
Dedicated to Giorgia, my friends and my family.

a

Contents

1 Welcome 6
1.1 Introduction . 6

1.1.1 Who is this book for . 7
1.1.2 Author . 7
1.1.3 Acknowledgments . 8
1.1.4 Online resources and the quiz . 8

1.2 Introduction to Dart . 9
1.2.1 Supported platforms . 9
1.2.2 Package system . 13
1.2.3 Hello World . 13

1.3 Intorduction to Flutter . 15
1.3.1 How does it work . 15
1.3.2 Why Flutter uses Dart . 19
1.3.3 Hello world . 20

I The Dart programming language 23

2 Variables and data types 25
2.1 Variables . 25

2.1.1 Initialization . 26
2.1.2 final . 27

2.2 Data types . 28
2.2.1 Numbers . 29

2.2.1.1 Good practices . 30
2.2.2 Strings . 31
2.2.3 Enumerated types . 33

Flutter Complete Reference - Preview version 3

Contents

2.2.3.1 Good Practices . 34
2.2.4 Booleans . 34
2.2.5 Arrays . 35

2.3 Nullable and Non-nullable types . 36
2.4 Data type operators . 39

2.4.1 Arithmetic operators . 39
2.4.2 Relational operators . 40
2.4.3 Type test operators . 41
2.4.4 Logical operators . 42
2.4.5 Bitwise and shift operators . 42

II The Flutter framework 45

3 Basics of Flutter 47
3.1 Architecture . 47

3.1.1 Element and RenderObject . 50
3.1.2 Foreign Function Interface . 56
3.1.3 Method channels . 58

Index 63

Flutter Complete Reference - Preview version 4

Flutter and the related logo are trademarks of Google LLC. We are not endorsed by or affiliated
with Google LLC.

1 | Welcome

1.1 Introduction

Thank you for having put your faith on this book. If you want to learn how to use a powerful
tool that allows developers to quickly create native applications with top performances, you’ve
chosen the right book. Nowadays companies tend to consider cross-platform solutions in their
development stack mainly for three reasons:

1. Faster development: working on a single codebase;

2. Lower costs: maintaining a single project instead of many (N projects for N platforms);

3. Consistency: the same UI and functionalities on any platform.

All those advantages are valid regardless the framework being used. However, for a complete
overview, there’s the need to also consider the other side of the coin because a cross-platform
approach also has some drawbacks:

1. Lower performances: a native app can be slightly faster thanks to the direct contact
with the device. A cross-platform framework might produce a slower application due to a
necessary bridge required to communicate with the underlying OS;

2. Slower releases: when Google or Apple announce a major update for their OS, the main-
tainers of the cross-platform solution could have the need to release an update to enable
the latest features. The developers must wait for an update of the framework, which might
slow down the work.

Every framework adopts different strategies to maximize the benefits and minimize or get rid of
the drawbacks. The perfect product doesn’t exist, and very likely we will never have one, but
there are some high quality frameworks you’ve probably already heard:

• Flutter. Created by Google, it uses Dart;

Flutter Complete Reference - Preview version 6

Chapter 1. Welcome

• React Native. Created by Facebook, it is based on javascript;

• Xamarin. Created by Microsoft, it uses the C#;

• Firemonkey. Created by Embarcadero, it uses Delphi.

During the reading of the book you will see how Google tries to make the cross-platform devel-
opment production-ready using the Dart programming language and the Flutter UI framework.
You will learn that Flutter renders everything by itself 1 in a very good way and it doesn’t use
any intermediate bridge to communicate with the OS. It compiles directly to ARM (for mobile)
or optimized JavaScript (for web).

1.1.1 Who is this book for

To get the most out of this book, you should already know the basics of object-oriented pro-
gramming and preferably at least an "OOP language" such as Java or C#. Our goal is trying
to make the contents of this book understandable for the widest possible range of developers.
Nevertheless, you should already have a minimum of experience in order to better understand
the concepts.
If you already know what is a class, what is inheritance and what is nullability, part 1 of this
book is going to be a walk in the park. Foreknowledge aside, we will talk about both Dart and
Flutter "from scratch" so that the reader can understand any concept regardless the expertise
level.

1.1.2 Author

Alberto Miola is an Italian software developer that started working with Delphi (Object Pascal)
for desktop development and Java for back-end and Android apps. He currently works in Italy
where he daily uses Flutter for mobile and Java for desktop and back-end. Alberto graduated

1For example, it doesn’t use the system’s OEM widgets

Flutter Complete Reference - Preview version 7

Chapter 1. Welcome

in computer science at University of Padua with a thesis about cross-platform frameworks and
OOP programming languages.

1.1.3 Acknowledgments

This book owes a lot to some people the author has to mention here because he thinks it’s the
minimum he can do to express his gratitude. They have technically supported the realization
of this book with their fundamental comments and critiques that improved the quality of the
contents.

• Rémi Rousselet. He is the author of the famous "provider" 2 package and a visible
member in the Flutter/Dart community. He actively answers on stackoverflow.com helping
tons of people and constantly works in the creation of open source projects.

• Felix Angelov. Felix is a Senior Software Engineer at Very Good Ventures. He previously
worked at BMW for 3 years and is the main maintainer of the bloc state management
library. He has been building enterprise software with Flutter for almost 2 years and loves
the technology as well as the amazing community.

• Matej Rešetár. He is helping people get prepared for real app development on re-
socoder.com and also on the Reso Coder YouTube channel. Flutter is an amazing framework
but it is easy to write spaghetti code in it. That’s why he’s spreading the message of proper
Flutter app architecture.

Special thanks to my friends Matthew Palomba and Alfred Schilken which carefully read the
book improving the style and the quality of the contents.

1.1.4 Online resources and the quiz

The official website of this book 3 contains the source code of the examples described in Part III.
While reading the chapters you might encounter this box:

B Resources > Chapter 16 > Files download

2https://pub.dev/packages/provider
3https://fluttercompletereference.com

Flutter Complete Reference - Preview version 8

Chapter 1. Welcome

It indicates that if you navigate to the Resources page of our website, you’ll find the complete
source code of the example being discussed at Chapter 16 > Files download. In addition, you
can play the "Quiz game" which will test the Dart and Flutter skills you’ve acquired reading this
book.

At the end, the result page will tell you the exact page of the book at which you can find an
explanation of the answer.

1.2 Introduction to Dart

Dart is a client-optimized, garbage-collected, OOP language for creating fast apps that run on
any platform. If you are familiar with an object oriented programming language such as Java or
C# you might find many similarities with Dart. The first part of this book aims to show how
the language can help you solving problems and the vastness of its API.

1.2.1 Supported platforms

Dart is a very flexible language thanks to the environment in which it lives. Once the source code
has been written (and tested) it can be deployed in many different ways:

Flutter Complete Reference - Preview version 9

Chapter 1. Welcome

• Stand-alone. In the same way as a Java program can’t be run without the Java Virtual
Machine (JVM), a stand-alone Dart program can’t be executed without the Dart Virtual
Machine (DVM). There’s the need to download and install the DVM which to execute Dart
in a command-line environment. The SDK, other than the compiler and the libraries, also
offers a series of other tools:

– the pub package manager, which will be explored in detail in chapter 23;

– dart2js, which compiles Dart code to deployable JavaScript;

– dartdoc, the Dart documentation generator;

– dartfmt, a code formatter that follows the official style guidelines.

In other words, with the stand-alone way you’re creating a Dart program that can only
run if the DVM is installed. To develop Flutter apps for any platform (mobile, web and
desktop), instead of installing the "pure" Dart SDK, you need to install Flutter 4 (which is
basically the Dart SDK combined with Flutter tools).

• AOT compiled. The Ahead Of Time compilation is the act of translating a high-level
programming language, like Dart, into native machine code. Basically, starting from the
Dart source code you can obtain a single binary file that can execute natively on a certain
operating system. AOT is really what makes Flutter fast and portable.

With AOT there is NO need to have the DVM installed because at the end you get a single
binary file (an .apk or .aab for Android, an .ipa for iOS, an .exe for Windows...) that can
be executed.

– Thanks to the Flutter SDK you can AOT compile your Dart code into a native binary

4https://flutter.dev/docs/get-started/install

Flutter Complete Reference - Preview version 10

Chapter 1. Welcome

for mobile, web and desktop.

– As of Flutter 1.21, the Dart SDK is included in the Flutter SDK so you don’t have to
install them separately. They’re all bundled in a single install package.

– Starting from version 2.6, the dart2native command (supported on Windows, macOS
and Linux) makes AOT compiles a Dart program into x64 native machine code. The
output is a standalone executable file.

AOT compilation is very powerful because it natively brings Dart to mobile desktop. You’ll
end up having a single native binary which doesn’t require a DVM to be installed on the
client in order to run the application.

• Web. Thanks to the dart2js tool, your Dart project can be "transpiled" into fast and
compact JavaScript code. By consequence Flutter can be run, for example, on Firefox or
Chrome and the UI will be identical to the other platforms.

AngularDart 5 is a performant web app framework used by Google to build some famous
websites, such as "AdSense" and "AdWords". Of course it’s powered by Dart!

So far we’ve covered what you can do with Dart when it comes to deployment and production-
ready software. When you have to debug and develop, both for desktop/mobile and web, there
are useful some tools coming to the rescue.

5https://angulardart.dev/

Flutter Complete Reference - Preview version 11

Chapter 1. Welcome

This picture sums up very well how the Dart code can be used in development and deploy-
ment. We’ve just covered the "Deploy" side in the above part, so let’s analyze the "Develop"
column:

• Desktop/mobile. The Just In Time (JIT) technique can be seen as a "real time trans-
lation" because the compilation happens while the program is executing. It’s a sort of
"dynamic compilation" which happens while the program is being used.

JIT compilation, combined with the DVM (JIT + VM in the picture), allows the dispatch
of the code dynamically without considering the user’s machine architecture. In this way
it’s possible to smoothly run and debug the code everywhere without having to mess up
with the underlying architecture.

• Web. The Dart development compiler, abbreviated with dartdevc, allows you to run and
debug Dart web apps on Google Chrome. Note that dartdevc is for development only: for
deployment, you should use dart2js. Using special tools like webdev 6 there’s the possibility
to edit Dart files, refreshing Chrome and visualizing changes almost immediately.

As you’ve just seen, Dart can run literally everywhere: desktop, mobile and web. This book will
give you a wide overview of the language (Dart version 2.10, with null safety support) and all the
required skills to create easily maintainable projects.

6https://dart.dev/tools/webdev#serve

Flutter Complete Reference - Preview version 12

Chapter 1. Welcome

1.2.2 Package system

Dart’s core API offers different packages, such as dart:io or dart:collection, that expose
classes and methods for many purposes. In addition, there is an official online repository called
pub containing packages created by the Dart team, the Flutter team or community users like
you.

If you head to https://pub.dev you will find an endless number of packages for any purpose: I/O
handling, XML serialization/de-serialization, localization, SQL/NoSQL database utilities and
much more.

1. Go to https://pub.dev, the official repository;

2. Let’s say you’re looking for an equation solving library. Type "equations" in the search bar
and filter the results by platform. Some packages are available only for Dart, others only
for Flutter and a good part works for both;

3. The page of the package contains an installation guide, an overview and a guide so that
you won’t get lost.

You should check the amount of likes received by the community and the overall reputation of
the package because those values indicate how mature and healthy the product is. You will learn
how to properly write a library and how to upload it to the pub.dev repository in order to give
your contribution to the growth of the community.

1.2.3 Hello World

The simplest way you have to run your Dart code is by opening DartPad 7, an open-source
compiler that works in any modern browser. Clicking on "New Pad" you can decide whether
creating a new Dart or Flutter project (with latest stable version of the SDK).

7https://dartpad.dartlang.org/

Flutter Complete Reference - Preview version 13

https://pub.dev
https://pub.dev

Chapter 1. Welcome

It’s the perfect tool for the beginners that want to play with Dart and try the code. If you’re
new to the language, start using DartPad (which is absolutely not and IDE). It always has the
latest version of the SDK installed and it’s straightforward to use.

void main() {
// Best food worldwide!
print("pasta pizza maccheroni");

}

Like with Java and C++, any Dart program has to define a function called main() which is the
entry point of the application. Very intuitively the print() method outputs to the console, on
the right of the DartPad, a string. Starting from chapter 2, you’ll begin to learn the syntax and
the good practices that a programmer should know about Dart.

When you develop for real world applications, you’re going to download the whole SDK and use
an IDE like IntelliJ IDEA, Android Studio or VS Code. DartPad doesn’t give you the possibility
to setup tests, import external packages, add dependencies and test your code.

Flutter Complete Reference - Preview version 14

Chapter 1. Welcome

1.3 Intorduction to Flutter

Flutter is an UI toolkit for building natively compiled applications for mobile, desktop and web
with a single codebase. At the time of writing this book, only Flutter for mobile is stable
and ready for production. Web support is currently in beta while desktop (macOS, Linux and
Windows) is in early alpha: they will be covered in a future release of this reference once they
will be officially released as stable builds.

Being familiar with Jetpack compose or React Native is surely an advantage because the concepts
of reactive views and "components tree" are the fundamentals of the Flutter framework.

1.3.1 How does it work

This picture shows how a native app interacts with the OS, whether it’s been written in Kotlin
(or Java) for Android or Swift (or Objective-C) for iOS. We’re going to use these 2 platforms as
examples in this section.

Flutter Complete Reference - Preview version 15

Chapter 1. Welcome

1. The platform, which can be Android or iOS, exposes a series of OEM widgets used by
the app to build the UI. Those widgets are fundamental because they give our app the
capabilities to paint the UI, use the canvas and respond to events such as finger taps.

2. If you wanted to take a picture from your app or use the bluetooth to send a file, there
would be the need to communicate with the native API exposed by the platform. For
example, using OS-specific APIs, you could ask for the camera service, wait for a response
and then start using it.

The cross-platform approach is different and it has to be like so. If you want your app to run on
both Android and iOS with the same codebase, you can’t directly use OEM widgets and their API
because they come from different architectures. They are NOT compatible. On the hardware
side however, both are based on the ARM architecture (precisely, v7 and v8) and the most re-
cent versions have 64-bit support. Flutter AOT compiles the Dart code into native ARM libraries.

� ARM is a family of RISC microprocessors (32 and 64 bit) widely used in embed-
ded systems. It dominates the mobile world thanks to its qualities: low costs, good
heat dissipation and a longer battery life thanks to a low power consumption.

The picture has rectangles on Android and triangles on iOS to indicate that OEM widgets and

Flutter Complete Reference - Preview version 16

Chapter 1. Welcome

APIs have differences in how they are structured, in how they interact with the app and in how
you have to use them. For this reason, cross-platform apps cannot directly "talk" to the under-
lying environment: they must speak a language that everyone can understand.

� Try to only think about the runtime environment for a moment. If you wrote a
Java Android app, it would be compiled to work with the ART ecosystem (Android
RunTime): how could the same binary file work with iOS architecture which is com-
pletely different and has no ART?

In the above image, squares represents calls made by Java to interact with the ART
which is available only in Android and not on iOS. This compatibility problem is
solved by cross-platform frameworks.

ReactJS is a Reactive web framework which tries to solve the above problem by adding a bridge
in the middle that takes care of the communication with the platform. With this approach, the
bridge becomes the real starring of the scene it acts like a translator:

1. The bridge always exposes the same interface to the app so that it doesn’t care anymore
about the OS it’s running on;

2. The bridge has an implementation of OEMs and APIs for each platform to allow the app
to correctly work in many environments. In this way, you have a native app in the sense
that it uses the native tools given by the OS, but there’s still an "adapter" in the middle.

Flutter Complete Reference - Preview version 17

Chapter 1. Welcome

As you can see from the picture, the bridge is an abstraction layer between the app the OS in
which it’s hosted. Of course, there has to be a bridge for each supported platform but that’s
not something you have to deal with because the developers of the framework will take care of
creating all of them.

� If you used a cross-platform framework, you’d just need to care about creating
the app with the code and the API exposed by the framework. The implementation
of the bridge is already in the internals of the SDK and it’s automatically "attached"
to the app in the build phase. You don’t have to create the bridge.

The bridge approach is quite popular, but it could be a potential bottleneck that slows down
the execution and thus the performances might drop. If you think about animations, swipes or
transitions, widgets are accessed very often and many of them running at the same time could
slow down the app. Flutter adopts a completely different strategy:

It uses its own very efficient rendering engine, called Skia, to paint the UI so that OEM widgets
are not needed anymore. In this way, the app doesn’t rely on the instruments the OS exposes to
draw the interface and you can freely control each single pixel of the screen.

• Flutter produces native ARM code for the machine;

Flutter Complete Reference - Preview version 18

Chapter 1. Welcome

• when launched, the app loads the Flutter library. Any rendering, input or event handling,
and so on, is delegated to the compiled Flutter and app code. This is much faster than
having a bridge.

• A minimal Flutter app is about 4.4 MB on Android and 10.9 MB on iOS (depending on
the architecture, whether it be ARM 32 or 64 bit) 8

The true power of Flutter lies on the fact that apps are built with their own rendering stuff and
they are not constrained to paint the UI following the rules "imposed" by OEM widgets. You’re
free to control the screen and manipulate every single pixel.

1.3.2 Why Flutter uses Dart

There are many reasons behind the decision made by Google to choose Dart as language for the
Flutter framework. At the time of writing this book, the latest stable version of Dart is 2.9.2
(Dart 2.10 is on beta, but downloadable anyway). Here’s a summary 9 of what brought them to
make this choice.

1. OOP style. The vast majority of developers have object-oriented programming skills and
thus Dart would be easy to learn as it adopts most of the common OOP patterns. The
developer doesn’t have to deal with a completely new way of coding; he can reuse what he
already knows and integrate it with the specific details of Dart.

2. Performances. In order to guarantee high performances and avoid frame dropping during
the execution of the app, there’s the need of a high performance and predictable language.
Dart can guarantee to be very efficient and it provides a powerful memory allocator that
handles small, short-lived allocations. This is perfect for Flutter’s functional-style flow.

3. Productivity. Flutter allows developers to write Android, iOS, web and desktop apps
with a single codebase keeping the same performances, aspect and feeling in each plat-
form. A highly productive language like Dart accelerates the coding process and makes the
framework more attractive.

4. Both Flutter and Dart are developed by Google which can freely decide what to do with
them listening to the community as well. If Dart was developed by another company,
Google probably wouldn’t have the same freedom of choice in implementing new features
and and the language couldn’t evolve at the desired pace.

Another important aspect is that Dart is strongly typed, meaning that the compiler is going

8https://flutter.dev/docs/resources/faq#how-big-is-the-flutter-engine
9https://flutter.dev/docs/resources/faq#why-did-flutter-choose-to-use-dart

Flutter Complete Reference - Preview version 19

Chapter 1. Welcome

to be very strict about types; you’ll have both less runtime surprises and an easier debugging
process. In addition, keep in mind that Dart is a complete swiss-knife because it has built-in
support for:

• tree-shaking optimization;

• hot reload feature;

• a package manager with mandatory documentation and the possibility to play with the
code using DartPad;

• DevTools , a collection of debugging and performance tools;

• code documentation generator tool;

• support for JIT and AOT compilation.

By owning two home-made products, Google can keep the entire projects under control and
decide how to integrate them in the best way possible with quick development cycles. Dart
evolves together with Flutter and as time goes by: they help each other maximizing productivity
and performances.

1.3.3 Hello world

When creating Flutter apps for the production world, you should really consider using Android
Studio or VSCode and install the respective plugins. They offer a debugger, hints, a friendly UI
and powerful optimization tools we will explore in detail.

void main() {
runApp(MyApp());

}

class MyApp extends StatelessWidget {
const MyApp();

Widget build(BuildContext context) {
return MaterialApp(

home: Scaffold(
body: Center(

child: Text("Flutter app!"),
),

),

Flutter Complete Reference - Preview version 20

Chapter 1. Welcome

);
}

}

This is a very simple example of a minimal Flutter application. You can notice immediately
that there is a void main() { ... } function, required by Dart to define the entry point of the
program. An UI is a composition of widgets that decorate the screen with many objects; you will
learn how to properly use them to create efficient and beautiful designs.

This is an example of how a simple Flutter app looks identical in two different platforms. In this
book we will focus on Android and iOS mobile apps but everything you’re going to learn is also
valid for web and desktop because it’s always Flutter. Once you have the code ready, open the
console...

Flutter Complete Reference - Preview version 21

Chapter 1. Welcome

$ flutter build appbundle

$ flutter build ios

$ flutter build web

$ flutter build macos

$ flutter build windows

$ flutter build linux

...and it’s just a matter of running different build commands to get different native binaries of
the same app. For more info on Flutter for web and desktop, see the appendix B at the bottom
of the book.

Flutter Complete Reference - Preview version 22

"I’m not a great programmer; I’m just a good programmer
with great habits."

Martin Fowler

Part I

The Dart programming language

23

2 | Variables and data types

2.1 Variables

As in any programming language, variables are one of the basics and Dart comes with support for
type inference. A typical example of creation and initialization of a variable is the following:

var value = 18;
var myName = "Alberto"

In the example, value is an integer while myName is a string. Like Java and C#, Dart is able to
infer the type of the variable by looking at the value you’ve assigned. In other words, the Dart
compiler is smart enough to figure out by itself which is the correct type of the variable.

int value = 18;
String myName = "Alberto"

This code is identical to the preceding example with the only difference that here the types have
been typed explicitly. There would also be a third valid way to initialize variables, but you should
almost never use it.

dynamic value = 18;
dynamic myName = "Alberto"

dynamic can be used with any type, it’s like a "jolly": any value can be assigned to it and the
compiler won’t complain. The type of a dynamic variable is evaluated at runtime and thus, for a
proper usage, you’d need to work with checks and type casts. According with the Dart guidelines
and our personal experience you should:

1. Prefer initializing variables with var as much as you can;

2. When the type is not so easy to guess, initialize it explicitly to increase the readability of
the code;

Flutter Complete Reference - Preview version 25

Chapter 2. Variables and data types

3. Use Object or dynamic only if it’s really needed but it’s almost never the case.

Actually, we could say that dynamic is not really a type: it’s more of a way to turn off static
analysis and tell the compiler you know what you’re doing. The only case in which you’ll deal
with it will come in the Flutter part in regard to JSON encoding and decoding.

2.1.1 Initialization

The official Dart guidelines 1 state that you should prefer, in most of the cases, the initialization
with var rather than writing the type explicitly. Other than making the code shorter (program-
mers are lazy!) it can increase the readability in various scenarios, such as:

// BAD: hard to read due to nested generic types
List<List<Toppings>> pizza = List<List<Toppings>>();
for(List<Toppings> topping in pizza) {

doSomething(topping);
}

// GOOD: the reader doesn't have to "parse" the code
// It's clearer what's going on
var pizza = List<List<Toppings>>();
for(var topping in pizza) {

doSomething(topping);
}

Those code snippets use generics, classes and other Dart features we will discuss in depth in the
next chapters. It’s worth pointing out two examples in which you want to explicitly write the
type instead of inferring it:

• When you don’t want to initialize a variable immediately, use the late keyword. It will be
explained in detail later in this chapter.

// Case 1
late List<String> names;

if (iWantFriends())
names = friends.getNames();

else
names = haters.getNames();

1https://dart.dev/guides/language/effective-dart/design#types

Flutter Complete Reference - Preview version 26

Chapter 2. Variables and data types

If you used var instead of List<String> the inferred type would have been null and that’s
not what we want. You’d also lose the type safety and readability.

• The type of the variable is not so obvious at first glance:

// Is this a list? I guess so, "People" is plural...
// but actually the function returns a String!
var people = getPeople(true, 100);

// Ok, this is better
String people = getPeople(true, 100);

However, there isn’t a golden rule to follow because it’s up to your discretion. In general var
is fine, but if you feel that the type can make the code more readable you can definitely write
it.

2.1.2 final

A variable declared as final can be set only once and if you try to change its content later, you’ll
get an error. For example, you won’t be able to successfully compile this code:

final name = "Alberto";
name = "Albert"; // 'name' is final and cannot be changed

You can also notice that final can automatically infer the type exactly like var does. This
keyword can be seen as a "restrictive var" as it deduces the type automatically but does not
allow changes.

// Very popular - Automatic type deduction
final name = "Alberto";
// Generally unnecessary - With type annotation
final String nickName = "Robert";

If you want you can also specify the type but it’s not required. So far we’ve only shown examples
with strings, but of course both final and var can be used with complex data types (classes,
enums) or methods.

final rand = getRandomInteger();

// rand = 0;
// ^ doesn't work because the variable is final

Flutter Complete Reference - Preview version 27

Chapter 2. Variables and data types

The type of rand is deduced by the return statement of the method and it cannot be re-assigned
in a second moment. The same advice we’ve given in "2.1.1 Initialization" for var can be applied
here as well.

� Later on in the book we will analyze in detail the const keyword, which is the
"brother" of final, and it has very important performance impacts on Flutter.

While coding you can keep this rule in mind: use final when you know that, once assigned, the
value will never change in the future. If you know that the value might change during the time
use var and think whether it’s the case to annotate the type or not. Here’s an example in which
a final variable fits perfectly:

void main() {
// Assume that the content of the file can't be edited
final jsonFile = File('myfile.json').readAsString();

checkSyntax(jsonFile);
saveToDisk(jsonFile, 'file.json');

}

In this example the variable jsonFile has a content that doesn’t have to be modified, it will
always remain the same and so a final declaration is good:

• it won’t be accidentally edited later;

• the compiler will give an error if you try to modify the value.

If you used var the code would have compiled anyway but it wouldn’t have been the best choice.
If the code was longer and way more complicated, you could accidentally change the content of
jsonFile because there wouldn’t be the "protection" of final.

2.2 Data types

Types in Dart can be initialized with "literals"; for example true is a boolean literal and "test"
is a string literal. In chapter 6 we will analyze generic data types that are very commonly used
for collections such as lists, sets and maps.

Flutter Complete Reference - Preview version 28

Chapter 2. Variables and data types

2.2.1 Numbers

Dart has two type of numbers:

• int. 64-bit at maximum, depending on the platform, integer values. This type ranges from
-263 to 263-1.

• double. 64-bit double-precision floating point numbers that follow the classic IEEE 754
standard definition.

Both double and int are subclasses of num which provides many useful methods such as:

• parse(string),

• abs(),

• ceil(),

• toString()...

You should always use double or int. We will see, with generic types, a special case in which
num is needed but in general you can avoid it. Some examples are always a good thing:

var a = 1; // int
var b = 1.0; // double

int x = 8;
double y = b + 6;
num z = 10 - y + x;

// 7 is a compile-time constant
const valueA = 7;
// Operations among constant values are constant
const valueB = 2 * valueA;

From Dart 2.1 onwards the assignment double a = 5 is legal. In 2.0 and earlier versions you
were forced to write 5.0, which is a double literal, because 5 is instead an integer literal and the
compiler didn’t automatically convert the values. Some special notations you might find useful
are:

1. The exponential representation of a number, such as var a = 1.35e2 which is the equiva-
lent of 1.35 * 102;

Flutter Complete Reference - Preview version 29

Chapter 2. Variables and data types

2. The hexadecimal representation of a number, such as var a = 0xF1A where 0xF1A equals
to F1A in base 16 (3866 in base 10).

2.2.1.1 Good practices

Very likely, during your coding journey, you’ll have at some point the need to parse numbers from
strings or similar kinds of manipulations. The language comes to the rescue with some really
useful methods:

String value = "17";

var a = int.parse(value); // String-to-int conversion
var b = double.parse("0.98"); // String-to-double conversion
var c = int.parse("13", radix: 6); // Converts from 13 base 6

You should rely on these methods instead of writing functions on your own. In the opposite
direction, which is the conversion into a string, there is toString() with all its variants:

String v1 = 100.toString(); // v1 = "100";
String v2 = 100.123.toString(); // v2 = "100.123";
String v3 = 100.123.toStringAsFixed(2); // v3 = "100.12";

Since we haven’t covered functions yet you can come back to this point later or, if you’re brave
enough, you can continue the reading. When converting numbers from a string, the method
parse() can fail if the input is malformed such as "12_@4.49". You’d better use one of the
following solutions (we will cover nullable types later):

// 1. If the string is not a number, val is null
double? val = double.tryParse("12@.3x_"); // null
double? val = double.tryParse("120.343"); // 120.343

// 2. The onError callback is called when parsing fails
var a = int.parse("1_6", onError: (value) => 0); // 0
var a = int.parse("16", onError: (value) => 0); // 16

Keep in mind that parse() is deprecated: you should prefer tryParse(). What’s important to
keep in mind is that a plain parse("value") call is risky because it assumes the string is already
well-formed. Handling the potential errors as shown is safer.

Flutter Complete Reference - Preview version 30

Chapter 2. Variables and data types

2.2.2 Strings

In Dart a string is an ordered sequence of UTF-16 values surrounded by either single or double
quotes. A very nice feature of the language is the possibility of combining expressions into strings
by using ${expr} (a shorthand to call the toString() method).

// No differences between s and t
var s = "Double quoted";
var t = 'Single quoted';

// Interpolate an integer into a string
var age = 25;
var myAge = "I am $age years old";

// Expressions need '{' and '}' preceeded by $
var test = "${25.abs()}"

// This is redundant, don't do it because ${} already calls toString()
var redundant = "${25.toString()}";

A string can be either single or multiline. Single line strings are shown above using single or
double quotes, and multiline strings are written using triple quotes. They might be useful when
you want to nicely format the code to make it more readable.

// Very useful for SQL queries, for example
var query = """

SELECT name, surname, age
FROM people
WHERE age >= 18
ORDER BY name DESC

""";

In Dart there isn’t a char type representing a single character because there are only strings. If
you want to access a particular character of a string you have to use the [] operator:

final name = "Alberto";

print(name[0]); // prints "A"
print(name[2]); // prints "b";

Flutter Complete Reference - Preview version 31

Chapter 2. Variables and data types

The returned value of name[0] is a String whose length is 1. We encourage you to visit 2 the
online Dart documentation about strings which is super useful and full of examples.

var s = 'I am ' + name + ' and I am ' + (23).toString() + ' y.o.';

You can concatenate strings very easily with the + operator, in the classic way that most pro-
gramming languages support. The official Dart guidelines 3 suggest to prefer using interpolation
to compose strings, which is shorter and cleaner:

var s = 'I am $name. I am ${25} years old';

In case of a string longer than a single line, avoid the + operator and prefer a simple line break.
It’s just something recommended by the Dart for styling reasons, there are no performance
implications at all. Try to be as consistent as possible with the language guidelines!

// Ok
var s = 'I am going to the'

'second line';

// Still ok but '+' can be omitted
var s = 'I am going to the' +

'second line';

Since strings are immutable, making too many concatenations with the + operator might be
inefficient. In such cases it’d be better if you used a StringBuffer which efficiently concatenates
strings. For example:

var value = "";

for(var i = 0; i < 900000; ++i) {
value += "$i ";

}

Each time the + operator is called, value is assigned with a new instance which merges the old
value and the new one. In other words, this code creates for 900000 times a new String object,
one for each iteration, and it’s not optimal at all. Here’s the way to go:

var buffer = StringBuffer();

2https://dart.dev/guides/libraries/library-tour#strings-and-regular-expressions
3https://dart.dev/guides/language/effective-dart/usage#prefer-using-interpolation-to-compose-strings-and-

values

Flutter Complete Reference - Preview version 32

Chapter 2. Variables and data types

for(var i = 0; i < 900000; ++i)
buffer.write("$i ");

var value = buffer.toString();

This is much better because StringBuffer doesn’t internally create a new string on each iteration;
the string is created only once at the moment in which toString() is called. When you have to
do long loops that manipulate strings, avoid using the + operator and prefer a buffer. The same
class can also be found in Java and C# for example.

2.2.3 Enumerated types

Also known as "enums", enumerated types are containers for constant values that can be declared
with the enum keyword. A very straightforward example is the following:

enum Fruits { Apple, Pear, Grapes, Banana, Orange }

void main() {
Fruits liked = Fruits.Apple;
var disliked = Fruits.Banana;

print(liked.toString()); // prints 'Fruits.Apple'
print(disliked.toString()); // prints 'Fruits.Banana'

}

Each item of the enum has an associated number, called index, which corresponds to the zero-
based position of the value in the declaration. You can access this number by using the index
property.

enum Fruits { Apple, Pear, Grapes, Banana, Orange }

void main() {
var a = Fruits.Apple.index; // 0
var b = Fruits.Pear.index; // 1
var c = Fruits.Grapes.index; // 2

}

Note that when you need to use an enum you always have to fully qualify it. Using the name only
doesn’t work.

Flutter Complete Reference - Preview version 33

Chapter 2. Variables and data types

2.2.3.1 Good Practices

When you need a predefined list of values which represents some kind of textual or numeric data,
you should prefer an enum over a primitive data type. In this way you can increase the readability
of the code, the consistency and the compile-time checking. Look at these 2 ways of creating a
function (/// is used to document the code):

enum Chess { King, Queen, Rook, Bishop, Knight, Pawn }

/// METHOD 1. Checks if the piece can move in diagonal
bool diagonalMoveC(Chess item) { ... }

/// METHOD 2. Checks if a piece can move in diagonal: [item] can only be:
/// 1. King
/// 2. Queen
/// 3. Rook
/// 4. Bishop
/// 5. Knight
/// 6. Pawn
/// Any other number is not allowed.
bool diagonalMoveS(int item) { ... }

This example should convince you that going for the first method is for sure the right choice.

• diagonalMoveC(Chess item). There’s a big advantage here: we’re guaranteed by the
compiler that item can only be one of the values in Chess. There’s no need for any
particular check and we can understand immediately what the method wants us to pass.

• diagonalMoveS(int item). There’s a big disadvantage here: we can pass any number, not
only the ones from 1 to 6. We’re going to do extra work in the body because we don’t have
the help of the compiler, so we need to manually check if item contains a valid value.

In the second case, we’d have to make a series of if conditions to check whether the value ranges
from 1 to 6. Using an enum, the compiler does the checks for us (by comparing the types) and
we’re guaranteed to work with valid values.

2.2.4 Booleans

You can assign to the bool type only the literals true or false, which are both compile-time
constants. Here there are a few usage examples:

Flutter Complete Reference - Preview version 34

Chapter 2. Variables and data types

bool test = 5 == 0; // false
bool test2 = !test; // has the opposite value of test

var oops = 0.0 / 0.0; // evaluates to 'Not a Number' (NaN)
bool didIFail = oops.isNaN;

2.2.5 Arrays

Probably you’re used to create arrays like this: int[] array = new int[5]; which is the way
that Java and C# offer. In Dart it doesn’t really work like that because you can only deal with
collections: an "array" in Dart is represented by a List<T>.

� List<T> is a generic container where T can be any type (such as String or a
class). We will cover generics and collections in detail in chapter 6. Basically, Dart
doesn’t have "arrays" but only generic containers.

If this is not clear, you can look at this comparison. In both languages there is a generic container
for the given type but only Java has "primitive" arrays.

• Java

// 1. Array
double[] test = new test[10];
// 2. Generic list
List<double> test = new ArrayList<>();

• Dart

// 1. Array
// (no equivalent)
// 2. Generic list
List<double> test = new List<double>();

In Dart you can work with arrays but they are intended to be instances of List<T>. Lists are
0-indexed collections and items can be randomly accessed using the [] operator, which will throw
an exception if you exceed the bounds.

//use var or final
final myList = [-3.1, 5, 3.0, 4.4];
final value = myList[1];

Flutter Complete Reference - Preview version 35

Chapter 2. Variables and data types

A consequence of the usage of a List<T> as container is that the instance exposes many useful
methods, typical of collections:

• length,

• add(T value),

• isEmpty,

• contains(T value)

... and much more.

2.3 Nullable and Non-nullable types

Starting from Dart 2.10, variables will be non-nullable by default (nnbd) which means they’re
not allowed to hold the null value. This feature has been officially introduced in June 2020 as
tech preview in the dev channel of the Dart SDK.

// Trying to access a variable before it's been assigned will cause a
// compilation error.
int value;
print("$value"); // Illegal, doesn't compile

If you don’t initialize a variable, it’s automatically set to null but that’s an error because Dart
has non-nullability enabled by default. In order to successfully compile you have to initialize the
variable as soon as it’s declared:

// 1.
int value = 0;
print("$value");

// 2.
int value;
value = 0;
print("$value");

In the first case the variable is assigned immediately and that’s what we recommend to do as much
as possible. The second case is still valid because value is assigned before it’s ever accessed. It
wouldn’t have worked if you had written this:

// OK - assignment made before the usage

Flutter Complete Reference - Preview version 36

Chapter 2. Variables and data types

int value;
value = 0;
print("$value");

// ERROR - usage made before assignment
int value;
print("$value");
value = 0;

Non-nullability is very powerful because it adds another level of type safety to the language and,
by consequence, lower possibilities for the developer to encounter runtime exceptions related to
null. For example, you won’t have the need to do this:

String name = "Alberto";

void main() {
if (name != null) {

print(name)
}

}

The compiler guarantees that it can’t be null and thus no null-checks are required. To sum up,
what’s important to keep in mind while writing Dart 2.10 code (and above) is:

• By default, variables cannot be null and they must always be initialized before being
used. It would be better if you immediately initialized them, but you could also do it in a
second moment before they ever get utilized.

• Don’t do null-checks on "standard" non-nullable variables because it’s useless.

In Dart you can also declare nullable types which doesn’t require to be initialized before being
accessed and thus they’re allowed to be null. Nullables are the counterpart of non-nullable types
because the usage of null is allowed (but the additional type safety degree is lost).

int? value;
print("$value"); // Legal, it prints 'null'

If you append a question mark at the end of the type, you get a nullable type. For safety, they
would require a manual null checks in order to avoid undesired exceptions but, in most of the
cases, sticking with the default non-nullability is fine.

// Non-nullable version - default behavior

Flutter Complete Reference - Preview version 37

Chapter 2. Variables and data types

int value = 0;
print("$value"); // prints '0'

// Nullable version - requires the ? at the end of the type
int? value;
print("$value"); // prints 'null'

Nullable types that support the index operator [] need to be called with the ?[] syntax. null
is returned if the variable is also null.

String? name = "Alberto";
String? first = name?[0]; // first = 'A';

String? name;
String? first = name?[0]; // first = 'null';

We recommend to stick with the defaults, which is the usage of non-nullable types, as they’re safer
to use. Nullables should be avoided or used only when working with legacy code that depends
on null. Last but not least, here are the only possible conversions between nullables and non
nullables:

• When you’re sure that a nullable expression isn’t null, you can add a ! at the end to convert
it to the non-nullable version.

int? nullable = 0;
int notNullable = nullable!;

The ! (called "bang operator") converts a nullable value (int?) into a non-nullable value
(int) of the same type. An exception is thrown if the nullable value is actually null.

int? nullable;
// An exception is thrown
int notNullable = nullable!;

• If you need to convert a nullable variable into a non-nullable subtype, use the typecast
operator as (more on it later):

num? value = 5;
int otherValue = value as int;

You wouldn’t be able to do int otherValue = value! because the bang operator works
only when the type is the same. In this example, we have a num and an int so there’s the
need for a cast.

Flutter Complete Reference - Preview version 38

Chapter 2. Variables and data types

• Even if it isn’t a real conversion, the operator ?? can be used to produce a non-nullable
value from a nullable one.

int? nullable = 10;
int nonNullable = nullable ?? 0;

If the member on the left (nullable) is non-null, return its value; otherwise, evaluate and
return the member of the right (0).

Remember that when you’re working with nullable values, the member access operator (.) is not
available. Instead, you have to use the null-aware member access operator (?.):

double? pi = 3.14;

final round1 = pi.round(); // No
final round2 = pi?.round(); // Ok

2.4 Data type operators

In Dart expressions are built using operators, such as + and - on primitive data types. The
language also supports operator overloading for classes as we will cover in chapter 4.

2.4.1 Arithmetic operators

Arithmetic operators are commonly used on int and double to build expressions. As you already
know, the + operator can also be used to concatenate strings.

Symbol Meaning Example

+ Add two values 2 + 3 //5

- Subtract two values 2 - 3 //-1

* Multiply two values 6 * 3 //18

/ Divide two values 9 / 2 //4.5

∼ / Integer division of two values 9 ~/ 2 //4

Flutter Complete Reference - Preview version 39

Chapter 2. Variables and data types

% Remainder (modulo) of an int division 5 % 2 //1

Prefix and postfix increment or decrement work as you’re used to see in many languages.

int a = 10;
++a; // a = 11
a++; // a = 12

int b = 5;
--b; // b = 4;
b--; // b = 3;

int c = 6;
c += 6 // c = 12

As a reminder, both postfix and prefix increment/decrement have the same result but they work
in a different way. In particular:

• in the prefix version (++x) the value is first incremented and then "returned";

• in the postfix version (x++) the valie is first "returned" and then incremented

2.4.2 Relational operators

Equality and relational operators are used in boolean expression, generally inside if statements
or as a stop condition of a while loop.

Symbol Meaning Example

== Equality test 2 == 6

!= Inquality test 2 != 6

> Greather than 2 > 6

Flutter Complete Reference - Preview version 40

Chapter 2. Variables and data types

< Smaller than 2 < 6

>= Greater or equal to 2 >= 6

<= Smaller or equal to 2 <= 6

.

Testing the equality of two objects a and b always happens with the == operator because, unlike
Java or C#, there is no equals() method. In chapter 6 we will analyze in detail how classes
can be properly compared by overriding the equality operator. In general here’s how the ==
works:

1. If a or b is null, return true if both are null or false if only one is null. Otherwise...

2. ... return the result of == according with the logic you’ve defined in the method override.

Of course, == works only with objects of the same type.

2.4.3 Type test operators

They are used to check the type of an object at runtime.

Symbol Meaning Example

as Cast a type to another obj as String

is True if the object has a certain type obj is double

is! False if the object has a certain type obj is! int

.

Let’s say you’ve defined a new type like class Fruit {}. You can cast an object to Fruit using
the as operator like this:

(grapes as Fruit).color = "Green";

Flutter Complete Reference - Preview version 41

Chapter 2. Variables and data types

The code compiles but it’s unsafe: if grapes was null or if it wasn’t a Fruit, you would get an
exception. It’s always a good practice checking whether the cast is doable before doing it:

if (grapes is Fruit) {
(grapes as Fruit).color = "Green";

}

Now you’re guaranteed the cast will happen only if it’s possible and no runtime exceptions can
happen. Actually, the compiler is smart enough to understand that you’re doing a type check
with is and it can do a smart cast .

if (grapes is Fruit) {
grapes.color = "Green";

}

You can avoid writing the explicit cast (grapes as Fruit) because, inside the scope of the
condition, the variable grapes is automatically casted to the Fruit type.

2.4.4 Logical operators

When you have to create complex conditional expressions you can use the logical operators:

Symbol Meaning

!expr Toggles true to false and vice versa

expr1 && expr2 Logical AND (true if both sides are true)

expr1 || expr2 Logical OR (true if at least one is true)

.

2.4.5 Bitwise and shift operators

You’ll never use these operators unless you’re doing some low level data manipulation but in
Flutter this never happens.

Flutter Complete Reference - Preview version 42

Chapter 2. Variables and data types

Symbol Meaning

a & b Bitwise AND

a | b Bitwise OR

a ^ b Bitwise XOR

∼ a Bitwise complement

a >> b Right shift

a << b Left shift

Flutter Complete Reference - Preview version 43

"Programs must be written for people to read, and only
incidentally for machines to execute."

Abelson and Sussman

Part II

The Flutter framework

45

3 | Basics of Flutter

� You are reading the last section of chapter 9. This is not the full chapter.

3.1 Architecture

In this section we’re giving a general overview of the architecture of the framework digging a bit
more into the details. Flutter is divided into three layers (it’s said to be a layered system)
where each depends on the one below. Layers are made up of libraries written in different
languages.

Flutter Complete Reference - Preview version 47

Chapter 3. Basics of Flutter

The embedder is written in different languages according with the platform in which Flutter
has to run: Objective C++ for iOS / macOS, Java / C++ for Android and C++ for Linux /
Windows. It’s a native application that takes care of "hosting" your Flutter contents on the OS.
When the app is started, the embedder provides a valid entrypoint, obtains threads for UI and
rendering, starts the Flutter engine and much more.

Flutter Complete Reference - Preview version 48

Chapter 3. Basics of Flutter

� The embedder is at the lowest layer and it directly interacts with the operating
system providing entry points for access to services. The developer mostly works on
the third layer and sometimes on the second, but never on the first.

The engine is the heart of Flutter, it’s mostly written in C++ and it’s always packaged in
the binary produced by the flutter build tool. It’s a portable runtime for hosting Flutter
application which includes core libraries for network I/O, file, animations and graphics. The
engine is exposed to the developer via import "dart:ui", which basically wraps C++ sources
into Dart classes. For the web world, the situation is different:

The C++ engine is designed to work with the operating system but for the web Flutter has to

Flutter Complete Reference - Preview version 49

Chapter 3. Basics of Flutter

deal with a browser. For this reason, the approach has to be different. Dart can be compiled
to JavaScript thanks to the highly-optimized dart2js compiler so, by consequence, Flutter apps
can be ported as well. There are 2 ways to deploy an application for the web:

1. HTML mode. Flutter uses HTML, CSS, JavaScript and Canvas.

2. WebGL mode. Flutter uses CanvasKit, which is Skia compiled to WebAssembly.

For the web, there’s no need for the Dart runtime because your Flutter app is compiled to
JavaScript as we’ve already said. The produced code is already minified and it can be deployed
to any server. At the time of publishing this book (September 2020), web support for Flutter is
only available in the beta channel.

� In case you didn’t know, WebAssembly is recognized 1 by the W3C as the 4th
language to natively run on browsers along with HTML, CSS, and JavaScript. We-
bAssembly can be both AOT and JIT compiled.

3.1.1 Element and RenderObject

You’ve already seen that, to build the UI, the developer has to create a widget tree by nesting
widgets one inside the other. In reality, Flutter doesn’t only rely on widgets because internally
there are two other kinds of trees maintained in parallel 2. Through this section, we’re assuming
that SomeText is just a simple widget showing some text.

class MyWidget extends StatelessWidget {
const MyWidget();

@override
Widget build(BuildContext context) {

return Container(
decoration: BoxDecoration(),
child: SomeText(

text: "Hello"
),

);

1https://www.w3.org/TR/wasm-core-1/
2See "The Layer Cake" by Frederik Schweiger on Medium

Flutter Complete Reference - Preview version 50

Chapter 3. Basics of Flutter

}
}

When it’s time to render, Flutter calls the build() method of the widget which might introduce
some new widgets, in case of nesting. In our case, the widget tree will contain Container,
SomeText plus some more you actually don’t see. In fact, if you looked at the definition of a
Container...

if (decoration != null)
current = DecoratedBox(decoration: decoration, child: current);

... you’d notice that an instance of DecoratedBox is added under the hood if a decoration is
given. For this reason, if you made a DevTools 3 inspection you’d see more children than you
actually inserted. It’s because widgets might insert other widgets inside but you just don’t see
it; the tree actually looks like this:

Some boxes are in grey to visualize the fact they haven’t been added by you. Along with the
widget tree, Flutter also builds in parallel the element tree and the render tree. They are
created calling respectively createElement() and createRenderObject() on the widget being
traversed. Note that createElement() is always called on widgets but createRenderObject()
is only called on elements whose type is RenderObjectElement. So yes, at the end Flutter works
with 3 trees.

3More on it in chapter 16

Flutter Complete Reference - Preview version 51

Chapter 3. Basics of Flutter

An Element can hold a reference to a widget and the respective RenderObject. There are a lot
of new things you’ve never seen up to now so let’s carefully analyze the trees to understand how
Flutter really works.

• Render tree. A RenderObject contains all the logic to render the corresponding widget
and it’s expensive to create. They take care of the layout, the constraints, hit testing
and painting. The framework keeps them in memory as much as possible, changing their
properties whenever there’s a chance. They can be of many types:

– RenderFlex

– RenderParagraph

– RenderBox ...

During the build phase, the framework updates or creates a new type of RenderObject
only when a RenderObjectElement is encountered in the element tree.

• Element tree. An Element is the link between a Widget and its respective RenderObject
so it holds references inside. Elements are very good at comparing items and looking for
changes but they don’t perform rendering. They can be of two types:

– ComponentElement. An element that contains other elements. It’s associated to a
widget that can nest other widgets inside.

abstract class ComponentElement extends Element { ... }

Flutter Complete Reference - Preview version 52

Chapter 3. Basics of Flutter

– RenderObjectElement. An element that takes part in painting, layout and hit testing
phases.

abstract class RenderObjectElement extends Element { ... }

The element tree is basically a series of ComponentElement or RenderObjectElement, de-
pending on the widget they refer to. In our example, a Container is a ComponentElement
because it can host other widgets inside.

• Widget tree. It’s made up of classes extending StatelessWidget or StatefulWidget.
They’re used by the developer to build the UI and are not expensive to be created (much
less than a RenderObject).

Whenever the widget tree is changed (by a state management library for example), Flutter
uses the element tree to make a comparison between the new widget tree and the render tree.
An Element is a "middle way" between a Widget and a RenderObject used to make quick
comparisons needed to keep the trees updated.

1. A Widget is "light" and it’s instantiated quickly so frequent rebuilds aren’t a problem at all.
Widgets are all immutable and that’s why the state of a StatefulWidget is implemented
in another separated class. A stateful widget itself is immutable but the state it returns
can mutate.

class Example extends StatefulWidget {
const Example();

@override
_ExampleState createState() => _ExampleState();

}

class _ExampleState extends State<Example> {
@override
Widget build(BuildContext context) { ... }

}

The widget itself (Example) is immutable and so its mutable state (_ExampleState) is
implemented in another class. A StatelessWidget is immutable as well.

2. A RenderObject is relatively "expensive" and it takes time to instantiate so it’s recreated
only when really needed. Most of the times they’re internally modified (reusability is the
key).

Flutter Complete Reference - Preview version 53

Chapter 3. Basics of Flutter

For each rebuild, Flutter traverses the entire tree looking for changes on widgets. If the type of
the Widget changed, then it’d be removed and replaced together with its associated Element
and RenderObject. All the 3 subtrees would also be recreated. If the Widget were of the same
type and just some properties changed, the Element would stay untouched and the RenderObject
would be updated (and not recreated). Let’s see an example:

Widget build(BuildContext context) {
return Container(

decoration: BoxDecoration(),
child: SomeText(

text: "Hello"
),

);
}

This is what we had earlier. Of course, on the first build the 3 trees are entirely created but from
now on, the framework will try to recreate the render tree as less as possible. Let’s say our state
management library changed the text of SomeText.

Widget build(BuildContext context) {
return Container(

decoration: BoxDecoration(),
child: SomeText(

text: "Hello world!"
),

);
}

When a rebuild happens, thanks to the element tree, Flutter notices that the type is still the
same (SomeText) but an internal property (text) has changed. By consequence, the associated
RenderObject just needs an update, which is cheap.

Flutter Complete Reference - Preview version 54

Chapter 3. Basics of Flutter

This process is very fast because the RenderObject is not recreated but it’s just modified. Widgets
and elements are also quick to update so this is a good situation. Let’s now say that our library
replaces SomeText with Flutter’s Text widget.

Widget build(BuildContext context) {
return Container(

decoration: BoxDecoration(),
child: Text("Hello world!"),

);
}

While traversing the tree, the framework notices again the change thanks to the element tree. In
particular, this time the type of the widget is completely different so there’s the need to rebuild
the entire subtrees (widgets, elements and renders).

Flutter Complete Reference - Preview version 55

Chapter 3. Basics of Flutter

The associated RenderObject is not updated: it has to be entirely recreated because the wid-
get has a different type and thus there’s no way to reuse the old instance. In summary, Flutter
relies on 3 trees to efficiently handle the rendering and tries to reuse RenderObjects as much
as possible. Thanks to Elements, the framework knows when something has changed on Widgets.

� The BuildContext parameter you see in any build() method basically represents
the Element associated to the widgets. In reality, BuildContext objects are Element
objects. The Flutter team created BuildContext to avoid the direct interaction with
Element, which should be used by the framework and not by you.

The render tree is the one that actually takes care of painting elements to the UI. The widget
tree is manually built by you, the developer. The element tree is maintained by the framework
to decide whether it’s time to update or recreate a RenderObject.

3.1.2 Foreign Function Interface

Thanks to the dart:ffi library, also known as Foreign Function Interface, your Dart code
can directly bind to native APIs written in C. FFI is very fast because there’s no serialization
required to pass data since calls are made to dynamically or statically linked libraries. Here’s a
an example:

// demo.h
void print_demo() {};

Flutter Complete Reference - Preview version 56

Chapter 3. Basics of Flutter

// demo.c
#include <stdio.h>
#include "demo.h"

void print_demo() {
printf("Dart FFI demo!");

}

int main() {
print_demo();
return 0;

}

We’re going to call void print_demo() written in C inside a Dart app thanks to FFI. To keep
the example simple, we assume that every file is in the same folder and the following Dart code
is all inside main.dart. Let’s start with the fundamentals:

import "dart:ffi" as FFI;

// Signature of the function in C
typedef print_demo_c = FFI.Void Function();
// Signature of the function in Dart
typedef PrintDemo = void Function();

The first typedef uses FFI to represent the signature of the C function we’re going to call. It’s
basically used to represent the C function into its Dart counterpart, identified by PrintDemo. Of
course, you have to declare two typedef whose signatures match.

import "dart:ffi" as FFI;

typedef print_demo_c = FFI.Void Function();
typedef PrintDemo = void Function();

void main() {
// Open the library
final path = "demo_lib.dll"; // On Windows
final lib = FFI.DynamicLibrary.open(path);

// Create a "link" from C to Dart

Flutter Complete Reference - Preview version 57

Chapter 3. Basics of Flutter

final PrintDemo demo = lib
.lookup<FFI.NativeFunction<print_demo_c>>('print_demo')
.asFunction();

// Call the function
demo();

}

In general, when working with FFI you always have to create two typedef: one for the "C side"
and the other for the "Dart side". When building the C code, various files are created but you’re
only interested in the one with the following extension: .dll on Windows, .so on Linux and
.dylib on macOS. On Windows, be sure that your compiler properly exports to the DLL the
functions Dart has to use.

int sum(int a, int b) {
return a + b;

}

The above code can easily be used by Dart in the same way we did earlier in the demo function.
Inside dart:ffi you’ll find many types representing the C primitive ones, such as Int32, Double,
UInt32, Handle and much more.

typedef sum_c = FFI.Int32 Function(FFI.Int32 a, FFI.Int32 b);
typedef Sum = int Function(int a, int b);

Check out the official documentation 4 for some nice examples on how to interact with structs,
strings and SQLite databases.

3.1.3 Method channels

Available only for mobile and desktop, method channels allow Dart to call platform-specific code
of your hosting app. Data are serialized from Dart and then deserialized in Java, Kotlin, Swift
or Objective-C. Look how easy it is:

const channel = MethodChannel("person");
final name = await channel.invokeMethod<String>("getPersonName");
print(name); // 'name' is a regular Dart string

As example, let’s say the above code is going to call the getPersonName(): String function
declared in a native Android app written in Kotlin. There’s a similar setup to do in the native

4https://api.dart.dev/stable/2.9.2/dart-ffi/dart-ffi-library.html

Flutter Complete Reference - Preview version 58

Chapter 3. Basics of Flutter

part as well but it’s very simple to understand:

// Initialization
val channel = MethodChannel(flutterView, "person")
channel.setMethodCallHandler {call, result ->

when (call.method) {
"getPersonName" -> result.success(getPersonName())
else -> result.notImplemented()

}
}

// This function is defined somewhere
fun getPersonName(): String {

return "Alberto"
}

In both cases, the MethodChannel instance has to be created with the same name ("person") oth-
erwise the "link" between Dart and Kotlin won’t work. The name of the function matches the ac-
tual name on the native side just for convenience but it’s not required. With invokeMethod<T>()
you can also pass parameters in case the function were asking for some. For example, if you called
this in Dart...

const channel = MethodChannel("random");
final random = await channel.invokeMethod<int>("getRandom", 60);

... it would mean that you’re expecting a method on the native language called getRandom asking
for a single integer parameter. This example instead is written in Swift but the logic is always
the same (just a different syntax):

// Initialization
let chl = FlutterMethodChannel(name: "random", binaryMessenger: flutterView)
chl.setMethodCallHandler {

(call: FlutterMethodCall, result: FlutterResult) -> Void in
switch (call.method) {

case "getRandom": result(getRandom(call.arguments as! Int))
default: result(FlutterMethodNotImplemented)

}
}

// This function is defined somewhere

Flutter Complete Reference - Preview version 59

Chapter 3. Basics of Flutter

func getRandom(value: Int) -> Int {
return Int.random(in: 0...value);

}

Thanks to call.arguments you access the argument passed via method channel which could be,
for example, a primitive type or a map. A MethodChannel is a common interface for both Dart
and the other native language that allows Flutter to send/receive messages. This is a scheme of
how method channels are implemented:

In the native code, method channels must be called in the main thread and not in a background

Flutter Complete Reference - Preview version 60

Chapter 3. Basics of Flutter

one (in Android, the "main" thread is actually called UI thread). To sum up, the communication
flow works like this:

1. Flutter sends a message to the iOS or Android part of the app using a method channel;

2. the underlying system listens on the method channel and so the message is received;

3. one or more platform-specific APIs are called, using the native programming language;

4. a response is sent back to the client (Flutter) which processes the result.

You can’t do the same with FFI because there are no libraries to be linked and data need seri-
alization/deserialization: method channels work differently and require a native implementation
as well.

Flutter Complete Reference - Preview version 61

Chapter 3. Basics of Flutter

Flutter Complete Reference - Preview version 62

Index

Symbols
== .41
?[] . 38
[] . 31, 35, 38

A
AngularDart . 11
AOT . 10, 11, 20
ARM . 7, 16, 18
ART . 17
as . 41

B
bang operator . 38
bridge . 6, 7, 17–19

C
CanvasKit . 50
ComponentElement 52
const . 28
createElement() . 51
createRenderObject()51

D
dart2js .11, 50
dart:ffi . 56
DartPad . 14, 20
DevTools . 20
DVM . 10, 12
dynamic . 25, 26

E
Element . 52
embedder . 48
engine . 49
enum . 33, 34
equals() . 41

F
FFI . 56
FFI.DynamicLibrary 57
FFI.NativeFunction()57
final . 27, 28

I
index . 33
invokeMethod<T>() 59
is .42

J
JIT . 20

L
late . 26

M
method channels . 58
MethodChannel . 58

N
non-nullable . 36–38
null .27, 36–38, 42

Flutter Complete Reference - Preview version 63

Index

nullable .37, 38
num . 29

O
Object . 26
OEM . 16

P
parse() . 30

Q
quiz . 9

R
RenderObject . 52

S
Skia . 18
smart cast . 42
StringBuffer . 32, 33

T
toString() .31, 33

V
var .25–28

W
WebAssembly . 50

Flutter Complete Reference - Preview version 64

Special thanks to Felix Angelov, Matej Rešetár, Rémi Rousselet, Matthew Palomba and Alfred
Schilken

	Welcome
	Introduction
	Who is this book for
	Author
	Acknowledgments
	Online resources and the quiz

	Introduction to Dart
	Supported platforms
	Package system
	Hello World

	Intorduction to Flutter
	How does it work
	Why Flutter uses Dart
	Hello world

	I The Dart programming language
	Variables and data types
	Variables
	Initialization
	final

	Data types
	Numbers
	Good practices

	Strings
	Enumerated types
	Good Practices

	Booleans
	Arrays

	Nullable and Non-nullable types
	Data type operators
	Arithmetic operators
	Relational operators
	Type test operators
	Logical operators
	Bitwise and shift operators

	II The Flutter framework
	Basics of Flutter
	Architecture
	Element and RenderObject
	Foreign Function Interface
	Method channels

	Index

