
Dart Programming Language Specification
5th edition draft

Version 2.2

July 29, 2019

Contents
1 Scope 6

2 Conformance 6

3 Normative References 6

4 Terms and Definitions 6

5 Notation 6

6 Overview 9
6.1 Scoping . 10
6.2 Privacy . 12
6.3 Concurrency . 12

7 Errors and Warnings 13

8 Variables 14
8.1 Evaluation of Implicit Variable Getters 17

9 Functions 17
9.1 Function Declarations . 19
9.2 Formal Parameters . 20

9.2.1 Required Formals . 21
9.2.2 Optional Formals . 22
9.2.3 Covariant Parameters . 23

9.3 Type of a Function . 24
9.4 External Functions . 25

1

10 Classes 26
10.1 Instance Methods . 28

10.1.1 Operators . 29
10.1.2 The Method noSuchMethod 30
10.1.3 The Operator ‘==’ . 34

10.2 Getters . 34
10.3 Setters . 35
10.4 Abstract Instance Members . 35
10.5 Instance Variables . 36
10.6 Constructors . 37

10.6.1 Generative Constructors 37
10.6.2 Factories . 43
10.6.3 Constant Constructors . 45

10.7 Static Methods . 47
10.8 Superclasses . 47

10.8.1 Inheritance and Overriding 48
10.9 Superinterfaces . 50
10.10Class Member Conflicts . 51

11 Interfaces 51
11.1 Combined Member Signatures . 53
11.2 Superinterfaces . 55

11.2.1 Inheritance and Overriding 55
11.2.2 Correct Member Overrides 56

12 Mixins 57
12.1 Mixin Classes . 57
12.2 Mixin Declaration . 58
12.3 Mixin Application . 59

13 Enums 60

14 Generics 61
14.1 Variance . 64
14.2 Super-Bounded Types . 66
14.3 Instantiation to Bound . 68

14.3.1 Auxiliary Concepts for Instantiation to Bound 69
14.3.2 The Instantiation to Bound Algorithm 71

15 Metadata 73

16 Expressions 74
16.1 Expression Evaluation . 74
16.2 Object Identity . 75
16.3 Constants . 76

16.3.1 Constant Contexts . 81
16.4 Null . 82

2

16.5 Numbers . 82
16.6 Booleans . 83
16.7 Strings . 84

16.7.1 String Interpolation . 87
16.8 Symbols . 88
16.9 Lists . 89
16.10Maps . 90
16.11Sets . 92
16.12Throw . 93
16.13Function Expressions . 94
16.14This . 96
16.15Instance Creation . 97

16.15.1New . 97
16.15.2Const . 99

16.16Spawning an Isolate . 101
16.17Function Invocation . 101

16.17.1Actual Argument Lists . 103
16.17.2Actual Argument List Evaluation 104
16.17.3Binding Actuals to Formals 105
16.17.4Unqualified Invocation . 107
16.17.5Function Expression Invocation 108

16.18Function Closurization . 110
16.18.1Generic Function Instantiation 110

16.19Lookup . 112
16.20Top level Getter Invocation . 113
16.21Method Invocation . 114

16.21.1Ordinary Invocation . 114
16.21.2Cascaded Invocations . 116
16.21.3Super Invocation . 116
16.21.4Sending Messages . 117

16.22Property Extraction . 117
16.22.1Getter Access and Method Extraction 118
16.22.2Super Getter Access and Method Closurization 119
16.22.3Ordinary Member Closurization 120
16.22.4Super Closurization . 122
16.22.5Generic Method Instantiation 123

16.23Assignment . 125
16.23.1Compound Assignment 128

16.24Conditional . 130
16.25If-null Expressions . 131
16.26Logical Boolean Expressions . 131
16.27Equality . 132
16.28Relational Expressions . 133
16.29Bitwise Expressions . 134
16.30Shift . 134
16.31Additive Expressions . 135

3

16.32Multiplicative Expressions . 135
16.33Unary Expressions . 136
16.34Await Expressions . 137
16.35Postfix Expressions . 137
16.36Assignable Expressions . 139
16.37Identifier Reference . 140
16.38Type Test . 143
16.39Type Cast . 144

17 Statements 145
17.0.1 Statement Completion . 145

17.1 Blocks . 146
17.2 Expression Statements . 146
17.3 Local Variable Declaration . 146
17.4 Local Function Declaration . 148
17.5 If . 149
17.6 For . 150

17.6.1 For Loop . 150
17.6.2 For-in . 151
17.6.3 Asynchronous For-in . 151

17.7 While . 153
17.8 Do . 153
17.9 Switch . 153

17.9.1 Switch case statements . 156
17.10Rethrow . 157
17.11Try . 158

17.11.1on-catch clauses . 159
17.12Return . 159
17.13Labels . 161
17.14Break . 162
17.15Continue . 162
17.16Yield and Yield-Each . 162

17.16.1Yield . 162
17.16.2Yield-Each . 163

17.17Assert . 165

18 Libraries and Scripts 165
18.1 Imports . 167
18.2 Exports . 171
18.3 Parts . 172
18.4 Scripts . 173
18.5 URIs . 174

4

19 Types 175
19.1 Static Types . 175

19.1.1 Type Promotion . 178
19.2 Dynamic Type System . 178
19.3 Type Aliases . 179
19.4 Subtypes . 180

19.4.1 Meta-Variables . 181
19.4.2 Subtype Rules . 181
19.4.3 Being a subtype . 184
19.4.4 Informal Subtype Rule Descriptions 185
19.4.5 Additional Subtyping Concepts 187

19.5 Function Types . 187
19.6 Type Function . 188
19.7 Type dynamic . 188
19.8 Type FutureOr . 190
19.9 Type Void . 191

19.9.1 Void Soundness . 193
19.10Parameterized Types . 195

19.10.1Actual Type of Declaration 196
19.10.2Least Upper Bounds . 196

20 Reference 197
20.1 Lexical Rules . 197

20.1.1 Reserved Words . 197
20.1.2 Comments . 198

20.2 Operator Precedence . 198

5

Dart Programming Language Specification 6

1 Scope ecmaScope

This Ecma standard specifies the syntax and semantics of the Dart program-
ming language. It does not specify the APIs of the Dart libraries except where
those library elements are essential to the correct functioning of the language
itself (e.g., the existence of class Object with methods such as noSuchMethod,
runtimeType).

2 Conformance ecmaConformance

A conforming implementation of the Dart programming language must pro-
vide and support all the APIs (libraries, types, functions, getters, setters, whether
top-level, static, instance or local) mandated in this specification.

A conforming implementation is permitted to provide additional APIs, but
not additional syntax, except for experimental features in support of null-aware
cascades that are likely to be introduced in the next revision of this specification.

3 Normative References ecmaNormativeReferences

The following referenced documents are indispensable for the application
of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including
any amendments) applies.

1. The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or
successor.

2. Dart API Reference, https://api.dartlang.org/

4 Terms and Definitions ecmaTermsAndDefinitions

Terms and definitions used in this specification are given in the body of
the specification proper. Such terms are highlighted in italics when they are
introduced, e.g., ‘we use the term verbosity to refer to the property of excess �
verbiage’, and add a marker in the margin.

5 Notation notation

We distinguish between normative and non-normative text. Normative text
defines the rules of Dart. It is given in this font. At this time, non-normative
text includes:

Rationale Discussion of the motivation for language design decisions appears in ital-
ics. Distinguishing normative from non-normative helps clarify what part
of the text is binding and what part is merely expository.

Dart Programming Language Specification 7

Commentary Comments such as “The careful reader will have noticed that the name Dart
has four characters” serve to illustrate or clarify the specification, but are
redundant with the normative text. The difference between commentary
and rationale can be subtle. Commentary is more general than rationale,
and may include illustrative examples or clarifications.

Open questions (Upcoming: in this font). Open questions are points that are unset-
tled in the mind of the author(s) of the specification; expect them (the
questions, not the authors; precision is important in a specification) to be
eliminated in the final specification. Upcoming: Should the text at
the end of the previous bullet be rationale or commentary?

Reserved words and built-in identifiers (16.37) appear in bold.
Examples would be switch or class.
Grammar productions are given in a common variant of EBNF. The left

hand side of a production ends with a colon. On the right hand side, alterna-
tion is represented by vertical bars, and sequencing by spacing. As in PEGs,
alternation gives priority to the left. Optional elements of a production are suf-
fixed by a question mark like so: anElephant?. Appending a star to an element
of a production means it may be repeated zero or more times. Appending a plus
sign to a production means it occurs one or more times. Parentheses are used
for grouping. Negation is represented by prefixing an element of a production
with a tilde. Negation is similar to the not combinator of PEGs, but it consumes
input if it matches. In the context of a lexical production it consumes a single
character if there is one; otherwise, a single token if there is one.

An example would be:

〈aProduction〉 ::= 〈anAlternative〉
| 〈anotherAlternative〉
| 〈oneThing〉 〈after〉 〈another〉
| 〈zeroOrMoreThings〉*
| 〈oneOrMoreThings〉+
| 〈anOptionalThing〉?
| (〈some〉 〈grouped〉 〈things〉)
| ˜〈notAThing〉
| ‘aTerminal’
| 〈A_LEXICAL_THING〉

Both syntactic and lexical productions are represented this way. Lexical
productions are distinguished by their names. The names of lexical productions
consist exclusively of upper case characters and underscores. As always, within
grammatical productions, whitespace and comments between elements of the
production are implicitly ignored unless stated otherwise. Punctuation tokens
appear in quotes.

Productions are embedded, as much as possible, in the discussion of the
constructs they represent.

A term is a syntactic construct. It may be considered to be a piece of �

Dart Programming Language Specification 8

text which is derivable in the grammar, and it may be considered to be a tree
created by such a derivation. An immediate subterm of a given term t is a �
syntactic construct which corresponds to an immediate subtree of t considered
as a derivation tree. A subterm of a given term t is t, or an immediate subterm �
of t, or a subterm of an immediate subterm of t.

A list x1, . . . , xn denotes any list of n elements of the form xi, 1 ≤ i ≤ n.
Note that n may be zero, in which case the list is empty. We use such lists
extensively throughout this specification.

For j ∈ 1..n, let yj be an atomic syntactic entity (like an identifier), xj a
composite syntactic entity (like an expression or a type), and E again a com-
posite syntactic entity. The notation [x1/y1, . . . , xn/yn]E then denotes a copy �
of E in which each occurrence of yi, 1 ≤ i ≤ n has been replaced by xi.

This operation is also known as substitution, and it is the variant that avoids �
capture. That is, when E contains a construct that introduces yi into a nested
scope for some i ∈ 1..n, the substitution will not replace yi in that scope.
Conversely, if such a replacement would put an identifier id (a subterm of xi) into
a scope where id is declared, the relevant declarations in E are systematically
renamed to fresh names.

In short, capture freedom ensures that the “meaning” of each identifier is pre-
served during substitution.

We sometimes abuse list or map literal syntax, writing [o1, . . . , on] (respec-
tively {k1 : o1, . . . , kn : on}) where the oi and ki may be objects rather than
expressions. The intent is to denote a list (respectively map) object whose
elements are the oi (respectively, whose keys are the ki and values are the oi).

The specifications of operators often involve statements such as x op y is
equivalent to the method invocation x.op(y). Such specifications should be �
understood as a shorthand for:

• x op y is equivalent to the method invocation x.op′(y), assuming the
class of x actually declared a non-operator method named op′ defining the
same function as the operator op.

This circumlocution is required because x.op(y), where op is an operator,
is not legal syntax. However, it is painfully verbose, and we prefer to state this
rule once here, and use a concise and clear notation across the specification.

When the specification refers to the order given in the program, it means the
order of the program source code text, scanning left-to-right and top-to-bottom.

When the specification refers to a fresh variable, it means a variable with �
a name that doesn’t occur anywhere in the current program. When the spec-
ification introduces a fresh variable bound to an object, the fresh variable is
implicitly bound in a surrounding scope.

References to otherwise unspecified names of program entities (such as classes
or functions) are interpreted as the names of members of the Dart core library.

Examples would be the classes Object and Type representing, respectively,
the root of the class hierarchy and the reification of run-time types. It would be
possible to declare, e.g., a local variable named Object, so it is generally incorrect

Dart Programming Language Specification 9

to assume that the name Object will actually resolve to said core class. However,
we will generally omit mentioning this, for brevity.

When the specification says that one piece of syntax is equivalent to another �
piece of syntax, it means that it is equivalent in all ways, and the former syn-
tax should generate the same compile-time errors and have the same run-time
behavior as the latter, if any. Error messages, if any, should always refer to the
original syntax. If execution or evaluation of a construct is said to be equivalent
to execution or evaluation of another construct, then only the run-time behavior
is equivalent, and compile-time errors apply only for the original syntax.

When the specification says that one piece of syntax s is treated as another �
piece of syntax s′, it means that the static analysis of s is the static analysis of
s′ (in particular, exactly the same compile-time errors occur). Moreover, if s has
no compile-time errors then the behavior of s at run time is exactly the behavior
of s′.

Error messages, if any, should always refer to the original syntax s.
In short, whenever s is treated as s′, the reader should immediately switch to

the section about s′ in order to get any further information about the static analysis
and dynamic semantics of s.

The notion of being ‘treated as’ is similar to the notion of syntactic sugar:
“s is treated as s′” could as well have been worded “s is desugared into s′”. Of
course, it should then actually be called “semantic sugar”, because the applica-
bility of the transformation and the construction of s′ may rely on information
from static analysis.

The point is that we only specify the static analysis and dynamic semantics
of a core language which is a subset of Dart (just slightly smaller than Dart),
and desugaring transforms any given Dart program to a program in that core
language. This helps keeping the language specification consistent and compre-
hensible, because it shows directly that some language features are introducing
essential semantics, and others are better described as mere abbreviations of
existing constructs.

6 Overview overview

Dart is a class-based, single-inheritance, pure object-oriented programming
language. Dart is optionally typed (19) and supports reified generics. The run-
time type of every object is represented as an instance of class Type which can
be obtained by calling the getter runtimeType declared in class Object, the
root of the Dart class hierarchy.

Dart programs may be statically checked. Programs with compile-time er-
rors do not have a specified dynamic semantics. This specification makes no
attempt to answer additional questions about a library or program at the point
where it is known to have a compile-time error.

However, tools may choose to support execution of some programs with errors.
For instance, a compiler may compile certain constructs with errors such that a
dynamic error will be raised if an attempt is made to execute such a construct,

Dart Programming Language Specification 10

or an IDE integrated runtime may support opening an editor window when such a
construct is executed, allowing developers to correct the error. It is expected that
such features would amount to a natural extension of the dynamic semantics of
Dart as specified here, but, as mentioned, this specification makes no attempt to
specify exactly what that means.

As specified in this document, dynamic checks are guaranteed to be per-
formed in certain situations, and certain violations of the type system throw
exceptions at run time.

An implementation is free to omit such checks whenever they are guaranteed to
succeed, e.g., based on results from the static analysis.

The coexistence between optional typing and reification is based on the following:

1. Reified type information reflects the types of objects at run time and may
always be queried by dynamic typechecking constructs (the analogs of in-
stanceOf, casts, typecase etc. in other languages). Reified type information
includes access to instances of class Type representing types, the run-time
type (aka class) of an object, and the actual values of type parameters to
constructors and generic function invocations.

2. Type annotations declare the types of variables and functions (including meth-
ods and constructors).

3. Type annotations may be omitted, in which case they are generally filled in
with the type dynamic (19.7).

Dart as implemented includes extensive support for inference of omitted types.
This specification makes the assumption that inference has taken place, and hence
inferred types are considered to be present in the program already. However, in some
cases no information is available to infer an omitted type annotation, and hence this
specification still needs to specify how to deal with that. A future version of this
specification will also specify type inference.

Dart programs are organized in a modular fashion into units called libraries �
(18). Libraries are units of encapsulation and may be mutually recursive.

However they are not first class. To get multiple copies of a library running
simultaneously, one needs to spawn an isolate.

A dart program execution may occur with assertions enabled or disabled.
The method used to enable or disable assertions is implementation specific.

6.1 Scoping scoping

A namespace is a mapping of names denoting declarations to actual decla- �
rations. Let NS be a namespace. We say that a name n is in NS if n is a key �
of NS. We say a declaration d is in NS if a key of NS maps to d. �

A scope S0 induces a namespace NS0 that maps the simple name of each
variable, type or function declaration d declared in S0 to d. Labels are not
included in the induced namespace of a scope; instead they have their own
dedicated namespace.

Dart Programming Language Specification 11

It is therefore impossible, e.g., to define a class that declares a method and a
getter with the same name in Dart. Similarly one cannot declare a top-level function
with the same name as a library variable or a class.

It is a compile-time error if there is more than one entity with the same
name declared in the same scope.

In some cases, the name of the declaration differs from the identifier used to
declare it. Setters have names that are distinct from the corresponding getters
because they always have an = automatically added at the end, and unary minus
has the special name unary-.

Dart is lexically scoped. Scopes may nest. A name or declaration d is
available in scope S if d is in the namespace induced by S or if d is available �
in the lexically enclosing scope of S. We say that a name or declaration d is in �
scope if d is available in the current scope.

If a declaration d named n is in the namespace induced by a scope S, then d
hides any declaration named n that is available in the lexically enclosing scope �
of S.

A consequence of these rules is that it is possible to hide a type with a method
or variable. Naming conventions usually prevent such abuses. Nevertheless, the
following program is legal:

class HighlyStrung {
String() => "?";

}

Names may be introduced into a scope by declarations within the scope or
by other mechanisms such as imports or inheritance.

The interaction of lexical scoping and inheritance is a subtle one. Ultimately,
the question is whether lexical scoping takes precedence over inheritance or vice
versa. Dart chooses the former.

Allowing inherited names to take precedence over locally declared names
could create unexpected situations as code evolves. Specifically, the behavior
of code in a subclass could silently change if a new name is introduced in a
superclass. Consider:

library L1;
class S {}
library L2;
import ‘L1.dart’;
foo() => 42;
class C extends S{ bar() => foo();}

Now assume a method foo() is added to S.

library L1;
class S {foo() => 91;}

Dart Programming Language Specification 12

If inheritance took precedence over the lexical scope, the behavior of C would
change in an unexpected way. Neither the author of S nor the author of C are
necessarily aware of this. In Dart, if there is a lexically visible method foo(),
it will always be called.

Now consider the opposite scenario. We start with a version of S that con-
tains foo(), but do not declare foo() in library L2. Again, there is a change in
behavior - but the author of L2 is the one who introduced the discrepancy that
effects their code, and the new code is lexically visible. Both these factors make
it more likely that the problem will be detected.

These considerations become even more important if one introduces con-
structs such as nested classes, which might be considered in future versions of
the language.

Good tooling should of course endeavor to inform programmers of such situ-
ations (discreetly). For example, an identifier that is both inherited and lexically
visible could be highlighted (via underlining or colorization). Better yet, tight in-
tegration of source control with language aware tools would detect such changes
when they occur.

6.2 Privacy privacy

Dart supports two levels of privacy: public and private. A declaration is �
private iff its name is private, otherwise it is public. A name q is private iff �

�
�

any one of the identifiers that comprise q is private, otherwise it is public. An
�identifier is private iff it begins with an underscore (the _ character) otherwise
�it is public.
�A declaration m is accessible to a library L if m is declared in L or if m is �

public.
This means private declarations may only be accessed within the library in which

they are declared.
Privacy applies only to declarations within a library, not to library declara-

tions themselves.
Libraries do not reference each other by name and so the idea of a private

library is meaningless. Thus, if the name of a library begins with an underscore,
it has no effect on the accessibility of the library or its members.

Privacy is, at this point, a static notion tied to a particular piece of code
(a library). It is designed to support software engineering concerns rather than
security concerns. Untrusted code should always run in an another isolate. It
is possible that libraries will become first class objects and privacy will be a
dynamic notion tied to a library instance.

Privacy is indicated by the name of a declaration - hence privacy and naming
are not orthogonal. This has the advantage that both humans and machines can
recognize access to private declarations at the point of use without knowledge of
the context from which the declaration is derived.

6.3 Concurrency concurrency

Dart Programming Language Specification 13

Dart code is always single threaded. There is no shared-state concurrency
in Dart. Concurrency is supported via actor-like entities called isolates. �

An isolate is a unit of concurrency. It has its own memory and its own
thread of control. Isolates communicate by message passing (16.21.4). No state
is ever shared between isolates. Isolates are created by spawning (16.16).

7 Errors and Warnings errorsAndWarnings

This specification distinguishes between several kinds of errors.
Compile-time errors are errors that preclude execution. A compile-time error �

must be reported by a Dart compiler before the erroneous code is executed.
A Dart implementation has considerable freedom as to when compilation

takes place. Modern programming language implementations often interleave
compilation and execution, so that compilation of a method may be delayed,
e.g., until it is first invoked. Consequently, compile-time errors in a method m
may be reported as late as the time of m’s first invocation.

Dart is often loaded directly from source, with no intermediate binary repre-
sentation. In the interests of rapid loading, Dart implementations may choose
to avoid full parsing of method bodies, for example. This can be done by tok-
enizing the input and checking for balanced curly braces on method body entry.
In such an implementation, even syntax errors will be detected only when the
method needs to be executed, at which time it will be compiled (JITed).

In a development environment a compiler should of course report compilation
errors eagerly so as to best serve the programmer.

A Dart development environment might choose to support error eliminating
program transformations, e.g., replacing an erroneous expression by the invoca-
tion of a debugger. It is outside the scope of this document to specify how such
transformations work, and where they may be applied.

If an uncaught compile-time error occurs within the code of a running isolate
A, A is immediately suspended. The only circumstance where a compile-time
error could be caught would be via code run reflectively, where the mirror system
can catch it.

Typically, once a compile-time error is thrown and A is suspended, A will
then be terminated. However, this depends on the overall environment. A Dart
engine runs in the context of an embedder, a program that interfaces between the �
engine and the surrounding computing environment. The embedder will often
be a web browser, but need not be; it may be a C++ program on the server for
example. When an isolate fails with a compile-time error as described above,
control returns to the embedder, along with an exception describing the problem.
This is necessary so that the embedder can clean up resources etc. It is then the
embedder’s decision whether to terminate the isolate or not.

Static warnings are situations that do not preclude execution, but which are �
unlikely to be intended, and likely to cause bugs or inconveniences. A static
warning must be reported by a Dart compiler before the associated code is
executed.

Dart Programming Language Specification 14

When this specification says that a dynamic error occurs, it means that a �
corresponding error object is thrown. When it says that a dynamic type error �
occurs, it represents a failed type check at run time, and the object which is
thrown implements TypeError.

Whenever we say that an exception ex is thrown, it acts like an expression �
had thrown (17.0.1) with ex as exception object and with a stack trace corre-
sponding to the current system state. When we say that a C is thrown, where �
C is a class, we mean that an instance of class C is thrown.

If an uncaught exception is thrown by a running isolate A, A is immediately
suspended.

8 Variables variables

Variables are storage locations in memory.

〈variableDeclaration〉 ::= 〈declaredIdentifier〉 (‘,’ 〈identifier〉)*

〈declaredIdentifier〉 ::= 〈metadata〉 covariant? 〈finalConstVarOrType〉 〈identifier〉

〈finalConstVarOrType〉 ::= final 〈type〉?
| const 〈type〉?
| 〈varOrType〉

〈varOrType〉 ::= var
| 〈type〉

〈initializedVariableDeclaration〉 ::=
〈declaredIdentifier〉 (‘=’ 〈expression〉)? (‘,’ 〈initializedIdentifier〉)*

〈initializedIdentifier〉 ::= 〈identifier〉 (‘=’ 〈expression〉)?

〈initializedIdentifierList〉 ::= 〈initializedIdentifier〉 (‘,’ 〈initializedIdentifier〉)*

A 〈variableDeclaration〉 that declares two or more variables is equivalent to
multiple variable declarations declaring the same set of variable names in the
same order, with the same type and modifiers.

An 〈initializedVariableDeclaration〉 that declares two or more variables is
equivalent to multiple variable declarations declaring the same set of variable
names, in the same order, with the same initialization, type, and modifiers.

For example, var x, y; is equivalent to var x; var y; and static final String
s1, s2 = "foo"; is equivalent to static final String s1; static final String
s2 = "foo";.

It is possible for a variable declaration to include the modifier covariant. The
effect of doing this with an instance variable is described elsewhere (10.5). It is
a compile-time error for the declaration of a variable which is not an instance
variable to include the modifier covariant.

Dart Programming Language Specification 15

In a variable declaration of one of the forms N v; N v = e; where N is
derived from 〈metadata〉 〈finalConstVarOrType〉, we say that v is the declaring �
occurrence of the identifier. For every identifier which is not a declaring occur-
rence, we say that it is an referencing occurrence. We also abbreviate that to say �
that an identifier is a declaring identifier respectively an referencing identifier . �

�In an expression of the form e.id it is possible that e has static type dynamic
and id cannot be associated with any specific declaration named id at compile-time,
but in this situation id is still a referencing identifier.

An initializing variable declaration is a variable declaration whose declaring �
identifier is immediately followed by ‘=’ and an initializing expression. �

A variable declared at the top-level of a library is referred to as either a
library variable or a top-level variable. �

�A static variable is a variable that is not associated with a particular in- �
stance, but rather with an entire library or class. Static variables include library
variables and class variables. Class variables are variables whose declaration is
immediately nested inside a class declaration and includes the modifier static.
A library variable is implicitly static. It is a compile-time error to preface a
top-level variable declaration with the built-in identifier (16.37) static.

A constant variable is a variable whose declaration includes the modifier �
const. A constant variable must be initialized to a constant expression (16.3)
or a compile-time error occurs.

An initializing expression of a constant variable occurs in a constant context
(16.3.1), which means that const modifiers need not be specified explicitly.

A final variable is a variable whose binding is fixed upon initialization; a �
final variable v will always refer to the same object after v has been initialized.
A variable is final iff its declaration includes the modifier final or the modifier
const.

A mutable variable is a variable which is not final. �
The following rules on implicitly induced getters and setters apply to all

static and instance variables.
A variable declaration of one of the forms T v; T v = e; const T v = e;

final T v; or final T v = e; induces an implicit getter function (10.2) with
signature T get v whose invocation evaluates as described below (8.1). In these
cases the static type of v is T .

A variable declaration of one of the forms var v; var v = e; const v =
e; final v; or final v = e; induces an implicit getter function with signature
dynamic get v whose invocation evaluates as described below (8.1). In these
cases, the static type of v is dynamic (19.7).

A mutable variable declaration of the form T v; or T v = e; induces an
implicit setter function (10.3) with signature void set v=(T x) whose execu-
tion sets the value of v to the incoming argument x.

A mutable variable declaration of the form var v; or var v = e; induces
an implicit setter function with signature void set v=(dynamic x) whose exe-
cution sets the value of v to the incoming argument x.

The scope into which the implicit getters and setters are introduced depends
on the kind of variable declaration involved.

Dart Programming Language Specification 16

A library variable introduces a getter into the top level scope of the enclosing
library. A static class variable introduces a static getter into the immediately
enclosing class. An instance variable introduces an instance getter into the
immediately enclosing class.

A mutable library variable introduces a setter into the top level scope of
the enclosing library. A mutable static class variable introduces a static setter
into the immediately enclosing class. A mutable instance variable introduces an
instance setter into the immediately enclosing class.

Let v be variable declared in an initializing variable declaration, and let e
be the associated initializing expression. It is a compile-time error if the static
type of e is not assignable to the declared type of v. It is a compile-time error
if a final instance variable whose declaration has an initializer expression is also
initialized by a constructor, either by an initializing formal or an initializer list
entry.

It is a compile-time error if a final instance variable that has been initialized by
means of an initializing formal of a constructor k is also initialized in the initializer
list of k (10.6.1).

A static final variable v does not induce a setter, so unless a setter named v= is
in scope it is a compile-time error to assign to v.

Similarly, assignment to a final instance variable v is a compile-time error, unless
a setter named v= is in scope, or the receiver has type dynamic. v can be initialized
in its declaration or in initializer lists, but initialization and assignment is not the
same thing. When the receiver has type dynamic such an assignment is not a
compile-time error, but if there is no setter it will cause a dynamic error.

A variable that has no initializing expression has the null object (16.4) as
its initial value. Otherwise, variable initialization proceeds as follows:

Static variable declarations with an initializing expression are initialized
lazily (8.1).

The lazy semantics are given because we do not want a language where one
tends to define expensive initialization computations, causing long application
startup times. This is especially crucial for Dart, which must support the coding
of client applications.

Initialization of an instance variable with no initializing expression takes place
during constructor execution (10.6.1).

Initialization of an instance variable v with an initializing expression e pro-
ceeds as follows: e is evaluated to an object o and the variable v is bound to
o.

It is specified elsewhere when this initialization occurs, and in which environment
(p. 41, 17.3, 16.17.3).

If the initializing expression throws then access to the uninitialized variable is
prevented, because the instance creation that caused this initialization to take place
will throw.

It is a dynamic type error if the dynamic type of o is not a subtype of the
actual type of the variable v (19.10.1).

Dart Programming Language Specification 17

8.1 Evaluation of Implicit Variable Getters evaluationOfImplicitVariableGetters

Let d be the declaration of a static or instance variable v. If d is an instance
variable, then the invocation of the implicit getter of v evaluates to the value
stored in v. If d is a static variable (which can be a library variable) then the
implicit getter method of v executes as follows:

• Non-constant variable declaration with initializer. If d is of one of
the forms var v = e;, T v = e;, final v = e;, final T v = e;, static v
= e;, static T v = e; , static final v = e; or static final T v = e;
and no value has yet been stored into v then the initializing expression e
is evaluated. If, during the evaluation of e, the getter for v is invoked, a
CyclicInitializationError is thrown. If the evaluation of e throws an
exception e and stack trace s, the null object (16.4) is stored into v; the
execution of the getter then throws e and stack trace s. Otherwise, the
evaluation of e succeeded yielding an object o; then o is stored into v and
the execution of the getter completes by returning o. Otherwise, (when a
value o has been stored in v) execution of the getter completes by returning
o.

• Constant variable declaration. If d is of one of the forms const v =
e;, const T v = e;, static const v = e; or static const T v = e; the
result of the getter is the value of the constant expression e. Note that a
constant expression cannot depend on itself, so no cyclic references can occur.

• Variable declaration without initializer. The result of executing the
getter method is the value stored in v. This may be the initial value, that
is, the null object.

9 Functions functions

Functions abstract over executable actions.

〈functionSignature〉 ::=
〈metadata〉 〈type〉? 〈identifier〉 〈formalParameterPart〉

〈formalParameterPart〉 ::= 〈typeParameters〉? 〈formalParameterList〉

〈functionBody〉 ::= async? ‘=>’ 〈expression〉 ‘;’
| (async | async‘*’ | sync‘*’)? 〈block〉

〈block〉 ::= ‘{’ 〈statements〉 ‘}’

Functions can be introduced by function declarations (9.1), method decla-
rations (10.1, 10.7), getter declarations (10.2), setter declarations (10.3), and
constructor declarations (10.6); and they can be introduced by function literals
(16.13).

Dart Programming Language Specification 18

A function is asynchronous if its body is marked with the async or async* �
modifier. Otherwise the function is synchronous. A function is a generator if �

�its body is marked with the sync* or async* modifier. Further details about
these concepts are given below.

Whether a function is synchronous or asynchronous is orthogonal to whether it
is a generator or not. Generator functions are a sugar for functions that produce
collections in a systematic way, by lazily applying a function that generates individual
elements of a collection. Dart provides such a sugar in both the synchronous case,
where one returns an iterable, and in the asynchronous case, where one returns a
stream. Dart also allows both synchronous and asynchronous functions that produce
a single value.

Each declaration that introduces a function has a signature that specifies
its return type, name, and formal parameter part, except that the return type
may be omitted, and getters never have a formal parameter part. Function
literals have a formal parameter part, but no return type and no name. The
formal parameter part optionally specifies the formal type parameter list of the
function, and it always specifies its formal parameter list. A function body is
either:

• a block statement (17.1) containing the statements (17) executed by the
function, optionally marked with one of the modifiers: async, async* or
sync*. Unless it is statically known that the body of the function cannot
complete normally (that is, it cannot reach the end and “fall through”,
cf. 17.0.1), it is a compile-time error if the addition of return; at the end
of the body would be a compile-time error. For instance, it is an error if
the return type of a synchronous function is int, and the body may complete
normally. The precise rules are given in section 17.12.
Because Dart supports dynamic function invocations, we cannot guarantee
that a function that does not return a value will not be used in the context
of an expression. Therefore, every function must return a value. A function
body that ends without doing a throw or return will cause the function to
return the null object (16.4), as will a return without an expression. For
generator functions, the situation is more subtle. See further discussion in
section 17.12.
OR

• of the form => e or the form async => e, which both return the value of
the expression e as if by a return e. The other modifiers do not apply here,
because they apply only to generators, discussed below. Generators are not
allowed to return a value, values are added to the generated stream or iterable
using yield or yield*. Let T be the declared return type of the function that
has this body. It is a compile-time error if one of the following conditions
hold:

– The function is synchronous, T is not void, and it would have been a
compile-time error to declare the function with the body { return e;

Dart Programming Language Specification 19

} rather than => e. In particular, e can have any type when the return
type is void. This enables concise declarations of void functions. It
is reasonably easy to understand such a function, because the return
type is textually near to the returned expression e. In contrast, return
e; in a block body is only allowed for an e with one of a few specific
static types, because it is less likely that the developer understands
that the returned value will not be used (17.12).

– The function is asynchronous, flatten(T) is not void, and it would
have been a compile-time error to declare the function with the body
async { return e; } rather than async => e. In particular, e can
have any type when the flattened return type is void, and the rationale
is similar to the synchronous case.

It is a compile-time error if an async, async* or sync* modifier is attached
to the body of a setter or constructor.

An asynchronous setter would be of little use, since setters can only be used
in the context of an assignment (16.23), and an assignment expression always
evaluates to the value of the assignment’s right hand side. If the setter actually
did its work asynchronously, one might imagine that one would return a future
that resolved to the assignment’s right hand side after the setter did its work.

An asynchronous constructor would, by definition, never return an instance
of the class it purports to construct, but instead return a future. Calling such
a beast via new would be very confusing. If you need to produce an object
asynchronously, use a method.

One could allow modifiers for factories. A factory for Future could be modi-
fied by async, a factory for Stream could be modified by async* and a factory for
Iterable could be modified by sync*. No other scenario makes sense because
the object returned by the factory would be of the wrong type. This situation
is very unusual so it is not worth making an exception to the general rule for
constructors in order to allow it.

It is a compile-time error if the declared return type of a function marked
async is not a supertype of Future<T> for some type T . It is a compile-time
error if the declared return type of a function marked sync* is not a supertype
of Iterable<T> for some type T . It is a compile-time error if the declared
return type of a function marked async* is not a supertype of Stream<T> for
some type T .

9.1 Function Declarations functionDeclarations

A function declaration is a function that is neither a member of a class nor �
a function literal. Function declarations include exactly the following: library �
functions, which are function declarations at the top level of a library, and
local functions, which are function declarations declared inside other functions. �
Library functions are often referred to simply as top-level functions.

A function declaration consists of an identifier indicating the function’s
name, possibly prefaced by a return type. The function name is followed by

Dart Programming Language Specification 20

a signature and body. For getters, the signature is empty. The body is empty
for functions that are external.

The scope of a library function is the scope of the enclosing library. The
scope of a local function is described in section 17.4. In both cases, the name
of the function is in scope in its formal parameter scope (9.2).

It is a compile-time error to preface a function declaration with the built-in
identifier static.

When we say that a function f1 forwards to another function f2, we mean �
that invoking f1 causes f2 to be executed with the same arguments and/or
receiver as f1, and returns the result of executing f2 to the caller of f1, unless f2
throws an exception, in which case f1 throws the same exception. Furthermore,
we only use the term for synthetic functions introduced by the specification.

9.2 Formal Parameters formalParameters

Every non-getter function declaration includes a formal parameter list, which �
consists of a list of required positional parameters (9.2.1), followed by any op-
tional parameters (9.2.2). The optional parameters may be specified either as a
set of named parameters or as a list of positional parameters, but not both.

Some function declarations include a formal type parameter list (9), in which �
case we say that it is a generic function. A non-generic function is a function �

�which is not generic.
The formal parameter part of a function declaration consists of the formal �

type parameter list, if any, and the formal parameter list.
The following kinds of functions cannot be generic: Getters, setters, operators,

and constructors.
The formal type parameter list of a function declaration introduces a new

scope known as the function’s type parameter scope. The type parameter scope �
of a generic function f is enclosed in the scope where f is declared. Every formal
type parameter introduces a type into the type parameter scope.

If it exists, the type parameter scope of a function f is the current scope for
the signature of f , and for the formal type parameter list itself; otherwise the
scope where f is declared is the current scope for the signature of f .

This means that formal type parameters are in scope in the bounds of parameter
declarations, allowing for so-called F-bounded type parameters like

class C<X extends Comparable<X>> { ... },
and the formal type parameters are in scope for each other, allowing dependencies
like class D<X extends Y, Y> { ... }.

The formal parameter list of a function declaration introduces a new scope
known as the function’s formal parameter scope. The formal parameter scope �
of a non-generic function f is enclosed in the scope where f is declared. The
formal parameter scope of a generic function f is enclosed in the type parameter
scope of f . Every formal parameter introduces a local variable into the formal
parameter scope. The current scope for the function’s signature is the scope
that encloses the formal parameter scope.

Dart Programming Language Specification 21

This means that in a generic function declaration, the return type and parameter
type annotations can use the formal type parameters, but the formal parameters are
not in scope in the signature.

The body of a function declaration introduces a new scope known as the
function’s body scope. The body scope of a function f is enclosed in the scope �
introduced by the formal parameter scope of f .

It is a compile-time error if a formal parameter is declared as a constant
variable (8).

〈formalParameterList〉 ::= ‘(’ ‘)’
| ‘(’ 〈normalFormalParameters〉 ‘,’? ‘)’
| ‘(’ 〈normalFormalParameters〉 ‘,’ 〈optionalFormalParameters〉 ‘)’
| ‘(’ 〈optionalFormalParameters〉 ‘)’

〈normalFormalParameters〉 ::=
〈normalFormalParameter〉 (‘,’ 〈normalFormalParameter〉)*

〈optionalFormalParameters〉 ::= 〈optionalPositionalFormalParameters〉
| 〈namedFormalParameters〉

〈optionalPositionalFormalParameters〉 ::=
‘[’ 〈defaultFormalParameter〉 (‘,’ 〈defaultFormalParameter〉)* ‘,’? ‘]’

〈namedFormalParameters〉 ::=
‘{’ 〈defaultNamedParameter〉 (‘,’ 〈defaultNamedParameter〉)* ‘,’? ‘}’

Formal parameter lists allow an optional trailing comma after the last pa-
rameter (‘,’?). A parameter list with such a trailing comma is equivalent in
all ways to the same parameter list without the trailing comma. All parameter
lists in this specification are shown without a trailing comma, but the rules
and semantics apply equally to the corresponding parameter list with a trailing
comma.

9.2.1 Required Formals requiredFormals

A required formal parameter may be specified in one of three ways: �

• By means of a function signature that names the parameter and describes
its type as a function type (19.5). It is a compile-time error if any default
values are specified in the signature of such a function type.

• As an initializing formal, which is only valid as a parameter to a generative
constructor (10.6.1).

• Via an ordinary variable declaration (8).

Dart Programming Language Specification 22

〈normalFormalParameter〉 ::= 〈functionFormalParameter〉
| 〈fieldFormalParameter〉
| 〈simpleFormalParameter〉

〈functionFormalParameter〉 ::=
〈metadata〉 covariant? 〈type〉? 〈identifier〉 〈formalParameterPart〉

〈simpleFormalParameter〉 ::= 〈declaredIdentifier〉
| 〈metadata〉 covariant? 〈identifier〉

〈fieldFormalParameter〉 ::=
〈metadata〉 〈finalConstVarOrType〉? this ‘.’ 〈identifier〉
〈formalParameterPart〉?

It is possible to include the modifier covariant in some forms of parameter
declarations. The effect of doing this is described in a separate section (9.2.3).

Note that the non-terminal 〈normalFormalParameter〉 is also used in the gram-
mar rules for optional parameters, which means that such parameters can also be
covariant.

It is a compile-time error if the modifier covariant occurs on a parameter of a
function which is not an instance method, instance setter, or instance operator.

9.2.2 Optional Formals optionalFormals

Optional parameters may be specified and provided with default values.

〈defaultFormalParameter〉 ::= 〈normalFormalParameter〉 (‘=’ 〈expression〉)?

〈defaultNamedParameter〉 ::= 〈normalFormalParameter〉 (‘=’ 〈expression〉)?
| 〈normalFormalParameter〉 (‘:’ 〈expression〉)?

The form 〈normalFormalParameter〉 ‘:’ 〈expression〉 is equivalent to the
form 〈normalFormalParameter〉 ‘=’ 〈expression〉. The colon-syntax is included
only for backwards compatibility. It is deprecated and will be removed in a later
version of the language specification.

It is a compile-time error if the default value of an optional parameter is not
a constant expression (16.3). If no default is explicitly specified for an optional
parameter an implicit default of null is provided.

It is a compile-time error if the name of a named optional parameter begins
with an ‘_’ character.

The need for this restriction is a direct consequence of the fact that naming
and privacy are not orthogonal. If we allowed named parameters to begin with
an underscore, they would be considered private and inaccessible to callers from
outside the library where it was defined. If a method outside the library overrode
a method with a private optional name, it would not be a subtype of the original
method. The static checker would of course flag such situations, but the conse-
quence would be that adding a private named formal would break clients outside
the library in a way they could not easily correct.

Dart Programming Language Specification 23

9.2.3 Covariant Parameters covariantParameters

Dart allows formal parameters of instance methods, including setters and
operators, to be declared covariant. The syntax for doing this is specified in an
earlier section (9.2.1).

It is a compile-time error if the modifier covariant occurs in the declaration
of a formal parameter of a function which is not an instance method, an instance
setter, or an operator.

As specified below, a parameter can also be covariant for other reasons. The
overall effect of having a covariant parameter p in the signature of a given method
m is to allow the type of p to be overridden covariantly, which means that the type
required at run time for a given actual argument may be a proper subtype of the
type which is known at compile time at the call site.

This mechanism allows developers to explicitly request that a compile-time
guarantee which is otherwise supported (namely: that an actual argument whose
static type satisfies the requirement will also do so at run time) is replaced by
dynamic type checks. In return for accepting these dynamic type checks, develop-
ers can use covariant parameters to express software designs where the dynamic
type checks are known (or at least trusted) to succeed, based on reasoning that
the static type analysis does not capture.

Let m be a method signature with formal type parameters X1, . . . , Xs, posi-
tional formal parameters p1, . . . , pn, and named formal parameters q1, . . . , qk.
Let m′ be a method signature with formal type parameters X ′1, . . . , X ′s, posi-
tional formal parameters p′1, . . . , p′n′ , and named formal parameters q′1, . . . , q′k′ .
Assume that j ∈ 1..n′, and j ≤ n; we say that p′j is the parameter in m′ that
corresponds to the formal parameter pj in m. Assume that j ∈ 1..k′ and l ∈ 1..k; �
we say that q′j is the parameter in m′ that corresponds to the formal parameter �
ql in m if q′j = ql. Similarly, we say that the formal type parameter X ′j from m′

corresponds to the formal type parameter Xj from m, for all j ∈ 1..s. �
This includes the case where m respectively m′ has optional positional param-

eters, in which case k = 0 respectively k′ = 0 must hold, but we can have n 6= n′.
The case where the numbers of formal type parameters differ is not relevant.

Let C be a class that declares a method m which has a parameter p whose
declaration has the modifier covariant; in this case we say that the parameter
p is covariant-by-declaration. In this case the interface of C has the method �
signature m, and that signature has the parameter p; we also say that the
parameter p in this method signature is covariant-by-declaration. Finally, the �
parameter p of the method signature m of the interface of a class C is covariant- �
by-declaration if a direct superinterface of C has an accessible method signature
m′ with the same name as m, which has a parameter p′ that corresponds to p,
such that p′ is covariant-by-declaration.

Assume that C is a generic class with formal type parameter declarations
X1 extends B1 . . . , Xs extends Bs, let m be a declaration of an instance
method in C (which can be a method, a setter, or an operator), let p be a
parameter declared by m, and let T be the declared type of p. The parameter p
is covariant-by-class if, for any j ∈ 1..s, Xj occurs in a covariant or an invariant �

Dart Programming Language Specification 24

position in T . In this case the interface of C also has the method signature
m, and that signature has the parameter p; we also say that the parameter p
in this method signature is covariant-by-class. Finally, the parameter p of the �
method signature m of the interface of the class C is covariant-by-class if a �
direct superinterface of C has an accessible method signature m′ with the same
name as m, which has a parameter p′ that corresponds to p, such that p′ is
covariant-by-class.

A formal parameter p is covariant if p is covariant-by-declaration or p is �
covariant-by-class.

It is possible for a parameter to be simultaneously covariant-by-declaration
and covariant-by-class. Note that a parameter may be covariant-by-declaration
or covariant-by-class based on a declaration in any direct or indirect superinterface,
including any superclass: The definitions above propagate these properties to an
interface from each of its direct superinterfaces, but they will in turn receive the
property from their direct superinterfaces, and so on.

9.3 Type of a Function typeOfAFunction

This section specifies the static type which is ascribed to the function denoted
by a function declaration, and the dynamic type of the corresponding function
object.

In this specification, the notation used to denote the type of a function, that
is, a function type, follows the syntax of the language, except that extends is �
abbreviated to /. This means that every function type is of one of the forms
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k])
T0 Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k})
where T0 is the return type, Xj are the formal type parameters with bounds
Bj , j ∈ 1..s, Tj are the formal parameter types for j ∈ 1..n + k, and xn+j are
the names of named parameters for j ∈ 1..k. Non-generic function types are
covered by the case s = 0, where the type parameter declaration list <...> as a
whole is omitted. Similarly, the optional brackets [] and {} are omitted when
there are no optional parameters.

Both forms with optionals cover function types with no optionals when k = 0,
and every rule in this specification is such that any of the two forms may be used
without ambiguity to determine the treatment of function types with no optionals.

If a function declaration does not declare a return type explicitly, its return
type is dynamic (19.7), unless it is a constructor, in which case it is not consid-
ered to have a return type, or it is a setter or operator []=, in which case its
return type is void.

A function declaration may declare formal type parameters. The type of the
function includes the names of the type parameters and for each type parameter
the upper bound, which is considered to be the built-in class Object if no
bound is specified. When consistent renaming of type parameters can make two
function types identical, they are considered to be the same type.

Dart Programming Language Specification 25

It is convenient to include the formal type parameter names in function types
because they are needed in order to express such things as relations among different
type parameters, F-bounds, and the types of formal parameters. However, we do
not wish to distinguish between two function types if they have the same structure
and only differ in the choice of names. This treatment of names is also known as
alpha-equivalence.

In the following three paragraphs, if the number m of formal type parameters
is zero then the type parameter list in the function type is omitted.

Let F be a function with type parameters X1 extendsB1, . . . , Xs extendsBs,
required formal parameter types T1, . . . , Tn, return type T0, and no optional
parameters. Then the static type of F is
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn).

Let F be a function with type parameters X1 extendsB1, . . . , Xs extendsBs,
required formal parameter types T1, . . . , Tn, return type T0 and positional op-
tional parameter types Tn+1, . . . , Tn+k. Then the static type of F is
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]).

Let F be a function with type parameters X1 extendsB1, . . . , Xs extendsBs,
required formal parameter types T1, . . . , Tn, return type T0, and named param-
eters Tn+1 xn+1, . . . , Tn+k xn+k, where xn+j , j ∈ 1..k may or may not have a
default value. Then the static type of F is
T0 Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}).

Let T be the static type of a function declaration F . Let u be the run-
time type of a function object o obtained by function closurization (16.18) or
instance method closurization (16.22.3) applied to F , and let t be the actual type
corresponding to T at the occasion where o was created (19.10.1). T may contain
free type variables, but t contains their actual values. The following must then
hold: u is a class that implements the built-in class Function; u is a subtype of t;
and u is not a subtype of any function type which is a proper subtype of t. If we
had omitted the last requirement then f is intFunction([int]) could evaluate
to true with the declaration void f() {}, which is obviously not the intention.

It is up to the implementation to choose an appropriate representation for
function objects. For example, consider that a function object produced via
property extraction treats equality differently from other function objects, and is
therefore likely a different class. Implementations may also use different classes
for function objects based on arity and or type. Arity may be implicitly affected
by whether a function is an instance method (with an implicit receiver parame-
ter) or not. The variations are manifold and, e.g., one cannot assume that any
two distinct function objects will necessarily have the same run-time type.

9.4 External Functions externalFunctions

An external function is a function whose body is provided separately from its �
declaration. An external function may be a top-level function (18), a method
(10.1, 10.7), a getter (10.2), a setter (10.3) or a non-redirecting constructor
(10.6.1, 10.6.2). External functions are introduced via the built-in identifier
external (16.37) followed by the function signature.

Dart Programming Language Specification 26

External functions allow us to introduce type information for code that is
not statically known to the Dart compiler.

Examples of external functions might be foreign functions (defined in C, or
Javascript etc.), primitives of the implementation (as defined by the Dart run-time
system), or code that was dynamically generated but whose interface is statically
known. However, an abstract method is different from an external function, as it
has no body.

An external function is connected to its body by an implementation specific
mechanism. Attempting to invoke an external function that has not been con-
nected to its body will throw a NoSuchMethodError or some subclass thereof.

The actual syntax is given in sections 10 and 18 below.

10 Classes classes

A class defines the form and behavior of a set of objects which are its in- �
�stances. Classes may be defined by class declarations as described below, or via

mixin applications (12.3).

〈classDefinition〉 ::= 〈metadata〉 abstract? class 〈identifier〉 〈typeParameters〉?
〈superclass〉? 〈interfaces〉?
‘{’ (〈metadata〉 〈classMemberDefinition〉)* ‘}’

| 〈metadata〉 abstract? class 〈mixinApplicationClass〉

〈typeNotVoidList〉 ::= 〈typeNotVoid〉 (‘,’ 〈typeNotVoid〉)*

〈classMemberDefinition〉 ::= 〈declaration〉 ‘;’
| 〈methodSignature〉 〈functionBody〉

〈methodSignature〉 ::= 〈constructorSignature〉 〈initializers〉?
| 〈factoryConstructorSignature〉
| static? 〈functionSignature〉
| static? 〈getterSignature〉
| static? 〈setterSignature〉
| 〈operatorSignature〉

〈declaration〉 ::= 〈constantConstructorSignature〉 (〈redirection〉 | 〈initializers〉)?
| 〈constructorSignature〉 (〈redirection〉 | 〈initializers〉)?
| external 〈constantConstructorSignature〉
| external 〈constructorSignature〉
| (external static?)? 〈getterSignature〉
| (external static?)? 〈setterSignature〉
| external? 〈operatorSignature〉
| (external static?)? 〈functionSignature〉
| static (final | const) 〈type〉? 〈staticFinalDeclarationList〉
| final 〈type〉? 〈initializedIdentifierList〉
| (static | covariant)? (var | 〈type〉) 〈initializedIdentifierList〉

Dart Programming Language Specification 27

〈staticFinalDeclarationList〉 ::=
〈staticFinalDeclaration〉 (‘,’ 〈staticFinalDeclaration〉)*

〈staticFinalDeclaration〉 ::= 〈identifier〉 ‘=’ 〈expression〉

It is possible to include the modifier covariant in some forms of declarations.
The effect of doing this is described elsewhere (9.2.3).

A class has constructors, instance members and static members. The in- �
stance members of a class are its instance methods, getters, setters and instance
variables. The static members of a class are its static methods, getters, setters �
and class variables. The members of a class are its static and instance members. �

A class has several scopes:

• A type-parameter scope, which is empty if the class is not generic (14). �
The enclosing scope of the type-parameter scope of a class is the enclosing
scope of the class declaration.

• A static scope. The enclosing scope of the static scope of a class is the �
type parameter scope (14) of the class.

• An instance scope. The enclosing scope of a class’ instance scope is the �
class’ static scope.

The enclosing scope of an instance member declaration is the instance scope
of the class in which it is declared.

The enclosing scope of a static member declaration is the static scope of the
class in which it is declared.

Every class has a single superclass except class Object which has no super-
class. A class may implement a number of interfaces by declaring them in its
implements clause (10.9).

An abstract class declaration is a class declaration that is explicitly declared �
with the abstract modifier. A concrete class declaration is a class declaration �
that is not abstract. An abstract class is a class whose declaration is abstract, �
and a concrete class is a class whose declaration is concrete. �

We want different behavior for concrete classes and abstract classes. If A is
intended to be abstract, we want the static checker to warn about any attempt to
instantiate A, and we do not want the checker to complain about unimplemented
methods in A. In contrast, if A is intended to be concrete, the checker should
warn about all unimplemented methods, but allow clients to instantiate it freely.

The interface of a class C is an implicit interface that declares instance member
signatures that correspond to the instance members declared by C, and whose direct
superinterfaces are the direct superinterfaces of C (11, 10.9).

When a class name appears as a type, that name denotes the interface of
the class.

A concrete class must fully implement its interface: Let C be a concrete
class with interface I. Assume that I has an accessible member signature m.

Dart Programming Language Specification 28

It is a compile-time error if C does not have a concrete accessible member with
the same name as m, unless C has a non-trivial noSuchMethod (10.1.2). It is a
compile-time error if C has a concrete accessible member with the same name
as m, with a method signature m′ which is not a correct override of m (11.2.2),
unless that concrete member is a noSuchMethod forwarder (10.1.2).

In particular, it is an error for a class to be concrete even if it inherits a member
implementation for every member signature in its interface, unless each of them has
parameters and types such that they satisfy the corresponding member signature.
But when there is a non-trivial noSuchMethod it is allowed to leave some members
unimplemented, and it is allowed to to have a noSuchMethod forwarder which
does not satisfy the class interface (in which case it will be overridden by another
noSuchMethod forwarder).

It is a compile-time error if a class declares two members of the same name,
either because it declares the same name twice in the same scope (6.1), or because
it declares a static member and an instance member with the same name (10.10).

Here are simple examples, that illustrate the difference between “has a member”
and “declares a member”. For example, B declares one member named f, but has �

�two such members. The rules of inheritance determine what members a class has.

class A {
var i = 0;
var j;
f(x) => 3;

}

class B extends A {
int i = 1; // getter i and setter i= override versions from A
static j; // compile-time error: static getter & setter conflict with
// instance getter & setter

// compile-time error: static method conflicts with instance method
static f(x) => 3;

}

It is a compile-time error if a class named C declares a member with base-
name (10.10) C. If a generic class named G declares a type variable named X,
it is a compile-time error if X is equal to G, if G has a member whose basename
is X, and if G has a constructor named G.X.

10.1 Instance Methods instanceMethods

Instance methods are functions (9) whose declarations are immediately con- �
tained within a class declaration and that are not declared static. The instance �
methods of a class C are the instance methods declared by C and the instance
methods inherited by C from its superclass (10.8.1).

Consider a class C. It is a compile-time error if an instance method declara-

Dart Programming Language Specification 29

tion in C has a member signature m (11) which overrides a member signature
m′ from a direct superinterface of C (11.2.1), unless this is a correct member
override (11.2.2).

This is not the only kind of conflict that may exist: An instance member dec-
laration D may conflict with another declaration D′, even in the case where they
do not have the same name or they are not the same kind of declaration. E.g., D
could be an instance getter and D′ a static setter (10.10).

For each parameter p of m where covariant is present, it is a compile-time
error if there exists a direct or indirect superinterface J of C which has an
accessible method signature m′′ with the same name as m, such that m′′ has a
parameter p′′ that corresponds to p (9.2.3), unless the type of p is assignable to
the type of p′′.

This means that a parameter which is covariant-by-declaration can have a type
which is a supertype or a subtype of the type of a corresponding parameter in
a superinterface, but the two types cannot be unrelated. Note that this require-
ment must be satisfied for each direct or indirect superinterface separately, because
assignability is not transitive.

The superinterface may be the statically known type of the receiver, so this
means that we relax the potential typing relationship between the statically known
type of a parameter and the type which is actually required at run time to the
assignability relationship, rather than the strict supertype relationship which ap-
plies to a parameter which is not covariant. It should be noted that it is not
statically known at the call site whether any given parameter is covariant, be-
cause the covariance could be introduced in a proper subtype of the statically
known type of the receiver. We chose to give priority to flexibility rather than
safety here, because the whole point covariant parameters is that developers can
make the choice to increase the flexibility in a trade-off where some static type
safety is lost.

10.1.1 Operators operators

Operators are instance methods with special names. �

〈operatorSignature〉 ::=
〈type〉? operator 〈operator〉 〈formalParameterList〉

〈operator〉 ::= ‘~’
| 〈binaryOperator〉
| ‘[]’
| ‘[]=’

〈binaryOperator〉 ::= 〈multiplicativeOperator〉
| 〈additiveOperator〉
| 〈shiftOperator〉
| 〈relationalOperator〉
| ‘==’
| 〈bitwiseOperator〉

Dart Programming Language Specification 30

An operator declaration is identified using the built-in identifier (16.37) op-
erator.

The following names are allowed for user-defined operators: ‘<’, ‘>’, ‘<=’,
‘>=’, ‘==’, ‘-’, ‘+’, ‘/’, ‘˜/’, ‘*’, ‘%’, ‘|’, ‘ˆ’, ‘&’, ‘<<’, ‘>>’, ‘>>>’, ‘[]=’, ‘[]’, ‘˜’.

It is a compile-time error if the arity of the user-declared operator ‘[]=’ is
not 2. It is a compile-time error if the arity of a user-declared operator with
one of the names: ‘<’, ‘>’, ‘<=’, ‘>=’, ‘==’, ‘-’, ‘+’, ‘˜/’, ‘/’, ‘*’, ‘%’, ‘|’, ‘ˆ’,
‘&’, ‘<<’, ‘>>’, ‘>>>’, ‘[]’ is not 1. It is a compile-time error if the arity of the
user-declared operator ‘-’ is not 0 or 1.

The ‘-’ operator is unique in that two overloaded versions are permitted. If
the operator has no arguments, it denotes unary minus. If it has an argument, it
denotes binary subtraction.

The name of the unary operator ‘-’ is unary-.
This device allows the two methods to be distinguished for purposes of method

lookup, override and reflection.
It is a compile-time error if the arity of the user-declared operator ‘˜’ is not

0.
It is a compile-time error to declare an optional parameter in an operator.
It is a static warning if the return type of a user-declared operator ‘[]=’ is

explicitly declared and not void.
If no return type is specified for a user-declared operator ‘[]=’, its return type

is void (9.3).
The return type is void because a return statement in an implementation of

operator ‘[]=’ does not return a value. Consider a non-throwing evaluation of
an expression e of the form e1[e2] = e3, and assume that the evaluation of e3
yields an instance o. e will then evaluate to o, and even if the executed body
of operator ‘[]=’ completes with a value o′, that is, if o′ is returned, that value
is simply ignored. The rationale for this behavior is that assignments should be
guaranteed to evaluate to the assigned value.

10.1.2 The Method noSuchMethod theMethodNoSuchMethod

The method noSuchMethod is invoked implicitly during execution in situa-
tions where one or more member lookups fail (16.21.1, 16.22.1, 16.23).

We may think of noSuchMethod as a backup which kicks in when an invocation
of a member m is attempted, but there is no member named m, or it exists, but
the given invocation has an argument list shape that does not fit the declaration
of m (passing fewer positional arguments than required or more than supported,
or passing named arguments with names not declared by m). This can only occur
for an ordinary method invocation when the receiver has static type dynamic, or
for a function invocation when the invoked function has static type Function or
dynamic. The method noSuchMethod can also be invoked in other ways, e.g.,
it can be called explicitly like any other method, and it can be invoked from a
noSuchMethod forwarder, as explained below.

We say that a class C has a non-trivial noSuchMethod if C has a concrete �

Dart Programming Language Specification 31

member named noSuchMethod which is distinct from the one declared in the
built-in class Object.

Note that it must be a method that accepts one positional argument, in order
to correctly override noSuchMethod in Object. For instance, it can have sig-
nature noSuchMethod(Invocation i) or noSuchMethod(Object i, [String
s]), but not noSuchMethod(Invocation i, String s). This implies that the
situation where noSuchMethod is invoked (explicitly or implicitly) with one actual
argument cannot fail for the reason that “there is no such method”, such that we
would enter an infinite loop trying to invoke noSuchMethod. It is possible, however,
to encounter a dynamic error during an invocation of noSuchMethod because the
actual argument fails to satisfy a type check, but that situation will give rise to a dy-
namic type error rather than a repeated attempt to invoke noSuchMethod (16.17.3).
Here is an example where a dynamic type error occurs because an attempt is made
to pass an Invocation where only the null object is accepted:

class A {
noSuchMethod(covariant Null n) => n;

}

void main() {
dynamic d = A();
d.foo(42); // Dynamic type error when invoking noSuchMethod.

}

Let C be a concrete class and let L be the library that contains the dec-
laration of C. The member m is noSuchMethod forwarded in C iff one of the �
following is true:

• C has a non-trivial noSuchMethod, the interface of C contains m, and
C has no concrete declaration of m (that is, no member m is declared or
inherited by C).

• There exists a direct or indirect superinterface D of C which is declared
in the library L2, the interface of D contains m (which implies that m is
accessible to L2), m is inaccessible to L, and no superclass of C has a
concrete declaration of m accessible to L2.

For a concrete class C, a noSuchMethod forwarder is implicitly induced for �
each member m which is noSuchMethod forwarded. This is a concrete member
of C with the signature taken from the interface of C respectively D above, and
with the same default value for each optional parameter. It can be invoked in
an ordinary invocation and in a superinvocation, and when m is a method it
can be closurized (16.22.3) using a property extraction (16.22).

This implies that a noSuchMethod forwarder has the same properties as an
explicitly declared concrete member, except of course that a noSuchMethod for-
warder does not prevent itself from being induced. We do not specify the body of

Dart Programming Language Specification 32

a noSuchMethod forwarder, but it will invoke noSuchMethod, and we specify the
dynamic semantics of executing it below.

At the beginning of this section we mentioned that implicit invocations of
noSuchMethod can only occur with a receiver of static type dynamic or a function of
static type dynamic or Function. With a noSuchMethod forwarder, noSuchMethod
can also be invoked on a receiver whose static type is not dynamic. No similar sit-
uation exists for functions, because it is impossible to induce a noSuchMethod
forwarder into the class of a function object.

For a concrete class C, we may think of a non-trivial noSuchMethod (declared in
or inherited by C) as a request for “automatic implementation” of all unimplemented
members in the interface of C as noSuchMethod forwarders. Similarly, there is
an implicit request for automatic implementation of all unimplemented inaccessible
members of any concrete class, whether or not there is a non-trivial noSuchMethod.
Note that the latter cannot be written explicitly in Dart, because their names are
inaccessible; but the language can still specify that they are induced implicitly,
because compilers control the treatment of private names.

It is a compile-time error if a concrete class C has a noSuchMethod forwarded
method signature S for a method named m, and a superclass of C has an
accessible concrete declaration of m which is not a noSuchMethod forwarder.

This can only happen if that concrete declaration does not correctly override S.
Consider the following example:

class A {
foo(int i) => null;

}
abstract class B {

foo([int i]);
}
class C extends A implements B {

noSuchMethod(Invocation i) => ...;
// Error: Forwarder would override ‘A.foo‘.

}

In this example, an implementation with signature foo(int i) is inherited
by C, and the superinterface B declares the signature foo([int i]). This is a
compile-time error because C does not have a method implementation with signature
foo([int]). We do not wish to implicitly induce a noSuchMethod forwarder with
signature foo([int]) because it would override A.foo, and that is likely to be
highly confusing for developers. In particular, it would cause an invocation like
C().foo(42) to invoke noSuchMethod, even though that is an invocation which
is correct for the declaration of foo in A. Hence, we require developers to explicitly
resolve the conflict whenever an implicitly induced noSuchMethod forwarder would
override an explicitly declared inherited implementation. It is no problem, however,
to let a noSuchMethod forwarder override another noSuchMethod forwarder, and
hence there is no error in that situation.

For the dynamic semantics, assume that a class C has an implicitly induced

Dart Programming Language Specification 33

noSuchMethod forwarder named m, with formal type parameters X1, . . . , Xr,
positional formal parameters a1, . . . , ak (some of which may be optional when
m = 0), and named formal parameters with names x1, . . . , xm (with default
values as mentioned above).

For this purpose we need not distinguish between a signature that has optional
positional parameters and a signature that has named parameters, because the
former is covered by m = 0.

The execution of the body of m creates an instance im of the predefined
class Invocation such that:

• im.isMethod evaluates to true iff m is a method.

• im.isGetter evaluates to true iff m is a getter.

• im.isSetter evaluates to true iff m is a setter.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an unmodifiable list with the same
values as the list resulting from evaluation of <Object>[a1, . . . , ak].

• im.namedArguments evaluates to an unmodifiable map with the same keys
and values as the map resulting from evaluation of
<Symbol, Object>{#x1: x1, . . . , #xm: xm}.

• im.typeArguments evaluates to an unmodifiable list with the same values
as the list resulting from evaluation of <Type>[X1, . . . , Xr].

Next, noSuchMethod is invoked with i as the actual argument, and the result
obtained from there is returned by the execution of m.

This is an ordinary method invocation of noSuchMethod (16.21.1). That is, a
noSuchMethod forwarder in a class C can invoke an implementation of noSuchMethod
that is declared in a subclass of C.

Dynamic type checks on the actual arguments passed to m are performed in the
same way as for an invocation of an explicitly declared method. In particular, an
actual argument passed to a covariant parameter will be checked dynamically.

Also, like other ordinary method invocations, it is a dynamic type error if the
result returned by a noSuchMethod forwarder has a type which is not a subtype of
the return type of the forwarder.

One special case to be aware of is where a forwarder is torn off and then invoked
with an actual argument list which does not match the formal parameter list. In
that situation we will get an invocation of Object.noSuchMethod rather than the
noSuchMethod in the original receiver, because this is an invocation of a function
object (and they do not override noSuchMethod):

class A {
noSuchMethod(Invocation i) => null;
void foo();

Dart Programming Language Specification 34

}

void main() {
A a = A();
Function f = a.foo;
// Invokes ‘Object.noSuchMethod‘, which throws.
f(42);

}

10.1.3 The Operator ‘==’ theOperatorEqualsEquals

The operator ‘==’ is used implicitly in certain situations, and in particular
constant expressions (16.3) give rise to constraints on that operator. In order
to specify these constraints just once we introduce the notion of a primitive �
operator ‘==’ :

• Every instance of type int and String has a primitive operator ‘==’.

• Every instance of type Symbol which was originally obtained by evaluation
of a literal symbol or a constant invocation of a constructor of the Symbol
class has a primitive operator ‘==’.

• Every instance of type Type which was originally obtained by evaluating
a constant type literal (19.2) has a primitive operator ‘==’.

• An instance o has a primitive operator ‘==’ if the dynamic type of o is a
class C, and C has a primitive operator ‘==’.

• The class Object has a primitive operator ‘==’.

• A class C has a primitive operator ‘==’ if it does not have an implemen-
tation of the operator ‘==’ that overrides the one inherited from Object.
In particular, the following have a primitive operator ‘==’: The null object
(16.4), function objects obtained by function closurization of a static method
or a top-level function (16.18), instances of type bool (16.6), and instances
obtained by evaluation of a list literal (16.9), a map literal (16.10), or a set
literal (16.11).

When we say that the operator ‘==’ of a given instance or class is not prim- �
itive, it means that it is not true that said instance or class has a primitive
operator ‘==’.

10.2 Getters getters

Getters are functions (9) that are used to retrieve the values of object prop-
erties.

〈getterSignature〉 ::= 〈type〉? get 〈identifier〉

Dart Programming Language Specification 35

If no return type is specified, the return type of the getter is dynamic.
A getter definition that is prefixed with the static modifier defines a static

getter. Otherwise, it defines an instance getter. The name of the getter is given
by the identifier in the definition.

The instance getters of a class C are those instance getters declared by C, �
either implicitly or explicitly, and the instance getters inherited by C from its
superclass. The static getters of a class C are those static getters declared by �
C.

A getter declaration may conflict with other declarations (10.10). In particular,
a getter can never override a method, and a method can never override a getter
or an instance variable. The rules for when a getter correctly overrides another
member are given elsewhere (11.2.2).

10.3 Setters setters

Setters are functions (9) that are used to set the values of object properties.

〈setterSignature〉 ::= 〈type〉? set 〈identifier〉 〈formalParameterList〉

If no return type is specified, the return type of the setter is void (9.3).
A setter definition that is prefixed with the static modifier defines a static

setter. Otherwise, it defines an instance setter. The name of a setter is obtained
by appending the string ‘=’ to the identifier given in its signature.

Hence, a setter name can never conflict with, override or be overridden by a
getter or method.

The instance setters of a class C are those instance setters declared by C �
either implicitly or explicitly, and the instance setters inherited by C from its
superclass. The static setters of a class C are those static setters declared by �
C, either implicitly or explicitly.

It is a compile-time error if a setter’s formal parameter list does not consist
of exactly one required formal parameter p. We could enforce this via the
grammar, but we’d have to specify the evaluation rules in that case.

It is a static warning if a setter declares a return type other than void. It is
a static warning if a class has a setter named v= with argument type T and a
getter named v with return type S, and S may not be assigned to T .

The rules for when a setter correctly overrides another member are given else-
where (11.2.2). A setter declaration may conflict with other declarations as well
(10.10).

10.4 Abstract Instance Members abstractInstanceMembers

An abstract method (respectively, abstract getter or abstract setter) is an �
�
�

instance method, getter or setter that is not declared external and does not
provide an implementation. A concrete method (respectively, concrete getter or �

�concrete setter) is an instance method, getter or setter that is not abstract.
�

Dart Programming Language Specification 36

Abstract instance members are useful because of their interplay with classes.
Every Dart class induces an implicit interface, and Dart does not support speci-
fying interfaces explicitly. Using an abstract class instead of a traditional inter-
face has important advantages. An abstract class can provide default implemen-
tations. It can also provide static methods, obviating the need for service classes
such as Collections or Lists, whose entire purpose is to group utilities related
to a given type.

Invocation of an abstract method, getter, or setter cannot occur, because lookup
(16.19) will never yield an abstract member as its result. One way to think about
this is that an abstract member declaration in a subclass does not override or shadow
an inherited member implementation. It only serves to specify the signature of the
given member that every concrete subtype must have an implementation of; that
is, it contributes to the interface of the class, not to the class itself.

The purpose of an abstract method is to provide a declaration for purposes
such as type checking and reflection. In mixins, it is often useful to introduce
such declarations for methods that the mixin expects will be provided by the
superclass the mixin is applied to.

We wish to detect if one declares a concrete class with abstract members.
However, code like the following should work:

class Base {
int get one => 1;

}

abstract class Mix {
int get one;
int get two => one + one;

}

class C extends Base with Mix { }

At run time, the concrete method one declared in Base will be executed, and
no problem should arise. Therefore no error should be raised if a corresponding
concrete member exists in the hierarchy.

10.5 Instance Variables instanceVariables

Instance variables are variables whose declarations are immediately con- �
tained within a class declaration and that are not declared static. The instance �
variables of a class C are the instance variables declared by C and the instance
variables inherited by C from its superclass.

It is a compile-time error if an instance variable is declared to be constant.
The notion of a constant instance variable is subtle and confusing to pro-

grammers. An instance variable is intended to vary per instance. A constant
instance variable would have the same value for all instances, and as such is
already a dubious idea.

Dart Programming Language Specification 37

The language could interpret const instance variable declarations as instance
getters that return a constant. However, a constant instance variable could not
be treated as a true compile-time constant, as its getter would be subject to
overriding.

Given that the value does not depend on the instance, it is better to use a
static class variable. An instance getter for it can always be defined manually if
desired.

It is possible for the declaration of an instance variable to include the mod-
ifier covariant (8). The effect of this is that the formal parameter of the corre-
sponding implicitly induced setter is considered to be covariant-by-declaration
(9.2.3).

The modifier covariant on an instance variable has no other effects. In par-
ticular, the return type of the implicitly induced getter can already be overridden
covariantly without covariant, and it can never be overridden to a supertype or an
unrelated type, regardless of whether the modifier covariant is present.

10.6 Constructors constructors

A constructor is a special function that is used in instance creation ex- �
pressions (16.15) to obtain objects, typically by creating or initializing them.
Constructors may be generative (10.6.1) or they may be factories (10.6.2).

A constructor name always begins with the name of its immediately enclosing �
class, and may optionally be followed by a dot and an identifier id. It is a
compile-time error if the name of a constructor is not a constructor name.

The function type of a constructor k is the function type whose return type is �
the class that contains the declaration of k, and whose formal parameter types,
optionality, and names of named parameters correspond to the declaration of k.

Note that the function type F of a constructor k may contain type variables
declared by the enclosing class C. In that case we can apply a substitution to F ,
as in [T1/X1, . . . , Tm/Xm]F , where Xj , j ∈ 1..m are the formal type parameters
of C and Tj , j ∈ 1..m are specified in the given context. We may also omit such a
substitution when the given context is the instance scope of C, where X1, . . . , Xm

are in scope.
A constructor declaration may conflict with static member declarations (10.10).

Iff no constructor is specified for a class C, it implicitly has a default con-
structor C() : super() {}, unless C is class Object.

10.6.1 Generative Constructors generativeConstructors

A generative constructor declaration consists of a constructor name, a con- �
structor parameter list, and either a redirect clause or an initializer list and an
optional body.

〈constructorSignature〉 ::=
〈identifier〉 (‘.’ 〈identifier〉)? 〈formalParameterList〉

Dart Programming Language Specification 38

A constructor parameter list is a parenthesized, comma-separated list of for- �
mal constructor parameters. A formal constructor parameter is either a formal �
parameter (9.2) or an initializing formal. An initializing formal has the form �
this.id, where id is the name of an instance variable of the immediately en-
closing class. It is a compile-time error if id is not an instance variable of the
immediately enclosing class. It is a compile-time error if an initializing formal
is used by a function other than a non-redirecting generative constructor.

If an explicit type is attached to the initializing formal, that is its static
type. Otherwise, the type of an initializing formal named id is Tid, where Tid is
the type of the instance variable named id in the immediately enclosing class.
It is a compile-time error if the static type of id is not a subtype of Tid.

Initializing formals constitute an exception to the rule that every formal pa-
rameter introduces a local variable into the formal parameter scope (9.2). When
the formal parameter list of a non-redirecting generative constructor contains
any initializing formals, a new scope is introduced, the formal parameter ini- �
tializer scope, which is the current scope of the initializer list of the constructor,
and which is enclosed in the scope where the constructor is declared. Each
initializing formal in the formal parameter list introduces a final local variable
into the formal parameter initializer scope, but not into the formal parameter
scope; every other formal parameter introduces a local variable into both the
formal parameter scope and the formal parameter initializer scope.

This means that formal parameters, including initializing formals, must have
distinct names, and that initializing formals are in scope for the initializer list, but
they are not in scope for the body of the constructor. When a formal parameter
introduces a local variable into two scopes, it is still one variable and hence one
storage location. The type of the constructor is defined in terms of its formal
parameters, including the initializing formals.

Initializing formals are executed during the execution of generative construc-
tors detailed below. Executing an initializing formal this.id causes the instance
variable id of the immediately surrounding class to be assigned the value of the
corresponding actual parameter, unless the assigned value has a dynamic type
which is not a subtype of the declared type of the instance variable id, in which
case a dynamic error occurs.

The above rule allows initializing formals to be used as optional parameters:

class A {
int x;
A([this.x]);

}

is legal, and has the same effect as

class A {
int x;
A([int x]): this.x = x;

}

Dart Programming Language Specification 39

A fresh instance is an instance whose identity is distinct from any previously �
allocated instance of its class. A generative constructor always operates on a
fresh instance of its immediately enclosing class.

The above holds if the constructor is actually run, as it is by new. If a constructor
c is referenced by const, c may not be run; instead, a canonical object may be looked
up. See the section on instance creation (16.15).

If a generative constructor c is not a redirecting constructor and no body is
provided, then c implicitly has an empty body {}.
Redirecting Generative Constructors

redirectingGenerativeConstructors

A generative constructor may be redirecting, in which case its only action is �
to invoke another generative constructor. A redirecting constructor has no body;
instead, it has a redirect clause that specifies which constructor the invocation
is redirected to, and with which arguments.

〈redirection〉 ::= ‘:’ this (‘.’ 〈identifier〉)? 〈arguments〉

Assume that C<X1 extends B1 . . . , Xm extends Bm> is the name and
formal type parameters of the enclosing class, const? stands for either const or
nothing, N is C or C.id0 for some identifier id0, and id is an identifier. Consider
a declaration of a redirecting generative constructor k of one of the forms

const? N(T1 x1 . . . , Tn xn, [Tn+1 xn+1 = d1 . . . , Tn+k xn+k = dk]):
R;

const? N(T1 x1 . . . , Tn xn, {Tn+1 xn+1 = d1 . . . , Tn+k xn+k = dk}):
R;
where R is of one of the forms

this(e1 . . . , ep, x1: ep+1, . . . , xq: ep+q)
this.id(e1 . . . , ep, x1: ep+1, . . . , xq: ep+q)
The redirectee constructor for this declaration is then the constructor de- �

noted by C<X1 . . . , Xm> respectively C<X1 . . . , Xm>.id. It is a compile-time
error if the static argument list type (16.17.1) of (e1 . . . , ep, x1: ep+1, . . . , xq:
ep+q) is not an assignable match for the formal parameter list of the redirectee.

Note that the case where no named parameters are passed is covered by letting
q be zero, and the case where C is a non-generic class is covered by letting m be
zero, in which case the formal type parameter list and actual type argument lists
are omitted (14).

We require an assignable match rather than the stricter subtype match be-
cause a generative redirecting constructor k invokes its redirectee k′ in a manner
which resembles function invocation in general. For instance, k could accept an
argument x and pass on an expression ej using x such as x.f(42) to k′, and it
would be surprising if ej were subject to more strict constraints than the ones
applied to actual arguments to function invocations in general.

When const? is const, it is a compile-time error if the redirectee is not a
constant constructor. Moreover, when const? is const, each ei, i ∈ 1..p + q,
must be a potentially constant expression (10.6.3).

It is a dynamic type error if an actual argument passed in an invocation
of a redirecting generative constructor k is not a subtype of the actual type

Dart Programming Language Specification 40

(19.10.1) of the corresponding formal parameter in the declaration of k. It is
a dynamic type error if an actual argument passed to the redirectee k′ of a
redirecting generative constructor is not a subtype of the actual type (19.10.1)
of the corresponding formal parameter in the declaration of the redirectee.
Initializer Lists

initializerLists

An initializer list begins with a colon, and consists of a comma-separated
list of individual initializers. �

There are three kinds of initializers.

• A superinitializer identifies a superconstructor —that is, a specific constructor
of the superclass. Execution of the superinitializer causes the initializer list of
the superconstructor to be executed.

• An instance variable initializer assigns a value to an individual instance vari-
able.

• An assertion.

〈initializers〉 ::= ‘:’ 〈initializerListEntry〉 (‘,’ 〈initializerListEntry〉)*

〈initializerListEntry〉 ::= super 〈arguments〉
| super ‘.’ 〈identifier〉 〈arguments〉
| 〈fieldInitializer〉
| 〈assertion〉

〈fieldInitializer〉 ::=
(this ‘.’)? 〈identifier〉 ‘=’ 〈conditionalExpression〉 〈cascadeSection〉*

An initializer of the form v = e is equivalent to an initializer of the form
this.v = e, both forms are called instance variable initializers. It is a compile- �
time error if the enclosing class does not declare an instance variable named v.
Otherwise, let T be the static type of v. It is a compile-time error unless the
static type of e is assignable to T .

Consider a superinitializer s of the form �
super(a1, . . . , an, xn+1 : an+1, . . . , xn+k: an+k) respectively
super.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k: an+k).

Let S be the superclass of the enclosing class of s. It is a compile-time error if
class S does not declare a generative constructor named S (respectively S.id).
Otherwise, the static analysis of s is performed as specified in Section 16.17.3,
as if super respectively super.id had had the function type of the denoted
constructor, and substituting the formal type variables of the superclass for the
corresponding actual type arguments passed to the superclass in the header of
the current class.

Let k be a generative constructor. Then k may include at most one superini-
tializer in its initializer list or a compile-time error occurs. If no superinitializer
is provided, an implicit superinitializer of the form super() is added at the end of
k’s initializer list, unless the enclosing class is class Object. It is a compile-time

Dart Programming Language Specification 41

error if a superinitializer appears in k’s initializer list at any other position than
at the end. It is a compile-time error if more than one initializer corresponding
to a given instance variable appears in k’s initializer list. It is a compile-time
error if k’s initializer list contains an initializer for a variable that is initialized
by means of an initializing formal of k. It is a compile-time error if k’s initial-
izer list contains an initializer for a final variable f whose declaration includes
an initialization expression. It is a compile-time error if k includes an initial-
izing formal for a final variable f whose declaration includes an initialization
expression.

Let f be a final instance variable declared in the immediately enclosing class.
A compile-time error occurs unless f is initialized by one of the following means:

• f is declared by an initializing variable declaration.

• f is initialized by means of an initializing formal of k.

• f has an initializer in k’s initializer list.

It is a compile-time error if k’s initializer list contains an initializer for a
variable that is not an instance variable declared in the immediately surrounding
class.

The initializer list may of course contain an initializer for any instance variable
declared by the immediately surrounding class, even if it is not final.

It is a compile-time error if a generative constructor of class Object includes
a superinitializer.
Execution of Generative Constructors

executionOfGenerativeConstructors

Execution of a generative constructor k of type T to initialize a fresh instance
i is always done with respect to a set of bindings for its formal parameters and
the type parameters of the immediately enclosing class bound to a set of actual
type arguments of T , t1, . . . , tm.

These bindings are usually determined by the instance creation expression that
invoked the constructor (directly or indirectly). However, they may also be deter-
mined by a reflective call.

If k is redirecting then its redirect clause has the form
this.g(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
where g identifies another generative constructor of the immediately sur-

rounding class. Then execution of k to initialize i proceeds by evaluating the
argument list (a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) to an actual ar-
gument list a of the form (o1, . . . , on, xn+1: on+1, . . . , xn+k: on+k) in
an environment where the type parameters of the enclosing class are bound to
t1, . . . , tm.

Next, the body of g is executed to initialize i with respect to the bindings
that map the formal parameters of g to the corresponding objects in the ac-
tual argument list a, with this bound to i, and the type parameters of the
immediately enclosing class bound to t1, . . . , tm.

Otherwise, k is not redirecting. Execution then proceeds as follows:
The instance variable declarations of the immediately enclosing class are

Dart Programming Language Specification 42

visited in the order they appear in the program text. For each such declaration
d, if d has the form 〈finalConstVarOrType〉 v = e; then e is evaluated to an
object o and the instance variable v of i is bound to o.

Any initializing formals declared in k’s parameter list are executed in the
order they appear in the program text. Then, the initializers of k’s initializer list
are executed to initialize i in the order they appear in the program, as described
below (p. 42).

We could observe the order by side effecting external routines called. So we
need to specify the order.

Then if any instance variable of i declared by the immediately enclosing
class is not yet bound to an object, all such variables are initialized with the
null object (16.4).

Then, unless the enclosing class is Object, the explicitly specified or implic-
itly added superinitializer (10.6.1) is executed to further initialize i.

After the superinitializer has completed, the body of k is executed in a scope
where this is bound to i.

This process ensures that no uninitialized final instance variable is ever seen
by code. Note that this is not in scope on the right hand side of an initializer
(see 16.14) so no instance method can execute during initialization: an instance
method cannot be directly invoked, nor can this be passed into any other code
being invoked in the initializer.
Execution of Initializer Lists

executionOfInitializerLists

During the execution of a generative constructor to initialize an instance i,
execution of an initializer of the form this.v = e proceeds as follows:

First, the expression e is evaluated to an object o. Then, the instance variable
v of i is bound to o. It is a dynamic type error if the dynamic type of o is not
a subtype of the actual type (19.10.1) of the instance variable v.

Execution of an initializer that is an assertion proceeds by executing the
assertion (17.17).

Consider a superinitializer s of the form
super(a1, . . . , an, xn+1 : an+1, . . . , xn+k: an+k) respectively
super.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Let C be the class in which s appears and let S be the superclass of C.

If S is generic (14), let u1, . . . , up be the actual type arguments passed to S,
obtained by substituting t1, . . . , tm for the formal type parameters of C in the
superclass as specified in the header of C, and t1, . . . , tm are the actual bindings
of the type variables of C. Let k be the constructor declared in S and named S
respectively S.id.

Execution of s proceeds as follows: The argument list (a1, . . . , an, xn+1:
an+1, . . . , xn+k: an+k) is evaluated to an actual argument list a of the form
(o1, . . . , on, xn+1: on+1, . . . , xn+k: on+k). Then the body of the super-
constructor k is executed in an environment where the formal parameters of k
are bound to the corresponding actual arguments from a, and the formal type
parameters of S are bound to u1, . . . , up.

Dart Programming Language Specification 43

10.6.2 Factories factories

A factory is a constructor prefaced by the built-in identifier (16.37) factory. �

〈factoryConstructorSignature〉 ::=
factory 〈identifier〉 (‘.’ 〈identifier〉)? 〈formalParameterList〉

The return type of a factory whose signature is of the form factory M or the
form factory M.id is M if M is not a generic type; otherwise the return type
is M<T1, . . . , Tn> where T1, . . . , Tn are the type parameters of the enclosing
class.

It is a compile-time error if M is not the name of the immediately enclosing
class.

It is a dynamic type error if a factory returns a non-null object whose type
is not a subtype of its actual (19.10.1) return type.

It seems useless to allow a factory to return the null object (16.4). But it is
more uniform to allow it, as the rules currently do.

Factories address classic weaknesses associated with constructors in other
languages. Factories can produce instances that are not freshly allocated: they
can come from a cache. Likewise, factories can return instances of different
classes.
Redirecting Factory Constructors

redirectingFactoryConstructors

A redirecting factory constructor specifies a call to a constructor of another �
class that is to be used whenever the redirecting constructor is called.

〈redirectingFactoryConstructorSignature〉 ::=
const? factory 〈identifier〉 (‘.’ 〈identifier〉)? 〈formalParameterList〉 ‘=’
〈typeNotVoid〉 (‘.’ 〈identifier〉)?

Assume that C<X1 extends B1 . . . , Xm extends Bm> is the name and
formal type parameters of the enclosing class, const? is const or empty, N is C
or C.id0 for some identifier id0, T is a type name, and id is an identifier, then
consider a declaration of a redirecting factory constructor k of one of the forms

const? factory
N(T1 x1 . . . , Tn xn, [Tn+1 xn+1=d1, . . . , Tn+k xn+k=dk]) = R;

const? factory
N(T1 x1 . . . , Tn xn, {Tn+1 xn+1=d1, . . . , Tn+k xn+k=dk}) = R;

where R is of one of the forms T<S1 . . . , Sp> or T<S1 . . . , Sp>.id.
It is a compile-time error if T does not denote a class accessible in the

current scope. If T does denote such a class D, it is a compile-time error if
R does not denote a constructor. Otherwise, it is a compile-time error if R
denotes a generative constructor and D is abstract. Otherwise, the redirectee �
constructor for this declaration is the constructor denoted by R.

A redirecting factory constructor q′ is redirection-reachable from a redirecting �

Dart Programming Language Specification 44

factory constructor q iff q′ is the redirectee constructor of q, or q′′ is the redirectee
constructor of q and q′ is redirection-reachable from q′′. It is a compile-time error
if a redirecting factory constructor is redirection-reachable from itself.

Let Ts be the static argument list type (16.17.1) (T1 . . . , Tn+k) when k
takes no named arguments, and (T1 . . . , Tn, Tn+1 xn+1, . . . , Tn+k xn+k)
when k takes some named arguments. It is a compile-time error if Ts is not a
subtype match for the formal parameter list of the redirectee.

We require a subtype match (rather than the more forgiving assignable match
which is used with a generative redirecting constructor), because a factory redi-
recting constructor k always invokes its redirectee k′ with exactly the same actual
arguments that k received. This means that a downcast on an actual argument
“between” k and k′ would either be unused because the actual argument has the
type required by k′, or it would amount to a dynamic error which is simply
delayed a single step.

Note that the non-generic case is covered by letting m or p or both be zero,
in which case the formal type parameter list of the class C and/or the actual type
argument list of the redirectee constructor is omitted (14).

It is a compile-time error if k explicitly specifies a default value for an op-
tional parameter.

Default values specified in k would be ignored, since it is the actual parame-
ters that are passed to k′. Hence, default values are disallowed.

It is a compile-time error if a formal parameter of k′ has a default value
whose type is not a subtype of the type annotation on the corresponding formal
parameter in k.

Note that it is not possible to modify the arguments being passed to k′.
At first glance, one might think that ordinary factory constructors could sim-

ply create instances of other classes and return them, and that redirecting fac-
tories are unnecessary. However, redirecting factories have several advantages:

• An abstract class may provide a constant constructor that utilizes the con-
stant constructor of another class.

• A redirecting factory constructor avoids the need for forwarders to repeat
the formal parameters and their default values.

It is a compile-time error if k is prefixed with the const modifier but k′ is
not a constant constructor (10.6.3).

Let T1, . . . , Tm be the actual type arguments passed to k′ in the declaration
of k. Let X1, . . . , Xm be the formal type arguments declared by the class that
contains the declaration of k′. Let F ′ be the function type of k′ (10.6). It is
a compile-time error if [T1/X1, . . . , Tm/Xm]F ′ is not a subtype of the function
type of k.

In the case where the two classes are non-generic this is just a subtype check on
the function types of the two constructors. In general, this implies that the resulting
object conforms to the interface of the immediately enclosing class of k.

For the dynamic semantics, assume that k is a redirecting factory constructor
and k′ is the redirectee of k.

Dart Programming Language Specification 45

It is a dynamic type error if an actual argument passed in an invocation
of k is not a subtype of the actual type (19.10.1) of the corresponding formal
parameter in the declaration of k.

When the redirectee k′ is a factory constructor, execution of k amounts
to execution of k′ with the actual arguments passed to k. The result of the
execution of k′ is the result of k.

When the redirectee k′ is a generative constructor, let o be a fresh instance
(10.6.1) of the class that contains k′. Execution of k then amounts to execution
of k′ to initialize o, governed by the same rules as an instance creation expression
(16.15). If k completed normally then the execution of k′ completes normally
returning o, otherwise k′ completes by throwing the exception and stack trace
thrown by k.

10.6.3 Constant Constructors constantConstructors

A constant constructor may be used to create compile-time constant (16.3) �
objects. A constant constructor is prefixed by the reserved word const.

〈constantConstructorSignature〉 ::= const 〈qualified〉 〈formalParameterList〉

All the work of a constant constructor must be handled via its initializers.
It is a compile-time error if a constant constructor is declared by a class that

has a mutable instance variable.
The above refers to both locally declared and inherited instance variables.
It is a compile-time error if a constant constructor is declared by a class C if

any instance variable declared in C is initialized with an expression that is not
a constant expression.

A superclass of C cannot declare such an initializer either, because it must
necessarily declare constant constructor as well (unless it is Object, which declares
no instance variables).

The superinitializer that appears, explicitly or implicitly, in the initializer list
of a constant constructor must specify a constant constructor of the superclass
of the immediately enclosing class or a compile-time error occurs.

Any expression that appears within the initializer list of a constant construc-
tor must be a potentially constant expression, or a compile-time error occurs.

A potentially constant expression is an expression e that could be a valid �
constant expression if all formal parameters of e’s immediately enclosing con-
stant constructor were treated as compile-time constants of appropriate types,
and where e is also a valid expression if all the formal parameters are treated
as non-constant variables.

The difference between a potentially constant expression and a constant expres-
sion (16.15.2) deserves some explanation.

The key issue is how one treats the formal parameters of a constructor.
If a constant constructor is invoked from a constant object expression, the actual

arguments will be required to be constant expressions. Therefore, if we were assured
that constant constructors were always invoked from constant object expressions,

Dart Programming Language Specification 46

we could assume that the formal parameters of a constructor were compile-time
constants.

However, constant constructors can also be invoked from ordinary instance cre-
ation expressions (16.15.1), and so the above assumption is not generally valid.

Nevertheless, the use of the formal parameters of a constant constructor within
the constructor is of considerable utility. The concept of potentially constant expres-
sions is introduced to facilitate limited use of such formal parameters. Specifically,
we allow the usage of the formal parameters of a constant constructor for expres-
sions that involve built-in operators, but not for constant objects, lists and maps.
This allows for constructors such as:

class C {
final x; final y; final z;
const C(p, q): x = q, y = p + 100, z = p + q;

}

The assignment to x is allowed under the assumption that q is constant (even
though q is not, in general a compile-time constant). The assignment to y is similar,
but raises additional questions. In this case, the superexpression of p is p + 100,
and it requires that p be a numeric constant expression for the entire expression to
be considered constant. The wording of the specification allows us to assume that
p evaluates to an integer. A similar argument holds for p and q in the assignment
to z.

However, the following constructors are disallowed:

class D {
final w;
const D.makeList(p): w = const [p]; // compile-time error
const D.makeMap(p): w = const {"help": q}; // compile-time error
const D.makeC(p): w = const C(p, 12); // compile-time error

}

The problem is not that the assignments to w are not potentially constant; they
are. However, all these run afoul of the rules for constant lists (16.9), maps (16.10)
and objects (16.15.2), all of which independently require their subexpressions to be
constant expressions.

All of the illegal constructors of D above could not be sensibly invoked via
new, because an expression that must be constant cannot depend on a formal
parameter, which may or may not be constant. In contrast, the legal examples
make sense regardless of whether the constructor is invoked via const or via
new.

Careful readers will of course worry about cases where the actual arguments
to C() are constants, but are not numeric. This is precluded by the following
rule, combined with the rules for evaluating constant objects (16.15.2).

When a constant constructor k is invoked from a constant object expression,
it is a compile-time error if the invocation of k at run time would throw an

Dart Programming Language Specification 47

exception, and it is a compile-time error if substitution of the actual arguments
for the formal parameters yields an initializing expression e in the initializer list
of k which is not a constant expression.

For instance, if e is a.length where a is a formal argument of k with type
dynamic, e is potentially constant and can be used in the initializer list of k. It
is an error to invoke k with an argument of type C if C is a class different from
String, even if C has a length getter, and that same expression would evaluate
without errors at run time.

10.7 Static Methods staticMethods

Static methods are functions, other than getters or setters, whose declara- �
tions are immediately contained within a class declaration and that are declared
static. The static methods of a class C are those static methods declared by C.

Inheritance of static methods has little utility in Dart. Static methods cannot
be overridden. Any required static function can be obtained from its declaring
library, and there is no need to bring it into scope via inheritance. Experience
shows that developers are confused by the idea of inherited methods that are not
instance methods.

Of course, the entire notion of static methods is debatable, but it is retained
here because so many programmers are familiar with it. Dart static methods
may be seen as functions of the enclosing library.

Static method declarations may conflict with other declarations (10.10).

10.8 Superclasses superclasses

The superclass S′ of a class C whose declaration has a with clause with
M1, . . . , Mk and an extends clause extends S is the abstract class obtained
by application of mixin composition (12) Mk ∗ · · · ∗M1 to S. The name S′ is a
fresh identifier. If no with clause is specified then the extends clause of a class
C specifies its superclass. If no extends clause is specified, then either:

• C is Object, which has no superclass. OR

• Class C is deemed to have an extends clause of the form extends Object,
and the rules above apply.

It is a compile-time error to specify an extends clause for class Object.

〈superclass〉 ::= extends 〈typeNotVoid〉 〈mixins〉?
| 〈mixins〉

〈mixins〉 ::= with 〈typeNotVoidList〉

The scope of the extends and with clauses of a class C is the type-parameter
scope of C.

It is a compile-time error if the type in the extends clause of a class C is a
type variable (14), a type alias that does not denote a class (19.3), an enumerated

Dart Programming Language Specification 48

type (13), a deferred type (19.1), type dynamic (19.7), or type FutureOr<T>
for any T (19.8).

Note that void is a reserved word, which implies that the same restrictions
apply for the type void, and similar restrictions are specified for other types like
Null (16.4) and String (16.7).

The type parameters of a generic class are available in the lexical scope of
the superclass clause, potentially shadowing classes in the surrounding scope. The
following code is therefore illegal and should cause a compile-time error:

class T {}

/* Compilation error: Attempt to subclass a type parameter */
class G<T> extends T {}

A class S is a superclass of a class C iff either: �

• S is the superclass of C, or

• S is a superclass of a class S′, and S′ is the superclass of C.

It is a compile-time error if a class C is a superclass of itself.

10.8.1 Inheritance and Overriding inheritanceAndOverriding

Let C be a class, let A be a superclass of C, and let S1, . . . , Sk be superclasses
of C that are also subclasses of A. C inherits all concrete, accessible instance �
members of A that have not been overridden by a concrete declaration in C or
in at least one of S1, . . . , Sk.

It would be more attractive to give a purely local definition of inheritance,
that depended only on the members of the direct superclass S. However, a class
C can inherit a member m that is not a member of its superclass S. This can
occur when the member m is private to the library L1 of C, whereas S comes
from a different library L2, but the superclass chain of S includes a class declared
in L1.

A class may override instance members that would otherwise have been
inherited from its superclass.

Let C = S0 be a class declared in library L, and let {S1, . . . , Sk} be the set
of all superclasses of C, where Si is the superclass of Si−1 for i ∈ 1..k. Sk is
the built-in class Object. Let C declare a concrete member m, and let m′ be
a concrete member of Sj , j ∈ 1..k, that has the same name as m, such that
m′ is accessible to L. Then m overrides m′ if m′ is not already overridden by
a concrete member of at least one of S1, . . . , Sj−1 and neither m nor m′ are
instance variables.

Instance variables never override each other. The getters and setters induced by
instance variables do.

Again, a local definition of overriding would be preferable, but fails to account
for library privacy.

Dart Programming Language Specification 49

Whether an override is legal or not is specified relative to all direct superin-
terfaces, not just the interface of the superclass, and that is described elsewhere
(10.1). Static members never override anything, but they may participate in some
conflicts involving declarations in superinterfaces (10.10).

For convenience, here is a summary of the relevant rules, using ‘error’ to denote
compile-time errors. Remember that this is not normative. The controlling language
is in the relevant sections of the specification.

1. There is only one namespace for getters, setters, methods and constructors
(6.1). An instance or static variable f introduces a getter f , and a mutable
instance or static variable f also introduces a setter f= (10.5, 8). When
we speak of members here, we mean accessible instance or static variables,
getters, setters, and methods (10).

2. You cannot have two members with the same name in the same class—be
they declared or inherited (6.1, 10).

3. Static members are never inherited.

4. It is an error if you have a static member named m in your class and an
instance member of the same name (10.10).

5. It is an error if you have a static setter v=, and an instance member v (10.3).

6. It is an error if you have a static getter v and an instance setter v= (10.2).

7. If you define an instance member named m, and your superclass has an
instance member of the same name, they override each other. This may or
may not be legal.

8. If two members override each other, it is an error unless it is a correct override
(11.2.2).

9. Setters, getters and operators never have optional parameters of any kind; it’s
an error (10.1.1, 10.2, 10.3).

10. It is an error if a member has the same name as its enclosing class (10).

11. A class has an implicit interface (10).

12. Superinterface members are not inherited by a class, but are inherited by its
implicit interface. Interfaces have their own inheritance rules (11.2.1).

13. A member is abstract if it has no body and is not labeled external (10.4,
9.4).

14. A class is abstract iff it is explicitly labeled abstract.

15. It is an error if a concrete class does not implement some member of its
interface, and there is no non-trivial noSuchMethod (10).

Dart Programming Language Specification 50

16. It is an error to call a non-factory constructor of an abstract class using an
instance creation expression (16.15), such a constructor may only be invoked
from another constructor using a super invocation (16.21.3).

17. If a class defines an instance member named m, and any of its superinterfaces
have a member signature named m, the interface of the class contains the m
from the class itself.

18. An interface inherits all members of its superinterfaces that are not overridden
and not members of multiple superinterfaces.

19. If multiple superinterfaces of an interface define a member with the same
name as m, then at most one member is inherited. That member (if it exists)
is the one whose type is a subtype of all the others. If there is no such
member, an error occurs (11.2.1).

20. Rule 8 applies to interfaces as well as classes (11.2.1).

21. It is an error if a concrete class does not have an implementation for a method
in its interface unless it has a non-trivial noSuchMethod (10.1.2).

22. The identifier of a named constructor cannot be the same as the name of a
static member declared in the same class (10.10).

10.9 Superinterfaces superinterfaces

A class has a set of direct superinterfaces. This set contains the interface �
of its superclass and the interfaces of the classes specified in the implements
clause of the class.

〈interfaces〉 ::= implements 〈typeNotVoidList〉

The scope of the implements clause of a class C is the type-parameter scope
of C.

It is a compile-time error if an element in the type list of the implements
clause of a class C is a type variable (14), a type alias that does not denote
a class (19.3), an enumerated type (13), a deferred type (19.1), type dynamic
(19.7), or type FutureOr<T> for any T (19.8). It is a compile-time error if two
elements in the type list of the implements clause of a class C specifies the same
type T . It is a compile-time error if the superclass of a class C is one of the
elements of the type list of the implements clause of C. It is a compile-time
error if a class C has two superinterfaces that are different instantiations of
the same generic class. For example, a class may not have both ‘List<int>‘ and
‘List<num>‘ as superinterfaces.

One might argue that it is harmless to repeat a type in the superinterface
list, so why make it an error? The issue is not so much that the situation
described in program source is erroneous, but that it is pointless. As such, it is

Dart Programming Language Specification 51

an indication that the programmer may very well have meant to say something
else - and that is a mistake that should be called to her or his attention.

It is a compile-time error if the interface of a class C is a superinterface of
itself.

A class does not inherit members from its superinterfaces. However, its implicit
interface does.

10.10 Class Member Conflicts classMemberConflicts

Some pairs of class member declarations cannot coexist, even though they
do not both introduce the same name into the same scope. This section specifies
these errors.

The basename of a getter or method named n is n; the basename of a setter �
named n= is n.

Let C be a class. It is a compile-time error if C declares a constructor
named C.n and a static member with basename n. It is a compile-time error
if C declares a static member with basename n and the interface of C has an
instance member with basename n. It is a compile-time error if the interface of
C has a method named n and a setter with basename n.

These errors occur when the getters or setters are defined explicitly as well
as when they are induced by variable declarations.

Note that other errors which are similar in nature are covered elsewhere. For
instance, if C is a class that has two superinterfaces I1 and I2, where I1 has a
method named m and I2 has a getter named m, then it is an error because the
computation of the interface of C includes a computation of the combined member
signature (11.1) of that getter and that method, and it is an error for a combined
member signature to include a getter and a non-getter.

11 Interfaces interfaces

This section introduces the notion of interfaces. We define the notion of
member signatures first, because that concept is needed in the definition of
interfaces.

A member signature s can be derived from a class instance member dec- �
laration D. It contains the same information as D, except that s omits the
body, if any; it contains the return type and parameter types even if they are
implicit in D; it omits the names of positional parameters; it omits the mod-
ifier final from each parameter, if any; it omits metadata (15); and it omits
information about whether the member is external, async, async*, or sync*.
It makes no difference whether D is given as explicit syntax or it is induced
implicitly, e.g., by a variable declaration. Finally, if s has formal parameters,
each of them has the modifier covariant (9.2.1) if and only if that parameter is
covariant-by-declaration (9.2.3).

We use a syntax similar to that of an abstract member declaration to specify

Dart Programming Language Specification 52

member signatures. The difference is that the names of positional parameters
are omitted. This syntax is only used for the purposes of specification.

Member signatures are synthetic entities, that is, they are not supported
as concrete syntax in a Dart program, they are computed entities used during
static analysis. However, it is useful to be able to indicate the properties of a
member signature in this specification via a syntactic representation. A member
signature makes it explicit whether a parameter is covariant-by-declaration, but
it remains implicit whether it is covariant-by-class (9.2.3). The reason for this is
that the rule for determining whether a given override relation is correct (11.2.2)
depends on the former and not on the latter.

Let m be a method signature of the form
T0 id<X1 extendsB1, . . . , Xs extendsBs>(

covariant? T 1, . . . , covariant? T n,
[covariant? T n+1 = dn+1, . . . , covariant? T n+k = dn+k]).

The function type of m is then �
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]).

Let m be a method signature of the form
T0 id<X1 extendsB1, . . . , Xs extendsBs>(

covariant? T 1, . . . , covariant? T n,
{covariant? T n+1 xn+1 = dn+1, . . . , covariant? T n+k xn+k = dn+k}).

The function type of m is then �
T0 Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}).

Let m be a setter signature of the form void set id(covariant? T p). The
function type of m is then void Function(T). �

The function type of a member signature remains unchanged if some or all
default values are omitted.

We do not specify the function type of a getter signature. For such signatures
we will instead directly refer to the return type.

An interface is a synthetic entity that defines how one may interact with �
an object. An interface has method, getter and setter signatures, and a set
of superinterfaces, which are again interfaces. Each interface is the implicit
interface of a class, in which case we call it a class interface, or a combination �
of several other interfaces, in which case we call it a combined interface. �

Let C be a class. The class interface I of C is the interface that declares �
a member signature derived from each instance member declared by C. The
direct superinterfaces of I are the direct superinterfaces of C (10.9). �

We say that the class interface ’declares’ these member signatures, such that we
can say that an interface ’declares’ or ’has’ a member, just like we do for classes.
Note that a member signature s of the interface of class C may have a parameter
p with modifier covariant, even though s was derived from a declaration D in C
and the parameter corresponding to p in D does not have that modifier. This is
because p may have “inherited” the property of being covariant-by-declaration from
one of its superinterfaces (9.2.3).

The combined interface I of a list of interfaces I1, . . . , Ik is the interface that �
declares the set of member signatures M , where M is determined as specified
below. The direct superinterfaces of I is the set I1, . . . , Ik. �

Dart Programming Language Specification 53

Let M0 be the set of all member signatures declared by I1, . . . , Ik. M is
then the smallest set satisfying the following:

• For each name id and library L such that M0 contains a member signature
named id which is accessible to L, let m be the combined member signature
named id from I1, . . . , Ik with respect to L. It is a compile-time error
if the computation of this combined member signature failed. Otherwise,
M contains m.

Interfaces must be able to contain inaccessible member signatures, because
they may be accessible from the interfaces associated with declarations of sub-
types.

For instance, class C in library L may declare a private member named _foo,
a class D in a different library L2 may extend C, and a class E in library L may
extend D; E may then declare a member that overrides _foo from C, and that
override relation must be checked based on the interface of D. So we cannot allow
the interface of D to “forget” inaccessible members like _foo.

For conflicts the situation is even more demanding: Classes C1 and C2 in library
L may declare private members String _foo(int i) and int get _foo, and a
subtype D12 in a different library L2 may have an implements clause listing both
C1 and C2. In that case we must report a conflict even though the conflicting
declarations are not accessible to L2, because those member signatures are then
noSuchMethod forwarded (10.1.2), and an invocation of _foo on an instance of D
in L must return an ‘int‘ according to the first member signature, and it must return
a function object according to the second one, and an invocation of _foo(42) must
return a String with the first member signature, and it must fail (at compile time
or, for a dynamic invocation, run time) with the second.

It may not be possible to satisfy such constraints simultaneously, and it will
inevitably be a complex semantics, so we have chosen to make it an error. It is
unfortunate that the addition of a private declaration in one library may break
existing code in a different library. But it should be noted that the conflicts can
be detected locally in the library where the private declarations exist, because they
only arise for private members with the same name and incompatible signatures.
Renaming that private member to anything not used in that library will eliminate
the conflict and will not break any clients.

11.1 Combined Member Signatures combinedMemberSignatures

This section specifies how to compute a member signature which will appro-
priately stand for a prioritized set of several member signatures, taken from a
given list of interfaces.

In general, a combined member signature has a type which is a subtype of all
the types given for that member. This is needed in order to ensure that the type of
a member id of a class C is well-defined, even in the case where C inherits several
different declarations of id and does not override id. In case of failure, it serves to
specify the situations where a developer must add a declaration in order to resolve

Dart Programming Language Specification 54

an ambiguity. The member signatures are prioritized in the sense that we will select
a member signature from the interface with the lowest possible index in the case
where several member signatures are equally suitable to be chosen as the combined
member signature. That is, “the first interface wins”.

For the purposes of computing a combined member signature, we need a
special notion of equality of member signatures. Two member signatures m1 �
and m2 are equal iff they have the same name, are accessible to the same set
of libraries, have the same same return type (for getters), or the same function
type and the same occurrences of covariant (for methods and setters).

In particular, private methods from different libraries are never equal. Top types
differ as well. For instance, dynamic Function() and Object Function() are
not equal, even though they are subtypes of each other. We need this distinction
because management of top type discrepancies is one of the purposes of computing
a combined interface.

Now we define combined member signatures. Let id be an identifier, L a
library, I1, . . . , Ik a list of interfaces, and M0 the set of all member signatures
from I1, . . . , Ik named id and accessible to L. The combined member signature �
named id from I1, . . . , Ik with respect to L is the member signature which is
obtained as follows:

If M0 is empty, computation of the combined member signature failed.
If M0 contains exactly one member signature m′, the combined member

signature is m′.
Otherwise, M0 contains more than one member signature m1, . . . , mq.
Case 〈Failing mixtures〉. If M0 contains at least one getter signature and

at least one non-getter signature, the computation of the combined member
signature failed. �

Case 〈Getters〉. If M0 contains getter signatures only, the computation of
the combined member signature proceeds as described below for methods and
setters, except that it uses the return type of the getter signature where methods
and setters use the function type of the member signature. �

Case 〈Methods and setters〉. In this case M0 consists of setter signatures
only, or method signatures only, because the name id in the former case always
ends in ‘=’, which is never true in the latter case.

Determine whether there exists a non-empty set N ⊆ 1..q such that for each
i ∈ N , the function type of mi is a subtype of the function type of mj for each j ∈
1..q. If no such set exists, the computation of the combined member signature
failed. A useful intuition about this situation is that the given member signatures
do not agree on which type is suitable for the member named id. Otherwise we
have a set of member signatures which are “most specific” in the sense that their
function types are subtypes of them all.

Otherwise, when a set N as specified above exists, let Nall be the greatest
set satisfying the requirement on N , and let Mall = {mi | i ∈ Nall}. That is,
Mall contains all member signatures named id with the most specific type. Dart
subtyping is a partial pre-order, which ensures that such a greatest set of least
elements exists, if any non-empty set of least elements exist. We can have several
such signatures because member signatures can be such that they are not equal,

Dart Programming Language Specification 55

and yet their function types are subtypes of each other. We need to compute one
member signature from Mall, and we do that by using the ordering of the given
interfaces.

Let j ∈ 1..k be the smallest number such that Mfirst = Mall∩Ij is non-empty.
Let mi be the single element that Mfirst contains. This set contains exactly one
element because it is non-empty and no interface contains more than one member
signature named id. In other words, we choose mi as the member signature from
the first possible interface among the most specific member signatures Mall.

The combined member signature is then m′, which is obtained from mi by
adding the modifier covariant to each parameter p (if it is not already present)
when there exists a j ∈ 1..q such that the parameter corresponding to p (9.2.3)
has the modifier covariant. In other words, each parameter in the combined mem-
ber signature is marked covariant if any of the corresponding parameters are marked
covariant, not just among the most specific signatures, but among all signatures
named id (which are accessible to L) in the given list of interfaces. �

11.2 Superinterfaces interfaceSuperinterfaces

An interface has a set of direct superinterfaces (11). An interface J is a
superinterface of an interface I iff either J is a direct superinterface of I or J is �
a superinterface of a direct superinterface of I.

11.2.1 Inheritance and Overriding interfaceInheritanceAndOverriding

Let J be an interface and K be a library. We define inherited(J, K) to be
the set of member signatures m such that all of the following hold:

• m is accessible to K and

• A is a direct superinterface of J and either

– A declares a member signature m or
– m is a member of inherited(A, K).

• m is not overridden by J .

Furthermore, we define overrides(J, K) to be the set of member signatures
m′ such that all of the following hold:

• J is the interface of a class C.

• C declares a member signature m.

• m′ has the same name as m.

• m′ is accessible to K.

• A is a direct superinterface of J and either

– A declares a member signature m′ or

Dart Programming Language Specification 56

– m′ is a member of inherited(A, K).

Let I be the interface of a class C declared in library L. I inherits all �
members of inherited(I, L) and I overrides m′ if m′ ∈ overrides(I, L). �

All the compile-time errors pertaining to the overriding of instance members
given in section 10 hold for overriding between interfaces as well.

If the above rule would cause multiple member signatures with the same
name id to be inherited then exactly one member is inherited, namely the
combined member signature named id, from the direct superinterfaces in the
textual order that they are declared, with respect to L (11.1). It is a compile-
time error if the computation of said combined member signature fails.

11.2.2 Correct Member Overrides correctMemberOverrides

Let m and m′ be member signatures with the same name id. Then m is a
correct override of m′ iff the following criteria are all satisfied: �

• m and m′ are both methods, both getters, or both setters.

• If m and m′ are both methods or both setters: Let F be the function type
of m except that the parameter type is the built-in class Object for each
parameter of m which has the modifier covariant. Let F ′ be the function
type of m′. F must then be a subtype of F ′.
The subtype requirement ensures that argument list shapes that are admis-
sible for an invocation of a method with signature m′ are also admissible
for an invocation of a method with signature m. For instance, m′ may ac-
cept 2 or 3 positional arguments, and m may accept 1, 2, 3, or 4 positional
arguments, but not vice versa. This is a built-in property of the function
type subtype rules. Note that a member signature differs from an under-
lying syntactic declaration D in a class C. In particular, a parameter in a
member signature has the modifier covariant if and only if the parameter is
covariant-by-declaration (9.2.3), and that may be the case due to declarations
in a supertype of C, so that modifier need not be present in D. There is an
additional potential compile-time error associated with a parameter which is
covariant-by-declaration (10.1). But we cannot cover that here as a prop-
erty of member overrides, because it is concerned with declarations in all
superinterfaces, indirect as well as direct.

• If m and m′ are both methods, p is an optional parameter of m, p′ is
the parameter of m′ corresponding to p, p has default value d and p′ has
default value d′, then d and d′ must be identical, or a static warning occurs.

• If m and m′ are both getters: The return type of m must be a subtype of
the return type of m′.

Dart Programming Language Specification 57

12 Mixins mixins

A mixin describes the difference between a class and its superclass. A mixin
is either derived from an existing class declaration or introduced by a mixin
declaration.

Mixin application occurs when one or more mixins are mixed into a class
declaration via its with clause (12.3). Mixin application may be used to extend a
class per section 10; alternatively, a class may be defined as a mixin application
as described in the following section.

12.1 Mixin Classes mixinClasses

〈mixinApplicationClass〉 ::=
〈identifier〉 〈typeParameters〉? ‘=’ 〈mixinApplication〉 ‘;’

〈mixinApplication〉 ::= 〈typeNotVoid〉 〈mixins〉 〈interfaces〉?

It is a compile-time error if an element in the type list of the with clause of
a mixin application is a type variable (14), a function type (19.5), a type alias
that does not denote a class (19.3), an enumerated type (13), a deferred type
(19.1), type dynamic (19.7), type void (19.9), or type FutureOr<T> for any T
(19.8). If T is a type in a with clause, the mixin of T is either the mixin derived �
from T if T denotes a class, or the mixin introduced by T if T denotes a mixin
declaration.

Let D be a mixin application class declaration of the form abstract? class N = S with M1, ..., Mn im-

plements I1, ..., Ik;

It is a compile-time error if S is an enumerated type (13). It is a compile-
time error if any of M1, . . . , Mk is an enumerated type (13). It is a compile-time
error if a well formed mixin cannot be derived from each of M1, . . . , Mk.

The effect of D in library L is to introduce the name N into the scope of
L, bound to the class (10) defined by the clause S with M1, ..., Mn with
name N , as described below. If k > 0 then the class also implements I1, . . . , Ik.
Iff the class declaration is prefixed by the built-in identifier abstract, the class
being defined is made an abstract class.

A clause of the form S with M1, ..., Mn with name N defines a class as
follows:

If there is only one mixin (n = 1), then S with M1 defines the class yielded
by the mixin application (12.3) of the mixin of M1 (12.2) to the class denoted
by S with name N .

If there is more than one mixin (n > 1), then let X be the class defined by
S with M1, ..., Mn−1 with name F , where F is a fresh name, and make X
abstract. Then S with M1, ..., Mn defines the class yielded by the mixin
application of the mixin of Mn to the class X with name N .

In either case, let K be a class declaration with the same constructors,

Dart Programming Language Specification 58

superclass, interfaces and instance members as the defined class. It is a compile-
time error if the declaration of K would cause a compile-time error.

It is an error, for example, if M contains a member declaration d which overrides
a member signature m in the interface of S, but which is not a correct override of
m (11.2.2).

12.2 Mixin Declaration mixinDeclaration

A mixin defines zero or more mixin member declarations, zero or more re- �
�quired superinterfaces, one combined superinterface, and zero or more imple-
�
�mented interfaces.

The mixin derived from a class declaration: abstract? class X implements I1, ..., Ik {

members
}

has Object as required superinterface and combined superinterface, I1, . . . ,
Ik as implemented interfaces, and the instance members of members as mixin
member declarations. If X is generic, so is the mixin.

A mixin declaration introduces a mixin and provides a scope for static mem-
ber declarations.

〈mixinDeclaration〉 ::= 〈metadata〉 mixin 〈identifier〉 〈typeParameters〉?
(on 〈typeNotVoidList〉)? 〈interfaces〉?
‘{’ (〈metadata〉 〈classMemberDefinition〉)* ‘}’

It is a compile-time error to declare a constructor in a mixin-declaration.
A mixin declaration with no on clause is equivalent to one with the clause

on Object.
Let M be amixin declaration of the formmixin N<X1 extendsB1, . . . , Xs extendsBs> on T1, . . . , Tn im-

plements I1, . . . , Ik {
members

}

It is a compile-time error if any of the types T1 through Tn or I1 through Ik

is a type variable (14), a function type (19.5), a type alias not denoting a class
(19.3), an enumerated type (13), a deferred type (19.1), type dynamic (19.7),
type void (19.9), or type FutureOr<T> for any T (19.8).

Let MS be the interface declared by the class declaration abstract class Msuper<P1, ..., Pm> implements T1, . . . , Tn {}

where Msuper is a fresh name. It is a compile-time error for the mixin
declaration if the MS class declaration would cause a compile-time error, that
is, if any member is declared by more than one declared superinterface, and there
is not a most specific signature for that member among the super interfaces. The
interface MS is called the superinvocation interface of the mixin declaration M . �

Dart Programming Language Specification 59

If the mixin declaration M has only one declared superinterface, T1, then the
superinvocation interface Msuper has exactly the same members as the interface
T1.

Let MI be the interface that would be defined by the class declaration
abstract class N<X1 extendsB1, . . . , Xs extendsBs> implements T1, . . . , Tn, I1, . . . , Ik {

members′
}

where members′ are the member declarations of the mixin declaration M
except that all superinvocations are treated as if super was a valid expression
with static type MS . It is a compile-time error for the mixin M if this N class
declaration would cause a compile-time error, that is, if the required superinter-
faces, the implemented interfaces and the declarations do not define a consistent
interface, if any member declaration contains a compile-time error other than a
super-invocation, or if a super-invocation is not valid against the interface MS .
The interface introduced by the mixin declaration M has the same member
signatures and superinterfaces as MI .

The mixin declaration M introduces a mixin with the required superinter- �
faces T1, . . . , Tn, the combined superinterface MS , implemented interfaces I1, �

�. . . , Ik and the instance members declared in M as mixin member declarations.
�

12.3 Mixin Application mixinApplication

A mixin may be applied to a superclass, yielding a new class.
Let S be a class, M be a mixin with required superinterfaces T1, . . . , Tn, �

combined superinterface MS , implemented interfaces I1, . . . , Ik and members �
�as mixin member declarations, and let N be a name.
�It is a compile-time error to apply M to S if S does not implement, directly

or indirectly, all of T1, . . . , Tn. It is a compile-time error if any of members
contains a super-invocation of a member m (for example super.foo, super +
2, or super[1] = 2), and S does not have a concrete implementation of m
which is a valid override of the member m in the interface MS . We treat super-
invocations in mixins as interface invocations on the combined superinterface,
so we require the superclass of a mixin application to have valid implementations
of those interface members that are actually super-invoked.

The mixin application of M to S with name N introduces a new class, C,
with name N , superclass S, implemented interface I1, . . . , Ik and members
as instance members. The class C has no static members. If S declares any
generative constructors, then the application introduces generative constructors
on C as follows:

Let LC be the library containing the mixin application. That is, the library
containing the clause S with M or the clause S0 with M1, ..., Mk, M giv-
ing rise to the mixin application.

Let SN be the name of S.

Dart Programming Language Specification 60

For each generative constructor of the form Sq(T1 a1, . . ., Tk ak) of S
that is accessible to LC , C has an implicitly declared constructor of the form

Cq(T1 a1, ..., Tk ak): superq(a1, . . ., ak);

where Cq is obtained from Sq by replacing occurrences of SN , which denote the
superclass, by N , and superq is obtained from Sq by replacing occurrences of SN

which denote the superclass by super. If Sq is a generative const constructor,
and C does not declare any instance variables, Cq is also a const constructor.

For each generative constructor of the form Sq(T1 a1, ..., Tk ak, [Tk+1
ak+1 = d1, ..., Tk+p ak+p = dp]) of S that is accessible to LC , C has an
implicitly declared constructor of the form

Cq(T1 a1, ... , Tk ak, [Tk+1 ak+1 = d′1, ... , Tk+p ak+p = d′p])
: superq(a1, ... , ak, ak+1, ..., ap);

where Cq is obtained from Sq by replacing occurrences of SN , which denote the
superclass, by N , superq is obtained from Sq by replacing occurrences of SN

which denote the superclass by super, and d′i, i ∈ 1..p, is a constant expression
evaluating to the same value as di. If Sq is a generative const constructor, and
MC does not declare any instance variables, Cq is also a const constructor.

For each generative constructor of the form Sq(T1 a1, ..., Tk ak, {Tk+1
ak+1 = d1, ..., Tk+n ak+n = dn}) of S that is accessible to LC , C has an
implicitly declared constructor of the form

Cq(T1 a1, ... , Tk ak, {Tk+1 ak+1 = d′1, ... , Tk+n ak+n = d′n})
: superq(a1, ... , ak, ak+1: ak+1, ..., ap: ap);

where Cq is obtained from Sq by replacing occurrences of SN which denote the
superclass by N , superq is obtained from Sq by replacing occurrences of SN

which denote the superclass by super, and d′i, i ∈ 1..n, is a constant expression
evaluating to the same value as di. If Sq is a generative const constructor, and
M does not declare any fields, Cq is also a const constructor.

13 Enums enums

An enumerated type, or enum, is used to represent a fixed number of constant �
�values.

〈enumType〉 ::= 〈metadata〉 enum 〈identifier〉
‘{’ 〈enumEntry〉 (‘,’ 〈enumEntry〉)* (‘,’)? ‘}’

〈enumEntry〉 ::= 〈metadata〉 〈identifier〉

The declaration of an enum of the form m enum E {m0 id0, . . . , mn−1 idn−1}
has the same effect as a class declaration

Dart Programming Language Specification 61

m class E {
final int index;
const E(this.index);
m0 static const E id0 = const E(0);
. . .
mn−1 static const E idn−1 = const E(n - 1);
static const List<E> values = const <E>[id0, . . . , idn−1];
String toString() => { 0: ‘E.id0’, . . ., n-1: ‘E.idn−1’}[index]

}

It is also a compile-time error to subclass, mix-in or implement an enum or to
explicitly instantiate an enum. These restrictions are given in normative form in
sections 10.8, 10.9, 12.3 and 16.15 as appropriate.

14 Generics generics

A class declaration (10), type alias (19.3), or function (9) G may be generic, �
that is, G may have formal type parameters declared.

When an entity in this specification is described as generic, and the spe-
cial case is considered where the number of type arguments is zero, the type
argument list should be omitted.

This allows non-generic cases to be included implicitly as special cases. For
example, an invocation of a non-generic function arises as the special case where
the function takes zero type arguments, and zero type arguments are passed. In
this situation some operations are also omitted (have no effect), e.g., operations
where formal type parameters are replaced by actual type arguments.

A generic class declaration introduces a generic class into the enclosing li- �
brary scope. A generic class is a mapping that accepts a list of actual type argu- �
ments and maps them to a class. Consider a generic class declaration G named C
with formal type parameter declarations X1 extends B1, . . . , Xm extends Bm,
and a parameterized type T of the form C<T1, . . . , Tl>.

It is a compile-time error if m 6= l. It is a compile-time error if T is not
well-bounded (14.2).

Otherwise, said parameterized type C<T1, . . . , Tm> denotes an application
of the generic class declared by G to the type arguments T1, . . . , Tm. This yields
a class C ′ whose members are equivalent to those of a class declaration which
is obtained from the declaration G by replacing each occurrence of Xj by Tj .

Other properties of C ′ such as the subtype relationships are specified elsewhere
(19.4).

A generic type alias is a declaration D of one of the following forms: �

• m typedef id<X1 extendsB1, . . . , Xs extendsBs> = T;

• m typedef S? id<X1 extendsB1, . . . , Xs extendsBs>(
T1 p1, . . . , Tn pn, [Tn+1 pn+1, . . . , Tn+k pn+k]);

Dart Programming Language Specification 62

• m typedef S? id<X1 extendsB1, . . . , Xs extendsBs>(
T1 p1, . . . , Tn pn, {Tn+1 pn+1, . . . , Tn+k pn+k});

where m is derived from 〈metadata〉, T is a type, and S? is a type or the empty
string. Let S′ be S? if it is a type, otherwise let S′ be dynamic. The associated
type of D, call it F , is, respectively:

• T

• S′ Function(T1, . . . , Tn, [Tn+1, . . . , Tn+k])

• S′ Function(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k})

D introduces a mapping from actual type argument lists to types. Under
the assumption that X1, . . . , Xs are types such that Xj <: Bj , for all j ∈ 1..s,
it is a compile-time error if T is not regular-bounded, and it is a compile-time
error if any type occurring in T is not well-bounded.

This means that the bounds declared for the formal type parameters of a generic
type alias must be such that when they are satisfied, the bounds that pertain to the
body are also satisfied, and a type occurring as a subterm of the body can violate
its bounds, but only if it is a correct super-bounded type.

Moreover, let T1, . . . , Tl be types and let U be the parameterized type
id<T1, . . . , Tl> in a location where id denotes D. It is a compile-time error if
l 6= s. It is a compile-time error if U is not well-bounded (14.2).

Otherwise, U denotes an application of the mapping denoted by D to the
type arguments T1, . . . , Ts, yielding the type [T1/X1, . . . , Ts/Xs]F .

Note that the type alias syntax without ‘=’ can only express function types, and
it cannot express the type of a generic function. When such a type alias is generic,
it always expresses a family of non-generic function types. These restrictions exist
because that syntax was defined before generic functions were added to Dart.

The requirement that satisfaction of the bounds on the formal type parameters
of a generic type alias D must imply satisfaction of all bounds pertaining to every
type that occurs in the body of D limits the expressive power of generic type
aliases. However, it would require the constraints on formal type parameters to
be expressed in a much more powerful language if we were to allow a significantly
larger set of types to be expressed using a generic type alias.

For example, consider the following code:

class A<X extends void Function(num)> {}
typedef F<Y> = A<void Function(Y)> Function(); // compile-time error

There is no way to specify a bound on Y in the declaration of F which will ensure
that all bounds on the right hand side are respected. This is because the actual
requirement is that Y must be a supertype of num, but Dart does not support lower
bounds for type parameters. The type A<void Function(U)> Function() can still
be specified explicitly for every U which satisfies the bounds declared by A. So the
types can be expressed, they just cannot be abbreviated using a generic type alias.

Dart Programming Language Specification 63

A generic type is a type which is introduced by a generic class declaration �
or a generic type alias, or it is the type FutureOr.

A generic function declaration introduces a generic function (9.2) into the en- �
closing scope. Consider a function invocation expression of the form f<T1, . . . , Tl>(...),
where the static type of f is a generic function type with formal type parameters
X1 extends B1, . . . , Xm extends Bm.

It is a compile-time error if m 6= l. It is a compile-time error if there exists
a j such that Tj is not a subtype of [T1/X1, . . . , Tm/Xm]Bj .

That is, if the number of type arguments is wrong, or if the jth actual type
argument is not a subtype of the corresponding bound, where each formal type
parameter has been replaced by the corresponding actual type argument.

〈typeParameter〉 ::= 〈metadata〉 〈identifier〉 (extends 〈typeNotVoid〉)?

〈typeParameters〉 ::= ‘<’ 〈typeParameter〉 (‘,’ 〈typeParameter〉)* ‘>’

A type parameter T may be suffixed with an extends clause that specifies
the upper bound for T . If no extends clause is present, the upper bound is �
Object. It is a compile-time error if a type parameter is a supertype of its
upper bound when that upper bound is itself a type variable.

This prevents circular declarations like X extends X and X extends Y, Y ex-
tends X.

Type parameters are declared in the type parameter scope of a class or
function. The type parameters of a generic G are in scope in the bounds of all
of the type parameters of G. The type parameters of a generic class declaration
G are also in scope in the extends and implements clauses of G (if these exist)
and in the body of G.

However, a type parameter of a generic class is considered to be a malformed
type when referenced by a static member (19.1). The scopes associated with the
type parameters of a generic function are described in (9.2).

The restriction on static members is necessary since a type variable has no
meaning in the context of a static member, because statics are shared among
all generic instantiations of a generic class. However, a type variable may be
referenced from an instance initializer, even though this is not available.

Because type parameters are in scope in their bounds, we support F-bounded
quantification (if you don’t know what that is, don’t ask). This enables typechecking
code such as:

class Ordered<T> {
operator >(T x);

}
class Sorter<T extends Ordered<T>> {

sort(List<T> l) ... l[n] < l[n+1] ...
}

Even where type parameters are in scope there are numerous restrictions at this
time:

Dart Programming Language Specification 64

• A type parameter cannot be used to name a constructor in an instance creation
expression (16.15).

• A type parameter cannot be used as a superclass or superinterface (10.8, 10.9,
11.2).

• A type parameter cannot be used as a generic type.

The normative versions of these are given in the appropriate sections of this
specification. Some of these restrictions may be lifted in the future.

14.1 Variance variance

We say that a type S occurs covariantly in a type T iff S occurs in a covariant �
position in T , but not in a contravariant position, and not in an invariant
position.

We say that a type S occurs contravariantly in a type T iff S occurs in �
a contravariant position in T , but not in a covariant position, and not in an
invariant position.

We say that a type S occurs invariantly in a type T iff S occurs in an invari- �
ant position in T , or S occurs in a covariant position as well as a contravariant
position.

We say that a type S occurs in a covariant position in a type T iff one of �
the following conditions is true:

• T is S

• T is of the form G<S1, . . . , Sn> where G denotes a generic class and S
occurs in a covariant position in Sj for some j ∈ 1..n.

• T is of the form S0 Function<X1 extends B1, . . .>(S1 x1, . . .) where the
type parameter list may be omitted, and S occurs in a covariant position
in S0.

• T is of the form
S0 Function<X1 extends B1, . . .>

(S1 x1, . . . , Sk xk, [Sk+1 xk+1 = dk+1, . . . , Sn xn = dn])

or of the form
S0 Function<X1 extends B1, . . .>

(S1 x1, . . . , Sk xk, {Sk+1 xk+1 = dk+1, . . . , Sn xn = dn})

where the type parameter list and each default value may be omitted, and
S occurs in a contravariant position in Sj for some j ∈ 1..n.

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias such
that j ∈ 1..n, the formal type parameter corresponding to Sj is covariant,
and S occurs in a covariant position in Sj .

Dart Programming Language Specification 65

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias
such that j ∈ 1..n, the formal type parameter corresponding to Sj is
contravariant, and S occurs in a contravariant position in Sj .

We say that a type S occurs in a contravariant position in a type T iff one �
of the following conditions is true:

• T is of the form G<S1, . . . , Sn> where G denotes a generic class and S
occurs in a contravariant position in Sj for some j ∈ 1..n.

• T is of the form S0 Function<X1 extends B1, . . .>(S1 x1, . . .) where the
type parameter list may be omitted, and S occurs in a contravariant po-
sition in S0.

• T is of the form
S0 Function<X1 extends B1, . . .>

(S1 x1, . . . , Sk xk, [Sk+1 xk+1 = dk+1, . . . , Sn xn = dn])

or of the form
S0 Function<X1 extends B1, . . .>

(S1 x1, . . . , Sk xk, {Sk+1 xk+1 = dk+1, . . . , Sn xn = dn})

where the type parameter list and each default value may be omitted, and
S occurs in a covariant position in Sj for some j ∈ 1..n.

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias such
that j ∈ 1..n, the formal type parameter corresponding to Sj is covariant,
and S occurs in a contravariant position in Sj .

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias
such that j ∈ 1..n, the formal type parameter corresponding to Sj is
contravariant, and S occurs in a covariant position in Sj .

We say that a type S occurs in an invariant position in a type T iff one of �
the following conditions is true:

• T is of the form G<S1, . . . , Sn> where G denotes a generic class or a
generic type alias, and S occurs in an invariant position in Sj for some
j ∈ 1..n.

• T is of the form
S0 Function<X1 extends B1, . . . , Xm extends Bm>

(S1 x1, . . . , Sk xk, [Sk+1 xk+1 = dk+1, . . . , Sn xn = dn])

or of the form
S0 Function<X1 extends B1, . . . , Xm extends Bm>

(S1 x1, . . . , Sk xk, {Sk+1 xk+1 = dk+1, . . . , Sn xn = dn})

where the type parameter list and each default value may be omitted, and
S occurs in an invariant position in Sj for some j ∈ 0..n, or S occurs in
Bi for some i ∈ 1..m.

Dart Programming Language Specification 66

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias,
j ∈ 1..n, the formal type parameter corresponding to Sj is invariant, and
S occurs in Sj .

Consider a generic type alias declaration G with formal type parameter
declarations X1 extends B1, . . . , Xm extends Bm, and right hand side T . Let
j ∈ 1..m. We say that the formal type parameter Xj is invariant iff Xj occurs �
invariantly in T , Xj is covariant iff Xj occurs covariantly in T , and Xj is �

�contravariant iff Xj occurs contravariantly in T .
Variance gives a characterization of the way a type varies as the value of

a subterm varies, e.g., a type variable: Assume that T is a type where a type
variable X occurs, and L and U are types such that L is a subtype of U . If
X occurs covariantly in T then [L/X]T is a subtype of [U/X]T . Similarly,
if X occurs contravariantly in T then [U/X]T is a subtype of [L/X]T . If X
occurs invariantly then [L/X]T and [U/X]T are not guaranteed to be subtypes
of each other in any direction. In short: with covariance, the type covaries; with
contravariance, the type contravaries; with invariance, all bets are off.

14.2 Super-Bounded Types superBoundedTypes

This section describes how the declared upper bounds of formal type pa-
rameters are enforced, including some cases where a limited form of violation is
allowed.

A top type is a type T such that Object is a subtype of T . For in- �
stance, Object, dynamic, and void are top types, and so are FutureOr<void>
and FutureOr<FutureOr<dynamic>>.

Every type which is not a parameterized type is regular-bounded. �
In particular, every non-generic class and every function type is a regular-

bounded type.
Let T be a parameterized type of the form G<S1, . . . , Sn> where G denotes a

generic class or a generic type alias. Let X1 extends B1, . . . , Xn extends Bn

be the formal type parameter declarations of G. T is regular-bounded iff Sj is a �
subtype of [S1/X1, . . . , Sn/Xn]Bj , for all j ∈ 1..n.

This means that regular-bounded types are those types that do not violate their
type parameter bounds.

Let T be a parameterized type of the form G<S1, . . . , Sn> where G denotes
a generic class or a generic type alias. T is super-bounded iff the following �
conditions are both true:

• T is not regular-bounded.

• Let T ′ be the result of replacing every occurrence in T of a top type in
a covariant position by Null, and every occurrence in T of Null in a
contravariant position by Object. It is then required that T ′ is regular-
bounded. Moreover, if G denotes a generic type alias with body U , it is
required that every type that occurs as a subterm of [S1/X1, . . . , Sn/Xn]U
is well-bounded (defined below).

Dart Programming Language Specification 67

In short, at least one type argument violates its bound, but the type is regular-
bounded after replacing all occurrences of an extreme type by an opposite extreme
type, depending on their variance.

A type T is well-bounded iff it is either regular-bounded or super-bounded. �
Any use of a type T which is not well-bounded is a compile-time error.
It is a compile-time error if a parameterized type T is super-bounded when

it is used in any of the following ways:

• T is an immediate subterm of a new expression (16.15.1) or a constant
object expression (16.15.2).

• T is an immediate subterm of a redirecting factory constructor signature
(10.6.2).

• T is an immediate subterm of an extends clause of a class (10.8), or it
occurs as an element in the type list of an implements clause (10.9), or a
with clause (10).

It is not an error if a super-bounded type occurs as an immediate subterm of
an extends clause that specifies the bound of a type variable (14).

Types of members from super-bounded class types are computed using the same
rules as types of members from other types. Types of function applications involv-
ing super-bounded types are computed using the same rules as types of function
applications involving other types. Here is an example:

class A<X extends num> {
X x;

}

A<Object> a;

With this, a.x has static type Object, even though the upper bound on the
type variable X is num.

Super-bounded types enable the expression of informative common supertypes
of some sets of types whose common supertypes would otherwise be much less
informative.

For example, consider the following class:

class C<X extends C<X>> {
X next;

}

Without super-bounded types, there is no type T which makes C<T> a common
supertype of all types of the form C<S> (noting that all types must be regular-
bounded when we do not have the notion of super-bounded types). So if we wish
to allow a variable to hold any instance “of type C” then that variable must use
Object or another top type as its type annotation, which means that a member

Dart Programming Language Specification 68

like next is not known to exist (which is what we mean by saying that the type is
‘less informative’).

We could introduce a notion of recursive (infinite) types, and express the
least upper bound of all types of the form C<S> as some syntax whose meaning
could be approximated by C<C<C<C<. . .>>>>. However, we expect that any such
concept in Dart would incur a significant cost on developers and implementa-
tions in terms of added complexity and subtlety, so we have chosen not to do
that. Super-bounded types are finite, but they offer a useful developer-controlled
approximation to such infinite types.

For example, C<Object> and C<C<C<void>>> are types that a developer may
choose to use as a type annotation. This choice serves as a commitment to a
finite level of unfolding of the infinite type, and it allows for a certain amount of
control at the point where the unfolding ends: If c has type C<C<dynamic>> then
c.next.next has type dynamic and c.next.next.whatever has no compile-time
error, but if c has type C<C<void>> then already Object x = c.next.next; is
a compile-time error. It is thus possible for developers to get a more or less strict
treatment of expressions whose type proceeds beyond the given finite unfolding.

14.3 Instantiation to Bound instantiationToBound

This section describes how to compute type arguments that are omitted from
a type, or from an invocation of a generic function.

Note that type inference is assumed to have taken place already (6), so type
arguments are not considered to be omitted if they are inferred. This means that
instantiation to bound is a backup mechanism, which will be used when no infor-
mation is available for inference.

Consider the situation where a term t of the form 〈qualified〉 (which is syn-
tactically the same as 〈typeName〉) denotes a generic type declaration, and it
is used as a type or as an expression in the enclosing program. This implies
that type arguments are accepted, but not provided. We use the phrase raw type �
respectively raw type expression to identify such terms. In the following we only �
mention raw types, but everything said about raw types applies to raw type
expressions in the obvious manner.

For instance, with the declaration Type listType() => List;, evaluation of
the raw type expression List in the body yields an instance of class Type reifying
List<dynamic>, because List is subject to instantiation to bound. Note that
List<dynamic> is not syntactically an expression, but it is still possible to get
access to a Type instance reifying List<dynamic> without instantiation to bound,
because it can be the value of a type variable.

We can unambiguously define raw types to denote the result of applying the
generic type to a list of implicitly provided actual type arguments, and instanti-
ation to bound is a mechanism which does just that. This is because Dart does
not, and will not, support higher-kinded types; for example, the value of a type
variable X will be a type, it cannot be the generic class List as such, and it
cannot be applied to type arguments, e.g., X<int>.

Dart Programming Language Specification 69

In the typical case where only covariance is encountered, instantiation to
bound will yield a supertype of all the regular-bounded types that can be ex-
pressed. This allows developers to consider a raw type as a type which is used
to specify that “the actual type arguments do not matter”. For example, assum-
ing the declaration class C<X extends num> {...}, instantiation to bound on C
yields C<num>, and this means that C x; can be used to declare a variable x whose
value can be a C<T> for all possible values of T .

Conversely, consider the situation where a generic type alias denotes a func-
tion type, and it has one type parameter which is contravariant. Instantiation to
bound on that type alias will then yield a subtype of all the regular-bounded types
that can be expressed by varying that type argument. This allows developers to
consider such a type alias used as a raw type as a function type which allows
the function to be passed to clients “where it does not matter which values for
the type argument the client expects”. E.g., with typedef F<X> = Function(X);
instantiation to bound on F yields F<dynamic>, and this means that F f; can be
used to declare a variable f whose value will be a function that can be passed to
clients expecting an F<T> for all possible values of T .

14.3.1 Auxiliary Concepts for Instantiation to Bound auxiliaryConceptsForInstantiationToBound

Before we specify instantiation to bound we need to define two auxiliary
concepts. Let T be a raw type. A type S then raw-depends on T if one or more �
of the following conditions hold:

• S is of the form 〈typeName〉, and S is T . Note that this case is not applicable
if S is a subterm of a term of the form S <typeArguments>, that is, if S
receives any type arguments. Also note that S cannot be a type variable,
because then ‘S is T ’ cannot hold. See the discussion below and the reference
to 19.4.2 for more details about why this is so.

• S is of the form 〈typeName〉 〈typeArguments〉, and one of the type argu-
ments raw-depends on T .

• S is of the form 〈typeName〉 〈typeArguments〉? where 〈typeName〉 denotes
a type alias F , and the body of F raw-depends on T .

• S is of the form 〈type〉? Function 〈typeParameters〉? 〈parameterTypeList〉
and 〈type〉? raw-depends on T , or a bound in 〈typeParameters〉? raw-
depends on T , or a type in 〈parameterTypeList〉 raw-depends on T .

Meta-variables (19.4.1) like S and T are understood to denote types, and they
are considered to be equal (as in ‘S is T ’) in the same sense as in the section about
subtype rules (19.4.2). In particular, even though two identical pieces of syntax may
denote two distinct types, and two different pieces of syntax may denote the same
type, the property of interest here is whether they denote the same type and not
whether they are spelled identically.

Dart Programming Language Specification 70

The intuition behind the situation where a type raw-depends on another type is
that we need to compute any missing type arguments for the latter in order to be
able to tell what the former means.

In the rule about type aliases, F may or may not be generic, and type arguments
may or may not be present. However, there is no need to consider the result of
substituting actual type arguments for formal type parameters in the body of F (or
even the correctness of passing those type arguments to F), because we only need
to inspect all types of the form 〈typeName〉 in its body, and they are not affected
by such a substitution. In other words, raw-dependency is a relation which is simple
and cheap to compute.

Let G be a generic class or a generic type alias with k formal type param-
eter declarations containing formal type parameters X1, . . . , Xk and bounds
B1, . . . , Bk. For any j ∈ 1..k, we say that the formal type parameter Xj has a
simple bound when one of the following requirements is satisfied: �

• Bj is omitted.

• Bj is included, but does not contain any of X1, . . . , Xk. If Bj raw-
depends on a raw type T then every type parameter of T must have a
simple bound.

The notion of a simple bound must be interpreted inductively rather than
coinductively, i.e., if a bound Bj of a generic class or generic type alias G is
reached during an investigation of whether Bj is a simple bound, the answer is
no.

For example, with class C<X extends C> {}, the type parameter X does not
have a simple bound: A raw C is used as a bound for X, so C must have simple
bounds, but one of the bounds of C is the bound of X, and that bound is C, so C
must have simple bounds: That was a cycle, so the answer is “no”, C does not have
simple bounds.

Let G be a generic class or a generic type alias. We say that G has simple �
bounds iff every type parameter of G has simple bounds.

We can now specify in which sense instantiation to bound requires the involved
types to be "simple enough". We impose the following constraint on all type pa-
rameter bounds, because all type parameters may be subject to instantiation to
bound.

It is a compile-time error if a formal type parameter bound B contains a
raw type T , unless T has simple bounds.

So type arguments on bounds can only be omitted if they themselves have
simple bounds. In particular, class C<X extends C> {} is a compile-time error,
because the bound C is raw, and the formal type parameter X that corresponds to
the omitted type argument does not have a simple bound.

Let T be a type of the form 〈typeName〉 which denotes a generic class or a
generic type alias (so T is raw). Then T is equivalent to the parameterized type
which is the result obtained by applying instantiation to bound to T . It is a
compile-time error if the instantiation to bound fails.

Dart Programming Language Specification 71

This rule is applicable for all occurrences of raw types, e.g., when it occurs as
a type annotation of a variable or a parameter, as a return type of a function, as a
type which is tested in a type test, as the type in an 〈onPart〉, etc.

14.3.2 The Instantiation to Bound Algorithm theInstantiationToBoundAlgorithm

We now specify how the instantiation to bound algorithm proceeds. Let T be �
a raw type. Let X1, . . . , Xk be the formal type parameters in the declaration
of G, and let B1, . . . , Bk be their bounds. For each i ∈ 1..k, let Si denote
the result of instantiation to bound on Bi; in the case where the ith bound is
omitted, let Si be dynamic.

If Bi for some i is raw (in general: if it raw-depends on some type U) then all
its (respectively U ’s) omitted type arguments have simple bounds. This limits the
complexity of instantiation to bound for Bi, and in particular it cannot involve a
dependency cycle where we need the result from instantiation to bound for G in
order to compute the instantiation to bound for G.

Let Ui,0 be Si, for all i ∈ 1..k. This is the "current value" of the bound for
type variable i, at step 0; in general we will consider the current step, m, and use
data for that step, e.g., the bound Ui,m, to compute the data for step m + 1.

Let →m be a relation among the type variables X1, . . . , Xk such that
Xp →m Xq iff Xq occurs in Up,m. So each type variable is related to, that is,
depends on, every type variable in its bound, which might include itself. Let →+

m

be the transitive (but not reflexive) closure of →m. For each m, let Ui,m+1, for
i ∈ 1..k, be determined by the following iterative process, where Vm denotes
G<U1,m, . . . , Uk,m>:

1. If there exists a j ∈ 1..k such that Xj →+
m Xj (that is, if the dependency

graph has a cycle) let M1, . . . , Mp be the strongly connected components
(SCCs) with respect to →m. That is, the maximal subsets of X1, . . . , Xk

where every pair of variables in each subset are related in both directions
by →+

m; note that the SCCs are pairwise disjoint; also, they are uniquely
defined up to reordering, and the order does not matter for this algorithm.
Let M be the union of M1, . . . , Mp (that is, all variables that participate
in a dependency cycle). Let i ∈ 1..k. If Xi does not belong to M then
Ui,m+1 is Ui,m. Otherwise there exists a q such that Xi ∈ Mq; Ui,m+1 is
then obtained from Ui,m by substituting dynamic for every occurrence of
a variable in Mq that is in a position in Vm which is not contravariant,
and substituting Null for every occurrence of a variable in Mq which is in
a contravariant position in Vm.

2. Otherwise (when there are no dependency cycles), let j be the lowest number
such that Xj occurs in Up,m for some p and Xj 6→m Xq for all q in 1..k
(that is, the bound of Xj does not contain any type variables, but Xj occurs
in the bound of some other type variable). Then, for all i ∈ 1..k, Ui,m+1 is
obtained from Ui,m by substituting Uj,m for every occurrence of Xj that
is in a position in Vm which is not contravariant, and substituting Null
for every occurrence of Xj which is in a contravariant position in Vm.

Dart Programming Language Specification 72

3. Otherwise (when there are no dependencies at all), terminate with the result
<U1,m, . . . , Uk,m>.

This process will always terminate, because the total number of occurrences of
type variables from {X1, . . . , Xk } in the current bounds is strictly decreasing with
each step, and we terminate when that number reaches zero.

It may seem somewhat arbitrary to treat unused and invariant parameters in
the same way as covariant parameters, in particular because invariant parame-
ters fail to satisfy the expectation that a raw type denotes a supertype of all the
expressible regular-bounded types.

We could easily have made every instantiation to bound an error when applied
to a type where invariance occurs anywhere during the run of the algorithm.
However, there are a number of cases where this choice produces a usable type,
and we decided that it is not helpful to outlaw such cases.

typedef Inv<X> = X Function(X);
class B<Y extends num, Z extends Inv<Y>> {}

B b; // The raw B means B<num, Inv<num>>.

For example, the value of b can have dynamic type B<int, intFunction(num)>.
However, the type arguments have to be chosen carefully, or the result will not be
a subtype of B. For instance, b cannot have dynamic type B<int, Inv<int>>,
because Inv<int> is not a subtype of Inv<num>.

A raw type T is a compile-time error if instantiation to bound on T yields a
type which is not well-bounded (14.2).

This kind of error can occur, as demonstrated by the following example:

class C<X extends C<X>> {}
typedef F<X extends C<X>> = X Function(X);

F f; // Compile-time error.

With these declarations, the raw F which is used as a type annotation is a
compile-time error: The algorithm yields F<C<dynamic>>, and that is neither a
regular-bounded nor a super-bounded type. The resulting type can be specified ex-
plicitly as C<dynamic> Function(C<dynamic>). That type exists, we just cannot
express it by passing a type argument to F, so we make it an error rather than
allowing it implicitly.

The core reason why it makes sense to make such a raw type an error is that
there is no subtype relationship between the relevant parameterized types. For
instance, F<T1> and F<T2> are unrelated, even when T1 <: T2 or vice versa. In
fact, there is no type T whatsoever such that a variable with declared type F<T>
could be assigned to a variable of type C<dynamic> Function(C<dynamic>). So
the raw F, if permitted, would not be “a supertype of F<T> for all possible T”, it
would be a type which is unrelated to F<T> for every single T that satisfies the
bound of F. This is so useless that we made it an error.

Dart Programming Language Specification 73

When instantiation to bound is applied to a type, it proceeds recursively:
For a parameterized type G<T1, . . . , Tk> it is applied to T1, . . . , Tk. For a
function type
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k])
and a function type
T0 Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k})
it is applied to T0, . . . , Tn+k.

This means that instantiation to bound has no effect on a type that does not
contain any raw types. Conversely, instantiation to bound acts on types which are
syntactic subterms, also when they are deeply nested.

15 Metadata metadata

Dart supports metadata which is used to attach user defined annotations to
program structures.

〈metadata〉 ::= (‘@’ 〈qualified〉 (‘.’ 〈identifier〉)? 〈arguments〉?)*

Metadata consists of a series of annotations, each of which begin with the
character ‘@’, followed by a constant expression e derivable from 〈qualified〉 (‘.’
〈identifier〉)? 〈arguments〉?. It is a compile-time error if e is not one of the
following:

• A reference to a constant variable.

• A call to a constant constructor.

The expression e occurs in a constant context (16.3.1), which means that const
modifiers need not be specified explicitly.

Metadata is associated with the abstract syntax tree of the program con-
struct p that immediately follows the metadata, and which is not itself metadata
or a comment. Metadata can be retrieved at run time via a reflective call, pro-
vided the annotated program construct p is accessible via reflection.

Obviously, metadata can also be retrieved statically by parsing the program and
evaluating the constants via a suitable interpreter. In fact, many if not most uses
of metadata are entirely static.

It is important that no run-time overhead be incurred by the introduction of
metadata that is not actually used. Because metadata only involves constants,
the time at which it is computed is irrelevant. So implementations may skip the
metadata during ordinary parsing and execution, and evaluate it lazily.

It is possible to associate metadata with constructs that may not be accessible
via reflection, such as local variables (though it is conceivable that in the future,
richer reflective libraries might provide access to these as well). This is not as useless
as it might seem. As noted above, the data can be retrieved statically if source
code is available.

Metadata can appear before a library, part header, class, typedef, type pa-

Dart Programming Language Specification 74

rameter, constructor, factory, function, parameter, or variable declaration, and
before an import, export, or part directive.

The constant expression given in an annotation is type checked and evaluated
in the scope surrounding the declaration being annotated.

16 Expressions expressions

An expression is a fragment of Dart code that can be evaluated at run time. �
Every expression has an associated static type (19.1) and may have an as-

sociated static context type which may affect the static type and evaluation of
the expression. Every value has an associated dynamic type (19.2).

〈expression〉 ::= 〈assignableExpression〉 〈assignmentOperator〉 〈expression〉
| 〈conditionalExpression〉 〈cascadeSection〉*
| 〈throwExpression〉

〈expressionWithoutCascade〉 ::=
〈assignableExpression〉 〈assignmentOperator〉 〈expressionWithoutCascade〉

| 〈conditionalExpression〉
| 〈throwExpressionWithoutCascade〉

〈expressionList〉 ::= 〈expression〉 (‘,’ 〈expression〉)*

〈primary〉 ::= 〈thisExpression〉
| super 〈unconditionalAssignableSelector〉
| 〈functionExpression〉
| 〈literal〉
| 〈identifier〉
| 〈newExpression〉
| 〈constObjectExpression〉
| ‘(’ 〈expression〉 ‘)’

An expression e may always be enclosed in parentheses, but this never has
any semantic effect on e.

However, it may have an effect on the surrounding expression. For instance,
given a class C with a static method m() => 42, C.m() returns 42, but (C).m() is
a compile-time error. The point is that the meaning of C.m() is specified in terms
of several parts, rather than being specified in a strictly compositional manner.
Concretely, the meaning of C and (C) as expressions is the same, but the meaning
of C.m() is not defined in terms of the meaning of C as an expression, and it differs
from the meaning of (C).m().

16.1 Expression Evaluation expressionEvaluation

Evaluation of an expression either produces an object or it throws an excep- �
�

Dart Programming Language Specification 75

tion object and an associated stack trace. In the former case, we also say that
the expression evaluates to an object. �

If evaluation of one expression, e, is defined in terms of evaluation of another
expression e1, typically a subexpression of e, and the evaluation of e1 throws an
exception and a stack trace, the evaluation of e stops at that point and throws
the same exception object and stack trace.

16.2 Object Identity objectIdentity

The predefined Dart function identical() is defined such that identical(c1,
c2) iff:

• c1 evaluates to either the null object (16.4) or an instance of bool and c1
== c2, OR

• c1 and c2 are instances of int and c1 == c2, OR

• c1 and c2 are constant strings and c1 == c2, OR

• c1 and c2 are instances of double and one of the following holds:

– c1 and c2 are non-zero and c1 == c2.
– Both c1 and c2 are +0.0.
– Both c1 and c2 are −0.0.
– Both c1 and c2 represent a NaN value with the same underlying bit

pattern.

OR

• c1 and c2 are constant lists that are defined to be identical in the specifi-
cation of literal list expressions (16.9), OR

• c1 and c2 are constant maps that are defined to be identical in the speci-
fication of literal map expressions (16.10), OR

• c1 and c2 are constant objects of the same class C and the value of each in-
stance variable of c1 is identical to the value of the corresponding instance
variable of c2. OR

• c1 and c2 are the same object.

The definition of identity for doubles differs from that of equality in that a
NaN is identical to itself, and that negative and positive zero are distinct.

The definition of equality for doubles is dictated by the IEEE 754 standard,
which posits that NaNs do not obey the law of reflexivity. Given that hardware
implements these rules, it is necessary to support them for reasons of efficiency.

The definition of identity is not constrained in the same way. Instead, it
assumes that bit-identical doubles are identical.

The rules for identity make it impossible for a Dart programmer to observe
whether a boolean or numerical value is boxed or unboxed.

Dart Programming Language Specification 76

16.3 Constants constants

All usages of the word ’constant’ in Dart are associated with compile time. A
potentially constant expression is an expression that will generally yield a constant
value when the value of certain parameters is given. The constant expressions is
a subset of the potentially constant expressions that can be evaluated entirely at
compile time.

The constant expressions are restricted to expressions that perform only sim-
ple arithmetic operations, boolean conditions, and string and instance creation.
No user written function body is executed during constant expression evaluation,
only members of the system classes int, double, bool, String or Null.

The potentially constant expressions and constant expressions are the fol- �
�lowing:

• A literal boolean, true or false (16.6), is a potentially constant and con-
stant expression.

• A literal number (16.5) is a potentially constant and constant expression
if it evaluates to an instance of type int or double.

• A literal string (16.7) with string interpolations (16.7.1) with expressions
e1, . . . , en is a potentially constant expression if e1, . . . , en are potentially
constant expressions. The literal is further a constant expression if e1, . . . ,
en are constant expressions evaluating to instances of int, double String,
bool or Null. These requirements hold trivially if there are no interpolations
in the string. It would be tempting to allow string interpolation where
the interpolated value is any compile-time constant. However, this would
require running the toString() method for constant objects, which could
contain arbitrary code.

• A literal symbol (16.8) is a potentially constant and constant expression.

• The literal null (16.4) is a potentially constant and constant expression.

• An identifier that denotes a constant variable is a potentially constant and
constant expression.

• A qualified reference to a static constant variable (8) that is not qualified
by a deferred prefix, is a potentially constant and constant expression.
For example, If class C declares a constant static variable v, C.v is a constant.
The same is true if C is accessed via a prefix p; p.C.v is a constant unless
p is a deferred prefix.

• A simple or qualified identifier denoting a class, a mixin or a type alias
that is not qualified by a deferred prefix, is a potentially constant and
constant expression. The constant expression always evaluates to a Type
object. For example, if C is the name of a class or type alias, the expression
C is a constant, and if C is imported with a prefix p, p.C is a constant Type
instance representing the type of C unless p is a deferred prefix.

Dart Programming Language Specification 77

• A simple or qualified identifier denoting a top-level function (9) or a static
method (10.7) that is not qualified by a deferred prefix, is a potentially
constant and constant expression.

• An identifier expression denoting a parameter of a constant constructor
(10.6.3) that occurs in the initializer list of the constructor, is a potentially
constant expression.

• A constant object expression (16.15.2), const C<T1, . . . , Tk>(arguments)
or const C<T1, . . . , Tk>.id(arguments), or either expression without
the leading const that occurs in a constant context, is a potentially con-
stant expression. It is further a constant expression if the invocation
evaluates to an object. It is a compile-time error if a constant object
expression is not a constant expression (16.15.2).

• A constant list literal (16.9), const <T>[e1, ..., en], or <T>[e1, ...,
en] that occurs in a constant context, is a potentially constant expression
if T is a constant type expression, and e1, . . . , en are constant expressions.
It is further a constant expression if the list literal evaluates to an object.

• A constant set literal (??), const <T>{e1, ..., en}, or <T>{e1, ...,
en} that occurs in a constant context, is a potentially constant expression
if T is a constant type expression, and e1, . . . , en are constant expressions.
It is further a constant expression if the list literal evaluates to an object.

• A constant map literal (16.10), const <K, V >{k1: v1, ..., kn: vn},
or <K, V >{k1: v1, ..., kn: vn} that occurs in a constant context,
is a potentially constant expression. It is further a constant expression if
the map literal evaluates to an object.

• A parenthesized expression (e) is a potentially constant expression if e is
a potentially constant expression. It is further a constant expression if e
is a constant expression.

• An expression of the form identical(e1, e2) is a potentially constant
expression if e1 and e2 are potentially constant expressions and identical
is statically bound to the predefined dart function identical() discussed
above (16.2). It is further a constant expression if e1 and e2 are constant
expressions.

• An expression of the form e1 != e2 is equivalent to !(e1 == e2) in every
way, including whether it is potentially constant or constant.

• An expression of the form e1 == e2 is potentially constant if e1 and e2 are
both potentially constant expressions. It is further constant if both e1 and
e2 are constant and either e1 evaluates to an object that is an instance of
int, double, String, bool or Null, or if e2 evaluates to the null object
(16.4).

Dart Programming Language Specification 78

• An expression of the form !e1 is potentially constant if e1 is potentially
constant. It is further constant if e1 is a constant expression that evaluates
to an instance of type bool.

• An expression of the form e1 && e2 is potentially constant if e1 and e2
are both potentially constant expressions. It is further constant if e1 is a
constant expression and either

1. e1 evaluates to false, or
2. e1 evaluates to true and e2 is a constant expression that evaluates to

an instance of type bool.

• An expression of the form e1 || e2 is potentially constant if e1 and e2
are both potentially constant expressions. It is further constant if e1 is a
constant expression and either

1. e1 evaluates to true, or
2. e1 evaluates to false and e2 is a constant expression that evaluates

to an instance of type bool.

• An expression of the form ˜e1 is a potentially constant expression if e1 is
a potentially constant expression. It is further a constant expression if e1
is a constant expression that evaluates to an instance of type int.

• An expression of one of the forms e1 & e2, e1 | e2, or e1 ˆ e2 is potentially
constant if e1 and e2 are both potentially constant expressions. It is further
constant if both e1 and e2 are constant expressions that both evaluate to
instances of int, or both to instances of bool.

• An expression of one of the forms e1 ˜/ e2, e1 >> e2, e1 >>> e2, or e1 << e2 is
potentially constant if e1 and e2 are both potentially constant expressions.
It is further constant if both e1 and e2 are constant expressions that both
evaluate to an instance of int.

• An expression of the form e1 + e2 is a potentially constant expression if e1
and e2 are both potentially constant expressions. It is further a constant
expression if both e1 and e2 are constant expressions and either both
evaluate to an instance of int or double, or both evaluate to an instance
of String.

• An expression of the form -e1 is a potentially constant expression if e1
is a potentially constant expression. It is further a constant expression if
e1 is a constant expression that evaluates to an instance of type int or
double.

• An expression of the form e1 - e2, e1 * e2, e1 / e2, e1 % e2, e1 < e2, e1 <= e2,
e1 > e2, or e1 >= e2 is potentially constant if e1 and e2 are both potentially
constant expressions. It is further constant if both e1 and e2 are constant
expressions that evaluate to instances of int or double.

Dart Programming Language Specification 79

• An expression of the form e1 ? e2 : e3 is potentially constant if e1, e2, and
e3 are all potentially constant expressions. It is constant if e1 is a constant
expression and either

1. e1 evaluates to true and e2 is a constant expression, or
2. e1 evaluates to false and e3 is a constant expression.

• An expression of the form e1 ?? e2 is potentially constant if e1 and e2
are both potentially constant expressions. It is further constant if e1 is a
constant expression and either

1. e1 evaluates to an object which is not the null object, or
2. e1 evaluates to the null object, and e2 is a constant expression.

• An expression of the form e.length is potentially constant if e is a po-
tentially constant expression. It is further constant if e is a constant
expression that evaluates to an instance of String.

• An expression of the form e as T is potentially constant if e is a poten-
tially constant expression and T is a constant type expression, and it is
further constant if e is constant. It is a compile-time error to evaluate the
constant expression if the cast operation would throw, that is, if e evaluates
to an object which is not the null object and not of type T .

• An expression of the form e is T is potentially constant if e is a poten-
tially constant expression and T is a constant type expression, and it is
further constant if e is constant.

• An expression of the form e is! T is equivalent to !(e is T) in every
way, including whether it’s potentially constant or constant.

A constant type expression is one of: �

• An simple or qualified identifier denoting a type declaration (a type alias,
class or mixin declaration) that is not qualified by a deferred prefix, op-
tionally followed by type arguments of the form <T1, ..., Tn> where T1,
. . . , Tn are constant type expressions.

• A type of the form FutureOr<T> where T is a constant type expression.

• A function type R Function<typeParameters>(argumentTypes) (where
R and <typeParameters> may be omitted) and where R, typeParameters
and argumentTypes (if present) contain only constant type expressions.

• The type void.

• The type dynamic.

Dart Programming Language Specification 80

It is a compile-time error if an expression is required to be a constant ex-
pression but its evaluation would throw an exception. It is a compile-time error
if an assertion is evaluated as part of a constant object expression evaluation,
and the assertion would throw an exception.

Note that there is no requirement that every constant expression evaluate cor-
rectly. Only when a constant expression is required (e.g., to initialize a constant
variable, or as a default value of a formal parameter, or as metadata) do we insist
that a constant expression actually be evaluated successfully at compile time.

The above is not dependent on program control-flow. The mere presence of a
required compile-time constant whose evaluation would fail within a program is an
error. This also holds recursively: since compound constants are composed out of
constants, if any subpart of a constant would throw an exception when evaluated,
that is an error.

On the other hand, since implementations are free to compile code late, some
compile-time errors may manifest quite late.

const x = 1 ˜/ 0;
final y = 1 ˜/ 0;

class K {
m1() {
var z = false;
if (z) { return x; }
else { return 2; }

}

m2() {
if (true) { return y; }
else { return 3; }

}
}

An implementation is free to immediately issue a compilation error for x, but
it is not required to do so. It could defer errors if it does not immediately compile
the declarations that reference x. For example, it could delay giving a compilation
error about the method m1 until the first invocation of m1. However, it could not
choose to execute m1, see that the branch that refers to x is not taken and return
2 successfully.

The situation with respect to an invocation m2 is different. Because y is not a
compile-time constant (even though its value is), one need not give a compile-time
error upon compiling m2. An implementation may run the code, which will cause
the getter for y to be invoked. At that point, the initialization of y must take place,
which requires the initializer to be compiled, which will cause a compilation error.

The treatment of null merits some discussion. Consider null + 2. This ex-
pression always causes an error. We could have chosen not to treat it as a

Dart Programming Language Specification 81

constant expression (and in general, not to allow null as a subexpression of nu-
meric or boolean constant expressions). There are two arguments for including
it:

1. It is constant. We can evaluate it at compile time.

2. It seems more useful to give the error stemming from the evaluation ex-
plicitly.

One might reasonably ask why e1 ? e1 : e3 and e1 ?? e2 have constant forms.
For example, if e1 is known statically, why do we need to test it? The answer is
that there are contexts where e1 is a variable. In particular, constant constructor
initializers such as

const C(foo): this.foo = foo ?? someDefaultValue;
It is a compile-time error if the value of a constant expression depends on

itself.
As an example, consider:

class CircularConsts {
// Illegal program - mutually recursive compile-time constants
static const i = j; // a compile-time constant
static const j = i; // a compile-time constant

}

〈literal〉 ::= 〈nullLiteral〉
| 〈booleanLiteral〉
| 〈numericLiteral〉
| 〈stringLiteral〉
| 〈symbolLiteral〉
| 〈mapLiteral〉
| 〈setLiteral〉
| 〈setOrMapLiteral〉
| 〈listLiteral〉

16.3.1 Constant Contexts constantContexts

Let e be an expression; e occurs in a constant context iff one of the following �
applies:

• e is an element of a list or set literal whose first token is const, or e is a
key or a value of an entry of a map literal whose first token is const.

• e occurs as @e in a construct derived from 〈metadata〉.

• e is an actual argument in an expression derived from 〈constObjectExpression〉.

• e is the initializing expression of a constant variable declaration (8).

Dart Programming Language Specification 82

• e is a switch case expression (17.9).

• e is an immediate subexpression of an expression e0 which occurs in a
constant context, where e0 is not a function literal (16.13).

A constant context is introduced in situations where an expression is required
to be constant. This is used to allow the const modifier to be omitted in cases
where it does not contribute any new information.

16.4 Null null

The reserved word null evaluates to the null object. �

〈nullLiteral〉 ::= null

The null object is the sole instance of the built-in class Null. Attempting to
instantiate Null causes a compile-time error. It is a compile-time error for a class
to extend, mix in or implement Null. The Null class extends the Object class
and declares no methods except those also declared by Object. In particular,
the Null class does not override the ‘==’ operator inherited from the Object
class.

The static type of null is the Null type.

16.5 Numbers numbers

A numeric literal is either a decimal or hexadecimal numeral representing �
an integer value, or a decimal double representation.

〈numericLiteral〉 ::= 〈NUMBER〉
| 〈HEX_NUMBER〉

〈NUMBER〉 ::= 〈DIGIT 〉+ (‘.’ 〈DIGIT 〉+)? 〈EXPONENT 〉?
| ‘.’ 〈DIGIT 〉+ 〈EXPONENT 〉?

〈EXPONENT 〉 ::= (‘e’ | ‘E’) (‘+’ | ‘-’)? 〈DIGIT 〉+

〈HEX_NUMBER〉 ::= ‘0x’ 〈HEX_DIGIT 〉+
| ‘0X’ 〈HEX_DIGIT 〉+

〈HEX_DIGIT 〉 ::= ‘a’ .. ‘f’
| ‘A’ .. ‘F’
| 〈DIGIT 〉

A numeric literal starting with ‘0x’ or ‘0X’ is a hexadecimal integer literal. �
It has the numeric integer value of the hexadecimal numeral following ‘0x’ (re-
spectively ‘0X’).

A numeric literal that contains only decimal digits is a decimal integer literal. �
It has the numeric integer value of the decimal numeral.

Dart Programming Language Specification 83

An integer literal is either a hexadecimal integer literal or a decimal integer �
literal.

Let l be an integer literal that is not the operand of by a unary minus
operator, and let T be the static context type of l. If double is assignable to
T and int is not assignable to T , then the static type of l is double; otherwise
the static type of l is int. This means that an integer literal denotes a double
when it would satisfy the type requirement, and an int would not. Otherwise it is
an int, even in situations where that is an error.

A numeric literal that is not an integer literal is a double literal. A double �
literal always contains either a decimal point or an exponent part. The static type
of a double literal is double.

If l is an integer literal with numeric value i and static type int, and l is not
the operand of a unary minus operator, then evaluation of l proceeds as follows:

• If l is a hexadecimal integer literal, 263 ≤ i < 264 and the int class is
implemented as signed 64-bit two’s complement integers, then l evaluates
to an instance of the int class representing the numeric value i− 264,

• Otherwise l evaluates to an instance of the int class representing the
numeric value i. It is a compile-time error if the integer i cannot be
represented exactly by an instance of int.

Integers in Dart are designed to be implemented as 64-bit two’s complement
integer representations. In practice, implementations may be limited by other con-
siderations. For example, Dart compiled to JavaScript may use the JavaScript
number type, equivalent to Dart double, to represent integers, and if so, integer
literals with more than 53 bits of precision cannot be represented exactly.

A double literal evaluates to a an instance of the double class representing
a 64 bit double precision floating point number as specified by the IEEE 754
standard.

An integer literal with static type double and numeric value i evaluates to an
instance of the double class representing the value i. It is a compile-time error
if the value i cannot be represented precisely by the an instance of double. A
64 bit double precision floating point number is usually taken to represent a range
of real numbers around the precise value denoted by the number’s sign, mantissa
and exponent. For integer literals evaluating to double values we insist that the
integer literal’s numeric value is the precise value of the double instance.

It is a compile-time error for a class to extend, mix in or implement int. It
is a compile-time error for a class to extend, mix in or implement double. It is
a compile-time error for any class other than int and double to extend, mix in
or implement num.

The instances of int and double all override the ‘==’ operator inherited
from the Object class.

16.6 Booleans booleans

The reserved words true and false evaluate to objects true and false that �
�

Dart Programming Language Specification 84

represent the boolean values true and false respectively. They are the boolean
�literals.

〈booleanLiteral〉 ::= true
| false

Both true and false are instances of the built-in class bool, and there are �
�no other objects that implement bool. It is a compile-time error for a class to

extend, mix in or implement bool.
The bool class does not override the ‘==’ operator inherited from the Object

class.
Invoking the getter runtimeType on a boolean value returns the Type object

that is the value of the expression bool. The static type of a boolean literal is
bool.

16.7 Strings strings

A string is a sequence of UTF-16 code units. �
This decision was made for compatibility with web browsers and Javascript.

Earlier versions of the specification required a string to be a sequence of valid
Unicode code points. Programmers should not depend on this distinction.

〈stringLiteral〉 ::= (〈multilineString〉 | 〈singleLineString〉)+

A string can be a sequence of single line strings and multiline strings.

〈singleLineString〉 ::= ‘"’ 〈stringContentDQ〉* ‘"’
| ‘’’ 〈stringContentSQ〉* ‘’’
| ‘r’’ (˜(‘’’ | 〈NEWLINE〉))* ‘’’
| ‘r"’ (˜(‘"’ | 〈NEWLINE〉))* ‘"’

A single line string is delimited by either matching single quotes or matching
double quotes.

Hence, ‘abc’ and “abc” are both legal strings, as are ‘He said “To be or not to
be” did he not?’ and “He said ‘To be or not to be’ didn’t he”. However “This ‘ is
not a valid string, nor is ‘this”.

The grammar ensures that a single line string cannot span more than one line of
source code, unless it includes an interpolated expression that spans multiple lines.

Adjacent strings are implicitly concatenated to form a single string literal.
Here is an example

print("A string" "and then another"); // A stringand then another

Dart also supports the operator + for string concatenation.
The + operator on Strings requires a String argument. It does not coerce its

argument into a string. This helps avoid puzzlers such as

Dart Programming Language Specification 85

print("A simple sum: 2 + 2 = " +
2 + 2);

which this prints ’A simple sum: 2 + 2 = 22’ rather than ’A simple sum: 2
+ 2 = 4’. However, the use of the concatenation operation is still discouraged
for efficiency reasons. Instead, the recommended Dart idiom is to use string
interpolation.

print("A simple sum: 2 + 2 = ${2+2}");

String interpolation works well for most cases. The main situation where it
is not fully satisfactory is for string literals that are too large to fit on a line.
Multiline strings can be useful, but in some cases, we want to visually align the
code. This can be expressed by writing smaller strings separated by whitespace,
as shown here:

’Imagine this is a very long string that does not fit on a line. What shall we do? ’
’Oh what shall we do? ’
’We shall split it into pieces ’
’like so’.

〈multilineString〉 ::= ‘"""’ 〈stringContentTDQ〉* ‘"""’
| ‘’’’’ 〈stringContentTSQ〉* ‘’’’’
| ‘r"""’ (˜ ‘"""’)* ‘"""’
| ‘r’’’’ (˜ ‘’’’’)* ‘’’’’

〈ESCAPE_SEQUENCE〉 ::= ‘\n’
| ‘\r’
| ‘\f’
| ‘\b’
| ‘\t’
| ‘\v’
| ‘\x’ 〈HEX_DIGIT 〉 〈HEX_DIGIT 〉
| ‘\u’ 〈HEX_DIGIT 〉 〈HEX_DIGIT 〉 〈HEX_DIGIT 〉 〈HEX_DIGIT 〉
| ‘\u{’ 〈HEX_DIGIT_SEQUENCE〉 ‘}’

〈HEX_DIGIT_SEQUENCE〉 ::=
〈HEX_DIGIT 〉 〈HEX_DIGIT 〉? 〈HEX_DIGIT 〉?
〈HEX_DIGIT 〉? 〈HEX_DIGIT 〉? 〈HEX_DIGIT 〉?

Multiline strings are delimited by either matching triples of single quotes or
matching triples of double quotes. If the first line of a multiline string consists
solely of the whitespace characters defined by the production 〈WHITESPACE〉
(20.1), possibly prefixed by ‘\’, then that line is ignored, including the line break
at its end.

Dart Programming Language Specification 86

The idea is to ignore a whitespace-only first line of a multiline string, where
whitespace is defined as tabs, spaces and the final line break. These can be
represented directly, but since for most characters prefixing by backslash is an
identity in a non-raw string, we allow those forms as well.

Strings support escape sequences for special characters. The escapes are:

• ‘\n’ for newline, equivalent to ‘\x0A’.

• ‘\r’ for carriage return, equivalent to ‘\x0D’.

• ‘\f’ for form feed, equivalent to ‘\x0C’.

• ‘\b’ for backspace, equivalent to ‘\x08’.

• ‘\t’ for tab, equivalent to ‘\x09’.

• ‘\v’ for vertical tab, equivalent to ‘\x0B’.

• ‘\x’ 〈HEX_DIGIT 〉1 〈HEX_DIGIT 〉2, equivalent to
‘\u{’ 〈HEX_DIGIT 〉1 〈HEX_DIGIT 〉2 ‘}’.

• ‘\u’ 〈HEX_DIGIT 〉1 〈HEX_DIGIT 〉2 〈HEX_DIGIT 〉3 〈HEX_DIGIT 〉4,
equivalent to
‘\u{’ 〈HEX_DIGIT 〉1 〈HEX_DIGIT 〉2 〈HEX_DIGIT 〉3 〈HEX_DIGIT 〉4
‘}’.

• ‘\u{’ 〈HEX_DIGIT_SEQUENCE〉 ‘}’ is the Unicode code point repre-
sented by the 〈HEX_DIGIT_SEQUENCE〉. It is a compile-time error if
the value of the 〈HEX_DIGIT_SEQUENCE〉 is not a valid Unicode code
point.

• ‘$’ indicating the beginning of an interpolated expression.

• Otherwise, ‘\k’ indicates the character k for any k not in {‘n’, ‘r’, ‘f’,
‘b’, ‘t’, ‘v’, ‘x’, ‘u’}.

Any string may be prefixed with the character ‘r’, indicating that it is a raw �
string, in which case no escapes or interpolations are recognized.

Line breaks in a multiline string are represented by the 〈NEWLINE〉 pro-
duction. A line break introduces a single newline character into the string value.

It is a compile-time error if a non-raw string literal contains a character
sequence of the form ‘\x’ that is not followed by a sequence of two hexadecimal
digits. It is a compile-time error if a non-raw string literal contains a character
sequence of the form ‘\u’ that is not followed by either a sequence of four
hexadecimal digits, or by curly brace delimited sequence of hexadecimal digits.

〈stringContentDQ〉 ::= ˜(‘\’ | ‘"’ | ‘$’ | 〈NEWLINE〉)
| ‘\’ ˜(〈NEWLINE〉)
| 〈stringInterpolation〉

Dart Programming Language Specification 87

〈stringContentSQ〉 ::= ˜(‘\’ | ‘’’ | ‘$’ | 〈NEWLINE〉)
| ‘\’ ˜(〈NEWLINE〉)
| 〈stringInterpolation〉

〈stringContentTDQ〉 ::= ˜(‘\’ | ‘"""’ | ‘$’)
| ‘\’ ˜(〈NEWLINE〉)
| 〈stringInterpolation〉

〈stringContentTSQ〉 ::= ˜(‘\’ | ‘”’’ | ‘$’)
| ‘\’ ˜(〈NEWLINE〉)
| 〈stringInterpolation〉

〈NEWLINE〉 ::= ‘\n’
| ‘\r’
| ‘\r\n’

All string literals evaluate to instances of the built-in class String. It is
a compile-time error for a class to extend, mix in or implement String. The
String class overrides the ‘==’ operator inherited from the Object class. The
static type of a string literal is String.

16.7.1 String Interpolation stringInterpolation

It is possible to embed expressions within non-raw string literals, such that
these expressions are evaluated, and the resulting values are converted into
strings and concatenated with the enclosing string. This process is known as
string interpolation. �

〈stringInterpolation〉 ::= ‘$’ 〈IDENTIFIER_NO_DOLLAR〉
| ‘${’ 〈expression〉 ‘}’

The reader will note that the expression inside the interpolation could itself
include strings, which could again be interpolated recursively.

An unescaped ‘$’ character in a string signifies the beginning of an interpo-
lated expression. The ‘$’ sign may be followed by either:

• A single identifier id that does not contain the ‘$’ character.

• An expression e delimited by curly braces.

The form $id is equivalent to the form ${id}. An interpolated string, s, with
content ‘s0${e1}s1 . . . sn−1${en}sn’ (where any of s0, . . . , sn can be empty) is
evaluated by evaluating each expression ei (1 ≤ i ≤ n) in to a string ri in the
order they occur in the source text, as follows:

• Evaluate ei to an object oi.

• Invoke the toString method on oi with no arguments, and let ri be the
returned value.

Dart Programming Language Specification 88

• If ri is not an instance of the built-in type String, throw an Error.

Finally, the result of the evaluation of s is the concatenation of the strings s0,
r1, . . . , rn, and sn.

16.8 Symbols symbols

A symbol literal denotes a name that would be either a valid declaration �
name or a valid library name in a Dart program.

〈symbolLiteral〉 ::= ‘#’ (〈operator〉 | (〈identifier〉 (‘.’ 〈identifier〉)*))

A symbol literal #id where id is an identifier that does not begin with an
underscore (‘_’), evaluates to an instance of Symbol representing the identifier
id. All occurrences of #id evaluate to the same instance (symbol instances are
canonicalized), and no other symbol literals evaluate to that Symbol instance or
to a Symbol instance that is equal (according to the ‘==’ operator 16.27) to that
instance.

A symbol literal #id.id2 . . . idn where id . . . idn are identifiers, evaluates to
an instance of Symbol representing that particular sequence of identifiers. All
occurrences of #id.id2 . . . idn with the same sequence of identifiers evaluate to
the same instance, and no other symbol literals evaluate to that Symbol instance
or to a Symbol instance that is ‘==’ to that instance. This kind of symbol literal
denotes the name of a library declaration. Library names are not subject to library
privacy, even if some of its identifiers begin with an underscore.

A symbol literal #operator evaluates to an instance of Symbol representing
that particular operator name. All occurrences of #operator evaluate to the
same instance, and no other symbol literals evaluate to that Symbol instance or
to a Symbol instance that is ‘==’ to that instance.

A symbol literal #_id, evaluates to an instance of Symbol representing the
private identifier _id of the containing library. All occurrences of #_id in the
same library evaluate to the same instance, and no other symbol literals evaluate
to that Symbol instance or to a Symbol instance that is ‘==’ to that instance.

The objects created by symbol literals all override the ‘==’ operator inherited
from the Object class.

One may well ask what is the motivation for introducing literal symbols? In
some languages, symbols are canonicalized whereas strings are not. However
literal strings are already canonicalized in Dart. Symbols are slightly easier to
type compared to strings and their use can become strangely addictive, but this is
not nearly sufficient justification for adding a literal form to the language. The
primary motivation is related to the use of reflection and a web specific practice
known as minification.

Minification compresses identifiers consistently throughout a program in or-
der to reduce download size. This practice poses difficulties for reflective pro-
grams that refer to program declarations via strings. A string will refer to an
identifier in the source, but the identifier will no longer be used in the minified
code, and reflective code using these would fail. Therefore, Dart reflection uses

Dart Programming Language Specification 89

objects of type Symbol rather than strings. Instances of Symbol are guaranteed
to be stable with respect to minification. Providing a literal form for symbols
makes reflective code easier to read and write. The fact that symbols are easy
to type and can often act as convenient substitutes for enums are secondary
benefits.

The static type of a symbol literal is Symbol.

16.9 Lists lists

A list literal denotes a list, which is an integer indexed collection of objects. �

〈listLiteral〉 ::= const? 〈typeArguments〉? ‘[’ (〈expressionList〉 ‘,’?)? ‘]’

A list may contain zero or more objects. The number of elements in a list is
its size. A list has an associated set of indices. An empty list has an empty set
of indices. A non-empty list has the index set {0, . . . , n− 1} where n is the size
of the list. It is a dynamic error to attempt to access a list using an index that
is not a member of its set of indices.

If a list literal ` begins with the reserved word const or ` occurs in a constant
context (16.3.1), it is a constant list literal, which is a constant expression (16.3) �
and therefore evaluated at compile time. Otherwise, it is a run-time list literal �
and it is evaluated at run time. Only run-time list literals can be mutated after
they are created. Attempting to mutate a constant list literal will result in a
dynamic error.

Note that the element expressions of a constant list literal occur in a constant
context (16.3.1), which means that const modifiers need not be specified explicitly.

It is a compile-time error if an element of a constant list literal is not a
constant expression. It is a compile-time error if the type argument of a constant
list literal is not a constant type expression.

The binding of a formal type parameter is not known at compile time, so we
cannot use type parameters inside constant expressions.

The value of a constant list literal const? <E>[e1, . . . , en] is an object a
whose class implements the built-in class List<E>. Let vi be the value of the
constant expression ei, i ∈ 1..n. The ith element of a (at index i− 1) is vi. The
value of a constant list literal const? [e1, . . . , en] is defined as the value of the
constant list literal const <dynamic>[e1, . . . , en].

Let list1 = const? <V >[e11, . . . , e1n] and list2 = const? <U>[e21, . . . , e2n]
be two constant list literals and let the elements of list1 and list2 evaluate to
o11, . . . , o1n and o21, . . . , o2n respectively. Iff identical(o1i, o2i) for i ∈ 1..n
and V == U then identical(list1, list2).

In other words, constant list literals are canonicalized.
A run-time list literal <E>[e1, . . . , en] is evaluated as follows:

• First, the expressions e1, . . . , en are evaluated in order they appear in the
program, producing objects o1, . . . , on.

• A fresh instance (10.6.1) a, of size n, whose class implements the built-in
class List<E> is allocated.

Dart Programming Language Specification 90

• The operator ‘[]=’ is invoked on a with first argument i and second argu-
ment oi+1, 0 ≤ i < n.

• The result of the evaluation is a.

The objects created by list literals do not override the ‘==’ operator inherited
from the Object class.

Note that this document does not specify an order in which the elements are
set. This allows for parallel assignments into the list if an implementation so desires.
The order can only be observed as follows (and may not be relied upon): if element
i is not a subtype of the element type of the list, a dynamic type error will occur
when a[i] is assigned oi−1.

A run-time list literal [e1, . . . , en] is evaluated as <dynamic>[e1, . . . , en].
There is no restriction precluding nesting of list literals. It follows from the rules

above that <List<int>>[<int>[1, 2, 3], <int>[4, 5, 6]] is a list with type
parameter List<int>, containing two lists with type parameter int.

The static type of a list literal of the form const <E>[e1, . . . , en] or the
form <E>[e1, . . . , en] is List<E>. The static type of a list literal of the form
const [e1, . . . , en] or the form [e1, . . . , en] is List<dynamic>.

16.10 Maps maps

A map literal denotes a map object. �

〈mapLiteral〉 ::= const? 〈typeArguments〉?
‘{’ 〈mapLiteralEntry〉 (‘,’ 〈mapLiteralEntry〉)* ‘,’? ‘}’

〈mapLiteralEntry〉 ::= 〈expression〉 ‘:’ 〈expression〉

〈setOrMapLiteral〉 ::= const? 〈typeArguments〉? ‘{’ ‘}’

A 〈setOrMapLiteral〉 e is either a set literal (16.11) or a map literal, deter-
mined by the type parameters or static context type. If e has exactly one type
argument, then it is a set literal. If e has two type arguments, then it is a map
literal. If e has three or more type arguments, it is a compile-time error. If e
has no type arguments, then let S be the static context type of the literal. If
futureOrBase(S) (19.8) is a subtype of Iterable<Object> and futureOrBase(S)
is not a subtype of Map<Object, Object>, then e is set literal, and otherwise
it is a map literal. A map literal derived from 〈setOrMapLiteral〉 is treated the
same way as one derived from 〈mapLiteral〉, as described below.

A map literal consists of zero or more entries. Each entry has a key and a �
value. Each key and each value is denoted by an expression. It is a compile-time �
error if a map literal has one type argument, or more than two type arguments.

If a map literal ` begins with the reserved word const, or if ` occurs in
a constant context (16.3.1), it is a constant map literal which is a constant �
expression (16.3) and therefore evaluated at compile time. Otherwise, it is a
run-time map literal and it is evaluated at run time. Only run-time map literals �

Dart Programming Language Specification 91

can be mutated after they are created. Attempting to mutate a constant map
literal will result in a dynamic error.

Note that the key and value expressions of a constant list literal occur in a
constant context (16.3.1), which means that const modifiers need not be specified
explicitly.

It is a compile-time error if either a key or a value of an entry in a constant
map literal is not a constant expression. It is a compile-time error if the operator
‘==’ of the key of an entry in a constant map literal is not primitive (10.1.3).
It is a compile-time error if a type argument of a constant map literal is not a
constant type expression (16.3).

The value of a constant map literal const? <K, V >{k1 : e1, . . . , kn : en} is
an object m whose class implements the built-in class Map<K, V >. The entries
of m are ui : vi, i ∈ 1..n, where ui is the value of the compile-time expression ki,
and vi is the value of the compile-time expression ei. The value of a constant
map literal const? {k1 : e1, . . . , kn : en} is defined as the value of the constant
map literal const <dynamic, dynamic>{k1 : e1, . . . , kn : en}.

Let map1 be a constant map literal of the form const? <K, V >{k11 : e11, . . . , k1n :
e1n} and map2 a constant map literal of the form const? <J, U>{k21 : e21, . . . , k2n :
e2n}. Let the keys of map1 and map2 evaluate to s11, . . . , s1n and s21, . . . , s2n,
respectively, and let the elements of map1 and map2 evaluate to o11, . . . , o1n and
o21, . . . , o2n, respectively. Iff identical(o1i, o2i) and identical(s1i, s2i) for
i ∈ 1..n, and K == J, V == U , then identical(map1, map2).

In other words, constant map literals are canonicalized.
It is a compile-time error if two keys of a constant map literal are equal

according to their ‘==’ operator (16.27).
A run-time map literal <K, V >{k1 : e1, . . . , kn : en} is evaluated as follows:

• For each i ∈ 1..n in numeric order, first the expression ki is evaluated
producing object ui, and then ei is evaluated producing object oi. This
produces all the objects u1, o1, . . . , un, on.

• A fresh instance (10.6.1) m whose class implements the built-in class
Map<K, V >, is allocated.

• The operator ‘[]=’ is invoked on m with first argument ui and second
argument oi for each i ∈ 1..n.

• The result of the evaluation is m.

The objects created by map literals do not override the ‘==’ operator inher-
ited from the Object class.

A run-time map literal {k1 : e1, . . . , kn : en} is evaluated as
<dynamic, dynamic>{k1 : e1, . . . , kn : en}.
A map literal is ordered: iterating over the keys and/or values of the maps

always happens in the order the keys appeared in the source code.
Of course, if a key repeats, the order is defined by first occurrence, but the value

is defined by the last.
The static type of a map literal of the form const <K, V >{k1 : e1, . . . , kn :

Dart Programming Language Specification 92

en} or the form <K, V >{k1 : e1, . . . , kn : en} is Map<K, V >. The static type of a
map literal of the form const {k1 : e1, . . . , kn : en} or the form {k1 : e1, . . . , kn :
en} is Map<dynamic, dynamic>.

16.11 Sets sets

A set literal denotes a set object. �

〈setLiteral〉 ::= const? 〈typeArguments〉?
‘{’ 〈expression〉 (‘,’ 〈expression〉)* ‘,’? ‘}’

A 〈setOrMapLiteral〉 is either a set literal or a map literal (16.10). A set
literal derived from 〈setOrMapLiteral〉 is treated the same way as one derived
from 〈setLiteral〉, as described below.

A set literal consists of zero or more element expressions. It is a compile-time
error if a set literal has more than one type argument.

A set literal with no type argument is always converted to a literal with a
type argument by type inference (6), so the following section only address the
behavior of literals with type arguments.

If a set literal ` begins with the reserved word const or ` occurs in a constant
context (16.3.1), it is a constant set literal which is a constant expression (16.3) �
and therefore evaluated at compile time. Otherwise, it is a run-time set literal �
and it is evaluated at run time. Only run-time set literals can be mutated after
they are created. Attempting to mutate a constant set literal will result in a
dynamic error.

Note that the element expressions of a constant set literal occur in a constant
context (16.3.1), which means that const modifiers need not be specified explicitly.

It is a compile-time error if an element expression in a constant set literal
is not a constant expression. It is a compile-time error if the operator ‘==’ of
an element expression in a constant map literal is not primitive (10.1.3). It is a
compile-time error if the type argument of a constant set literal is not a constant
type expression (16.3). It is a compile-time error if two elements of a constant
set literal are equal according to their ‘==’ operator (16.27).

The value of a constant set literal const? <E>{e1, . . . , en} is an object s
whose class implements the built-in class Set<E>. The elements of m are vi, i ∈
1..n, where vi is the value of the constant expression ei. The value of a constant
set literal const? {e1, . . . , en} is defined as the value of the constant set literal
const <dynamic>{e1, . . . , en}.

Let set1 be a constant set literal with type argument E and element expres-
sions, in source order, e11, . . . , e1n evaluating to values v11, . . . , v1n. Let set2 be
a constant set literal with type argument F and element expressions, in source
order, e21, . . . , e2n evaluating to values v21, . . . , v2n. Iff identical(v1i, v2i)
for i ∈ 1..n, and E and F is the same type, then identical(set1, set2).

In other words, constant set literals are canonicalized if they have the same type
and the same values in the same order. Two constant set literals are never identical
if they have a different number of elements.

Dart Programming Language Specification 93

A run-time set literal with element expressions e1, . . . , en (in source order)
and with type argument E is evaluated as follows:

• For each i ∈ 1..n in numeric order, the expression ei is evaluated producing
object vi.

• A fresh object (10.6.1) s implementing the built-in class Set<E>, is cre-
ated.

• The set s is made to have the values v1, . . . , vn as elements, iterated in
numerical order.

• The result of the evaluation is s.

The objects created by set literals do not override the ‘==’ operator inherited
from the Object class.

A set literal is ordered: iterating over the elements of the sets always happens
in the order the elements first appeared in the source code.

If a value repeats, the order is defined by first occurrence, but the value is defined
by the last.

A run-time set literal {e1, . . . , en} is evaluated as <dynamic>{e1, . . . , en}.
The static type of a set literal of the form const <E>{e1, . . . , en} or the

form <E>{e1, . . . , en} is Set<E>. The static type of a list literal of the form
const {e1, . . . , en} or the form {e1, . . . , en} is Set<dynamic>.

16.12 Throw throw

The throw expression is used to throw an exception. �

〈throwExpression〉 ::= throw 〈expression〉

〈throwExpressionWithoutCascade〉 ::= throw 〈expressionWithoutCascade〉

Evaluation of a throw expression of the form throw e; proceeds as follows:
The expression e is evaluated to an object v (16.1).
There is no requirement that the expression e must evaluate to any special kind

of object.
If v is the null object (16.4), then a NullThrownError is thrown. Otherwise

let t be a stack trace corresponding to the current execution state, and the
throw statement throws with v as exception object and t as stack trace (16.1).

If v is an instance of class Error or a subclass thereof, and it is the first time
that Error object is thrown, the stack trace t is stored on v so that it will be
returned by the v’s stackTrace getter

If the same Error object is thrown more than once, its stackTrace getter will
return the stack trace from the first time it was thrown.

The static type of a throw expression is ⊥.

Dart Programming Language Specification 94

16.13 Function Expressions functionExpressions

A function literal is an anonymous declaration and an expression that en- �
capsulates an executable unit of code.

〈functionExpression〉 ::= 〈formalParameterPart〉 〈functionBody〉

The grammar does not allow a function literal to declare a return type, but
it is possible for a function literal to have a declared return type, because it can �
be obtained by means of type inference. Such a return type is included when
we refer to the declared return type of a function.

Type inference will be specified in a future version of this document. Currently
we consider type inference to be a phase that has completed, and this document
specifies the meaning of Dart programs where inferred types have already been
added.

We define the auxiliary function flatten(T), which is used below and in other �
sections, as follows:

• If T is FutureOr<S> for some S then flatten(T) = S.

• Otherwise if T <: Future then let S be a type such that T <: Future<S>
and for all R, if T <: Future<R> then S <: R.
This ensures that Future<S> is the most specific generic instantiation of
Future that is a supertype of T . Note that S is well-defined because of the
requirements on superinterfaces.
Then flatten(T) = S.

• In any other circumstance, flatten(T) = T .

Case 〈Positional, arrow〉. The static type of a function literal of the form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) => e
is
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]),
where T0 is the static type of e. �

Case 〈Positional, arrow, future〉. The static type of a function literal of the
form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async => e
is
Future<flatten(T0)>
Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]),
where T0 is the static type of e. �

Case 〈Named, arrow〉. The static type of a function literal of the form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) => e
is

Dart Programming Language Specification 95

T0 Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}),
where T0 is the static type of e. �

Case 〈Named, arrow, future〉. The static type of a function literal of the
form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) async => e
is
Future<flatten(T0)>
Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}),
where T0 is the static type of e. �

Case 〈Positional, block〉. The static type of a function literal of the form
<X1 extendsB1, . . . , XS extendsBS>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) { s }
is
dynamic
Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]) �

Case 〈Positional, block, future〉. The static type of a function literal of the
form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async { s }
is
Future
Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). �

Case 〈Positional, block, stream〉. The static type of a function literal of
the form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async* { s
}
is
Stream
Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). �

Case 〈Positional, block, iterable〉. The static type of a function literal of
the form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) sync* { s }
is
Iterable
Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). �

Case 〈Named, block〉. The static type of a function literal of the form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) { s }
is
dynamic
Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). �

Case 〈Named, block, future〉. The static type of a function literal of the
form

Dart Programming Language Specification 96

<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) async { s }
is
Future
Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}).

�

Case 〈Named, block, stream〉. The static type of a function literal of the
form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) async* { s
}
is
Stream
Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}).

�

Case 〈Named, block, iterable〉. The static type of a function literal of the
form
<X1 extendsB1, . . . , Xs extendsBs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) sync* { s }
is
Iterable
Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}).

�

In all of the above cases, the type argument lists are omitted when m = 0,
and whenever Ti is not specified, i ∈ 1..n + k, it is considered to have been
specified as dynamic.

Evaluation of a function literal yields a function object o.
The run-time type of o is specified based on the static type T of the function

literal and the binding of type variables occurring in T at the occasion where the
evaluation occurred (9.3).

16.14 This this

The reserved word this denotes the target of the current instance member
invocation.

〈thisExpression〉 ::= this

The static type of this is the interface of the immediately enclosing class.
We do not support self-types at this point.
It is a compile-time error if this appears, implicitly or explicitly, in a top-level

function or variable initializer, in a factory constructor, or in a static method
or variable initializer, or in the initializer of an instance variable.

Dart Programming Language Specification 97

16.15 Instance Creation instanceCreation

Instance creation expressions generally produce instances and invoke con-
structors to initialize them.

The exception is that a factory constructor invocation works like a regular func-
tion call. It may of course evaluate an instance creation expression and thus produce
a fresh instance, but no fresh instances are created as a direct consequence of the
factory constructor invocation.

It is a compile-time error if the type T in an instance creation expression of
one of the forms

new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)

is an enumerated type (13).

16.15.1 New new

The new expression invokes a constructor (10.6). �

〈newExpression〉 ::= new 〈typeNotVoid〉 (‘.’ 〈identifier〉)? 〈arguments〉

Let e be a new expression of the form
new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) or the form
new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
It is a compile-time error if T is not a class or a parameterized type accessible

in the current scope, or if T is a parameterized type which is not a class. For
instance, new F<int>() is an error if F is a type alias that does not denote a class.

If T is a parameterized type (19.10) S<U1, . . . , Um>, let R be the generic
class S, and let X1 extends B1, . . . , Xp extends Bp be the formal type pa-
rameters of S. If T is not a parameterized type, let R be T .

• If e is of the form new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R.id is not the name of a constructor declared
by R, or id is not accessible.

• If e is of the form new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R is not the name of a constructor declared
by R.

Let q be the above-mentioned constructor named R.id or R.
It is a compile-time error if R is abstract and q is not a factory constructor. It

is a compile-time error if R is a non-generic class and T is a parameterized type.
It is a compile-time error if R is a generic class and T is not a parameterized
type. It is a compile-time error if R is a generic class, T is a parameterized
type, and m 6= p. That is, the number of type arguments is incorrect. It is a

Dart Programming Language Specification 98

compile-time error if R is a generic class, T is a parameterized type, and T is
not regular-bounded (14.2).

If q is a redirecting factory constructor, it is a compile-time error if q in
some number of redirecting factory redirections redirects to itself. It is possible
and allowed for a redirecting factory q′ to enter an infinite loop, e.g., because q′

redirects to a non-redirecting factory constructor q′′ whose body uses q′ in an in-
stance creation expression. Only loops that consist exclusively of redirecting factory
redirections are detected at compile time.

Let Si be the static type of the formal parameter of the constructor R.id
(respectively R) corresponding to the actual argument ai, i ∈ 1..n + k. It is
a compile-time error if the static type of ai, i ∈ 1..n + k is not assignable to
[U1/X1, . . . , Um/Xm]Si. The non-generic case is covered with m = 0.

The static type of e is T .
Evaluation of e proceeds as follows:
First, the argument part
<U1, . . . , Um>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)

is evaluated, yielding the evaluated actual argument part
<u1, . . . , um>(o1, . . . , on, xn+1: on+1, . . . , xn+k: on+k).

Note that the non-generic case is covered by letting m = 0. If for any j ∈ 1..n + k
the run-time type of oj is not a subtype of [u1/X1, . . . , um/Xm]Sj , a dynamic
type error occurs.

Case 〈Non-loaded deferred constructors〉. If T is a deferred type with prefix
p, then if p has not been successfully loaded, a dynamic error occurs. �

Case 〈Generative constructors〉. When q is a generative constructor (10.6.1)
evaluation proceeds to allocate a fresh instance (10.6.1), i, of class T . Then
q is executed to initialize i with respect to the bindings that resulted from
the evaluation of the argument list, and, if R is a generic class, with its type
parameters bound to u1, . . . , um.

If execution of q completes normally (17.0.1), e evaluates to i. Otherwise ex-
ecution of q throws an exception object x and stack trace t, and then evaluation
of e also throws exception object x and stack trace t (16.1). �

Case 〈Redirecting factory constructors〉. When q is a redirecting factory
constructor (10.6.2) of the form const? T(p1, . . . , pn+k) = c; or of the form
const? T.id(p1, . . . , pn+k) = c; where const? indicates that const may be
present or absent, the remaining evaluation of e is equivalent to evaluating new
c(v1, . . . , vn, xn+1: vn+1, . . . , xn+k: vn+k) in an environment where vj is
a fresh variable bound to oj for j ∈ 1..n+k, and Xj is bound to uj for j ∈ 1..m.
We need access to the type variables because c may contain them. �

Case 〈Non-redirecting factory constructors〉. When q is a non-redirecting
factory constructor, the body of q is executed with respect to the bindings that
resulted from the evaluation of the argument list, and with the type parameters,
if any, of q bound to the actual type arguments u1, . . . , um. If this execution
returns a value (17.0.1), then e evaluates to the returned value. Otherwise, if
the execution completes normally or returns with no value, then e evaluates to
the null object (16.4). Otherwise the execution throws an exception x and stack
trace t, and then evaluation of e also throws x and t (16.1).

Dart Programming Language Specification 99

A factory constructor can be declared in an abstract class and used safely,
as it will either produce a valid instance or throw. �

16.15.2 Const const

A constant object expression invokes a constant constructor (10.6.3). �

〈constObjectExpression〉 ::= const 〈typeNotVoid〉 (‘.’ 〈identifier〉)? 〈arguments〉

Let e be a constant object expression of the form
const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) or the form
const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
It is a compile-time error if T is not a class or a parameterized type accessible

in the current scope, or if T is a parameterized type which is not a class. It is
a compile-time error if T is a deferred type (19.1). In particular, T must not be
a type variable.

It is a compile-time error if ai is not a constant expression for some i ∈
1..n + k.

If T is a parameterized type (19.10) S<U1, . . . , Um>, let R be the generic
class S, and let X1 extends B1, . . . , Xp extends Bp be the formal type pa-
rameters of S. If T is not a parameterized type, let R be T .

If T is a parameterized type, it is a compile-time error if Uj is not a constant
type expression for any j ∈ 1..m.

• If e is of the form const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R.id is not the name of a constant constructor
declared by R, or id is not accessible.

• If e is of the form const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R is not the name of a constant constructor
declared by R.

Let q be the above-mentioned constant constructor named R.id or R.
It is a compile-time error if R is abstract and q is not a factory constructor. It

is a compile-time error if R is a non-generic class and T is a parameterized type.
It is a compile-time error if R is a generic class and T is not a parameterized
type. It is a compile-time error if R is a generic class, T is a parameterized
type, and m 6= p. That is, the number of type arguments is incorrect. It is a
compile-time error if R is a generic class, T is a parameterized type, and T is
not regular-bounded (14.2).

Let Si be the static type of the formal parameter of the constructor R.id
(respectively R) corresponding to the actual argument ai, i ∈ 1..n + k. It is
a compile-time error if the static type of ai, i ∈ 1..n + k is not assignable to
[U1/X1, . . . , Um/Xm]Si. The non-generic case is covered with m = 0.

The static type of e is T .
Evaluation of e proceeds as follows:
If e is of the form const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)

Dart Programming Language Specification 100

let i be the value of the expression e′: new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k:
an+k). Let o be the result of an evaluation of e′, at some point in time of some
execution of the program in the library L where e occurs. The result of an evalua-
tion of e′ in L at some other time and/or in some other execution will yield a result
o′, such that o′ would be replaced by o by canonicalization as described below. This
means that the value is well-defined.

If e is of the form const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
let i be the value of new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Which is well-defined for the same reason.

• If during execution of the program, a constant object expression has al-
ready evaluated to an instance j of class R with type arguments Ui, 1 ≤
i ≤ m, then:

– For each instance variable f of i, let vif be the value of the instance
variable f in i, and let vjf be the value of the instance variable f in
j. If identical(vif, vjf) for all instance variables f in i then the
value of e is j, otherwise the value of e is i.

• Otherwise the value of e is i.

In other words, constant objects are canonicalized. In order to determine if an
object is actually new, one has to compute it; then it can be compared to any
cached instances. If an equivalent object exists in the cache, we throw away the
newly created object and use the cached one. Objects are equivalent if they have
identical type arguments and identical instance variables. Since the constructor
cannot induce any side effects, the execution of the constructor is unobservable.
The constructor need only be executed once per call site, at compile time.

It is a compile-time error if evaluation of a constant object results in an
uncaught exception being thrown.

To see how such situations might arise, consider the following examples:

class A {
final x;
const A(p): x = p * 10;

}

class IntPair {
const IntPair(this.x, this.y);
final int x;
final int y;
operator *(v) => new IntPair(x*v, y*v);

}

const a1 = const A(true); // compile-time error
const a2 = const A(5); // legal

Dart Programming Language Specification 101

const a3 = const A(const IntPair(1,2)); // compile-time error

Due to the rules governing constant constructors, evaluating the constructor
A() with the argument "x" or the argument const IntPair(1, 2) would cause
it to throw an exception, resulting in a compile-time error. In the latter case, the
error is caused by the fact that operator * can only be used with a few “well-
known” types, which is required in order to avoid running arbitrary code during the
evaluation of constant expressions.

16.16 Spawning an Isolate spawningAnIsolate

Spawning an isolate is accomplished via what is syntactically an ordinary
library call, invoking one of the functions spawnUri() or spawn() defined in the
dart:isolate library. However, such calls have the semantic effect of creating
a new isolate with its own memory and thread of control.

An isolate’s memory is finite, as is the space available to its thread’s call
stack. It is possible for a running isolate to exhaust its memory or stack, result-
ing in a dynamic error that cannot be effectively caught, which will force the
isolate to be suspended.

As discussed in section 7, the handling of a suspended isolate is the responsibility
of the embedder.

16.17 Function Invocation functionInvocation

Function invocation occurs in the following cases: when a function expression
(16.13) is invoked (16.17.5), when a method (16.21), getter (16.20, 16.22) or
setter (16.23) is invoked, or when a constructor is invoked (either via instance
creation (16.15), constructor redirection (10.6.1), or super initialization). The
various kinds of function invocation differ as to how the function to be invoked,
f , is determined, as well as whether this (16.14) is bound. Once f has been
determined, formal type parameters of f are bound to the corresponding actual
type arguments, and the formal parameters of f are bound to corresponding
actual arguments. When the body of f is executed it will be executed with the
aforementioned bindings.

Executing a body of the form => e is equivalent to executing a body of the
form { return e; }. Execution a body of the form async => e is equivalent
to executing a body of the form async { return e; }.

If f is synchronous and is not a generator (9) then execution of the body
of f begins immediately. If the execution of the body of f returns a value, v,
(17.0.1), the invocation evaluates to v. If the execution completes normally or
it returns without a value, the invocation evaluates to the null object (16.4). If
the execution throws an exception object and stack trace, the invocation throws
the same exception object and stack trace (16.1).

A complete function body can never break or continue (17.0.1) because a break
or continue statement must always occur inside the statement that is the target of
the break or continue. This means that a function body can only either complete

Dart Programming Language Specification 102

normally, throw, or return. Completing normally or returning without a value is
treated the same as returning the null object (16.4), so the result of executing a
function body can always be used as the result of evaluating an expression, either
by evaluating to an object, or by the evaluation throwing.

If f is marked sync* (9), then a fresh instance (10.6.1) i implementing
Iterable<U> is immediately returned, where U is determined as follows: Let
T be the actual return type of f (19.10.1). If T is Iterable<S> for some type
S, then U is S, otherwise U is Object.

A Dart implementation will need to provide a specific implementation of Iterable
that will be returned by sync* methods. A typical strategy would be to pro-
duce an instance of a subclass of class IterableBase defined in dart:core. The
only method that needs to be added by the Dart implementation in that case is
iterator.

The iterable implementation must comply with the contract of Iterable and
should not take any steps identified as exceptionally efficient in that contract.

The contract explicitly mentions a number of situations where certain iterables
could be more efficient than normal. For example, by precomputing their length.
Normal iterables must iterate over their elements to determine their length. This
is certainly true in the case of a synchronous generator, where each element is
computed by a function. It would not be acceptable to pre-compute the results of
the generator and cache them, for example.

When iteration over the iterable is started, by getting an iterator j from the
iterable and calling moveNext(), execution of the body of f will begin. When
execution of the body of f completes (17.0.1),

• If it returns without a value or it completes normally (17.0.1), j is posi-
tioned after its last element, so that its current value is the null object
(16.4) and the current call to moveNext() on j returns false, as must all
further calls.

• If it throws an exception object e and stack trace t then the current value
of j is the null object (16.4) and the current call to moveNext() throws e
and t as well. Further calls to moveNext() must return false.

Each iterator starts a separate computation. If the sync* function is impure,
the sequence of values yielded by each iterator may differ.

One can derive more than one iterator from a given iterable. Note that op-
erations on the iterable itself can create distinct iterators. An example would be
length. It is conceivable that different iterators might yield sequences of different
length. The same care needs to be taken when writing sync* functions as when
writing an Iterator class. In particular, it should handle multiple simultaneous
iterators gracefully. If the iterator depends on external state that might change,
it should check that the state is still valid after every yield (and maybe throw a
ConcurrentModificationError if it isn’t).

Each iterator runs with its own shallow copies of all local variables; in par-
ticular, each iterator has the same initial arguments, even if their bindings are

Dart Programming Language Specification 103

modified by the function. Two executions of an iterator interact only via state
outside the function.

If f is marked async (9), then a fresh instance (10.6.1) o is associated with
the invocation, where the dynamic type of o implements Future<flatten(T)>,
and T is the actual return type of f (19.10.1). Then the body of f is executed
until it either suspends or completes, at which point o is returned. The body
of f may suspend during the evaluation of an await expression or execution of
an asynchronous for loop. The future o is completed when execution of the
body of f completes (17.0.1). If execution of the body returns a value, o is
completed with that value, if it completes normally or returns without a value,
o is completed with the null object (16.4), and if it throws an exception e and
stack trace t, o is completed with the error e and stack trace t. If execution
of the body throws before the body suspends the first time, completion of o
happens at some future time after the invocation has returned. The caller
needs time to set up error handling for the returned future, so the future is not
completed with an error before it has been returned.

If f is marked async* (9), then a fresh instance (10.6.1) s implementing
Stream<U> is immediately returned, where U is determined as follows: Let T
be the actual return type of f (19.10.1). If T is Stream<S> for some type S,
then U is S, otherwise U is Object. When s is listened to, execution of the
body of f will begin. When execution of the body of f completes:

• If it completes normally or returns with no value (17.0.1), then if s has
been canceled then its cancellation future is completed with the null object
(16.4).

• If it throws an exception object e and stack trace t:

– If s has been canceled then its cancellation future is completed with
error e and stack trace t.

– otherwise the error e and stack trace t are emitted by s.

• s is closed.

The body of an asynchronous generator function cannot break, continue or return a
value (17.0.1). The first two are only allowed in contexts that will handle the break
or continue, and return statements with an expression are not allowed in generator
functions.

When an asynchronous generator’s stream has been canceled, cleanup will
occur in the finally clauses (17.11) inside the generator. We choose to direct
any exceptions that occur at this time to the cancellation future rather than have
them be lost.

16.17.1 Actual Argument Lists actualArgumentLists

Actual argument lists have the following syntax:

〈arguments〉 ::= ‘(’ (〈argumentList〉 ‘,’?)? ‘)’

Dart Programming Language Specification 104

〈argumentList〉 ::= 〈namedArgument〉 (‘,’ 〈namedArgument〉)*
| 〈expressionList〉 (‘,’ 〈namedArgument〉)*

〈namedArgument〉 ::= 〈label〉 〈expression〉

Argument lists allow an optional trailing comma after the last argument
(‘,’?). An argument list with such a trailing comma is equivalent in all ways to
the same parameter list without the trailing comma. All argument lists in this
specification are shown without a trailing comma, but the rules and semantics
apply equally to the corresponding argument list with a trailing comma.

Let L be an argument list of the form (e1 . . . , em, ym+1: em+1 . . . , ym+p:
em+p) and assume that the static type of ei is Si, i ∈ 1..m + p. The static ar- �
gument list type of L is then (S1 . . . , Sm, Sm+1 ym+1 . . . , Sm+p ym+p).

Let Ss be the static argument list type
(S1 . . . , Sm, Sm+1 ym+1 . . . , Sm+p ym+p)

and let Ps be the formal parameter list
(T1 x1 . . . , Tn xn, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk])

where each parameter may be marked covariant (not shown, but allowed).
We say that Ss is a subtype match for Ps iff p = 0, n ≤ m ≤ n + k, and Si �

is a subtype of Ti for all i ∈ 1..m. We say that Ss is an assignable match for Ps �
iff p = 0, n ≤ m ≤ n + k, and Si is assignable to Ti for all i ∈ 1..m.

Let Ss be the static argument list type
(S1 . . . , Sm, Sm+1 ym+1 . . . , Sm+p ym+p)

and let Ps be the formal parameter list
(T1 x1 . . . , Tn xn, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk})

where each parameter may be marked covariant (not shown, but allowed).
We say that Ss is a subtype match for Ps iff m = n, {ym+1 . . . , ym+p} ⊆ �

{xn+1 . . . , xn+k}, Si is a subtype of Ti for all i ∈ 1..m, and Si is a subtype of Tj

whenever yi = xj and j ∈ n+1..n+k, for all i ∈ m+1..m+p. We say that Ss is
an assignable match for Ps iff m = n, {ym+1 . . . , ym+p} ⊆ {xn+1 . . . , xn+k}, Si �
is assignable to Ti for all i ∈ 1..m, and Si is assignable to Tj whenever yi = xj

and j ∈ n + 1..n + k, for all i ∈ m + 1..m + p.
In short, an actual argument list is a match for a formal parameter list whenever

the former can safely be passed to the latter.

16.17.2 Actual Argument List Evaluation actualArguments

Function invocation involves evaluation of the list of actual arguments to the
function, and binding of the results to the function’s formal parameters.

When parsing an argument list, an ambiguity may arise because the same
source code could be one generic function invocation, and it could be two or more
relational expressions and/or shift expressions. In this situation, the expression
is always parsed as a generic function invocation.

An example is f(a<B, C>(d)), which may be an invocation of f passing two
actual arguments of type bool, or an invocation of f passing the result returned by
an invocation of the generic function a. Note that the ambiguity can be eliminated

Dart Programming Language Specification 105

by omitting the parentheses around the expression d, or adding parentheses around
one of the relational expressions.

When the intention is to pass several relational or shift expressions as actual
arguments and there is an ambiguity, the source code can easily be adjusted to
a form which is unambiguous. Also, we expect that it will be more common to
have generic function invocations as actual arguments than having relational or
shift expressions that happen to match up and have parentheses at the end, such
that the ambiguity arises.

Evaluation of an actual argument part of the form
<A1, . . . , Ar>(a1, . . . , am, q1: am+1, . . . , ql: am+l)
proceeds as follows:
The type arguments A1, . . . , Ar are evaluated in the order they appear in the

program, producing types t1, . . . , tr. The arguments a1, . . . , am+l are evaluated
in the order they appear in the program, producing objects o1, . . . , om+l.

Simply stated, an argument part consisting of s type arguments, m positional
arguments, and l named arguments is evaluated from left to right. Note that the
type argument list is omitted when r = 0 (14).

16.17.3 Binding Actuals to Formals bindingActualsToFormals

In the following, the non-generic case is covered implicitly: When the number of
actual type arguments is zero the entire type argument list <...> is omitted, and
similarly for empty type parameter lists (14).

Consider an invocation i of a function f with an actual argument part of
the form <A1, . . . , Ar>(a1, . . . , am, q1: am+1, . . . , ql: am+l).

Note that f denotes a function in a semantic sense, rather than a syntactic
construct. A reference to this section is used in other sections when the static
analysis of an invocation is specified, and the static type of f has been determined.
The function itself may have been obtained from a function declaration, from an
instance bound to this and an instance method declaration, or as a function object
obtained by evaluation of an expression. Because of that, we cannot indicate here
which syntactic construct corresponds to f . A reference to this section is also
used in other sections when actual arguments are to be bound to the corresponding
formal parameters, and f is about to be invoked, to specify the dynamic semantics.

We do not call f a ‘function object’ here, because we do not wish to imply
that every function invocation must involve a separate evaluation of an expression
that yields a function object, followed by an invocation of that function object.
For instance, an implementation should be allowed to compile the invocation of a
top-level function as a series of steps whereby a stack frame is created, followed
by a low-level jump to the generated code for the body. So, in this section, the
word ‘function’ is more low-level than ‘function object’, but ‘function’ still denotes
a semantic entity which is associated with a function declaration, even though there
may not be a corresponding entity in the heap at run time.

It is a compile-time error if qj = qk for any j 6= k.
If the static type of f is dynamic or the built-in class Function, no further

Dart Programming Language Specification 106

static checks are performed and the static type of i is dynamic; otherwise, it is
a compile-time error if the static type of f is not a function type.

Otherwise, the static type of f is a function type F . Let S0 be the return
type of F , let X1 extends B1, . . . , Xs extends Bs be the formal type parameters,
let h be the number of required parameters, let p1, . . . , pn be the positional
parameters, and let ph+1, . . . , ph+k be the optional parameters of F . Let Si be
the static type of the formal parameters pi, i ∈ 1..h + k, and for each q let Sq be
the type of the parameter named q, where each parameter type is obtained by
replacing Xj by Aj , j ∈ 1..s, in the given parameter type annotation. Finally,
let Ti be the static type of ai.

We have an actual argument list consisting of r type arguments, m positional
arguments, and l named arguments. We have a function with s type parameters, h
required parameters, and k optional parameters. Figure 1 shows how this situation
arises.

Actual arguments:

〈r type arguments〉
(

m positional arguments, l named arguments
)

Declaration with named parameters: n = h

〈s type parameters〉

 h required parameters, k optional parameters
which may also be viewed as

n positional parameters, k named parameters


Declaration with optional positional parameters: n = h + k

〈s type parameters〉

 h required parameters, k optional parameters
which may also be viewed as
n positional parameters


Figure 1: Possible actual argument parts and formal parameter parts

It is a compile-time error if r 6= s. It is a compile-time error if r = s and for
some j ∈ 1..s, Aj 6<: [A1/X1, . . . , Ar/Xs]Bj . It is a compile-time error unless
h ≤ m ≤ n. If l > 0, it is a compile-time error unless F has named parameters
and qj ∈ {ph+1, . . . , ph+k}, j ∈ 1..l.

That is, the number of type arguments must match the number of type param-
eters, and the bounds must be respected. We must receive at least the required
number of positional arguments, and not more than the total number of positional
parameters. For each named argument there must be a named parameter with the
same name.

The static type of i is [A1/X1, . . . , Ar/Xs]S0.
It is a compile-time error if Tj may not be assigned to Sj , j ∈ 1..m. It is a

compile-time error if Tm+j may not be assigned to Sqj , j ∈ 1..l.
Consider the case where the function invocation in focus here is an instance

Dart Programming Language Specification 107

method invocation. In that case, for each actual argument, the corresponding
parameter may be covariant. However, the above assignability requirements apply
equally both when the parameter is covariant and when it is not.

Parameter covariance in an instance method invocation can be introduced by
a subtype of the statically known receiver type, which means that any attempt to
flag a given actual argument as dangerous due to the dynamic type check that it
will be subjected to will be incomplete: some actual arguments can be subjected
to such a dynamic type check even though this is not known statically at the call
site. This is not surprising for a mechanism like parameter covariance which is
designed for the very purpose of allowing developers to explicitly request that this
specific kind of compile-time safety is violated. The point is that this mechanism
postpones the enforcement of the underlying invariant to run time, and in return
allows some useful program designs that would otherwise be rejected at compile-
time.

For the dynamic semantics, let f be a function with s type parameters and
h required parameters; let p1, . . . , pn be the positional parameters of f ; and let
ph+1, . . . , ph+k be the optional parameters declared by f .

An evaluated actual argument part
<t1, . . . , tr>(o1, . . . , om, q1: om+1, . . . , ql: om+l)

derived from an actual argument part of the form
<A1, . . . , Ar>(a1, . . . , am, q1: am+1, . . . , ql: am+l)

is bound to the formal type parameters and formal parameters of f as follows:
If r = 0 and s > 0 then replace the actual type argument list: let r be

s and ti = dynamic for i ∈ 1..s. Then, if r 6= s, a NoSuchMethodError is
thrown. If l > 0 and n 6= h, a NoSuchMethodError is thrown. If m < h,
or m > n, a NoSuchMethodError is thrown. Furthermore, each qi, i ∈ 1..l,
must have a corresponding named parameter in the set {ph+1, . . . , ph+k}, or
a NoSuchMethodError is thrown. Then pi is bound to oi, i ∈ 1..m, and qj is
bound to om+j , j ∈ 1..l. All remaining formal parameters of f are bound to
their default values.

All of these remaining parameters are necessarily optional and thus have default
values.

It is a dynamic type error if ti is not a subtype of the actual bound (19.10.1) of
the ith type argument of f , for actual type arguments t1, . . . , tr. It is a dynamic
type error if oi is not the null object (16.4) and the actual type (19.10.1) of pi

is not a supertype of the dynamic type of oi, i ∈ 1..m. It is a dynamic type
error if om+j is not the null object and the actual type (19.10.1) of qj is not a
supertype of the dynamic type of om+j , j ∈ 1..l.

16.17.4 Unqualified Invocation unqualifiedInvocation

An unqualified function invocation i has the form
id<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
where id is an identifier.

Note that the type argument list is omitted when r = 0 (14).
It is a compile-time error if i occurs inside a top-level or static function (be

Dart Programming Language Specification 108

it function, method, getter, or setter) or a top-level or static variable initializer,
and there is no lexically visible declaration named id in scope.

If there exists a lexically visible declaration named id, let Did be the inner-
most such declaration. Then:

• Consider the situation where Did is a type declaration. If Did is a decla-
ration of a class C that has a constructor named C then the meaning of i
depends on the context: If i occurs in a constant context (16.3.1), then i
is equivalent to const i; if i does not occur in a constant context then i is
equivalent to new i. Otherwise a compile-time error occurs (that is, if Did

does not declare a class, or it declares a class that has no constructor named
C).

• Otherwise, if Did is an import directive where id is declared to be a library
prefix, a compile-time error occurs.

• Otherwise, if Did declares a local function, a library function, or a library
or static getter, or a variable, then i is treated as a function expression
invocation (16.17.5).

• Otherwise, if Did is a static method of the enclosing class C, i is equivalent
to C.id<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

• Otherwise, if i occurs in an instance method body, i is equivalent to the
ordinary method invocation
this.id<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Otherwise id is not in scope, and i must occur inside a top-level or static function
(be it function, method, getter, or setter) or a top-level or static variable initializer,
in which case a compile-time error occurs, as specified earlier in this section.

16.17.5 Function Expression Invocation functionExpressionInvocation

A function expression invocation i has the form
ef<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
where ef is an expression.

Note that the type argument list is omitted when r = 0 (14).
Consider the situation where ef denotes a class C that contains a declaration

of a constructor named C, or it is of the form e′f.id where e′f denotes a class
C that contains a declaration of a constructor named C.id. If i occurs in a
constant context (16.3.1) then i is treated as const i, and if i does not occur in
a constant context then i is treated as new i.

When i is treated as another construct i′, both the static analysis and the
dynamic semantics is specified in the section about i′ (5).

Otherwise, it is a compile-time error if ef is a type literal.
This error was already specified elsewhere (16.17.4) for the case where ef is an

identifier, but ef may also have other forms, e.g., p.C.
Otherwise, if ef is an identifier id, then id must necessarily denote a local

Dart Programming Language Specification 109

function, a library function, a library or static getter, or a variable as described
above, or i would not have been treated as a function expression invocation.

If ef is a property extraction expression (16.22) then i treated as an ordinary
method invocation (16.21.1).

a.b(x) is treated as a method invocation of method b() on object a, not as
an invocation of getter b on a followed by a function call (a.b)(x). If a method
or getter b exists, the two will be equivalent. However, if b is not defined on a,
the resulting invocation of noSuchMethod() would differ. The Invocation passed
to noSuchMethod() would describe a call to a method b with argument x in the
former case, and a call to a getter b (with no arguments) in the latter.

Let F be the static type of ef . The static analysis of i is performed as
specified in Section 16.17.3, using F as the static type of the invoked function,
and the static type of i is as specified there.

Evaluation of a function expression invocation
ef<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
proceeds to evaluate ef , yielding an object o. Let f be a fresh variable bound
to o. If o is a function object then the function invocation
f<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
is evaluated by binding actuals to formals as specified in Section 16.17.3, and
executing the body of f with those bindings; the returned result is then the
result of evaluating i.

Otherwise o is not a function object. If o has a method named call the
following ordinary method invocation is evaluated, and its result is then the
result of evaluating i:
f.call<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Otherwise o has no method named call. A new instance im of the predefined
class Invocation is created, such that:
• im.isMethod evaluates to true.

• im.memberName evaluates to the symbol #call.

• im.positionalArguments evaluates to an unmodifiable list with the val-
ues resulting from evaluation of <Object>[a1, . . . , an].

• im.namedArguments evaluates to an unmodifiable map with the keys and
values resulting from evaluation of
<Symbol, Object>{#xn+1: an+1, . . . , #xn+k: an+k}.

• im.typeArguments evaluates to an unmodifiable list with the values re-
sulting from evaluation of <Type>[A1, . . . , Ar].

Then the method invocation f.noSuchMethod(im) is evaluated, and its re-
sult is then the result of evaluating i.

The situation where noSuchMethod is invoked can only arise when the static
type of ef is dynamic. The run-time semantics ensures that a function invocation
may amount to an invocation of the instance method call. However, an interface
type with a method named call is not itself a subtype of any function type (19.4.2).

Dart Programming Language Specification 110

16.18 Function Closurization functionClosurization

Let f be an expression denoting a declaration of a local function, a static
method, or a top-level function (16.37) or let f be a function literal (16.13).
Evaluation of f yields a function object which is the outcome of a function �
closurization applied to the declaration denoted by f respectively to the function
literal f considered as a function declaration. Closurization denotes instance �
method closurization (16.22.3) as well as function closurization, and it is also
used as a shorthand for either of them when there is no ambiguity.

Function closurization applied to a function declaration f amounts to the
creation of a function object o which is an instance of a class C whose interface
is a subtype of the actual type F (19.10.1) corresponding to the signature in
the function declaration f , using the current bindings of type variables, if any.
There does not exist a function type F ′ which is a proper subtype of F such
that C is a subtype of F ′. If f denotes a static method or top-level function,
class C does not override the ‘==’ operator inherited from the Object class.

In other words, C has the freedom to be a proper subtype of the function type
that we can read off of the declaration of f because it may need to be a specific
internal platform defined class, but C does not have the freedom to be a subtype
of a different and more special function type, and it cannot be Null.

An invocation of o with a given argument list will bind actuals to formals in
the same way as an invocation of f (16.17.3), and then execute the body of f
in the captured scope amended with the bound parameter scope, yielding the
same completion (17.0.1) as the invocation of f would have yielded.

16.18.1 Generic Function Instantiation genericFunctionInstantiation

Generic function instantiation is a mechanism that yields a non-generic func-
tion object, based on a reference to a generic function.

It is a mechanism which is very similar to function closurization (16.18), but it
only occurs in situations where a compile-time error would otherwise occur.

The essence of generic function instantiation is to allow for “curried” invo-
cations, in the sense that a generic function can receive its actual type arguments
separately during closurization (it must then receive all type arguments, not just
some of them), and that yields a non-generic function object. The type argu-
ments are passed implicitly, based on type inference; a future version of Dart
may allow for passing them explicitly. Here is an example:

X fg<X extends num>(X x) => x;

class A {
static X fs<X extends num>(X x) => x;

}

void main() {
X fl<X extends num>(X x) => x;

Dart Programming Language Specification 111

List<int Function(int)> functions = [fg, A.fs, fl];
}

Each function object stored in functions has dynamic type int Function(int),
and it is obtained by implicitly “passing the actual type argument int” to the
corresponding generic function.

Let f of the form 〈identifier〉 (’.’ 〈identifier〉 (’.’ 〈identifier〉)?)? be an expres-
sion that denotes a declaration of a local function, a static method, or a top-level
function, and let G be the static type of f . Consider the situation where G is
a function type of the form T0 Function<X1 / B1, . . . , Xs / Bs>(parameters)
with s > 0 (that is, G is a generic function type), and the context type is a
non-generic function type F . In this situation a compile-time error occurs (8, 9,
10.6.1, 10.6.1, 10.6.1, 16.15.1, 16.15.2, 16.17.3, 16.23, 17.3, 17.9, 17.12, 17.16.2),
except when the following step succeeds:

Generic function type instantiation: Type inference is applied to G with con- �
text type F , and it succeeds, yielding the actual type argument list T1, . . . , Ts.

The generic function type instantiation fails in the case where type inference fails,
in which case the above mentioned compile-time error occurs. It will be specified
in a future version of this document how type inference computes T1, . . . , Ts (6).

Otherwise, the generic function type instantiation succeeded. Let F ′ de-
note the type [T1/X1, . . . , Ts/Xs](T0 Function(parameters)). Note that it is
guaranteed that F ′ is assignable to F , or inference would have failed.

Case 〈Top-level Functions and Static Methods〉. Consider the situation
where f denotes a top-level function or a static method. In this situation, the
program is modified such that f is replaced by a reference f ′ to an implicitly
induced non-generic function whose signature is F ′, whose dynamic type is
[t1/T1, . . . , ts/Ts]F ′, and whose semantics for each invocation is the same as
invoking f with t1, . . . , ts as the actual type argument list, where t1, . . . , ts

is the actual value of T1, . . . , Ts at the point during execution where f ′ was
evaluated. Here is an example:

List<T> foo<T>(T t) => [t];
List<int> fooOfInt(int i) => [i];

String bar(List<int> f(int)) => "$f(42)";

void main() {
print(bar(foo));

}

In this example, foo as an actual argument to bar will be modified as if the call
had been bar(fooOfInt), except for equality, which is specified next.

Consider the situation where the program before generic function instanti-
ation contains two occurrences of f in the same scope or different scopes, but
denoting the same function, respectively the situation where an execution of
the program containing f evaluates it twice. Let o1 and o2 denote the function

Dart Programming Language Specification 112

objects obtained by evaluation of those two expressions, respectively the two
evaluations of that expression.

In the case where the actual values of the type arguments are the same for
both evaluations, it is guaranteed that o1 and o2 are equal according to operator
‘==’. However, it is unspecified whether identical(o1, o2) evaluates to true
or false.

No notion of equality is appropriate when different type arguments are pro-
vided, even if the resulting function objects turn out to have exactly the same
type at run time, because execution of two function objects that differ in these
ways can have different side-effects and return different results when executed
starting from exactly the same state. For instance, there could be a type param-
eter X that does not occur in the signature of the function, and the function could
create and return a List<X>.

Case 〈Local Functions〉. Consider the situation where f is an identifier
denoting a local function. For a local function, only an identifier can denote it.
In this situation, the program is modified such that f is replaced by a reference
f ′ to an implicitly induced non-generic function whose signature is F ′, whose
dynamic type is [t1/T1, . . . , ts/Ts]F ′, and whose semantics for each invocation is
the same as invoking f with t1, . . . , ts as the actual type argument list, where
t1, . . . , ts is the actual value of T1, . . . , Ts at the point during execution where
f ′ was evaluated.

No guarantees are provided regarding equality of non-generic functions obtained
from a local function by generic function instantiation.

Such a local function could have received exactly the same actual type argu-
ments in the two cases, and still its body could contain references to declarations
of types, variables, and other entities in the enclosing scopes. Those references
could denote different entities when the two function objects were created. In
that situation it is unreasonable to consider the two function objects to be the
same function. �

16.19 Lookup lookup

A lookup is a procedure which selects a concrete instance member declaration �
based on a traversal of a sequence of classes, starting with a given class C and
proceeding with the superclass of the current class at each step. A lookup may
be part of the static analysis, and it may be performed at run time. It may
succeed or fail.

We define several kinds of lookup with a very similar structure. We spell out
each of them in spite of the redundancy, in order to avoid introducing meta-level
abstraction mechanisms just for this purpose. The point is that we must indicate
for each lookup which kind of member it is looking for, because, e.g., a ‘method
lookup’ and a ‘getter lookup’ are used in different situations.

Let m be an identifier, o an object, L a library, and C a class which is the
class of o or a superclass thereof.

The result of a method lookup for m in o with respect to L starting in class
C is the result of a method lookup for m in C with respect to L. The result of a

Dart Programming Language Specification 113

method lookup for m in C with respect to L is: If C declares a concrete instance
method named m that is accessible to L, then that method declaration is the
result of the method lookup, and we say that the method was looked up in C.
Otherwise, if C has a superclass S, the result of the method lookup is the result
of a method lookup for m in S with respect to L. Otherwise, we say that the
method lookup has failed.

The result of a getter lookup for m in o with respect to L starting in class
C is the result of a getter lookup for m in C with respect to L. The result of a
getter lookup for m in C with respect to L is: If C declares a concrete instance
getter named m that is accessible to L, then that getter declaration is the result
of the getter lookup, and we say that the getter was looked up in C. Otherwise,
if C has a superclass S, the result of the getter lookup is the result of a getter
lookup for m in S with respect to L. Otherwise, we say that the getter lookup
has failed.

The result of a setter lookup for m in o with respect to L starting in class
C is the result of a setter lookup for m in C with respect to L. The result of a
setter lookup for m in C with respect to L is: If C declares a concrete instance
setter named m that is accessible to L, then that setter declaration is the result
of the setter lookup, and we say that the setter was looked up in C. Otherwise,
if C has a superclass S, the result of the setter lookup is the result of a setter
lookup for m in S with respect to L. Otherwise, we say that the setter lookup
has failed.

Let m be an identifier, o an object, and L a library. The result of a method
lookup for m in o with respect to L is the result of a method lookup for m in o
with respect to L starting with the class of o. The result of a getter lookup for
m in o with respect to L is the result of a getter lookup for m in o with respect
to L starting with the class of o. The result of a setter lookup for m in o with
respect to L is the result of a setter lookup for m in o with respect to L starting
with the class of o.

Note that for getter (setter) lookup, the result may be a getter (setter) which
has been induced by an instance variable declaration.

Note that we sometimes use phrases like ‘looking up method m’ to indicate that
a method lookup is performed, and similarly for setter lookups and getter lookups.

The motivation for ignoring abstract members during lookup is largely to
allow smoother mixin composition.

16.20 Top level Getter Invocation topLevelGetterInvocation

Evaluation of a top-level getter invocation i of the form m, where m is an
identifier, proceeds as follows:

The getter function m is invoked. The value of i is the result returned by the
call to the getter function. Note that the invocation is always defined. Per the
rules for identifier references, an identifier will not be treated as a top-level getter
invocation unless the getter i is defined.

The static type of i is the declared return type of m.

Dart Programming Language Specification 114

16.21 Method Invocation methodInvocation

Method invocation can take several forms as specified below.

16.21.1 Ordinary Invocation ordinaryInvocation

An ordinary method invocation can be conditional or unconditional.
Case 〈e?.m<· · · >(· · ·)〉. Consider a conditional ordinary method invoca- �

tion i of the form e?.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k:
an+k).

Note that non-generic invocations arise as the special case where the number
of type arguments is zero, in which case the type argument list is omitted, and
similarly for formal type parameter lists (14).

The static type of i is the same as the static type of
e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Exactly the same compile-time errors that would be caused by
e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)

are also generated in the case of i.
Evaluation of i proceeds as follows:
If e is a type literal, i is equivalent to
e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Otherwise, evaluate e to an object o. If o is the null object, i evaluates

to the null object (16.4). Otherwise let v be a fresh variable bound to o and
evaluate v.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) to
an object r. Then e evaluates to r. �

Case 〈e.m<· · · >(· · ·)〉. An unconditional ordinary method invocation i has �
the form e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Non-generic invocations again arise as the special case where the number of
type arguments is zero (14).

Let T be the static type of e. It is a compile-time error if T does not have
an accessible (6.2) instance member named m, unless either:

• T is dynamic. Or

• T is Function and m is call. This means that for invocations of an
instance method named call, a receiver of type Function is treated like a
receiver of type dynamic. The expectation is that any concrete subclass of
Function will implement call, but there is no method signature which can
be assumed for call in Function because every signature will conflict with
some potential overriding declarations. Note that any use of call on a
subclass of Function that fails to implement call will provoke a compile-
time error, as this exemption is limited to type Function, and does not
apply to its subtypes.

If T did not have an accessible member named m the static type of i is
dynamic, and no further static checks are performed on i (except that subex-
pressions of i are subject to their own static analysis).

Otherwise T.m denotes an instance member. Let L be the library that

Dart Programming Language Specification 115

contains i. Let d be the result of method lookup for m in T with respect to
L, and if the method lookup succeeded then let F be the static type of d.
Otherwise, let d be the result of getter lookup for m in T with respect to L and
let F be the return type of d. (Since T.m exists we cannot have a failure in both
lookups.)

The static analysis of i is performed as specified in Section 16.17.3, and the
static type of i is as specified there.

It is a compile-time error to invoke any of the methods of class Object on
a prefix object (18.1) or on a constant type literal that is immediately followed
by the token ‘.’ .

The reason for the latter is that this syntax is reserved for invocation of static
methods. For instance, int.toString() is similar to C.someStaticMethod(),
and it would be confusing if just a couple of expressions of this form were instance
method invocations. If needed, (int).toString() may be used instead.

Evaluation of an unconditional ordinary method invocation i of the form
e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) proceeds as
follows:

First, the expression e is evaluated to an object o. Let f be the result of
looking up (16.19) method m in o with respect to the current library L.

If the method lookup succeeded, the binding of actual arguments to formal
parameters is performed as specified in Section 16.17.3. The body of f is then
executed with respect to the bindings that resulted from the evaluation of the
argument list, and with this bound to o. The value of i is the object returned
by the execution of f ’s body.

If the method lookup failed, then let g be the result of looking up getter
(16.19) m in o with respect to L.

If the getter lookup succeeded then invoke the getter o.m and let vg be the
returned value. Then the value of i is the value of

vg<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
If getter lookup has also failed, then a new instance im of the predefined

class Invocation is created, such that:

• im.isMethod evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an unmodifiable list with the val-
ues resulting from the evaluation of <Object>[a1, . . . , an].

• im.namedArguments evaluates to an unmodifiable map with the keys and
values resulting from the evaluation of
<Symbol, Object>{#xn+1: an+1, . . . , #xn+k: an+k}.

• im.typeArguments evaluates to an unmodifiable list with the values re-
sulting from the evaluation of <Type>[A1, . . . , Ar].

Then the method noSuchMethod() is looked up in o and invoked with argu-
ment im, and the result of this invocation is the result of evaluating i.

Dart Programming Language Specification 116

The situation where noSuchMethod is invoked can only arise when the static
type of e is dynamic. Notice that the wording avoids re-evaluating the receiver o
and the arguments ai. �

16.21.2 Cascaded Invocations cascadedInvocations

A cascaded method invocation has the form e..suffix where e is an expression �
and suffix is a sequence of operator, method, getter or setter invocations.

〈cascadeSection〉 ::= ‘..’ (〈cascadeSelector〉 〈argumentPart〉*)
(〈assignableSelector〉 〈argumentPart〉*)*
(〈assignmentOperator〉 〈expressionWithoutCascade〉)?

〈cascadeSelector〉 ::= ‘[’ 〈expression〉 ‘]’
| 〈identifier〉

〈argumentPart〉 ::= 〈typeArguments〉? 〈arguments〉

Evaluation of a cascaded method invocation expression c of the form e..suffix
proceeds as follows:

Evaluate e to an object o. Let t be a fresh variable bound to o. Evaluate
t.suffix to an object. Then c evaluates to o.

The static type of c is the static type of e.
With the introduction of null-aware conditional assignable expressions (16.36),

it would make sense to extend cascades with a null-aware conditional form as
well. One might define e?..suffix to be equivalent to the expression t == null
? null : t.suffix where t is a fresh variable bound to the value of e.

The present specification has not added such a construct, in the interests of
simplicity and rapid language evolution. However, Dart implementations may
experiment with such constructs, as noted in section 2.

16.21.3 Super Invocation superInvocation

A super method invocation i has the form
super.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Note that non-generic invocations arise as the special case where the number

of type arguments is zero, in which case the type argument list is omitted, and
similarly for formal type parameter lists (14).

It is a compile-time error if a super method invocation occurs in a top-level
function or variable initializer, in an instance variable initializer or initializer
list, in class Object, in a factory constructor, or in a static method or variable
initializer.

Let Ssuper be the superclass (10.8) of the immediately enclosing class for i,
and let L be the library that contains i. Let the declaration d be the result of
looking up the method m in Ssuper with respect to L (16.19), and let F be the
static type of d. Otherwise, if the method lookup failed, let the declaration d be

Dart Programming Language Specification 117

the result of looking up the getter m with respect to L in Ssuper (16.19), and let
F be the return type of d. If both lookups failed, a compile-time error occurs.

Otherwise (when one of the lookups succeeded), the static analysis of i is
performed as specified in Section 16.17.3, considering the function to have static
type F , and the static type of i is as specified there.

Note that member lookups ignore abstract declarations, which means that there
will be a compile-time error if the targeted member m is abstract, as well as when
it does not exist at all.

Evaluation of i proceeds as follows: Let o be the current binding of this,
let C be the enclosing class for i, and let Ssuper be the superclass (10.8) of C.
Let the declaration d be the result of looking up the method m with respect
to L in o starting with Ssuper (16.19). If the lookup succeeded, let f denote
the function associated with d. Otherwise (when method lookup failed), let the
declaration d be the result of looking up the getter m with respect to L in o
starting with Ssuper (16.19). If the getter lookup succeeded, invoke said getter
with this bound to o, and let f denote the returned object.

If both lookups failed, the exact same lookups would have failed at compile-time,
and the program then has a compile-time error.

Otherwise perform the binding of actual arguments to formal parameters for
f<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) as specified in
Section 16.17.3, and execute the body of f with said bindings plus a binding of
this to o. The result returned by f is then the result of evaluating i.

16.21.4 Sending Messages sendingMessages

Messages are the sole means of communication among isolates. Messages
are sent by invoking specific methods in the Dart libraries; there is no specific
syntax for sending a message.

In other words, the methods supporting sending messages embody primitives of
Dart that are not accessible to ordinary code, much like the methods that spawn
isolates.

16.22 Property Extraction propertyExtraction

Property extraction allows for a member to be accessed as a property rather �
than a function. A property extraction can be either:

1. An instance method closurization, which converts a method into a function
object (16.22.3). Or

2. A getter invocation, which returns the result of invoking of a getter method
(16.22.1).

Function objects derived from members via closurization are colloquially known
as tear-offs.

Property extraction can be either conditional or unconditional.
Case 〈Conditional〉. Consider a conditional property extraction expression �

Dart Programming Language Specification 118

i of the form e?.id.
If e is a type literal, i is equivalent to e.id.
Otherwise, the static type of i is the same as the static type of e.id. Let T

be the static type of e, and let y be a fresh variable of type T . Except for errors
inside e and references to the name y, exactly the same compile-time errors that
would be caused by y.id are also generated in the case of e?.id.

Evaluation of a conditional property extraction expression i of the form e?.id
proceeds as follows:

If e is a type literal, evaluation of i amounts to evaluation of e.id.
Otherwise evaluate e to an object o. If o is the null object, i evaluates to the

null object (16.4). Otherwise let x be a fresh variable bound to o and evaluate
x.id to an object r. Then i evaluates to r. �

Case 〈Unconditional〉. Let id be an identifier; an unconditional property �
extraction may be of the form e.id where e is an expression (16.22.1), or of the
form super.id (16.22.2). �

16.22.1 Getter Access and Method Extraction getterAccessAndMethodExtraction

Consider an unconditional property extraction i (16.22) of the form e.id. It
is a compile-time error if id is a member of class Object and e is either a prefix
object (18.1) or a type literal.

It may seem obvious that it is an error to use prefix object, but more surprising
that it also applies to a type literal. In particular, we cannot use int.toString
to obtain a function object for the toString method of the Type object for int.
But we can use (int).toString: e is then not a type literal, but a parenthesized
expression.

This is a pragmatic trade-off. The ability to tear off instance methods on
instances of Type was considered less useful, and it was considered more useful
to insist on the simple rule that a method tear-off on a type literal is always a
tear-off of a static method on the denoted class.

Let T be the static type of e. It is a compile-time error if T does not have
a method or getter named id unless T is dynamic, or T is Function and id is
call. The static type of i is:

• The declared return type of T.id, if T has an accessible instance getter
named id.

• The function type of the method signature T.id, if T has an accessible
instance method named id.

• The type dynamic otherwise. This only occurs when T is dynamic or
Function.

Note that the type of a method tear-off ignores whether any given parameter is
covariant. However, the dynamic type of a function object thus obtained does take
parameter covariance into account.

Evaluation of a property extraction i of the form e.id proceeds as follows:

Dart Programming Language Specification 119

First, the expression e is evaluated to an object o. Let f be the result of
looking up (16.19) method (10.1) id in o with respect to the current library L.
If method lookup succeeds then i evaluates to the closurization of method f on
object o (16.22.3).

Note that f is never an abstract method, because method lookup skips abstract
methods. If the method lookup failed, e.g., because there is an abstract declaration
of id, but no concrete declaration, we will continue to the next step. However, since
methods and getters never override each other, getter lookup will necessarily fail as
well, and noSuchMethod() will ultimately be invoked. The regrettable implication
is that the error will refer to a missing getter rather than an attempt to closurize
an abstract method.

Otherwise, i is a getter invocation. Let f be the result of looking up (16.19)
getter (10.2) id in o with respect to L. Otherwise, the body of f is executed
with this bound to o. The value of i is the result returned by the call to the
getter function.

If the getter lookup has failed, then a new instance im of the predefined
class Invocation is created, such that:

• im.isGetter evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an empty, unmodifiable instance
of List<Object>.

• im.namedArguments evaluates to an empty, unmodifiable instance of
Map<Symbol, Object>.

• im.typeArguments evaluates to an empty, unmodifiable instance of
List<Type>.

Then the method noSuchMethod() is looked up in o and invoked with argu-
ment im, and the result of this invocation is the result of evaluating i.

The situation where noSuchMethod is invoked can only arise when the static
type of e is dynamic.

16.22.2 Super Getter Access and Method Closurization superGetterAccessAndMethodClosurization

Consider a property extraction i of the form super.id.
Let S be the superclass of the immediately enclosing class. It is a compile-

time error if S does not have an accessible instance method or getter named id.
The static type of i is:

• The declared return type of S.id, if S has an accessible instance getter
named id.

• The function type of the method signature S.id, if S has an accessible
instance method named id.

Dart Programming Language Specification 120

• The type dynamic otherwise. This only occurs when T is dynamic or
Function.

Note that the type of a method tear-off ignores whether any given parameter is
covariant. However, the dynamic type of a function object thus obtained does take
parameter covariance into account.

Evaluation of a property extraction i of the form super.m proceeds as follows:
Let g be the method implementation currently executing, and let C be the

class in which g is declared. Let S be the superclass of C. Let f be the result
of looking up method id in S with respect to the current library L. If method
lookup succeeds then i evaluates to the closurization of method f with respect
to superclass S (16.22.4).

Otherwise, i is a getter invocation. Let f be the result of looking up getter
id in S with respect to L. The body of f is executed with this bound to the
current value of this. The value of i is the result returned by the call to the
getter function.

The getter lookup will not fail, because it is a compile-time error to have a super
property extraction of a member id when the superclass S does not have a concrete
member named id.

16.22.3 Ordinary Member Closurization ordinaryMemberClosurization

This section specifies the dynamic semantics of ordinary member closuriza-
tions.

Note that the non-generic case is covered implicitly using s = 0, in which case
the type parameter declaration lists and the actual type argument lists passed in
invocations are omitted (14).

An instance method closurization is a closurization of some method on some �
object, defined below, or a super closurization (16.22.4).

Let o be an object, and let u be a fresh final variable bound to o. The
closurization of method f on object o is defined to be equivalent (except for �
equality, as noted below) to:

• <X1 extendsB′1, . . . , Xs extendsB′s>

(T1 p1, . . . , Tn pn, {Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk}) =>

u.m<X1, . . . , Xs>(p1, . . . , pn, pn+1: pn+1, . . . , pn+k: pn+k);

where f is an instance method named m which has type parameter declara-
tions X1 extendsB1, . . . , Xs extendsBs, required parameters p1, . . . , pn,
and named parameters pn+1, . . . , pn+k with defaults d1, . . . , dk, using
null for parameters whose default value is not specified.

• <X1 extendsB′1, . . . , Xs extendsB′s>

(T1 p1, . . . , Tn pn, [Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk]) =>

Dart Programming Language Specification 121

u.m<X1, . . . , Xs>(p1, . . . , pn+k);

where f is an instance method named m which has type parameter declara-
tions X1 extendsB1, . . . , Xs extendsBs, required parameters p1, . . . , pn,
and optional positional parameters pn+1, . . . , pn+k with defaults d1, . . . , dk,
using null for parameters whose default value is not specified.

B′j , j ∈ 1..s, are determined as follows: If o is an instance of a non-generic
class, B′j = Bj , j ∈ 1..s. Otherwise, let X ′1, . . . , X ′s′ be the formal type pa-
rameters of the class of o, and t′1, . . . , t′s′ be the actual type arguments. Then
B′j = [t′1/X ′1, . . . , t′s′/X ′s′]Bj , j ∈ 1..s.

That is, we replace the formal type parameters of the enclosing class, if any, by
the corresponding actual type arguments.

The parameter types Tj , j ∈ 1..n + k, are determined as follows: Let the
method declaration D be the implementation of m which is invoked by the
expression in the body. Let T be the class that contains D.

Note that T is the dynamic type of o, or a superclass thereof.
For each parameter pj , j ∈ 1..n + k, if pj is covariant (9.2.3) then Tj is the

built-in class Object.
This is concerned with the dynamic type of the function object obtained by

the member closurization. The static type of the expression that gives rise to the
member closurization is specified elsewhere (16.22, 16.22.1). Note that for the
static type it is ignored whether a parameter is covariant.

If T is a non-generic class then for j ∈ 1..n + k, Tj is a type annotation that
denotes the same type as that which is denoted by the type annotation on the
corresponding parameter declaration in D. If that parameter declaration has
no type annotation then Tj is dynamic.

Otherwise T is a generic instantiation of a generic class G. Let X ′′1 , . . . , X ′′s′′

be the formal type parameters of G, and t′′1 , . . . , t′′s′′ be the actual type arguments
of o at T . Then Tj is a type annotation that denotes [t′′1/X ′′1 , . . . , t′′s′′/X ′′s′′]Sj ,
where Sj is the type annotation of the corresponding parameter in D. If that
parameter declaration has no type annotation then Tj is dynamic.

There is one way in which the function object yielded by the instance method
closurization differs from the function object obtained by function closurization
on the above mentioned function literal: Assume that o1 and o2 are objects, m
is an identifier, and c1 and c2 are function objects obtained by closurization of
m on o1 respectively o2. Then c1 == c2 evaluates to true if and only if o1 and
o2 is the same object.

In particular, two closurizations of a method m from the same object are equal,
and two closurizations of a method m from non-identical objects are not equal.
Assuming that vi is a fresh variable bound to an object, i ∈ 1..2, it also follows that
identical(v1.m, v2.m) must be false when v1 and v2 are not bound to the same
object. However, Dart implementations are not required to canonicalize function
objects, which means that identical(v1.m, v2.m) is not guaranteed to be true,
even when it is known that v1 and v2 are bound to the same object.

Dart Programming Language Specification 122

The special treatment of equality in this case facilitates the use of extracted
property functions in APIs where callbacks such as event listeners must often be
registered and later unregistered. A common example is the DOM API in web
browsers.

16.22.4 Super Closurization superClosurization

This section specifies the dynamic semantics of super closurizations.
Note that the non-generic case is covered implicitly using s = 0, in which case

the type parameter declarations are omitted (14).
Consider expressions in the body of a class T which is a subclass of a given

class S, where a method declaration that implements f exists in S, and there is
no class U which is a subclass of S and a superclass of T which implements f .

In short, consider a situation where a super invocation of f will execute f as
declared in S.

A super closurization is a closurization of a method with respect to a class, �
as defined next. The closurization of a method f with respect to the class S is �
defined to be equivalent (except for equality, as noted below) to:

• <X1 extendsB′1, . . . , Xs extendsB′s>

(T1 p1, . . . , Tn pn, {Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk}) =>

super.m<X1, . . . , Xs>(p1, . . . , pn, pn+1: pn+1, . . . , pn+k: pn+k);

where f is an instance method named m which has type parameter declara-
tions X1 extendsB1, . . . , Xs extendsBs, required parameters p1, . . . , pn,
and named parameters pn+1, . . . , pn+k with defaults d1, . . . , dk.

• <X1 extendsB′1, . . . , Xs extendsB′s>

(T1 p1, . . . , Tn pn, [Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk]) =>

super.m<X1, . . . , Xs>(p1, . . . , pn+k);

where f is an instance method named m which has type parameter declara-
tions X1 extendsB1, . . . , Xs extendsBs, required parameters p1, . . . , pn,
and optional positional parameters pn+1, . . . , pn+k with defaults d1, . . . , dk.

Note that a super closurization is an instance method closurization, as defined
in (16.22.3).

B′j , j ∈ 1..s, are determined as follows: If S is a non-generic class then
B′j = Bj , j ∈ 1..s. Otherwise, let X ′1, . . . , X ′s′ be the formal type parameters
of S, and t′1, . . . , t′s′ be the actual type arguments of this at S. Then B′j =
[t′1/X ′1, . . . , t′s′/X ′s′]Bj , j ∈ 1..s.

That is, we replace the formal type parameters of the enclosing class, if any, by
the corresponding actual type arguments. We need to consider the type arguments

Dart Programming Language Specification 123

with respect to a specific class because it is possible for a class to pass different
type arguments to its superclass than the ones it receives itself.

The parameter types Tj , j ∈ 1..n + k, are determined as follows: Let the
method declaration D be the implementation of m in S.

For each parameter pj , j ∈ 1..n + k, if pj is covariant (9.2.3) then Tj is the
built-in class Object.

This is concerned with the dynamic type of the function object obtained by the
super closurization. The static type of the expression that gives rise to the super
closurization is specified elsewhere (16.22, 16.22.2). Note that for the static type
it is ignored whether a parameter is covariant.

If S is a non-generic class then for j ∈ 1..n + k, Tj is a type annotation that
denotes the same type as that which is denoted by the type annotation on the
corresponding parameter declaration in D. If that parameter declaration has
no type annotation then Tj is dynamic.

Otherwise S is a generic instantiation of a generic class G. Let X ′′1 , . . . , X ′′s′′

be the formal type parameters of G, and t′′1 , . . . , t′′s′′ be the actual type arguments
of o at S. Then Tj is a type annotation that denotes [t′′1/X ′′1 , . . . , t′′s′′/X ′′s′′]Sj ,
where Sj is the type annotation of the corresponding parameter in D. If that
parameter declaration has no type annotation then Tj is dynamic.

There is one way in which the function object yielded by the super closuriza-
tion differs from the function object obtained by function closurization on the
above mentioned function literal: Assume that an occurrence of the expression
super.m in a given class is evaluated on two occasions where this is bound to
o1 respectively o2, and the resulting function objects are c1 respectively c2: c1
== c2 is then true if and only if o1 and o2 is the same object.

16.22.5 Generic Method Instantiation genericMethodInstantiation

Generic method instantiation is a mechanism that yields a non-generic func-
tion object, based on a property extraction which denotes an instance method
closurization (16.22.3, 16.22.4).

It is a mechanism which is very similar to instance method closurization, but it
only occurs in situations where a compile-time error would otherwise occur.

The essence of generic method instantiation is to allow for “curried” invo-
cations, in the sense that a generic instance method can receive its actual type
arguments separately during closurization (it must then receive all type argu-
ments, not just some of them), and that yields a non-generic function object.
The type arguments are passed implicitly, based on type inference; a future ver-
sion of Dart may allow for passing them explicitly. Here is an example:

class A {
X fi<X extends num>(X x) => x;

}

class B extends /* or implements */ A {
X fi<X extends num>(X x, [List<X> xs]) => x;

Dart Programming Language Specification 124

}

void main() {
A a = B();
int Function(int) f = a.fi;

}

The function object which is stored in f at the end of main has dynamic type
int Function(int, [List<int>]), and it is obtained by implicitly “passing the
actual type argument int” to the denoted generic instance method, thus obtaining
a non-generic function object of the specified type. Note that this function object
accepts an optional positional argument, even though this is not part of the statically
known type of the corresponding instance method, nor of the context type.

In other words, generic method instantiation yields a function whose signa-
ture matches the context type as far as possible, but with respect to its parameter
list shape (that is, the number of positional parameters and their optionality, or
the set of names of named parameters), it will be determined by the method
signature of the actual instance method of the given receiver. Of course, the
difference can only be such that the actual type is a subtype of the given con-
text type, otherwise the declaration of that instance method would have been a
compile-time error.

Let i be a property extraction expression of the form e?.id, e.id, or super.id
(16.22, 16.22.2), which is statically resolved to denote an instance method named
id, and let G be the static type of i. Consider the situation where G is a function
type of the form T0 Function<X1 / B1, . . . , Xs / Bs>(parameters) with s > 0
(that is, G is a generic function type), and the context type is a non-generic
function type F . In this situation a compile-time error occurs (8, 9, 10.6.1,
10.6.1, 10.6.1, 16.15.1, 16.15.2, 16.17.3, 16.23, 17.3, 17.9, 17.12, 17.16.2), except
when generic function type instantiation (16.18.1) succeeds, that is:

Type inference is applied to G with context type F , and it succeeds, yielding
the actual type argument list T1, . . . , Ts.

Consider the situation where generic function type instantiation succeeded.
Let gmiNameid be a fresh name which is associated with id, which is private
if and only if id is private. An implementation could use, say, foo_* when id is
foo, which is known to be fresh because user-written identifiers cannot contain ‘*’.
The program is then modified as follows:

• When i is e?.id: Replace i by e?.gmiNameid<T1, . . . , Ts>().

• When i is e.id: Replace i by e.gmiNameid<T1, . . . , Ts>().

• When i is super.id: Replace i by super.gmiNameid<T1, . . . , Ts>().

The inserted expressions have no compile-time error and can be executed,
because the corresponding generic method is induced implicitly. We use the
phrase generic instantiation method to denote these implicitly induced methods, �
and designate the method that induced it as its target. �

Dart Programming Language Specification 125

Assume that a class C declares a generic instance method named id, with
a method signature corresponding to a generic function type G, formal type
parameters X1 extendsB1, . . . , Xs extendsBs, and formal parameter declara-
tions parameters. Let arguments denote the corresponding actual argument list,
passing these parameters. For instance, parameters could be
T1 p1, . . . , Tn pn, {Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk}
in which case arguments would be p1, . . . , pn, pn+1: pn+1, pn+k: pn+k.

Let G′ be the same function type as G, except that it omits the formal type
parameter declarations. For instance, if G is void Function<X, Y extends
num>(X x, List<Y> ys) then G′ is void Function(X x, List<Y> ys). Note
that G′ will typically contain free type variables.

An instance method with the name gmiNameid is then implicitly induced,
with the same behavior as the following declaration (except for equality of the
returned function object, which is specified below):

G′ gmiNameid<X1 extendsB1, . . . , Xs extendsBs>() {
return (parameters) => this.id<X1, . . . , Xs>(arguments);

}

Let o be an instance of a class which contains an implicitly induced dec-
laration of gmiNameid as described above. Consider the situation where the
program evaluates two invocations of this method with the same receiver o, and
with actual type arguments whose actual values are the same types t1, . . . , ts

for both invocations, and assume that the invocations returned the instances
o1 respectively o2. It is then guaranteed that o1 and o2 are equal according to
operator ‘==’. It is unspecified whether identical(o1, o2) evaluates to true
or false.

No notion of equality is appropriate with different receivers, nor when differ-
ent type arguments are provided, because execution of two function objects that
differ in these ways can have different side-effects and return different results
when executed starting from exactly the same state.

16.23 Assignment assignment

An assignment changes the value associated with a mutable variable or prop-
erty.

〈assignmentOperator〉 ::= ‘=’
| 〈compoundAssignmentOperator〉

Case 〈v = e〉. Consider an assignment a of the form v = e, where v is an
identifier or an identifier qualified by an import prefix, and v denotes a variable
(8) or v= denotes a setter (which may be declared explicitly or induced by an
instance variable, etc). Let T be the static type of v when v denotes a variable,
otherwise let T be the static type of the formal parameter of the setter v=. It
is a compile-time error if the static type of e may not be assigned to T . The
static type of a is the static type of e.

Dart Programming Language Specification 126

It is a compile-time error if an assignment of the form v = e occurs inside
a top level or static function (be it function, method, getter, or setter) or vari-
able initializer, and there is neither a mutable local variable declaration with
name v nor a setter declaration with name v= in the lexical scope enclosing the
assignment.

Evaluation of an assignment a of the form v = e proceeds as follows: Let d
be the innermost declaration whose name is v or v=, if it exists. It is a compile-
time error if d denotes a prefix object, type declaration, or function declaration.

If d is the declaration of a local variable, the expression e is evaluated to an
object o. Then, the variable v is bound to o. If no error occurs, the value of the
assignment expression is o.

If v is a final variable, a compile-time error has occurred and execution is un-
specified. But a program with no compile-time errors may incur a dynamic type
error.

If d is the declaration of a library variable, top level getter or top level setter,
the expression e is evaluated to an object o. Then the setter v= is invoked with
its formal parameter bound to o. The value of the assignment expression is o.

Otherwise, if d is the declaration of a class variable, static getter or static
setter in class C, then the assignment is equivalent to the assignment C.v = e.

Otherwise, if a occurs inside a top level or static function (be it function, method,
getter, or setter) or variable initializer, a compile-time error has occurred.

Otherwise, the assignment is equivalent to the assignment this.v = e.
It is a dynamic type error if the dynamic type of o is not a subtype of the

actual type (19.10.1) of v. �

Case 〈e1?.v = e2 〉. Consider an assignment a of the form e1?.v = e2.
Exactly the same compile-time errors that would be caused by e1.v = e2 are
also generated in the case of a. The static type of a is the static type of e2.

Evaluation of an assignment a of the form e1?.v = e2 proceeds as follows:
If e1 is a type literal, a is equivalent to e1.v = e2. Otherwise evaluate e1 to an
object o. If o is the null object, a evaluates to the null object (16.4). Otherwise
let x be a fresh variable bound to o and evaluate x.v = e2 to an object r. Then
a evaluates to r. �

Case 〈e1.v = e2 〉. Consider an assignment a of the form e1.v = e2. Let
T be the static type of e1. If T is dynamic, no further checks are performed.
Otherwise, it is a compile-time error unless T has an accessible instance setter
named v=. It is a compile-time error unless the static type of e2 may be assigned
to the declared type of the formal parameter of said setter. Whether or not T
is dynamic, the static type of a is the static type of e2.

Evaluation of an assignment of the form e1.v = e2 proceeds as follows: The
expression e1 is evaluated to an object o1. Then, the expression e2 is evaluated
to an object o2. Then, the setter v= is looked up (16.19) in o1 with respect to
the current library. It is a dynamic type error if the dynamic type of o2 is not
a subtype of the actual parameter type of said setter (19.10.1). Otherwise, the
body of the setter is executed with its formal parameter bound to o2 and this
bound to o1.

If the setter lookup has failed, then a new instance im of the predefined class

Dart Programming Language Specification 127

Invocation is created, such that:

• im.isSetter evaluates to true.

• im.memberName evaluates to the symbol v=.

• im.positionalArguments evaluates to an unmodifiable list with the same
values as <Object>[o2].

• im.namedArguments evaluates to an empty, unmodifiable instance of
Map<Symbol, Object>.

• im.typeArguments evaluates to an empty, unmodifiable instance of
List<Type>.

Then the method noSuchMethod() is looked up in o1 and invoked with
argument im.

The situation where noSuchMethod is invoked can only arise when the static
type of e1 is dynamic.

The value of the assignment expression is o2 irrespective of whether setter
lookup has failed or succeeded. �

Case 〈super.v = e〉. Consider an assignment a of the form super.v = e.
Let Sstatic be the superclass of the immediately enclosing class. It is a compile-
time error if Sstatic does not have a concrete accessible instance setter named
v=. Otherwise, it is a compile-time error if the static type of e may not be
assigned to the static type of the formal parameter of said setter. The static
type of a is the static type of e.

Evaluation of an assignment of the form super.v = e proceeds as follows:
Let g be the currently executing method, and let C be the class in which g was
looked up. Let Sdynamic be the superclass of C. The expression e is evaluated
to an object o. Then, the setter v= is looked up (16.19) in Sdynamic with respect
to the current library. The body of v= is executed with its formal parameter
bound to o and this bound to the current value of this.

The setter lookup will not fail, because it is a compile-time error when no
concrete setter named v= exists in Sstatic.

The value of the assignment expression is o.
It is a dynamic type error if o is not the null object (16.4) and the dynamic

type of o is not a subtype of the actual type of the formal parameter of v=
(19.10.1) in Sstatic. �

Case 〈e1[e2] = e3 〉. Consider an assignment a of the form e1[e2] = e3.
Let T be the static type of e1. If T is dynamic, no further checks are performed.
Otherwise, it is a compile-time error unless T has a method named []=. Let
S2 be the static type of the first formal parameter of the method []=, and S3
the static type of the second. It is a compile-time error unless the static type of
e2 respectively e3 may be assigned to S2 respectively S3. Whether or not T is
dynamic, the static type of a is the static type of e3.

Evaluation of an assignment a of the form e1[e2] = e3 proceeds as follows:

Dart Programming Language Specification 128

Evaluate e1 to an object a, then evaluate e2 to an object i, and finally evaluate
e3 to an object v. Call the method []= on a with i as first argument and v as
second argument. Then a evaluates to v. �

Case 〈super[e1] = e2 〉. Consider an assignment a of the form super[e1]
= e2. Let Sstatic be the superclass of the immediately enclosing class. It is a
compile-time error if Sstatic does not have a method []=. Otherwise, let S1 be
the static type of the first formal parameter of the method []=, and S2 the static
type of the second. It is a compile-time error if the static type of e1 respectively
e2 may not be assigned to S1 respectively S2. The static type of a is the static
type of e2.

For evaluation, an assignment of the form super[e1] = e2 is equivalent to
the expression super.[e1] = e2. �

16.23.1 Compound Assignment compoundAssignment

Case 〈v ??= e〉. Consider a compound assignment a of the form v ??= e
where v is an identifier or an identifier qualified by an import prefix, such that
v denotes a variable or v denotes a getter, and v= denotes a setter. Exactly the
same compile-time errors that would be caused by v = e are also generated in
the case of a. The static type of a is the least upper bound of the static type of
v and the static type of e.

Evaluation of a compound assignment a of the form v ??= e proceeds as
follows: Evaluate v to an object o. If o is not the null object (16.4), a evaluates
to o. Otherwise evaluate v = e to an object r, and then a evaluates to r. �

Case 〈C.v ??= e〉. Consider a compound assignment a of the form C.v
??= e where C is a type literal that may or may not be qualified by an import
prefix, such that C.v denotes a getter and C.v= denotes a setter. Exactly the
same compile-time errors that would be caused by C.v = e are also generated
in the case of a. The static type of a is the least upper bound of the static type
of C.v and the static type of e.

Evaluation of a compound assignment a of the form C.v ??= e where C is
a type literal proceeds as follow: Evaluate C.v to an object o. If o is not the
null object (16.4), a evaluates to o. Otherwise evaluate C.v = e to an object
r, and then a evaluates to r. �

Case 〈e1.v ??= e2 〉. Consider a compound assignment a of the form e1.v
??= e2. Let T be the static type of e1 and let x be a fresh variable of type
T . Except for errors inside e1 and references to the name x, exactly the same
compile-time errors that would be caused by x.v = e2 are also generated in the
case of a. The static type of a is the least upper bound of the static type of
e1.v and the static type of e2.

Evaluation of a compound assignment a of the form e1.v ??= e2 proceeds
as follows: Evaluate e1 to an object u. Let x be a fresh variable bound to u.
Evaluate x.v to an object o. If o is not the null object (16.4), a evaluates to o.
Otherwise evaluate x.v = e2 to an object r, and then a evaluates to r. �

Case 〈e1[e2] ??= e3 〉. Consider a compound assignment a of the form
e1[e2] ??= e3. Exactly the same compile-time errors that would be caused by

Dart Programming Language Specification 129

e1[e2] = e3 are also generated in the case of a. The static type of a is the least
upper bound of the static type of e1[e2] and the static type of e3.

Evaluation of a compound assignment a of the form e1[e2] ??= e3 proceeds
as follows: Evaluate e1 to an object u and then evaluate e2 to an object i. Call
the [] method on u with argument i, and let o be the returned value. If o is
not the null object (16.4), a evaluates to o. Otherwise evaluate e3 to an object
v and then call the []= method on u with i as first argument and v as second
argument. Then a evaluates to v. �

Case 〈super.v ??= e〉. Consider a compound assignment a of the form
super.v ??= e. Exactly the same compile-time errors that would be caused by
super.v = e are also generated in the case of a. The static type of a is the least
upper bound of the static type of super.v and the static type of e.

Evaluation of a compound assignment a of the form super.v ??= e proceeds
as follows: Evaluate super.v to an object o. If o is not the null object (16.4)
then a evaluates to o. Otherwise evaluate super.v = e to an object r, and then
a evaluates to r. �

Case 〈e1?.v ??= e2 〉. Consider a compound assignment a of the form
e1?.v ??= e2. Exactly the same compile-time errors that would be caused by
e1.v ??= e2 are also generated in the case of a. The static type of a is the least
upper bound of the static type of e1?.v and the static type of e2.

Evaluation of a compound assignment a of the form e1?.v ??= e2 proceeds
as follows: Evaluate e1 to an object u. If u is the null object (16.4) then a
evaluates to the null object. Otherwise, let x be a fresh variable bound to u.
Evaluate x.v to an object o. If o is not the null object (16.4) then a evaluates
to o. Otherwise evaluate x.v = e2 to an object r, and then a evaluates to r. �

Case 〈C?.v ??= e2 〉. A compound assignment of the form C?.v ??= e2
where C is a type literal that may or may not be qualified by an import prefix
is equivalent to the expression C.v ??= e. �

Case 〈v op= e〉. For any other valid operator op, a compound assignment
of the form v op= e is equivalent to v = v op e, where v is an identifier or an
identifier qualified by an import prefix. �

Case 〈C.v op= e〉. A compound assignment of the form C.v op= e where
C is a type literal that may or may not be qualified by an import prefix is
equivalent to C.v = C.v op e. �

Case 〈e1.v op= e2 〉. Consider a compound assignment a of the form e1.v
op= e2. Let x be a fresh variable whose static type is the static type of e1.
Except for errors inside e1 and references to the name x, exactly the same
compile-time errors that would be caused by x.v = x.v op e2 are also gener-
ated in the case of a. The static type of a is the static type of e1.v op e2.

Evaluation of a compound assignment a of the form e1.v op= e2 proceeds
as follows: Evaluate e1 to an object u and let x be a fresh variable bound to u.
Evaluate x.v = x.v op e2 to an object r and then a evaluates to r. �

Case 〈e1[e2] op= e3 〉. Consider a compound assignment a of the form
e1[e2] op= e3. Let x and i be fresh variables where the static type of the
former is the static type of e1 and the static type of the latter is the static type
of e2. Except for errors inside e1 and e2 and references to the names x and i,

Dart Programming Language Specification 130

exactly the same compile-time errors that would be caused by x[i] = x[i] op
e3 are also generated in the case of a. The static type of a is the static type of
x[i] op e3.

Evaluation of s compound assignment a of the form e1[e2] op= e3 proceeds
as follows: Evaluate e1 to an object u and evaluate e2 to an object v. Let x
and i be fresh variables bound to u and v respectively. Evaluate x[i] = x[i]
op e3 to an object r, and then a evaluates to r. �

Case 〈e1?.v op= e2 〉. Consider a compound assignment a of the form
e1?.v op= e2. Exactly the same compile-time errors that would be caused by
e1.v op= e2 are also generated in the case of a. The static type of a is the
static type of e1.v op= e2.

Evaluation of a compound assignment a of the form e1?.v op= e2 proceeds
as follows: Evaluate e1 to an object u. If u is the null object, then a evaluates to
the null object (16.4). Otherwise let x be a fresh variable bound to u. Evaluate
x.v op= e2 to an object r. Then a evaluates to r. �

Case 〈C?.v op = e2 〉. A compound assignment of the form C?.v op =
e2 where C is a type literal is equivalent to the expression C.v op = e2.

〈compoundAssignmentOperator〉 ::= ‘*=’
| ‘/=’
| ‘~/=’
| ‘%=’
| ‘+=’
| ‘-=’
| ‘<<=’
| ‘>>=’
| ‘>>>=’
| ‘&=’
| ‘^=’
| ‘|=’
| ‘??=’

�

16.24 Conditional conditional

A conditional expression evaluates one of two expressions based on a boolean �
condition.

〈conditionalExpression〉 ::= 〈ifNullExpression〉
(‘?’ 〈expressionWithoutCascade〉 ‘:’ 〈expressionWithoutCascade〉)?

Evaluation of a conditional expression c of the form e1?e2 : e3 proceeds as
follows:

First, e1 is evaluated to an object o1. It is a dynamic error if the run-
time type of o1 is not bool. If r is true, then the value of c is the result of

Dart Programming Language Specification 131

evaluating the expression e2. Otherwise the value of c is the result of evaluating
the expression e3.

If e1 shows that a local variable v has type T , then the type of v is known
to be T in e2, unless any of the following are true:

• v is potentially mutated in e2,

• v is potentially mutated within a function other than the one where v is
declared, or

• v is accessed by a function defined in e2 and v is potentially mutated
anywhere in the scope of v.

It is a compile-time error if the static type of e1 may not be assigned to
bool. The static type of c is the least upper bound (19.10.2) of the static type
of e2 and the static type of e3.

16.25 If-null Expressions ifNull

An if-null expression evaluates an expression and if the result is the null �
object (16.4), evaluates another.

〈ifNullExpression〉 ::= 〈logicalOrExpression〉 (‘??’ 〈logicalOrExpression〉)*

Evaluation of an if-null expression e of the form e1 ?? e2 proceeds as fol-
lows:

Evaluate e1 to an object o. If o is not the null object (16.4), then e evaluates
to o. Otherwise evaluate e2 to an object r, and then e evaluates to r.

The static type of e is the least upper bound (19.10.2) of the static type of
e1 and the static type of e2.

16.26 Logical Boolean Expressions logicalBooleanExpressions

The logical boolean expressions combine boolean objects using the boolean
conjunction and disjunction operators.

〈logicalOrExpression〉 ::=
〈logicalAndExpression〉 (‘||’ 〈logicalAndExpression〉)*

〈logicalAndExpression〉 ::= 〈equalityExpression〉 (‘&&’ 〈equalityExpression〉)*

A logical boolean expression is either an equality expression (16.27), or an �
invocation of a logical boolean operator on an expression e1 with argument e2.

Evaluation of a logical boolean expression b of the form e1||e2 causes the
evaluation of e1 to an object o1. It is a dynamic error if the run-time type of
o1 is not bool. If o1 is true, the result of evaluating b is true, otherwise e2 is
evaluated to an object o2. It is a dynamic error if the run-time type of o2 is not
bool. Otherwise the result of evaluating b is o2.

Dart Programming Language Specification 132

Evaluation of a logical boolean expression b of the form e1&&e2 causes the
evaluation of e1 producing an object o1. It is a dynamic error if the run-time
type of o1 is not bool. If o1 is false, the result of evaluating b is false, otherwise
e2 is evaluated to an object o2. It is a dynamic error if the run-time type of o2
is not bool. Otherwise the result of evaluating b is o2.

A logical boolean expression b of the form e1&&e2 shows that a local variable
v has type T if both of the following conditions hold:

• Either e1 shows that v has type T or e2 shows that v has type T .

• v is not mutated in e2 or within a function other than the one where v is
declared.

If e1 shows that a local variable v has type T , then the type of v is known
to be T in e2, unless any of the following are true:

• v is potentially mutated in e1,

• v is potentially mutated in e2,

• v is potentially mutated within a function other than the one where v is
declared, or

• v is accessed by a function defined in e2 and v is potentially mutated
anywhere in the scope of v.

It is a compile-time error if the static type of e1 may not be assigned to bool
or if the static type of e2 may not be assigned to bool. The static type of a
logical boolean expression is bool.

16.27 Equality equality

Equality expressions test objects for equality.

〈equalityExpression〉 ::=
〈relationalExpression〉 (〈equalityOperator〉 〈relationalExpression〉)?

| super 〈equalityOperator〉 〈relationalExpression〉

〈equalityOperator〉 ::= ‘==’
| ‘!=’

An equality expression is either a relational expression (16.28), or an invoca- �
tion of an equality operator on either super or an expression e1, with argument
e2.

Evaluation of an equality expression ee of the form e1 == e2 proceeds as
follows:

• The expression e1 is evaluated to an object o1.

• The expression e2 is evaluated to an object o2.

Dart Programming Language Specification 133

• If either o1 or o2 is the null object (16.4), then ee evaluates to true if both
o1 and o2 are the null object and to false otherwise. Otherwise,

• evaluation of ee is equivalent to the method invocation o1.==(o2).

Evaluation of an equality expression ee of the form super == e proceeds as
follows:

• The expression e is evaluated to an object o.

• If either this or o is the null object (16.4), then ee evaluates to evaluates
to true if both this and o are the null object and to false otherwise.
Otherwise,

• evaluation of ee is equivalent to the method invocation super.==(o).

As a result of the above definition, user defined ‘==’ methods can assume that
their argument is non-null, and avoid the standard boiler-plate prelude:

if (identical(null, arg)) return false;
Another implication is that there is never a need to use identical() to test

against null, nor should anyone ever worry about whether to write null == e or e
== null.

An equality expression of the form e1 != e2 is equivalent to the expression
!(e1 == e2). An equality expression of the form super != e is equivalent to
the expression !(super == e).

The static type of an equality expression is bool.

16.28 Relational Expressions relationalExpressions

Relational expressions invoke the relational operators on objects.

〈relationalExpression〉 ::= 〈bitwiseOrExpression〉
(〈typeTest〉 | 〈typeCast〉 | 〈relationalOperator〉 〈bitwiseOrExpression〉)?

| super 〈relationalOperator〉 〈bitwiseOrExpression〉

〈relationalOperator〉 ::= ‘>=’
| ‘>’
| ‘<=’
| ‘<’

A relational expression is either a bitwise expression (16.29), or an invocation �
of a relational operator on either super or an expression e1, with argument e2.

A relational expression of the form e1 op e2 is equivalent to the method invo-
cation e1.op(e2). A relational expression of the form super op e2 is equivalent
to the method invocation super.op(e2).

Dart Programming Language Specification 134

16.29 Bitwise Expressions bitwiseExpressions

Bitwise expressions invoke the bitwise operators on objects.

〈bitwiseOrExpression〉 ::=
〈bitwiseXorExpression〉 (‘|’ 〈bitwiseXorExpression〉)*

| super (‘|’ 〈bitwiseXorExpression〉)+

〈bitwiseXorExpression〉 ::=
〈bitwiseAndExpression〉 (‘^’ 〈bitwiseAndExpression〉)*

| super (‘^’ 〈bitwiseAndExpression〉)+

〈bitwiseAndExpression〉 ::= 〈shiftExpression〉 (‘&’ 〈shiftExpression〉)*
| super (‘&’ 〈shiftExpression〉)+

〈bitwiseOperator〉 ::= ‘&’
| ‘^’
| ‘|’

A bitwise expression is either a shift expression (16.30), or an invocation of �
a bitwise operator on either super or an expression e1, with argument e2.

A bitwise expression of the form e1 op e2 is equivalent to the method invo-
cation e1.op(e2). A bitwise expression of the form super op e2 is equivalent to
the method invocation super.op(e2).

It should be obvious that the static type rules for these expressions are defined
by the equivalence above - ergo, by the type rules for method invocation and the
signatures of the operators on the type e1. The same holds in similar situations
throughout this specification.

16.30 Shift shift

Shift expressions invoke the shift operators on objects.

〈shiftExpression〉 ::=
〈additiveExpression〉 (〈shiftOperator〉 〈additiveExpression〉)*

| super (〈shiftOperator〉 〈additiveExpression〉)+

〈shiftOperator〉 ::= ‘<<’
| ‘>>’
| ‘>>>’

A shift expression is either an additive expression (16.31), or an invocation �
of a shift operator on either super or an expression e1, with argument e2.

A shift expression of the form e1 op e2 is equivalent to the method invocation
e1.op(e2). A shift expression of the form super op e2 is equivalent to the method
invocation super.op(e2).

Note that this definition implies left-to-right evaluation order among shift ex-
pressions: e1 << e2 << e3 is evaluated as (e1 << e2).<< (e3) which is equivalent to
(e1 << e2) << e3. The same holds for additive and multiplicative expressions.

Dart Programming Language Specification 135

16.31 Additive Expressions additiveExpressions

Additive expressions invoke the addition operators on objects.

〈additiveExpression〉 ::= 〈multiplicativeExpression〉
(〈additiveOperator〉 〈multiplicativeExpression〉)*

| super (〈additiveOperator〉 〈multiplicativeExpression〉)+

〈additiveOperator〉 ::= ‘+’
| ‘-’

An additive expression is either a multiplicative expression (16.32), or an �
invocation of an additive operator on either super or an expression e1, with
argument e2.

An additive expression of the form e1 op e2 is equivalent to the method invo-
cation e1.op(e2). An additive expression of the form super op e2 is equivalent
to the method invocation super.op(e2).

The static type of an additive expression is usually determined by the sig-
nature given in the declaration of the operator used. However, invocations of
the operators + and - of class int are treated specially by the typechecker. The
static type of an expression e1 + e2 where e1 has static type int is int if the
static type of e2 is int, and double if the static type of e2 is double. The static
type of an expression e1 − e2 where e1 has static type int is int if the static
type of e2 is int, and double if the static type of e2 is double.

16.32 Multiplicative Expressions multiplicativeExpressions

Multiplicative expressions invoke the multiplication operators on objects.

〈multiplicativeExpression〉 ::=
〈unaryExpression〉 (〈multiplicativeOperator〉 〈unaryExpression〉)*

| super (〈multiplicativeOperator〉 〈unaryExpression〉)+

〈multiplicativeOperator〉 ::= ‘*’
| ‘/’
| ‘%’
| ‘~/’

A multiplicative expression is either a unary expression (16.33), or an in- �
vocation of a multiplicative operator on either super or an expression e1, with
argument e2.

A multiplicative expression of the form e1 op e2 is equivalent to the method
invocation e1.op(e2). A multiplicative expression of the form super op e2 is
equivalent to the method invocation super.op(e2).

The static type of an multiplicative expression is usually determined by the
signature given in the declaration of the operator used. However, invocations
of the operators * and % of class int are treated specially by the typechecker.
The static type of an expression e1 ∗ e2 where e1 has static type int is int if

Dart Programming Language Specification 136

the static type of e2 is int, and double if the static type of e2 is double. The
static type of an expression e1%e2 where e1 has static type int is int if the
static type of e2 is int, and double if the static type of e2 is double.

16.33 Unary Expressions unaryExpressions

Unary expressions invoke unary operators on objects.

〈unaryExpression〉 ::= 〈prefixOperator〉 〈unaryExpression〉
| 〈awaitExpression〉
| 〈postfixExpression〉
| (〈minusOperator〉 | 〈tildeOperator〉) super
| 〈incrementOperator〉 〈assignableExpression〉

〈prefixOperator〉 ::= 〈minusOperator〉
| 〈negationOperator〉
| 〈tildeOperator〉

〈minusOperator〉 ::= ‘-’

〈negationOperator〉 ::= ‘!’

〈tildeOperator〉 ::= ‘~’

A unary expression is either a postfix expression (16.35), an await expression �
(16.34) or an invocation of a prefix operator on an expression or an invocation
of a unary operator on either super or an expression e.

The expression !e is equivalent to the expression e ? false : true.
Evaluation of an expression of the form ++e is equivalent to e += 1. Evalua-

tion of an expression of the form --e is equivalent to e -= 1.
Let e be an expression of the form -l where l is an integer literal (16.5) with

numeric integer value i, and with static context type T . If double is assignable
to T and int is not assignable to T , then the static type of e is double; otherwise
the static type of e is int.

If the static type of e is int then e evaluates to to an instance of the int class
representing the numeric value −i. If i is zero and the int class can represent a
negative zero value, then the resulting instance instead represents that negative
zero value. It is a compile-time error if the integer −i cannot be represented
exactly by an instance of int.

If the static type of e is double then e evaluates to to an instance of the
double class representing the numeric value −i. If i is zero, the resulting in-
stance instead represents the negative zero double value, -0.0. It is a compile-
time error if the integer −i cannot be represented exactly by an instance of
double. We treat -l as if it is a single integer literal with a negative numeric
value. We do not evaluate l individually as an expression, or concern ourselves with
its static type.

Any other expression of the form op e is equivalent to the method invoca-

Dart Programming Language Specification 137

tion e.op(). An expression of the form op super is equivalent to the method
invocation (16.21.3) super.op().

16.34 Await Expressions awaitExpressions

An await expression allows code to yield control until an asynchronous op- �
eration (9) completes.

〈awaitExpression〉 ::= await 〈unaryExpression〉

Evaluation of an await expression a of the form await e proceeds as follows:
First, the expression e is evaluated to an object o.

Then, if o is not an instance of Future, then let f be the result of creating
a new object using the constructor Future.value() with o as its argument;
otherwise let f be o.

Next, the stream associated with the innermost enclosing asynchronous for
loop (17.6.3), if any, is paused. The current invocation of the function body
immediately enclosing a is suspended until after f completes. At some time after
f is completed, control returns to the current invocation. If f has completed
with an error x and stack trace t, a throws x and t (16.1). If f completes with
a value v, a evaluates to v.

It is typically a compile-time error if the function immediately enclosing a is not
declared asynchronous. E.g., it can be a syntax error because await has no special
meaning in the context of a normal function. However, await(e) can also be a
function invocation.

An await expression has no meaning in a synchronous function. If such a
function were to suspend waiting for a future, it would no longer be synchronous.

It is not a compile-time error if the type of e is not a subtype of Future. Tools
may choose to give a hint in such cases.

The static type of a is flatten(T) (flatten() is defined in section 16.13) where
T is the static type of e.

16.35 Postfix Expressions postfixExpressions

Postfix expressions invoke the postfix operators on objects.

〈postfixExpression〉 ::= 〈assignableExpression〉 〈postfixOperator〉
| 〈constructorInvocation〉 〈selector〉*
| 〈primary〉 〈selector〉*

〈postfixOperator〉 ::= 〈incrementOperator〉

〈constructorInvocation〉 ::=
〈typeName〉 〈typeArguments〉 ‘.’ 〈identifier〉 〈arguments〉

〈selector〉 ::= 〈assignableSelector〉
| 〈argumentPart〉

Dart Programming Language Specification 138

〈incrementOperator〉 ::= ‘++’
| ‘--’

A postfix expression is either a primary expression; a function, method or �
getter invocation; an invocation of a named constructor; or an invocation of
a postfix operator on an expression e. All but the latter two are specified
elsewhere.

Case 〈Constructor Invocations〉. Consider a 〈constructorInvocation〉 e of
the form n<typeArguments>.id(arguments). If n does not denote a class C
that declares a constructor named C.id, a compile-time error occurs.

Otherwise, if e occurs in a constant context (16.3.1) then e is treated as
const e, and if e does not occur in a constant context then e is treated as
new e.

Note that e cannot be anything other than an instance creation (constant or
not) because e provides actual type arguments to n, which is not supported if n
denotes a library prefix, nor if e is a static method invocation. �

Case 〈v++, v--〉. Consider a postfix expression e of the form v op, where v
is an identifier and op is either ‘++’ or ‘--’. A compile-time error occurs unless
v denotes a variable, or v denotes a getter and there is an associated setter v=.
Let T be the static type of the variable v or the return type of the getter. A
compile-time error occurs if T is not dynamic and T does not have an operator
‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if the return type of
this operator is not assignable to the variable respectively the argument type of
the setter. A compile-time error occurs if int is not assignable to the parameter
type of said operator. The static type of e is T .

Evaluation of a postfix expression e of the form v++ respectively v--, where
v is an identifier, proceeds as follows: Evaluate v to an object r and let y be a
fresh variable bound to r. Evaluate v = y + 1 respectively v = y - 1. Then
e evaluates to r.

The above ensures that if the evaluation involves a getter, it gets called ex-
actly once. Likewise in the cases below. �

Case 〈C.v++, C.v--〉. Consider a postfix expression e of the form C.v op,
where C is a type literal and op is either ‘++’ or ‘--’. A compile-time error
occurs unless C.v denotes a static getter and there is an associated static setter
v= (possibly implicitly induced by a static variable). Let T be the return type of
said getter. A compile-time error occurs if T is not dynamic and T does not
have an operator ‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if
the return type of this operator is not assignable to the argument type of the
setter. A compile-time error occurs if int is not assignable to the parameter
type of said operator. The static type of e is T .

Evaluation of a postfix expression e of the form C.v++ respectively C.v--
where C is a type literal proceeds as follows: Evaluate C.v to an object r and
let y be a fresh variable bound to r. Evaluate C.v = y + 1 respectively C.v
= y - 1. Then e evaluates to r. �

Case 〈e1.v++, e1.v--〉. Consider a postfix expression e of the form e1.v op
where op is either ‘++’ or ‘--’. Let S be the static type of e1. A compile-time

Dart Programming Language Specification 139

error occurs unless S has a getter named v and a setter named v= (possibly
implicitly induced by an instance variable). Let T be the return type of said
getter. A compile-time error occurs if T is not dynamic and T does not have an
operator ‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if the return
type of this operator is not assignable to the argument type of the setter. A
compile-time error occurs if int is not assignable to the parameter type of said
operator. The static type of e is T .

Evaluation of a postfix expression e of the form e1.v++ respectively e1.v--
proceeds as follows: Evaluate e1 to an object u and let x be a fresh variable
bound to u. Evaluate x.v to an object r and let y be a fresh variable bound to
r. Evaluate x.v = y + 1 respectively x.v = y - 1. Then e evaluates to r. �

Case 〈e1[e2]++, e1[e2]--〉. Consider a postfix expression e of the form
e1[e2] op where op is either ‘++’ or ‘--’. Let S1 be the static type of e1 and S2
be the static type of e2. A compile-time error occurs unless S1 has an operator
‘[]’ and an operator ‘[]=’. Let T be the return type of the former. A compile-
time error occurs unless S2 is assignable to the first parameter type of said
operator ‘[]=’. A compile-time error occurs if T is not dynamic and T does not
have an operator ‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if
the return type of this operator is not assignable to the second argument type
of said operator ‘[]=’. A compile-time error occurs if passing the integer literal
1 as an argument to said operator ‘+’ or ‘-’ would be an error. The static type
of e is T .

Evaluation of a postfix expression e of the form e1[e2]++ respectively e1[e2]--
proceeds as follows: Evaluate e1 to an object u and e2 to an object v. Let a and
i be fresh variables bound to u and v respectively. Evaluate a[i] to an object
r and let y be a fresh variable bound to r. Evaluate a[i] = y + 1 respectively
a[i] = y - 1. Then e evaluates to r. �

Case 〈e1?.v++, e1?.v--〉. Consider a postfix expression e of the form
e1?.v op where op is either ‘++’ or ‘--’. Exactly the same compile-time errors
that would be caused by e1.v op are also generated in the case of e1?.v op. The
static type of e is the static type of e1.v.

Evaluation of a postfix expression e of the form e1?.v++ respectively e1?.v--
proceeds as follows: If e1 is a type literal, evaluation of e is equivalent to eval-
uation of e1.v++ respectively e1.v--. Otherwise evaluate e1 to an object u. if
u is the null object, e evaluates to the null object (16.4). Otherwise let x be a
fresh variable bound to u. Evaluate x.v++ respectively x.v-- to an object o.
Then e evaluates to o. �

16.36 Assignable Expressions assignableExpressions

Assignable expressions are expressions that can appear on the left hand side
of an assignment. This section describes how to evaluate these expressions when
they do not constitute the complete left hand side of an assignment.

Of course, if assignable expressions always appeared as the left hand side,
one would have no need for their value, and the rules for evaluating them would

Dart Programming Language Specification 140

be unnecessary. However, assignable expressions can be subexpressions of other
expressions and therefore must be evaluated.

〈assignableExpression〉 ::= 〈primary〉 〈assignableSelectorPart〉+
| super 〈unconditionalAssignableSelector〉
| 〈constructorInvocation〉 〈assignableSelectorPart〉+ 〈identifier〉

〈assignableSelectorPart〉 ::= 〈argumentPart〉* 〈assignableSelector〉

〈unconditionalAssignableSelector〉 ::= ‘[’ 〈expression〉 ‘]’
| ‘.’ 〈identifier〉

〈assignableSelector〉 ::= 〈unconditionalAssignableSelector〉
| ‘?.’ 〈identifier〉

An assignable expression is either: �

• An identifier.

• An invocation (possibly conditional) of a getter (10.2) or list access oper-
ator on an expression e.

• An invocation of a getter or list access operator on super.

An assignable expression of the form id is evaluated as an identifier expres-
sion (16.37).

An assignable expression of the form e.id or e?.id is evaluated as a property
extraction (16.22).

An assignable expression of the form e1[e2] is evaluated as a method invo-
cation of the operator method [] on e1 with argument e2.

An assignable expression of the form super.id is evaluated as a property
extraction.

Evaluation of an assignable expression of the form super[e2] is equivalent
to evaluation of the method invocation super.[](e2).

16.37 Identifier Reference identifierReference

An identifier expression consists of a single identifier; it provides access to �
an object via an unqualified name.

〈identifier〉 ::= 〈IDENTIFIER〉 .

〈IDENTIFIER_NO_DOLLAR〉 ::= 〈IDENTIFIER_START_NO_DOLLAR〉
〈IDENTIFIER_PART_NO_DOLLAR〉*

〈IDENTIFIER〉 ::= 〈IDENTIFIER_START 〉 〈IDENTIFIER_PART 〉*

Dart Programming Language Specification 141

〈BUILT_IN_IDENTIFIER〉 ::= abstract
| as
| covariant
| deferred
| dynamic
| export
| external
| factory
| Function
| get
| implements
| import
| interface
| library
| operator
| mixin
| part
| set
| static
| typedef

〈IDENTIFIER_START 〉 ::= 〈IDENTIFIER_START_NO_DOLLAR〉
| ‘$’

〈IDENTIFIER_START_NO_DOLLAR〉 ::= 〈LETTER〉
| ‘_’

〈IDENTIFIER_PART_NO_DOLLAR〉 ::=
〈IDENTIFIER_START_NO_DOLLAR〉

| 〈DIGIT 〉

〈IDENTIFIER_PART 〉 ::= 〈IDENTIFIER_START 〉
| 〈DIGIT 〉

〈qualified〉 ::= 〈identifier〉 (‘.’ 〈identifier〉)?

A built-in identifier is one of the identifiers produced by the production
〈BUILT_IN_IDENTIFIER〉. It is a compile-time error if a built-in identifier
is used as the declared name of a prefix, class, type parameter or type alias. It
is a compile-time error to use a built-in identifier other than dynamic in a type
annotation or type parameter.

Built-in identifiers are identifiers that are used as keywords in Dart, but are
not reserved words in Javascript. To minimize incompatibilities when porting
Javascript code to Dart, we do not make these into reserved words. A built-in
identifier may not be used to name a class or type. In other words, they are
treated as reserved words when used as types. This eliminates many confus-
ing situations without causing compatibility problems. After all, a Javascript

Dart Programming Language Specification 142

program has no type declarations or annotations so no clash can occur. Fur-
thermore, types should begin with an uppercase letter (see the appendix) and so
no clash should occur in any Dart user program anyway.

It is a compile-time error if either of the identifiers await or yield is used as
an identifier in a function body marked with either async, async* or sync*.

For compatibility reasons, new constructs cannot rely upon new reserved
words or even built-in identifiers. However, the constructs above are only us-
able in contexts that require special markers introduced concurrently with these
constructs, so no old code could use them. Hence the restriction, which treats
these names as reserved words in a limited context.

Evaluation of an identifier expression e of the form id proceeds as follows:
Let d be the innermost declaration in the enclosing lexical scope whose name

is id or id=. If no such declaration exists in the lexical scope, let d be the
declaration of the inherited member named id if it exists.

• if d is a prefix p, a compile-time error occurs unless the token immediately
following d is ‘.’.

• If d is a class or type alias T , the value of e is an object implementing the
class Type which reifies T .

• If d is a type parameter T , then the value of e is the value of the actual
type argument corresponding to T that was passed to the generative con-
structor that created the current binding of this. If, however, e occurs
inside a static member, a compile-time error occurs.

• If d is a constant variable of one of the forms const v = e; or const T v
= e; then the value id is the value of the constant expression e.

• If d is a local variable (which can be a formal parameter) then e evaluates
to the current binding of id.

• If d is a static method, top-level function or local function then e evaluates
to the function object obtained by closurization (16.18) of the declaration
denoted by d.

• If d is the declaration of a class variable, static getter or static setter
declared in class C, then evaluation of e is equivalent to evaluation of the
property extraction (16.22) C.id.

• If d is the declaration of a library variable, top-level getter or top-level
setter, then evaluation of e is equivalent to evaluation of the top level
getter invocation (16.20) id.

• Otherwise, if e occurs inside a top level or static function (be it function,
method, getter, or setter) or variable initializer, evaluation of e causes a
NoSuchMethod to be thrown.

• Otherwise, evaluation of e is equivalent to evaluation of the property ex-
traction (16.22) this.id.

Dart Programming Language Specification 143

The static type of e is determined as follows:

• If d is a class, type alias or type parameter the static type of e is Type.

• If d is a local variable (which can be a formal parameter) the static type of
e is the type of the variable id, unless id is known to have some type T , in
which case the static type of e is T , provided that T is a subtype of any
other type S such that v is known to have type S.

• If d is a static method, top-level function or local function the static type
of e is the function type defined by d.

• If d is the declaration of a class variable, static getter or static setter
declared in class C, the static type of e is the static type of the getter
invocation (16.22) C.id.

• If d is the declaration of a library variable, top-level getter or top-level set-
ter, the static type of e is the static type of the top level getter invocation
id.

• Otherwise, if e occurs inside a top level or static function (be it function,
method, getter, or setter) or variable initializer, the static type of e is
dynamic.

• Otherwise, the static type of e is the type of the property extraction (16.22)
this.id.

Note that if one declares a setter, we bind to the corresponding getter even if it
does not exist.

This prevents situations where one uses uncorrelated setters and getters.
The intent is to prevent errors when a getter in a surrounding scope is used
accidentally.

It is a compile-time error if an identifier expression id occurs inside a top level
or static function (be it function, method, getter, or setter) or in an instance
variable initializer, or in an initializer list expression, and there is no declaration
d with name id in the lexical scope enclosing the expression.

16.38 Type Test typeTest

The is-expression tests if an object is a member of a type. �

〈typeTest〉 ::= 〈isOperator〉 〈typeNotVoid〉

〈isOperator〉 ::= is ‘!’?

Evaluation of the is-expression e is T proceeds as follows:
The expression e is evaluated to an object v. If the dynamic type of v is

a subtype of T , the is-expression evaluates to true. Otherwise it evaluates to
false.

Dart Programming Language Specification 144

It follows that e is Object is always true. This makes sense in a language
where everything is an object.

Also note that null is T is false unless T = Object, T = dynamic or T =
Null. The former two are useless, as is anything of the form e is Object or e is
dynamic. Users should test for the null object (16.4) directly rather than via type
tests.

The is-expression e is! T is equivalent to !(e is T).
Let v be a local variable (which can be a formal parameter). An is-expression

of the form v is T shows that v has type T if T is a subtype of the type of the
expression v. Otherwise, if the declared type of v is the type variable X, and
T is a subtype of the bound of X, and X&T is a subtype of the type of the
expression v, then e shows that v has type X&T . Otherwise e does not show
that v has type T for any T .

The motivation for the “shows that v has type T" relation is to reduce spuri-
ous errors thereby enabling a more natural coding style. The rules in the current
specification are deliberately kept simple. It would be upwardly compatible to re-
fine these rules in the future; such a refinement would accept more code without
errors, but not reject any code now error-free.

The rule only applies to locals and parameters, as instance and static vari-
ables could be modified via side-effecting functions or methods that are not ac-
cessible to a local analysis.

It is pointless to deduce a weaker type than what is already known. Further-
more, this would lead to a situation where multiple types are associated with a
variable at a given point, which complicates the specification. Hence the require-
ment that the promoted type is a subtype of the current type.

In any case, it is not an error when a type test does not show that a given
variable does not have a “better” type than previously known, but tools may
choose to give a hint in such cases, if suitable heuristics indicate that a promo-
tion is likely to be intended.

The static type of an is-expression is bool.

16.39 Type Cast typeCast

The cast expression ensures that an object is a member of a type. �

〈typeCast〉 ::= 〈asOperator〉 〈typeNotVoid〉

〈asOperator〉 ::= as

Evaluation of the cast expression e as T proceeds as follows:
The expression e is evaluated to an object v. It is a dynamic type error if o

is not the null object (16.4), and the dynamic type of o is not a subtype of T .
Otherwise e evaluates to v.

The static type of a cast expression e as T is T .

Dart Programming Language Specification 145

17 Statements statements

A statement is a fragment of Dart code that can be executed at run time. �
Statements, unlike expressions, do not evaluate to an object, but are instead
executed for their effect on the program state and control flow.

〈statements〉 ::= 〈statement〉*

〈statement〉 ::= 〈label〉* 〈nonLabelledStatement〉

〈nonLabelledStatement〉 ::= 〈block〉
| 〈localVariableDeclaration〉
| 〈forStatement〉
| 〈whileStatement〉
| 〈doStatement〉
| 〈switchStatement〉
| 〈ifStatement〉
| 〈rethrowStatement〉
| 〈tryStatement〉
| 〈breakStatement〉
| 〈continueStatement〉
| 〈returnStatement〉
| 〈yieldStatement〉
| 〈yieldEachStatement〉
| 〈expressionStatement〉
| 〈assertStatement〉
| 〈localFunctionDeclaration〉

17.0.1 Statement Completion statementCompletion

Execution of a statement completes in one of five ways: either it completes �
�normally, it breaks or it continues (either to a label or without a label), it returns
�
�
�

(with or without a value), or it throws an exception object and an associated

�
stack trace.

In descriptions of statement execution the default is that the execution com-
pletes normally unless otherwise stated.

If the execution of a statement, s, is defined in terms of executing another
statement, and the execution of that other statement does not complete nor-
mally, then, unless otherwise stated, the execution of s stops at that point and
completes in the same way. For example, if execution of the body of a do loop
returns a value, so does execution of the do loop statement itself.

If the execution of a statement is defined in terms of evaluating an expression
and the evaluation of that expression throws, then, unless otherwise stated, the
execution of the statement stops at that point and throws the same exception
object and stack trace. For example, if evaluation of the condition expression of
an if statement throws, then so does execution of the if statement. Likewise, if

Dart Programming Language Specification 146

evaluation of the expression of a return statement throws, so does execution of the
return statement.

Upcoming: Definition of ‘it is statically known that this statement
will not complete normally’ will be inserted here.

17.1 Blocks blocks

A block statement supports sequencing of code. �
Execution of a block statement {s1, . . . , sn} proceeds as follows:
For i ∈ 1..n, si is executed.
A block statement introduces a new scope, which is nested in the lexically

enclosing scope in which the block statement appears.

17.2 Expression Statements expressionStatements

An expression statement consists of an expression that does not begin with �
a ‘{’ character.

〈expressionStatement〉 ::= 〈expression〉? ‘;’

The expression of an expression statement is not allowed to begin with a ‘{’.
This means that if some source text could otherwise be parsed as an expression

followed by a ‘;’, then this grammar production does not apply when the expression
starts with a ‘{’. The restriction resolves an ambiguity while parsing where a
‘{’ can start either a block (17.1) or a map literal (16.10). By disallowing the
latter from starting an expression statement, the parser does not need to look
further ahead before deciding that it is parsing a block statement.

Execution of an expression statement e; proceeds by evaluating e. If the
expression evaluates to an object, then the object is ignored and the execution
completes normally.

17.3 Local Variable Declaration localVariableDeclaration

A variable declaration statement, also known as a local variable declaration, �
�has the following form:

〈localVariableDeclaration〉 ::= 〈initializedVariableDeclaration〉 ‘;’

Each local variable declaration introduces a local variable into the innermost �
enclosing scope.

Local variables do not induce getters and setters. Note that a formal parameter
declaration also introduces a local variable into the associated formal parameter
scope (9.2).

The properties of being initialized, constant, final, and mutable apply to �
�
�
�

local variables with the same definitions as for other variables (8).
We say that a local variable v is potentially mutated in some scope s if v is �

mutable, and an assignment to v occurs in s.

Dart Programming Language Specification 147

A local variable declaration of the form var v; is equivalent to var v =
null;. A local variable declaration of the form T v; is equivalent to T v =
null;.

This holds regardless of the type T . E.g., int i; is equivalent to int i =
null;.

The type of a local variable with a declaration of one of the forms T v =
e; const T v = e; final T v = e; is T . The type of a local variable with
a declaration of one of the forms var v = e; const v = e; final v = e; is
dynamic.

Let v be a local variable declared by an initializing variable declaration, and
let e be the associated initializing expression. It is a compile-time error if the
static type of e is not assignable to the type of v. It is a compile-time error if
a local variable v is final, and the declaration of v is not an initializing variable
declaration.

It is also a compile-time error to assign to a final local variable (16.23).
It is a compile-time error if a local variable is referenced at a source code

location that is before the end of its initializing expression, if any, and otherwise
before the declaring occurrence of the identifier which names the variable.

The example below illustrates the expected behavior. A variable ‘x’ is declared
at the library level, and another ‘x’ is declared inside the function ‘f’.

var x = 0;

f(y) {
var z = x; // compile-time error
if (y) {
x = x + 1; // two compile-time errors
print(x); // compile-time error

}
var x = x++; // compile-time error
print(x);

}

The declaration inside ‘f’ hides the enclosing one. So all references to ‘x’ inside
‘f’ refer to the inner declaration of ‘x’. However, many of these references are illegal,
because they appear before the declaration. The assignment to ‘z’ is one such case.
The assignment to ‘x’ in the if statement suffers from multiple problems. The right
hand side reads ‘x’ before its declaration, and the left hand side assigns to ‘x’ before
its declaration. Each of these are, independently, compile-time errors. The print
statement inside the if is also illegal.

The inner declaration of ‘x’ is itself erroneous because its right hand side at-
tempts to read ‘x’ before the declaration has terminated. The occurrence of ‘x’
that declares and names the variable (that is, the one to the left of ‘=’ in the inner
declaration) is not a reference, and so is legal. The last print statement is perfectly
legal as well.

Dart Programming Language Specification 148

As another example var x = 3, y = x; is legal, because x is referenced after
its initializer.

A particularly perverse example involves a local variable name shadowing a type.
This is possible because Dart has a single namespace for types, functions and vari-
ables.

class C {}
perverse() {
var v = new C(); // compile-time error
C aC; // compile-time error
var C = 10;

}

Inside perverse(), ‘C’ denotes a local variable. The type ‘C’ is hidden by the
variable of the same name. The attempt to instantiate ‘C’ causes a compile-time
error because it references a local variable prior to its declaration. Similarly, for the
declaration of ‘aC’.

Execution of a variable declaration statement of one of the forms var v =
e; T v = e; const v = e; const T v = e; final v = e; or final T v = e;
proceeds as follows:

The expression e is evaluated to an object o. Then, the variable v is set to
o. A dynamic type error occurs if the dynamic type of o is not a subtype of the
actual type (19.10.1) of v.

17.4 Local Function Declaration localFunctionDeclaration

A function declaration statement declares a new local function (9.1).

〈localFunctionDeclaration〉 ::= 〈functionSignature〉 〈functionBody〉

A function declaration statement of one of the forms id signature { statements
} or T id signature { statements } causes a new function named id to be
added to the innermost enclosing scope. It is a compile-time error to reference
a local function before its declaration.

This implies that local functions can be directly recursive, but not mutually
recursive. Consider these examples:

f(x) => x++; // a top level function

top() { // another top level function
f(3); // illegal
f(x) => x > 0? x*f(x-1): 1; // recursion is legal
g1(x) => h(x, 1); // error: h is not declared yet
h(x, n) => x > 1? h(x-1, n*x): n; // again, recursion is fine
g2(x) => h(x, 1); // legal

p1(x) => q(x,x); // illegal

Dart Programming Language Specification 149

q1(a, b) ⇒ a > 0 ? p1(a-1): b; // fine

q2(a, b) => a > 0 ? p2(a-1): b; // illegal
p1(x) => q2(x,x); // fine

}

There is no way to write a pair of mutually recursive local functions, because
one always has to come before the other is declared. These cases are quite rare,
and can always be managed by defining a pair of variables first, then assigning them
appropriate function literals:

top2() { // a top level function
var p, q;
p = (x) => q(x,x);
q = (a, b) => a > 0 ? p(a-1): b;

}

The rules for local functions differ slightly from those for local variables in
that a function can be accessed within its declaration but a variable can only
be accessed after its declaration. This is because recursive functions are use-
ful whereas recursively defined variables are almost always errors. It therefore
makes sense to harmonize the rules for local functions with those for functions
in general rather than with the rules for local variables.

17.5 If if

The if statement allows for conditional execution of statements. �

〈ifStatement〉 ::= if ‘(’ 〈expression〉 ‘)’ 〈statement〉 (else 〈statement〉)?

An if statement of the form if (e) s1 else s2 where s1 is not a block state-
ment is equivalent to the statement if (e) {s1} else s2. An if statement of
the form if (e) s1 else s2 where s2 is not a block statement is equivalent to
the statement if (e) s1 else {s2}.

The reason for this equivalence is to catch errors such as

void main() {
if (somePredicate)
var v = 2;

print(v);
}

Under reasonable scope rules such code is problematic. If we assume that
v is declared in the scope of the method main(), then when somePredicate is
false, v will be uninitialized when accessed. The cleanest approach would be to
require a block following the test, rather than an arbitrary statement. However,
this goes against long standing custom, undermining Dart’s goal of familiarity.

Dart Programming Language Specification 150

Instead, we choose to insert a block, introducing a scope, around the statement
following the predicate (and similarly for else and loops). This will cause a
compile-time error in the case above. Of course, if there is a declaration of v in
the surrounding scope, programmers might still be surprised. We expect tools to
highlight cases of shadowing to help avoid such situations.

Execution of an if statement of the form if (b) s1 else s2 where s1 and s2
are block statements, proceeds as follows:

First, the expression b is evaluated to an object o. It is a dynamic error if
the run-time type of o is not bool. If o is true, then the block statement s1 is
executed, otherwise the block statement s2 is executed.

It is a compile-time error if the type of the expression b may not be assigned
to bool.

If b shows that a local variable v has type T , then the type of v is known to
be T in s2, unless any of the following are true

• v is potentially mutated in s1,

• v is potentially mutated within a function other than the one where v is
declared, or

• v is accessed by a function defined in s1 and v is potentially mutated
anywhere in the scope of v.

An if statement of the form if (e) s is equivalent to the if statement if (e)
s else {}.

17.6 For for

The for statement supports iteration. �

〈forStatement〉 ::= await? for ‘(’ 〈forLoopParts〉 ‘)’ 〈statement〉

〈forLoopParts〉 ::= 〈forInitializerStatement〉 〈expression〉? ‘;’ 〈expressionList〉?
| 〈declaredIdentifier〉 in 〈expression〉
| 〈identifier〉 in 〈expression〉

〈forInitializerStatement〉 ::= 〈localVariableDeclaration〉
| 〈expression〉? ‘;’

The for statement has three forms - the traditional for loop and two forms
of the for-in statement - synchronous and asynchronous.

17.6.1 For Loop forLoop

Execution of a for statement of the form for (var v = e0; c; e) s proceeds
as follows:

If c is empty then let c′ be true otherwise let c′ be c.
First the variable declaration statement var v = e0 is executed. Then:

Dart Programming Language Specification 151

1. If this is the first iteration of the for loop, let v′ be v. Otherwise, let v′ be
the variable v′′ created in the previous execution of step 3.

2. The expression [v′/v]c is evaluated to an object o. It is a dynamic error
if the run-time type of o is not bool. If o is false, the for loop completes
normally. Otherwise, execution continues at step 3.

3. The statement [v′/v]{s} is executed.
If this execution completes normally, continues without a label, or con-
tinues to a label (17.13) that prefixes this for statement (17.0.1), then
execution of the statement is treated as if it had completed normally.
Let v′′ be a fresh variable. v′′ is bound to the value of v′.

4. The expression [v′′/v]e is evaluated, and the process recurses at step 1.

The definition above is intended to prevent the common error where users
create a function object inside a for loop, intending to close over the current
binding of the loop variable, and find (usually after a painful process of debugging
and learning) that all the created function objects have captured the same value—
the one current in the last iteration executed.

Instead, each iteration has its own distinct variable. The first iteration uses
the variable created by the initial declaration. The expression executed at the
end of each iteration uses a fresh variable v′′, bound to the value of the current
iteration variable, and then modifies v′′ as required for the next iteration.

It is a compile-time error if the static type of c may not be assigned to bool.

17.6.2 For-in for-in

Let D be derived from 〈finalConstVarOrType〉? and let n0 be an identifier
that does not occur anywhere in the program. A for statement of the form for
(D id in e) s is equivalent to the following code:

var n0 = e.iterator;
while (n0.moveNext()) {

D id = n0.current;
s

}

For purposes of static typechecking, this code is checked under the assump-
tion that n0 is declared to be of type T , where T is the static type of e.iterator.

It follows that it is a compile-time error if D is empty and id is a final variable.

17.6.3 Asynchronous For-in asynchronousFor-in

A for-in statement may be asynchronous. The asynchronous form is de-
signed to iterate over streams. An asynchronous for loop is distinguished by the
keyword await immediately preceding the keyword for.

Dart Programming Language Specification 152

Let D be derived from 〈finalConstVarOrType〉?. Execution of a for-in state-
ment, f , of the form await for (D id in e) s proceeds as follows:

The expression e is evaluated to an object o. It is a dynamic type error if o
is not an instance of a class that implements Stream. It is a compile-time error
if D is empty and id is a final variable.

The stream associated with the innermost enclosing asynchronous for loop,
if any, is paused. The stream o is listened to, producing a stream subscription
u, and execution of the asynchronous for-in loop is suspended until a stream
event is available. This allows other asynchronous events to execute while this
loop is waiting for stream events.

Pausing an asynchronous for loop means pausing the associated stream sub-
scription. A stream subscription is paused by calling its pause method. If the
subscription is already paused, an implementation may omit further calls to
pause.

The pause call can throw, although that should never happen for a correctly
implemented stream.

For each data event from u, the statement s is executed with id bound to �
the value of the current data event.

Either execution of s is completely synchronous, or it contains an asynchronous
construct (await, await for, yield or yield*) which will pause the stream subscrip-
tion of its surrounding asynchronous loop. This ensures that no other event of u
occurs before execution of s is complete, if o is a correctly implemented stream. If
o doesn’t act as a valid stream, for example by not respecting pause requests, the
behavior of the asynchronous loop may become unpredictable.

If execution of s continues without a label, or to a label (17.13) that prefixes
the asynchronous for statement (17.0.1), then the execution of s is treated as if
it had completed normally.

If execution of s otherwise does not complete normally, the subscription u is
canceled by evaluating await v.cancel() where v is a fresh variable referencing
the stream subscription u. If that evaluation throws, execution of f throws the
same exception and stack trace. Otherwise execution of f completes in the
same way as the execution of s. Otherwise the execution of f is suspended
again, waiting for the next stream subscription event, and u is resumed if it has
been paused. The resume call can throw, in which case the asynchronous for loop
also throws. That should never happen for a correctly implemented stream.

On an error event from u, with error object e and stack trace st, the subscrip- �
tion u is canceled by evaluating await v.cancel() where v is a fresh variable
referencing the stream subscription u. If that evaluation throws, execution of
f throws the same exception object and stack trace. Otherwise execution of f
throws with e as exception object and st as stack trace.

When u is done, execution of f completes normally.
It is a compile-time error if an asynchronous for-in statement appears inside

a synchronous function (9). It is a compile-time error if a traditional for loop
(17.6.1) is prefixed by the await keyword.

An asynchronous loop would make no sense within a synchronous function,
for the same reasons that an await expression makes no sense in a synchronous

Dart Programming Language Specification 153

function.

17.7 While while

The while statement supports conditional iteration, where the condition is
evaluated prior to the loop.

〈whileStatement〉 ::= while ‘(’ 〈expression〉 ‘)’ 〈statement〉

Execution of a while statement of the form while (e) s; proceeds as follows:
The expression e is evaluated to an object o. It is a dynamic error if the

run-time type of o is not bool.
If o is false, then execution of the while statement completes normally

(17.0.1).
Otherwise o is true and then the statement {s} is executed. If that execution

completes normally or it continues with no label or to a label (17.13) that
prefixes the while statement (17.0.1), then the while statement is re-executed. If
the execution breaks without a label, execution of the while statement completes
normally. If the execution breaks with a label that prefixes the while statement,
it does end execution of the loop, but the break itself is handled by the surrounding
labeled statement (17.13).

It is a compile-time error if the static type of e may not be assigned to bool.

17.8 Do do

The do statement supports conditional iteration, where the condition is eval-
uated after the loop.

〈doStatement〉 ::= do 〈statement〉 while ‘(’ 〈expression〉 ‘)’ ‘;’

Execution of a do statement of the form do s while (e); proceeds as fol-
lows:

The statement {s} is executed. If that execution continues with no label, or
to a label (17.13) that prefixes the do statement (17.0.1), then the execution of
s is treated as if it had completed normally.

Then, the expression e is evaluated to an object o. It is a dynamic error if
the run-time type of o is not bool. If o is false, execution of the do statement
completes normally (17.0.1). If o is true, then the do statement is re-executed.

It is a compile-time error if the static type of e may not be assigned to bool.

17.9 Switch switch

The switch statement supports dispatching control among a large number of �
cases.

〈switchStatement〉 ::=
switch ‘(’ 〈expression〉 ‘)’ ‘{’ 〈switchCase〉* 〈defaultCase〉? ‘}’

Dart Programming Language Specification 154

〈switchCase〉 ::= 〈label〉* case 〈expression〉 ‘:’ 〈statements〉

〈defaultCase〉 ::= 〈label〉* default ‘:’ 〈statements〉

Consider a switch statement of the form

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

or the form

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

}

Note that each expression ej , j ∈ 1..n occurs in a constant context (16.3.1),
which means that const modifiers need not be specified explicitly.

It is a compile-time error unless each expression ej , j ∈ 1..n is constant. It
is a compile-time error if the value of the expressions ej , j ∈ 1..n are not either:

• instances of the same class C, for all j ∈ 1..n, or

• instances of a class that implements int, for all j ∈ 1..n, or

• instances of a class that implements String, for all j ∈ 1..n.

In other words, all the expressions in the cases evaluate to constants of the
exact same user defined class or are of certain known types. Note that the values
of the expressions are known at compile time, and are independent of any type
annotations.

It is a compile-time error if the operator ‘==’ of class C is not primitive
(10.1.3).

The prohibition on user defined equality allows us to implement the switch
efficiently for user defined types. We could formulate matching in terms of
identity instead, with the same efficiency. However, if a type defines an equality
operator, programmers would presumably find it quite surprising if equal objects
did not match.

The switch statement should only be used in very limited situations (e.g., in-
terpreters or scanners).

Execution of a switch statement of the form

switch (e) {

Dart Programming Language Specification 155

label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

or the form

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

}

proceeds as follows:
The statement var id = e; is evaluated, where id is a fresh variable. It is

a dynamic error if the value of e is not an instance of the same class as the
constants e1, . . . , en.

Note that if there are no case clauses (n = 0), the type of e does not matter.
Next, the case clause case e1: s1 is matched against id, if n > 0. Otherwise

if there is a default clause, the case statements sn+1 are executed (17.9.1).
Matching of a case clause case ek : sk of a switch statement

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

against the value of a variable id proceeds as follows:
The expression ek == id is evaluated to an object o. It is a dynamic error

if the run-time type of o is not bool. If o is false the following case, case
ek+1 : sk+1 is matched against id if k < n, and if k = n, then the default
clause’s statements are executed (17.9.1). If o is true, let h be the smallest
number such that h ≥ k and sh is non-empty. If no such h exists, let h = n + 1.
The case statements sh are then executed (17.9.1).

Matching of a case clause case ek : sk of a switch statement

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

}

against the value of a variable id proceeds as follows:

Dart Programming Language Specification 156

The expression ek == id is evaluated to an object o. It is a dynamic error
if the run-time type of o is not bool. If o is false the following case, case
ek+1 : sk+1 is matched against id if k < n. If o is true, let h be the smallest
integer such that h ≥ k and sh is non-empty. If such a h exists, the case
statements sh are executed (17.9.1). Otherwise the switch statement completes
normally (17.0.1).

It is a compile-time error if the type of e may not be assigned to the type of
ek. Let s be the last statement of the statement sequence sk. If s is a non-empty
block statement, let s instead be the last statement of the block statement. It is
a compile-time error if s is not a break, continue, rethrow or return statement
or an expression statement where the expression is a throw expression.

The behavior of switch cases intentionally differs from the C tradition. Im-
plicit fall through is a known cause of programming errors and therefore disal-
lowed. Why not simply break the flow implicitly at the end of every case, rather
than requiring explicit code to do so? This would indeed be cleaner. It would also
be cleaner to insist that each case have a single (possibly compound) statement.
We have chosen not to do so in order to facilitate porting of switch statements
from other languages. Implicitly breaking the control flow at the end of a case
would silently alter the meaning of ported code that relied on fall-through, poten-
tially forcing the programmer to deal with subtle bugs. Our design ensures that
the difference is immediately brought to the coder’s attention. The programmer
will be notified at compile time if they forget to end a case with a statement that
terminates the straight-line control flow.

The sophistication of the analysis of fall-through is another issue. For now,
we have opted for a very straightforward syntactic requirement. There are obvi-
ously situations where code does not fall through, and yet does not conform to
these simple rules, e.g.:

switch (x) {
case 1: try { . . . return; } finally { . . . return; }

}

Very elaborate code in a case clause is probably bad style in any case, and
such code can always be refactored.

It is a static warning if all of the following conditions hold:

• The switch statement does not have a default clause.

• The static type of e is an enumerated type with elements id1, . . . , idn.

• The sets {e1, . . . , ek} and {id1, . . . , idn} are not the same.

In other words, a static warning will be emitted if a switch statement over an
enum is not exhaustive.

17.9.1 Switch case statements case-execute

Execution of the case statements sh of a switch statement

Dart Programming Language Specification 157

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

}

or a switch statement

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

proceeds as follows:
Execute {sh}. If this execution completes normally, and if sh is not the

statements of the last case of the switch (h = n if there is no default clause,
h = n + 1 if there is a default clause), then the execution of the switch case
throws an error. Otherwise sh are the last statements of the switch case, and
execution of the switch case completes normally.

In other words, there is no implicit fall-through between non-empty cases. The
last case in a switch (default or otherwise) can ‘fall-through’ to the end of the
statement.

If execution of {sh} breaks with no label (17.0.1), then the execution of the
switch statement completes normally.

If execution of {sh} continues to a label (17.0.1), and the label is labelij ,
where 1 ≤ i ≤ n + 1 if the switch statement has a default, or 1 ≤ i ≤ n if there
is no default, and where 1 ≤ j ≤ ji, then let h be the smallest number such
that h ≥ i and sh is non-empty. If no such h exists, let h = n + 1 if the switch
statement has a default, otherwise let h = n. The case statements sh are then
executed (17.9.1).

If execution of {sh} completes in any other way, execution of the switch
statement completes in the same way.

17.10 Rethrow rethrow

The rethrow statement is used to re-throw an exception and its associated �
stack trace.

〈rethrowStatement〉 ::= rethrow ‘;’

Execution of a rethrow statement proceeds as follows:
Let f be the immediately enclosing function, and let on T catch (p1, p2)

be the immediately enclosing catch clause (17.11).
A rethrow statement always appears inside a catch clause, and any catch

clause is semantically equivalent to some catch clause of the form on T catch

Dart Programming Language Specification 158

(p1, p2). So we can assume that the rethrow is enclosed in a catch clause of
that form.

The rethrow statement throws (17.0.1) with p1 as the exception object and
p2 as the stack trace.

It is a compile-time error if a rethrow statement is not enclosed within an
on-catch clause.

17.11 Try try

The try statement supports the definition of exception handling code in a
structured way.

〈tryStatement〉 ::= try 〈block〉 (〈onPart〉+ 〈finallyPart〉? | 〈finallyPart〉)

〈onPart〉 ::= 〈catchPart〉 〈block〉
| on 〈typeNotVoid〉 〈catchPart〉? 〈block〉

〈catchPart〉 ::= catch ‘(’ 〈identifier〉 (‘,’ 〈identifier〉)? ‘)’

〈finallyPart〉 ::= finally 〈block〉

A try statement consists of a block statement, followed by at least one of:

1. A set of on-catch clauses, each of which specifies (either explicitly or
implicitly) the type of exception object to be handled, one or two exception
parameters, and a block statement.

2. A finally clause, which consists of a block statement.

The syntax is designed to be upward compatible with existing Javascript pro-
grams. The on clause can be omitted, leaving what looks like a Javascript catch
clause.

A try statement of the form try s1 on−catch1 . . . on−catchn; is equivalent
to the statement try s1 on− catch1 . . . on− catchn finally {}.

An on-catch clause of the form on T catch (p1) s is equivalent to an on-
catch clause on T catch (p1, p2) s where p2 is a fresh identifier.

An on-catch clause of the form on T s is equivalent to an on-catch clause
on T catch (p1, p2) s where p1 and p2 are fresh identifiers.

An on-catch clause of the form catch (p) s is equivalent to an on-catch
clause on dynamic catch (p, p2) s where p2 is a fresh identifier.

An on-catch clause of the form catch (p1, p2) s is equivalent to an on-
catch clause on dynamic catch (p1, p2) s.

An on-catch clause of the form on T catch (p1, p2) s introduces a new
scope CS in which final local variables specified by p1 and p2 are defined. The
statement s is enclosed within CS. The static type of p1 is T and the static
type of p2 is StackTrace.

Execution of a try statement s of the form:

Dart Programming Language Specification 159

try b
on T1 catch (e1, t1) c1
...
on Tn catch (en, tn) cn

finally f

proceeds as follows:
First b is executed. If execution of b throws (17.0.1) with exception object

e and stack trace t, then e and t are matched against the on-catch clauses to
yield a new completion (17.11.1).

Then, even if execution of b did not complete normally or matching against
the on-catch clauses did not complete normally, the f block is executed.

If execution of f does not complete normally, execution of the try statement
completes in the same way. Otherwise if execution of b threw (17.0.1), the
try statement completes in the same way as the matching against the on-catch
clauses. Otherwise the try statement completes in the same way as the execution
of b.

It is a compile-time error if Ti, 1 ≤ i ≤ n is a deferred type.

17.11.1 on-catch clauses on-catch

Matching an exception object e and stack trace t against a (potentially
empty) sequence of on-catch clauses of the form

on T1 catch (e1, st1) { s1 }
...
on Tn catch (en, stn) { sn }

proceeds as follows:
If there are no on-catch clauses (n = 0), matching throws the exception

object e and stack trace t (17.0.1).
Otherwise the exception is matched against the first clause.
Otherwise, if the type of e is a subtype of T1, then the first clause matches,

and then e1 is bound to the exception object e and t1 is bound to the stack
trace t, and s1 is executed in this scope. The matching completes in the same
way as this execution.

Otherwise, if the first clause did not match e, e and t are recursively matched
against the remaining on-catch clauses:

on T2 catch (e2, t2) { s2 }
...
on Tn catch (en, tn) { sn }

17.12 Return return

The return statement returns a result to the caller of a synchronous function, �

Dart Programming Language Specification 160

completes the future associated with an asynchronous function, or terminates
the stream or iterable associated with a generator (9).

〈returnStatement〉 ::= return 〈expression〉? ‘;’

Consider a return statement s of the form return e?;. Let S be the static
type of e, if e is present, let f be the immediately enclosing function, and let T
be the declared return type of f .

Case 〈Synchronous non-generator functions〉. Consider the case where f
is a synchronous non-generator function (9). It is a compile-time error if s is
return;, unless T is void, dynamic, or Null. It is a compile-time error if s is
return e;, T is void, and S is neither void, dynamic, nor Null. It is a compile-
time error if s is return e;, T is neither void, dynamic, nor Null, and S is void.
It is a compile-time error if s is return e;, S is not void, and S is not assignable
to T .

Note that T cannot be void, dynamic, or Null in the last case, because all types
are assignable to those types. An error will not be raised if f has no declared return
type, since the return type would be dynamic, to which every type is assignable.
However, a synchronous non-generator function that declares a return type which is
not “voidy” must return an expression explicitly. This helps catch situations where
users forget to return a value in a return statement. �

Case 〈Asynchronous non-generator functions〉. Consider the case where f
is an asynchronous non-generator function (9). It is a compile-time error if s is
return;, unless flatten(T) (16.13) is void, dynamic, or Null. An asynchronous
non-generator always returns a future of some sort. If no expression is given, the
future will be completed with the null object (16.4) which motivates this rule. It is
a compile-time error if s is return e;, flatten(T) is void, and flatten(S) is neither
void, dynamic, nor Null. It is a compile-time error if s is return e;, flatten(T)
is neither void, dynamic, nor Null, and flatten(S) is void. It is a compile-time
error if s is return e;, flatten(S) is not void, and Future<flatten(S)> is not
assignable to T .

Note that flatten(T) cannot be void, dynamic, or Null in the last case, be-
cause then Future<U> is assignable to T for all U . In particular, when T is
FutureOr<Null> (which is equivalent to Future<Null>), Future<flatten(S)> is
assignable to T for all S. This means that no compile-time error is raised, but
only the null object (16.4) or an instance of Future<Null> can successfully be
returned at run time. This is not an anomaly, it corresponds to the treatment of a
synchronous function with return type Null; but tools may choose to give a hint
that a downcast is unlikely to succeed.

An error will not be raised if f has no declared return type, since the return type
would be dynamic, and Future<flatten(S)> is assignable to dynamic for all S.
However, an asynchronous non-generator function that declares a return type which
is not “voidy” must return an expression explicitly. This helps catch situations
where users forget to return a value in a return statement of an asynchronous
function. �

Case 〈Generator functions〉. It is a compile-time error if a return statement

Dart Programming Language Specification 161

of the form return e; appears in a generator function.
In the case of a generator function, the value returned by the function is the

iterable or stream associated with it, and individual elements are added to that
iterable using yield statements, and so returning a value makes no sense. �

Case 〈Generative constructors〉. It is a compile-time error if a return state-
ment of the form return e; appears in a generative constructor (10.6.1).

It is quite easy to forget to add the factory modifier for a constructor, acci-
dentally converting a factory into a generative constructor. The static checker
may detect a type mismatch in some, but not all, of these cases. The rule above
helps catch such errors, which can otherwise be very hard to recognize. There
is no real downside to it, as returning a value from a generative constructor is
meaningless. �

Executing a return statement return e; proceeds as follows:
First the expression e is evaluated, producing an object o. Let S be the

run-time type of o and let T be the actual return type of f (19.10.1). If the
body of f is marked async (9) and S is a subtype of Future<flatten(T)> then
let r be the result of evaluating await v where v is a fresh variable bound to o.
Otherwise let r be o. Then the return statement returns the value r (17.0.1).

Let U be the run-time type of r.
• If the body of f is marked async (9) it is a dynamic type error if Future<U>

is not a subtype of T .

• Otherwise, it is a dynamic type error if U is not a subtype of T .
Executing a return statement with no expression, return; returns with no

value (17.0.1).

17.13 Labels labels

A label is an identifier followed by a colon. A labeled statement is a statement �
�prefixed by a label L. A labeled case clause is a case clause within a switch
�statement (17.9) prefixed by a label L.

The sole role of labels is to provide targets for the break (17.14) and continue
(17.15) statements.
〈label〉 ::= 〈identifier〉 ‘:’

Execution a labeled statement s, label : sl, consists of executing sl. If
execution of sl breaks to the label label (17.0.1), then execution of s completes
normally, otherwise execution of s completes in the same ways as the execution
of sl.

The namespace of labels is distinct from the one used for types, functions
and variables.

The scope of a label that labels a statement s is s. The scope of a label that
labels a case clause of a switch statement s is s.

Labels should be avoided by programmers at all costs. The motivation for
including labels in the language is primarily making Dart a better target for
code generation.

Dart Programming Language Specification 162

17.14 Break break

The break statement consists of the reserved word break and an optional �
label (17.13).

〈breakStatement〉 ::= break 〈identifier〉? ‘;’

Let sb be a break statement. If sb is of the form break L;, then it is a
compile-time error if sb is not enclosed in a labeled statement with the label L
within the innermost function in which sb occurs. If sb is of the form break;,
then it is a compile-time error if sb is not enclosed in an await for (17.6.3), do
(17.8), for (17.6), switch (17.9) or while (17.7) statement within the innermost
function in which sb occurs.

Execution of a break statement break L; breaks to the label L (17.0.1).
Execution of a break statement break; breaks without a label (17.0.1).

17.15 Continue continue

The continue statement consists of the reserved word continue and an op- �
tional label (17.13).

〈continueStatement〉 ::= continue 〈identifier〉? ‘;’

Let sc be a continue statement. If sc is of the form continue L;, then it is a
compile-time error if sc is not enclosed in either an await for (17.6.3), do (17.8),
for (17.6), or while (17.7) statement labeled with L, or in a switch statement
with a case clause labeled with L, within the innermost function in which sc

occurs. If sc is of the form continue; then it is a compile-time error if sc is not
enclosed in an await for (17.6.3) do (17.8), for (17.6), or while (17.7) statement
within the innermost function in which sc occurs.

Execution of a continue statement continue L; continues to the label L
(17.0.1). Execution of a continue statement continue; continues without a
label (17.0.1).

17.16 Yield and Yield-Each yieldAndYieldEach

17.16.1 Yield yield

The yield statement adds an element to the result of a generator function �
(9).

〈yieldStatement〉 ::= yield 〈expression〉 ‘;’

Execution of a statement s of the form yield e; proceeds as follows:
First, the expression e is evaluated to an object o. If the enclosing function

m is marked async* (9) and the stream u associated with m has been paused,
then the nearest enclosing asynchronous for loop (17.6.3), if any, is paused and
execution of m is suspended until u is resumed or canceled.

Dart Programming Language Specification 163

Next, o is added to the iterable or stream associated with the immediately
enclosing function.

If the enclosing function m is marked async* and the stream u associated
with m has been canceled, then the yield statement returns without a value
(17.0.1), otherwise it completes normally.

The stream associated with an asynchronous generator could be canceled by
any code with a reference to that stream at any point where the generator was
passivated. Such a cancellation constitutes an irretrievable error for the genera-
tor. At this point, the only plausible action for the generator is to clean up after
itself via its finally clauses.

Otherwise, if the enclosing function m is marked async* (9) then the enclos-
ing function may suspend, in which case the nearest enclosing asynchronous for
loop (17.6.3), if any, is paused first.

If a yield occurred inside an infinite loop and the enclosing function never
suspended, there might not be an opportunity for consumers of the enclosing
stream to run and access the data in the stream. The stream might then ac-
cumulate an unbounded number of elements. Such a situation is untenable.
Therefore, we allow the enclosing function to be suspended when a new value is
added to its associated stream. However, it is not essential (and in fact, can be
quite costly) to suspend the function on every yield. The implementation is free
to decide how often to suspend the enclosing function. The only requirement is
that consumers are not blocked indefinitely.

If the enclosing function m is marked sync* (9) then:

• Execution of the function m immediately enclosing s is suspended until the
nullary method moveNext() is invoked upon the iterator used to initiate
the current invocation of m.

• The current call to moveNext() returns true.

It is a compile-time error if a yield statement appears in a function that is
not a generator function.

Let T be the static type of e and let f be the immediately enclosing function.
It is a compile-time error if either:

• the body of f is marked async* and the type Stream<T> may not be
assigned to the declared return type of f .

• the body of f is marked sync* and the type Iterable<T> may not be
assigned to the declared return type of f .

17.16.2 Yield-Each yieldEach

The yield-each statement adds a series of values to the result of a generator �
function (9).

〈yieldEachStatement〉 ::= yield ‘*’ 〈expression〉 ‘;’

Dart Programming Language Specification 164

Execution of a statement s of the form yield* e; proceeds as follows:
First, the expression e is evaluated to an object o.
If the immediately enclosing function m is marked sync* (9), then:

1. It is a dynamic type error if the class of o does not implement Iterable.
Otherwise

2. The method iterator is invoked upon o returning an object i.

3. The moveNextmethod of i is invoked on it with no arguments. If moveNext
returns false execution of s is complete. Otherwise

4. The getter current is invoked on i. If the invocation throws (16.1), ex-
ecution of s throws the same exception object and stack trace (17.0.1).
Otherwise, the result x of the getter invocation is added to the iterable
associated with m. Execution of the function m immediately enclosing s is
suspended until the nullary method moveNext() is invoked upon the iter-
ator used to initiate the current invocation of m, at which point execution
of s continues at 3.

5. The current call to moveNext() returns true.

If m is marked async* (9), then:

• It is a dynamic type error if the class of o does not implement Stream.
Otherwise

• The nearest enclosing asynchronous for loop (17.6.3), if any, is paused.

• The o stream is listened to, creating a subscription s, and for each event
x, or error e with stack trace t, of s:

– If the stream u associated with m has been paused, then execution
of m is suspended until u is resumed or canceled.

– If the stream u associated with m has been canceled, then s is can-
celed by evaluating await v.cancel() where v is a fresh variable
referencing the stream subscription s. Then, if the cancel completed
normally, the stream execution of s returns without a value (17.0.1).

– Otherwise, x, or e with t, are added to the stream associated with m
in the order they appear in o. The function m may suspend.

• If the stream o is done, execution of s completes normally.

It is a compile-time error if a yield-each statement appears in a function that
is not a generator function.

Let T be the static type of e and let f be the immediately enclosing function.
It is a compile-time error if T may not be assigned to the declared return type
of f . If f is synchronous it is a compile-time error if T may not be assigned
to Iterable. If f is asynchronous it is a compile-time error if T may not be
assigned to Stream.

Dart Programming Language Specification 165

17.17 Assert assert

An assert statement is used to disrupt normal execution if a given boolean �
condition does not hold.

〈assertStatement〉 ::= 〈assertion〉 ‘;’

〈assertion〉 ::= assert ‘(’ 〈expression〉 (‘,’ 〈expression〉)? ‘,’? ‘)’

The grammar allows a trailing comma before the closing parenthesis, simi-
larly to an argument list. That comma, if present, has no effect. An assertion
with a trailing comma is equivalent to one with that comma removed.

An assertion of the form assert(e) is equivalent to an assertion of the form
assert(e, null).

Execution of an assert statement executes the assertion as described below
and completes in the same way as the assertion.

When assertions are not enabled, execution of an assertion immediately com-
pletes normally (17.0.1). That is, no subexpressions of the assertion are evaluated.
When assertions are enabled, execution of an assertion assert(c, e) proceeds
as follows:

The expression c is evaluated to an object r. It is a dynamic type error if r
is not of type bool. Hence it is a compile-time error if that situation arises during
evaluation of an assertion in a const constructor invocation. If r is true then
execution of the assert statement completes normally (17.0.1). Otherwise, e is
evaluated to an object m and then the execution of the assert statement throws
(17.0.1) an AssertionError containing m and with a stack trace corresponding
to the current execution state at the assertion.

It is a compile-time error if the type of c may not be assigned to bool.
Why is this a statement, not a built in function call? Because it is handled

magically so it has no effect and no overhead when assertions are disabled. Also,
in the absence of final methods, one could not prevent it being overridden (though
there is no real harm in that). It cannot be viewed as a function call that is being
optimized away because the arguments might have side effects.

18 Libraries and Scripts librariesAndScripts

A Dart program consists of one or more libraries, and may be built out of
one or more compilation units. A compilation unit may be a library or a part �
(18.3).

A library consists of (a possibly empty) set of imports, a set of exports, and
a set of top-level declarations. A top-level declaration is either a class (10), a
type alias declaration (19.3), a function (9) or a variable declaration (8). The
members of a library L are those top level declarations given within L.

〈topLevelDefinition〉 ::= 〈classDefinition〉
| 〈enumType〉

Dart Programming Language Specification 166

| 〈typeAlias〉
| external? 〈functionSignature〉 ‘;’
| external? 〈getterSignature〉 ‘;’
| external? 〈setterSignature〉 ‘;’
| 〈functionSignature〉 〈functionBody〉
| 〈type〉? get 〈identifier〉 〈functionBody〉
| 〈type〉? set 〈identifier〉 〈formalParameterList〉 〈functionBody〉
| (final | const) 〈type〉 〈staticFinalDeclarationList〉 ‘;’
| 〈variableDeclaration〉 ‘;’

〈getOrSet〉 ::= get
| set

〈libraryDefinition〉 ::=
〈scriptTag〉? 〈libraryName〉? 〈importOrExport〉* 〈partDirective〉*
〈topLevelDefinition〉*

〈scriptTag〉 ::= ‘#!’ (˜〈NEWLINE〉)* 〈NEWLINE〉

〈libraryName〉 ::= 〈metadata〉 library 〈dottedIdentifierList〉 ‘;’

〈importOrExport〉 ::= 〈libraryImport〉
| 〈libraryExport〉

〈dottedIdentifierList〉 ::= 〈identifier〉 (‘.’ 〈identifier〉)*

Libraries may be explicitly named or implicitly named. An explicitly named �
library begins with the word library (possibly prefaced with any applicable meta-
data annotations), followed by a qualified identifier that gives the name of the
library.

Technically, each dot and identifier is a separate token and so spaces between
them are acceptable. However, the actual library name is the concatenation of the
simple identifiers and dots and contains no spaces.

An implicitly named library has the empty string as its name.
The name of a library is used to tie it to separately compiled parts of the

library (called parts) and can be used for printing and, more generally, reflection.
The name may be relevant for further language evolution.

Libraries intended for widespread use should avoid name collisions. Dart’s pub
package management system provides a mechanism for doing so. Each pub package
is guaranteed a unique name, effectively enforcing a global namespace.

A library may optionally begin with a script tag. Script tags are intended �
for use with scripts (18.4). A script tag can be used to identify the interpreter of
the script to whatever computing environment the script is embedded in. The
script tag must appear before any whitespace or comments. A script tag begins
with ‘#!’ and ends at the end of the line. Any characters that follow ‘#!’ in the
script tag are ignored by the Dart implementation.

Libraries are units of privacy. A private declaration declared within a library

Dart Programming Language Specification 167

L can only be accessed by code within L. Any attempt to access a private
member declaration from outside L will cause a method, getter or setter lookup
failure.

Since top level privates are not imported, using the top level privates of another
library is never possible.

The public namespace of library L is the mapping that maps the simple �
name of each public top-level member m of L to m. The scope of a library L
consists of the names introduced by all top-level declarations declared in L, and
the names added by L’s imports (18.1).

18.1 Imports imports

An import specifies a library to be used in the scope of another library. �

〈libraryImport〉 ::= 〈metadata〉 〈importSpecification〉

〈importSpecification〉 ::=
import 〈configurableUri〉 (as 〈identifier〉)? 〈combinator〉* ‘;’

| import 〈uri〉 deferred as 〈identifier〉 〈combinator〉* ‘;’

〈combinator〉 ::= show 〈identifierList〉
| hide 〈identifierList〉

〈identifierList〉 ::= 〈identifier〉 (, 〈identifier〉)*

An import specifies a URI x where the declaration of an imported library is
to be found.

Imports may be deferred or immediate. A deferred import is distinguished �
�by the appearance of the built-in identifier deferred after the URI. Any import

that is not deferred is immediate.
It is a compile-time error if the specified URI of an immediate import does

not refer to a library declaration. The interpretation of URIs is described in
section 18.5 below.

It is a compile-time error if the specified URI of a deferred import does not
refer to a library declaration.

One cannot detect the problem at compile time because compilation often
occurs during execution and one does not know what the URI refers to. However
the development environment should detect the problem.

The current library is the library currently being compiled. The import �
modifies the namespace of the current library in a manner that is determined
by the imported library and by the optional elements of the import.

An immediate import directive I may optionally include a prefix clause of
the form as id used to prefix names imported by I. A deferred import must
include a prefix clause or a compile-time error occurs. It is a compile-time error
if a prefix used in a deferred import is used in another import clause.

An import directive I may optionally include namespace combinator clauses

Dart Programming Language Specification 168

used to restrict the set of names imported by I. Currently, two namespace
combinators are supported: hide and show.

Let I be an import directive that refers to a URI via the string s1. Evaluation
of I proceeds as follows:

If I is a deferred import, no evaluation takes place. Instead, a mapping of
the name of the prefix, p to a deferred prefix object is added to the scope of the �
current library L. The deferred prefix object has the following methods:

• loadLibrary. This method returns a future f . When called, the method
causes an immediate import I ′ to be executed at some future time, where
I ′ is derived from I by eliding the word deferred and adding a hide
loadLibrary combinator clause. When I ′ executes without error, f com-
pletes successfully. If I ′ executes without error, we say that the call to
loadLibrary has succeeded, otherwise we say the call has failed.

• For every top level function f named id in the imported library B, a
corresponding method named id with the same signature as f . Calling
the method results in a dynamic error.

• For every top level getter g named id in B, a corresponding getter named
id with the same signature as g. Calling the method results in a dynamic
error.

• For every top level setter s named id in B, a corresponding setter named
id with the same signature as s. Calling the method results in a dynamic
error.

• For every type T named id in B, a corresponding getter named id with
return type Type. Calling the method results in a dynamic error.

The purpose of adding members of B to p is to ensure that any errors raised
when using p are correct, and no spurious errors are generated. In fact, at run
time we cannot add these members until B is loaded; but any such invocations
will fail at run time as specified by virtue of being completely absent.

The static type of the prefix object p is a unique interface type that has
those members whose names and signatures are listed above.

After a call succeeds, the name p is mapped to a non-deferred prefix object as
described below. In addition, the prefix object also supports the loadLibrary
method, and so it is possible to call loadLibrary again. If a call fails, nothing
happens, and one again has the option to call loadLibrary again. Whether a
repeated call to loadLibrary succeeds will vary as described below.

The effect of a repeated call to p.loadLibrary is as follows:

• If another call to p.loadLibrary has already succeeded, the repeated call
also succeeds. Otherwise,

• If another call to p.loadLibrary has failed:

Dart Programming Language Specification 169

– If the failure is due to a compilation error, the repeated call fails for
the same reason.

– If the failure is due to other causes, the repeated call behaves as if
no previous call had been made.

In other words, one can retry a deferred load after a network failure or because
a file is absent, but once one finds some content and loads it, one can no longer
reload.

We do not specify what value the future returned resolves to.
If I is an immediate import then, first

• If the URI that is the value of s1 has not yet been accessed by an import
or export (18.2) directive in the current isolate then the contents of the
URI are compiled to yield a library B. Because libraries may have mutually
recursive imports, care must be taken to avoid an infinite regress.

• Otherwise, the contents of the URI denoted by s1 have been compiled into
a library B within the current isolate.

Let NS0 be the exported namespace (18.2) of B. Then, for each combinator
clause Ci, i ∈ 1..n in I:

• If Ci is of the form
show id1, . . . , idk

then let NSi = show([id1, . . . , idk], NSi−1)
where show(l, n) takes a list of identifiers l and a namespace n, and pro-
duces a namespace that maps each name in l to the same element that n
does. Furthermore, for each name x in l, if n defines the name x= then
the new namespace maps x= to the same element that n does. Otherwise
the resulting mapping is undefined.

• If Ci is of the form
hide id1, . . . , idk

then let NSi = hide([id1, . . . , idk], NSi−1)
where hide(l, n) takes a list of identifiers l and a namespace n, and pro-
duces a namespace that is identical to n except that for each name k in l,
k and k= are undefined.

Next, if I includes a prefix clause of the form as p, let NS = {p : prefixObject(NSn)}
where prefixObject(NSn) is a prefix object for the namespace NSn, which is �
an object that has the following members:

• For every top level function f named id in NSn, a corresponding method
with the same name and signature as f that forwards (9.1) to f .

• For every top level getter with the same name and signature as g named
id in NSn, a corresponding getter that forwards to g.

Dart Programming Language Specification 170

• For every top level setter s with the same name and signature as named
id in NSn, a corresponding setter that forwards to s.

• For every type T named id in NSn, a corresponding getter named id with
return type Type, that, when invoked, returns the type object for T .

Otherwise, let NS = NSn. It is a compile-time error if the current library
declares a top-level member named p.

The static type of the prefix object p is a unique interface type that has
those members whose names and signatures are listed above.

Then, for each entry mapping key k to declaration d in NS, d is made
available in the top level scope of L under the name k unless either:

• a top-level declaration with the name k exists in L, OR

• a prefix clause of the form as k is used in L.

The greatly increases the chance that a member can be added to a library
without breaking its importers.

A system library is a library that is part of the Dart implementation. Any �
other library is a non-system library. �

If a name N is referenced by a library L and N would be introduced into
the top level scope of L by imports of two libraries, L1 and L2, the exported
namespace of L1 binds N to a declaration originating in a system library, and
the exported namespace of L2 binds N to a declaration that does not originate
in a system library, then the import of L1 is implicitly extended by a hide N
clause.

Whereas normal conflicts are resolved at deployment time, the functionality
of dart: libraries is injected into an application at run time, and may vary
over time as browsers are upgraded. Thus, conflicts with dart: libraries can
arise at run time, outside the developer’s control. To avoid breaking deployed
applications in this way, conflicts with the dart: libraries are treated specially.

It is recommended that tools that deploy Dart code produce output in which
all imports use show clauses to ensure that additions to the namespace of a
library never impact deployed code.

If a name N is referenced by a library L and N is introduced into the top
level scope of L by more than one import and not all the imports denote the
same declaration, a compile-time error occurs.

We say that the namespace NS has been imported into L. �
It is not an error if N is introduced by two or more imports but never referred

to.
The policy above makes libraries more robust in the face of additions made

to their imports.
A clear distinction needs to be made between this approach, and seemingly

similar policies with respect to classes or interfaces. The use of a class or
interface, and of its members, is separate from its declaration. The usage and
declaration may occur in widely separated places in the code, and may in fact

Dart Programming Language Specification 171

be authored by different people or organizations. It is important that errors are
given at the offending declaration so that the party that receives the error can
respond to it a meaningful way.

In contrast a library comprises both imports and their usage; the library is
under the control of a single party and so any problem stemming from the import
can be resolved even if it is reported at the use site.

It is a static warning to import two different libraries with the same name
unless their name is the empty string.

A widely disseminated library should be given a name that will not conflict
with other such libraries. The preferred mechanism for this is using pub, the Dart
package manager, which provides a global namespace for libraries, and conventions
that leverage that namespace.

Note that no errors are raised if one hides or shows a name that is not in a
namespace. This prevents situations where removing a name from a library
would cause breakage of a client library.

The dart core library dart:core is implicitly imported into every dart library
other than itself via an import clause of the form

import ‘dart:core’;
unless the importing library explicitly imports dart:core.
Any import of dart:core, even if restricted via show, hide or as, preempts the

automatic import.
It would be nice if there was nothing special about dart:core. However, its

use is pervasive, which leads to the decision to import it automatically. However,
some library L may wish to define entities with names used by dart:core (which
it can easily do, as the names declared by a library take precedence). Other
libraries may wish to use L and may want to use members of L that conflict
with the core library without having to use a prefix and without encountering
errors. The above rule makes this possible, essentially canceling dart:core’s
special treatment by means of yet another special rule.

18.2 Exports exports

A library L exports a namespace (6.1), meaning that the declarations in
the namespace are made available to other libraries if they choose to import L
(18.1). The namespace that L exports is known as its exported namespace. �

〈libraryExport〉 ::= 〈metadata〉 export 〈configurableUri〉 〈combinator〉* ‘;’

An export specifies a URI x where the declaration of an exported library is
to be found. It is a compile-time error if the specified URI does not refer to a
library declaration.

We say that a name is exported by a library (or equivalently, that a library �
exports a name) if the name is in the library’s exported namespace. We say that �
a declaration is exported by a library (or equivalently, that a library exports a �

�declaration) if the declaration is in the library’s exported namespace.
A library always exports all names and all declarations in its public names-

Dart Programming Language Specification 172

pace. In addition, a library may choose to re-export additional libraries via
export directives, often referred to simply as exports. �

�Let E be an export directive that refers to a URI via the string s1. Evaluation
of E proceeds as follows:

First,

• If the URI that is the value of s1 has not yet been accessed by an import
or export directive in the current isolate then the contents of the URI are
compiled to yield a library B.

• Otherwise, the contents of the URI denoted by s1 have been compiled into
a library B within the current isolate.

Let NS0 be the exported namespace of B. Then, for each combinator clause
Ci, i ∈ 1..n in E:

• If Ci is of the form show id1, . . . , idk then let
NSi = show([id1, . . . , idk], NSi−1).

• If Ci is of the form hide id1, . . . , idk

then let NSi = hide([id1, . . . , idk], NSi−1).

For each entry mapping key k to declaration d in NSn an entry mapping
k to d is added to the exported namespace of L unless a top-level declaration
with the name k exists in L.

If a name N is not declared by a library L and N would be introduced
into the exported namespace of L by exports of two libraries, L1 and L2, the
exported namespace of L1 binds N to a declaration originating in a system
library, and the exported namespace of L2 binds N to a declaration that does
not originate in a system library, then the export of L1 is implicitly extended
by a hide N clause.

See the discussion in section 18.1 for the reasoning behind this rule.
We say that L re-exports library B, and also that L re-exports namespace �

�NSn. When no confusion can arise, we may simply state that L re-exports B,
�or that L re-exports NSn. �

It is a compile-time error if a name N is re-exported by a library L and N
is introduced into the export namespace of L by more than one export, unless
all exports refer to same declaration for the name N . It is a compile-time error
to export two different libraries with the same name unless their name is the
empty string.

18.3 Parts parts

A library may be divided into parts, each of which can be stored in a separate �
location. A library identifies its parts by listing them via part directives.

A part directive specifies a URI where a Dart compilation unit that should �
be incorporated into the current library may be found.

Dart Programming Language Specification 173

〈partDirective〉 ::= 〈metadata〉 part 〈uri〉 ‘;’

〈partHeader〉 ::= 〈metadata〉 part of 〈identifier〉 (‘.’ 〈identifier〉)* ‘;’

〈partDeclaration〉 ::= 〈partHeader〉 〈topLevelDefinition〉* 〈EOF〉

A part header begins with part of followed by the name of the library the �
part belongs to. A part declaration consists of a part header followed by a
sequence of top-level declarations.

Compiling a part directive of the form part s; causes the Dart system to
attempt to compile the contents of the URI that is the value of s. The top-level
declarations at that URI are then compiled by the Dart compiler in the scope
of the current library. It is a compile-time error if the contents of the URI are
not a valid part declaration. It is a compile-time error if the referenced part
declaration p names a library other than the current library as the library to
which p belongs.

It is a compile-time error if a library contains two part directives with the
same URI.

We say that a library L1 is reachable from a library L if any of the following �
is true (18.1, 18.2):

• L and L1 is the same library.

• L imports or exports a library L2, and L1 is reachable from L2.

Let L be a library, let u be a URI, and let L1 and L2 be distinct libraries
which are reachable from L. It is a compile-time error if L1 and L2 both contain
a part directive with URI u.

In particular, it is an error to use the same part twice in the same program (18.4).
Note that a relative URI is interpreted as relative to the location of the enclosing
library (18.5), which means that L1 and L2 may both have a part identified by
’myPart.dart’, but they are not the same URI unless L1 and L2 have the same
location.

18.4 Scripts scripts

A script is a library whose exported namespace (18.2) includes a top-level �
function declaration named main that has either zero, one or two required ar-
guments.

A script S is executed as follows:
First, S is compiled as a library as specified above. Then, the top-level

function defined by main in the exported namespace of S is invoked (16.17) as
follows: If main can be called with with two positional arguments, it is invoked
with the following two actual arguments:

1. An object whose run-time type implements List<String>.

Dart Programming Language Specification 174

2. An object specified when the current isolate i was created, for example
through the invocation of Isolate.spawnUri that spawned i, or the null
object (16.4) if no such object was supplied.

If main cannot be called with two positional arguments, but it can be called
with one positional argument, it is invoked with an object whose run-time type
implements List<String> as the only argument. If main cannot be called with
one or two positional arguments, it is invoked with no arguments.

Note that if main requires more than two positional arguments, the library is
not considered a script.

A Dart program will typically be executed by executing a script.
It is a compile-time error if a library’s export scope contains a declaration

named main, and the library is not a script. This restriction ensures that all
top-level main declarations introduce a script main-function, so there cannot be a
top-level getter or field named main, nor can it be a function that requires more than
two arguments. The restriction allows tools to fail early on invalid main methods,
without needing to know whether a library will be used as the entry point of a Dart
program. It is possible that this restriction will be removed in the future.

18.5 URIs uris

URIs are specified by means of string literals:

〈uri〉 ::= 〈stringLiteral〉

〈configurableUri〉 ::= 〈uri〉 〈configurationUri〉*

〈configurationUri〉 ::= if ‘(’ 〈uriTest〉 ‘)’ 〈uri〉

〈uriTest〉 ::= 〈dottedIdentifierList〉 (‘==’ 〈stringLiteral〉)?

It is a compile-time error if the string literal x that describes a URI contains
a string interpolation.

It is a compile-time error if the string literal x that is used in a 〈uriTest〉 is
not a constant expression, or if x involves string interpolation.

A configurable URI c of the form uri configurationUri1 ...configurationUrin �
specifies a URI as follows: �

• Let u be uri.

• For each of the following configuration URIs of the form if (testi) urii,
in source order, do the following.

– If testi is ids with no ‘==’ clause, it is equivalent to ids == "true".
– If testi is ids == string, then create a string, key, from ids by con-

catenating the identfiers and dots, omitting any spaces between them
that may occur in the source.

Dart Programming Language Specification 175

– Look up key in the available compilation environment. The compila- �
tion environment is provided by the platform. It maps some string keys
to string values, and can be accessed programmatically using the const
String.fromEnvironment constructor. Tools may choose to only make
some parts of the compilation environment available for choosing con-
figuration URIs.

– If the environment contains an entry for key and the associated value
is equal, as a constant string value, to the value of the string literal
string, then let u be urii and stop iterating the configuration URIs.

– Otherwise proceed to the next configuration URI.

• The URI specified by c is u.

This specification does not discuss the interpretation of URIs, with the fol-
lowing exceptions.

The interpretation of URIs is mostly left to the surrounding computing en-
vironment. For example, if Dart is running in a web browser, that browser will
likely interpret some URIs. While it might seem attractive to specify, say, that
URIs are interpreted with respect to a standard such as IETF RFC 3986, in
practice this will usually depend on the browser and cannot be relied upon.

A URI of the form dart:s is interpreted as a reference to a system library
(18.1) s.

A URI of the form package:s is interpreted in an implementation specific
manner.

The intent is that, during development, Dart programmers can rely on a
package manager to find elements of their program.

Otherwise, any relative URI is interpreted as relative to the location of the
current library. All further interpretation of URIs is implementation dependent.

This means it is dependent on the embedder.

19 Types types

Dart supports optional typing based on interface types.
The type system is unsound, due to the covariance of generic classes. This is

a deliberate choice (and undoubtedly controversial). Experience has shown that
sound type rules for generics fly in the face of programmer intuition. It is easy
for tools to provide a sound type analysis if they choose, which may be useful
for tasks like refactoring.

19.1 Static Types staticTypes

Type annotations can occur in variable declarations (8), including formal
parameters (9.2), in the return types of functions (9), and in the bounds of
type variables (14). Type annotations are used during static checking and when
running programs. Types are specified using the following grammar rules.

Dart Programming Language Specification 176

In the grammar rules below, 〈typeIdentifier〉 denotes an identifier which can
be the name of a type, that is, it denotes an 〈IDENTIFIER〉 which is not a
〈BUILT_IN_IDENTIFIER〉.

Non-terminals with names of the form 〈. . .NotFunction〉 derive terms which
are types that are not function types. Note that it does derive the type Function,
which is not itself a function type, but it is the least upper bound of all function
types.

〈type〉 ::= 〈functionTypeTails〉
| 〈typeNotFunction〉 〈functionTypeTails〉
| 〈typeNotFunction〉

〈typeNotFunction〉 ::= 〈typeNotVoidNotFunction〉
| void

〈typeNotVoidNotFunction〉 ::= 〈typeName〉 〈typeArguments〉?
| Function

〈typeName〉 ::= 〈typeIdentifier〉 (‘.’ 〈typeIdentifier〉)?

〈typeArguments〉 ::= ‘<’ 〈typeList〉 ‘>’

〈typeList〉 ::= 〈type〉 (‘,’ 〈type〉)*

〈typeNotVoidNotFunctionList〉 ::= 〈typeNotVoidNotFunction〉 (‘,’ 〈typeNotVoidNotFunction〉)*

〈typeNotVoid〉 ::= 〈functionType〉
| 〈typeNotVoidNotFunction〉

〈functionType〉 ::= 〈functionTypeTails〉
| 〈typeNotFunction〉 〈functionTypeTails〉

〈functionTypeTails〉 ::= 〈functionTypeTail〉 〈functionTypeTails〉
| 〈functionTypeTail〉

〈functionTypeTail〉 ::= Function 〈typeParameters〉? 〈parameterTypeList〉

〈parameterTypeList〉 ::= ‘(’ ‘)’
| ‘(’ 〈normalParameterTypes〉 ‘,’ 〈optionalParameterTypes〉 ‘)’
| ‘(’ 〈normalParameterTypes〉 ‘,’? ‘)’
| ‘(’ 〈optionalParameterTypes〉 ‘)’

〈normalParameterTypes〉 ::= 〈normalParameterType〉 (‘,’ 〈normalParameterType〉)*

〈normalParameterType〉 ::= 〈typedIdentifier〉
| 〈type〉

Dart Programming Language Specification 177

〈optionalParameterTypes〉 ::= 〈optionalPositionalParameterTypes〉
| 〈namedParameterTypes〉

〈optionalPositionalParameterTypes〉 ::= ‘[’ 〈normalParameterTypes〉 ‘,’? ‘]’

〈namedParameterTypes〉 ::= ‘{’ 〈typedIdentifier〉 (‘,’ 〈typedIdentifier〉)* ‘,’? ‘}’

〈typedIdentifier〉 ::= 〈type〉 〈identifier〉

A Dart implementation must provide a static checker that detects and re-
ports exactly those situations this specification identifies as compile-time errors,
and only those situations. Similarly, the static checker must emit static warnings
for at least the situations specified as such in this specification.

Nothing precludes additional tools that implement alternative static analyses
(e.g., interpreting the existing type annotations in a sound manner such as either
non-variant generics, or inferring declaration based variance from the actual decla-
rations). However, using these tools must not preclude successful compilation and
execution of Dart code.

A type T is malformed iff: �

• T has the form id or the form prefix.id, and in the enclosing lexical scope,
the name id (respectively prefix.id) does not denote a type.

• T denotes a type variable in the enclosing lexical scope, but occurs in the
signature or body of a static member.

• T is a parameterized type of the form G<S1, . . . , Sn>, and G is malformed,
or G is not a generic type, or G is a generic type, but it declares n′ type
parameters and n′ 6= n, or Sj is malformed for some j ∈ 1..n.

• T is a function type of the form
T0 Function<X1 extends B1, . . . , Xm extends Bm>

(T1 x1, . . . , Tk xk, [Tk+1 xk+1, . . . , Tn xn])

or of the form
T0 Function<X1 extends B1, . . . , Xm extends Bm>

(T1 x1, . . . , Tk xk, {Tk+1 xk+1, . . . , Tn xn})

where each xj which is not a named parameter may be omitted, and Tj is
malformed for some j ∈ 0..n, or Bj is malformed for some j ∈ 1..m.

• T denotes declarations that were imported from multiple imports clauses.

Any occurrence of a malformed type in a library is a compile-time error.
A type T is deferred iff it is of the form p.T where p is a deferred prefix. It �

is a compile-time error to use a deferred type in a type annotation, type test,
type cast or as a type parameter. However, all other compile-time errors must
be issued under the assumption that all deferred libraries have successfully been
loaded.

Dart Programming Language Specification 178

19.1.1 Type Promotion typePromotion

The static type system ascribes a static type to every expression. In some
cases, the type of a local variable (which can be a formal parameter) may be
promoted from the declared type, based on control flow.

We say that a variable v is known to have type T whenever we allow the
type of v to be promoted. The exact circumstances when type promotion is
allowed are given in the relevant sections of the specification (16.26, 16.24 and
17.5).

Type promotion for a variable v is allowed only when we can deduce that
such promotion is valid based on an analysis of certain boolean expressions. In
such cases, we say that the boolean expression b shows that v has type T . As
a rule, for all variables v and types T , a boolean expression does not show that
v has type T . Those situations where an expression does show that a variable
has a type are mentioned explicitly in the relevant sections of this specification
(16.38 and 16.26).

19.2 Dynamic Type System dynamicTypeSystem

Let o be an instance. The dynamic type of o is the class which is specified �
for the situation where o was obtained as a fresh instance (10.6.2, 16.9, 16.10,
16.15.1, 16.17).

In particular, the dynamic type of an instance never changes. It is at times only
specified that the given class implements a certain type, e.g., for a list literal. In
these cases the dynamic type is implementation dependent, except of course that
said subtype requirement must be satisfied.

The dynamic types of a running Dart program are equivalent to the static
types with regard to subtyping.

Certain dynamic type checks are performed during execution (8, 10.6.1, 10.6.1,
10.6.2, 10.6.2, 16.9, 16.15.1, 16.17.3, 16.21.1, 16.23, 16.39, 17.3, 17.6.3, 17.12,
17.16.2, 17.17). As specified in those locations, these dynamic checks are based on
the dynamic types of instances, and the actual types of declarations (19.10.1).

When types are reified as instances of the built-in class Type, those objects
override the ‘==’ operator inherited from the Object class, so that two Type
objects are equal according to operator ‘==’ iff the corresponding types are
subtypes of each other.

For example, the Type objects for the types dynamic and Object are equal to
each other and hence dynamic == Object must evaluate to true. No constraints are
imposed on the built-in function identical, so identical(dynamic, Object)
may be true or false.

Similarly, Type instances for distinct type alias declarations declaring a name for
the same function type are equal:

typedef F = void Function<X>(X);
typedef G = void Function<Y>(Y);

Dart Programming Language Specification 179

void main() {
assert(F == G);

}

Instances of Type can be obtained in various ways, for example by using re-
flection, by reading the runtimeType of an object, or by evaluating a type literal
expression.

An expression is a type literal if it is an identifier, or a qualified identifier,
which denotes a class, mixin or type alias declaration, or it is an identifier
denoting a type parameter of a generic class or function. It is a constant type
literal if it does not denote a type parameter, and it is not qualified by a deferred
prefix. A constant type literal is a constant expression (16.3).

19.3 Type Aliases typedef

A type alias declares a name for a type expression. �
It is common to use the phrase “a typedef” for such a declaration, because of

the prominent occurrence of the token typedef.

〈typeAlias〉 ::=
〈metadata〉 typedef 〈typeIdentifier〉 〈typeParameters〉? ‘=’ 〈functionType〉
‘;’

| 〈metadata〉 typedef 〈functionTypeAlias〉

〈functionTypeAlias〉 ::= 〈functionPrefix〉 〈formalParameterPart〉 ‘;’

〈functionPrefix〉 ::= 〈type〉? 〈identifier〉

The effect of a type alias of the form typedef id = T; declared in a library
L is to introduce the name id into the scope of L, bound to the type T .

The effect of a type alias of the form
typedef T id(T1 p1, . . . , Tn pn, [Tn+1 pn+1, . . . , Tn+k pn+k]);
declared in a library L is to introduce the name id into the scope of L, bound
to the function type T Function(T1, . . . , Tn, [Tn+1, . . . , Tn+k]).

The effect of a type alias of the form
typedef T id(T1 p1, . . . , Tn pn, {Tn+1 pn+1, . . . , Tn+k pn+k});
declared in a library L is to introduce the name id into the scope of L, bound to
the function type T Function(T1, . . . , Tn, {Tn+1 pn+1, . . . , Tn+k pn+k}).

In either case, iff no return type is specified, it is taken to be dynamic.
Likewise, if a type annotation is omitted on a formal parameter, it is taken to
be dynamic.

It is a compile-time error if any default values are specified in the signature
of a function type in a type alias. Any self reference in a type alias, either
directly or recursively via another type declaration, is a compile-time error.

This kind of error may also arise when type arguments have been omitted in the
program, but are added during static analysis via instantiation to bound (14.3) or
via type inference (which will be specified later (6)).

Dart Programming Language Specification 180

A type alias can be used as a type annotation, as a return type or parameter
type in a function declaration, in a function type, as a type argument, in a type
test, in a type cast, and in an on clause of a try statement.

Consider the case where the body of a given type alias F is a 〈typeName〉
that denotes a non-generic class, or it is a parameterized type that starts with a
〈typeName〉 that denotes a generic class, or one of these cases occur indirectly
via another type alias. In this case F or a parameterized type that starts with F ,
whichever is not an error, can also be used to name a constructor in an instance
creation expression (16.15), and it can be used as a superclass, mixin, or superin-
terface (10.8, 10.9, 12.3). Moreover, F or a parameterized type that starts with
F , whichever is not an error, can be used to invoke static methods of the denoted
class.

This indirectly allows an invocation of a static method to pass a list of actual
type arguments to the class. This is currently an error when it occurs directly
(e.g., List<int>.castFrom(xs)). But it may be part of a future language exten-
sion to allow static methods to use the type parameters declared by the enclosing
class, in which case both the direct and indirect approach will be allowed. At
that time, existing invocations where type arguments are passed indirectly will
not break, because it is currently an error for a static method to depend on the
value of a formal type parameter of the enclosing class.

The generic variants of type alias declarations are specified in the section about
generics (14).

19.4 Subtypes subtypes

This section defines when a type is a subtype of another type. The core of �
this section is the set of rules defined in Figure 2, but we will need to introduce
a few concepts first, in order to clarify what those rules mean.

A reader who has read many research papers about object-oriented type systems
may find the meaning of the given notation obvious, but we still need to clarify a
few details about how to handle syntactically different denotations of the same type,
and how to choose the right initial environment, Γ. For a reader who is not familiar
with the notation used in this section, the explanations given here should suffice to
clarify what it means, with reference to the natural language explanations given at
the end of the section for obtaining an intuition about the meaning.

This section is concerned with subtype relationships between types during
static analysis as well as subtype relationships as queried in dynamic checks,
type tests (16.38), and type casts (16.39).

A variant of the rules described here is shown in an appendix (20.2), demon-
strating that Dart subtyping can be decided efficiently.

Types of the form X&S arise during static analysis due to type promotion �
(19.1.1). They never occur during execution, they are never a type argument
of another type, nor a return type or a formal parameter type, and it is always
the case that S is a subtype of the bound of X. The motivation for X&S is that
it represents the type of a local variable v whose type is declared to be the type
variable X, and which is known to have type S due to promotion. Similarly, X&S

Dart Programming Language Specification 181

may be seen as an intersection type, which is a subtype of X and also a subtype of
S. Intersection types are not supported in general, only in this special case. Every
other form of type may occur during static analysis as well as during execution,
and the subtype relationship is always determined in the same way.

19.4.1 Meta-Variables metaVariables

A meta-variable is a symbol which stands for a syntactic construct that �
satisfies some static semantic requirements.

For instance, X is a meta-variable standing for an identifier W, but only if W
denotes a type variable declared in an enclosing scope. In the definitions below, we
specify this by saying that ‘X ranges over type variables’. Similarly, C is a meta-
variable standing for a 〈typeName〉, for instance, p.D, but only if p.D denotes a
class in the given scope. We specify this as ‘C ranges over classes’.

In this section we use the following meta-variables:

• X ranges over type variables.

• C ranges over classes,

• F ranges over type aliases.

• T and S range over types, possibly with an index like T1 or Sj .

• B ranges over types, again possibly with an index; it is only used as a
type variable bound.

19.4.2 Subtype Rules subtypeRules

We define several rules about subtyping in this section. Whenever a rule
contains one or more meta-variables, that rule can be used by instantiating it, �
that is, by consistently replacing each occurrence of a given meta-variable by
concrete syntax denoting the same type.

In general, this means that two or more occurrences of a given meta-variable in
a rule stands for identical pieces of syntax, and the instantiation of the rule proceeds
as a simple search-and-replace operation. For instance, rule 1 in Figure 2 can be
used to conclude ∅ ` int <: int, where ∅ denotes the empty environment (any
environment would suffice because no type variables occur).

However, the wording ‘denoting the same type’ above covers additional situa-
tions as well: For instance, we may use rule 1 to show that p1.C is a subtype of
p2.C when C is a class declared in a library L which is imported by libraries L1 and
L2 and used in declarations there, when L1 and L2 are imported with prefixes p1
respectively p2 by the current library. The important point is that all occurrences
of the same meta-variable in a given rule instantiation stands for the same type,
even in the case where that type is not denoted by the same syntax in both cases.

Conversely, we can not use the same rule to conclude that C is a subtype of C
in the case where the former denotes a class declared in library L1 and the latter
denotes a class declared in L2, with L1 6= L2. This situation can arise without

Dart Programming Language Specification 182

1 Γ ` S <: S

3 Γ ` ⊥ <: T

2
T ∈ {Object,dynamic, void}

Γ ` S <: T

4
T 6= ⊥

Γ ` Null <: T

5
typedef F<X1 extends . . . , . . . , Xs extends . . .> = U Γ ` [S1/X1, . . . , Ss/Xs]U <: T

Γ ` F<S1, . . . , Ss> <: T

6
typedef F<X1 extends . . . , . . . , Xs extends . . .> = U Γ ` S <: [T1/X1, . . . , Ts/Xs]U

Γ ` S <: F<T1, . . . , Ts>

7 Γ ` S <: T Γ ` Future<S> <: T
Γ ` FutureOr<S> <: T

9 Γ ` S <: X Γ ` S <: T
Γ ` S <: X&T

11 Γ ` S <: T
Γ ` S <: FutureOr<T>

13
Γ ` Γ(X) <: T

Γ ` X <: T

8 Γ ` X&S <: X

10 Γ ` S <: Future<T>
Γ ` S <: FutureOr<T>

12 Γ ` S <: T
Γ ` X&S <: T

14
T is a function type
Γ ` T <: Function

15

Γ′ = Γ] {Xi 7→ Bi | 1 ≤ i ≤ s} Γ′ ` S0 <: T0
n1 ≤ n2 n1 + k1 ≥ n2 + k2 ∀j ∈ 1..n2 + k2 : Γ′ ` Tj <: Sj

Γ ` S0 Function<X1 / B1, . . . , Xs / Bs>(S1, . . . , Sn1, [Sn1+1, . . . , Sn1+k1]) <:
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn2, [Tn2+1, . . . , Tn2+k2])

16

Γ′ = Γ] {Xi 7→ Bi | 1 ≤ i ≤ s} Γ′ ` S0 <: T0 ∀j ∈ 1..n : Γ′ ` Tj <: Sj

{ yn+1, . . . , yn+k2 } ⊆ {xn+1, . . . , xn+k1 }
∀p ∈ 1..k2, q ∈ 1..k1 : yn+p = xn+q ⇒ Γ′ ` Tn+p <: Sn+q

Γ ` S0 Function<X1 / B1, . . . , Xs / Bs>(S1, . . . , Sn, {Sn+1 xn+1, . . . , Sn+k1 xn+k1}) <:
T0 Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, {Tn+1 yn+1, . . . , Tn+k2 yn+k2})

17
class C<X1 extends . . . , . . . , Xs extends . . .> ... {} ∀j ∈ 1..s : Γ ` Sj <: Tj

Γ ` C<S1, . . . , Ss> <: C<T1, . . . , Ts>

18

class C<X1 extends . . . , . . . , Xs extends . . .> ... {}
D<T1, . . . , Tm> ∈ Superinterfaces(C) Γ ` [S1/X1, . . . , Ss/Xs]D<T1, . . . , Tm> <: T

Γ ` C<S1, . . . , Ss> <: T

Figure 2: Subtype rules

Dart Programming Language Specification 183

compile-time errors, e.g., if L1 and L2 are imported indirectly into the current library
and the two “meanings” of C are used as type annotations on variables or formal
parameters of functions declared in intermediate libraries importing L1 respectively
L2. The failure to prove “∅ ` C <: C” will then occur, e.g., in a situation where
we check whether such a variable can be passed as an actual argument to such a
function, because the two occurrences of C do not denote the same type.

Every 〈typeName〉 used in a type mentioned in this section is assumed to
have no compile-time error and denote a type.

That is, no subtyping relationship can be proven for a type that is or contains an
undefined name or a name that denotes something other than a type. Note that it is
not necessary in order to determine a subtyping relationship that every type satisfies
the declared bounds, the subtyping relation does not depend on bounds. However,
if an attempt is made to prove a subtype relationship and one or more 〈typeName〉s
receives an actual type argument list whose length does not match the declaration
(including the case where some type arguments are given to a non-generic class,
and the case where a generic class occurs, but no type arguments are given) then
the attempt to prove the relationship simply fails.

The rules in Figure 2 use the symbol Γ to denote the given knowledge �
about the bounds of type variables. Γ is a partial function that maps type
variables to types. At a given location where the type variables in scope are
X1 extendsB1, . . . , Xs extendsBs (as declared by enclosing classes and/or func-
tions), we define the environment as follows: Γ = {X1 7→ B1, . . . Xs 7→ Bs }.
That is, Γ(X1) = B1, and so on, and Γ is undefined when applied to a type variable
Y which is not in {X1, . . . , Xs }. When the rules are used to show that a given
subtype relationship exists, this is the initial value of Γ.

If a generic function type is encountered, an extension of Γ is used, as shown
in the rules 15 and 16 of Figure 2. Extension of environments uses the operator
], which is the operator that produces the union of disjoint sets, and gives �
priority to the right hand operand in case of conflicts.

So {X 7→ int, Y 7→ double}] {Z 7→ Object} = {X 7→ int, Y 7→ double, Z 7→
Object} and {X 7→ int, Y 7→ FutureOr<List<double>>}] {Y 7→ int} = {X 7→
int, Y 7→ int}. Note that operator] is concerned with scopes and shadowing,
with no connection to, e.g., subtypes or instance method overriding.

In this specification we frequently refer to subtype relationships and assignabil-
ity without mentioning the environment explicitly, as in S <: T . This is only �
done when a specific location in code is in focus, and it means that the environ-
ment is that which is obtained by mapping each type variable in scope at that
location to its declared bound.

Each rule in Figure 2 has a horizontal line, to the left of which the rule �
number is indicated; under the horizontal line there is a judgment which is the
conclusion of the rule, and above the horizontal line there are zero or more �
premises of the rule, which are typically also subtype judgments. When that is �
not the case for a given premise, we specify the meaning explicitly.

Instantiation of a rule, mentioned above, denotes the consistent replacement of
meta-variables by actual syntactic terms denoting types everywhere in the rule, that
is, in the premises as well as in the conclusion, simultaneously.

Dart Programming Language Specification 184

19.4.3 Being a subtype beingASubtype

A type S is shown to be a subtype of another type T in an environment Γ by �
providing an instantiation of a rule R whose conclusion is Γ ` S <: T , along �
with rule instantiations showing each of the premises of R, continuing until a
rule with no premises is reached.

For rule 4, note that the Null type is a subtype of all non-⊥ types, even though
it doesn’t actually extend or implement those types. The other types are effectively
treated as if they were nullable, which makes the null object (16.4) assignable to
them.

The first premise in the rules 5 and 6 is a type alias declaration. This premise
is satisfied in each of the following situations:

• A non-generic type alias named F is declared. In this case s is zero, no
assumptions are made about the existence of any formal type parameters,
and actual type argument lists are omitted everywhere in the rule.

• We may choose s and X1, . . . , Xs such that the following holds: A generic
type alias named F is declared, with formal type parameters X1, . . . , Xs.
Each formal type parameter Xj may have a bound, but the bounds are never
used in this context, so we do not introduce metavariables for them.

Rule 14 has as a premise that ‘T is a function type’. This means that T is a
type of one of the forms introduced in section 9.3. This is the same as the forms
of type that occur at top level in the conclusions of rule 15 and rule 16.

In rules 17 and 18, the first premise is a class declaration. This premise is
satisfied in each of the following situations:

• A non-generic class named C is declared. In this case s is zero, no as-
sumptions are made about the existence of any formal type parameters,
and actual type argument lists are omitted everywhere in the rule.

• We may choose s and X1, . . . , Xs such that the following holds: A generic
class named C is declared, with formal type parameters X1, . . . , Xs. Each
formal type parameter Xj may have a bound, but the bounds are never used
in this context, so we do not introduce metavariables for them.

The second premise of rule 18 specifies that a parameterized type D<...>
belongs to Superinterfaces(C). The semantic function Superinterfaces(_) ap- �
plied to a generic class C yields the set of direct superinterfaces of C (10.9).

Note that one of the direct superinterfaces of C is the interface of the superclass
of C, and that may be a mixin application (12.3), in which case D in the rule is
the synthetic class which specifies the semantics of that mixin application (??).

The last premise of rule 18 substitutes the actual type arguments S1, . . . , Ss for
the formal type parameters X1, . . . , Xs, because T1, . . . , Tm may contain those
formal type parameters.

The rules 17 and 18 are applicable to interfaces, but they can be used with
classes as well, because a non-generic class C which is used as a type denotes the

Dart Programming Language Specification 185

interface of C, and similarly for a parameterized type C<T1, . . . , Tk> where C
denotes a generic class.

19.4.4 Informal Subtype Rule Descriptions informalSubtypeRuleDescriptions

This section gives an informal and non-normative natural language description
of each rule in Figure 2.

The descriptions use the rule numbers to make the connection explicit, and also
adds names to the rules that may be helpful in order to understand the role played
by each rule.

In the following, many rules contain meta-variables (19.4.1) like S and T , and
it is always the case that they can stand for arbitrary types. For example, rule 10
says that “The type S is a . . . of FutureOr<T> . . . ”, and this is taken to mean
that for any arbitrary types S and T , showing that S is a subtype of T is sufficient
to show that S is a subtype of FutureOr<T>.

Another example is the wording in rule 1: “. . . in any environment Γ”, which
indicates that the rule can be applied no matter which bindings of type variables
to bounds there exist in the environment. It should be noted that the environment
matters even with rules where it is simply stated as a plain Γ in the conclusion
and in one or more premises, because the proof of those premises could, directly or
indirectly, include the application of a rule where the environment is used.

1 Reflexivity: Every type is a subtype of itself, in any environment Γ. In the
following rules except for a few, the rule is also valid in any environment and
the environment is never used explicitly, so we will not repeat that.

2 Top: Every type is a subtype of Object, every type is a subtype of dynamic,
and every type is a subtype of void. Note that this implies that these types
are equivalent according to the subtype relation. We denote these types, and
others with the same property (such as FutureOr<Object>), as top types
(14.2).

3 Bottom: Every type is a supertype of ⊥.

4 Null: Every type other than ⊥ is a supertype of Null.

5 Type Alias Left: An application of a type alias to some actual type arguments
is a subtype of another type T if the expansion of the type alias to the type
that it denotes is a subtype of T . Note that a non-generic type alias is handled
by letting s = 0.

6 Type Alias Right: A type S is a subtype of an application of a type alias if
S is a subtype of the expansion of the type alias to the type that it denotes.
Note that a non-generic type alias is handled by letting s = 0.

7 Left FutureOr: The type FutureOr<S> is a subtype of a given type T if S
is a subtype of T and Future<S> is a subtype of T , for every type S and T .

8 Left Promoted Variable: The type X&S is a subtype of X.

Dart Programming Language Specification 186

9 Right Promoted Variable A: The type S is a subtype of X&T if S is a
subtype of both X and T .

10 Right FutureOr A: The type S is a subtype of FutureOr<T> if S is a
subtype of Future<T>.

11 Right FutureOr B: The type S is a subtype of FutureOr<T> if S is a
subtype of T .

12 Left Promoted Variable B: The type X&S is a subtype of T if S is a
subtype of T .

13 Left Variable Bound: The type variable X is a subtype of a type T if the
bound of X (as specified in the current environment Γ) is a subtype of T .

14 Right Function: Every function type is a subtype of the type Function.

15 Positional Function Type: A function type F1 with positional optional pa-
rameters is a subtype of another function type F2 with positional optional
parameters if the former has at most the same number of required param-
eters as the latter, and the latter has at least the same total number of
parameters as the former; the return type of F1 is a subtype of that of F2;
and each parameter type of F1 is a supertype of the corresponding parame-
ter type of F2, if any. Note that the relationship to function types with no
optional parameters, and the relationship between function types with no op-
tional parameters, is covered by letting k2 = 0 respectively k1 = k2 = 0. For
every subtype relation considered in this rule, the formal type parameters of
F1 and F2 must be taken into account (as reflected in the use of the extended
environment Γ′). We can assume without loss of generality that the names
of type variables are pairwise identical, because we consider types of generic
functions to be equivalent under consistent renaming (9.3). In short, “during
the proof, we will rename them as needed”. Finally, note that the relationship
between non-generic function types is covered by letting s = 0.

16 Named Function Type: A function type F1 with named optional parameters
is a subtype of another function type F2 with named optional parameters if
they have the same number of required parameters, and the set of names of
named parameters for the latter is a subset of that for the former; the return
type of F1 is a subtype of that of F2; and each parameter type of F1 is a
supertype of the corresponding parameter type of F2, if any. Note that the
relationship to function types with no optional parameters, and the relation-
ship between function types with no optional parameters, is covered by letting
k2 = 0 respectively k1 = k2 = 0, and also that the latter case is identical
to the rule obtained from rule 15 concerning subtyping among function types
with no optional parameters. As in rule 15, we can assume without loss of
generality that the names of type variables are pairwise identical. Similarly,
non-generic functions are covered by letting s = 0.

Dart Programming Language Specification 187

17 Class Covariance: A parameterized type based on a generic class C is a
subtype of a parameterized type based on the same class C if each actual
type argument of the former is a subtype of the corresponding actual type
argument of the latter. This rule may have s = 0 and cover a non-generic
class as well, but that is redundant because this is already covered by rule 1.

18 Superinterface: Considering the case where s = 0 and m = 0 first, a param-
eterized type based on a non-generic class C is a subtype of a parameterized
type based on a different non-generic class D if D is a direct superinterface
of C. When s > 0 or m > 0, this rule describes a subtype relationship which
includes one or more generic classes, in which case we need to give names to
the formal type parameters of C, and specify how they are used in the speci-
fication of the superinterface based on D. With those pieces in place, we can
specify the subtype relationship that exists between two parameterized types
based on C and D. The case where the superclass is a mixin application is
covered via the equivalence with a declaration of a regular (possibly generic)
superclass (12.3), and this means that there may be multiple subtype steps
from a given class declaration to the class specified in an extends clause.

19.4.5 Additional Subtyping Concepts additionalSubtypingConcepts

S is a supertype of T in a given environment Γ, written Γ ` S :> T , iff �
Γ ` T <: S.

A type T may be assigned to a type S in an environment Γ, written Γ ` �
S ⇐⇒ T , iff either Γ ` S <: T or Γ ` T <: S. In this case we say that the
types S and T are assignable. �

This rule may surprise readers accustomed to conventional typechecking. The
intent of the ⇐⇒ relation is not to ensure that an assignment is guaranteed to
succeed dynamically. Instead, it aims to only flag assignments that are almost
certain to be erroneous, without precluding assignments that may work.

For example, assigning a value of static type Object to a variable with static
type String, while not guaranteed to be correct, might be fine if the run-time
value happens to be a string.

A static analyzer or compiler may support more strict static checks as an
option.

19.5 Function Types functionTypes

Function types come in two variants:
1. The types of functions that only have positional parameters. These have

the general form
T Function<X1 / B1, . . . , Xs / Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]).

2. The types of functions with named parameters. These have the general
form
T Function<X1/B1, . . . , Xs/Bs>(T1, . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}).

Dart Programming Language Specification 188

Note that the non-generic case is covered by having s = 0, in which case the
type parameter declarations are omitted (14). The case with no optional parameters
is covered by having k = 0; note that all rules involving function types of the two
kinds coincide in this case.

Two function types are considered equal if consistent renaming of type pa-
rameters can make them identical.

A common way to say this is that we do not distinguish function types which
are alpha-equivalent. For the subtyping rule below this means we can assume that
a suitable renaming has already taken place. In cases where this is not possible
because the number of type parameters in the two types differ or the bounds are
different, no subtype relationship exists.

A function object is always an instance of some class that implements the
class Function (19.6). Consequently, all function types are subtypes of Function
(19.4).

19.6 Type Function functionType

The built-in class Function is a supertype of all function types (19.5). It is
impossible to extend, implement, or mix in the class Function.

If a class declaration or mixin application has Function as superclass, it
instead uses Object as superclass.

If a class or mixin declaration implements Function, it has no effect. It
is as if the Functionwas removed from the implements clause (and if it’s the
only implemented interface, the entire clause is removed). The resulting class
or mixin interface does not have Function as a superinterface.

If a mixin application mixes Function onto a superclass, it follows the normal
rules for mixin-application, but since the result of that mixin application is
equivalent to a class with implements Function, and that clause has no effect,
the resulting class also does not implement Function. The Function class declares
no concrete instance members, so the mixin application creates a sub-class of the
superclass with no new members and no new interfaces.

Since using Function in these ways has no effect, it would be reasonable to
disallow it completely, like we do extending, implementing or mixing in types like
int or String. For backwards compatibility with Dart 1 programs, the syntax
is allowed to remain, even if it has no effect. Tools may choose to warn users
that their code has no effect.

19.7 Type dynamic typeDynamic

The type dynamic is a static type which is a supertype of all other types, just
like Object, but it it differs from other types in that the static analysis assumes
that every member access has a corresponding member with a signature that
admits the given access.

For instance, when the receiver in an ordinary method invocation has type dy-
namic, any method name can be invoked, with any number of type arguments or
none, with any number of positional arguments, and any set of named arguments,

Dart Programming Language Specification 189

of any type, without error. Note that the invocation will still cause a compile-time
error if there is an error in one or more arguments or other subterms.

If no static type annotation has been provided, the type system considers
declarations to have type dynamic. If a generic type is used but type arguments
are not provided, the type arguments default to type dynamic.

This means that given a generic declaration G<P1, . . . , Pn>. . ., where Pi is a
formal type parameter declaration, i ∈ 1..n, the type G is equivalent to G<dynamic, . . . , dynamic>.

The built-in type declaration dynamic, which is declared in the library
dart:core, denotes the dynamic type. When the name dynamic exported by
dart:core is evaluated as an expression, it evaluates to a Type object repre-
senting the dynamic type, even though dynamic is not a class.

This Type object must compare equal to the corresponding Type objects for
Object and void according to operator ‘==’ (19.2).

To improve the precision of static types, member accesses on a receiver of
type dynamic that refer to declarations of the built-in class Object are given
the static type corresponding to those declarations whenever doing so is sound.

• Let e be an expression of the form d.id, which is not followed by an
argument part, where the static type of d is dynamic, and id is the name
of a getter declared in Object; if the return type of Object.id is T then
the static type of e is T . For instance, d.hashCode has type int and
d.runtimeType has type Type.

• Let e be an expression of the form d.id, which is not followed by an
argument part, where the static type of d is dynamic, and id is the name of
a method declared in Object whose method signature has type F (which is
a function type). The static type of e is then F . For instance, d.toString
has type String Function().

• Let e be an expression of the form d.id(arguments) or d.id<typeArguments>(arguments)
where the static type of d is dynamic, id is the name of a getter declared
in Object with return type F , arguments are derived from 〈arguments〉,
and typeArguments are derived from 〈typeArguments〉, if present. Static
analysis will then process e as a function expression invocation where an
object of static type F is applied to the given argument part. So this is
always a compile-time error. For instance, d.runtimeType(42) is a compile-
time error, because it is checked as a function expression invocation where an
entity of static type Type is invoked. Note that it could actually succeed: An
overriding implementation of runtimeType could return an instance whose
dynamic type is a subtype of Type that has a call method. We decided to
make it an error because it is likely to be a mistake, especially in cases like
d.hashCode() where a developer might have forgotten that hashCode is a
getter.

• Let e be an expression of the form d.id(arguments) where the static
type of d is dynamic, arguments is an actual argument list derived from

Dart Programming Language Specification 190

〈arguments〉, and id is the name of a method declared in Object whose
method signature has type F . If the number of positional actual arguments
in arguments is less than the number of required positional arguments of F
or greater than the number of positional arguments in F , or if arguments
includes any named arguments with a name that is not declared in F , the
type of e is dynamic. Otherwise, the type of e is the return type in F .
So d.toString(bazzle: 42) has type dynamic whereas d.toString() has
type String. Note that invocations which "do not fit" the statically known
declaration are not errors, they just get return type dynamic.

• Let e be an expression of the form d.id<typeArguments>(arguments)
where the static type of d is dynamic, typeArguments is a list of actual
type arguments derived from 〈typeArguments〉, and arguments is an actual
argument list derived from 〈arguments〉. It is a compile-time error if id is
the name of a non-generic method declared in Object. No generic meth-
ods are declared in Object. Hence, we do not specify that there must be the
statically required number of actual type arguments, and they must satisfy
the bounds. That would otherwise be the consistent approach, because the
invocation is guaranteed to fail when any of those requirements are violated,
but generalizations of this mechanism would need to include such rules.

• For an instance method invocation e (including invocations of getters,
setters, and operators) where the receiver has static type dynamic and e
does not match any of the above cases, the static type of e is dynamic.
When an expression derived from 〈cascadeSection〉 performs a getter or
method invocation that corresponds to one of the cases above, the cor-
responding static analysis and compile-time errors apply. For instance,
d..foobar(16)..hashCode() is an error.

Note that only very few forms of instance method invocation with a receiver
of type dynamic can be a compile-time error. Of course, some expressions like
x[1, 2] are syntax errors even though they could also be considered "invocations",
and subexpressions are checked separately so any given actual argument could be a
compile-time error. But almost any given argument list shape could be handled via
noSuchMethod, and an argument of any type could be accepted because any formal
parameter in an overriding declaration could have its type annotation contravariantly
changed to Object. So it is a natural consequence of the principle of that a dynamic
receiver admits almost all instance method invocations. The few cases where an
instance method invocation with a receiver of type dynamic is an error are either
guaranteed to fail at run time, or they are very, very likely to be developer mistakes.

19.8 Type FutureOr typeFutureOr

The built-in type declaration FutureOr, which is exported by the library
dart:async, defines a generic type with one type parameter (14). The type
FutureOr<T> is a non-class type which is regular-bounded for all T .

Dart Programming Language Specification 191

The subtype relations involving FutureOr are specified elsewhere (19.4.2). Note,
however, that they entail certain useful properties:

• T <: FutureOr<T>.

• Future<T> <: FutureOr<T>.

• If T <: S and Future<T> <: S, then FutureOr<T> <: S.

.
That is, FutureOr is in a sense the union of T and the corresponding future

type. The last point guarantees that FutureOr<T> <: Object, and also that
FutureOr is covariant in its type parameter, just like class types: if S <: T then
FutureOr<S> <: FutureOr<T>.

If the type arguments passed to FutureOr would incur compile-time errors
if applied to a normal generic class with one type parameter, the same compile-
time errors are issued for FutureOr. The name FutureOr as an expression
denotes a Type object representing the type FutureOr<dynamic>.

The FutureOr<T> type represents a case where a value can be either an
instance of the type T or the type Future<T>. Such cases occur naturally in
asynchronous code. The available alternative would be to use a top type (e.g.,
dynamic), but FutureOr allows some tools to provide a more precise type anal-
ysis.

The type FutureOr<T> has an interface that is identical to that of Object.
That is, only members that Object has can be invoked on a value with static type
FutureOr<T>.

We only want to allow invocations of members that are inherited from a
common supertype of both T and Future<T>. In most cases the only common
supertype is Object. The exceptions, like FutureOr<Future<Object>> which
has Future<Object> as common supertype, are few and not practically useful, so
for now we choose to only allow invocations of members inherited from Object.

We define the auxiliary function futureOrBase(T) as follows: �

• If T is FutureOr<S> for some S then futureOrBase(T) = futureOrBase(S).

• Otherwise futureOrBase(T) = T .

19.9 Type Void typeVoid

The special type void is used to indicate that the value of an expression is
meaningless and intended to be discarded.

A typical case is that the type void is used as the return type of a function that
“does not return anything”. Technically, there will always be some object which is
the return value (9). But it is perfectly meaningful to have a function whose sole
purpose is to create side-effects, such that any use of the returned object would
be misguided. This does not mean that there is anything wrong with the returned
object as such. It could be any object whatsoever. But the developer who chose

Dart Programming Language Specification 192

the return type void did that to indicate that it is a misunderstanding to ascribe
any meaning to that object, or to use it for any purpose.

The type void is a top type (14.2), so void and Object are subtypes of each
other (19.4), which also implies that any object can be the value of an expression
of type void. Consequently, any instance of type Type which reifies the type void
must compare equal (according to the ‘==’ operator 16.27) to any instance of Type
which reifies the type Object (19.2). It is not guaranteed that identical(void,
Object) evaluates to true. In fact, it is not recommended that implementations
strive to achieve this, because it may be more important to ensure that diagnostic
messages (including stack traces and dynamic error messages) preserve enough
information to use the word ‘void’ when referring to types which are specified as
such in source code.

In support of the notion that the value of an expression with static type
void should be discarded, such values can only be used in specific situations:
The occurrence of an expression of type void is a compile-time error unless it is
permitted according to one of the following rules.

• In an 〈expressionStatement〉 e;, e may have type void. The value of e is
discarded.

• In the initialization and increment expressions of a for-loop, for (e1; e2;
e3) ..., e1 may have type void, and each of the expressions in the ex-
pression list e3 may have type void. The values of e1 and e3 are discarded.

• In a type cast e as T , e may have type void. Developers thus obtain the
ability to override the constraints on usages of values with static type void.
This means that it is not enforced that such values are discarded, but they
can only be used when the wish to do so has been indicated explicitly.

• In a parenthesized expression (e), e may have type void. Note that (e)
itself has type void, which implies that it must occur in some context where
it is not an error to have it.

• In a conditional expression e ? e1 : e2, e1 and e2 may have type void. The
static type of the conditional expression is then void, even if one of the
branches has a different type, which means that the conditional expression
must again occur in some context where it is not an error to have it.

• In a null coalescing expression e1 ?? e2, e2 may have type void. The static
type of the null coalescing expression is then void, which in turn restricts
where it can occur.

• In a return statement return e;, e may have type void in a number of situa-
tions (17.12).

• In an arrow function body => e, the returned expression e may have type
void in a number of situations (9).

Dart Programming Language Specification 193

• An initializing expression for a variable of type void may have type void.
Usages of that variable are constrained.

• An actual parameter expression corresponding to a formal parameter
whose statically known type annotation is void may have type void. Us-
ages of that parameter in the body of the callee are statically expected to be
constrained by having type void. See the discussion about soundness below
(19.9.1).

• In an expression of the form e1 = e2 where e1 is an 〈assignableExpression〉
denoting a variable or formal parameter of type void, e2 may have type
void. Usages of that variable or formal parameter are statically expected
to be constrained by having type void. See the discussion about soundness
below (19.9.1).

• Let e be an expression ending in a 〈cascadeSection〉 of the form ..S s = e1,
where S is of the form
(〈cascadeSelector〉 〈argumentPart〉*) (〈assignableSelector〉 〈argumentPart〉*)*
and e1 is of the form 〈expressionWithoutCascade〉.
If s is an 〈assignableSelector〉 of the form .id or ?.id where the static
type of the identifier id is void, e1 may have type void. Otherwise, if s is
an 〈assignableSelector〉 of the form [e0] where the static type of the first
formal parameter in the statically known declaration of operator []= is
void, e0 may have type void. Also, if the static type of the second formal
parameter is void, e1 may have type void.

Finally, we need to address situations involving implicit usage of a value
whose static type can be void. It is a compile-time error for a for-in statement
to have an iterator expression of type T such that Iterator<void> is the most
specific instantiation of Iterator that is a superinterface of T , unless the it-
eration variable has type void. It is a compile-time error for an asynchronous
for-in statement to have a stream expression of type T such that Stream<void>
is the most specific instantiation of Stream that is a superinterface of T , unless
the iteration variable has type void.

Here are some examples:

for (Object x in <void>[]) {} // Error.
await for (int x in new Stream<void>.empty()) {} // Error.
for (void x in <void>[]) {...} // OK.
for (var x in <void>[]) {...} // OK, type of x inferred.

However, in the examples that are not errors the usage of x in the loop body is
constrained, because it has type void.

19.9.1 Void Soundness voidSoundness

The constraints on usage of a value obtained from the evaluation of an

Dart Programming Language Specification 194

expression with static type void are not strictly enforced.
The usage of a “void value” is not a soundness issue, that is, no invariants

needed for correct execution of a Dart program can be violated because of such a
usage.

It could be said that the type void is used to help developers maintain a certain
self-imposed discipline about the fact that certain objects are not intended to be
used. Because of the fact that enforcement is not necessary, and because of the
treatment of void in earlier versions of Dart, the language uses a best effort
approach to ensure that the value of an expression of type void will not be used.

In fact, there are numerous ways in addition to the type cast in which a developer
can get access to such a value:

abstract class A<X> {
final X x;
A(this.x);
Object foo(X x);

}

class B<X> extends A<X> {
B(X x): super(x);
Object foo(Object x) => x;

}

Object f<X>(X x) => x;

void main() {
void x = 42;
print(f(x)); // (1)

A<void> a = B<void>(x);
A<Object> aObject = a;
print(aObject.x); // (2)
print(a.foo(x)); // (3)

}

At (1), a variable x of type void is passed to a generic function f, which is
allowed because the actual type argument void is inferred, and it is allowed to
pass an actual argument of type void to a formal parameter with the same type.
However, no special treatment is given when an expression has a type which is or
contains a type variable whose value could be void, so we are allowed to return x
in the body of f, even though this means that we indirectly get access to the value
of an expression of type void, under the static type Object.

At (2), we indirectly obtain access to the value of the variable x with type void,
because we use an assignment to get access to the instance of B which was created
with type argument void under the type A<Object>. Note that A<Object> and

Dart Programming Language Specification 195

A<void> are subtypes of each other, that is, they are equivalent according to the
subtype rules, so neither static nor dynamic type checks will fail.

At (3), we indirectly obtain access to the value of the variable x with type void
under the static type Object, because the statically known method signature of foo
has parameter type void, but the actual implementation of foo which is invoked is
an override whose parameter type is Object, which is allowed because Object and
void are both top types.

Obviously, the support for preventing developers from using values obtained
from expressions of type void is far from sound, in the sense that there are many
ways to circumvent the rule that such a value should be discarded.

However, we have chosen to focus on the simple, first-order usage (where an
expression has type void, and the value is used), and we have left higher-order
cases largely unchecked, relying on additional tools such as linters to perform an
analysis which covers indirect data flows.

It would certainly have been possible to define sound rules, such that the value
of an expression of type void would be guaranteed to be discarded after some
number of transfers from one variable or parameter to the next one, all with
type void, explicitly, or as the value of a type parameter. In particular, we could
require that method overrides should never override return type Object by return
type void, or parameter types in the opposite direction; parameterized types with
type argument void could not be assigned to variables where the corresponding
type argument is anything other than void, etc. etc.

But this would be quite impractical. In particular, the need to either prevent
a large number of type variables from ever having the value void, or preventing
certain usages of values whose type is such a type variable, or whose type con-
tains such a type variable, that would be severely constraining on a very large
part of all Dart code.

So we have chosen to help developers maintain this self-imposed discipline
in simple and direct cases, and leave it to ad-hoc reasoning or separate tools to
ensure that the indirect cases are covered as closely as needed in practice.

19.10 Parameterized Types parameterizedTypes

A parameterized type is a syntactic construct where the name of a generic
type declaration is applied to a list of actual type arguments. A generic instan-
tiation is the operation where a generic type is applied to actual type arguments.

So a parameterized type is the syntactic concept that corresponds to the seman-
tic concept of a generic instantiation. When using the former, we will often leave
the latter implicit.

Let T be a parameterized type G<S1, . . . , Sn>.
It is a compile-time error if G is not a generic type, or G is a generic type,

but the number of formal type parameters in the declaration of G is not n. Oth-
erwise, let X1, . . . , Xn be the formal type parameters of G, and let B1, . . . , Bn

be the corresponding upper bounds, using dynamic when no bound is declared.
T is malbounded iff either Si is malbounded for one or more i ∈ 1..n, or T �

is not well-bounded (14.2).

Dart Programming Language Specification 196

It is a compile-time error if T is malbounded.
T is evaluated as follows. Let ti be the result of evaluating Si, for i ∈ 1..n.

T then evaluates to the generic instantiation where G is applied to t1, . . . , tn.
Let T be a parameterized type of the form G<A1, . . . , An> and assume

that T is not malformed and not malbounded. If S is the static type of a
member m of G, then the static type of the member m of an expression of type
G<A1, . . . , An> is [A1/X1, . . . , An/Xn]S, where X1, . . . , Xn are the formal type
parameters of G.

19.10.1 Actual Type of Declaration actualTypeOfADeclaration

Let T be the declared type of a declaration d, as it appears in the program
source. Let X1, . . . , Xn be the formal type parameters in scope at d. In a context
where the actual type arguments corresponding to X1, . . . , Xn are t1, . . . , tn, the
actual type of d is [t1/X1, . . . , tn/Xn]T . �

In the non-generic case where n = 0 the actual type is equal to the declared
type. Note that X1, . . . , Xn may be declared by multiple entities, e.g., one or more
enclosing generic functions and an enclosing generic class.

Let X extends B be a formal type parameter declaration. Let X1, . . . , Xn

be the formal type parameters in scope at the declaration of X. In a context
where the actual type arguments corresponding to X1, . . . , Xn are t1, . . . , tn, the
actual bound for X is [t1/X1, . . . , tn/Xn]B. �

Note that there exists a j such that X = Xj , because each formal type param-
eter is in scope at its own declaration.

19.10.2 Least Upper Bounds leastUpperBounds

Given two interfaces I and J , let SI be the set of superinterfaces of I, let
SJ be the set of superinterfaces of J and let S = ({I} ∪ SI) ∩ ({J} ∪ SJ).
Furthermore, we define Sn = {T |T ∈ S ∧ depth(T) = n} for any finite n where
depth(T) is the number of steps in the longest inheritance path from T to
Object. Let q be the largest number such that Sq has cardinality one, which
must exist because S0 is {Object}. The least upper bound of I and J is the
sole element of Sq.

The least upper bound of dynamic and any type T is dynamic. The least
upper bound of void and any type T 6= dynamic is void. The least upper bound
of ⊥ and any type T is T . Let U be a type variable with upper bound B. The
least upper bound of U and a type T 6= ⊥ is the least upper bound of B and T .

The least upper bound operation is commutative and idempotent, but it is
not associative.

The least upper bound of a function type and an interface type T is the least
upper bound of Function and T . Let F and G be function types. If F and G
differ in their number of required parameters, then the least upper bound of F
and G is Function. Otherwise:

• If

Dart Programming Language Specification 197

F = <X1 B1, . . . , Xs Bs>(T1, . . . , Tr, [Tr+1, . . . , Tn]) → T0 and
G = <X1 B1, . . . , Xs Bs>(S1, . . . , Sr, [Sr+1, . . . , Sk]) → S0

where k ≤ n then the least upper bound of F and G is
<X1 B1, . . . , Xs Bs>(L1, . . . , Lr, [Lr+1, . . . , Lk]) → L0

where Li is the least upper bound of Ti and Si, i ∈ 0..k.

• If
F = <X1 B1, . . . , Xs Bs>(T1, . . . , Tr, [Tr+1, . . . , Tn]) → T0,
G = <X1 B1, . . . , Xs Bs>(S1, . . . , Sr, { ... }) → S0

then the least upper bound of F and G is
<X1 B1, . . . , Xs Bs>(L1, . . . , Lr) → L0

where Li is the least upper bound of Ti and Si, i ∈ 0..r.

• If
F = <X1 B1, . . . , Xs Bs>(T1, . . . , Tr, {Tr+1 pr+1, . . . , Tf pf}) → T0,
G = <X1 B1, . . . , Xs Bs>(S1, . . . , Sr, {Sr+1 qr+1, . . . , Sg qg}) → S0

then let {xm, . . . , xn} = {pr+1, . . . , pf} ∩ {qr+1, . . . , qg} and let Xj be the
least upper bound of the types of xj in F and G, j ∈ m..n. Then the least
upper bound of F and G is
<X1 B1, . . . , Xs Bs>(L1, . . . , Lr, {Xm xm, . . . , Xn xn}) → L0

where Li is the least upper bound of Ti and Si, i ∈ 0..r

Note that the non-generic case is covered by using s = 0, in which case the type
parameter declarations are omitted (14).

20 Reference reference

20.1 Lexical Rules lexicalRules

Dart source text is represented as a sequence of Unicode code points. This
sequence is first converted into a sequence of tokens according to the lexical
rules given in this specification. At any point in the tokenization process, the
longest possible token is recognized.

20.1.1 Reserved Words reservedWords

A reserved word may not be used as an identifier; it is a compile-time error �
if a reserved word is used where an identifier is expected.

assert, break, case, catch, class, const, continue, default, do, else, enum,
extends, false, final, finally, for, if, in, is, new, null, rethrow, return, super,
switch, this, throw, true, try, var, void, while, with.

Dart Programming Language Specification 198

〈LETTER〉 ::= ‘a’ .. ‘z’
| ‘A’ .. ‘Z’

〈DIGIT 〉 ::= ‘0’ .. ‘9’

〈WHITESPACE〉 ::= (‘\t’ | ‘ ’ | 〈NEWLINE〉)+

20.1.2 Comments comments

Comments are sections of program text that are used for documentation. �

〈SINGLE_LINE_COMMENT 〉 ::= ‘//’ ˜(〈NEWLINE〉)* (〈NEWLINE〉)?

〈MULTI_LINE_COMMENT 〉 ::=
‘/*’ (〈MULTI_LINE_COMMENT 〉 | ˜ ‘*/’)* ‘*/’

Dart supports both single-line and multi-line comments. A single line com- �
ment begins with the token //. Everything between // and the end of line
must be ignored by the Dart compiler unless the comment is a documentation
comment.

A multi-line comment begins with the token /* and ends with the token */. �
Everything between /* and */ must be ignored by the Dart compiler unless the
comment is a documentation comment. Comments may nest.

Documentation comments are comments that begin with the tokens /// or �
/**. Documentation comments are intended to be processed by a tool that
produces human readable documentation.

The scope of a documentation comment immediately preceding the declara-
tion of a class C is the instance scope of C.

The scope of a documentation comment immediately preceding the declara-
tion of a function f is the scope in force at the very beginning of the body of
f .

20.2 Operator Precedence operatorPrecedence

Operator precedence is given implicitly by the grammar.
The following non-normative table may be helpful

Dart Programming Language Specification 199

Description Operator Associativity Precedence
Unary postfix e., e?., e++, e--, e1[e2], e() None 16
Unary prefix -e, !e, ˜e, ++e, --e, await e None 15

Multiplicative *, /, ˜/, % Left 14
Additive +, - Left 13

Shift <<, >>, >>> Left 12
Bitwise AND & Left 11
Bitwise XOR ˆ Left 10
Bitwise Or | Left 9
Relational <, >, <=, >=, as, is, is! None 8
Equality ==, != None 7

Logical AND && Left 6
Logical Or || Left 5

If-null ?? Left 4
Conditional e1 ? e2 : e3 Right 3

Cascade .. Left 2
Assignment =, *=, /=, +=, -=, &=, ˆ=, etc. Right 1

Appendix: Algorithmic Subtyping algorithmicSubtyping

1algo
S not composite

Γ ` S <: S

8.2 Γ ` X <: T
Γ ` X <: X&T

11.1
Γ ` Γ(X) <: FutureOr<T>

Γ ` X <: FutureOr<T>

8.1 Γ ` X <: X

8.3 Γ ` X&S <: T
Γ ` X&S <: X&T

11.2 Γ ` S <: FutureOr<T>
Γ ` X&S <: FutureOr<T>

Figure 3: Algorithmic subtype rules. Rules 2–18 are unchanged and hence
omitted here.

The text in this appendix is not part of the specification of the Dart language.
However, we still use the notation where precise information uses the style
associated with normative text in the specification (this style), whereas examples
and explanations use commentary style (like this).

This appendix presents a variant of the subtype rules given in Figure 2 on
page 182.

The rules will prove the same set of subtype relationships, but the rules given
here show that there is an efficient implementation that will determine whether
Γ ` S <: T holds, for any given types S and T . It is easy to see that the
algorithmic rules will prove at most the same subtype relationships, because all
rules given here can be proven by means of rules in Figure 2. It is also relatively
straightforward to sketch out proofs that the algorithmic rules can prove at least

Dart Programming Language Specification 200

the same subtype relationships, also when the following ordering and termination
constraints are observed.

The only rule which is modified is number 1, which is modified to 1algo. This
only changes the applicability of the rule: This rule is only used for types which
are not atomic. An atomic type is a type which is not a type variable, not a �
promoted type variable, not a function type, and not a parameterized type.

In other words, rule 1algo is used for special types like dynamic, void, and
Function, and it is used for non-generic classes, but it is not used for any type
where it is an operation that takes more than one comparison to detect whether it
is the same as some other type. The point is that the remaining rules will force a
structural traversal anyway, as far as needed, and we may hence just as well omit
the initial structural traversal which might take many steps only to report that two
large type terms are not quite identical.

The rules are ordered by means of their rule numbers: A rule given here
numbered N.1 is inserted immediately after rule N , followed by rule N.2, and
so on, followed by the rule whose number is N + 1. So the order is 1algo, 2–8,
8.1, 8.2, 8.3, 9, and so on.

We now specify the procedure which is used to determine whether Γ ` S <:
T holds, for some specific types S and T : Select the first rule R whose syntactic
constraints are satisfied by the given types S and T , and proceed to show that
its premises hold. If so, we terminate and conclude that the subtype relationship
holds. Otherwise we terminate and conclude that the subtype relationship does
not hold, except if R is 10, 11, 11.1, or 11.2. In particular, for the original query
Γ ` S <: T , we do not backtrack into trying to use a rule that has a higher rule
number than that of R, except that we may try all of the rules with FutureOr<T>
to the right.

Apart from the fact that the full complexity of subtyping is potentially incurred
each time it is checked whether a premise holds, the checks applied for each rule
is associated with an amount of work which is constant for all rules except the
following: First, the group of rules 10, 11, 11.1, and 11.2 may cause backtracking
to take place. Next, rules 15–17 require work proportional to the size of S and T ,
due to the number of premises that must be checked. Finally, rule 18 requires work
proportional to the size of S, and it may also incur the cost of searching up to the
entire set of direct and indirect superinterfaces of the candidate subtype S, until
the corresponding premise for one of them is shown to hold, if any.

Additional optimizations are applicable. For instance, we can immediately con-
clude that the subtype relationship does not hold when we are about to check
rule 18 if T is a type variable or a function type. For several other forms of type,
e.g., a promoted type variable, Object, dynamic, void, FutureOr<T> for any T ,
or Function, it is known that it will never occur as T for rule 18, which means that
this seemingly expensive step can be confined to some extent.

Appendix: Integer Implementations integerImplementations

The int type represents integers. The specification is written with 64-bit two’s

Dart Programming Language Specification 201

complement integers as the intended implementation, but when Dart is compiled
to JavaScript, the implementation of int will instead use the JavaScript number
type.

This introduces a number of differencs:

• Valid values of JavaScript int are any IEEE-754 64-bit floating point number
with no fractional part. This includes positive and negative infinity , which can �
be reached by overflowing (integer division by zero is still not allowed). Oth-
erwise valid integer literals (including any leading minus sign) that represent
invalid JavaScript int values cannot be compiled to JavaScript. Operations
on integers may lose precision since 64-bit floating point numbers are limited
to 53 significant bits.

• JavaScript int instances also implement double, and integer-valued double
instances also implement int. The int and double class are still separate
subclasses of the class num, but instances of either class that represent an in-
teger act as if they are actually instances of a common subclass implementing
both int and double. Fractional numbers only implement double.

• Bitwise operations on integers (and, or, xor, negate and shifts) all truncate
the operands to 32-bit values.

• The identical method cannot distinguish the values 0.0 and −0.0, and it
cannot recognize any NaN value as identical to itself. For efficiency, the �
identical operation uses the JavaScript === operator.

Index
Γ, 183
Γ ` S <: T , 184
], 183
[x/y . . .]E, 8
X&S, 180
S <: T , 183

accessible to a library, 12
actual bound, 196
actual type, 196
additive expression, 135
assert statement, 165
assignable, 187
assignable expression, 140
assignable match, 104
available in scope, 11
await expression, 137

basename, 51
bitwise expression, 134
block statement, 146
break statement, 162

cast expression, 144
class, 26

abstract, 27
concrete, 27
generic, 61

class declaration
abstract, 27
concrete, 27
generic, 61

class interface, 52
closurization, 110
closurization of a method, 122
closurization of method, 120
combined interface, 52
combined member signature, 54
comment, 198
compilation environment, 175
compilation units, 165
compile-time error, 13
completion, 145

breaks, 145
continues, 145
normally, 145
returns, 145
throws, 145

conditional expression, 130
configurable URI, 174
constant context, 81
constant expression, 76
constant object expression, 99
constant type expression, 79
constructor, 37

constant, 45
factory, 43
generative, 37
redirectee, 39, 43
redirecting, 39
redirecting factory, 43

constructor name, 37
constructor parameter list, 38
continue statement, 162
contravariant position, 65
correct override, 56
covariant position, 64
current library, 167

data event, 152
declares member, 28
declaring identifier, 15
declaring occurrence, 15
deferred prefix object, 168
direct superinterfaces, 50, 52
documentation comments, 198
dynamic error, 14
dynamic type, 178
dynamic type error, 14

embedder, 13
enum, 60
enumerated type, 60
equality expression, 132
error event, 152
explicitly named library, 166

202

Dart Programming Language Specification 203

export directives, 172
exported by a library, 171
exports, 172

declaration, 171
name, 171

expression, 74
produces an object, 74
throws, 74

expression statement, 146

false, the object, 83
flatten(T), 94
for statement, 150
formal constructor parameter, 38
formal parameter list, 20
formal parameter part, 20
formal type parameter list, 20
forwards, 20
fresh instance, 39
function

asynchronous, 18
external, 25
generator, 18
generic, 20
library, 19
local, 19
non-generic, 20
synchronous, 18

function closurization, 110
function declaration, 19

generic, 63
function type, 24

of a constructor, 37
futureOrBase(T), 191

generic, 61
generic function type instantiation, 111
generic instantiation method, 124

target, 124
getter

abstract, 35
concrete, 35

has a non-trivial noSuchMethod, 30
has member, 28
hides, 11

identifier expression, 140
if statement, 149
if-null expression, 131
immediate subterm, 8
import, 167

deferred, 167
immediate, 167

in scope, 11
infinity, 201
inherits, 48, 56
initializers, 40
initializing expression, 15
initializing formal, 38
initializing variable declaration, 15
instance, 26
instance getters of a class, 35
instance method closurization, 120
instance methods of a class, 28
instance setters of a class, 35
instance variable initializers, 40
instance variables of a class, 36
instantiation

subtype rule, 181
instantiation to bound, 71
interface, 52

class, 52
combined, 52

invariant position, 65
is equivalent to, 9
is exported by a library, 171
is in, 10
is-expression, 143
isolates, 13

key, 90

label, 161
labeled case clause, 161
labeled statement, 161
literal

boolean, 84
decimal integer, 82
double, 83
function, 94

declared return type, 94
hexadecimal integer, 82

Dart Programming Language Specification 204

integer, 83
list, 89
constant, 89
run-time, 89

map, 90
constant, 90
run-time, 90

numeric, 82
set, 92
constant, 92
run-time, 92

symbol, 88
local variable declaration, 146
logical boolean expression, 131
lookup, 112

malbounded, 195
malformed, 177
may be assigned, 187
member signature, 51
member signature equality, 54
members, 27

instance, 27
static, 27

meta-variable, 181
method

abstract, 35
concrete, 35
instance, 28
static, 47

method invocation
cascaded, 116
conditional ordinary, 114
unconditional ordinary, 114

method signature
function type, 52

mixin
combined superinterface, 58
implemented interface, 58
member declaration, 58
required superinterface, 58

mixin member declarations, 59
multi-line comment, 198
multiplicative expression, 135

namespace, 10

exported, 171
imported, 170

NaN, 201
new expression, 97
non-system library, 170
noSuchMethod forwarded, 31
noSuchMethod forwarder, 31
null object, 82

occurs contravariantly, 64
occurs covariantly, 64
occurs invariantly, 64
operator ‘==’

is not primitive, 34
primitive, 34

operators, 29
overrides, 56

parameter
covariant, 24
covariant-by-class, 23
covariant-by-declaration, 23

parameter corresponds to parameter,
23

part directive, 172
part header, 173
parts, 172
postfix expression, 138
potentially constant expression, 45, 76
potentially mutated, 146
prefix object, 169
privacy, 12
private

declaration, 12
identifier, 12
name, 12

property extraction, 117
conditional, 117
unconditional, 118

public
declaration, 12
identifier, 12
name, 12

public namespace, 167

raw string, 86

Dart Programming Language Specification 205

raw type, 68
raw type expression, 68
raw-depends on

type, 69
re-exports library, 172
re-exports namespace, 172
reachable from, 173
redirection-reachable, 43
referencing identifier, 15
referencing occurrence, 15
regular-bounded, 66
relational expression, 133
required formal parameter, 21
reserved word, 197
rethrow statement, 157
return statement, 159
rule

conclusion, 183
premise, 183

rule number, 183

scope
formal parameter, 20
formal parameter initializer, 38
function body, 21
instance, 27
static, 27
type parameter, 20, 27

script, 173
script tag, 166
setter

abstract, 35
concrete, 35

shift expression, 134
simple bound, 70
single line comment, 198
specify a URI, 174
statement, 145
static argument list type, 104
static getters of a class, 35
static setters of a class, 35
static warning, 13
string, 84
string interpolation, 87
substitution, 8
subterm, 8

subtype, 180, 184
subtype match, 104
super closurization, 122
super-bounded, 66
superclass, 48
superinitializer, 40
superinterface, 55
Superinterfaces(C), 184
superinvocation interface, 58
supertype, 187
switch statement, 153
system library, 170

term, 7
throw expression, 93
throwing a class, 14
throwing an exception, 14
top type, 66
treated as, 9
true, the object, 83
type

atomic, 200
deferred, 177
generic, 63
generic, has simple bounds, 70
mixin of, 57
of the form X&S, 180

type alias, 179
generic, 61

type parameter
contravariant, 66
covariant, 66
invariant, 66

unary expression, 136
upper bound, 63

value, 90
variable

constant, 15, 146
final, 15, 146
fresh, 8
initialized, 146
library, 15
local, 146
mutable, 15, 146

Dart Programming Language Specification 206

static, 15
top-level, 15

variable declaration statement, 146
variables

instance, 36

well-bounded, 67

x.op(y), 8

yield statement, 162
yield-each statement, 163

	Scope
	Conformance
	Normative References
	Terms and Definitions
	Notation
	Overview
	Scoping
	Privacy
	Concurrency

	Errors and Warnings
	Variables
	Evaluation of Implicit Variable Getters

	Functions
	Function Declarations
	Formal Parameters
	Required Formals
	Optional Formals
	Covariant Parameters

	Type of a Function
	External Functions

	Classes
	Instance Methods
	Operators
	The Method noSuchMethod
	The Operator `=='

	Getters
	Setters
	Abstract Instance Members
	Instance Variables
	Constructors
	Generative Constructors
	Factories
	Constant Constructors

	Static Methods
	Superclasses
	Inheritance and Overriding

	Superinterfaces
	Class Member Conflicts

	Interfaces
	Combined Member Signatures
	Superinterfaces
	Inheritance and Overriding
	Correct Member Overrides

	Mixins
	Mixin Classes
	Mixin Declaration
	Mixin Application

	Enums
	Generics
	Variance
	Super-Bounded Types
	Instantiation to Bound
	Auxiliary Concepts for Instantiation to Bound
	The Instantiation to Bound Algorithm

	Metadata
	Expressions
	Expression Evaluation
	Object Identity
	Constants
	Constant Contexts

	Null
	Numbers
	Booleans
	Strings
	String Interpolation

	Symbols
	Lists
	Maps
	Sets
	Throw
	Function Expressions
	This
	Instance Creation
	New
	Const

	Spawning an Isolate
	Function Invocation
	Actual Argument Lists
	Actual Argument List Evaluation
	Binding Actuals to Formals
	Unqualified Invocation
	Function Expression Invocation

	Function Closurization
	Generic Function Instantiation

	Lookup
	Top level Getter Invocation
	Method Invocation
	Ordinary Invocation
	Cascaded Invocations
	Super Invocation
	Sending Messages

	Property Extraction
	Getter Access and Method Extraction
	Super Getter Access and Method Closurization
	Ordinary Member Closurization
	Super Closurization
	Generic Method Instantiation

	Assignment
	Compound Assignment

	Conditional
	If-null Expressions
	Logical Boolean Expressions
	Equality
	Relational Expressions
	Bitwise Expressions
	Shift
	Additive Expressions
	Multiplicative Expressions
	Unary Expressions
	Await Expressions
	Postfix Expressions
	Assignable Expressions
	Identifier Reference
	Type Test
	Type Cast

	Statements
	Statement Completion
	Blocks
	Expression Statements
	Local Variable Declaration
	Local Function Declaration
	If
	For
	For Loop
	For-in
	Asynchronous For-in

	While
	Do
	Switch
	Switch case statements

	Rethrow
	Try
	on-catch clauses

	Return
	Labels
	Break
	Continue
	Yield and Yield-Each
	Yield
	Yield-Each

	Assert

	Libraries and Scripts
	Imports
	Exports
	Parts
	Scripts
	URIs

	Types
	Static Types
	Type Promotion

	Dynamic Type System
	Type Aliases
	Subtypes
	Meta-Variables
	Subtype Rules
	Being a subtype
	Informal Subtype Rule Descriptions
	Additional Subtyping Concepts

	Function Types
	Type Function
	Type dynamic
	Type FutureOr
	Type Void
	Void Soundness

	Parameterized Types
	Actual Type of Declaration
	Least Upper Bounds

	Reference
	Lexical Rules
	Reserved Words
	Comments

	Operator Precedence

