

Dart Essentials

Design and build full-featured web and CLI apps using
the powerful Dart language and its libraries and tools

Martin Sikora

BIRMINGHAM - MUMBAI

Dart Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1190515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-960-7

www.packtpub.com

www.packtpub.com

Credits

Author
Martin Sikora

Reviewers
Lamoriniere Cedric

Rokesh Jankie

Hans Van den Keybus

Frederik Leonhardt

Marko Vuksanovic

Commissioning Editor
Taron Pereira

Acquisition Editor
Shaon Basu

Content Development Editor
Akashdeep Kundu

Technical Editor
Mrunal M. Chavan

Copy Editor
Stuti Srivastava

Project Coordinator
Milton Dsouza

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Martin Sikora has been programming professionally since 2006 for companies
such as Miton CZ and Symbio Digital in various languages, mostly PHP. Since 2012,
he's been freelancing, working on projects in Python, PHP, Dart, Objective-C, and
AngularJS. He's a Zend Certified Engineer and was a member of the winning team
at Google Dart Hackathon 2012 in Prague.

About the Reviewers

Lamoriniere Cedric is a software engineer and a graduate from a French
engineering school, who mostly uses C++ during his day job.

His taste for innovation has led him to try out a considerable amount of various
web frameworks, technologies, and languages.

Among these languages, he has taken a strong interest in the Dart language for its
ease of use and efficiency. It allows developers to get things done in a timely manner.

Rokesh Jankie graduated in 1998 with a master's degree in computer science
from Leiden University, the Netherlands. He specialized in algorithms and
NP-complete problems. Scheduling problems that can be NP-complete was his area
of focus. He started working for the University of Leiden, ORTEC consultants, and
Ponte Vecchio, and later, worked for Qualogy. At Qualogy, he used what he had
experienced till that point to set up a product. Qualogy works in the field of Oracle
and Java technologies. With the current set of technologies, interesting products can
be delivered, and this is what QAFE is (refer to www.qafe.com for more information).

QAFE Inc. has a very dynamic team, which works in an agile way (going to
production weekly, quickly adjusting to market needs, and so on). In the team,
they don't distinguish between senior developers and junior developers, but they
recruit very good software engineers. This gives a new dynamic to the team and
makes it a great experience on a daily basis.

www.qafe.com

Books that Rokesh has worked on include Dart in Action, Manning Publications, and
HTML5 and CSS Responsive Web Design Cookbook and HTML5 Canvas Cookbook,
both by Packt Publishing.

I'm very grateful to my parents and my wife for supporting my
enthusiasm for computer science. My 2-year old son inspires me to
be the best dad, and he makes sure that I work hard to create a better
future for him through the application of computer science topics in
daily life and by sharing my knowledge on this subject. Reviewing
this book is part of that journey.

Hans Van den Keybus is a Belgium-based Flash, Flex, and Google Dart
developer, working for his one-man company called dotdotcommadot.

Although he started off creating simple games and animations for some well-known
design companies, he got the most fun out of structuring the code behind it. His
main areas of expertise are OOP, design patterns, and microarchitectures.

Currently, he's working on a major project developed in Google Dart for his
customers MSC and Maersk.

Whenever he's not programming, Hans is probably playing some sketchy basement
with his even sketchier grindcore band.

Frederik Leonhardt is a tech enthusiast and software engineer with more than
5 years of experience in Java, Java EE, and related frameworks. He likes to delve
into new technologies, and he started using Dart with its first beta release in 2012.

He likes to contribute to the open source community and is currently working for
Catalyst IT, a team of open source technologists. In the past, he has worked as a
researcher for the Institute of Information Systems at the German Research Center
for Artificial Intelligence, where he published papers on recommender systems and
their application in the mobile health domain.

He recently moved to New Zealand and enjoys the relaxed Kiwi lifestyle and the
beautiful outdoors, especially for tramping and photography.

Marko Vuksanovic is a consultant who specializes in software development and
delivery. He received his master's degree in electrical engineering and computing from
the University of Zagreb, Croatia, in 2009. He is currently employed by ThoughtWorks
Australia, where he helps deliver outstanding products to clients. He has spent the last
10 years working with web applications, and during this period, he has been involved
in numerous open source, as well as closed source, projects. He is very active within
the Dart community and used to actively contribute to AngularDart projects. His
other interests lie in the information security and machine-learning spaces.

When not providing services to clients, Marko spends time acquiring new skills,
breaking things, reverse engineering, or enjoying some time off at one of Australia's
beaches or a nearby tennis court.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started with Dart 1

What is Dart? 1
Why choose Dart? 2
Installing the Dart SDK 3

Dart Editor 3
Writing a greeting for all Dartisans 4

pubspec.yaml 5
index.html 6

The main() function 7
Running and debugging code in Dartium 12
Compiling Dart to JavaScript 13

The Dart language tour 15
The static checker 15
Variables 16
Built-in types 16
Functions and parameters 17

Class properties 18
Class inheritance and abstract classes 18
Constructors 19

Exceptions 20
Using static types 20

Summary 21

Table of Contents

[ii]

Chapter 2: Practical Dart 23
Optimizing DOM tree manipulations 23
The documentation search app 27

The Future-Based API 28
Using async and await keywords 30

Async 30
Await 31

Creating Ajax requests in Dart 31
Dart packages 32
Writing the fuzzy search algorithm 34
Handling HTML elements 37

Combining Dart and JavaScript 41
Using Dart in JavaScript 42
Using JavaScript in Dart 44

Dart MythBusters 45
Summary 46

Chapter 3: The Power of HTML5 with Dart 47
Creating the Reddit Read Later app 48

Fetching the JSONP data 48
IndexedDB 52

Initializing IndexedDB 53
Fetching stored records 54
Saving records 55
Deleting records 56
Indices 56
Polishing the application 58

LocalStorage versus IndexedDB 58
What about WebSQL? 59

Music visualizer 59
Other noteworthy APIs and libraries 65

Typed lists for fast numeric computing 65
vector_math 66
SIMD 66

WebGL 67
three.dart 67

StageXL 67
Box2D and play_phaser 68
Isolates and Web Workers 68

Summary 68

Table of Contents

[iii]

Chapter 4: Developing a Mobile App with Dart 69
300 ms tap delay 70
Basics of CSS3 transformations 70

Axes 71
Hello world in 3D 71
Nesting 3D transformed elements 72

A 3D bookshelf with DeviceOrientation events 74
Position and distance tracker with the GeoLocation API and
Google Maps API 81
Drawing into 2D canvas using onTouch events 86
Summary 87

Chapter 5: Web Components and polymer.dart 89
Web Components 89

Shadow DOM 90
Custom Elements 90
Template 90
HTML Imports 91

The Web Components polyfill for older browsers 91
Basic HTML Import 91
Using Shadow DOM 94
Using Custom Elements 96
Polymer.dart 101

Minimalistic custom element in polymer.dart 101
One-way data binding 104

Loops and conditions in templates 108
Two-way data binding 109
Polymer core and paper elements 111

A quick look at core-list 111
What's next? 114

Summary 114
Chapter 6: AngularDart 115

Installing AngularDart 116
To-do list with AngularDart 117

Scope 121
Extending the to-do list 122

Model 123
View 124

Table of Contents

[iv]

Component 124
Finishing TodoListComponent 126

Data bindings 130
A book component in AngularDart 132
What is Angular 2.0? 136

Why is Angular 2.0 not written in Dart? 136
Performance tips for AngularDart 136

Avoiding nesting ng-repeat directives 137
Using track by for ng-repeat 138
Avoiding excess formatter usage 138
Not everything needs to be in Angular 138

Summary 139
Chapter 7: Server-side Applications with Dart 141

The standalone Dart VM 142
Parsing CLI arguments with the args package 142
Writing a chat app with the WebSockets server 144

Client-side WebSockets 149
Listening to Unix signals and basic I/O operations 151

Running the server as a background process 152
Enumerated types 153
Typedefs 154
Using MySQL as a storage 155

Writing an HTTP server with the route package 158
Using Dart as a full-stack language 161

Using Apache as a proxy for the Dart HTTP server 161
Using nginx as a proxy for the Dart HTTP server 163
Executing Dart as CGI and Apache mod_dart 163

Summary 164
Chapter 8: Testing and Profiling the Dart Code 165

Testing strategies for web apps 165
Unit testing 166

Asynchronous tests 174
Test groups 175
Running all tests 177

Operator overloading and mixins 178
Operator overloading 178
Mixins 179

Testing AngularDart apps 181
Profiling with the Observatory tool 182
Summary 185

Table of Contents

[v]

Chapter 9: Writing Native Extensions for the Standalone Dart VM 187
The structure of native extensions 187
Writing a minimal native extension 188
Writing a native fuzzy search implementation 191

Optimizing our C/C++ code 195
Multithreading with Dart Isolates 197

Writing bindings for the exiv2 library 198
Distributing native extensions 201
Summary 201

Index 203

[vii]

Preface
Since the first public release of Dart in 2011, the language evolved a lot. Its first stable
release in November 2013 marked the point when it was the time to start taking it
seriously in the production environment. Dart 1.9+ might, at first sight, look like
what JavaScript could be if it was designed for today's Web. It combines the best of
many other languages while targeting both browser and server-side development.

Dart isn't the answer to every problem on the Web. There are situations where it
seems like it's overly complicated to use Dart or it just isn't good at what you need,
and you might be right. There are circumstances where it's better to use JavaScript.

This book tries to be objective. We won't try to convince you that from now on,
you should use only Dart, and we'll talk about situations where Dart isn't the ideal
solution. At the same time, we'll show you where Dart is great, how you can write
well-structured code for both the browser and the server, and how easy it is to write
understandable asynchronous apps with Dart 1.9.

Even though this book can't go into great detail about each topic, after reading this
book, you should see for yourself that Dart makes sense and you should at least give
it a try. It's not just the language but also the IDE, comfortable debugger, dependency
management, runtime profiler, and more.

What this book covers
Chapter 1, Getting Started with Dart, jumpstarts Dart development right away while
explaining the syntax and core features of Dart.

Chapter 2, Practical Dart, focuses on the most common tasks of client-side
development, such as DOM manipulation, asynchronous programming,
Ajax calls, and using existing JavaScript code in Dart and vice versa.

Preface

[viii]

Chapter 3, The Power of HTML5 with Dart, specifically focuses on using HTML5
features in Dart while mentioning some noteworthy third-party libraries written
for Dart.

Chapter 4, Developing a Mobile App with Dart, builds on the previous chapter with
a quick explanation of CSS3 transformations and HTML5 features specific for
mobile devices.

Chapter 5, Web Components and polymer.dart, goes step by step, showing each part
of Web Components standard and how useful they are, even when used separately.
Then, it looks at polymer.dart, which combines all parts of Web Components into a
single framework.

Chapter 6, AngularDart, is a sneak peak of a superheroic framework for Dart made
by Google with the same philosophy in mind as AngularJS.

Chapter 7, Server-side Applications with Dart, shows that apart from the browser
environment, there's also a standalone Dart VM, which can run on a server.
We'll take a very practical look at writing server-side scripts, including server
configuration for Apache and nginx web servers.

Chapter 8, Testing and Profiling the Dart Code, states that just as with any other
language, unit testing is a vital part of the development process. Dart also comes
with a built-in tool called Observer to examine Dart VM's internals in runtime.

Chapter 9, Writing Native Extensions for the Standalone Dart VM, shows the full
potential of Dart, by writing native extensions for the standalone Dart VM in
C/C++ and then using them from Dart.

What you need for this book
The only software you need is the Dart SDK. Right now, it's available for all recent
releases of Windows, OS X, and Ubuntu Linux.

In Chapter 9, Writing Native Extensions for the Standalone Dart VM, we'll also need
a C/C++ compiler, ideally GCC, which is free. This is actually optional; you don't
need it if you don't want to try the examples for yourself.

Preface

[ix]

Who this book is for
This book is intended for developers with prior knowledge of programming in any
OOP language, with a reasonable background in web development and decent
experience with JavaScript.

We're not going to go through basic programming constructs, such as conditionals,
loops, boolean expressions, and similar things, which are common to all languages.

Also, we're not going to explain concepts of OOP.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Reddit API allows us to set a custom callback with the jsonp parameter."

A block of code is set as follows:

import 'dart:html';
main() {
 print("Hello, world!");
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<input type="time" ng-model="newTask['when']">
<input type="text" ng-model="newTask['title']">
<button type="button"
 ng-click="addTask(newTask['when'], newTask['title'])">
Add</button>

Any command-line input or output is written as follows:

dart bin/server.dart -p 8889

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In the
Emulation tab, click on Sensors and you should see three input fields, each for
one axis."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: http://www.packtpub.
com/sites/default/files/downloads/9607OS_GraphicsBundle.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/sites/default/files/downloads/9607OS_GraphicsBundle.pdf
http://www.packtpub.com/sites/default/files/downloads/9607OS_GraphicsBundle.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

[1]

Getting Started with Dart
The first chapter will introduce us to the world of Dart. We'll learn:

• What is so interesting about Dart and why it's worth your time to give it a try
• Where and how to get the Dart SDK with its IDE called Dart Editor
• How to create the first app and see how to run and debug it in Dartium
• How to compile our app to JavaScript

What is Dart?
The Dart language was first unveiled at the GOTO conference in Aarhus in
October 2011. Its primary goal, in the long run, is to replace JavaScript as the
only language in browsers.

Although JavaScript is very easy to use for smaller apps, with the increasing
complexity and the necessity to scale today's projects, it quickly becomes very
hard to maintain. Frankly, JavaScript wasn't designed for this and writing larger
apps is just a pain.

Dart was created as a brand new language with C-style syntax; it's object-oriented
and class-based with a single inheritance model with mixins. It gives you many
things that you've probably already used in other languages, such as abstract classes,
encapsulation, reflection, exceptions, and so on. On the top of that, you can make
use of optional static type checking.

Then, if you look a little deeper, you'll find things such as Future-Based API for all
asynchronous calls, typedefs, isolates, streams, zones, dependency management, and
even more out of the box. You'll probably find many of these things already familiar,
but as you'll see, Dart uses a very easy-to-understand approach, which allows you to
stay focused on writing your apps instead of dealing with the language itself.

Getting Started with Dart

[2]

In November 2013, Dart reached its first stable release, 1.0, and is still in active
development.

On March 23, 2015, the Dart team released version 1.9, which significantly simplified
working with asynchronous APIs and is considered the most important release
since version 1.0.

At the end of April 2015, Google held the first Dart Summit revealing plans to use
Dart as a language for cross-platform mobile development with their new runtime
called Fletch.

Why choose Dart?
There are five main environments where you can run Dart:

• Dart compiled to JavaScript in practically any modern browser. The Dart
SDK is shipped with Dart to a JavaScript compiler called dart2js, which
takes your Dart code and compiles it into vanilla JavaScript. Right now,
this is the most typical use case in a production environment.

• The Dartium web browser comes out of the box with the Dart SDK. It's a
modified version of Chromium (basically, an open sourced Chrome) that
contains Dart VM along with JavaScript V8. We'll use Dartium for easy
debugging and to run the Dart code without compiling it to JavaScript.

• The standalone Dart VM allows you to run Dart code as a CLI script just like
any other scripting language. The dart2js compiler itself is written in Dart.

• Google Cloud Platform, since the introduction of Google's Managed VMs
in November 2014, it also supports a hosting environment for server-side
code written in Dart.

• Fletch is an experimental highly concurrent Dart runtime, which will be able
to run on both desktop and mobile platforms. It is scheduled for its official
release at the end of 2015.

Dart VM is able to run your Dart code significantly more effectively than JavaScript
V8. You can see current benchmarks at www.dartlang.org/performance/. Note
that the dart2js compiler is doing pretty good even though the compilation process
brings some additional overhead.

After the first public release of Dart, Google claimed they were planning to
implement Dart VM right into Chrome as an alternative to JavaScript. However,
on March 25, 2015, the Dart team released a blog post stating that after collecting
reactions from their internal teams, they've decided to stop efforts to integrate
Dart VM with Chrome and rather focus on improving integration with JavaScript.

www.dartlang.org/performance/

Chapter 1

[3]

Installing the Dart SDK
Let's start with obtaining the Dart SDK, which already contains all we need.
This includes Dart Editor, the standalone Dart VM, and Dartium browser.

We can download everything in a single package right from Dart's home page at
https://www.dartlang.org/, which detects your platform automatically for you
and gives you the correct package for download.

Dart Editor
Dart Editor is built on the Eclipse platform, so you might find its look and feel
already familiar.

We're going to spend a lot of time in this editor, so feel free to take a look at it and try
the example projects. This editor also contains a debugger that works out of the box
with Dartium, so we don't need to configure anything.

https://www.dartlang.org/

Getting Started with Dart

[4]

Although the browser that comes with the Dart SDK package is
actually called Chromium, we call it Dartium because it runs Dart VM
inside. Even in Dart Editor, they call it Dartium, so don't be confused
when you hit Run in Dartium and it opens the Chromium browser.

There's also a Dart plugin for IDEs developed by JetBrains, specifically, WebStorm,
PHPStorm, and IntelliJ IDEA.

We're going to use Dart Editor in this book. However, the Dart team announced
that they're planning to move to JetBrains IDEs and abandon Dart Editor probably
in late 2015.

Writing a greeting for all Dartisans
Our first Dart app will randomly generate five colors in the element; let's enter
a name into the <input> field and greet you with a selected color inside <h1>.

The final working app with some CSS will look like this:

We'll set off by creating a new project by clicking on Create an application in the
Welcome window or by going to File | New Project. There are a few templates for
the most common use cases. We'll go with Uber Simple Web Application because
we need just the most basic app structure right now.

Chapter 1

[5]

Our project should look like this:

For us, the most important files are pubspec.yaml, index.html, and main.dart.
We can take a look at them one by one.

pubspec.yaml
This is a file that defines our project and its dependencies. By default, it contains
only very basic information and one dependency called browser, which we'll use in
index.html. If you're using Dart Editor, you can add more dependencies right in the
editor's GUI, and you don't need to modify the file as text. Later in this chapter, we'll
add more statements that control, for example, the dart2js compiler. For now, we
can leave it as it is:

name: 'my_first_dart_app'
version: 0.0.1
description: An absolute bare-bones web app.
environment:
 sdk: '>=1.0.0 <2.0.0'
dependencies:
 browser: any

Note that dependencies in Dart projects don't necessarily need to contain any Dart
code. For example, browser contains only two JavaScript files.

Getting Started with Dart

[6]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

When you modify pubspec.yaml, Dart Editor downloads new dependencies
automatically for you.

We used any to specify the version for the browser package, which means that
the newest available version will be used. There are more ways to define allowed
versions; for a more detailed description, refer to https://www.dartlang.org/
tools/pub/dependencies.html. We'll use this option to set specific versions when
working with polymer.dart and AngularDart in Chapter 5, Web Components and
polymer.dart, and Chapter 6, AngularDart.

index.html
This is going to be just a simple HTML page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>my_first_dart_app</title>
 <link rel="stylesheet" href="styles/main.css">
</head>

<body>
 <ul id="color-select">
 <input type="text" id="name">
 <h1 id="output"></h1>

 <script type="application/dart" src="main.dart"></script>
 <script data-pub-inline src="packages/browser/dart.js"></script>
</body>
</html>

http://www.packtpub.com
http://www.packtpub.com/support
https://www.dartlang.org/tools/pub/dependencies.html
https://www.dartlang.org/tools/pub/dependencies.html

Chapter 1

[7]

Look at the last two <script> tags. The first one links the main.dart file, which is an
entry point for our app. No matter how many files your Dart project has, you always
link just the one that contains the main() function, as we'll see in a moment.

The browser package contains a script called dart.js that you'll probably use in
all the Dart web projects you'll make. When you compile the Dart code to JavaScript,
it creates a new file called main.dart.js with all your Dart code compiled to
JavaScript. The dart.js script automatically checks whether your browser supports
Dart natively and if it doesn't, it replaces main.dart with dart.main.js. Therefore,
you can develop, test, and deploy projects in both Dart and JavaScript without even
touching the HTML code. The data-pub-inline attribute tells the compiler to
handle this element in a special way. We'll talk about this later in this chapter.

In this file, we created three elements (, <h1>, and <input>) that will be
controlled from Dart.

We're omitting the CSS file here and in most of the book as well,
unless there's something particularly interesting and related to the
topic. You can download all the source code for this book from the
Packt Publishing website.

The main() function
The real fun starts here. The entry point to the app is the top-level main() function
and as Dart is a class-based language, we'll create a class called GreetingsManager
that will update the text and its color.

We can jump right into the code to get a quick glimpse of what Dart code looks like.
Try to read the code and guess what you think it does. I believe that even without
any knowledge of Dart, you'll be able to tell how it works.

// web/main.dart
import 'dart:html';
import 'dart:math';

class GreetingsManager {
 Random _rnd; // Random number generator.
 HtmlElement h1 = querySelector('#output');

 GreetingsManager() {
 _rnd = new Random();
 }

Getting Started with Dart

[8]

 // Generate a random color.
 String getRandomColor() {
 // Randomly generate numbers as hex strings with padding.
 return _rnd.nextInt(256).toRadixString(16).padLeft(2, '0') +
 _rnd.nextInt(256).toRadixString(16).padLeft(2, '0') +
 _rnd.nextInt(256).toRadixString(16).padLeft(2, '0');
 }

 // Generate a list of strings where each item represents one
 // color. [List<T>.generate()] is a named constructor that
 // calls the callback function n-times.
 List<String> generateColors(int total) {
 return new List<String>.generate(total, (int i) =>
 getRandomColor());
 }

 void setTextColor(String color) {
 SpanElement span = h1.querySelector('span');
 if (span != null) {
 span.style.color = color;
 }
 }

 void setText(String name) {
 // Override its inner HTML.
 h1.innerHtml = name.trim().isEmpty
 ? ""
 : "Hello, $name!";
 }
}

void main() {
 var gm = new GreetingsManager();

 // Target container for our colors.
 UListElement ul = querySelector('#color-select');

 // Iterate all colors and create element for each of them.
 gm.generateColors(5).forEach((String color) {
 LIElement elm = new LIElement();
 // Set the background color.
 elm.style.backgroundColor = "#${color}";

Chapter 1

[9]

 // Bind a listener to the onClick event.
 elm.onClick.listen((e) {
 gm.setTextColor(elm.style.backgroundColor);
 ul.querySelectorAll('li').classes.remove('selected');
 elm.classes.add('selected');
 });
 // Add HTML element to the .
 ul.append(elm);
 });

 InputElement nameInput = querySelector('#name');
 // Bind a listener to the onKeyUp event.
 nameInput.onKeyUp.listen((Event e) {
 String name = (e.target as InputElement).value;
 // print() outputs a variable as a string to
 // the environment's standard output.
 print(name);

 gm.setText(name);
 LIElement selected = ul.querySelector('li.selected');

 if (selected != null) {
 gm.setTextColor(selected.style.backgroundColor);
 }
 });
}

There are a couple of important things to pay attention to in more detail.

The code starts with import statements. These tell Dart to import (as you've
probably guessed) another file or a package. Starting with dart:, it means that this is
a built-in package that's shipped with the Dart SDK. Later, we'll also use package:,
which is a third-party dependency, and at the end of the book, we'll meet dart-ext:,
which is a native extension of the Dart VM. Of course, we'll use import to import
files from our own projects as well.

All web apps will probably import the dart:html library because it makes
top-level variables, document and window, and methods, such as querySelector()
or querySelectorAll(), available.

Then, we declared a GreetingsManager class. If we didn't write a constructor for it,
Dart would use the so-called implicit constructor by default. There's also a named
constructor that we'll meet later.

Getting Started with Dart

[10]

All types in Dart are optional, but we're going to use them a lot in this book. It's
not only easier to read; it also helps you spot possible errors and in some situations
improves performance when compiled to JavaScript. If you don't care what type a
variable is, you can declare it as var like in JavaScript, and the Dart static check won't
bother you with it. There's also a special type dynamic, which is used underneath
every time you don't specify a variable type, but in most situations, you're just fine
with declaring variables with var. The dynamic keyword makes more sense when
used as a generic keyword for List and Map classes, as we'll see later.

Every method in Dart has a return type, although you can use dynamic and void
as well (omitting return type stands for void). Void means that this method doesn't
return any value. Note that void doesn't have the same meaning as null. Null means
zero or an undefined pointer, which is a valid value, while void means nothing in
this context.

Collections such as lists are defined in Dart's API as List<E>. This means that the
List class is generic and you can tell it what type of objects it may contain. In our
example, we defined List<String>, which tells the type checker that all items in
this collection will be instances of String. This notation of generics is very common
in Java and C++, but as Dart types are optional, it actually doesn't restrict you from
adding instances of other classes to the list, as you might expect. Using generics
properly in Dart is a matter of a good programming style because it helps you and
other developers understand your intentions. By the way, this is another situation
where you can use the dynamic type if your list can contain any objects. As types are
optional in Dart, declaring List<dynamic> is equal to not using the <E> notation at
all. We'll see this in use later.

Notice the way we access HTML element properties and how we can
change their CSS style with elm.style.backgroundColor. Adding,
removing, or toggling the classes of an element is very easy because the
classes property is an instance of CssClassSet, which has many
useful methods, and we can use elm.classes.add('selected'),
for example. With Dart, most of the time, you don't need to access
element attributes directly.

To remove element's classes, we can use querySelectorAll('li').classes.
remove('selected'), where querySelectorAll() returns a collection of elements
and performs .classes.remove('selected') on each of them. This approach
is well known from jQuery, and it saves you a lot of writing the same code over
and over again.

Chapter 1

[11]

Then, we have the main() function, which is an entry point to our app. Dart VM
parses your code before running it, so it doesn't matter where in the file you put
it (it still has to be a top-level function). There, we call the GreetingsManager.
generateColors()method and chain it with the forEach() method. All iterable
collections implement the forEach() method, which calls a callback for each item in
the collection. Creating an anonymous function has two possible formats. A short one-
liner with just one expression, which we used in generateColors(), is as follows:

(int i) => getRandomColor()

This takes one parameter, calls getRandomColor(), and returns its result. This
notation is equivalent to the second and is probably a more common format:

(int i) {
 return getRandomColor();
}

There is also another way we could iterate the entire collection:

for (String str in gm.generateColors()) {
 /* ... */
}

Listening to events is done via Dart streams, which is basically a way of handling
asynchronous calls. For the most part, we can use them just like events in JavaScript.
In our app, we're listening to the onKeyUp and onClick events. We "listen" to them
by calling the listen() method that takes a callback function as an argument.

Dart lets you use type casting in a similar way to C/C++ with the variable as
type notation (where as is a keyword). This is useful when the static checker
doesn't know what type of object is stored in a variable but you know what you're
expecting. We used it like (e.target as InputElement).value because we know
that e.target is going to be of the InputElement type but e.target is a general
dynamic property that doesn't have the value property itself. Of course, we could
omit the typecast completely and just ignore the warning shown by type checker,
but that's not a very good practice.

The last interesting thing is string interpolation. We can concatenate String
objects in Dart with a plus sign +, but this tends to be confusing when used too
much. Therefore, we can insert variables right into the string and leave Dart to
do the work for us. In our app, we used it like this:

"Hello, $name!"

Getting Started with Dart

[12]

The $variable notations are replaced with a string representation of their variables.
Interpolation can be used for expressions as well with ${expr}, for example, ${42.
toString()}.

Running and debugging code in Dartium
Our code is done for now, so we can run the app in the browser. First, we'll test it in
Dartium because it's able to run the native Dart code.

You can right-click on index.html and select Run in Dartium, or you can click
on the white arrow in the green circle icon in the toolbar. This opens the Dartium
browser and you should see the same page with five random colors just like what's
shown at the beginning of this chapter. Open Developer Tools and see whether the
browser really uses our main.dart file.

Debugging Dart scripts is very easy because we can use exactly the same tools used
for debugging JavaScript. With Developer Tools, we can only debug web apps and
not console apps.

Chapter 1

[13]

Another way to debug both web and console apps is right in Dart Editor.
Double-click on any line number to place a breakpoint and Dart VM will
pause when it reaches that line.

Compiling Dart to JavaScript
From a practical point of view, Dart would be useless if we couldn't run it in today's
browsers. This is why the Dart SDK comes with Dart to JavaScript compiler called
dart2js. You can run it right in Dart Editor; in the top menu bar, navigate to Tools |
Pub Build or right-click on index.html and select Run as JavaScript. This launches
the compilation process and outputs some info:

--- 3:12:49 AM Running pub build on ./my_first_dart_app ... ---
Loading source assets...
Building my_first_dart_app...
[Info from Dart2JS]:
Compiling my_first_dart_app|web/main.dart...
[Info from Dart2JS]:
Took 0:00:07.294964 to compile my_first_dart_app|web/main.dart.
Built 224 files to "build".

Getting Started with Dart

[14]

As you can see, the compiler had to process 224 files in total and generated one large
main.dart.js file, which we already mentioned earlier in this chapter. The compiler
created a new directory named build and put there everything you need to run the
app in both Dart and JavaScript.

You can run the compiler in CLI by navigating to your project's directory and running:

$ pub build

This command fetches all the dependencies, compiles your code with dart2js, and
eventually processes it with transformers.

A very obvious question is how big the generated JavaScript file is. The Dart
compiler removes parts of the code that your app isn't using and in Dart SDK 1.9,
the final script is 290 KB. That's not bad but especially for mobile connections, it's
still quite a lot. Luckily for us, we can tell dart2js to minify the final JavaScript by
adding a new statement at the end of pubspec.yaml (you have to open the file as a
text file or switch to the Source tab at the bottom of Dart Editor's window):

transformers:
- $dart2js:
 minify: true

When we run the compilation again, it will generate a 125 KB file. That's much
better; keep in mind that this also includes all our project's code. For comparison,
jQuery 2.1 that doesn't contain legacy code for older browsers and without our app
code has 84 KB. With gzip compression enabled on your server, the difference is
even smaller: 37 KB for dart2js versus 30 KB for jQuery. With the latest Dart Editor
1.9, you can create minimized version right from the Tools menu; however, setting
it specifically in pubspec.yaml is sometimes necessary when using Dart's pub tool
in CLI (more about this in the next chapter).

Chapter 1

[15]

There's still one more thing to optimize. Our index.html includes JavaScript called
dart.js, which we've already talked about. The template that we used has a special
attribute, data-pub-inline:

<script data-pub-inline src="packages/browser/dart.js"></script>

By default, it does nothing. Let's add a new dependency to our project called
script_inliner and then update pubspec.yaml again with:

transformers:
- $dart2js:
 minify: true
- script_inliner

Then, run Pub Build again; script_inliner processes HTML files and inlines
JavaScripts marked as data-pub-inline.

The Dart language tour
We've already gone through many concepts of the Dart language when explaining
the code, but there are still some aspects that we should look at in greater detail.

The Dart team maintains an official style guide for Dart at
https://www.dartlang.org/articles/style-guide.

The static checker
Dart VM can run in production or checked mode. The checked mode performs
runtime type checking and runs all assert(condition) checks. Asserts are a way to
quickly test whether a condition is true, and if it's not, then stop the script execution.
Runtime type checks can, for example, detect when you declare a variable int and
then try to assign it a String object.

This is useful when developing or testing your app, but it introduces some overhead,
and for this reason, Dart VM runs in production mode by default and simply ignores
all these checks.

Dart Editor launches Dartium with enabled checked mode, but you can switch
to production mode in the top menu window by navigating to Run | Manage
Launches and by unchecking Run in checked mode for the configuration that runs
in Dartium. For the standalone Dart VM, you can enable the checked mode with the
-c parameter (for example, in command line, dart -c main-cli.dart).

https://www.dartlang.org/articles/style-guide

Getting Started with Dart

[16]

Variables
We've already seen how to declare variables and we also saw that all types in
Dart are optional. Apart from this, we can define variables as const or final.

The final keyword lets you assign a value to a variable only once. This behavior is
slightly different when assigning objects because final only locks a variable's values
and when you're assigning objects, you're working with pointers (their memory
addresses). In other words, you're assigning a memory address to a variable and it
doesn't care what the internal state of the object is. It can change in runtime. The final
keyword only prevents you from assigning a different value to the same variable.
For example, you can declare an instance of List<String> as final and add items
dynamically during the app's lifetime.

The const keyword lets you assign a value to a variable at compile time.
For this reason, you can't make a variable const if its value is dependent on
an expression that isn't determinable at compile time. The same restrictions are
applied when instantiating objects where all their properties have to be compile
time determinable too.

All uninitialized variables have the null value.

Built-in types
Everything in Dart is an object; however, some types are treated in a special way:

• Numbers: Built-in int and double types are both subclasses of the num
abstract class. All integers and floating point numbers are stored as int
or double, respectively.

• Strings: All strings in Dart are stored as String objects. Both single and
double quotes to enclose a string are allowed. Classes can implement the
toString()method, which should return a textual representation of the
inner state of an object.

• Booleans: These are true/false values. Note that in JavaScript, a value is
considered to be true if it's a nonzero length string, nonempty array, any
value different from 0, and so on. But in Dart, only the Boolean value true is
treated as true, nothing else.

• Lists: All lists (or arrays) are instances of List class. You can use short
notations to create lists just like in JavaScript with this:
List<T> list = [1, 2, 3];

Chapter 1

[17]

• Maps: Key-value storage in Dart is represented by the Map class. You can use
short notation with this as well:

Map<K,V> map = {
 'key1' => 'value',
 'key2' => 123
};

You can get a value associated to a key with a square bracket notation, such as
map['key']. In contrast to JavaScript, the Map class in Dart has a public property,
length, which represents the total number of key-value pairs in the map.

Functions and parameters
Defining functions is nothing new, and we've already seen this in the preceding
sections. Dart extends function definitions with optional positional and named
parameters, both well known from Python.

After the required parameters, you can specify any number of optional parameters.

Named parameters are mostly useful when you have a function with many
parameters, and in most use cases, you need to use only a few of them. You can
define named parameters as a map with curly brackets, {}:

void myFunc(required, {bool opt1: true, String opt2: "hello"}) {
 /* ... */
}

Another method is to use optional positional parameters. You can define positional
parameters with square brackets, []:

void myFunc2(required, [bool named1, String named2]) {
 /* ... */
}

One function definition can't combine both named and positional optional parameters.
Some examples of calling both types could be:

myFunc(true, opt2: "Hello, World!");
myFunc2(false, true, "I'm Dart");

Getting Started with Dart

[18]

Class properties
When defining classes, there are no public, protected or private keywords like in
PHP or Java. Instead, every property that starts with _ is private. Everything else is
public. Dart also generates default getters and setters for each property, but you can
override them or create your custom properties:

Class Square {
 num height;
 num width;

 num get size => height * width;
 set size(int value) {
 width = height = sqrt(value);
 }
}

You can later use size just like any other public property:

var cls = new Square();
cls.size = 49;

This updates both width and height.

Class inheritance and abstract classes
Dart is an object-oriented language with a mixin-based inheritance model. This
means that every class has exactly one superclass but can implement multiple classes
as interfaces and use multiple class bodies (mixins). Every class is at least a subclass
of the Object class.

Abstract classes can't be instantiated directly and often contain abstract methods.

Any class in Dart can be treated as an interface for another class, which might be a
little unusual:

abstract class MyAbsClass {
 String hello();
}
class MyInterface {
 String hello2() => "hello!";
}
class MyInterface2 {
 String anotherHello() => "hello!";
}

Chapter 1

[19]

class MyClass extends MyAbsClass implements MyInterface, MyInterface2
{
 String hello() => "Ahoy";
 String hello2() {
 /* ... */
 }
 String anotherHello() {
 /* ... */
 }
}

Note that the hello()abstract method in MyAbsClass doesn't need a keyword in
front of it. It just doesn't have any body. The MyClass class implements two classes
as its interfaces and automatically takes all their methods as abstract and requires
you to implement them. This isn't the same as inheritance because it completely
ignores methods' bodies and expects you to write them by yourself. There's also
keyword super that refers to the superclass.

In later chapters, we'll explain and use mixins as well.

Constructors
There are two types of constructors, generative and named. Generative constructors
are the same constructors as in any other language. Their name equals the class name:

class MyClassWithConst {
 num height;
 num width;

 MyClassWithConst(num w, num h) {
 width = w;
 height = h;
 }
}

Assigning default values to object properties is very common, so there's a shorter
way to write the preceding constructor with just the following:

MyClassWithConst(this.width, this.height);

Getting Started with Dart

[20]

Since there's no constructor overloading (like in Java or C++), Dart offers
named constructors:

class MyClassWithConst {
 /* ... */
 MyClassWithConst(this.width, this.height);

 MyClassWithConst.withZeros() {
 this.width = 0;
 this.height = 0;
 }
}

Note that constructors aren't inherited from superclasses and you don't even have
to define any constructor and Dart will use a default one for you (just the class name
with no parameters).

Exceptions
Dart supports throwing exceptions when something goes wrong. The logic
behind this is just like in any other language, so it probably doesn't require
any further explanation:

throw new Exception("It's broken");

Catching exceptions is based on typical try, catch, and final statements. You can
catch only specific exceptions or make general catch statements for all exceptions:

try {
 brokenFunction();
} on MyOwnException {
 itsNotThatBad();
} catch (e) { //
 itsPrettyBad();
} finally {
 cleanup();
}

Custom defined exceptions have to inherit from the Exception class.

Using static types
It might look like it's better to always specify variable types everywhere. The rule
of thumb here is to use types when it's unclear what the variable type is, including
return types. For example, look at the following code:

GreetingsManager gm = new GreetingsManager();

Chapter 1

[21]

Instead of writing the class name twice, we use the following:

var gm = new GreetingsManager();

The static analyzer knows that the gm variable is assigned to a GreetingsManager
class, so it's fine to use just var. This also applies when iterating collections:

List<String> colors = ['red', 'green', 'blue'];
for (var color in colors) { }

We don't need to declare String color because this is obvious from the
List<String> declaration.

The same approach is recommended when using void and dynamic. If there's no
good reason to specify them, just omit them.

Summary
This is probably enough for the first chapter. There're still topics to be covered and
we'll explain more Dart concepts in later chapters when we come across them.

You can see that Dart uses a lot of ideas from other languages and that it requires
very little knowledge to be able to start using it.

In the next chapter, we'll write another app that uses a lot of the stuff that we learned
now. We'll also take a look at using existing JavaScript code in Dart and vice versa,
which is a very interesting and practical topic for every Dart learner. For easier
migration from other languages to Dart, you can take a look at the list of synonyms
in Dart and other languages at https://www.dartlang.org/docs/synonyms/.

https://www.dartlang.org/docs/synonyms/

[23]

Practical Dart
This chapter will focus on the most common features of Dart that you'll use every
day for your next Dart project. In this chapter, we'll look at:

• Manipulating DOM and HTML elements
• Future-Based API, Dart's built-in library for working with asynchronous calls
• Creating Ajax requests in Dart
• How packages work in Dart
• Calling JavaScript from Dart
• Calling Dart from JavaScript

The whole chapter is intended to be very practical. We'll create a small app that
reads a JSON dictionary and lets you search among all the terms in it. To make it
more complicated, we'll implement a so-called fuzzy search algorithm, which doesn't
search exact matches but the same order of characters instead.

Optimizing DOM tree manipulations
We've already seen some basic manipulation with HTML elements in Chapter 1,
Getting Started with Dart, and we'll make a few notes about it here.

The Dart library wraps standard JavaScript element classes and methods with
more unified names. Classes that represent HTML elements don't start with the
HTML prefix, so for example, HTMLDivElement is called DivElement in Dart. Take
a look at this JavaScript snippet:

elm.addEventListener('client', function() { /* ... */ });

Practical Dart

[24]

Instead of binding event listeners with the preceding code, Dart uses the so-called
Stream API, where you don't bind listeners directly to the element you subscribe but
to a Stream object instead, which emits all events. Each HTML element has all the
default event emitters, such as onClick or onKeyPress:

elm.onClick.listen((e) { /* ... */ });

The listen()method returns a StreamSubscription object that can be used to
unsubscribe the listener.

Streams have many methods that you probably won't use so often, but take a look at
Dart's API for what's available. One of these methods is the where() method, which
is declared as:

Stream<T> where(Function bool test(T event));

Typical usage could be, for example:

document.onClick.where((Event e) => e.target.id == 'myButton');

This method creates a new Stream object that only emits events that pass the test
function. This is useful, for example, when you only want to listen to a small subset
of events that can be emitted by this listener. For example, you want to use onClick
on the entire document and create special streams when the user clicks on a <div>
element and another stream for <p> elements. Without where(), you would have
to use one callback for all onClick events. With where(), you can make separate
streams that let you or other developers bind specifically to them.

Another useful feature of the DOM is DocumentFragment. Manipulating with a lot
of HTML elements, such as appending, removing, resizing, changing text content,
and basically, any operation that visually changes the page, causes the browser to
create "reflow". This is a browser procedure that recalculates the position of all the
elements on the page in order to re-render the page.

In practice, you usually don't need to deal with this, but pages that contain
thousands, or tens of thousands, of elements can be unresponsive for a short time.
A good way to optimize this is to make changes to the DOM in bulks. For example,
it's not recommended that you do this:

UlistElement cont = querySelector('#hello-ul');
cont.children.clear();
list.forEach((String key) {
 LIElement li = new LIElement();
 li.text = key;
 cont.append(li);
});

Chapter 2

[25]

Each call to append() will make the browser run the reflow. However, browsers are
well optimized these days and they would probably run just one reflow at the end
because none of the statements in the forEach() loop need to work with positions
or sizes. Try to add just a single innocent statement that does nothing right after
cont.append(li); such as cont.scrollTop;. We know that appending
elements shouldn't change its scrollTop property but the browser doesn't know
this and it has to do a reflow for every element in the list. We can analyze this
in Dartium with Developer Tools in the Timeline tab.

This is a sneak peak from the app we'll create in this chapter. Appending 346
elements took about 150 ms. This applies even when the parent element is hidden.

There's a better way to do this with DocumentFragments:

UlistElement cont = querySelector('#hello-ul');
var frag = new DocumentFragment();
list.forEach((String key) {
 LIElement li = new LIElement();

Practical Dart

[26]

 li.text = key;
 frag.append(li);
});
cont.children.clear();
cont.append(frag.clone(true));

This code has the same functionality as the previous but this time, we create
DocumentFragment, which is a DOM tree itself but is not placed in the document.
We add multiple elements to it and then append its entire content to the
element. Take a look at the following screenshot:

With DocumentFragment, creating and appending 346 elements took about 50 ms
because it took just one reflow and spent most of the time by creating new instances
of LIElement. Note that the Dartium browser works with the Dart code and events
just like Chrome works with JavaScript. At first sight, you wouldn't even notice that
the browser wasn't interpreting JavaScript.

The caveat here is that most of the time, we use third-party libraries and we have
no idea what's going on inside them, so you can't rely on the browser's prediction
whether or not it should run the reflow. DocumentFragments aren't new to HTML
but at the same time, they aren't used by many developers even when their usage is
very simple.

Chapter 2

[27]

A common usage is also when you already have an existing DOM subtree that
you want to modify multiple times. You can clone just the small subtree to
DocumentFragment, modify it, and replace the original subtree.

Rules for minimizing reflows apply to everything that needs to work with position
or size. Another example could be:

innerElement.style.width = '100px';
print(cont.clientWidth);
innerElement.style.height = '200px';
print(cont.clientHeight);

This calls two reflows because you set the width first and then access some elements'
size, which causes the first reflow, and then the same for height, which causes the
second reflow. We can rewrite this as the following, which creates just one reflow:

innerElement.style.width = '100px';
innerElement.style.height = '200px';
print(cont.clientWidth);
print(cont.clientHeight);

We'll see both the Stream API and document fragments in action right now.

The documentation search app
We're going to write an app that can search among many terms and show some
simple detail for each of them. The search input field will have an autocomplete
feature with a list of all the terms that match our search string.

Particularly, we'll use the documentation for PHP with 9,047 functions and write a
fuzzy search algorithm that will search in it.

Fuzzy search is used in IDEs such as PHPStorm or PyCharm and also in the
popular text editor Sublime Text. It doesn't search just for the strings that start
with your search term but it checks whether the order of characters in your
term and in the checked string is the same. For example, if you type docfrg, it
will find DocumentFragment because the letters in DocumentFragment are in the
same order as docfrg.

This is very handy because when there are a lot of functions with the same prefix,
you can start typing with just the first character and then jump to the middle of
the word and it's very likely that there won't be many functions with the same
characters. This is quite common for PHP because there are a lot of functions that
start with mysql or str_. If you're looking for a function called str_replace,
you can type just splc.

Practical Dart

[28]

We'll load the entire dictionary with Ajax as a JSON string and decode it to a Map
object. Dart uses the Future-Based API for all asynchronous calls including Ajax,
so we should talk about it first.

The Future-Based API
Dart, as well as JavaScript, uses asynchronous calls a lot. A common pitfall of
this approach in JavaScript is that it tends to make many nested function calls
with callbacks:

async1(function() {
 // do something
 async2(function() {
 // do something
 async3(function() {
 // do something
 callback();
 });
 }, callback);
});

The downsides of this approach are obvious:

• It makes hard to read and debug code, so-called callback hell.
• Each nested function can access variables from all parent scopes. This leads

to variable shadowing and also prevents the JavaScript interpreter from
deallocating unused variables. When working with a larger amount of data
(for example, asynchronous calls when reading files), even simple script can
use the entire available memory and cause the browser to crash.

A Future in Dart stands for an object that represents a value that will exist sometime
in the future. Dart uses Future objects in nearly all their APIs, and we're going to use
it in order to avoid passing callbacks around.

An example of using Future is HttpRequest.getString(), which returns a
Future object immediately and makes an asynchronous Ajax call:

HttpRequest.getString('http://...').then(onDataReady);

To work with the data returned from a Future object, we use the then() method,
which takes the callback function as an argument that can return another Future
object as well.

Chapter 2

[29]

If we want to create asynchronous behavior similar to that in the preceding example,
we use the Completer class, which is a part of dart:async package. This class has
a property called future, which represents our Future object and the complete()
method, which resolves the Future object with some value. To keep the same order
of function calls, we'll chain the then() methods of each Future object:

import 'dart:async';

Future async1() {
 var completer = new Completer();
 // Simulate long lasting async operation.
 new Future.delayed(const Duration(seconds: 2), () {
 // Resolve completer.future with this value. This will also
 // call callback passed to then() method for this Future.
 completer.complete('delayed call #1');
 });
 // Call to [Completer.complete()] resolves the Future object.
 return completer.future;
}

Future async2(String val) {
 // Print result from the previous async call.
 print(val);
 // Then create a new Completer and schedule
 // it for later execution.
 var completer = new Completer();
 // Simulate long lasting async operation.
 new Future.delayed(const Duration(seconds: 3), () {
 completer.complete('delayed call #2');
 });
 return completer.future;
}

Future async3(String val) {
 // Return another Future object.
}

void main() {
 // Chain async calls. Each function returns a Future object.
 async1()
 .then((String val) => async2(val))
 .then((String val) => async3(val))
 .then((String val) => print(val));
}

Practical Dart

[30]

We got rid of nested calls and have quite straightforward, shallow code.

APIs similar to Dart's Future are very common among
most JavaScript frameworks. Maybe you've already seen
$.Deferred() in jQuery or $q.defer() in AngularJS.

Future objects can also handle error states with catchError() that are emitted
by a Completer object with completeError().

Another usage of Future is when we want a function to be called asynchronously,
which is internally scheduled at the end of the event queue:

new Future(() {
 // function body
});

Sometimes, this is useful when you want to let the browser process all the
events before executing more computationally intensive tasks that could make
the browser unresponsive for a moment. For more in-depth information about
Dart's event loop, see https://www.dartlang.org/articles/event-loop/.

Using async and await keywords
Dart 1.9 introduced two new keywords, async and await, that significantly simplify
the usage of asynchronous calls with the Future-Based API.

Async
The async keyword is used to mark a function's body (which immediately returns
a Future object) that is executed later and its return value is used to complete the
Future object just like we saw previously when using the Completer class:

Future<String> hello() async {
 return 'Hello, World!';
}

In practice, you don't have to specify the Future<String> return type because even
Dart Editor knows that the async function returns a Future object, so we'll omit it
most of the time.

This saves some writing but its real power comes in combination with await.

https://www.dartlang.org/articles/event-loop/

Chapter 2

[31]

Await
With Future objects, the only way to chain (or simulate synchronous) calls is to use
the then()method multiple times, as we saw earlier. But there's a new keyword
await that is able to pause the execution of the current VM's thread and wait until
the Future object is completed:

String greetings = await hello();

The completed value of Future is then used as a value for the entire expression
await hello().

In comparison to the preceding example of multiple asynchronous calls,
we could use just:

print(await async3(await async2(await async1())));

The only limitation here is that await must be used inside an asynchronous function
(for example, defined with async) in order not to block the main execution thread.
If the expression with await raises an exception, it's propagated to its caller.

We're going to use async and await a lot here, but it's good to know how to use
the "original" Future-Based API with the Future and Complete classes, because it
will take some time for developers of third-party libraries to update their code with
async and await.

Dart 1.9 actually introduced even more keywords such as await-
for, yield, async*, and a few more (also called generators), but
these aren't very common and we're not going to discuss them here.
If you want to know more about them, refer to https://www.
dartlang.org/articles/beyond-async/.

Creating Ajax requests in Dart
Nearly every app these days uses Ajax. With libraries such as jQuery, it's very easy
to make Ajax calls, and Dart is no different. Well, maybe the only difference is that
Dart uses the Future-Based API.

Creating an Ajax call and getting the response is this easy:

String url = 'http://domain.com/foo/bar';
Future ajax = HttpRequest.getString(url);
ajax.then((String response) {
 print(response);
});

https://www.dartlang.org/articles/beyond-async/
https://www.dartlang.org/articles/beyond-async/

Practical Dart

[32]

// Or even easier with await.
// Let's assume we're inside an asynchronous function.
String response = await HttpRequest.getString(url);

That's all. HttpRequest.getString() is a static method that returns a
Future<String> object. When the response is ready, the callback function is called
with the response as a string. You can handle an error state with catchError()
method or just wrap the await expression with the try-catch block. By default,
getString() uses the HTTP GET method.

There are also more general static methods such as HttpRequest.request(),
which returns Future<HttpRequest>, where you can access return code, response
type, and so on. Also, you can set a different HTTP method if you want.

To send form data via the POST method, the best way is to use HttpRequest.
postFormData(), which takes a URL and a Map object with form fields as arguments.

In this chapter, we'll use Ajax to load a dictionary as JSON for our search algorithm,
and we'll also see JSONP in action later.

Dart packages
Every Dart project that contains the pubspec.yaml file is also a package. Our search
algorithm is a nice example of a component that can be used in multiple projects,
so we'll stick to a few conventions that will make our code reusable.

Dart doesn't have namespaces like other languages, such as PHP, Java, or C++.
Instead, it has libraries that are very similar in concept.

We'll start writing our app by creating a new project with the Uber Simple Web
Application template and creating two directories. First, we create /lib in the
project's root. Files in this directory are automatically made public for anyone using
our package. The second directory is /lib/src, where we'll put the implementation of
our library, which is going to be private. Let's create a new file in /lib/fuzzy.dart:

// lib/fuzzy.dart
library fuzzy;
part 'src/fuzzy_search.dart';

This creates a library called fuzzy. We could put all the code for this library right
into fuzzy.dart, but that would be a mess. We'd rather split the implementation
into multiple files and use the part keyword to tell Dart to make all the functions
and classes defined in lib/src/fuzzy_search.dart public. One library can use
the part keyword multiple times. Similarly to object properties, everything that
starts with the _ underscore is private and not available from the outside.

Chapter 2

[33]

Then, in lib/src/fuzzy_search.dart, we'll put just the basic skeleton code
right now:

// lib/src/fuzzy_search.dart
part of fuzzy;
class FuzzySearch {
 /* ... */
}

The part of keyword tells Dart that this file belongs to the fuzzy library.

Then, in main.dart, we need to import our own library to be able to use the
FuzzySearch class:

// web/main.dart
import 'package:Chapter_02_doc_search/fuzzy.dart';
// ... later in the code create an instance of FuzzySearch.
var obj = new FuzzySearch();

Note that the fuzzy.dart file is inside the lib directory, but we didn't have to
specify it. The package importer is actually not working with directory names but
package names, so Chapter_02_doc_search here is a package name from pubspec.
yaml and not a directory, although these two have the same name. For more in-depth
information about pubspec.yaml files, refer to https://www.dartlang.org/tools/
pub/pubspec.html.

You should end up with a structure like this:

Note that the package has a reference to itself in the packages directory.

One package can be a library and a web app at the same time. If you think about it,
it's not total nonsense, because you can create a library and ship it with a demo app
that shows what the library does and how to use it.

You can read more about Dart packages at
https://www.dartlang.org/tools/pub/package-layout.html.

https://www.dartlang.org/tools/pub/pubspec.html
https://www.dartlang.org/tools/pub/pubspec.html
https://www.dartlang.org/tools/pub/package-layout.html

Practical Dart

[34]

Writing the fuzzy search algorithm
We can move on with writing the fuzzy search algorithm. A proper name for
this algorithm would be probably approximate string matching, because our
implementation is simpler than the canonical and we don't handle typos. Try to
read the code; we've already seen every language concept used here in Chapter 1,
Getting Started with Dart:

// lib/src/fuzzy_search.dart
part of fuzzy;

class FuzzySearch {
 List<String> list;

 FuzzySearch(this.list);

 List<String> search(String term) {
 List<String> results = [];

 if (term.isEmpty) {
 return [];
 }

 // Iterate entire list.
 List<String> result = list.where((String key) {
 int ti = 0; // term index
 int si = 0; // key index
 // Check order of characters in the search
 // term and in the string key.
 for (int si = 0; si < key.length; si++) {
 if (term[ti] == key[si]) {
 ti++;
 if (ti == term.length) {
 return true;
 }
 }
 }
 return false;
 }).toList(growable: false);

 // Custom sort function.
 // We want the shorter terms to be first because it's more
 // likely that what you're looking for is there.

Chapter 2

[35]

 result.sort((String a, String b) {
 if (a.length > b.length) {
 return 1;
 } else if (a.length == b.length) {
 return 0;
 }
 return -1;
 });

 return result;
 }
}

The app itself will require a simple HTML code (we're omitting obvious surrounding
code, such as <html> or <head>):

<body>
 <input type="search" id="search" disabled>
 <ul id="autocomplete-results">

 <div id="detail">
 <h1></h1>
 <div></div>
 </div>

 <script type="application/dart" src="main.dart"></script>
 <script data-pub-inline src="packages/browser/dart.js"></script>
</body>

We don't want to hardcode the dictionary, so we'll load it using Ajax. JSON file with
all search terms is part of this chapter's source code, and it looks like this:

{ ...
 "strpos": {
 "desc": "Find the numeric position of the first occurrence
 of 'needle' in the 'haystack' string.",
 "name": "strpos"
 },
 ...
 "pdo::commit": {

Practical Dart

[36]

 "desc": "...",
 "name": "PDO::commit"
 }, ...
}

The key for each item is its lowercased name. In Dart, this JSON will be
represented as:

Map<String, Map<String, String>>

Now, we'll write a static method that creates an instance of our app and the
main() function:

import 'dart:html';
import 'dart:convert';
import 'dart:async';
import 'package:Chapter_02_doc_search/fuzzy.dart';

class DocSearch {
 static fromJson(Element root, String url) async {
 String json = await HttpRequest.getString(url);
 Map decoded = JSON.decode(json);
 return new DocSearch(root, decoded);
 }

 DocSearch(Element root, [Map<String, dynamic> inputDict]) {
 // Rest of the constructor.
 }
 // The rest of the class goes here.
}

main() async {
 try {
 await DocSearch.fromJson(querySelector('body'), 'dict.json');
 } catch(e) {
 print("It's broken.");
 }
}

Chapter 2

[37]

Note how we're creating an instance of DocSearch and are declaring main() as
asynchronous. We call a DocSearch.fromJson()static method, which returns
a Future object (the async keyword does this for us automatically), which is
completed with an instance of DocSearch when the Ajax call is finished
and when we decoded JSON into a Map object.

The source code for this example contains both Dart 1.9
implementation with async and await and pre 1.9 version
with the raw Future and Completer classes.

Handling HTML elements
You can see that if we hardcoded our dictionary, we could call the constructor of
DocSearch like with any other class. We can now look at the constructor particularly:

// web/main.dart
class DocSearch {
 Element _root;
 InputElement _input;
 UListElement _ul;
 FuzzySearch _fuzzy;
 Map<String, dynamic> _dict;

 static Future fromJson(Element root, String url) async {
 /* The same as above. */
 }

 DocSearch(Element root, [Map<String, dynamic> inputDict]) {
 _root = root;
 dict = inputDict;
 _input = _root.querySelector('input');
 _ul = _root.querySelector('ul');

 // Usage of ".." notation.
 _input
 ..attributes.remove('disabled')
 ..onKeyUp.listen((_) => search(_input.value))
 ..onFocus.listen((_) => showAutocomplete());

 _ul.onClick.listen((Event e) {

Practical Dart

[38]

 Element target = e.target;
 showDetail(target.dataset['key']);
 });

 // Pass only clicks that are not into or <input>.
 Stream customOnClick = document.onClick.where((Event e) {
 Element target = e.target;
 return target != _input && target.parent != _ul;
 });
 customOnClick.listen((Event e) => hideAutocomplete());
 }

 /* The rest of the class goes here. */
}

To set multiple properties to the same object, we can use the double dot operator.
This lets you avoid copying and pasting the same object name over and over again.
This notation is equal to:

_input.attributes.remove('disabled')
input.onKeyUp.listen(() => search(_input.value))
input.onFocus.listen(() => showAutocomplete());

Of course, we can use it for more nested properties as well:

elm.attributes
 ..remove('whatever')
 ..putIfAbsent('value', 'key')

In the constructor, we're creating a custom Stream object, as we talked about earlier
in this chapter. This stream passes only clicks outside our and <input> elements,
which represent autocomplete container and a search input filed, respectively. We
need to do this because we want to be able to hide the autocomplete when the user
clicks outside of the search field. Using just onBlur in the input field (the lost focus
event) wouldn't work as we wanted, because any click in the autocomplete would
hide it immediately without emitting onClick inside the autocomplete.

This is a nice place for custom streams. We could also make our stream a public
property and let other developers bind listeners to it. In vanilla JavaScript, you
would probably do this as an event that checks both conditions and emits a second
event and then listen only to the second event.

Chapter 2

[39]

The rest of the code is mostly what we've already seen, but it's probably good
idea to recap it in context. From now on, we'll skip obvious things such as DOM
manipulation unless there's something important. We're also omitting CSS files
because they aren't important to us:

// web/main.dart
class DocSearch {
 /* Properties are the same as above. */
 static fromJson(Element root, String url) async { /* ... */ }

 DocSearch(Element root, [Map<String, dynamic> inputDict]) {
 /* ... */
 }

 // Custom setter for dict property. When we change
 // the dictionary that this app uses, it will also change
 // the search list for the FuzzySearch instance.
 void set dict(Map<String, dynamic> dict) {
 _dict = dict;
 if (_fuzzy == null) {
 _fuzzy = new FuzzySearch(_dict.keys.toList());
 } else {
 _fuzzy.list = _dict.keys.toList();
 }
 }

 void search(String term) {
 if (term.length > 1) {
 int start = new DateTime.now().millisecondsSinceEpoch;
 List<String> results =
 _fuzzy.search(_input.value.toLowerCase());
 int end = new DateTime.now().millisecondsSinceEpoch;
 // Debug performance. Note the usage of interpolation.
 print('$term: ${(end - start).toString()} ms');

 renderAutocomplete(results);
 } else {
 hideAutocomplete();
 }
 }

Practical Dart

[40]

 void renderAutocomplete(List<String> list) {
 if (list.length == 0) hideAutocomplete();
 // We'll use DocumentFragment as we talked about earlier.
 // http://jsperf.com/document-fragment-test-peluchetti
 DocumentFragment frag = new DocumentFragment();

 list.forEach((String key) {
 LIElement li = new LIElement();
 li.text = _dict[key]['name'];
 // Same as creating 'data-key' attribute or using data()
 // method in jQuery.
 li.dataset['key'] = key;
 frag.append(li);
 });

 _ul.children.clear();
 _ul.append(frag.clone(true));
 showAutocomplete();
 }

 void showDetail(String key) {
 Map<String, String> info = _dict[key];
 _root.querySelector('#detail > h1').text = info['name'];

 String desc = info['desc']
 ..replaceAll('\\n\\n', '</p><p>')
 ..replaceAll('_', '_');
 _root.querySelector('#detail > div').innerHtml =
 '<p>' + desc + '</p>';

 hideAutocomplete();
 }

 void showAutocomplete() { _ul.style.display = 'block'; }
 void hideAutocomplete() { _ul.style.display = 'none'; }
}

Chapter 2

[41]

Note that we defined a custom setter for the dict property, so when we change it
from anywhere in the code, it also changes the list property in the instance of the
FuzzySearch class. Dart allows writing both custom getters and setters:

void set property(<T> newValue) {
 // Custom logic here.
}
<T> get property {
 // Custom logic here.
 // return an instance of <T>
}

Finally, we can test it in the browser:

When you type at least two characters in the search field, it opens an autocomplete
with suggested function names. You can click on one of them; it closes the
autocomplete and shows a simple detail window with its name and description.

You can open Developer Tools and see how much time it took for Dart to traverse
the entire 9,047 string list (it's about 25 ms on Intel Core Duo 2.5 GHz).

As we're already creating the FuzzySearch class as a reusable library, it would be
nice if we could use it not just in Dart but also in JavaScript.

Combining Dart and JavaScript
Using Dart in JavaScript and JavaScript in Dart is very easy, although there are some
limitations right now that will hopefully be resolved in the future. Basically, when
exchanging data between JavaScript and Dart, all you have to do is to wrap/unwrap
Dart objects with JsArray, JsFunction, or JsObject proxy classes from the dart:js
built-in package.

Practical Dart

[42]

Some built-in types don't need any proxy wrapper. The most common are null,
bool, num, String, DateTime, HtmlCollection, Event, Node, and NodeList.

Maybe you've already seen somebody using a package:js/
js.dart package. This is the old Dart-JS interoperation
package, which is deprecated in favor of dart:js.

Using Dart in JavaScript
Let's say we're writing a JavaScript app where we want to reuse our existing
FuzzySearch class and print all results to the console.

As of now, we can't just expose the class definition and then create instances of
it in JavaScript. We can't even create an instance of FuzzySearch and expose the
entire object to JavaScript, where you could call FuzzySearch.search() or set
FuzzySearch.list by yourself.

We need to wrap all calls to Dart into exposed JavaScript functions.

Create three files in the web directory: test_fuzzy.dart, test_fuzzy.js, and
test_fuzzy.html. We'll start with test_fuzzy.html (again, we're omitting the
unnecessary code):

<!-- web/test_fuzzy.html -->
<body>
 <script type="application/dart" src="test_fuzzy.dart"></script>
 <script data-pub-inline src="packages/browser/dart.js"></script>
 <script src="test_fuzzy.js"></script>
</body>

We still need some Dart code in the main() function that exposes what we want even
when there's no app logic in it. Then add the following in test_fuzzy.dart:

// web/test_fuzzy.dart
import 'dart:js';
import 'package:Chapter_02_doc_search/fuzzy.dart';

void main() {
 FuzzySearch fuzzy = new FuzzySearch();

 context['dart_fuzzy_set_list'] = (JsArray array) {
 fuzzy.list = array.toList();
 };
 context['dart_fuzzy_search'] = fuzzy.search;
}

Chapter 2

[43]

The top-level context variable comes from the dart:js package. You can think of it
as the window object in JavaScript. We create two functions:

• dart_fuzzy_set_list(): This takes a JavaScript array as an argument,
creates a List object from it, and passes it to our instance of FuzzySearch

• dart_fuzzy_search(): This just exposes FuzzySearch.search() for
this instance

Then, in test_fuzzy.js, we use vanilla JavaScript:

// web/test_fuzzy.js
window.onload = function() {
 var terms =
 ['strpos', 'str_replace', 'strrev', 'substr', 'strtotime'];
 window.dart_fuzzy_set_list(terms);

 var results = window.dart_fuzzy_search('srr');
 console.log(results);

 for (var i = 0; i < results.o.length; i++) {
 console.log(results.o[i]);
 }
};

That's it. When we run Pub Build (which compiles our Dart code to JavaScript) and
open test_fuzzy.html in a browser, it does exactly what we expect:

Practical Dart

[44]

In the end, it's not that bad even with these limitations and it's already usable.

There's a new https://github.com/dart-lang/js-interop
package for Dart-JS interoperation in development right now, which
should solve the current limitations of dart:js.

Using JavaScript in Dart
In practice, you'll probably need to use a lot of existing code already written in
JavaScript from Dart. In this app, we might want to use jQuery's fadeIn() and
fadeOut() functions to show/hide autocomplete.

There're two key methods, JsFunction.apply() and JsObject.callMethod(),
that we'll use and that have the same purpose as in vanilla JavaScript.

We'll add the jQuery package to the project's dependencies in pubspec.yaml
(Dart packages don't need to contain any Dart code). This package contains only
the jquery.js file that we add to index.html:

<script src="packages/jquery/jquery.js"></script>

Now, in DocSearch class, add a new JsFunction _jQuery property and initialize
it with a proxy object for jQuery in the constructor:

_jQuery = context['jQuery'];

Finally, update methods to show/hide autocomplete:

void showAutocomplete() {
 (_jQuery.apply([_ul]) as JsObject).callMethod('fadeIn', [500]);
}

void hideAutocomplete() {
 (_jQuery.apply([_ul]) as JsObject).callMethod('fadeOut');
}

We're basically calling $(ulElement).fadeIn(500) and $(ulElement).fadeOut().
The as keyword means type casting. We're using it here because we know that
calling jQuery selector returns a jQuery object and this object has a fadeIn()/
fadeOut() JavaScript method.

https://github.com/dart-lang/js-interop

Chapter 2

[45]

Note that the parameters that we used don't need any proxy classes. In situations
where we need to pass JavaScript objects as arguments, we have to wrap them with
JsObject.jsify(), which accepts any Dart collection.

In Chapter 3, The Power of HTML5 with Dart and Chapter 4, Developing a Mobile App
with Dart, we'll use dart:js again with a more complicated examples.

Dart MythBusters
There are some prejudgments about Dart, usually from frontend developers
who have never used it or for some reason decided that they don't want to use it
at any cost:

• It's just another abstraction layer like CoffeeScript or TypeScript and will
become redundant with ECMAScript 6: Dart is more than this. It's a full-
stack, modern, object-oriented, class-based language with its own standalone
VM, IDE, debugger, profiler, and everything (see Chapter 1, Getting Started
with Dart). It takes the best from many of today's languages. You can watch
the keynote from Dart Summit 2015 about future plans with Dart (https://
www.youtube.com/watch?v=FiXiI2Atexc).

• It looks like C or Java; it's unnecessarily complicated to do anything with
it: More or less, your code is going to be the same length as vanilla JavaScript
plus jQuery. You can see a list of synonyms of Dart and other languages at
https://www.dartlang.org/docs/synonyms/.

• It's not natively supported anywhere and never will: The Google Dart
team worked on the integration of the Dart VM right into the Chrome
browser. On March 25, 2015, they announced that they're canceling this
effort and instead, they'll work on better integration of Dart and JavaScript
while improving the dart2js compiler.
This brought some letdowns from fellow Dartisans, but from a practical point
of view, it's probably for the best because even with native Dart support,
you would still have to compile your code to JavaScript for other browsers.
The major problem with Dart is that it's hard to use with existing JavaScript
libraries and in real-world applications you'll probably choose between using
only Dart or not using Dart at all. This was also one of the reasons why the
Angular team didn't choose Dart as their language of choice for Angular 2.0.
There's also an experimental compiler in development that is designed to
generate readable JavaScript code (https://github.com/dart-lang/dev_
compiler).

https://www.youtube.com/watch?v=FiXiI2Atexc
https://www.youtube.com/watch?v=FiXiI2Atexc
https://www.dartlang.org/docs/synonyms/
https://github.com/dart-lang/dev_compiler
https://github.com/dart-lang/dev_compiler

Practical Dart

[46]

• You have to rely on the dart2js compiler: The dart2js compiler is an
essential part of the Dart SDK. Dart would never have become popular
among developers if the compiler didn't work reliably. For this reason, it's
very unlikely that the Dart SDK would come with broken dart2js. However,
it's true that if your project uses third-party packages, such as AngularDart,
which uses custom transformers, it might produce broken code.

• It's slow and the compiled code is even slower: In fact, it's the opposite
for Dart on Dart VM and dart2js is doing pretty good as well. Dart is
continuously benchmarked and you can see the results at https://www.
dartlang.org/performance/. However, it's questionable whether these
tests represent typical use cases for web apps.

• The compiled JavaScript code is too large: In Chapter 1, Getting Started with
Dart, we saw that the difference between the compressed code of compiled
Dart and vanilla JavaScript plus jQuery, is very small (we had 37 KB
versus 30 KB).

• You can't use any existing JavaScript: In this chapter, we've already seen
that we can and it's quite simple.

• Nobody uses it in production: There are actually quiet a few of them:
https://www.dartlang.org/community/who-uses-dart.html.

There are obviously situations where using Dart is too complicated, for example,
when you're creating a website and all you have to do is a few fade in/out
animations, handling click events, or appending some HTML elements. In these
situations, it doesn't make sense to use Dart and it's better to stay with JavaScript.
The real advantages of Dart come with more structured and complicated apps.

Summary
This chapter focused on a very practical aspect of Dart. From Streams and the
Future-Based API to Ajax, Dart 1.9 took a significant step forward in simplifying
the usage of asynchronous APIs using new async and await keywords. If you don't
find yourself familiar with the Future-Based API, at least try to understand the new
async and await features and try to compare Dart's approach to an asynchronous
code to what you already know from JavaScript.

We also saw that Dart can work with existing JavaScript code and vice versa. There
are some limitations, but the Dart development team announced that they'll focus on
simplifying the integration of Dart and JavaScript so the future looks promising.

In the next chapter, we'll focus more on HTML5-specific APIs.

https://www.dartlang.org/performance/
https://www.dartlang.org/performance/
https://www.dartlang.org/community/who-uses-dart.html

[47]

The Power of HTML5
with Dart

HTML5 features are already widely supported by most of the modern browsers.
In this chapter, we're going to take a look at some of them while building two
small apps:

• Reddit Read Later: This app fetches the latest posts tagged as dartlang from
www.reddit.com via JSONP, renders them into an HTML list, and allows
you to save interesting ones to local IndexedDB

• Music visualizer: This app uses the File Drag and Drop API to load music
from your computer, analyze frequencies with the Audio API, and draw bar
charts on the 2D canvas

On top of that, we'll take a quick look at some technologies commonly used with
graphics and games and a few notes about performance, low-level typed arrays,
and Dart's Isolates.

If you're planning to support older browsers with limited support of HTML5
features, you can take a look at http://caniuse.com to see what's available to
you before you start developing.

Both apps are going to heavily use Dart's Future-Based API for all
asynchronous operations with async and await keywords that we talked
about in the previous chapter.

www.reddit.com
http://caniuse.com

The Power of HTML5 with Dart

[48]

Creating the Reddit Read Later app
We can start writing the app right away. We can split it into three separate parts:

• Fetch JSONP data via Reddit API
• Render latest articles into a list
• Let the user save articles into IndexedDB

It's fair to say that this example doesn't use any special HTML5 features apart from
IndexedDB. What's interesting here is how it combines multiple things that we've
seen in previous chapters, most importantly, the integration of JavaScript within
Dart, its Future-Based API, and JsObject proxy objects. You can use exactly the
same approach for any JavaScript that needs to call Dart callbacks.

Fetching the JSONP data
Simply said, JSONP is a JavaScript object wrapped into a function call and included
just like any other JavaScript file (http://en.wikipedia.org/wiki/JSONP). Our
app is entirely client side. This means that we can't call Ajax requests to servers
on a different domain to ours, and unless the remote server returns appropriate
Access-Control-Allow-Origin (ACAO) headers, all responses will be blocked by
the browser due to the same-origin policy (this is mostly for security reasons).

With JSONP, we can avoid browser restrictions and make use of cross-origin
resource sharing, aka CORS (http://en.wikipedia.org/wiki/Cross-origin_
resource_sharing).

In practice, the JSON response would look like this:

{"key1":"value1","key2":"value2"}

The JSONP response is wrapped into a function call:

callback({'key1': 'value1', 'key2': 'value2'});

Note that included JSONP is just like any other JavaScript file and has
full access to the client's browser; therefore, it can be a security threat.
Use JSONP only with providers that you trust.

http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Chapter 3

[49]

We're going to use JSONP to get a list of the latest posts on www.reddit.com that are
tagged as dartlang from http://www.reddit.com/r/dartlang/search.json?sor
t=new&jsonp=callback&limit=10&restrict_sr=on.

The Reddit API allows us to set a custom callback with the jsonp parameter. This
is the name of the function that will wrap the entire JavaScript object for us. When
using Dart, all JavaScript has to be run in an isolated scope and as we want to be able
to refresh Reddit posts anytime we want, we're not going to statically include the
preceding URL but rather include it on demand and proxy the JavaScript callback
function with ours using dart:js:

// web/main.dart
import 'dart:html';
import 'dart:js';
import 'dart:async';

class RedditReadLater {
 static const String jsonpUrl = 'http://www.reddit.com/...';

 Future<List> refreshReddit() {
 // At this point we have to use [Completer] class to return a
 // Future object and complete it when we process all items
 // in the JavaScript callback.
 var completer = new Completer();

 // Just like window.callback = function() {} in JavaScript.
 // Context is defined in [dart:js] package.
 context['callback'] = (JsObject jsonData) {
 JsArray redditItems = jsonData['data']['children'];
 List<Map<String, String>> items;

 // Iterate all items in the JavaScript array.
 for (int i = 0; i < redditItems.length; i++) {
 JsObject item = redditItems[i]['data'];
 items[i] = ({
 'title': item['title'],
 'url': item['url']
 });
 }
 completer.complete(items);
 };

www.reddit.com
http://www.reddit.com/r/dartlang/search.json?sort=new&jsonp=callback&limit=10&restrict_sr=on
http://www.reddit.com/r/dartlang/search.json?sort=new&jsonp=callback&limit=10&restrict_sr=on

The Power of HTML5 with Dart

[50]

 // To dynamically reload data we need to create
 // and append <script> element every time.
 ScriptElement script = new ScriptElement();
 script.src = jsonpUrl;
 document.body.children.add(script);

 // Return a Future object that will be resolved when the
 // included script is loaded and the callback() method called.
 return completer.future;
 }

 void renderReddit(UListElement targetUl, List items) {
 // Remove all children and populate it with new ones.
 var frag = new DocumentFragment();
 for (Map<String, String>item in items) {
 /* Fill the list with items */
 }
 }
}

For a detailed explanation of the Reddit API, refer to
http://www.reddit.com/dev/api.

Now we can write the stub code for our main() function that will use the Future
object from refreshReddit():

void main() {
 var readLater = new RedditReadLater();

 // We can set an optional parameter "_" which is required by
 // onClick stream listener although we don't need it.
 refresh([_]) async {
 var items = await readLater.refreshReddit();
 readLater.renderReddit(
 document.querySelector('#reddit-list'), items);
 }

http://www.reddit.com/dev/api

Chapter 3

[51]

 document.querySelector('#refresh-btn').onClick.listen(refresh);

 refresh();
}

Our HTML template for this app is going to be very short:

<body>
 <h2>Latest posts on reddit.com/r/dartlang
 [refresh]
 </h2>
 <ul id="reddit-list">

 <h2>Read later</h2>
 <ul id="saved-articles">
</body>

The final app filled with posts from www.reddit.com will look like this in
the browser:

When we know how to fetch and display data via the Reddit API, we can save them
to IndexedDB.

www.reddit.com

The Power of HTML5 with Dart

[52]

IndexedDB
IndexedDB is a transactional client-side storage API with support for high
performance searches using indices and is implemented in almost every browser
(including mobile browsers). It's designed specifically to store JavaScript objects.

For more information, you can refer to http://www.w3.org/TR/
IndexedDB/ or https://developer.mozilla.org/en-US/
docs/Web/API/IndexedDB_API.

There are also some restrictions for IndexedDB:

• The database size is usually limited to tens of MB, although this limitation
varies over different browsers. If you want to store a large amount of data,
make sure your targeted platform can handle it.

• Your application can use multiple databases, although the size limit in
browsers might be per database and also per domain.

• The same-origin policy applies to IndexedDB as with any other resource in
JavaScript.

It's a good practice to check whether a client's browser supports HTML5 APIs
that might not be available in older browsers. With the dart:indexed_db Dart
package, you can check it thanks to IdbFactory.supported:

import 'dart:indexed_db' as idb;
if (!idb.IdbFactory.supported) {
 return;
}

http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/IndexedDB/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

Chapter 3

[53]

During development, it's very useful when you can see what's in your IndexedDB
right in Dartium's Developer Tools:

Suppose you end up in a situation where your object store is corrupted or you
want to test the behavior when the database doesn't exist yet. In this case, you can
right-click on the object store name in Developer Tools and select the Clear option
from the context menu, and remove it completely.

Initializing IndexedDB
First, include the dart:indexed_db package with a prefix because it contains class
names that are already used in dart:html (for example, the Request class):

import 'dart:indexed_db' as idb;

To create or open a database, call:

var db = await window.indexedDB.open('databaseName', version: 1,
 onUpgradeNeeded: onUpgradeNeededCallback
);

The onUpgradeNeededCallback function is called when you're opening a database
with this name for the first time or when the version number is higher than the
version of the currently existing database that allows you to migrate to a newer
database structure.

The Power of HTML5 with Dart

[54]

Records in the database are stored in object stores, which is much like a database
table from relational databases. Each database can contain multiple object stores
independently on each other. As we'll use the object store name and a reference to
our database multiple times in our app, we can create them as object properties:

static const String objectStoreName = 'articles_store';
idb.Database _db;

Creating an object store for our database is very simple:

void onUpgradeNeededCallback(idb.VersionChangeEvent e) {
 idb.Database db = (e.target as idb.Request).result;
 var store = db.createObjectStore(
 objectStoreName, autoIncrement: true);
}

A callback to onUpgradeNeeded is the only place where you can create new
object stores. Setting autoIncrement to true makes an object store to take care of
generating unique keys for new records inserted to the object store.

Fetching stored records
All operations in IndexedDB are performed via transactions. The first argument
to transaction() is its scope, which can be multiple object stores. The second
argument is a mode that can be readonly or readwrite. You can perform multiple
readonly operations concurrently but only one readwrite operation at the time.

We're going to simply get a cursor object that points at the beginning of our object
store and gets one record at a time. When used as a stream, it fires events for every
record in the object store. The autoAdvance parameter set to true makes the cursor
automatically move to the next record; otherwise, we would have to call the next()
method manually:

loadDataFromDB() async {
 var trans = _db.transaction(objectStoreName, 'readonly');
 var store = trans.objectStore(objectStoreName);

 Map<String, Map<String, String>>dbItems = new Map();
 var cursors = store.openCursor(
 autoAdvance: true).asBroadcastStream();

Chapter 3

[55]

 // Bind an event which is called for each record.
 cursors.listen((cursor) {
 dbItems[cursor.key] = cursor.value;
 });

 // Wait until all records have emitted their events.
 await cursors.length;
 renderReadLaterItems(dbItems);
}

The renderReadLaterItems() method just renders all records into a list just like the
renderReddit() method.

You can, of course, fetch a single record by its key, which, again, returns a
Future object:

store.getObject(key)

Saving records
We need to update the renderReddit() method to handle our onClick event,
add a clicked item to the object store, and reload all records:

void renderReddit(UListElement targetUl, List items) {
 var frag = new DocumentFragment();
 for (Map<String, String>item in items) {
 AnchorElement aElm = new AnchorElement();
 ..text = '[save]';
 ..href = '#';
 ..onClick.listen((e) async {
 e.preventDefault();
 await this._save(item);
 // Let's not worry about performance now.
 loadDataFromDB();
 });

 /* … */
 frag.append(liElm);
 }
 targetUl.children.clear();
 targetUl.append(frag);
}

The Power of HTML5 with Dart

[56]

Here we're meeting Future objects again:

Future _save(Map item) {
 var trans = this._db.transaction(objectStoreName, 'readwrite');
 var store = trans.objectStore(objectStoreName);

 // add() method persists record and returns a [Future] object.
 // Item's key is generated by our object store.
 store.add(item).then((addedKey) => print(addedKey));
 // We're not using await because only the transactions can tell
 // when it's finished. [Future.then()] is just better here.
 // [Transaction.completed] is an instance of [Future].
 return trans.completed;
}

Deleting records
Note that in order to remove a record from the object store, we need to know its
database key:

Future _delete(key) {
 var trans = this._db.transaction(objectStoreName, 'readwrite');
 // Delete record by its generated key.
 trans.objectStore(objectStoreName).delete(key);
 return trans.completed;
}

Similarly, we can remove all records:

trans.objectStore(objectStoreName).clear();

Indices
Although we didn't need any indicies in our app, it's worth mentioning how to use
them. Just like all operations that modify database structures, we have to define
indices in the onUpgradeNeeded callback:

store.createIndex('index_name', 'col_to_index', unique: true);

Chapter 3

[57]

If we wanted, for example, to search our saved Reddit posts by their title, we would
set the index like this:

store.createIndex('title_index', 'title');

Let's set a search query to filter, say, only those posts that start with the letter R:

var trans = this._db.transaction(objectStoreName, 'readonly');
var store = trans.objectStore(objectStoreName);
var index = store.index(titleIndex);

var range = new idb.KeyRange.lowerBound('R');
var cursors = index.openCursor(
 range: range, autoAdvance: true).asBroadcastStream();
cursors.listen((cursor) {
 print(cursor.value['title']);
});

This is very similar to fetching all records, as we did a moment ago.

Note that we're opening the cursor over index instead of the entire store and passing
a range argument, which is basically our search query. The idb.KeyRange item has
four named constructors that you can use:

Key name Description
KeyRange.bound(lower, upper) Matches all values between these two

bounds.
KeyRange.lowerBound(bound) Matches all values with this lower bound

and everything after it.
KeyRange.only(value) Single value key range. Indexed column

needs to match this value.
KeyRange.upperBound(bound) Matches all values with this upper bound

and everything before.

Bounds don't need to be numbers. You can use strings for
bounds as well.

Compared to any SQL-like database, indices in IndexedDB are very primitive,
but thanks to its simplicity, IndexedDB can be available even on mobile devices
with very limited resources.

The Power of HTML5 with Dart

[58]

Polishing the application
The finalized application can look like the following screenshot. You probably don't
want to rewrite all the source code by yourself, so feel free to download the source
code for this chapter and see how it's done.

LocalStorage versus IndexedDB
LocalStorage is a key-value storage that can be used instead of IndexedDB in some
situations. For example, in the application that we have just created, we could
use LocalStorage instead of IndexedDB without any problem, but remember that
LocalStorage is a very primitive storage and in terms of use cases, it's like cookies
with less restrictions.

Chapter 3

[59]

If you're looking for a universal storage engine with multiple
backends integrated, take a look at https://pub.dartlang.
org/packages/lawndart.

What about WebSQL?
WebSQL was supposed to be a SQL variant that could run in clients' browsers.
However, it's been discontinued by W3C and probably won't be supported by any
browser in the future because the only available implementation was SQLite.

It's recommended that you use IndexedDB instead.

You should remember that IndexedDB isn't an SQL-like
database. It's not even a drop in replacement for WebSQL.

Music visualizer
Our second app will be a simple music visualizer using the Audio API, File Drag and
Drop API, and Canvas. We'll split it into two parts: first, the drop area for a music
file, which will load its content using readAsDataUrl(), and place its content into
the src attribute of the audio element. Then, we connect various filters to the audio
stream and read its raw output from the audio analyzer.

Dartium doesn't support some common audio/video formats,
such as *.mp3 (http://www.chromium.org/audio-
video). Although you can enable it manually, try using *.mp4,
*.webm, or *.m4a instead.

We can start with a short HTML snippet:

<!-- web/index.html -->
<body>
 <h1>Chapter 03 music visualizer</h1>

 <audio autoplay loop controls="true">
 Your browser does not support the audio element.
 </audio>

 <div id="fileDrop">drop music file here</div>
 <canvas width="300" height="50" id="canvas"></canvas>
</body>

https://pub.dartlang.org/packages/lawndart
https://pub.dartlang.org/packages/lawndart
http://www.chromium.org/audio-video
http://www.chromium.org/audio-video

The Power of HTML5 with Dart

[60]

Now, add the Drag and Drop event listeners to the #fileDrop element:

// web/main.dart
import 'dart:html';
import 'dart:math';

class MusicVisualizer {
 AudioElement _audio;

 MusicVisualizer() {
 Element dropZone = document.querySelector('#fileDrop');
 _audio = document.querySelector('audio');

 // This is the event that we need.
 dropZone.onDrop.listen((MouseEvent event) {
 event.preventDefault();
 event.stopPropagation();
 // Although, user can drop multiple files we're interested
 // only in the first one.
 File file = event.dataTransfer.files.first;
 var reader = new FileReader();

 document.querySelector('h1').text = file.name;

 // When the file is loaded we want to add our filters.
 reader.onLoad.listen(audioLoaded);
 reader.readAsDataUrl(file);
 });

 // Prevent default browser behavior because by default
 // browser would open the file and we wouldn't be
 // able to read its content.
 dropZone.onDragOver.listen((MouseEvent event) {
 event.preventDefault();
 event.stopPropagation();
 });
 }

 void audioLoaded(ProgressEvent event) { }
}

void main() {
 var music = new MusicVisualizer();
}

Chapter 3

[61]

In total, there are seven events related to Drag and Drop: onDragStart, onDragEnd,
onDrag, onDragEnter, onDragLeave, onDragOver, and onDrop.

We only care about onDrop and onDragOver, so we can leave the rest unused.

Now, we're going to add three filters (in the context of the Audio API, they call
it audio nodes). Two frequency filters, lowpass and highpass, can cut off
frequencies lower or higher than the specified threshold. We'll use them to cut off
frequencies that aren't audible to the human ear because it doesn't make sense to
visualize sounds that we can't hear. The last filter is the audio analyzer, which we
can use to access raw audio data.

We'll chain all three filters from the audio source to the destination where the
destination is the default audio output.

source => filter1 => filter2 => analyzer => destination

In other words, we're going to add three nodes between the source and the
destination and hook up the analyzer node to access raw audio data.

There are other types of filters in addition to these three
(https://developer.mozilla.org/en-US/docs/Web/
API/BiquadFilterNode.type). We're not including all of
them here because their usage is very similar.

Actually, if we just want to visualize the audio stream, we don't even need to use
filters but we're including them here to make the example a little more complex:

// web/main.dart
import 'dart:web_audio';
import 'dart:typed_data';
/* … */

class MusicVisualizer {
 AnalyserNode _analyser;
 /* … */

 void audioLoaded(ProgressEvent event) {
 // Access audio file as Base64 encoded string.
 _audio.src = (event.target as FileReader).result;

 AudioContext audioCtx = new AudioContext();
 MediaElementAudioSourceNode source =

https://developer.mozilla.org/en-US/docs/Web/API/BiquadFilterNode.type
https://developer.mozilla.org/en-US/docs/Web/API/BiquadFilterNode.type

The Power of HTML5 with Dart

[62]

 audioCtx.createMediaElementSource(_audio);

 // Object that we'll use to access raw audio data.
 _analyser = audioCtx.createAnalyser();

 BiquadFilterNode filter1 = audioCtx.createBiquadFilter();
 filter1.type = 'lowpass';
 // Cut off all frequencies above this threshold.
 filter1.frequency.value = 20000;

 BiquadFilterNode filter2 = audioCtx.createBiquadFilter();
 filter2.type = 'highpass';
 // Cut off all frequencies below this threshold.
 filter2.frequency.value = 80;

 // The actual filter chaining.
 source.connectNode(filter1);
 filter1.connectNode(filter2);
 filter2.connectNode(_analyser);
 _analyser.connectNode(audioCtx.destination);

 // Play the audio file when it's loaded.
 _audio.play();

 this.run();
 }

 void run() { /* We'll write it in a moment */ }
}

Note that we're also including two more packages:

• The dart:web_audio package has classes that work with the Audio API.
• The dart:typed_data package has low-level, type-specific structures. You

usually don't need to work with such data structures unless you need really
high performance code or when you're working with raw data, as with the
Audio API or with WebGL and matrices.

Now we can group frequencies in the audio into N groups and draw them in a loop.

Chapter 3

[63]

For timing, we could just use setTimeout() but with HTML5, we have a better
method called requestAnimationFrame(). This delays the function call until the
browser thinks it's the time to redraw the screen (usually trying to keep stable
60 fps):

int _bars = 300;

void run() {
 _canvas = document.querySelector('#canvas');
 _ctx = _canvas.getContext('2d');

 window.requestAnimationFrame(draw);
}

void draw(double time) {
 // Create and instance of [Uint8List] with fixed length.
 var arr = new Uint8List(_analyser.frequencyBinCount);
 // Flush current audio data into the array.
 _analyser.getByteFrequencyData(arr);

 // Divide all frequencies into _bars groups and sum them.
 List<int> barChart = new List.filled(_bars, 0);
 for (int i = 0; i < arr.length; i++) {
 int index = (i / (arr.length / _bars)).floor();
 barChart[index] += arr[i];
 }

 // max/min method are defined in [dart:math]
 double chartMax = barChart.reduce(max).toDouble();
 double chartMin = barChart.reduce(min).toDouble();

 // Clear canvas; this is a small hack that clears canvas
 // faster than calling [fillRect()] or [clearRect()].
 _canvas.width = _canvas.width;
 int barWidth = (_canvas.width / _bars).round();

 // Draw green rectangle for each bar.
 _ctx.fillStyle = "#00ff00";

 for (int i = 0; i < _bars; i++) {
 // Height of a bar is relative to the size of the highest bar.
 double height = _canvas.height *
 ((barChart[i] - chartMin) / chartMax);
 // Coordinates 0x0 are at the top left corner.
 // [fillRect()] takes top left and bottom right corner of the

The Power of HTML5 with Dart

[64]

 // rectangle you want to draw and fills it with color
 // set with [fillStyle].
 _ctx.fillRect(barWidth * i, _canvas.height – height,
 barWidth * (i + 1), _canvas.height);
 }

 // Draw again when the browser is ready.
 window.requestAnimationFrame(draw);
}

Instead of drawing bars with rectangles, we could also use lineStyle, lineWidth,
moveTo(), lineTo(), and stroke(). At the end, it would probably be more
complicated because with moveTo() and lineTo(), you are setting the center of
the line that you're going to draw. With 1 px line width, this means a 0.5 px overlap
on each side, which would create blurred lines (unless, you add 0.5 px to each
coordinate in moveTo() and lineTo()).

If you look at the code, you will notice that there are quite a lot of operations.
Depending on the music file that you drop to #dropZone, getByteFrequencyData()
fills arr with, for example, 1,024 items that you iterate right after that and then calls
fillRect() 300 times. This all is processed in 60 fps.

The final app could look like this with a little CSS:

Chapter 3

[65]

Other noteworthy APIs and libraries
The goal of this book is not to go through all the APIs that come with HTML5, but
there are some that are worth taking a look at, including some interesting Dart
libraries. You probably won't use them on a daily basis, but it's good to know that
there's such things available to you.

Typed lists for fast numeric computing
Even though everything in Dart is an object and the VM is very well optimized,
there's a built-in dart:typed_data library, which we already mentioned in the
audio visualizer app. This library contains data structures (mostly lists) with fixed
size n-bit signed / unsigned integers / floats. In other words, lists that can contain
only n-bit numbers and no objects.

In practice, if we knew we wanted to store only 8-bit values (that's 0-255) in an array,
we could use the Uint8List class instead of List<int>. This could represent, for
example, image colors:

import 'dart:io';
import 'dart:typed_data';

main() {
 const max = 10 * 1000 * 1000; // 10 million elements
 print("My PID: $pid");

 var objectList = new Uint8List(max);
 // Fill with values.
 for (int i = 0; i < max; i++) objectList[i] = i % 255;

 // Sum values.
 int total = 0;
 for (int i = 0; i < max; i++) total += objectList[i];
 print(total);

 // Pause here so we can check memory usage.
 stdin.readLineSync();
}

The Power of HTML5 with Dart

[66]

Its usage is exactly the same as a normal List object. This version with the
Uint8List typed list takes 21.1 MB of memory while the version with List<int>
takes 49.1 MB of memory on a 32-bit standalone Dart VM.

For more in-depth information, read https://www.dartlang.org/articles/
numeric-computation/.

vector_math
The third-party vector_math package is a collection of 2D, 3D, and 4D vector and
matrix types and collision detection algorithms. You're probably not going to use
vector_math on daily basis, but it's definitely good to know that there is such a
package if you were looking for high performance (in terms of browser capability)
computing. Games and 3D graphic applications are the most common usages.

SIMD
Single instruction, multiple data (SIMD) is a set of instructions that can perform a
single operation on multiple data simultaneously. When SIMD instructions are used
properly, it usually means significant performance improvement.

Since August 2013, SIMD is available to you in Dart via Int32x4 and Float32x4
classes (https://www.dartlang.org/articles/simd/).

The current version of vector_math already uses SIMD instructions; therefore,
you don't need to worry about implementing vector and matrix manipulations by
yourself and you can leave all the difficult work to vector_math, which is already
well optimized.

Of course, SIMD is available only in Dartium right now. The future looks promising
for all non-Dart browsers too. Intel, in collaboration with Google and Mozilla,
already runs SIMD code in JavaScript and is trying to bring the JavaScript SIMD
API into the ES7 version of the JavaScript standard (https://01.org/blogs/
tlcounts/2014/bringing-simd-javascript).

https://www.dartlang.org/articles/numeric-computation/
https://www.dartlang.org/articles/numeric-computation/
https://www.dartlang.org/articles/simd/
https://01.org/blogs/tlcounts/2014/bringing-simd-javascript
https://01.org/blogs/tlcounts/2014/bringing-simd-javascript

Chapter 3

[67]

WebGL
WebGL and technologies around it are such a vast topic that they could easily cover
the entire book.

The current browser version of WebGL is based on OpenGL ES 2.0, which is used in
most of today's mobile devices (iPad, and iPhone 5S, and newer devices also support
OpenGL ES 3.0).

The source code for this chapter contains a small demo with a rotating 3D cube and
a triangular pyramid. We're not going to look into this example here because vanilla
WebGL is crazy complicated, and in practice, you'd probably use a third-party
library. By the way, this very basic example has 350 lines of code.

three.dart
Probably the most popular JavaScript 3D engine nowadays is three.js and three.dart
is its port in Dart (https://github.com/threeDart/three.dart). Three.dart uses
vector_math heavily.

If you're thinking about developing a game or any visually complicated 3D app,
don't start writing it from scratch with pure WebGL, use a 3D engine instead. Even
when it looks like writing everything by yourself will suit your needs and result
in a better performance, usually it ends up the exact opposite. High-performance
code with vector and matrix optimizations with SIMD is complicated and requires a
deeper understanding of how CPUs and browsers' VMs work inside.

StageXL
Until HTML5 became relatively common, the only way to create rich web apps was to
use Adobe Flash. Switching from Flash to JavaScript or Dart is very time-consuming
because you have to rewrite absolutely everything from scratch. StageXL uses mostly
the same API as Flash and is designed for easy migration from Adobe Flash to
HTML5 and Dart (http://www.stagexl.org).

https://github.com/threeDart/three.dart
http://www.stagexl.org

The Power of HTML5 with Dart

[68]

Box2D and play_phaser
Box2D (https://github.com/google/box2d.dart) is a 2D physics library that is a
port of Java JBox2D, which is a port of C++ Box2D. It's been developed since January
2012 by Dominic Hamon, a former employee of Electronic Arts, LucasArts, and
Google. It uses most of the features of vector_math that are currently available.

The play_phaser library (https://github.com/playif/play_phaser) is a
full-featured 2D game engine with a WebGL renderer, physics, an audio mixer,
animation engine, and so on—basically, all you might need.

Isolates and Web Workers
Dart supports multithreaded programming using the Isolate API. Isolates are
execution contexts that can only access variables from the same isolate.

Isolates are similar to threads in that they can run on multiple CPUs (and cores),
but unlike threads, isolates don't share the same memory, and therefore, all
communication between them must be done by sending messages.

The Isolate API runs in both standalone Dart VMs and browsers where the browser
implementation is based internally on Web Workers (therefore, there's no Web Worker
class in Dart). We'll come back to isolates in Chapter 9, Writing Native Extensions for the
Standalone Dart VM.

Summary
In this chapter, we took a look at some HTML5-specific APIs.

We used IndexedDB to store, fetch, and delete records. Remember that WebSQL
has been discontinued due to the lack of independent implementations, and you
shouldn't use it any more. The Drag and Drop API is available in Dart via the
onDrag* event listeners on HTML elements.

The Audio API has access to raw audio data through low-level data structures
and can modify it using various filters. For animations with a stable frame rate, it's
recommended that you use requestAnimationFrame(). Canvases with 2D and
WebGL contexts can be fully experienced in Dart.

We also used the dart:js library to create a Dart callback function, which is later
called by JavaScript and that converts JavaScript proxy objects into Dart objects.

In the next chapter, we're going to look at developing applications for mobile devices
using Dart. Also, we'll take a look at some more HTML5 APIs that are specific to
mobile devices and CSS3 3D transformations that run on both desktop and mobile.

https://github.com/google/box2d.dart
https://github.com/playif/play_phaser

[69]

Developing a Mobile App
with Dart

In this chapter, we're going to take a quick look at CSS3 3D transformations and
introduce some more HTML5 APIs that are specific to mobile devices. With the
knowledge gained from the previous chapters, we'll develop four small apps that
will make use of the things that we've already learned:

• Basics of CSS3 transformations: We'll learn basics about axes, movement,
and rotation in the 3D space and how can we use them to transform HTML
elements using CSS3.

• 3D bookshelf rotated using HTML5 DeviceOrientation events: After we
learn how to perform basic operations in 3D with CSS3, we can make a
slightly more complicated app with nested 3D objects and textures. In order
to make it more interactive, we'll listen to DeviceOrientation events and
rotate the entire scene in 3D as you rotate your device.

• Track position and distance using HTML5's GeoLocation API with the
Google Maps API: We'll see how to use the Google Maps JavaScript API to
track and draw your movement while calculating total distance and drawing
the track to the map. For the entire communication between Dart and
JavaScript, we'll use the dart:js library.

• Draw into the 2D canvas using onTouch events: We already know how
to draw into canvas from the previous chapter; this time, we'll see how to
combine it with touch events.

Although some of the APIs covered in this chapter are mobile-specific, you can
emulate them in Chrome or Dartium.

Developing a Mobile App with Dart

[70]

300 ms tap delay
By default, mobile browsers add artificial 300 ms delay between the time you
release your finger (onTouchEnd) and before a click event is triggered. This is a nice
accessibility feature for normal web pages that aren't optimized for mobile browsers,
but for web apps that are designed to look and feel native, this is unwanted behavior.

There used to be some nasty workarounds, but browser vendors decided to remove
this delay for mobile-friendly (or mobile-optimized) websites. This means that pages
that use this header aren't affected by tap delay:

<meta name="viewport" content="width=device-width">

This meta variable tells the browser to set its width to the device width with respect
to the pixel density. For example, for iPhone 6 with 1334 x 750 screen resolution,
and pixel density 2, the page will be rendered in a browser window with a 667 x 375
resolution. Now as a side effect, it also turns off the tap delay.

We recommend that you use this header for all examples in this chapter unless you
know for sure that you don't want it.

Basics of CSS3 transformations
All modern browsers already support CSS transforms, including mobile browsers.
For the first two apps, we'll use four new statements from CSS3 heavily:

• transform: Move, rotate, scale, or skew the HTML element using
translate[X,Y,Z](v), rotate[X,Y,Z](v), scale[X,Y,Z](v), and
skew[X,Y](v), respectively. All these basic transformations have their 3D
alternative, such as rotate3d(x, y, z, angle), that you can use to set
transformations in all three dimensions with one statement.
If you want to perform more transformations on an element, you have
to set all of them in a single CSS statement, for example, transform:
rotateY(90deg) translateX(100px);.

• transform-style: Using flat or preserve-3d options, you can tell
the browser whether you want to apply 3D transformations from parent
elements to their child. By default, the browser takes all transformations on
a per-element basis, which means that if you, for example, rotate the parent
element and then rotate its child elements, the browser will perform rotations
independently.

• perspective: Set the perspective depth for this element and all its children
as a distance from the element to the viewer. Changing this value doesn't
change the size of elements, as we'll see in the second app.

Chapter 4

[71]

• transform-origin: This statement is mostly useful for rotation. It lets you
set a point around which rotation will be performed. By default, the origin is
set to the element's center.

All these CSS3 statements are currently available on
mobile browsers only with the prefix -webkit-.

Axes
The coordinate system for transformations is very obvious: the x and y axes are
like those you're probably used to. The z axis goes in the direction to/from you.
The center of coordinates for each element is in its center by default.

Source: https://developer.mozilla.org/en-US/docs/Web/Guide/
Events/Orientation_and_motion_data_explained

Hello world in 3D
It's time to see CSS3 transformations in action. We're going to rotate this
HTML snippet:

<body>
 <div id="container">
 <div id="first">Hello</div>
 <div id="second">World!</div>
 </div>
</body>

Apply CSS3 with a few 3D transformations:

/* Center of perspective for this div will be in [250,50]. */
#container { height: 100px; width: 500px;
 perspective: 300px; position: relative; }
#container div { position: absolute; width: 150px; }
#first { transform: rotateY(30deg) translateX(-85px); }
#second { transform: rotateY(-40deg) translateX(85px); }

https://developer.mozilla.org/en-US/docs/Web/Guide/ Events/Orientation_and_motion_data_explained
https://developer.mozilla.org/en-US/docs/Web/Guide/ Events/Orientation_and_motion_data_explained

Developing a Mobile App with Dart

[72]

We're omitting some nonimportant CSS such as font size or
colors here in order to make the examples more readable.

In the browser, we'll see rotated div elements with text like this. Note that the white
text is just like any other text on the page. Also, transformed elements are just normal
div elements that can be adjusted with CSS to what you desire.

This is an important distinction from WebGL, where everything is drawn right into
the canvas using shaders and has absolutely nothing to do with HTML.

Both div elements, #first and #second, are positioned absolutely. If we didn't
translate their position, they would overlay each other, but at the same time, we
can't use just inline-block because the rotated div element takes the same space
as when it wasn't rotated. Therefore, it would be even harder to make them look like
they're joined together.

Nesting 3D transformed elements
Let's add one more div element to the #first element:

<div id="container">
 <div id="first"><div id="third">Nested</div>Hello</div>
 <div id="second">World!</div>
</div>

Chapter 4

[73]

Then, add styles that transform this div element as well:

#third { transform-origin: 0 0;
 transform: rotateY(110deg); }

We want to rotate it around the y axis by 110 degrees, centered to the left edge of its
parent (that's the effect of the transform-origin). This should make the mirrored
image of the element look like it's joined to the left edge of #first while going
slightly to the left and fading away from us. The #third element is aligned to the
top-left corner of its parent because it's positioned absolutely.

But wait; that's not what we wanted. We can see the back of the #third element,
which makes the output look like it's mirrored. That's fine but it seems like it's
following the same transformation as #first.

The reason for this behavior is that the browser flattens transformations for child
elements. To avoid this, we'll use transform-style: preserve-3d, which we
mentioned earlier. Note that preserve-3d applies the parent's transformations only
to direct children elements. If children elements have other children elements, then
they have to use preserve-3d as well.

So, we can fix this by adding transform-style: preserve-3d to #first:

#first { /* … */ transform-style: preserve-3d; }

Developing a Mobile App with Dart

[74]

Now the result looks like we expected:

In some situations, you don't want to see the back of rotated
elements. In that case, set backface-visibility: hidden;.

If you're confused with all these rotations and translations, don't worry. It's hard to
imagine rotating objects in 3D, moreover, combining multiple nested objects and
rotating each of them relatively.

Your best friend is Developer Tools. Try changing rotations or translations on the fly,
change perspective, and see what effect it has. Also, change transform-origin on
#third and see what happens.

We'll later set transformations in Dart for both -webkit- prefixed and nonprefixed
versions, such as:

element.style.setProperty('transform', 'rotateX...');
// Mobile browsers supporting only prefixed versions.
element.style.setProperty('-webkit-transform', 'rotateX...');

A 3D bookshelf with DeviceOrientation
events
We already saw the basics, and we can start with a more attractive app, for example:

Chapter 4

[75]

Each book is made out of six div elements and the shelf itself are five div elements
(we don't need the back face):

<div id="book-container">
 <div class="book dune-new">
 <div class="front"></div>
 <div class="left"></div>
 <div class="right"></div>
 <div class="back"></div>
 <div class="top"></div>
 <div class="bottom"></div>
 </div>

 <div class="book dune-old"><!-- 6 book's faces again --></div>
 <div class="shelf"><!-- 5 shelf's faces --></div>
</div>

Developing a Mobile App with Dart

[76]

The CSS for this example is not that complicated; there are just a lot of
transformations. Feel free to open this example in the browser and check
where each div element is positioned:

/* Entire document is using single perspective. */
body { perspective: 500px; }

#book-container { transform-style: preserve-3d; text-align:center;
 /* Try manually rotating the scene. */
 /* transform: rotateX(-40deg) rotateY(20deg); */
}

.book { display: inline-block; width: 150px; height: 230px;
 transform-style: preserve-3d; position: relative; }
.book > div { position: absolute; }
.book > .front { transform: translateZ(15px); }
.book > .left { width: 30px; transform-origin: 0 0;
 transform: rotateY(-90deg) translateX(-15px); }
.book > .top { height: 30px; width: 145px;
 transform: rotateX(90deg) translateZ(10px); }
.book > .back { transform: rotateY(180deg) translateZ(15px); }
.book > .right { height: 220px; width: 30px;
 transform: rotateY(90deg) translateZ(130px) translateY(5px);}
.book > .bottom { height: 30px; width: 145px;
 transform: rotateX(90deg) translateZ(-210px); }

For the sake of simplicity, both books are the same size: 150 px width, 230 px height,
and 30 px deep. Let's take a look at some interesting parts:

• .book: This wraps all the faces for each book. When we want to position
each book on the page, we don't want to move each face separately. Rather,
move/rotate the entire container, and all the faces inside will transform
relatively to it because of preserve-3d. Note that we're setting display:
inline-block and hardcoding the width and height to be sure how much
space each book is going to take no matter what the faces inside do.

• .book > div: All faces are positioned absolutely, which means that they will
be aligned to the top-left corner of their parent .book element.

• .book > .front: This moves the front face 15 px (that's half of the book's
depth) along the z axis, because we want to keep the center of the book
in its center for all axes. This face has the book's cover image set as its
background-image.

Chapter 4

[77]

• .book > .left: This (highlighted in blue) moves the transform origin to the
top-left corner of the div element, rotates it by 90 degrees, and moves it 15 px
back along the z axis. That's all we need to do for this face because on the x
and y axis, it's already where we want it to be thanks to transform-origin:
0 0;.

• .book > .top: This is very similar to .left. We just want to move it a little
bit down to make the book look like it's a hardcover. Note that when rotating
div elements, you also rotate axes, and that's why we're translating along z
and not y.

• #book-container: This wraps the entire bookshelf with books. We want to
rotate the entire scene and not just the books; we'll apply transformations to
this wrapper using Dart.

Creating a shelf with a wood texture works on exactly the same principle, so we
don't need to do it here again.

Now, in Dart, we'll listen to the deviceorientation event of the window object,
which fires every time the device rotates. In reality, this event will be fired many
times per second because the sensors aren't precise and will probably fire events
even when your mobile device is lying on the table:

window.addEventListener('deviceorientation',
 (DeviceOrientationEvent e) {
 print(e.alpha);
 print(e.beta);
 print(e.gamma);
});

Developing a Mobile App with Dart

[78]

These are the three angles that we can use to set the rotation on our #book-
container element:

Source: https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Orientation_and_
motion_data_explained

Orientation works differently on mobile devices and computers.
As a rule of thumb on computers, the reference point is not
the screen but the keyboard instead. Therefore, the axis will be
probably shuffled.

This code expects that you're running it on a computer, so you can easily test
rotations with Developer Tools:

// web/main.dart
import 'dart:html';

void main() {
 HtmlElement container =
 document.querySelector('#book-container');

 int initRotationX = null;
 int initRotationY = null;

 window.addEventListener('deviceorientation',
 (DeviceOrientationEvent e) {
 // These parameters are expected on a computer.
 if (e.beta != null && e.gamma != null) {
 // Make the rotation relative to the initial position,
 // not [0, 0, 0].
 if (initRotationX == null && initRotationY == null) {
 initRotationX = e.beta.round();

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Orientation_and_motion_data_explained
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Orientation_and_motion_data_explained

Chapter 4

[79]

 initRotationY = e.gamma.round();
 }

 int rotY = (e.gamma.round() - initRotationY);
 int rotX = -(e.beta.round() - initRotationX);
 // String value for the CSS statement.
 var transform = "rotateX(${rotX}deg) rotateY(${rotY}deg)";

 container.style.setProperty('transform', transform);
 // Mobile browsers support only prefixed versions.
 container.style.setProperty('-webkit-transform', transform);
 }
 });
}

Now we can open Developer Tools and simulate different rotations. In the
Emulation tab, click on Sensors and you should see three input fields, each
for one axis.

When you change β (beta) and γ (gamma), the entire scene will rotate.

With quite a short Dart code, we created an app that can react to device rotation and
can change CSS styles dynamically from Dart.

As we mentioned earlier, it's okay if you find 3D manipulations complicated and
confusing. We encourage you to download the source code for this chapter, play
around with CSS transformations, and see what happens.

Developing a Mobile App with Dart

[80]

Obviously, making complicated 3D objects is nearly impossible. There are already
tools that make the creation of 3D objects from div elements easier by generating
HTML structure and CSS3 for you. You can take a look at one of them, called Tridiv
(http://tridiv.com), and note that you can create quite nice stuff with it. But
remember, embedding such complicated objects will have significant impact
on performance.

CSS3 transformations, compared to WebGL, are very primitive. There's no
built-in lighting renderer, although there's an alternative in JavaScript and CSS3
called Photon (http://photon.attasi.com/), which is good for small projects
with a few transformed elements, such as the bookshelf example that we created a
moment ago. For larger objects such as the X-Wing from Tridiv, it's quite slow.
The same object rendered with WebGL would run smoothly without any problem
even on slower computers.

You can read a small comparison of CSS3 transformation and WebGL
here: http://blog.teamtreehouse.com/3d-in-the-browser-
webgl-versus-css-3d-transforms.

In Chrome and Dartium, you can check whether various rendering techniques are
hardware accelerated right in your browser at chrome://gpu/.

http://tridiv.com
http://photon.attasi.com/
http://blog.teamtreehouse.com/3d-in-the-browser-webgl-versus-css-3d-transforms
http://blog.teamtreehouse.com/3d-in-the-browser-webgl-versus-css-3d-transforms
chrome://gpu/

Chapter 4

[81]

Position and distance tracker with the
GeoLocation API and Google Maps API
In Chapter 2, Practical Dart, we learned about the dart:js library. We saw that we
can proxy JavaScript objects using the JsObject class in Dart. We're going to use the
JsObject class a lot right now because this app will use the Google Maps API, which
is a JavaScript API that we'll control from Dart.

There's a Dart wrapper (https://pub.dartlang.org/packages/
google_maps) for the Google Maps API, which you would probably
prefer in a real-world app, but for demonstration purposes, we'll write
everything by ourselves.

First, include the Google Maps API before including any Dart script:

<script src="http://maps.../api/js?libraries=geometry"></script>
<script type="application/dart" src="main.dart"></script>

Note the ?libraries=geometry parameter in the URL. This tells Google to include
an additional library in the API, which we need in order to calculate the distance
between two GPS locations.

We'll initialize Google Map and assign Dart proxies to JavaScript objects:

import 'dart:html';
import 'dart:js';
import 'dart:async';

void main() {
 double totalDistance = 0.0;

 // My last position as a JavaScript LatLng object.
 JsObject lastPos;
 JsObject mapsApi = context['google']['maps'];

 // Reference to an object that we'll instantiate multiple times.
 JsObject jsLatLng = mapsApi['LatLng'];
 // We'll keep listener subscription in a variable
 // because we want to be able to unsubscribe.
 StreamSubscription<Geoposition> locSubscr = null;
 // Proxy object to computeDistanceBetween().

https://pub.dartlang.org/packages/google_maps
https://pub.dartlang.org/packages/google_maps

Developing a Mobile App with Dart

[82]

 JsFunction jsDistance =
 mapsApi['geometry']['spherical']['computeDistanceBetween'];

 HtmlElement distanceElm, distanceFromLastElm;
 HtmlElement statusElm, mapCanvas;
 ButtonElement btnStart, btnStop;

 /* Assign HTML elements to Dart variables. */

 // Convert Dart Map into a JavaScript object.
 JsObject mapOptions = new JsObject.jsify({
 "zoom": 2,
 "center": new JsObject.jsify({ 'lat': 20.0, 'lng': -30.0}),
 "mapTypeId": mapsApi['MapTypeId']['ROADMAP']
 });

 // Init Google Map.
 var map = new JsObject(mapsApi['Map'], [mapCanvas, mapOptions]);

 // Method called after receiving the first coordinates.
 void init(Coordinates c) {
 lastPos = new JsObject(jsLatLng, [c.latitude, c.longitude]);

 // Call two methods on JsObject proxy.
 map.callMethod('setCenter', [lastPos]);
 map.callMethod('setZoom', [16]);

 // Draw a circle to the map that marks my initial position
 // by calling JavaScript object constructor.
 new JsObject(mapsApi['Circle'], [new JsObject.jsify({
 'strokeColor': '#FF0000', 'strokeOpacity': 0.8,
 'strokeWeight': 2, 'fillColor': '#FF0000',
 'fillOpacity': 0.8, 'map': map,
 'center': lastPos, 'radius': 10
 })]);
 }

 /* … */
}

Now when we want to know our current position, we can use:

window.navigator.geolocation.getCurrentPosition()

Chapter 4

[83]

This code returns a Future<Geoposition> object. We can also listen to every change
in position by subscribing to the watchPosition() stream:

window.navigator.geolocation.watchPosition()

Unfortunately, getCurrentPosition() doesn't work properly in every browser,
so we have to be able to handle everything in watchPosition() alone.

Currently, there's a bug in Dartium that causes the GeoLocation API to
throw an error when used, so in Dart SDK 1.9, the only way to run this
example is to compile it to JavaScript with dart2js.

We also add two buttons, start and stop, that bind and unbind listeners, respectively:

void main() {

 /* … */

 void updateStatus() {
 statusElm.text = (locSubscr == null ? 'Stopped' : 'Running');
 }
 updateStatus();

 // Bind event listeners.
 void bindListeners() {
 // Get current location.
 window.navigator.geolocation.getCurrentPosition().then((p) {
 print(p.coords.latitude);
 print(p.coords.longitude);

 init(p.coords);
 }, onError: (PositionError e) => print(e.toString()));

 // Listen to every change in position.
 // We want to keep reference to the subscription to be
 // able to cancel the subscription later.
 locSubscr = window.navigator.geolocation
 .watchPosition().listen((Geoposition pos) {
 if (lastPos == null) init(pos.coords);

 // Create an instance of LatLng JavaScript object.
 var currPos = new JsObject(
 jsLatLng, [pos.coords.latitude, pos.coords.longitude]);

Developing a Mobile App with Dart

[84]

 // Center map to my current location.
 map.callMethod('setCenter', [currPos]);

 var path = [lastPos, currPos];

 // Create a line and draw it to the map.
 var lineOptions = new JsObject.jsify({
 'strokeColor': '#0000FF',
 'strokeOpacity': 1.0,
 'strokeWeight': 3,
 'map': map
 });
 var line = new JsObject(mapsApi['Polyline'], [lineOptions]);
 line.callMethod('setPath', [new JsObject.jsify(path)]);

 // Convert the returned variable to double.
 // jsDistance is our [jsFunction] proxy.
 var dist = double.parse(jsDistance.apply(path).toString());
 distanceFromLastElm.text = dist.toString();

 totalDistance += dist;
 // Keep this position for the next event fired.
 lastPos = currPos;

 distanceElm.text = totalDistance.toString();
 });
 }

 void cancelListeners(e) {
 locSubscr.cancel();
 locSubscr = null;
 updateStatus();
 }
 btnStart.onClick.listen((Event e) {
 if (locSubscr == null) {
 bindListeners();
 updateStatus();
 }
 });

 btnStop.onClick.listen(cancelListeners);
}

Chapter 4

[85]

The final app with a little CSS looks like this on iOS in Mobile Safari:

As you can see, the GPS location is quite inaccurate, so for the real usage, we would
have to use a filter (for example, the Kalman filter) to reduce the position inaccuracy.

Calling pure JavaScript API from Dart isn't that hard, but it requires a little more
surrounding code. We also saw that JsObject and JsFunction are sometimes
replaceable. You can choose whether you want to use JsObject.callMethod or
JsFunction.apply.

We also used JsObject.jsify() from the dart:js library that takes List or
Map objects as parameters and converts them into JsObject, which is basically
a wrapped JavaScript object.

Developing a Mobile App with Dart

[86]

Drawing into 2D canvas using onTouch
events
Handling onTouch events is similar to drag and drop, so this is going to be very
simple. Just one thing to note here: TouchEvent.touches is an instance of the
TouchList class that contains all currently detected touches. In other words, you can
handle multitouch devices as well. We're going to handle just the first touch found and
draw lines as you move your finger over the screen. HTML is just a single canvas:

<canvas id="draw-canvas"></canvas>

Dart code listens to only two touch events:

import 'dart:html';

void main() {
 CanvasElement canvas = document.querySelector('#draw-canvas');
 CanvasRenderingContext2D context = canvas.getContext('2d');

 canvas.onTouchStart.listen((TouchEvent e) {
 // Move line start to the position where
 // the touch event began. We care only about the first touch.
 context.moveTo(e.touches[0].page.x, e.touches[0].page.y);
 });

 canvas.onTouchMove.listen((TouchEvent e) {
 context.lineWidth = 2;
 context.strokeStyle = "#FF0000";
 // Move a line to where I moved my finger.
 context.lineTo(e.touches[0].page.x, e.touches[0].page.y);
 // Draw the line.
 context.stroke();
 });

 // Set canvas size to documents size. With this, touch
 // coordinates will be the same as canvas coordinates.
 void resize() {
 canvas.width = document.body.client.width;
 canvas.height = document.body.client.height;
 }
 resize();
 // Add event listener on windows resize in order to have
 // always the canvas size equal to the windows size.
 window.onResize.listen((Event e) => resize());
}

Chapter 4

[87]

Note that we resized the canvas to the size of the document. If we performed some
demanding drawings, we could use a simple trick by setting width and height
canvas attributes to, for example, half the document dimensions. This would make
the canvas draw only half the size (that's one-fourth of the pixels than the original
size) and then scale the result to fit entire canvas. This would speed up rendering a
lot, but the final image would probably be a little blurry. The same effect is possible
with CSS3's scale statement.

We can use Developer Tools to emulate mobile touch events just like we did with
device rotation.

Summary
In this chapter, we took a look at some HTML5 APIs that are specific to mobile
devices, although you can emulate them in a normal browser.

With CSS3 transformations, we can quite easily create simple 3D objects but they
have their limitations and are suitable only in certain situations. They're definitely
not a replacement for WebGL. Device orientation events and the GeoLocation API
work in all modern mobile browsers, although they're not 100 percent compatible
with desktop browsers.

The dart:js interoperation library can be used to proxy native JavaScript libraries
such as the Google Maps API.

In the next chapter, we're going to start with polymer.dart. Polymer in JavaScript is
an emerging technology developed by Google, which lets you create encapsulated
reusable components and polymer.dart is its port to the Dart language. Components
created with polymer.dart should be fully compatible with JavaScript Polymer in the
long term.

[89]

Web Components and
polymer.dart

Reusing independent components across multiple websites was always a bit painful
up to now. You had to manually include CSS styles that can override your already
existing styles, JavaScripts, copy and paste necessary HTML code, and usually in the
end, write at least small JavaScripts.

For this reason, W3C is working on a specification called Web Components
(http://webcomponents.org/). This is a set of standards that makes creating
and reusing components very easy.

In the first part of this chapter, we'll take a look at what Web Components are and
how they work in Dart while implementing one after another. We'll also quickly
compare implementation in Dart and JavaScript.

In the second part, we're going to take a look at polymer.dart. Polymer is a JavaScript
framework built on Web Components. Polymer.dart is its port to Dart. We'll use it
for the bookshelf example from the previous chapter and see how it can help us write
more encapsulated components for our web apps.

As Polymer is heavily based on Web Components, we'll set off with a brief
exploration of each part of this standard.

Web Components
Web Components is a cutting-edge technology in development right now, and there
still isn't complete native support by some browsers (Firefox, for example). It defines
three major parts that are necessary to build and use isolated components: Shadow
DOM, Custom Elements, and HTML Imports.

http://webcomponents.org/

Web Components and polymer.dart

[90]

In addition, we'll use the template tag, which used to be part of the
Web Components specification but has been moved to the HTML5
specification instead.

Shadow DOM
The basic problem with including third-party HTML and CSS into your page is that
it's not encapsulated. Your CSS styles can modify included HTML elements and vice
versa. This also includes overlapping element IDs, classes, and so on.

With Shadow DOM, you can create an encapsulated DOM tree, which is isolated
from the rest of the DOM.

Custom Elements
The HTML specification contains a predefined number of tags that you can use.
With Custom Elements, you can extend this set with your own tags that can contain
HTML fragments and add functionality to it as you wish.

In combination with Shadow DOM, we can create custom tags that will contain an
encapsulated DOM tree.

Template
Template is an HTML5 tag that can contain any HTML subtree and can be cloned in
order to reuse its content multiple times.

An important distinction from just writing HTML structure into a hidden <div>
element is that the HTML fragment inside <template> isn't used on page load. It's
a DOM structure that is parsed by the browser but not processed, which means
<script> doesn't run, audio/video doesn't play, and images don't load. You can't
even query elements inside <template> with document.getElementById() or any
other query selector.

With Templates, we can write content for our custom element just like any
other HTML.

Chapter 5

[91]

HTML Imports
HTML Imports extend existing <link> tags with the rel="import" attribute,
which allows us to include HTML documents in other HTML documents and
in combination with Shadow DOM, Custom Elements, and Templates, create
completely independent components that can be included into any page with
its full functionality by a single <link> tag.

These four concepts combined represent the power and capabilities of
Web Components.
You can see the current status of Web Components and read the editor's
draft at http://www.w3.org/standards/techs/components.

The Web Components polyfill for older
browsers
All parts of the Web Components specification aren't implemented across all of
today's browsers, or else aren't enabled by default.

Chrome 36+ is fully capable of using Web Components by default (including
Dartium). Firefox requires that you enable it manually. No matter what browser
you're using, there's a polyfill that enables Web Components in most browsers
(https://github.com/WebComponents/webcomponentsjs).

Dart Pub already contains this JavaScript library along with a small script that is
required when using the compiled version from dart2js. Add web_components
to your dependencies and include the polyfill JavaScripts in your page:

<script src="packages/web_components/webcomponents.js"></script>
<script src="packages/web_components/dart_support.js"></script>

For an up-to-date status about the browser compatibility, refer to
http://caniuse.com/.

Basic HTML Import
Time to see an HTML Import in action! Let's say we want to reuse this little greeting
among multiple pages:

<!-- web/greeting.html -->
<div>
 <h1>Hello, imported world!</h1>
</div>

http://www.w3.org/standards/techs/components
https://github.com/WebComponents/webcomponentsjs
http://caniuse.com/

Web Components and polymer.dart

[92]

Now, insert it, for example, at the end of the body on this page (the following code).
Note that CORS rules apply to imported HTML documents just as we saw in
Chapter 3, The Power of HTML5 with Dart:

<!-- web/index.html -->
<html>
 <head>
 <!-- Polyfill for browsers not supporting Web Components. -->
 <script src="packages/web_components/webcomponents.js">
 </script>

 <link id="linkedCont" rel="import" href="greeting.html">

 <script type="application/dart" src="main.dart"></script>
 <script src="packages/browser/dart.js"></script>
 </head>
 <body>
 <!-- Insert greeting here. -->
 </body>
</html>

This HTML just loads our greeting into a separate DOM tree. To append its content
into our page, we need to write some Dart code:

// web/main.dart
import 'dart:html';

void main() {
 LinkElement cont = document.querySelector('#linkedCont');
 // Notice that we can select any DOM element and clone
 // only it and its subtree (true = deep copy).
 var cloned = cont.import.querySelector('div').clone(true);

 document.body.append(cloned);
}

LinkElement has the import property, which is an instance of the Document class
itself, just like the top-level document variable from the dart:html package. Then,
select div from the imported document, clone it, and append it to the page.

Chapter 5

[93]

Let's see the structure this created in the browser:

This is what we expected. The linked greeting.html HTML document has it's own
DOM subtree that we can access through the import property, and then clone what
we want.

We can modify greeting.html and add some CSS styles to it:

<!-- web/greeting.html -->
<style>
h1 { color: red; }
h2 { color: green; }
</style>
<div>
 <h1>Hello, imported world!</h1>
</div>

Also, add another heading inside the body of our page:

<body>
 <h2>Greeting here</h2>
 <!-- Insert greeting here -->
</body>

Web Components and polymer.dart

[94]

Then, let's see what happens:

Although we cloned just the div element containing the <h1> heading, styles from
the linked HTML document are applied to all HTML elements on the page. This
is probably not what we wanted and it shows that just including HTML using the
<link> tag isn't enough. We need to encapsulate included HTML and CSS styles.

We need the Shadow DOM!

Using Shadow DOM
As we want to apply styles from greeting.html only to elements in greeting.
html, we'll wrap it with HTML5 Template. As we mentioned earlier in this chapter,
everything inside the <template> tag will get parsed into DOM elements but won't
be run. This means that styles inside <template> have no effect until we paste them
outside of the template:

<!-- web/greeting.html -->
<template>
 <style>
 h1 { color: blue; }
 h2 { color: yellow; }
 </style>
 <h1>Hello, imported world!</h1>
</template>

Chapter 5

[95]

In order to make it more like a real-world example, we'll add some styles to
index.html as well:

<!-- index.html -->
<head>
 <link rel="import" href="greeting.html" id="myElementLink">
 <style>
 h1 { color: red !important }
 h2 { color: green; }
 </style>
</head>
<body>
 <h2>Greeting here</h2>
 <!-- Insert greeting here. -->
 <!-- We'll create Shadow DOM in this element. -->
 <div></div>
</body>

We first colored <h1> red and then blue in the imported HTML. Then, we colored
<h2> green and yellow, respectively. The question is, what colors will <h1> and <h2>
have inside the body?

Now, let's update the Dart code. Instead of pasting cloned elements from the
imported document right into the top-level document body, we'll create a
Shadow DOM and paste it inside this new so-called shadow-root:

// web/main.dart
import 'dart:html';

void main() {
 LinkElement cont = document.querySelector('#myElementLink');
 var template = cont.import.querySelector('template');
 // Get DOM subtree from the external document,
 // clone it and make it available in the current document.
 Node clone = template.content.clone(true);
 // Target element where we'll put cloned elements.
 DivElement targetDiv = document.querySelector('body > div');
 // Create a Shadow DOM in the target element and insert
 // the cloned elements inside the new root.
 ShadowRoot root = targetDiv.createShadowRoot();
 root.append(clone);
}

Web Components and polymer.dart

[96]

So, what are the colors of <h1> and <h2> now? Take a look:

As shown in the preceding screenshot, <h1> is blue. The root document's styles
don't apply to it because <h1> is inside the Shadow DOM, which has its own styles,
and those color <h1> blue. The logic behind the <h2> color is analogous. Our <div>
target, where we placed the cloned DOM subtree from the imported template, has
turned into a document itself.

This is nice, but we still have to clone the elements by ourselves; with a more
complicated DOM structure, we would have to add classes to the elements that
we want to replace with our custom templates. Also, when adding DOM elements
dynamically, we have to first add them to the DOM tree and then replace them using
Dart, as we did right now.

That's all doable, but it's a bit clumsy.

Using Custom Elements
For this reason, Web Components have Custom Elements. We're going to define a
custom tag called <my-greeting> that the browser will automatically replace with
our template—just like any other tag in HTML.

Chapter 5

[97]

Our greeting.html file will include one extra element, selectable by ID, that will
be customizable by one of the element's attribute. The same ID will be used in every
instance of <my-greeting> that is correct and doesn't collide because each element
instance has it's own Shadow DOM:

<!-- web/greeting.html -->
<template>
 <style>
 h1 { color: yellow; }
 h2 { color: red; }
 </style>

 <h2>Template</h2>
 <p id="content">Lorem ipsum</p>
</template>

The body for index.html is going to be even simpler than before:

 <body>
 <h2>Hello, world!</h2>
 <button>Add</button>
 <my-greeting></my-greeting>
 <my-greeting custom-attribute="Hello"></my-greeting>
 </body>

The Dart code will be mostly the same as the previous example. We'll just wrap the
elements' configuration into a class that extends Dart's HtmlElement class. Note that
you can extend any existing class that already extends HtmlElement or SvgElement:

// web/main.dart
import 'dart:html';

class MyGreetingElement extends HtmlElement {
 // The created() constructor is called every time
 // the tag is instantiated and calls parent's constructor first.
 MyGreetingElement.created() : super.created() {
 LinkElement cont = document.querySelector('#myElementLink');
 TemplateElement template =
 cont.import.querySelector('template');

 // Get DOM subtree from the external document,
 // clone it and make it available in the current document.
 Node clone = document.importNode(template.content, true);

 // Create a Shadow DOM in the target element and insert

Web Components and polymer.dart

[98]

 // cloned elements inside the shadow-root.
 ShadowRoot root = this.createShadowRoot();
 root.append(clone);

 // Check if this element has this attribute set.
 if (this.attributes.containsKey('custom-attribute')) {
 // Root is an encapsulated document created
 // for this instance.
 root.querySelector('#content').text =
 this.attributes['custom-attribute'];
 }
 }

 // Redefine the default constructor
 // This lets us use just "new MyGreetingElement()" to
 // create new instances.
 factory MyGreetingElement() => new Element.tag('my-greeting');
}

void main() {
 // Let the browser know that we have our own element under
 // this tag name.
 document.registerElement('my-greeting', MyGreetingElement);

 // Allow user to dynamically add more elements.
 document.querySelector('button').onClick.listen((e) {
 document.querySelector('body')
 .children.add(new MyGreetingElement());
 });
}

We're using Factory design pattern and the factory keyword because we want
this constructor to return an instance of a different class than MyGreetingElement.
Subclasses of HtmlElement can't use the default constructor because new instances
have to be created using the named constructor HtmlElement.created().

The most interesting part here is the document.registerElement() method,
which tells the browser that the <my-greeting> tag is going to be an instance
of MyGreetingElement and will instantiate it using the MyGreetingElement.
created() constructor.

Chapter 5

[99]

This is already quite useful. We have a custom tag that we can easily, dynamically
instantiate. It's nice, but it's not an independent component that you can just include
on your page with a single <link> tag and start using custom tags right away. We
still have to call document.registerElement() manually.

Custom elements registered with registerElement()
must contain at least one dash.

In vanilla JavaScript, we can register a custom element right from the
imported document:

<!-- greeting.html with JavaScript -->
<template>
 <style>
 h1 { color: yellow; }
 h2 { color: red; }
 </style>

 <h2>Template</h2>
 <p id="content">Lorem ipsum</p>

Web Components and polymer.dart

[100]

</template>
<script type="text/javascript">
(function() {
 // var importDoc = document.currentScript.ownerDocument;
 // Listen to the createdCallback event and
 // register this tag in the root document automatically.
 // document.registerElement(...);
})();
</script>

The JavaScript inside <script> tags gets executed right after the browser loads it
because it's outside the <template> tag.

Unfortunately, we can't do this in Dart due to Dart's embedding policies:

• Only one Dart script is allowed per document
• Dart doesn't support inline scripts (you can't write scripts inside HTML)
• For more information about these restrictions, refer to https://www.

dartlang.org/articles/embedding-in-html

Also, changes to custom attributes of our <my-greeting> tag aren't projected to the
Shadow DOM automatically. This means that if you modified custom-attribute
dynamically, it wouldn't change the text inside the #content paragraph because we
set the text just once in its constructor.

One option is to listen to change events with MutationObserver:

void onMutation(List<MutationRecord> mut, MutationObserver ob) {
 // Handle changes.
};
MutationObserver observer = new MutationObserver(onMutation);
observer.observe(root.querySelector('#content').parent);

But we're not going to go into it here.

If you really wanted to do this by yourself, or had some very specific needs, check
out the Observe library (https://pub.dartlang.org/packages/observe). This is
used internally by polymer.dart and we'll use it in a moment.

Remember that you can make use of each part of Web Components separately
even without diving into Polymer or Angular. For example, when you include a
new JavaScript library into your existing project that overrides your styles, or that
unnecessarily manipulates elements with its JavaScript code and you don't like it,
you can use the Shadow DOM and Templates to isolate it from the rest of the page.

https://www.dartlang.org/articles/embedding-in-html
https://www.dartlang.org/articles/embedding-in-html
https://pub.dartlang.org/packages/observe

Chapter 5

[101]

Polymer.dart
Polymer.dart is a port of the JavaScript Polymer library that combines Web
Components, the Observe library, and a few others libraries into a single framework.
This makes creating reusable encapsulated components very easy (it also uses
polymer.js internally).

As we already know enough about Web Components, we'll particularly take a
look at one-way / two-way data binding and creating custom elements with their
behavior written in Dart.

You might have already seen Dart's Web UI package used in a
tutorial, blog, article, or a book. Web UI is an older Dart API,
which is deprecated in favor of polymer.dart.

Minimalistic custom element in polymer.dart
We'll begin by installing polymer.dart by adding polymer among our dependencies
in pubspec.yaml and letting Dart Editor fetch all the dependencies for us. Right
away, we can tell polymer.dart what our app's entrance points are. These are the
pages that the user can access (that's probably everything except HTML templates
for our custom elements), so all our pubspec.yaml files will look alike. When
compiling apps with Pub Build, this also lets polymer.dart concatenate all pages
together for faster loading:

name: Chapter_05_polymer_tutorial
description: My first Polymer app
dependencies:
 browser: any
 polymer: '>=0.16.0 <0.17.0'
transformers:
- polymer:
 entry_points: web/index.html

The HTML for index.html is going to be very simple and mostly what we've
already seen in the previous examples. Note that we're including the Dart script at
the end. It has to be included after importing custom elements, so the best practice is
to put it at the end:

<!-- web/index.html -->
<html>
 <head>
 <script src="packages/browser/dart.js"></script>
 <link rel="import" href="my-element.html">
 </head>

Web Components and polymer.dart

[102]

 <body>
 <my-element></my-element>
 <script type="application/dart" src="main.dart"></script>
 </body>
</html>

Where things start to get interesting is with our element's definition in my-element.
html. Each custom element in polymer.dart has to be in a separate file that imports
the Polymer stub code at the top and contains one <polymer-element> tag. The
<polymer-element> is a wrapper for our custom element that can use:

• The HTML template: This is required for all custom elements.
• CSS styles (optional): Use this to style only the Shadow DOM encapsulated

from the rest of the page. There's a special CSS :host keyword that refers to
the current host element. We'll see this in action later.

• Dart script (optional): This is your custom code that defines the
element's behavior.

To keep it very simple, we'll create a custom element that contains only the HTML
template with no styles and no Dart:

<!-- lib/my-element.html -->
<link rel="import" href="../packages/polymer/polymer.html">
<polymer-element name="my-element" noscript>
 <template>
 <h1>Hello polymer.dart!</h1>
 </template>
</polymer-element>

Each custom element has to import polymer.html before declaring the element
itself. The polymer.html file comes from the JavaScript Polymer project and is part
of the polymer.dart package. For larger components with multiple files, you might
want to look at directory structure recommendations at https://www.dartlang.
org/polymer/app-directories.html.

As polymer.dart expects that your custom element will have some Dart attached to
it by default, we have to tell it specifically that this element has no script with the
noscript attribute.

Our element's name is going to be my-element (the name has to contain at least one
dash, just like in the previous example).

https://www.dartlang.org/polymer/app-directories.html
https://www.dartlang.org/polymer/app-directories.html

Chapter 5

[103]

The last part, for now, is main.dart, which will initialize polymer.dart:

// web/main.dart
import 'package:polymer/polymer.dart';

main() async {
 // Recommended way of running main() with polymer.dart
 // [initPolymer()] returns a Future object that is completed
 // when all imports are loaded. New since polymer.dart 0.16.
 (await initPolymer()).run(() {
 // The rest of the code in the main method.
 });
}

This may look weird at first sight. The code for main() should be in a callback to
the run() method of initPolymer(). This makes use of the so-called Zone-related
API, which is like a unified way of handling exceptions from asynchronous calls.
It's not important for us, but if you want to read more about this topic, check out
https://www.dartlang.org/articles/zones/.

Now, we can run our first polymer.dart application:

We can see that polymer.dart did pretty much the same as what we did with
vanilla Web Components. It created a Shadow DOM and cloned the content
of the <template> to <my-element>.

But there's already an important difference. We didn't have to write any code
specific to this custom element. Everything is done for us in the background by
polymer.dart.

https://www.dartlang.org/articles/zones/

Web Components and polymer.dart

[104]

Polymer examples in this chapter use polymer.dart version 0.16 that uses
Polymer 0.5 internally, which is just a developer preview.

One-way data binding
Creating new elements is easy, but without any logic behind them, it isn't very
practical. We've already said that polymer.dart utilizes the Observe library, which
we can use to listen to changes of attributes on element instances and also to create
one-way data bindings, which we'll use now.

Our new custom element will be called <one-way-book>, and we'll reuse the 3D
books that we created in Chapter 4, Developing a Mobile App with Dart. Just to present
polymer's capabilities, we'll add two control buttons that will rotate each book, and a
caption of the book floating above them with the name of its current
cover image.

The body for this example will look very familiar. We'll just add two elements with
two custom attributes that we'll use later in Dart code:

<!-- web/index.html -->
<body>
 <one-way-book cover-image="./dune-cover-new.jpg"
 base-color="#da944c"></one-way-book>
 <one-way-book cover-image="./dune-cover-old.jpg"
 base-color="#000"></one-way-book>
</body>

The HTML template is going to be slightly more complicated with a few
new features:

<!-- lib/one-way-book.html –->
<link rel="import" href="../packages/polymer/polymer.html">
<polymer-element name="one-way-book">
 <template>
 <style>
 /* This refers to the host element. */
 :host { display: inline-block; position: relative;
 transform-style: preserve-3d; margin: 20px; }
 div { transform-style: preserve-3d; }
 div > div { width: 150px; height: 230px; position: absolute; }
 /* This is the same like in Chapter 4. */
 </style>

 <div>

Chapter 5

[105]

 <p id="name">{{coverImage}}
{{rotateYString}}</p>
 <div class="front"
 style="background-image:url({{coverImage}})"></div>
 <div class="left"></div>
 <div class="right"></div>
 <div class="back"></div>
 <div class="top"></div>
 <div class="bottom"></div>
 </div>

 <p id="buttons">
 <!-- Buttons with event listeners. -->
 <button on-click="{{rotateLeft}}">< left</button>
 <button on-click="{{rotateRight}}">right ></button>
 </p>
 </template>
 <!-- Dart script that will control this custom element. -->
 <script type="application/dart"
 src="one-way-book.dart"></script>
</polymer-element>

As you can see, there are two unusual things:

• {{coverImage}} and {{rotateYString}}: These are notations that render
instance properties to this place in an HTML document. The associated
property has to be marked with the @observe annotation. This is the
one-way data binding that we mentioned earlier. Changes to the variable
in the Dart code will automatically update the rendered value in HTML.

• on-click: This is a declarative event mapping that is used to bind events
right into the HTML. When the event is triggered, polymer.dart will call only
the listener associated with this particular element's instance. There are more
types of events, such as on-change (for input elements) or on-tap.

Note that we're using {{coverImage}} in two different
places—first as a text inside <p> tag and then right inside the
style attribute of a div element, in order to avoid setting this
style manually in the Dart code.

We'll start the Dart code with just a class stub:

// lib/one-way-book.dart
// Associate this class with the tag name.
// Each instance of <one-way-book> will be
// controlled by an instance of OneWayBookElement.
@CustomTag('one-way-book')

Web Components and polymer.dart

[106]

class OneWayBookElement extends PolymerElement {

 // This property can be embedded in the HTML by {{coverImage}}.
 @observable String coverImage;

 // Constructor is called every time a new instance is created.
 OneWayBookElement.created() : super.created() {
 // ...
 }

 attributeChanged(String name, String old, String newVal) {}
 rotateLeft(Event e, var detail, Node target) { }
 // ...
}

Our custom element extends PolymerElement, but it can extend any HTML element
that implements Polymer and Observable abstract classes and provides the
MyElement.created() constructor that calls super.created().

Elements in polymer.dart have five life cycle methods:

• CustomElement.created(): This constructor is used when creating a new
instance of this element

• attached(): This instance is inserted into the DOM
• detached(): This instance is removed from the DOM
• ready(): This is called when the Shadow DOM is created, event listeners and

properties are binded
• attributeChanged(): This is called every time an attribute is changed,

removed, or added to the element

This is the complete source code with comments:

// lib/one-way-book.dart
import 'dart:html';
import 'package:polymer/polymer.dart';

@CustomTag('one-way-book')
class OneWayBookElement extends PolymerElement {

 // These properties can be embedded in the HTML.
 @observable String coverImage;
 @observable String rotateYString;
 int rotateY = 0;

Chapter 5

[107]

 void updateBaseColor(String newColor) {
 // Btw, shadowRoot.host refers to the host element itself.
 shadowRoot.querySelector('.left').style.background = newColor;
 shadowRoot.querySelector('.back').style.background = newColor;
 }

 // Constructor called every time a new instance is created.
 OneWayBookElement.created() : super.created() {
 coverImage = this.attributes['cover-image'];
 updateBaseColor(this.attributes['base-color']);
 }

 // Listen to all attribute changes.
 void attributeChanged(String name, String old, String newVal) {
 super.attributeChanged(name, oldValue, newValue);
 print('$name: $newValue (old $oldValue)');
 // base-color attribute has been changed.
 if (name == 'base-color') {
 this.updateBaseColor(newValue);
 } else if (name == 'cover-image') {
 // Note that we don't need to change cover-image manually
 // since this property is embedded right in the HTML it'll
 // update automatically.
 coverImage = newValue;
 }
 }

 // Event listeners triggered on button clicks.
 void rotateLeft(Event e, var detail, Node target) {
 rotateY -= 10;
 updateRotation();
 }

 void rotateRight(Event e, var detail, Node target) {
 rotateY += 10;
 updateRotation();
 }

 void updateRotation() {
 rotateYString = 'rotateY(${rotateY}deg)';
 var elm = shadowRoot.querySelector('div');
 elm.style.transform = rotateYString;
 }
}

Web Components and polymer.dart

[108]

The main.dart file is the same as the one in the previous example.

What happens in the browser is obvious. Clicking on one of the buttons calls their
binded methods in their instance of OneWayBookElement, which changes CSS3
transformations in the rotateYString property. Each change to this variable
updates all its bindings in the HTML.

To test whether changing the element's attributes really triggers attributeChanged(),
we can use Developer Tools right in Dartium. Just double-click on, for example, the
base-color attribute to anything you want, and you can see that each change is
immediately propagated to the element's instance in Dart. You can try changing the
cover-image attribute as well.

Instead of the @observable annotation, we could use @published for coverImage
that watches the property for changes (just like @observable) and also binds the
element's attribute of this name with this property. This is nice when you don't need
any additional logic when attribute values change.

Loops and conditions in templates
Polymer.dart comes with custom attributes if and repeat, which can evaluate
simple logic useful mostly to hide and show DOM subtrees. We could use it, for
example, to hide the book title with the rotation and image name when the rotation
is larger than 30 degrees:

Chapter 5

[109]

// lib/one-way-book.dart
// Declare rotateY in OneWayBookElement class.
@observable int rotateY = 0;

<!-- lib/one-way-book.html –->
<div>
 <template if="{{ rotateY < 30 && rotateY > -30 }}">
 <p id="name">{{ coverImage }}
{{ rotateYString }}</p>
 </template>
</div>

When the condition inside the if attribute evaluates to true, its inner subtree is
placed in the parent element at the same location where the <template> tag is used.

Similarly, with the repeat attribute, we can iterate a collection. For example, if we
had both book covers in a list called booksCovers, we could render them with:

<template repeat="{{ image in booksCovers }}">
 <one-way-book cover-image="{{ image }}" base-color="#000">
 </one-way-book>
</template>

Data binding applies to all expressions, so changing any variable will automatically
cause reevaluation of the entire expression.

Two-way data binding
Now, we'll take a look at two-way data binding, which usually goes hand-in-hand
with forms.

In one-way data binding, we embedded the instance's property into the HTML
template. The direction went only from the instance to the HTML.

But with form input fields, we can propagate its values from the HTML input to
instance properties and back to HTML. In other words, you can change the instance's
property by changing the input value, but you can also change the input value by
changing the instance's property. This is why it's called two-way binding.

Web Components and polymer.dart

[110]

Better still, let's create an example. We'll create a page that includes the <my-form>
custom element:

<!-- web/index.html -->
<html>
 <head>
 <script async src="packages/browser/dart.js"></script>
 <link rel="import" href="my-form.html">
 </head>
 <body>
 <my-form></my-form>
 <script type="application/dart" src="main.dart"></script>
 </body>
</html>

In this case, our custom element is a small form:

<!-- lib/my-form.html -->
<link rel="import" href="../packages/polymer/polymer.html">
<polymer-element name="my-form">
 <template>
 <form>
 <h3>input value {{inputValue}}</h3>
 <input type="range" value={{inputValue}}>
 <button type="button" on-click="{{set50}}">set 50</button>
 </form>
 </template>
 <script type="application/dart" src="my_form.dart"></script>
</polymer-element>

Note that we're embedding inputValue into two places and also binding an event
called set50(). Setting inputValue as a parameter to the value attribute means that
every change to the input's value will propagate to the inputValue property:

// lib/my_form.dart
import 'dart:html';
import 'package:polymer/polymer.dart';

@CustomTag('my-form')
class MyFormElement extends PolymerElement {

 @observable String inputValue = '0';

Chapter 5

[111]

 MyFormElement.created() : super.created();

 void set50(Event e, var detail, Node target) {
 inputValue = '50';
 }
}

We are setting inputValue by the <input> element, but at the same time, you can
change its value by clicking on the button. The question is, will pressing the button
and setting inputValue to 50 also change the input element? Yes, it will, because it's
making use of two-way data binding.

We will use two-way data binding again in the next chapter with AngularDart.

Polymer core and paper elements
Google Polymer team is maintaining numerous Polymer elements ranging from
custom image placeholders, menus, tooltips, tabs, to inputs fields. All of them with
unified look and feel. Although, their practical usage is questionable apart from
making prototypes, one of them stands out particularly.

A quick look at core-list
Core-list is a Polymer component designed for rendering a very large amount of
elements in a list (thousands without any problem). It internally creates only those
elements that are visible to the user and as they scroll, it positions them absolutely to
users viewport with CSS3 transformations (the same transformations that we used in
Chapter 4, Developing a Mobile App with Dart).

Web Components and polymer.dart

[112]

We'll create a new project, add polymer and core-elements dependencies and
then create a custom element with our entire app that generates 1 million of random
colors and render them into one large list:

// lib/main_app.dart
import 'dart:math';
import 'package:polymer/polymer.dart';

@CustomTag('main-app')
class MainApp extends PolymerElement {
 Random _rnd;

 // ObservableList is a Polymer class that emits events when
 // items in the list change. It's required by <core-list>.
 @observable ObservableList largeList = new ObservableList();

 MainApp.created() : super.created() {
 _rnd = new Random();
 for (int i = 0; i < pow(10, 6); i++) {
 largeList.add([getRandomColor()]);
 }
 }

 String getRandomColor() =>
 _colorComp() + _colorComp() + _colorComp();
 String _colorComp() =>
 _rnd.nextInt(256).toRadixString(16).padLeft(2, '0');
}

Then write HTML template for our app. Polymer's <core-list> automatically
generates index and model variables for us, which represent the current item's
index and the current item itself respectively.

<link rel="import" href="../../packages/polymer/polymer.html">
<link rel="import"
 href="../../packages/core_elements/core_list_dart.html">
<polymer-element name="main-app">
 <template>
 <style>
 #list { height: 100%; }
 #list div { padding: 3px; }
 </style>

 <core-list-dart id="list" data="{{largeList}}">
 <template>
 <div>

Chapter 5

[113]

 #{{index}}:
 Hello, World!
 </div>
 </template>
 </core-list-dart>
 </template>
 <script type="application/dart" src="main_app.dart"></script>
</polymer-element>

Polymer's <core-list> element replicates its inner <template> tag and interpolates
all values in it. We can check which HTML elements core-list generated for us:

Although we're rendering a list with 1 million items, there are only about 40 div
elements actually created and reused as you scroll (it also created div elements that
are around your current viewport). Note that it doesn't wrap itself nor rendered
items with Shadow DOM because that would prevent you from styling it with CSS.
Core-list speeds up rendering large lists enormously and works on both desktop and
mobile browsers.

Web Components and polymer.dart

[114]

What's next?
Polymer.dart can offer even more. We're not able to cover everything here, so we
have to leave it up to your curiosity, but we hope you have an idea what polymer.
dart is good for, and in what kind of situations you can use it.

For a more comprehensive list of tutorials, check out the port of Polymer tutorials
from JavaScript into Dart at https://github.com/dart-lang/polymer-dart-
patterns and the official polymer.dart documentation at https://www.dartlang.
org/polymer/.

Summary
This chapter covered Web Components and polymer.dart. Each topic is so vast that
it could easily cover the entire book. Here, we explained the most important parts,
so you should now understand how these technologies work in a nutshell.

Web Components are useful even without Polymer and you can use parts of it
independently even now with polyfills for older browsers.

Polymer.dart is built on top of Web Components and adds very nifty things to it.

In the next chapter, we'll talk about AngularDart, where you'll find many features
already familiar from polymer.dart.

https://github.com/dart-lang/polymer-dart-patterns
https://github.com/dart-lang/polymer-dart-patterns
https://www.dartlang.org/polymer/
https://www.dartlang.org/polymer/

[115]

AngularDart
AngularDart is a client-side framework used to create structured decoupled web
applications using the Model-View-Controller (MVC) design pattern. Angular
currently exists in two languages, JavaScript and Dart. Both projects are developed
by Google and share the same philosophy, although their implementation is
fundamentally different.

In this chapter, we'll learn how to use AngularDart to create two applications, and
you'll see that we are already familiar with many things from the previous chapter
that covered polymer.dart:

• To-do list: With two-way data binding and a couple of Angular directives,
we can create tedious tasks such as creating/removing DOM elements
very easily

• Book component: We'll reuse the book template from Chapter 4, Developing a
Mobile App with Dart, once more and compare polymer.dart and AngularDart
implementations

At the end of this chapter, we'll make a few notes about performance bottlenecks
when using AngularDart, and what you can do about them.

If you already have previous experience with AngularJS, you'll
find many things in this chapter familiar, although even for
developers new to the Angular world, this chapter should be easy
to understand.

We won't be able to go through every single aspect of AngularDart. Just like
AngularJS, it could easily fill an entire book, so we'll rather focus on the most
interesting parts and how they relate to what we already know.

AngularDart encourages you to use MVC. In this case, the letter "C" is meant as a
component instead of a controller, as you're probably more used to.

AngularDart

[116]

Officially, Angular follows MVW, which means Model-View-
Whatever. Seriously. Angular was closer to MVC in the past;
now it's closer to MVVM. Igor Minar, an AngularJS developer
at Google, stated this on G+ after being tired of never-ending
and pointless discussions among developers as to what design
pattern Angular follows. So, he called it MVW because it doesn't
matter (https://plus.google.com/+AngularJS/posts/
aZNVhj355G2).
To see all AngularDart features, refer to its documentation at
https://docs.angulardart.org/.

Installing AngularDart
Just like polymer.dart, the simplest way to install AngularDart is by adding it to your
pubspec.yaml file:

name: todo_list
version: 0.0.1
description: My first AngularDart app
dependencies:
 angular: 1.1.0
 browser: any
 web_components: any
transformers:
- angular

Note that we had to add angular to the transformers directive as well. This tells
the pub tool that there are some extra tasks defined in AngularDart libraries. Even if
you're used to adding dependencies in Dart Editor's GUI, you still have to add the
transformer yourself.

AngularDart reached version 1.1.0 and is still in development. All
examples in this chapter are using this version.

https://plus.google.com/+AngularJS/posts/aZNVhj355G2
https://plus.google.com/+AngularJS/posts/aZNVhj355G2
https://docs.angulardart.org/

Chapter 6

[117]

To-do list with AngularDart
We'll set off with quite a simple application, where you can dynamically add tasks to
a list and then gradually extend it with more complex functionality, while showing
the most common AngularDart features.

We'll keep the HTML code very simple:

<!-- web/index.html -->
<html ng-app>
<body>
 <todo-list></todo-list>

 <script type="application/dart" src="main.dart"></script>
 <script src="packages/browser/dart.js"></script>
</body>
</html>

Note the ng-app directive inside the <html> tag. This tells AngularDart that
everything inside this DOM tree is controlled by Angular. In practice, this means that
you shouldn't modify the DOM tree by yourself and leave all DOM manipulations to
Angular; otherwise, this might cause unpredictable behavior. Also, we're including
the Web Components polyfill that we already know from the previous chapter. You
can probably guess that AngularDart is going to use Web Components.

If you don't set ng-app by yourself, it'll be set by AngularDart to
root <html> tag by default, so we'll omit it in future examples.

Now, we define <todo-list> custom element. Right now, it's going be just a single
Dart class:

// lib/component/todo_list.dart
import 'package:angular/angular.dart';

// Mark class as Component with annotation.
@Component(
 selector: 'todo-list', // CSS selector for this component
 template: """
 <h1>{{ title }}</h1>

 <li ng-repeat="task in tasks">{{ task }}

 """ // Multiline string as a template.
)

AngularDart

[118]

class TodoListComponent {
 String title = "My Todo list";

 // Default tasks.
 List<String> tasks = [
 "Buy more cat food",
 "Feed the cat",
 "Do the laundry",
];
}

There are already a few interesting parts. @Component is an annotation that tells
AngularDart that this class has a special meaning. It offers a few possible options:

• selector: This tells AngularDart how to find elements that are going to
be replaced by this component. Note that the selector is a CSS expression.
This means that you can select an element just as in CSS, for example, #my-
element or .my-element: although it's recommended that you use element
names as selectors.

• template or templateUrl: As our component is very simple, we can just
include the template as a string, which is okay when it's relatively short.
With larger HTML templates, it's much easier to read and maintain code
in a separate HTML file. We'll do this in a moment.

• cssUrl: Every component is encapsulated in a Shadow DOM, so the CSS
from the parent document doesn't apply to its elements. Therefore, you can
provide your component with a custom CSS file. We already saw this in the
previous chapter, when we talked about Web Components and polymer.dart.

• useShadowDom: By default, AngularDart encapsulates each component with
the Shadow DOM, which is usually fine, but if you know that this particular
component is going to be used many times on your page, you might want to
disable creating the Shadow DOM for each of them for performance reasons
(encapsulation is then emulated by AngularDart).

• exportExpressions: More on this will be covered later in this chapter.

Let's take a better look at the template:

<h1>{{ title }}</h1>

 <li ng-repeat="task in tasks">{{ task }}

Chapter 6

[119]

AngularDart uses double curly braces, aka mustache syntax {{ expression }} (just
like polymer.dart), to interpolate results of expressions in a Dart-like syntax. It has
two limitations:

• No flow control statements are allowed. This means that there are no ifs
or loops; only ternary operators are allowed: (boolExpr ? yesExpp :
noExpr). Expressions can contain the + sign to concatenate strings.
For example, {{ "Hello" + "World" }} will print HelloWorld.

• When dereferencing objects such as my.object.property, any of them in the
chain can be null and Dart won't throw any exception.

In our template, we call {{ title }}, which prints the current content of
TodoListComponent.title. The {{ title }} expression is automatically watched
by Angular for changes, so if you modify title on the run, it will be immediately
re-rendered in the template (AngularDart is using two-way data binding similarly to
what we've already used in polymer.dart).

Angular built-in ng-* directives allow you to alter the element's behavior in some
way. In this template, we have only one:

• ng-repeat: This iterates all elements, such as "item in collection" and clones
the parent element for each item in the collection. In our example, all items
in the task list are instances of Dart's string, so we can just print them. We'll
come back to this directive later.

The last thing is main.dart, which just connects all parts together:

// web/main.dart
import 'package:angular/angular.dart';
import 'package:angular/application_factory.dart';
// We're expecting that our component is
// reusable across many applications.
import 'package:todo_list/component/todo_list.dart';

class MyAppModule extends Module {
 MyAppModule() {
 // Enable our component in this app.
 bind(TodoListComponent);
 }
}

void main() {

AngularDart

[120]

 // Bootstrap code for AngularDart.
 applicationFactory()
 // Add our module among default AngularDart modules.
 .addModule(new MyAppModule())
 .run();
}

Note that we're importing todo_list.dart like any other package (our app is a
package too) because we're expecting that our component is going to be reusable
and independent on this application. The same applied to polymer.dart in the
previous chapter.

AngularDart uses the dependency injection pattern under the hood, which
means that it only instantiates classes that you actually use in your code (thus
saving resources), and allows you to reuse components and modules that have
dependencies by themselves, without you worrying about the order of imports.
Our application is a single module with just one component.

The directory structure for this app should look like this:

The directory structure that we're using here is recommended for
packages and projects using AngularDart.

Chapter 6

[121]

When you run this application in the browser, you'll see:

AngularDart created the Shadow DOM for our custom element, filled it with the
template, and cloned elements for each item in the TodoListComponent.tasks
list.

This is one of the implementation differences from AngularJS.
AngularJS 1.x doesn't use Web Components when creating
custom elements and it doesn't encapsulate them inside the
Shadow DOM, while AngularDart does. After all, using Web
Components is planed for Angular 2.0.

At the beginning of this chapter, we said that AngularDart is based on MVC.
Let's see how each part of MVC is represented in our application:

• Component: As our app is very simple, we have only the
TodoListComponent. But it's a standalone component that has its own
template and its own logic independent on the application using it.

• View: Our view is our template with interpolated variables from the model.
• Model: We have two model variables in this example, title and tasks. In

the Angular world, all model variables exist in a scope.

Scope
In Angular, a scope is a context that evaluates expressions. You can imagine it as a
scope in JavaScript that keeps track of expressions and watches for changes. Scopes
can be nested, usually with a similar structure, such as your DOM tree where the
root scope is defined by the ng-app directive.

AngularDart

[122]

When you trigger an Angular event (such as ng-click or ng-input, which we'll
show later), Angular first runs your handler and then checks the current values of all
watched expressions with their previous values. If they're different, it automatically
interpolates new values in views or triggers another handlers (this can cause an
infinite loop when used improperly).

Some Angular directives such as ng-repeat or ng-if create child scopes for their
subtrees, which might cause performance bottlenecks when used too much. We will
talk about some performance optimization tips at the end of this chapter.

In our app, the scope is filled by AngularDart automatically and watches "title",
"task in tasks", and "task" expressions. This means that if you alter the tasks
list, it will automatically recreate the DOM structure inside the element.

Now we'll extend this application with more ng-* directives, put templates into
separate HTML files, and add simple routing.

Extending the to-do list
We can keep index.html as is and start by adding routing to our main.dart file:

// web/main.dart
moduleRouteInitializer(Router router, RouteViewFactory views) {
 views.configure({
 // This route will be displayed even when no path is set.
 'add': ngRoute(
 defaultRoute: true,
 path: '/add',
 view: 'view/add.html'),
 // Detail of a task identified by its id.
 'detail': ngRoute(
 path: '/detail/:taskId',
 view: 'view/detail.html'),
 });
}

class MyAppModule extends Module {
 MyAppModule() {
 bind(TodoListComponent);
 bind(TodoDetailComponent);
 // Initialize routes.
 bind(RouteInitializerFn, toValue: moduleRouteInitializer);
 // Turn on listening to Window.onHashChange event.

Chapter 6

[123]

 bind(NgRoutingUsePushState,
 toValue: new NgRoutingUsePushState.value(false));
 }
}

In this case, route paths are paths after the hash sign in your URL. That's, for
example, index.html#/add or index.html#/detail/3. However, you could
tell AngularDart to match the entire URL and not just the hash part by setting
the following:

bind(NgRoutingUsePushState,
 toValue: new NgRoutingUsePushState.value(true));

But this isn't very common.

Routes can be also nested:

'detail': ngRoute(
 path: '/detail/:taskId',
 mount: {
 'edit': ngRoute(
 path: '/edit',
 view: 'view/edit.html'),
 }
)

This would match routes such as /detail/3/edit, but we're not going to use it here
in order to keep the example simple.

Model
Instead of keeping tasks as a list of strings like we did in the preceding section,
we'll turn it into a class called Task:

// lib/service/task.dart
class Task {
 int id;
 String title;
 String when;

 Task(this.id, this.title, this.when);
}

This is pretty simple, just three public properties and a constructor. We'll see that we
can print object properties straight into the template.

AngularDart

[124]

Then, for practical reasons, we'll move default tasks into a JSON file in
web/default_tasks.json:

[{"id":1,"title":"Buy more cat food","when":"12:00"},
{"id":2,"title":"Feed the cat","when":"11:00"},
{"id":3,"title":"Do the laundry","when":"17:15"}]

View
Now, create two HTML templates in the web/view directory. First, we'll create
add.html:

<!-- web/view/add.html -->
<h2>Add a new task</h2>
<p>when: <input type="time" ng-model="newTask['when']"></p>
<p>title: <input type="text" ng-model="newTask['title']"></p>
<button type="button"
 ng-click="addTask(newTask['when'], newTask['title'])">Add
</button>

Now, let's move on to creating detail.html:

<!-- web/view/detail.html -->
<h2>detail</h2>
<todo-detail all-tasks="tasks"></todo-detail>
add task

These two HTML files represent templates for routes that a user can navigate to.
The content of one of these templates will be inserted by Angular Dart into the <ng-
view> tag according to the current matching route. We'll explain Angular directives
used in these templates in a moment.

Component
Let's see the first part of our updated TodoListComponent class:

// lib/component/todo_list.dart
// Mark class as Component with an annotation.
@Component(
 selector: 'todo-list', // CSS selector for this component
 templateUrl: 'todo_list.html',
 exportExpressions: const ['newTaskParams', 'addTask']
)
class TodoListComponent {
 // Parameters for a new task.
 Map<String, dynamic> newTask = {};
 String title = "My Todo list";
 // Keep all my tasks in a list.

Chapter 6

[125]

 List<Task> tasks = [];
 // Term for quick search among my tasks.
 String search = '';

 TodoListComponent() {
 // Load default tasks. We can't use async/await here because
 // class constructor can't return a Future object and
 // therefore can't be declared with async keyword.
 HttpRequest.getString('/default_tasks.json').then((response) {
 List<Map<String, String>> decoded = JSON.decode(response);

 decoded.forEach((Map<dynamic, String> taskData) {
 // Force integer value.
 int id = int.parse(data['id'].toString());
 // Append a new task to the list.
 tasks.add(new Task(id, data['title'], data['when']));
 });
 });
 }
 /* … */
}

You can see that we switched from template to templateUrl. As this template
is going to be in the same directory as todo_list.dart, which isn't accessible by
a browser, we need to tell AngularDart where to find it. Locate the following in
pubspec.yaml:

transformers:
- angular

Replace the preceding lines with:

transformers:
- angular:
 html_files:
 - lib/component/todo_list.html
 - lib/component/todo_detail.html

Also, we used a new exportExpressions option. This tells AngularDart about
expressions that aren't discoverable statically. This might be quite confusing at
first sign. When you run an app using AngularDart, it automatically looks
for expressions used in your code and generates a map of all getters in the
main_static_expressions.dart file. This file is imported right at the top
of main.dart when you publish your application with Pub Build (or run it in
Dartium from Dart Editor).

AngularDart

[126]

We use both the addTask() method and the newTaskParams public property, but
inside the add.html template, which is loaded dynamically and is therefore not
found by AngularDart when generating main_static_expressions.dart. If you
forgot to set expressions manually with exportExpressions, Dart will throw
an error:

Missing getter: (o) => o.myLostProperty

You'll probably see this type of error a few times when using AngularDart, so if
you're not sure whether all the getters that you use are found statically, you can
take a look at main_static_expressions.dart and check what it found for you.

We see that the first two expressions are those that we defined in exportExpressions.

Next, we loaded the default tasks in the constructor and filled the tasks list with
instances of the Task class.

Finishing TodoListComponent
Now we can finish TodoListComponent with methods to add and remove tasks:

class TodoListComponent {
 /* … */

 void addTask(DateTime when, String title) {
 // Convert DateTime to HH:mm format.
 String str = "${when.hour.toString().padLeft(2, '0')}:"
 + "${when.minute.toString().padLeft(2, '0')}";

 // Find max id among all current tasks.
 int maxId = tasks.length == 0
 ? 1 : tasks.map((elm) => elm.id).toList().reduce(max);

 // Create a new instance of Task and append it to the list.

Chapter 6

[127]

 tasks.add(new Task(maxId + 1, title, str));

 newTask = {};
 }

 // Remove task by id.
 void removeTask(MouseEvent e, int id) {
 e.preventDefault();
 tasks.removeWhere((task) => task.id == id);
 }
}

We can already see how we create new tasks with two inputs and a button in add.
html. Let's recap the input fields and buttons here with emphasized ng-* directives:

<input type="time" ng-model="newTask['when']">
<input type="text" ng-model="newTask['title']">
<button type="button"
 ng-click="addTask(newTask['when'], newTask['title'])">
Add</button>

Every change in inputs is propagated to the newTask map (that's the ng-model
directive). Note that newTask is an empty map at the beginning.

Then, when you click on the button, we call the addTask() method and pass both
arguments right from the template. The addTask() method creates a new task and
sets newTask = {} at the end, which clears both inputs (two-way data binding).

Now, we'll create the template for our TodoListComponent in todo_list.html:

<!-- lib/component/todo_list.html -->
<h1>{{ title }}</h1>
<ng-view></ng-view>
<h2>My tasks</h2>
Search: <input type="search" ng-model="search">

<li ng-repeat="t in tasks|filter:{'title':search}|orderBy:'when'">
 {{ t.when }} - {{ t.title }}
 [remove]

<p ng-if="tasks.length == 0">Congratulations!</p>

AngularDart

[128]

We already mentioned that the template for the current matching route is placed in
<ng-view>. On a page load, it's going to be add.html because it's marked as default.
We tied only a small part of the application to routes, but you can change the entire
layout with <ng-view> as well.

The ng-repeat directive is extended with two formatters. A formatter is basically
a function that takes input data, processes it, and returns it. In Angular templates,
formatters can be chained with the | character, and always take the result of the
expression on their left-hand side as the input.

Our example uses two formatters:

• filter: This passes only items that match the defined criteria. You can
use just a simple expression and the filter formatter will check all items'
properties and if any of them contain the searched term, it will be passed
to the output (for example, filter:'the'). We can also tell the filter to
search in just one property by passing a map as an argument (in our example,
we're searching only in task titles). The input list remains unchanged.

• orderBy: This sorts the input list by a property. The input list remains
unchanged.

The ng-repeat directive creates a new scope for each clone, which means that each
 tag has its own instance of t representing a task.

Note that we set the href attribute of <a> to #/detail/id. Changing the URL's hash
doesn't load a new page but it's fetched by AngularDart's router, and the route that
matches this URL is evaluated (for us, the content of <ng-view> is replaced by an
appropriate template).

The ng-click="removeTask($event, t.id)" directive is the same as addTask()
but uses a special $event variable provided automatically by AngularDart. We need
to use it because by default, <a> changes a browser's location to what's in the href
attribute. But that's not what we want, so we call preventDefault() on the event
to prevent the default browser behavior (that's the first line of the removeTask()
method).

At the end of todo_list.html, we have another ng-if directive, which causes itself
and its subtree to be visible only when the expression is evaluated to true. There are
actually two methods for showing/hiding elements in Angular:

• ng-if: When the expression is evaluated as false, it removes the entire
subtree from the DOM. When it's true, it has to create the entire tree again.
This directive also creates a new scope.

• ng-show: When the expression is evaluated as false, the DOM subtree is just
hidden but still exists in the DOM. This directive doesn't create a new scope.

Chapter 6

[129]

In many cases, these two are interchangeable. Just if you know you don't need new
scopes, or the subtree is relatively small and is showed/hidden many times during
the page's lifetime, it's probably better to use ng-show.

The last thing is the task's detail, which is a component declared in todo_detail.
dart. We already saw in detail.html where it's going to be placed:

// lib/component/todo_detail.dart
// Usage: <todo-detail all-tasks="tasks"></todo-detail>
@Component(
 selector: 'todo-detail', // CSS selector for this component.
 templateUrl: 'todo_detail.html'
)
class TodoDetailComponent {
 // One way data binding, this component needs a reference
 // to all tasks but won't modify it internally.
 // Note that this property has to be public.
 @NgOneWay('all-tasks')
 List<Task> allTasks = null;

 // Task id from route parameters.
 int _id;

 Task _task = null;

 // Constructor that takes route parameters.
 TodoDetailComponent(RouteProvider routeProvider) {
 _id = int.parse(routeProvider.parameters['taskId']);
 }

 // Custom getter to avoid unnecessary iterations of the list.
 Task get task {
 // We need to check if allTasks isn't null.
 if (_task == null && allTasks != null) {
 allTasks.forEach((Task t) {
 if (t.id == _id) _task = t;
 });
 }
 return _task;
 }
}

AngularDart

[130]

This component is instantiated by AngularDart every time the URL matches the
route with the detail.html template because it contains the <todo-detail>
element.

We annotated the List<Task> allTasks property with @NgOneWay('all-
tasks'), which tells AngularDart to put the result of an expression in the
element's all-tasks attribute into the allTasks property. With this, we connected
TodoListComponent and TodoDetailComponent components together.

Data bindings
There are three different annotations to bind attributes to object properties:

• NgOneWay: This is one way-data binding. The expression result from the
attribute is passed to the object. Any change in the expression variable
reevaluates the entire expression and a new value is passed to the object's
property. However, changing the object's property doesn't propagate back
to the expression's variable. Therefore, this is one-way (or unidirectional)
binding.
Note that when passing entire objects, AngularDart doesn't make copies
of them. It passes just their references, so changing its properties actually
changes the original object. For example, if we set _task.title = "hello"
in the task getter, it would change its title in TodoListComponent as well.
But setting allTasks = [] will just create a new list and assign its reference
to the allTasks property. The original reference passed from the attribute's
expression remains unchanged.

• NgTwoWay: This is two-way data binding. Changing the property value will
be propagated back to the attribute's variable. Also, changing the attribute
variable will change the value of the tied property.

• NgAttr: This is another unidirectional connection similar to NgOneWay but
the attribute's values is passed as is, although you can use interpolation with
"mustaches" {{ }}.

Chapter 6

[131]

The difference between NgOneWay and NgAttr is that if we used NgAttr in
TodoDetailComponent, AngularDart would take the attribute's "tasks" value as
a string and wouldn't evaluate it as an expression. Therefore, this would throw an
error because we can't assign a string to a variable of type List.

As TodoDetailComponent is instantiated every time we create the <todo-detail>
element, we can define a constructor that accepts a RouteProvider object with all
route parameters. For our purpose, this is the task's ID.

We can't rely on the order of variable bindings, and it's possible that the task getter
in TodoDetailComponent will be called before the allTasks property is set. For this
reason, we need to check whether allTasks was already set inside the task getter
before we try to iterate it.

The last template is todo_detail.html, which is very simple:

 id: {{ task.id }}
 when: {{ task.when }}
 title: {{ task.title }}

The directory structure with all the files should look like this.

AngularDart

[132]

Finally, we can run our application in the browser.

You can try that any change is immediately propagated to the view and things such
as filtering the task list by the title (writing into the search input field) work and we
didn't have to even touch the DOM by ourselves.

Don't worry if all this seems complicated to you, especially if you've never used any
Angular before. We encourage you to download the source code for this example
and play with it or take a look at the official tutorials at https://angulardart.org/
tutorial/.

A book component in AngularDart
We already saw how to encapsulate a 3D book from Chapter 4, Developing a Mobile
App with Dart, into a polymer.dart custom element. Now we'll do the same but in
AngularDart now.

We can skip main.dart, because there's nothing new for us there, and see <body> in
index.html:

<!-- web/index.html -->
<body>
 <p>angular: <input type="number" ng-model="elementsCount"></p>
 <shelf books-count="elementsCount"></shelf>

 <script type="application/dart" src="main.dart"></script>
</body>

https://angulardart.org/tutorial/
https://angulardart.org/tutorial/

Chapter 6

[133]

Note that we're setting ng-model outside any component, so it'll be kept in
the root scope, which is automatically set to <html>. Also, we're using <input
type="number">, which tells AngularDart to convert the input from this field
into an integer automatically.

The <shelf> element has one custom attribute called books-count, and we'll also
use cssUrl to set a custom CSS file for this Shadow DOM:

// lib/component/shelf.dart
@Component(
 selector: 'shelf',
 templateUrl: 'shelf.html',
 cssUrl: 'shelf.css'
)
class ShelfComponent {
 @NgOneWay('books-count')
 int booksCount;
}

The shelf.html HMTL template is following:

<!-- lib/component/shelf.html -->
<h2>AngularDart</h2>
<div>
 <angular-book
 ng-repeat="book in booksCount | intToList"
 cover-image="{{ $even ? 'cover-old.jpg' : 'cover-new.jpg'}}"
 base-color="{{ $even ? '#000' : '#da944c'}}">
 </angular-book>
</div>

This time, we're using a custom formatter in the ng-repeat directive because
ng-repeat can iterate only collections but booksCount is an integer that we'll use to
create a List object with this number of items. Each iteration of ng-repeat creates a
few local properties that might be useful:

• $index: This is the index (offset) of a current item (0 … n – 1)
• $even: This is true if this item is at an even index
• $odd: This is true if this item is at an odd index
• $first: This is true if this item is the first in the collection
• $last: This is true if this item is the last in the collection
• $middle: This is true if this item is neither the first nor the last item in

the collection

AngularDart

[134]

The code for our custom formatter goes to int_to_list.dart:

// lib/formatter/int_to_list.dart
@Formatter(name: 'intToList')
class IntToListFormatter {
 List call(dynamic num) {
 int intValue;
 // Make sure the value is an integer.
 if (num is String) intValue = int.parse(num);
 intValue = (num == null ? 0 : num);

 return new List.filled(intValue, true);
 }
}

Just don't forget to include int_to_list.dart as a dependency among components
in main.dart:

// web/main.dart
MyAppModule() {
 /* … */
 bind(IntToListFormatter);
}

The code for book elements is very simple as well. Note that we're not going
to encapsulate them in the Shadow DOM because we already created one in
ShelfComponent and we don't need another one:

// lib/component/book.dart
@Component(
 selector: 'angular-book',
 templateUrl: 'book.html',
 cssUrl: 'book.css',
 useShadowDom: false
)
class BookComponent {
 @NgAttr('cover-image')
 String coverImage;

 @NgAttr('base-color')
 String baseColor;
}

Chapter 6

[135]

In the template, we can use the <angular-book> element itself as a wrapper
for all the book's faces. The rest looks very similar to the template in the
polymer.dart example:

<!-- lib/component/book.html -->
<div class="front" style="background-image: url(./{{coverImage}})">
</div>
<div class="left" style="background-color: {{baseColor}}"></div>
<div class="right"></div>
<div class="back" style="background-color: {{baseColor}}"></div>
<div class="top"></div>
<div class="bottom"></div>

We don't even need to include CSS files here, because it's basically what we already
used in polymer.dart. Feel free to download the source code for this chapter if you
have any hesitations or go back to the previous chapter.

Just remember that the :host CSS selector can be used to refer to the current custom
element in both polymer.dart and AngularDart.

Finally, this is our result in the browser:

We wrapped both books in just one Shadow DOM. In polymer.dart, all elements
have their Shadow DOM unless you extend the default PolymerElement class, copy
children elements directly to the host element, and therefore, bypass the Shadow
DOM. Frankly, this isn't recommended because it violates the main purpose of
Polymer, but you might run into a situation where you really want to avoid using
the Shadow DOM (like core-list for example). With AngularDart, this is made
very simple by just setting one property.

AngularDart

[136]

By quickly comparing the same functionality implemented in polymer.dart and
AngularDart, we can see that the one written in AngularDart is actually shorter.

AngularDart can, with a little effort, connect various parts of a web application
together. It's intended to be a self-contained framework that solves logic, model,
and presentation aspects of applications.

Polymer.dart is best for creating independent and reusable components that can be
imported into any web page, regardless of the rest of the code.

What is Angular 2.0?
AngularJS and AngularDart are two separate projects in two different languages,
sharing the same philosophy. This requires two of Google's developer teams to
maintain two codebases. Angular 2.0 is still in development and its release date is
unknown, yet there are some fundamental concepts known already.

Angular 2.0 is developed in AtScript, which is a language created by Google that
extends Microsoft's TypeScript. TypeScript itself is a superset of JavaScript and
should be partly compatible with the ECMAScript 6 standard in the future. Right
now, it has to be compiled to JavaScript as well.

That said, there will be just one codebase for Angular 2.0 in AtScript, which can be
compiled into JavaScript or Dart.

Why is Angular 2.0 not written in Dart?
That's an obvious question. Angular 2.0 has to be easy to use for both Dart and
JavaScript developers, and here's the problem with Dart. Dart doesn't compile into
code that is easily reusable in JavaScript. In Chapter 1, Getting Started with Dart, and
Chapter 2, Practical Dart, we already talked about how the Dart team is canceling
efforts to implement the Dart VM into Chrome, and they're focusing on improving
the dart2js compiler instead (or maybe switching to a completely new compiler
https://github.com/dart-lang/dev_compiler), which is a logical step in
this situation.

Performance tips for AngularDart
In most use cases, AngularDart will run fast enough for you to not even notice that
there is a framework under the hood. However, when dealing with large DOM trees
such as tables or long lists (let's say thousands of DOM elements), you can get hit by
Angular very hard.

https://github.com/dart-lang/dev_compiler

Chapter 6

[137]

The basic ideas behind optimization is that we want to reduce the number of
expressions that Angular watches and try to keep the scope hierarchy shallow.
Internally, Angular uses the so-called digest loop, which is executed every time a
value in the model changes. It has to check all watched expressions and see whether
they've changed, and if they did, it has to propagate the change further until there
are no pending changes.

When we talked about scopes, we mentioned that some Angular directives create
new scopes and when used inappropriately, they might have significant performance
impact. That's why we'll take a look at some performance optimization tips that
reduce the number of watched expressions, together with a few recommendations on
what you shouldn't do in order to speed up you application.

You can check out which directives create new scopes in the documentation at
https://docs.angulardart.org.

Avoiding nesting ng-repeat directives
It might seem logical to display a table like this:

<table>
 <tr ng-repeat="row in rows">
 <td ng-repeat="col in columns">{{ row.columns[col.id] }}</td>
 </tr>
</table>

This is an absolute overkill for Angular. With 100 rows and five columns, this makes
500 scopes. If you added just a single ng-if directive inside <td>, it would be 1,000
scopes because each ng-if creates a new scope too.

Instead, try to preprocess your templates. Of course, you have to use ng-repeat to
actually print each row, but you can modify the template to use just one ng-repeat
directive:

<table>
 <tr ng-repeat="row in rows">
 <td>{{ row.columns[1] }}</td>
 <td>{{ row.columns[2] }}</td>
 <td>{{ row.columns[3] }}</td>
 </td>
</tr>

For very large lists, you can also use Polymer's <core-list> element that we saw in
the previous chapter.

https://docs.angulardart.org

AngularDart

[138]

Using track by for ng-repeat
In the to-do list example, we used a filter to sort tasks by their time. A big
disadvantage of this approach is that every time you change the sorting order or
add/remove a task, Angular has to remove the entire DOM subtree and create
it again.

This is why you can use a special track by keyword, which tells ng-repeat how
to uniquely identify each row and therefore, when you manipulate the iterated
collection, it can check whether the row was already created. So, a better and
recommended way to use ng-repeat in the to-do list would be:

<li ng-repeat="t in tasks|filter:term|orderBy:p track by t.id">

Avoiding excess formatter usage
Another common performance bottleneck that isn't obvious is the excessive use
of formatters, usually in loops. For example, let's say we have a formatter called
niceDate that turns a timestamp into a date according to the user's locale:

<li ng-repeat="time in collection">{{ time|niceDate }}

Firstly, Angular doesn't know that the formatter won't modify the original variable.
This is the same problem that we already saw with NgOneWay, as described earlier.
Your formatter might change an object's property and Angular has to process it in a
digest cycle. This is why Angular actually runs formatters twice.

Concretely, you change an object's property in your model and Angular evaluates an
expression with your formatter. But you might change an object's property again in
the formatter and Angular has to be sure it caught all the changes that occurred, and
therefore, it has to evaluate formatters again.

Secondly, this formatter doesn't even need to be used in the expression. You can
format the date somewhere in your code and just print the formatted date.

Not everything needs to be in Angular
When using Angular, things work like magic. Although you shouldn't modify the
DOM tree that is already maintained by Angular, you still can change CSS styles or
classes (again, those that aren't already managed by Angular; otherwise, it might
lead to unpredictable behavior) by yourself.

Chapter 6

[139]

For example, if you wanted to display a list with 1,000 items and then filter
(show/hide) them in some manner, you can use this code:

 <li ng-repeat="item in collection track by item.id"
 ng-show="showMe(item)">{{ … }}

We don't want to use a formatter to filter out unwanted items, because it would
have to iterate the entire collection and the ng-show directives will still create 1,000
expressions for Angular to watch.

Instead, we can just drop the ng-show directive and show/hide the tags by
directly changing their styles by setting, for example, display: none right in
your code.

Note that this will make the code a little harder to understand for people who aren't
familiar with what your application does, but remember that this is also an option.
In even more extreme cases, you can write parts of your application in JavaScript
outside Dart and move the root scope from the default <html> tag with ng-app.

Just don't think that when you start using Angular, absolutely everything has to be
managed via Angular.

Summary
This chapter was quite extensive. We encourage you to try AngularDart by yourself
and see that it's actually not as difficult as it might seem. The benefits are really big,
and at the end of the day, they will save you a lot of time developing the same things
over and over again, and let you focus on your application's logic instead.

The next chapter is going to be about writting CLI apps and server-side scripts
in Dart.

[141]

Server-side Applications
with Dart

In this chapter, we'll take a look at developing command-line server-side apps.
In particular, we'll learn the following topics:

• How to process command-line arguments with the args package
• Writing a small chat app with a WebSockets server in Dart
• How to access filesystem with the dart:io library
• Storing data to the MySQL database with the sqljocky package
• Writing a small web server using the route package
• How to use Apache and nginx servers as reverse proxies for Dart

HTTP servers

This chapter assumes that you already have at least basic experience with CLI
scripts or Unix environments in general. If you're a Windows user, take a look
at Cygwin (www.cygwin.com), which is a Unix-like environment for Windows,
or ideally, install Ubuntu into a virtual machine. The Dart SDK is now available
for Debian and Ubuntu Linux distributions, while Dart Editor is currently
available only for Ubuntu Linux.

We'll set off with a few notes about Dart VM and then go to processing
command-line arguments, because that's what you'll probably use every
time you start developing a CLI app.

www.cygwin.com

Server-side Applications with Dart

[142]

The standalone Dart VM
The Dart SDK comes with a standalone Dart VM to run command-line apps such
as pub or dart2js. You can find it in <dart-sdk-dir>/bin/dart. It accepts
command-line arguments such as -h for help or -c to enable the checked mode.
There are also special options for the Observatory tool (we'll use it in Chapter 8,
Testing and Profiling the Dart Code). These aren't very interesting for us now, but feel
free to check out https://www.dartlang.org/tools/dart-vm/ for a complete list
of all supported options.

The standalone Dart VM is mostly the same environment as the VM implemented in
the Dartium browser. The entry point for an app is a top-level main()function, but
this time, it accepts a list of arguments passed from the command line:

main(List<String> args) {
 /* ... */
}

With the standalone Dart VM, you can't use libraries specific to the browser
environment, such as dart:html, of course. On the other hand, you can use
dart:io to access the filesystem or create subprocesses, listen to signals,
and so on. We're going to use this package a lot in this chapter.

Parsing CLI arguments with the args
package
As we're going to write a WebSockets server, we might want to control it with
some options passed from the command line, for example, a port number where
the WebSockets server is listening or a command to stop the server when running
in the background.

Let's create a new project with the Console Application template, add the args
package to its dependencies, and start writing the WebSockets sever by defining its
CLI options.

We'll create an instance of ArgParser and define possible options with the
addOption() and addFlag()methods. Flags are options that can only have
true/false values:

// bin/server.dart
import 'package:args/args.dart';
import 'dart:io';

https://www.dartlang.org/tools/dart-vm/

Chapter 7

[143]

main(List<String> args) async {
 ArgParser parser = new ArgParser();

 // This is probably self-explanatory.
 parser
 ..addOption('port', abbr: 'p', defaultsTo: '8888')
 ..addOption('pid-file', defaultsTo: 'var/websockets.pid',
 help: 'Path for a file with process ID')
 ..addOption('cmd', abbr: 'c', defaultsTo: 'start',
 allowed: ['start', 'stop'],)
 ..addFlag('help', abbr: 'h', negatable: false);

 var argResults = parser.parse(args);

 if (argResults['help']) {
 print(parser.usage);
 } else if (argResults['cmd'] == 'stop') {
 // Stop server by sending a SIGTERM signal.
 } else {
 // Start the WebSockets server.
 }
}

For example, an option definition with the following code allows us to use the CLI
arguments --port 1234, --port=1234, -p 1234 or -p1234:

parser.addOption('port', abbr: 'p')

As a flag, we have:

parser.addFlag('help', abbr: 'h', negatable: false);

In our case, -h or --help mean true and omitting the flag is false. This format of
arguments is often called "GNUism".

The actual processing of CLI arguments happens in the ArgParser.parse()
method, which returns a map-like object with parsed values. Note that we don't
necessarily need to use arguments passed from the CLI and we can process a custom
list of strings.

Server-side Applications with Dart

[144]

A big advantage of ArgParser is that it can automatically generate usage help for
you in the ArgParser.usage property. If you run our app with the --help or -h
argument, it dumps all possible options and flags with their defaults, descriptions,
and allowed values:

$ dart bin/server.dart --help

-p, --port (defaults to "8888")

 --pid-file Path for a file with process ID

 (defaults to "var/websockets.pid")

-c, --cmd [start (default), stop]

-h, --help

We don't need to worry about the -c option right now and start writing the
WebSockets server first.

Apart from options and flags, the args package also supports creating commands
similarly to git commit or apt-get install. However, args gets quite confusing
with commands, so I would recommend that you try the unscripted package
(https://pub.dartlang.org/packages/unscripted) instead, because it lets you
map commands directly to class methods and make the configuration more readable.

Writing a chat app with the WebSockets
server
WebSockets is a protocol for bidirectional communication between a web browser
and a server. The fact that a server can actively send you messages is the most
important thing and is probably the only reason why you might want to use
WebSockets in the future. There used to be some fallbacks for browsers that don't
support WebSockets, such as long pooling, but we're not going to use any of them
and assume that our browsers are up to date with proper WebSockets support.

Our chat WebSockets server spawns an HTTP server that listens to WebSockets
headers and implements a handshake between the two endpoints to switch to the
WebSockets protocol (the so-called upgrade request).

Later, we'll log all chat messages in a MySQL database.

https://pub.dartlang.org/packages/unscripted

Chapter 7

[145]

So first, we'll create an HTTP server that implements "upgrade requests" and a class
that holds all our active WebSockets connections. All we need to write HTTP servers
is part of the dart:async package:

// bin/server.dart
import 'package:args/args.dart';
import 'dart:io';
import 'dart:async';
import 'dart:convert';
import 'dart:collection';

// Class representing a client connected to the chat server.
class WebSocketsClient {
 String name;
 WebSocket ws;

 WebSocketsClient(this.ws);
 Future close() => ws.close();
}

class ChatWebSocketsServer {
 // Hold all connected clients in this list.
 List<WebSocketsClient> _clients = [];

 // Add a new client based on his WebSocket connection.
 void handleWebSocket(WebSocket ws) {
 WebSocketsClient client = new WebSocketsClient(ws);
 _clients.add(client);
 print('Client connected');

 // In a real app we would probably wrap JSON.decode() with
 // try & catch to filter out malformed inputs.
 // Stream.map() returns a new Stream and processes each item
 // with callback function. In our case it decodes all JSONs.
 // onDone is called when the connection is closed by client.
 ws.map((string) => JSON.decode(string))
 .listen((Map json) {
 handleMessage(client, json);
 }, onDone: () => close(client));
 }

Server-side Applications with Dart

[146]

 // Handle incoming messages.
 void handleMessage(WebSocketsClient client, Map json) {
 /* ... */
 }
 // Client closed their connection.
 void close(WebSocketsClient client) { /* ... */ }
}

main(List<String> args) {
 // Args parser configuration as above.
 HttpServer httpServer;

 if (argResults['help']) { /* ... */
 } else if (argResults['cmd'] == 'stop') { /* ... */
 } else if (argResults['cmd'] == 'start') {
 ChatWebSocketsServer wsServer = new ChatWebSocketsServer();

 print('My PID: $pid');
 int port = int.parse(argResults['port']);
 print('Starting WebSocket server');

 var address = InternetAddress.LOOPBACK_IP_V4;
 HttpServer httpServer = await HttpServer.bind(address, port);
 StreamController sc = new StreamController();
 sc.stream.transform(new WebSocketTransformer())
 .listen((WebSocket ws) {
 wsServer.handleWebSocket(ws);
 });

 // Listen to HTTP requests.
 httpServer.listen((HttpRequest request) {
 // You can also handle different URL with request.uri.
 // if (request.uri == '/ws') { }
 sc.add(request);
 });
 }
}

This is our app in a nutshell. We use StreamController and
WebSocketTransformer classes to upgrade the client's HTTP request to the
WebSockets connection.

Chapter 7

[147]

What's interesting here is the handleWebSocket() method. Notice in particular how
we're using closures with the client variable. Both handleMessage() and close()
are in a closure and have their own reference to client, so even with multiple calls
to handleWebSocket(), we can still easily identify which client invoked each event.

The handleMessage()method is the core of the entire server app and it's called
for every incoming message from all clients. Our app will handle three types
of messages:

• The client changing their chat name
• Posting a message that is broadcasted to all connected clients
• Requesting the entire available chat history

We can finish the server part with all we need for now:

// bin/server.dart
// A single item in the chat history.
class ChatMessage {
 String name;
 String text;

 ChatMessage(this.name, this.text);
 String get json => JSON.encode({'name': name, 'text': text});
}

class ChatWebSocketsServer {
 List<WebSocketsClient> _clients = [];
 // Chat history.
 ListQueue<ChatMessage> _chat;
 static const int maxHistory = 100;

 ChatWebSocketsServer() {
 _chat = new ListQueue<ChatMessage>();
 }

 void handleWebSocket(WebSocket ws) { /* same as above */ }

 // Handle incoming messages.
 void handleMessage(WebSocketsClient client, Map json) {
 if (json['type'] == 'change_name') {
 client.name = json['name'];

Server-side Applications with Dart

[148]

 } else if (json['type'] == 'post' && client.name.isNotEmpty) {
 ChatMessage record =
 new ChatMessage(client.name, json['text']);
 // Keep only last maxHistory messages.
 _chat.addLast(record);
 if (_chat.length > maxHistory) _chat.removeFirst();
 broadcast(record);

 } else if (json['type'] == 'init') {
 // Send chat history to the client.
 // Let's not bother with performance for simplicity reasons.
 _chat.forEach((ChatMessage m) => client.ws.add(m.json));
 }
 }

 // Client closed their connection.
 void close(WebSocketsClient client) {
 print('Client disconnected');
 // Remove the reference from the list of clients.
 client.close().then((_) =>
 _clients.removeAt(_indexByWebSocket(client.ws)));
 }

 // Close connection to all clients.
 // This is used only on server shutdown.
 Future closeAll() {
 // Make a list of all Future objects returned by close().
 List<Future> futures = [];
 _clients.forEach((client) => futures.add(client.ws.close()));
 // ... and wait until all of them complete.

 return Future.wait(futures);
 }

 // Send a message to all connected clients.
 void broadcast(ChatMessage message) {
 // Method add() sends a string to the client.
 _clients.forEach((client) => client.ws.add(message.json));
 }

Chapter 7

[149]

 // Get index for this connection from the list of clients.
 int _indexByWebSocket(WebSocket ws) {
 for (int i = 0; i < _clients.length; i++) {
 if (_clients[i].ws == ws) return i;
 }
 return null;
 }
}

We're using ListQueue<T> here to store chat messages because it has the
removeFirst() and addFirst() methods with constant time complexity.

Although the code is quite long, it's not hard to understand. Note the broadcast()
method that sends a message to all connected clients because we have the WebSocket
connections for all of them. When a client disconnects, we call its close() method
and remove it from the list of clients.

Client-side WebSockets
The HTML and Dart code for a web browser using WebSocket is simple as well:

<!-- web/index.html -->
<body>
 <p>Name: <input type="text" id="name"></p>
 <div id="chat"></div>
 <p>Message: <input type="text" id="msg">
 <button id="btn-send">Send</button></p>
 <script type="application/dart" src="main.dart"></script>
</body>

There are just two input fields and a button:

// web/main.dart
import 'dart:html';
import 'dart:convert';

main() {
 WebSocket ws = new WebSocket('ws://127.0.0.1:8888');

 ws.onOpen.listen((e) {
 print('Connected');
 ws.sendString(JSON.encode({'type': 'init'}));
 });

Server-side Applications with Dart

[150]

 // Automatically decode all incoming messages.
 ws.onMessage.map((MessageEvent e) =>
 JSON.decode(e.data)).listen((Map j) {
 var a = '<p>${j['name']}:
${j['text']}</p>';
 querySelector('#chat').appendHtml(s);
 });

 querySelector('#name').onKeyUp.listen((e) {
 ws.sendString(JSON.encode({
 'type': 'change_name',
 'name': e.target.value
 }));
 });

 querySelector('#btn-send').onClick.listen((e) {
 InputElement input = querySelector('#msg');
 ws.sendString(JSON.encode(
 { 'type': 'post', 'text': input.value }));
 input.value = '';
 });
}

Both server and browser are using the WebSocket class, but they aren't the same.
The browser's WebSocket comes from the dart:html package, while the WebSocket
used in the server is from dart:io. This is why we're sending data with both
sendString() and add() methods.

The WebSocket class in the browser has a couple of streams. The most interesting
are onOpen and onMessage. We used onOpen to request the entire chat history
from the server. Then, onMessage decoded all the data sent from the server and
because we're expecting just chat messages, we appended a simple HTML to the
main container.

To test the server, we can run it without any parameters:

$ dart bin/server.dart

My PID: 15725

Starting WebSocket server

Chapter 7

[151]

Then, open multiple tabs, with index.html, and try to set different names and
write a few messages. The messages should immediately appear in all tabs. In
Developer Tools, we can also see both sent and received messages from the
server via WebSockets:

Listening to Unix signals and basic I/O
operations
If we wanted to run this server in a real-life application, we would ideally run it
in the background, disassociate from the terminal with no output, and so on. We can
do this with the nohup utility that prevents a process from terminating, even when
the parent process terminates by ignoring the SIGHUP signal. Note that this isn't the
same as running a daemon process. Daemons have to follow a predefined behavior,
such as closing all file descriptors, changing the current directory, redirecting output,
and more.

Before we do this, we need to be able to stop the server when it's running in the
background. We could use ps | grep server.dart, but there could be more
processes with this name running at the same time and we may not know which
one is the one we want to terminate.

Server-side Applications with Dart

[152]

Running the server as a background process
We should create a well-behaved process that listens to termination signals,
such as SIGTERM and SIGINT, to properly close all WebSocket connections and
the HTTP server.

For this reason, we'll save our server's process ID (PID) into a file on launch
and listen to the two signals. Then, running dart bin/server.dart -c stop will
read the PID and use Process.kill() to send a signal to the currently running
server process:

main(List<String> args) async {
 /* the rest is unchanged */
 } else if (argResults['cmd'] == 'stop') {
 // stop process by sending a SIGTERM signal
 String pidFile = argResults['pid-file'];
 String pid = await (new File(pidFile).readAsString());
 Process.killPid(int.parse(pid), ProcessSignal.SIGTERM);
 } else if (argResults['cmd'] == 'start') {
 /* Create HTTP server and so on... */
 // Save process PID to a file.
 String path = argResults['pid-file'];
 File file = await (new File(path)).create(recursive: true);
 await file.writeAsString(pid.toString());

 void shutdown(ProcessSignal signal) {
 print('Received signal $signal');
 // Remove the file with PID.
 pool.close();

 // At this point it's better not to use await because
 // we can call all tasks asynchronously and just wait until
 // all of them are finished.
 await Future.wait([
 new File(argResults['pid-file']).delete(),
 httpServer.close(),
 wsServer.closeAll(),
]);

Chapter 7

[153]

 // End this process now with code 0.
 exit(0);
 }

 ProcessSignal.SIGTERM.watch().listen(shutdown);
 ProcessSignal.SIGINT.watch().listen(shutdown);
 }
}

We used the File class to create both a new file and a directory with
create(recursive: true). Both File and Directory classes are based heavily
on Future objects. However, some methods have synchronous and asynchronous
implementations (for example, there are delete() and deleteSync() methods).

To stop the server, we run server.dart again, which sends a signal to the PID
of the process that's currently running the server.

Now, we can run server.dart again:

$ nohup dart bin/server.dart > /dev/null 2>&1 &

Using > /dev/null redirects all stdout to /dev/null (discarding all output), 2>&1
redirects stderr to stdout, and finally, & runs the process in the background.

We don't even care what a server's PID is because it's saved in a file and is
automatically read and killed with:

$ dart bin/server.dart -c stop

The server process gently closes all connections and terminates.

Enumerated types
Dart 1.9 brought another new keyword called enum to define a fixed set of values.
In our example from the preceding section, we could define fixed number of
commands as:

enum Command { start, stop }

Later in the code, we could check which command we want to use without
comparing strings, as we did in the preceding example, but rather compare
Command enums like this:

cmd = Command.start;
if (cmd == Command.stop) { /* ... */ }

Server-side Applications with Dart

[154]

We can update our main() method and convert a string argResults['cmd']
command into a Command enum value:

Command cmd = Command.values.firstWhere((Command c) {
 String cmdString = c.toString().split('.')[1].toLowerCase();
 return cmdString == argResults['cmd'].toLowerCase();
});

// Then follow with ifs to handle each command.
if (cmd == Command.stop) {
 // ...
} else if (cmd == Command.start) {
 // ...
}

The Command.values property is a constant that contains a List object with all
possible values for this enum. Calling c.toString() returns a string representation
of an enum's value which in our case are Command.start and Command.stop.
The List.firstWhere() method iterates all items in the list until the first one
that returns a Boolean true value.

Typedefs
Everything in Dart is an object; including functions that can be passed as arguments.
However this approach has one caveat. If we define a variable to hold, for example a
callback function called when a user posts a new message, we could do:

class ChatWebSocketsServer {
 var newMsgCallback;
 /* ... */
 void handleMessage(WebSocketsClient client, Map json) {
 /* ... */
 if (newMsgCallback != null) {
 newMsgCallback(record.name, record.text);
 }
 }
}

main(List<String> args) async {
 /* ... */
 wsServer.newMsgCallback = (String from, String msg) {
 print("$from: $msg");
 };
}

Chapter 7

[155]

This is all right as far as we know that the callback function takes two String
parameters. What could happen is that we might accidentally try to use a callback
function that takes a different number or different types of parameters in both
ChatWebSocketsServer class or main().

By defining var newMsgCallback, we lost track of the function definition. We could
actually assign it any variable. That's why Dart has typedefs which is like a function
definition prefixed with typedef keyword and without any body:

typedef void MessageCallback(String from, String msg);

class ChatWebSocketsServer {
 MessageCallback newMsgCallback;
 /* ... */
}

The newMsgCallback property has to have the same definition as MessageCallback
typedef. Dart's type check can now warn you if you try to assign it anything else.

Using MySQL as a storage
As we want to store all chat messages in a MySQL database for further investigation,
we'll add a dependency with a MySQL connector called sqljocky. Right now, it can
only connect to MySQL via TCP; using Unix sockets doesn't work, so make sure you
don't have the skip-networking option enabled in the MySQL configuration
(it disables all TCP connections completely).

We'll keep it very simple and use just one table with three columns in a database
called dart_chat. You can create the table structure with this SQL query:

CREATE TABLE 'chat_log' (
 'id' int(11) unsigned NOT NULL AUTO_INCREMENT,
 'name' varchar(255) NOT NULL DEFAULT '',
 'text' text NOT NULL,
 'created' datetime NOT NULL,
 PRIMARY KEY ('id')
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

In Dart, we'll connect to MySQL and pass the connection to ChatWebSocketsServer:

import 'package:sqljocky/sqljocky.dart';
main() {
 /* same as above */
 } else if (argResults['cmd'] == 'start') {

Server-side Applications with Dart

[156]

 ConnectionPool pool = new ConnectionPool(host: '127.0.0.1',
 port: 3306, user: 'root', password: null, db: 'dart_chat');
 wsServer = new ChatWebSocketsServer(pool);
 /* same as above */
 }
}

Then we will update the ChatWebSocketsServer class:

ChatWebSocketsServer {
 /* ... */
 Query _preparedInsertQuery;

 ChatWebSocketsServer(ConnectionPool pool) {
 _chat = new ListQueue<ChatMessage>();

 // The same like calling new Future(() {});
 (() async {
 // Preload chat history asynchronously.
 String selectSql = """
 SELECT * FROM chat_log ORDER BY created DESC LIMIT 0,100
 """;
 var results = await pool.query(selectSql);
 results.forEach((Row row) {
 var msg = new ChatMessage(
 row.name.toString(), row.text.toString());
 _chat.addFirst(msg);
 }

 String insertSql = """
 INSERT INTO chat_log (name,text,created) VALUES (?,?,NOW())""";
 _preparedInsertQuery = await pool.prepare(insertSql);
 })();
 }
 /* the rest remains unchanged */
}

In the constructor, we made one query that matches the 100 latest chat records and
prepopulates the chat history. Then, we used pool.prepare() to create a so-called
prepared query, which serves as a template that we can reuse multiple times by just
executing it with a list of parameters.

Chapter 7

[157]

You should never insert variables directly into SQL queries
and always use prepared queries to avoid SQL injection attacks
(http://en.wikipedia.org/wiki/SQL_injection).

The last thing is to execute a prepared statement when a client sends a new message:

void handleMessage(WebSocketsClient client, Map json) {
 /* same as above */
 } else if (json['type'] == 'post' && client.name.isNotEmpty) {
 /* same as above */
 _preparedInsertQuery.execute([record.name, record.text]);
 } else if (json['type'] == 'init') { /* ... */ }
}

We don't even have to work with the database connection outside the constructor of
ChatWebSocketsServer. The _preparedInsertQuery.execute() method makes
an asynchronous call but we don't need to wait until it finishes and broadcast the
message to all clients in the meantime. A few persisted records might look like this:

Apart from what we used here, sqljocky can also run a prepared query multiple
times in one call with Query.executeMulti(). In our case, it could be:

Query.executeMulti([['name1', 'text1'], ['n2', 't2'], [...]]);

This actually runs a single query for each list. Sometimes it's better to run multiple
queries in a single transaction for performance reasons:

var trans = await pool.startTransaction();
await trans.query('...');
await trans.query('...');
await trans.query('...');
await trans.commit();

http://en.wikipedia.org/wiki/SQL_injection

Server-side Applications with Dart

[158]

Basically, every operation with the database is asynchronous, so we'll use the await
keyword a lot (just imagine how awful this would be with nested callbacks).

Finally, when we're done with using the database, we should close it with
pool.close(), which, in contrast to the most close methods, doesn't return a
Future object.

We're using just MySQL here, but you can find connectors to probably all common
database engines available today at https://pub.dartlang.org. It's worth
noting that this connector is relatively new and its functionality is very simple.
It's incomparably more primitive than projects such as SQLAlchemy for Python
or Doctrine 2 for PHP.

Writing an HTTP server with the route
package
We've already seen that creating an HTTP server isn't hard. We could handle
different URLs with a few if statements:

var addr = InternetAddress.LOOPBACK_IP_V4;
var server = await HttpServer.bind(addr, port);
server.listen((HttpRequest request) {
 if (request.uri == '/contact') {
 // …
 } else if (request.uri == '/blog') {
 // …
 }
});

This would work and would be enough for very simple usage. However, you usually
need to specify URIs with parameters and also serve static content. We can use the
route package, which is an interesting package that works on both client and server
sides. We'll use it here on the server side.

So, create a new project and add two dependencies: route and http_server.
The second package contains the VirtualDirectory class that we'll use to make
an entire directory available for URIs that don't match any route. Also, create a
directory called public in the project's root, where we'll put all static content:

// bin/server.dart
import 'dart:io';
import 'package:route/server.dart';

https://pub.dartlang.org

Chapter 7

[159]

import 'package:http_server/http_server.dart';
// Define patterns for all possible URLs.
final homeUrl = new UrlPattern('/');
final articleUrl = new UrlPattern('/article/(.+)');

main() async {
 // Get this script's path.
 var static = Platform.script.resolve('../public').toFilePath();

 var addr = InternetAddress.LOOPBACK_IP_V4;
 var server = await HttpServer.bind(addr, 8081)
 print('Server running ...');
 // Add route handlers.
 // We're using [Stream.map()] to log all requests.
 var router = new Router(server.map(debugHandler))
 ..serve(homeUrl, method: 'GET').listen(showHome)
 ..serve(articleUrl, method: 'GET').listen(showArticle);

 // Serve entire directory.
 var virDir = new VirtualDirectory(staticDir);
 // Show contents of directories, rather disable it in production.
 virDir.allowDirectoryListing = true;
 // Disable following symbolic links outside the server root dir.
 virDir.jailRoot = true;
 // Use this handler for all URLs that don't match any route.
 virDir.serve(router.defaultStream);
}

HttpRequest debugHandler(HttpRequest request) {
 // We'll just log the requested URI, but at this place you could
 // also check user's credentials from cookies and so on.
 print(request.uri);
 return request;
}
void showHome(HttpRequest request) {
 request.response.write("Hello, I'm your new homepage!");
 // Send response.
 request.response.close();
}

void showArticle(HttpRequest request) {
 // Get URI parameter.
 String slug = articleUrl.parse(request.uri.path)[0];

 request.response.write('You requested article "$slug"');
 /* Do whatever you want here */
 request.response.close();
}

Server-side Applications with Dart

[160]

Now we have an HTTP server that handles two specific URI patterns and serves the
entire content of the public directory. The Router() constructor accepts a Stream
object, but we want to log all requests to the server, so we used the map()method
that converts each value of the stream into a new value and returns a new Stream
object. As we don't want to modify requests in any way, we just return them in
debugHandler().

Note that route handlers don't need to return anything. We're writing its response
(including return codes and headers) right into the request.response object.

I placed a few test files in my public directory:

Now, run the server and test a few URLs in a browser:

Chapter 7

[161]

In the console, I can see the requested URIs:

$ dart bin/server.dart
Server running ...
/dart-logo.png
/
/article/my-new-dart-article
/subdir/

An obvious question is whether this is useful in a real-world application. Well, you
probably wouldn't serve static files with the Dart server and use a better optimized
server such as nginx instead, because it's well tested; supports caching, compression,
usage statistics, and countless modules; and has already been in production for years
all around the world.

Using Dart as a full-stack language
For dynamic content, we could use Dart's HTTP server, but we probably wouldn't
expose it directly to the Internet and rather put in behind a reverse proxy.

If you really wanted to expose your server to anyone, you need to tell the
HTTP server to accept connections from all IPs with ANY_IP_V4 instead of
LOOPBACK_IP_V4:

var addr = InternetAddress.ANY_IP_V4

This also applies to WebSockets servers.

Accessing Dart servers via Apache or nginx reverse proxies lets you stay with
LOOPBACK_IP_V4 (127.0.0.1, aka localhost), which is generally safer.

Using Apache as a proxy for the Dart HTTP
server
As we said, we can use Apache to serve all static content and proxy all nonstatic
requests to the Dart HTTP server. You can modify your hosts file to point
dart.localhost to 127.0.0.1 if you're already using virtual hosts on your
computer and add a new directive to the Apache configuration:

<VirtualHost *:80>
 DocumentRoot "/project/path/Chapter_07_route_http_server/public"
 ServerName dart.localhost

Server-side Applications with Dart

[162]

 RewriteEngine on
 RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f
 RewriteRule ^/(.*)$ http://127.0.0.1:8081/$1 [P,QSA,L]

 <Directory "/project/path/Chapter_07_route_http_server/public">
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

If you've ever used PHP with Apache, you've probably already met .htaccess
files to pass all nonstatic requests to index.php. These rewrite rules use exactly
the same principle. They check whether a requested URI is an existing file with
RewriteCond %{REQUEST_FILENAME} !-f and if it is not, they pass the request to
http://127.0.0.1:8081/<request-uri>, where our Dart HTTP server is running.
The response is automatically sent back to the client.

The [P] flag at the end is crucial because it activates Apache's reverse proxy. Using
this kind of reverse proxy in Apache requires mod_proxy, mod_proxy_html, and
mod_rewrite modules installed.

We can test that it really works by looking at the Apache access log and comparing
it with the Dart server's requests. For example, I see these logs in my /var/log/
apache/access_log file:

127.0.0.1 [15:38:20] "GET /dart-logo.png HTTP/1.1" 200 21903
127.0.0.1 [15:38:24] "GET / HTTP/1.1" 200 29
127.0.0.1 [15:40:22] "GET /article/my-article HTTP/1.1" 200 40
127.0.0.1 [15:40:22] "GET /subdir/random-file.txt HTTP/1.1" 200 17

These are requests to the Apache server, which should pass two of them to the
Dart server, and it did:

$ dart bin/server.dart

Server running ...

/

/article/my-article

Chapter 7

[163]

Using nginx as a proxy for the Dart HTTP
server
The same principle works for the nginx configuration:

location / {
 root "/project/path/Chapter_07_route_http_server/public";
 try_files $uri @darthttpserver;
}

location @darthttpserver {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_pass http://127.0.0.1:8081;
}

The try_files directive tests whether $uri exists as a file under the root directory,
and if it doesn't, it makes an internal redirect to @darthttpserver, where we pass
the request to the Dart HTTP server.

With nginx, we can be a little more generous and redefine HTTP headers sent to the
Dart server with proxy_set_header. Here, we're setting headers such as client's real
IP, because from Dart's point of view, it seems like all requests come from localhost.

Executing Dart as CGI and Apache mod_dart
Although it's possible to run the Dart code as a CGI script, it's not a good idea for
real-world applications. It basically runs a standalone Dart VM for each request,
which causes a new process to spawn, allocates memory, loads Dart libraries,
compiles them, and runs your code. It causes significant overhead, which can be
easily avoided by running Dart as an HTTP server.

There is also an Apache module called mod_dart that promised embedding Dart
VM into Apache workers. The same approach is commonly used with Apache and
mod_php5. Unfortunately, the project is currently not maintained any more. Rumors
among Dartisans say that you can compile it with a few modifications but it's stale
and possibly unstable with security holes and you should never use it.

If you have to use Apache, stay with reverse proxying requests as we saw earlier.

Server-side Applications with Dart

[164]

Summary
The goal of this chapter was to show you that you can start using Dart as a full-stack
language right now. The most useful way might be as a single purpose WebSockets
server, because you probably have some experience with server-side scripting in
other languages already and switching to a different environment isn't easy. The
decision might depend on more people than just you and support for the Dart
language from server administrators probably isn't very common.

In the next chapter, we'll have a look at unit testing Dart code. We'll also make a few
notes about the Observatory tool and two features of Dart that we haven't talked
about yet; mixins and operator overloading.

[165]

Testing and Profiling
the Dart Code

Testing is an essential part of any development process. There are many different
approaches and libraries that can be used to test your applications, and we'll take a
look at one of them.

In this chapter, we'll talk about:

• Unit testing in Dart, a very common way to test independent parts of
applications that can range from single methods to entire classes

• Operator overloading and mixins, two more features of Dart
• A few notes about testing AngularDart apps
• A short introduction to Observatory, Dart's built-in profiler

In contrast to the previous chapters, we won't run our code in the browser but write
console applications instead.

Testing strategies for web apps
It's hard to tell what is generally the best way to test web apps. There are quite a lot
of tools already and probably apart from choosing the right tool, you'll need to think
about what you should test, where, and how.

We'll mostly talk about unit testing because it can be used for both web and
standalone apps. Then, in the context of AngularDart, we'll mention the so-called
end-to-end tests with Karma and Protractor. We're not able to cover everything
in this chapter, so if you want to know more about testing in JavaScript and in
the browser, take a look at the master's thesis of Vojtěch Jína, a current employee
of Google, who has been working on AngularJS for more than 3 years: https://
github.com/karma-runner/karma/raw/master/thesis.pdf.

https://github.com/karma-runner/karma/raw/master/thesis.pdf
https://github.com/karma-runner/karma/raw/master/thesis.pdf

Testing and Profiling the Dart Code

[166]

Unit testing
The motivation for writing unit tests shouldn't just be a simple way to test existing
code, there are more benefits to consider:

• The fundamental idea behind unit tests is to write isolated testable code.
To achieve this, it makes developers write smaller single-purpose methods
and therefore avoid writing long spaghetti-like code.

• Refactoring existing code is easier because you can rewrite and test code
in smaller portions. Refactored code should pass the same tests as the
original code.

• Tests themselves can be considered as documentation and examples of
expected behavior.

For this example, we'll write a console application that finds all numbers that are
prime numbers, and all its digits are used only once. This is, for example, the number
941, because it's a prime number and contains each digit only once. On the other
hand, the number 1,217 is a prime number but contains the digit 1 twice, so that's
not what we're looking for.

Then, we'll extend our example with another method that returns a list of all prime
numbers smaller that a certain maximum.

We'll start by creating a new Dart project and adding the unittest dependency.
However, this time, we're not going to add it in the dependency directive but
rather dev_dependencies. Both of these have the same meaning but the second
one is pulled by the pub tool only when your package is not pulled as a third-
party dependency. In other words, if you run pub get on this package, it will
also download dev_dependencies, but if you use it as a dependency of another
package, it won't be downloaded because it's not required by this package for
regular usage. The dev_dependencies directive is useful mostly to specify packages
that are necessary for developing or testing the package. Also, we can add another
dependency called args, which is a library for parsing command-line arguments that
we've already seen in the previous chapter, and we'll use it here later.

If you're creating projects in Dart Editor, you can select the
Console App template, and it adds the unittest dependency
for you along with creating the basic directory structure.

Chapter 8

[167]

First, we'll create a method that checks whether an integer is a prime number, but for
testing purposes, we'll introduce a bug in it:

// lib/methods.dart
import 'dart:math';
import 'dart:convert';

bool isPrime(int num) {
 // Intentionally broken, number 2 is a prime.
 if (num <= 2) {
 return false;
 } else if (num % 2 == 0) {
 return false;
 }

 for (int i = 3; i < pow(num, 0.5).toInt() + 1; i += 2) {
 if (num % i == 0) return false;
 }

 return true;
}

Then, we write our test code that uses the unittest library and is runnable from
the console:

// test/test_is_prime.dart
import 'package:unittest/unittest.dart';
import 'package:unittest/vm_config.dart';
import 'package:Chapter_08_unittest/methods.dart';

void main() {
 // Tell unit test library about our output format.
 useVMConfiguration();
 defineTests();
}

void defineTests() {
 test('3 is a prime', () {
 expect(isPrime(3), isTrue);
 });

 test('2 is a prime', () {
 expect(isPrime(2), isTrue);
 });
}

Testing and Profiling the Dart Code

[168]

A test is defined by calling the test() function, which comes from the unittest
library and defines a single test case. It takes two arguments, the name of the test,
and an anonymous function that represents the test's content with one or more
expect() calls.

Each expect() function takes actual and expected values as arguments, respectively.
The expected value is a subclass of the Matcher class, which is responsible for
resolving whether these two match.

In our case, we have a single expect() call that checks whether the value returned
from isPrime(3) is equal to the Boolean true value. The isTrue instance is a
constant defined in unittest package. As you might have guessed, there are quite a
lot of predefined matchers.

The most commonly used matchers are isMap, isList, isNull, isNotNull, isTrue,
isFalse, isNaN, and isNotNaN—which are pretty self-explanatory. The following
table has more predefined matchers:

Matcher name Description
isEmpty Matches empty strings, maps, and collections using their isEmpty

property.
throws Tests whether a function or a returned Future object throws an

exception.
equals For iterables and maps, this tests all elements recursively. For

anything else, this tests equality with ==.
completes Matches a Future object that completes the execution successfully.
same Matches whether actual and expected values are the same object.
isInstanceOf<T> Matches when the actual object is an instance of <T>.
returnsNormally Tests whether the function doesn't throw any exception. This also

suppresses all exceptions thrown.
hasLength Matches when the object has the length property, and its value is

equal to the expected value.
contains For strings, this checks for a substring; for collections, this checks for

a matching element; and for map objects, this checks for existing key.
isIn Tests whether the actual value is among expected values. The

expected value can be a string, collection or a map.
equalsIgnoringCase Matches when values are equal when compared case-insensitively.
orderedEquals Matches whether the collection has the same number of elements and

whether they are in the same order.
unorderedEquals Matches whether the collection has the same number of elements

in any order. Note that this method has the worst case complexity
O2, which means that it can be very slow on a collection with larger
number of elements.

Chapter 8

[169]

There are also specialized matchers for integer ranges, particular exceptions,
iterables, and maps, and you can define your own matchers as well. For a complete
list of all existing matchers, refer to the API reference at http://www.dartdocs.
org/documentation/matcher/0.12.0-alpha.0/index.html#matcher/matcher.

We can run our test from the console. The useVMConfiguration() function tells
Dart unit testing library what output format we want and what exit status code to
use. We know that our isPrime function has a bug, so we're expecting it to fail.

We could also run unit tests in a browser by including another configuration:

import 'package:unittest/html_config.dart';

After this, we would have to use useHtmlConfiguration() instead. Note that only
one configuration can be used at a time.

You can safely ignore the first line, unittest-suite-wait-for-done, which is a
message for the environment running these tests.

Then, we see that the first test passed but the second test failed because it returned a
false Boolean while the expected value was true. Although the second test failed,
it's not an error. In other words, the tested function ran correctly but didn't return the
expected value.

With echo $?, which is a standard Unix command to return the status code for the
previous command, we see that it returned 1 because one of the tests failed or threw
an error. If all tests passed, the return code would be 0 (values 0 and 1 are standard
for success and error states, respectively, in Unix-based systems).

http://www.dartdocs.org/documentation/matcher/0.12.0-alpha.0/index.html#matcher/matcher
http://www.dartdocs.org/documentation/matcher/0.12.0-alpha.0/index.html#matcher/matcher

Testing and Profiling the Dart Code

[170]

We can simulate an error by, for example, changing the function definition to
isPrime(var num) and then testing with expect(isPrime('foo'), isTrue).
Changing int num to var num bypassed the static type check and we might not
even notice that the rest of isPrime expects its parameter to be an integer.

Running the tests this time throws an error instead of just failing the test:

Let's fix the isPrime() function:

/* … */
bool isPrime(int num) {
 if (num < 2) {
 return false;
 } else if (num == 2) {
 return true;
 } else if (num % 2 == 0) {
 return false;
 }
 for (int i = 3; i < pow(num, 0.5).toInt() + 1; i += 2) {
 if (num % i == 0) return false;
 }
 return true;
}

Chapter 8

[171]

The following screenshot shows the output of the fixed code:

Finally, both tests passed and the return code is 0.

The second function that we're going to write is called hasUniqueDigits().
It takes an integer as a parameter and returns false if any of the digits appear
more than once:

// lib/methods.dart
import 'dart:convert';

bool hasUniqueDigits(int num) {
 String numAsStr = num.toString();
 Set<int> bytes = UTF8.encode(numAsStr).toSet();
 return bytes.length == numAsStr.length;
}

We convert the integer to a String object, then we convert it to List<int> with the
encode() method, and then to Set<int>. A set can contain each value only once, so
if the list contains two same digits, then the lengths of the set and the length of the
string won't match.

The tests for this function are basically the same as the tests for isPrime():

// test/has_unique_digits_test.dart
import 'package:Chapter_08_unittest/methods.dart';
import 'package:unittest/unittest.dart';

Testing and Profiling the Dart Code

[172]

import 'package:unittest/vm_config.dart';

void main() {
 useVMConfiguration();
 defineTests();
}

void defineTests() {
 test("doesn't have unique digits", () {
 expect(hasUniqueDigits(123441), isFalse);
 });

 test('has unique digits', () {
 expect(hasUniqueDigits(42), isTrue);
 });
}

When we put everything together, we'll create a command-line application that takes
two arguments:

• --max or -m followed by a number. This is the maximum number that we'll
check with isPrime() and hasUniqueDigits(). By default, it's set to 100.

• --silent or -s, which is just true or false whether it's set or not. When
true, print only the largest found number; otherwise, print all of them.

The args library that we added as a dependency earlier will do all the parsing for us:

// bin/unique_and_prime.dart
import 'package:args/args.dart';
import 'package:Chapter_08_unittest/methods.dart';

void main(List<String> args) {
 final parser = new ArgParser();
 parser.addOption('max', abbr: 'm', defaultsTo: '100');
 parser.addFlag('silent', abbr: 's');
 ArgResults argResults = parser.parse(args);
 int max = int.parse(argResults['max']);
 bool silent = argResults['silent'];

 int maxNum = 0;
 for (int i = 1; i < max; i += 2) {
 if (isPrime(i) && hasUniqueDigits(i)) {
 maxNum = i;
 // Print all found numbers only when silent isn't true.

Chapter 8

[173]

 if (!silent) print("$i");
 }
 }

 // When silent is set, print the max found number.
 if (silent) {
 print("$maxNum");
 }
}

We can run this application by issuing the following command:

$ dart unique_and_prime.dart

This command uses default values for --silence and --max and prints each number
on a new line.

$ dart unique_and_prime.dart --silent -m 1000000

With this command, we check the first million integers (actually, we increment by
2, so that's just half of them), and if we consider that we check for primes in another
loop, that's quite a lot of operations. To measure processing time, we can prepend the
console command with time and see that it actually runs reasonably fast:

We can add one more function to lib/methods.dart. Let's say we want to use our
isPrime() function to generate a list of first n primes in the same order in which
they were found:

List<int> getPrimes(int total) {
 List<int> found = new List<int>();
 int num = 1;
 while (found.length != total) {
 if (isPrime(num)) {

Testing and Profiling the Dart Code

[174]

 found.add(num);
 }
 num++;
 }
 return found;
}

To check the correct results, we can use the orderedEquals matcher:

void main() {
 useVMConfiguration();
 defineTests();
}

void defineTests() {
 test('first 10 primes', () {
 var actual = getPrimes(10);
 List<int> expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
 expect(actual, isList);
 // This test is redundant, orderedEquals() checks it for us.
 // expect(actual, hasLength(10));
 expect(actual, orderedEquals(expected));
 });
}

Asynchronous tests
If we wanted to test code that's called asynchronously, such as Ajax, filesystem
operations, or basically all IndexedDB functions, we need to use the expectAsync()
function instead of expect(). The reason is that unittest doesn't know that we're
not interested in the actual function call that makes an asynchronous call but are
rather interested in its callback. Therefore, this example won't do what we want:

// test/test_async.dart
void defineTests() {
 // This is wrong, don't do this.
 test('test async', () {
 int actual;
 new Timer(new Duration(milliseconds:1000), () {
 print('callback fired!');
 actual = 42;
 });

Chapter 8

[175]

 expect(actual, equals(42));
 });
}

Then, when we run this test, it returns immediately and reports a failed test with:

FAIL: test async

 Expected: <42>

 Actual: <null>

Instantiating a Timer class schedules a callback to be called 1 second in the future,
but unittest doesn't know about it, and it thinks that this is all you wanted to do.

In order to fix this, we'll wrap the Timer class's callback with the expectAsync()
call and pass the original callback to it:

test('test async callback', () {
 new Timer(new Duration(seconds:1), expectAsync(() {
 print('callback fired!');
 int actual = 42;
 expect(actual, equals(42));
 }));
});

When we run the test again, it works as we wanted:

$ dart test_async.dart

callback fired!

PASS: test async

All 1 tests passed.

The expectAsync() function can take optional count and max parameters that
will make the test pass only if you call its callback an exact number of times or
the maximum number of times, respectively.

Note that tests can make use of the async and await keywords from Dart 1.9
just like any other Dart app.

Test groups
Usually, it makes sense to group tests into logic blocks. This means putting tests
that check the same or similar functionality together to make the output more
readable and easily trackable in case it goes wrong. Groups can be also nested.

Testing and Profiling the Dart Code

[176]

When using groups, we can make use of two more functions: setUp() and
tearDown(). These are used to prepare local variables, such as instantiating objects
or loading fixture data, and are called before and after each test (note that tests
shouldn't rely on a state created by other tests). The setUp() and tearDown()
methods can be nested just like groups and are called from the outermost to
innermost for setUp() and the other way around for tearDown(). We can try
to make our test_is_prime.dart file a little more complicated:

void defineTests() {
 group('True expected:', () {
 setUp(() => print('Outer setUp'));
 tearDown(() => print('Outer tearDown'));

 group('Lower bound:', () {
 setUp(() => print('Inner setUp'));
 tearDown(() => print('Inner tearDown'));
 test('3 is a prime', () {
 print('3 is a prime test content');
 expect(isPrime(3), isTrue);
 });
 test('2 is a prime', () {
 print('2 is a prime test content');
 expect(isPrime(2), isTrue);
 });
 });

 test('12197 is a prime', () =>
 expect(isPrime(12197), equals(isTrue)));
 });

 group('False expected:', () {
 test('21 is not a prime', () => expect(isPrime(21), isFalse));
 test('21357 is not a prime', () =>
 expect(isPrime(21357), equals(false)));
 });
}

See the order of setUp() and tearDown() functions. The first setUp() function is
called for the outer group, then the inner, and after that, it calls the test itself. For
tearDown() functions, the first group called is the inner and then the outer. The
same procedure is applied for each test in the group:

$ dart test_is_prime.dart

Outer setUp

Chapter 8

[177]

Inner setUp

3 is a prime test content

Inner tearDown

Outer tearDown

Outer setUp

Inner setUp

2 is a prime test content

Inner tearDown

Outer tearDown

Outer setUp

Outer tearDown

PASS: True expected: Lower bound: 3 is a prime

PASS: True expected: Lower bound: 2 is a prime

PASS: True expected: 12197 is a prime

PASS: False expected: 21 is not a prime

PASS: False expected: 21357 is not a prime

Note the order of outer/inner setUp()/tearDown() functions.

Running all tests
Every test that we defined in the test/test_*.dart files has its own main()
function that calls its defineTests() function, but calling each test by ourselves
isn't very practical, so we'll create an all.dart Dart script that imports all tests
and runs them at once:

// test/all.dart
import 'package:unittest/vm_config.dart';
import 'test_is_prime.dart' as test_is_prime;
import 'test_has_unique_digits.dart' as test_has_unique_digits;
import 'test_get_primes.dart' as test_get_primes;
import 'test_async.dart' as test_async;

void main() {
 useVMConfiguration();
 test_is_prime.defineTests();
 test_has_unique_digits.defineTests();
 test_get_primes.defineTests();
 test_async.defineTests();
}

Testing and Profiling the Dart Code

[178]

At the end, running all tests is easy:

$ dart all.dart

Note that tests are called in the order in which they are defined.

Operator overloading and mixins
We'll take a look at two more Dart features that are useful in some situations but
aren't crucial when using Dart, and you'll probably not use them on a daily basis.

Operator overloading
Dart lets us overload its default behavior when using standard operators such
as ==, +, -, [], or []=. A typical use case is when using 2D/3D vectors:

class Vector {
 int x, y;
 Vector(this.x, this.y);

 operator ==(Vector v) => this.x == v.x && this.y == v.y;
 operator +(Vector v) => new Vector(this.x + v.x, this.y + v.y);
 operator -(Vector v) => new Vector(this.x - v.x, this.y - v.y);
}

We can use unit testing to check whether operators work as expected:

var v1 = new Vector(5, 3);
var v2 = new Vector(7, 2);

Vector v3 = v1 + v2;
expect(v3.x, 12);
expect(v3.y, 5);

expect((v1 - v2) == new Vector(-2, 1), isTrue);

var v6 = new Vector(3, 5);
expect(v1 == v6, isFalse);

Unlike JavaScript, there's no === operator (three equal signs) in Dart that compares
variables for having the same type and value. The way Dart actually compares
objects is up to you by overloading their == operator. To check whether two object
reference the same instance, you can use the top-level identity() function.

Chapter 8

[179]

As another use case, we could extend the book shelf example from previous chapters
with overloaded "array subscription" operators, [] and []=:

class Shelf {
 Map<String, Book> books = {};

 add(Book book) => books[book.title] = book;
 operator []=(String key, Book book) => books[key] = book;
 operator [](Book book) => books[book.title];
}

class Book {
 String title;
 Book(this.title);
}

This lets us use Shelf objects just like maps, where Book instances are stored with
their names as keys:

var shelf = new Shelf();
var b1 = new Book('Book 1');
var b2 = new Book('Book 2');

shelf.add(b1);
shelf[b2.title] = b2;
expect(shelf[b1], same(b1));

Well, we could just call shelf.books[b2.title] = b2, but you get the idea how
[]= operator works.

There are quite a lot of operators to overload and we only used the most common
ones here, but take a look at all of them at https://www.dartlang.org/docs/dart-
up-and-running/ch02.html#overridable-operators.

Mixins
In Chapter 1, Getting Started with Dart, we mentioned that Dart has a single
inheritance model with mixins. The proper definition of mixins is rather complicated
(refer to the official definition for Dart at https://www.dartlang.org/articles/
mixins/) but simply put, a mixin is a common behavior/feature shared among
multiple unrelated classes. In practice, this means a set of methods and properties
that are common to all classes implementing this mixin.

https://www.dartlang.org/docs/dart-up-and-running/ch02.html#overridable-operators
https://www.dartlang.org/docs/dart-up-and-running/ch02.html#overridable-operators
https://www.dartlang.org/articles/mixins/
https://www.dartlang.org/articles/mixins/

Testing and Profiling the Dart Code

[180]

We can extend our book shelf example once more by adding a mixin, defining that
each book and shelf can be described by keywords that can be arranged into genres:

class Genre {
 List<String> keywords = [];

 guessGenre() {
 // Try to guess what's the overall genre for this object.
 // Implementation is not interesting for us here.
 }
}
class Shelf extends Object with Genre {
 /* Remains unchanged. */
}

class Book extends Object with Genre {
 /* Remains unchanged. */
}

Mixins are implemented by the with keyword. Each class implementing mixins has
to specify its parent class even when it's the default Object class. Both Shelf and
Book classes now have the keywords property and a guessGenre() method.

The Genre mixin is just a class that has to follow three requirements:

• No constructors defined
• The super class is the default Object class
• No calls to the parent class with super

We can test both classes whether they properly implement the Genre mixin.
Note that one class can implement multiple mixins at the same time:

// Objects created as above.
expect(shelf, new isInstanceOf<Genre>());
expect(b1, new isInstanceOf<Genre>());

expect(shelf.keywords, new isInstanceOf<List>());
expect(b1.keywords, new isInstanceOf<List>());

expect(shelf.guessGenre, new isInstanceOf<Function>());
expect(b1.guessGenre, new isInstanceOf<Function>());

Chapter 8

[181]

When any of these tests fail, the code throws an exception, so outside unit tests, we
could check whether an object implements a mixin rather with the is keyword:

if (shelf is Genre) {
 // Object shelf of class Shelf implements Genre mixin.
}

Testing AngularDart apps
If you're familiar with AngularJS, you've probably already seen the toolchain used
to test AngularJS apps. For AngularDart, the toolchain will probably be very similar.
Although AngularDart has reached a stable version already, there's not much to offer
right now, but we can just take a look at what the future might look like. There are
three main tools used in the Angular world:

• Unit tests: Just like what we're doing in this chapter, we can use unit tests to
test some parts of Angular apps.

• Karma: This is a universal tool that takes your source code and test code and
runs them in a browser for you. It's actually a web server that communicates
with all browsers that you connect to. It can also automatically watch for
changes in your source code and run tests without you running the tests
by yourself. Karma isn't an AngularJS-specific tool, but it's used by its
developers as well. There's a plugin for Dart already at https://github.
com/karma-runner/karma-dart.

• Protractor: It's specifically designed to work with AngularJS. It uses
WebDriverJS, which basically lets you run a browser without any graphical
interface in CLI, where you can run tests. It can also emulate user inputs
such as key presses or mouse clicks and even file uploads. Protractor
"understands" AngularJS and lets you do things such as selecting elements
by their Angular bindings or specific directives.

There's an extension of Protractor for Dart apps but it's in a very early
stage of development, so this is probably the biggest problem with testing
AngularDart apps right now (this was also mentioned by the AngularDart
developer James Deboer at ng-conf 2014 at https://www.youtube.com/
watch?v=RqKUTGB-CxA).

Automatic testing AngularDart without better tools is tedious when you have no
control over Angular's digest cycle, and you'll probably end up calling new Timer()
a lot to let Angular update its internal state and then test what you need, which is far
from ideal.

https://github.com/karma-runner/karma-dart
https://github.com/karma-runner/karma-dart
https://www.youtube.com/watch?v=RqKUTGB-CxA
https://www.youtube.com/watch?v=RqKUTGB-CxA

Testing and Profiling the Dart Code

[182]

Profiling with the Observatory tool
The Dart SDK comes with a profiling tool since version 1.4. It's still in development,
so we're going to look at just the basic things. Observatory has a comfortable browser
GUI that makes it easy to use for everyone. You're probably not going to spend much
time profiling your apps unless you're working with large amounts of data or in a field
where performance matters a lot (such as games). However, it's good to know that
there's such tool and it's built right inside Dart's VM.

You can run the profiler for both the standalone Dart VM and web apps, but we'll
take a look only at the standalone Dart VM, because we can easily run it from
Dart Editor.

For this example, we'll reuse the fuzzy search code from Chapter 2, Practical Dart,
and create a test CLI app that runs a few search queries:

import 'dart:io';
import 'dart:convert';
import '../../Chapter_02_doc_search/lib/FuzzySearch.dart';

main() {
 FuzzySearch fuzzy;

 void testSearch() {
 List testTerms = ['strpl','myslcom','imsz','png2w','arrdf'];
 testTerms.forEach((String term) {
 List results = fuzzy.search(term);
 });

 print(testTerms); // PLACE A BREAKPOINT HERE
 }

 // Load json file with our dictionary.
 var f = new File('../../Chapter_02_doc_search/web/dict.json');
 f.readAsString().then((text) {

Chapter 8

[183]

 Map<String, dynamic> dict = JSON.decode(text);
 fuzzy = new FuzzySearch(dict.keys.toList());
 testSearch();
 });
}

This code runs our fuzzy search algorithm for five test terms. We're not interested in
what it returns; we'll just use this code to see the Observatory profiler. Of course, we
can profile apps on the run (like the WebSocket server that we made in the previous
chapter), but it's probably more common to analyze just a small part of your app
or maybe a single algorithm. Note that Observatory is part of the Dart VM and
therefore, if you want to access it in the browser, the Dart VM has to be running.
You can't run the profiler and analyze results later (which is the most common
usage of profilers in languages such as PHP or Python).

Place a breakpoint at line 14 to make the Dart VM pause there. Now, run the app
and watch the console window in Dart Editor. You should see something like this:

Testing and Profiling the Dart Code

[184]

It says that the Observatory is running on port 51028. The port number is not fixed,
so you'll probably have a different one. Open this URL in a browser, and you'll see
the GUI (it can be any browser, not just Dartium):

This is a lot of information; don't worry if you don't understand what it means. Just out
of curiosity, click on cpu profile in the bottom-right list. Then, select User in Tag Order
select box, and try to find out how much time our FuzzySearch.search() method
took. It'll probably be very little—about 3 percent of the total VM's running time.

This was just a sneak peak of what Observatory is, and as we said previously, it's
not stable yet and it'll change in the future. As you can see, the information that
our method took 3 percent isn't very helpful because we would like to know what
exactly took the most time in order to optimize it, so this is probably one of those
things where Observatory will improve in newer versions.

One of the already useful features of Observatory is code coverage, which you can
access from the main screen by clicking the filename. You can see code coverage for
each file used by the Dart VM.

Chapter 8

[185]

All the line numbers in the green background were already executed until now.

Summary
Unit testing is a very useful method even if you're not trying to follow test-driven
development rules. It helps you think about your code as single-purpose isolated
components that can be tested independently when you're either developing or
refactoring the code.

It's good to keep in mind that unit tests aren't able to catch every bug in the code.
Their usefulness depends on scenarios that you can think of, and therefore, you can
miss some hardly predictable situations. Unit tests usually don't test the integration
of components and the performance of your code. There are also situations that
you can't simulate, such as unexpected operation system behavior caused by
other processes.

Try to remember that there's a profiler called Observatory right in Dart's VM, and
you can easily use it for your needs.

[187]

Writing Native Extensions
for the Standalone Dart VM

This is the last chapter. We'll look at a slightly more advanced topic, which is writing
native extensions in C/C++ for the standalone Dart VM. Don't worry if you've never
seen C or C++; we'll use a very intuitive approach while trying to stay practical.
In this chapter, we'll work on two examples:

• Writing a fuzzy search algorithm as a C++ class and comparing its
performance with the implementation shown in Chapter 2, Practical Dart

• Writing bindings for the exiv2 library to read EXIF image metadata

The main purpose of this chapter is to give you the whole picture of Dart as a
language. Most of the time, you probably won't write native extensions even when
using Dart as a server-side language. In this chapter, we want to show you the
enormous and nearly unlimited potential of Dart.

The structure of native extensions
All native extensions in Dart are compiled as shared (also called dynamic) libraries
and have to implement two main functions:

• The <extension_name>_Init() function that is called by the Dart VM when
the extension is loaded. Most importantly, it registers a handler that returns
references to the extension's functions (typically called ResolveName()). We
can use it to initialize some local variables, but most of the time, you'll use
the default function from the example given by the Dart team. We'll use the
default one here as well.

• The ResolveName() function is called when we use the native keyword in
Dart and is used to map functions from native extensions to Dart functions.

Writing Native Extensions for the Standalone Dart VM

[188]

Typically, there's also a Dart class that wraps all calls to the native extension.

It's worth noting that there are conventions and caveats we have to follow.
Otherwise, Dart won't be able to load our extension with quite an ambiguous error
message: library handler failed. The premises are as follows:

• The filename must be prefixed with lib. For example, when importing a
native extension called hello_extension, Dart is looking for a libhello_
extension.dll file (.so for Unix-based systems or .dylib for OS X).

• Mind your Dart VM's build architecture. Even on 64-bit systems, it's
very likely that you're running a 32-bit Dart VM that requires all native
extensions to be built as 32-bit binaries. This implies that all libraries linked
by your extension have to be compiled as 32-bit libraries. Of course, we can
use universal libraries that contain both 32-bit and 64-bit builds.

• The <extension_name>_Init() function has to be defined even if you're
not using it. For example, for the hello_extension extension, it has to be
called hello_extension_Init(). Mind the capital "I".

For a more in-depth description about the compilation process and how to set up
IDEs for various systems, refer to the official guide at https://www.dartlang.org/
articles/native-extensions-for-standalone-dart-vm.

There are two types of extensions: synchronous, which run on Dart's main thread,
and asynchronous, which don't block the main thread and communicate with Dart
via ports. In this chapter, we'll use only synchronous extensions because they use a
more intuitive approach and basically don't require any Dart code.

Writing a minimal native extension
We'll start by writing a very simple extension with just one function that takes Dart's
String object as an argument and returns another String object with characters
in a reverse order. Let's start by defining the two mandatory C functions, as we
mentioned earlier.

The implementation here is based on the official example from https://github.
com/dart-lang/bleeding_edge/blob/master/dart/samples/sample_
extension/sample_extension.cc:

// Header files are part of Dart SDK.
#include "include/dart_native_api.h"
#include "include/dart_api.h"

https://www.dartlang.org/articles/native-extensions-for-standalone-dart-vm
https://www.dartlang.org/articles/native-extensions-for-standalone-dart-vm
https://github.com/dart-lang/bleeding_edge/blob/master/dart/samples/sample_extension/sample_extension.cc
https://github.com/dart-lang/bleeding_edge/blob/master/dart/samples/sample_extension/sample_extension.cc
https://github.com/dart-lang/bleeding_edge/blob/master/dart/samples/sample_extension/sample_extension.cc

Chapter 9

[189]

Dart_NativeFunction ResolveName(Dart_Handle name,
 int argc,
 bool* auto_setup_scope) {

DART_EXPORT Dart_Handle fuzzy_search_Init(
 Dart_Handle parent_library) {
 if (Dart_IsError(parent_library)) {
 return parent_library;
 }
 // Register handler that is called every
 // time Dart's "native" keyword is used.
 Dart_Handle result_code = Dart_SetNativeResolver(
 parent_library, ResolveName, NULL);
 if (Dart_IsError(result_code)) {
 return result_code;
 }
 return Dart_Null();
}
// Raise a Dart exception if Dart_Handle contains an error value.
Dart_Handle HandleError(Dart_Handle handle) {
 if (Dart_IsError(handle)) {
 Dart_PropagateError(handle);
 }
 return handle;
}

void Hello(Dart_NativeArguments arguments) { /* ... */ }

Dart_NativeFunction ResolveName(Dart_Handle name,
 int argc,
 bool* auto_setup_scope) {
 if (!Dart_IsString(name)) return NULL;

 Dart_NativeFunction result = NULL;
 if (auto_setup_scope == NULL) return NULL;

 Dart_EnterScope();
 // Convert Dart's String object to C char array.
 const char* cname;
 HandleError(Dart_StringToCString(name, &cname));
 // Return reference to Hello() function from this extension.
 if (strcmp("Hello", cname) == 0) {
 result = Hello;
 }
 Dart_ExitScope();
 return result;
}

Writing Native Extensions for the Standalone Dart VM

[190]

We also defined a HandleError() helper function that checks Dart's internal Dart_
Handle structure for an error and lets us throw a Dart exception that can be properly
handled with a try-catch in Dart. The Dart_Handle structure represents all values in
Dart. Every time we pass values from Dart or return values to Dart, we need to wrap
them as Dart_Handle structures (for example, we had to unwrap Dart's String to
char* with Dart_StringToCString()).

The Dart code loads the extension and maps the _hello() function to Hello() in
the extension:

// Use dart-ext to load the native extension.
// Native extension must be libfuzzy_search.[dll, so, dylib].
import 'dart-ext:fuzzy_search';
String _hello(String str) native "Hello";

main() {
 print(_hello());
}

The native keyword makes the Dart VM call ResolveName(), which returns a
reference to the Hello() function. The last thing is to implement Hello():

char* reverse(const char* s) {
 int length = strlen(s);
 char* reverse = (char*)malloc(sizeof(char) * (length + 1));
 for (int i = 0; i < length; i++) {
 reverse[i] = s[length - 1 - i];
 }
 reverse[length] = '\0';
 return reverse;
}

void Hello(Dart_NativeArguments arguments) {
 Dart_EnterScope();
 const char* inputStr;
 char* reverseStr;
 Dart_StringToCString(
 Dart_GetNativeArgument(arguments, 0), &inputStr);
 reverseStr = reverse(inputStr);

Chapter 9

[191]

 Dart_Handle result = Dart_NewStringFromCString(reverseStr);
 free(reverseStr);
 Dart_SetReturnValue(arguments, result);
 Dart_ExitScope();
}

We used the Dart_StringToCString()function to convert Dart's representation of
String into an array of chars, which is stored in the inputStr variable. Then, we
create a new array and copy all chars to it in reverse order. To return the value to
Dart, we need to convert it into Dart_Handle with Dart_NewStringFromCString()
and then call Dart_SetReturnValue(), which sets the returned value. Note that
even if we didn't want to return any value, we would still have to set the return
value as null with Dart_SetReturnValue(Dart_Null()).

At the beginning of the Hello() function, we create a new Dart scope with
Dart_EnterScope(), which we close at the end with Dart_ExitScope(). This
automatically deallocates all created Dart_Handles and we don't need to do it by
ourselves as with reverseStr, where we have to release the allocated memory with
free(reverseStr).

Writing a native fuzzy search
implementation
This is where things start to get interesting. When working with existing C++ code,
you'll probably want to work with multiple instances of the same class, but we can't
just instantiate a C++ class in Dart. Instead, we'll crate a wrapper class in Dart that
stores the memory address of the C++ object. Let's start by creating a C++ class with
a native fuzzy search implementation:

// fuzzy_search.hpp
class FuzzySearch {
public:
 FuzzySearch(Dart_Handle inputItems);
 std::vector<char*> search(const char* term);
 size_t size();
private:
 char** items;
 size_t length
};

Writing Native Extensions for the Standalone Dart VM

[192]

This is our header file. Header files in C/C++ are commonly used to define interfaces
of libraries. In practice, we can use functions and data structures without worrying
about their implementation. Previously, we used dart_api.h, which defines, for
example, Dart_Handle or Dart_SetReturnValue():

// fuzzy_search.cpp
#include <vector>
#include "fuzzy_search.hpp"
#include "include/dart_api.h"

FuzzySearch::FuzzySearch(Dart_Handle inputList) {
 intptr_t length_ptr;

 Dart_ListLength(inputList, &length_ptr);
 length = length_ptr;
 // Allocate memory for an array of C strings.
 items = (char**)malloc(length * sizeof(char*));

 for (int i = 0; i < length; i++) {
 const char* cname;
 // Convert Dart's String to char*.
 Dart_StringToCString(
 Dart_ListGetAt(inputList, i), &cname);
 // Allocate memory for the string + termination flag.
 items[i] = (char*)malloc(strlen(cname) + 1);
 strcpy(items[i], cname);
 }
}

bool fuzzy_search(const char* item, const char* term) {
 // Same approach as fuzzy search in Chapter 2.
 size_t term_lng = strlen(term);
 size_t item_lng = strlen(item);
 int ti = 0; // term index
 // int si = 0; // key index
 for (int si = 0; si < item_lng; si++) {
 if (term[ti] == item[si] && ++ti == term_lng) {
 return true;
 }
 }
 return false;
}

Chapter 9

[193]

std::vector<char*> FuzzySearch::search(const char* term) const {
 std::vector<char*> results;
 for (int i = 0; i < size(); i++) {
 if (fuzzy_search(items[i], term)) {
 results.push_back(items[i]);
 }
 }
 return results;
}

size_t FuzzySearch::size() {
 return length;
}

The search algorithm is the same as the one we used in Chapter 2, Practical Dart. The
FuzzySearch::search() method returns a std::vector<char*> object, which is
a resizable list that we'll later convert to a Dart List object. In the constructor, we
allocated an array of pointers to arrays of characters (a 2D array) representing each
searchable item.

Then, we create two functions accessible from Dart. The first one will create a new
instance of FuzzySearch, and the second one will perform a single search:

// main.cpp
void FuzzySearchCreate(Dart_NativeArguments arguments) {
 Dart_EnterScope();
 Dart_Handle inputList = Dart_GetNativeArgument(arguments, 0);

 FuzzySearch *fuzzy = new FuzzySearch(inputList);
 // Return pointer to the object (memory address).
 Dart_Handle result = Dart_NewInteger((int64_t)fuzzy);
 Dart_SetReturnValue(arguments, result);
 Dart_ExitScope();
}

void FuzzySearchSearch(Dart_NativeArguments args) {
 Dart_EnterScope();
 int64_t ptr;
 const char* term;
 Dart_IntegerToInt64(Dart_GetNativeArgument(args, 0), &ptr);
 Dart_StringToCString(Dart_GetNativeArgument(args, 1), &term);

 // Get the instance of FuzzySearch at this memory address.
 FuzzySearch *fuzzy = reinterpret_cast<FuzzySearch*>ptr;
 std::vector<char*> results = fuzzy->search(term);

Writing Native Extensions for the Standalone Dart VM

[194]

 Dart_Handle result = Dart_NewList(results.size());
 for (int i = 0; i < results.size(); i++) {
 Dart_ListSetAt(result, i,
 Dart_NewStringFromCString(results.at(i)));
 }
 Dart_SetReturnValue(args, result);
 Dart_ExitScope();
}

Note what we're actually returning from FuzzySearchCreate(). It's not an object
but just an integer with a memory address of a FuzzySearch instance in the memory.
Then, in FuzzySearchSearch(), we pass this address as an argument and use type
casting to get the proper instance of FuzzySearch. Running search() returns a
vector of char*, so we need to create an empty list first and fill it with Dart strings.
Also, we need to know the exact size of a Dart list before creating it.

The Dart code is just a wrapper class:

// lib/fuzzy_search/fuzzy_search.dart
import 'dart-ext:fuzzy_search';

// All access to native functions is done via NativeFuzzySearch
// class and never directly.
int _create(List terms) native "FuzzySearchCreate";
List<String> _search(int ptr, term) native "FuzzySearchSearch";

class NativeFuzzySearch implements FuzzySearchInterface {
 int _pointer;

 NativeFuzzySearch(List terms) {
 _pointer = _create(terms);
 }

 List<String> search(String term) => _search(_pointer, term);
}

The int built-in type is a 32-bit or 64-bit integer depending on the
Dart VM build. As our native extension has to be built for the same
architecture, the pointer always fits into its range.

Chapter 9

[195]

We can use this wrapper class just like any other class in Dart without even noticing
that under the hood, there are some pointers passing here and there:

import 'package:Chapter_09/fuzzy_search/fuzzy_search.dart';

main() {
 List<String> dict = ['item1', 'item2', ...];
 NativeFuzzySearch nativeFuzzy = new NativeFuzzySearch(dict);
 List<String> results = nativeFuzzy.search('test_term');
 print(results);
}

In order to test and compare the performance of both Dart and C/C++
implementations, we'll use the same dataset from Chapter 2, Practical Dart, but we'll
replicate it more than 20 times, run a couple of test searches over it multiple times,
and print average processing time for each of them (the complete benchmarking
code is among the source code for this chapter):

Testing FuzzySearch (199034 items):
average: 18 ms

Testing NativeFuzzySearch (199034 items):
average: 13 ms

We can see that the native implementation is about 28 percent faster.

We're measuring the processing time by ourselves, which is easier for
demonstration purposes. If you're looking for a more standardized
environment, take a look at https://github.com/dart-lang/
benchmark_harness.

Optimizing our C/C++ code
However, there are some optimization tricks that we can use.

We allocate memory for every single item in the list with malloc(). This is correct,
but the bottleneck is that items are shattered all over the memory. Each access to
memory retrieves not just the exact amount of bytes that we need but an entire
memory word (typically, 4 bytes on 32-bit systems and 8 bytes on 64-bit systems).
Loaded memory words are saved into the processor's L1-3 caches.

https://github.com/dart-lang/benchmark_harness
https://github.com/dart-lang/benchmark_harness

Writing Native Extensions for the Standalone Dart VM

[196]

This implies that when we have, for example, a 9-character long string, it requires
2 memory accesses on a 64-bit system where the second memory access is required
to load just one byte. Therefore, when we're iterating the entire array of char*, it's
better to allocate one large memory block for all the items. A better version of our
constructor will look like:

FuzzySearch::FuzzySearch(Dart_Handle inputList) {
 intptr_t length_ptr;
 // Get Dart's List length.
 Dart_ListLength(inputList, &length_ptr);
 length = length_ptr;

 items = (char**)malloc(length * sizeof(char*));

 // Calculate total size of all items in bytes.
 uint32_t size = 0;
 for (int i = 0; i < length; i++) {
 const char* cname;
 Dart_StringToCString(
 Dart_ListGetAt(inputList, i), &cname);
 size += strlen(cname) + 1;
 }
 // Allocate one large block of memory.
 char* ptr = (char*)malloc(size * sizeof(char));

 for (int i = 0; i < length; i++) {
 const char* cname;
 Dart_StringToCString(
 Dart_ListGetAt(inputList, i), &cname);
 items[i] = ptr;
 strcpy(items[i], cname);
 // Increment the pointer.
 ptr += strlen(cname) + 1;
 }
}

With this updated version, the average search time is about 11.5 ms.

In order to keep the examples simple, we're not checking returned
values from malloc() or Dart_StringToCString(), which in
a real application should be checked for error code.

Chapter 9

[197]

But we can go even further. We can make use of multiple cores without any manual
splitting and merging C++ vectors for each core by ourselves. We'll make use of the
OpenMP 4.0 standard that is supported, for example, in GNU GCC 4.9 compiler and
modify the search() method with two new statements for the precompiler:

std::vector<char*> FuzzySearch::search(const char* term) {
 #pragma omp declare reduction (merge : std::vector<char*> : \
 omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))
 std::vector<char*> results;

 #pragma omp parallel for reduction(merge: results)
 for (int i = 0; i < length; i++) {
 if (fuzzy_search(items[i], term)) {
 results.push_back(items[i]);
 }
 }
 return results;
}

These two #pragma omp statements are ignored by compilers that don't support
OpenMP. As vector<T> is not thread-safe, we create a private instance for each
thread and then merge all of them into one vector<T> result. OpenMP does all this
automatically without modifying our code at all. We could hardcode how many
threads will be spawned, but OpenMP can read the OMP_NUM_THREADS environment
variable for how many threads to spawn in each parallel block so that we can easily
test what's the best number for us.

On Intel Code Duo 2.5 GHz, the best results occur with four threads that give 5.1 ms
on average. At the end, our native implementation is 3.5 times faster than the Dart
code running in the Dart VM. Note that the standalone Dart VM has much better
performance than Dartium.

We could also use compiler options such as strict aliasing to optimize the usage of
pointers or try to work with ifs and loops for better branch prediction, but this level
of optimization is generally considered for developers with no friends.

Multithreading with Dart Isolates
Although Dart doesn't have C-style threads, we can still make use of multiple CPUs
and cores with Dart Isolates using the built-in dart:isolate library that works both
in the browser (using Web Workers) and in the standalone Dart VM. Every Dart app
has at least one Isolate called root.

Writing Native Extensions for the Standalone Dart VM

[198]

Unlike threads, Isolates don't share the same memory space, so they can't modify
each other's variables and all communication between them must be done via
message passing.

We're not going to go into it here because it wouldn't help us very much. There are no
C-style thread locks for Isolates, so synchronizing multiple Isolates would be rather
difficult. There's not much documentation available for Isolates right now, so the only
way to get to know anything about it is in the Dart API at https://api.dartlang.
org/apidocs/channels/stable/dartdoc-viewer/dart:isolate.Isolate.

There's also an experimental Dart runtime in development called Fletch that
promises very high concurrency (https://github.com/dart-lang/fletch).

Writing bindings for the exiv2 library
There are thousands of libraries already written in C/C++ and used in practice,
sometimes for decades. Therefore, it doesn't make sense to try to write everything
from scratch. Of course, if you want to run your code in the browser, you have to
rewrite it into Dart, but in cases where you're only interested in server-side scripting,
you can reuse existing C/C++ code, wrap it with a small native extension, and use it
in Dart.

In this example, we'll use exiv2, which is a library written in C++ that can read and
modify the EXIF metadata from pictures. This is, for example, what camera vendor
and model you used, the exposure time, and so on:

// main.cpp
// Header file is a part of exiv2 source code.
#include "exiv2.hpp"

void GetExifRecord(Dart_NativeArguments arguments) {
 Dart_EnterScope();

 const char *filename;
 const char *tag;
 Dart_StringToCString(
 Dart_GetNativeArgument(arguments, 0), &filename);
 Dart_StringToCString(
 Dart_GetNativeArgument(arguments, 1), &tag);

 Exiv2::Image::AutoPtr image =
 Exiv2::ImageFactory::open(filename);
 image->readMetadata();

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:isolate.Isolate
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart:isolate.Isolate
https://github.com/dart-lang/fletch

Chapter 9

[199]

 Exiv2::ExifData &exifData = image->exifData();
 Exiv2::ExifKey key = Exiv2::ExifKey(tag);
 Exiv2::ExifData::const_iterator pos = exifData.findKey(key);

 Dart_Handle result;

 if (pos == exifData.end()) { // not found
 result = Dart_Null();
 } else {
 result = Dart_NewStringFromCString(
 pos->value().toString().c_str());
 }

 Dart_SetReturnValue(arguments, result);
 Dart_ExitScope();
}

void GetAllExifRecords(Dart_NativeArguments args) {
 Dart_EnterScope();

 const char *fname;
 Dart_StringToCString(Dart_GetNativeArgument(args, 0), &fname);

 Exiv2::Image::AutoPtr image =
 Exiv2::ImageFactory::open(fname);
 image->readMetadata();
 Exiv2::ExifData &exifData = image->exifData();
 Exiv2::ExifData::const_iterator end = exifData.end();
 Exiv2::ExifData::const_iterator pointer = exifData.begin();

 Dart_Handle result = Dart_NewList(exifData.count());
 // Iterate all EXIF records.
 for (int j = 0; pointer != end; ++pointer, j++) {
 // Create \t delimetered char*.
 std::stringstream fmt;
 fmt << pointer->key() << "\t" << pointer->value();
 const char *record = fmt.str().c_str();
 Dart_ListSetAt(result, j,
 Dart_NewStringFromCString(record));
 }

 Dart_SetReturnValue(args, result);
 Dart_ExitScope();
}

Writing Native Extensions for the Standalone Dart VM

[200]

We created two functions. The first one returns a specific EXIF record by its tag
name. The second one creates a list of all tags and records delimited by the \t
character. Right now, there's no easy way to create a Dart's Map object and set its
key-value pairs in a native extension, so we'll process the List object later in Dart.

The rest of the C++ code is the same as in the previous examples. The Dart code
just wraps all calls to the extension:

// lib/exiv2/exiv2.dart
import 'dart-ext:exiv2_wrapper';

List<String> _all(String filename) native "GetAllExifRecords";
String _get(String filename, String tag) native "GetExifRecord";

Map<String, String> all(String filename) {
 Map<String, String> map = {};
 _all(filename).forEach((String record) {
 List kv = record.split('\t');
 map[kv[0]] = kv[1];
 });
 return map;
}

String get(String filename, String tag) {
 return _get(filename, tag);
}

We wrapped calls to _all() with a function that converts Dart's List object into a
Map object. Let's test our extension with the following code:

import 'package:Chapter_09_exiv2/exiv2/exiv2.dart' as exiv2;
import 'dart:io';

main() {
 String path = Platform.script.resolve('img.jpg').toFilePath();
 exiv2.all(path).forEach((String key, String value) {
 print("$key = $value");
 });
 print(exiv2.get(path, 'Exif.Photo.ExposureTime'));
}

Chapter 9

[201]

The result looks something like this:

$ dart main.dart

Exif.Image.Make = Canon

Exif.Image.Model = Canon EOS 550D

Exif.Image.Orientation = 1

...

Exif.Photo.WhiteBalance = 1

Exif.Photo.SceneCaptureType = 0

1/250

As of now (May 2015), the Dart package repository doesn't contain any EXIF
manipulation library written in Dart.

Distributing native extensions
The obvious questions are how can we give our extensions to someone or how can
we use somebody's native extension? Currently, there's no unified way for this,
and we have to download extensions and compile them by ourselves. This also
includes all third-party libraries that the extension is using and can't be distributed
with the extension because these have to be built specifically for our platform
and architecture.

There's a https://pub.dartlang.org/packages/ccompile project that looks
promising and may become a universal build tool for Dart's native extensions
in the future.

Summary
Writing native extensions for the standalone Dart VM isn't that hard. It requires
some previous knowledge of C/C++ and ideally compilers as well, but the approach
is very straightforward and the potential is limited only by your imagination.

Native extensions for Dart are quite specific and you're definitely not going to use
them every day, but it's good to know that you can reuse a lot of existing libraries
written in C/C++ and achieve very good performance when you need it.

https://pub.dartlang.org/packages/ccompile

[203]

Index
Symbols
2D canvas

drawing into, onTouch events used 86, 87
3D bookshelf

creating, HTML5 DeviceOrientation
events used 74-80

300 ms tap delay 70
@Component, options

cssUrl 118
exportExpressions 118
selector 118
template or templateUrl 118
useShadowDom 118

 cross-origin resource sharing (CORS)
URL 48

A
Angular 2.0 136
Angular built-in ng-* directives 119
AngularDart

about 115
apps, testing 181
book component application 115
installing 116
performance tips 136, 137
to-do list application 115
URL, for documentation 137
URL, for features 116

args package
CLI arguments, parsing with 142-144

B
bindings, for exiv2 library

writing 198-201
book component, AngularDart

creating 132-136
Box2D

about 68
URL 68

built-in types
about 16
Booleans 16
lists 16
maps 17
numbers 16
strings 16

C
callback hell 28
chat app, writing with WebSockets server

about 144-149
basic I/O operations, listening to 151
client-side WebSockets 149-151
enumerated types 153, 154
MySQL, using as storage 155-158
server, running as background

process 152, 153
typedefs 154, 155
Unix signals, listening to 151

Chrome 36+ 91
Chromium

URL 59

[204]

CLI arguments
parsing, with args package 142-144

CSS3 statements
perspective 70
transform 70
transform-origin 71
transform-style 70

CSS3 transformations
3D transformed elements, nesting 72-74
axes 71
basics 70
Hello world, in 3D 71, 72

custom element, Polymer.dart
CSS styles (optional) 102
Dart script (optional) 102
HTML template 102

Custom Elements
about 90
using 96-100

Cygwin
about 141
URL 141

D
Dart

about 1
environments 2
features 2
MythBusters 45, 46
URL 3

Dart and JavaScript, combining
about 41
Dart, using in JavaScript 42-44
JavaScript, using in Dart 44

Dart app
greeting, writing 4
index.html 6, 7
main() function 7-11
pubspec.yaml 5, 6

Dartium 2
Dart language tour

about 15
abstract classes 18, 19
built-in types 16, 17

class inheritance 18
class properties 18
constructors 19
exceptions 20
functions 17
parameters 17
static checker 15
variables 16

Dart SDK
code, debugging in Dartium 12, 13
code, running in Dartium 12
Dart, compiling to JavaScript 13, 14
Dart Editor 3
installing 3

dart:typed_data package 62
Dart, using as full-stack language

about 161
Apache, using as proxy 161, 162
Dart, executing as Apache mod_dart 163
Dart, executing as CGI 163
nginx, using as proxy 163

Dart VM 2
dart:web_audio package 62
Dart wrapper, for Google Maps API

URL 81
data bindings

about 130-132
NgAttr 130
NgOneWay 130
NgTwoWay 130

dependency injection pattern 120
documentation search app

about 27
Ajax requests, creating in Dart 31
async keyword 30
await keyword 31
Dart packages 32, 33
Future-based API 28-30
fuzzy search algorithm, writing 34-37
HTML elements, handling 37-41

DocumentFragment 24
DOM tree manipulations

optimizing 23-27
double dot operator 38

[205]

E
exceptions

about 20
static types, using 20

exiv2 library
bindings, writing for 198-201

F
Factory design pattern 98
formatters

about 128
filter 128
orderBy 128

functions 17

G
generative constructors 19
GeoLocation API

using 81
Google Cloud Platform 2
Google Maps API

using 81

H
handleMessage()method 147
handleWebSocket() method 147
HTML5 DeviceOrientation events

3D bookshelf, creating with 74-80
HTML Import

about 91
implementing 91-94

HTTP server
writing, with route package 158-161

I
idb.KeyRange item 57
IndexedDB

about 52
application, polishing 58
indices 56, 57
initializing 53, 54

records, deleting 56
records, saving 55
restrictions 52, 53
stored records, fetching 54, 55

Isolate API 68

J
JSONP data, Reddit Read Later app

fetching 48-51

K
Kalman filter 85
Karma

about 181
URL 181

L
life cycle methods, polymer.dart

attached() 106
attributeChanged() 106
CustomElement.created() 106
detached() 106
ready() 106

LocalStorage
versus IndexedDB 58

M
matchers

completes 168
contains 168
equals 168
equalsIgnoringCase 168
hasLength 168
isEmpty 168
isIn 168
isInstanceOf<T> 168
orderedEquals 168
reference link 169
returnsNormally 168
same 168
throws 168
unorderedEquals 168

[206]

mixins
about 179, 180
URL 179

Model-View-Controller (MVC) 115
music visualizer app

about 47, 59
creating 59-64

MVW (Model-View-Whatever)
about 116
URL 116

N
named constructors 19
named parameters

defining 17
native extensions, for standalone Dart VM

<extension_name>_Init() function 187
asynchronous extension 188
distributing 201
minimal native extension, writing 188-191
ResolveName() function 188
structure 187, 188
synchronous extension 188
URL 188
writing 187

native fuzzy search implementation
C/C++ code, optimizing 195-197
Dart Isolates, multithreading with 197
writing 191-195

ng-repeat directive 128

O
Observatory tool

profiling with 182-185
one-way data binding

{{coverImage}} 105
{{rotateYString}} 105
about 104-108
loops and conditions, in templates 108, 109
on-click 105

onTouch events
used, for drawing into 2D canvas 86, 87

operator overloading
about 178, 179
reference link 179

P
parameters 17
performance tips, AngularDart

about 136, 137
DOM tree modification, avoiding 138, 139
excess formatter usage, avoiding 138
nesting ng-repeat directives, avoiding 137
track by, using for ng-repeat 138

Photon
about 80
URL 80

play_phaser library
about 68
URL 68

polymer.dart
about 101
life cycle methods 106
minimalistic custom element 101-103

Polymer
core-list 111-113
core and paper elements 111
URL, for tutorials 114

position and distance tracker
with GeoLocation API and

Google Maps API 81-85
process ID (PID) 152
properties, ng-repeat directive

$even 133
$first 133
$index 133
$last 133
$middle 133
$odd 133

Protractor 181
pubspec.yaml files

URL 33

R
Reddit API

about 49
URL 49

Reddit Read Later app
about 47
creating 48

[207]

IndexedDB 52
JSONP data, fetching 48-51
LocalStorage, versus IndexedDB 58

S
scope, Angular 121
Shadow DOM

about 90
using 94-96

single instruction, multiple data (SIMD) 66
StageXL

about 67
URL 67

standalone Dart VM
about 142
URL 142

standardized environment
URL 195

static checker 15
strict aliasing 197
Sublime Text editor 27

T
Template 90
testing 165
testing strategies, for web apps

about 165
unit testing 166

three.dart
about 67
URL 67

to-do list application
creating, AngularDart used 117-121
extending 122, 123
model 123
scope 121
TodoListComponent 124-126
TodoListComponent, finishing 126-130
view 124

Tridiv
URL 80

two-way data binding 109-111
typed lists, for fast numeric computing 65

U
unit testing

about 166-174
asynchronous tests 174, 175
benefits 166
running 177
test groups 175-177

V
variables

about 16
const variable 16
final variable 16

vector_math package 66

W
web apps

testing strategies 165
Web Components

about 89
Custom Elements 90
HTML Imports 91
polyfill, for older browsers 91
Shadow DOM 90
Template 90
URL 89

WebGL
about 67
three.dart 67

WebSockets 144
WebSockets server

chat app, writing with 144-149
WebSQL 59
Web Workers 68

Z
Zone-related API

about 103
URL 103

Thank you for buying
Dart Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Dart
ISBN: 978-1-84969-742-2 Paperback: 388 pages

Learn how to program applications with Dart 1.0,
a language specifically designed to produce
better-structured, high-performance applications

1. Develop apps for the Web using Dart
and HTML5.

2. Build powerful HTML5 forms, validate
and store data in local storage, and use web
components to build your own user interface.

3. Make games by drawing and integrate audio
and video in the browser.

4. Learn how to develop an application
with the help of a model-driven and
fast-paced approach.

Mastering Dart
ISBN: 978-1-78398-956-0 Paperback: 346 pages

Master the art of programming high-performance
applications with Dart

1. Improve the performance of your Dart code
and build sophisticated applications.

2. Enhance your web projects by adding advanced
HTML 5 features.

3. Full of solutions to real-world problems,
with clear explanations for complicated
concepts of Dart.

Please check www.PacktPub.com for information on our titles

Dart Cookbook
ISBN: 978-1-78398-962-1 Paperback: 346 pages

Over 110 incredibly effective, useful, and
hands-on recipes to design Dart web client
and server applications

1. Develop stunning apps for the modern web
using Dart.

2. Learn how to store your app's data in common
SQL and NoSQL databases with Dart.

3. Create state-of-the-art web apps with Polymer
and Angular.

RESTful Java Web Services
ISBN: 978-1-84719-646-0 Paperback: 256 pages

Master core REST concepts and create RESTful web
services in Java

1. Build powerful and flexible RESTful web
services in Java using the most popular Java
RESTful frameworks to date (Restlet, JAX-RS
based frameworks Jersey and RESTEasy, and
Struts 2).

2. Master the concepts to help you design and
implement RESTful web services.

3. Plenty of screenshots and clear explanations to
facilitate learning.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Dart

	What is Dart?
	Why choose Dart?
	Installing the Dart SDK
	Dart Editor
	Writing a greeting for all Dartisans
	pubspec.yaml
	index.html

	The main() function
	Running and debugging code in Dartium
	Compiling Dart to JavaScript

	The Dart language tour
	The static checker
	Variables
	Built-in types
	Functions and parameters
	Class properties
	Class inheritance and abstract classes
	Constructors

	Exceptions
	Using static types

	Summary

	Chapter 2
: Practical Dart
	Optimizing DOM tree manipulations
	The documentation search app
	The Future-Based API
	Using async and await keywords
	Async
	Await

	Creating Ajax requests in Dart
	Dart packages
	Writing the fuzzy search algorithm
	Handling HTML elements

	Combining Dart and JavaScript
	Using Dart in JavaScript
	Using JavaScript in Dart

	Dart MythBusters
	Summary

	Chapter 3
: The Power of HTML5
with Dart
	Creating the Reddit Read Later app
	Fetching the JSONP data
	IndexedDB
	Initializing IndexedDB
	Fetching stored records
	Saving records
	Deleting records
	Indices
	Polishing the application

	LocalStorage versus IndexedDB
	What about WebSQL?

	Music visualizer
	Other noteworthy APIs and libraries
	Typed lists for fast numeric computing
	vector_math
	SIMD

	WebGL
	three.dart

	StageXL
	Box2D and play_phaser
	Isolates and Web Workers

	Summary

	Chapter 4
: Developing a Mobile App
with Dart
	300 ms tap delay
	Basics of CSS3 transformations
	Axes
	Hello world in 3D
	Nesting 3D transformed elements

	A 3D bookshelf with DeviceOrientation events
	Position and distance tracker with the GeoLocation API and Google Maps API
	Drawing into 2D canvas using onTouch events
	Summary

	Chapter 5
: Web Components and polymer.dart
	Web Components
	Shadow DOM
	Custom Elements
	Template
	HTML Imports

	The Web Components polyfill for older browsers
	Basic HTML Import
	Using Shadow DOM
	Using Custom Elements
	Polymer.dart
	Minimalistic custom element in polymer.dart

	One-way data binding
	Loops and conditions in templates

	Two-way data binding
	Polymer core and paper elements
	A quick look at core-list
	What's next?

	Summary

	Chapter 6
: AngularDart
	Installing AngularDart
	To-do list with AngularDart
	Scope

	Extending the to-do list
	Model
	View
	Component
	Finishing TodoListComponent

	Data bindings

	A book component in AngularDart
	What is Angular 2.0?
	Why is Angular 2.0 not written in Dart?

	Performance tips for AngularDart
	Avoiding nesting ng-repeat directives
	Using track by for ng-repeat
	Avoiding excess formatter usage
	Not everything needs to be in Angular

	Summary

	Chapter 7
: Server-side Applications
with Dart
	The standalone Dart VM
	Parsing CLI arguments with the args package
	Writing a chat app with the WebSockets server
	Client-side WebSockets
	Listening to Unix signals and basic I/O operations
	Running the server as a background process

	Enumerated types
	Typedefs
	Using MySQL as a storage

	Writing an HTTP server with the route package
	Using Dart as a full-stack language
	Using Apache as a proxy for the Dart HTTP server
	Using nginx as a proxy for the Dart HTTP server
	Executing Dart as CGI and Apache mod_dart

	Summary

	Chapter 8
: Testing and Profiling
the Dart Code
	Testing strategies for web apps
	Unit testing
	Asynchronous tests
	Test groups
	Running all tests

	Operator overloading and mixins
	Operator overloading
	Mixins

	Testing AngularDart apps
	Profiling with the Observatory tool
	Summary

	Chapter 9
: Writing Native Extensions
for the Standalone Dart VM
	The structure of native extensions
	Writing a minimal native extension
	Writing a native fuzzy search implementation
	Optimizing our C/C++ code
	Multithreading with Dart Isolates

	Writing bindings for the exiv2 library
	Distributing native extensions
	Summary

	Index

