntilCollapsed" >

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 app:layout_collapseMode="pin" />

 </android.support.design.widget.CollapsingToolbarLayout>

 </android.support.design.widget.AppBarLayout>

<xml>
</xml>

app/src/main

activity_order.xml

BitsAndPizzas

res

layoutWe’ve added an ID to the CoordinatorLayout, as we’ll need it later in the chapter.

This is the
CollapsingToolbarLayout.
It needs to be within an
AppBarLayout.

The CollapsingToolbarLayout
contains a toolbar.

The code
continues
on the
next page.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 521

design support library

 <android.support.v4.widget.NestedScrollView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior" >

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical"

 android:padding = "16dp" >

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="@string/order_name_hint" />

 <EditText

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:hint="@string/order_details_hint" />

 </LinearLayout>

 </android.support.v4.widget.NestedScrollView>

</android.support.design.widget.CoordinatorLayout>

The activity_order.xml code (continued)

<xml>
</xml>

app/src/main

activity_order.xml

BitsAndPizzas

res

layout

The NestedScrollView contains
the content we want the user
to be able to scroll.

We’re using a
LinearLayout
to position
the scrollable
content.

We’re using EditTexts to add some
content we can scroll to the layout.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

Let’s see what happens when we run the app.

522 Chapter 12

test drive

Test drive the app
When we run the app, OrderActivity displays the new layout,
including the collapsing toolbar. The collapsing toolbar starts off
large, and collapses as we scroll the content.

You can add images to collapsing toolbars too
The collapsing toolbar we’ve created so far is quite plain. It has
a plain background, which grows and shrinks as we scroll the
content in the activity.

We can improve this by adding an image to the collapsing toolbar.
We’ll display the image when the collapsing toolbar is large, and
when it shrinks we’ll display a standard toolbar instead:

This is the
toolbar
when it’s
expanded.

This is the toolbar when it’s collapsed.

This is the
same collapsing
toolbar,
except we’re
going to add
an image to it.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 523

design support library

How to add an image to a collapsing toolbar

<android.support.design.widget.CollapsingToolbarLayout

... >

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:scaleType="centerCrop"

 android:src="@drawable/restaurant"

 android:contentDescription="@string/restaurant_image"

 app:layout_collapseMode="parallax" />

 <Toolbar

 ... >

</android.support.design.widget.CollapsingToolbarLayout>

By default, when the toolbar is collapsed, it will continue to display
the image as its background. To get the toolbar to revert to a plain
background color when it’s collapsed, you add a contentScrim
attribute to the CollapsingToolbarLayout, setting it to the value
of the color. We want our toolbar to have the same background color as
before, so we’ll set it to "?attr/colorPrimary":

<android.support.design.widget.CollapsingToolbarLayout

 ...

 app:layout_scrollFlags="scroll|exitUntilCollapsed"

 app:contentScrim="?attr/colorPrimary" >

We’re going to update the collapsing toolbar we just created so that it
includes an image. For convenience, we’ll use the same image that we
added to TopFragment.

You add an image to a collapsing toolbar by adding an ImageView
to the CollapsingToolBarLayout, specifying the image you
want to use. As an optional extra, you can add a parallax effect to the
ImageView so that the image scrolls at a different rate than the rest
of the toolbar. You do this by adding a layout_collapseMode
attribute to the ImageView with a value of "parallax".

We want to use a drawable named “restaurant” for our image. Here’s
the code we need:

Those are all the changes we need, so we’ll update the code
on the next page, and then take it for a test drive.

We’re cropping the image to
fit inside the AppBarLayout.

This line is optional. It adds parallax animation so the image moves at a different rate than the scrollable content.

<xml>
</xml>

app/src/main

activity_order.xml

BitsAndPizzas

res

layout

This line changes the toolbar back to
its default color when it’s collapsed.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

524 Chapter 12

layout code

The updated code for activity_order.xml
Here’s the updated code for activity_order.xml to add an image to the
collapsing toolbar (update your version to match our changes in bold):

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/coordinator"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="300dp"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

 <android.support.design.widget.CollapsingToolbarLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_scrollFlags="scroll|exitUntilCollapsed"

 app:contentScrim="?attr/colorPrimary" >

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:scaleType="centerCrop"

 android:src="@drawable/restaurant"

 android:contentDescription="@string/restaurant_image"

 app:layout_collapseMode="parallax" />

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 app:layout_collapseMode="pin" />

 </android.support.design.widget.CollapsingToolbarLayout>

 </android.support.design.widget.AppBarLayout>

<xml>
</xml>

app/src/main

activity_order.xml

BitsAndPizzas

res

layout

This line changes the toolbar
background when it’s collapsed.

These lines add
an image to the
collapsing toolbar.
It uses snazzy
parallax animation.

The code continues
on the next page.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 525

design support library

 <android.support.v4.widget.NestedScrollView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior" >

 ...

 </android.support.v4.widget.NestedScrollView>

</android.support.design.widget.CoordinatorLayout>

The activity_order.xml code (continued)

<xml>
</xml>

app/src/main

activity_order.xml

BitsAndPizzas

res

layout

Test drive the app
When we run the app, OrderActivity’s collapsing toolbar
includes an image. As the toolbar collapses, the image fades,
and the toolbar’s background changes to its original color.
When the toolbar is expanded again, the image reappears.

Let’s see what the app looks like when we run it.

The image
appears on
the toolbar.

The toolbar changes
color when it’s collapsed.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

526 Chapter 12

fabs and snackbars

FABs and snackbars
There are two final additions we’re going to make to
OrderActivity from the Design Support Library: a FAB
and a snackbar.

A FAB is a floating action button. It’s a circled icon that
floats above the user interface, for example in the bottom-right
corner of the screen. It’s used to promote actions that are so
common or important that you want to make them obvious to
the user.

A snackbar is like a toast except that you can interact with
it. It’s a short message that appears at the bottom of the screen
that’s used to give the user information about an operation.
Unlike with a toast, you can add actions to a snackbar, such as
an action to undo an operation.

This is a FAB that
appears in the Google
Calendar app. It floats in
the bottom-right corner
of the screen, and you
use it to add events.

This is the snackbar that appears in the Chrome app when you’ve just closed a web page. You can reopen the page by clicking on the Undo action in the snackbar.

We’ll add a FAB and snackbar to OrderActivity

We’re going to add a FAB to OrderActivity. When the user
clicks on the FAB, we’ll display a snackbar that shows a message
to the user. In the real world, you’d want to use the FAB to
perform an action such as saving the user’s pizza order, but
we’re just going to focus on showing you how to add the widgets
to your app.

Here’s what the new version of OrderActivity will look like:

Here’s the FAB
we’re going to add.

When we click on the FAB,
a snackbar gets displayed.
When it appears, the FAB
moves up out of the way.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 527

design support library

Add the icon for the FAB
We’ll start by adding an icon to our project to display on the FAB. You
can either create your own icon from scratch or use one of the icons
provided by Google: https://design.google.com/icons/.

We’re going to use the “done” icon ic_done_white_24dp, and we’ll
add a version of it to our project’s drawable* folders, one for each screen
density. Android will decide at runtime which version of the icon to use
depending on the screen density of the device.

First, switch to the Project view of Android Studio’s explorer, highlight
the app/src/main/res folder in your project, then create folders called
drawable-hdpi, drawable-mdpi, drawable-xhdpi, drawable-xxhdpi, and
drawable-xxxhdpi if they don’t already exist. Then go to http://tinyurl.com/
HeadFirstAndroidDoneIcons, and download ic_done_white_24dp.png Bits and
Pizzas images. Add the image in the drawable-hdpi folder to the drawable-
hdpi folder in your project, then repeat this process for the other folders.

How to add a FAB to your layout
You add a FAB to your layout using code like this:

<android.support.design.widget.CoordinatorLayout ...>

 ...

 <android.support.design.widget.FloatingActionButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="end|bottom"
 android:layout_margin="16dp"
 android:src="@drawable/ic_done_white_24dp"
 android:onClick="onClickDone" />

</android.support.design.widget.CoordinatorLayout>

The above code adds a FAB to the bottom-end corner of the screen, with
a margin of 16dp. It uses the src attribute to set the FAB’s icon to the
ic_done_white_24dp drawable. We’re also using the FAB’s onClick
attribute to specify that the onClickDone() method in the layout’s activity
will get called when the user clicks on the FAB. We’ll create this method later.

You usually use a FAB inside a CoordinatorLayout, as this means that
you can coordinate movement between the different views in your layout. In
our case, it means that the FAB will move up when the snackbar appears.

On the next page we’ll show you the code for OrderActivity’s layout.

The material design
guidelines recommend
using no more than
one FAB per screen.

We’re going
to use this
icon on our
FAB.

The code for adding a FAB is
similar to the code for adding
an ImageButton. That’s because
FloatingActionButton is a
subclass of ImageButton.

If you’re using the FAB in an activity, you can use the onClick attribute to specify which method should be called when it’s clicked.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

528 Chapter 12

layout code

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/coordinator"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <android.support.design.widget.AppBarLayout

 android:layout_width="match_parent"

 android:layout_height="300dp"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" >

 <android.support.design.widget.CollapsingToolbarLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_scrollFlags="scroll|exitUntilCollapsed"

 app:contentScrim="?attr/colorPrimary" >

 <ImageView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:scaleType="centerCrop"

 android:src="@drawable/restaurant"

 android:contentDescription="@string/restaurant_image"

 app:layout_collapseMode="parallax" />

 <android.support.v7.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 app:layout_collapseMode="pin" />

 </android.support.design.widget.CollapsingToolbarLayout>

 </android.support.design.widget.AppBarLayout>

The updated code for activity_order.xml
Here’s the updated code for activity_order.xml (update your version to
match our changes in bold):

<xml>
</xml>

app/src/main

activity_order.xml

BitsAndPizzas

res

layout

We’ve not changed any of
the code on this page.

The code continues
on the next page.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 529

design support library

 <android.support.v4.widget.NestedScrollView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior" >

 <LinearLayout

 ...

 </LinearLayout>

 </android.support.v4.widget.NestedScrollView>

 <android.support.design.widget.FloatingActionButton

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="end|bottom"

 android:layout_margin="16dp"

 android:src="@drawable/ic_done_white_24dp"

 android:onClick="onClickDone" />

</android.support.design.widget.CoordinatorLayout>

The activity_order.xml code (continued)

<xml>
</xml>

app/src/main

activity_order.xml

BitsAndPizzas

res

layout

Add the onClickDone() method to OrderActivity
Now that we’ve added a FAB to OrderActivity’s layout, we
need to write some activity code to make the FAB do something
when it’s clicked. You do this in the same way that you would
for a button, by adding the method described by the FAB’s
onClick attribute to your activity code.

In our case, we’ve given the onClick attribute a value
of "onClickDone", so this means we need to add an
onClickDone() method to OrderActivity.java:

public void onClickDone(View view) {

 //Code that runs when the FAB is clicked

}

app/src/main

OrderActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Now we’re going to write some code to display a snackbar when
the user clicks on the FAB.

You don't have to
add this method
now; you can wait
until we show you
the full code a few
pages ahead.

We’re adding
the FAB to the
CoordinatorLayout
so that it will
move out the way
when a snackbar
gets displayed.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

530 Chapter 12

snackbar

How to create a snackbar
As we said earlier in the chapter, a snackbar is a bar that appears at
the bottom of the screen that displays a short message to the user. It’s
similar to a toast, except that you can interact with it.

To create a snackbar, you call the Snackbar.make() method.
This method takes three parameters: the View you want to hold the
snackbar, the text you want to display, and an int duration. As an
example, here’s the code for a snackbar that appears on the screen for
a short duration:

CharSequence text = "Hello, I'm a Snackbar!";

int duration = Snackbar.LENGTH_SHORT;

Snackbar snackbar = Snackbar.make(findViewById(R.id.coordinator, text, duration);

In the above code, we’ve used a view called coordinator to hold
the snackbar. This view will usually be your activity’s coordinator
layout so that it can coordinate the snackbar with other views.

We’ve set the snackbar’s duration to LENGTH_SHORT, which
shows the snackbar for a short period of time. Other options are
LENGTH_LONG (which shows it for a long duration) and LENGTH_
INDEFINITE (which shows it indefinitely). With any of these options,
the user is able to swipe away the snackbar so that it’s no longer
displayed.

You can add an action to the snackbar by calling its setAction()
method. This can be useful if, for example, you want the user
to be able to undo an operation they’ve just performed. The
setAction() method takes two parameters: the text that should
appear for the action, and a View.onClickListener(). Any
code you want to run when the user clicks on the action should
appear in the listener’s onClick() event:

Once you’ve finished creating the snackbar, you display it using its
show() method:

snackbar.show();

snackbar.setAction("Undo", new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 //Code to run when the user clicks on the Undo action

 }

});

If you want to display a String
resource, you can pass in the
resource ID instead of the text.

You need to specify what should happen if the user clicks on the Undo action.

You pass the setAction() method
the text that should appear for the
action, and a View.OnClickListener.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 531

design support library

public void onClickDone(View view) {

 CharSequence text = "Your order has been updated";

 int duration = ;

 Snackbar snackbar = Snackbar. (findViewById(R.id.coordinator), ,);

 snackbar.setAction("Undo", new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Toast toast = Toast. OrderActivity.this, "Undone!",);

 toast. ;

 }

 });

 snackbar. ;

}

Pool Puzzle
Your goal is to make OrderActivity’s

onClickDone() method display a
snackbar. The snackbar should include
an action, “Undo”, which shows a toast
when clicked. Take code snippets from
the pool and place them into the blank
lines in the code. You may not use the

same snippet more than once, and you
won’t need to use all the snippets.

LENGTH_SHORT

Snackbar

Toast

LENGTH_SHORT .

.

snackbar

toast

make makeText
makeText

make

show()

text

durationshow()

display()
display()

Note: each thing from
the pool can only be
used once!

532 Chapter 12

solution

public void onClickDone(View view) {

 CharSequence text = "Your order has been updated";

 int duration = ;

 Snackbar snackbar = Snackbar. (findViewById(R.id.coordinator), ,);

 snackbar.setAction("Undo", new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Toast toast = Toast. OrderActivity.this, "Undone!",);

 toast. ;

 }

 });

 snackbar. ;

}

Pool Puzzle Solution
Your goal is to make OrderActivity’s

onClickDone() method display a
snackbar. The snackbar should include
an action, “Undo”, which shows a toast
when clicked. Take code snippets from
the pool and place them into the blank
lines in the code. You may not use the

same snippet more than once, and you
won’t need to use all the snippets.

LENGTH_SHORTSnackbar

Toast LENGTH_SHORT

You didn’t need to
use these snippets.

.

.

snackbar

toast

make

makeText

makeText

make

show()

text duration

show()

display()
display()

you are here 4 533

design support library

package com.hfad.bitsandpizzas;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.support.v7.app.ActionBar;

import android.view.View;

import android.support.design.widget.Snackbar;

import android.widget.Toast;

public class OrderActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_order);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 ActionBar actionBar = getSupportActionBar();

 actionBar.setDisplayHomeAsUpEnabled(true);

 }

 public void onClickDone(View view) {

 CharSequence text = "Your order has been updated";

 int duration = Snackbar.LENGTH_SHORT;

 Snackbar snackbar = Snackbar.make(findViewById(R.id.coordinator), text, duration);

 snackbar.setAction("Undo", new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Toast toast = Toast.makeText(OrderActivity.this, "Undone!", Toast.LENGTH_SHORT);

 toast.show();

 }

 });

 snackbar.show();

 }

}

app/src/main

OrderActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The full code for OrderActivity.java
Here’s our full code for OrderActivity.java, including the code to add a snackbar
with an action. Update your version of the code to match our changes (in bold):

We’re using these new classes,
so you need to import them.

This method gets called when
the user clicks on the FAB.

Create
the
snackbar. Add an action to the snackbar.

If the user clicks on the
snackbar’s action, display a toast.

Display the snackbar.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

534 Chapter 12

test drive

Test drive the app
When we run the app, a FAB is displayed in OrderActivity.
When we click on the FAB, a snackbar is displayed and the
FAB moves up to accommodate it. When we click on the Undo
action on the snackbar, a toast is displayed.

Here’s the FAB
we created.

When you click on the
FAB, a snackbar is
displayed. The FAB
moves up out of the way.

When we click on the
snackbar’s Undo action,
a toast is displayed.

As you can see, snackbars have a lot in common with toasts, as
they’re both used to display messages to the user. But if you
want the user to be able to interact with the information you’re
showing them, choose a snackbar.

Scrolling toolbar
Collapsing toolbar
FAB
Snackbar

you are here 4 535

design support library
CHAPT

ER 12

Your Android Toolbox

You’ve got Chapter 12 under
your belt and now you’ve

added the Design Support
Library to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

 � Enable swipe navigation using a view
pager.

 � You tell a view pager about its pages by
implementing a fragment pager adapter.

 � Use the fragment pager adapter’s
getCount() method to tell the view
pager how many pages it should have. Use
its getItem() method to tell it which
fragment should appear on each page.

 � Add tab navigation by implementing a
tab layout. Put the toolbar and tab layout
inside an app bar layout in your layout
code, then attach the tab layout to the view
pager in your activity code.

 � The tab layout comes from the Android
Design Support Library. This library
helps you implement the material design
guidelines in your app.

 � Use a coordinator layout to coordinate
animations between views.

 � Add scrollable content the coordinator
layout can coordinate using a nested
scroll view.

 � Use a collapsing toolbar layout to add
a toolbar that collapses and grows in
response to user scroll actions.

 � Use a FAB (floating action button) to
promote common or important user
actions.

 � A snackbar lets you display short
messages that the user can interact with.

this is a new chapter 537

recycler views and card views13

Get Recycling

You’ve already seen how the humble list view is a key part of
most apps. But compared to some of the material design components we’ve seen,

it’s somewhat plain. In this chapter, we’ll introduce you to the recycler view, a more

advanced type of list that gives you loads more flexibility and fits in with the material

design ethos. You’ll see how to create adapters tailored to your data, and how to

completely change the look of your list with just two lines of code. We’ll also show you

how to use card views to give your data a 3D material design appearance.

538 Chapter 13

fancier lists

In Chapter 12, we updated the Bits and Pizzas app to include
components from the Design Support Library, including a tab layout,
FAB, and collapsing toolbar. We added these to help users navigate to
places in the app more easily, and to implement a consistent material
design look and feel. If you recall, material design is inspired by paper
and ink, and uses print-based design principles and movement to
reflect how real-world objects (such as index cards and pieces of paper)
look and behave. But there’s one key area we didn’t look at: lists.

We’re currently using list views in PizzaFragment,
PastaFragment, and StoresFragment to display the available
pizzas, pasta, and stores. These lists are very plain compared with the
rest of the app, and could do with some work to give them the same
look and feel.

Another disadvantage of list views is that they don’t implement nested
scrolling. In Chapter 12, we made MainActivity’s toolbar scroll in
response to the user scrolling content in the activity’s fragments. This
currently works for TopFragment, as it uses a nested scroll view. As
none of the other fragments use nested scrolling, however, the toolbar
remains fixed when the user tries to scroll their content.

To address these issues, we’re going to change PizzaFragment to
use a recycler view. This is a more advanced and flexible version
of a list view that implements nested scrolling. Instead of displaying
just the names of each pizza in a list view, we’ll use a recycler view to
display its name and image:

There’s still work to do on the Bits and Pizzas app

This is the current
PizzaFragment. It includes a list
of pizzas, but it looks quite plain.

This is the
recycler view we’re
going to add to
PizzaFragment.

When you scroll the
recycler view, the
toolbar moves up. This
matches the behavior
of TopFragment.

you are here 4 539

recycler views and card views

Recycler views from 10,000 feet
Before we dive into the code, let’s take a look at how recycler views
work. As a recycler view is more flexible than a list view, it takes a
lot more setting up.

Like list views, recycler views efficiently manage a small number
of views to give the appearance of a large collection of views that
extend beyond the screen. They allow you greater flexibility about
how the data is displayed than list views do.

A recycler view accesses its data using an adapter. Unlike a list
view, however, it doesn’t use any of the built-in Android adapters
such as array adapters. Instead, you have to write an adapter
of your own that’s tailored to your data. This includes
specifying the type of data, creating views, and binding the data to
the views.

Items are positioned in a recycler view using a layout manager.
There are a number of built-in layout managers you can use that
allow you to position items in a linear list or grid.

Here’s a diagram of all those elements put together:

Data
Source

Recycler
View

AdapterThis is the
data that’s
used in the
recycler view.

You need to write your own
adapter. This is where most
of the work is.

The recycler view uses
the adapter to display
the data. It includes
a layout manager to
specify how the data
should be positioned.

In our particular case, we’re going to create a recycler view to
display pizza names and images. We’ll go through the steps for how
to do this on the next page.

540 Chapter 13

steps

Do this!

We’re going to update
the Bits and Pizzas app
in this chapter, so open
your Bits and Pizzas
project in Android Studio.

Here’s what we’re going to do
There are five main steps we’ll go through to get the recycler
view working:

Add the pizza data to the project.
We’ll add images of the pizzas to the app, along with a new
Pizza class. This class will be the recycler view’s data source.

1

The first thing we’ll do is add the pizza data.

Create a card view for the pizza data.
We’re going to make each pizza in the recycler view look as
though it’s displayed on a separate card. To do this, we’ll use a
new type of view called a card view.

2

Create a recycler view adapter.
As we said on the previous page, when you use a recycler view you
need to write your own adapter for it. Our adapter needs to take
the pizza data and bind each item to a card view. Each card will
then be able to be displayed in the recycler view.

3

Add a recycler view to PizzaFragment.
After we’ve created the adapter, we’ll add the recycler
view to PizzaFragment. We’ll make it use the
adapter, and use a layout manager to display pizza data
in a two-column grid.

4

Make the recycler view respond to clicks.
We’ll create a new activity, PizzaDetailActivity,
and get it to start when the user clicks on one of the
pizzas. We’ll display details of the pizza in the activity.

5

This is
PizzaDetailActivity.

This
is the
recycler
view.

These are card views
displaying pizza data.

you are here 4 541

recycler views and card views

Add the Pizza class
We’ll get our data from a Pizza class, which we need to add. The
class defines an array of two pizzas, where each pizza has a name and
image resource ID. Switch to the Project view of Android Studio’s
explorer, highlight the com.hfad.bitsandpizzas package in
the app/src/main/java folder, then go to File→New...→Java class.
When prompted, name the class “Pizza” and make sure the package
name is com.hfad.bitsandpizzas. Finally, replace the code in
Pizza.java with the following:

Add the pizza data
We’ll start by adding the pizza images to the Bits and Pizzas
project. Download the files diavolo.jpg and funghi.jpg from https://
git.io/v9oet, then add them to the folder app/src/main/res/
drawable-nodpi. This folder should already exist in your project, as
we added an image to it in Chapter 12.

package com.hfad.bitsandpizzas;

public class Pizza {

 private String name;

 private int imageResourceId;

 public static final Pizza[] pizzas = {

 new Pizza("Diavolo", R.drawable.diavolo),

 new Pizza("Funghi", R.drawable.funghi)

 };

 private Pizza(String name, int imageResourceId) {

 this.name = name;

 this.imageResourceId = imageResourceId;

 }

 public String getName() {

 return name;

 }

 public int getImageResourceId() {

 return imageResourceId;

 }

}

app/src/main

Pizza.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Each Pizza has a name and image resource
ID. The image resource ID refers to the
pizza images we added to the project above.

The Pizza constructor

These are getters for the
private variables.

In a real app,
we might use a
database for this.
We’re using a Java
class here for
simplicity.

These are the
pizza images.

Pizza data
Card view
Adapter
Recycler view
Clicks

542 Chapter 13

add libraries

Display the pizza data in a card
The next thing we need to do is define a layout for the pizza data. This layout
will be used by the recycler view’s adapter to determine how each item in the
recycler view should look. We’re going to use a card view for this layout.

A card view is a type of frame layout that lets you display information on
virtual cards. Card views can have rounded corners and shadows to make it
look as though they’re positioned above their background. If we use a card
view for our pizza data, each pizza will look as though it’s displayed on a
separate card in the recycler view.

Add the CardView and RecyclerView Support Libraries
Card views and recycler views come from the CardView and RecyclerView
v7 Support Libraries, respectively, so before we can go any further, you need
to add them to your project as dependencies.

In Android Studio go to File→Project Structure. In the Project Structure
window, click on the “app” option and switch to the Dependencies tab. Then
click on the “+” button at the bottom or right side of the screen, choose the

“Library dependency” option, and add the CardView Library. Repeat these
steps to add the RecyclerView-v7 Library, then click on the OK button to
save your changes.

Now that you’ve added the Support Libraries, we’ll create a card view
that we can use for our pizza data.

You need to add
the CardView and
RecyclerView libraries.

These are card views. We’ll use
cards to display the pizza
data in the recycler view.

Pizza data
Card view
Adapter
Recycler view
Clicks

Make sure you add both libraries.

you are here 4 543

recycler views and card views

How to create a card view
We’re going to create a card view that displays an image with a
caption. We’ll use it here for the name and image of individual pizzas,
but you could also use the same layout for different categories of data
such as pasta or stores.

You create a card view by adding a <CardView> element to a
layout. If you want to use the card view in a recycler view (as we
do here), you need to create a new layout file for the card view. Do
this by highlighting the app/src/main/res/layout folder, and choosing
File→New→Layout resource file. When prompted, name the layout

“card_captioned_image”.

You add a card view to your layout using code like this:

<android.support.v7.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 android:id="@+id/card_view"

 android:layout_width="match_parent"

 android:layout_height="200dp"

 android:layout_margin="4dp"

 card_view:cardElevation="2dp"

 card_view:cardCornerRadius="4dp">

 ...

</android.support.v7.widget.CardView>

In the above code, we’ve added an extra namespace of:

xmlns:card_view="http://schemas.android.com/apk/res-auto"

so that we can give the card rounded corners and a drop shadow to
make it look higher than its background. You add rounded corners
using the card_view:cardCornerRadius attribute, and the
card_view:cardElevation attribute sets its elevation and adds
drop shadows.

Once you’ve defined the card view, you need to add any views you
want to display to it. In our case, we’ll add a text view and image view
to display the name and image of the pizza. We’ll show you the full
code for this on the next page.

<xml>
</xml>

app/src/main

card_captioned_
image.xml

BitsAndPizzas

res

layout

This defines the CardView.

This gives the CardView
rounded corners.

You add any views you want to
be displayed to the CardView.

Setting
the card's
elevation
gives it
a drop
shadow.

Pizza data
Card view
Adapter
Recycler view
Clicks

544 Chapter 13

layout code

The full card_captioned_image.xml code

<?xml version="1.0" encoding="utf-8"?>

<android.support.v7.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 android:id="@+id/card_view"

 android:layout_width="match_parent"

 android:layout_height="200dp"

 android:layout_margin="5dp"

 card_view:cardElevation="2dp"

 card_view:cardCornerRadius="4dp">

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical">

 <ImageView android:id="@+id/info_image"

 android:layout_height="0dp"

 android:layout_width="match_parent"

 android:layout_weight="1.0"

 android:scaleType="centerCrop"/>

 <TextView

 android:id="@+id/info_text"

 android:layout_marginLeft="4dp"

 android:layout_marginBottom="4dp"

 android:layout_height="wrap_content"

 android:layout_width="match_parent"/>

 </LinearLayout>

</android.support.v7.widget.CardView>

Note that the above layout doesn’t explicitly mention pizza
data. This means we can use the same layout for any data
items that consist of a caption and an image, such as pasta.

Now that we’ve created a layout for the card views, we’ll
move on to creating the recycler view’s adapter.

<xml>
</xml>

app/src/main

card_
captioned_
image.xml

BitsAndPizzas

res

layoutThe card view will be as wide as its
parent allows, and 200dp high.

The image will be as wide as the
CardView allows. We’re using centerCrop
to make sure the image scales uniformly.

We’ve put the ImageView and TextView
in a LinearLayout, as the CardView can
only have one direct child.

The CardView contains an
ImageView and a TextView.

Here’s the full code for card_captioned_image.xml (update your
version of the file to match ours):

This is what the CardView will look like when data’s been added to it. We’ll do this via the recycler view’s adapter.

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 545

recycler views and card views

How our recycler view adapter will work
As we said earlier, when you use a recycler view in your app, you need
to create a recycler view adapter. That’s because unlike a list view,
recycler views don’t use any of the built-in adapters that come with
Android. While writing your own adapter may seem like hard work,
on the plus side it gives you more flexibility than using a built-in one.

The adapter has two main jobs: to create each of the views that are
visible within the recycler view, and to bind each view to a piece of
data. In our case, the recycler view needs to display a set of cards, each
containing a pizza image and caption. This means that the adapter
needs to create each card and bind data to it.

We’ll create the recycler view adapter over the next few pages. Here
are the steps we’ll go through to create it:

We’ll start by adding a RecyclerView.Adapter class to our
project.

Specify what data the adapter should work with.
We want the adapter to work with the pizza data. Each pizza
has a name and image resource ID, so we’ll pass the adapter
an array of pizza names, and an array of image resource IDs.

1

Define the views the adapter should populate.
We want to use the data to populate a set of pizza cards
defined by card_captioned_image.xml. We then need to create
a set of these cards that will be displayed in the recycler view,
one card per pizza.

2

Bind the data to the cards.
Finally, we need to display the pizza data in the cards. To
make that happen, we need to populate the info_text text
view with the name of the pizza, and the info_image image
view with the pizza’s image.

3

Pizza data
Card view
Adapter
Recycler view
Clicks

Q: Why doesn’t Android provide ready-made adapters for
recycler views?

A: Because recycler view adapters don’t just specify the data
that will appear. They also specify the views that will be used for
each item in the collection. That means that recycler view adapters
are both more powerful, and less general, than list view adapters.

546 Chapter 13

CaptionedImagesAdapter code

Add a recycler view adapter

package com.hfad.bitsandpizzas;

import android.support.v7.widget.RecyclerView;

class CaptionedImagesAdapter extends

 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{

 public static class ViewHolder extends RecyclerView.ViewHolder {

 //Define the view to be used for each data item

 }

}

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

We’re extending the
RecyclerView class, so
we need to import it.

You create a recycler view adapter by extending the
RecyclerView.Adapter class and overriding various
methods; we’ll cover these over the next few pages. You also
need to define a ViewHolder as an inner class, which tells
the adapter which views to use for the data items.

We’re going to create a recycler view adapter called
CaptionedImagesAdapter. In Android Studio,
highlight the com.hfad.bitsandpizzas
package in the app/src/main/java folder, then go to
File→New...→Java class. When prompted, name the class

“CaptionedImagesAdapter” and make sure the package
name is com.hfad.bitsandpizzas. Then replace the
code in CaptionedImagesAdapter.java with the following:

As you can see, the ViewHolder inner class you define is
a key part of the adapter. We’ve left the ViewHolder class
empty for now, but we’ll come back to it later in the chapter.

Before we look in more detail at view holders, we’ll tell
the adapter what sort of data it should use by adding a
constructor.

You define the ViewHolder as
an inner class. We’ll complete
this later in the chapter.

The ViewHolder is used to specify which views should be used for each data item.

 Don’t worry if
Android Studio
gives you error
messages when you
add the above code
to your project.

It’s just warning you that the code isn’t
complete yet. We still need to override
various methods in our adapter code to
tell it how to behave, and we’ll do this
over the next few pages.

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 547

recycler views and card views

class CaptionedImagesAdapter extends

 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{

 private String[] captions;

 private int[] imageIds;

...

 public CaptionedImagesAdapter(String[] captions, int[] imageIds){

 this.captions = captions;

 this.imageIds = imageIds;

 }

}

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

We’ll use these variables
to hold the pizza data.

We’ll pass the data to the adapter using its constructor.

The length of the captions array equals the
number of data items in the recycler view.

...and implement the getItemCount() method
We also need to tell the adapter how many data items there are. You do
this by overriding the RecyclerViewAdapter getItemCount()
method. This returns an int value, the number of data items. We can
derive this from the number of captions we pass the adapter. Here’s the
code:

class CaptionedImagesAdapter extends

 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{

...

 @Override

 public int getItemCount(){

 return captions.length;

 }

}

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Next we’ll define the adapter’s view holder.

Pizza data
Card view
Adapter
Recycler view
Clicks

Tell the adapter
what data it should work with...
When you define a recycler view adapter, you need to tell it what sort of
data it should use. You do this by defining a constructor that includes the
data types you want the adapter to use as parameters.

In our case, we want the adapter to take String captions and int image
IDs. We’ll therefore add String[] and int[] parameters to the
constructor, and save the arrays as private variables. Here’s the code that
does this; you can either update your version of CaptionedImagesAdapter.java
now, or wait until we show you the full adapter code later in the chapter.

548 Chapter 13

define view holder

Define the adapter’s view holder
The view holder is used to define what view or views the
recycler view should use for each data item it’s given. You
can think of it as a holder for the views you want the recycler
view to display. In addition to views, the view holder contains
extra information that’s useful to the recycler view, such as its
position in the layout.

In our case, we want to display each item of pizza data on a
card, which means we need to specify that the adapter’s view
holder uses a card view. Here’s the code to do this (we’ll show
you the full adapter code later in the chapter):

...

import android.support.v7.widget.CardView;

class CaptionedImagesAdapter extends

 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{

...

 public static class ViewHolder extends RecyclerView.ViewHolder {

 private CardView cardView;

 public ViewHolder(CardView v) {

 super(v);

 cardView = v;

 }

 }

}

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Our recycler view needs to display CardViews,
so we specify that our ViewHolder contains
CardViews. If you want to display another type
of data in the recycler view, you define it here.

When you create a view holder, you must call the ViewHolder
super constructor using:

This is because the ViewHolder superclass includes metadata
such as the item’s position in the recycler view, and you need this
information for the adapter to work properly.

Now that we’ve defined our view holders, we need to tell the
adapter how to construct one. We’ll do this by overriding the
adapter’s onCreateViewHolder() method.

super(v);

ViewHolder

CardView

Each of our ViewHolders will
contain a CardView. We created
the layout for this CardView
earlier in the chapter.We’re using the

CardView class,
so we need to
import it.

you are here 4 549

recycler views and card views

@Override

public CaptionedImagesAdapter.ViewHolder onCreateViewHolder(

 ViewGroup parent, int viewType){

 CardView cv = (CardView) LayoutInflater.from(parent.getContext())

 .inflate(R.layout.card_captioned_image, parent, false);

 return new ViewHolder(cv);

}

Override the onCreateViewHolder() method

@Override

public CaptionedImagesAdapter.ViewHolder onCreateViewHolder(

 ViewGroup parent, int viewType){

 //Code to instantiate the ViewHolder

}

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The onCreateViewHolder() method gets called when
the recycler view requires a new view holder. The recycler
view calls the method repeatedly when the recycler view is
first constructed to build the set of view holders that will be
displayed on the screen.

The method takes two parameters: a ViewGroup parent
object (the recycler view itself) and an int parameter called
viewType, which is used if you want to display different
kinds of views for different items in the list. It returns a view
holder object. Here’s what the method looks like:

Now that the adapter can create view holders, we need to get
it to populate the card views they contain with data.

Specify what layout to use for the
contents of the ViewHolder.

This method gets
called when the
recycler view needs to
create a view holder.

We need to add code to the method to instantiate the view
holder. To do this, we need to call the ViewHolder’s
constructor, which we defined on the previous page. The
constructor takes one parameter, a CardView. We’ll create
the CardView from the card_captioned_image.xml layout we
created earlier in the chapter using this code:

CardView cv = (CardView) LayoutInflater.from(parent.getContext())

 .inflate(R.layout.card_captioned_image, parent, false);

Here’s the full code for the onCreateViewHolder()
method (we’ll add this to the adapter later):

Get a LayoutInflater object.

Use the LayoutInflator to turn the
layout into a CardView. This is nearly
identical to code you've already seen
in the onCreateView() of fragments.

Pizza data
Card view
Adapter
Recycler view
Clicks

550 Chapter 13

add data

Add the data to the card views
You add data to the card views by implementing the adapter’s
onBindViewHolder() method. This gets called whenever the
recycler view needs to display data in a view holder. It takes two
parameters: the view holder the data needs to be bound to, and
the position in the data set of the data that needs to be bound.

Our card view contains two views, an image view with an ID of
info_image, and a text view with an ID of info_text. We’ll
populate these with data from the captions and imageIds
arrays. Here’s the code that will do that:

...

import android.widget.ImageView;

import android.widget.TextView;

import android.graphics.drawable.Drawable;

import android.support.v4.content.ContextCompat;

class CaptionedImagesAdapter extends

 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{

 private String[] captions;

 private int[] imageIds;

 ...

 @Override

 public void onBindViewHolder(ViewHolder holder, int position){

 CardView cardView = holder.cardView;

 ImageView imageView = (ImageView)cardView.findViewById(R.id.info_image);

 Drawable drawable =

 ContextCompat.getDrawable(cardView.getContext(), imageIds[position]);

 imageView.setImageDrawable(drawable);

 imageView.setContentDescription(captions[position]);

 TextView textView = (TextView)cardView.findViewById(R.id.info_text);

 textView.setText(captions[position]);

 }

}

That’s all the code we need for our adapter. We’ll show you the
full code over the next couple of pages.

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Display the image
in the ImageView.

Display the caption in the TextView.

We added these variables earlier.
They contain the captions and
image resource IDs of the pizzas.

CardView

TextView

ImageView

Each CardView contains a TextView and ImageView. We need to populate these with the caption and image of each pizza.

id: info_image

id: info_text

We’re using these
extra classes, so we
need to import them.

Pizza data
Card view
Adapter
Recycler view
Clicks

The recycler view calls this method when it wants to
use (or reuse) a view holder for a new piece of data.

you are here 4 551

recycler views and card views

package com.hfad.bitsandpizzas;

import android.support.v7.widget.RecyclerView;

import android.support.v7.widget.CardView;

import android.view.ViewGroup;

import android.view.LayoutInflater;

import android.widget.ImageView;

import android.widget.TextView;

import android.graphics.drawable.Drawable;

import android.support.v4.content.ContextCompat;

class CaptionedImagesAdapter extends

 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{

 private String[] captions;

 private int[] imageIds;

 public static class ViewHolder extends RecyclerView.ViewHolder {

 private CardView cardView;

 public ViewHolder(CardView v) {

 super(v);

 cardView = v;

 }

 }

 public CaptionedImagesAdapter(String[] captions, int[] imageIds){

 this.captions = captions;

 this.imageIds = imageIds;

 }

The full code for CaptionedImagesAdapter.java

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

These are the classes
we’re using, so we
need to import them.

Each ViewHolder will display a CardView.

Pass data to the adapter
in its constructor.

Here’s our complete code for the adapter. Update your
version of CaptionedImagesAdapter.java so that it matches
ours.

The code continues
on the next page.

We’re using these variables for the
captions and image resource IDs.

Pizza data
Card view
Adapter
Recycler view
Clicks

552 Chapter 13

code, continued

 @Override

 public int getItemCount(){

 return captions.length;

 }

 @Override

 public CaptionedImagesAdapter.ViewHolder onCreateViewHolder(

 ViewGroup parent, int viewType){

 CardView cv = (CardView) LayoutInflater.from(parent.getContext())

 .inflate(R.layout.card_captioned_image, parent, false);

 return new ViewHolder(cv);

 }

 @Override

 public void onBindViewHolder(ViewHolder holder, int position){

 CardView cardView = holder.cardView;

 ImageView imageView = (ImageView)cardView.findViewById(R.id.info_image);

 Drawable drawable =

 ContextCompat.getDrawable(cardView.getContext(), imageIds[position]);

 imageView.setImageDrawable(drawable);

 imageView.setContentDescription(captions[position]);

 TextView textView = (TextView)cardView.findViewById(R.id.info_text);

 textView.setText(captions[position]);

 }

}

Use the layout we created
earlier for the CardViews.

Populate the CardView’s ImageView
and TextView with data.

The number of data items app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

The full CaptionedImagesAdapter.java
code (continued)

That’s all the code we need for our adapter. So what’s
next?

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 553

recycler views and card views

Create the recycler view
So far we’ve created a card view layout that displays captioned
images, and an adapter that creates the cards and populates them
with data. The next thing we need to do is create the recycler view,
which will pass pizza data to the adapter so that it can populate the
cards with the pizza images and captions. The recycler view will
then display the cards.

We’re going to add the recycler view to our existing
PizzaFragment. Whenever the user clicks on the Pizzas tab in
MainActivity, the pizzas will be displayed:

Add a layout for PizzaFragment
Before we can add the recycler view, we need to add a new layout
file to our project for PizzaFragment to use. This is because
we intially created PizzaFragment as a ListFragment, and
these define their own layout.

To add the layout file, highlight the app/src/main/res/layout folder
in Android Studio, and choose File→New→Layout resource file.
When prompted, name the layout “fragment_pizza”.

This is what the recycler view in PizzaFragment
will look like. It will
display the pizza cards
in a two-column grid.

Pizza data
Card view
Adapter
Recycler view
Clicks

554 Chapter 13

layout code

Add the RecyclerView to
PizzaFragment’s layout
You add a recycler view to a layout using the <RecyclerView>
element from the RecyclerView Support Library.

Our PizzaFragment layout only needs to display a single
recycler view, so here’s the full code for fragment_pizza.xml (update
your version of the code to match ours):

<android.support.v7.widget.RecyclerView

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/pizza_recycler"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:scrollbars="vertical" />

You add scrollbars to the recycler view using the
android:scrollbars attribute. We’ve set this to
"vertical" because we want our recycler view to be able to
scroll vertically. We’ve also given the recycler view an ID so that
we can get a reference to it in our PizzaFragment code; we
need this in order to control its behavior.

Now that we’ve added a recycler view to PizzaFragment’s
layout, we need to update our fragment code to get the recycler
view to use the adapter we created.

Get the recycler view to use the adapter
To get the recycler view to use the adapter, there are two things
we need to do: tell the adapter what data to use, then attach
the adapter to the recycler view. We can tell the adapter what
data to use by passing it the pizza names and image resource
IDs via its constructor. We’ll then use the RecyclerView
setAdapter() method to assign the adapter to the recycler
view.

The code to do this is all code that you’ve seen before, so we’ll
show you the full PizzaFragment code on the next page.

<xml>
</xml>

app/src/main

fragment_
pizza.xml

BitsAndPizzas

res

layout

This adds a vertical scrollbar.

This defines the RecyclerView.

We’ve given the recycler view an ID so
that we can refer to it in our Java code.

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 555

recycler views and card views

package com.hfad.bitsandpizzas;

import android.os.Bundle;
import android.support.v4.app.ListFragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.support.v7.widget.RecyclerView;

public class PizzaFragment extends ListFragment {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ArrayAdapter<String> adapter = new ArrayAdapter<>(
 inflater.getContext(),
 android.R.layout.simple_list_item_1,
 getResources().getStringArray(R.array.pizzas));
 setListAdapter(adapter);
 return super.onCreateView(inflater, container, savedInstanceState);
 RecyclerView pizzaRecycler = (RecyclerView)inflater.inflate(
 R.layout.fragment_pizza, container, false);

 String[] pizzaNames = new String[Pizza.pizzas.length];
 for (int i = 0; i < pizzaNames.length; i++) {
 pizzaNames[i] = Pizza.pizzas[i].getName();
 }

 int[] pizzaImages = new int[Pizza.pizzas.length];
 for (int i = 0; i < pizzaImages.length; i++) {
 pizzaImages[i] = Pizza.pizzas[i].getImageResourceId();
 }

 CaptionedImagesAdapter adapter = new CaptionedImagesAdapter(pizzaNames, pizzaImages);
 pizzaRecycler.setAdapter(adapter);
 return pizzaRecycler;
 }
}

The full PizzaFragment.java code
Here’s our full code for PizzaFragment.java (update your
version of the code to match our changes):

There’s just one more thing we need to do: specify how the
views in the recycler view should be arranged.

app/src/main

Pizza
Fragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Use the layout we updated
on the previous page.

Add the pizza names to an array
of Strings, and the pizza images
to an array of ints.

Pass the arrays to the adapter.

We’re changing PizzaFragment to be
a Fragment, not a ListFragment.

We’re no longer using an
ArrayAdapter, so delete this line.

We need to import the
RecyclerView class.

Change this from ListFragment to Fragment.

Delete these lines,
as they’re no longer
necessary.

Pizza data
Card view
Adapter
Recycler view
Clicks

556 Chapter 13

layout managers

Linear layout manager
This arranges items in a
vertical or horizontal list.

Grid layout manager
This arranges items in a grid.

Staggered grid
layout manager

This arranges
unevenly sized items
in a staggered grid.

A recycler view uses a layout
manager to arrange its views
One of the ways in which a recycler view is more flexible than
a list view is in how it arranges its views. A list view displays its
views in a single vertical list, but a recycler view gives you more
options. You can choose to display views in a linear list, a grid, or
a staggered grid.

You specify how to arrange the views using a layout manager.
The layout manager positions views inside a recycler view:
the type of layout manager you use determines how items are
positioned. Here are some examples:

On the next page, we’ll show you how to specify which layout
manager to use in your recycler view.

Pizza data
Card view
Adapter
Recycler view
Clicks

We don’t cover how to do it, but you can also
write your own layout managers. If you search
for “android recyclerview layoutmanager” you’ll
find many third-party ones you can use in your
code, from carousels to circles.

you are here 4 557

recycler views and card views

LinearLayoutManager layoutManager = new LinearLayoutManager(getActivity());

pizzaRecycler.setLayoutManager(layoutManager);

Specify the layout manager
You tell the recycler view which layout manager it should use by
creating a new instance of the type of layout manager you want to
use, then attaching it to the recycler view.

The LinearLayoutManager constructor takes one parameter, a
Context. If you’re using the code in an activity, you’d normally use this to
pass it the current activity (a context). The above code uses getActivity()
instead, as our recycler view is in a fragment.

GridLayoutManager layoutManager = new GridLayoutManager(getActivity(), 2);

Let’s add a layout manager to our recycler view.

This needs to be a Context.
If you use this code in
an activity, you use “this”
instead of getActivity().

This says that the
GridLayoutManager should be two columns wide.

Linear layout manager
To tell the recycler view that you want it to display its views in a linear list,
you’d use the following code:

Grid layout manager
You use similar code to specify a grid layout manager, except that you
need to create a new GridLayoutManager object instead. The
GridLayoutManager takes two parameters in its constructor: a Context,
and an int value specifying the number of columns the grid should have.

StaggeredGridLayoutManager layoutManager =

 new StaggeredGridLayoutManager(2, StaggeredGridLayoutManager.VERTICAL);

This gives the
staggered grid layout a
vertical orientation.

Staggered grid layout manager
You tell the recycler view to use a staggered grid layout manager by creating
a new StaggeredGridLayoutManager object. Its constructor takes two
parameters: an int value for the number of columns or rows, and an int
value for its orientation. As an example, here’s how you’d specify a staggered
grid layout oriented vertically with two rows:

GridLayoutManager layoutManager =

 new GridLayoutManager(getActivity(), 1, GridLayoutManager.HORIZONTAL, false);

You can also change the orientation of the grid. To do this, you add two more
parameters to the constructor: the orientation, and whether you want the
views to appear in reverse order.

Gives the GridLayoutManager
a horizontal orientation.

If you wanted to display the list in reverse order, you’d set this to true.

Pizza data
Card view
Adapter
Recycler view
Clicks

558 Chapter 13

PizzaFragment code

package com.hfad.bitsandpizzas;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.support.v7.widget.RecyclerView;

import android.support.v7.widget.GridLayoutManager;

public class PizzaFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 RecyclerView pizzaRecycler = (RecyclerView)inflater.inflate(

 R.layout.fragment_pizza, container, false);

 String[] pizzaNames = new String[Pizza.pizzas.length];

 for (int i = 0; i < pizzaNames.length; i++) {

 pizzaNames[i] = Pizza.pizzas[i].getName();

 }

 int[] pizzaImages = new int[Pizza.pizzas.length];

 for (int i = 0; i < pizzaImages.length; i++) {

 pizzaImages[i] = Pizza.pizzas[i].getImageResourceId();

 }

 CaptionedImagesAdapter adapter = new CaptionedImagesAdapter(pizzaNames, pizzaImages);

 pizzaRecycler.setAdapter(adapter);

 GridLayoutManager layoutManager = new GridLayoutManager(getActivity(), 2);
 pizzaRecycler.setLayoutManager(layoutManager);
 return pizzaRecycler;

 }

}

The full PizzaFragment.java code
We’re going to use a GridLayoutManager to display the
pizza data in a grid. Here’s the full code for PizzaFragment.java,
update your version of the code to match our changes (in bold):

Next we’ll examine what happens when the code runs, then take
our app for a test drive.

We’re using
this class, so
we need to
import it.

We’re going to display the
CardViews in a grid with
two columns, so we’re using
a GridLayoutManager.

app/src/main

Pizza
Fragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 559

recycler views and card views

What happens when the code runs

The user clicks on the Pizzas tab in MainActivity.
PizzaFragment is displayed, and its onCreateView() method runs.

1

The PizzaFragment onCreateView() method creates a
GridLayoutManager and assigns it to the recycler view.
The GridLayoutManager means that the views will be displayed in a grid. As the
recycler view has a vertical scrollbar, the list will be displayed vertically.

3

The PizzaFragment onCreateView() method creates a new
CaptionedImagesAdapter.
The method passes the names and images of the pizzas to the adapter using the
adapter’s constructor, and sets the adapter to the recycler view.

2

MainActivity PizzaFragment

onCreateView()

PizzaFragment

RecyclerView

CaptionedImagesAdapter

Pizza data

PizzaFragment

RecyclerView

GridLayoutManager

CaptionedImagesAdapter

Pizza data
Card view
Adapter
Recycler view
Clicks

560 Chapter 13

what happens

The story continues

The adapter creates a view holder for each of the
CardViews the recycler view needs to display.

4

The adapter then binds the pizza names and images to the text view
and image view in each card view.

5

ViewHolder

ViewHolder

CardView

CardView

CaptionedImagesAdapter

ViewHolder

ViewHolder

CardView

CardView

CaptionedImagesAdapter

Diavolo data

Funghi data

Diavolo data

Funghi data

TextView

ImageView

“Diavolo”

R.drawable.Diavolo

TextView

ImageView

“Funghi”

R.drawable.Funghi

Let’s run the app and see how it looks.

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 561

recycler views and card views

Test drive the app
When we run the app, MainActivity is displayed.
When we click on or swipe to the Pizzas tab, the pizzas
are displayed in a grid. When we scroll the pizza data,
MainActivity’s toolbar responds.

As you can see, adding a recycler view is more involved
than adding a list view, but it gives you a lot more flexibility.
Most of the work comes from having to write a bespoke
recycler view adapter, but you can reuse it elsewhere in
your app. As an example, suppose you wanted to display
pasta cards in a recycler view. You would use the same
adapter we created earlier, but pass it pasta data instead of
pizzas.

Before we move on, have a go at the following exercise.

When you click on the Pizzas
tab, PizzaFragment is displayed.
It contains this grid of card
views populated with pizza data.

When you scroll the recycler view, the toolbar scrolls
too. This is because recycler views allow nested scrolling, and in Chapter 12 we told the toolbar to respond to nested scroll events.

Pizza data
Card view
Adapter
Recycler view
Clicks

562 Chapter 13

magnets

package com.hfad.bitsandpizzas;

public class Pasta {

 private String name;

 private int imageResourceId;

 public static final [] pastas = {

 new Pasta("Spaghetti Bolognese", R.drawable.spag_bol),

 new Pasta("Lasagne", R.drawable.lasagne)

 };

 private Pasta(String name, int imageResourceId) {

 this.name = name;

 this.imageResourceId = imageResourceId;

 }

 public String {

 return name;

 }

 public int {

 return imageResourceId;

 }

}

<

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/pasta_recycler"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

RecyclerView Magnets
Use the magnets on this page and the next to create a new recycler
view for the pasta dishes. The recycler view should contain a grid of card
views, each one displaying the name and image of a pasta dish.

app/src/main

Pasta.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

<xml>
</xml>

app/src/main

fragment_
pasta.xml

BitsAndPizzas

res

layout

RecyclerView

android.support.v7.widget.RecyclerView

getImageResourceId()

getName() Pasta

android:scrollbars

=

"vertical"

This is the code for the Pasta class.

This is the code for the layout.

you are here 4 563

recycler views and card views

...

public class PastaFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 RecyclerView pastaRecycler = (RecyclerView)inflater.inflate(

 , container, false);

 String[] pastaNames = new String[Pasta.pastas.length];

 for (int i = 0; i < pastaNames.length; i++) {

 pastaNames[i] = Pasta.pastas[i].getName();

 }

 int[] pastaImages = new int[Pasta.pastas.length];

 for (int i = 0; i < pastaImages.length; i++) {

 pastaImages[i] = Pasta.pastas[i].getImageResourceId();

 }

 adapter =

 new (pastaNames,);

 pastaRecycler.setAdapter(adapter);

 layoutManager = new (getActivity(), 2);

 pastaRecycler.setLayoutManager(layoutManager);

 return pastaRecycler;

 }

}

app/src/main

Pasta
Fragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

ArrayAdapter

ArrayAdapter

GridLayout

GridLayout

R.layout.fragment_p
asta

CaptionedImagesAdapter

CaptionedImagesAdapter

pastaImages
GridLayoutManager

GridLayoutManager

This is the code for PastaFragment.java.

564 Chapter 13

magnets solution

package com.hfad.bitsandpizzas;

public class Pasta {

 private String name;

 private int imageResourceId;

 public static final [] pastas = {

 new Pasta("Spaghetti Bolognese", R.drawable.spag_bol),

 new Pasta("Lasagne", R.drawable.lasagne)

 };

 private Pasta(String name, int imageResourceId) {

 this.name = name;

 this.imageResourceId = imageResourceId;

 }

 public String {

 return name;

 }

 public int {

 return imageResourceId;

 }

}

<

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/pasta_recycler"

 android:layout_width="match_parent"

 android:layout_height="match_parent"/>

RecyclerView Magnets Solution
Use the magnets on this page and the next to create a new recycler
view for the pasta dishes. The recycler view should contain a grid of card
views, each one displaying the name and image of a pasta dish.

app/src/main

Pasta.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

<xml>
</xml>

app/src/main

fragment_
pasta.xml

BitsAndPizzas

res

layout

RecyclerView

android.support.v7.widget.RecyclerView

getImageResourceId()

getName()

Pasta

android:scrollbars = "vertical"

It’s an array of Pasta objects.

These methods are used by PastaFragment.java.

Add the recycler view to the layout.

Add vertical scrollbars.

This is a spare magnet.

you are here 4 565

recycler views and card views

...

public class PastaFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 RecyclerView pastaRecycler = (RecyclerView)inflater.inflate(

 , container, false);

 String[] pastaNames = new String[Pasta.pastas.length];

 for (int i = 0; i < pastaNames.length; i++) {

 pastaNames[i] = Pasta.pastas[i].getName();

 }

 int[] pastaImages = new int[Pasta.pastas.length];

 for (int i = 0; i < pastaImages.length; i++) {

 pastaImages[i] = Pasta.pastas[i].getImageResourceId();

 }

 adapter =

 new (pastaNames,);

 pastaRecycler.setAdapter(adapter);

 layoutManager = new (getActivity(), 2);

 pastaRecycler.setLayoutManager(layoutManager);

 return pastaRecycler;

 }

}

app/src/main

Pasta
Fragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

CaptionedImagesAdapter

CaptionedImagesAdapter pastaImages

GridLayoutManager GridLayoutManager

Use this layout.

We’re using the
CaptionedImagesAdapter we wrote earlier.

Pass the pasta names and
images to the adapter.

Use the GridLayoutManager to
display the card views in a grid.

ArrayAdapterArrayAdapter

GridLayout

GridLayout

You didn’t need to use
these magnets.

R.layout.fragment_p
asta

566 Chapter 13

clicks

Make the recycler view respond to clicks

Before we can get the recycler view to respond to
clicks, we need to create PizzaDetailActivity.

When the user clicks
on one of the pizzas
in the recycler view,
we’ll display details
of that pizza in
PizzaDetailActivity.

Pizza data
Card view
Adapter
Recycler view
Clicks

So far, we’ve added a recycler view to PizzaFragment, and
created an adapter to populate it with pizza data.

The next thing we need to do is get the recycler
view to respond to clicks. We’ll create a new activity,
PizzaDetailActivity, which will start when the user
clicks on one of the pizzas. The name and image of the pizza
the user selects will be displayed in the activity:

you are here 4 567

recycler views and card views

Create PizzaDetailActivity
To create PizzaDetailActivity, click on the com.hfad.
bitsandpizzas package in the Bits and Pizzas folder structure,
then go to File→New...→Activity→Empty Activity. Name the activity

“PizzaDetailActivity”, name the layout “activity_pizza_detail”, make sure
the package name is com.hfad.bitsandpizzas, and check the
Backwards Compatibility (AppCompat) option.

Now let’s update PizzaDetailActivity’s layout. Open activity_
pizza_detail.xml, and update it with the code below, which adds a text view
and image view to the layout that we’ll use to display details of the pizza:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.bitsandpizzas.PizzaDetailActivity">

 <include

 layout="@layout/toolbar_main"

 android:id="@+id/toolbar" />

 <TextView

 android:id="@+id/pizza_text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textAppearance="?android:attr/textAppearanceLarge" />

 <ImageView

 android:id="@+id/pizza_image"

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:adjustViewBounds="true"/>

</LinearLayout>

We’ll look at what we need the code for PizzaDetailActivity.java to
do on the next page.

We’ll put the name of the pizza in the TextView.

<xml>
</xml>

app/src/main

activity_pizza_
detail.xml

BitsAndPizzas

res

layoutWe'll add a toolbar
to the activity.

We'll put the pizza
image in the ImageView.

Pizza data
Card view
Adapter
Recycler view
Clicks

If prompted for
the activity’s source
language, select the
option for Java.

568 Chapter 13

<manifest ...>

 <application

 ...>

 <activity

 android:name=".MainActivity">

 ...

 </activity>

 <activity

 android:name=".OrderActivity"

 ...

 </activity>

 <activity

 android:name=".PizzaDetailActivity"

 android:parentActivityName=".MainActivity">

 </activity>

 </application>

</manifest>

parental responsibilities

What PizzaDetailActivity needs to do

 PizzaDetailActivity’s main purpose is to display the name
and image of the pizza the user has selected. To do this, we’ll get
the selected pizza’s ID from the intent that starts the activity. We’ll
pass this to PizzaDetailActivity from PizzaFragment
when the user clicks on one of the pizzas in the recycler view.

¥

There are a couple of things that we need
PizzaDetailActivity to do:

 We’ll enable the PizzaDetailActivity’s Up button so that
when the user clicks on it, they’ll get returned to MainActivity.

¥

Next, we’ll update PizzaDetailActivity.java. You’ve already seen how to
do everything we need, so we’re just going to show you the full code.

<xml>
</xml>

app/src/main

AndroidManifest.xml

BitsAndPizzas

This sets MainActivity as
PizzaDetailActivity’s parent.

Update AndroidManifest.xml to give
PizzaDetailActivity a parent
We’ll start by updating AndroidManifest.xml to specify that
MainActivity is the parent of PizzaDetailActivity.
This means that when the user clicks on the Up button in
PizzaDetailActivity’s app bar, MainActivity will be
displayed. Here’s our version of AndroidManifest.xml (update your
version to match our changes in bold):

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 569

recycler views and card views

The code for PizzaDetailActivity.java
Here’s the full code for PizzaDetailActivity.java; update your version of
the code to match ours:

package com.hfad.bitsandpizzas;

import android.support.v7.app.ActionBar;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.widget.ImageView;

import android.widget.TextView;

import android.support.v4.content.ContextCompat;

public class PizzaDetailActivity extends AppCompatActivity {

 public static final String EXTRA_PIZZA_ID = "pizzaId";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_pizza_detail);

 //Set the toolbar as the activity's app bar

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 ActionBar actionBar = getSupportActionBar();

 actionBar.setDisplayHomeAsUpEnabled(true);

 //Display details of the pizza

 int pizzaId = (Integer)getIntent().getExtras().get(EXTRA_PIZZA_ID);

 String pizzaName = Pizza.pizzas[pizzaId].getName();

 TextView textView = (TextView)findViewById(R.id.pizza_text);

 textView.setText(pizzaName);

 int pizzaImage = Pizza.pizzas[pizzaId].getImageResourceId();

 ImageView imageView = (ImageView)findViewById(R.id.pizza_image);

 imageView.setImageDrawable(ContextCompat.getDrawable(this, pizzaImage));

 imageView.setContentDescription(pizzaName);

 }

}

app/src/main

PizzaDetailActivity.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

We’re using these
classes, so we need
to import them.

Enable the Up button.

From the intent,
get the pizza the
user chose.

Use the
pizza ID to
populate the
TextView and
ImageView.

We’ll use this constant to pass the ID of the pizza as extra information in the intent.

Pizza data
Card view
Adapter
Recycler view
Clicks

570 Chapter 13

RecyclerView hierarchy

Get a recycler view to respond to clicks

While this gives recycler views more flexibility, it also means that with a
recycler view you have to do a lot more of the work yourself. So how do
we get our recycler view to respond to clicks?

android.support.v7.widget.
RecyclerView

...

android.widget.
AdapterView

...

android.widget.
AbsListView

...

android.widget.ListView

...

android.view.View

...

android.view.ViewGroup

...

Next, we need to get items in the recycler view to respond to clicks so
that we can start PizzaDetailActivity when the user clicks on a
particular pizza.

When you create a navigation list with a list view, you can respond to click
events within the list by giving the list view an OnItemClickListener.
The list view then listens to each of the views that it contains, and if any of
them are clicked, the list view calls its OnItemClickListener. That
means that you can respond to list item clicks with very little code.

List views are able to do this because they inherit a bunch of functionality
from a deep hierarchy of superclasses. Recycler views, however, don’t
have such a rich set of built-in methods, as they don’t inherit from the
same superclasses. Here’s a class hierarchy diagram for the ListView
and RecyclerView classes:

The ListView class
inherits from the
AdapterView and
AbsListView classes
too.

ListView and
RecyclerView both
inherit from the View
and ViewGroup classes.

The RecyclerView is
a direct subclass of
ViewGroup, so it doesn't
inherit the extra
functionality that a
ListView has.

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 571

recycler views and card views

You can listen for view events from the adapter
To get your recycler view to respond to click events, you need access
to the views that appear inside it. These views are all created inside the
recycler view’s adapter. When a view appears onscreen, the recycler view
calls the CaptionedImagesAdapter’s onBindViewHolder()
method to make the card view match the details of the list item.

When the user clicks on one of the pizza cards in the recycler view, we
want to start PizzaDetailActivity, passing it the position of the
pizza that was clicked. That means you could put some code inside the
adapter to start an activity like this:

class CaptionedImagesAdapter extends
 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{
...
 @Override
 public void onBindViewHolder(ViewHolder holder, final int position){
 final CardView cardView = holder.cardView;
 ImageView imageView = (ImageView)cardView.findViewById(R.id.info_image);
 Drawable drawable =
 ContextCompat.getDrawable(cardView.getContext(), imageIds[position]);
 imageView.setImageDrawable(drawable);
 imageView.setContentDescription(captions[position]);
 TextView textView = (TextView)cardView.findViewById(R.id.info_text);
 textView.setText(captions[position]);
 cardView.setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View v) {
 Intent intent = new Intent(cardView.getContext(), PizzaDetailActivity.class);
 intent.putExtra(PizzaDetailActivity.EXTRA_PIZZA_ID, position);
 cardView.getContext().startActivity(intent);
 }
 });
 }
}

But just because you could write this code, it doesn’t necessarily
mean that you should.

You could respond to a click event by adding code to your adapter
class. But can you think of a reason why you wouldn’t want to do that?

Adding this code to the adapter
would start PizzaDetailActivity
when a CardView is clicked.

Don't update
the adapter
code just yet.
This is just
an example.

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Pizza data
Card view
Adapter
Recycler view
Clicks

572 Chapter 13

reusable adapters

Keep your adapters reusable
If you deal with click events in the CaptionedImagesAdapter
class, you’ll limit how that adapter can be used. Think about the app we’re
building. We want to display lists of pizzas, pasta, and stores. In each
case, we’ll probably want to display a list of captioned images. If we
modify the CaptionedImagesAdapter class so that clicks always
send the user to an activity that displays details of a single pizza, we
won’t be able to use the CaptionedImagesAdapter for the pasta
and stores lists. We’ll have to create a separate adapter for each one.

Decouple your adapter with an interface
Instead of that approach, we’ll keep the code that starts the activity
outside of the adapter. When someone clicks on an item in the list,
we want the adapter to call the fragment that contains the list, and
then the fragment code can fire off an intent to the next activity. That
way we can reuse CaptionedImagesAdapter for the pizzas,
pasta, and stores lists, and in each case leave it to the fragments to
decide what happens in response to a click.

We’re going to use a similar pattern to the one that allowed us to
decouple a fragment from an activity in Chapter 9. We’ll create a
Listener interface inside CaptionedImagesAdapter like this:

Let’s start by adding code to CaptionedImagesAdapter.java.

interface Listener {

 void onClick(int position);

}

We’ll call the listener’s onClick() method whenever one of the
card views in the recycler view is clicked. We’ll then add code to
PizzaFragment so that it implements the interface; this will allow
the fragment to respond to clicks and start an activity.

This is what will happen at runtime:

 A user will click on a card view in the recycler view.1

 The Listener’s onClick() method will be called.2

 The onClick() method will be implemented in PizzaFragment. Code
in this fragment will start PizzaDetailActivity.

3

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 573

recycler views and card views

Add the interface to the adapter
We’ve updated our CaptionedImagesAdapter.java code to add the Listener
interface and call its onClick() method whenever one of the card views is
clicked. Apply the changes below (in bold) to your code, then save your work:

package com.hfad.bitsandpizzas;

import android.support.v7.widget.RecyclerView;

import android.support.v7.widget.CardView;

import android.view.ViewGroup;

import android.view.LayoutInflater;

import android.widget.ImageView;

import android.widget.TextView;

import android.graphics.drawable.Drawable;

import android.support.v4.content.ContextCompat;

import android.view.View;

class CaptionedImagesAdapter extends

 RecyclerView.Adapter<CaptionedImagesAdapter.ViewHolder>{

 private String[] captions;

 private int[] imageIds;

 private Listener listener;

 interface Listener {
 void onClick(int position);
 }

 public static class ViewHolder extends RecyclerView.ViewHolder {

 private CardView cardView;

 public ViewHolder(CardView v) {

 super(v);

 cardView = v;

 }

 }

 public CaptionedImagesAdapter(String[] captions, int[] imageIds){

 this.captions = captions;

 this.imageIds = imageIds;

 }

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Add the interface.

Add the Listener as a private variable.

We’re using this extra class, so we need to import it.

The code continues
on the next page.

Pizza data
Card view
Adapter
Recycler view
Clicks

574 Chapter 13

code, continued

 @Override

 public int getItemCount(){

 return captions.length;

 }

 public void setListener(Listener listener){
 this.listener = listener;
 }

 @Override

 public CaptionedImagesAdapter.ViewHolder onCreateViewHolder(

 ViewGroup parent, int viewType){

 CardView cv = (CardView) LayoutInflater.from(parent.getContext())

 .inflate(R.layout.card_captioned_image, parent, false);

 return new ViewHolder(cv);

 }

 @Override

 public void onBindViewHolder(ViewHolder holder, final int position){
 CardView cardView = holder.cardView;

 ImageView imageView = (ImageView)cardView.findViewById(R.id.info_image);

 Drawable drawable =

 ContextCompat.getDrawable(cardView.getContext(), imageIds[position]);

 imageView.setImageDrawable(drawable);

 imageView.setContentDescription(captions[position]);

 TextView textView = (TextView)cardView.findViewById(R.id.info_text);

 textView.setText(captions[position]);

 cardView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (listener != null) {
 listener.onClick(position);
 }
 }
 });
 }
}

The CaptionedImagesAdapter.java code (continued)

Now that we’ve added a listener to the adapter, we need to
implement it in PizzaFragment.

app/src/main

CaptionedImages
Adapter.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

Activityies and fragments will use this
method to register as a listener.

When the CardView is clicked, call the Listener onClick() method.

You need to change the position variable
to final, as it's used in an inner class.

Add the
listener
to the
CardView.

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 575

recycler views and card views

Implement the listener in PizzaFragment.java
We’ll implement CaptionedImagesAdapter’s Listener
interface in PizzaFragment so that when a card view in the
recycler view is clicked, PizzaDetailActivity will be started.
Here’s the updated code; update your version of the code to match
ours (our changes are in bold):

package com.hfad.bitsandpizzas;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.support.v7.widget.RecyclerView;

import android.support.v7.widget.GridLayoutManager;

import android.content.Intent;

public class PizzaFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 RecyclerView pizzaRecycler = (RecyclerView)inflater.inflate(

 R.layout.fragment_pizza, container, false);

 String[] pizzaNames = new String[Pizza.pizzas.length];

 for (int i = 0; i < pizzaNames.length; i++) {

 pizzaNames[i] = Pizza.pizzas[i].getName();

 }

 int[] pizzaImages = new int[Pizza.pizzas.length];

 for (int i = 0; i < pizzaImages.length; i++) {

 pizzaImages[i] = Pizza.pizzas[i].getImageResourceId();

 }

app/src/main

Pizza
Fragment.java

BitsAndPizzas

java

com.hfad.bitsandpizzas

We’re using an Intent to start
the activity, so import this class.

The code continues
on the next page.

Pizza data
Card view
Adapter
Recycler view
Clicks

576 Chapter 13

code, continued

 CaptionedImagesAdapter adapter =

 new CaptionedImagesAdapter(pizzaNames, pizzaImages);

 pizzaRecycler.setAdapter(adapter);

 GridLayoutManager layoutManager = new GridLayoutManager(getActivity(), 2);

 pizzaRecycler.setLayoutManager(layoutManager);

 adapter.setListener(new CaptionedImagesAdapter.Listener() {

 public void onClick(int position) {

 Intent intent = new Intent(getActivity(), PizzaDetailActivity.class);

 intent.putExtra(PizzaDetailActivity.EXTRA_PIZZA_ID, position);

 getActivity().startActivity(intent);

 }

 });

 return pizzaRecycler;

 }

}

This implements the Listener
onClick() method. It starts
PizzaDetailActivity, passing it the
ID of the pizza the user chose.

The PizzaFragment.java code (continued)

That’s all the code we need to make views in the recycler view
respond to clicks. By taking this approach, we can use the same
adapter and card view for different types of data that is composed
of an image view and text view.

Let’s see what happens when we run the code.

card_captioned_
image.xml

PizzaFragment

CaptionedImages
Adapter

<Layout>

</Layout>

PastaFragment

StoresFragment

All of these
fragments can
use the same
adapter and
card view.

Pizza data
Card view
Adapter
Recycler view
Clicks

you are here 4 577

recycler views and card views

Test drive the app
When we run the app and click on the Pizzas tab,
PizzaFragment is displayed. When we click on one of
the pizzas, PizzaDetailActivity starts, and details
of that pizza are displayed.

The card view responds to clicks, and displays
PizzaDetailActivity.

When you
click on the
Pizzas tab,
PizzaFragment
is displayed.

When you click on
a pizza, its details
are displayed in
PizzaDetailActivity.

PizzaDetailActivity
displays the pizza’s
name and image.

Pizza data
Card view
Adapter
Recycler view
Clicks

578 Chapter 13

toolbox

Your Android Toolbox

You’ve got Chapter 13 under
your belt and now you’ve

added recycler views and card
views to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CH
AP

T
ER

 13

 � Card views and recycler views have their
own Support Libraries.

 � Add a card view to a layout using
the <android.support.
v7.widget.CardView> element.

 � Give the card view rounded corners using
the cardCornerRadius attribute.
This requires a namespace of "http://
schemas.android.com/apk/
res-auto".

 � Give the card view a drop shadow using
the cardElevation attribute. This
requires a namespace of "http://
schemas.android.com/apk/
res-auto".

 � Recycler views work with adapters that
are subclasses of RecyclerView.
Adapter.

 � When you create your own
RecyclerView.Adapter, you must
define the view holder and implement
the onCreateViewHolder(),
onBindViewHolder(), and
getItemCount() methods.

 � You add a recycler view to a layout
using the <android.support.
v7.widget.RecyclerView>
element. You give it a scrollbar using the
android:scrollbars attribute.

 � Use a layout manager to specify how
items in a recycler view should be
arranged. A LinearLayoutManager
arranges items in a linear list,
a GridLayoutManager
arranges items in a grid, and a
StaggeredGridLayoutManager
arranges items in a staggered grid.

this is a new chapter 579

navigation drawers14

Going Places

You’ve already seen how tabs help users navigate your apps.
But if you need a large number of them, or want to split them into sections, the

navigation drawer is your new BFF. In this chapter, we’ll show you how to create a

navigation drawer that slides out from the side of your activity at a single touch. You’ll

learn how to give it a header using a navigation view, and provide it with a structured

set of menu items to take the user to all the major hubs of your app. Finally, you’ll

discover how to set up a navigation view listener so that the drawer responds to the

slightest touch and swipe.

I know I’ll never get lost
so long as I have my lucky
navigation drawers.

580 Chapter 14

need more options

Tab layouts allow easy navigation...
In Chapter 12, we introduced you to the tab layout as a way of making
it easy for users to navigate around your app. In that chapter we added
a Home screen tab to the Bits and Pizzas app, along with tabs for the
Pizzas, Pasta, and Stores categories:

Tab layouts work well if you have a small number of category screens
that are all at the same level in the app hierarchy. But what if you want
to use a large number of tabs, or group the tabs into sections?

...but navigation drawers let you show more options
If you want users to be able to navigate through a large number of options, or group
them into sections, you might prefer to use a navigation drawer. This is a slide-out
panel that contains links to other parts of the app that you can group into different
sections. As an example, the Gmail app uses a navigation drawer that contains sections
such as email categories, recent labels, and all labels:

These are the tabs we
created in Chapter 12.

This is the Gmail app. It
contains a navigation
drawer that slides over
the app’s main content.
The drawer gives you lots
of options you can use
to navigate to different
parts of the app.

The main email
categories are at the
top of the drawer.

Labels that have
recently been clicked
on are displayed in a
separate section.

Finally, here’s a long list
of all the email labels.

When you click on an item in the navigation drawer, the drawer closes and the content for that option is displayed here.

you are here 4 581

navigation drawers

We’re going to create a navigation
drawer for a new email app
We’re going to create a navigation drawer for a new email app called
CatChat. The navigation drawer will contain a header (including an
image and some text) and a set of options. The main options will be
for the user’s inbox, draft messages, sent items, and trash. We’ll also
include a separate support section for help and feedback options:

The navigation drawer is composed of several different components.
We’ll go through these on the next page.

This is the CatChat app.

This is the navigation
drawer’s header.

These are the drawer’s
main options.

The Help and
Feedback options
are in a separate
support section.

The app’s main content
is displayed here.

582 Chapter 14

drawer anatomy

Navigation drawers deconstructed
You implement a navigation drawer by adding a drawer layout to
your activity’s layout. This defines a drawer you can open and close,
and it needs to contain two views:

When the drawer’s closed, the drawer layout looks just like a normal
activity. It displays the layout for its main content:

When you open the navigation drawer, it slides over the activity’s
main content to display the drawer’s contents. This is usually a
navigation view, which displays a drawer header image and a list of
options. When you click on one of these options, it either starts a new
activity or displays a fragment in the activity’s frame layout:

Here the drawer’s
closed, so it looks like
a plain old activity.

The main content of the activity
usually is composed of a toolbar
and a frame layout that’s used
to display fragments.

The drawer slides
over the main
content when it opens.

A view for the main content.
This is usually a layout containing a toolbar and a frame layout, which you use
to display fragments.

1

A view for the drawer contents.
This is usually a navigation view, which controls most of the drawer’s behavior.

2

The drawer’s
contents are
defined by a
navigation view.

you are here 4 583

navigation drawers

Here’s what we’re going to do
We’re going to create a navigation drawer for the CatChat app.
There are four main steps we’ll go through to do this:

Create basic fragments and activities for the app’s contents.
When the user clicks on one of the options in the navigation drawer, we want
to display the fragment or activity for that option. We’ll create the fragments
InboxFragment, DraftsFragment, SentItemsFragment, and
TrashFragment, and activities HelpActivity and FeedbackActivity.

1

Create the drawer’s header.
We’ll build a layout, nav_header.xml, for the drawer’s header. It will
contain an image and text.

2

Create the drawer’s options.
We’ll build a menu, menu_nav.xml, for the options the
drawer will display.

3

Create the navigation drawer.
We’ll add the navigation drawer to the app’s main activity,
and get it to display the header and options. We’ll then
write activity code to control the drawer’s behavior.

4

Let’s get started.

These
are the
fragments.

These are
the activities.

The drawer’s
header and
options

We’ll create this
navigation drawer.

584 Chapter 14

add libraries

Create the CatChat project
Before we begin, we need a new project for the CatChat app.
Create a new Android project with an empty activity for an
application named “CatChat” with a company domain of “hfad.
com”, making the package name com.hfad.catchat. The
minimum SDK should be API level 19 so that it works with most
devices. Specify an activity called “MainActivity” and a layout
called “activity_main”, and make sure that you check the
Backwards Compatibility (AppCompat) option.

Add the v7 AppCompat and Design Support Libraries

We’ve added the v7 AppCompat and Design
Support Libraries to our project as dependencies.

We’re going to use components and themes from the v7
AppCompat and Design Support Libraries in this chapter, so
we need to add them to our project as dependencies. To do this,
choose File→Project Structure in Android Studio, click on the
app module, then choose Dependencies. When you’re presented
with the project dependencies screen, click on the “+” button at
the bottom or right side of the screen. When prompted, choose
the Library Dependency option, then select the Design Library
from the list of possible libraries. Repeat these steps for the v7
AppCompat Support Library if Android Studio hasn’t already
added it for you. Finally, use the OK buttons to save your changes.

Next, we’ll create four basic fragments for the app’s inbox,
drafts, sent messages, and trash. We’ll use these fragments later
in the chapter when we write the code for the navigation drawer.

Fragments/activities
Header
Options
Drawer

you are here 4 585

navigation drawers

Create InboxFragment
We’ll display InboxFragment when the user clicks on the
inbox option in the navigation drawer. Highlight the com.hfad.
catchat package in the app/src/main/java folder, then go to
File→New...→Fragment→Fragment (Blank). Name the fragment

“InboxFragment” and name its layout “fragment_inbox”. Then
update the code for InboxFragment.java to match our code below:

package com.hfad.catchat;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class InboxFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_inbox, container, false);

 }

}

And here’s the code for fragment_inbox.xml (update your version of this
code too):

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.catchat.InboxFragment">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="Inbox" />

</LinearLayout>

<xml>
</xml>

app/src/main

fragment_inbox.xml

CatChat

res

layout

app/src/main

InboxFragment.java

CatChat

java

com.hfad.catchat

All the fragments
use the Fragment
class from the
Support Library.

Fragments/activities
Header
Options
Drawer

This is what
InboxFragment
looks like.

InboxFragment’s layout just contains a TextView. We’re adding this text so we can easily tell when it’s displayed.

586 Chapter 14

DraftsFragment code

Create DraftsFragment
When the user clicks on the drafts option in the navigation drawer,
we’ll show DraftsFragment. Select the com.hfad.catchat
package in the app/src/main/java folder, and create a new blank
fragment named “DraftsFragment” with a layout called of “fragment_
drafts”. Then replace the code for DraftsFragment.java with ours below:

package com.hfad.catchat;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class DraftsFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_drafts, container, false);

 }

}

Next replace the code for fragment_drafts.xml too:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.catchat.DraftsFragment">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="Drafts" />

</LinearLayout>

<xml>
</xml>

app/src/main

fragment_drafts.xml

CatChat

res

layout

app/src/main

DraftsFragment.java

CatChat

java

com.hfad.catchat

Fragments/activities
Header
Options
Drawer

DraftsFragment

you are here 4 587

navigation drawers

Create SentItemsFragment
We’ll show SentItemsFragment when the user clicks on the
sent items option in the navigation drawer. Highlight the com.
hfad.catchat package in the app/src/main/java folder, and
create a new blank fragment named “SentItemsFragment” with
a layout called “fragment_sent_items”. Then update the code for
SentItemsFragment.java to match our code below:

package com.hfad.catchat;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class SentItemsFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_sent_items, container, false);

 }

}

And here’s the code for fragment_sent_items.xml (update your version):

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.catchat.SentItemsFragment">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="Sent items" />

</LinearLayout>

<xml>
</xml>

app/src/main

fragment_sent_items.xml

CatChat

res

layout

app/src/main

SentItemsFragment.java

CatChat

java

com.hfad.catchat

Fragments/activities
Header
Options
Drawer

SentItemsFragment

588 Chapter 14

TrashFragment code

Create TrashFragment
When the user clicks on the trash option in the navigation drawer,
we’ll show TrashFragment. Highlight the com.hfad.catchat
package in the app/src/main/java folder, and create a new blank
fragment named “TrashFragment” with a layout called of “fragment_
trash”. Then replace the code for TrashFragment.java with ours below:

package com.hfad.catchat;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class TrashFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 return inflater.inflate(R.layout.fragment_trash, container, false);

 }

}

Next replace the code for fragment_trash.xml too:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context="com.hfad.catchat.TrashFragment">

 <TextView

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="Trash" />

</LinearLayout>

<xml>
</xml>

app/src/main

fragment_trash.xml

CatChat

res

layout

app/src/main

TrashFragment.java

CatChat

java

com.hfad.catchat

We’ve now created all the fragments we need. Next, we’ll create a
toolbar we can include in our activities.

Fragments/activities
Header
Options
Drawer

TrashFragment

you are here 4 589

navigation drawers

Create a toolbar layout
We’re going to add a toolbar in a separate layout so that we can include
it in each activity’s layout (we’ll create our activities soon). Switch to the
Project view of Android Studio’s explorer, select the app/src/res/main/layout
folder, then go to the File menu and choose New → Layout resource file.
When prompted, name the layout file “toolbar_main”, then click on OK.

Next, open toolbar_main.xml, and replace the code Android Studio has
created for you with the following:

<android.support.v7.widget.Toolbar

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" />
<xml>
</xml>

app/src/main

toolbar_
main.xml

CatChat

res

layout

Before we can use the toolbar in any of our activities, we need to
change the theme used by your activity. We’ll do this in app’s style
resource.

First, open AndroidManifest.xml, and make sure that the value of the
theme attribute is set to "@style/AppTheme". Android Studio may
have set this value for you; if not, you’ll need to update it to match ours
below:

<?xml version="1.0" encoding="utf-8"?>

<manifest ...>

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 ...

 </activity>

 </application>

</manifest>

<xml>
</xml>

app/src/main

AndroidManifest.xml

CatChat

We’ll update the AppTheme style on the next page.

Fragments/activities
Header
Options
Drawer

This is the same toolbar code
we’ve used in previous chapters.

Android Studio may have already
added this value for you.

590 Chapter 14

use the right theme

<resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">

 <item name="colorPrimary">@color/colorPrimary</item>

 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>

 <item name="colorAccent">@color/colorAccent</item>

 </style>

</resources>

The AppTheme style uses color resources, and these need to be
included in colors.xml. First, make sure that Android Studio has
created this file for you in the app/src/main/res/values folder (if it
hasn’t, you’ll need to create it yourself). Then update colors.xml so
that it matches our code below:

<xml>
</xml>

app/src/main

styles.xml

CatChat

res

values

<xml>
</xml>

app/src/main

colors.xml

CatChat

res

values

Update the app’s theme
Next, we’ll update the AppTheme style so that it uses a theme
of "Theme.AppCompat.Light.NoActionBar". We’ll also
override some of the colors that are used in the original theme.

First, open the app/src/main/res/values folder and check that Android
Studio has created a file for you called styles.xml. If this file doesn’t
exist, you’ll need to create it. To do this, select the values folder, then
go to the File menu and choose New → “Values resource file”. When
prompted, name the file “styles”, then click on OK.

Next, update styles.xml so that it matches ours:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="colorPrimary">#3F51B5</color>

 <color name="colorPrimaryDark">#303F9F</color>

 <color name="colorAccent">#FF4081</color>

</resources>

Now that we’ve set up a style so that we can use a toolbar, we’ll
create two activities for the help and feedback options in the
navigation drawer. We’ll display these activities when the user
selects the appropriate option.

Fragments/activities
Header
Options
Drawer

This theme removes the
default app bar (we’re
replacing it with a toolbar).

Android Studio may have
added these colors for you.

Add these colors if
Android Studio hasn’t
already done it for you.

you are here 4 591

navigation drawers

styles.xml

Create HelpActivity
We’ll start by creating HelpActivity. Select the com.hfad.catchat
package in Android Studio, then go to the File menu and choose New. Select the
option to create a new empty activity, and give it a name of “HelpActivity”, with
a layout name of “activity_help”. Make sure the package name is com.hfad.
catchat, and check the Backwards Compatibility (AppCompat)
checkbox. Then update activity_help.xml so that it matches ours below:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.catchat.HelpActivity">

 <include
 layout="@layout/toolbar_main"
 android:id="@+id/toolbar" />

 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="Help" />
</LinearLayout>

package com.hfad.catchat;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.support.v7.widget.Toolbar;

public class HelpActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_help);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 }
}

Next update HelpActivity.java to match our version:

<xml>
</xml>

app/src/main

activity_help.xml

CatChat

res

layout

app/src/main

HelpActivity.java

CatChat

java

com.hfad.catchat

Fragments/activities
Header
Options
Drawer

We’re adding a toolbar and
“Help” text to HelpActivity.

The activity needs to extend AppCompatActivity
because we’re using an AppCompat theme.

HelpActivity

592 Chapter 14

FeedbackActivity code

Create FeedbackActivity
Finally, select the com.hfad.catchat package again and create an
empty activity called “FeedbackActivity”, with a layout name of “activity_
feedback”. Make sure the package name is com.hfad.catchat, and
check the Backwards Compatibility (AppCompat) checkbox.
Then update activity_feedback.xml so that it matches ours below:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.hfad.catchat.FeedbackActivity">

 <include
 layout="@layout/toolbar_main"
 android:id="@+id/toolbar" />

 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="Feedback" />
</LinearLayout>

package com.hfad.catchat;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.support.v7.widget.Toolbar;

public class FeedbackActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_feedback);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 }
}

Then update FeedbackActivity.java to match this version:

<xml>
</xml>

app/src/main

activity_feedback.xml

CatChat

res

layout

app/src/main

FeedbackActivity.java

CatChat

java

com.hfad.catchat

Fragments/activities
Header
Options
Drawer

This activity needs to extend
AppCompatActivity as well.

FeedbackActivity

you are here 4 593

navigation drawers

We need to build a navigation drawer
We’ve now added all the fragments and activities to our project
that the options in the navigation drawer will link to. Next, we’ll
create the navigation drawer itself.

The navigation drawer comprises two separate components:

A navigation drawer header.
This is a layout that appears at the top of the navigation drawer. It
usually consists of an image with some text, for example a photo of the
user and their email account.

¥

A set of options.
You define a set of options to be displayed in the navigation drawer
underneath the header. When the user clicks on one of these options,
the screen for that option is displayed as a fragment within the
navigation drawer’s activity, or as a new activity.

¥

We’re going to build these components, then use them in
MainActivity to build a navigation drawer. We’ll start with the
navigation drawer header.

Fragments/activities
Header
Options
Drawer

This is the header we’ll create. It consists of an image and two pieces of text.

The navigation
drawer will contain
these options.

594 Chapter 14

create header

Create the navigation drawer’s header
The navigation drawer’s header comprises a simple layout that
you add to a new layout file. We’re going to use a new file called
nav_header.xml. Create this file by selecting the app/src/main/res/
layout folder in Android Studio, and choosing File→New→Layout
resource file. When prompted, name the layout “nav_header”.

Our layout is composed of an image and two text views. This means
we need to add an image file to our project as a drawable, and two
String resources. We’ll start with the image file.

Add the image file
To add the image file, first switch to the Project view of Android
Studio’s explorer if you haven’t already done so, and check whether
the app/src/main/res/drawable folder exists in your project. If it’s not
already there, select the app/src/main/res folder in your project, go to
the File menu, choose the New... option, and then click on the option
to create a new Android resource directory. When prompted, choose a
resource type of drawable, name it “drawable”, and click on OK.

Once you’ve created the drawable folder, download the file kitten_small.jpg
from https://git.io/v9oet, and add it to the drawable folder.

Add the String resources
Next, we’ll add two String resources, which we’ll use for the text
views. Open the file app/src/main/res/values/strings.xml, then add the
following resource:

<resources>

 ...

 <string name="app_name">CatChat</string>

 <string name="user_name">spot@catchat.com</string>

</resources>

Android Studio may
have already added
this String by default.

<xml>
</xml>

app/src/main

strings.xml

CatChat

res

values

Now that you’ve added the resources, we can write the layout code.
You’re already familiar with the code we need to do this, so we’re
going to give you the full code on the next page.

Fragments/activities
Header
Options
Drawer

The header
contains an
ImageView...

...and two TextViews.

you are here 4 595

navigation drawers

The full nav_header.xml code
Here’s our full code for nav_header.xml; update your version of the
file to match ours:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="180dp"

 android:theme="@style/ThemeOverlay.AppCompat.Dark" >

 <ImageView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:scaleType="centerCrop"

 android:src="@drawable/kitten_small" />

 <LinearLayout

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:gravity="bottom|start"

 android:layout_margin="16dp" >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/app_name"

 android:textAppearance="@style/TextAppearance.AppCompat.Body1" />

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/user_name" />

 </LinearLayout>

</FrameLayout>

<xml>
</xml>

app/src/main

nav_header.xml

CatChat

res

layout

We’re explicitly setting the height of the layout to 180dp
so that it doesn’t take up too much space in the drawer.

The image background is quite dark, so we’re using this line to make the text light.

This is a built-in style that
makes the text look slightly
bolder. It comes from the
AppCompat Support Library.

Now that we’ve created the drawer’s header, we’ll create its list of
options.

Fragments/activities
Header
Options
Drawer

This LinearLayout will appear
on top of the ImageView.
We're using it to display text
at the bottom of the image.

596 Chapter 14

add strings

The drawer gets its options from a menu
The navigation drawer gets its list of options from a menu
resource file. The code to do this is similar to that needed to add a
set of options to an app bar.

Before we look at the code to add the options to the navigation
drawer, we need to add a menu resource file to our project. To
do this, select the app/src/main/res folder in Android Studio, go
to the File menu, and choose New. Then select the option to
create a new Android resource file. You’ll be prompted for the
name of the resource file and the type of resource. Give it a name
of “menu_nav”, give it a resource type of “Menu”, and make
sure that the Directory name is “menu”. When you click on OK,
Android Studio will create the file for you.

Next we’ll add String resources for the titles of our menu items
so that we can use them later in the chapter. Open strings.xml and
add the following resources:

<resources>

 ...

 <string name="nav_inbox">Mesagez</string>

 <string name="nav_drafts">Draftz</string>

 <string name="nav_sent">Sent mesagez</string>

 <string name="nav_trash">In da trash</string>

 <string name="nav_support">Support</string>

 <string name="nav_help">Halp</string>

 <string name="nav_feedback">Giv us feedback</string>

</resources>

<xml>
</xml>

app/src/main

strings.xml

CatChat

res

values

Next we can start constructing our menu code.

We need to create a menu with two sections
As we said earlier, we want to split the items in our navigation
drawer into two sections. The first section will contain options for
the main places in the app the user will want to visit: her inbox,
draft messages, sent items, and trash. We’ll then add a separate
support section for help and feedback options.

Let’s start by adding the main options.

Fragments/activities
Header
Options
Drawer

These are
the app’s
main options.

This
is the
support
section.

you are here 4 597

navigation drawers

Add items in the order you want them
to appear in the drawer
When you design a set of options for a navigation drawer, you
generally put the items the user is most likely to want to click on at
the top of the list. In our case, these options are for the inbox, draft
messages, sent items, and trash.

You add items to the menu resource file in the order in which you want
them to appear in the drawer. For each item, you specify an ID so
you can refer to it in your Java code, and a title for the text you want
to appear. You can also specify an icon that will appear alongside the
item’s text. As an example, here’s the code to add an “inbox” item:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item

 android:id="@+id/nav_inbox"

 android:icon="@android:drawable/sym_action_email"

 android:title="@string/nav_inbox" />

 ...

</menu>

In the above code, we’re using one of Android’s built-in icons:
 "@android:drawable/sym_action_email". Android
comes with a set of built-in icons that you can use in your apps. The
"@android:drawable" part tells Android you want to use one of
these icons. You can see the full list of available icons when you start
typing the icon name in Android Studio:

<xml>
</xml>

app/src/main

menu_nav.xml

CatChat

res

menu

Fragments/activities
Header
Options
Drawer

These are
some of the
Android
built-in
drawables.

This is a built-in drawable you can use to display an email icon.

You need to give the item an ID
so that your activity code can
respond to it being clicked.

This is the text
that appears in the
navigation drawer.

598 Chapter 14

group items

How to group items together
As well as adding menu items individually, you can add them as part
of a group. You define a group using the <group> element like this:

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group>

 ...

 </group>

</menu>

This is useful if you want to apply an attribute to an entire
group of items. As an example, you can highlight which item
in the drawer the user has selected by setting the group’s
android:checkableBehavior attribute to "single". This
behavior is helpful when you intend to display screens for the items
as fragments inside the navigation drawer’s activity (in our case
MainActivity), as it makes it easy to tell which option is currently
selected:

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:checkableBehavior="single">

 ...

 </group>

</menu>

You can highlight an item in the navigation drawer by default by
setting its android:checked attribute to "true". As an example,
here’s how you highlight the inbox item:

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:checkableBehavior="single">

 <item

 android:id="@+id/nav_inbox"

 android:icon="@android:drawable/sym_action_email"

 android:title="@string/nav_inbox"

 android:checked="true" />

 ...

 </group>

</menu>

We’ll show you the full code for the first four menu items on the next page.

Fragments/activities
Header
Options
Drawer

Any items you want to
include in the group go here.

This means that a single item in the group will
be highlighted (the option the user selects).

This highlights the item in the
navigation drawer by default.

you are here 4 599

navigation drawers

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:checkableBehavior="single">

 <item

 android:id="@+id/nav_inbox"

 android:icon="@android:drawable/sym_action_email"

 android:title="@string/nav_inbox"

 android:checked="true" />

 <item

 android:id="@+id/nav_drafts"

 android:icon="@android:drawable/ic_menu_edit"

 android:title="@string/nav_drafts" />

 <item

 android:id="@+id/nav_sent"

 android:icon="@android:drawable/ic_menu_send"

 android:title="@string/nav_sent" />

 <item

 android:id="@+id/nav_trash"

 android:icon="@android:drawable/ic_menu_delete"

 android:title="@string/nav_trash" />

 </group>

</menu>

<xml>
</xml>

app/src/main

menu_nav.xml

CatChat

res

menu

That’s the first group of items sorted. We’ll deal with the
remaining items next.

We’ll use a group for the first section

Fragments/activities
Header
Options
Drawer

Add this group and the four items it
contains to your menu resource file so
they'll appear in the navigation drawer.

We’re going to add the inbox, drafts, sent messages, and
trash options to our menu resource file as a group, and
highlight the first item by default. We’re using a group for
these items because the screen for each option is a fragment,
which we’ll display in MainActivity.

Here’s our code; update your version of menu_nav.xml to
match ours.

The code on this
page adds these
four items.

600 Chapter 14

submenus

The second set of items in the navigation drawer forms a
separate section. There’s a heading of “Support,” along with
help and feedback options for the user to click on.

To create this section, we’ll start by adding the Support heading
as a separate item. As it’s a heading, we only need to give it a
title; it doesn’t need an icon, and we’re not assigning it an ID as
we don’t need it to respond to clicks:

...

 <item android:title="@string/nav_support">

 </item>

...

We want the help and feedback options to appear within
the Support section, so we’ll add them as separate items in a
submenu inside the support item:

...

 <item android:title="@string/nav_support">

 <menu>

 <item

 android:id="@+id/nav_help"

 android:icon="@android:drawable/ic_menu_help"

 android:title="@string/nav_help"/>

 <item

 android:id="@+id/nav_feedback"

 android:icon="@android:drawable/sym_action_email"

 android:title="@string/nav_feedback" />

 </menu>

 </item>

...

Add the support section as a submenu

Note that we haven’t put these items inside a group, so if the
user clicks one of them, it won’t be highlighted in the navigation
drawer. This is because the help and feedback options will be
displayed in new activities, not as fragments in the navigation
drawer’s activity.

We’ll show you the full menu code on the next page.

<xml>
</xml>

app/src/main

menu_nav.xml

CatChat

res

menu

Fragments/activities
Header
Options
Drawer

This adds a Support heading
to the navigation drawer.

This
defines a
submenu
inside the
Support
item.

The above
code adds
these two
items.

you are here 4 601

navigation drawers

The full menu_nav.xml code
Here’s the full code for menu_nav.xml; update your version of the
code to match ours:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <group android:checkableBehavior="single">

 <item

 android:id="@+id/nav_inbox"

 android:icon="@android:drawable/sym_action_email"

 android:title="@string/nav_inbox" />

 <item

 android:id="@+id/nav_drafts"

 android:icon="@android:drawable/ic_menu_edit"

 android:title="@string/nav_drafts" />

 <item

 android:id="@+id/nav_sent"

 android:icon="@android:drawable/ic_menu_send"

 android:title="@string/nav_sent" />

 <item

 android:id="@+id/nav_trash"

 android:icon="@android:drawable/ic_menu_delete"

 android:title="@string/nav_trash" />

 </group>

 <item android:title="@string/nav_support">

 <menu>

 <item

 android:id="@+id/nav_help"

 android:icon="@android:drawable/ic_menu_help"

 android:title="@string/nav_help"/>

 <item

 android:id="@+id/nav_feedback"

 android:icon="@android:drawable/sym_action_email"

 android:title="@string/nav_feedback" />

 </menu>

 </item>

</menu>

<xml>
</xml>

app/src/main

menu_nav.xml

CatChat

res

menu

Now that we’ve added a menu and navigation drawer header
layout, we can create the actual drawer.

Fragments/activities
Header
Options
Drawer

These are
the main
options.

This
is the
support
section.

The code on this page
creates the full menu.

602 Chapter 14

create drawer

How to create a navigation drawer
You create a navigation drawer by adding a drawer layout to your activity’s
layout as its root element. The drawer layout needs to contain two things:
a view or view group for the activity’s content as its first element, and a
navigation view that defines the drawer as its second:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v4.widget.DrawerLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/drawer_layout"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 ...

 </LinearLayout>

 <android.support.design.widget.NavigationView

 android:id="@+id/nav_view"

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="start"

 app:headerLayout="@layout/nav_header"

 app:menu="@menu/menu_nav" />

</android.support.v4.widget.DrawerLayout>

There are two key <NavigationView> attributes that you use to control
the drawer’s appearance: headerLayout and menu.

The app:headerLayout attribute specifies the layout that should be
used for the navigation drawer’s header (in this case nav_header.xml). This
attribute is optional.

You use the app:menu attribute to say which menu resource file contains
the drawer’s options (in this case menu_drawer.xml). If you don’t include this
attribute, your navigation drawer won’t include any items.

Fragments/activities
Header
Options
Drawer

The DrawerLayout defines the drawer.

You give it an ID so you can refer to it in your activity code.

The DrawerLayout's
first view is a layout
for the activity's
main content. You
see it when the
drawer is closed. The NavigationView defines

the drawer's contents.

This attaches the
drawer to the start
edge of the activity
(the left for left-
to-right languages).

This is the layout for
the drawer's header.

This is the menu resource file
containing the drawer's options.

you are here 4 603

navigation drawers

<?xml version="1.0" encoding="utf-8"?>

<android.support.v4.widget.DrawerLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 android:id="@+id/drawer_layout"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <include

 layout="@layout/toolbar_main"

 android:id="@+id/toolbar" />

 <FrameLayout

 android:id="@+id/content_frame"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 </LinearLayout>

 <android.support.design.widget.NavigationView

 android:id="@+id/nav_view"

 android:layout_width="wrap_content"

 android:layout_height="match_parent"

 android:layout_gravity="start"

 app:headerLayout="@layout/nav_header"

 app:menu="@menu/menu_nav" />

</android.support.v4.widget.DrawerLayout>

The full code for activity_main.xml
We’re going to add a navigation drawer to MainActivity’s layout that
uses the header layout and menu we created earlier in the chapter. The
layout’s main content will comprise a toolbar and frame layout. We’ll use
the frame layout later in the chapter to display fragments.

Here’s our full code for activity_main.xml; update your code to match ours:

<xml>
</xml>

app/src/main

activity_main.xml

CatChat

res

layout

Before we run the app to see how the navigation drawer’s looking, we’ll
update MainActivity to display InboxFragment in the frame
layout when the activity gets created.

Fragments/activities
Header
Options
Drawer

The layout's root element is a DrawerLayout.

It has an ID so we can refer to
it in our activity code later.

This is for the drawer’s main content.

The activity’s
main content is
composed of a
Toolbar, and a
FrameLayout
in which
we’ll display
fragments.

The NavigationView defines the
drawer’s appearance and much of its
behavior. We’re giving it an ID, as we’ll
need to refer to it in our activity code.

We’re using the layout we created earlier
as the drawer’s header, and the menu
resource file for the list of options.

604 Chapter 14

add InboxFragment

Add InboxFragment to
MainActivity’s frame layout
When we created our menu resource file, we set the inbox option to
be highlighted by default. We’ll therefore display InboxFragment
in MainActivity’s frame layout when the activity is created so
that it matches the drawer’s contents. We’ll also set the toolbar as
the activity’s app bar so that it displays the app’s title.

Here’s our code for MainActivity.java; replace your version of the
code to match ours:

package com.hfad.catchat;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentTransaction;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 Fragment fragment = new InboxFragment();

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

 ft.add(R.id.content_frame, fragment);

 ft.commit();

 }

}

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

Let’s see what happens when we run the app.

Fragments/activities
Header
Options
Drawer

Make sure the activity extends the AppCompatActivity class, as we’re using an AppCompat theme and support fragments.

Set the Toolbar as the activity’s app bar.

Use a fragment
transaction to
display an instance
of InboxFragment.

you are here 4 605

navigation drawers

Test drive the app
When we run the app, InboxFragment is displayed in MainActivity.
When you swipe the app from the left side of the screen (in left-to-right
languages like English) the navigation drawer is displayed. The navigation
drawer contains a header layout, and the list of options we defined in our
menu resource file. The first option is automatically highlighted:

Clicking on the drawer options doesn’t do anything yet,
as we haven’t written any code in MainActivity to
control how the drawer operates. We’ll do that next.

Fragments/activities
Header
Options
Drawer

This is MainActivity’s
main content. It consists
of a toolbar and a frame
layout, which contains
InboxFragment by default.

The navigation drawer
includes the layout we
created and a set of
options. The first option
is highlighted by default,
and there’s a separate
Support section.

In right-to-left languages, the drawer will appear on the right side of the screen instead.

606 Chapter 14

steps

What the activity code needs to do
There are three things we need our activity code to do:

Add a drawer toggle.
This provides a visual sign to the user that the activity contains a navigation
drawer. It adds a “burger” icon to the toolbar, and you can click on this icon
to open the drawer.

1

Close the drawer when the user presses the Back button.
If the drawer’s open, we’ll close it when the user clicks on the Back button. If
the drawer’s already closed, we’ll get the Back button to function as normal.

3

We’ll start by adding the drawer toggle.

Make the drawer respond to clicks.
When the user clicks on one of the options in the navigation drawer, we’ll
display the appropriate fragment or activity and close the drawer.

2

Fragments/activities
Header
Options
Drawer

This is the “burger” icon. Clicking on it opens the navigation drawer.

When the user clicks on one of the main options, we’ll display the fragment for that option and close the drawer. The option will be highlighted in the navigation drawer the next time we open it.

When the user clicks on one
of these options, we’ll start
the appropriate activity.

you are here 4 607

navigation drawers

<string name="nav_open_drawer">Open navigation drawer</string>

<string name="nav_close_drawer">Close navigation drawer</string>

Add a drawer toggle
The first thing we’ll do is add a drawer toggle so that we can open
the navigation drawer by clicking on an icon in the toolbar.

We’ll start by creating two String resources to describe the “open
drawer” and “close drawer” actions; these are required for
accessibility purposes. Add the two Strings below to strings.xml:

<xml>
</xml>

app/src/main

strings.xml

CatChat

res

values
You create the drawer toggle in the activity’s onCreate() method
by creating a new instance of the ActionBarDrawerToggle
class and adding it to the drawer layout. We’ll show you the code for
this first, then add it to MainActivity later in the chapter.

The ActionBarDrawerToggle constructor takes five
parameters: the current activity, the drawer layout, the toolbar, and
the IDs of two String resources for opening and closing the drawer
(the String resources we added above):

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

...

DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(this,

 drawer,

 toolbar,

 R.string.nav_open_drawer,

 R.string.nav_close_drawer);

Once you’ve created the drawer toggle, you add it to the drawer
layout by calling the DrawerLayout addDrawerListener()
method, passing the toggle as a parameter:

drawer.addDrawerListener(toggle);

Finally, you call the toggle’s syncState() method to synchronize
the icon on the toolbar with the state of the drawer. This is because
the icon changes when you click on it to open the drawer:

toggle.syncState();

We’ll add the drawer toggle to MainActivity’s onCreate()
method in a few pages.

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

Fragments/activities
Header
Options
Drawer

The current activity

This adds the
burger icon to
your toolbar.

The activity’s DrawerLayout
The activity’s toolbar

These Strings are needed for accessibility.

608 Chapter 14

respond to clicks

Respond to the user
clicking items in the drawer
Next, we’ll get MainActivity to respond to items in the
navigation drawer being clicked by getting the activity to implement a
NavigationView.OnNavigationItemSelectedListener
interface. Doing this means that whenever an item is
clicked, a new method we’ll create in MainActivity,
onNavigationItemSelected(), will get called. We’ll use this
method to display the screen for the appropriate option.

First, we’ll get MainActivity to implement the interface using the
code below. This code turns MainActivity into a listener for the
navigation view:

...

import android.support.design.widget.NavigationView;

public class MainActivity extends AppCompatActivity

 implements NavigationView.OnNavigationItemSelectedListener {

 ...

}

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

Next we need to register the listener, MainActivity, with the
navigation view so that it will be notified when the user clicks on one
of the options in the drawer. We’ll do this by getting a reference to the
navigation view in the activity’s onCreate() method, and calling its
setNavigationItemSelectedListener() method:

@Override

protected void onCreate(Bundle savedInstanceState) {

 ...

 NavigationView navigationView = (NavigationView) findViewById(R.id.nav_view);

 navigationView.setNavigationItemSelectedListener(this);

}

Finally, we need to implement the
onNavigationItemSelected() method.

Fragments/activities
Header
Options
Drawer

Implementing this interface means that your activity can
respond to the user clicking options in the navigation drawer.

This registers the activity as a listener
on the navigation view so it will be
notified if the user clicks on an item.

you are here 4 609

navigation drawers

Implement the
onNavigationItemSelected() method
The onNavigationItemSelected() method gets called
when the user clicks on one of the items in the navigation
drawer. It takes one parameter, the MenuItem that was clicked,
and returns a boolean to indicate whether the item in the
drawer should be highlighted:

@Override

public boolean onNavigationItemSelected(MenuItem item) {

 //Code to handle navigation clicks

}

The code in this method needs to display the appropriate screen
for the clicked item. If the item is an activity, the code needs to
start it with an intent. If the item is a fragment, it needs to be
displayed in MainActivity’s frame layout using a fragment
transaction.

When you display fragments by clicking on an item in a
navigation drawer, you don’t generally add the transaction to
the back stack as we did previously. This is because when the
user clicks on the Back button, they don’t expect to revisit every
option they clicked on in the drawer. Instead, you use code like
this:

Finally, you need to close the drawer. To do this, you get a
reference to the drawer layout, and call its closeDrawer()
method:

FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

ft.replace(R.id.content_frame, fragment);

ft.commit();

DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

drawer.closeDrawer(GravityCompat.START);

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

This closes the drawer so that it slides back to the activity’s
start edge.

You now know everything you need in order to write the code
for the onNavigationItemSelected() method, so
have a go at the following exercise.

Fragments/activities
Header
Options
Drawer

This method gets called whenever an item in the
drawer is clicked. Its parameter is the clicked item.

We’re using GravityCompat.START because we’ve attached the drawer to the activity’s start edge. If we’d attached it to the end edge, we’d use GravityCompat.END instead.

This is the same fragment transaction code you’ve seen before except that we’re not adding the
transaction to the activity’s back stack.

610 Chapter 14

magnets

 @Override

 public boolean onNavigationItemSelected(MenuItem item) {

 int id = item. ;

 Fragment fragment = null;

 Intent intent = null;

 switch(){

 case R.id.nav_drafts:

 fragment = ;

 ;

 case R.id.nav_sent:

 fragment = ;

 ;

 case R.id.nav_trash:

 fragment = ;

 ;

 case R.id.nav_help:

 intent = new Intent(,);

 ;

Code Magnets
When the user clicks on an item in the navigation drawer, we need to
display the appropriate screen for that item. If it’s a fragment, we need
to display it in the content_frame frame layout. If it’s an activity,
we need to start it. Finally, we need to close the navigation drawer.

See if you can complete the code below and on the next page. You
won’t need to use all of the magnets.

you are here 4 611

navigation drawers

 case R.id.nav_feedback:

 intent = new Intent(,);

 ;

 default:

 fragment = ;

 }

 if (!= null) {

 FragmentTransaction ft = getSupportFragmentManager(). ;

 ft.replace(R.id.content_frame,);

 ft. ;

 } else {

 startActivity();

 }

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 drawer. ();

 return true;

 }

getItemId()
id

new

DraftsFragment()

SentItemsFragment() new

new

TrashFragment()

break

break

break

HelpActivity
this

HelpActivity.class

break

FeedbackActivity

this

break

FeedbackActivit
y.class

new

InboxFragment()

fragment

beginTransaction()

fragment
commit()

intent

closeDrawer

START

GravityCompat.START

612 Chapter 14

magnets solution

 @Override

 public boolean onNavigationItemSelected(MenuItem item) {

 int id = item. ;

 Fragment fragment = null;

 Intent intent = null;

 switch(){

 case R.id.nav_drafts:

 fragment = ;

 ;

 case R.id.nav_sent:

 fragment = ;

 ;

 case R.id.nav_trash:

 fragment = ;

 ;

 case R.id.nav_help:

 intent = new Intent(,);

 ;

Code Magnets Solution
When the user clicks on an item in the navigation drawer, we need to
display the appropriate screen for that item. If it’s a fragment, we need
to display it in the content_frame frame layout. If it’s an activity,
we need to start it. Finally, we need to close the navigation drawer.

See if you can complete the code below and on the next page. You
won’t need to use all of the magnets.

getItemId()

id

new DraftsFragment()

SentItemsFragment()new

new TrashFragment()

break

break

break

this HelpActivity.class

break

Get the ID of the item that was selected.

Save an instance of the
fragment we want to display
in the fragment variable.

Construct an intent to start
HelpActivity if the Help option’s clicked.

you are here 4 613

navigation drawers

 case R.id.nav_feedback:

 intent = new Intent(,);

 ;

 default:

 fragment = ;

 }

 if (!= null) {

 FragmentTransaction ft = getSupportFragmentManager(). ;

 ft.replace(R.id.content_frame,);

 ft. ;

 } else {

 startActivity();

 }

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 drawer. ();

 return true;

 }

HelpActivity
FeedbackActivity

this

break

FeedbackActivit
y.class

new InboxFragment()

fragment

beginTransaction()

fragment

commit()

intent

closeDrawer

START

GravityCompat.START

You didn’t need to use these magnets.

If the feedback option is clicked,
we need to start FeedbackActivity.

Display InboxFragment by default, as
it’s the first option in the drawer.

If we need to display a fragment,
use a fragment transaction.

If we need to display an activity, use
the intent we constructed to start it.

Finally, close the drawer.
We’ll add this code
to MainActivity.java
in a couple of pages.

614 Chapter 14

shut that drawer

Close the drawer when the user
presses the Back button
Finally, we’ll override what happens when the Back button’s
pressed. If the user presses the Back button when the navigation
drawer’s open, we’ll close the drawer. If the drawer’s already
closed we’ll get the Back button to function as normal.

To do this, we’ll implement the activity’s onBackPressed()
method, which gets called whenever the user clicks on the Back
button. Here’s the code:

 @Override

 public void onBackPressed() {

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 if (drawer.isDrawerOpen(GravityCompat.START)) {

 drawer.closeDrawer(GravityCompat.START);

 } else {

 super.onBackPressed();

 }

 }

That’s everything we need for MainActivity. We’ll show
you the full code over the next couple of pages, and then take it
for a test drive.

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

Q: Do you have to use a navigation view for your drawer
contents?

A: No, but it’s much easier if you do. Before the Android Design
Library came out, it was common practice to use a list view instead.
This approach is still possible, but it requires a lot more code.

Q: Can your activity contain more than one navigation
drawer?

A: Your activity can have one navigation drawer per vertical
edge of its layout. To add a second navigation drawer, add an extra
navigation view to your drawer layout underneath the first.

Fragments/activities
Header
Options
Drawer

If the drawer is
currently open, close it.

Otherwise, call up to the superclass onBackPressed() method.

This gets called when the
Back button gets pressed.

you are here 4 615

navigation drawers

The full MainActivity.java code
Here’s the full code for MainActivity.java; update your version of
the code to match ours:

package com.hfad.catchat;

import android.support.v7.app.AppCompatActivity;

import android.os.Bundle;

import android.support.v7.widget.Toolbar;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentTransaction;

import android.support.v4.widget.DrawerLayout;

import android.support.v7.app.ActionBarDrawerToggle;

import android.support.design.widget.NavigationView;

import android.view.MenuItem;

import android.content.Intent;

import android.support.v4.view.GravityCompat;

public class MainActivity extends AppCompatActivity

 implements NavigationView.OnNavigationItemSelectedListener {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(this,

 drawer,

 toolbar,

 R.string.nav_open_drawer,

 R.string.nav_close_drawer);

 drawer.addDrawerListener(toggle);

 toggle.syncState(); The code continues
on the next page.

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

Fragments/activities
Header
Options
Drawer

We’re using these extra classes so we need to import them.

Implementing this interface means
the activity can listen for clicks.

Add a drawer toggle.

616 Chapter 14

code, continued

 NavigationView navigationView = (NavigationView) findViewById(R.id.nav_view);

 navigationView.setNavigationItemSelectedListener(this);

 Fragment fragment = new InboxFragment();

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

 ft.add(R.id.content_frame, fragment);

 ft.commit();

 }

 @Override

 public boolean onNavigationItemSelected(MenuItem item) {

 int id = item.getItemId();

 Fragment fragment = null;

 Intent intent = null;

 switch(id){

 case R.id.nav_drafts:

 fragment = new DraftsFragment();

 break;

 case R.id.nav_sent:

 fragment = new SentItemsFragment();

 break;

 case R.id.nav_trash:

 fragment = new TrashFragment();

 break;

 case R.id.nav_help:

 intent = new Intent(this, HelpActivity.class);

 break;

 case R.id.nav_feedback:

 intent = new Intent(this, FeedbackActivity.class);

 break;

 default:

 fragment = new InboxFragment();

 }

MainActivity.java (continued)

The code continues
on the next page.

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

Fragments/activities
Header
Options
Drawer

Register the activity with the
navigation view as a listener.

This method gets called when the user
clicks on one of the items in the drawer.

you are here 4 617

navigation drawers

 if (fragment != null) {

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();

 ft.replace(R.id.content_frame, fragment);

 ft.commit();

 } else {

 startActivity(intent);

 }

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 drawer.closeDrawer(GravityCompat.START);

 return true;

 }

 @Override

 public void onBackPressed() {

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 if (drawer.isDrawerOpen(GravityCompat.START)) {

 drawer.closeDrawer(GravityCompat.START);

 } else {

 super.onBackPressed();

 }

 }

}

MainActivity.java (continued)

app/src/main

MainActivity.java

CatChat

java

com.hfad.catchat

Let’s see what happens when we run the code.

Fragments/activities
Header
Options
Drawer

Display the appropriate fragment or activity, depending on which option in the drawer the user selects.

Close the drawer when the user selects one of the options.

When the user presses the Back
button, close the drawer if it’s open.

618 Chapter 14

test drive

Test drive the app
When we run the app, a drawer toggle icon is displayed in the toolbar.
Clicking on this icon opens the navigation drawer. When we click on
one of the first four options, the fragment for that option is displayed
in MainActivity and the drawer closes; the option for that item is
highlighted the next time we open the drawer. When we click on one
of the last two options, the activity for that option is started.

Fragments/activities
Header
Options
Drawer

MainActivity includes a drawer toggle. Clicking on it opens the drawer.

When we click on the Sent mesagez
option, SentItemsFragment gets
displayed and the drawer closes.
The option is highlighted in the
drawer the next time we open it.

When we click on the Halp option,
HelpActivity gets displayed and
the drawer closes.

We’ve created a fully operational
navigation drawer.

you are here 4 619

navigation drawers

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CHAPT
ER 14

Your Android Toolbox

You’ve got Chapter 14 under
your belt and now you’ve

added navigation drawers to
your toolbox.

 � Use a navigation drawer if you want to provide the
user with a large number of shortcuts, or group them
into sections.

 � Create a navigation drawer by adding a drawer
layout to your activity’s layout. The drawer layout’s
first element needs to be a view that defines the
activity’s main content, usually a layout containing
a Toolbar and FrameLayout. Its second
element defines the contents of the drawer, usually a
NavigationView.

 � The NavigationView comes from the Design
Support Library. It controls most of the drawer’s
behavior.

 � You add a header to your drawer by creating a layout
for it, and adding the header’s resource ID to the
navigation view’s headerLayout attribute.

 � You add items to the drawer by creating a menu
resource, and adding the menu’s resource ID to the
navigation view’s menu attribute.

 � Add items to the menu resource in the order in which
you want them to appear in the drawer.

 � If you want to highlight which item in the drawer the
user selects, add the menu items to a group and set
the group’s checkableBehavior attribute to
"single".

 � Use an ActionBarDrawerToggle to display
a “burger” icon in the activity’s toolbar. This provides
a visual sign that the activity has a navigation drawer.
Clicking on it opens the drawer.

 � Respond to the user clicking on items in the drawer
by making your activity implement the
NavigationView.OnNavigation
ItemSelectedListener interface.
Register the activity with the navigation
view as a listener, then implement the
onNavigationItemSelected() method.

 � Close the navigation drawer using the
DrawerLayout closeDrawer() method.

this is a new chapter 621

When I said I
wanted persistence,
I was talking about
the database.

SQLite databases15

Fire Up the Database

If you’re recording high scores or saving tweets, your app will
need to store data. And on Android you usually keep your data safe inside a

SQLite database. In this chapter, we’ll show you how to create a database, add tables

to it, and prepopulate it with data, all with the help of the friendly SQLite helper. You’ll

then see how you can cleanly roll out upgrades to your database structure, and how to

downgrade it if you need to undo any changes.

622 Chapter 15

Starbuzz again

Back to Starbuzz
Back in Chapter 7, we created an app for Starbuzz Coffee.
The app allows the user to navigate through a series of
screens so that she can see the drinks available at Starbuzz.

The Starbuzz database gets its drink data from a Drink class
containing a selection of drinks available at Starbuzz. While
this made building the first version of the app easier, there’s a
better way of storing and persisting data.

Over the next two chapters, we’re going to change the
Starbuzz app so that it gets its data from a SQLite database.
In this chapter, we’ll see how to create the database, and in
the next chapter, we’ll show you how to connect activities to it.

The top-level
activity displays a
list of options. Clicking on the

Drinks option shows
you a list of the
available drinks.

When you click on
a drink, its details
are displayed.

you are here 4 623

SQLite databases

All apps need to store data, and the main way you do that in Androidville
is with a SQLite database. Why SQLite?

It’s lightweight.
Most database systems need a special database server process
in order to work. SQLite doesn’t; a SQLite database is just
a file. When you’re not using the database, it doesn’t use up
any processor time. That’s important on a mobile device,
because we don’t want to drain the battery.

¥

It’s optimized for a single user.
Our app is the only thing that will talk to the database, so
we shouldn’t have to identify ourselves with a username and
password.

¥

It’s stable and fast.
SQLite databases are amazingly stable. They can handle
database transactions, which means if you’re updating several
pieces of data and mess up, SQLite can roll the data back.
Also, the code that reads and writes the data is written in
optimized C code. Not only is it fast, but it also reduces the
amount of processor power it needs.

¥

Where’s the database stored?
Android automatically creates a folder for each app where the app’s
database can be stored. When we create a database for the Starbuzz app,
it will be stored in the following folder on the device:

/data/data/com.hfad.starbuzz/databases
com.hfad.starbuzz is the app's unique identifier.

An app can store several databases in this folder. Each database
consists of two files.

The first file is the database file and has the same name
as your database—for example, “starbuzz”. This is the main
SQLite database file. All of your data is stored in this file.

The second file is the journal file. It has the same name
as your database, with a suffix of “-journal”—for example,

“starbuzz-journal”. The journal file contains all of the changes
made to your database. If there’s a problem, Android will use
the journal to undo your latest changes.

starbuzz

data

com.hfad.starbuzz

data

databases

starbuzz-journal

This is the database file.

This is the journal file.

Android uses SQLite databases to persist data

We’re going to go
through the basics of
SQLite in this chapter.

If you plan on doing a
lot of database heavy
lifting in your apps, we
suggest you do more
background reading on
SQLite and SQL.

624 Chapter 15

your new best friends

Q: If there’s no username and
password on the database, how is it
kept secure?

A: The directory where an app’s
databases are stored is only readable by
the app itself. The database is secured
down at the operating system level.

Q: Can I write an Android app that
talks to some other kind of external
database, such as Oracle?

A: There’s no reason why you can’t
access other databases over a network
connection, but be careful to conserve
the resources used by Android. For
example, you might use less battery power
if you access your database via a web
service. That way, if you’re not talking to
the database, you’re not using up any
resources.

Q: Why doesn’t Android use JDBC to
access SQLite databases?

A: We know we’re going to be using a
SQLite database, so using JDBC would be
overkill. Those layers of database drivers
that make JDBC so flexible would just drain
the battery on an Android device.

Q: Is the database directory inside
the app’s directory?

A: No. It’s kept in a separate directory
from the app’s code. That way, the app can
be overwritten with a newer version, but
the data in the database will be kept safe.

Android comes with SQLite classes
Android uses a set of classes that allows you to manage a
SQLite database. There are three types of object that do the
bulk of this work:

We’re going to use these objects to show you how to create a
SQLite database your app can use to persist data by replacing
the Drink class with a SQLite database.

The SQLite Helper
A SQLite helper enables
you to create and manage
databases. You create
one by extending the
SQLiteOpenHelper class.

The SQLite Database
The SQLiteDatabase
class gives you access to
the database. It’s like a
SQLConnection in JDBC.

Cursors
A Cursor lets you
read from and write to
the database. It’s like a
ResultSet in JDBC.

you are here 4 625

SQLite databases

The current Starbuzz app structure
Here’s a reminder of the current structure of the Starbuzz app:

TopLevelActivity displays a list of options:
Drinks, Food, and Stores.

1

When the user clicks on the Drinks option, it
launches DrinkCategoryActivity.
This activity displays a list of drinks that it gets from the
Java Drink class.

2

When the user clicks on a drink, its details get
displayed in DrinkActivity.
DrinkActivity gets details of the drink from the Java
Drink class.

3

<Layout>

</Layout>

activity_top_level.xml

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

1
2

DrinkCategoryActivity.java DrinkActivity.java

Drink.java

3

How does the app structure need to change if we’re to use a
SQLite database?

The app currently gets its
data from the Drink class.

Do this!

We’re going to update the
Starbuzz app in this chapter,
so open your original Starbuzz
project in Android Studio.

<Layout>

</Layout>

activity_drink_
category.xml

626 Chapter 15

change app

Let’s change the app to use a database
We’ll use a SQLite helper to create a SQLite database we can use with
our Starbuzz app. We’re going to replace our Drink Java class with a
database, so we need our SQLite helper to do the following:

Create the database.
Before we can do anything else, we need to get the SQLite helper to create
version 1 (the first version) of our Starbuzz database.

1

Create the Drink table and populate it with drinks.
Once we have a database, we can create a table in it. The table’s structure
needs to reflect the attributes in the current Drink class, so it needs to be
able to store the name, description, and image resource ID of each drink.
We’ll then add three drinks to it.

2

Let’s start by looking at the SQLite helper.

<Layout>

</Layout>

activity_top_level.xml

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

DrinkCategoryActivity.java DrinkActivity.java

Starbuzz
database

The app has the same structure as before except that we’re replacing
the file Drink.java with a SQLite helper and a SQLite Starbuzz
database. The SQLite helper will maintain the Starbuzz database, and
provide access to it for the other activities. We’ll change the activities
to use the database in the next chapter.

SQLite Helper

We’ll store drinks in a
database rather than
the Drink class.

In the next chapter, we’ll change
the activities that access the Drink
class so that they use the database.

<Layout>

</Layout>

activity_drink_
category.xml

you are here 4 627

SQLite databases

The SQLite helper manages your database
The SQLiteOpenHelper class is there to help you create
and maintain your SQLite databases. Think of it as a personal
assistant who takes care of the general database housekeeping.

Let’s look at some typical tasks that the SQLite helper can assist
you with:

Creating the
database
When you first install
an app, the database file
won’t exist. The SQLite
helper will make sure the
database file is created
with the correct name
and with the correct table
structures installed.

Getting access to
the database
Our app shouldn’t
need to know all of the
details about where
the database file is, so
the SQLite helper can
serve us with an easy-
to-use database object
whenever we need it. At
all hours, day or night.

The SQLite helper

Keeping the database shipshape
The structure of the database will probably
change over time, and the SQLite helper can
be relied upon to convert an old version of a
database into a shiny, spiffy new version, with
all the latest database structures it needs.

Create database
Create table

activity_drink.xml

628 Chapter 15

create helper

Create the SQLite helper
You create a SQLite helper by writing a class that extends the
SQLiteOpenHelper class. When you do this, you must override
the onCreate() and onUpgrade() methods. These methods are
mandatory.

The onCreate() method gets called when the database first gets
created on the device. The method should include all the code needed
to create the tables you need for your app.

The onUpgrade() method gets called when the database needs to
be upgraded. As an example, if you need to modify the structure of the
database after it’s been released, this is the method to do it in.

In our app, we’re going to use a SQLite helper called
StarbuzzDatabaseHelper. Create this class in your Starbuzz
project by switching to the Project view of Android Studio’s explorer,
selecting the com.hfad.starbuzz package in the app/src/main/
java folder, and navigating to File→New...→Java Class. Name the
class “StarbuzzDatabaseHelper”, make sure the package name is com.
hfad.starbuzz and then replace its contents with the code below:

package com.hfad.starbuzz;

import android.database.sqlite.SQLiteOpenHelper;
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;

class StarbuzzDatabaseHelper extends SQLiteOpenHelper {

 StarbuzzDatabaseHelper(Context context) {
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 }
}

To get the SQLite helper to do something, we need to add code to its
methods. The first thing to do is tell the SQLite helper what database
it needs to create.

SQLite helpers must extend
the SQLiteOpenHelper class.

The onCreate() and onUpgrade() methods are
mandatory. We’ve left them empty for now, and we’ll look at them in more detail throughout the chapter.

Create database
Create table

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

We’ll write the code for the
constructor on the next page.

This is the full path of the
SQLiteOpenHelper class.

you are here 4 629

SQLite databases

Specify the database
There are two pieces of information the SQLite helper needs
in order to create the database.

First, we need to give the database a name. By giving the
database a name, we make sure that the database remains on
the device when it’s closed. If we don’t, the database will only
be created in memory, so once the database is closed, it will
disappear.

The second piece of information we need to provide is the
version of the database. The database version needs to be
an integer value, starting at 1. The SQLite helper uses this
version number to determine whether the database needs to
be upgraded.

You specify the database name and version by passing them
to the constructor of the SQLiteOpenHelper superclass.
We’re going to give our database a name of “starbuzz”, and
as it’s the first version of the database, we’ll give it a version
number of 1. Here’s the code we need (update your version of
StarbuzzDatabaseHelper.java to match the code below):

...

class StarbuzzDatabaseHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "starbuzz"; // the name of our database

 private static final int DB_VERSION = 1; // the version of the database

 StarbuzzDatabaseHelper(Context context) {

 super(context, DB_NAME, null, DB_VERSION);

 }

...

}

The constructor specifies details of the database, but the
database doesn’t get created at that point. The SQLite helper
waits until the app needs to access the database, and then
creates the database.

We’ve now done everything we need to tell the SQLite helper
what database to create. The next step is to tell it what tables
to create.

Creating databases that are only
held in memory can be useful when
you’re testing your app.

This parameter is an advanced feature relating to cursors. We’ll cover cursors in the next chapter.

We’re calling the constructor of the
SQLiteOpenHelper superclass, and passing
it the database name and version.

SQLite database

Name: “starbuzz”
Version: 1

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

Create database
Create table

630 Chapter 15

tables

Inside a SQLite database
The data inside a SQLite database is stored in tables. A table contains
several rows, and each row is split into columns. A column contains a
single piece of data, like a number or a piece of text.

You need to create a table for each distinct piece of data that you want to
record. In the Starbuzz app, for example, we’ll need to create a table for
the drink data. It will look something like this:

Some columns can be specified as primary keys. A primary key
uniquely identifies a single row. If you say that a column is a primary key,
then the database won’t allow you to store rows with duplicate keys.

We recommend that your tables have a single column called _id to hold
the primary key that contains integer values. This is because Android
code is hardwired to expect a numeric _id column, so not having one can
cause you problems later on.

Storage classes and data types
Each column in a table is designed to store a particular type of data. For
example, in our DRINK table, the DESCRIPTION column will only
ever store text data. Here are the main data types you can use in SQLite,
and what they can store:

Unlike most database systems, you don’t need to specify the column size in
SQLite. Under the hood, the data type is translated into a much broader
storage class. This means you can say very generally what kind of data you’re
going to store, but you’re not forced to be specific about the size of data.

INTEGER Any integer type

TEXT Any character type

REAL Any floating-point number

NUMERIC Booleans, dates, and date-times

BLOB Binary Large Object

_id NAME DESCRIPTION IMAGE_RESOURCE_ID
1 “Latte” "Espresso and steamed milk" 54543543

2 “Cappuccino” "Espresso, hot milk and
steamed-milk foam"

654334453

3 “Filter” "Our best drip coffee" 44324234

It’s an Android
convention to call
your primary key
columns _id. Android
code expects there to
be an _id column on
your data. Ignoring
this convention will
make it harder to get
the data out of your
database and into
your user interface.

The columns in the table are
_id, NAME, DESCRIPTION, and
IMAGE_RESOURCE_ID. The
Drink class contained similarly
named attributes.

Create database
Create table

you are here 4 631

SQLite databases

You create tables using Structured Query Language (SQL)
Every application that talks to SQLite needs to use a standard database
language called Structured Query Language (SQL). SQL is used by almost
every type of database. If you want to create the DRINK table, you will
need to do it in SQL.

This is the SQL command to create the table:

CREATE TABLE DRINK (_id INTEGER PRIMARY KEY AUTOINCREMENT,

 NAME TEXT,

 DESCRIPTION TEXT,

 IMAGE_RESOURCE_ID INTEGER)

The _id column is the primary key.

The SQLite helper is in charge of creating the SQLite database. An empty
database is created on the device the first time it needs to be used, and then
the SQLite helper’s onCreate() method is called. The onCreate()
method has one parameter, a SQLiteDatabase object that represents
the database that’s been created.

You can use the SQLiteDatabase execSQL() method to execute
SQL on the database. This method has one parameter, the SQL you want
to execute.

execSQL(String sql);

We’ll use the onCreate() method to create the DRINK table. Here’s the
code (we’ll add the code in a few pages):

public void onCreate(SQLiteDatabase db){

 db.execSQL("CREATE TABLE DRINK ("

 + "_id INTEGER PRIMARY KEY AUTOINCREMENT, "

 + "NAME TEXT, "

 + "DESCRIPTION TEXT, "

 + "IMAGE_RESOURCE_ID INTEGER);");

}

The CREATE TABLE command says what columns you want in the table,
and what the data type is of each column. The _id column is the primary
key of the table, and the special keyword AUTOINCREMENT means that
when we store a new row in the table, SQLite will automatically generate a
unique integer for it.

This gives us an empty DRINK table. We want to prepopulate it with drink
data, so let’s look at how you do that.

These are table columns.
The table name

Execute the SQL in the String on the database.

The onCreate() method is called when the database is created

The
SQLiteDatabase
class gives you
access to the
database.

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

632 Chapter 15

insert()

Insert data using the insert() method
To insert data into a table in a SQLite database, you start by specifying
what values you want to insert into the table. To do this, you first create
a ContentValues object:

ContentValues drinkValues = new ContentValues();

drinkValues.put("NAME", "Latte");

drinkValues.put("DESCRIPTION", "Espresso and steamed milk");

drinkValues.put("IMAGE_RESOURCE_ID", R.drawable.latte);

A ContentValues object describes a set of data. You usually create a
new ContentValues object for each row of data you want to create.

You add data to the ContentValues object using its put() method.
This method adds name/value pairs of data: NAME is the column you
want to add data to, and value is the data:

db.insert("DRINK", null, drinkValues);

Once you’ve added a row of data to the ContentValues object, you
insert it into the table using the SQLiteDatabase insert() method.
This method inserts data into a table, and returns the ID of the record
once it’s been inserted. If the method is unable to insert the record, it
returns a value of -1. As an example, here’s how you’d insert the data
from drinkValues into the DRINK table:

The middle parameter is usually set to null, as in the above code. It’s
there in case the ContentValues object is empty, and you want to
insert an empty row into your table. It’s unlikely you’d want to do this,
but if you did you’d replace the null value with the name of one of the
columns in your table.

Running the lines of code above will insert a Latte row into the DRINK
table:

_id NAME DESCRIPTION IMAGE_RESOURCE_ID
1 “Latte” "Espresso and steamed milk" 54543543

A shiny new
record gets
inserted into
the table.

Create database
Create table

You need a
separate call
to the put()
method for
each value you
want to enter.

This inserts a single row into the table.

As an example, here’s how you’d use the put() method to add
the name, description, and image resource ID of a latte to a
ContentValues object called drinkValues:

contentValues.put("NAME", "value");

The insert() methods inserts one row of data at a time. But what if
you want to insert multiple records?

NAME is the column you want to add data
to. value is the value you want it to have.

Put “Espresso and
steamed milk” in
the DESCRIPTION
column.

Put the value “Latte” in the NAME column.
This is a
single row
of data.

you are here 4 633

SQLite databases

Create table
Create database

private static void insertDrink(SQLiteDatabase db,

 String name,

 String description,

 int resourceId) {

 ContentValues drinkValues = new ContentValues();

 drinkValues.put("NAME", name);

 drinkValues.put("DESCRIPTION", description);

 drinkValues.put("IMAGE_RESOURCE_ID", resourceId);

 db.insert("DRINK", null, drinkValues);

}

Insert multiple records
To insert multiple rows into a table, you need to make repeat calls
to the insert() method. Each call to the method inserts a
separate row.

To insert multiple rows, you usually create a new method that
inserts a single row of data, and call it each time you want to add
a new row. As an example, here’s an insertDrink() method
we wrote to insert drinks into the DRINK table:

To add three drinks to the DRINK table, each one a separate row
of data, you’d call the method three times:

insertDrink(db, "Latte", "Espresso and steamed milk", R.drawable.latte);

insertDrink(db, "Cappuccino", "Espresso, hot milk and steamed-milk foam",

 R.drawable.cappuccino);

insertDrink(db, "Filter", "Our best drip coffee", R.drawable.filter);

We’re passing the data to the method as parameters.

This is the database we
want to add records to.

Construct a ContentValues
object with the data.

Then insert the data.

That’s everything you need to know to insert data into
tables. On the next page we’ll show you the revised code for
StarbuzzDatabaseHelper.java.

634 Chapter 15

helper code

The StarbuzzDatabaseHelper code
Here’s the complete code for StarbuzzDatabaseHelper.java (update your
code to reflect our changes):

package com.hfad.starbuzz;

import android.content.ContentValues;
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;

class StarbuzzDatabaseHelper extends SQLiteOpenHelper{

 private static final String DB_NAME = "starbuzz"; // the name of our database
 private static final int DB_VERSION = 1; // the version of the database

 StarbuzzDatabaseHelper(Context context){
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db){
 db.execSQL("CREATE TABLE DRINK (_id INTEGER PRIMARY KEY AUTOINCREMENT, "
 + "NAME TEXT, "
 + "DESCRIPTION TEXT, "
 + "IMAGE_RESOURCE_ID INTEGER);");
 insertDrink(db, "Latte", "Espresso and steamed milk", R.drawable.latte);
 insertDrink(db, "Cappuccino", "Espresso, hot milk and steamed-milk foam",
 R.drawable.cappuccino);
 insertDrink(db, "Filter", "Our best drip coffee", R.drawable.filter);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 }

 private static void insertDrink(SQLiteDatabase db, String name,
 String description, int resourceId) {
 ContentValues drinkValues = new ContentValues();
 drinkValues.put("NAME", name);
 drinkValues.put("DESCRIPTION", description);
 drinkValues.put("IMAGE_RESOURCE_ID", resourceId);
 db.insert("DRINK", null, drinkValues);
 }
}

Say what the database name and
version is. It’s the first version of the
database, so the version should be 1.

onCreate() gets called when the database first gets created, so we’re using it to create the table and insert data.

Create the DRINK table.

Insert each
drink in a
separate row.

onUpgrade() gets called when the database
needs to be upgraded. We’ll look at this next.

We need to insert several
drinks, so we created a
separate method to do this.

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

You need to add this
extra import statement.

Create database
Create table

you are here 4 635

SQLite databases
Create database
Create table

What the SQLite helper code does

The user installs the app and launches it.
When the app needs to access the database, the SQLite helper checks to see if
the database already exists.

1

If the database doesn’t exist, it gets created.
It’s given the name and version number specified in the SQLite helper.

2

When the database is created, the onCreate() method in the
SQLite helper is called.
It adds a DRINK table to the database, and populates it with records.

3

SQLite helper

You need a database,
sir? Let me see if it’s
already there for you.

SQLite helper

SQLite database

Name: “starbuzz”
Version: 1

SQLite helper

SQLite database

Name: “starbuzz”
Version: 1

DRINKYour database,
sir. Will that
be all?

onCreate()

636 Chapter 15

change database

What if you need to make changes to the
database?
So far, you’ve seen how to create a SQLite database that your app will
be able to use to persist data. But what if you need to make changes to
the database at some future stage?

As an example, suppose lots of users have already installed your
Starbuzz app on their devices, and you want to a add a new
FAVORITE column to the DRINK table. How would you distribute
this change to new and existing users?

Well, we could change the CREATE TABLE
statement in the onCreate() method, but
that doesn’t feel entirely right to me. I
mean, what if a device already has the old
version of the database installed?

When you need to change an app’s database,
there are two key scenarios you have to deal with.
The first scenario is that the user has never installed your app before,
and doesn’t have the database installed on their device. In this case,
the SQLite helper creates the database the first time the database
needs to be accessed, and runs its onCreate() method.

The second scenario is where the user installs a new version of your
app that includes a different version of the database. If the SQLite
helper spots that the database that’s installed is out of date, it will call
either the onUpgrade() or onDowngrade() method.

So how can the SQLite helper tell if the database is out of date?

you are here 4 637

SQLite databases
Upgrade database

SQLite databases have a version number
The SQLite helper can tell whether the SQLite database needs updating
by looking at its version number. You specify the version of the database
in the SQLite helper by passing it to the SQLiteOpenHelper
superclass in its constructor.

Earlier on, we specified the version number of the database like this:

...

 private static final String DB_NAME = "starbuzz";

 private static final int DB_VERSION = 1;

 StarbuzzDatabaseHelper(Context context) {

 super(context, DB_NAME, null, DB_VERSION);

 }

...

When the database gets created, its version number gets set to the version
number in the SQLite helper, and the SQLite helper onCreate()
method gets called.

When you want to update the database, you change the version number
in the SQLite helper code. To upgrade the database, specify a number
that’s larger than you had before, and to downgrade your database, specify
a number that’s lower:

...

 private static final int DB_VERSION = 2;

...

Most of the time, you’ll want to upgrade the database, so specify a
number that’s larger. You usually only downgrade your database when
you want to undo changes you made in a previous upgrade.

When the user installs the latest version of the app on their device, the
first time the app needs to use the database, the SQLite helper checks its
version number against that of the database on the device.

If the version number in the SQLite helper code is higher than that of
the database, it calls the SQLite helper onUpgrade() method. If the
version number in the SQLite helper code is lower than that of the
database, it calls the onDowngrade() method instead.

Once it’s called either of these methods, it changes the version number of
the database to match the version number in the SQLite helper.

Geek Bits

SQLite databases support
a version number that’s
used by the SQLite helper,
and an internal schema
version. Whenever a
change is made to the
database schema, such
as the table structure,
the database increments
the schema version by 1.
You have no control over
this value, it’s just used
internally by SQLite.

Here we’re increasing the version number, so the database will get upgraded.

638 Chapter 15

what happens

What happens when you change the version number

The first time the user runs the app, the database doesn’t exist, so
the SQLite helper creates it.
The SQLite helper gives the database the name and version number specified in the
SQLite helper code.

1

When the database is created, the onCreate() method in the SQLite
helper is called.
The onCreate() method includes code to populate the database.

2

SQLite helper

SQLite database

SQLite helper

SQLite database

DRINK

Name: “starbuzz”
Version: 2

Name: “starbuzz”
Version: 2

onCreate()

The SQLite helper gives the
database a version number
of 2 if this is the version
number specified in the
SQLite helper code.

Upgrade database

Scenario 1: A first-time user installs the app

Let’s look at what happens when you release a new version of the
app where you’ve changed the SQLite helper version number from 1
to 2. We’ll consider two scenarios: where a first-time user installs the
app, and when an existing user installs it.

That’s what happens when a first-time user installs the app. What
about when an existing user installs the new version?

you are here 4 639

SQLite databases
Upgrade database

Scenario 2: an existing user installs the new version

When the user runs the new version of the app, the database helper
checks whether the database exists.
If the database already exists, the SQLite helper doesn’t recreate it.

1

SQLite helper

SQLite database

DRINK

SQLite helper

SQLite database

DRINK

Name: “starbuzz”
Version: 1

Very good, sir, I see
you already have version
1 of the database.

The SQLite helper checks the version number of the existing database
against the version number in the SQLite helper code.
If the SQLite helper version number is higher than the database version, it calls the
onUpgrade() method. If the SQLite helper version number is lower than the database
version, it calls the onDowngrade() method. It then changes the database version
number to reflect the version number in the SQLite helper code.

2

Name: “starbuzz”
Version: 1 2

The SQLite helper runs the
onUpgrade() method (if the
new version number is higher)
and updates the database
version number.

Now that you’ve seen under what circumstances the
onUpgrade() and onDowngrade() methods get called,
let’s find out more about how you use them.

640 Chapter 15

onUpgrade()

The onUpgrade() method has three parameters—the
SQLite database, the user’s version number of the database,
and the new version of the database that’s passed to the
SQLiteOpenHelper superclass:

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 //Your code goes here

}

The version numbers are important, as you can use them to say
what database changes should be made depending on which
version of the database the user already has. As an example,
suppose you needed to run code if the user has version 1 of the
database, and the SQLite helper version number is higher. Your
code would look like this:

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 if (oldVersion == 1) {

 //Code to run if the database version is 1

 }

}

You can also use the version numbers to apply successive updates
like this:

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 if (oldVersion == 1) {

 //Code to run if the database version is 1

 }

 if (oldVersion < 3) {

 //Code to run if the database version is 1 or 2

 }

}

Using this approach means that you can make sure that the user
gets all the database changes applied that they need, irrespective
of which version they have installed.

The onDowngrade() method works in a similar way to the
onUpgrade() method. Let’s take a look on the next page.

Upgrade your database with onUpgrade()

Remember, to upgrade the database,
the new version must be higher than
the user’s existing version.

The user’s version of the
database, which is out of date

The new version
described in the
SQlite helper code

This code will only run if the
user has version 1 of the
database, and the SQLite
helper version number is higher.

This code will only run if the
user’s database is at version 1.

This code will run if the user’s
database is at version 1 or 2.

Upgrade database

you are here 4 641

SQLite databases

The onDowngrade() method isn’t used as often as the
onUpgrade() method, as it’s used to revert your database to
a previous version. This can be useful if you release a version of
your app that includes database changes, but you then discover
that there are bugs. The onDowngrade() method allows you
to undo the changes and set the database back to its previous
version.

Just like the onUpgrade() method, the onDowngrade()
method has three parameters—the SQLite database you
want to downgrade, the version number of the database
itself, and the new version of the database that’s passed to the
SQLiteOpenHelper superclass:

@Override

public void onDowngrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 //Your code goes here

}

Just as with the onUpgrade() method, you can use the version
numbers to revert changes specific to a particular version. As an
example, if you needed to make changes to the database when
the user’s database version number is 3, you’d use code like
following:

@Override

public void onDowngrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 if (oldVersion == 3) {

 //Code to run if the database version is 3

 }

}

Downgrade your database with onDowngrade()

Now that you know how to upgrade and downgrade a database,
let’s walk through the more common scenario: upgrading.

To downgrade the database, the
new version must be lower than
the user’s exisiting version.

This code will run if the user
has version 3 of the database,
but you want to downgrade it
to a lower version.

Upgrade database

642 Chapter 15

upgrade database

package com.hfad.starbuzz;

import android.content.ContentValues;

import android.content.Context;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

class StarbuzzDatabaseHelper extends SQLiteOpenHelper{

 private static final String DB_NAME = "starbuzz"; // the name of our database

 private static final int DB_VERSION = 12; // the version of the database

 StarbuzzDatabaseHelper(Context context){

 super(context, DB_NAME, null, DB_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db){

 updateMyDatabase(db, 0, DB_VERSION);

 }

Let’s upgrade the database
Suppose we need to upgrade our database to add a new column to the
DRINK table. As we want all new and existing users to get this change,
we need to make sure that it’s included in both the onCreate() and
onUpgrade() methods. The onCreate() method will make sure that all
new users get the new column, and the onUpgrade() method will make
sure that all existing users get it too.

Rather than put similar code in both the onCreate() and onUpgrade()
methods, we’re going to create a separate updateMyDatabase()
method, called by both the onCreate() and onUpgrade() methods.
We’ll move the code that’s currently in the onCreate() method to this
new updateMyDatabase() method, and we’ll add extra code to create
the extra column. Using this approach means that you can put all of your
database code in one place, and more easily keep track of what changes
you’ve made each time you’ve updated the database.

Here’s the full code for StarbuzzDatabaseHelper.java (update your code to reflect
our changes):

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

Replace the existing
onCreate() code with this
call to updateMyDatabase().

Upgrade database

Changing the version number to a larger
integer means the SQLite helper will know
that you want to upgrade the database.

The code
continues
on the
next page.

you are here 4 643

SQLite databases

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 updateMyDatabase(db, oldVersion, newVersion);

 }

 private static void insertDrink(SQLiteDatabase db, String name,

 String description, int resourceId) {

 ContentValues drinkValues = new ContentValues();

 drinkValues.put("NAME", name);

 drinkValues.put("DESCRIPTION", description);

 drinkValues.put("IMAGE_RESOURCE_ID", resourceId);

 db.insert("DRINK", null, drinkValues);

 }

 private void updateMyDatabase(SQLiteDatabase db, int oldVersion, int newVersion) {

 if (oldVersion < 1) {

 db.execSQL("CREATE TABLE DRINK (_id INTEGER PRIMARY KEY AUTOINCREMENT, "

 + "NAME TEXT, "

 + "DESCRIPTION TEXT, "

 + "IMAGE_RESOURCE_ID INTEGER);");

 insertDrink(db, "Latte", "Espresso and steamed milk", R.drawable.latte);

 insertDrink(db, "Cappuccino", "Espresso, hot milk and steamed-milk foam",

 R.drawable.cappuccino);

 insertDrink(db, "Filter", "Our best drip coffee", R.drawable.filter);

 }

 if (oldVersion < 2) {

 //Code to add the extra column

 }

 }

}

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

This is the
code we
previously
had in our
onCreate()
method.

Call the updateMyDatabase()
method from onUpgrade(),
passing along the parameters.

This code will run if the user already
has version 1 of the database. We
need to write this code next.

The SQLite helper code (continued)

Upgrade database

The next thing we need to do is write the code to upgrade the
database. Before we do that, try the exercise on the next page.

644 Chapter 15

exercise

...

class MyHelper extends SQLiteOpenHelper{

 StarbuzzDatabaseHelper(Context context){
 super(context, "fred", null, 4);
 }

 @Override
 public void onCreate(SQLiteDatabase db){
 //Run code A
 ...
 }

 @Override
 public void onUpgrade(SQLiteDatabase db,
 int oldVersion,
 int newVersion){
 if (oldVersion < 2) {
 //Run code B
 ...
 }
 if (oldVersion == 3) {
 //Run code C
 ...
 }
 //Run code D
 ...
 }

 @Override
 public void onDowngrade(SQLiteDatabase db,
 int oldVersion,
 int newVersion){
 if (oldVersion == 3) {
 //Run code E
 ...
 }
 if (oldVersion < 6) {
 //Run code F
 ...
 }
 }
}

BE the SQLite Helper
On the right, you’ll see some SQLite
helper code. Your job is to play like

you’re the SQLite helper and
say which code will run
for each of the users
below. We’ve labeled
the code we want you to

consider. We’ve done the
first one to start you off.

A

F

E

D

C

B

User 1 runs the app for the first time.

User 2 has database version 1.

User 3 has database version 2.

User 4 has database version 3.

User 5 has database version 4.

User 6 has database version 5.

Code segment A. The user doesn’t have the
database, so the onCreate() method runs.

Answers on page 654.

you are here 4 645

SQLite databases

Upgrade an existing database
When you need to upgrade your database, there are two types of
actions you might want to perform:

Change the database structure.
You’ve already seen how you can create tables in the database. You may
also want to add columns to existing tables, rename tables, or remove tables
completely.

¥

Change the database records.
Earlier in the chapter, you saw how to insert records in your database using
the SQLiteDatabase insert() method. You may want to add more
records when you upgrade the database, or update or delete the records
that are already there.

¥

We’ll start by looking at how you change database records.

Upgrade database

How to update records
You update records in a table in a similar way to how you insert
them.

You start by creating a new ContentValues object that
specifies what you want to update values to. As an example,
suppose you wanted to update the Latte data in the DRINK table
so that the value of the DESCRIPTION field is “Tasty”:

ContentValues drinkValues = new ContentValues();

drinkValues.put("DESCRIPTION", "Tasty");

Notice that when you’re updating records, you only need to
specify the data you want to change in the ContentValues
object, not the entire row of data.

Once you’ve added the data you want to change to the
ContentValues object, you use the SQLiteDatabase
update() method to update the data. We’ll look at this on the
next page.

To do this, you’d create a new ContentValues object that
describes the data that needs to be updated:

_id NAME DESCRIPTION IMAGE_RESOURCE_ID
1 “Latte” "Espresso and steamed milk"

"Tasty"
54543543

We want to change the value of the DESCRIPTION column to Tasty, so we give the name “DESCRIPTION” a value of “Tasty”.

646 Chapter 15

update()

Update records with the update() method

The first parameter of the update() method is the name of the
table you want to update (in this case, the DRINK table).

The second parameter is the ContentValues object that
describes the values you want to update. In the example
above, we’ve added "DESCRIPTION" and "Tasty" to
the ContentValues object, so it updates the value of the
DESCRIPTION column to “Tasty”.

The last two parameters specify which records you want to update
by describing conditions for the update. Together, they form the
WHERE clause of a SQL statement.

The third parameter specifies the name of the column in the
condition. In the above example, we want to update records where
the value of the NAME column is “Latte”, so we use "NAME =
?"; it means that we want the value in the NAME column to be
equal to some value. The ? symbol is a placeholder for this value.

The last parameter is an array of Strings that says what the value
of the condition should be. In our particular case we want to
update records where the value of the NAME column is “Latte”,
so we use:

ContentValues drinkValues = new ContentValues();

drinkValues.put("DESCRIPTION", "Tasty");

db.update("DRINK",

 drinkValues,

 "NAME = ?",

 new String[] {"Latte"});

The conditions for
updating the data,
in this case where
NAME = “Latte”.

 If you set the
last two
parameters of
the update()
method to null,

ALL records in the table
will be updated.

As an example, the code:
 db.update("DRINK",
 drinkValues,

 null, null);

will update all records in the
DRINK table.

This is the name of the table whose records you want to update.
This is the ContentValues object that contains the new values.

new String[] {"Latte"});

The update() method lets you update records in the database,
and returns the number of records it’s updated. To use the
update() method, you specify the table you want to update
records in, the ContentValues object that contains the values
you want to update, and the conditions for updating them.

As an example, here’s how you’d change the value of the
DESCRIPTION column to “Tasty” where the name of the drink
is “Latte”:

We’ll look at more complex conditions on the next page.

Upgrade database

The value “Latte” is substituted for the
? in the “NAME = ?” statement above.

you are here 4 647

SQLite databases

db.update("DRINK",

 drinkValues,

 "_id = ?",

 new String[] {Integer.toString(1)});

Delete records with the delete() method
You delete records using the SQLiteDatabase delete() method. It
works in a similar way to the update() method you’ve just seen. You specify
the table you want to delete records from, and conditions for deleting the data.
As an example, here’s how you’d delete all records from the DRINK table
where the name of the drink is “Latte”:

db.delete("DRINK",

 "NAME = ?",
 new String[] {"Latte"});

The first parameter is the name of the table you want to delete records from
(in this case, DRINK). The second and third arguments allow you to describe
conditions to specify exactly which records you wish to delete (in this case,
where NAME = “Latte”).

See how similar this is to the update() method.

_id NAME DESCRIPTION IMAGE_RESOURCE_ID
1 “Latte” "Espresso and steamed milk" 54543543

The entire row is deleted.

Convert the int 1
to a String value.

Apply conditions to multiple columns
You can also specify conditions that apply to multiple columns. As an
example, here’s how you’d update all records where the name of the
drink is “Latte”, or the drink description is “Our best drip coffee”:

db.update("DRINK",

 drinkValues,

 "NAME = ? OR DESCRIPTION = ?",

 new String[] {"Latte", "Our best drip coffee"});

This means: Where NAME = “Latte” or
DESCRIPTION = “Our best drip coffee”.

If you want to apply conditions that cover multiple columns, you
specify the column names in the update() method’s third
parameter. As before, you add a placeholder ? for each value you
want to add as part of each condition. You then specify the condition
values in the update() method’s fourth parameter.

The condition values must be Strings, even if the column you’re
applying the condition to contains some other type of data. As an
example, here’s how you’d update DRINK records where the _id
(numeric) is 1:

Upgrade database

Each ? placeholder is replaced
with a value from this array. The
number of values in the array
must match the number of ?’s.

648 Chapter 15

exercise

Here’s the onCreate() method of a SQLiteOpenHelper
class. Your job is to say what values have been inserted into the
NAME and DESCRIPTION columns of the DRINK table when the
onCreate() method has finished running.

@Override

public void onCreate(SQLiteDatabase db) {

 ContentValues espresso = new ContentValues();

 espresso.put("NAME", "Espresso");

 ContentValues americano = new ContentValues();

 americano.put("NAME", "Americano");

 ContentValues latte = new ContentValues();

 latte.put("NAME", "Latte");

 ContentValues filter = new ContentValues();

 filter.put("DESCRIPTION", "Filter");

 ContentValues mochachino = new ContentValues();

 mochachino.put("NAME", "Mochachino");

 db.execSQL("CREATE TABLE DRINK ("

 + "_id INTEGER PRIMARY KEY AUTOINCREMENT, "

 + "NAME TEXT, "

 + "DESCRIPTION TEXT);");

 db.insert("DRINK", null, espresso);

 db.insert("DRINK", null, americano);

 db.delete("DRINK", null, null);

 db.insert("DRINK", null, latte);

 db.update("DRINK", mochachino, "NAME = ?", new String[] {"Espresso"});

 db.insert("DRINK", null, filter);

}

_id NAME DESCRIPTIONYou don’t
need to
enter the
value of the
_id column.

Answers on page 655.

you are here 4 649

SQLite databases

Add new columns to tables using SQL
Earlier in the chapter, you saw how you could create tables using the
SQL CREATE TABLE command like this:

CREATE TABLE DRINK (_id INTEGER PRIMARY KEY AUTOINCREMENT,

 NAME TEXT,

 DESCRIPTION TEXT,

 IMAGE_RESOURCE_ID INTEGER)

The _id column is the primary key.

You can also use SQL to change an existing table using the ALTER
TABLE command. As an example, here’s what the command looks
like to add a column to a table:

The table columns
The table name

ALTER TABLE DRINK

ADD COLUMN FAVORITE NUMERIC

In the example above, we’re adding a column to the DRINK table
called FAVORITE that holds numeric values.

The table name

The column you want to add

Change the database structure
In addition to creating, updating, or deleting database records, you
may want to make changes to the database structure. As an example,
in our particular case we want to add a new FAVORITE column to
the DRINK table.

Renaming tables
You can also use the ALTER TABLE command to rename a table.
As an example, here’s how you’d rename the DRINK table to FOO:

ALTER TABLE DRINK

RENAME TO FOO

The current table name
The new name of the table

On the next page, we’ll show you how to remove a table from the
database.

Upgrade database

650 Chapter 15

altering tables

Delete tables by dropping them
If you want to delete a table from the database, you use the DROP
TABLE command. As an example, here’s how you’d delete the
DRINK table:

DROP TABLE DRINK

This command is useful if you have a table in your database schema
that you know you don’t need anymore, and want to remove it in
order to save space. Make sure you only use the DROP TABLE
command if you’re absolutely sure you want to get rid of the table and
all of its data.

SQLiteDatabase.execSQL(String sql);

db.execSQL("ALTER TABLE DRINK ADD COLUMN FAVORITE NUMERIC;");

Execute the SQL using execSQL()
As you saw earlier in the chapter, you execute SQL commands using
the SQLiteDatabase execSQL() method:

You use the execSQL() method any time you need to execute SQL
on the database. As an example, here’s how you’d execute SQL to
add a new FAVORITE column to the DRINK table:

Now that you’ve seen the sorts of actions you might want to
perform when upgrading your database, let’s apply this to
StarbuzzDatabaseHelper.java.

The name of the table you want to remove

Upgrade database

you are here 4 651

SQLite databases

The full SQLite helper code
Here’s the full code for StarbuzzDatabaseHelper.java that will add a
new FAVORITE column to the DRINK table. Update your code
to match ours (the changes are in bold):

package com.hfad.starbuzz;

import android.content.ContentValues;

import android.content.Context;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

class StarbuzzDatabaseHelper extends SQLiteOpenHelper{

 private static final String DB_NAME = "starbuzz"; // the name of our database

 private static final int DB_VERSION = 2; // the version of the database

 StarbuzzDatabaseHelper(Context context){

 super(context, DB_NAME, null, DB_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db){

 updateMyDatabase(db, 0, DB_VERSION);

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 updateMyDatabase(db, oldVersion, newVersion);

 }

Changing the version number to
a larger integer enables the
SQLite helper to spot that you
want to upgrade the database.

The code to create any database tables is in
the updateMyDatabase() method.

The code to upgrade the database is
in our updateMyDatabase() method.

The code continues over the page.

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

Upgrade database

652 Chapter 15

more code

The SQLite helper code (continued)

 private static void insertDrink(SQLiteDatabase db, String name,

 String description, int resourceId) {

 ContentValues drinkValues = new ContentValues();

 drinkValues.put("NAME", name);

 drinkValues.put("DESCRIPTION", description);

 drinkValues.put("IMAGE_RESOURCE_ID", resourceId);

 db.insert("DRINK", null, drinkValues);

 }

 private void updateMyDatabase(SQLiteDatabase db, int oldVersion, int newVersion) {

 if (oldVersion < 1) {

 db.execSQL("CREATE TABLE DRINK (_id INTEGER PRIMARY KEY AUTOINCREMENT, "

 + "NAME TEXT, "

 + "DESCRIPTION TEXT, "

 + "IMAGE_RESOURCE_ID INTEGER);");

 insertDrink(db, "Latte", "Espresso and steamed milk", R.drawable.latte);

 insertDrink(db, "Cappuccino", "Espresso, hot milk and steamed-milk foam",

 R.drawable.cappuccino);

 insertDrink(db, "Filter", "Our best drip coffee", R.drawable.filter);

 }

 if (oldVersion < 2) {

 db.execSQL("ALTER TABLE DRINK ADD COLUMN FAVORITE NUMERIC;");

 }

 }

}

The new code in the SQLite helper means that existing users will
get the new FAVORITE column added to the DRINK table the
next time they access the database. It also means that any new
users will get the complete database created for them, including
the new column.

We’ll go through what happens when the code runs on the next
page. Then in the next chapter, you’ll see how to use the database
data in your activities.

Upgrade database

Add a numeric FAVORITE
column to the DRINK table.

app/src/main

StarbuzzDatabase
Helper.java

Starbuzz

java

com.hfad.starbuzz

you are here 4 653

SQLite databases

What happens when the code runs

When the database first needs to be accessed, the SQLite helper checks
whether the database already exists.

1

If the database doesn’t exist, the SQLite helper creates it and runs its
onCreate() method.
Our onCreate() method code calls the updateMyDatabase() method. This creates the
DRINK table (including the new FAVORITE column) and populates the table with records.

2a

If the database already exists, the SQLite helper checks the version number
of the database against the version number in the SQLite helper code.
If the SQLite helper version number is higher than the database version, it calls the
onUpgrade() method. If the SQLite helper version number is lower than the database
version, it calls the onDowngrade() method. Our SQLite helper version number is
higher than that of the existing database, so the onUpgrade() method is called. It calls the
updateMyDatabase() method, and this adds the new FAVORITE column to the DRINK
table.

2b

SQLite helper

You need a database,
sir? Let me see if it’s
already there for you.

SQLite database

Name: “starbuzz”
Version: 2

DRINK

SQLite helper

onCreate()

SQLite database

Name: “starbuzz”
Version: 1 2

DRINK

SQLite helper

onUpgrade()

654 Chapter 15

solution

...

class MyHelper extends SQLiteOpenHelper{

 StarbuzzDatabaseHelper(Context context){
 super(context, "fred", null, 4);
 }

 @Override
 public void onCreate(SQLiteDatabase db){
 //Run code A
 ...
 }

 @Override
 public void onUpgrade(SQLiteDatabase db,
 int oldVersion,
 int newVersion){
 if (oldVersion < 2) {
 //Run code B
 ...
 }
 if (oldVersion == 3) {
 //Run code C
 ...
 }
 //Run code D
 ...
 }

 @Override
 public void onDowngrade(SQLiteDatabase db,
 int oldVersion,
 int newVersion){
 if (oldVersion == 3) {
 //Run code E
 ...
 }
 if (oldVersion < 6) {
 //Run code F
 ...
 }
 }
}

BE the SQLite Helper Solution
On the right you’ll see some SQLite
helper code. Your job is to play like

you’re the SQLite helper and
say which code will run
for each of the users
below. We’ve labeled
the code we want you to

consider. We’ve done the
first one to start you off.

A

F

E

D

C

B

User 1 runs the app for the first time.

User 2 has database version 1.

User 3 has database version 2.

User 4 has database version 3.

User 5 has database version 4.

User 6 has database version 5.

Code segment A. The user doesn’t have the
database, so the onCreate() method runs.

Code segment B, then D. The database needs to be
upgraded with oldVersion == 1.

Code segment D. The database needs to be
upgraded with oldVersion == 2.

Code segment C then D. The database needs to be
upgraded with oldVersion == 3.

None. The user has the correct version of the
database.

Code segment F. The database needs to be
downgraded with oldVersion == 5.

The new version of
the database is 4.

The onCreate() method will
only run if the user doesn’t
have the database.

This will run if the
user has version 1.

This will run if the
user has version 3.

This will run if the user
has version 1, 2, or 3.

This will run if the user has version 5. For
onDowngrade() to run, the user must have
a version greater than 4, as that’s the
current version number of the helper.

This will never run.
If the user has
version 3, their
database needs to
be upgraded, not
downgraded.

you are here 4 655

SQLite databases

Here’s the onCreate() method of a SQLiteOpenHelper
class. Your job is to say what values have been inserted into the
NAME and DESCRIPTION columns of the DRINK table when the
onCreate() method has finished running.

@Override

public void onCreate(SQLiteDatabase db) {

 ContentValues espresso = new ContentValues();

 espresso.put("NAME", "Espresso");

 ContentValues americano = new ContentValues();

 americano.put("NAME", "Americano");

 ContentValues latte = new ContentValues();

 latte.put("NAME", "Latte");

 ContentValues filter = new ContentValues();

 filter.put("DESCRIPTION", "Filter");

 ContentValues mochachino = new ContentValues();

 mochachino.put("NAME", "Mochachino");

 db.execSQL("CREATE TABLE DRINK ("

 + "_id INTEGER PRIMARY KEY AUTOINCREMENT, "

 + "NAME TEXT, "

 + "DESCRIPTION TEXT);");

 db.insert("DRINK", null, espresso);

 db.insert("DRINK", null, americano);

 db.delete("DRINK", null, null);

 db.insert("DRINK", null, latte);

 db.update("DRINK", mochachino, "NAME = ?", new String[] {"Espresso"});

 db.insert("DRINK", null, filter);

}

_id NAME DESCRIPTION
Latte

Filter

Create the table, adding _id, NAME,
and DESCRIPTION columns.

Insert Espresso in the NAME column.
Insert Americano in the NAME column.

Delete all the drinks.
Insert Latte in the NAME column.

Set NAME to Mochachino where NAME
is Espresso. No records get updated.Insert Filter in the DESCRIPTION column.

Here’s
the final
result of
running
the above
code.

656 Chapter 15

toolbox

Your Android Toolbox

You’ve got Chapter 15 under
your belt and now you’ve

added creating, updating,
and upgrading databases to your

toolbox.

 � Android uses SQLite as its backend
database to persist data.

 � The SQLiteDatabase class gives
you access to the SQLite database.

 � A SQLite helper lets you create and
manage SQLite databases. You create
a SQLite helper by extending the
SQLiteOpenHelper class.

 � You must implement the
SQLiteOpenHelper onCreate()
and onUpgrade() methods.

 � The database gets created the first time it
needs to be accessed. You need to give
the database a name and version number,
starting at 1. If you don’t give the database
a name, it will just get created in memory.

 � The onCreate() method gets called
when the database first gets created.

 � The onUpgrade() method gets called
when the database needs to be upgraded.

 � Execute SQL using the
SQLiteDatabase
execSQL(String) method.

 � Use the SQL ALTER TABLE command
to change an existing table. Use RENAME
TO to rename the table, and ADD
COLUMN to add a column.

 � Use the SQL DROP TABLE command
to delete a table.

 � Add records to tables using the
insert() method.

 � Update records using the update()
method.

 � Remove records from tables using the
delete() method.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CH
AP

T
ER

 15

this is a new chapter 657

Charles gave me
a cursor that returned
everything from the
EXPENSIVE_GIFT table.

basic cursors16

Getting Data Out

So how do you connect your app to a SQLite database?
 So far you’ve seen how to create a SQLite database using a SQLite helper. The next step

is to get your activities to access it. In this chapter, we’ll focus on how you read data from

a database. You’ll find out how to use cursors to get data from the database. You’ll see

how to navigate cursors, and how to get access to their data. Finally, you’ll discover

how to use cursor adapters to bind cursors to list views.

658 Chapter 16

where we are

The story so far...
In Chapter 15, you created a SQLite helper for Starbuzz
Coffee. The SQLite helper creates a Starbuzz database,
adds a DRINK table to it, and populates the table with
drinks.

The activities in the Starbuzz app currently get their data
from the Java Drink class. We’re going to change the app
so the activities get data from the SQLite database instead.

Here’s a reminder of how the app currently works:

<Layout>

</Layout>

activity_top_level.xml

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

DrinkCategoryActivity.java DrinkActivity.java

Drink.java

Starbuzz
database

SQLite Helper

The Drink class is still being used.

We’ve created the
SQLite helper and
added code so it
can create the
Starbuzz database.
It’s not being used
by any activities yet.

DrinkActivity and
DrinkCategoryActivity are
still accessing Drink.java.

<Layout>

</Layout>

activity_drink_
category.xml

TopLevelActivity displays a list of options for Drinks,
Food, and Stores.

1

When the user clicks on the Drinks option, it
launches DrinkCategoryActivity.
This activity displays a list of drinks that it gets from the Java
Drink class.

2

When the user clicks on a drink, its details get
displayed in DrinkActivity.
DrinkActivity gets details of the drink from the Java Drink
class.

3

1 2 3

you are here 4 659

basic cursors

activity_drink.xml

The new Starbuzz app structure
There are two activities that use the Drink class:
DrinkActivity and DrinkCategoryActivity.
We need to change these activities so that they read data
from the SQLite database with assistance from the SQLite
helper.

Here’s what the new structure of the Starbuzz app will look
like:

<Layout>

</Layout>

activity_top_level.xml

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

DrinkCategoryActivity.java DrinkActivity.java

Starbuzz
database

SQLite Helper

We’ll change the activities that
access the Drink class so that they
use the database instead.

<Layout>

</Layout>

activity_drink_
category.xml

Drink.java

We will no longer be
using the Drink class.

We’ll start by updating DrinkActivity, and we’ll
change DrinkCategoryActivity later on in the
chapter.

Do this!

We’re going to update the
Starbuzz app in this chapter,
so open your Starbuzz
project in Android Studio.

660 Chapter 16

steps

What we’ll do to change DrinkActivity
to use the Starbuzz database
There are a number of steps we need to go through to change
DrinkActivity so that it uses the Starbuzz database:

Get a reference to the Starbuzz database.
We’ll do this using the Starbuzz SQLite helper we created in Chapter 15.

1

Create a cursor to read drink data from the database.
We need to read the data held in the Starbuzz database for the drink the
user selects in DrinkCategoryActivity. The cursor will give us
access to this data. (We’ll explain cursors soon.)

2

Before we begin, let’s remind ourselves of the
DrinkActivity.java code we created in Chapter 7.

Navigate to the drink record.
Before we can use the data retrieved by the cursor, we need to explicitly
navigate to it.

3

Display details of the drink in DrinkActivity.
Once we’ve navigated to the drink record in the cursor, we need to read
the data and display it in DrinkActivity.

4

Starbuzz
database

SQLite Helper

DrinkActivity.java

DrinkActivity
displays details
of the drink
the user
selected.

you are here 4 661

basic cursors

The current DrinkActivity code
Below is a reminder of the current DrinkActivity.java code. The
onCreate() method gets the drink ID selected by the user, gets
the details of that drink from the Drink class, and then populates
the activity’s views using the drink attributes. We need to change
the code in the onCreate() method to get the data from the
Starbuzz database.

package com.hfad.starbuzz;

...

public class DrinkActivity extends Activity {

 public static final String EXTRA_DRINKID = "drinkId";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink);

 //Get the drink from the intent

 int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

 Drink drink = Drink.drinks[drinkId];

 //Populate the drink name

 TextView name = (TextView)findViewById(R.id.name);

 name.setText(drink.getName());

 //Populate the drink description

 TextView description = (TextView)findViewById(R.id.description);

 description.setText(drink.getDescription());

 //Populate the drink image

 ImageView photo = (ImageView)findViewById(R.id.photo);

 photo.setImageResource(drink.getImageResourceId());

 photo.setContentDescription(drink.getName());

 }

}

Use the drink ID from the intent to get the
drink details from the Drink class. We’ll need to
change this so the drink comes from the database.

We need to
populate the
views in the
layout with
values from
the database,
not from the
Drink class.

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

This is the drink the user selected.

We're not showing you
the import statements.

Database reference
Create cursor
Navigate to record
Display drink

662 Chapter 16

get a database reference

Get a reference to the database
The first thing we need is to get a reference to the Starbuzz database
using the SQLite helper we created in the last chapter. To do that,
you start by getting a reference to the SQLite helper:

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

You then call the SQLite helper’s getReadableDatabase() or
getWritableDatabase() to get a reference to the database. You
use the getReadableDatabase() method if you need read-
only access to the database, and the getWritableDatabase()
method if you need to perform any updates. Both methods return a
SQLiteDatabase object that you can use to access the database:

If Android fails to get a reference to the database, a
SQLiteException is thrown. This can happen if, for example, you
call the getWritableDatabase() to get read/write access to the
database, but you can’t write to the database because the disk is full.

In our particular case, we only need to read data from the database, so
we’ll use the getReadableDatabase() method. If Android can’t
get a reference to the database and a SQLiteException is thrown,
we’ll use a Toast (a pop-up message) to tell the user that the database
is unavailable:

or:
SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 //Code to read data from the database

} catch(SQLiteException e) {

 Toast toast = Toast.makeText(this,

 "Database unavailable",

 Toast.LENGTH_SHORT);

 toast.show();

}

Once you have a reference to the database, you can get data from it
using a cursor. We’ll look at cursors next.

This is a Context, in this
case the current activity.

These lines create a Toast that
will display the message “Database
unavailable” for a few seconds.

This line displays the toast.

Database reference
Create cursor
Navigate to record
Display drink

you are here 4 663

basic cursors

As we said in Chapter 15, a cursor lets you read from and write
to the database. You specify what data you want access to, and the
cursor brings back the relevant records from the database. You can
then navigate through the records supplied by the cursor.

You create a cursor using a database query. A database query lets
you specify which records you want access to from the database. As
an example, you can say you want to access all the records from the
DRINK table, or just one particular record. These records are then
returned in the cursor.

You create a cursor using the SQLiteDatabase query() method:

_id NAME DESCRIPTION IMAGE_RESOURCE_ID
1 “Latte” "Espresso and steamed milk" 54543543

2 “Cappuccino” "Espresso, hot milk and
steamed-milk foam"

654334453

3 “Filter” "Our best drip coffee" 44324234

This is the database.

This is the data in the database you want
to be able to read.

The cursor reads
the data you want
in the database.

Get data from the database with a cursor

You navigate through
each record supplied
by the cursor and
read its values.

Cursor cursor = db.query(...);

There are many overloaded versions of this method with different
parameters, so rather than go into each variation, we’re only going to
show you the most common ways of using it.

The query() method
returns a Cursor object.

The query() method parameters go here.
We'll look at them over the next few pages.

Database reference
Create cursor
Navigate to record
Display drink

664 Chapter 16

query()

Return all the records from a table

Cursor cursor = db.query("DRINK",

 new String[] {"_id","NAME", "DESCRIPTION"},

 null, null, null, null, null);

We want to return the
values in these columns.

Set these parameters to null
when you want to return all
records from a table.

The query returns all the data from
the _id, NAME, and DESCRIPTION
columns in the DRINK table.

This is the name of the table.

_id NAME DESCRIPTION
1 “Latte” "Espresso and steamed milk"

2 “Cappuccino” "Espresso, hot milk and
steamed-milk foam"

3 “Filter” "Our best drip coffee"

To return all the records from a particular table, you pass the
name of the table as the query() method’s first parameter, and
a String array of the column names as the second. You set all of
the other parameters to null, as you don’t need them for this
type of query.

The simplest type of database query is one that returns all the
records from a particular table in the database. This is useful
if, for instance, you want to display all the records in a list in an
activity. As an example, here’s how you’d return the values in
the _id, NAME, and DESCRIPTION columns for every record
in the DRINK table:

Cursor cursor = db.query("TABLE_NAME",

 new String[] {"COLUMN1","COLUMN2"},

 null, null, null, null, null);

You specify each column whose value you
want to return in an array of Strings.

There are five extra parameters
you need to set to null.

Next we’ll look at how you can return the records in a particular
order.

Behind the scenes,
Android uses the
query() method to
construct an SQL
SELECT statement.

Database reference
Create cursor
Navigate to record
Display drink

you are here 4 665

basic cursors

Return records in a particular order
If you want to display data in your app in a particular order, you
use the query to sort the data by a particular column. This can
be useful if, for example, you want to display drink names in
alphabetical order.

By default, the data in the table appears in _id order, as this was
the order in which data was entered:

_id NAME DESCRIPTION IMAGE_RESOURCE_ID FAVORITE
1 “Latte” "Espresso and steamed milk" 54543543 0
2 “Cappuccino” "Espresso, hot milk and

steamed-milk foam"
654334453 0

3 “Filter” "Our best drip coffee" 44324234 1

If you wanted to retrieve data from the _id, NAME, and
FAVORITE column in ascending NAME order, you would use
the following:

Cursor cursor = db.query("DRINK",

 new String[] {"_id", "NAME", "FAVORITE"},

 null, null, null, null,

 "NAME ASC");

_id NAME FAVORITE
2 “Cappuccino” 0
3 “Filter” 1
1 “Latte” 0

The ASC keyword means that you want to order that column
in ascending order. Columns are ordered in ascending order by
default, so if you want you can omit the ASC. To order the data
in descending order instead, you’d use DESC.

You can sort by multiple columns too. As an example, here’s how
you’d order by FAVORITE in descending order, followed by
NAME in ascending order:

Cursor cursor = db.query("DRINK",

 new String[] {"_id", "NAME", "FAVORITE"},

 null, null, null, null,

 "FAVORITE DESC, NAME");

_id NAME FAVORITE
3 “Filter” 1
2 “Cappuccino” 0
1 “Latte” 0

Order by NAME in ascending order.

Order by FAVORITE in
descending order, then
NAME in ascending order.

Next we’ll look at how you return selected records from the
database.

Database reference
Create cursor
Navigate to record
Display drink

666 Chapter 16

specify conditions

Return selected records
You can filter your data by declaring conditions the data must meet,
just as you did in Chapter 15. As an example, here’s how you’d
return records from the DRINK table where the name of the drink
is “Latte”:

Cursor cursor = db.query("DRINK",

 new String[] {"_id", "NAME", "DESCRIPTION"},

 "NAME = ?",

 new String[] {"Latte"},

 null, null, null);

We want to return records where the
value of the NAME column is “Latte”.

_id NAME DESCRIPTION
1 “Latte” "Espresso and

steamed milk"

The query returns all the data from
the NAME and DESCRIPTION
columns in the DRINK table where the
value of the NAME column is “Latte".

You’ve now seen the most common ways of using the query()
method to create a cursor, so try the following exercise to
construct the cursor we need for DrinkActivity.java.

These are the columns we want to return.

The third and fourth parameters in the query describe the
conditions the data must meet.

The third parameter specifies the column in the condition. In the
above example we want to return records where the value of the
NAME column is “Latte”, so we use "NAME = ?". We want the
value in the NAME column to be equal to some value, and the ?
symbol is a placeholder for this value.

The fourth parameter is an array of Strings that specifies what the
value of the condition should be. In the above example we want to
update records where the value of the NAME column is “Latte”, so
we use:

new String[] {"Latte"};

Convert the int 1 to a String value.

The value of the condition must be an array of Strings, even if the
column you’re applying the condition to contains some other type
of data. As an example, here’s how you’d return records from the
DRINK table where the drink _id is 1:

Cursor cursor = db.query("DRINK",

 new String[] {"_id", "NAME", "DESCRIPTION"},

 "_id = ?",

 new String[] {Integer.toString(1)},

 null, null, null);

To find out more ways of

using the query
() method,

visit the SQLiteDatabase

documentation:

https://develo
per.android.com

/

reference/andr
oid/database/

sqlite/SQLiteDatabase.html

Database reference
Create cursor
Navigate to record
Display drink

you are here 4 667

basic cursors

Code Magnets
In our code for DrinkActivity, we want to get the name,
description, and image resource ID for the drink ID passed to it in an
intent. Can you create a cursor that will do that?

...

int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

//Create a cursor

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 Cursor cursor = db.query(,

 new String[] { , , },

 " ",

 new String[] { },

 null, null, null);

} catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

}

...

"IMAGE_RESOURCE_ID"

"DESCRIPTION"

"DRINK"

_id

"NAME"

id

=
?

Integer

.

toString

(

)

drinkId

You won't need to use
all of the magnets.

668 Chapter 16

magnets solution

...

int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

//Create a cursor

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 Cursor cursor = db.query(,

 new String[] { , , },

 " ",

 new String[] { },

 null, null, null);

} catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

}

...

Code Magnets Solution
In our code for DrinkActivity we want to get the name,
description, and image resource ID for the drink passed to it in an
intent. Can you create a cursor that will do that?

"IMAGE_RESOURCE_ID""DESCRIPTION"

"DRINK"

_id

"NAME"

id

= ?

Integer . toString ()drinkId

We want to access the DRINK table.
Get the NAME, DESCRIPTION, and IMAGE_RESOURCE_ID.

Where _id matches the drinkId

drinkId is an int, so needed to
be converted to a String.

You didn’t need to
use this magnet.

you are here 4 669

basic cursors

The DrinkActivity code so far
We want to change DrinkActivity.java’s onCreate() method so
that DrinkActivity gets its drink data from the Starbuzz
database instead of from the Drink Java class. Here’s the code
so far (we suggest you wait until we show you the full code—a few
pages ahead—before you update your version of DrinkActivity.java):

package com.hfad.starbuzz;

...

public class DrinkActivity extends Activity {

 public static final String EXTRA_DRINKID = "drinkId";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink);

 //Get the drink from the intent

 int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

 Drink drink = Drink.drinks[drinkId];

 //Create a cursor

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 Cursor cursor = db.query ("DRINK",

 new String[] {"NAME", "DESCRIPTION", "IMAGE_RESOURCE_ID"},

 "_id = ?",

 new String[] {Integer.toString(drinkId)},

 null, null, null);

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 ...

 }

}

Now that we’ve created our cursor, the next thing we need to do
is get the drink name, description, and image resource ID from
the cursor so that we can update DrinkActivity’s views.

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

Get a
reference
to the
database.Create a cursor to get

the name, description,
and image resource ID
of the drink the user
selected.

We’ll add the code to the onCreate() method.

Display a pop-up message if a
SQLiteException is thrown.There’s more code we

haven’t changed yet,
but you don’t need to
see it right now.

Our Starbuzz code uses the Activity class,
but we could have changed the code to
use AppCompatActivity if we'd wanted to.

Database reference
Create cursor
Navigate to record
Display drink

We’re no longer getting
the drinks from Drink.java.

670 Chapter 16

navigate records

To read a record from a cursor,
you first need to navigate to it
You’ve now seen how to create a cursor; you get a reference
to a SQLiteDatabase, and then use its query() method
to say what data you want the cursor to return. But that’s not
the end of the story—once you have a cursor, you need to
read values from it.

Whenever you need to retrieve values from a particular record
in a cursor, you first need to navigate to that record.

In our particular case, we have a cursor that’s composed of a
single record that contains details of the drink the user selected.
We need to navigate to that record in order to read details of the
drink.

_id NAME DESCRIPTION IMAGE_RESOURCE_ID
1 “Latte” "Espresso and steamed milk" 54543543

2 “Cappuccino” "Espresso, hot milk and
steamed-milk foam"

654334453

3 “Filter” "Our best drip coffee" 44324234

You specify what records you want by
creating a query on the database.

The cursor contains
the records described
by the query.

You need to move
to a record in the
cursor to read values
from it.

Database reference
Create cursor
Navigate to record
Display drink

you are here 4 671

basic cursors

Navigate cursors
There are four main methods you use to navigate through the records in
a cursor: moveToFirst(), moveToLast(), moveToPrevious(),
and moveToNext().

To go to the first record in a cursor, you use its moveToFirst() method.
This method returns a value of true if it finds a record, and false if the
cursor hasn’t returned any records):

if (cursor.moveToFirst()) {

 //Do something

};

To go to the last record, you use the moveToLast() method. Just like the
moveToFirst() method, it returns a value of true if it finds a record,
and false if it doesn’t:

if (cursor.moveToLast()) {

 //Do something

};

To move through the records in the cursor, you use the
moveToPrevious() and moveToNext() methods.

The moveToPrevious() method moves you to the previous record in
the cursor. It returns true if it succeeds in moving to the previous record,
and false if it fails (for example, if it’s already at the first record):

if (cursor.moveToPrevious()) {

 //Do something

};

The moveToNext() method works in a similar way to the
moveToPrevious() method, except that it moves you to the next
record in the cursor instead:

if (cursor.moveToNext()) {

 //Do something

};

In our case, we want to read values from the first (and only) record in
the cursor, so we’ll use the moveToFirst() method to navigate to this
record.

Once you’ve navigated to a record in your cursor, you can access its values.
We’ll look at how to do that next.

NAME DESCRIPTION

“Latte” "Espresso and steamed
milk"

Cappuccino "Espresso, hot milk and
steamed-milk foam"

Filter "Our best drip coffee"

NAME DESCRIPTION

“Latte” "Espresso and steamed
milk"

Cappuccino "Espresso, hot milk and
steamed-milk foam"

Filter "Our best drip coffee"

NAME DESCRIPTION

“Latte” "Espresso and steamed
milk"

Cappuccino "Espresso, hot milk and
steamed-milk foam"

Filter "Our best drip coffee"

NAME DESCRIPTION

“Latte” "Espresso and steamed
milk"

Cappuccino "Espresso, hot milk and
steamed-milk foam"

Filter "Our best drip coffee"

Move to the first row.

Move to the last row.

Move to the previous row.

Move to the next row.

Database reference
Create cursor
Navigate to record
Display drink

672 Chapter 16

get values

Get cursor values
You retrieve values from a cursor’s current record using the
cursor’s get*() methods: getString(), getInt(), and so
on. The exact method you use depends on the type of value you
want to retrieve. To get a String value, for example, you’d use
the getString() method, and to get an int value you’d use
getInt(). Each of the methods takes a single parameter: the
index of the column whose value you want to retrieve, starting at 0.

As an example, we’re using the following query to create our cursor:

The cursor has three columns: NAME, DESCRIPTION, and
IMAGE_RESOURCE_ID. The first two columns, NAME and
DESCRIPTION, contain Strings, and the third column,
IMAGE_RESOURCE_ID, contains int values.

Suppose you wanted to get the value of the NAME column for
the current record. NAME is the first column in the cursor, and
contains String values. You’d therefore use the getString()
method, passing it a parameter of 0 for the column index:

Cursor cursor = db.query ("DRINK",

 new String[] {"NAME", "DESCRIPTION", "IMAGE_RESOURCE_ID"},

 "_id = ?",

 new String[] {Integer.toString(1)},

 null, null, null);

String name = cursor.getString(0);

Similarly, suppose you wanted to get the contents of the
IMAGE_RESOURCE_ID column. This has a column index of 2 and
contains int values, so you’d use the code:

int imageResource = cursor.getInt(2);

Finally, close the cursor and the database
Once you’ve finished retrieving values from the cursor, you need to close
the cursor and the database in order to release their resources. You do this
by calling the cursor and database close() methods:

cursor.close();

db.close();

We’ve now covered all the code you need to replace the code in
DrinkActivity so that it gets its data from the Starbuzz database.
Let’s look at the revised code in full.

NAME is column 0 and contains Strings.

NAME DESCRIPTION
IMAGE_

RESOURCE_ID
“Latte” "Espresso and

steamed milk"
54543543

Column 0 Column 1 Column 2

You can find d
etails

of all the curs
or get

methods in http
://

developer.andro
id.com/

reference/andr
oid/

database/Cursor.html.

These are the cursor’s columns.

IMAGE_RESOURCE_ID is column 2 and contains ints.

These lines close the cursor and the database.

Database reference
Create cursor
Navigate to record
Display drink

you are here 4 673

basic cursors

The DrinkActivity code
Here’s the full code for DrinkActivity.java (apply the changes in bold to
your code, then save your work):

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.Toast;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteOpenHelper;

public class DrinkActivity extends Activity {

 public static final String EXTRA_DRINKID = "drinkId";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink);

 //Get the drink from the intent

 int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

 Drink drink = Drink.drinks[drinkId];

 //Create a cursor

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 Cursor cursor = db.query ("DRINK",

 new String[] {"NAME", "DESCRIPTION", "IMAGE_RESOURCE_ID"},

 "_id = ?",

 new String[] {Integer.toString(drinkId)},

 null, null, null);
The code continues
on the next page.

Create a cursor that gets the
NAME, DESCRIPTION, and IMAGE_
RESOURCE_ID data from the DRINK
table where _id matches drinkId.

This is the ID of the
drink the user chose.

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

We’re using these extra
classes in the code.

Database reference
Create cursor
Navigate to record
Display drink

We’re no longer getting our data from the drinks array, so we need to delete this line.

674 Chapter 16

code, continued

 //Move to the first record in the Cursor

 if (cursor.moveToFirst()) {

 //Get the drink details from the cursor

 String nameText = cursor.getString(0);

 String descriptionText = cursor.getString(1);

 int photoId = cursor.getInt(2);

 //Populate the drink name

 TextView name = (TextView)findViewById(R.id.name);

 name.setText(drink.getName());

 name.setText(nameText);

 //Populate the drink description

 TextView description = (TextView)findViewById(R.id.description);

 description.setText(drink.getDescription());

 description.setText(descriptionText);

 //Populate the drink image

 ImageView photo = (ImageView)findViewById(R.id.photo);

 photo.setImageResource(drink.getImageResourceId());

 photo.setContentDescription(drink.getName());

 photo.setImageResource(photoId);

 photo.setContentDescription(nameText);

 }

 cursor.close();

 db.close();

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this,

 "Database unavailable",

 Toast.LENGTH_SHORT);

 toast.show();

 }

 }

}

The DrinkActivity code (continued)

There’s only one record in the cursor,
but we still need to move to it.

Close the cursor and database.

So that’s the complete DrinkActivity code. Let’s
review where we’ve got to, and what we need to do next.

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

 Connecting your
activities to a database
takes more code than
using a Java class.

But if you take your time working through
the code in this chapter, you’ll be fine.

The name of the
drink is the first
item in the cursor,
the description
is the second
column, and the
image resource
ID is the third.
That’s because we
told the cursor
to use the NAME,
DESCRIPTION,
and IMAGE_
RESOURCE_ID
columns from the
database in that
order.

If a SQLiteException is thrown, this means
there’s a problem with the database. In this case,
we’ll use a toast to display a message to the user.

Database reference
Create cursor
Navigate to record
Display drink

Set the drink name to the
value from the database.

Use the drink description
from the database.

Set the image resource ID
and description to the values
from the database.

you are here 4 675

basic cursors

DrinkActivity now gets all of its drink data from the
Starbuzz database. Next, we need to update the code in
DrinkCategoryActivity so that it uses data from
the database rather than from the Java Drink class. We’ll
look at the steps to do this on the next page.

TopLevelActivity.javaDevice

<Layout>

</Layout>

activity_drink.xml

DrinkCategoryActivity.java DrinkActivity.java

Drink.java

Starbuzz
database

SQLite Helper

DrinkActivity has
been changed so
it gets its data
from the Starbuzz
database via the
SQLite helper.

DrinkCategoryActivity still gets its
drink data from the Drink class.

What we’ve done so far
Now that we’ve finished updating the DrinkActivity.java code, let’s
look at the app structure diagram to see what we’ve done, and
what we need to do next.

Q: How much SQL do I need to know to create cursors?

A: It’s useful to have an understanding of SQL SELECT
statements, as behind the scenes the query() method
translates to one. In general, your queries probably won’t be too
complex, but SQL knowledge is a useful skill.

If you want to learn more about SQL, we suggest getting a copy of
Head First SQL by Lynn Beighley.

Q: You said that if the database can’t be accessed, a
SQLiteException is thrown. How should I deal with it?

A: First, check the exception details. The exception might be
caused by an error in SQL syntax, which you can then rectify.

How you handle the exception depends on the impact it has
on your app. As an example, if you can get read access to the
database but can’t write to it, you can still give the user read-only
access to the database, but you might want to tell the user that you
can’t save their changes. Ultimately, it all depends on your app.

<Layout>

</Layout>

activity_top_level.xml

<Layout>

</Layout>

activity_drink_
category.xml

676 Chapter 16

more steps

What we’ll do to change DrinkCategoryActivity
to use the Starbuzz database

Before we get started on these tasks, let’s remind
ourselves of the DrinkCategoryActivity.java code we
created in Chapter 7.

When we updated DrinkActivity to get it to read data
from the Starbuzz database, we created a cursor to read data
for the drink the user selected, and then we used the values
from the cursor to update DrinkActivity’s views.

The steps we need to go through to update
DrinkCategoryActivity are slightly different. This is
because DrinkCategoryActivity displays a list view
that uses the drink data as its source. We need to switch the
source of this data to be the Starbuzz database.

Here are the steps we need to go through to change
DrinkCategoryActivity so that it uses the Starbuzz
database:

Create a cursor to read drink data from the database.
As before, we need to get a reference to the Starbuzz database. Then we’ll
create a cursor to retrieve the drink names from the DRINK table.

1

Replace the list view’s array adapter with a cursor adapter.
The list view currently uses an array adapter to get its drink names. This is
because the data’s held in an array in the Drink class. Because we’re now
accessing the data using a cursor, we’ll use a cursor adapter instead.

2

ListView CursorAdapter
Cursor

Cursor
Database

you are here 4 677

basic cursors

The current DrinkCategoryActivity code
Here’s a reminder of what the current DrinkCategoryActivity.java code looks
like. The onCreate() method populates a list view with drinks using an
array adapter. The onListItemClick() method adds the drink the
user selects to an intent, and then starts DrinkActivity:

package com.hfad.starbuzz;

...

public class DrinkCategoryActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink_category);

 ArrayAdapter<Drink> listAdapter = new ArrayAdapter<>(

 this,

 android.R.layout.simple_list_item_1,

 Drink.drinks);

 ListView listDrinks = (ListView) findViewById(R.id.list_drinks);

 listDrinks.setAdapter(listAdapter);

 //Create a listener to listen for clicks in the list view

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listDrinks,

 View itemView,

 int position,

 long id) {

 //Pass the drink the user clicks on to DrinkActivity

 Intent intent = new Intent(DrinkCategoryActivity.this,

 DrinkActivity.class);

 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int) id);

 startActivity(intent);

 }

 };

 //Assign the listener to the list view

 listDrinks.setOnItemClickListener(itemClickListener);

 }

}

At the
moment, we’re
using an
ArrayAdapter
to bind an
array to the
ListView.
We need to
replace this
code so that
the data
comes from
a database
instead.

DrinkCategoryActivity
displays a list of drinks.

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

Create cursor
Cursor adapter

678 Chapter 16

get a database reference

...then create a cursor that returns the drinks
To create the cursor, we need to specify what data we want it to contain. We
want to use the cursor to display a list of drink names, so the cursor needs
to include the NAME column. We’ll also include the _id column to get
the ID of the drink: we need to pass the ID of the drink the user chooses to
DrinkActivity so that DrinkActivity can display its details. Here’s
the cursor:

cursor = db.query("DRINK",

 new String[]{"_id", "NAME"},

 null, null, null, null, null);

We need to change DrinkCategoryActivity so that it gets its
data from the Starbuzz database. Just as before, this means that we
need to create a cursor to return the data we need.

We start by getting a reference to the database. We only need
to read the drink data and not update it, so we’ll use the
getReadableDatabase() method as we did before:

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 cursor = db.query("DRINK",

 new String[]{"_id", "NAME"},

 null, null, null, null, null);

 //Code to use data from the database

} catch(SQLiteException e) {

 Toast toast = Toast.makeText(this,

 "Database unavailable",

 Toast.LENGTH_SHORT);

 toast.show();

}

Get a reference to the Starbuzz database...

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

Putting this together, here’s the code to get a reference to the database
and create the cursor (you’ll add this code to DrinkCategoryActivity.java
later when we show you the full code listing):

Next we’ll use the cursor’s data to populate
DrinkCategoryActivity’s list view.

We get a reference to the database in exactly the same way that we did earlier in this chapter.

This cursor returns the _id and NAME
of every record in the DRINK table.

If the database is unavailable, a SQLiteException
gets thrown. If this happens, we’ll use a toast to
display a pop-up message as before.

Create cursor
Cursor adapter

you are here 4 679

basic cursors

How do we replace the array data
in the list view?
When we wanted DrinkCategoryActivity’s list view
to display data from the Drink.drinks array, we used
an array adapter. As you saw back in Chapter 7, an array
adapter is a type of adapter that works with arrays. It acts as
a bridge between the data in an array and a list view:

Now that we’re getting our data from a cursor, we’ll use a
cursor adapter to bind the data to our list view. A cursor
adapter is just like an array adapter, except that instead
of getting its data from an array, it reads the data from a
cursor:

Cursor Cursor
Adapter

ListViewDatabase
data

Our data comes from a cursor,
so we’ll use a cursor adapter
to bind it to the ListView.

Drink.
drinks

ListViewArray
Adapter

This is the array. This is the list view.We created an array adapter to
bind the list view to the array.

We’ll look at this in more detail on the next page.

ListViews and Spinners can use any subclass
of the Adapter class for their data. This
includes ArrayAdapter, CursorAdapter, and
SimpleCursorAdapter (a subclass of CursorAdapter).

This is the database.
The cursor reads data
from the database.

Create cursor
Cursor adapter

680 Chapter 16

how simple cursor adapters work

A simple cursor adapter maps
cursor data to views
We’re going to create a simple cursor adapter, a type of cursor
adapter that can be used in most cases where you need to display
cursor data in a list view. It takes columns from a cursor, and maps
them to text views or image views, for example in a list view.

In our case, we want to display a list of drink names. We’ll use a
simple cursor adapter to map the name of each drink returned by
our cursor to DrinkCategoryActivity’s list view.

Here’s how it will work:

Latte

The adapter asks the cursor for data from the database.2

Simple
CursorAdapter

Cursor
Database

The list view asks the adapter for data.1

ListView Simple
CursorAdapter

The adapter returns the data to the list view.
The name of each drink is displayed in the list view as a separate text view.

3

ListView Simple
CursorAdapter

Cappuccino

Filter

Let’s construct the simple cursor adapter.

Each of the
drinks is displayed
in the list view as
a separate text
view.

Create cursor
Cursor adapter

you are here 4 681

basic cursors

You use a simple cursor adapter in a similar way to how you use an
array adapter: you initialize the adapter, then attach it to the list view.

We’re going to create a simple cursor adapter to display a list of drink
names from the DRINK table. To do this, we’ll create a new instance
of the SimpleCursorAdapter class, passing in parameters to tell
the adapter what data to use and how it should be displayed. Finally,
we’ll assign the adapter to the list view.

Here’s the code (you’ll add it to DrinkCategoryActivity.java later in the
chapter):

SimpleCursorAdapter listAdapter = new SimpleCursorAdapter(this,

 android.R.layout.simple_list_item_1,

 cursor,

 new String[]{"NAME"},

 new int[]{android.R.id.text1},

 0);

listDrinks.setAdapter(listAdapter);

“this” is the current activity.

The general form of the SimpleCursorAdapter constructor
looks like this:

This is the same layout we used with
the array adapter. It displays a single
value for each row in the list view.

This is the cursor.

Display the contents of the NAME
column in the ListView text views.

Use setAdapter() to connect the adapter to the list view.

How to use a simple cursor adapter

The context and layout parameters are exactly the same ones
you used when you created an array adapter: context is the
current context, and layout says how you want to display the
data. Instead of saying which array we need to get our data from,
we need to specify which cursor contains the data. You then use
fromColumns to specify which columns in the cursor you want to
use, and toViews to say which views you want to display them in.

The flags parameter is usually set to 0, which is the default. The
alternative is to set it to FLAG_REGISTER_CONTENT_OBSERVER
to register a content observer that will be notified when the content
changes. We’re not covering this alternative here, as it can lead to
memory leaks (you’ll see how to deal with changing content in the
next chapter).

SimpleCursorAdapter adapter = new SimpleCursorAdapter(Context context,

 int layout,

 Cursor cursor,

 String[] fromColumns,

 int[] toViews,

 int flags)

The cursor you create.
The cursor should include
the _id column, and the
data you want to appear. Which columns

in the cursor to
match to which
viewsUsed to determine the

behavior of the cursor

How to display
the data

This is usually the current activity.

Any cursor you use
with a cursor adapter
MUST include the _id
column or it won't work.

Create cursor
Cursor adapter

682 Chapter 16

close the things that you open

Close the cursor and database
When we introduced you to cursors earlier in the chapter, we said
that you needed to close the cursor and database after you’d finished
with it in order to release their resources. In our DrinkActivity
code, we used a cursor to retrieve drink details from the database, and
once we’d used these values with our views, we immediately closed the
cursor and database.

When you use a cursor adapter, (including a simple cursor adapter) it
works slightly differently; the cursor adapter needs the cursor to stay
open in case it needs to retrieve more data from it. Let’s look in more
detail at how cursor adapters work to see why this might happen.

The list view gets displayed on the screen.
When the list is first displayed, it will be sized to fit the screen. Let’s say it has space to show
five items.

1

The list view asks its adapter for the first five items.2

ListView

These are the items
the list view has
space to display.
We’re using five to
keep things simple,
but in practice it’s
likely to be more.

ListView CursorAdapter

Hey, Adapter,
can I have the first
five data items?

Yep, I’ll go
and get them.

The cursor adapter asks its cursor to read five rows from the database.
No matter how many rows the database table contains, the cursor only needs to read the
first five rows.

3

CursorAdapter
Cursor

Database

Create cursor
Cursor adapter

you are here 4 683

basic cursors

public void onDestroy(){

 super.onDestroy();

 cursor.close();

 db.close();

}

That’s everything you need to know in order to update the code for
DrinkCategoryActivity, so have a go at the exercise on the
next page.

Close the cursor and database
when the activity is destroyed.

This means that you can’t immediately close the cursor and
database once you’ve used the setAdapter() method to connect
the cursor adapter to your list view. Instead, we’ll close the cursor
and database in the activity’s onDestroy() method, which gets
called just before the activity is destroyed. Because the activity’s
being destroyed, there’s no further need for the cursor or database
connection to stay open, so they can be closed:

ListView CursorAdapter
Cursor

Hey Adapter, I
need more data.

Hey, Cursor, I need
more... Cursor? Hey,
buddy, are you there?

If you close the cursor
too soon, the cursor
adapter won’t be able
to get more data from
the cursor.

The user scrolls the list.
As the user scrolls the list, the adapter asks the cursor to read more rows from the
database. This works fine if the cursor’s still open. But if the cursor’s already been
closed, the cursor adapter can’t get any more data from the database.

4

As the user scrolls
through the list view,
more items get uncovered
so more data is required.

The story continues

Create cursor
Cursor adapter

684 Chapter 16

exercise

Pool Puzzle
Your job is to take code segments from the

pool and place them into the blank lines
in DrinkCategoryActivity.java. You may
not use the same code segment more
than once, and you won’t need to use
all the code segments. Your goal is
to populate the list view with a list of

drinks from the database.

Note: each segment in
the pool can only be
used once!

getReadableDatabase()
SQLiteOpenHelper

getWritableDatabase()

"DESCRIPTION" "_id"

"NAME"

,

cursor
db

,

SimpleCursorAdapter

cursor "NAME"

SQLiteException
DatabaseException

The code continues
on the next page

public class DrinkCategoryActivity extends Activity {

 private SQLiteDatabase db;

 private Cursor cursor;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink_category);

 ListView listDrinks = (ListView) findViewById(R.id.list_drinks);

 starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 db = starbuzzDatabaseHelper. ;

 cursor = db.query("DRINK",

 new String[]{ },

 null, null, null, null, null);

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

you are here 4 685

basic cursors

 SimpleCursorAdapter listAdapter = new (this,

 android.R.layout.simple_list_item_1,

 ,

 new String[]{ },

 new int[]{android.R.id.text1},

 0);

 listDrinks.setAdapter(listAdapter);

 } catch(e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 //Create the listener

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listDrinks,

 View itemView,

 int position,

 long id) {

 //Pass the drink the user clicks on to DrinkActivity

 Intent intent = new Intent(DrinkCategoryActivity.this,

 DrinkActivity.class);

 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int) id);

 startActivity(intent);

 }

 };

 //Assign the listener to the list view

 listDrinks.setOnItemClickListener(itemClickListener);

 }

 @Override

 public void onDestroy(){

 super.onDestroy();

 .close();

 .close();

 }

}

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

686 Chapter 16

public class DrinkCategoryActivity extends Activity {

 private SQLiteDatabase db;

 private Cursor cursor;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink_category);

 ListView listDrinks = (ListView) findViewById(R.id.list_drinks);

 starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 db = starbuzzDatabaseHelper. ;

 cursor = db.query("DRINK",

 new String[]{ },

 null, null, null, null, null);

solution

Pool Puzzle Solution
Your job is to take code segments from the

pool and place them into the blank lines
in DrinkCategoryActivity.java. You may
not use the same code segment more
than once, and you won’t need to use
all the code segments. Your goal is
to populate the list view with a list of

drinks from the database.

getReadableDatabase()

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

SQLiteOpenHelper

getWritableDatabase()

You get a reference to the database using a SQLiteOpenHelper.

We’re reading from the
database, so we just
need read-only access.

"DESCRIPTION"

,

DatabaseException

These code snippets
were not needed.

"_id" "NAME",

The cursor must include the _id and NAME
columns. We want to pass the drink ID to
DrinkActivity, and we need to display the
drink names.

you are here 4 687

basic cursors

 SimpleCursorAdapter listAdapter = new (this,

 android.R.layout.simple_list_item_1,

 ,

 new String[]{ },

 new int[]{android.R.id.text1},

 0);

 listDrinks.setAdapter(listAdapter);

 } catch(e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 //Create the listener

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listDrinks,

 View itemView,

 int position,

 long id) {

 //Pass the drink the user clicks on to DrinkActivity

 Intent intent = new Intent(DrinkCategoryActivity.this,

 DrinkActivity.class);

 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int) id);

 startActivity(intent);

 }

 };

 //Assign the listener to the list view

 listDrinks.setOnItemClickListener(itemClickListener);

 }

 @Override

 public void onDestroy(){

 super.onDestroy();

 .close();

 .close();

 }

}

cursor

db

SimpleCursorAdapter

cursor

"NAME"

SQLiteException

We’re using a SimpleCursorAdapter.

Use the cursor
we just created.

Display the contents
of the NAME column.

If the database is unavailable, we’ll catch the SQLiteException.

Close the cursor before you
close the database.

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

688 Chapter 16

DrinkCategoryActivity code

The revised code for DrinkCategoryActivity
Here’s the full code for DrinkCategoryActivity.java, with the array
adapter replaced by a cursor adapter (the changes are in bold);
update your code to match ours:

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ListView;

import android.view.View;

import android.content.Intent;

import android.widget.AdapterView;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteOpenHelper;

import android.widget.SimpleCursorAdapter;

import android.widget.Toast;

public class DrinkCategoryActivity extends Activity {

 private SQLiteDatabase db;

 private Cursor cursor;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink_category);

 ArrayAdapter<Drink> listAdapter = new ArrayAdapter<>(

 this,

 android.R.layout.simple_list_item_1,

 Drink.drinks);

 ListView listDrinks = (ListView) findViewById(R.id.list_drinks);

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 db = starbuzzDatabaseHelper.getReadableDatabase();

 cursor = db.query("DRINK",

 new String[]{"_id", "NAME"},

 null, null, null, null, null);

Get a reference
to the database.

The code continues on the next page.

We’re adding these as private variables so we can close the database and cursor in our onDestroy() method.

We’re using these extra classes,
so you need to import them.

Create the cursor.

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

Create cursor
Cursor adapter

We’re no longer
using an array
adapter, so
delete these
lines of code.

you are here 4 689

basic cursors

Let’s try running our freshly updated app.

 SimpleCursorAdapter listAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 cursor,
 new String[]{"NAME"},
 new int[]{android.R.id.text1},
 0);
 listDrinks.setAdapter(listAdapter);

 } catch(SQLiteException e) {
 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);
 toast.show();
 }

 //Create a listener to listen for clicks in the list view

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listDrinks,

 View itemView,

 int position,

 long id) {

 //Pass the drink the user clicks on to DrinkActivity

 Intent intent = new Intent(DrinkCategoryActivity.this,

 DrinkActivity.class);

 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int) id);

 startActivity(intent);

 }

 };

 //Assign the listener to the list view

 listDrinks.setOnItemClickListener(itemClickListener);

 }

 @Override
 public void onDestroy(){
 super.onDestroy();
 cursor.close();
 db.close();
 }
}

The DrinkCategoryActivity code (continued)

We didn’t need to
change any of the
listener code.

We’re closing the database and cursor in the
activity’s onDestroy() method. The cursor
will stay open until the cursor adapter no
longer needs it.

Map the contents
of the NAME
column to the text
in the ListView.

Set the adapter to the ListView.

app/src/main

DrinkCategory
Activity.java

Starbuzz

java

com.hfad.starbuzz

Create the cursor adapter.

Display a message to the user if a
SQLiteException gets thrown.

Create cursor
Cursor adapter

690 Chapter 16

test drive

The app looks exactly the same as before, but now the
data is being read from the database. In fact, you can
now delete the Drink.java code, because we no longer
need the array of drinks. Every piece of data we need
is now coming from the database.

Test drive the app
When you run the app, TopLevelActivity gets
displayed.

When you click on the Drinks item,
DrinkCategoryActivity is launched. It
displays all the drinks from the Starbuzz database.

When you click on one of the drinks,
DrinkActivity is launched and details of the
selected drink are displayed.

We clicked on the
Latte option...

...and here are
details of the
Latte.

Create cursor
Cursor adapter

you are here 4 691

basic cursors

Your Android Toolbox

You’ve got Chapter 16 under
your belt and now you’ve

added basic cursors to your
toolbox.

 � A cursor lets you read from and write to
the database.

 � You create a cursor by calling the
SQLiteDatabase query()
method. Behind the scenes, this builds a
SQL SELECT statement.

 � The getWritableDatabase()
method returns a SQLiteDatabase
object that allows you to read from and
write to the database.

 � The getReadableDatabase()
returns a SQLiteDatabase object.
This gives you read-only access to
the database. It may also allow you
to write to the database, but this isn’t
guaranteed.

 � Navigate through a cursor using the
moveTo*() methods.

 � Get values from a cursor using the
get*() methods. Close cursors and
database connections after you’ve
finished with them.

 � A cursor adapter is an adapter
that works with cursors. Use
SimpleCursorAdapter to
populate a list view with the values
returned by a cursor.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CHAPT
ER 16

this is a new chapter 693

My doInBackground()
method’s awesome. If
I left it all to Mr. Main
Event, can you imagine
how slow he’d be?

cursors and asynctasks17

Staying in the Background

In most apps, you’ll need your app to update its data.
 So far you’ve seen how to create apps that read data from a SQLite database. But what

if you want to update the app’s data? In this chapter you’ll see how to get your app to

respond to user input and update values in the database. You’ll also find out how to

refresh the data that’s displayed once it’s been updated. Finally, you’ll see how writing

efficient multithreaded code with AsyncTasks will keep your app speedy.

694 Chapter 17

update data

We want our Starbuzz app to update database data
In Chapter 16, you learned how to change your app to
read its data from a SQLite database. You saw how to read
an individual record (a drink from the Starbuzz data) and
display that record’s data in an activity. You also learned
how to populate a list view with database data (in this case
drink names) using a cursor adapter.

In both of these scenarios, you only needed to read data
from the database. But what if you want users to be able to
update the data?

We’re going to change the Starbuzz app so that users can
record which drinks are their favorites. We’ll do this by
adding a checkbox to DrinkActivity; if it’s checked, it
means the current drink is one of the user’s favorites:

Users can say which drinks are
their favorites by checking a
checkbox. We need to add this
checkbox to DrinkActivity and
get it to update the database.

We’ll add a ListView
to TopLevelActivity,
which contains the
user’s favorite drinks.

When the user clicks on
a drink, it takes them
to that drink’s details
in DrinkActivity.

In the real world, you’d
probably want to use tab
navigation for these items.
We’re deliberately keeping
the app pretty basic
because we want you to
focus on databases.

We’ll also add a new list view to TopLevelActivity,
which contains the user’s favorite drinks:

you are here 4 695

cursors and asynctasks

We’ll update DrinkActivity first
In Chapter 15, we added a FAVORITE column to the DRINK
table in the Starbuzz database. We’ll use this column to let users
indicate whether a particular drink is one of their favorites. We’ll
display its value in the new checkbox we’re going to add to
DrinkActivity, and when the user clicks on the checkbox,
we’ll update the FAVORITE column with the new value.

Here are the steps we’ll go through to update DrinkActivity:

We’ll add this checkbox and label to activity_drink.xml.

Do this!

We’re going to update the
Starbuzz app in this chapter,
so open your Starbuzz
project in Android Studio.

Update DrinkActivity’s layout to add a checkbox and text label.1

Display the value of the FAVORITE column in the checkbox.
To do this, we’ll need to retrieve the value of the FAVORITE column
from the Starbuzz database.

2

Update the FAVORITE column when the checkbox is clicked.
We’ll update the FAVORITE column with the value of the checkbox so
that the data in the database stays up to date.

3

Let’s get started.

696 Chapter 17

<LinearLayout ... >

 <ImageView

 android:id="@+id/photo"

 android:layout_width="190dp"

 android:layout_height="190dp" />

 <TextView

 android:id="@+id/name"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

 <TextView

 android:id="@+id/description"

 android:layout_width="match_parent"

 android:layout_height="wrap_content" />

 <CheckBox android:id="@+id/favorite"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/favorite"

 android:onClick="onFavoriteClicked" />

</LinearLayout>

add favorites

Add a checkbox to DrinkActivity’s layout
We’ll start by adding a new checkbox to DrinkActivity’s layout to
indicate whether the current drink is one of the user’s favorites. We’re
using a checkbox, as it’s an easy way to display true/false values.

First, add a String resource called "favorite" to strings.xml (we’ll
use this as a label for the checkbox):

<string name="favorite">Favorite</string>

<xml>
</xml>

app/src/main

activity_drink.xml

Starbuzz

res

layout

The checkbox has an ID of favorite.

We're giving the checkbox a label.
When the checkbox is clicked,
the onFavoriteClicked() method
in DrinkActivity will get called.
We need to write this method.

These are
the photo,
name, and
description
views we
added when
we first
created the
activity.

Then add the checkbox to activity_drink.xml. We’ll give the checkbox an
ID of favorite so that we can refer to it in our activity code. We’ll also
set its android:onClick attribute to "onFavoriteClicked"
so that it calls the onFavoriteClicked() method in
DrinkActivity when the user clicks on the checkbox. Here’s the
layout code; update your code to reflect our changes (they’re in bold):

<xml>
</xml>

app/src/main

strings.xml

Starbuzz

res

values

Next we’ll change the DrinkActivity code to get the checkbox
to reflect the value of the FAVORITE column from the database.

Update layout
Show favorite
Update favorite

you are here 4 697

cursors and asynctasks

Display the value of the FAVORITE column
In order to update the checkbox, we first need to retrieve the
value of the FAVORITE column from the database. We can do
this by updating the cursor we’re using in DrinkActivity’s
onCreate() method to read drink values from the database.

Here’s the cursor we’re currently using to return data for the drink
the user has selected:

That’s all the code we need to reflect the value of the FAVORITE
column in the favorite checkbox. Next, we need to get the
checkbox to respond to clicks so that it updates the database when
its value changes.

Add the FAVORITE
column to the cursor.

Get the value of the FAVORITE
column. It’s stored in the database
as 1 for true, 0 for false.

Set the value of the
favorite checkbox.

Once we have the value of the FAVORITE column, we can update
the favorite checkbox accordingly. To get this value, we first
navigate to the first (and only) record in the cursor using:

boolean isFavorite = (cursor.getInt(3) == 1);

CheckBox favorite = (CheckBox) findViewById(R.id.favorite);

favorite.setChecked(isFavorite);

Cursor cursor = db.query("DRINK",

 new String[]{"NAME", "DESCRIPTION", "IMAGE_RESOURCE_ID"},

 "_id = ?",

 new String[]{Integer.toString(drinkId)},

 null, null, null);

To include the FAVORITE column in the data that’s returned, we
simply add it to the array of column names returned by the cursor:

Cursor cursor = db.query("DRINK",

 new String[]{"NAME", "DESCRIPTION", "IMAGE_RESOURCE_ID", "FAVORITE"},

 "_id = ?",

 new String[]{Integer.toString(drinkId)},

 null, null, null);

cursor.moveToFirst();

We can then get the value of the column for the current drink. The
FAVORITE column contains numeric values, where 0 is false
and 1 is true. We want the favorite checkbox to be ticked if the
value is 1 (true), and unticked if the value is 0 (false), so we’ll use the
following code to update the checkbox:

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

You don’t need to update your
version of the code yet. We’ll show
you the full set of changes for
DrinkActivity.java soon.

Update layout
Show favorite
Update favorite

698 Chapter 17

respond to clicks

Respond to clicks to update the database

db.update(String table,

 ContentValues values,

 String conditionClause,

 String[] conditionArguments);

where table is the name of the table you want to update, and
values is a ContentValues object containing name/value pairs
of the columns you want to update and the values you want to set
them to. The conditionClause and conditionArguments
parameters lets you specify which records you want to update.

You already know everything you need to get DrinkActivity
to update the FAVORITE column for the current drink when the
checkbox is clicked, so have a go at the following exercise.

When we added the favorite checkbox to activity_drink.xml, we
set its android:onClick attribute to onFavoriteClicked().
This means that whenever the user clicks on the checkbox, the
onFavoriteClicked() method in the activity will get called.
We’ll use this method to update the database with the current value
of the checkbox. If the user checks or unchecks the checkbox, the
onFavoriteClicked() method will save the user’s change to
the database.

In Chapter 15, you saw how to use SQLiteDatabase methods to
change the data held in a SQLite database: the insert() method
to insert data, the delete() method to delete data, and the
update() method to update existing records.

You can use these methods to change data from within your activity.
As an example, you could use the insert() method to add new
drink records to the DRINK table, or the delete() method to
delete them. In our case, we want to update the DRINK table’s
FAVORITE column with the value of the checkbox using the
update() method.

As a reminder, the update() method looks like this:

DrinkActivity Starbuzz
database

update()

The table whose data you want to update
The new values

The criteria for updating the data

Update layout
Show favorite
Update favorite

you are here 4 699

cursors and asynctasks

public class DrinkActivity extends Activity {

...

 //Update the database when the checkbox is clicked

 public void onFavoriteClicked(){

 int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);

 CheckBox favorite = (CheckBox) findViewById(R.id.favorite);

 drinkValues = new ;

 drinkValues.put(, favorite.isChecked());

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper. ;

 db.update(, ,

 , new String[] {Integer.toString(drinkId)});

 db.close();

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 }

}

Code Magnets
In our code for DrinkActivity we want to update the FAVORITE
column in the database with the value of the favorite checkbox.
Can you construct the onFavoriteClicked() method so that it
will do that?

View view ContentValues

ContentValues()

"FAVORITE"

getWritableDatabase()

"DRINK"

drinkValues

"_id = ?"

favoritegetReadableDatabase
()

You won’t need to
use all the magnets.

700 Chapter 17

magnets solution

public class DrinkActivity extends Activity {

...

 //Update the database when the checkbox is clicked

 public void onFavoriteClicked(){

 int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);

 CheckBox favorite = (CheckBox) findViewById(R.id.favorite);

 drinkValues = new ;

 drinkValues.put(, favorite.isChecked());

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper. ;

 db.update(, ,

 , new String[] {Integer.toString(drinkId)});

 db.close();

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 }

}

Code Magnets Solution
In our code for DrinkActivity we want to update the FAVORITE
column in the database with the value of the favorite checkbox.
Can you construct the onFavoriteClicked() method so that it
will do that?

View view

ContentValues ContentValues()

favorite

"FAVORITE"

getReadableDatabase
()

getWritableDatabase()

"DRINK" drinkValues

"_id = ?"

We need read/write access to
the database to update it.

You didn’t need to use these magnets.

you are here 4 701

cursors and asynctasks

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.Toast;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteOpenHelper;

import android.view.View;

import android.widget.CheckBox;

import android.content.ContentValues;

public class DrinkActivity extends Activity {

 public static final String EXTRA_DRINKID = "drinkId";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink);

 //Get the drink from the intent

 int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);

The full DrinkActivity.java code
We’ve now done everything we need to change DrinkActivity
so that it reflects the contents of the FAVORITE column in the
favorite checkbox. It then updates the value of the column in
the database if the user changes the value of the checkbox.

Here’s the full code for DrinkActivity.java, so update your version of
the code so that it reflects ours (our changes are in bold):

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

We’re using these extra classes,
so you need to import them.

The code continues
on the next page.

Update layout
Show favorite
Update favorite

702 Chapter 17

code, continued

 //Create a cursor

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 Cursor cursor = db.query("DRINK",

 new String[]{"NAME", "DESCRIPTION", "IMAGE_RESOURCE_ID", "FAVORITE"},

 "_id = ?",

 new String[]{Integer.toString(drinkId)},

 null, null, null);

 //Move to the first record in the Cursor

 if (cursor.moveToFirst()) {

 //Get the drink details from the cursor

 String nameText = cursor.getString(0);

 String descriptionText = cursor.getString(1);

 int photoId = cursor.getInt(2);

 boolean isFavorite = (cursor.getInt(3) == 1);

 //Populate the drink name

 TextView name = (TextView) findViewById(R.id.name);

 name.setText(nameText);

 //Populate the drink description

 TextView description = (TextView) findViewById(R.id.description);

 description.setText(descriptionText);

 //Populate the drink image

 ImageView photo = (ImageView) findViewById(R.id.photo);

 photo.setImageResource(photoId);

 photo.setContentDescription(nameText);

 //Populate the favorite checkbox

 CheckBox favorite = (CheckBox)findViewById(R.id.favorite);

 favorite.setChecked(isFavorite);

 }

DrinkActivity.java (continued)

Add the FAVORITE
column to the cursor.

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

If the drink is a favorite, put a
checkmark in the favorite checkbox.

If the FAVORITE column has a value
of 1, this indicates a true value.

The code continues
on the next page.

Update layout
Show favorite
Update favorite

you are here 4 703

cursors and asynctasks

 cursor.close();

 db.close();

 } catch (SQLiteException e) {

 Toast toast = Toast.makeText(this,

 "Database unavailable",

 Toast.LENGTH_SHORT);

 toast.show();

 }

 }

 //Update the database when the checkbox is clicked

 public void onFavoriteClicked(View view){

 int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);

 //Get the value of the checkbox

 CheckBox favorite = (CheckBox) findViewById(R.id.favorite);

 ContentValues drinkValues = new ContentValues();

 drinkValues.put("FAVORITE", favorite.isChecked());

 //Get a reference to the database and update the FAVORITE column

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();

 db.update("DRINK",

 drinkValues,

 "_id = ?",

 new String[] {Integer.toString(drinkId)});

 db.close();

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 }

}

DrinkActivity.java (continued)

Let’s check what happens when we run the app.

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

Update the drink’s FAVORITE
column in the database to the
value of the checkbox.

Add the value of the favorite
checkbox to the drinkValues
ContentValues object.

Display a message if there’s a
problem with the database.

Update layout
Show favorite
Update favorite

704 Chapter 17

test drive

Test drive the app
When we run the app and navigate to a drink, the new
favorite checkbox is displayed (unchecked):

When we click on the checkbox, a checkmark appears to
indicate that the drink is one of our favorites:

When we close the app and navigate back to the drink, the checkmark
remains. The value of the checkbox has been written to the database.

That’s everything we need to display the value of the FAVORITE column
from the database, and update the database with any changes to it.

Update layout
Show favorite
Update favorite

Here’s the new checkbox
we added with its label.

When we click on the checkbox, a
checkmark appears, and the value
gets written to the database.

you are here 4 705

cursors and asynctasks

Display favorites in TopLevelActivity
The next thing we need to do is display the user’s favorite drinks in
TopLevelActivity. Here are the steps we’ll go through to do
this:

Applying all of these changes will enable us to display
the user’s favorite drinks in TopLevelActivity.

We’ll go through these steps over the next few pages.

Starbuzz
database

Cursor

The favorites list view will
get its data from the
database using a cursor.

Add a list view and text view to TopLevelActivity’s layout. 1

Populate the list view and get it to respond to clicks.
We’ll create a new cursor that retrieves the user’s favorite drinks from
the database, and attach it to the list view using a cursor adapter.
We’ll then create an onItemClickListener so that we can get
TopLevelActivity to start DrinkActivity when the user clicks
on one of the drinks.

2

Refresh the list view data when we choose a new favorite
drink.
If we choose a new favorite drink in DrinkActivity, we want it to
be displayed in TopLevelActivity’s list view when we navigate
back to it.

3

When you click
on a drink in the
favorites list view,
DrinkActivity will
start, displaying
details of the
drink.

706 Chapter 17

<LinearLayout ... >

 <ImageView

 android:layout_width="200dp"

 android:layout_height="100dp"

 android:src="@drawable/starbuzz_logo"

 android:contentDescription="@string/starbuzz_logo" />

 <ListView

 android:id="@+id/list_options"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:entries="@array/options" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="@string/favorites" />

 <ListView
 android:id="@+id/list_favorites"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

display favorites

The list_favorites
ListView will display the
user’s favorite drinks.

We’ll add a text view to display the
text “Your favorite drinks.” We’ll put
this in a String called favorites.

<xml>
</xml>

app/src/main

activity_
top_level.xml

Starbuzz

res

layout

The layout already
contains the Starbuzz
logo and list view.

Display the favorite drinks in activity_top_level.xml

<string name="favorites">Your favorite drinks:</string>

Next, we’ll add the new text view and list view to the layout.
Here’s our code for activity_top_level.xml; update your version of
the code to match our changes:

Those are all the changes we need to make to activity_top_level.xml.
Next, we’ll update TopLevelActivity.java.

As we said on the previous page, we’re going to add a list view
to activity_top_level.xml, which we’ll use to display a list of the
user’s favorite drinks. We’ll also add a text view to display a
heading for the list.

First, add the following String resource to strings.xml (we’ll use
this for the text view’s text):

<xml>
</xml>

app/src/main

strings.xml

Starbuzz

res

values

you are here 4 707

cursors and asynctasks

package com.hfad.starbuzz;

...

public class TopLevelActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_top_level);

 setupOptionsListView();

 }

 private void setupOptionsListView() {

 //Create an OnItemClickListener

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 View itemView,

 int position,

 long id) {

 if (position == 0) {

 Intent intent = new Intent(TopLevelActivity.this,

 DrinkCategoryActivity.class);

 startActivity(intent);

 }

 }

 };

 //Add the listener to the list view

 ListView listView = (ListView) findViewById(R.id.list_options);

 listView.setOnItemClickListener(itemClickListener);

 }

}

Before we write any code for our new list view, we’re going to refactor
our existing TopLevelActivity code. This will make the code a
lot easier to read later on. We’ll move the code relating to the options
list view into a new method called setupOptionsListView().
We’ll then call this method from the onCreate() method.

Here’s our code for TopLevelActivity.java (update your version of the
code to reflect our changes).

Refactor TopLevelActivity.java

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

All of this
code was
in the
onCreate()
method.
We're putting
it in a new
method to
make the
code tidier.

Call the new setupOptionsListView() method.

If the Drink option
in the list_options list
view is clicked, start
DrinkCategoryActivity.

Update layout
Populate list view
Refresh data

708 Chapter 17

TopLevelActivity changes

What changes are needed for
TopLevelActivity.java
We need to display the user’s favorite drinks in the list_
favorites list view we added to the layout, and get it to
respond to clicks. To do this, we need to do the following:

Populate the list_favorites list view using a cursor.
The cursor will return all drinks where the FAVORITE column has
been set to 1—all drinks that the user has flagged as being a favorite.
Just as we did in our code for DrinkCategoryActivity, we can
connect the cursor to the list view using a cursor adapter.

1

ListView CursorAdapter Database
Cursor

Create an onItemClickListener so that the list_favorites
list view can respond to clicks.
If the user clicks on one of their favorite drinks, we can create an
intent that starts DrinkActivity, passing it the ID of the drink
that was clicked. This will show the user details of the drink they’ve
just chosen.

2

TopLevelActivity DrinkActivity

Intent

drinkId

You’ve already seen all the code that’s needed to do this. In fact,
it’s almost identical to the code we wrote in earlier chapters to
control the list of drinks in DrinkCategoryActivity. The
only difference is that this time, we only want to display drinks
with a value of 1 in the FAVORITE column.

We’ve decided to put the code that controls a list view in a
new method called setupFavoritesListView(). We’ll
show you this method on the next page before adding it to
TopLevelActivity.java.

Latte

Cappuccino

Filter

Update layout
Populate list view
Refresh data

you are here 4 709

cursors and asynctasks

 private void setupFavoritesListView() {

 //Populate the list_favorites ListView from a cursor

 ListView listFavorites = (ListView) findViewById(R.id.list_favorites);

 try{

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 db = starbuzzDatabaseHelper.getReadableDatabase();

 favoritesCursor = db.query("DRINK",

 new String[] { "_id", "NAME"},

 "FAVORITE = 1",

 null, null, null, null);

 CursorAdapter favoriteAdapter =

 new SimpleCursorAdapter(TopLevelActivity.this,

 android.R.layout.simple_list_item_1,

 favoritesCursor,

 new String[]{"NAME"},

 new int[]{android.R.id.text1}, 0);

 listFavorites.setAdapter(favoriteAdapter);

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 //Navigate to DrinkActivity if a drink is clicked

 listFavorites.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> listView, View v, int position, long id) {

 Intent intent = new Intent(TopLevelActivity.this, DrinkActivity.class);

 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int)id);

 startActivity(intent);

 }

 });

 }

Ready Bake
Code

The setupFavoritesListView()
method populates the list_favorites
list view with the names of the user’s
favorite drinks. Make sure you understand
the code below before turning the page.

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

Get the names of the
user’s favorite drinks.

Get the list_favorites
list view.

Create a cursor that
gets the values of the
_id and NAME columns
where FAVORITE=1.

If the user clicks on one of the items
in the list_favorites list view, create an
intent to start DrinkActivity, including
the ID of the drink as extra information.

Display a message if there’s a problem with the database.

This will get
called if an
item in the
list view is
clicked.

Display the names of the
drinks in the list view.

Use the
cursor in
the cursor
adapter.

Create a new
cursor adapter.

Update layout
Populate list view
Refresh data

710 Chapter 17

TopLevelActivity code

The new TopLevelActivity.java code
We’ve updated TopLevelActivity to populate the
list_favorites list view and make it respond to clicks.
Update your version of TopLevelActivity.java to match ours
(there’s a lot of new code, so go through it carefully and
take your time):

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.widget.AdapterView;

import android.widget.ListView;

import android.view.View;

import android.database.Cursor;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteDatabase;

import android.widget.SimpleCursorAdapter;

import android.widget.CursorAdapter;

import android.widget.Toast;

public class TopLevelActivity extends Activity {

 private SQLiteDatabase db;

 private Cursor favoritesCursor;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_top_level);

 setupOptionsListView();

 setupFavoritesListView();

 }

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

We’re using all these
extra classes, so we
need to import them.

We're adding the database and cursor as private
variables so that we can access them in the
setUpFavoritesListView() and onDestroy() methods.

Call the setupFavoritesListView()
method from the onCreate() method.

The code continues
on the next page.

Update layout
Populate list view
Refresh data

you are here 4 711

cursors and asynctasks

 private void setupOptionsListView() {

 //Create an OnItemClickListener

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 View itemView,

 int position,

 long id) {

 if (position == 0) {

 Intent intent = new Intent(TopLevelActivity.this,

 DrinkCategoryActivity.class);

 startActivity(intent);

 }

 }

 };

 //Add the listener to the list view

 ListView listView = (ListView) findViewById(R.id.list_options);

 listView.setOnItemClickListener(itemClickListener);

 }

 private void setupFavoritesListView() {

 //Populate the list_favorites ListView from a cursor

 ListView listFavorites = (ListView) findViewById(R.id.list_favorites);

 try{

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 db = starbuzzDatabaseHelper.getReadableDatabase();

 favoritesCursor = db.query("DRINK",

 new String[] { "_id", "NAME"},

 "FAVORITE = 1",

 null, null, null, null);

The TopLevelActivity.java code (continued)

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

We don't need to change this method.

This is the method we created to
populate the list_favorites list
view and make it respond to clicks.

Get a reference to the database.

The list_favorites
list view will use this
cursor for its data.

The code continues
on the next page.

Update layout
Populate list view
Refresh data

712 Chapter 17

code, continued

 CursorAdapter favoriteAdapter =

 new SimpleCursorAdapter(TopLevelActivity.this,

 android.R.layout.simple_list_item_1,

 favoritesCursor,

 new String[]{"NAME"},

 new int[]{android.R.id.text1}, 0);

 listFavorites.setAdapter(favoriteAdapter);

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 //Navigate to DrinkActivity if a drink is clicked

 listFavorites.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> listView, View v, int position, long id) {

 Intent intent = new Intent(TopLevelActivity.this, DrinkActivity.class);

 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int)id);

 startActivity(intent);

 }

 });

 }

 //Close the cursor and database in the onDestroy() method

 @Override

 public void onDestroy(){

 super.onDestroy();

 favoritesCursor.close();

 db.close();

 }

}

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

The TopLevelActivity.java code (continued)

Use the cursor in
a cursor adapter.

Set the curser adapter to the list view.

Get the list_favorites list
view to respond to clicks.

Start DrinkActivity,
passing it the ID of the
drink that was clicked on.

The onDestroy() method gets called
just before the activity is destroyed.
We'll close the cursor and database in
this method, as we no longer need them
if the activity's being destroyed.

The above code populates the list_favorites list view with
the user’s favorite drinks. When the user clicks on one of these
drinks, an intent starts DrinkActivity and passes it the ID of
the drink. Let’s take the app for a test drive and see what happens.

Update layout
Populate list view
Refresh data

you are here 4 713

cursors and asynctasks

Test drive the app
When you run the app, the new text view and list_favorites list
view are displayed in TopLevelActivity. If you’ve marked a drink
as being a favorite, it appears in the list view.

If you click on that drink, DrinkActivity starts and details of the
drink are displayed.

But there’s a problem. If you select a new drink as being a
favorite, when you go back to TopLevelActivity the list_
favorites list view doesn’t include the new drink. The new drink
is only included in the list view if you rotate the device.

Update layout
Populate list view
Refresh data

Why do you think the new drink we chose as a favorite doesn’t
appear in the list view until we rotate the device? Give this
some thought before turning the page.

Here’s the new
list_favorites list view
we created. It displays
a latte, as we marked
this as a favorite
drink earlier in the
chapter.

When we click
on the drink,
its details are
displayed.

We’ve marked a cappuccino
as a favorite, but it’s not
appearing in the list view.

When we rotate the
device, the cappuccino
appears in the list view.
Why’s that?

714 Chapter 17

out-of-date data

Cursors don’t automatically refresh
If the user chooses a new favorite drink by navigating through
the app to DrinkActivity, the new favorite drink isn’t
automatically displayed in the list_favorites list view in
TopLevelActivity. This is because cursors retrieve data
when the cursor gets created.

 In our case, the cursor is created in the activity onCreate()
method, so it gets its data when the activity is created. When the
user navigates through the other activities, TopLevelActivity is
stopped. It’s not destroyed and recreated, so neither is the cursor.

Cursors don’t automatically keep track of whether the underlying
data in the database has changed. So if the underlying data changes
after the cursor’s been created, the cursor doesn’t get updated: it still
contains the original records, and none of the changes. That means
that if the user marks a new drink as being a favorite after the cursor
is created, the cursor will be out of date.

So how do we get around this?

_id NAME DESCRIPTION IMAGE_RESOURCE_ID FAVORITE
1 “Latte” "Espresso and steamed milk" 54543543 1

2 “Cappuccino” "Espresso, hot milk and
steamed-milk foam"

654334453 0

3 “Filter” "Our best drip coffee" 44324234 0

_id NAME DESCRIPTION IMAGE_RESOURCE_ID FAVORITE
1 “Latte” "Espresso and steamed milk" 54543543 0

2 “Cappuccino” "Espresso, hot milk and
steamed-milk foam"

654334453 0

3 “Filter” "Our best drip coffee" 44324234 0

If you update the data
in the database... ...the cursor won’t

see the new data if
the cursor’s already
been created.

When you start a second activity,
the second activity is stacked
on top of the first. The first
activity isn’t destroyed. Instead,
it’s paused and then stopped, as
it loses the focus and stops being
visible to the user.

Update layout
Populate list view
Refresh data

you are here 4 715

cursors and asynctasks

Change the cursor with changeCursor()
The solution is to change the underlying cursor used by the list_
favorites list view to an updated version. To do this, you define a new
version of the cursor, get a reference to the list view’s cursor adapter, and
then call the cursor adapter’s changeCursor() method to change the
cursor. Here are the details:

Change the cursor used by the cursor adapter to the new one.

You get the ListView’s adapter
using the getAdapter() method.

1. Define the cursor
You define the cursor in exactly the same way as you did before. In our case,
we want the query to return the user’s favorite drinks, so we use:

Cursor newCursor = db.query("DRINK",

 new String[] { "_id", "NAME"},

 "FAVORITE = 1",

 null, null, null, null);

2. Get a reference to the cursor adapter
You get a reference to the list view’s cursor adapter by calling the list view’s
getAdapter() method. This method returns an object of type Adapter.
As our list view is using a cursor adapter, we can cast the adapter to a
CursorAdapter:

ListView listFavorites = (ListView) findViewById(R.id.list_favorites);

CursorAdapter adapter = (CursorAdapter) listFavorites.getAdapter();

3. Change the cursor using changeCursor()
You change the cursor used by the cursor adapter by calling its
changeCursor() method. This method takes one parameter, the new
cursor:

adapter.changeCursor(newCursor);

The changeCursor() method replaces the cursor adapter’s current cursor
with the new one. It then closes the old cursor, so you don’t need to do this
yourself.

We’re going to change the cursor used by the list_favorites list view in
TopLevelActivity’s onRestart() method. This means that the data in
the list view will get refreshed when the user returns to TopLevelActivity.
Any new favorite drinks the user has chosen will be displayed, and any drinks
that are no longer flagged as favorites will be removed from the list.

We’ll show you the full code for TopLevelActivity.java over the next few pages.

Update layout
Populate list view
Refresh data

This is the same query
that we had before.

716 Chapter 17

code, continued

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.content.Intent;

import android.widget.AdapterView;

import android.widget.ListView;

import android.view.View;

import android.database.Cursor;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteDatabase;

import android.widget.SimpleCursorAdapter;

import android.widget.CursorAdapter;

import android.widget.Toast;

public class TopLevelActivity extends Activity {

 private SQLiteDatabase db;

 private Cursor favoritesCursor;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_top_level);

 setupOptionsListView();

 setupFavoritesListView();

 }

The revised TopLevelActivity.java code

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

You don’t need to change any
of the code on this page.

Here’s the full TopLevelActivity.java code; update your code to
reflect our changes (in bold).

The code continues
on the next page.

Update layout
Populate list view
Refresh data

you are here 4 717

cursors and asynctasks

 private void setupOptionsListView() {

 //Create an OnItemClickListener

 AdapterView.OnItemClickListener itemClickListener =

 new AdapterView.OnItemClickListener(){

 public void onItemClick(AdapterView<?> listView,

 View itemView,

 int position,

 long id) {

 if (position == 0) {

 Intent intent = new Intent(TopLevelActivity.this,

 DrinkCategoryActivity.class);

 startActivity(intent);

 }

 }

 };

 //Add the listener to the list view

 ListView listView = (ListView) findViewById(R.id.list_options);

 listView.setOnItemClickListener(itemClickListener);

 }

 private void setupFavoritesListView() {

 //Populate the list_favorites ListView from a cursor

 ListView listFavorites = (ListView) findViewById(R.id.list_favorites);

 try{

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 db = starbuzzDatabaseHelper.getReadableDatabase();

 favoritesCursor = db.query("DRINK",

 new String[] { "_id", "NAME"},

 "FAVORITE = 1",

 null, null, null, null);

 CursorAdapter favoriteAdapter =

 new SimpleCursorAdapter(TopLevelActivity.this,

 android.R.layout.simple_list_item_1,

 favoritesCursor,

 new String[]{"NAME"},

 new int[]{android.R.id.text1}, 0);

 listFavorites.setAdapter(favoriteAdapter);

The TopLevelActivity.java code (continued)

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

You don’t need to
change any of the
code on this page.

The code continues
on the next page.

Update layout
Populate list view
Refresh data

718 Chapter 17

more code

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 //Navigate to DrinkActivity if a drink is clicked

 listFavorites.setOnItemClickListener(new AdapterView.OnItemClickListener() {

 @Override

 public void onItemClick(AdapterView<?> listView, View v, int position, long id) {

 Intent intent = new Intent(TopLevelActivity.this, DrinkActivity.class);

 intent.putExtra(DrinkActivity.EXTRA_DRINKID, (int)id);

 startActivity(intent);

 }

 });

 }

 @Override
 public void onRestart() {
 super.onRestart();
 Cursor newCursor = db.query("DRINK",
 new String[] { "_id", "NAME"},
 "FAVORITE = 1",
 null, null, null, null);
 ListView listFavorites = (ListView) findViewById(R.id.list_favorites);
 CursorAdapter adapter = (CursorAdapter) listFavorites.getAdapter();
 adapter.changeCursor(newCursor);
 favoritesCursor = newCursor;
 }

 //Close the cursor and database in the onDestroy() method

 @Override

 public void onDestroy(){

 super.onDestroy();

 favoritesCursor.close();

 db.close();

 }

}

The TopLevelActivity.java code (continued)

app/src/main

TopLevel
Activity.java

Starbuzz

java

com.hfad.starbuzz

Add the onRestart() method. This will get called
when the user navigates back to TopLevelActivity.

Create a new version of the cursor.

Switch the cursor being used by the list_favorites list view to the new cursor.

Let’s see what happens when we run the app now.

Change the value of favoritesCursor to the new cursor so
we can close it in the activity’s onDestroy() method.

Update layout
Populate list view
Refresh data

you are here 4 719

cursors and asynctasks

Test drive the app
When we run the app, our favorite drinks are displayed in
TopLevelActivity as before. When we click on one of the
drinks, its details are displayed in DrinkActivity. If we
uncheck the favorite checkbox for that drink and return to
TopLevelActivity, the data in the list_favorites list view
is refreshed and the drink is no longer displayed.

Update layout
Populate list view
Refresh data

The list_favorites
ListView initially
contains a latte and
a cappuccino.

When we click on
a latte, its details
are displayed. We then uncheck the

checkbox to indicate
the drink is no longer
a favorite.

When we return to
TopLevelActivity, the latte
is no longerlisted in the
list_favorites list view.

I’ve been thinking... Using
databases in my app clearly has
a lot of advantages, but doesn’t
opening and reading from the
database slow the app down?

Databases are powerful, but they can be slow.
That means that even though our app works, we need to keep
an eye on performance...

720 Chapter 17

meanwhile...

Databases can make your app go in sloooow-moooo....
Think about what your app has to do when it opens a database. It first
needs to go searching for the database file. If the database file isn’t there,
it needs to create a blank database. Then it needs to run all of the SQL
commands to create tables inside the database and any initial data it needs.
Finally, it needs to fire off some queries to get the data out of there.

That all takes time. For a tiny database like the one used in the Starbuzz
app, it’s not a lot of time. But as a database gets bigger and bigger, that
time will increase and increase. Before you know it, your app will lose its
mojo and will be slower than YouTube on Thanksgiving.

There’s not a lot you can do about the speed of creating and reading from
a database, but you can prevent it from slowing down your interface.

Life is better when threads work together
The big problem with accessing a slow database is that can make your
app feel unresponsive. To understand why, you need to think about how
threads work in Android. Since Lollipop, there are three kinds of threads
you need to think about:

The main event thread
This is the real workhorse in Android. It listens for intents, it receives touch messages from
the screen, and it calls all of the methods inside your activities.

¥

The render thread
You don’t normally interact with this thread, but it reads a list of requests for screen
updates and then calls the device’s low-level graphics hardware to repaint the screen and
make your app look pretty.

¥

Any other threads that you create¥

If you’re not careful, your app will do almost all of its work on the main
event thread because this thread runs your event methods. If you just
drop your database code into the onCreate() method (as we did in
the Starbuzz app), then the main event thread will be busy talking to the
database, instead of rushing off to look for any events from the screen
or other apps. If your database code takes a long time, users will feel like
they’re being ignored or wonder if the app has crashed.

So the trick is to move your database code off the main event
thread and run it in a custom thread in the background. We’ll
go through how you do this using the DrinkActivity code we wrote
earlier in the chapter. As a reminder, the code updates the FAVORITE
column in the Starbuzz database when the user clicks on the favorite
checkbox, and displays a message if the database is unavailable.

you are here 4 721

cursors and asynctasks

We’re going to run the DrinkActivity code to update the
database in a background thread, but before we rush off and
start hacking code, let’s think about what we need to do.

The code that we have at the moment does three different things.
Choose the type of thread you think each should run on. We’ve
completed the first one to start you off.

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

SQLiteDatabase db = starbuzzDatabaseHelper.getWriteableDatabase();

db.update("DRINK",...);

Talk to the database.B

Main event thread A background thread

Toast toast = Toast.makeText(...);

toast.show();

Update what’s displayed on the screen.C

Main event thread A background thread

int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);
CheckBox favorite = (CheckBox) findViewById(R.id.favorite);
ContentValues drinkValues = new ContentValues();
drinkValues.put("FAVORITE", favorite.isChecked());

Set up the interface.A

Main event thread A background thread

This code must run on the main
event thread, as it needs to
access the activity's views.

722 Chapter 17

sharpen solution

We’re going to run the DrinkActivity code to update the
database in a background thread, but before we rush off and
start hacking code, let’s think about what we need to do.

The code that we have at the moment does three different things.
Choose the type of thread you think each should run on. We’ve
completed the first one to start you off.

SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

SQLiteDatabase db = starbuzzDatabaseHelper.getWriteableDatabase();

db.update("DRINK",...);

Talk to the database.B

Main event thread A background thread
We want to run
the database code
in the background.

Toast toast = Toast.makeText(...);

toast.show();

Update what’s displayed on the screen.C

Main event thread A background thread

We must run the code to display a
message on the screen on the main event
thread; otherwise, we’ll get an exception.

int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);
CheckBox favorite = (CheckBox) findViewById(R.id.favorite);
ContentValues drinkValues = new ContentValues();
drinkValues.put("FAVORITE", favorite.isChecked());

Set up the interface.A

Main event thread A background thread

you are here 4 723

cursors and asynctasks

//Update the database when the checkbox is clicked

public void onFavoriteClicked(View view){

 int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);
 CheckBox favorite = (CheckBox) findViewById(R.id.favorite);
 ContentValues drinkValues = new ContentValues();
 drinkValues.put("FAVORITE", favorite.isChecked());

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);
 try {
 SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();
 db.update("DRINK", drinkValues,
 "_id = ?", new String[] {Integer.toString(drinkId)});
 db.close();
 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);
 toast.show();
 }

 }

What code goes on which thread?
When you use databases in your app, it’s a good idea to run database
code in a background thread, and update views with the database
data in the main event thread. We’re going to work through the
onFavoritesClicked() method in the DrinkActivity code so
that you can see how to approach this sort of problem.

Here’s the code for the method (we’ve split it into sections, which we’ll
describe below):

Code that needs to be run before the database code
The first few lines of code get the value of the favorite checkbox, and put it in the
drinkValues ContentValues object. This code must be run before the database code.

1

Database code that needs to be run on a background thread
This updates the DRINK table.

2

Code that needs to be run after the database code
If the database is unavailable, we want to display a message to the user. This must run
on the main event thread.

3

We’re going to implement the code using an AsyncTask. What’s that,
you ask?

1

2

3

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

724 Chapter 17

AsyncTask

AsyncTask performs asynchronous tasks

AsyncTask is defined by three generic parameters: Params,
Progress, and Results. Params is the type of object used to pass any
task parameters to the doInBackground() method, Progress is the
type of object used to indicate task progress, and Result is the type of
the task result. You can set any of these to Void if you’re not going to use
them.

We’ll go through this over the next few pages by creating a new
AsyncTask called UpdateDrinkTask we can use to update drinks in
the background. Later on, we’ll add this to our DrinkActivity code
as an inner class.

private class MyAsyncTask extends AsyncTask<Params, Progress, Result>

 protected void onPreExecute() {
 //Code to run before executing the task
 }

 protected Result doInBackground(Params... params) {
 //Code that you want to run in a background thread
 }

 protected void onProgressUpdate(Progress... values) {
 //Code that you want to run to publish the progress of your task
 }

 protected void onPostExecute(Result result) {
 //Code that you want to run when the task is complete
 }
}

An AsyncTask lets you perform operations in the background. When
they’ve finished running, it then allows you to update views in the main
event thread. If the task is repetitive, you can even use it to publish the
progress of the task while it’s running.

You create an AsyncTask by extending the AsyncTask class,
and implementing its doInBackground() method. The code in
this method runs in a background thread, so it’s the perfect place
for you to put database code. The AsyncTask class also has an
onPreExecute() method that runs before doInBackground(),
and an onPostExecute() method that runs afterward. There’s an
onProgressUpdate() method if you need to publish task progress.

Here’s what an AsyncTask looks like:

You add your AsyncTask
class as an inner class to the
activity that needs to use it.

This method is optional. It runs before the
code you want to run in the background.

You must implement this method.
It contains the code you want
to run in the background.

This method is optional. It lets
you publish progress of the
code running in the background.

This method is also optional. It runs after the
code has finished running in the background.

you are here 4 725

cursors and asynctasks

private class UpdateDrinkTask extends AsyncTask<Params, Progress, Result> {

 private ContentValues drinkValues;

 protected void onPreExecute() {

 CheckBox favorite = (CheckBox)findViewById(R.id.favorite);

 drinkValues = new ContentValues();

 drinkValues.put("FAVORITE", favorite.isChecked());

 }

 ...

}

The onPreExecute() method
We’ll start with the onPreExecute() method. This gets called
before the background task begins, and it’s used to set up the
task. It’s called on the main event thread, so it has access to views
in the user interface. The onPreExecute() method takes no
parameters, and has a void return type.

In our case, we’re going to use the onPreExecute() method
to get the value of the favorite checkbox, and put it in the
drinkValues ContentValues object. This is because we
need access to the checkbox view in order to do this, and it must
be done before any of our database code can be run. We’re using
a separate attribute outside the method for the drinkValues
ContentValues object so that other methods in the class can
access the ContentValues object (we’ll look at these methods
over the next few pages).

Here’s the code:

onPreExecute()

Before we run the database code, we need
to get the value of the favorite checkbox.

Next, we’ll look at the doInBackground() method.

726 Chapter 17

doInBackground()

private class UpdateDrinkTask extends AsyncTask<Integer, Progress, Boolean> {

 private ContentValues drinkValues;

 ...

 protected Boolean doInBackground(Integer... drinks) {

 int drinkId = drinks[0];

 SQLiteOpenHelper starbuzzDatabaseHelper =

 new StarbuzzDatabaseHelper(DrinkActivity.this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();

 db.update("DRINK", drinkValues,

 "_id = ?", new String[] {Integer.toString(drinkId)});

 db.close();

 return true;

 } catch(SQLiteException e) {

 return false;

 }

 }

 ...

}

The doInBackground() method
The doInBackground() method runs in the background
immediately after onPreExecute(). You define what type of
parameters the task should receive, and what the return type should
be.

We’re going to use the doInBackground() method for our
database code so that it runs in a background thread. We’ll pass
it the ID of the drink we need to update; because the drink ID is
an int value, we need to specify that the doInBackground()
method receives Integer objects. We’ll use a Boolean return
value so we can tell whether the code ran successfully:

Next, we’ll look at the onProgressUpdate() method.

onPreExecute()

doInBackground()

This code runs in a background thread.

You change this to Integer to
match the parameter of the
doInBackground() method.

You change this to
Boolean to match the
return type of the
doInBackground() method.

This is an array of Integers,
but we’ll just include one item,
the drink ID.

The update() method uses the
drinkValues object that the
onPreExecute() method created.

you are here 4 727

cursors and asynctasks

The onProgressUpdate() method
The onProgressUpdate() method is called on the main event
thread, so it has access to views in the user interface. You can use
this method to display progress to the user by updating views on the
screen. You define what type of parameters the method should have.

The onProgressUpdate() method runs if a call to
publishProgress() is made by the doInBackground()
method like this:

onPreExecute()

doInBackground()

onProgressUpdate()
protected Boolean doInBackground(Integer... count) {

 for (int i = 0; i < count; i++) {

 publishProgress(i);

 }

}

protected void onProgressUpdate(Integer... progress) {

 setProgress(progress[0]);

}

In our app, we’re not publishing the progress of our task, so we
don’t need to implement this method. We’ll indicate that we’re not
using any objects for task progress by changing the signature of
UpdateDrinkTask:

This calls the onProgressUpdate()
method, passing in a value of i.

private class UpdateDrinkTask extends AsyncTask<Integer, Void, Boolean> {

 ...

}

We’re not using the
onProgressUpdate()
method, so this is Void.

Finally, we’ll look at the onPostExecute() method.

728 Chapter 17

onPostExecute()

private class UpdateDrinkTask extends AsyncTask<Integer, Void, Boolean> {

 ...

 protected void onPostExecute(Boolean success) {

 if (!success) {

 Toast toast = Toast.makeText(DrinkActivity.this,

 "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 }

}

The onPostExecute() method
The onPostExecute() method is called after the
background task has finished. It’s called on the main event
thread, so it has access to views in the user interface. You can
use this method to present the results of the task to the user.
The onPostExecute() method gets passed the results of the
doInBackground() method, so it must take parameters that
match the doInBackground() return type.

We’re going to use the onPostExecute() method to check
whether the database code in the doInBackground()
method ran successfully. If it didn’t, we’ll display a message
to the user. We’re doing this in the onPostExecute()
method, as this method can update the user interface; the
doInBackground() method runs in a background thread, so
it can’t update views.

Here’s the code:

This is set to Boolean, as our
doInBackground() method returns a Boolean.

Pass the toast the
DrinkActivity context.

onPreExecute()

doInBackground()

onPostExecute()

onProgressUpdate()

Now that we’ve written the code for our AsyncTask methods,
let’s revisit the AsyncTask class parameters.

you are here 4 729

cursors and asynctasks

The AsyncTask class parameters
When we first introduced the AsyncTask class, we said it was defined
by three generic parameters: Params, Progress, and Results.
You specify what these are by looking at the type of parameters
used by your doInBackground(), onProgressUpdate(),
and onPostExecute() methods. Params is the type of the
doInBackground() parameters, Progress is the type of the
onProgressUpdate() parameters, and Result is the type of the
onPostExecute() parameters:

We’ll show you the full UpdateDrinkTask class on the next page.

private class MyAsyncTask extends AsyncTask<Params, Progress, Result>

 protected void onPreExecute() {
 //Code to run before executing the task
 }

 protected Result doInBackground(Params... params) {
 //Code that you want to run in a background thread
 }

 protected void onProgressUpdate(Progress... values) {
 //Code that you want to run to publish the progress of your task
 }

 protected void onPostExecute(Result result) {
 //Code that you want to run when the task is complete
 }
}

In our example, doInBackground() takes Integer parameters,
onPostExecute() takes a Boolean parameter, and we’re not using
the onProgressUpdate() method. This means that in our example,
Params is Integer, Progress is Void, and Result is Boolean:

private class UpdateDrinkTask extends AsyncTask<Integer, Void, Boolean> {
 ...
 protected Boolean doInBackground(Integer... drinks) {
 ...
 }

 protected void onPostExecute(Boolean... success) {
 ...
 }
}

This is Void because we
didn’t implement the
onProgressUpdate() method.

730 Chapter 17

inner class code

private class UpdateDrinkTask extends AsyncTask<Integer, Void, Boolean> {

 private ContentValues drinkValues;

 protected void onPreExecute() {

 CheckBox favorite = (CheckBox) findViewById(R.id.favorite);

 drinkValues = new ContentValues();

 drinkValues.put("FAVORITE", favorite.isChecked());

 }

 protected Boolean doInBackground(Integer... drinks) {

 int drinkId = drinks[0];

 SQLiteOpenHelper starbuzzDatabaseHelper =

 new StarbuzzDatabaseHelper(DrinkActivity.this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();

 db.update("DRINK", drinkValues,

 "_id = ?", new String[] {Integer.toString(drinkId)});

 db.close();

 return true;

 } catch(SQLiteException e) {

 return false;

 }

 }

 protected void onPostExecute(Boolean success) {

 if (!success) {

 Toast toast = Toast.makeText(DrinkActivity.this,

 "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 }

}

The full UpdateDrinkTask class
Here’s the full code for the UpdateDrinkTask class. It needs
to be added to DrinkActivity as an inner class, but we
suggest you wait to do that until we show you how to execute it
and show you the full DrinkActivity.java code listing.

We’ve defined drinkValues as a private
variable, as it’s used by the onExecute()
and doInBackground() methods.

Before we run the database
code, we need to put
the value of the favorite
checkbox in the drinkValues
ContentValues object.

Our database code goes in the
doInBackground() method.

After the database code has run in the background, check
whether it ran successfully. If it didn’t, display a message.

We have to put the code to display a message in the onPostExecute() method, as it needs to be run on the main event thread to update the screen.

you are here 4 731

cursors and asynctasks

Execute the AsyncTask...
You run the AsyncTask by calling the AsyncTask execute()
method and passing it any parameters required by the
doInBackground() method. As an example, we want to pass the
drink the user chose to our AsyncTask’s doInBackground()
method, so we call it using:

int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);

new UpdateDrinkTask().execute(drinkId);

The type of parameter you pass with the execute() method
must match the type of parameter expected by the AsyncTask
doInBackground() method. We’re passing an integer value (the
drink ID), which matches the type of parameter expected by our
doInBackground() method:

protected Boolean doInBackground(Integer... drinks) {

 ...

}

We’ll show you the new DrinkActivity.java code over the next few pages.

//Update the database when the checkbox is clicked

public void onFavoriteClicked(View view){

 int drinkId = (Integer)getIntent().getExtras().get(EXTRA_DRINKID);

 new UpdateDrinkTask().execute(drinkId);

}

Execute the AsyncTask and pass it the drink ID.

...in DrinkActivity’s onFavoritesClicked()
method
Our UpdateDrinkTask class (the AsyncTask we created) needs to
update the FAVORITE column in the Starbuzz database whenever the
favorite checkbox in DrinkActivity is clicked. We therefore need
to execute it in DrinkActivity’s onFavoritesClicked() method.
Here’s what the new version of the method looks like:

The new version of the
onFavoritesClicked() method no longer contains code to update the FAVORITE column. Instead, it calls the AsyncTask, which performs the update in the background.

732 Chapter 17

DrinkActivity code

package com.hfad.starbuzz;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.Toast;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteOpenHelper;

import android.view.View;

import android.widget.CheckBox;

import android.content.ContentValues;

import android.os.AsyncTask;

public class DrinkActivity extends Activity {

 public static final String EXTRA_DRINKID = "drinkId";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_drink);

 //Get the drink from the intent

 int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);

 //Create a cursor

 SQLiteOpenHelper starbuzzDatabaseHelper = new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getReadableDatabase();

 Cursor cursor = db.query("DRINK",

 new String[]{"NAME", "DESCRIPTION", "IMAGE_RESOURCE_ID", "FAVORITE"},

 "_id = ?",

 new String[]{Integer.toString(drinkId)},

 null, null, null);

The full DrinkActivity.java code
Here’s the complete code for DrinkActivity.java; update your
version of the code to reflect our changes:

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

We’re using the AsyncTask class, so we need to import it.

We don’t need to change the onCreate() method,
we’re just showing it for completeness.

The code continues
on the next page.

you are here 4 733

cursors and asynctasks

 //Move to the first record in the Cursor

 if (cursor.moveToFirst()) {

 //Get the drink details from the cursor

 String nameText = cursor.getString(0);

 String descriptionText = cursor.getString(1);

 int photoId = cursor.getInt(2);

 boolean isFavorite = (cursor.getInt(3) == 1);

 //Populate the drink name

 TextView name = (TextView) findViewById(R.id.name);

 name.setText(nameText);

 //Populate the drink description

 TextView description = (TextView) findViewById(R.id.description);

 description.setText(descriptionText);

 //Populate the drink image

 ImageView photo = (ImageView) findViewById(R.id.photo);

 photo.setImageResource(photoId);

 photo.setContentDescription(nameText);

 //Populate the favorite checkbox

 CheckBox favorite = (CheckBox)findViewById(R.id.favorite);

 favorite.setChecked(isFavorite);

 }

 cursor.close();

 db.close();

 } catch (SQLiteException e) {

 Toast toast = Toast.makeText(this,

 "Database unavailable",

 Toast.LENGTH_SHORT);

 toast.show();

 }

 }

The full DrinkActivity.java code (continued)

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

None of the code on this
page needs to change.

The code continues
on the next page.

734 Chapter 17

code, continued

 //Update the database when the checkbox is clicked

 public void onFavoriteClicked(View view){

 int drinkId = (Integer) getIntent().getExtras().get(EXTRA_DRINKID);

 //Get the value of the checkbox

 CheckBox favorite = (CheckBox) findViewById(R.id.favorite);

 ContentValues drinkValues = new ContentValues();

 drinkValues.put("FAVORITE", favorite.isChecked());

 //Get a reference to the database and update the FAVORITE column

 SQLiteOpenHelper starbuzzDatabaseHelper =

 new StarbuzzDatabaseHelper(this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();

 db.update("DRINK",

 drinkValues,

 "_id = ?",

 new String[] {Integer.toString(drinkId)});

 db.close();

 } catch(SQLiteException e) {

 Toast toast = Toast.makeText(this, "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 new UpdateDrinkTask().execute(drinkId);

 }

The full DrinkActivity.java code (continued)

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

The code continues
on the next page.

Execute the task.

Delete all these lines of
code, as we’re now using an
AsyncTask for these actions.

you are here 4 735

cursors and asynctasks

 //Inner class to update the drink.

 private class UpdateDrinkTask extends AsyncTask<Integer, Void, Boolean> {

 private ContentValues drinkValues;

 protected void onPreExecute() {

 CheckBox favorite = (CheckBox) findViewById(R.id.favorite);

 drinkValues = new ContentValues();

 drinkValues.put("FAVORITE", favorite.isChecked());

 }

 protected Boolean doInBackground(Integer... drinks) {

 int drinkId = drinks[0];

 SQLiteOpenHelper starbuzzDatabaseHelper =

 new StarbuzzDatabaseHelper(DrinkActivity.this);

 try {

 SQLiteDatabase db = starbuzzDatabaseHelper.getWritableDatabase();

 db.update("DRINK", drinkValues,

 "_id = ?", new String[] {Integer.toString(drinkId)});

 db.close();

 return true;

 } catch(SQLiteException e) {

 return false;

 }

 }

 protected void onPostExecute(Boolean success) {

 if (!success) {

 Toast toast = Toast.makeText(DrinkActivity.this,

 "Database unavailable", Toast.LENGTH_SHORT);

 toast.show();

 }

 }

 }

}

That’s everything you need in order to create an AsyncTask.
Let’s check what happens when we run the app.

The full DrinkActivity.java code (continued)

app/src/main

DrinkActivity.java

Starbuzz

java

com.hfad.starbuzz

Add the AsyncTask to the activity as an inner class.

Before the database code runs, put the value of the
checkbox in the drinkValues ContentValues object.

Run the database code in a background thread.

Update the value of
the FAVORITE column.

If the database code didn’t run correctly, display a message to the user.

736 Chapter 17

test drive

Q: I’ve written code before that
just ran the database code and it was
fine. Do I really need to run it in the
background?

A: For really small databases, like the
one in the Starbuzz app, you probably
won’t notice the time it takes to access
the database. But that’s just because
the database is small. If you use a larger
database, or if you run an app on a slower
device, the time it takes to access the
database will be significant. So yes, you
should always run database code in the
background.

Q: Remind me—why is it bad to
update a view from the background
thread?

A: The short answer is that it will throw
an exception if you try. The longer answer
is that multithreaded user interfaces are
hugely buggy. Android avoided the problem
by simply banning them.

Q: Which part of the database code
is slowest: opening the database, or
reading data from it?

A: There’s no general way of knowing.
If your database has a complex data
structure, opening the database for the
first time will take a long time because it
will need to create all the tables. If you’re
running a complex query, that might take a
very long time. In general, play it safe and
run everything in the background.

Q: If it take a few seconds to read
data from the database, what will the
user see?

A: The user will see blank views until
the database code sets the values.

Q: Why have we put the database
code for just one activity in an
AsyncTask?

A: We wanted to show you how to
use AsyncTasks in one activity as
an example. In the real world, you should
do this for the database code in all your
activities.

Test drive the app
When we run the app and navigate to a drink, we can
indicate that the drink is a favorite drink by checking the

“favorite” checkbox. Clicking on the checkbox still updates the
FAVORITE column in the database with its value, but this
time the code is running on a background thread.

In an ideal world, all of your database
code should run in the background.
We’re not going to change our other
Starbuzz activities to do this, but why
not make this change yourself?

Our app still writes data to
the database, but this time it
does it on a background thread.

you are here 4 737

cursors and asynctasks

onPreExecute()

doInBackground()

onProgressUpdate()

onPostExecute()

A summary of the AsyncTask steps

onPreExecute() is used to set up the task.
It’s called before the background task begins, and runs on the
main event thread.

1

doInBackground() runs in the background thread.
It runs immediately after onPreExecute(). You can specify
what type of parameters it has, and what its return type is.

2

onProgressUpdate() is used to display progress.
It runs in the main event thread when the
doInBackground() method calls publishProgress().

3

onPostExecute() is used to display the task outcome
to the user when doInBackground has finished.
It runs in the main event thread and takes the return value of
doInBackground() as a parameter.

4

Your Android Toolbox

You’ve got Chapter 17 under
your belt and now you’ve

added writing to SQLite
databases to your toolbox.

 � The CursorAdapter
changeCursor() method replaces
the cursor currently used by a cursor
adapter with a new cursor that you
provide. It then closes the old cursor.

 � Run your database code in a
background thread using AsyncTask.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CHAPT
ER 17

this is a new chapter 739

Did I mention I’ve started a
ProtectionRacketService?

started services18

At Your Service

There are some operations you want to keep on running,
irrespective of which app has the focus. If you start downloading a file,

for instance, you don’t want the download to stop when you switch to another app. In this

chapter we’ll introduce you to started services, components that run operations in the

background. You’ll see how to create a started service using the IntentService class,

and find out how its lifecycle fits in with that of an activity. Along the way, you’ll discover

how to log messages, and keep users informed using Android’s built-in notification

service.

740 Chapter 18

services

Services work in the background
An Android app is a collection of activities and other
components. The bulk of your app’s code is there to interact
with the user, but sometimes you need to do things in the
background, such as download a large file, stream a piece of
music, or listen for a message from the server.

These kinds of tasks aren’t what activities are designed to
do. In simple cases, you can create a thread, but if you’re
not careful your activity code will start to get complex and
unreadable.

That’s why services were invented. A service is an
application component like an activity but without a user
interface. They have a simpler lifecycle than activities, and
they come with a bunch of features that make it easy to write
code that will run in the background while the user is doing
something else.

There are three types of service
Services come in three main flavors:

Started services
A started service can run in the background indefinitely, even when the
activity that started it is destroyed. If you wanted to download a large file
from the Internet, you would probably create it as a started service. Once
the operation is done, the service stops.

¥

Bound services
A bound service is bound to another application component such as an
activity. The activity can interact with it, send requests, and get results.
A bound service runs as long as components are bound to it. When the
components are no longer bound, the service is destroyed. If you wanted
to create an odometer to measure the distance traveled by a vehicle, for
example, you’d probably use a bound service. This way, any activities
bound to the service could keep asking the service for updates on the
distance traveled.

¥

In this chapter, we’re going to look at how you create a started
service.

Scheduled services
A scheduled service is one that’s scheduled to run at a particular time. As an
example, from API 21, you can schedule jobs to run at an appropriate time.

¥

In addition to writing your
own services, you can use
Android’s built-in ones.

Built-in services include the
notification service, location
service, alarm service, and
download service.

you are here 4 741

started services

MainActivity.java DelayedMessageService.java

1...2..3...4...5...6...7
...8...9...10... Here’s
the text.

We’ll create a STARTED service
We’re going to create a new project that contains an activity
called MainActivity, and a started service called
DelayedMessageService. Whenever MainActivity
calls DelayedMessageService, it will wait for 10 seconds
and then display a piece of text.

<Layout>

</Layout>

activity_main.xml

Display the message in Android’s log.
We’ll start by displaying the message in Android’s log so that we can check
that the service works OK. We can look at the log in Android Studio.

1

Display the message in a notification.
We’ll get DelayedMessageService to use Android’s built-in
notification service to display the message in a notification.

2

The activity will pass
text to the service.

The service will
display the text
after 10 seconds.

We’re going to do this in two stages:

Create the project
We’ll start by creating the project. Create a new Android project for an
application named “Joke” with a company domain of “hfad.com”, making
the package name com.hfad.joke. The minimum SDK should be API
19 so that it will work with most devices. You’ll need an empty activity
named “MainActivity” and a layout named “activity_main” so that your
code matches ours. Make sure that you uncheck the Backwards
Compatibility (AppCompat) option when you create the activity.

The next thing we need to do is create the service.

MainActivity will use this layout.

Text

We’ll create this
notification.

742 Chapter 18

IntentService

package com.hfad.joke;

import android.app.IntentService;

import android.content.Intent;

public class DelayedMessageService extends IntentService {

 public DelayedMessageService() {

 super("DelayedMessageService");

 }

 @Override

 protected void onHandleIntent(Intent intent) {

 //Code to do something

 }

}

The above code is all you need to create a basic intent service. You
extend the IntentService class, add a public constructor, and
implement the onHandleIntent() method.

The onHandleIntent() method should contain the code you want
to run each time the service is passed an intent. It runs in a separate
thread. If it’s passed multiple intents, it deals with them one at a time.

We want DelayedMessageService to display a message in
Android’s log, so let’s look at how you log messages.

app/src/main

DelayedMessage
Service.java

Joke

java

com.hfad.joke

Extend the IntentService class.

Put the code you want the service to
run in the onHandleIntent() method.

Use the IntentService class to create
a basic started service
The simplest way of creating a started service is to extend the
IntentService class, as it provides you with most of the
functionality you need. You start it with an intent, and it runs the
code that you specify in a separate thread.

We’re going to add a new intent service to our project. To do this,
switch to the Project view of Android Studio’s explorer, click on
the com.hfad.joke package in the app/src/main/java folder, go
to File→New..., and select the Service option. When prompted,
choose the option to create a new Intent Service. Name the service

“DelayedMessageService” and uncheck the option to include
helper start methods to minimize the amount of code that Android
Studio generates for you. Click on the Finish button, then replace
the code in DelayedMessageService.java with the code here:

Log
Display notification

Name the
service.

Uncheck this option.

Some versions of Android Studio
may ask you what the source
language should be. If prompted,
select the option for Java.

you are here 4 743

started services

How to log messages
Adding messages to a log can be a useful way of checking that your
code works the way you want. You tell Android what to log in your
Java code, and when the app’s running, you check the output in
Android’s log (a.k.a. logcat).

You log messages using one of the following methods in the
Android.util.Log class:

Log.v("DelayedMessageService", "This is a message");

Log.v(String tag, String message) Logs a verbose message.

Log.d(String tag, String message) Logs a debug message.

Log.i(String tag, String message) Logs an information message.

Log.w(String tag, String message) Logs a warning message.

Log.e(String tag, String message) Logs an error message.

Each message is composed of a String tag you use to identify the
source of the message, and the message itself. As an example, to log
a verbose message that’s come from DelayedMessageService,
you use the Log.v() method like this:

You can view the logcat in Android Studio and filter by the
different types of message. To see the logcat, select the Android
Monitor option at the bottom of your project screen in Android
Studio and then select the logcat tab:

Select the Android Monitor option.

Select the logcat tab. You can filter on the
type of message here.

This is the logcat area. Any messages you log will appear here.

Log
Display notification

There’s also a Log.wtf()
method you can use to report
exceptions that should never
happen. According to the Android
documentation, wtf means
“What a Terrible Failure.” We
know it really means “Welcome
to Fiskidagurinn,” which refers
to the Great Fish Day festival
held annually in Dalvik, Iceland.
Android developers can often be
heard to say, “My AVD just took
8 minutes to boot up. WTF??" as
a tribute to the small town that
gave its name to the standard
Android executable bytecode
format.

744 Chapter 18

DelayedMessageService code

The full DelayedMessageService code
We want our service to get a piece of text from an intent, wait for 10
seconds, then display the piece of text in the log. To do this, we’ll
add a showText() method to log the text, and then call it from the
onHandleIntent() method after a delay of 10 seconds.

Here’s the full code for DelayedMessageService.java (update your version of
the code to reflect our changes):

package com.hfad.joke;

import android.app.IntentService;

import android.content.Intent;

import android.util.Log;

public class DelayedMessageService extends IntentService {

 public static final String EXTRA_MESSAGE = "message";

 public DelayedMessageService() {

 super("DelayedMessageService");

 }

 @Override

 protected void onHandleIntent(Intent intent) {

 synchronized (this) {

 try {

 wait(10000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 String text = intent.getStringExtra(EXTRA_MESSAGE);

 showText(text);

 }

 private void showText(final String text) {

 Log.v("DelayedMessageService", "The message is: " + text);

 }

}

app/src/main

DelayedMessage
Service.java

Joke

java

com.hfad.joke

Call the super constructor.

Get the text from the intent

Wait 10 seconds.

This method contains the code you want to run when the service receives an intent.

Call the showText() method.

This logs a piece of text so we can see it in
the logcat through Android Studio.

Use a constant to pass
a message from the
activity to the service.

We’re using the Log class, so we need to import it.

Log
Display notification

you are here 4 745

started services

You declare services in AndroidManifest.xml
Just like activities, each service needs to be declared in AndroidManifest.xml
so that Android can call it; if a service isn’t declared in this file, Android
won’t know it’s there and won’t be able to call it.

Android Studio should update AndroidManifest.xml for you automatically
whenever you create a new service by adding a new <service>
element. Here’s what our AndroidManifest.xml code looks like:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.joke">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service

 android:name=".DelayedMessageService"

 android:exported="false">

 </service>

 </application>

</manifest>

The <service> element contains two attributes: name and
exported. The name attribute tells Android what the name of
the service is—in our case, DelayedMessageService. The
exported attribute tells Android whether the service can be used by
other apps. Setting it to false means that the service will only be used
within the current app.

Now that we have a service, let’s get MainActivity to start it.

You declare a service in AndroidManifest.xml like this.
Android Studio should do this for you automatically.

<xml>
</xml>

app/src/main

AndroidManifest.xml

Joke

The service name has a “.” in front of it so that Android can combine it with the package name to derive the fully qualified class name.

Log
Display notification

Don’t worry if
this code looks
different than
yours.

746 Chapter 18

add button

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:padding="16dp"

 tools:context="com.hfad.joke.MainActivity">

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="center_horizontal"

 android:text="@string/question"

 android:id="@+id/button"

 android:onClick="onClick"/>

</LinearLayout>

Add a button to activity_main.xml
We’re going to get MainActivity to start
DelayedMessageService whenever a button is clicked, so
we’ll add the button to MainActivity’s layout.

First, add the following values to strings.xml:

<string name="question">What is the secret of comedy?</string>

<string name="response">Timing!</string>

Then, replace your activity_main.xml code with ours below so
that MainActivity displays a button:

The button will call an onClick() method whenever the
user clicks it, so we’ll add this method to MainActivity.

<xml>
</xml>

app/src/main

activity_main.xml

Joke

res

layout

This creates a button. When it’s clicked, the onClick() method in the activity will get called.

<xml>
</xml>

app/src/main

strings.xml

Joke

res

values

Log
Display notification

you are here 4 747

started services

Here’s our code for MainActivity.java; update your version to match
ours:

package com.hfad.joke;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void onClick(View view) {

 Intent intent = new Intent(this, DelayedMessageService.class);

 intent.putExtra(DelayedMessageService.EXTRA_MESSAGE,

 getResources().getString(R.string.response));

 startService(intent);

 }

}

That’s all the code we need to get our activity to start the service.
Before we take it for a test drive, let’s go through what happens
when the code runs.

app/src/main

MainActivity.java

Joke

java

com.hfad.joke

Create the intent.

Add text to the intent.
Start the service.

This will run when the
button gets clicked.

We’re using these classes, so
we need to import them.

You start a service using startService()

Intent intent = new Intent(this, DelayedMessageService.class);

startService(intent);

We’ll use MainActivity’s onClick() method to start
DelayedMessageService whenever the user clicks on
the button. You start a service from an activity in a similar
way to how you start an activity. You create an explicit intent
that’s directed at the service you want to start, then use the
startService() method in your activity to start it:

Starting a service is just like starting an activity, except you use startService() instead of startActivity().

We're using Activity here, but you
could use AppCompatActivity instead.

Log
Display notification

748 Chapter 18

what happens

What happens when you run the app
Here’s what the code does when we run the app:

Let’s take the app for a test drive so we can see it working.

DelayedMessageService

Some text. I know
how to handle that.
1...2...3...4...5...

MainActivity starts DelayedMessageService by calling startService()
and passing it an intent.
The intent contains the message MainActivity wants
DelayedMessageService to display, in this case “Timing!”.

1

DelayedMessageService logs the message.3

MainActivity DelayedMessageService

Intent

”Timing!”

DelayedMessageService

When DelayedMessageService receives the intent, its onHandleIntent()
method runs.
DelayedMessageService waits for 10 seconds.

2

onHandleIntent()

The message is:
Timing!

Log

Log.v()

When DelayedMessageService has finished running, it’s destroyed.4

DelayedMessageService

Log
Display notification

you are here 4 749

started services
Log
Display notification

Test drive the app
When you run the app, MainActivity is displayed. It contains a
single button:

Press the button, switch back to Android Studio, and watch the
logcat output in the bottom part of the IDE. After 10 seconds, the
message “Timing!” should appear in the logcat.

Now that you’ve seen DelayedMessageService running, let’s
look in more detail at how started services work.

This is the logcat window.

Here’s the button.

After a 10-second delay, the
message is displayed in the log.

03-22 12:39:26.294 12381-18456/com.hfad.joke V/DelayedMessageService: The message is: Timing!

750 Chapter 18

started service states

The states of a started service

Service created

Service destroyed

Service running

A started service runs
after it’s been started.

onCreate() gets called
when the service is first
created, and it’s where
you do any service setup.

onDestroy() gets called
just before the service
gets destroyed.

The service has started and
spends most of its life here.

Just like an activity, when a service moves from being created to being
destroyed, it triggers key service lifecycle methods, which it inherits.

When the service is created, its onCreate() method gets called.
You override this method if you want to perform any tasks needed to
set up the service.

When the service is ready to start, its onStartCommand()
method is called. If you’re using an IntentService (which is
usually the case for a started service), you don’t generally override
this method. Instead, you add any code you want the service to
run to its onHandleIntent() method, which is called after
onStartCommand().

The onDestroy() method is called when the started service is
no longer running and it’s about to be destroyed. You override
this method to perform any final cleanup tasks, such as freeing up
resources.

We’ll take a closer look at how these methods fit into the service states
on the next page.

When an application component (such as an activity) starts a service,
the service moves from being created to running to being destroyed.

A started service spends most of its life in a running state; it’s been
started by another component such as an activity, and it runs code
in the background. It continues to run even if the component that
started it is destroyed. When the service has finished running code,
it’s destroyed.

The service object
has been created.

At this point,
the service no
longer exists.

you are here 4 751

started services

The started service lifecycle: from create to destroy

onCreate()

onDestroy()

The component calls startService() and
the service gets created.

1

The onCreate() method runs immediately
after the service is created.
The onCreate() method is where any service
initialization code should go, as this method
always gets called after the service has launched
but before it starts running.

2

The service spends most of its life
running.

4

The onDestroy() method runs when the
service has finished running, immediately
before it’s destroyed.
The onDestroy() method enables you to
perform any final cleanup tasks such as freeing up
resources.

5

After the onDestroy() method has run,
the service is destroyed.
The service ceases to exist.

6

Here’s an overview of the started service lifecycle from birth to death.

The onCreate(), onStartCommand(), and onDestroy()
methods are three of the main service lifecycle methods. So where do
these methods come from?

Service created

Service destroyed

onStartCommand()

Service running

The onStartCommand() method runs when
the service is about to start.
If your started service extends the
IntentService class (which is usually the
case), the onStartCommand() method creates
a separate thread and onHandleIntent() is
called. You add any code you want the service to
run in the background to onHandleIntent().

3

onHandleIntent()

752 Chapter 18

lifecycle methods

Your service inherits the lifecycle methods

YourStartedService

onHandleIntent(Intent)

yourMethod()

Service

onCreate()

onStartCommand()

onDestroy()

ContextWrapper

Context Context abstract class
(android.content.Context)
An interface to global information about the application
environment. Allows access to application resources, classes, and
operations.

ContextWrapper class
(android.content.ContextWrapper)
A proxy implementation for the Context.

Service class
(android.app.Service)
The Service class implements default versions of the lifecycle
methods. You’ll find out more about it in the next chapter.

YourStartedService class
(com.hfad.foo)
Most of the behavior of your started service is handled by
superclass methods your service inherits. All you do is override the
methods you need and add a public constructor.

As you saw earlier in the chapter, the started service you
created extends the android.app.IntentService class.
This class gives your service access to the Android lifecycle
methods. Here’s a diagram showing the class hierarchy:

Now that you understand more about how started services work
behind the scenes, have a go at the following exercise. After that,
we’ll look at how we can make DelayedMessageService
display its message in a notification.

IntentService

onHandleIntent(Intent)

IntentService class
(android.app.IntentService)
The IntentService class gives you an easy way of creating
started services. It includes a method, onHandleIntent(),
which handles any intents it’s given on a background thread.

you are here 4 753

started services

public class WombleService extends {

 public WombleService() {

 super("WombleService");

 }

 @Override

 protected void (Intent intent) {

 MediaPlayer mediaPlayer =

 MediaPlayer.create(getApplicationContext(), R.raw.wombling_song);

 mediaPlayer.start();

 }

}

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void onClick(View view) {

 Intent intent = new Intent(this,);

 (intent);

 }

}

Service Magnets
Below is most of the code needed to create a started service called
WombleService that plays a .mp3 file in the background, and an
activity that uses it. See if you can finish off the code.

onHandleIntentIntentService

WombleService.class

startService

This is the service.

This is the activity.

This uses the Android MediaPlayer class to play a file called wombling_song.mp3. The file is located in the res/raw folder.

WombleService

startActivity

Underground
Overground

You won’t need to use
all of these magnets.

754 Chapter 18

magnets solution

public class WombleService extends {

 public WombleService() {

 super("WombleService");

 }

 @Override

 protected void (Intent intent) {

 MediaPlayer mediaPlayer =

 MediaPlayer.create(getApplicationContext(), R.raw.wombling_song);

 mediaPlayer.start();

 }

}

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void onClick(View view) {

 Intent intent = new Intent(this,);

 (intent);

 }

}

Service Magnets Solution
Below is most of the code needed to create a started service called
WombleService that plays a .mp3 file in the background, and an
activity that uses it. See if you can finish off the code.

onHandleIntent

IntentService

WombleService.class

WombleService

startActivity

startService

This is the service. It extends
the IntentService class.

This is the activity.

The code needs to run in the onHandleIntent() method.

Create an explicit intent
directed at WombleService.class.

Start the service. You didn’t need to
use these magnets.

Underground
Overground

you are here 4 755

started services

Android has a built-in notification service

Unlike a toast or snackbar, notifications are available
outside the app that issues them, so the user can access
them no matter what app they’re currently using (if any).
They’re much more configurable than toasts and snackbars,
too.

To display the notification, we’re going to use one of
Android’s built-in services, the notification service. You’ll
see how to do this over the next few pages.

We’re going to change our Joke app so that our message
gets displayed in a notification. Notifications are
messages that are displayed outside the app’s user interface.
When a notification gets issued, it’s displayed as an icon in
the notification area of the status bar. You can see details of
the notification in the notification drawer, which you access
by swiping down from the top of the screen:

Heads-up notifications are temporarily displayed
in a floating window at the top of the screen.

This is the
notification drawer.

These are notification icons.

Log
Display notification

756 Chapter 18

add support library

We’ll use notifications from the
AppCompat Support Library
We’re going to create notifications using classes from the
AppCompat Support Library so that our notifications will work
consistently across a wide range of Android versions. While
it’s possible to create notifications using classes from the main
release of Android, recent changes to these classes mean that
the newest features won’t be available on older versions.

Before we can use the notification classes from the Support
Library, we need to add it to our project as a dependency.
To do this, choose File→Project Structure, then click on the
app module and choose Dependencies. Android Studio may
have already added the AppCompat Support Library for you
automatically. If so, you will see it listed as appcompat-v7. If it
hasn’t been added, you will need to add it yourself. Click on the

“+” button at the bottom or right side of the screen, choose the
Library Dependency option, select the appcompat-v7 library,
and then click on the OK button. Click on OK again to save
your changes and close the Project Structure window.

Here's the v7 AppCompat Support Library.

To get DelayedMessageService to display a notification,
there are three things we need to do: create a notification
builder, tell the notification to start MainActivity when it’s
clicked, and issue the notification. We’ll build up the code over
the next few pages, then show you the full code at the end.

Use notifications from
the AppCompat Support
Library to allow apps
running on older versions
of Android to include the
newest features.

Log
Display notification

you are here 4 757

started services

First create a notification builder
The first thing we need to do is create a notification builder.
This enables you to build a notification with specific content
and features.

Each notification you create must include a small icon, a title,
and some text as a bare minimum. Here’s the code to do that:

These are just some of the properties that you can set. You can
also set properties such as the notification’s visibility to control
whether it appears on the device lock screen, a number to
display in case you want to send many notifications from the
same app, and whether it should play a sound. You can find
out more about these properties (and many others) here:

https://developer.android.com/reference/android/support/v4/app/
NotificationCompat.Builder.html

Next, we’ll add an action to the notification to tell it which
activity to start when it’s clicked.

Set the title and text.

NotificationCompat.Builder builder = new NotificationCompat.Builder(this)

 .setSmallIcon(android.R.drawable.sym_def_app_icon)

 .setContentTitle(getString(R.string.question))

 .setContentText(text);

This displays a small
icon, in this case a
built-in Android icon.

To add more features to the notification, you simply add the
appropriate method call to the builder. As an example, here’s
how you additionally specify that the notification should have a
high priority, vibrate the device when it appears, and disappear
when the user clicks on it:

NotificationCompat.Builder builder = new NotificationCompat.Builder(this)

 .setSmallIcon(android.R.drawable.sym_def_app_icon)

 .setContentTitle(getString(R.string.question))

 .setContentText(text)

 .setPriority(NotificationCompat.PRIORITY_HIGH)

 .setVibrate(new long[] {0, 1000})

 .setAutoCancel(true);

This makes the notification disappear when the user clicks on it.

Simply chain the method
calls together to add more
features to the notification.

You create a heads-up
notification (one that
appears in a small
floating window) by
setting its priority to high,
and making it vibrate the
device or play a sound.

Make it a high
priority and
vibrate the device.

Wait for 0 milliseconds
before vibrating the device
for 1,000 milliseconds.

Log
Display notification

The NotificationCompat class
comes from the AppCompat
Support Library.

758 Chapter 18

add an action to the notification

Add an action to tell the notification
which activity to start when clicked
When you create a notification, it’s a good idea to add an action to
it, specifying which activity in your app should be displayed when the
user clicks on the notification. As an example, an email app might
issue a notification when the user receives a new email, and display
the contents of that email when the user clicks on it. In our particular
case, we’re going to start MainActivity.

You add an action by creating a pending intent to start an activity,
which you then add to the notification. A pending intent is an intent
that your app can pass to other applications. The application can then
submit the intent on your app’s behalf at a later time.

To create a pending intent, you first create an explicit intent directed
to the activity you want to start when the notification is clicked. In our
case, we want to start MainActivity, so we use:

Intent actionIintent = new Intent(this, MainActivity.class);

This is a normal intent
that starts MainActivity.

We then use that intent to create a pending intent using the
PendingIntent.getActivity() method.

The getActivity() method takes four parameters: a context
(usually this), an int request code, the explicit intent we defined
above, and a flag that specifies the pending intent’s behavior. In the
above code, we’ve used a flag of FLAG_UPDATE_CURRENT. This
means that if a matching pending intent already exists, its extra data
will be updated with the contents of the new intent. Other options are
FLAG_CANCEL_CURRENT (cancel any existing matching pending
intents before generating a new one), FLAG_NO_CREATE (don’t
create the pending intent if there’s no matching existing one), and
FLAG_ONE_SHOT (you can only use the pending intent once).

Once you’ve created the pending intent, you add it to the notification
using the notification builder setContentIntent() method:

PendingIntent actionPendingIntent = PendingIntent.getActivity(

 this,

 0,

 actionIntent,

 PendingIntent.FLAG_UPDATE_CURRENT);

builder.setContentIntent(actionPendingIntent);

This tells the notification to start the activity specified in the intent
when the user clicks on the notification.

This means that if there’s
a matching pending intent,
it will be updated.

This is the intent we created above.
This is a flag that’s used if you ever
need to retrieve the pending intent. We
don’t need to, so we’re setting it to 0.

A context, in this case the current service.

This adds the pending
intent to the notification.

Log
Display notification

you are here 4 759

started services

Issue the notification using the
built-in notification service
Finally, you issue the notification using Android’s notification
service.

To do this, you first need to get a NotificationManager.
You do this by calling the getSystemService() method,
passing it a parameter of NOTIFICATION_SERVICE:

public static final int NOTIFICATION_ID = 5453;

...

NotificationManager notificationManager =

 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);

notificationManager.notify(NOTIFICATION_ID, builder.build());

This gives you access to
Android’s notification service.

Use the notification service to
display the notification we created.

This is an ID we’ll use for the notification.
It’s a random number we made up.

NotificationManager notificationManager =

 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);

You then use the notification manager to issue the notification
by calling its notify() method. This takes two parameters: a
notification ID and a Notification object.

The notification ID is used to identify the notification. If you
send another notification with the same ID, it will replace the
current notification. This is useful if you want to update an
existing notification with new information.

You create the Notification object by calling the
notification builder’s build() method. The notification it
builds includes all the content and features you’ve specified via
the notification builder.

Here’s the code to issue the notification:

That’s everything we need to create and issue notifications. We’ll
show you the full code for DelayedMessageService on the
next page.

Log
Display notification

760 Chapter 18

DelayedMessageService code

The full code for DelayedMessageService.java
Here’s the full code for DelayedMessageService.java. It
now uses a notification to display a message to the user.
Update your code to match ours:

This is used to identify the
notification. It could be any number;
we just decided on 5453.

package com.hfad.joke;

import android.app.IntentService;

import android.content.Intent;

import android.util.Log;

import android.support.v4.app.NotificationCompat;

import android.app.PendingIntent;

import android.app.NotificationManager;

public class DelayedMessageService extends IntentService {

 public static final String EXTRA_MESSAGE = "message";

 public static final int NOTIFICATION_ID = 5453;

 public DelayedMessageService() {

 super("DelayedMessageService");

 }

 @Override

 protected void onHandleIntent(Intent intent) {

 synchronized (this) {

 try {

 wait(10000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 String text = intent.getStringExtra(EXTRA_MESSAGE);

 showText(text);

 }

app/src/main

DelayedMessage
Service.java

Joke

java

com.hfad.joke

Delete this line.

We’re using these extra classes,
so we need to import them.

The code continues
on the next page.

you are here 4 761

started services

 private void showText(final String text) {

 Log.v("DelayedMessageService", "The message is: " + text);

 //Create a notification builder

 NotificationCompat.Builder builder =

 new NotificationCompat.Builder(this)

 .setSmallIcon(android.R.drawable.sym_def_app_icon)

 .setContentTitle(getString(R.string.question))

 .setContentText(text)

 .setPriority(NotificationCompat.PRIORITY_HIGH)

 .setVibrate(new long[] {0, 1000})

 .setAutoCancel(true);

 //Create an action

 Intent actionIntent = new Intent(this, MainActivity.class);

 PendingIntent actionPendingIntent = PendingIntent.getActivity(

 this,

 0,

 actionIntent,

 PendingIntent.FLAG_UPDATE_CURRENT);

 builder.setContentIntent(actionPendingIntent);

 //Issue the notification

 NotificationManager notificationManager =

 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);

 notificationManager.notify(NOTIFICATION_ID, builder.build());

 }

}

The DelayedMessageService.java code (continued)

That’s all the code we need for our started service. Let’s go
through what happens when the code runs.

Display the notification using a notification manager.

Use a notification builder
to specify the content and
features of the notification.

Create an intent.

Use the intent to
create a pending intent.

Add the pending intent
to the notification.

app/src/main

DelayedMessage
Service.java

Joke

java

com.hfad.joke

762 Chapter 18

what happens

What happens when you run the code
Before you try running the updated app, let’s go through what
happens when the code runs:

MainActivity starts DelayedMessageService by calling startService()
and passing it an intent.
The intent contains the message MainActivity wants
DelayedMessageService to display.

1

DelayedMessageService waits for 10 seconds.2

DelayedMessageService creates an intent for MainActivity, which it
uses to create a pending intent.

4

MainActivity DelayedMessageService

Intent

”Timing!”

DelayedMessageService

1...2...3...4...

DelayedMessageService creates a notification builder and sets
details of how the notification should be configured.

3

DelayedMessageService NotificationCompat.Builder

icon=sym_def_app_icon
title=”What is the secret of comedy?”
text=”Timing!”

PendingIntent

To: MainActivity

DelayedMessageService

Log
Display notification

you are here 4 763

started services

DelayedMessageService creates a NotificationManager object and
calls its notify() method.
The notification service displays the notification built by the notification builder.

6

When the user clicks on the notification, the notification uses its
pending intent to start MainActivity.

7

The story continues

NotificationDelayedMessageService NotificationManager

PendingIntent

To: MainActivity

Notification MainActivity

Intent

Now that we’ve gone through what the code does, let’s take the
app for a test drive.

DelayedMessageService adds the pending intent to the notification builder.5

DelayedMessageService NotificationCompat.Builder

icon=sym_def_app_icon
title=”What is the secret of comedy?”
text=”Timing!”

PendingIntent

To: MainActivity

notify()

icon=sym_def_app_icon
title=”What is the secret of comedy?”
text=”Timing!”

Log
Display notification

764 Chapter 18

test drive
Log
Display notification

Test drive the app
When you click on the button in MainActivity, a
notification is displayed after 10 seconds. You’ll receive the
notification irrespective of which app you’re in.

When you open the notification drawer and click on the
notification, Android returns you to MainActivity.

You now know how to create a started service that displays a
notification using the Android notification service. In the next
chapter, we’ll look at how you create a bound service.

Click on the button, and after a delay, a heads-up notification appears.

Clicking on the notification
starts MainActivity.

When the head-up
notification disappears,
its icon remains in the
status bar.

you are here 4 765

started services

Your Android Toolbox

You’ve got Chapter 18 under
your belt and now you’ve

added started services to your
toolbox.

CHAPT
ER 18

 � A service is an application component that
can perform tasks in the background. It doesn’t
have a user interface.

 � A started service can run in the background
indefinitely, even when the activity that started
it is destroyed. Once the operation is done, it
stops itself.

 � A bound service is bound to another
component such as an activity. The activity can
interact with it and get results.

 � A scheduled service is one that’s scheduled to
run at a particular time.

 � You can create a simple started service by
extending the IntentService class,
overriding its onHandleIntent() method
and adding a public constructor.

 � You declare services in AndroidManifest.xml
using the <service> element.

 � You start a started service using the
startService() method.

 � When a started service is created, its
onCreate() method gets called,
followed by onStartCommand(). If
the service is an IntentService,
onHandleIntent() is then called in a
separate thread. When the service has finished
running, onDestroy() gets called before
the service is destroyed.

 � The IntentService class inherits
lifecycle methods from the Service class.

 � You log messages using the Android.
util.Log class. You can view these
messages in the logcat in Android Studio.

 � You create a notification using a notification
builder. Each notification must include a small
icon, a title, and some text as a bare minimum.

 � A heads-up notification has its priority set to
high, and vibrates the device or plays a sound
when it’s issued.

 � You tell the notification which activity to start
when it’s clicked by creating a pending intent
and adding it to the notification as an action.

 � You issue the notification using a notification
manager. You create a notification manager
using Android’s notification service.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

this is a new chapter 767

bound services and permissions19

Bound Together

Started services are great for background operations, but
what if you need a service that’s more interactive? In this chapter

you’ll discover how to create a bound service, a type of service your activity can interact

with. You’ll see how to bind to the service when you need it, and how to unbind from

it when you’re done to save resources. You’ll find out how to use Android’s Location

Services to get location updates from your device GPS. Finally, you’ll discover how to

use Android’s permission model, including handling runtime permission requests.

Today, CALL_PHONE
permission. Tomorrow,
complete world
domination. Bwahaha...

768 Chapter 19

bound services

Bound services are bound to other components
As you saw in Chapter 18, a started service is one that starts
when it’s passed an intent. It runs code in the background, and
stops when the operation is complete. It continues running even
if the component that starts it gets destroyed.

A bound service is one that’s bound to another application
component, such as an activity. Unlike a started service, the
component can interact with the bound service and call its
methods.

To see this in action, we’re going to create a new odometer app
that uses a bound service. We’ll use Android’s location service
to track the distance traveled:

On the next page we’ll look at the steps we’ll go through
to create the app.

We’ll ask for regular updates on the device’s current location, calculate the distance traveled, and display the result.

you are here 4 769

bound services and permissions

Here’s what we’re going to do
We’re going to build the app in three main steps:

Create a new Odometer project
We’ll start by creating the project. Create a new Android project for an
application named “Odometer” with a company domain of “hfad.com”,
making the package name com.hfad.odometer. The minimum
SDK should be API 19 so that it will work with most devices. You’ll need
an empty activity named “MainActivity” and a layout named “activity_
main” so that your code matches ours. Make sure that you uncheck
the Backwards Compatibility (AppCompat) option when you
create the activity.

Create a basic version of a bound service called OdometerService.
We’ll add a method to it, getDistance(), which will return a random number.

1

OdometerService

Get an activity, MainActivity, to bind to OdometerService and call
its getDistance() method.
We’ll call the method every second, and update a text view in MainActivity
with the results.

2

MainActivity

getDistance()

0.23
OdometerService

Update OdometerService to use Android’s Location Services.
The service will get updates on the user’s current location, and use these to
calculate the distance traveled.

3

OdometerService

Are we nearly
there yet?

770 Chapter 19

create service

package com.hfad.odometer;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

public class OdometerService extends Service {

 @Override

 public IBinder onBind(Intent intent) {

 //Code to bind the service

 }

}

The above code implements one method, onBind(), which
gets called when a component, such as an activity, wants to bind
to the service. It has one parameter, an Intent, and returns an
IBinder object.

IBinder is an interface that’s used to bind your service to the
activity, and you need to provide an implementation of it in your
service code. We’ll look at how you do this next.

The class extends
the Service class.

The onBind() method is called when a
component wants to bind to the service.

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

Create a new service
You create a bound service by extending the Service class.
This class is more general than the IntentService class
we used in Chapter 18, which is used for started services.
Extending Service gives you more flexibility, but requires
more code.

We’re going to add a new bound service to our project, so
switch to the Project view of Android Studio’s explorer, click
on the com.hfad.odometer package in the app/src/main/
java folder, go to File→New..., and select the Service option.
When prompted, choose the option to create a new Service (not
an Intent Service), and name the service “OdometerService”.
Uncheck the “Exported” option, as this only needs to be true if
you want services outside this app to access the service. Make
sure that the “checkednabled” option is checked; if it isn’t, the
activity won’t be able to run the app. Then replace the code in
OdometerService.java with this (shown here in bold):

OdometerService
MainActivity
Location Services

Uncheck the
exported
option.

Check the
enabled option.

Some versions of Android
Studio may ask you what
the source language should
be. If prompted, select
the option for Java.

you are here 4 771

bound services and permissions

Implement a binder
You implement the IBinder by adding a new inner class to your
service code that extends the Binder class (which implements the
IBinder interface). This inner class needs to include a method
that activities can use to get a reference to the bound service.

We’re going to define a binder called OdometerBinder
that MainActivity can use to get a reference to
OdometerService. Here’s the code we’ll use to define it:

public class OdometerBinder extends Binder {

 OdometerService getOdometer() {

 return OdometerService.this;

 }

}

We need to return an instance of the OdometerBinder in
OdometerService’s onBind() method. To do this, we’ll create
a new private variable for the binder, instantiate it, and return it in
the onBind() method. Update your OdometerService.java code to
include our changes below:

...

import android.os.Binder;

public class OdometerService extends Service {

 private final IBinder binder = new OdometerBinder();

 public class OdometerBinder extends Binder {

 OdometerService getOdometer() {

 return OdometerService.this;

 }

 }

 @Override

 public IBinder onBind(Intent intent) {

 return binder;

 }

}

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

When you create a bound service, you
need to provide a Binder implementation.

The activity will use this method to get a reference to the OdometerService.

We’re using this extra class,
so we need to import it.

This is our IBinder implementation.

We’re using a private final variable for our IBinder.object

Return the IBinder.

We’ve now written all the service code we need to allow
MainActivity to bind to OdometerService. Next, we’ll add
a new method to the service to make it return a random number.

OdometerService
MainActivity
Location Services

772 Chapter 19

getDistance()

Add a getDistance() method to the service
We’re going to add a method to OdometerService called
getDistance(), which our activity will call. We’ll get it to
return a random number for now, and later on we’ll update it to
use Android’s location services.

Here’s the full code for OdometerService.java including this change;
update your version to match ours:

package com.hfad.odometer;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.os.Binder;

import java.util.Random;

public class OdometerService extends Service {

 private final IBinder binder = new OdometerBinder();

 private final Random random = new Random();

 public class OdometerBinder extends Binder {

 OdometerService getOdometer() {

 return OdometerService.this;

 }

 }

 @Override

 public IBinder onBind(Intent intent) {

 return binder;

 }

 public double getDistance() {

 return random.nextDouble();

 }

}

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

Next we’ll update MainActivity so that it uses OdometerService.

OdometerService
MainActivity
Location Services

We’re using this extra class,
so we need to import it.

We’ll use a Random() object to generate random numbers.

Add the getDistance() method.

Return a random double.

you are here 4 773

bound services and permissions

Update MainActivity’s layout
The next step in creating our app is to get MainActivity to
bind to OdometerService and call its getDistance()
method. We’re going to start by adding a text view to
MainActivity’s layout. This will display the number
returned by OdometerService’s getDistance() method.

Update your version of activity_main.xml to reflect our changes:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context="com.hfad.odometer.MainActivity"

 android:orientation="vertical"

 android:padding="16dp">

 <TextView

 android:id="@+id/distance"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:textSize="48sp"

 android:layout_gravity="center_horizontal"

 android:textAppearance="?android:attr/textAppearanceLarge" />

</LinearLayout>

Now that we’ve added a text view to MainActivity’s layout,
we’ll update its activity code. Let’s go through the changes we
need to make.

<xml>
</xml>

app/src/main

activity_
main.xml

Odometer

res

layout

We’ll use the TextView to display
the number returned by the
OdometerService getDistance() method.

OdometerService
MainActivity
Location Services

774 Chapter 19

steps

What MainActivity needs to do
To get an activity to connect to a bound service and call its methods,
there are a few steps you need to perform:

Create a ServiceConnection.
This uses the service’s IBinder object to form a connection with the service.

1

Bind the activity to the service.
Once you’ve bound it to the service, you can call the service’s methods directly.

2

Interact with the service.
In our case, we’ll use the service’s getDistance() method to
update the activity’s text view.

3

Unbind from the service when you’ve finished with it.
When the service is no longer used, Android destroys the service to free up resources.

4

Activity ServiceServiceConnection

Activity Service

Activity Service

When your activity is bound to the service, you can use it to update your activity.

We’ll go through these steps with MainActivity, starting with
creating the ServiceConnection.

OdometerService
MainActivity
Location Services

you are here 4 775

bound services and permissions

Create a ServiceConnection
A ServiceConnection is an interface that enables your activity
to bind to a service. It has two methods that you need to define:
onServiceConnected() and onServiceDisconnected().
The onServiceConnected() method is called when a connection
to the service is established, and onServiceDisconnected() is
called when it disconnects.

We need to add a ServiceConnection to MainActivity.
Here’s what the basic code looks like; update your version of
MainActivity.java to matches ours:

package com.hfad.odometer;

import android.app.Activity;

import android.os.Bundle;

import android.content.ServiceConnection;

import android.os.IBinder;

import android.content.ComponentName;

public class MainActivity extends Activity {

 private ServiceConnection connection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder binder) {

 //Code that runs when the service is connected

 }

 @Override

 public void onServiceDisconnected(ComponentName componentName) {

 //Code that runs when the service is disconnected

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

}

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

We’ll update the onServiceConnected() and
onServiceDisconnected() methods on the next page.

OdometerService
MainActivity
Location Services

We’re using these classes,
so we need to import them.

We’re using an Activity
here, but you could use
AppCompatActivity instead.

Create a
Service
Connection
object. You need to define these methods.

Add MainActivity’s onCreate() method.

776 Chapter 19

onServiceConnected()

The onServiceConnected() method
As we said on the previous page, the onServiceConnected()
method is called when a connection is established between
the activity and the service. It takes two parameters: a
ComponentName object that describes the service that’s been
connected to, and an IBinder object that’s defined by the service:

@Override

public void onServiceConnected(ComponentName componentName, IBinder binder) {

 //Code that runs when the service is connected

}

There are two things we need the onServiceConnected()
method to do:

 Use its IBinder parameter to get a reference to the service we’re connected to,
in this case OdometerService. We can do this by casting the IBinder to an
OdometerService.OdometerBinder (as this is the type of IBinder we
defined in OdometerService) and calling its getOdometer() method.

¥

 Record that the activity is bound to the service.¥

public class MainActivity extends Activity {

 private OdometerService odometer;

 private boolean bound = false;

 private ServiceConnection connection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder binder) {

 OdometerService.OdometerBinder odometerBinder =

 (OdometerService.OdometerBinder) binder;

 odometer = odometerBinder.getOdometer();

 bound = true;

 }

 ...

 };

...

}

Here’s the code to do these things (update your version of
MainActivity.java to include our changes):

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

The ComponentName identifies
the service. It includes the
service package and class names.

This is an IBinder defined by the service. We added one to OdometerService earlier.

Add these variables to record
a reference to the service, and
whether the activity is bound to it.

Use the IBinder to get a
reference to the service.

The activity is bound to the service,
so set the bound variable to true.

OdometerService
MainActivity
Location Services

you are here 4 777

bound services and permissions

The onServiceDisconnected() method
The onServiceDisconnected() method is called when the
service and the activity are disconnected. It takes one parameter, a
ComponentName object that describes the service:

@Override

public void onServiceDisconnected(ComponentName componentName) {

 //Code that runs when the service is disconnected

}

There’s only one thing we need the
onServiceDisconnected() method to do when it’s called:
record that the activity is no longer bound to the service. Here’s
the code to do that; update your version of MainActivity.java to
match ours:

public class MainActivity extends Activity {

 private OdometerService odometer;

 private boolean bound = false;

 private ServiceConnection connection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder binder) {

 OdometerService.OdometerBinder odometerBinder =

 (OdometerService.OdometerBinder) binder;

 odometer = odometerBinder.getOdometer();

 bound = true;

 }

 @Override

 public void onServiceDisconnected(ComponentName componentName) {

 bound = false;

 }

 };

...

}

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

Next we’ll look at how you bind to and unbind from the service.

Set bound to false, as MainActivity is
no longer bound to OdometerService.

OdometerService
MainActivity
Location Services

778 Chapter 19

bindService()

Use bindService() to bind the service
When you bind your activity to a service, you usually do it in
one of two places:

 In the activity’s onStart() method when the activity becomes
visible. This is appropriate if you only need to interact with the
service when it’s visible.

¥

In our case, we only need to display updates from
OdometerService when MainActivity is visible, so we’ll
bind to the service in its onStart() method.

To bind to the service, you first create an explicit intent that’s
directed at the service you want to bind to. You then use the
activity’s bindService() method to bind to the service,
passing it the intent, the ServiceConnection object
defined by the service, and a flag to describe how you want to
bind.

To see how you do this, here’s the code you’d use to bind
MainActivity to OdometerService (we’ll add this code
to MainActivity.java a few pages ahead):

 In the activity’s onCreate() method when the activity gets
created. Do this if you need to receive updates from the service
even when the activity’s stopped.

¥

MainActivity OdometerService

@Override

protected void onStart() {

 super.onStart();

 Intent intent = new Intent(this, OdometerService.class);

 bindService(intent, connection, Context.BIND_AUTO_CREATE);

}

In the above code, we’ve used the flag Context.BIND_
AUTO_CREATE to tell Android to create the service if it doesn’t
already exist. There are other flags you can use instead; you can
see all the available ones in the Android documentation here:

https://developer.android.com/reference/android/content/Context.html

Next, we’ll look at how you unbind the activity from the service.

This is an intent directed
to the OdometerService.

The bindService() method uses the intent and service connection to bind the
activity to the service.

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

You don’t usually bind to a service in the activity’s onResume() method in order to keep the processing done in this method to a minimum.

This is the ServiceConnection object.

OdometerService
MainActivity
Location Services

you are here 4 779

bound services and permissions

Use unbindService()
to unbind from the service
When you unbind your activity from a service, you usually
add the code to do so to your activity’s onStop() or
onDestroy() method. The method you use depends on
where you put your bindService() code:

In our case, we used MainActivity’s onStart() method
to bind to OdometerService, so we’ll unbind from it in the
activity’s onStop() method.

You unbind from a service using the unbindService()
method. The method takes one parameter, the
ServiceConnection object. Here’s the code that we need to
add to MainActivity (we’ll add this code to MainActivity.java
a few pages ahead):

@Override

protected void onStop() {

 super.onStop();

 if (bound) {

 unbindService(connection);

 bound = false;

 }

}

In the above code we’re using the value of the bound variable
to test whether or not we need to unbind from the service. If
bound is true, this means MainActivity is bound to
OdometerService. We need to unbind the service, and set
the value of bound to false.

So far we have an activity that binds to the service when the
activity starts, and unbinds from it when the activity stops.
The final thing we need to do is get MainActivity to call
OdometerService’s getDistance() method, and
display its value.

MainActivity OdometerService

This uses the ServiceConnection
object to unbind from the service.

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

 If you bound to the service in your activity’s onStart() method,
unbind from it in the onStop() method.

¥

 If you bound to the service in your activity’s onCreate()
method, unbind from it in the onDestroy() method.

¥

When we unbind, we’ll set bound to false.

OdometerService
MainActivity
Location Services

780 Chapter 19

get distance

We’ll call the displayDistance() method in
MainActivity’s onCreate() method so that it starts
running when the activity gets created (we’ll add this code to
MainActivity.java on the next page):

private void displayDistance() {

 final TextView distanceView = (TextView) findViewById(R.id.distance);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 double distance = 0.0;

 if (bound && odometer != null) {

 distance = odometer.getDistance();

 }

 String distanceStr = String.format(Locale.getDefault(),

 "%1$,.2f miles", distance);

 distanceView.setText(distanceStr);

 handler.postDelayed(this, 1000);

 }

 });

}

Call OdometerService’s getDistance() method

@Override

protected void onCreate(Bundle savedInstanceState) {

 ...

 displayDistance();

}

We’ll show you the full code for MainActivity on the next page.

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

Get the
TextView.

MainActivity will use the results of
the OdometerService getDistance()
method to update the TextView.

If we’ve got a reference to the OdometerService
and we’re bound to it, call getDistance().

You could use a String resource for “miles”,
but we’ve hardcoded it here for simplicity.

Create a new Handler.
Call the Handler’s post() method, passing in a new Runnable.

Post the code in the Runnable to be run again after a delay
of 1 second. As this line of code is included in the Runnable
run() method, it will run every second (with a slight lag).

Once your activity is bound to the service, you can call its
methods. We’re going to call the OdometerService’s
getDistance() method every second, and update
MainActivity’s text view with its value.

To do this, we’re going to write a new method called
displayDistance(). This will work in a similar way to the
runTimer() code we used in Chapters 4 and 11.

Here’s our displayDistance() method. We’ll add it to
MainActivity.java a couple of pages ahead:

Call displayDistance() in MainActivity’s
onCreate() method to kick it off.

OdometerService
MainActivity
Location Services

you are here 4 781

bound services and permissions

The full MainActivity.java code
Here’s the complete code for MainActivity.java; make sure your
version of the code matches ours:

package com.hfad.odometer;

import android.app.Activity;

import android.os.Bundle;

import android.content.ServiceConnection;

import android.os.IBinder;

import android.content.ComponentName;

import android.content.Context;
import android.content.Intent;
import android.os.Handler;
import android.widget.TextView;
import java.util.Locale;

public class MainActivity extends Activity {

 private OdometerService odometer;

 private boolean bound = false;

 private ServiceConnection connection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder binder) {

 OdometerService.OdometerBinder odometerBinder =

 (OdometerService.OdometerBinder) binder;

 odometer = odometerBinder.getOdometer();

 bound = true;

 }

 @Override

 public void onServiceDisconnected(ComponentName componentName) {

 bound = false;

 }

 };

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 displayDistance();
 }

The code continues
on the next page.Call the displayDistance() method

when the activity is created.

Get a reference to the
OdometerService when the
service is connected.

Use this for the OdometerService.

Use this to store whether or not the
activity’s bound to the service.

We need to
define a
ServiceConnection.

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

We're using these extra classes, so we need to import them.

private void displayDistance() {

 final TextView distanceView = (TextView) findViewById(R.id.distance);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 double distance = 0.0;

 if (bound && odometer != null) {

 distance = odometer.getDistance();

 }

 String distanceStr = String.format(Locale.getDefault(),

 "%1$,.2f miles", distance);

 distanceView.setText(distanceStr);

 handler.postDelayed(this, 1000);

 }

 });

}

OdometerService
MainActivity
Location Services

782 Chapter 19

code, continued

 @Override

 protected void onStart() {

 super.onStart();

 Intent intent = new Intent(this, OdometerService.class);

 bindService(intent, connection, Context.BIND_AUTO_CREATE);

 }

 @Override

 protected void onStop() {

 super.onStop();

 if (bound) {

 unbindService(connection);

 bound = false;

 }

 }

 private void displayDistance() {

 final TextView distanceView = (TextView)findViewById(R.id.distance);

 final Handler handler = new Handler();

 handler.post(new Runnable() {

 @Override

 public void run() {

 double distance = 0.0;

 if (bound && odometer != null) {

 distance = odometer.getDistance();

 }

 String distanceStr = String.format(Locale.getDefault(),

 "%1$,.2f miles", distance);

 distanceView.setText(distanceStr);

 handler.postDelayed(this, 1000);

 }

 });

 }

}

The MainActivity.java code (continued)

Call OdometerService’s
getDistance() method.

Bind the service when the activity starts.

Unbind the service when the activity stops.
Display the value returned by the
service's getDistance() method.

Update the TextView’s value every second.

That’s all the code you need to get MainActivity to use
OdometerService. Let’s go through what happens when
you run the code.

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

OdometerService
MainActivity
Location Services

you are here 4 783

bound services and permissions

What happens when you run the code
Before you see the app up and running, let’s walk through what the
code does.

When MainActivity is created, it creates a ServiceConnection object and
calls the displayDistance() method.

1

MainActivity ServiceConnection

MainActivity calls bindService() in its onStart() method.
The bindService() method includes an intent meant for OdometerService, and a
reference to the ServiceConnection.

2

displayDistance()

MainActivity

Intent

Odometer
Service

bindService()

Android creates an instance of the OdometerService, and passes it the
intent by calling its onBind() method.

3

Android

Intent

Odometer
Service

OdometerService

OdometerService
MainActivity
Location Services

onBind()

ServiceConnection

784 Chapter 19

what happens, continued

The ServiceConnection uses the Binder to give MainActivity a
reference to OdometerService.

5

The story continues

OdometerService

OdometerService
MainActivity
Location Services

MainActivity’s displayDistance() method calls OdometerService’s
getDistance() method every second.
OdometerService returns a random number to MainActivity, in this case
0.56.

6

MainActivity

getDistance()

0.56
OdometerService

OdometerService’s onBind() method returns a Binder.
The Binder is passed to MainActivity’s ServiceConnection.

4

MainActivity ServiceConnection OdometerService

onBind()
Binder

MainActivity ServiceConnection

you are here 4 785

bound services and permissions

When MainActivity stops, it disconnects from OdometerService by
calling unbindService().

7

MainActivity OdometerService

Now that you understand what happens when the code
runs, let’s take the app for a test drive.

OdometerService

OdometerService is destroyed when MainActivity is no longer bound
to it.

8

unbindService()

The story continues

MainActivity

I’m no longer
visible, so I don’t
need you anymore.

OK. Just call if you
change your mind.

786 Chapter 19

test drive

Test drive the app
When we run the app, a random number is displayed in
MainActivity. This number changes every second.

We now have a working service that MainActivity
can bind to. We still need to change the service so that
the getDistance() method returns the distance
traveled instead of a random number. Before we do that,
however, we’re going to take a closer look at how bound
services work behind the scenes.

OdometerService
MainActivity
Location Services

This is a random number
generated by OdometerService.

Q: What’s the difference between
a started service and a bound service
again?

A: A started service is created when an
activity (or some other component) calls
startService(). It runs code in the
background, and when it finishes running,
the service is destroyed.

A bound service is created when the activity
calls bindService(). The activity
can interact with the service by calling its
methods. The service is destroyed when no
components are bound to it.

Q: Can a service be both started and
bound?

A: Yes. In such cases, the service is
created when startService() or
bindService() is called. It’s only
destroyed when the code it was asked to
run in the background has stopped running,
and there are no components bound to it.

Creating this kind of started-and-bound
service is more complicated than creating
a service that’s only started or bound. You
can find out how to do it in the Android
documentation: https://developer.android.
com/guide/components/services.html.

Q: What’s the difference between a
Binder and an IBinder?

A: An IBinder is an interface. A
Binder is a class that implements the
IBinder interface.

Q: Can other apps use a service I
create?

A: Yes, but only if you set its
exported attribute to true in
AndroidManifest.xml.

you are here 4 787

bound services and permissions

The states of a bound service

Service created

Service destroyed

Service bound

A bound service is
destroyed when
no components are
bound to it.

An application component such as an
activity has bound to the service. The
service spends most of its lifecycle here.

At this point, the
service no longer exists.

Just like a started service, when a bound service is created, its
onCreate() method gets called. As before, you override this
method if you want to perform any tasks needed to set up the
service.

The onBind() method runs when a component binds to
the service. You override this method to return an IBinder
object to the component, which it uses to get a reference to the
service.

When all components have unbound from the service, its
onUnbind() method is called.

Finally, the onDestroy() method is called when no
components are bound to the service and it’s about to be
destroyed. As before, you override this method to perform any
final cleanup tasks and free up resources.

We’ll take a closer look at how these methods fit into the service
states on the next page.

When an application component (such as an activity) binds to
a service, the service moves between three states: being created,
being bound, and being destroyed. A bound service spends
most of its time in a bound state.

The service object
has been created.

788 Chapter 19

lifecycle methods

The bound service lifecycle: from create to destroy

onCreate()

onDestroy()

The component calls bindService() and
the service gets created.

1

The onCreate() method runs immediately
after the service is created.
The onCreate() method is where any service
initialization code should go, as this method
always gets called after the service has launched
but before any components have bound to it.

2

The service is bound for most of its life.4

The onDestroy() method is called when
no components are bound to the service
and it’s about to be destroyed.
You override this method if you want to perform
any final cleanup tasks such as freeing up
resources.

6

After the onDestroy() method has run,
the service is destroyed.
The service ceases to exist.

7

Here’s a more detailed overview of the bound service lifecycle from
birth to death.

Now that you have a better understanding of how bound services
work, let’s change our Odometer app so that it displays the actual
distance traveled by the user.

Service created

Service destroyed

onBind()

Service bound

The onBind() method runs when the
component binds to the service.
You override this method to return an IBinder
object, which the component can use to get a
reference to the service and call its methods.

3

onUnbind()

The onUnbind() method runs when all
components have unbound from the
service.

5

you are here 4 789

bound services and permissions

We’ll use Android’s Location Services
to return the distance traveled
We need to get our OdometerService to return the distance
traveled in its getDistance() method. To do this, we’ll use
Android’s Location Services. These allow you to get the user’s
current location, request periodic updates, and ask for an intent to
be fired when the user comes within a certain radius of a particular
location.

In our case, we’re going to use the Location Services to get periodic
updates on the user’s current location. We’ll use these to calculate
the distance the user has traveled.

To do this, we’ll perform the following steps:

Set up a location listener when the service is created.
This will be used to listen for updates from the Location Services.

2

Request location updates.
We’ll create a location manager, and use it to request updates on the user’s
current location.

3

Calculate the distance traveled.
We’ll keep a running total of the distance traveled by the user, and return
this distance in the OdometerService’s getDistance() method.

4

Remove location updates just before the service is destroyed.
This will free up system resources.

5

Before we start, we’ll add the AppCompat Support Library to our
project, as we’ll need to use it in our code.

Declare we need permission to use the Location Services.
Our app can only use the Location Services if the user grants our app
permission to do so.

1

OdometerService
MainActivity
Location Services

790 Chapter 19

add support library

Add the AppCompat Support Library
To get our location code working properly, there are a couple
of classes we need to use from the AppCompat Support
Library, so we’ll add it to our project as a dependency. You do
this in the same way that you did in earlier chapters. Choose
File→Project Structure, then click on the app module and choose
Dependencies. You’ll be presented with the following screen:

Android Studio may have already added the AppCompat Support
Library automatically. If so, you will see it listed as appcompat-v7,
as shown above.

If the AppCompat Library isn’t listed, you will need to add it
yourself. To do this, click on the “+” button at the bottom or right
side of the screen, choose the Library Dependency option, select
the appcompat-v7 library, then click on the OK button. Click on
OK again to save your changes and close the Project Structure
window.

Next, we’ll look at how to declare we need permission to use
Android’s Location Services.

Here’s the AppCompat Support Library.

OdometerService
MainActivity
Location Services

you are here 4 791

bound services and permissions

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.hfad.odometer">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application

 ...

 </application>

</manifest>

Declare the permissions you need
Android allows you to perform many actions by default, but there
are some that the user needs to give permission for in order for them
to work. This can be because they use the user’s private information,
or could affect stored data or the way in which other apps function.
Location Services is one of those things that the user needs to grant
your app permission to use.

You declare the permissions your app requires in AndroidManifest.xml
using the <uses-permission> element, which you add to the
root <manifest> element. In our case, we need to access the user’s
precise location in order to display the distance traveled, so we need
to declare the ACCESS_FINE_LOCATION permission. To do this,
you add the following declaration to AndroidManifest.xml (update your
version of the file to reflect this change):

<xml>
</xml>

app/src/main

AndroidManifest.xml

Odometer

How the app uses the above declaration depends on your app’s target
SDK (usually the most recent version of Android) and the API level of
the user’s device:

Now that we’ve declared that our app needs to know the user’s
location, let’s get to work on OdometerService.

We need to know the user's precise location.Declare we need a permission.

 If your target SDK is API level 23 or above, and the user’s device is running 23
or above, the app requests permission at runtime. The user can deny or
revoke permission, so whenever your code wants to use the thing that requires
permission, it needs to check that permission is still granted. You’ll find out how
to do this later in the chapter.

¥

 If your target SDK is API level 22 or below, or the user’s device is running 22
or below, the app requests permission when it’s installed. If the user
denies permission, the app isn’t installed. Once granted, permission can’t be
revoked except by uninstalling the app.

¥

OdometerService
MainActivity
Location Services

792 Chapter 19

location listener

Add a location listener to OdometerService

...
import android.os.Bundle;
import android.location.LocationListener;
import android.location.Location;

public class OdometerService extends Service {
 ...
 private LocationListener listener;

 @Override
 public void onCreate() {
 super.onCreate();
 listener = new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 //Code to keep track of the distance
 }

 @Override
 public void onProviderDisabled(String arg0) {}

 @Override
 public void onProviderEnabled(String arg0) {}

 @Override
 public void onStatusChanged(String arg0, int arg1, Bundle bundle) {}
 };
 }
 ...
}

app/src/main

Odometer
Service.java

java

com.hfad.odometer

Set up the LocationListener.
The Location parameter describes the
current location. We’ll use this later.

We won't use any of
these methods in our
OdometerService code,
but we still need to
declare them.

We’ll complete this code
later in the chapter.

You create a location listener by implementing the
LocationListener interface. It has four methods that you need
to define: onLocationChanged(), onProviderEnabled(),
onProviderDisabled(), and onStatusChanged().
onLocationChanged() gets called when the user’s location has changed.
We’ll use this method later in the chapter to track the distance the user has
traveled. The onProviderEnabled(), onProviderDisabled(), and
onStatusChanged() methods are called when the location provider is
enabled, when it is disabled, or when its status has changed, respectively.

We need to set up a location listener when OdometerService is first created,
so we’ll implement the interface in OdometerService’s onCreate()
method. Update your version of OdometerService.java to include our changes below:

We’re using a private variable
for the LocationListener so
other methods can access it.

We’ll look at location
providers on the next page.

We’re using these
extra classes, so we
need to import them.

OdometerService
MainActivity
Location Services

you are here 4 793

bound services and permissions

LocationManager locManager = (LocationManager)getSystemService(Context.LOCATION_SERVICE);

This is how you access the
Android location service.

We used the getSystemService()
method in Chapter 18 to get access
to Android’s notification service.

Specify the location provider
Next, we need to specify the location provider, which is used to
determine the user’s location. There are two main options: GPS
or network. The GPS option uses the device’s GPS sensor to
establish the user’s location, whereas the network option looks at
Wi-Fi, Bluetooth, or mobile networks.

Not all devices have both types of location provider, so you can
use the location manager’s getBestProvider() method
to get the most accurate location provider on the device. This
method takes two parameters: a Criteria object you can
use to specify criteria such as power requirements, and a flag to
indicate whether it should currently be enabled on the device.

We want to use the location provider on the device with the
greatest accuracy, so we’ll use the following (we’ll add it to
OdometerService later):

We need a location manager
and location provider
To get location updates, we need to do three things: create a
location manager to get access to Android’s Location Services,
specify a location provider, and request that the location provider
sends regular updates on the user’s current location to the
location listener we added on the previous page. We’ll start by
getting a location manager.

Create a location manager
You create a location manager in a similar way to how you
created a notification manager in Chapter 18: using the
getSystemService() method. Here’s the code to create
a location manager that you can use to access Android’s
Location Services (we’ll add the code to OdometerService’s
onCreate() method later on):

String provider = locManager.getBestProvider(new Criteria(), true);

Next we’ll get the location provider to send location updates to
the location listener.

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

This gets the most accurate location provider that’s available on the device.

OdometerService
MainActivity
Location Services

794 Chapter 19

request updates

locManager.requestLocationUpdates(provider, 1000, 1, listener);

You get the location provider to send updates to the location listener
using the location manager’s requestLocationUpdates()
method. It takes takes four parameters: the location provider, the
minimum time interval between updates in milliseconds, the
minimum distance between location updates in meters, and the
location listener you want to receive the updates. As an example,
here’s how you’d request location updates from the location provider
every second when the device has moved more than a meter:

The location provider

The time in milliseconds

The distance in meters

The LocationListener you
want to receive updates

Request location updates...

...but first check that your app has
permission
If your app’s target SDK is API level 23 or above, you need to check at
runtime whether the user has granted you permission to get their current
location. (As we said earlier in the chapter, if your target SDK is API level
23 or above, and the user’s device is running one of these versions, the user
may have installed the app without granting Location Services permission. You
therefore have to check whether permission’s been granted before running any
code that requires Location Services, or your code won’t compile.)

You check whether permission’s been granted using the ContextCompat.
checkSelfPermission() method. ContextCompat is a class from the
AppCompat Support Library that provides backward compatibility with older
versions of Android. Its checkSelfPermission() method takes two
parameters: the current Context (usually this) and the permission you
want to check. It returns a value of PackageManager.PERMISSION_
GRANTED if permission has been granted.

In our case, we want to check whether the app’s been granted ACCESS_
FINE_LOCATION permission. Here’s the code to do that:

if (ContextCompat.checkSelfPermission(this,

 android.Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 locManager.requestLocationUpdates(provider, 1000, 1, listener);

}

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

On the next page we’ll show you all the code you need to add to
OdometerService.java to request location updates.

Check if the ACCESS_FINE_LOCATION
permission has been granted...

...before requesting location updates.

You can check your app’s target SDK
version by choosing File -> Project
Structure, clicking on the app option,
and then choosing Flavors.

OdometerService
MainActivity
Location Services

you are here 4 795

bound services and permissions

Here’s the full code to request location updates (update
your version of OdometerService.java to include our changes):

...

import android.content.Context;

import android.location.LocationManager;

import android.location.Criteria;

import android.support.v4.content.ContextCompat;

import android.content.pm.PackageManager;

public class OdometerService extends Service {

 ...

 private LocationManager locManager;

 public static final String PERMISSION_STRING

 = android.Manifest.permission.ACCESS_FINE_LOCATION;

 ...

 @Override

 public void onCreate() {

 super.onCreate();

 listener = new LocationListener() {

 ...

 };

 locManager = (LocationManager) getSystemService (Context.LOCATION_SERVICE);

 if (ContextCompat.checkSelfPermission(this, PERMISSION_STRING)

 == PackageManager.PERMISSION_GRANTED) {

 String provider = locManager.getBestProvider(new Criteria(), true);

 if (provider != null) {

 locManager.requestLocationUpdates(provider, 1000, 1, listener);

 }

 }

 }

 ...

}

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

Next we’ll get our location listener to deal with the location updates.

We’re using
these extra
classes, so
import them.

We’re using a private variable for the LocationManager so we can access it from other methods.

We’re adding the permission String as a constant.

Get the LocationManager.
Check
whether
we have
permission.

Get the most
accurate location
provider.

Request updates from the location provider.

OdometerService
MainActivity
Location ServicesHere’s the updated OdometerService code

locManager.requestLocationUpdates(provider, 1000, 1, listener);

if (ContextCompat.checkSelfPermission(this,

 android.Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 locManager.requestLocationUpdates(provider, 1000, 1, listener);

}

Odometer
Service.java

796 Chapter 19

distance traveled

double distanceInMeters = location.distanceTo(lastLocation);

Calculate the distance traveled
So far, we’ve requested that the location listener be notified when the user’s current
location changes. When this happens, the listener’s onLocationChanged()
method gets called.

This method has one parameter, a Location object representing the user’s
current location. We can use this object to calculate the distance traveled by keeping
a running total of the distance between the user’s current location and their last.

You find the distance in meters between two locations using the Location
object’s distanceTo() method. As an example, here’s how you’d find the
distance between two locations called location and lastLocation:

public class OdometerService extends Service {

 private static double distanceInMeters;

 private static Location lastLocation = null;

 ...

 @Override

 public void onCreate() {

 super.onCreate();

 listener = new LocationListener() {

 @Override

 public void onLocationChanged(Location location) {

 if (lastLocation == null) {

 lastLocation = location;

 }

 distanceInMeters += location.distanceTo(lastLocation);

 lastLocation = location;

 }

 ...

 }

 ...

 }

 ...

}

Here’s the code we need to add to OdometerService to record the distance
traveled by the user (update your version of OdometerService.java to match ours):

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

We’ll use this code to return the distance traveled to MainActivity.

This gets the distance
between location and
lastLocation.

We’re using static variables to store
the distance traveled and the user’s
last location so that their values are
retained when the service is destroyed.

Set the user’s starting location.

Update the distance traveled and the user’s last location.

OdometerService
MainActivity
Location Services

you are here 4 797

bound services and permissions

Return the miles traveled
To tell MainActivity how far the user has traveled, we need
to update OdometerService’s getDistance() method. It
currently returns a random number, so we’ll change it to convert
the value of the distanceInMeters variable to miles and
return that value. Here’s the new version of the getDistance()
method; update your version of it to match ours:

public double getDistance() {

 return random.nextDouble();

 return this.distanceInMeters / 1609.344;

}
This converts the distance traveled in meters into miles. We could make this
calculation more precise if we wanted to, but it’s accurate enough for our purposes.

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

if (ContextCompat.checkSelfPermission(this, PERMISSION_STRING)

 == PackageManager.PERMISSION_GRANTED) {

 locManager.removeUpdates(listener);

}

Stop the listener getting location updates
We’re going to stop the location listener getting updates using the
OdometerService’s onDestroy() method, as this gets called just before
the service is destroyed.

You stop the updates by calling the location manager’s removeUpdates()
method. It takes one parameter, the listener you wish to stop receiving the updates:

Finally, we’ll stop the listener getting location updates when the service
is about to be destroyed.

locManager.removeUpdates(listener);

If your app’s target SDK is API level 23 or above, you need to
check whether the user has granted ACCESS_FINE_LOCATION
permission before calling the removeUpdates() method. This
is because you can only use this method if the user’s granted
this permission, and Android Studio will complain if you don’t
check first. You check whether permission’s been granted in the
same way we did earlier, by checking the return value of the
ContextCompat.checkSelfPermission() method:

Over the next few pages we’ll show you the full code for
OdometerService, including the new onDestroy() method.

This stops the location listener getting updates.

We can only remove the
updates if we have permission.

OdometerService
MainActivity
Location Services

Delete this line.

798 Chapter 19

OdometerService code

The full OdometerService.java code
We’ve now done everything we need to get OdometerService
to return the distance traveled. Update your version of
OdometerService.java to match ours.

package com.hfad.odometer;

import android.app.Service;

import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.os.IBinder;

import android.os.Binder;

import java.util.Random;

import android.location.LocationListener;

import android.location.Location;

import android.location.LocationManager;

import android.location.Criteria;

import android.support.v4.content.ContextCompat;

import android.content.pm.PackageManager;

public class OdometerService extends Service {

 private final IBinder binder = new OdometerBinder();

 private final Random random = new Random();

 private LocationListener listener;

 private LocationManager locManager;

 private static double distanceInMeters;

 private static Location lastLocation = null;

 public static final String PERMISSION_STRING

 = android.Manifest.permission.ACCESS_FINE_LOCATION;

 public class OdometerBinder extends Binder {

 OdometerService getOdometer() {

 return OdometerService.this;

 }

 }

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

The code continues
on the next page.

We’re no longer returning a random
number, so you can delete this import.

Delete the Random() object, as we’re
no longer using it.

OdometerService
MainActivity
Location Services

you are here 4 799

bound services and permissions

 @Override

 public void onCreate() {

 super.onCreate();

 listener = new LocationListener() {

 @Override

 public void onLocationChanged(Location location) {

 if (lastLocation == null) {

 lastLocation = location;

 }

 distanceInMeters += location.distanceTo(lastLocation);

 lastLocation = location;

 }

 @Override

 public void onProviderDisabled(String arg0) {

 }

 @Override

 public void onProviderEnabled(String arg0) {

 }

 @Override

 public void onStatusChanged(String arg0, int arg1, Bundle bundle) {

 }

 };

 locManager = (LocationManager) getSystemService (Context.LOCATION_SERVICE);

 if (ContextCompat.checkSelfPermission(this, PERMISSION_STRING)

 == PackageManager.PERMISSION_GRANTED) {

 String provider = locManager.getBestProvider(new Criteria(), true);

 if (provider != null) {

 locManager.requestLocationUpdates(provider, 1000, 1, listener);

 }

 }

 }

The OdometerService.java code (continued)

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

The code continues
on the next page.

None of the code on
this page has changed.

OdometerService
MainActivity
Location Services

800 Chapter 19

code, continued

 @Override

 public IBinder onBind(Intent intent) {

 return binder;

 }

 @Override

 public void onDestroy() {

 super.onDestroy();

 if (locManager != null && listener != null) {

 if (ContextCompat.checkSelfPermission(this, PERMISSION_STRING)

 == PackageManager.PERMISSION_GRANTED) {

 locManager.removeUpdates(listener);

 }

 locManager = null;

 listener = null;

 }

 }

 public double getDistance() {

 return this.distanceInMeters / 1609.344;

 }

}

The OdometerService.java code (continued)

app/src/main

Odometer
Service.java

Odometer

java

com.hfad.odometer

Let’s take the app for a test drive.

Q: I noticed I can call checkSelfPermission()
directly in my service without using ContextCompat. Why
do I have to use the ContextCompat version?

A: Because it’s simpler to use. A
checkSelfPermission() method was added to the
Context class in API level 23, but this means it’s not available
on devices running an older version of Android.

Add the onDestroy() method.

Stop getting locations updates (if
we have permission to remove them).

Set the LocationManager and
LocationListener variables to null.

OdometerService
MainActivity
Location Services

you are here 4 801

bound services and permissions

Test drive the app
When we launch the app, 0.0 miles is initially displayed. When we
check the app permissions, permission hasn’t been granted to use
Location Services. You can check this on your device by opening
the device settings, choosing Apps, selecting the Odometer app, and
opening the Permissions section:

When we grant Location permission for the Odometer app and
return to the app, the location icon is displayed in the status bar,
and the number of miles traveled increases when we take the device
for a walk. The location icon disappears when we leave the app:

The odometer works when we grant the app Location permission,
but doesn’t when permission’s been denied.

OdometerService
MainActivity
Location Services

The location icon indicates
our device GPS is being used.

The miles traveled

The app hasn’t been
granted permission to
use Location Services.

We’ve switched on
Location permissions. The number of miles

increases when we take
the device for a walk.

The icon
disappears when
we leave the app.

Location Services permission
for the app may be granted on
your device by default. If this
is the case, see what happens
when you switch it off.

802 Chapter 19

request permission

Get the app to request permission
So far, we’ve made OdometerService check whether it has
permission to get the user’s precise location. If permission’s been
granted, it uses the Android Location Services to track the distance
the user travels. But what if permission hasn’t been granted?

If the app doesn’t have permission to get the user’s precise location,
OdometerService can’t use the Location Services we require.
Rather than just accepting this, the app would work better if it were
to ask the user to grant the permission.

We’re going to change MainActivity so that if the user hasn’t
granted the permission we need, we’ll request it. To achieve this,
we’ll get MainActivity to do three things:

Let’s start by looking at how you make an activity request permissions
at runtime.

Before MainActivity binds to the service, request ACCESS_FINE_
LOCATION permission if it’s not already been granted.
This will present the user with a permission request dialog.

1

Check the response, and bind to the service if permission is granted.2

If permission is denied, issue a notification.3

This dialog appears when you request
ACCESS_FINE_LOCATION
permission at runtime.

We’ll issue this notification if the user doesn’t grant the permission we need.

you are here 4 803

bound services and permissions

Check permissions at runtime
Earlier in the chapter, you saw how to check whether
the user has granted a particular permission using the
ContextCompat.checkSelfPermission() method:

if (ContextCompat.checkSelfPermission(this, PERMISSION_STRING)

 == PackageManager.PERMISSION_GRANTED) {

 //Run code that needs the user's permission

}

If the user has granted permission, the method returns a value
of PackageManager.PERMISSION_GRANTED, and the
code requiring the permission will run successfully. But what if
permission has been denied?

Ask for permissions you don’t have
If the user hasn’t granted one or more permissions needed
by your code, you can use the ActivityCompat.
requestPermissions() method to request permission at
runtime. ActivityCompat is a class from the AppCompat
Support Library that provides backward compatibility with
older versions of Android. Its requestPermissions()
method takes three parameters: a Context (usually this),
a String array of permissions you want to check, and an int
request code for the permission request. As an example, here’s
how you’d use the method to request the ACCESS_FINE_
LOCATION permission:

ActivityCompat.requestPermissions(this,

 new String[]{android.Manifest.permission.ACCESS_FINE_LOCATION}, 6854);

When the requestPermissions() method is called, it
displays one or more dialogs asking the user for each permission.
The dialog gives the user a choice between denying or allowing
the permission, and there’s also a checkbox they can check if they
don’t want to be asked about the permission again. If they check
the checkbox and deny the permission, subsequent calls to the
requestPermissions() method won’t display the dialog.

Note that the requestPermissions() method can only be
called from an activity. You can’t request permissions from a service.

We’re going to update MainActivity so that it requests
permission to get the device’s location if it hasn’t already been
granted.

The requestPermissions()
method can only be called
by an activity. It can’t be
called from a service.

Request
Granted
Denied

This code checks whether the
user has granted a permission.

Use this method to
request permissions
at runtime.

This is the request code for
the permissions request. It can
be any int. You’ll see where this
gets used in a couple of pages.

This is the permissions request dialog.

The user can deny or allow
permissions using these options.

804 Chapter 19

onStart()

Check for Location Services permissions
in MainActivity’s onStart() method
We’re currently using MainActivity’s onStart() method to
bind the activity to OdometerService. We’re going to change the
code so that MainActivity only binds to the service if the user
has granted the permission specified by the PERMISSION_STRING
constant we defined in OdometerService. If permission’s not been
granted, we’ll ask for it.

Here’s the updated code for MainActivity.java; update your version of
the code with our changes:

...

import android.content.pm.PackageManager;

import android.support.v4.app.ActivityCompat;

import android.support.v4.content.ContextCompat;

public class MainActivity extends Activity {

 ...

 private final int PERMISSION_REQUEST_CODE = 698;

 ...

 @Override

 protected void onStart() {

 super.onStart();

 if (ContextCompat.checkSelfPermission(this, OdometerService.PERMISSION_STRING)

 != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 new String[]{OdometerService.PERMISSION_STRING},

 PERMISSION_REQUEST_CODE);

 } else {

 Intent intent = new Intent(this, OdometerService.class);

 bindService(intent, connection, Context.BIND_AUTO_CREATE);

 }

 }

}

Once you’ve requested permission from the user, you need to
check the user’s response. We’ll do that next.

Request
Granted
Denied

We’re using these extra classes,
so we need to import them.

We’ll use this int for the
permission request code.

If permission hasn’t already been granted...

...request it at runtime.

If permission has already been
granted, bind to the service.

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

you are here 4 805

bound services and permissions

Check the user’s response to the permission request

@Override

public void onRequestPermissionsResult(int requestCode,

 String permissions[], int[] grantResults) {

 switch (requestCode) {

 case PERMISSION_REQUEST_CODE: {

 if (grantResults.length > 0

 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 Intent intent = new Intent(this, OdometerService.class);

 bindService(intent, connection, Context.BIND_AUTO_CREATE);

 } else {

 //Code to run if permission was denied

 }

 }

 }

}

Finally, if the user doesn’t give us permission to use their current
location, we need to inform them that the odometer won’t work.

Request
Granted
Denied

When you ask the user to grant a permission using the
requestPermissions() method, you can’t determine whether
permission was granted by checking its return value. That’s because
the permission request happens asynchronously so that the current
thread isn’t blocked while you wait for the user to respond.

Instead, you check the user’s response by overriding the activity’s
onRequestPermissionsResult() method. This has three
parameters: an int request code to identify the permissions request,
a String array of permissions, and an int array for the results of the
requests.

To use this method, you first check whether the int request code
matches the one you used in the requestPermissions()
method. If it does, you then check whether the permission has been
granted.

The code below checks whether the user granted the permission
we requested using the requestPermissions() method
on the previous page. If permission’s been granted, it binds
to OdometerService. Add this method to your version of
MainActivity.java:

app/src/main

MainActivity.java

Odometer

java

com.hfad.odometer

The onRequestPermissionsResult() method
returns the results of your permissions requests.

Check whether the code matches the one
we used in our requestPermissions() method.

If the request was
cancelled, no results
will be returned.

If permission was
granted, bind to
the service.We still need to write this code.

806 Chapter 19

we want a notification

Issue a notification if we’re denied permission

Q: I tried turning off Location permissions for the Odometer
app when I was in the middle of using it, and the number of
miles displayed went back to 0. Why?

A: When you switch off the Location permissions for the app,
Android may kill the process the app is running in. This resets all of
the variables.

Q: That sounds drastic. Are there any other times when
Android might kill a process?

A: Yes, when it’s low on memory, but it will always try to keep
alive any processes that are actively being used.

Q: Why aren’t we calling the
requestPermissions() method from
OdometerService?

A: Because the requestPermissions() method is
only available for activities, not services.

Q: Can I change the text that’s displayed in the
requestPermissions() dialog?

A: No. The text and options it displays are fixed, so Android
won’t let you change them.

Q: But I want to give the user more information about why I
need a particular permission. Can I do that?

A: One option is to call the ActivityCompat.
shouldShowRequestPermissionRationale()
method before calling requestPermissions(). This
returns a true value if the user has previously denied the
permission request, and hasn’t checked the checkbox to say they
don’t want to be asked again. If this is the case, you can give
the user more information outside the permission request before
requesting the permission again.

Q: What other permissions do I have to declare and ask
permission for?

A: Generally, you need the user’s permission for any actions that
use private data or may affect the way in which other apps function.
The online documentation for each class should indicate whether a
permission is needed, and Android Studio should highlight this too.
You can find a full list of actions requiring permissions here:

https://developer.android.com/guide/topics/permissions/requesting.
html#normal-dangerous

Q: What if I design an app that performs these kinds of
actions and don’t ask for permission?

A: If your target SDK is API level 23 or above and you don’t
request permission, your code won’t compile.

Request
Granted
Denied

We’ll issue this notification
if the user denies permission.

If the user decides not to grant permission to use their current
location, the OdometerService won’t be able to tell how
far they’ve traveled. If this happens, we’ll issue a notification to
inform the user. We’re going to use a notification because it will
remain in the notification area until the user has decided what to
do. Another advantage of using a notification is that we can get
it to start MainActivity when it’s clicked. Doing this means
that MainActivity’s onStart() method will run, which will
again prompt the user to grant the permission (unless the user has
previously selected the option not to be asked again).

See if you can build the notification we require by having a go at the
exercise on the next page.

you are here 4 807

bound services and permissions

NotificationCompat.Builder builder = new NotificationCompat.Builder(this)

 .setSmallIcon(android.R.drawable.ic_menu_compass)

 .setContentTitle("Odometer")

 .setContentText("Location permission required")

 .setPriority(NotificationCompat.)

 .setVibrate(new long[] {0, 1000})

 . (true);

Intent actionIntent = new Intent(this, MainActivity.class);

PendingIntent actionPendingIntent = PendingIntent. (this, 0,

 actionIntent, PendingIntent.FLAG_UPDATE_CURRENT);

builder.setContentIntent();

NotificationManager notificationManager =

 (NotificationManager) getSystemService();

notificationManager.notify(43,);

Pool Puzzle
Your goal is to build and issue a heads-

up notification. The notification
should start MainActivity
when it’s clicked, then disappear.
Take code snippets from the pool,
and place them in the blank lines
in the code. You may not use the

same snippet more than once, and
you won’t need to use all the snippets.

builder

NOTIFICATION

NOTIFICATION_SERVICEgetAction

getService

actionIntent

PRIORITY_LOW
LOW

HIGH

setVanishWhenClicked

Note: each thing from
the pool can only be
used once!

actionPendingIntent builder.build()

PRIORITY_HIGH

setAutoCancel

getActivity

Write the code to
create this notification.

A built-in drawable to
display a compass icon.

808 Chapter 19

solution

NotificationCompat.Builder builder = new NotificationCompat.Builder(this)

 .setSmallIcon(android.R.drawable.ic_menu_compass)

 .setContentTitle("Odometer")

 .setContentText("Location permission required")

 .setPriority(NotificationCompat.)

 .setVibrate(new long[] {0, 1000})

 . (true);

Intent actionIntent = new Intent(this, MainActivity.class);

PendingIntent actionPendingIntent = PendingIntent. (this, 0,

 actionIntent, PendingIntent.FLAG_UPDATE_CURRENT);

builder.setContentIntent();

NotificationManager notificationManager =

 (NotificationManager) getSystemService();

notificationManager.notify(43,);

You didn’t need to
use these snippets.

actionPendingIntent

Pool Puzzle Solution
Your goal is to build and issue a heads-

up notification. The notification
should start MainActivity
when it’s clicked, then disappear.
Take code snippets from the pool,
and place them in the blank lines
in the code. You may not use the

same snippet more than once, and
you won’t need to use all the snippets.

builder.build()
NOTIFICATION_SERVICE

getActivity

PRIORITY_HIGH

setAutoCancel

builder

NOTIFICATION

getAction

getService

actionIntent

PRIORITY_LOW
LOW

HIGH

setVanishWhenClicked

Heads-up notifications
need to have a high priority.This makes the

notification disappear
when it’s clicked. Create a PendingIntent using

the getActivity() method.

Add the PendingIntent to the notification so
that it starts MainActivity when it’s clicked.

Build the notification. Use the notification service.

you are here 4 809

bound services and permissions

Add notification code to
onRequestPermissionsResults()
We’ll update our MainActivity code so that if the user denies
our permission request, it issues a heads-up notification.

First, add the following Strings to Strings.xml; we’ll use these for the
notification’s title and text:

<string name="app_name">Odometer</string>

<string name="permission_denied">Location permission required</string>
<xml>
</xml>

app/src/main

strings.xml

Odometer

res

values

Android Studio may have
already added this String.

Then update your version of MainActivity.java with the following
code:

...

import android.support.v4.app.NotificationCompat;

import android.app.NotificationManager;

import android.app.PendingIntent;

public class MainActivity extends Activity {

 ...

 private final int NOTIFICATION_ID = 423;

 ...

 @Override

 public void onRequestPermissionsResult(int requestCode,

 String permissions[], int[] grantResults) {

 switch (requestCode) {

 case PERMISSION_REQUEST_CODE: {

 if (grantResults.length > 0

 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 ...

 } else {

 //Create a notification builder

 NotificationCompat.Builder builder = new NotificationCompat.Builder(this)

 .setSmallIcon(android.R.drawable.ic_menu_compass)

 .setContentTitle(getResources().getString(R.string.app_name))

 .setContentText(getResources().getString(R.string.permission_denied))

 .setPriority(NotificationCompat.PRIORITY_HIGH)

 .setVibrate(new long[] {1000, 1000})

 .setAutoCancel(true);

Request
Granted
Denied

The code continues
on the next page.

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

We’re using these extra classes, so we need to import them.

We’ll use this constant
for the notification ID.

These settings are needed for all notifications.

Add these to make it a
heads-up notification.

This line makes the notification
disappear when it’s clicked.

810 Chapter 19

code, continued

The notification code (continued)

 //Create an action

 Intent actionIntent = new Intent(this, MainActivity.class);

 PendingIntent actionPendingIntent = PendingIntent.getActivity(

 this,

 0,

 actionIntent,

 PendingIntent.FLAG_UPDATE_CURRENT);

 builder.setContentIntent(actionPendingIntent);

 //Issue the notification

 NotificationManager notificationManager =

 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);

 notificationManager.notify(NOTIFICATION_ID, builder.build());

 }

 }

 }

 }

 ...

}

That’s all the code we need to display a notification if the user
decides to deny us ACCESS_FINE_LOCATION permission.
We’ll show you the full MainActivity code over the next
few pages, then take the app for a final test drive.

Request
Granted
Denied

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

Adding a PendingIntent to
the notification means that
it will start MainActivity
when it’s clicked.

Build the
notification
and issue it.

you are here 4 811

bound services and permissions

The full code for MainActivity.java
Here’s our complete code for MainActivity.java; make sure your version
of the code matches ours:

package com.hfad.odometer;

import android.app.Activity;

import android.os.Bundle;

import android.content.ServiceConnection;

import android.os.IBinder;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.os.Handler;

import android.widget.TextView;

import java.util.Locale;

import android.content.pm.PackageManager;

import android.support.v4.app.ActivityCompat;

import android.support.v4.content.ContextCompat;

import android.support.v4.app.NotificationCompat;

import android.app.NotificationManager;

import android.app.PendingIntent;

public class MainActivity extends Activity {

 private OdometerService odometer;

 private boolean bound = false;

 private final int PERMISSION_REQUEST_CODE = 698;

 private final int NOTIFICATION_ID = 423;

 private ServiceConnection connection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder binder) {

 OdometerService.OdometerBinder odometerBinder =

 (OdometerService.OdometerBinder) binder;

 odometer = odometerBinder.getOdometer();

 bound = true;

 }

 @Override

 public void onServiceDisconnected(ComponentName componentName) {

 bound = false;

 }

 };

The code
continues
on the
next page.

Request
Granted
Denied

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

We need a ServiceConnection
in order to bind MainActivity
to OdometerService.

These are all classes from the
AppCompat Support Library.

We’ve been using the Activity
class, but you can use
AppCompatActivity if you prefer.

812 Chapter 19

MainActivity, continued

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 displayDistance();

 }

 @Override

 public void onRequestPermissionsResult(int requestCode,

 String permissions[], int[] grantResults) {

 switch (requestCode) {

 case PERMISSION_REQUEST_CODE: {

 if (grantResults.length > 0

 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 Intent intent = new Intent(this, OdometerService.class);

 bindService(intent, connection, Context.BIND_AUTO_CREATE);

 } else {

 //Create a notification builder

 NotificationCompat.Builder builder = new NotificationCompat.Builder(this)

 .setSmallIcon(android.R.drawable.ic_menu_compass)

 .setContentTitle(getResources().getString(R.string.app_name))

 .setContentText(getResources().getString(R.string.permission_denied))

 .setPriority(NotificationCompat.PRIORITY_HIGH)

 .setVibrate(new long[] { 1000, 1000})

 .setAutoCancel(true);

 //Create an action

 Intent actionIntent = new Intent(this, MainActivity.class);

 PendingIntent actionPendingIntent = PendingIntent.getActivity(this, 0,

 actionIntent, PendingIntent.FLAG_UPDATE_CURRENT);

 builder.setContentIntent(actionPendingIntent);

 //Issue the notification

 NotificationManager notificationManager =

 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);

 notificationManager.notify(NOTIFICATION_ID, builder.build());

 }

 }

 }

 }

The MainActivity.java code (continued)

The code continues
on the next page.

Request
Granted
Denied

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

If we’ve asked the user for permissions
at runtime, check the result.

Bind to
the service
if the user
has granted
permission.

Issue a
notification
if permission’s
been denied.

you are here 4 813

bound services and permissions

 @Override
 protected void onStart() {
 super.onStart();
 if (ContextCompat.checkSelfPermission(this,
 OdometerService.PERMISSION_STRING)
 != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{OdometerService.PERMISSION_STRING},
 PERMISSION_REQUEST_CODE);
 } else {
 Intent intent = new Intent(this, OdometerService.class);
 bindService(intent, connection, Context.BIND_AUTO_CREATE);
 }
 }

 @Override
 protected void onStop() {
 super.onStop();
 if (bound) {
 unbindService(connection);
 bound = false;
 }
 }

 private void displayDistance() {
 final TextView distanceView = (TextView)findViewById(R.id.distance);
 final Handler handler = new Handler();
 handler.post(new Runnable() {
 @Override
 public void run() {
 double distance = 0.0;
 if (bound && odometer != null) {
 distance = odometer.getDistance();
 }
 String distanceStr = String.format(Locale.getDefault(),
 "%1$,.2f miles", distance);
 distanceView.setText(distanceStr);
 handler.postDelayed(this, 1000);
 }
 });
 }
}

The MainActivity.java code (continued)

Request
Granted
Denied

app/src/main

Main
Activity.java

Odometer

java

com.hfad.odometer

Request ACCESS_
FINE_LOCATION
permission if we
don’t have it
already.

Bind to OdometerService
if we’ve been granted
the permission it requires.

We’re binding to
OdometerService
in two different
places, so you could
put this code in a
separate method.

Unbind from
OdometerService
when MainActivity
stops.

Display the distance traveled.

814 Chapter 19

test drive

Test drive the app
When we run the app with its Location permission switched off,
a permission request dialog is displayed. If we click on the Deny
option, a notification is issued:

We know you’re full of great ideas for improving
the Odometer app, so why not try them out? As an
example, try adding Start, Stop, and Reset buttons
to start, stop, and reset the distance traveled.

Location
Services
are running.

When we click on the notification, the permission request dialog is
displayed again. If we click on the option to allow permission, the
Location icon appears in the status bar and the number of miles
increases when we take the device on a road trip:

Request
Granted
Denied

If we’ve not granted
permission, a dialog is
displayed requesting it.

If we deny permission, a
notification is issued.

The dialog is displayed
again when we click on
the notification.

The number of miles
increases if we go on a walk.

you are here 4 815

bound services and permissions

Your Android Toolbox

You’ve got Chapter 19 under
your belt and now you’ve

added bound services to your
toolbox.

 � You create a bound service by extending
the Service class. You define your
own Binder object, and override the
onBind() method.

 � Bind a component to a service using the
bindService() method.

 � Use a ServiceConnection so that
your activity can get a reference to the service
when it’s bound.

 � Unbind a component from a service using the
unbindService() method.

 � When a bound service is created, its
onCreate() method is called.
onBind() gets called when a component
binds to the service.

 � When all components have unbound from the
service, its onUnbind() method is called.

 � A bound service is destroyed when
no components are bound to it. Its
onDestroy() method is called just before
the service is destroyed.

 � Use the Android Location Services to
determine the current location of the device.

 � To get the current location of the device,
you need to declare that the app requires
ACCESS_FINE_LOCATION permission
in AndroidManifest.xml.

 � Get location updates using a
LocationListener.

 � A LocationManager gives you access
to Android’s Location Services. Get the best
location provider available on the device
using its getBestProvider() method.
Request location updates from the provider
using requestLocationUpdates().

 � Use removeUpdates() to stop getting
location updates.

 � If your target SDK is API level 23 or
above, check at runtime whether your
app has been granted a permission
using the ContextCompat.
checkSelfPermission() method.

 � Request permissions at runtime
using ActivityCompat.
requestPermissions().

 � Check the user’s response to a permission
request by implementing the activity’s
onRequestPermissionsResult()
method.

You can download
the full code for
the chapter from
https://tinyurl.com/
HeadFirstAndroid.

CHAPT
ER 19

We’re sad to see you leave, but there’s nothing like taking what you’ve learned

and putting it to use. There are still a few more gems for you in the back of the book and a

handy index, and then it’s time to take all these new ideas and put them into practice. Bon

voyage!

Leaving town...

It’s been great having you here in Androidville

this is an appendix 817

appendix i: relative and grid layouts

Meet the Relatives

There are two more layouts you will often meet in Androidville.
In this book we’ve concentrated on using simple linear and frame layouts, and introduced

you to Android’s new constraint layout. But there are two more layouts we’d like you to

know about: relative layouts and grid layouts. They’ve largely been superseded by the

constraint layout, but we have a soft spot for them, and we think they’ll stay around for a

few more years.

Now remember,
it’s layout_row=”18”,
layout_column=”56”.
Not “behind the
white one.”

818 Appendix i

relative layout

A relative layout displays views
in relative positions
A relative layout allows you to position views relative to their parent
layout, or relative to other views in the layout.

You define a relative layout using the <RelativeLayout> element
like this:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 ...>

 ...

</RelativeLayout>

The layout_width and layout_height specify
what size you want the layout to be.

There may be other attributes too.

mean that the top edge of the button is aligned to the top edge of the
layout, and the button is centered horizontally in the parent layout. This
will be the case no matter what the screen size, language, or orientation
of your device:

<RelativeLayout ... >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/click_me"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true" />

</RelativeLayout>

The lines of code:

android:layout_alignParentTop="true"

android:layout_centerHorizontal="true"

The
parent
layout

The child view.

layout_alignParentTop

layout_centerHorizontal

The layout
contains the
button, so the
layout is the
button’s parent.

Positioning views relative to the parent layout
If you want a view to always appear in a particular position on the screen,
irrespective of the screen size or orientation, you need to position the
view relative to its parent. As an example, here’s how you’d make sure a
button always appears in the top-center of the layout:

This is where you add any views.

you are here 4 819

relative and grid layouts

You can also position a view to the left or right of the parent
layout. There are two ways of doing this.

The first way is to explicitly position the view on the left or right
using:

Positioning views to the left or right

android:layout_alignParentLeft="true"

android:layout_alignParentRight="true"

These lines of code mean that the left (or right) edge of the view is
aligned to the left (or right) edge of the parent layout, regardless of
the screen size, orientation, or language being used on the device.

android:layout_alignParentStart="true"

android:layout_alignParentEnd="true"

android:layout_alignParentStart="true" aligns the
start edge of the view with that of its parent. The start edge is on
the left for languages that are read from left to right, and the right
edge for languages that are read from right to left.

android:layout_alignParentEnd="true" aligns the
end edge of the view with that of its parent. The end edge is on
the right for languages that are read from left to right, and the left
edge for languages that are read from right to left.

Use start and end to take language direction into account
For apps where the minimum SDK is at least API 17, you can
position views on the left or right depending on the language
setting on the device. As an example, you might want views to
appear on the left for languages that are read from left to right
such as English. For languages that are read from right to left,
you might want them to appear on the right instead so that their
position is mirrored.

To do this, you use:

The child view. The child view.

layout_alignParentLeft=“true”

android:layout_alignParentRight=“true”

android:layout_alignParentStart=“true” android:layout_alignParentEnd=“true”

For left-to-
right languages.

For left-to-
right languages.

For right-to-
left languages. For right-to-

left languages.

The view appears
on the left or the
right depending on
the direction of
the language used
on the device.

or:

or:

820 Appendix i

relative to parent

Attributes for positioning views
relative to the parent layout
Here are some of the most common attributes for positioning
views relative to their parent layout. Add the attribute you want
to the view you’re positioning, then set its value to "true":

android:attribute="true"

Attribute What it does

layout_alignParentBottom Aligns the bottom edge of the view
to the bottom edge of the parent.

layout_alignParentLeft Aligns the left edge of the view to
the left edge of the parent.

layout_alignParentRight Aligns the right edge of the view to
the right edge of the parent.

layout_alignParentTop Aligns the top edge of the view to
the top edge of the parent.

layout_alignParentStart Aligns the start edge of the view to
the start edge of the parent.

layout_alignParentEnd Aligns the end edge of the view to
the end edge of the parent.

layout_centerInParent Centers the view horizontally and
vertically in the parent.

layout_centerHorizontal Centers the view horizontally in the
parent.

layout_centerVertical Centers the view vertically in the
parent.

The view is aligned to
the parent's left and
bottom edges.

The view is aligned
to the parent's right
and top edges.

The start
is on the
left and
the end is
on the right
for left-
to-right
languages.
This is
reversed
for right-
to-left
languages.

you are here 4 821

relative and grid layouts

Positioning views relative to other views
In addition to positioning views relative to the parent layout, you can also
position views relative to other views. You do this when you want views to stay
aligned in some way, irrespective of the screen size or orientation.

In order to position a view relative to another view, the view you’re using as an
anchor must be given an ID using the android:id attribute:

<RelativeLayout ... >

 <Button

 android:id="@+id/button_click_me"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerInParent="true"

 android:text="Click Me" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignStart="@id/button_click_me"

 android:layout_below="@id/button_click_me"

 android:text="New Button" />

</RelativeLayout>

We’re using this button as an anchor
for the second one, so it needs an ID.

We’re putting a second button
underneath the first so that
the start edges of both
buttons are aligned.

android:id="@+id/button_click_me"

The syntax “@+id” tells Android to include the ID as a resource in its resource
file R.java. You must include the “+” whenever you define a new view in the
layout. If you don’t, Android won’t add the ID as a resource and you’ll get errors
in your code. You can omit the “+” when the ID has already been added as a
resource.

Here’s how you create a layout with two buttons, with one button centered in the
middle of the layout, and the second button positioned underneath the first:

The lines:

android:layout_alignStart="@id/button_click_me"

android:layout_below="@id/button_click_me"

ensure that the second button has its start edge aligned to the start edge of the
first button, and is always positioned beneath it.

When you’re referring to
views that have already been
defined in the layout, you can
use @id instead of @+id.

822 Appendix i

relative to views

Attributes for positioning views
relative to other views
Here are attributes you can use when positioning views relative to
another view. Add the attribute to the view you’re positioning, and set
its value to the view you’re positioning relative to:

Attribute What it does

layout_above Puts the view above the view you’re anchoring it to.

layout_below Puts the view below the view you’re anchoring it to.

layout_alignTop Aligns the top edge of the view to the top edge of the
view you’re anchoring it to.

layout_alignBottom Aligns the bottom edge of the view to the bottom
edge of the view you’re anchoring it to.

layout_alignLeft,
layout_alignStart

Aligns the left (or start) edge of the view to the left (or
start) edge of the view you’re anchoring it to.

layout_alignRight,
layout_alignEnd

Aligns the right (or end) edge of the view to the right
(or end) edge of the view you’re anchoring it to.

layout_toLeftOf,
layout_toStartOf

Puts the right (or end) edge of the view to the left (or
start) of the view you’re anchoring it to.

layout_toRightOf,
layout_toEndOf

Puts the left (or start) edge of the view to the right (or
end) of the view you’re anchoring it to.

Your view goes above.

The view you’re
anchoring it to

android:attribute="@+id/view_id"

Your view
goes below.

Align the view’s top edges.
Align the view’s bottom edges.

Align the view’s
left or start
edges.

Align the
view’s right or
end edges.

Your view goes to the left
or start.

Your view goes to the right
or end.

Remember, you can leave out the
“+” if you’ve already defined the
view ID in your layout.

you are here 4 823

relative and grid layouts

A grid layout displays views in a grid
A grid layout splits the screen up into a grid of rows and columns,
and allocates views to cells:

How you define a grid layout
You define a grid layout in a similar way to how you define the
other types of layout, this time using the <GridLayout> element:

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:columnCount="2"

 ... >

 ...

</GridLayout>

These are the same attributes we
used for our other layouts.

How many columns you want your layout to have (in this case, 2)

You specify how many columns you want the grid layout to have
using:

android:columnCount="number"

where number is the number of columns. You can also specify a
maximum number of rows using:

but in practice you can usually let Android figure this out based on
the number of views in the layout. Android will include as many
rows as is necessary to display the views.

android:rowCount="number"

Each of
these
areas is
a cell.

This is where you add any views.

824 Appendix i

grid layout

Adding views to the grid layout
You add views to a grid layout in a similar way to
how you add views to a linear layout:

<GridLayout ... >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/textview" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/click_me" />

 <EditText

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:hint="@string/edit" />

</GridLayout>

Just as with a linear layout, there’s no need to give
your views IDs unless you’re explicitly going to refer
to them in your activity code. The views don’t need
to refer to each other within the layout, so they don’t
need to have IDs for this purpose.

By default, the grid layout positions your views in the
order in which they appear in the XML. So if you
have a grid layout with two columns, the grid layout
will put the first view in the first position, the second
view in the second position, and so on.

The downside of this approach is that if you remove
one of your views from the layout, it can drastically
change the appearance of the layout. To get around
this, you can specify where you want each view to
appear, and how many columns you want it to span.

you are here 4 825

relative and grid layouts

Build up the layout row by row.2

Let’s create a new grid layout
To see this in action, we’ll create a grid layout that specifies which
cells we want views to appear in, and how many columns they
should span. The layout is composed of a text view containing the
text “To”, an editable text field that contains hint text of “Enter
email address”, an editable text field that contains hint text of

“Message”, and a button labeled “Send”:

Here’s what we’re going to do

Sketch the user interface, and split it into rows and columns.
This will make it easier for us to see how we should construct our layout.

1

826 Appendix i

sketch it

We’ll start with a sketch
The first thing we’ll do to create our new layout is sketch it out. That way
we can see how many rows and columns we need, where each view should
be positioned, and how many columns each view should span.

To Enter email address

Send

Message

1st
column

2nd
column

1st row

2nd row

3rd row

The first row has a text view in the
first column with text of “To,” and an
editable text field in the second column
with a hint of “Enter email address.”

The second row has an editable text
field with text of “Message.” It starts
in the first column and spans across the
second. It needs to fill the available
space.

The third row has a button with text of
“Send.” It’s centered horizontally across
both columns, which means it needs to
span the two columns.

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:columnCount="2"

 tools:context="com.hfad.gridlayout.MainActivity" >

</GridLayout>

The grid layout needs two columns
We can position our views how we want if we use a grid layout with two columns:

Now that we have the basic grid layout defined, we can start adding views.

you are here 4 827

relative and grid layouts

Row 0: add views to specific rows and columns

To Enter email address
The first row of the grid layout is composed of a text view in the
first column, and an editable text field in the second column. You
start by adding the views to the layout:

<GridLayout...>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/to" />

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="fill_horizontal"
 android:hint="@string/to_hint" />
</GridLayout>

<GridLayout...>

 <TextView

 ...

 android:layout_row="0"
 android:layout_column="0"
 android:text="@string/to" />

 <EditText

 ...

 android:layout_row="0"
 android:layout_column="1"
 android:hint="@string/to_hint" />

</GridLayout>

Then you use the android:layout_row and android:layout_column
attributes to say which row and column you want each view to appear in. The
row and column indices start from 0, so if you want a view to appear in the first
column and first row, you use:

You can use layout_gravity in grid layouts too.
We’re using fill_horizontal because we want
the editable text field to fill the remaining
horizontal space.

android:layout_row="0"

android:layout_column="0"

Let’s apply this to our layout code by putting the text view in column 0, and the
editable text field in column 1.

Columns and rows start at 0,
so this refers to the first row
and first column.

To Enter email address

Column
0

Column
1

Row 0

Row and column
indices start at 0.
layout_column="n”
refers to column
n+1 in the display.

You can use android:gravity
and android:layout_gravity
attributes with grid layouts.

828 Appendix i

row 1

Row 1: make a view span multiple columns
The second row of the grid layout is composed of an editable text
field that starts in the first column and spans across the second.
The view takes up all the available space.

To get a view to span multiple columns, you start by specifying
which row and column you want the view to start in. We want the
view to start in the first column of the second row, so we need to
use:

Message

We want our view to go across two columns, and we can do this
using the android:layout_columnSpan attribute like this:

android:layout_row="1"

android:layout_column="0"

android:layout_columnSpan="number"

<GridLayout...>

 <TextView... />

 <EditText.../>

 <EditText

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="fill"

 android:gravity="top"

 android:layout_row="1"

 android:layout_column="0"

 android:layout_columnSpan="2"

 android:hint="@string/message" />

</GridLayout>

where number is the number of columns we want the view to
span across. In our case, this is:

Column
0

Row 1

Column span = 2

Column
1

Putting it all together, here’s the code for the message view:

android:layout_columnSpan="2"

We want the view to fill the available space,
and for the text to appear at the top.

These are the views we added on the last page for row 0.

The view starts in column 0, and spans two columns.

Now that we’ve added the views for the first two rows, all we
need to do is add the button.

you are here 4 829

relative and grid layouts

Row 2: make a view span multiple columns
We need the button to be centered horizontally across the
two columns like this:

<GridLayout...>

 <TextView... />

 <EditText.../>

 <EditText.../>

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_row=

 android:layout_column=

 android:layout_gravity=

 android:layout_columnSpan=

 android:text="@string/send" />

</GridLayout>

Send

Column
0

Row 2

Column span = 2

Column
1

Layout Magnets
We wrote some code to center the Send button in the third row of the grid layout, but a sudden
breeze blew some of it away. See if you can reconstruct the code using the magnets below.

"2"

center_horizontal

"2"

"1"
"1"

"0"

"0"

fill_horizontal

These are the views we’ve already added.

You won’t need to use
all of these magnets.

830 Appendix i

magnets solved

<GridLayout...>

 <TextView... />

 <EditText.../>

 <EditText.../>

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_row=

 android:layout_column=

 android:layout_gravity=

 android:layout_columnSpan=

 android:text="@string/send" />

</GridLayout>

Layout Magnets Solution
We wrote some code to center the Send button in the third row of
the grid layout, but a sudden breeze blew some of it away. See if you
can reconstruct the code using the magnets below.

"2"

center_horizontal

"2"

"1""1"

"0"

"0"

fill_horizontal

Send

Column
0

Row 2

Column span = 2

Column
1

The button starts at row 2, column 0.

We want to center it horizontally.

It spans two columns.

You didn’t need to
use these magnets.

you are here 4 831

relative and grid layouts

<?xml version="1.0" encoding="utf-8"?>

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="16dp"

 android:columnCount="2"

 tools:context="com.hfad.gridlayout.MainActivity">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_row="0"

 android:layout_column="0"

 android:text="@string/to" />

 <EditText

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="fill_horizontal"

 android:layout_row="0"

 android:layout_column="1"

 android:hint="@string/to_hint" />

The full code for the grid layout
Here’s the full code for the grid layout.

The To
text view.

The email address
text field.

The code for the
Message text field
and the Send button
is on the next page.

832 Appendix i

code, continued

 <EditText

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="fill"

 android:gravity="top"

 android:layout_row="1"

 android:layout_column="0"

 android:layout_columnSpan="2"

 android:hint="@string/message" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_row="2"

 android:layout_column="0"

 android:layout_gravity="center_horizontal"

 android:layout_columnSpan="2"

 android:text="@string/send" />

</GridLayout> The button spans two
columns, starting from
row 2 column 0. It’s
centered horizontally.

The grid layout code (continued)

The Message
text field

this is an appendix 833

appendix ii: gradle

The Gradle Build Tool

Most Android apps are created using a build tool called Gradle.
Gradle works behind the scenes to find and download libraries, compile and deploy your

code, run tests, clean the grouting, and so on. Most of the time you might not even realize

it’s there because Android Studio provides a graphical interface to it. Sometimes, however,

it’s helpful to dive into Gradle and hack it manually. In this appendix we’ll introduce you

to some of Gradle’s many talents.

Take one SDK, add
a sprinkling of libraries,
mix well, then bake for
two minutes.

834 Appendix ii

introducing gradle

What have the Romans ever done for us?
has Gradle

When you click the run button in Android Studio, most of the actual work
is done by an external build tool called Gradle. Here are some of the
things that Gradle does:

 Locates and downloads the correct versions of any third-party libraries you need.¥
 Calls the correct build tools in the correct sequence to turn all of your source code and
resources into a deployable app.

¥

 Installs and runs your app on an Android device.¥
 A whole bunch of other stuff, like running tests and checking the quality of your code.¥

It’s hard to list all of the things that Gradle does because it’s designed to
be easily extensible. Unlike other XML-based build tools like Maven or
Ant, Gradle is written in a procedural language (Groovy), which is used
for both configuring a build and adding extra functionality.

Your project’s Gradle files
Every time you create a new project, Android Studio creates two files
called build.gradle. One of these files is in your project folder, and contains
a small amount of information that specifies the basic settings of your app,
such as what version of Gradle to use, and which online repository:

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.3.0'
 }
}

allprojects {
 repositories {
 jcenter()
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

You will normally only need to change the code in this file if you want to
install a third-party plug-in, or need to specify another place that contains
downloadable libraries.

build.gradle

MyProject

you are here 4 835

gradle

apply plugin: 'com.android.application'

android {

 compileSdkVersion 25

 buildToolsVersion "25.0.1"

 defaultConfig {

 applicationId "com.hfad.example"

 minSdkVersion 19

 targetSdkVersion 25

 versionCode 1

 versionName "1.0"

 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

 }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

 }

 }

}

dependencies {

 compile fileTree(dir: 'libs', include: ['*.jar'])

 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.2', {

 exclude group: 'com.android.support', module: 'support-annotations'

 })

 compile 'com.android.support:appcompat-v7:25.1.1'

 compile 'com.android.support.constraint:constraint-layout:1.0.2'

 testCompile 'junit:junit:4.12'

}

The second build.gradle file lives inside the app folder within your
project. This file tells Gradle how to build all of the code in your
main Android module. It’s where the majority of your application’s
properties are set, such as the level of the API that you’re targeting,
and the specifics of which external libraries your app will need:

app

build.gradle

MyProject

Your app’s main Gradle file

836 Appendix ii

gradle’s built in

Gradle comes built in to your project
Every time you create a new application, Android Studio includes an
install of the Gradle build tool. If you look in the project directory, you
will see two files called gradlew and gradlew.bat. These files contains scripts
that allow you to build and deploy your app from the command line.

To get more familiar with Gradle, open a command prompt or terminal
on your development machine and change into the top-level directory
of your project. Then run one of the gradlew scripts with the parameter
tasks. Gradle will tell you some of the tasks that it can perform for you:

$./gradlew tasks
Build tasks

assemble - Assembles all variants of all applications and
 secondary packages.
build - Assembles and tests this project.
clean - Deletes the build directory.
compileDebugSources
mockableAndroidJar - Creates a version of android.jar that's
 suitable for unit tests.

Install tasks

installDebug - Installs the Debug build.
uninstallAll - Uninstall all applications.
uninstallDebug - Uninstalls the Debug build.

Verification tasks

check - Runs all checks.
connectedAndroidTest - Installs and runs instrumentation tests
 for all flavors on connected devices.
lint - Runs lint on all variants.
test - Run unit tests for all variants.

To see all tasks and more detail, run gradlew tasks --all

BUILD SUCCESSFUL

Total time: 6.209 secs
$

File Edit Window Help EmacsFTW

Let’s take a quick tour of some of the most useful ones.

We've cut down the actual output,
because there are many, many
tasks that you can run by default.

you are here 4 837

gradle

The check task
The check task performs static analysis on the source code in your
application. Think of it as your coding buddy, who at a moment’s notice can
scoot through your files looking for coding errors. By default, the check
task uses the lint tool to look for common Android programming errors. It
will generate a report in app/build/reports/lint-results.html:

app

lint-results.html

MyProject

build

reports

The clean installDebug task
This task will do a complete compile and install of your application on
your connected device. You can obviously do this from the IDE, but it can
be useful to do this from the command line if, for example, you want to
automatically build your application on an Integration Server.

838 Appendix ii

show dependencies

The androidDependencies task
For this task, Gradle will automatically pull down any libraries your
application requires, and some of those libraries will automatically
pull down other libraries, which might pull down other libraries and…
well, you get the idea.

Even though your app/build.gradle file might only mention a
couple of libraries, your application might need to install many
dependent libraries for your app. So it’s sometimes useful to see
which libraries your application requires, and why. That’s what the
androidDependencies task is for: it displays a tree of all of the
libraries in your app:

 $./gradlew androidDependencies

 Incremental java compilation is an incubating feature.
 :app:androidDependencies
 debug
 +--- com.android.support:appcompat-v7:25.1.1@aar
 | +--- com.android.support:support-annotations:25.1.1@jar
 | +--- com.android.support:support-v4:25.1.1@aar
 | | +--- com.android.support:support-compat:25.1.1@aar
 | | | \--- com.android.support:support-annotations:25.1.1@jar
 | | +--- com.android.support:support-media-compat:25.1.1@aar
 | | | +--- com.android.support:support-annotations:25.1.1@jar
 | | | \--- com.android.support:support-compat:25.1.1@aar
 | | | \--- com.android.support:support-annotations:25.1.1@jar
 | | +--- com.android.support:support-core-utils:25.1.1@aar
 | | | +--- com.android.support:support-annotations:25.1.1@jar
 | | | \--- com.android.support:support-compat:25.1.1@aar
...

File Edit Window Help EmacsFTW

you are here 4 839

gradle

gradlew <your-task-goes-here>
The real reason that Android apps are commonly built with Gradle
is because it’s easily extended. All Gradle files are written in Groovy,
which is a general-purpose language designed to be run by Java. That
means you can easily add your own custom tasks.

As an example, add the following code to the end of your app/build.gradle
file:

task javadoc(type: Javadoc) {

 source = android.sourceSets.main.java.srcDirs

 classpath += project.files(android.getBootClasspath().join(File.pathSeparator))

 destinationDir = file("$project.buildDir/javadoc/")

 failOnError false

}

app

build.gradle

MyProject

This code creates a new task called javadoc, which generates javadoc
for your source code. You can run the task with:

./gradlew javadoc

The generated files will be published in app/build/javadoc:

app

index.html

MyProject

build

javadoc

840 Appendix ii

plug-ins

Gradle plug-ins
As well as writing your own tasks, you can also install Gradle plug-
ins. A plug-in can greatly extend your build environment. Want to
write Android code in Clojure? Want your build to automatically
interact with source control systems like Git? How about spinning
up entire servers in Docker and then testing your application on
them?

You can do these things, and many, many more by using Gradle
plug-ins. For details on what plug-ins are available, see https://
plugins.gradle.org.

this is an appendix 841

So that’s what’s
going on under the
hood...

appendix iii: art

The Android Runtime

Ever wonder how Android apps can run on so many kinds of
devices? Android apps run in a virtual machine called the Android runtime (ART),

not the Oracle Java Virtual Machine (JVM). This means that your apps are quicker to start

on small, low-powered devices and run more efficiently. In this appendix, we’ll look at how

ART works.

842 Appendix iii

what’s art?

What is the Android runtime?
The Android Runtime (ART) is the system that runs your compiled
code on an Android device. It first appeared on Android with the
release of KitKat and became the standard way of running code in
Lollipop.

ART is designed to run your compiled Android apps quickly and
efficiently on small, low-powered devices. Android Studio uses the
Gradle build system to do all the work of creating and installing
apps for you, but it can be useful to understand what happens
behind the scenes when you click the Run button. Let’s see what
really goes on.

Previously, Java code ran on the Oracle JVM
Java has been around for a very long time, and compiled Java
applications have almost always been run on the Oracle Java
Virtual Machine (JVM). In that scenario, Java source code gets
compiled down to .class files. One .class file gets created for every
Java class, interface, or enum in your source code:

The .class files contain Java bytecodes, which can be read and
executed by the JVM. The JVM is a software emulation of a
Central Processing Unit (CPU), like the chip at the heart of your
development machine. But because it’s emulated, it can be made to
work on almost any device. That’s why Java code is designed to be
written once, run anywhere.

So is that what happens on Android devices? Well…not quite. The
Android Runtime performs the same kind of job as the JVM, but it
does it in a very different way.

.java

javac

.class

You don’t need to understand the info
in this appendix in order to create cool
Android apps. So if you’re not into the
nitty-gritty of what’s going on behind
the scenes when an Android device runs
an app, feel free to skip this appendix.

you are here 4 843

ART

ART compiles code into DEX files
When you do Android development, your Java source code is
compiled down into .dex files. A .dex file serves a similar purpose
to a .class file, because it contains executable bytecodes. But
instead of being JVM bytecodes, they are in a different format
called Dalvik. DEX stands for Dalvik EXecutable.

Rather than creating a .dex file for each and every class file, your
app will normally be compiled down into a single file called
classes.dex. That single .dex file will contain bytecodes for all of
your source code, and for every library in your app.

classes.dex.class

The DEX format can only cope with 65,535 methods, so if your
app contains a lot of code or some large libraries, your file might
need to be converted into multiple .dex files:

You can find out more about creating multi-DEX apps here:

https://developer.android.com/studio/build/multidex.html.

.dex.class

844 Appendix iii

.class to .dex

How DEX files get created
When Android builds your app, it uses a tool called dx, which
stitches .class files into a DEX file:

It may seem a bit weird that the compilation process involves two
stages of compilation: first to .class files, and then from .class files
to the DEX format. Why doesn’t Google just create a single tool
that goes straight from .java source code to DEX bytecodes?

For a while Google was developing a compiler called JACK and
an associated linker called JILL that could create DEX code
straight from Java code, but there was a problem. Some Java
tools don’t just work at the source code level; they work directly
with .class files, and modify the code that those files contain.

For example, if you use a code coverage tool to see which code
your tests are actually running, the coverage tool will likely want
to modify the contents of the generated .class files to add in
additional bytecodes to keep track of the code as it’s executed. If
you used the JACK compiler, no .class files were generated.

So back in March 2017, Google announced that it was shelving
JACK, and was putting all of its efforts into making the dx
tool work really well with the latest Java .class formats. This
has the additional advantage that any new Java language
features—so long as they don’t require new Java byte codes—will
automatically be supported by Android.

dx

.dex

.class

Libraries

you are here 4 845

ART

DEX files are zipped into APK files
But Android apps aren’t shipped around as .dex files. There’s a whole bunch
of other files that make up your app: images, sounds, metadata, and so on.
All of these resources and your DEX bytecode is wrapped up into a single
zip file called an Android Package or .apk file. The .apk file is created by
another tool called the Android Asset Packing Tool, or aapt.

classes.dex

Resources

aapt

.apk

When you download an app from the Google Play Store, what actually gets
downloaded is an APK file. In fact, when you run your app from Android
Studio, the build system will first build an .apk file and then install it onto
your Android device.

You may need to sign the .apk file
If you’re going to distribute your app through the Google Play Store,
you will need to sign it. Signing an app package means that you store an
additional file in the .apk that is based on a checksum of the contents of the
.apk and a separately generated private key. The .apk file uses the standard
jarsigner tool that comes as part of Oracle’s Java Development Kit. The
jarsigner tool was created to sign .jar files, but it will also work with .apk files.

If you sign the .apk file, you will then also need to run it through a tool
called zipalign, which will make sure that the compressed parts of the file
are lined up on byte boundaries. Android wants them byte-aligned so it can
read them easily without needing to uncompress the file.

zipalign

signed .apk.apk

jarsigner

Android Studio will do all of this for you if you choose Generate Signed
APK from the Build menu.

So that’s how your app gets converted from Java source code into an
installable file. But how does it get installed and run on your device?

846 Appendix iii

hello adb

Say hello to the Android Debug Bridge (adb)
All communication between your development machine and your
Android device takes place over the Android Debug Bridge. There
are two sides to the bridge: a command-line tool on your dev
machine called adb, and a daemon process on your Android device
called adbd (the Android Debug Bridge Daemon).

The adb command on your development machine will run a
copy of itself in the background, called the ADB server. The server
receives commands over network port 5037, and sends them to the
adbd process on the device. If you want to copy or read a file, install
an app, or look at the logcat information for an app, then all of this
information passes back and forth across the debug bridge.

So when the build system wants to install your APK file, it does so
by sending a command like this to the debug bridge:

adb install bitsandpizzas.apk

The file will then be transferred to a virtual device, or over a USB
cable to a real device, and be installed into the /data/app/ directory,
where it will sit waiting for the app to be run.

How apps come alive: running your APK file
When your app is run, whether it’s been started by a user pressing
its launch icon or because the IDE has started it, the Android
device needs to turn that .apk file into a process running in memory.

It does this using a process called Zygote. Zygote is like a half-
started process. It’s allocated some memory and already contains
the main Android libraries. It has everything it needs, in fact, except
for the code that’s specific to your app.

When Android runs your app, it first creates a copy (a.k.a. fork)
of the Zygote process, and then tells the copied process to load
your application code. So why does Android leave this half-started
process hanging around? Why not just start a fresh process from
scratch for each app? It’s because of performance. It can take
Android a long time to create a new process from scratch, but it can
fork a copy of an existing process in a split second.

Zygote
process

App
process

fork()
The Zygote process
is a mostly started
Android app.

The new app process will
be a complete copy of
the Zygote process.

you are here 4 847

ART

Android converts the .dex code to OAT format
The new app process now needs to load the code that’s
specific to your app. Remember, your app code is stored in
the classes.dex file inside your .apk package. So the classes.dex file
is extracted from the .apk and placed into a separate directory.
But rather than simply use the classes.dex file, Android will
convert the Dalvik byte codes in classes.dex into native machine
code. Technically, the classes.dex will be converted into an ELF
shared object. Android calls this library format OAT, and calls
the tool that converts the classes.dex file dex2oat.

classes.dex
(OAT version)

classes.dex

dex2oat

The converted file is stored into a directory named something
like this:

/data/dalvik-cache/data@app@com.hfad.bitsandpizzas@base.apk@classes.dex

This file can then be loaded as a native library by the
application process, and the app appears on the screen.

this is an appendix 849

appendix iv: adb

The Android Debug Bridge

In this book, we’ve focused on using an IDE for all your
Android needs. But there are times when using a command-line tool can be plain

useful, like those times when Android Studio can’t see your Android device but you just

know it’s there. In this chapter, we’ll introduce you to the Android Debug Bridge (or adb),

a command-line tool you can use to communicate with the emulator or Android devices.

What better gift
for the girl who has
everything than a new
command-line tool?

Why, darling,
that’s so
thoughtful.

850 Appendix iv

adb

adb: your command-line pal
Every time your development machine needs to talk to an Android device,
whether it’s a real device connected with a USB cable, or a virtual device
running in an emulator, it does so by using the Android Debug Bridge
(adb). The adb is a process that’s controlled by a command that’s also called
adb.

The adb command is stored in the platform-tools directory of the Android
System Developer’s Kit on your computer. If you add the platform-tools
directory to your PATH, you will be able to run adb from the command line.

In a terminal or at a command prompt, you can use it like this:

$ adb devices
List of devices attached
emulator-5554 device
$

Interactive Session

The adb devices command means “Tell me which Android devices you
are connected to.” The adb command works by talking to an adb server
process, which runs in the background. The adb server is sometimes called
the adb dæmon or adbd. When you enter an adb command in a terminal, a
request is sent to network port 5037 on your machine. The adbd listens for
commands to come in on this port. When Android Studio wants to run an
app, or check the log output, or do anything else that involves talking to an
Android device, it will do it via port 5037.

When the adbd receives a command, it will forward it to a separate adbd
process that’s running in the relevant Android device. This process will then
be able to make changes to the Android device or return the requested
information.

Device

Device

adb adbd

adb command adb daemon
process

you are here 4 851

adb

Sometimes, if the adb server isn’t running, the adb command will
need to start it:

$ adb devices
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
List of devices attached
emulator-5554 device
$

Interactive Session

Likewise, if ever you plug in an Android device and Android
Studio can’t see it, you can manually kill the adb server and restart
it:

$ adb devices
List of devices attached
$ adb kill-server
$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
$ adb devices
List of devices attached
emulator-5554 device
$

Interactive Session

By killing and restarting the server, you force adb to get back in
touch with any connected Android devices.

852 Appendix iv

shell

Running a shell
Most of the time you won’t use adb directly; you’ll let an IDE like
Android Studio do the work for you. But there are times when it can be
useful to go to the command line and interact with your devices directly.

One example is if you want to run a shell on your device:

$ adb shell
root@generic_x86:/ #

Interactive Session

$ adb shell
root@generic_x86:/ # ls
acct
cache
charger
config
d
data
default.prop
dev
etc
file_contexts
....
1|root@generic_x86:/ # df
Filesystem Size Used Free Blksize
/dev 439.8M 60.0K 439.8M 4096
/mnt/asec 439.8M 0.0K 439.8M 4096
/mnt/obb 439.8M 0.0K 439.8M 4096
/system 738.2M 533.0M 205.2M 4096
/data 541.3M 237.8M 303.5M 4096
/cache 65.0M 4.3M 60.6M 4096
/mnt/media_rw/sdcard 196.9M 4.5K 196.9M 512
/storage/sdcard 196.9M 4.5K 196.9M 512
root@generic_x86:/ #

Interactive Session

The adb shell command will open up an interactive shell directly
on the Android device. If you have more than one device attached, you
can indicate which device you mean with the -s option, followed by the
name given by the adb devices command. For example, adb -s
emulator-5554 shell will open a shell on the emulator.

Once you open a shell to your device, you can run a lot of the standard
Linux commands:

you are here 4 853

adb

Useful shell commands
If you open a shell to Android, you have access to a whole bunch
of command line tools. Here are just a few:

Command Description Example (and what it does)

pm Package management tool. pm list packages (this lists all installed apps)

pm path com.hfad.bitzandpizzas (find where
an app is installed)

pm –help (show other options)

ps Process status. ps (lists all processes and their IDs)

dexdump Display details of an APK. dexdump -d /data/app/com.hfad.
bitzandpizzas-2/base.apk
(disassemble an app)

lsof List a process’s open files
and other connections.

lsof -p 1234 (show what process with id 1234 is doing)

screencap Take a screenshot. screencap -p /sdcard/screenshot.png (save
current screenshot to /sdcard/screenshot.png, and get it off
the device with
adb pull /sdcard/screenshot.png)

top Show busiest processes. top -m 5 (show the top five processes)

Each of these examples works from an interactive shell prompt,
but you can also pass them direct to the shell command from
your development machine. For example, this command will
show the apps installed on your device:

$ adb shell pm list packages
Interactive Session

854 Appendix iv

get output

Get the output from logcat
All of the apps running on your Android device send their output
to a central stream called the logcat. You can see the live output
from the logcat by running the adb logcat command:

$ adb logcat
--------- beginning of system
I/Vold (936): Vold 2.1 (the revenge) firing up
D/Vold (936): Volume sdcard state changing -1
(Initializing) -> 0 (No-Media)
W/DirectVolume(936): Deprecated implied prefix pattern
detected, please use ‘/devices/platform/goldfish_mmc.0*’
instead
...

Interactive Session

The logcat output will keep streaming until you stop it. It can be
useful to run adb logcat if you want to store the output in a
file. The adb logcat command is used by Android Studio to
produce the output you see in the Devices/logcat panel.

Kill the adb server
Sometimes the connection can fail between your development
machine and your device. If this happens, you can reset the
connection by killing the adb server:

$ adb kill-server
Interactive Session

The next time you run an adb command, the server will restart and
a fresh connection will be made.

you are here 4 855

adb

And much, much more...
There are many, many commands that you can run using adb: you
can back up and restore databases (very useful if you need to debug
a problem with a database app), start the adb server on a different
port, reboot machines, or just find out a lot of information about
the running devices. To find out all the options available, just type
adb on the command line:

$ adb
Android Debug Bridge version 1.0.32
 -a - directs adb to listen on all
interfaces for a connection
 -d - directs command to the only
connected USB device
 returns an error if more than
one USB device is present.
 -e - directs command to the only
running emulator.
returns an error if more than one emulator is

Interactive Session

Copying files to/from your device
The adb pull and adb push commands can be used to
transfer files back and forth. For example, here we are copying the
/default.prop/ properties file into a local file called 1.txt:

$ adb pull /default.prop 1.txt
28 KB/s (281 bytes in 0.009s)
$ cat 1.txt
#
ADDITIONAL_DEFAULT_PROPERTIES
#
ro.secure=0
ro.allow.mock.location=1
ro.debuggable=1
ro.zygote=zygote32
dalvik.vm.dex2oat-Xms=64m
dalvik.vm.dex2oat-Xmx=512m
dalvik.vm.image-dex2oat-Xms=64m
dalvik.vm.image-dex2oat-Xmx=64m
ro.dalvik.vm.native.bridge=0
persist.sys.usb.config=adb
$

Interactive Session

this is an appendix 857

appendix v: the android emulator

Speeding Things Up

Ever felt like you were spending all your time waiting for the
emulator? There’s no doubt that using the Android emulator is useful. It allows you

to see how your app will run on devices other than the physical ones you have access to.

But at times it can feel a little...sluggish. In this appendix, we’ll explain why the emulator

can seem slow. Even better, we’ll give you a few tips we’ve learned for speeding it up.

Make it go
faster!

858 Appendix v

speed

Why the emulator is so slow
When you’re writing Android apps, you’ll spend a lot of
time waiting for the Android emulator to start up or deploy
your code. Why is that? Why is the Android emulator so
sloooooow? If you’ve ever written iPhone code, you know
how fast the iPhone simulator is. If it’s possible for the
iPhone, then why not for Android?

There’s a clue in the names: the iPhone simulator and the
Android emulator.

The iPhone simulator simulates a device running the iOS
operating system. All of the code for iOS is compiled to run
natively on the Mac and the iPhone simulator runs at Mac-
native speed. That means it can simulate an iPhone boot-up
in just a few seconds.

The Android emulator works in a completely different way.
It uses an open source application called QEMU (or Quick
Emulator) to emulate the entire Android hardware device.
It runs code that interprets machine code that’s intended to
be run by the device’s processor. It has code that emulates
the storage system, the screen, and pretty much every other
piece of physical equipment on an Android device.

An emulator like QEMU creates a much more realistic
representation of a virtual device than something like the
iPhone simulator does, but the downside is that it has to do
far more work for even simple operations like reading from
disk or displaying something on a screen. That’s why the
emulator takes so long to boot up a device. It has to pretend
to be every little hardware component inside the device, and
it has to interpret every single instruction.

QEMU Emulator

AVD

All the Android Virtual Devices run
on an emulator called QEMU.

AVD AVD AVD AVD

you are here 4 859

android emulator

How to speed up your Android development

1. Use a real device
The simplest way to speed up your development process is by using a real
device. A real device will boot up much faster than an emulated one, and
it will probably deploy and run apps a lot more quickly. If you want to
develop on a real device, you may want to go into “Developer options”
and check the Stay Awake option. This will prevent your device from
locking the screen, which is useful if you are repeatedly deploying to it.

2. Use an emulator snapshot
Booting up is one of the slowest things the emulator does. If you save a
snapshot of the device while it’s running, the emulator will be able to
reset itself to this state without having to go through the boot-up process.
To use a snapshot with your device, open the AVD manager from the
Android Studio menu by selecting Tools→Android→AVD Manager, edit
the AVD by clicking on the Edit symbol, and then check the “Store a
snapshot for faster startup” option.

This will save a snapshot of what the memory looks like when the device
is running. The emulator will be able to restore the memory in this state
without booting the device.

3. Use hardware acceleration
By default, the QEMU emulator will have to interpret each machine
code instruction on the virtual device. That means it’s very flexible
because it can pretend to be lots of different CPUs, but it’s one of the
main reasons why the emulator is slow. Fortunately, there’s a way to get
your development machine to run the machine code instructions directly.
There are two main types of Android Virtual Device: ARM machines and
x86 machines. If you create an x86 Android device and your development
machine is using a particular type of Intel x86 CPU, then you can
configure your emulator to run the Android machine code instructions
directly on your Intel CPU.

You will need to install Intel’s Hardware Accelerated Execution Manager
(HAXM). At the time of writing , you can find HAXM here:

https://software.intel.com/en-us/android/articles/intel-hardware-accelerated-
execution-manager

HAXM is a hypervisor. That means it can switch your CPU into a special
mode to run virtual machine instructions directly. However, HAXM will
only run on Intel processors that support Intel Virtualization Technology.
But if your development machine is compatible, then HAXM will make
your AVD run much faster.

If it’s moved, a quick
web search should
track it down.

860 Appendix v

instant run

4. Use Instant Run
Since Android Studio 2.3, it’s been possible to redeploy apps
much more quickly using the Instant Run utility. This utility
allows Android Studio to recompile just the files that have
changed, and then patch the application currently running on
the device. This means that instead of waiting for a minute or so
while the application is recompiled and deployed, you can see
your changes running in just a few seconds.

To use Instant Run, click on the Apply Changes option in the
Run menu, or click on the lightning bolt icon in the toolbar:

There are a couple of conditions on using Instant Run. First,
your app’s target needs to be at least API 15. Second, you need
to deploy to a device that runs API 21 or above. So long as you
satisfy both these conditions, you’ll find that Instant Run is by far
the fastest way of getting your code up and running.

Click on this button in the toolbar to apply changes
using Instant Run.

this is an appendix 861

Oh my, look at
the tasty treats
we have left...

appendix vi: leftovers

The Top Ten Things
(we didn’t cover)

Even after all that, there’s still a little more.
There are just a few more things we think you need to know. We wouldn’t feel right about

ignoring them, and we really wanted to give you a book you’d be able to lift without

extensive training at the local gym. Before you put down the book, read through these

tidbits.

862 appendix vi

distribution

1. Distributing your app
Once you’ve developed your app, you’ll probably want to make it
available to other users. You’ll likely want to do this by releasing your
app through an app marketplace such as Google Play.

There are two stages to this process: preparing your app for release,
and then releasing it.

Preparing your app for release
Before you can release your app, you need to configure, build, and
test a release version of it. This includes tasks such as deciding on
an icon for your app and modifying AndroidManifest.xml so that only
devices that are able to run your app are able to download it.

Before you release your app, make sure that you test it on at least one
tablet and one phone to check that it looks the way you expect and its
performance is acceptable.

You can find further details of how to prepare your app for release
here:

http://developer.android.com/tools/publishing/preparing.html

Releasing your app
This stage includes publicizing your app, selling it, and distributing it.

To release your app on the Play Store, you need to register for a
publisher account and use the Developer Console to publish your
app. You can find further details here:

http://developer.android.com/distribute/googleplay/start.html

For ideas on how to best target your app to your users and build a
buzz about it, we suggest you explore the documents here:

http://developer.android.com/distribute/index.html

you are here 4 863

leftovers

2. Content providers
You’ve seen how to use intents to start activities in other apps. As
an example, you can start the Messaging app to send the text you
pass to it. But what if you want to use another app’s data in your
own app? For example, what if you want to use Contacts data in
your app to perform some task, or insert a new Calendar event?

You can’t access another app’s data by interrogating its database,
Instead, you use a content provider, which is an interface that
allows apps to share data in a controlled way. It allows you to
perform queries to read the data, insert new records, and update
or delete existing records.

If you want other apps to use your data, you can create your own
content provider.

YourActivity DatabaseContent
Provider

If you want to
access another app’s
database, you have to
go through me.

You can find out more about the concept of content providers here:

http://developer.android.com/guide/topics/providers/content-providers.html

Here’s a guide on using Contacts data in your app:

http://developer.android.com/guide/topics/providers/contacts-provider.html

And here’s a guide on using Calendar data:

http://developer.android.com/guide/topics/providers/calendar-provider.html

864 appendix vi

loaders and sync adapters

3. Loaders
If you do a lot of work with databases or content providers, sooner or
later you’ll encounter loaders. A loader helps you load data so that
it can be displayed in an activity or fragment.

Loaders run on separate threads in the background, and make it
easier to manage threads by providing callback methods. They persist
and cache data across configuration changes so that if, for example,
the user rotates their device, the app doesn’t create duplicate queries.
You can also get them to notify your app when the underlying data
changes so that you can deal with the change in your views.

The Loader API includes a generic Loader class, which is the
base class for all loaders. You can create your own loader by
extending this class, or you can use one of the built-in subclasses:
AsyncTaskLoader or CursorLoader. AsyncTaskLoader
uses an AsyncTask, and CursorLoader loads data from a
content provider.

You can find out more about loaders here:

https://developer.android.com/guide/components/loaders.html

4. Sync adapters
Sync adapters allow you to synchronize data between an Android
device and a web server. This allows you to do things like back up the
user’s data to a web server, for instance, or transfer data to a device
so that it can be used offline.

Sync adapters have a number of advantages over designing your own
data transfer mechanism.

 They allow you to automate data transfer based on specific criteria—for
example, time of day or data changes.

¥

 They automatically check for network connectivity, and only run when
the device has a network connection.

¥

 Sync adapter–based data transfers run in batches, which helps improve
battery performance.

¥

 They let you add user credentials or a server login to the data transfer.¥

You can find out how to use sync adapters here:

https://developer.android.com/training/sync-adapters/index.html

you are here 4 865

leftovers

5. Broadcasts
Suppose you want your app to react in some way when a system event
occurs. You may, for example, have built a music app, and you want
it to stop playing music if the headphones are removed. How can your
app tell when these events occur?

Android broadcasts system events when they occur, including things
like the device running low on power, a new incoming phone call, or
the system getting booted. You can listen for these events by creating
a broadcast receiver. Broadcast receivers allow you to subscribe
to particular broadcast messages so that your app can respond to
particular system events.

YourActivityBroadcast
Receiver

The battery’s
running low, in case
anyone’s interested.

Your app can also send custom broadcast messages to notify other apps
of events.

You can find out more about broadcasts here:

https://developer.android.com/guide/components/broadcasts.html

Hey, Activity, Android
says the battery’s
running low on power.

OK, I’ll hold off
on expensive
tasks for now.

Android

866 appendix vi

WebView

6. The WebView class
If you want to provide your users with access to web content, you
have two options. The first option is to open the web content with
an external app like Chrome or Firefox. The second option is to
display the content inside your app using the WebView class.

The WebView class allows you to display the contents of a web
page inside your activity’s layout. You can use it to deliver an
entire web app as a client application, or to deliver individual web
pages. This approach is useful if there’s content in your app you
might need to update, such as an end-user agreement or user guide.

You add a WebView to your app by including it in your layout:

You can find out more about using web content in your apps here:

http://developer.android.com/guide/webapps/index.html

<WebView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/webview"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

You then tell it which web page it should load by calling its
loadUrl() method:

WebView webView = (WebView) findViewById(R.id.webview);

webView.loadUrl("http://www.oreilly.com/");

You also need to specify that the app must have Internet access by
adding the INTERNET permission to AndroidManifest.xml:

<manifest ... >

 <uses-permission android:name="android.permission.INTERNET" />

 ...

</manifest>

you are here 4 867

leftovers

7. Settings
Many apps include a settings screen so that the user can record
their preferences. As an example, an email app may allow the user
to specify whether they want to see a confirmation dialog before
sending an email:

You build a settings screen for your app using the Preferences
API. This allows you to add individual preferences, and record a
value for each preference. These values are recorded in a shared
preferences file for your app.

You can find out more about creating settings screens here:

https://developer.android.com/guide/topics/ui/settings.html

This is the settings
screen for the Gmail
app.

868 appendix vi

animation

8. Animation
As Android devices increasingly take advantage of the power of their
built-in graphics hardware, animation is being used more and more to
improve the user’s app experience.

There are several types of animation that you can perform in Android:

Property animation
Property animation relies on the fact that the visual components
in an Android app use a lot of numeric properties to describe their
appearance. If you change the value of a property like the height or
the width of a view, you can make it animate. That's what property
animation is: smoothly animating the properties of visual components
over time.

View animations
A lot of animations can be created declaratively as XML resources.
So you can have XML files that use a standard set of animations (like
scaling, translation, and rotation) to create effects that you can call from
your code. The wonderful thing about declarative view animations is
that they are decoupled from your Java code, so they are very easy to
port from one app project to another.

Activity transitions
Let’s say you write an app that displays a list of items with names and
images. You click on an item and you’re taken to a detail view of it.
The activity that shows you more detail will probably use the same
image that appeared in the previous list activity.

Activity transitions allow you to animate a view from one activity that
will also appear in the next activity. So you can make an image from
a list smoothly animate across the screen to the position it takes in the
next activity. This will give your app a more seamless feel.

To learn more about Android animations see:

https://developer.android.com/guide/topics/graphics/index.html

To learn about activity transitions and material design, see:

https://developer.android.com/training/material/animations.html

you are here 4 869

leftovers

9. App widgets
An app widget is a small application view that you can add to other
apps or your home screen. It gives you direct access to an app’s core
content or functionality from your home screen without you having to
launch the app.

Here’s an example of an app widget:

This is an app widget. It gives you
direct access to the app’s core
functionality without you having
to launch the app.

To find out how you create your own app widgets, look here:

http://developer.android.com/guide/topics/appwidgets/index.html

870 appendix vi

testing

10. Automated testing
All modern development relies heavily on automated testing. If
you create an app that’s intended to be used by thousands or
even millions of people, you will quickly lose users if it’s flaky or
keeps crashing.

There are many ways to automatically test your app, but they
generally fall into two categories: unit testing and on-device
testing (sometimes called instrumentation testing).

Unit tests
Unit tests run on your development machine, and they check
the individual pieces—or units—of your code. The most
popular unit testing framework is JUnit, and Android Studio
will probably bundle JUnit into your project. Unit tests live in
the app/src/test folder of your project, and a typical test method
looks something like this:

@Test

public void returnsTheCorrectAmberBeers() {

 BeerExpert beerExpert = new BeerExpert();

 assertArrayEquals(new String[]{"Jack Amber", "Red Moose"},

 beerExpert.getBrands("amber").toArray());

}

You can find more out about JUnit here:

http://junit.org

you are here 4 871

leftovers

On-device tests
On-device tests run inside an emulator or physical device and check
the fully assembled app. They work by installing a separate package
alongside your app that uses a software layer called instrumentation
to interact with your app in the same way as a user. An increasingly
popular framework for on-device testing is called Espresso, and
Android Studio will probably bundle it in to your project. On-device
tests live in the app/src/androidTest folder, and Espresso tests look
something like this:

@Test

public void ifYouDoNotChangeTheColorThenYouGetAmber() {

 onView(withId(R.id.find_beer)).perform(click());

 onView(withId(R.id.brands)).check(matches(withText(

 "Jail Pale Ale\nGout Stout\n")));

}

When you run an on-device test, you will see the app running on your
phone or tablet and responding to keypresses and gestures just as if a
person were using it.

You can find out more about Espresso testing here:

https://developer.android.com/training/testing/ui-testing/espresso-testing.html

this is the index 873

A
action bar, 314. See also app bar
ActionBarActivity class, 298
ActionBar class, 306, 314
ActionBarDrawerToggle class, 607
actions

about, 100
in app bar

adding, 315–317, 319–325
icons for, 320, 322
menu for, 321, 323
method for, 324–325
title for, 320, 322

category specified with, 106, 117
determining activities for, 105–106
share actions, 332–335
specifying in an intent, 100–104
types of, 101

activities
about, 2, 12, 31, 38, 120–121
backward compatibility for, 295, 298
calling custom Java classes from, 71–74
calling methods from, 59–62
class hierarchy for, 139, 297
class name for, 85
converting to fragments, 438–449
creating, 13–14, 61, 67–68
declaring in manifest file, 85
default, 41
editing. See code editor; design editor
location in project, 17
main, specifying, 84, 120
multiple

chaining, 78
creating, 78–83
passing text to, 90–95
retrieving text from, 96–97
starting with intents, 86–89

navigating. See navigation
organizing, 249–255, 290–291

category activities, 249–250, 252–255, 267–268,
277–278

detail/edit activities, 249–250, 253–255, 279–283
top-level activities, 249–250, 252–255

in other apps
determining from actions, 105–106
none available, 117
starting with intents, 99–104
users always choosing, 112–117
users choosing default, 111
users choosing if multiple, 100, 104, 111

parent activity, 328
states of. See activity lifecycle

Activity class, 61, 139, 297
activity lifecycle

about, 137–138, 146–147
class hierarchy for, 139
compared to fragment lifecycle, 439
methods associated with, 137–139, 147, 167, 439
states in

based on app’s focus, 154–157
based on app’s visibility, 146–147
list of, 137–138, 146–147
saving and restoring, 140–141, 145

ActivityNotFoundException, 103, 117
activity transitions, 868
adapters

array. See ArrayAdapter class
decoupling, with interface, 572–574
recycler view. See recycler view adapter
sync adapters, 864

AdapterView class, 261, 269
adb (Android Debug Bridge)

about, 846, 850–851
copying files, 855
killing adb server, 854
logcat output, 854
running a shell, 852–853

Index

the index

874 index

ADD COLUMN command, 650
addDrawerListener() method, DrawerLayout, 607
ALTER TABLE command, 649
Android application package. See APK files
Android apps. See also projects

about, 120–121
activities in. See activities
adapting for different device sizes, 340–341, 394–398,

402–412
app bar for. See app bar
back button functionality for, 413–415
building, 7–10, 13–15, 39
configuration of, affected by rotation, 134–136, 145,

156
designing, 248–250
devices supported by, 10, 340–341. See also fragments
distributing, 862
examples of. See examples
focus/visibility of, 146–147, 154–157
icons for, 84, 299
Java for. See Java
languages used in, 4
layouts for. See layouts
manifest file for. See AndroidManifest.xml file
minimum SDK for, 10–11
navigating. See navigation
package name for, 9, 84
processes used by, 120–121, 133
resource files for. See resource files
running activities in other apps, 100–108
running in emulator, 23–30, 49, 117
running on physical devices, 109–111, 117
settings screen for, 867
structuring, 249–250, 252–255, 290–291
theme for. See themes

Android debug bridge. See ADB
Android devices

about, 2
adapting apps for different sizes of, 340–341, 394–398,

402–412. See also fragments
API level on. See Android SDK (API level)
rotation of

configuration affected by, 134–136, 145, 156
saving activity state for, 140–141
saving fragment state for, 427–431

running apps on, 109–111, 117
virtual, for testing. See AVD (Android virtual device)

Android emulator
about, 23
performance of, 858–860
running apps in, 23–30, 49, 117

AndroidManifest.xml file
about, 17, 84–85
activity hierarchy in, 328
app bar attributes in, 299–301, 318–319
intent filters in, 105–106
language settings in, 172
main activity in, 120, 132
permissions needed in, 791
screen size settings in, 403
started services in, 745
themes in, 589

Android platform
about, 2–3
versions of. See Android SDK (API level)

Android Runtime (ART), 3, 30, 842–843
Android SDK (API level)

about, 5
features specific to, 171, 173, 293, 297, 298, 314, 328
libraries for, 16, 294
list of, 11
permissions affected by, 791, 794
specifying for AVD, 25, 400
specifying minimum for apps, 10

Android Studio
about, 5, 7
alternatives to, 7
console in, 28
editors. See code editor; design editor
installing, 6
projects, creating, 8–10
system requirements, 6

Android virtual device. See AVD
animated toolbar. See collapsing toolbar; scrolling toolbar
animation, 868
API level. See Android SDK (API level)
APK files, 27, 30, 845–846
app bar

about, 291–293
activity titles in, 317
adding actions to, 315–317, 319–325
attributes in manifest file for, 299–301, 318–319
icon in, 299
label for, 299, 318–319

the index

you are here � 875

removing, 308
replacing with toolbar, 292, 306–313
sharing content on, 331–335
tabs in, 499–500
themes required for, 293, 296–298, 299–300
Up button for, 327–330

AppBarLayout element, 499–500, 518–519
AppCompatActivity class, 297–298, 307
AppCompat Library. See v7 AppCompat Library
app folder, 17
application framework, 3. See also APIs
application name, 9
applications, core. See core applications
app_name string resource, 51
apps. See Android apps
AppTheme attribute, 589–590
app widgets, 869
ArrayAdapter class, 269–271, 275, 287, 375–377
@array reference, 57
array resources, 56–57, 210, 259
ART (Android Runtime), 3, 30, 842–843
AsyncTask class, 724, 729, 731, 737
?attr reference, 309
automated testing, 870
AVD (Android virtual device)

about, 23
compared to design editor, 49
creating for smartphone, 24–26
creating for tablet, 399–401

AWT, 4

B
Back button

compared to Up button, 327
enabling, 413–415

background, services running in. See services
background thread, 720–731, 736
back stack, 414–415
backward compatibility, for activities, 295, 298
Bates, Bert (Head First Java), 4
Beer Adviser app, 38–76

activities, 61–69
button, 59–60
Java class, 70–74
layout, 41–48

project, 40
spinner, 56–58
String resources, 50–54

Beighley, Lynn (Head First SQL), 675
biases for views, 231
Binder class, 786
bindService() method, activity, 778
blueprint tool

about, 226
aligning views, 238
biases, setting, 231
centering views, 230
horizontal constraints, 227
inferring contraints, 240–241, 245
margins, setting, 228
size of views, changing, 232–233
vertical constraints, 228
view properties, editing, 241
widgets, adding, 226, 240, 242–243

books and publications
Head First Java (Sierra; Bates), 4
Head First SQL (Beighley), 675

bound services
about, 740, 768
binding to an activity, 771, 774–778
calling methods from, 780–785
in combination with started services, 786
compared to started services, 786
creating, 770, 772
displaying results of, 773
lifecycle of, 787–788
other apps using, 786

broadcasts, 865
build folder, 17
build.gradle files, 834–835
built-in services

about, 740
location. See Location Services
notification. See notification service

Bundle class
about, 145
restoring state data from, 141, 144
saving state data in, 140, 143

Button element. See also FAB (floating action button)
about, 203
adding, 43

the index

876 index

calling methods
in activity, 60–62
in fragment, 452–460

code for, 44–47, 80
images added to, 213
widget for, in blueprint tool, 226

C
CalledFromWrongThreadException, 127
cardCornerRadius attribute, card view, 543
cardElevation attribute, card view, 543
CardView element, 543
CardView Library, 294, 542
card views

about, 542
adding data to, 545, 550
creating, 543–544
displaying in recycler view, 558, 560

CatChat app, 581–620
about, 581–584
Drafts option, 586
Feedback option, 592
header for, 594–595
Help option, 591
Inbox option, 585
menu for, 596–601
SentItems option, 587
Trash option, 588

category activities, 249–250, 252–255, 267–268, 277–
278, 290

centering views, 230
chaining activities, 78
changeCursor() method, cursor adapter, 715–717
checkableBehavior attribute, 598
CheckBox element, 206–207, 696–700
checkSelfPermission() method, ContextCompat, 794,

800
check task, Gradle, 837
choosers, 112–117
classes. See Java classes
clean task, Gradle, 837
closeDrawer() method, DrawerLayout, 614
close() method, cursor, 672, 683
close() method, SQLiteDatabase, 672, 683

code editor
about, 18, 32
activity file in, 21–22
layout file in, 19–20, 41, 44–46

collapsing toolbar, 507, 517–525
CollapsingToolbarLayout element, 518–521
color resources, 304
colors, for themes, 303
columnCount attribute, GridLayout, 823
company domain, 9
constraint layout

about, 223
aligning views, 238
alternatives to, 245
biases, setting, 231
centering views, 230
horizontal constraints, adding, 227
inferring contraints, 240–241, 245
library for, 224
margins, setting, 228–229
size of views, changing, 232–233
specifying in main activity, 225
vertical constraints, adding, 228
widgets, adding, 226, 240, 242–243
XML code for, 229

Constraint Layout Library, 224, 294
contentDescription attribute, ImageView, 212
content providers, 863
contentScrim attribute, CollapsingToolbarLayout, 523
ContentValues object, 632, 645
Context class, 139, 752
ContextThemeWrapper class, 139
ContextWrapper class, 139, 752
CoordinatorLayout element, 508–511, 518, 527
core applications, 3
core libraries, 3. See also libraries
createChooser() method, Intent, 112–117
CREATE TABLE command, 631
Cursor class, 624
cursors, SQLite

about, 624, 663
adapter for, 679–681, 688–689, 715
closing, 672, 682–683
creating, 663–666, 678
navigating to records in, 670–671

the index

you are here � 877

refreshing, 714–718
retrieving values from, 672–674

custom Java classes. See Java classes

D
data

adapters for. See adapters
from other apps, content providers for, 863
loaders for, 864
sharing with other apps. See share action provider
storing as string resources, 259
storing in classes, 256, 268–271, 360
web content, 866

database. See SQLite database
delete() method, SQLiteDatabase, 647
density-independent pixels (dp), 171
design editor. See also blueprint tool

about, 18, 32, 42
adding GUI components, 43
compared to AVD, 49
XML changes reflected in, 48

Design Support Library
about, 294, 506
AppBarLayout element, 499–500
collapsing toolbar, 517–525
FAB (floating action button), 507, 526–529
navigation drawers, 584
scrolling toolbar, 508–515
snackbar, 507, 526, 530–533
TabLayout element, 499, 501

detail/edit activities, 249–250, 253–255, 279–283, 290
development environment. See Android SDK; Android

Studio
devices. See Android devices
DEX files, 843–845, 847
dimension resources, 174
dimens.xml file, 174
distributing apps, 862
doInBackground() method, AsyncTask, 724, 726, 731
dp (density-independent pixels), 171
drawable attributes, Button, 213
@drawable reference, 212
drawable resource folders. See image resources
DrawerLayout element, 602–603. See also navigation

drawers

drop-down list. See Spinner element
DROP TABLE command, 650
dynamic fragments. See fragments: dynamic

E
editors. See blueprint tool; code editor; design editor
EditText element

about, 80, 178, 202
code for, 80
hint, 178

email app example. See CatChat app
email grid layout example, 825–832
emulator. See Android emulator
entries attribute, ListView, 259
entries attribute, Spinner, 57, 210
Espresso tests, 871
event listeners

about, 199
for card views, 572–576
compared to onClick attribute, 264
for ListView element, 261–263
for fragments, 455–460
for list fragments, 385–387
for ListView element, 708, 710–712
location listeners, 792
for navigation drawers, 608
for snackbar actions, 530

examples
Beer Adviser app. See Beer Adviser app
CatChat app. See CatChat app
email grid layout, 825–832
Joke app. See Joke app
My Constraint Layout app. See My Constraint Layout

app
My First App. See My First App
My Messenger app. See My Messenger app
Odometer app. See Odometer app
Pizza app. See Pizza app
source code for, xxxvi
Starbuzz Coffee app. See Starbuzz Coffee app
Stopwatch app. See Stopwatch app
Workout app. See Workout app

execSQL() method, SQLiteDatabase, 631, 650
execute() method, AsyncTask, 731

the index

878 index

F
FAB (floating action button), 507, 526–529
findViewById() method, view, 63–64, 68
FloatingActionButton element, 527
focus

activities having, 154–157
views handling, 199

FragmentActivity class, 354
fragment element, 352, 463
fragment lifecycle, 365–366, 439
fragment manager, 362, 419
FragmentPagerAdapter class, 491–493
fragments

about, 342
activities using

adding fragment to, 352–353
button linking main to detail activity, 346–347
creating, 345
interactions with, 359–369
referencing fragment from, 363, 367
setting values for, 367–369

adding to project, 348–349
app structure for, 343–344
back button functionality with, 413–415
code for, 349–350
converting activities to, 438–449
data for, 360
dynamic

about, 434
adding, 435–449, 469–477
calling methods from, 450–460
code for, 440–446, 458–460
layout for, 447–449

ID for, 361–362
layouts for, 349–351, 408–410
list fragments

connecting data to, 375–377
connecting to detail activity, 384–389
creating, 372–374
displaying in main activity, 378–381
listener for, in main activity, 385–387

methods associated with, 365–366, 439
nested, 474–477
replacing programmatically, 416–425
state of, saving, 427–431, 464–467

swiping through, 489–493
for tab navigation, 483–488
v7 AppCompat Library for, 345, 354
view for, creating, 350

FragmentStatePagerAdapter class, 491, 493
fragment transactions, 419–423, 463–467, 472–475
FrameLayout element

about, 188–190, 193
gravity for view placement, 190
height, 188
nesting, 191–192
order of views in, 190
replacing fragments programmatically using, 416–425,

464–467, 471
width, 188

G
getActivity() method, PendingIntent, 758
getBestProvider() method, LocationManager, 793
getCheckedRadioButtonId() method, RadioGroup, 208
getChildFragmentManager() method, fragment, 474–

475
getContext() method, LayoutInflator, 376
getCount() method, FragmentPagerAdapter, 491–492
getFragmentManager() method

activity, 362
fragment, 472–473

getIntent() method, activity, 92, 96, 280
getIntExtra() method, Intent, 92
getItemCount() method, RecyclerView.Adapter, 547
getItem() method, FragmentPagerAdapter, 491–492
get*() methods, cursor, 672
getReadableDatabase() method, SQLiteOpenHelper,

662, 678
getSelectedItem() method, view, 67, 69, 210
getStringExtra() method, Intent, 92, 96
getString() method, string resource, 115
getSupportActionBar() method, activity, 329
getSupportFragmentManager() method, activity, 362
getText() method, EditText, 202
getView() method, fragment, 367, 370
getWritableDatabase() method, SQLiteOpenHelper, 662
GPS location provider, 793
Gradle build tool

about, 7, 834
build.gradle files, 834–835

the index

you are here � 879

check task, 837
custom tasks, 839
dependencies used by, 838
gradlew and gradlew.bat files, 836
plugins, 840

gradlew and gradlew.bat files, 836
gravity attribute, view, 182–183
GridLayout element

about, 823
adding views to, 824, 827–829
creating, 825–832
dimensions, defining, 823, 826

GridLayoutManager class, 556–557
group element, 598–599
GUI components. See also views; specific GUI compo-

nents
adding, 43
inherited from View class, 44, 197–198
referencing, 63–64

H
Handler class, 128–129
HAXM (Hardware Accelerated Execution Manager),

859
headerLayout attribute, 602
Head First Java (Sierra; Bates), 4
Head First SQL (Beighley), 675
heads-up notification, 755, 757
hint attribute, EditText, 178, 202
horizontal constraints, 227
HorizontalScrollView element, 215

I
IBinder interface, 786
IBinder object, 770–771, 776
icon attribute, 299, 322
icons

for actions in app bar, 320
for app, default, 84, 299
built-in icons, 597

id attribute, view, 44, 175
IDE

Android Studio as. See Android Studio
not using, 7

ImageButton element, 214

image resources. See also icons; mipmap resource folders
adding, 189, 211, 257, 512
for Button elements, 213
for ImageButton elements, 214
for ImageView element, 212, 258
for navigation drawer header, 594
R.drawable references for, 212, 257
resolution options, folders for, 211

ImageView element, 211–212, 258, 523
include tag, 312, 314
inflate() method, LayoutInflator, 350
inflators, layout, 350, 365
inputType attribute, EditText, 202
insert() method, SQLiteDatabase, 632–633
installDebug task, Gradle, 837
Instant Run, 860
IntelliJ IDEA, 5
intent filter, 105–106
intents

about, 86
alternatives to, 91
category for, 106, 117
creating, 86–87, 277
implicit and explicit, 101, 105, 117
passing text using, 90–95
resolving activities and actions, 105–106
retrieving data from, 280–282
retrieving text from, 96–97
sharing content using, 331
starting activities, 86–89
starting activities in other apps, 99–104

IntentService class, 742, 744, 752
internationalization. See localization
isChecked() method, CheckBox, 206

J
Java

about, 2
activities. See activities
required knowledge of, xxxvi, 4
source file location, 16–17

Java classes
about, 38
calling from activities, 71–74
custom, creating, 70, 256
data stored in, 256, 268–271

the index

880 index

java folder, 17
Java Virtual Machine (JVM), 842
JDBC, 624
Joke app

logging messages, 743–746
notifications, 755–766
started services, 741–766

JUnit, 870
JVM (Java Virtual Machine), 842

L
label attribute, application, 299, 314, 318
layout_above attribute, RelativeLayout, 822
layout_align* attributes, RelativeLayout, 820, 822
layout_behavior attribute, ViewPager, 510, 519
layout_below attribute, RelativeLayout, 822
layout_center* attributes, RelativeLayout, 820
layout_collapseMode attribute, Toolbar, 519, 523
layout_column attribute, GridLayout, 827
layout_columnSpan attribute, GridLayout, 828
layout_gravity attribute, view, 47, 184–185, 190
layout_height attribute

FrameLayout, 188
LinearLayout, 171
view, 44, 46, 47, 175, 180, 232–233

LayoutInflator class, 350, 365, 376
layout manager, for recycler view, 556–557
layout_margin attributes, view, 47, 176, 228–229
layout resource folders, 402–408
layout_row attribute, GridLayout, 827
layouts

about, 2, 12, 31, 38, 170
code for, 19–20, 33, 41, 44–46, 80
constraint. See constraint layout
creating, 13–14
default, 41
editing, 41–48
for fragments. See fragments
frame. See FrameLayout element
grid. See GridLayout element
inherited from ViewGroup class, 198, 200
linear. See LinearLayout element
nesting, 191–192, 222
relative. See RelativeLayout element
toolbars as, 311–313, 316

layout_scrollFlags attribute, Toolbar, 510, 519
layout_to* attributes, RelativeLayout, 822
layout_weight attribute, view, 179–181
layout_width attribute

FrameLayout, 188
LinearLayout, 171
view, 44, 46, 47, 175, 232–233

libraries. See also specific libraries
about, 3
adding to project, 224
location in project, 16
Support Libraries, list of, 294

LinearLayout element
about, 41, 45, 171, 187
dimension resources, 174
gravity for view contents, 182–183
gravity for view placement, 184–185
height, 171
nesting, 191–192, 222
order of views in, 175
orientation, 172
padding, 173
weight of views in, 179–181
width, 171
xmlns:android attribute, 171

LinearLayoutManager class, 556–557
Linux kernel, 3
Listener interface, 385–387, 572–576
listeners. See event listeners
ListFragment class

connecting data to, 375–377
connecting to detail activity, 384–389
creating, 372–374
displaying in main activity, 378–381
listener for, in main activity, 385–387

ListView element
about, 251
class hierarchy for, 570
creating, 259–260, 705–709
event listeners for, 261–263, 708, 710–712

loaders, 864
localization

right-to-left languages, 172
String resources, 50, 55

LocationListener class, 792
LocationManager class, 793

the index

you are here � 881

Location Services
about, 789
distance traveled, calculating, 796–797
library for, 790
listener for, 792
manager for, 793
permissions needed

checking for, 794, 800
declaring, 791
notification if denied, 806, 809–810
requesting from user, 802–804, 806

provider for, 793
requesting location updates, 794–795
stopping location updates, 797

logcat, viewing, 743, 854
Log class, 743
logging messages, 743–746

M
main activity, 84, 120
manifest file. See AndroidManifest.xml file
material design, 506. See also Design Support Library
menu attribute, NavigationView, 602
menu element, 321
menu resource folders, 321
messages. See also notification service

logging, 743–746
pop-up messages (toasts), 216

methods. See also specific methods
calling from activities, 59–62, 81
creating, 62–63, 65–66, 81
name of, 69

mipmap resource folders, 299
moveToFirst() method, cursor, 671
moveToLast() method, cursor, 671
moveToNext() method, cursor, 671
moveToPrevious() method, cursor, 671
My Constraint Layout app, 223–246

activities, 225
layout, 226–243
library, 224
String resources, 225

My First App, 7–36
activities, 12–15, 31
editors, 18–22

emulator, 23–30
folder structure, 16–17
layout, 31–34
project, 8–11

My Messenger app, 79–118
activities, 82–83, 90
choosers, 112–117
intents, 86–89, 92–108
layout, 80, 82–83, 91
manifest file, 84–85
running on device, 109–111
String resources, 81

N
navigation. See also app bar; ListView element; navigation

drawers; tab navigation; toolbar
about, 250–251, 253–255, 291
Back button, 327, 413–415
Up button, 292, 327–330

navigation drawers
about, 580–583
adding to main activity, 583, 602–604
closing the drawer, 606, 614
compared to tab navigation, 580
drawer toggle for, 606–607
fragments for, 583, 585–592
header for, 583, 593–595
libraries for, 584
menu click behavior, 606, 608–613
menu options for, 583, 593, 596–601
multiple, 614
submenu in, 600
theme for, 589–590
toolbar for, 589

NavigationView element, 602–603, 608
NestedScrollView element, 513, 518–519
network location provider, 793
NotificationManager class, 759
Notification object, 759
notification service

about, 755, 762–763
action for, adding, 758
heads-up notification, 755, 757
issuing a notification, 759, 806, 809–810
library for, 756

the index

882 index

notification builder for, 757
notification manager for, 759

notify() method, NotificationManager, 759

O
OAT format, 847
Odometer app, 769–816

bound services, 769–788
library, 790
Location Services, 789–800
permissions, 791, 802–816

onActivityCreated() method, fragment, 365
onAttach() method, fragment, 365
onBind() method, Service, 770, 787–788
onBindViewHolder() method, RecyclerView.Adapter,

550, 571
onButtonClicked() method, activity, 203, 214
onCheckboxClicked() method, CheckBox, 207
onClick attribute

Button, 60, 125, 203, 264
CheckBox, 207, 698–700
ImageButton, 214
RadioButton, 209
Switch, 205
ToggleButton, 204

onClickDone() method, activity, 529
OnClickListener interface, 455–460
onClickListener() method, view, 530
onClick() method

fragment, 456
Listener, 572
OnClickListener, 455

onCreate() method
activity, 61, 81, 96, 121, 133, 137, 138, 147, 167,

787–788
fragment, 365, 429, 430
service, 751
SQLiteOpenHelper, 628, 634–635

onCreateOptionsMenu() method, activity, 323
onCreateViewHolder() method, ViewHolder, 549
onCreateView() method, fragment, 349–350, 365, 374,

376
onDestroy() method

activity, 137, 138, 147, 167, 683, 787–788

fragment, 365
service, 751

onDestroyView() method, fragment, 365
onDetach() method, fragment, 365
on-device tests, 871
onDowngrade() method, SQLiteOpenHelper, 637, 641
onHandleEvent() method, IntentService, 742
onHandleIntent() method, IntentService, 744
OnItemClickListener class, 261–262
onItemClick() method, OnItemClickListener, 261–262
onListItemClick() method, list fragment, 373, 386
onLocationChanged() method, LocationListener, 792
onNavigationItemSelected() method, activity, 608–609
onOptionsItemSelected() method, activity, 324
onPause() method

activity, 154–157, 159, 167
fragment, 365

onPostExecute() method, AsyncTask, 724, 728
onPreExecute() method, AsyncTask, 724–725
onProgressUpdate() method, AsyncTask, 727
onProviderDisabled() method, LocationListener, 792
onProviderEnabled() method, LocationListener, 792
onRadioButtonClicked() method, RadioGroup, 209
onRequestPermissionResult() method, activity, 805
onRestart() method, activity, 146, 147, 153, 167
onResume() method

activity, 154–157, 159, 167
fragment, 365

onSaveInstanceState() method
activity, 140, 142, 143, 146
fragment, 429, 431

onServiceConnected() method, ServiceConnection,
775–776

onServiceDisconnected() method, ServiceConnection,
775, 777

onStartCommand() method, Service, 751
onStart() method

activity, 146, 147, 153, 167
fragment, 365, 367

onStatusChanged() method, LocationListener, 792
onStop() method

activity, 146, 147, 148–150, 167
fragment, 365

onSwitchClicked() method, Switch, 205
onToggleClicked() method, ToggleButton, 204

the index

you are here � 883

onUnbind() method, Service, 787–788
onUpgrade() method, SQLiteOpenHelper, 628, 637,

640, 642–650
Oracle JVM (Java Virtual Machine), 842
orderInCategory attribute, 322
organizing ideas. See also Starbuzz Coffee app
orientation attribute, LinearLayout, 45, 172

P
package name, 84
padding attributes, LinearLayout, 173
parent activity, 328
PendingIntent class, 758
performance

of Android emulator, 858–860
SQLite database affecting, 720

permissions
API levels affecting, 791, 794
checking for permissions granted, 794, 800
declaring permissions needed, 791
denied, issuing notification of, 806, 809–810
requesting from user, 802–804, 806

Pizza app, 290–338, 482–536, 538–578
actions, 315–326
activities, 297–298
adapters, 571–574
app bar, 291–293, 299
card views, 543–546, 550, 560
collapsing toolbar, 517–525
color resources, 304
FABs, 526–529
fragments, 485–488
layout, 305
libraries, 294–296, 307, 506
recycler views, 538–539, 545–570, 575–576
scrollbars, 508–515
share action provider, 331–336
snackbar, 526, 530–534
tab navigation, 498–504
themes and styles, 300–303
toolbar, 306–314
Up button, 327–329
ViewPager, 489–493

Play Store, releasing apps to, 862
pop-up messages (toasts), 216

postDelayed() method, Handler, 128–129
post() method, Handler, 128–129
Preferences API, 867
processes, apps using, 120–121, 133. See also services;

threads
projects. See also Android apps

application name, 9
company domain, 9
creating, 8–10, 40–41
files in, 15–17, 34
libraries for, adding, 224
location, 9

property animation, 868
publishProgress() method, AsyncTask, 727
putExtra() method, Intent, 92, 101
put() method, ContentValues, 632

Q
QEMU (Quick Emulator), 858
query() method, SQLiteDatabase, 663–666

R
RadioButton element, 208
RadioGroup element, 208–209
Random class, 772
R.drawable reference, 212, 257
recycler view adapter, 545–550, 554, 571–574
RecyclerView.Adapter class, 545–546
RecyclerView element, 554
RecyclerView Library, 294
recycler views

about, 538–539
class hierarchy for, 570
creating, 553–555, 562–565
data for, 547, 550
layout manager for, 556–557
responding to clicks, 566–576
scrollbars for, 554
views for, 548–549

RecyclerView-v7 Library, 542
RelativeLayout element

about, 818
positioning relative to other views, 821–822
positioning relative to parent, 818–820

the index

884 index

releasing apps, 862
removeUpdates() method, LocationManager, 797
RENAME TO command, 649
render thread, 720
requestLocationUpdates() method, LocationManager,

794
requestPermissions() method, ActivityCompat, 803–804,

806
res-auto namespace, 543
res folder, 17
resolution of images, 211
resource files. See also array resources; image resources;

String resources
about, 2
color resources, 304
dimension resources, 174
layout resources, 402–408
menu resources, 321
mipmap resources, 299
style resources, 300–301
types of, folders for, 16–17, 403

resources. See books and publications; website resources
resources element, 54
R.java file, 17, 63, 69
rotation of device

configuration changed by, 134–136, 145, 156
saving activity state for, 140–141
saving fragment state for, 427–431

roundIcon attribute, 299
rowCount attribute, GridLayout, 823
Runnable class, 128

S
Safari Books Online, xl
scale-independent pixels (sp), 201
scheduled services, 740
screens

activities in. See activities
density of, images based on, 211
layouts for. See layouts
size of, adapting apps for, 340–341, 394–398, 402–412

scrollbars attribute, recycler view, 554
scrolling toolbar, 507, 508–515
ScrollView element, 215
SDK. See Android SDK (API level)

Service class, 752, 770
ServiceConnection interface, 775–777
service element, 745
services

about, 740
bound. See bound services
built-in, 740
location. See Location Services
notification. See notification service
scheduled, 740
started. See started services

setAction() method, Snackbar, 530
setAdapter() method

ListView, 270
RecyclerView, 554
ViewPager, 493

setContentDescription() method, ImageView, 212, 282
setContentIntent() method, notification builder, 758
setContentView() method, activity, 61, 133, 137, 363
setDisplayHomeAsUpEnabled() method, ActionBar, 329
setImageResource() method, ImageView, 212, 282
setListAdapter() method, fragment, 376
setNavigationItemSelectedListener() method, Navigation-

View, 608
setShareIntent() method, ShareActionProvider, 333
setSupportActionBar() method, AppCompatActivity,

313, 314, 317
setText() method, TextView, 64, 201, 282
settings screen, 867
setType() method, Intent, 101
setupWithViewPager() method, TabLayout, 501
share action provider, 292, 331–335
shell, running with adb, 852–853
shortcuts. See app bar
showAsAction attribute, 322
Sierra, Kathy (Head First Java), 4
signing APK files, 845
SimpleCursorAdapter class, 681
slider. See Switch element
snackbar, 507, 526, 530–533
SnackBar class, 530
Spinner element

about, 47, 48, 210
setting values in, 64
values for, 56–57

sp (scale-independent pixels), 201

the index

you are here � 885

SQLite database
about, 623–624
accessing in background thread, 720–731, 736
adding columns, 649, 650
alternatives to, 624
closing, 672, 682–683
conditions for columns, 647
conditions for queries, 666
creating, 629, 634–635
cursors

about, 624, 663
adapter for, 679–681, 688–689, 715
closing, 672, 682–683
creating, 663–666, 678
navigating to records in, 670–671
refreshing, 714–718
retrieving values from, 672–674

data types in, 630
deleting records, 647
deleting tables, 650
downgrading, 641
DrinkActivity. See DrinkActivity
files for, 623
getting a reference to, 662, 678
helper, 624, 626–628, 634–635
inserting data in, 632–633
location of, 623, 624
ordering records from query, 665
performance of, 720, 736
querying records, 663–666
renaming tables, 649
security for, 624
tables in, 630–631
updating records

programmatically, 645–647
from user input, 695–703, 705–706, 708–712

upgrading, 637–640, 642–650
version number of, 637–639

SQLiteDatabase class, 624
SQLiteException, 662, 675
SQLiteOpenHelper class, 624, 627–628
SQL (Structured Query Language), 631, 675
src attribute, ImageButton, 214
src attribute, ImageView, 212
src folder, 17
StaggeredGridLayoutManager class, 556–557

Starbuzz Coffee app, 248–288, 622–656, 658–692,
694–738

activities, 248–249, 252–255, 262–264, 267–272
adapters, 269–271
database, 626–656, 659–692, 694–718
DrinkActivity. See DrinkActivity
image resources, 257
intents, 277–285
Java classes, 256
layout, 258–260
listeners, 261–262, 276
navigation, 250–251
threads, 720–738
top level activity

adding favorites to. See top level activity
startActivity() method, activity, 86, 112, 117, 121
started services

about, 740–741, 748
class hierarchy for, 752
in combination with bound services, 786
compared to bound services, 786
creating, 741–742, 744
declaring in AndroidManifest.xml, 745
lifecycle of, 750–751
methods associated with, 750–752
starting, 746–747

startService() method, Intent, 747, 751
states, of activities. See activity lifecycle
Stopwatch app, 122–168, 434–480

activities, 125–127, 130–133
activity lifecycle, 138–139, 146–163
activity states, 134–144
dynamic fragments, 434–436, 444–460
fragment lifecycle, 439
fragment transactions, 463–469, 472–475
handlers, 128–129
layout, 123–124, 471
project, 122
String resources, 123

string-array element, 56
string element, 54
@string reference, 52, 81
String resources

about, 38, 50, 54, 55
action titles in, 320
adding, 512, 517

the index

886 index

arrays of, 56–57, 210, 259
creating, 51, 81
getting value of, 115
location of, 54, 55
referencing strings in, 52, 81
updated in R.java file, 69

strings.xml file. See Array resources; String resources
Structured Query Language. See SQL
style element, 301
@style reference, 300
style resources, 300–301
styles

applying themes using, 300–301
customizing themes using, 303

Support Libraries. See also v7 AppCompat Library
adding to project, 296
list of, 294

supportsRtl attribute, application, 172
Swing, 4
swiping through fragments, 489–493
Switch element, 205
sync adapters, 864
syncState() method, ActionBarDrawerToggle, 607
system image. See Android SDK (API level)

T
TabLayout element, 499, 501
tab navigation

about, 482–484, 493
adding tabs to layout, 498–504
compared to navigation drawers, 580
fragments for, 483–488
swiping between tabs, 489–493

tasks, 78
testing

automated testing, 870
emulator compared to device, 117
on-device tests, 871
unit tests, 870

text attribute
Button, 44, 203
CheckBox, 206
TextView, 33, 34, 50, 201

text field. See EditText element

textOff attribute
Switch, 205
ToggleButton, 204

textOn attribute
Switch, 205
ToggleButton, 204

textSize attribute, TextView, 201
TextView element

about, 33, 44, 201
code for, 33–34, 44–47, 91
setting text in, 64

theme attribute
AppBarLayout, 519
application, 299, 300

themes
about, 84
app bar requiring, 293
applying to project, 299–300
built-in, list of, 302
customizing, 303
for navigation drawers, 589–590
removing app bar using, 308
v7 AppCompat Library for, 294, 296–298

threads
about, 720
background thread, 720–731, 736
main thread, 127, 720
render thread, 720

title attribute, 322
toasts, 216
ToggleButton element, 204
toolbar

adding as layout, 311–313, 316
collapsing, 507, 517–525
for navigation drawers, 589
replacing app bar with, 292, 306–313
scrolling, 507, 508–515

Toolbar class, 306, 309, 314
top-level activities, 249–250, 252–255, 290
transactions, for fragments. See fragment transactions

U
unbindService() method, ServiceConnection, 779
unit tests, 870

the index

you are here � 887

Up button, 292, 327–330
update() method, SQLiteDatabase, 646, 698
USB debugging, 109
USB driver, installing, 109
uses-permission element, 791

V
v4 Support Library, 294. See also Design Support Library
v7 AppCompat Library

about, 294
adding to project, 296, 307
AppCompatActivity class in, 297–298
fragments using, 345
Location Services using, 790
navigation drawers using, 584
notifications in, 756

v7 CardView Library, 294, 542
v7 RecyclerView Library, 294
values resource folders. See string resources; dimension

resources
variables, setting, 126, 127
vertical constraints, 228
view animations, 868
ViewGroup class, 198, 200
ViewHolder class, 546, 548
ViewPager class, 489–493, 501
views. See also specific GUI components

about, 44, 198–199
aligning, 238
biases for, 231
centering, 230
getting and setting properties, 199
gravity for view contents, 182–183
gravity for view placement, 184–185, 190
height, 175, 180, 232–233
ID, 44, 175, 199
margins, 176, 228–229
methods associated with, 199
weight, 179–181
width, 175, 232–233

W
website resources

activity actions, types of, 101
source code for examples, xxxvi
USB drivers, 109

WebView class, 866
widgets. See also GUI components

about, 869
adding, in blueprint tool, 226
constraints for. See constraint layout

Workout app, 340–392, 394–432, 434–480
activities, 346–347, 359–363, 381, 389, 421–423, 470
adapters, 375–376
back button, 413–415
device sizes, supporting, 340–341, 394–398
dynamic fragments, 434–436, 444–460
fragment lifecycle, 439
fragments, 342–344, 348–356, 359–363, 365–369,

416–421
fragment state, 427–431
fragment transactions, 463–469, 472–475
Java classes, 360
layout, 471
libraries, 345
listener interface, 384–388
list fragments, 372–374, 377–378
screen-specific resources, 402–409
tablet AVD, 399–401

wrap_content setting, width and height, 232

X
xmlns:android attribute, LinearLayout, 171

Z
zipalign tool, 845
Zygote process, 846

D3610

Get up to speed on Agile.

Try Safari for free for 10 days and get
up to speed with Agile.
oreilly.com/go/agile-sketchpad

 ■ See what it's like to work on an Agile team.

 ■ Discover how Agile helps you deliver value early,
respond to change, and manage risk.

 ■ Master the secrets of accurate estimation.

 ■ Explore how test-driven development, continuous
integration, and the 10-minute build help you
deliver better software.

 ■ Learn why programming in a pair can be more
effective than programming alone.

 ■ Find out how Agile techniques such as Kanban
can help you identify and avoid disruptions to
your development process.

 ■ See how the five key values — communication,
courage, feedback, simplicity, and respect— drive
everything you do in an Agile project.

Quickly learn what Agile development is all about on Safari, O’Reilly’s
online learning platform. Through books, videos, interactive tutorials, and live online
training, you’ll learn how to design and build products incrementally, test constantly,

and release as often as you need to.

Check out The Agile Sketchpad, a video course by David and Dawn Griffiths that helps you:

	Copyright
	Authors of Head First Android Development
	Table of Contents (Summary)
	Table of Contents (the real thing)
	Intro
	Who is this book for?
	Who should probably back away from this
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did
	Here’s what YOU can do to bend
	Read me
	The technical review team
	Acknowledgments
	O’Reilly Safari®

	1: getting started
	2: building interactive apps
	3: multiple activities and intents
	4: the activity lifecycle
	5: views and view groups
	6: constraint layouts
	7: list views and adapters
	8: support libraries and app bars
	9: fragments
	10: fragments for larger interfaces
	11: dynamic fragments
	12: design support library
	13: recycler views and card views
	14: navigation drawers
	15: SQLite databases
	16: basic cursors
	17: cursors and asynctasks
	18: started services
	19: bound services and permissions
	appendix i: relative and grid layouts
	appendix ii: gradle
	appendix iii: art
	appendix iv: adb
	appendix v: the android emulator
	appendix vi: leftovers
	Index

