

http://www.allitebooks.org

Mastering Dart

Master the art of programming high-performance
applications with Dart

Sergey Akopkokhyants

BIRMINGHAM - MUMBAI

http://www.allitebooks.org

Mastering Dart

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1131114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-956-0

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

http://www.allitebooks.org

Credits

Author
Sergey Akopkokhyants

Reviewers
Yan Cui

Predrag Končar

Jana Moudrá

Martin Sikora

Acquisition Editor
Sonali Vernekar

Content Development Editor
Govindan K

Technical Editor
Shashank Desai

Copy Editor
Roshni Banerjee

Project Coordinator
Sageer Parkar

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Monica Ajmera Mehta

Priya Sane

Graphics
Disha Haria

Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

http://www.allitebooks.org

About the Author

Sergey Akopkokhyants is a software architect with more than 20 years of
professional experience in designing and developing client- and server-side
applications. He is also a certified Java developer and a project manager. He has
general knowledge of many tools, languages, and platforms.

For the past 5 years, Sergey has been responsible for customizing and producing
web-oriented applications for wholesale business management solutions projects
for several worldwide mobile communication companies. His responsibilities have
been architecture design and guidance of client software development using Flex,
ActionScript, HTML, JavaScript, TypeScript, Dart, and client-server integration with
Java. He is also a founder and active contributor in several open source projects on
GitHub, such as Dart Web Toolkit (DWT) and Angular Dart UI.

Sergey is passionate about web design and development and likes sharing
his expertise with others, helping them develop their skills and increase their
productivity. He has also reviewed the books Learning Dart and Dart Cookbook,
both by Packt Publishing.

I would like to thank my wife, Lada, and my parents, Alexander and
Tamara, for their constant and invaluable support.

I also wish to express my deep gratitude and appreciation to Jeffrey
Johnson for his valuable feedback.

http://www.allitebooks.org

About the Reviewers

Yan Cui is a lead server developer at the award-winning, London-based gaming
company, Gamesys. He focuses on building highly distributed and scalable server
solutions for Gamesys's social and mobiles games. He is a regular speaker at
conferences on topics such as F#, AOP, and NoSQL and is active on his blog at
http://theburningmonk.com.

He is the co-author of F# Deep Dives, Manning Publications, and the author of an
upcoming book on cross-platform mobile development with F# by Packt Publishing.
His Twitter handle is @theburningmonk.

Predrag Končar is a game developer and multimedia researcher. His primary
areas of interest are games and combining technology and art. He is also into image
and audio processing and interactive design, and he likes to spend his free time
painting. In the past 12 years, he has worked as a technical and creative director
for many online projects, published over 40 online games, participated in the
production of several iOS apps, and also reviewed the books Corona SDK Mobile
Game Development Beginner's Guide and Corona SDK Application Design, both by Packt
Publishing. He has a strong background in Unity, C#, ActionScript, Lua, MEL script,
Maya, and Python. He is a member of Mensa and ACM SIGGRAPH.

http://www.allitebooks.org

Jana Moudrá is a passionate developer and modern web and mobile technologies
evangelist. She created her first web page at the age of 10. At that time, she had
no idea what her future field of expertise would be. Later, she became interested
in technologies such as JavaScript and jQuery, but finally ended up with the Dart
programming language. She has been exploring it since Milestone 2 (M2). She is also
interested in the area of user experience, design, and Android app development.
She cofounded the company Juicymo, where she works on juicy apps and products.
When she is not working, she organizes developer-related events on her favorite
technologies for the Czech developers' community. You can visit her company's
website at http://www.juicymo.cz/en.

Martin Sikora has been professionally programming since 2006 for companies
such as Miton CZ and SYMBIO Digital in various languages, mostly PHP. Since 2012,
he has been freelancing, working on projects in Python, PHP, Dart, Objective-C, and
AngularJS. He is a Zend Certified Engineer and was member of the winning team
of Google Dart Hackathon 2012, Prague. Occasionally, Martin writes tutorials at
http://www.binpress.com/.

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.allitebooks.org

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Beyond Dart's Basics 7

Modularity and a namespace 7
Modularity in software development 8
Modularity in Dart 8
Libraries 9

Functions and closures in different scopes 13
Naming functions with a variable 13
Passing a function as an argument to another function 14
Returning a function as a result of another function 14
Storing a function in data structures 15
Closures 16

Classes and mixins 17
Types 17
Classes 18
Inheritance 19
Interface 19
Mixins 20
Well-designed classes 21
To be private or not 22
Variables versus the accessor methods 23
Inheritance versus composition 24

Methods and operators 26
Checking the values of the parameters before using them 26
Well-designed methods 28

Summary 29

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Advanced Techniques and Reflection 31
Generics 31

Raw types 32
Using generics 34
Generic types 36
Generic functions 38

Errors versus exceptions 39
Errors 40
Exceptions 41

Annotations 43
Built-in annotations 44

Deprecated 44
Override 44
Proxy 45

Custom annotations 48
Reflection 49

Introspection in action 50
Reflection in action 52

Summary 54
Chapter 3: Object Creation 55

Creating an object 55
A generative constructor 56
A constructor with optional parameters 56
A named constructor 58
A redirecting constructor 60
A private constructor 61
A factory constructor 62

The factory method design pattern 63
The singleton design pattern 66

A constant constructor 68
Initializing variables 71
Syntactic sugar 73

Method call 74
Cascade method invocation 75

Summary 76
Chapter 4: Asynchronous Programming 77

Call-stack architectures versus event-driven architectures 77
Call-stack architectures 77
Event-driven architectures 78
The Dart VM execution model 78
Synchronous versus Asynchronous code 80

Table of Contents

[iii]

Future 81
Future and Timer 83
Future and Microtask 83
Sync the Future class 83
Future with a value 84
Future with an error 84
Delaying the Future class 84

Zones 85
Simple zone example 87
Zone nesting 87
Zone values 88
Zone specifications 91
Interaction between zones 93
Tracking the zone execution 94

Isolates 96
Summary 100

Chapter 5: The Stream Framework 101
Why you should use streams 101
Single-subscription streams versus broadcast streams 103

A single-subscription stream 103
A broadcast stream 103

An overview of the stream framework API 104
The Stream class 104
The validation methods of the Stream class 104
The search methods of the Stream class 105
The subset methods of the Stream class 105
Creating a stream 106
A new stream from the Future class 106
A new stream from the Iterable class 107
A new stream with periodically generated events 108
A new stream from the transformation pipe 108
A new stream from StreamController 110
What does the StreamSubscription class do? 115
Minimizing access to the Stream class members using StreamView 116
The Sink and EventSink interfaces 117
Importance of the StreamConsumer interface 117
What does the StreamSink class do? 117
Transforming streams with the StreamTransformer class 118
Traverse streams with StreamIterator 120

Summary 122

Table of Contents

[iv]

Chapter 6: The Collection Framework 123
A Dart collection framework 123
Ordering of elements 124

The Comparable interface 124
The Comparator type 125

Collections and generics 126
The collection class hierarchy 126
The Iterable interface 127

Properties of the Iterable collection 127
Checking the items of a collection on a condition 128
The iterate over collection 128
The search over collection 128
Creating a new collection 130
Reducing a collection 131
Converting a collection 132
Generating a collection 132
The Lazy Iterable 132

The Iterable interface 134
BidirectionalIterator 135
The collection classes 137

List 137
LinkedList 140
Set 142

HashSet 143
LinkedHashSet 144
SplayTreeSet 145

Queue 146
Map 147

HashMap 148
LinkedHashMap 149
SplayTreeMap 150

Unmodifiable collections 151
The unmodifiable list 151
The unmodifiable map 152

Choosing the right collection 153
Summary 154

Chapter 7: Dart and JavaScript Interoperation 155
Interoperation at a glance 155
The dart:js library 156

JsObject 156
JsFunction 158

Table of Contents

[v]

JsArray 159
Type conversion 160

Direct type conversion 160
Proxy type conversion 162
Collection conversion 163

JsObject and instantiation 165
JsFunction and the this keyword 166
Dart with jQuery 168

How to create a shortcut to jQuery 169
Why does JProxy need a method call? 169
How does JProxy invoke jQuery? 170
An example project 171
How to get the jQuery version 172
How to perform actions in jQuery 173
How to use effects in jQuery 174
What is the impact on performance? 176

Summary 179
Chapter 8: Internalization and Localization 181

The key principles 181
Executable code versus User Interface 182

Numbers and dates 182
Messages 182
Measuring units and currencies 182
Text input and layout 182
Formatting date and time 182

The Intl library 183
Changing a locale 183
Formatting numbers 184
Formatting dates 185
Internalizing messages 187
Adding parentheses 188
Adding gender 189
Adding select 190
Creating complex message translations 190
Bidirectional formatting 191

Internationalizing your web application 191
Extracting messages 195
Using Google Translator Toolkit 196
Using translated messages 198
Summary 200

Table of Contents

[vi]

Chapter 9: Client-to-server Communication 201
Communication at a glance 201

The Internet protocol stack 202
Hypertext Transfer Protocol 203

Web server 204
Standalone HTTP communication via the dart:io library 206
Standalone HTTP communication via the http package 208
Web browser HTTP communication via the dart:html library 209
Web browser HTTP communication via the http package 212

AJAX polling request 213
AJAX long polling request 216

Server-Sent Events 220
WebSocket 225
Summary 230

Chapter 10: Advanced Storage 231
Cookies 231
Web Storage 239

The Session storage 240
The Local storage 240

Web SQL 242
IndexedDB 246
Summary 250

Chapter 11: Supporting Other HTML5 Features 251
The notification APIs 251

When to notify 252
Preventing repeated notifications 256

The native drag-and-drop APIs 257
Draggable content 257
The drag-and-drop events 258
Dragging data 259
Dragging the feedback image 260
Dragging effects 260
The drop target 262
Finishing a drop 263
Finishing a drag 264

The geolocation APIs 264
Determining the current location 265
Geolocation on maps 269
Tracking the present location 270

Table of Contents

[vii]

Canvas 272
Example – the canvas editor 272

Beginning with HTML 273
Moving to the main function 276
The CanvasWidget component 278
The ToolSelector widget 280
The ColorSelector widget 281
The Tool class 281
The Pen tool 282
The Line tool 283
The Rectangle tool 284
The Oval tool 285
How to clear the context 286
How to preview the context 287

Summary 288
Chapter 12: Security Aspects 289

Web security 289
Transport Layer Security and Secure Socket Layer at a glance 289
The TLS certificate 290

Securing a server 294
Securing a client 295

Attributes of cookies 296
HTTP Strict Transport Security 296
Content Security Policy 296
Cross Origin Resource Sharing versus JSON with padding 300
CAPTCHA 307

Security best practices 312
Summary 313

Index 315

Preface
It's only been a few years since the Dart programming language was born and it
has become eminent and well-known not only within Google, but also in the wider
community of developers. It has grown into a powerful tool to help developers
produce efficient and consistent source code for web clients and standalone and
server-side programs. The Dart development team and independent contributors
have created some good documentation, so getting started with programming using
Dart isn't that hard. You can program within different development environments
such as the Eclipse-based Dart Editor; IDE plugins for IntelliJ IDEA and WebStorm;
and text editor plugins for Sublime Text 3, Emacs, and Vim.

Actual development on Dart is quite similar to Java, C#, or any other object-oriented
languages, so you can have your first short application up and running in a short
amount of time. To go further, you can use the tutorials, code labs, and examples on
the official Dart website (https://www.dartlang.org/). If you want to improve
your level of expertise, you can read through the set of books on Dart that have been
published in the last couple of years. You should always bear in mind that creating
high-level, secure, and internationally compliant code is more complex than the
application created in the beginning.

This book is designed to help you make the most effective use of the Dart
programming language, its SDK libraries, and a rich set of publicly available
packages. Feel free to refer to any chapter that you need to get more in-depth
knowledge about. If you feel you have missed something major, go back and read
the earlier chapters. The chapters in the book are arranged in such a way that you
can easily learn more in a step by step manner.

I enjoy working with the Dart programming language and am really happy to share
my enthusiasm and expertise with you to help you make use of the language in a
more effective and comfortable manner.

Preface

[2]

What this book covers
Chapter 1, Beyond Dart's Basics, helps you take a step further to understand the
concept of programming in the Dart language. It shows the best practices to use
functions and closures and dives into the world of classes and mixins.

Chapter 2, Advanced Techniques and Reflection, lets you get a firm grasp on how to use
generics, errors and exceptions, and annotations, and it takes you through Mirrors
of reflection.

Chapter 3, Object Creation, helps you understand how objects can be created and will
help you make a right choice that will be useful in different business cases.

Chapter 4, Asynchronous Programming, explores advanced technologies to organize
asynchronous code execution. It shows you the best practices of Future, zones,
and isolates.

Chapter 5, The Stream Framework, shows you how Dart manages streams. It teaches
you how the single-subscription and broadcast streams can be used in different
cases and scenarios.

Chapter 6, The Collection Framework, introduces you to the Dart collection frameworks.
It shows which data structure of a collection is appropriate in specific cases based
on patterns and performance consideration.

Chapter 7, Dart and JavaScript Interoperation, shows you how to use Dart and
JavaScript together to build web applications. It lists problems and shows
solutions you can use to communicate between Dart and JavaScript and the
existing JavaScript program.

Chapter 8, Internalization and Localization, explains you how the i18n and l10n access
can be embedded into your code to help you design and develop web applications
that enable easy localization for different cultures, regions, and languages.

Chapter 9, Client-to-server Communication, helps you organize and create client-
to-server communications. It has the answer on presumably the most important
questions about the right choice of libraries and packages in specific scenarios.

Chapter 10, Advanced Storage, explains how can store data locally on a client, break
the storage limits, and prevent security issues in your web applications. It will again
touch upon cookies and demonstrate how to use Web Storage and the elaborate,
more powerful, and more useful IndexedDB to store a large amount of data in the
web browser.

Preface

[3]

Chapter 11, Supporting Other HTML5 Features, introduces you to different HTML5
features such as notifications, native drag-and-drop, geolocation, and canvas.

Chapter 12, Security Aspects, helps you understand the different aspects of security in
web applications.

What you need for this book
Any modern PC installed with Windows, Linux, or Mac OS should be sufficient to
run the code samples in the book. All the software used in the book is open source
and freely available on the Web. The following are the links to the software:

• Java (https://java.com/en/download)
• Dart (https://www.dartlang.org)
• wrk—a HTTP benchmarking tool (https://github.com/wg/wrk)

Who this book is for
If you are a software engineer who has basic or intermediate knowledge of the
Dart programming language and have possibly used this language to develop
applications earlier, this is the book for you. The book reveals the different ways
of developing client- and server-side applications on Dart and includes enough
examples for both. For beginners, it will serve as a guide to rapidly accelerate from
a novice level to the master level; for intermediate to advanced developers, it will
quickly fill in the gaps on Dart.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The inst variable holds a reference to the original object in the reflectee property."

A block of code is set as follows:

// AssemblyLine.
class AssemblyLine {
 // List of items on line.

http://www.allitebooks.org

Preface

[4]

 List _items = [];

 // Add [item] to line.
 add(item) {
 _items.add(item);
 }

 // Make operation on all items in line.
 make(operation) {
 _items.forEach((item) {
 operation(item);
 });
 }
}

Any command-line input or output is written as follows:

sudo apt-get install libnss3-tools

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Expand
the Web SQL tree item from the Resources tab to see the Web SQL storage data."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Beyond Dart's Basics
Dart is a very young computer language with many interesting features. Dart is a
class-based, object-oriented language with optional types, and it can help you write
very powerful programs. In this chapter, we will cover the following topics:

• Modularity and a namespace
• Functions and closures in different scopes
• Classes and mixins
• Methods and operators

Modularity and a namespace
Complex things are the foundation of our world. To understand the complexity
of the things around us, it is necessary to understand the parts that make them up.
The evolution of complex things is due to functional and behavioral modularity.
Functional modularity is the composition of smaller independent components with
clear boundaries and functions. Behavioral modularity is mainly about traits and
attributes that can evolve independently.

Modularity is nothing new. Earlier, product manufacturers figured out ways to
increase the output and quality of the product, while still managing to reduce the
cost pressures. They accomplished this through modularity. Modular design can
be seen in automotive industry, buildings, and many other industries. Henry Ford
introduced the notion of modularity in his assembly line with standardized and
interchangeable parts. As a result, he reduced the production cycles and costs to
achieve the mass production of his automobiles. A lot of these concepts are still
used by many companies today.

Beyond Dart's Basics

[8]

Modularity in software development
Representation of complex things as a set of parts is called decomposition.
By analogy, the real-world complex software may be broken into functional
parts called modules. Each module can be created, changed, tested, used,
and replaced separately.

Let's take a look at the benefits of modularity. For the sake of simplicity, we divide
them into development and postproduction phases. Each of these phases has its own
specific tasks to be solved in the scope of that phase.

The development phase has the following benefits:

• Each module requires less code.
• New features or changes can be introduced to modules in isolation,

separate from the other modules.
• Errors can be easily identified and fixed in a module.
• Modules can be built and tested independently.
• Programmers writing the modules can collaborate on the same application.
• The same modules can be reused in many applications.
• Applications have a main module and many auxiliary modules. Each module

encapsulates a specific functionality and each one is integrated through
loosely coupled communication channels provided by the main module.

The postproduction phase has the following benefits:

• Modules kept in a versioning system can be easily maintained and tested
• Fixed and noninfrastructural changes in a module can be done without

affecting other modules

One significant disadvantage of modularity is that it increases complexity when
managing many modules, especially when each one is individually versioned,
updated, and has dependencies on the other modules.

Modularity in Dart
The Dart language was designed by keeping the modules in mind. Modularity in
Dart is realized through packages, libraries, and classes.

Chapter 1

[9]

A library exposes functionality as a set of interfaces and hides the implementation
from the rest of the world. As a concept, it's very similar to the separation of concern
between objects in object-oriented programming (OOP). Separating an application
into libraries helps minimize tight coupling and makes it easier to maintain the code.
A library can be implemented as a simple function, a single class, several classes, or
a collection of parts representing the entire API of a library. The Dart application is a
library as well.

A package is simply a directory that contains a pubspec.yaml file and may include
any number of libraries and resources. The pubspec.yaml file contains significant
information about the package, its authors, and its dependencies on other packages.
Here is a sample pubspec.yaml file:

name: animation_library
version: 0.1.0
author: Sergey Akopkokhyants
description: Animation library for Web application
dependencies:
 browser: any

The real pubspec.yaml file can have more fields as specified at https://www.
dartlang.org/tools/pub/pubspec.html.Before a package can be used, it must be
published to a package management system, which is available as an online resource
called pub at https://pub.dartlang.org/. To publish and retrieve packages from
pub, we use a utility application of the same name. The pub utility uses information
about dependencies from the pubspec.yaml file to retrieve all the necessary
packages from the following locations:

• The recently updated packages at https://pub.dartlang.org/
• The Git repository
• The directory in the local filesystem

Dart Editor manages dependencies automatically for you. You can publish your
packages right in Dart Editor.

Libraries
A namespace is a container for all the members of a library. A namespace is defined
by the library name. A library that is implicitly named has an empty namespace.
This results in a conflict when trying to import libraries with the same namespaces.
Import library namespace conflicts can be easily avoided with a prefix clause (as)
and a name prefix.

https://www.dartlang.org/tools/pub/pubspec.html
https://www.dartlang.org/tools/pub/pubspec.html
https://pub.dartlang.org/
https://pub.dartlang.org/

Beyond Dart's Basics

[10]

The following is an implicitly named library in which all the resources from
dart:html are made available within the scope of our library with the prefix dom:

/**
 * Implicitly named library.
 * The dart:core library is automatically imported.
 */
import 'dart:html' as dom;

/**
 * Get [Element] by [id].
 */
dom.Element getById(String id) => dom.querySelector('#$id');

The library namespace make sense only in the Dart environment.

The code that is compiled in JavaScript loses all the
library information.

Dart implements encapsulation through privacy. Each member or identifier of a
library has one of the two levels of access: private or public. Private members are
visible only inside the library in which they are declared. Conversely, members
with a public access are visible everywhere. The difference between them is the
underscore prefix (_), as shown in the following code:

// Animation library.
library animation;

// Class publicly available everywhere.
class Animation {
 // ...
}

// Class visible only inside library.
class _AnimationLibrary {
 // ...
}

// Variable publicly available everywhere.
var animationSpeed;

The preceding code shows an animation library with two classes and one variable.
The Animation class and the animationSpeed variable are public, and therefore
visible outside the library. The _AnimationLibrary class is private and it can be
used only in the library.

Chapter 1

[11]

Public access can be managed with the show and hide extensions of the import
statement. Use the following show extension with a specific class, which will then
be available inside the library in which it is imported:

import 'animation.dart' as animation show Animation;

// Main entry into Dart Web application.
main() {
 // Animate
 new animation.Animation();
}

The animation prefix in the import statement defines the namespace to import the
animation.dart library. All members of the animation.dart library are available
in the global namespace via this prefix. We are referring to an Animation class with
the animation prefix, as shown here:

Use the hide extension with a specific class, which will then be unavailable inside
the library in which it is imported; everything else from the library will be available,
as shown in the following code:

import 'animation.dart' as animation hide Animation;

// Main entry into Dart Web application.
main() {
 // Animate
 var speed = animation.animationSpeed;
}

Beyond Dart's Basics

[12]

Now we hide the Animation class, but all the other public members in the
namespace animation are still available, as seen in the following screenshot:

As you can see, the members of the imported library become invisible. This happens
because the library exports members from the public namespace. It can be possible
to re-export the imported library with the export statement if this necessary export
statement can be managed with show and hide as it was for the import statement,
as shown in the following code:

library animation.css;

import 'animation.dart' as animation;
export 'animation.dart' show Animation;

class CssAnimation extends animation.Animation {
 // ...
}

The preceding code shows the animation.css library. We export the Animation
class as part of the library namespace. Let's take a look at how we can use them:

There are the exported Animation and original CssAnimation classes available for
use in our main code. Without the export, the Animation class would be inaccessible
in the main code.

Chapter 1

[13]

Functions and closures in different
scopes
I like Dart because everything is an object. Functions are first-class citizens
because they support all the operations that are generally available to other
types. This means each function have the following properties:

• They can be named by a variable
• They can be passed as an argument to a function
• They can be returned as the result of a function
• They can be stored in data structures
• They can be created in any scope

Let's see where and how can we use functions as usual or as first-class citizens.

Naming functions with a variable
Naming functions by variable means that we can create a reference to a function and
assign it to a variable, as shown in the following code:

library function_var;

// Returns sum of [a] and [b]
add(a, b) {
 return a + b;
}

// Operation
var operation;

void main() {
 // Assign reference to function [add]
 operation = add;
 // Execute operation
 var result = operation(2, 1);
 print("Result is ${result}");}");
}

Here is the result of the preceding code:

Result is 3

We have the add function and the operation variable. We assign the reference of the
add function to a variable and call the variable as a function later.

http://www.allitebooks.org

Beyond Dart's Basics

[14]

Passing a function as an argument to another
function
Passing functions as arguments to other functions can be very useful in cases when
we need to implement the strategy design pattern to enable the program code to be
selected and executed at runtime, as shown in the following code:

library function_param;

// Returns sum of [a] and [b]
add(a, b) {
 return a + b;
}

// Operation executor
executor(operation, x, y) {
 return operation(x, y);
}

void main() {
 // Execute operation
 var result = executor(add, 2, 1);
 print("Result is ${result}");
}

Here is the result of the preceding code:

Result is 3

The global executor function from the preceding example can call any function that
accepts two arguments. You can see the implementation of the strategy design pattern
in the form of anonymous functions passed as parameters of methods in collections.

Returning a function as a result of another
function
Sometimes, a function can be returned as a result of another function, as shown in
the following code:

library function_return;

// Returns sum of [a] and [b]

Chapter 1

[15]

add(a, b) => a + b;

// Returns difference between [a] and [b]
sub(a, b) => a - b;

// Choose the function depends on [type]
chooser(bool operation) =>operation ? add : sub;

void main() {
 // Choose function depends on operation type
 var operation = chooser(true);
 // Execute it
 var result = operation(2, 1);
 // Result
 print("Result is ${result}");
}

Here is the result of the preceding code:

Result is 3

This option can be very useful in implementing closures.

Storing a function in data structures
We can store a function in data structures in any collection, as shown in the
following code:

library function_store;

// Returns sum of [a] and [b]
add(a, b) => a + b;

// Returns difference between [a] and [b]
sub(a, b) => a - b;

// Choose the function depends on [type]
var operations = [add, sub];

void main() {
 // Choose function from list
 var operation = operations[0];
 // Execute it
 var result = operation(2, 1);
 // Result
 print("Result is ${result}");
}

Beyond Dart's Basics

[16]

Here is the result of the preceding code:

Result is 3

We have two functions and the array operations in our example that stores
references to them.

Closures
A function can be created in the global scope or within the scope of another function.
A function that can be referenced with an access to the variables in its lexical scope is
called a closure, as shown in the following code:

library function_closure;

// Function returns closure function.
calculate(base) {
 // Counter store
 var count = 1;
 // Inner function - closure
 return () => print("Value is ${base + count++}");
}

void main() {
 // The outer function returns inner
 var f = calculate(2);
 // Now we call closure
 f();
 f();
}

Here is the result of the preceding code:

Value is 3
Value is 4

We have the calculate function, which contains the count variable and returns a
an inner function. The inner function has an access to the count variable because
both are defined in the same scope. The count variable exists only within the scope
of calculate and would normally disappear when the function exits. This does
not happen in this case because the inner function returned by calculate holds
a reference to count. The variable has been closed covered, meaning it's within
a closure.

Finally, we know what a first-class function is, where we can use them, and how
important it is to use closures. Let's move ahead to classes and mixins.

Chapter 1

[17]

Classes and mixins
We all know its wasteful trying to reinvent the wheel. It's even more wasteful trying
to do it each time we want to build a car. So how can a program code be written
more efficiently and made reusable to help us develop more powerful applications?
In most cases, we turn to the OOP paradigm when trying to answer this question.
OOP represents the concept of objects with data fields and methods that act on that
data. Programs are designed to use objects as instances of classes that interact with
each other to organize functionality.

Types
The Dart language is dynamically typed, so we can write programs with or
without the type annotations in our code. It's better to use the type annotations
for the following reasons:

• The type annotations enable early error detection. The static analyzer can
warn us about the potential problems at the points where you've made
the mistakes.

• Dart automatically converts the type annotations into runtime assertion
checks. In the checked mode, the dynamic type assertions are enabled
and it can catch some errors when types do not match.

• The type annotations can improve the performance of the code compiled
in JavaScript.

• They can improve the documentation making it much easier to read the code.
• They can be useful in special tools and IDE such as the name completion.

The fact that the type annotations were not included in our code does not
prevent our program from running. The variables without the type annotations
have a dynamic type and are marked with var or dynamic. Here are several
recommendations where the type annotations are appropriate:

• You should add types to public and private variables
• You can add types to parameters of methods and functions
• You should avoid adding types to the bodies of methods or functions

Beyond Dart's Basics

[18]

Classes
In the real world, we find many individual objects, all of the same kind. There are
many cars with the same make and model. Each car was built from the same set of
blueprints. All of them contain the same components and each one is an instance of
the class of objects known as Car, as shown in the following code:

library car;

// Abstract class [Car] can't be instantiated.
abstract class Car {
 // Color of the car.
String color;
 // Speed of the car.
 double speed;
 // Carrying capacity
 double carrying;

 // Create new [Car] with [color] and [carrying] info.
 Car(this.color, this.carrying);

 // Move car with [speed]
 void move(double speed) {
 this.speed = speed;
 }

 // Stop car.
 void stop() {
 speed = 0.0;
 }
}

Objects have methods and instance variables. The color, speed, and carrying are
instance variables. All of them have the value null as they were not initialized.
The instance methods move and stop provide the behavior for an object and have
access to instance variables and the this keyword. An object may have getters and
setters—special methods with the get and set keywords that provide read and write
access to the instance variables. The Car class is marked with the abstract modifier,
so we can't create an instance of this class, but we can use it to define common
characteristics and behaviors for all the subclasses.

Chapter 1

[19]

Inheritance
Different kinds of objects can have different characteristics that are common with
others. Passenger cars, trucks, and buses share the characteristics and behaviors of a
car. This means that different kinds of cars inherit the commonly used characteristics
and behaviors from the Car class. So, the Car class becomes the superclass for all the
different kinds of cars. We allow passenger cars, trucks, and buses to have only one
direct superclass. A Car class can have unlimited number of subclasses. In Dart, it
is possible to extend from only one class. Every object extends by default from an
Object class:

library passenger_car;

import 'car.dart';

// Passenger car with trailer.
class PassengerCar extends Car {
 // Max number of passengers.
 int maxPassengers;

 // Create [PassengerCar] with [color], [carrying] and
[maxPassengers].
 PassengerCar(String color, double carrying, this.maxPassengers) :
 super(color, carrying);
}

The PassengerCar class is not an abstract and can be instantiated. It extends the
characteristics of the abstract Car class and adds the maxPassengers variable.

Interface
Each Car class defines a set of characteristics and behaviors. All the characteristics
and behaviors of a car define its interface—the way it interacts with the outside
world. Acceleration pedal, steering wheel, and other things help us interact with the
car through its interface. From our perspective, we don't know what really happens
when we push the accelerator pedal, we only see the results of our interaction.
Classes in Dart implicitly define an interface with the same name as the class.
Therefore, you don't need interfaces in Dart as the abstract class serves the
same purpose. The Car class implicitly defines an interface as a set of
characteristics and behaviors.

Beyond Dart's Basics

[20]

If we define a racing car, then we must implement all the characteristics and
behaviors of the Car class, but with substantial changes to the engine, suspension,
breaks, and so on:

import 'car.dart';
import 'passenger_car.dart';

void main() {
 // Create an instance of passenger car of white color,
 // carrying 750 kg and max passengers 5.
 Car car = new PassengerCar('white', 750.0, 5);
 // Move it
 car.move(100.0);
}

Here, we just created an instance of PassengerCar and assigned it to the car
variable without defining any special interfaces.

Mixins
Dart has a mixin-based inheritance, so the class body can be reused in multiple class
hierarchies, as shown in the following code:

library trailer;

// The trailer
class Trailer {
 // Access to car's [carrying] info
 double carrying = 0.0;

 // Trailer can carry [weight]
 void carry(double weight) {
 // Car's carrying increases on extra weight.
 carrying += weight;
 }
}

The Trailer class is independent of the Car class, but can increase the carrying
weight capacity of the car. We use the with keyword followed by the Trailer class
to add mixin to the PassengerCar class in the following code:

library passenger_car;

import 'car.dart';

Chapter 1

[21]

import 'trailer.dart';

// Passenger car with trailer.
class PassengerCar extends Car with Trailer {
 // Max number of passengers.
 int maxPassengers = 4;

 /**
 * Create [PassengerCar] with [color], [carrying] and
[maxPassengers].
 * We can use [Trailer] to carry [extraWeight].
 */
 PassengerCar(String color, double carrying, this.maxPassengers,
 {double extraWeight:0.0}) : super(color, carrying) {
 // We can carry extra weight with [Trailer]
 carry(extraWeight);
 }
}

We added Trailer as a mixin to PassengerCar and, as a result, PassengerCar
can now carry more weight. Note that we haven't changed PassengerCar itself,
we've only extended its functionality. At the same time, Trailer can be used in
conjunction with the Truck or Bus classes. A mixin looks like an interface and is
implicitly defined via a class declaration, but has the following restrictions:

• It has no declared constructor
• The superclass of a mixin can only be an Object
• They do not contain calls to super

Well-designed classes
What is the difference between well-designed and poorly-designed classes?
Here are the features of a well-designed class:

• It hides all its implementation details
• It separates its interface from its implementation through the use of

abstract classes
• It communicates with other classes only through their interfaces

Beyond Dart's Basics

[22]

All the preceding properties lead to encapsulation. It plays a significant role
in OOP. Encapsulation has the following benefits:

• Classes can be developed, tested, modified, and used independently
• Programs can be quickly developed because classes can be developed

in parallel
• Class optimization can be done without affecting other classes
• Classes can be reused more often because they aren't tightly coupled
• Success in the development of each class leads to the success of the application

All our preceding examples include public members. Is that right? So what is
the rule that we must follow to create well-designed classes?

To be private or not
Let's follow the simple principles to create a well-designed class:

• Define a minimal public API for the class. Private members of a class are
always accessible inside the library scope so don't hesitate to use them.

• It is not acceptable to change the level of privacy of the member variables
from private to public to facilitate testing.

• Nonfinal instance variables should never be public; otherwise, we give up
the ability to limit the values that can be stored in the variable and enforce
invariants involving the variable.

• The final instance variable or static constant should never be public when
referring to a mutable object; otherwise, we restrict the ability to take any
action when the final variable is modified.

• It is not acceptable to have the public, static final instance of a collection or
else, the getter method returns it; otherwise, we restrict the ability to modify
the content of the collection.

The last two principles can be seen in the following example. Let's assume we have a
Car class with defined final static list of parts. We can initialize them with Pedal and
Wheel, as shown in the following code:

class Car {
 // Be careful with that code !!!
static final List PARTS = ['Pedal', 'Wheel'];
}
void main() {
 print('${Car.PARTS}'); // Print: [Pedal, Wheel]

Chapter 1

[23]

 // Change part
 Car.PARTS.remove('Wheel');
 print('${Car.PARTS}'); // Print: [Pedal]
}

However, there's a problem here. While we can't change the actual collection variable
because it's marked as final, we can still change its contents. To prevent anyone from
changing the contents of the collection, we change it from final to constant, as shown
in the following code:

class Car {
 // This code is safe
 static const List PARTS = const ['Pedal', 'Wheel'];
}

void main() {
 print('${Car.PARTS}'); // Print: [Pedal, Wheel]

 // Change part
 Car.PARTS.remove('Wheel');
 print('${Car.PARTS}');
}

This code will generate the following exception if we try to change the contents
of PARTS:

Unhandled exception:
Unsupported operation: Cannot modify an immutable array
#0 List.remove (dart:core-patch/array.dart:327)
…

Variables versus the accessor methods
In the previous section, we mentioned that nonfinal instance variables should never
be public, but is this always right? Here's a situation where a class in our package has
a public variable. In our Car class, we have a color field and it is deliberately kept as
public, as shown in the following code:

// Is that class correct?
class Car {
 // Color of the car.
 String color;
}

If the Car class is accessible only inside the library, then there is nothing wrong
with it having public fields, because they don't break the encapsulation concept
of the library.

http://www.allitebooks.org

Beyond Dart's Basics

[24]

Inheritance versus composition
We defined the main rules to follow and create a well-designed class. Everything is
perfect and we didn't break any rules. Now, it's time to use a well-designed class in
our project. First, we will create a new class that extends the current one. However,
that could be a problem as inheritance can break encapsulation.

It is always best to use inheritance in the following cases:

• Inside the library, because we control the implementation and relationship
between classes

• If the class was specifically designed and documented to be extended

It's better not to use inheritance from ordinary classes because it's dangerous.
Let's discuss why. For instance, someone developed the following Engine class
to start and stop the general purpose engine:

// General purpose Engine
class Engine {
 // Start engine
 void start() {
 // ...
 }

 // Stop engine
 void stop() {
 // ...
 }
}

We inherited the DieselEngine class from the Engine class and defined when
to start the engine that we need to initialize inside the init method, as shown
in the following code:

import 'engine.dart';

// Diesel Engine
class DieselEngine extends Engine {
 DieselEngine();

 // Initialize engine before start
 void init() {
 // ...
 }
 void start() {
 // Engine must be initialized before use

Chapter 1

[25]

 init();
 // Start engine
 super.start();
 }
}

Then, suppose someone changed their mind and decided that the implementation
Engine must be initialized and added the init method to the Engine class,
as follows:

// General purpose Engine
class Engine {
 // Initialize engine before start
 void init() {
 // ...
 }

 // Start engine
 void start() {
 init();
 }

 // Stop engine
 void stop() {
 // ...
 }
}

As a result, the init method in DieselEngine overrides the same method from
the Engine superclass. The init method in the superclass is an implementation
detail. The implementation details can be changed many times in future from release
to release. The DieselEngine class is tightly-coupled with and depends on the
implementation details of the Engine superclass. To fix this problem, we can use
a different approach, as follows:

import 'engine.dart';

// Diesel Engine
class DieselEngine implements Engine {
 Engine _engine;

 DieselEngine() {
 _engine = new Engine();
 }

 // Initialize engine before start
 void init() {

Beyond Dart's Basics

[26]

 // ...
 }

 void start() {
 // Engine must be initialized before use
 init();
 // Start engine
 _engine.start();
 }

 void stop() {
 _engine.stop();
 }
}

We created the private engine variable in our DieselEngine class that references
an instance of the Engine class. Engine now becomes a component of DieselEngine.
This is called a composition. Each method in DieselEngine calls the corresponding
method in the Engine instance. This technique is called forwarding, because we
forward the method's call to the instance of the Engine class. As a result, our
solution is safe and solid. If a new method is added to Engine, it doesn't break
our implementation.

The disadvantages of this approach are associated performance issues and increased
memory usage.

Methods and operators
Now that we've introduced well-designed classes, we need to discuss methods.

Checking the values of the parameters before
using them
The class constructors, methods, mutators (setters), and operators remove some
restrictions on the values that must be passed into their parameters .What will
happen if an invalid parameter value is passed to a method? One possibility is that
the method will fail with a confusing exception or worse it will succeed but with a
wrong result. In any case, it's dangerous not check the parameters of a method before
using them. The rule here is to check whether the parameter value is valid as soon as
possible. The best place to do that is at the beginning of the method.

Chapter 1

[27]

The Dart VM can work in a developer-friendly checked mode and a
speed-obsessed production mode. We usually use the checked mode when
developing our applications. One of the benefits of this mode is the dynamic
assertion. We should use the assert statement to check whether the parameters of
the method are valid before using it. The Dart VM continues the program execution
if the Boolean result of the dynamic assertion is true, otherwise stops it. This is
shown in the following code:

/**
 * Return sum of [a] and [b].
 * It throws [AssertionError] if any of [a] or [b] equals null
 */
sum(int a, int b) {
 assert(a != null);
 assert(b != null);
 return a + b;
}

The assert statement has no effect when the program executes in
the production mode or is compiled with the JavaScript code.

We must check the validity of the parameters stored in the method for later use.
Ignoring this can lead to problems later because an error associated with the
parameter can be thrown in a completely different place, making it harder to
trace its source. This has serious implications, especially in constructors.

Sometimes, it is important to validate the internal state of a class in the method
and generate a special error, as shown in the following code. The typical errors
are StateError, RangeError, and ArgumentError.

class Car {
 double petrol;

 /**
 * Start engine.
 * That method throws [StateError] if petrol is null
 * or less than 5 liters.
 */
 void startEngine() {
 if (petrol == null || petrol <= 5.0) {
 throw new StateError('Not enough petrol');
 }
 }
}

Beyond Dart's Basics

[28]

Here, we have a Car class with the petrol variable and the startEngine method.
The startEngine method checks whether there is enough petrol to start the engine;
otherwise, it throws an error.

Each time you create a method, think about the restrictions that
apply to its parameters.

Well-designed methods
So, now that we've defined well-designed classes, it's time to define well-designed
methods. We must remember that methods are part of a class' interface and the
following simple rules can make them easier to use and also less error-prone:

• Choose the right method name. Remember, Dart doesn't support
method overloading. Instead, we can have different method names
or optional parameters.

• Use optional named parameters. This helps programmers to use your
methods without the need to remember the position of each parameter.

• Refer to objects in terms of their interfaces over classes as the type of
parameters. For example, we have an interface and the class implements
that interface. Use the interface as the parameter type of the method instead
of a solid one. Don't restrict the solution to a particular implementation.

A car may have the following different types of engines:

// Engine interface
abstract class Engine {
 void start();
}

// Diesel engine
class DieselEngine implements Engine {
 void start() {
 // ...
 }
}

// Carburetor engine
class CarburetorEngine implements Engine {
 void start() {
 // ...
 }

Chapter 1

[29]

}

// Car
class Car {
 var engine;

 // Car may have any engine
 Car(Engine this.engine);
}

It's better to pass the abstract Engine class as a parameter of the constructor for the
car to prevent any problems in future.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Summary
This chapter covered some of the most useful advanced features of the Dart
language. The Dart language was designed with the modules in mind.
Modularity in Dart is realized through packages, libraries, and classes.
The code compiled in JavaScript loses all the library information.

Functions are first-class citizens because they support all the operations generally
available to other types. A function that can be referenced with an access to the
variables in its lexical scope is called a closure.

Programs are designed to use objects as instances of classes that interact with each
other to organize functionality. The Dart language is dynamically typed, so we can
write programs with or without the type annotations in our code.

In the next chapter, we will talk about generics, errors and exceptions,
and annotations and reflection.

http://www.packtpub.com
http://www.packtpub.com/supportand
http://www.packtpub.com/supportand

Advanced Techniques
and Reflection

In this chapter, we will discuss the flexibility and reusability of your code with the
help of advanced techniques in Dart. Generic programming is widely useful and is
about making your code type-unaware. Using types and generics makes your code
safer and allows you to detect bugs early. The debate over errors versus exceptions
splits developers into two sides. Which side to choose? It doesn't matter if you know
the secret of using both. Annotation is another advanced technique used to decorate
existing classes at runtime to change their behavior. Annotations can help reduce the
amount of boilerplate code to write your applications. And last but not least, we will
open Pandora's box through Mirrors of reflection. In this chapter, we will cover the
following topics:

• Generics
• Errors versus exceptions
• Annotations
• Reflection

Generics
Dart originally came with generics—a facility of generic programming. We have
to tell the static analyzer the permitted type of a collection so it can inform us at
compile time if we insert a wrong type of object. As a result, programs become
clearer and safer to use. We will discuss how to effectively use generics and
minimize the complications associated with them.

Advanced Techniques and Reflection

[32]

Raw types
Dart supports arrays in the form of the List class. Let's say you use a list to store
data. The data that you put in the list depends on the context of your code. The list
may contain different types of data at the same time, as shown in the following code:

// List of data
List raw = [1, "Letter", {'test':'wrong'}];
// Ordinary item
double item = 1.23;

void main() {
 // Add the item to array
 raw.add(item);
 print(raw);
}

In the preceding code, we assigned data of different types to the raw list.
When the code executes, we get the following result:

[1, Letter, {test: wrong}, 1.23]

So what's the problem with this code? There is no problem. In our code, we
intentionally used the default raw list class in order to store items of different types.
But such situations are very rare. Usually, we keep data of a specific type in a list.
How can we prevent inserting the wrong data type into the list? One way is to
check the data type each time we read or write data to the list, as shown in the
following code:

// Array of String data
List parts = ['wheel', 'bumper', 'engine'];
// Ordinary item
double item = 1.23;

void main() {
 if (item is String) {
 // Add the item to array
 parts.add(item);
 }
 print(parts);
}

Chapter 2

[33]

Now, from the following result, we can see that the code is safer and works
as expected:

[wheel, bumper, engine]

The code becomes more complicated with those extra conditional statements.
What should you do when you add the wrong type in the list and it throws
exceptions? What if you forget to insert an extra conditional statement?
This is where generics come to the fore.

Instead of writing a lot of type checks and class casts when manipulating a collection,
we tell the static analyzer what type of object the list is allowed to contain. Here is
the modified code, where we specify that parts can only contain strings:

// Array of String data
List<String> parts = ['wheel', 'bumper', 'engine'];
// Ordinary item
double item = 1.23;

void main() {
 // Add the item to array
 parts.add(item);
 print(parts);
}

Now, List is a generic class with the String parameter. Dart Editor invokes the
static analyzer to check the types in the code for potential problems at compile time
and alert us if we try to insert a wrong type of object in our collection, as shown in
the following screenshot:

http://www.allitebooks.org

Advanced Techniques and Reflection

[34]

This helps us make the code clearer and safer because the static analyzer checks the
type of the collection at compile time. The important point is that you shouldn't use
raw types. As a bonus, we can use a whole bunch of shorthand methods to organize
iteration through the list of items to cast safer. Bear in mind that the static analyzer
only warns about potential problems and doesn't generate any errors.

Dart checks the types of generic classes only in the check mode.
Execution in the production mode or code compiled to JavaScript
loses all the type information.

Using generics
Let's discuss how to make the transition to using generics in our code with some
real-world examples. Assume that we have the following AssemblyLine class:

part of assembly.room;

// AssemblyLine.
class AssemblyLine {
 // List of items on line.
 List _items = [];

 // Add [item] to line.
 add(item) {
 _items.add(item);
 }

 // Make operation on all items in line.
 make(operation) {
 _items.forEach((item) {
 operation(item);
 });
 }
}

Also, we have a set of different kinds of cars, as shown in the following code:

part of assembly.room;

// Car
abstract class Car {
 // Color

Chapter 2

[35]

 String color;
}

// Passenger car
class PassengerCar extends Car {
 String toString() => "Passenger Car";
}

// Truck
class Truck extends Car {
 String toString() => "Truck";
}

Finally, we have the following assembly.room library with a main method:

library assembly.room;

part 'assembly_line.dart';
part 'car.dart';

operation(car) {
 print('Operate ${car}');
}

main() {
 // Create passenger assembly line
 AssemblyLine passengerCarAssembly = new AssemblyLine();
 // We can add passenger car
 passengerCarAssembly.add(new PassengerCar());
 // We can occasionally add Truck as well
 passengerCarAssembly.add(new Truck());
 // Operate
 passengerCarAssembly.make(operation);
}

In the preceding example, we were able to add the occasional truck in the assembly
line for passenger cars without any problem to get the following result:

Operate Passenger Car
Operate Truck

This seems a bit far fetched since in real life, we can't assemble passenger cars and
trucks in the same assembly line. So to make your solution safer, you need to make
the AssemblyLine type generic.

Advanced Techniques and Reflection

[36]

Generic types
In general, it's not difficult to make a type generic. Consider the following example of
the AssemblyLine class:

part of assembly.room;

// AssemblyLine.
class AssemblyLine <E extends Car> {
 // List of items on line.
 List<E> _items = [];

 // Add [item] to line.
 add(E item) {
 _items.insert(0, item);
 }

 // Make operation on all items in line.
 make(operation) {
 _items.forEach((E item) {
 operation(item);
 });
 }
}

In the preceding code, we added one type parameter, E, in the declaration of the
AssemblyLine class. In this case, the type parameter requires the original one to be a
subtype of Car. This allows the AssemblyLine implementation to take advantage of
Car without the need for casting a class. The type parameter E is known as a bounded
type parameter. Any changes to the assembly.room library will look like this:

library assembly.room;

part 'assembly_line.dart';
part 'car.dart';

operation(car) {
 print('Operate ${car}');
}

main() {
 // Create passenger assembly line

Chapter 2

[37]

 AssemblyLine<PassengerCar> passengerCarAssembly =
 new AssemblyLine<PassengerCar>();
 // We can add passenger car
 passengerCarAssembly.add(new PassengerCar());
 // We can occasionally add truck as well
 passengerCarAssembly.add(new Truck());
 // Operate
 passengerCarAssembly.make(operation);
}

The static analyzer alerts us at compile time if we try to insert the Truck argument in
the assembly line for passenger cars, as shown in the following screenshot:

After we fix the code in line 17, all looks good. Our assembly line is now safe. But
if you look at the operation function, it is totally different for passenger cars than it
is for trucks; this means that we must make the operation generic as well. The static
analyzer doesn't show any warnings and, even worse, we cannot make the operation
generic directly because Dart doesn't support generics for functions. But there is
a solution.

Advanced Techniques and Reflection

[38]

Generic functions
Functions, like all other data types in Dart, are objects, and they have the data
type Function. In the following code, we will create an Operation class as an
implementation of Function and then apply generics to it as usual:

part of assembly.room;

// Operation for specific type of car
class Operation<E extends Car> implements Function {
 // Operation name
 final String name;
 // Create new operation with [name]
 Operation(this.name);
 // We call our function here
 call(E car) {
 print('Make ${name} on ${car}');
 }
}

The gem in our class is the call method. As Operation implements Function and
has a call method, we can pass an instance of our class as a function in the make
method of the assembly line, as shown in the following code:

library assembly.room;

part 'assembly.dart';
part 'car.dart';
part 'operation.dart';

main() {
 // Paint operation for passenger car
 Operation<PassengerCar> paint = new
 Operation<PassengerCar>("paint");
 // Paint operation for Trucks
 Operation<Truck> paintTruck = new Operation<Truck>("paint");
 // Create passenger assembly line
 Assembly<PassengerCar> passengerCarAssembly =
 new Assembly<PassengerCar>();
 // We can add passenger car
 passengerCarAssembly.add(new PassengerCar());
 // Operate only with passenger car
 passengerCarAssembly.make(paint);
 // Operate with mistake
 passengerCarAssembly.make(paintTruck);
}

Chapter 2

[39]

In the preceding code, we created the paint operation to paint the passenger
cars and the paintTruck operation to paint trucks. Later, we created the
passengerCarAssembly line and added a new passenger car to the line via the add
method. We can run the paint operation on the passenger car by calling the make
method of the passengerCarAssembly line. Next, we intentionally made a mistake
and tried to paint the truck on the assembly line for passenger cars, which resulted in
the following runtime exception:

Make paint on Passenger Car
Unhandled exception:
type 'PassengerCar' is not a subtype of type 'Truck' of 'car'.
#0 Operation.call (…/generics_operation.dart:10:10)
#1 Assembly.make.<anonymous
 closure>(…/generics_assembly.dart:16:15)
#2 List.forEach (dart:core-patch/growable_array.dart:240)
#3 Assembly.make (…/generics_assembly.dart:15:18)
#4 main (…/generics_assembly_and_operation_room.dart:20:28)
…

This trick with the call method of the Function type helps you make all the aspects
of your assembly line generic. We've seen how to make a class generic and function
to make the code of our application safer and cleaner.

The documentation generator automatically adds information about
generics in the generated documentation pages.

To understand the differences between errors and exceptions, let's move on to the
next topic.

Errors versus exceptions
Runtime faults can and do occur during the execution of a Dart program.
We can split all faults into two types:

• Errors
• Exceptions

Advanced Techniques and Reflection

[40]

There is always some confusion on deciding when to use each kind of fault, but you
will be given several general rules to make your life a bit easier. All your decisions
will be based on the simple principle of recoverability. If your code generates a
fault that can reasonably be recovered from, use exceptions. Conversely, if the code
generates a fault that cannot be recovered from, or where continuing the execution
would do more harm, use errors.

Let's take a look at each of them in detail.

Errors
An error occurs if your code has programming errors that should be fixed by the
programmer. Let's take a look at the following main function:

main() {
 // Fixed length list
 List list = new List(5);
 // Fill list with values
 for (int i = 0; i < 10; i++) {
 list[i] = i;
 }
 print('Result is ${list}');
}

We created an instance of the List class with a fixed length and then tried to fill it
with values in a loop with more items than the fixed size of the List class. Executing
the preceding code generates RangeError, as shown in the following screenshot:

This error occurred because we performed a precondition violation in our code
when we tried to insert a value in the list at an index outside the valid range.
Mostly, these types of failures occur when the contract between the code and the
calling API is broken. In our case, RangeError indicates that the precondition was
violated. There are a whole bunch of errors in the Dart SDK such as CastError,
RangeError, NoSuchMethodError, UnsupportedError, OutOfMemoryError, and
StackOverflowError. Also, there are many others that you will find in the errors.
dart file as a part of the dart.core library. All error classes inherit from the Error
class and can return stack trace information to help find the bug quickly. In the
preceding example, the error happened in line 6 of the main method in the
range_error.dart file.

Chapter 2

[41]

We can catch errors in our code, but because the code was badly implemented,
we should rather fix it. Errors are not designed to be caught, but we can throw
them if a critical situation occurs. A Dart program should usually terminate
when an error occurs.

Exceptions
Exceptions, unlike errors, are meant to be caught and usually carry information
about the failure, but they don't include the stack trace information. Exceptions
happen in recoverable situations and don't stop the execution of a program. You can
throw any non-null object as an exception, but it is better to create a new exception
class that implements the abstract class Exception and overrides the toString
method of the Object class in order to deliver additional information. An exception
should be handled in a catch clause or made to propagate outwards. The following is
an example of code without the use of exceptions:

import 'dart:io';

main() {
 // File URI
 Uri uri = new Uri.file("test.json");
 // Check uri
 if (uri != null) {
 // Create the file
 File file = new File.fromUri(uri);
 // Check whether file exists
 if (file.existsSync()) {
 // Open file
 RandomAccessFile random = file.openSync();
 // Check random
 if (random != null) {
 // Read file
 List<int> notReadyContent =
 random.readSync(random.lengthSync());
 // Check not ready content
 if (notReadyContent != null) {
 // Convert to String
 String content = new
 String.fromCharCodes(notReadyContent);
 // Print results
 print('File content: ${content}');
 }
 // Close file
 random.closeSync();
 }

Advanced Techniques and Reflection

[42]

 } else {
 print ("File doesn't exist");
 }
 }
}

Here is the result of this code execution:

File content: [{ name: Test, length: 100 }]

As you can see, the error detection and handling leads to a confusing spaghetti code.
Worse yet, the logical flow of the code has been lost, making it difficult to read and
understand it. So, we transform our code to use exceptions as follows:

import 'dart:io';

main() {
 RandomAccessFile random;
 try {
 // File URI
 Uri uri = new Uri.file("test.json");
 // Create the file
 File file = new File.fromUri(uri);
 // Open file
 random = file.openSync();
 // Read file
 List<int> notReadyContent =
 random.readSync(random.lengthSync());
 // Convert to String
 String content = new String.fromCharCodes(notReadyContent);
 // Print results
 print('File content: ${content}');
 } on ArgumentError catch(ex) {
 print('Argument error exception');
 } on UnsupportedError catch(ex) {
 print('URI cannot reference a file');
 } on FileSystemException catch(ex) {
 print ("File doesn't exist or accessible");
 } finally {
 try {
 random.closeSync();
 } on FileSystemException catch(ex) {
 print("File can't be close");
 }
 }
}

Chapter 2

[43]

The code in the finally statement will always be executed independent of
whether the exception happened or not to close the random file. Finally, we have
a clear separation of exception handling from the working code and we can now
propagate uncaught exceptions outwards in the call stack.

The suggestions based on recoverability after exceptions are fragile. In our
example, we caught ArgumentError and UnsupportError in common with
FileSystemException. This was only done to show that errors and exceptions
have the same nature and can be caught any time. So, what is the truth? While
developing my own framework, I used the following principle:

If I believe the code cannot recover, I use an error, and if I think it can recover,
I use an exception.

Let's discuss another advanced technique that has become very popular and that
helps you change the behavior of the code without making any changes to it.

Annotations
An annotation is metadata—data about data. An annotation is a way to keep
additional information about the code in the code itself. An annotation can have
parameter values to pass specific information about an annotated member.
An annotation without parameters is called a marker annotation. The purpose
of a marker annotation is just to mark the annotated member.

Dart annotations are constant expressions beginning with the @ character. We can
apply annotations to all the members of the Dart language, excluding comments
and annotations themselves. Annotations can be:

• Interpreted statically by parsing the program and evaluating the constants
via a suitable interpreter

• Retrieved via reflection at runtime by a framework

The documentation generator does not add annotations to the
generated documentation pages automatically, so the information
about annotations must be specified separately in comments.

http://www.allitebooks.org

Advanced Techniques and Reflection

[44]

Built-in annotations
There are several built-in annotations defined in the Dart SDK interpreted by the
static analyzer. Let's take a look at them.

Deprecated
The first built-in annotation is deprecated, which is very useful when you need to
mark a function, variable, a method of a class, or even a whole class as deprecated
and that it should no longer be used. The static analyzer generates a warning
whenever a marked statement is used in code, as shown in the following screenshot:

Override
Another built-in annotation is override. This annotation informs the static analyzer
that any instance member, such as a method, getter, or setter, is meant to override
the member of a superclass with the same name. The class instance variables as well
as static members never override each other. If an instance member marked with
override fails to correctly override a member in one of its superclasses, the static
analyzer generates the following warning:

Chapter 2

[45]

Proxy
The last annotation is proxy. Proxy is a well-known pattern used when we need to
call a real class's methods through the instance of another class. Let's assume that
we have the following Car class:

part of cars;

// Class Car
class Car {
 int _speed = 0;
 // The car speed
 int get speed => _speed;

 // Accelerate car
 accelerate(acc) {
 _speed += acc;
 }
}

Advanced Techniques and Reflection

[46]

To drive the car instance, we must accelerate it as follows:

library cars;

part 'car.dart';

main() {
 Car car = new Car();
 car.accelerate(10);
 print('Car speed is ${car.speed}');
}

We now run our example to get the following result:

Car speed is 10

In practice, we may have a lot of different car types and would want to test all of
them. To help us with this, we created the CarProxy class by passing an instance
of Car in the proxy's constructor. From now on, we can invoke the car's methods
through the proxy and save the results in a log as follows:

part of cars;

// Proxy to [Car]
class CarProxy {

 final Car _car;
 // Create new proxy to [car]
 CarProxy(this._car);

 @override
 noSuchMethod(Invocation invocation) {
 if (invocation.isMethod &&
 invocation.memberName == const Symbol('accelerate')) {
 // Get acceleration value
 var acc = invocation.positionalArguments[0];
 // Log info
 print("LOG: Accelerate car with ${acc}");
 // Call original method
 _car.accelerate(acc);
 } else if (invocation.isGetter &&
 invocation.memberName == const Symbol('speed')) {
 var speed = _car.speed;
 // Log info

Chapter 2

[47]

 print("LOG: The car speed ${speed}");
 return speed;
 }
 return super.noSuchMethod(invocation);
 }
}

As you can see, CarProxy does not implement the Car interface. All the magic
happens inside noSuchMethod, which is overridden from the Object class. In this
method, we compare the invoked member name with accelerate and speed. If the
comparison results match one of our conditions, we log the information and then call
the original method on the real object. Now let's make changes to the main method,
as shown in the following screenshot:

Here, the static analyzer alerts you with a warning because the CarProxy class
doesn't have the accelerate method and the speed getter. You must add the
proxy annotation to the definition of the CarProxy class to suppress the static
analyzer warning, as shown in the following screenshot:

Now with all the warnings gone, we can run our example to get the following
successful result:

Car speed is 10
LOG: Accelerate car with 10
LOG: The car speed 20
Car speed through proxy is 20

Advanced Techniques and Reflection

[48]

Custom annotations
Let's say we want to create a test framework. For this, we will need several
custom annotations to mark methods in a testable class to be included in a test case.
The following code has two custom annotations. In the case, where we need only
marker annotation, we use a constant string test. In the event that we need to pass
parameters to an annotation, we will use a Test class with a constant constructor,
as shown in the following code:

library test;

// Marker annotation test
const String test = "test";

// Test annotation
class Test {
 // Should test be ignored?
 final bool include;
 // Default constant constructor
 const Test({this.include:true});

 String toString() => 'test';
}

The Test class has the final include variable initialized with a default value of
true. To exclude a method from tests, we should pass false as a parameter for
the annotation, as shown in the following code:

library test.case;

import 'test.dart';
import 'engine.dart';

// Test case of Engine
class TestCase {
 Engine engine = new Engine();

 // Start engine
 @test
 testStart() {
 engine.start();
 if (!engine.started) throw new Exception("Engine must start");
 }

 // Stop engine
 @Test()

Chapter 2

[49]

 testStop() {
 engine.stop();
 if (engine.started) throw new Exception("Engine must stop");
 }

 // Warm up engine
 @Test(include:false)
 testWarmUp() {
 // ...
 }
}

In this scenario, we test the Engine class via the invocation of the testStart
and testStop methods of TestCase, while avoiding the invocation of the
testWarmUp method.

So what's next? How can we really use annotations? Annotations are useful with
reflection at runtime, so now it's time to discuss how to make annotations available
through reflection.

Reflection
Introspection is the ability of a program to discover and use its own structure.
Reflection is the ability of a program to use introspection to examine and modify
the structure and behavior of the program at runtime. You can use reflection to
dynamically create an instance of a type or get the type from an existing object
and invoke its methods or access its fields and properties. This makes your code
more dynamic and can be written against known interfaces so that the actual classes
can be instantiated using reflection. Another purpose of reflection is to create
development and debugging tools, and it is also used for meta-programming.

There are two different approaches to implementing reflection:

• The first approach is that the information about reflection is tightly integrated
with the language and exists as part of the program's structure. Access to
program-based reflection is available by a property or method.

• The second approach is based on the separation of reflection information
and program structure. Reflection information is separated inside a distinct
Mirror object that binds to the real program member.

Advanced Techniques and Reflection

[50]

Dart reflection follows the second approach with Mirrors. You can find more
information about the concept of Mirrors in the original paper written by Gilad
Bracha at http://bracha.org/mirrors.pdf. Let's discuss the advantages
of Mirrors:

• Mirrors are separate from the main code and cannot be exploited for
malicious purposes

• As reflection is not part of the code, the resulting code is smaller
• There are no method-naming conflicts between the reflection API and

inspected classes
• It is possible to implement many different Mirrors with different levels of

reflection privileges
• It is possible to use Mirrors in command-line and web applications

Let's try Mirrors and see what we can do with them. We will continue to create a
library to run our tests.

Introspection in action
We will demonstrate the use of Mirrors with something simple such as introspection.
We will need a universal code that can retrieve the information about any object
or class in our program to discover its structure and possibly manipulate it with
properties and call methods. For this, we've prepared the TypeInspector class.
Let's take a look at the code. We've imported the dart:mirrors library here to
add the introspection ability to our code:

library inspector;

import 'dart:mirrors';
import 'test.dart';

class TypeInspector {
 ClassMirror _classMirror;
 // Create type inspector for [type].
 TypeInspector(Type type) {
 _classMirror = reflectClass(type);
 }

http://bracha.org/mirrors.pdf

Chapter 2

[51]

The ClassMirror class contains all the information about the observing type. We
perform the actual introspection with the reflectClass function of Mirrors and
return a distinct Mirror object as the result. Then, we call the getAnnotatedMethods
method and specify the name of the annotation that we are interested in. This
will return a list of MethodMirror that will contain methods annotated with
specified parameters. One by one, we step through all the instance members and
call the private _isMethodAnnotated method. If the result of the execution of the
_isMethodAnnotated method is successful, then we add the discovering method to
the result list of found MethodMirror's, as shown in the following code:

 // Return list of method mirrors assigned by [annotation].
 List<MethodMirror> getAnnotatedMethods(String annotation) {
 List<MethodMirror> result = [];
 // Get all methods
 _classMirror.instanceMembers.forEach(
 (Symbol name, MethodMirror method) {
 if (_isMethodAnnotated(method, annotation)) {
 result.add(method);
 }
 });
 return result;
 }

The first argument of _isMethodAnnotated has the metadata property that keeps a
list of annotations. The second argument of this method is the annotation name that
we would like to find. The inst variable holds a reference to the original object in the
reflectee property. We pass through all the method's metadata to exclude some of
them annotated with the Test class and marked with include equals false. All other
method's annotations should be compared to the annotation name, as follows:

 // Check is [method] annotated with [annotation].
 bool _isMethodAnnotated(MethodMirror method, String annotation) {
 return method.metadata.any(
 (InstanceMirror inst) {
 // For [Test] class we check include condition
 if (inst.reflectee is Test &&
 !(inst.reflectee as Test).include) {
 // Test must be exclude
 return false;
 }
 // Literal compare of reflectee and annotation
 return inst.reflectee.toString() == annotation;
 });
 }
}

Advanced Techniques and Reflection

[52]

Dart Mirrors have the following three main functions for introspection:

• reflect: This function is used to introspect an instance that is passed as
a parameter and saves the result in InstanceMirror or ClosureMirror.
For the first one, we can call methods, functions, or get and set fields of the
reflectee property. For the second one, we can execute the closure.

• reflectClass: This function reflects the class declaration and returns
ClassMirror. It holds full information about the type passed as a parameter.

• reflectType: This function returns TypeMirror and reflects a class,
typedef, function type, or type variable.

Let's take a look at the main code:

library test.framework;

import 'type_inspector.dart';
import 'test_case.dart';

main() {
 TypeInspector inspector = new TypeInspector(TestCase);
 List methods = inspector.getAnnotatedMethods('test');
 print(methods);
}

Firstly, we created an instance of our TypeInspector class and passed the testable
class, in our case, TestCase. Then, we called getAnnotatedMethods from inspector
with the name of the annotation, test. Here is the result of the execution:

[MethodMirror on 'testStart', MethodMirror on 'testStop']

The inspector method found the methods testStart and testStop and ignored
testWarmUp of the TestCase class as per our requirements.

Reflection in action
We have seen how introspection helps us find methods marked with annotations.
Now we need to call each marked method to run the actual tests. We will do that
using reflection. Let's make a MethodInvoker class to show reflection in action:

library executor;

import 'dart:mirrors';

class MethodInvoker implements Function {
 // Invoke the method

Chapter 2

[53]

 call(MethodMirror method) {
 ClassMirror classMirror = method.owner as ClassMirror;
 // Create an instance of class
 InstanceMirror inst =
 classMirror.newInstance(new Symbol(''), []);
 // Invoke method of instance
 inst.invoke(method.simpleName, []);
 }
}

As the MethodInvoker class implements the Function interface and has the call
method, we can call instance it as if it was a function. In order to call the method,
we must first instantiate a class. Each MethodMirror method has the owner property,
which points to the owner object in the hierarchy. The owner of MethodMirror in
our case is ClassMirror. In the preceding code, we created a new instance of the
class with an empty constructor and then we invoked the method of inst by name.
In both cases, the second parameter was an empty list of method parameters.

Now, we introduce MethodInvoker to the main code. In addition to TypeInspector,
we create the instance of MethodInvoker. One by one, we step through the methods
and send each of them to invoker. We print Success only if no exceptions occur.
To prevent the program from terminating if any of the tests failed, we wrap invoker
in the try-catch block, as shown in the following code:

library test.framework;

import 'type_inspector.dart';
import 'method_invoker.dart';
import 'engine_case.dart';

main() {
 TypeInspector inspector = new TypeInspector(TestCase);
 List methods = inspector.getAnnotatedMethods(test);
 MethodInvoker invoker = new MethodInvoker();
 methods.forEach((method) {
 try {
 invoker(method);
 print('Success ${method.simpleName}');
 } on Exception catch(ex) {
 print(ex);
 } on Error catch(ex) {
 print("$ex : ${ex.stackTrace}");
 }
 });
}

http://www.allitebooks.org

Advanced Techniques and Reflection

[54]

As a result, we will get the following code:

Success Symbol("testStart")
Success Symbol("testStop")

To prove that the program will not terminate in the case of an exception in the tests,
we will change the code in TestCase to break it, as follows:

// Start engine
@test
testStart() {
 engine.start();
 // !!! Broken for reason
 if (engine.started) throw new Exception("Engine must start");
}

When we run the program, the code for testStart fails, but the program continues
executing until all the tests are finished, as shown in the following code:

Exception: Engine must start
Success Symbol("testStop")

And now our test library is ready for use. It uses introspection and reflection to
observe and invoke marked methods of any class.

Summary
This concludes mastering of the advanced techniques in Dart. You now know that
generics produce safer and clearer code, annotation with reflection helps execute
code dynamically, and errors and exceptions play an important role in finding bugs
that are detected at runtime.

In the next chapter, we will talk about the creation of objects and how and when to
create them using best practices from the programming world.

Object Creation
In this chapter, we will talk about the creation of objects. We will see how and when
to create them using best practices from the programming world, and then find a
place for them to be accommodated in Dart. The different techniques covered here
will help us to make correct choices that will be useful in different business cases.
In this chapter, we will cover the following topics:

• A generative constructor
• A constructor with optional parameters
• A named constructor
• A redirecting constructor
• A private constructor
• A factory constructor
• A constant constructor
• Initialization of variables
• Syntactic sugar

Creating an object
A class is a blueprint for objects. The process of creating objects from a class is called
instantiation. An object can be instantiated with a new statement from a class or
through reflection. It must be instantiated before it is used.

A class contains a constructor method that is invoked to create objects from the class.
It always has the same name as the class. Dart defines two types of constructors:
generative and factory constructors.

Object Creation

[56]

A generative constructor
A generative constructor consists of a constructor name, a constructor parameter list,
either a redirect clause or an initializer list, and an optional body. Dart always calls
the generative constructor first when the class is being instantiated, as shown in the
following code:

class SomeClass {
 // Default constructor
 SomeClass();
}

main() {
 var some = new SomeClass();
}

If the constructor is not defined, Dart creates an implicit one for us as follows:

class AnyClass {
 // implicit constructor
}

main() {
 var some = new AnyClass();
}

The main purpose of a generative constructor is to safely initialize the instance of a
class. This initialization takes place inside a class and ensures that the instantiating
object is always in a valid state.

A constructor with optional parameters
A constructor is method of a class and has parameters to specify the initial state
or other important information about the class. There are required and optional
parameters in a constructor. The optional parameters can either be a set of named
parameters or a list of positional parameters. Dart doesn't support method overload;
hence, the ability to have optional parameters can be very handy.

Dart does not allow you to combine named and positional
optional parameters.

Chapter 3

[57]

Let's take a look at the following Car class constructor with optional
positional parameters:

// Class Car
class Car {
 String color;
 int weight;

 Car([this.color = 'white', this.weight = 1000]);
}

We can omit one or all the parameters to create an object of the class as follows:

import 'car_optional_parameters.dart';

main() {
 var car = new Car('blue');
 var car2 = new Car();
}

Let's take a look at the following Car class constructor that uses optional
named parameters:

// Class Car
class Car {
 String color;
 int weight;

 Car({this.color:'white', this.weight:1000});
}

In the following main code, I used the named parameters to create an instance
of the object:

import 'car_named_parameters.dart';

main() {
 var car = new Car(weight:750, color:'blue');
}

So, which kind of optional parameters are better? I recommend the use of named
parameters due to the following reasons:

• Here, you need not remember the place of the parameters
• It gives you a better explanation of what the parameters do

Object Creation

[58]

A named constructor
Let's say we want to create a Collection class to store all our data in one place.
We can do it as follows:

library collection;

// Collection class
class Collection {
 // We save data here
 List _data;

 // Default constructor
 Collection() {
 _data = new List();
 }

 // Add new item
 add(item) {
 _data.add(item);
 }

 // ...
}

Somewhere in the main method, we create the instance of a class and add data to
the collection:

import 'collection.dart';

var data = [1, 2, 3];

main() {
 var collection = new Collection();
 //
 data.forEach((item) {
 collection.add(item);
 });
}

Chapter 3

[59]

Any chance that my collection will be initialized in this way in the future is high.
So, it would be nice to have an initialization method in my Collection class to
add a list of data. One of the solutions is to create a constructor with named
parameters to manage our initialization. The code creates a new collection
from the optional parameter value if specified, as shown in the following code:

library collection;

// Collection class
class Collection {
 // We save data here
 List _data;

 // Default constructor with optional [values] or [item].
 Collection({Iterable values:null, String item:null}) {
 if (item != null) {
 _data = new List();
 add(item);
 } else {
 _data = values != null ?
 new List.from(values) :
 new List();
 }
 }

 // Add new item
 add(item) {
 _data.add(item);
 }

 // ...
}

This solution has a right to live, but only if the number of parameters is small.
Otherwise, a simple task initialization of variables results in very complicated code.
I have specified two options for the named parameters with a really tangled logic.
It is difficult to convey the meaning of what values means. A better way is to use
named constructors, as shown in the following code:

library collection;

// Collection class
class Collection {
 // We save data here
 List _data;

Object Creation

[60]

 // Default constructor
 Collection() {
 _data = new List();
 }

 // Create collection from [values]
 Collection.fromList(Iterable values) {
 _data = values == null ?
 new List() :
 new List.from(values);
 }

 // Create collection from [item]
 Collection.fromItem(String item) {
 _data = new List();
 if (item != null) {
 add(item);
 }
 }
 // ...
}

The constructor is referred to as named because it has a readable and intuitive way
of creating objects of a class. There are constructors named Collection.fromList
and Collection.fromItem in our code. Our class may have a number of named
constructors to do the simple task of class instantiation, depending on the type of
parameters. However, bear in mind that any superclass named constructor is not
inherited by a subclass.

The named constructors provide intuitive and safer
construction operations.

A redirecting constructor
Constructors with optional parameters and named constructors help us to improve
the usability and readability of our code. However, sometimes we need a little bit
more. Suppose we want to add values of the map to our collection, we can do this
by simply adding the Collection.fromMap named constructor as shown in the
following code:

 //…
 // Create collection from [values]
 Collection.fromList(Iterable values) {

Chapter 3

[61]

 _data = values == null ?
 new List() :
 new List.from(values);
 }
 // Create collection from values of [map]
 Collection.fromMap(Map map) {
 _data = map == null ?
 new List() :
 new List.from(map.values);
 }
 // …

The preceding method is not suitable because the two named constructors have
similar code. We can correct it by using a special form of a generative constructor
(redirecting constructor), as shown in the following code:

 //…
 // Create collection from [values]
 Collection.fromList(Iterable values) {
 _data = values == null ?
 new List() :
 new List.from(values);
 }
 // Create collection from values of [map]
 Collection.fromMap(Map map) :
 this.fromList(map == null ? [] : map.values);

The redirecting constructor calls another generative constructor and passes values
of a map or an empty list. I like this approach as it is compact, less error-prone,
and does not contain similar code anymore.

The redirecting constructor cannot have a body and
initialization list.

A private constructor
I want to mention a couple of things about the private constructor before we
continue with our journey. A private constructor is a special generative constructor
that prevents a class from being explicitly instantiated by its callers. It is usually used
in the following cases:

• For a singleton class
• In the factory method

Object Creation

[62]

• When the utility class contains static methods only
• For a constant class

Let's define a Task class as follows:

class Task {
 int id;

 Task._();

 Task._internal();
}

In the preceding code, there are private named constructors, Task._ and
Task._internal, in the Task class. Also, Dart does not allow you to create
an instance of Task as no public constructors are available, as shown in the
following screenshot:

The private constructors are used to prevent creating
instances of a class.

A factory constructor
A factory constructor can only create instances of a class or inherited classes.
It is a static method of a class that has the same name as the class and is marked
with the factory constructor.

The factory constructor cannot access the class
members.

Chapter 3

[63]

The factory method design pattern
Let's imagine that we are creating a framework and it's time to log the information
about different operations of the class methods. The following simple Log class can
work for us:

library log;

// Log information
abstract class Log {
 debug(String message);
 // …
}

We can print the log information to the console with the ConsoleLog class as follows:

library log.console;

import 'log.dart';

// Write log to console
class ConsoleLog implements Log {
 debug(String message) {
 // ...
 }
 // ...
}

We can also save the log messages in a file with the FileLog class as follows:

library log.file;

import 'log.dart';

// Write log to file
class FileLog implements Log {
 debug(String message) {
 // ...
 }
 // ...
}

Object Creation

[64]

Now, we can use the log variable to print the debug information to the console in
the Adventure class, as follows:

import 'log.dart';
import 'console_log.dart';

// Adventure class with log
class Adventure {
 static Log log = new ConsoleLog();

 walkMethod() {
 log.debug("entering log");
 // ...
 }
}

We created an instance of ConsoleLog and used it to print all our messages to the
console. There are plenty of classes that will support logging, and we will include
code similar to the preceding one in each of them. I can imagine what will happen
when we decide to change ConsoleLog to FileLog. A simple operation can turn into
a nightmare, because it might take a lot of time and resources to make the changes.
At the same time, we must avoid altering our classes.

The solution is to use the factory constructor to replace the type of code with
subclasses, as shown in the following code:

library log;

part 'factory_console_log.dart';

// Log information
abstract class Log {

 factory Log() {
 return new ConsoleLog();
 }

 debug(String message);
 // ...
}

Chapter 3

[65]

The factory constructor of the Log class is a static method and every time it creates a
new instance of ConsoleLog. The updated version of the Adventure class looks like
the following code:

import 'factory_log.dart';

// Adventure class with log
class Adventure {
 static Log log = new Log();

 walkMethod() {
 log.debug("entering log");
 // ...
 }
}

Now, we are not referring to ConsoleLog as an implementation of Log, but only
using the factory constructor. All the changes from ConsoleLog to FileLog will
happen in one place, that is, inside the factory constructor. However, it would be nice
to use different implementations that are appropriate in specific scenarios without
altering the Log class as well. This can be done by adding a conditional statement
in the factory constructor and instantiating different subclasses, as follows:

library log;

part 'factory_console_log.dart';
part 'factory_file_log.dart';

// Log information
abstract class Log {

 static bool useConsoleLog = false;

 factory Log() {
 return useConsoleLog ?
 new ConsoleLog() :
 new FileLog();
 }

 debug(String message);
 // ...
}

Object Creation

[66]

The useConsoleLog static variable can be changed programmatically at any point of
time to give us a chance to change the logging direction. As a result, we don't change
the Log class at all.

In our example, the factory constructor is an implementation of the factory method
design pattern. It makes a design more customizable and only a little more
complicated.

It is always better to use a factory constructor instead of a generative constructor in
the following cases:

• It is not required to always return a new instance of a class
• It is required to instantiate any subtype of the return type
• It is essential to reduce the verbosity of creating parameterized type instances

of a class

The singleton design pattern
If we want to keep unique information about a user somewhere in our imaginable
framework, then we would have to create a Configuration class for that purpose,
as shown in the following code:

library configuration;

// Class configuration
class Configuration {
 // It always keep our [Configuration]
 static final Configuration configuration = new Configuration._();

 // Database name
 String dbName;

 // Private default constructor
 Configuration._();
}

The Configuration class has a dbName variable to keep the database's name and
probably a number of other properties and methods as well. It has a private default
constructor, so the class cannot be instantiated from other classes. A static variable
configuration is final and will be initialized only once. All looks good and the
standards of implementing the singleton design pattern are followed.

Chapter 3

[67]

We have only one instance of a Configuration class at a point of time and that's
the main purpose of the singleton pattern. One disadvantage here is the time of
initialization of the configuration variable. This only happens when our program
starts. It is better to use the Lazy initialization when it calls the configuration
variable for the first time. The following factory constructor comes in handy here:

library configuration;

// Class configuration
class Configuration {
 // It always keep our [Configuration]
 static Configuration _configuration;

 // Factory constructor
 factory Configuration() {
 if (_configuration == null) {
 configuration = new Configuration.();
 }
 return _configuration;
 }

 // Database name
 String dbName;

 // Private default constructor
 Configuration._();
}

For now, when we refer to the Configuration class for the first time, Dart will call
the factory constructor. It will check whether the private variable configuration was
initialized before, create a new instance of the Configuration class if necessary,
and only then return an instance of our class. The following are the changes in the
framework of the code:

import 'factory_configuration.dart';

main() {
 // Access to database name
 new Configuration().dbName = 'Oracle';
 // ...
 print('Database name is ${new Configuration().dbName}');
}

Object Creation

[68]

We always get the same instance of a Configuration class when we call the
factory method in this solution. Factory constructors can be widely used in the
implementation of the flyweight pattern and object pooling.

A constant constructor
Let's assume we have the following Request class in our imaginary framework:

library request;

// Request class
class Request {
 static const int AWAIT = 0;
 static const int IN_PROGRESS = 1;
 static const int SUCCESS = 2;
 static const int FAULT = 3;

 // Result of request
 int result = AWAIT;

 // Send request with optional [status]
 void send({status:IN_PROGRESS}) {
 // ...
 }
 // ...
}

The result variable keeps the status of the last request as an integer value. The
Result class has constants to keep all the possible values of the status in one place so
that we can always refer to them. This makes the code better in readability and safer
too. This technique is called the enumerated pattern and is widely used. However, it
has a problem when it comes to safety as any other integer value could be assigned
to the result variable. This problem makes a class very fragile. Enumerated types
would help us to solve this problem, but unfortunately they do not exist in Dart.
The solution to this is that we create an enumerated type ourselves with the help
of constant constructors as it can be used to create a compile-time constant.

We can create an abstract Enum class with the entered parameter, as follows:

library enumerated_type;

// Enum class
abstract class Enum<T> {
 // The value
 final T value;

Chapter 3

[69]

 // Create new instance of [T] with [value]
 const Enum(this.value);

 // Print out enum info
 String toString() {
 return "${runtimeType.toString()}." +
 "${value == null ? 'null' : value.toString()}";
 }
}

I intentionally used a generic class in the preceding code as I don't know which
type of enumeration we will create. For example, to create an enumerated type
of RequestStatus based on the integer values, we can create a concrete class
as follows:

import 'enum.dart';

// Enumerated type Status of Request
class RequestStatus<int> extends Enum {

 static const RequestStatus AWAIT = const RequestStatus(0);
 static const RequestStatus IN_PROGRESS = const RequestStatus(1);
 static const RequestStatus SUCCESS = const RequestStatus(2);
 static const RequestStatus FAULT = const RequestStatus(3);

 const RequestStatus(int value) : super(value);
}

The RequestStatus class extends the Enum class and defines the request statuses as
static constant members of the class. To instantiate the RequestStatus class object,
we use const instead of the new instantiation expression.

A constant constructor creates compile-time immutable
instances of a class.

Let's go back to the Request class and modify it with RequestStatus, as shown in
the following code:

library request;

import 'request_status.dart';

// Request class with enum
class Request {

Object Creation

[70]

 // Result of request
 var result = RequestStatus.AWAIT;

 // Send request with optional [status]
 void send({status:RequestStatus.IN_PROGRESS}) {
 // ...
 }
}

In the preceding code, we used the enumerated type across the whole class.
Finally, here is main method in which we use the Request class:

import 'request_with_enum.dart';
import 'request_status.dart';

void main() {
 Request request = new Request();
 // ...
 request.send(status:RequestStatus.SUCCESS);
 // ...
 RequestStatus status = request.result;
 //
 switch (status) {
 case RequestStatus.AWAIT:
 print('Result is $status');
 // ...
 break;
 }
}

As you can see, the compile-time constants have a wide variety of uses such as
default values of variables and constants, default values in method signatures,
switch cases, annotations, and enumerators. Moreover, the code uses them to
have a better performance and translates them into optimized JavaScript code.

Use cases of the constant constructor have the following restrictions:

• A constant constructor doesn't have a body to prevent any changes of the
class state

• All the variables in a class that have a constant constructor must be final as
their binding is fixed upon initialization

• The variables from the initialization list of a constant constructor must be
initialized with compile-time constants

Chapter 3

[71]

Initializing variables
Variables reflect the state of a class instance. There are two types of variables,
namely, class and instance variables. Class variables are static in Dart. The static
variables of a class share information between all instances of the same class.
A class provides instance variables when each instance of a class should maintain
information separately from others. As we mentioned, the main purpose of
a constructor is to initialize the instance of a class in a safe manner. In other
words, we initialize instance variables. Let's discuss when and how we should
initialize them.

Uninitialized variables in Dart have the value null so we should initialize them
before using them. The initialization of variables may happen in several places.
They are as follows:

• We can assign any value to a variable at the place of declaration
• A variable can be initialized in the body of a constructor
• A variable can be initialized over a constructor parameter
• Initialization can happen in the initialization list of a constructor

Where is the best place to initialize the variables? Noninitialized variables
generate null reference runtime exceptions when we try to use them,
as shown in the following code:

class First {
 bool isActive;

 doSomething() {
 if (isActive) {
 // ...
 }
 }
}

void main() {
 First first = new First();
 first.doSomething();
}

Object Creation

[72]

The runtime exception will terminate the program execution and display the
following error because the isActive variable of the First class was not initialized:

Unhandled exception:
type 'Null' is not a subtype of type 'bool' of 'boolean expression'.
#0 First.doSomething (file:///… / no_initialized.dart:5:9)
#1 main (file:///…/ no_initialized.dart:13:19)
…

The variable must be initialized during the declaration if we are not
planning do it in other places.

Now, let's move ahead. The First and Second classes are similar to each other with
only a few differences, as shown in the following code:

class First {
 bool isActive;

 First(bool isActive) {
 this.isActive = isActive;
 }
}

class Second {
 bool isActive;

 Second(this.isActive);
}

In the First class, we initialize a variable in the body of a constructor; otherwise,
the Second class initializes a variable via a constructor parameter. Which one is
right? The desire to use the Second class is obvious because it is compact.

It is always preferred to use the compact code to initialize the variables
via constructor parameters than in a body of the constructor.

A variable marked final is a read-only variable that must be initialized during the
instantiation of a class. This means all the final variables must be initialized:

• At the place of declaration
• Over a constructor parameter
• In the initialization list of a constructor

Chapter 3

[73]

In the following code, we initialize the isActive variable at the place of declaration:

class First {
 final bool isActive = false;

 First();
}

In the Second class, we initialize the isActive variable via a parameter of the
constructor, as follows:

class Second {
 final bool isActive;

 Second(this.isActive);
}

If the isActive final variable is indirectly dependent on the parameter of
the constructor, we use the initializer list, as shown in the following code,
as Dart does not allow us to initialize the final variable in a body of
the constructor:

class Third {
 final bool isActive;

 Third(value) :
 this.isActive = value != null;
}

The last place to initialize the final variables is in the
constructor initializer list.

Syntactic sugar
We talked a lot about the usability of the code, but I could not resist the desire
to mention a couple of things about syntactic sugar—a syntax that is designed
to make a code easier to read or express.

Object Creation

[74]

Method call
Dart is an object-oriented programming language by definition. However, sometimes
we need a piece of the functional language to be present in our estate. To help us
with this, Dart has an interesting feature that may change the behavior of any
class instance like a function, as shown in the following code:

import 'dart:async';

class Request {
 send() {
 print("Request sent");
 }
}

main() {
 Request request = new Request();
 Duration duration = new Duration(milliseconds: 1000);
 Timer timer = new Timer(duration, (Timer timer) {
 request.send();
 });
}

We have a timer function that invokes a callback function and sends a request to the
server periodically to help organize pull requests, as follows:

Request sent
Request sent
…

The call method added to the class helps Dart to emulate instances of the Request
class as functions, as shown in the following code:

import 'dart:async';

class Request {
 send() {
 print("Request sent");
 }

 call(Timer timer) {
 send();
 }
}

main() {
 Duration duration = new Duration(milliseconds: 1000);
 Timer timer = new Timer.periodic(duration, new Request());
}

Chapter 3

[75]

So now we invoke the send method from the call method of the Request class.
The result of the execution is similar to the result from the preceding example:

Request sent
Request sent
…

The call method allows Dart to execute a class instance
as a function.

Cascade method invocation
Dart has quite a large number of innovations to create an application comfortably,
but I will mention the one that can help us to write compact code. It is a cascade
method invocation. Let's take a look at the ordinary SomeClass class in the
following code:

library some_class;

class SomeClass {
 String name;
 int id;
}

Also, we can see the absolutely ordinary object creation:

import 'some_class.dart';

void main() {
 SomeClass some = new SomeClass();
 some.name = 'John';
 some.id = 1;
}

We created an instance of a class and initialized the instance variables. The preceding
code is very simple. A more elegant and compact version of code uses the cascade
method invocation, as follows:

import 'some_class.dart';

void main() {
 SomeClass some = new SomeClass()
 ..name = 'John'
 ..id = 1;
}

Object Creation

[76]

In the first line of the main method, we create an instance of the SomeClass class.
At the same time, Dart creates a scope of the some variable and invokes all methods
located in that scope. The result would be similar to the one that was in the previous
code snippet.

Use the cascade method invocation to make the code less verbose to do
multiple operations on the members of an object.

Summary
In this chapter, you learned that a constructor is a method that is invoked to create
an object from a class. There are generative and factory constructors. The main
purpose of a generative constructor is to initialize the instance of a class in a safe
manner. The constructor can have required or optional parameters. The optional
parameters enable the supply of arguments for only a few parameters from the
list of optional parameters.

A constructor can be named. The named constructors provide intuitive and safer
construction operations, because named constructors have similar code and some of
them can be translated into redirecting constructors. A redirecting constructor calls
another constructor that makes the code compact.

Dart supports private constructors. If a class has only private constructors, Dart
cannot create an instance of a class. Private constructors are usually used in classes
that contain static members, which are only useful in combination with the factory
constructor. A factory constructor usually implements the popular factory method
and singleton design patterns.

No language can exist without constant variables or constants. Constants play a
significant role in programming with Dart and constant constructors can create
compile-time constants as instances of a class.

The initialization of variables can happen in several places. Some variables must be
initialized during declaration; others can be initialized via constructor parameters.
Final variables must be initialized during the instantiation of class. This can happen
during a declaration, via constructor parameters or in the constructor initializer list.

This syntax in Dart very often provides a form of syntactic sugar. One of those places
is a method call that allows you to execute a class instance as a function. Another one
is the cascade method invocation that makes the code less verbose.

In the next chapter, we will discuss advanced technologies to organize asynchronous
code execution and learn the best practices to use Futures, Zones, and Isolates in
different cases.

Asynchronous Programming
In this chapter, we will look at the advanced techniques that help us execute
asynchronous code—one of the most important components of Dart. Asynchronous
programming is a standard programming paradigm and together with object-oriented
principles, it plays an important role in the development of applications. In this
chapter, we will cover the following topics:

• Event-driven architecture
• The Dart VM execution model
• Future
• Zone
• Isolates

Call-stack architectures versus
event-driven architectures
For a better understanding of asynchronous programming in Dart, we will discuss
call-stack and event-driven architectures.

Call-stack architectures
Traditionally, programs are built on the concept of a call stack. This concept is pretty
straightforward because a program is basically a path of execution and invocation of
sequential operations. Every operation can invoke another operation. At the time of
invocation, a program creates a context for the callee operation. The caller operation
will wait for the callee operation to return and the program will restore the context of
it. Finally, the caller continues with their next operation. The callee operation might
have executed another operation on its own behalf.

Asynchronous Programming

[78]

The program creates a call stack to coordinate and manage the context of each call.
The basic primitives of this concept are calls. All calls in the program are tightly
coupled, because the program knows which operation must be called after the
current one and can share the same memory. The call-stack architecture is very
popular and pervasive because it is very similar to the architecture of processors.

Event-driven architectures
Event-driven architecture is the exact opposite of the call-stack concept. The basic
primitives of this concept are events. The system dispatches events and transmits
them among loosely coupled software components and services. The benefits of
event-driven architecture (EDA) are as follows:

• It helps utilize existing resources efficiently
• It is easy to extend, evolve, and maintain implementation, which reduces

the cost of maintenance
• It allows the exchange of events in an asynchronous manner that prevents

blocking or waiting in queue
• In event-driven architecture, the producers and consumers are

loosely coupled

Interaction between the components is limited to the publisher and one or
many consumers. The publisher is free of concurrency issues and synchronization
problems. The consumer can be changed at any time as the producers and consumers
are loosely coupled.

Event-driven architecture is the right approach to build loosely
coupled asynchronous systems.

The Dart VM execution model
Dart relies on event-driven architecture, which is based on a single-threaded
execution model with a single event loop and two queues. Dart still provides a
call stack. However, it uses events to transport context between the producers and
consumers. The event loop is backed by a single thread, so no synchronization and
locks are required at all.

The event loop blocked with the running operation blocks the
entire application.

Chapter 4

[79]

A combination of the single-threaded execution model and asynchronous operations
allows an application to perform more efficiently and is less resource intensive.

The main part of Dart VM is an event loop. Independent pieces of code can register
callback functions as event handlers for certain types of events. A callback is the
name given to the function that is passed as an argument of another function and is
invoked in future after the event occurs in another function. Events from the timer,
mouse events, events of input and output, and many others occurring in the system
are registered in the event queue. Event loop sequentially processes the queued
events by executing the associated callback functions that have been registered.

Callbacks must be short-running functions to prevent blocking
of the event loop.

Dart supports anonymous functions and closures to define callbacks. The closure
has a state bind to the callback function. Once the callback is executed, the state
is available in the event loop. Callbacks are never executed in parallel because of
single-threaded execution, so the occurrence of a deadlock is impossible. Once the
callback has been executed, the event-loop fetches the next event from the event
queue and applies its callback.

Dart introduced a new term for tasks that must be completed later: microtasks.
As the name implies, a microtask is a short-running function that does something
significantly small, such as updating the state of variables or dispatching a new
event. Dart VM provides a special queue for microtasks. The microtasks queue and
the events queue process in a single event loop. However, the microtasks queue has
higher priority than the events queue. An event loop processes all the microtasks
at once, until the queue becomes empty. Then, it moves on to the events queue and
processes one event per loop. Using the long-running code in the microtasks queue
increases the risk of starving an event queue and can result in the reduction of
responsiveness of an application.

Make sure that the microtasks are extremely small to prevent
blocking of the event loop.

Dart VM doesn't expose the event loop and we can't change or manage it. Bear in
mind that the sequence of execution of events is predetermined by the events queue.
You should also take into account the fact that the time at which the next event will
be processed by the event loop is entirely unknown to you.

Asynchronous Programming

[80]

Synchronous versus Asynchronous code
There is a lot of speculation regarding what is better: synchronous or asynchronous
programming. These conversations always end up in the architecture design. So, the
important question is what is the difference between synchrony and asynchrony in
code designs?

Let's discuss the terms that we will use. Operations are executed serially in the
synchronous (sync) code; no more, no less. This is very popular because it is simple.
The logical flow of the sync code is clear, and we can read and understand it without
any significant effort. Let's take a look at the following code snippet:

import 'dart:io';

main() {
 try {
 File file = new File("data.txt");
 RandomAccessFile handler = file.openSync();
 List<int> content = handler.readSync(handler.lengthSync());
 String contentAsString = new String.fromCharCodes(content);
 print("Content: $contentAsString");
 handler.closeSync();
 } on FileSystemException catch(e) {
 print(e.message);
 }
}

First, we create a file reference to data.txt on the filesystem. Then, we create a
handler by opening file. Next, the handler reads the bytes from the file into a
content variable. Finally, we translate the content to a string, print the result, and
close the handler file. Some operations in this code take more time than others.
The file-read operation can be quick because the size of the file is small. If it is bigger,
then while reading from the file, our program will wait until it is done. It can take
time to translate the content of the file. These operations block the execution of our
program; each time-consuming operation has to finish before starting another one.
This code is implemented in a sync manner and can be useful while doing simple
tasks like this one. However, this approach cannot be applied in complex software.
The complex program may have different pieces of code communicating with each
other to draw a User Interface (UI), process keyboard input, read information
from remote sites, or save information into the files at the same time. So, it's time to
discuss the code written in an asynchronous (async) fashion. Async code does not
wait for each operation to complete; the result of each operation will be handled later
when available. Async code uses several important classes from Dart SDK and one of
them is Future.

Chapter 4

[81]

Future
Let's change the code from the previous section into async, as follows:

import 'dart:io';

main() {
 File file = new File("data.txt");
 file.open().then(processFile);
}

processFile(RandomAccessFile file) {
 file.length().then((int length) {
 file.read(length).then(readFile).whenComplete(() {
 file.close();
 });
 });
 }

readFile(List<int> content) {
 String contentAsString = new String.fromCharCodes(content);
 print("Content: $contentAsString");
}

As you can see, the Future class is a proxy for an initially unknown result and
returns a value instead of calling a callback function. Future can be created by
itself or with Completer. Different ways of creating Future must be used in different
cases. The separation of concerns between Future and Completer can be very
useful. On one hand, we can give Future to any number of consumers to observe the
resolution independently; on the other hand, Completer can be given to any number
of producers and Future will be resolved by the one that resolves it first. Future
represents the eventual value that is returned from the callback handler, and it can
be in one of the following states:

• The incomplete state is an initial state when Future is waiting for the result.
The result field holds a single-linked list of Future listeners.

• A completed state with a value as the result.
• A completed state with an error as the result.
• A Future class comes in the pending complete or chained state when it is

completed or chained to another Future class with a success or an error.
It will display an error if you try to complete it again.

Future can be completed with a value or an error only once.

Asynchronous Programming

[82]

A consumer can register callbacks to handle the value or error of the Future class.
I slightly changed our example to manage exceptions and deliberately used the
wrong filename here to throw an exception:

//…
main() {
 File file = new File("data1.txt");
 file.open().then(processFile).catchError((error, stackTrace) {
 print("Catched error is $error\n$stackTrace");
 }, test:(error) {
 return error is FileSystemException;
 }).whenComplete((){
 print("File closed");
 });
}
//…

In the preceding code, we added the catchError method to catch errors. Pay
attention to the optional test parameter of the catchError method. This parameter
is the function that is called first if Future completes with an error, so you have
a chance to check if the instance of an error must be handled in the catchError
method. If optional test parameter is omitted, it defaults to a function that always
returns true. If the optional test parameter returns true, the function, specified as
the first parameter of catchError, is called with the error and possibly stack trace,
and the returned Future is completed with the result of the call of this function. The
resulting exceptions will look like this:

Catched error is FileSystemException: Cannot open file, path =
'data1.txt' (OS Error: The system cannot find the file specified.
, errno = 2)
#0 _File.open.<anonymous closure> (dart:io/file_impl.dart:349)
#1 _RootZone.runUnary (dart:async/zone.dart:1082)
//…
File closed

If the optional test parameter returns false, the exception is not handled by the
catchError method and the returned Future class is completed with the same error
and stack trace.

The catchError method is the asynchronous equivalent of a
catch block.

Last but not least, the Future class has the whenComplete method. This method
has one parameter that is considered a function, which is always called in the end
regardless of the future result (refer to the last statement in the preceding code).

Chapter 4

[83]

The whenComplete method is the asynchronous equivalent
of a finally block.

Now when we are finished with definitions, let's discuss the different factory
constructors of Future.

Future and Timer
Let's create a Future class containing the result of the calling computation
asynchronously with the run method of the Timer class, as follows:

Future calc = new Future(computation);
calc.then((res) => print(res));

This Future class does not complete immediately. The Timer class adds the event
to the event queue and executes the computation callback when the event is being
processed in the event loop. If the result of the computation function throws an
error, the returned Future is completed with an error. If the computation function
creates another Future, the current one will wait until the new Future is completed
and will then be completed with the same result.

Future and Microtask
In the following code, the Future class is a scheduled task in the microtasks queue,
which does not get completed immediately:

Future calc = new Future.microtask(computation);
calc.then((res) => print(res));

If the result of computation throws, the returned Future is completed with the
error. If computation creates another Future, the current one will wait until the
new Future is completed and will then be completed with the same result.

Sync the Future class
It may sound paradoxical, but we can create a sync version of the Future class,
as follows:

Future calc = new Future.sync(computation);
calc.then((res) => print(res));

The reason for this is that the Future immediately calls the computation function.
The result of the computation will be returned in the next event-loop iteration.

Asynchronous Programming

[84]

Future with a value
The Future class can be created with a specified value, as follows:

Future valueFuture = new Future.value(true);
valueFuture.then((res) => print(res));

Here, a Future returns specified value in the next event-loop iteration.

Future with an error
The Future class can be created with an error, as follows:

try {
 throw new Error();
} on Error catch(ex, stackTrace) {
 Future errorFuture = new Future.error(ex, stackTrace);
 errorFuture.catchError((err, stack) => print(err));
}

This Future completes with an error in the next event-loop iteration.

Delaying the Future class
Sometimes, it may be necessary to complete Future after a delay. It can be done
as follows:

Future calc = new Future.delayed(
 new Duration(seconds:1), computation);
calc.then((res) => print(res));

The Future will be completed after the given duration has passed with the result
of the computation function. It always creates an event in the event queue, and the
event gets completed no sooner than the next event-loop iteration if the duration is
zero or less than zero.

The Future class must not change the completed value or the
error to avoid side effects from listeners.

If Future doesn't have a successor, any error could be silently dropped.
In preventing these cases, Dart usually forwards the error to the global error handler.

Chapter 4

[85]

Let's now look at the benefits of the Future class:

• It has a consistent pattern to handle callbacks and exceptions
• It is a more convenient way when compared to chain operations
• It is easy to combine Futures
• It provides a single control flow to develop web and

command-line applications

Now you know why Dart uses Future everywhere in its API. The next stop on our
journey is zones.

Zones
Often, a program generates an uncaught exception and terminates the execution.
The commonly occurring exceptions in the program means that the code is broken
and must be fixed. However, sometimes exceptions may happen due to errors in
communication, hardware faults, and so on. The following is an example of the
HTTP server, which is used to demonstrate this problem:

import 'dart:io';

main() {
 runServer();
}

runServer() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((server) {
 server.listen((HttpRequest request) {
 request.response.write('Hello, world!');
 request.response.close();
 });
 });
}

The code in the main function can be terminated due to uncaught errors that
may happen in the runServer function. Termination of the program under
those circumstances can be undesirable.

Asynchronous Programming

[86]

So, how can this problem be solved? We wrap our code within a try/catch block
to catch all the uncaught exceptions and it works perfectly, as shown in the
following code:

main() {
 try {
 runServer();
 } on Error catch(e) {
 // ...
 }
}

This solution is universal and can be used in similar situations, so we will generalize
it via the creation of a separate wrapper function:

wrapper(Function body, {Function onError}) {
 try {
 body();
 } on Error catch(e) {
 if (onError != null) {
 onError(e);
 }
 }
}

main() {
 wrapper(runServer, onError:(e) {
 // ...
 });
}

The body argument represents any preserved code and is covered within a try/catch
block inside wrapper. A wrapper function uses the onError function to handle all
the uncaught exceptions. Using a wrapper function is a good practice and its use is
advised in other such situations. This is the zone.

A zone is a configurable execution context that handles
uncaught exceptions and asynchronous tasks.

Let's take a look at what zones can do:

• In critical situations, it allows you to handle exceptions properly
• It provides a way to handle multiple async operations in a single group
• It can have an unlimited number of nested zones, which behave like the

parent one

Chapter 4

[87]

Each zone creates a context, some kind of protected area, where the executing code
exists. In addition to intercepting uncaught exceptions, zones can have local variables
and can schedule microtasks, create one-off or repeating timers, print information,
and save a stack trace for debugging purposes.

Simple zone example
Let's transform our code to use a zone instead of the wrapper function, as follows:

import 'dart:io';
import 'dart:async';

main() {
 runZoned(runServer, onError:(e) {
 // ...
 });
}

The runZoned function is a code wrapper. By default, the async library implicitly
creates a root zone and assigns it to a static current variable in the Zone class. So,
we have an active zone that is always available to us inside the runZoned function.
When the runZoned function runs, it forks the new nested zone from root one and
executes the runServer function inside its context. Use the fork method of the
current zone to create a new child of this one.

A zone can be created only through the fork method of the
current zone.

Zone nesting
Let's say we have to serve static files in our server. So, we will need to read the file
and serve it. To do this properly, we fork the nested zone and protect our code with
the runZoned function, as follows:

 runServer() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((server) {
 server.listen((HttpRequest request) {
 runZoned(() {
 readFile(request.uri.path).then((String context){
 request.response.write(context);

Asynchronous Programming

[88]

 request.response.close();
 });
 }, onError:(e) {
 request.response.statusCode = HttpStatus.NOT_FOUND;
 request.response.write(e.toString());
 request.response.close();
 });
 });
 });
}

Future<String> readFile(String fileName) {
 switch (fileName.trim()) {
 case "/":
 case "/index.html":
 case "/favicon.ico":
 return new Future.sync(() => "Hello, world!");
 }
 return new Future.sync(() =>
 throw new Exception('Resource is not available'));
}

Inside the nested zone, we call the readFile function with a resource name and it
returns the content. If the resource is not available, readFile generates an exception
and the program catches it in the onError function, which is registered as the zone's
error handler. If we don't specify the error handler, the exception will be bubbled
up through the zone-nested hierarchy until any parent zone gets caught up in it or
reaches a top-level executable and terminates the program.

Zone values
Now, it's time to discuss authentication on our server as some resources may not be
available to the general public. We will follow the idea of token-based authentication
that relies on a signed token that is sent to the server on each request. We will create
a map of tokens to remember all the authorized clients, and then fork a new zone for
authentication. We will then read the client token from the header that is to be used
for authentication. When we get a map of tokens from the current zone, we will
inject them into the zone via zoneValues, as shown in the following code:

runServer() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)

Chapter 4

[89]

 .then((server) {
 Set tokens = new Set.from(['1234567890']);
 server.listen((HttpRequest request) {
 runZoned((){
 authenticate(request.headers.value('auth-token'));
 }, zoneValues: {'tokens': tokens}, onError:(e){
 request.response.statusCode = HttpStatus.UNAUTHORIZED;
 request.response.write(e.toString());
 request.response.close();
 });
 runZoned(() {
 readFile(request.uri.path).then((String context){
 request.response.write(context);
 request.response.close();
 });
 }, onError:(e) {
 request.response.statusCode = HttpStatus.NOT_FOUND;
 request.response.write(e.toString());
 request.response.close();
 });
 });
 });
}

The authentication based on the existence of a token within tokens is as follows:

authenticate(String token) {
 Set tokens = Zone.current['tokens'];
 if (!tokens.contains(token)) {
 throw new Exception('Access denied');
 }
}

In the preceding code, we used the zone-local variables to track tokens and
authenticate clients. Here, the variables were injected into the zone with the
zoneValues argument of the runZoned function. Our tokens variable works
like a static variable in the asynchronous context.

The zone-local variables can play the role of static variables that
are visible only in the scope of the zone.

Asynchronous Programming

[90]

Now check whether our server-side code works as expected. We installed the
Postman extension from http://www.getpostman.com/ to send requests from the
Dartium web browser. Our first request to http://localhost:8080 that we send
without auth-token is shown in the following screenshot:

The request was unauthorized because of the absence of auth-token. Let's add it to
the HTTP headers and see what happens:

Finally, our request is authorized and returns Hello, world! as a success message.

http://www.getpostman.com/

Chapter 4

[91]

Zone specifications
Now, we have decided to log information about each server request and
authentication. It is not recommended to inject the log function in all the possible
places. Zones have print functions to print messages as a literal string. The print
function bubbles up the message with the zone-nested hierarchy until a parent zone
intercepts it or reaches up to the root zone to print it. So, we only need to override
the print function in the ZoneSpecification class to intercept the message to the
logger. We create a new zoneSpecification with the interceptor function to print
and call the log function inside, as follows:

//…
main() {
 runZoned(runServer(),
 zoneSpecification: new ZoneSpecification(
 print:(self, parent, zone, message) {
 log(message);
 }
),
 onError:(e) {
 // ...
 });
}

Somewhere down the line, our log function logs message into a standard print,
as shown in the following code:

log(String message) {
 print(message);
}

In the following code, we print the request path:

runServer() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((server) {
 Set tokens = new Set.from(['1234567890']);
 server.listen((HttpRequest request) {
 runZoned((){
 Zone.current.print('Resource ${request.uri.path}');
 authenticate(request.headers.value('auth-token'));
//…

Asynchronous Programming

[92]

Bear in mind that all the interceptor functions expect the following four arguments:

print:(Zone self, ZoneDelegate parent, Zone zone, String message)

The first three of them are always the same:

• self: This argument represents the zone that's handling the callback
• parent: This argument furnishes ZoneDelegate to the parent zone and

we can use it to communicate with the parent zone
• zone: This argument is the first to receive the request (before the request

is bubbled up)

The fourth argument always depends on the function. In our example, it is the
message that will be printed.

ZoneSpecification is the only way to override the
zone-specific functions.

Let's request the index.html file via the Postman extension to check this code,
as shown in the following screenshot:

Chapter 4

[93]

The following result will be displayed in the console log:

Resource /index.html

Finally, all works as expected.

Interaction between zones
Let's see how the communication between the parent and the nested zones can be
useful in a server example. Suppose you want to have more control on the print
content of static pages, you can use the following code:

//…
Set tokens = new Set.from(['1234567890']);
bool allowPrintContent = false;
 server.listen((HttpRequest request) {
 runZoned((){
//…
 });
 runZoned(() {
 readFile(request.uri.path).then((String context){
 Zone.current.print(context);
 request.response.write(context);
 request.response.close();
 });
 }, zoneValues: {'allow-print':allowPrintContent},
 zoneSpecification: new ZoneSpecification(
 print: (Zone self, ZoneDelegate parent, Zone zone,
String message) {
 if (zone['allow-print']) {
 parent.print(zone, message);
 }
 }),
 onError:(e) {
//…

We add a Boolean variable allowPrintContent to manage the print operation.
We call the print function of the zone to print the content of the page when processing
Future of readFile. We inject allowPrintContent as a value of the allow-print key
of zoneValues, and finally, inside the overridden print function, we add a condition
that allows us to print the page content only if allow-print is true.

Asynchronous Programming

[94]

We requested the index.html file via the Postman extension again and see the
following result in the console:

Resource /index.html
Hello, world!

As expected, our code prints the information that comes from both the nested zones.
Now, we change the value to false and restart the server. The following request
only prints the message from the first zone:

Resource /index.html

Interaction between zones can be easily organized via the zone variables.

Tracking the zone execution
The server listener contains two zones. The first one is used to authenticate the
files and the second one is used to read the content of the static files and send them
back to the client. It is quite interesting to know how long each static page takes to
load and process. Zones support several run methods to execute a given function
in the zone. We can override the run method in ZoneSpecification to count the
time spent by the request processing function. We use Stopwatcher as the timer in
our example. We are processing each request and print profiling the time just after
sending the response back to the client, as shown in the following code:

//…
runServer() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((server) {
 Set tokens = new Set.from(['1234567890']);
 bool allowPrintContent = true;
 Stopwatch timer = new Stopwatch();
 server.listen((HttpRequest request) {
 runZoned((){
//…
 });
 runZoned(() {
 readFile(request.uri.path).then((String context){
 Zone.current.print(context);
 request.response.write(context);
 request.response.close();
 Zone.current.print(

Chapter 4

[95]

 "Process time ${timer.elapsedMilliseconds} ms");
 });
 }, zoneValues: {'allow-print':allowPrintContent},
 zoneSpecification: new ZoneSpecification(
 print: (Zone self, ZoneDelegate parent, Zone zone, String
message) {
 if (zone['allow-print']) {
 parent.print(zone, message);
 }
 },
 run: (Zone self, ZoneDelegate parent, Zone zone, f)
 => run(parent, zone, f, timer)
),
 onError:(e) {
 request.response.statusCode = HttpStatus.NOT_FOUND;
 request.response.write(e.toString());
 request.response.close();
 });
 });
 });
}

Now, we override the run function in ZoneSpecification to call a global run
function with timer, as follows:

run(ZoneDelegate parent, Zone zone, Function f, Stopwatch timer) {
 try {
 timer.start();
 return parent.run(zone, f);
 } finally {
 timer.stop();
 }
}

In the global run function, we perform a trick when we call the original function
from the parent zone delegate. We intend to wrap the function with a try/finally
block to stop the timer before returning the result to the zone. Let's request the same
resource again, as follows:

Resource /index.html
Hello, world!
Process time 54 ms

Now, we have the profiling information per request processed on the server.
In addition to the standard run function, the zone has the runUnary and runBinary
functions to pass one or two extra arguments to execute the given function inside
a zone.

Asynchronous Programming

[96]

Isolates
Now, it's time to discuss the performance of our server. We use an HTTP
benchmarking tool such as wrk (https://github.com/wg/wrk) by Will Glozer
to help us in our investigation. To avoid confusion, we will take the simplest
version of our server, as follows:

import 'dart:io';

main() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((server) {
 server.listen((HttpRequest request) {
 // Response back to client
 request.response.write('Hello, world!');
 request.response.close();
 });
 });
}

We use this code with a benchmarking tool and keep the 512 concurrent connections
open for 30 seconds, as shown in the following code:

./wrk -t1 –c256 -d30s http://127.0.0.1:8080

Here is the result of the preceding code:

Running 30s test @ http://127.0.0.1:8080
 1 threads and 256 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 33.89ms 24.51ms 931.37ms 99.76%
 Req/Sec 7.63k 835.29 9.77k 89.93%
 225053 requests in 30.00s, 15.02MB read
Requests/sec: 7501.81
Transfer/sec: 512.82KB

The test shows that our server can process close to 7,500 requests per second.
Actually, this is not too bad. Can this value be improved? The key issue is that
all this work is handled by a single thread:

• A single thread has the code to handle all the clients that appear in one place
• All the work will run sequentially on one thread

https://github.com/wg/wrk

Chapter 4

[97]

If the total work saturates the core, then the additional work will strangle and slow
down the responsiveness of the server for all the clients as later requests queue up
and wait for the previous work to be completed. Isolates can solve this problem
and run several instances of the server in different threads. We will continue to
improve our server and use the ServerSockets feature that came with the Dart 1.4
release. We will use the references of ServerSocket to run multiple instances of
our server simultaneously. Instead of creating an instance of HttpServer, we create
ServerSocket with the same initial parameters that we used before.

First of all, we need to create ReceivePort in the main thread to receive hand-shaking
and usual messages from the spawned isolates. We create as many isolates as we can
depending on the number of processors we have. The first parameter of the spawn
static method of the Isolate class is a global function that helps organize hand-
shaking between the main thread and spawned isolate. The second parameter is port,
which is used as a parameter in the global function. The same port is used to send
messages from spawned isolates to the main thread. Now, we need to listen to the
messages from the spawned isolates. The spawned isolate follows the hand-shaking
process and all the sent messages with SendPort are listened to in the main thread.
On the completion of the hand-shaking procedure, we create and send an instance of
ServerTask. All other messages will come as a string to be printed out on the console,
as shown in the following code:

import 'dart:isolate';
import 'dart:io';

main() {
 ServerSocket
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((ServerSocket server) {
 // Create main ReceivePort
 ReceivePort receivePort = new ReceivePort();
 // Create as much isolates as possible
 for (int i = 0; i < Platform.numberOfProcessors; i++) {
 // Create isolate and run server task
 Isolate.spawn(runTask, receivePort.sendPort);
 }
 // Start listening messages from spawned isolates
 receivePort.listen((msg){
 // Check what the kind of message we received
 if (msg is SendPort) {
 // There is hand-shaking message.
 // Let's send ServerSocketReference and port
 msg.send(new ServerTask(
 server.reference, receivePort.sendPort));
 } else {

Asynchronous Programming

[98]

 // Usual string message from spawned isolates
 print(msg);
 }
 });
 });
}

/**
 * Global function helps organize hand-shaking between main
 * and spawned isolate.
 */
void runTask(SendPort sendPort) {
 // Create ReceivePort for spawned isolate
 ReceivePort receivePort = new ReceivePort();
 // Send own sendPort to main isolate as response on hand-shaking
 sendPort.send(receivePort.sendPort);
 // First message comes from main contains a ServerTask instance
 receivePort.listen((ServerTask task) {
 // Just execute our task
 task.execute();
 });
}

/**
 * Task helps create ServerSocket from ServerSocketReference.
 * We use new instance of ServerSocket to create new HttpServer
 * which starts listen HttpRequests and sends requested path into
 * main's ReceivePort.
 */
class ServerTask {
 ServerSocketReference reference;
 SendPort port;

 ServerTask(this.reference, this.port);

 execute() {
 // Create ServerSocket
 reference.create().then((serverSocket) {
 // Create HttpServer and start listening income HttpRequests
 new HttpServer.listenOn(serverSocket)
 .listen((HttpRequest request) {
 // Send requested path into main's ReceivePort
 port.send(request.uri.path);
 // Response back to client
 request.response.write("Hello, world");
 request.response.close();
 });
 });
 }
}

Chapter 4

[99]

Our code is clear enough and potentially faster with isolates. The program is clearer
because the code to handle each request is nicely wrapped up in its own function
and is faster because each SocketServer instance keeps different connections
asynchronous and independent; the work on one connection doesn't have to wait to
be processed sequentially behind work on another connection. In general, this gives
a better responsiveness even on a single-core server. In practice, it delivers better
scalability under the load on servers that do have parallel hardware. Now, run the
tests and we will see a significant improvement in our server:

./wrk -t1 –c256 -d30s http://127.0.0.1:8080

The following is the result of the preceding code:

Running 30s test @ http://127.0.0.1:8080
 1 threads and 256 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 10.31ms 6.11ms 50.81ms 73.78%
 Req/Sec 24.01k 2.00k 28.32k 67.52%
 709163 requests in 30.00s, 46.67MB read
Requests/sec: 23638.95
Transfer/sec: 1.56MB

Our server can process close to 24,000 requests per second in a concurrency-enabled
environment. Fantastic!

So, after that quick dive into the world of concurrency, let's discuss isolates in
general. Just repeat the best practices of the async programming:

• The program is driven by the queued events coming in from different
independent sources

• All the pieces of the program must be loosely coupled

Isolate is a process that builds around the model of servicing a simple FIFO
messaging queue. It does not share memory with other isolates and all isolates
communicate by passing messages, which are copied before they are sent. As you
can see, the implementation of isolates follows the same main principles as async
programming.

Always set the receiver port to the main isolate if you need to receive
messages from other isolates or send them to each other.

Asynchronous Programming

[100]

Summary
You now have a better understanding of event-driven architecture, which is one of
the key concepts of Dart VM. Event-driven architecture is the right approach to build
loosely coupled asynchronous systems.

Dart relies on event-driven architecture based on a single-threaded execution
model with a single event loop and two queues. The event loop is backed by a
single thread, so no synchronization or locks are required at all. When the event
loop is blocked with an operation, this blocks the entire application. A combination
of single-threaded execution models and asynchronous operations allows an
application to be more productive and less resource intensive.

Future is a proxy for an initially unknown result that returns as a value instead of
calling a callback function. Future almost always adds an event or microtask into
the queue that is being processed in the event loop. Future can be completed with a
value or error only once.

Zones implement the best practices of a configurable code wrapper to handle the
uncaught errors. Zones can have local variables and can schedule microtasks, create
one-off or repeating timers, print information, and save
a stack trace for debugging purposes.

An isolate is a process built around the model of servicing simple messaging queue.
It does not share the memory with other isolates and all isolates communicate by
passing messages, which are copied before they are sent.

In the next chapter, we will see the stream framework and show when and how to
properly use it.

The Stream Framework
In this chapter, we will talk about streams. Streams have existed since the early days
of UNIX. They have proven to be a dependable way to compose large systems out of
small components, which does one thing well. Streams restrict the implementation of
a surface area into a consistent interface that can be reused. You can plug the output
of one stream as the input to another and use libraries that operate abstractly on
streams to institute high-level flow control. Streams are an important component of
small program design and have important abstractions that are worth considering.
In this chapter, we will cover the following topics:

• Single-subscription streams versus broadcast streams
• The stream framework API

Why you should use streams
Just imagine that you need to provide a file on a server in response to a client's
request. The following code will do this:

import 'dart:io';

main() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((server) {
 server.listen((HttpRequest request) {
 new File('data.txt').readAsString()
 .then((String contents) {
 request.response.write(contents);
 request.response.close();
 });
 });
 });
}

The Stream Framework

[102]

In the preceding code, we read the entire file and buffered it into the memory of
every request before sending the result to the clients. This code works perfectly for
small files, but what will happen if the data.txt file is very large? The program will
consume a lot of memory because it serves a lot of users concurrently, especially on
slow connections. One big disadvantage of this code is that we have to wait for an
entire file to be buffered in memory before the content can be submitted to the clients.

The HttpServer object listens for the HTTP request, which is a Stream. The
HttpServer object then generates an HttpRequest object and adds it to the stream.
The body of the request that is delivered by an HttpRequest object is a stream of
byte lists. An HttpRequest object provides you with an access to the response
property associated with an HttpResponse object. We will write the content of a
file into the body of the HttpResponse object. The fact that the HttpRequest and
HttpResponse classes are streams means that we can write our example in a better
way, as shown in the following code:

import 'dart:io';

main() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V4, 8080)
 .then((server) {
 server.listen((HttpRequest request) {
 new File('data.txt')
 .openRead()
 .pipe(request.response);
 });
 });
}

The openRead method creates a new independent Stream Instance of byte lists
for the content of this file. The pipe method binds this stream as the input of the
provided stream consumer and listens for the data, error, or done events. The
preceding code has the following benefits:

• The code is cleaner, so you don't need to remember how to push data
through the nonstreaming API

• The file streams to clients in chunks, one chunk at a time as soon as they are
received from the disk

• The server doesn't need buffer chunks of a file in the memory when the
remote clients are on a slow or high-latency connection, because the stream
handling backs the pressure automatically

Streams make development simple and elegant.

Chapter 5

[103]

Single-subscription streams versus
broadcast streams
The Dart stream framework supports the single-subscription and broadcast streams
in order to have different approaches depending on the required solution. Let's see
the difference between single-subscription and broadcast streams.

A single-subscription stream
A stream that allows you to have only one listener during the entire lifetime is called
a single-subscription stream. You are not allowed to cancel and subscribe to the
same stream again. The newly created stream starts generating events only after the
subscription starts listening to them. It stops generating events after the subscription
is canceled even if the stream can provide more. The single-subscription stream
always delivers each event in the correct order to a listener.

Use single-subscription streams when the event delivery and its
order are important for your solution.

A good usage example of a single-subscription stream is getting data from the file
or server.

A broadcast stream
A stream that allows you to have multiple listeners during the entire lifetime is
called the broadcast stream. You are allowed to subscribe or cancel the subscription
at any time. A broadcast stream starts to generate events immediately after the
creation if it ready, independent of whether any subscription is registered or not.
This fact means that some portion of the events can be lost in a moment when no
listener is registered. There is no guarantee that multiple listeners will get the event
in the same order that they were registered. A broadcast stream only guarantees that
each listener will get all the events in the correct order.

Use broadcast streams when delivering events to multiple
listeners is important for your solution.

A good example of using the broadcast stream is the eventbus implementation that
supports multiple listeners.

The Stream Framework

[104]

An overview of the stream framework API
You can see the hierarchy of the stream framework classes in the following diagram:

The Stream class
The Stream class is abstract and provides a generic view on the sequence of byte
lists. It implements numerous methods to help you manage or republish streams
in your application. The sequence of events can be seamlessly provided by Stream.
The events that are generated by Stream store the data to be delivered. In case of a
failure, the Stream class generates an error event. When all the events have been
sent, the Stream class generates done event.

The validation methods of the Stream class
The Stream class has the following methods that help you validate data returned
from a stream:

• any: This method checks whether the test callback function accepts any
element provided by this stream

Chapter 5

[105]

• every: This method checks whether the test callback function accepts all the
elements provided by this stream

• contains: This method checks whether the needle object occurs in the
elements provided by this stream

The search methods of the Stream class
The following methods of the Stream class help you search for specific elements
in a stream:

• firstWhere: This method finds the first element of a stream that matches the
test callback function

• lastWhere: This method finds the last element of a stream that matches the
test callback function

• singleWhere: This method finds the single element in a stream that matches
the test callback function

The subset methods of the Stream class
The Stream class provides the following methods to create a new stream that
contains a subset of data from the original one:

• where: This method creates a new stream from the original one with data
events that satisfy the test callback function

• skip: This method creates a new stream with data events that are left after
skipping the first count of the data events from the original stream

• skipWhere: This method creates a new stream with the data events from
the original stream when they are matched by the test callback function

• take: This method creates a new stream with the data events that are
provided at most the first count values of this stream

• takeWhere: This method creates a new stream with the data events from
the original stream when the test callback function is successful

You will find other methods of the Stream class on the official help page at
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-
async.Stream.

https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-async.Stream
https://api.dartlang.org/apidocs/channels/stable/dartdoc-viewer/dart-async.Stream

The Stream Framework

[106]

Creating a stream
The Stream class has several factory constructors to create single-subscription
or broadcast streams. Let's discuss them in detail.

A new stream from the Future class
The first factory constructor could confuse you because it creates a new
single-subscription stream from the Future instance with the following command:

factory Stream.fromFuture(Future<T> future)

This confusion will be quickly cleared if I remind you about the translation of the
Future class into the Stream class via the asStream method from the same class,
as shown in the following code:

…
Stream<T> asStream() => new Stream.fromFuture(this);
…

The resulting stream will fire an data or error event when the Future class is
completed, and closes itself with the done event. The following code snippet
shows how this factory constructor can be used:

import 'dart:async';

main() {
 // single sample data
 var data = new Future<num>.delayed(
 const Duration(milliseconds:500), () {
 // Return single value
 return 2;
 });
 // create the stream
 Stream<num> stream = new Stream<num>.fromFuture(data);
 // Start listening
 var subscriber = stream.listen((data) {
 print(data);
 }, onError:(error){
 print(error);
 }, onDone:() {
 print('done');
 });
}

Chapter 5

[107]

The execution of the preceding code prints the following result on the console:

2
done

A new stream from the Iterable class
It's quite obvious that you should have a factory constructor that creates a
single-subscription stream from any Iterable instance. Iteration over a stream
happens only if the stream has a listener and can be interrupted if the listener
cancels the subscription. Any error that occurs in the iteration process immediately
ends the stream and throws an error. In this case, the done event doesn't fire because
the iteration was not complete.

In the following code snippet, we create an instance of the Iterable class with
a factory constructor that generates the sequence of numbers. We intentionally
generate an Exception at the location of the third element:

import 'dart:async';

main() {
 // some sample generated data
 var data = new Iterable<num>.generate(5, (int indx) {
 if (indx < 3) {
 return indx;
 } else {
 throw new Exception('Wrong data');
 }
 });
 // create the stream
 Stream<num> stream = new Stream<num>.fromIterable(data);
 // Start listening
 var subscriber = stream.listen((data) {
 print(data);
 }, onError:(error){
 print(error);
 }, onDone:() {
 print('done');
 });
}

The result of the preceding code is as follows:

0
1
2
Exception: Wrong data

The Stream Framework

[108]

A new stream with periodically generated
events
In the previous topic, we used the Iterable.generate factory constructor
to emit numeric data into our stream. However, we can do that well via the
Stream.periodic factory constructor, as follows:

factory Stream.periodic(Duration period,
 [T computation(int computationCount)])

We can do this in a natural stream and a less verbose way, as follows:

import 'dart:async';

main() {
 // some sample generated data
 Stream<num> stream = new Stream
 .periodic(const Duration(milliseconds: 500), (int count) {
 // Return count
 return count;
 });
 // Start listening
 var subscriber = stream.listen((data) {
 print(data);
 }, onError:(error){
 print(error);
 }, onDone:() {
 print('done');
 });
}

The first parameter is the duration that gives you the interval between emitting
events. The second parameter is the callback function that computes the event values.
This function has a single parameter that defines sequential number of iterations.

A new stream from the transformation pipe
The Stream.eventTransformed factory constructor is quite interesting because it
creates a new Stream from the existing one with the help of a sink transformation,
as shown in the following code:

factory Stream.eventTransformed(Stream source,
 EventSink mapSink(EventSink<T> sink))

Chapter 5

[109]

The first parameter is the source stream that provides events to the new one.
The mapSink callback function is the one that is called when a new stream is
listening. All the events from the existing stream pass through the sink to reach a
new stream. This constructor is widely used to create stream transformers. In the
following code, we will create a DoublingSink class. It accepts the output stream as
an argument of the constructor. We will implement the number-doubling algorithm
inside the add method. The other addError and close methods are simple and
pass the incoming parameter values to the underlying stream object, as shown
in the following code:

import 'dart:async';

/**
 * An interface that abstracts creation or handling of
 * Stream events.
 */
class DoublingSink implements EventSink<num> {
 final EventSink<num> _output;

 DoublingSink(this._output);

 /** Send a data event to a stream. */
 void add(num event) {
 _output.add(event * 2);
 }

 /** Send an async error to a stream. */
 void addError(errorEvent, [StackTrace stackTrace]) =>
 _output.addError(errorEvent, stackTrace);

 /** Send a done event to a stream.*/
 void close() => _output.close();
}

The DoublingTransformer class implements StreamTransformer for numbers.
In the bind method, which is compulsory, we will create a new stream via the
eventTransformer constructor and return the instance of DoublingSink as
result of the constructor's callback, as shown in the following code:

class DoublingTransformer implements StreamTransformer<num, num> {
 Stream<num> bind(Stream<num> stream) {
 return new Stream<num>.eventTransformed(stream,
 (EventSink sink) => new DoublingSink(sink));
 }

The Stream Framework

[110]

}

void main() {
 // some sample data
 var data = [1,2,3,4,5];
 // create the stream
 var stream = new Stream<num>.fromIterable(data);
 // Create DoublingTransformer
 var streamTransformer = new DoublingTransformer();
 // Bound streams
 var boundStream = stream.transform(streamTransformer);
 // Because we start listening the 'bound' stream the 'listen'
method
 // invokes the 'doublingTransformer' closure
 boundStream.listen((data) {
 print('$data');
 });
}

In the main method, we created a simple stream via the Stream.fromIterable
factory constructor and created a stream transformer as an instance of
DoublingTransformer. So, we can combine them together in a call of the
transform method. When we start listening to the bounded stream, events from
the source stream will be doubled inside DoublingSink and accommodated here.
The following result is expected:

2
4
6
8
10

A new stream from StreamController
In the previous topics, we saw how a stream can be easily created from another
stream with the help of one of the factory constructors. However, you can create a
stream from scratch with help of StreamController, which gives you more control
over generating events of a stream. With StreamController, we can create a stream
to send the data, error, and done events to the stream directly. A stream can be
created via the StreamController class through the different factory constructors. If
you plan to create a single-subscription stream, use the following factory constructor:

factory StreamController({void onListen(), void onPause(), void
 onResume(), onCancel(),bool sync: false})

Chapter 5

[111]

The controller has a life cycle that presents the following states:

• Initial state: This is where the controller has no subscription. The controller
buffers all the data events in this state.

• Subscribed state: In this state, the controller has a subscription. The onListen
and onCancel callback functions are called when the subscriber registers
or ends the subscription accordingly. The callback functions onPause and
onResume are called when the controlling stream via a subscriber changes the
state to pause or resume. The controller may not call the onResume callback
function if the new data from the stream was canceled.

• Canceled state: In this state, the controller has no subscription.
• Closed state: In this state, adding more events is not allowed.

If the sync attribute is equal to true, it tells the controller that the events might be
directly passed into the listening stream by the subscriber when the add, addError,
or close methods are called. In this case, the events will be passed only after the
code that creates the events has returned.

A stream instance is available via the stream property. Use the add, addError,
and close methods of StreamSink to manage the underlying stream.
The controller buffers the data until a subscriber starts listening, but bear
in mind that the buffering approach is not optimized to keep a high volume of
events. The following code snippet shows you how to create a single-subscription
stream with StreamController:

import 'dart:async';

main() {
 // create the stream
 Stream<num> stream = createStream();
 // Start listening
 StreamSubscription<num> sub = createSubscription(stream);
}

StreamSubscription<num> createSubscription(Stream<num> stream) {
 StreamSubscription subscriber;
 subscriber = stream.listen((num data) {
 print('onData: $data');
 // Pause subscription on 3-th element
 if (data == 3) {
 subscriber.pause(new Future.delayed(

The Stream Framework

[112]

 const Duration(milliseconds: 500), () => 'ok'));
 }
 },
 onError:(error) => print('onError: $error'),
 onDone:() => print('onDone'));
 return subscriber;
}

Stream<num> createStream() {
 StreamController<num> controller = new
 StreamController<num>(
 onListen:() => print('Listening'),
 onPause: () => print('Paused'),
 onResume: () => print('Resumed'),
 onCancel: () => print('Canceled'), sync: false);
 //
 num i = 0;
 Future.doWhile((){
 controller.add(i++);
 // Throws exception on 5-th element
 if (i == 5) {
 controller.addError('on ${i}-th element');
 }
 // Stop stream at 7-th event
 if (i == 7) {
 controller.close();
 return false;
 }
 return true;
 });
 return controller.stream;
}

In the preceding code, we intentionally throw an error at the 5-th element and
stop the stream at the 7-th element. The stream subscriber paused listening to
the stream at the 3-th element and resumed it after a delay of 500 milliseconds.
This will generate the following result:

Listening
onData: 0
onData: 1
onData: 2
onData: 3
Paused

Chapter 5

[113]

onData: 4
onError: on 5-th element
onData: 5
onData: 6
Canceled
onDone

The following factory constructor creates a controller for the broadcast stream,
which can be listened to more than once:

factory StreamController.broadcast({void onListen(),
 void onCancel(), bool sync: false})

The controller created by this constructor delivers the data, error, or done events
to all listeners when the add, addError, or close methods are called. The invocation
method with the same name is called in an order and is always before a previous call
is returned. This controller, as opposed to the single-subscribed one, doesn't have the
internal queue of events. This means that the data or error event will be lost if there
are no listeners registered at the time, this event is added. Each listener subscription
acts independently. If one subscription pauses, then only this one is affected, so
all the events buffer internally in the controller until the subscription resumes or
cancels. The controller has a life cycle that has the following states:

• Initial state: This is where the controller has no subscription. The controller
losses all the fired data and error events in this state.

• Subscribed state: This is where the first subscription is added to the
controller. The onListen and onCancel callback functions are called at
the moment when the first subscriber is registered or the last one ends its
subscription simultaneously.

• Canceled state: In this state, the controller has no subscription.
• Closed state: In this state, adding more events is not allowed.

If the sync attribute is equal to true, it tells the controller that events might be
passed directly into the listening stream by subscribers when the add, addError,
or close methods are called. Hence, the events will be passed after the code that
creates the event is returned, but this is not guaranteed when multiple listeners
get the events. Independent of the value of the sync attribute, each listener gets all
the events in the correct order. The following is a slightly changed version of the
previous code with two subscriptions:

import 'dart:async';

main() {

The Stream Framework

[114]

 // create the stream
 Stream<num> stream = createStream();
 StreamSubscription<num> sub1 = createSubscription(stream, 1);
 StreamSubscription<num> sub2 = createSubscription(stream, 2);
}

StreamSubscription<num> createSubscription(Stream<num> stream, num
number) {
 // Start listening
 StreamSubscription subscriber;
 subscriber = stream.listen((num data) {
 print('onData ${number}: $data');
 // Pause subscription on 3-th element
 if (data == 3) {
 subscriber.pause(new Future.delayed(
 const Duration(milliseconds: 500), () => 'ok'));
 }
 },
 onError:(error) => print('onError: $error'),
 onDone:() => print('onDone'));
 return subscriber;
}

Stream<num> createStream() {
 StreamController<num> controller = new
 StreamController<num>.broadcast(
 onListen:() => print('Listening'),
 onCancel: () => print('Canceled'), sync: false);
 //
 num i = 0;
 Future.doWhile((){
 controller.add(i++);
 // Throws exception on 5-th element
 if (i == 5) {
 controller.addError('on ${i}-th element');
 }
 // Stop stream at 7-th event
 if (i == 7) {
 controller.close();
 return false;
 }
 return true;
 });
 return controller.stream;
}

Chapter 5

[115]

The preceding code snippet generates the following result:

Listening
onData 1: 1
onData 2: 1
onData 1: 2
onData 2: 2
onData 1: 3
onData 2: 3
onData 1: 4
onError: on 5-th element
onData 1: 5
onData 1: 6
onDone
onData 2: 4
onError: on 5-th element
onData 2: 5
onData 2: 6
Canceled
onDone

These results reaffirm the fact that the broadcast stream doesn't guarantee the
order of the delivery events to different listeners. It only guarantees an order
of the delivery events inside each listener.

What does the StreamSubscription class do?
The listen method of the Stream class adds the following subscription to
the stream:

StreamSubscription<T> listen(
 void onData(T event),
 { Function onError, void onDone(), bool cancelOnError});

A callback function onData is called every time when a new data event comes from
this stream. Existence of this function is important because without it nothing will
happen. The optional onError callback is called when an error comes from the
stream. This function accepts one or two arguments. The first argument is always
an error from the stream. The second argument, if it exists, is a StackTrace instance.
It can be equal to null if the stream received an error without StackTrace itself.
When the stream closes, it calls the onDone callback function. The cancelOnError
flag informs the subscription to start the cancellation the moment the error occurs.

The Stream Framework

[116]

A result of this method is the instance of the StreamSubscription class. It provides
events to the listener and holds the callback functions used in the listen method
of the Stream class. You can set or override all the three callback functions via the
onData, onError, and onDone methods of the StreamSubscriber class. The listening
stream can be paused and resumed with the pause and resume methods. A special flag
isPaused returns true if an instance of the StreamSubscription class is paused. The
stream subscription can end with the cancel method at any time. It returns a Future
instance, which completes with a null value when the stream is done cleaning up.
This feature is also useful for tasks such as closing a file after reading it.

Minimizing access to the Stream class
members using StreamView
The StreamView class is wrapper for the Stream class exposes only the isBroadcast
getter, the asBroadCastStream and listen methods from original one. So if you need
clear Stream interface in your code, you can use it like this:

import 'dart:async';

main() {
 // some sample data
 var data = [1,2,3,4,5];
 // create the stream
 var stream = new Stream<num>.fromIterable(data);
 // Create a view
 var streamView = new StreamView(stream);
 // Now listen stream view like stream
 var subscriber = streamView.listen((data) {
 print(data);
 }, onError:(error){
 print(error);
 }, onDone:() {
 print('done');
 });
}

You will get the following result:

1
2
3
4
5
done

Chapter 5

[117]

The Sink and EventSink interfaces
A Sink class represents a generic interface for data receivers. It defines the add
method that will put the data in the sink and the close method, which tells the sink
that no data will be added in future. The EventSink class uses the add method of
the Sink class to send a data event to a stream, as well as the close method to send
a done event. The addError method belongs to the EventSink class that sends an
asynchronous error to a stream.

Importance of the StreamConsumer interface
We can bind one stream to another via the pipe method of the Stream class. The
consumer stream is represented by the StreamConsumer interface. This interface
defines the contract between two streams. The addStream method is used to
consume the elements of the source stream. The consumer stream will listen on the
source stream and do something for each event. It may stop listening after an error
or may consume all errors and stop at the done event. The close method tells the
consumer that no future streams will be added. This method returns the Future
instance that is completed when the source stream has been consumed and the
consumer is closed.

What does the StreamSink class do?
The StreamSink class combines methods from StreamConsumer and EventSink.
You should know that methods from both the classes will block each other. We
cannot send the data or error events via the methods of the EventSink class while
we are adding the source stream via the addStream method from StreamConsumer.
We can start using the methods from EventSink only after the Future instance
returned by the addStream method is completed with a value. Also, the addStream
method will be delayed until the underling system consumes the data added by the
EventSink method. The StreamSink class has a done getter that returns the Future
instance that is completed when the owned StreamSink class is finished with one of
the following conditions:

• It is completed with an error as a result of adding events in one of the add,
addError, or close methods of the EventSink class

• It is completed with success when all the events have been processed and the
sink has been closed or the sink has been stopped from handling more events

The Stream Framework

[118]

Transforming streams with the
StreamTransformer class
The StreamTransformer class helps you create a new consumer stream that is
bound to the original one via the bind method. The StreamTransformer class can be
instantiated through two factory constructors that define different strategies on how
the transformation will happen. In following factory constructor, we need to specify
the following special transformer function:

const factory StreamTransformer (Function StreamSubscription<T>
 transformer(Stream<S> stream, boolcancelOnError))

The transformer function receives a bounded stream as an argument and returns
an instance of the StreamSubscription class. If you are planning to implement your
own stream transformer function, it will look like this:

import 'dart:async';

void main() {
 // some sample data
 var data = [1,2,3,4,5];
 // create the stream
 var stream = new Stream<num>.fromIterable(data);
 // Create StreamTransformer with transformer closure
 var streamTransformer =
 new StreamTransformer<num, num>(doublingTransformer);
 // Bound streams
 var boundStream = stream.transform(streamTransformer);
 // Because we start listening the 'bound' stream the
 // 'listen' method invokes the 'doublingTransformer'
 // closure
 boundStream.listen((data) {
 print('$data');
 });
}

StreamSubscription doublingTransformer(Stream<num> input,
 bool cancelOnError) {

 StreamController<num> controller;
 StreamSubscription<num> subscription;
 controller = new StreamController<num>(
 onListen: () {

Chapter 5

[119]

 subscription = input.listen((data) {
 // Scale the data double.
 controller.add(data * 2);
 },
 onError: controller.addError,
 onDone: controller.close,
 cancelOnError: cancelOnError);
 });
 return controller.stream.listen(null);
}

The preceding code generates the following output:

2
4
6
8
10

The other factory method creates a StreamTransformer class that delegates events
to the special functions, which handle the data, error, and done events, as shown
in the following code:

factory StreamTransformer.fromHandlers({
 void handleData(S data, EventSink<T> sink),
 void handleError(Object error, StackTrace stackTrace,
 EventSink<T> sink),
 void handleDone(EventSink<T> sink)})

The changed version of the previous example is as follows:

import 'dart:async';

void main() {
 // some sample data
 var data = [1,2,3,4,5];
 // create the stream
 var stream = new Stream<num>.fromIterable(data);
 // Create StreamTransformer with transformer closure
 var streamTransformer = new StreamTransformer<num, num>
 .fromHandlers(
 handleData:handleData,
 handleError:handleError,
 handleDone:handleDone);
 // Bound streams

The Stream Framework

[120]

 var boundStream = stream.transform(streamTransformer);
 // Because we start listening the 'bound' stream the
 // 'listen' method invokes the 'handleData' function
 boundStream.listen((data) {
 print('$data');
 });
}

handleData(num data, EventSink<num> sink) {
 sink.add(data * 2);
}

handleError(Object error, StackTrace stackTrace, EventSink<num> sink)
{
 sink.addError(error, stackTrace);
}

handleDone(EventSink<num> sink) {
 sink.close();
}

The following result of this execution looks similar to previous one:

2
4
6
8
10

Traverse streams with StreamIterator
The StreamIterator class permits a stream to be read using the iterator operations.
It has the moveNext method that waits for the next stream's value to become
available and returns the Future value of the bool type, as follows:

Future<bool> moveNext();

If the result of moveNext is a success, then the Future class completes with the true
value, else the iteration is done and no new value will be available. The current
value of the stream exists in the current property of the StreamIterator
instance, as shown in the following code:

T get current;

Chapter 5

[121]

This value is valid when the Future class returned by the moveNext method completes
with the true value and only until the next iteration. A StreamIterator class is an
abstract class and can be instantiated only via the factory constructor, as follows:

factory StreamIterator(Stream<T> stream)

Let's change the example from the previous topic to use StreamIterator. We will
create a simple stream from Iterable as we did before. Then, we will create an
instance of StreamIterator. Finally, we will use the forEach function to iterate
over the stream and call the closure function to print scaled elements of the stream,
as shown in the following code:

main() {
 // some sample data
 var data = [1,2,3,4,5];
 // create the stream
 var stream = new Stream<num>.fromIterable(data);
 // Create an iterator
 var iterator = new StreamIterator(stream);
 // Iterate over all elements of iterator and print values
 forEach(iterator, (value) {
 // Scale the data double.
 print(value * 2);
 });
}

Actually, this code looks similar to the ones where we used iterators. All the magic
happens inside the forEach method, as shown in the following code:

forEach(StreamIterator iterator, f(element)) {
 return Future.doWhile(() {
 Future future = iterator.moveNext();
 future.then((bool hasNext) {
 if (hasNext) {
 f(iterator.current);
 }
 });
 return future;
 });
}

As the moveNext method returns the Future value, we need to use the doWhile
method of the Future class to perform the iteration. The Boolean result of Future
returns a hasNext parameter. We call the closure function until the value of the
hasNext parameter is true.

The Stream Framework

[122]

The code generates the following result:

2
4
6
8
10

Summary
Now you have a better understanding of the stream framework, which is one of the
key concepts of Dart VM.

Streams have existed since the early days of UNIX. They have proved to be a
dependable way to compose large systems out of the small components. The Dart
stream framework supports single-subscription and broadcast streams in order to
have different approaches depending on the required solution.

In the next chapter, we will see the collection framework and when and how to
properly use different types of collection frameworks. You will also learn how
to choose the correct data structure based on the usage patterns, concurrency,
and performance considerations.

The Collection Framework
The collection framework is a set of high-performance classes used to store and
manipulate groups of objects. This framework allows different types of collections to
work in a similar manner and is designed around a set of standard interfaces. Several
standard implementations of interfaces can be extended or adapted very easily.
In this chapter, we will cover the following topics:

• An introduction to the collection framework
• Ordering of elements in collections
• Class hierarchy of the main interfaces
• The Iterable and Iterator interfaces
• The List, Set, Queue, and Map collections implementation
• Immutable collections
• Choosing the right collection

A Dart collection framework
In general, a collection is an object that holds a group of objects. Each item
in a collection is called an element. A Dart collection framework has the
following benefits:

• It is a set of interfaces that forces developers to adopt some design principles
• It can improve the performance of applications significantly

A framework provides a unified interface to store and manipulate the elements
of a collection and hide the actual implementation. The Dart implementation of
collections is highly optimized for execution in Dart and JavaScript VMs and is far
more efficient than what you could create yourself.

The Collection Framework

[124]

Ordering of elements
Several collections implicitly support ordering of elements and help in sorting them
without any effort. We can find any element with or without the filter predicate or
perform a binary search within a sorted array to improve the performance of large
collections. We can sort collections by providing a collection-compare function via
a comparator or an object-compare method via the Comparable interface.

The Comparable interface
There are many core classes in Dart that support a native comparison via the
implementation of the Comparable interface. You can implement the Comparable
interface in classes that you have created to use them in collections to prevent
unusual results of the sorting operation. Here, we will modify the Entity class
to implement the Comparable interface. All we have to do is implement the
compareTo method as shown in the following code:

class Entity implements Comparable {
 final int index;

 Entity(this.index);

 int compareTo(Entity other) {
 return this.index.compareTo(other.index);
 }

 @override
 String toString() => index != null? index.toString() : null;
}

The compareTo method of the Comparable interface compares this Entity class to
another one. It returns:

• A negative integer if the class is ordered before another element
• A positive integer if the class is ordered after another element
• A zero if the class and another element are ordered together

Now, we can safely order instances of the Entity class in our code with the sort
method of the List class, as shown in the following code:

void main() {
 var first = new Entity(1),
 second = new Entity(2);

Chapter 6

[125]

 var list = [second, first];
 print(list);
 // => [2, 1]
 list.sort();
 print(list);
 // => [1, 2]
}

The Comparator type
So how can you sort a class that doesn't implement a Comparable interface? Here is
an Entity2 class where implementing a Comparable interface is either impossible or
not desired:

class Entity2 {
 final int index;

 Entity2(this.index);

 @override
 String toString() => index != null ? index.toString() : null;
}

In order to compare this class, you must use the Comparator type definition
as follows:

typedef int Comparator<T>(T a, T b);

The sort method of all the collection classes accepts a function that matches the
signature of the Comparator. Here, we pass an anonymous function to sort the
comparison of our Entity2 classes as follows:

void main() {
 var list = [new Entity2(2), new Entity2(1)];
 print(list);
 // => [2, 1]
 list.sort((Entity2 a, Entity2 b) {
 return a.index.compareTo(b.index);
 });
 print(list);
 // => [1, 2]
}

As you can see, the anonymous function takes two arguments of the same type
and returns an integer. This exactly matches the signature of the Comparator
type definition.

The Collection Framework

[126]

If the arguments of the sort method are omitted, it uses the static compare method
of the Comparable interface.

Collections and generics
All the collection classes that are implemented use generics very heavily.
As discussed in Chapter 2, Advanced Techniques and Reflection, generics provide
the type of object that a collection contains. Every attempt to add another type
of element generates a static analysis warning. Generics in collections have the
following advantages:

• They help avoid class cast errors at runtime since we get the warnings during
the static analysis time

• They make the code cleaner, as there is no need to use casting operators and
conditions to check types

• They add to the runtime benefit only because the execution is done in the
production mode. The code that is compiled to JavaScript does not check
types and generics

The collection class hierarchy
The Dart collection framework has a usable set of collection classes that exists in the
dart:core and dart:collection libraries, as shown in the following diagram:

Queue List Set BidirectionalIterator

Iterable Iteratoriterator

IterableMixinIterableBase

Chapter 6

[127]

The standard collection interfaces simplify the passing and returning of collections
to and from the class methods and allows the methods to work on a wide variety of
collections. Using the common collection implementations makes the code shorter
and quicker. By adhering to these implementations, you can make your code more
standardized and easier to understand for yourself and others.

The Iterable interface
The Iterable interface can be defined as the common behavior of all classes in
the collection framework that supports a mechanism to iterate through all the
elements of a collection. It is an object that uses an Iterator interface to iterate over
all the elements in a collection. There are two abstract classes, IterableBase and
IterableMixin, that implement the Iterator interface. The IterableMixin class is
perfectly suited to be extended in the mixin solutions. If you plan to create your own
implementation of the Iterable interface, you need to extend one of them. There are
many different methods in the Iterable interface to help you manipulate the elements
in a collection.

The Iterable interface doesn't support adding or removing elements
from a collection.

Properties of the Iterable collection
Here is a list of the read-only properties that are common for all collections:

• length: This property returns the number of elements in a collection
• isEmpty: This property returns true if there are no elements in a collection
• isNotEmpty: This property returns true if there is at least one element

in a collection
• first: This property returns the first element of a collection or throws

StateError if the collection is empty
• last: This property returns the last element of a collection or throws

StateError if the collection is empty
• single: This property returns a single element in a collection. It throws

StateError if the collection is empty or has more than one element
• iterator: This property returns a reference on instance of the Iterator class

that iterates over the elements of the collection

The Collection Framework

[128]

Checking the items of a collection on a
condition
Sometimes, you want to know if all or any of the objects in a collection comply with
a specific condition. The following methods check whether the collection conforms to
specific conditions:

• every: This method returns true if every element in the collection satisfies
the specified condition. This can be seen in the following code:
List colors = ['red', 'green', 'blue'];
print(colors.every((color) => color != null || color != ''));
// => true

• any: This method returns true if one element in the collection satisfies the
specified condition. This is illustrated in the following code:
List colors = ['red', 'green', 'blue'];
print(colors.any((color) => color == 'red'));
// => true

The iterate over collection
The following method helps you iterate through elements of the collection:

• forEach: This method applies the specified function to each element of the
collection. This can be seen in the following code:
List colors = ['red', 'green', 'blue'];
colors.forEach((color) => print(color));
// => red
// => green
// => blue

The search over collection
The search over collection list includes the following methods that are used to search
for an element in a collection:

• contains: This method returns true if the collection contains an element
that is equal to the requested one. This is shown in the following code:
List colors = ['red', 'green', 'blue'];
print(colors.contains('red'));
// => true

Chapter 6

[129]

• elementAt: This method returns the indexth element. Exactly which object
is returned depends on the sorting algorithm implemented by the specific
collection class that you're using, as shown in the following code:
List colors = ['red', 'green', 'blue'];
print(colors.elementAt(0));
// => red

If the collection does not support ordering, then the result
of calling elementAt may be any element.

• firstWhere: This method returns the first element in the collection that
satisfies the given predicate test or the result of the orElse function.
It throws StateError if orElse was not specified, as illustrated in the
following code:
List colors = ['red', 'green', 'blue'];
print(colors.firstWhere((color) => color == 'orange',
orElse:() => 'orange'));
// => orange

• lastWhere: This method returns the last element in the collection that
satisfies the given predicate test or the result of the orElse function.
It throws StateError if orElse was not specified, as shown in the
following code:
List colors = ['red', 'green', 'blue'];
print(colors.lastWhere((color) => color != 'orange',
 orElse:() => ''));
// => blue

• singleWhere: This method returns a single element of the collection that
satisfies the test. If the collection is empty or more than one element matches,
then it throws StateError. The code is as follows:
List colors = ['red', 'green', 'blue'];
print(colors.singleWhere((color) => color == 'red'));
// => red

The Collection Framework

[130]

Creating a new collection
The following list includes methods to create a new collection from the original one;
all of them return Lazy Iterable results:

• expand: This method returns new collections by expanding each element
of the original one to zero or more elements. This can be seen in the
following code:
List colors = ['red', 'green', 'blue'];
print(colors.expand((color) {
 return color == 'red'
 ? ['orange', 'red', 'yellow']
 : [color];
}));
// => [orange, red, yellow, green, blue]

• map: This method creates a new collection of elements based on the elements
from the original collection that are transformed with specified function.
The code is as follows:
List colors = ['red', 'green', 'blue'];
print(colors.map((color) {
 if (color == 'green') return 'orange';
 if (color == 'blue') return 'yellow';
 return color;
}));
// => ['red', 'orange', 'yellow']

• take: This method returns an Iterable collection with a specified number of
elements from the original collection. The value of these elements must not
be negative. If the number of requested elements is more than the actual
number of elements, then it returns all the elements from the collection:
List nums = [1, 2, 3, 4, 5, 6];
print(nums.take(7));
// => [1, 2, 3, 4, 5, 6]

• takeWhile: This method returns an Iterable collection that stops once the test
is not satisfied anymore. This is illustrated in the following code:
List nums = [1, 2, 3, 4, 5, 6];
print(nums.takeWhile((element) => element < 5));
// => [1, 2, 3, 4]

Chapter 6

[131]

• skip: This method returns an Iterable collection that skips the specified
number of initial elements. If it has fewer elements than the specified
number, then the resulting Iterable collection is empty. Also, the specified
number must not be negative. The code is as follows:
List nums = [1, 2, 3, 4, 5, 6];
print(nums.skip(4));
// => [5, 6]

• skipWhile: This method returns an Iterable collection that skips the elements
while the test is satisfied. This is shown in the following code:
List nums = [1, 2, 3, 4, 5, 6];
print(nums.skipWhile((element) => element <= 4));
// => [5, 6]

• where: This method returns a Lazy Iterable collection with all the elements
that satisfy the predicate test. This is illustrated in the following code:
List nums = [1, 2, 3, 4, 5, 6];
print(nums.where((element) => element > 1 && element < 5));
// => [2, 3, 4]

• toList: This method creates a list that contains the elements of the original
collection. It creates a fixed length List if the growable attribute is false:
List nums = [1, 2, 3];
print(nums.toList(growable:false));
// => [1, 2, 3]

• toSet: This method creates a set that contains the elements of the original
collection. It ignores the duplicate elements. The code is as follows:
List nums = [1, 2, 1];
print(nums.toSet());
// => {1, 2}

Reducing a collection
The following list includes methods to reduce the number of elements in a collection:

• reduce: This method reduces the collection to a single value by iteratively
combining the elements of the collection using the provided function. If the
collection is empty, this results in StateError. In the following example,
we will calculate the sum of all elements in the collection:
List nums = [1, 2, 3];
print(nums.reduce((sum, element) => sum + element));
// => 6

The Collection Framework

[132]

• fold: This method reduces the collection to a single value by iteratively
combining each element of the collection with an existing value using
the specified function. Here, we have to specify the initial value and
aggregation function:
List nums = [1, 2, 3];
print(nums.fold(0, (acc, element) => acc + element));
// => 6

Converting a collection
The following method is used to convert all the elements of a collection:

• join: This method converts each element of the collection into a string and
returns the concatenated result separated with an optional separator. If the
collection is empty, it doesn't actually modify the type of the elements in the
collection, but just returns an empty string:
List nums = [1, 2, 3];
print(nums.join(' - '));
// => 1 - 2 - 3

Generating a collection
The Iterable interface has a factory method that helps to create a new Iterable
interface and is filled with a specified number of values generated by a generator
function, as shown in the following code:

Iterable generated = new Iterable.generate(4,
 (count) => "Is $count");
print(generated);
// => [Is 0, Is 1, Is 2, Is 3]

If the generator function is absent, this method generates a collection with only the
integer values:

Iterable generated = new Iterable.generate(4);
print(generated);
// => [0, 1, 2, 3]

The Lazy Iterable
The Lazy Iterable term is used plenty of times in Iterable interfaces. It is an
iteration strategy that delays the iteration of a collection until its value is needed
and avoids repeated iterations. In the following example, our code iterates over
the list of numbers.

Chapter 6

[133]

The where method prints the information about the current fetched element.
This function calls the object only when we actually fetch the element in the
forEach method of the Iterable interface, as shown in the following code:

lazyIterable() {
 List nums = [1, 2, 3];
 print('Get Iterable for $nums');
 Iterable iterable = nums.where((int i) {
 print('Fetched $i');
 return i.isOdd;
 });
 print('Start fetching');
 iterable.forEach((int i) {
 print("Received $i");
 });
}

Here is the output of the preceding function:

Get Iterable for [1, 2, 3]
Start fetching
Fetched 1
Received 1
Fetched 2
Fetched 3
Received 3

The following are the benefits of the Lazy Iterable:

• The performance increases because unnecessary iterations are avoided
• The memory usage footprint decreases because the values are iterated

when needed
• It helps to create infinite data structures

Bear in mind that iteration over the Lazy Iterable could be much slower than a
normal iteration because the code incurs the cost of an invocation to fetch the
next item from the Iterable source.

The Collection Framework

[134]

The Iterable interface
The Iterable interface has a strong relation to the Iterator. The Iterator is an interface
used to get items from a collection, one at a time. It follows the fail-fast principles to
immediately report whether the iterating collection was modified. The Iterator has
a property called current, which is used to return a currently pointed element. The
Iterator is initially positioned before the first element in a collection. The moveNext
method returns true if there is a next element in the collection and false if not.
Before using the Iterator, it must be initialized with the moveNext method to point
it to the first element. In the following code, we don't initialize the Iterator with the
moveNext method:

void main() {
 List<String> colors = ['red', 'green', 'blue'];

 Iterator<String> iter = colors.iterator;
 do {
 print(iter.current);
 } while (iter.moveNext());
}

The result of this code is unspecified, but it can return null or generate an exception,
as shown in the following code:

null
red
green
blue

Always initialize the Iterator with the moveNext method to
prevent unpredictable results.

Here is an example that shows you how to use the Iterator properly:

void main() {
 List<String> colors = ['red', 'green', 'blue'];

 Iterator<String> iter = colors.iterator;
 while (iter.moveNext()) {
 print(iter.current);
 }
}

Chapter 6

[135]

The result is as expected:

red
green
blue

Invocation of the moveNext method returns false after the collection ends, and the
current pointer always returns the last element.

The for loop statement uses the Iterator transparently to iterate through the collection:

void main() {
 List<String> colors = ['red', 'green', 'blue'];

 for (String color in colors) {
 print(color);
 }
}

The result is similar to that of the preceding example.

BidirectionalIterator
Sometimes, we need to iterate over a collection of elements in both directions.
To help in such cases, Dart provides BidirectionalIterator. In the following
code, BiListIterator is the implementation of BidirectionalIterator:

class BiListIterator<E> implements BidirectionalIterator<E> {
 final Iterable<E> _iterable;
 final int _length;
 int _index;
 E _current;

The constructor has an extra optional back parameter that defines the direction
of the iteration:

 BiListIterator(Iterable<E> iterable, {bool back:false}) :
 _iterable = iterable, _length = iterable.length,
 _index = back ? iterable.length - 1 : 0;

 E get current => _current;

The Collection Framework

[136]

The following code shows the moveNext method of the Iterator to move forward.
This and the next method compare the length of the Iterable and the actual length
of the collection to check concurrent modifications. The code is as follows:

 bool moveNext() {
 int length = _iterable.length;
 if (_length != length) {
 throw new ConcurrentModificationError(_iterable);
 }
 if (_index >= length) {
 _current = null;
 return false;
 }
 _current = _iterable.elementAt(_index);
 _index++;
 return true;
 }

The following movePrevious method of BidirectionalIterator is used to
move backwards:

 bool movePrevious() {
 int length = _iterable.length;
 if (_length != length) {
 throw new ConcurrentModificationError(_iterable);
 }
 if (_index < 0) {
 _current = null;
 return false;
 }
 _current = _iterable.elementAt(_index);
 _index--;
 return true;
 }
}

I have created a small example to prove that we can move in both directions:

main() {
 var list = new List.from([1, 2, 3, 4]);
 // Forward Iteration
 BiListIterator iter = new BiListIterator(list);
 while(iter.moveNext()) {
 print(iter.current);
 }
 // => 1, 2, 3, 4

Chapter 6

[137]

 // Backward Iteration
 iter = new BiListIterator(list, back:true);
 while(iter.movePrevious()) {
 print(iter.current);
 }
 // => 4, 3, 2, 1
}

First, I created an instance of List, but it might be Set or Queue or any
other collection that implements the Iterable interface. Then, I instantiated
BiListIterator and pointed it to my Iterable collection so that we are ready to
traverse via elements of the collection in the forward direction. Later, I created
another instance of BiListIterator but specified the backward direction of the
iteration. Finally, I could call movePrevious to move in the backward direction.

The collection classes
The collection framework has the following classes for all occasions:

• List: This is an ordered collection that supports indexed access to elements
and allows duplicate elements

• Set: This is a collection of elements in which each element can occur
only once

• Queue: This is a collection that can be manipulated at both ends
• Map: This is a collection of key-value pairs where each element is accessible

by a unique key

All of them define their own specific way to add or remove elements from collections.
Let's discuss each of them.

List
The List class implements the Iterable interface and intensively uses the indexed
order to iterate over elements in the collection. The List class can be of a fixed
or variable length. A fixed-length list can only be created by a constructor with a
specific number of elements: new List(5). The fixed-length type has restrictions on
all operations changing the length of the list and finishing with UnsupportedError.
The features of the fixed-length type are as follows:

• The length cannot be changed
• Any value can be assigned to the list but by the index operator only

The Collection Framework

[138]

• The elements cannot be removed from the list
• The list cannot be cleaned

The variable list returns as a result of the new List() or [] operations. It
has an internal buffer and dynamically changes its size when needed. Any
attempt to change the length of the List class during iteration will result in
ConcurrentModificationError. The following diagram shows the hierarchy
of the list-based classes:

Iterable

List

ListMixin

ListBase

with

Dart always creates an instance of the List class as a result of instantiation. If the
standard implementation of the List class is not enough, you can create your own
implementation; just extend the ListBase class to align with your needs, as shown
in the following code:

import "dart:collection";

class NewList<E> extends ListBase {
 final List<E> _elements;

 NewList() :_elements = new List<E>();

 @override
 operator [](int index) {
 return _elements[index];
 }

 @override
 void operator []=(int index, value) {
 _elements[index] = value;
 }

Chapter 6

[139]

 @override
 int get length => _elements.length;

 @override
 void set length(int newLength) {
 _elements.length = newLength;
 }
}

You might be surprised to know that you need to implement only four methods
to have a fully functional list-based class. This is because the other methods of the
ListBase class use those four main methods to manage the internal buffer and
iterate over elements. If you do not desire to extend the ListBase class, you can
use ListMixin as follows:

class OtherList<E> extends MainList with ListMixin<E> {
 // ...
}

The List class interface supports ordering via a sort method.

The asMap method of the List class returns a Map view that cannot
be modified.

Sometimes, we need to randomly rearrange the elements in the List class.
The shuffle method of the List class can come in handy while doing that:

import 'dart:math';

main() {
 var list = new List.from([1, 2, 3, 4, 5]);
 print(list);
 // => [1, 2, 3, 4, 5]
 // Crete seed to initialize internal state of
 // random-number generator
 var seed = new DateTime.now().millisecondsSinceEpoch;
 // Create instance of generator
 var random = new Random(seed);
 // Re-arrange elements in list
 list.shuffle(random);
 print(list);
 // => [4, 5, 1, 3, 2]
}

The Collection Framework

[140]

Run the preceding code snippet a couple of times and see the different results of the
shuffle operation.

LinkedList
The LinkedList class is a double-linked list. A LinkList class is a collection of
elements of the same data type, and it is efficient when it comes to the insertion
and deletion of elements of a complex structure. Despite the name, it has nothing
in common with the List class.

The LinkedList class does not extend or implement the List class.

Let's take a look at the class hierarchy of the LinkedList class:

Iterable

IterableBase

_LinkedListLink

LinkedList LinkedListEntry

All the elements in LinkedList are based on LinkedListEntry and connected
through pointers. Each LinkedListEntry class has a pointer field pointing to the
next and previous elements in the list. It contains the link of the LinkedList instance
it belongs to. Before adding the element to another LinkedList class, it must be
removed from the current one. If it is not, StateError is thrown. Each element
of the LinkedList class knows its own position, so we can use methods such as
addBefore, addAfter, or unlink of LinkedListEntry to manipulate them:

import "dart:collection";

Chapter 6

[141]

We must create a wrapper class Element based on LinkedListEntry to keep our
elements, as shown in the following code:

class Element<E> extends LinkedListEntry {
 final E value;
 Element(this.value);
 @override
 String toString() => value != null ? value.toString() : null;
}

Here, we create the LinkedList instance and use the Element wrapper:

main() {
 LinkedList<Element> list = new LinkedList<Element>();
 Element b = new Element("B");
 list.add(b);
 //
 b.insertAfter(new Element("A"));
 b.insertBefore(new Element("C"));
 print(list);
 // => (C, B, A)
 b.unlink();
 print(list);
 // => (C, A)
}

Finally, we use insertAfter, insertBefore, and unlink of the Element methods to
manipulate these elements. The advantages of LinkedList are as follows:

• It is not necessary to know the number of elements in advance, and it does
not allocate more memory than necessary

• Operations such as insertion and deletion have a constant time and handle
memory efficiently, especially when the element is inserted in the middle of
a list

• It uses the exact amount of memory needed for an underlying element
and wrapper

The disadvantages of LinkedList are as follows:

• It doesn't support random access to any element
• The element search can be done only via iteration
• It uses more memory to store pointers on linked elements than the list uses

The Collection Framework

[142]

Set
The Set class is a collection that cannot contain identical elements. It does not allow
indexed access to an element in the collection, so only the iterator and for-each
loop methods can traverse elements of a Set class:

void main() {
 var aset = new Set.from([3, 2, 3, 1]);
 print(aset);
 // => {3, 2, 1}
}

A Set class can contain at most one null element.

The Set factory creates the instance of LinkedHashSet.

The Set class can return a new set as a result of the execution of the intersection
method between its internal collection and the other one:

main() {
 var aset = new Set.from([3, 2, 3, 1]);
 print(aset);
 // => {3, 2, 1}
 var other = new Set.from([2, 1, 5, 6]);
 print(other);
 // => {2, 1, 5, 6}
 var intersect = aset.intersection(other);
 print(intersect);
 // => {2, 1}
}

The union method returns a new Set class that contains all the elements in its
internal collection and the other one:

main() {
 var aset = new Set.from([3, 2, 3, 1]);
 print(aset);
 // => {3, 2, 1}
 var other = new Set.from([2, 1, 5, 6]);
 print(other);
 // => {2, 1, 5, 6}
 var union = aset.union(other);
 print(union);
 // => {3, 2, 1, 5, 6}
}

Chapter 6

[143]

If you need to find the difference between the elements of a certain collection and
other collections, use the difference method of the Set class as follows:

main() {
 var aset = new Set.from([3, 2, 3, 1]);
 print(aset);
 // => {3, 2, 1}
 var other = new Set.from([2, 1, 5, 6]);
 print(other);
 // => {2, 1, 5, 6}
 var difference = aset.difference(other);
 print(difference);
 // => {3}
}

Here is the class hierarchy of the set-based classes:

Iterable

IterableBase

Set

HashSet

LinkedHashSet

HashSet
The HashSet class is a hash-table implementation of Set, providing fast lookup and
updates. There are operations such as add, contains, remove, and length that have
a constant time of execution:

import 'dart:collection';

void main() {
 var hset = new HashSet.from([3, 2, 3, 1]);
 print(hset);
 // => {1, 2, 3}
}

The Collection Framework

[144]

With HashSet, we can control the consistent equality via the constructor arguments:

import 'dart:collection';

void main() {
 var hset = new HashSet(equals:(e1, e2) {
 return e1 == e2;
 }, hashCode:(e) {
 return e.hashCode;
 });
 hset.addAll([3, 2, 3, 1]);
 print(hset);
 // => {1, 2, 3}
 hset.add(1);
 print(hset);
 // => {1, 2, 3}
}

The constructor's named argument, equals, must be a function to compare the
equality of two elements in the collection. Another constructor's named argument,
hashCode, must be a function that calculates the hash code of the specified element.
If both the elements are deemed equal, then they should return the same hash code.
If both named arguments are omitted, the Set class uses the internal equals and
hashCode methods of the element.

LinkedHashSet
The LinkedHasSet class is an ordered hash-table-based Set implementation that
maintains the insertion order of elements for iteration and runs nearly as fast as
HashSet. The order of adding items to a collection determines the order of iteration
via elements of the collection. The consistent equality in LinkedHasList is defined
by the equals operator and mostly based on the value of the hashCode method.
Adding an element that is already in Set does not change its position in the iteration
order, but removing an element and adding it again will make it the last element
of iteration:

import 'dart:collection';

void main() {
 var hset = new LinkedHashSet();
 hset.addAll([3, 2, 3, 1]);
 print(hset);
 // => {3, 2, 1}
 hset.add(1);
 print(hset);
 // => {3, 2, 1}
}

Chapter 6

[145]

SplayTreeSet
Last but not least, SplayTreeSet is a class that maintains the collection in a sorted
order, but is slow when it comes to lookups and updates. It extends a _SplayTree
class. Class_SplayTree is a self-balancing binary search tree (BST). The time
taken by most operations in BST is proportional to the height of the tree, and it is
better to keep it small. Self-balancing BST reduces the height by performing tree
transformation at logarithmic time, O(log(n)), where n is the height of the tree.
The following diagram shows the hierarchy of classes:

Iterable

IterableBase IterableMixin _SplayTree

Set

SplayTreeSet

with

By default, a SplayTreeSet class assumes that all elements are comparable and uses
an object-compare method to order them. In my example, I have added an array of
strings to SplayTreeSet:

import 'dart:collection';

main() {
 var sset = new SplayTreeSet();
 sset.addAll(['33', '2', '33', '10']);
 print(sset);
 // => (10, 2, 33)
}

The order of the result is correct from the perspective of comparing the strings,
but we have to order them with respect to the integer values to represent them
as strings. To fix this problem, we can pass the compare function as an argument
of the constructor:

import 'dart:collection';

main() {
 var sset = new SplayTreeSet((e1, e2) {

The Collection Framework

[146]

 return int.parse(e1).compareTo(int.parse(e2));
 });
 sset.addAll(['33', '2', '33', '10']);
 print(sset);
 // => (2, 10, 33)
}

Now the result looks exactly the way we want it to be.

Queue
A Queue class is a collection of elements that are added and removed in a specific
order at both ends. It generally accepts null elements. A ListQueue class is the
implementation of the general purpose Queue class. It uses a List instance to keep
the collection elements and uses head and tail pointers to manipulate them. The
ListQueue class implementation is a very efficient solution for any queue or stack
usage with a small memory footprint, as shown in the following code:

import 'dart:collection';

void main() {
 var queue = new Queue();
 queue.add(2);
 queue.add(3);
 queue.addFirst(1);
 print(queue);
 // => {1, 2, 3}
 queue.removeLast();
 print(queue);
 // => {1, 2}
}

Here is the class hierarchy of Queue:

Iterable

ListQueue List

IterableBase Queue

table

Chapter 6

[147]

The initial capacity of ListQueue is eight elements, and can be changed by passing
another number as an argument of the constructor. Actually, this value will be
rounded up to the nearest power of two. It always checks the number of elements
in queue and grows an internal collection automatically via the creation of a new
List instance and copying elements from the old one to the new one. The removal
of elements is performed by moving elements one by one to fill the hole. The Queue
class does not reduce the size of an internal collection when it removes elements.
Elements in a Queue class can be traversed via a for-each loop or within an Iterator.

Map
The Map class is a collection of key-value pairs. Each key has a reference to only one
value. It does not allow duplicate keys, but allows duplicate values. The Map class is
not a subtype of the Iterator, IteratorBase, or even IteratorMixin. The Map class
provides separate iterators for keys and values:

void main() {
 var map = new Map.fromIterables([3, 2, 1], ['3', '2', '1']);
 print(map);
 // => {3: 3, 2: 2, 1: 1}
}

The Map class allows you to use the null value as a key. Each of the Map class
implementations behave a little differently with respect to the order of elements
when iterating the map. A key of the Map class must implement the equals operator
and the hashCode method.

The Map factory creates the instance of LinkedHashMap.

The Map class doesn't support duplicate keys. It has a putIfAbsent method to
look up the value of the key or add a new value if it is not present, as shown in
the following code:

void main() {
 var map = new Map.fromIterables([3, 2, 1], ['3', '2', '1']);
 print(map);
 // => {3: 3, 2: 2, 1: 1}
 map.putIfAbsent(3, () => '33');
 map.putIfAbsent(4, () => '4');
 print(map);
 // => {3: 3, 2: 2, 1: 1, 4: 4}
}

The Collection Framework

[148]

This method adds key-value pairs only if the key is absent. The containsKey and
containsValue methods return the search result:

void main() {
 var map = new Map.fromIterables([3, 2, 1], ['3', '2', '1']);
 print(map);
 // => {3: 3, 2: 2, 1: 1}
 print(map.containsKey(1));
 // => true
 print(map.containsKey(5));
 // => false
 print(map.containsValue('2'));
 // => true
 print(map.containsValue('55'));
 // => false
}

Here is the hierarchy of the Map class:

Map

HashMap

LinkedHashMap

HashMap
The HashMap class is a hash-table-based implementation of Map, providing fast lookup
and updates. It maps the keys and values without guaranteeing the order of elements.
In the following code, the print function result might be in a different order:

import 'dart:collection';

void main() {
 var map = new HashMap.fromIterables([2, 3, 1], ['2', '3', '1']);
 print(map);
 // => {2: 2, 1: 1, 3: 3}
}

Iteration of keys and values happens in parallel to reduce the time to search elements:

Chapter 6

[149]

LinkedHashMap
The LinkedHashMap class is a hash-table-based implementation of Map with the link
list of keys to facilitate insert and delete operations, and it runs nearly as fast as
HashMap. It remembers the key insertion order and uses it when it iterates via keys.
The change in the values doesn't affect the keys' order:

import 'dart:collection';

void main() {
 var map = new LinkedHashMap.
 fromIterables([3, 2, 1], ['3', '2', '1']);
 print(map);
 // => {3: 3, 2: 2, 1: 1}
 map.remove(3);
 map[3] = '3';
 print(map);
 // => {2: 2, 1: 1, 3: 3}
}

You can provide the custom equals and hashCode functions as arguments of the
constructor. The equals function is used to compare the keys in the table with the
new keys. The following hashCode function is used to provide a hash value of
the key:

import 'dart:collection';

void main() {
 var map = new LinkedHashMap(equals: (e1, e2) {
 return e1 == e2;
 }, hashCode: (e) {
 return e.hashCode;
 });
 map.addAll({3: '3', 2: '2', 1: '1'});
 print(map);
 // => {3: 3, 2: 2, 1: 1}
 map.remove(3);
 map[3] = '3';
 print(map);
 // => {2: 2, 1: 1, 3: 3}
}

The Collection Framework

[150]

If the equals attribute in a constructor is provided, it is used to compare the keys in
the hash table with the new keys, else the comparison of the keys will happen with
the == operator. Similarly, if the hashCode attribute of a constructor is provided, it is
used to produce a hash value for the keys in order to place them in the hash table or
else use the keys' own hashCode method.

SplayTreeMap
The SplayTreeMap class is an ordered map that maintains a collection in a sorted
order, but is slower when it comes to lookups and updates. This class is based on
the _SplayTree class and also on SplayTreeSet. The SplayTreeMap class is a
self-balancing binary search tree, as shown in the following diagram:

_SplayTree

Map

LinkedHashMap

In the following code, the keys of the map are compared with the compare function
passed in the constructor:

import 'dart:collection';

void main() {
 var map = new SplayTreeMap((e1, e2) {
 return e1 > e2 ? 1 : e1 < e2 ? -1 : 0;
 });
 map.addAll({3: '3', 2: '2', 1: '1'});
 print(map);
 // => {1: 1, 2: 2, 3: 3}
 map.remove(3);
 map[3] = '3';
 print(map);
 // => {1: 1, 2: 2, 3: 3}
}

Chapter 6

[151]

By default, a SplayTreeMap function assumes that all the keys are comparable and
uses an object-compare method to compare the keys of elements.

Unmodifiable collections
The collection framework has unmodifiable versions of the existing collections with
the following advantages:

• To make a collection immutable once it has been built and not modify the
original collection to guarantee absolute immutability, although the elements
in that collection are still mutable

• To allow read-only access to your data structure from the client code and the
client code can look into it without modifying it while you have full access to
the original collection

The unmodifiable list
The unmodifiable collection based on the List class is UnmodifiableListView.
It creates an unmodifiable list backed by the source provided via the argument
of the constructor:

import 'dart:collection';

void main() {
 var list = new List.from([1, 2, 3, 4]);
 list.add(5);
 var unmodifiable = new UnmodifiableListView(list);
 unmodifiable.add(6);
}

The execution fails when we try adding a new element to an unmodifiable collection,
as shown in the following code:

Unsupported operation: Cannot add to an unmodifiable list
#0 ListBase&&UnmodifiableListMixin.add (…)
#1 main (file:///…/bin/unmodifiable.dart:7:19)
…

The Collection Framework

[152]

The following diagram shows the class hierarchy of UnmodifiableListView:

List

UnmodifiableListBase

UnmodifiableListView

ListBase UnmodifiableListMixin

with

The unmodifiable map
Another unmodifiable collection is UnmodifiableMapView, which is based on the
Map class. It disallows modifying the original map via the view wrapper:

import 'dart:collection';

void main() {
 var map = new Map.fromIterables(
 [1, 2, 3, 4], ['1', '2', '3', '4']);
 map[5] = '5';
 var unmodifiable = new UnmodifiableMapView(map);
 unmodifiable[6] = '6';
}

Any attempt to modify the collection throws a runtime exception as follows:

Unsupported operation: Cannot modify unmodifiable map
#0 MapView&&_UnmodifiableMapMixin.[]= (…)
#1 main (file:///…/bin/unmodifiable_map.dart:7:15)
…

Chapter 6

[153]

The following diagram shows the class hierarchy of UnmodifiableMapView:

Map

_UnmodifiableMapMixin MapView

with

UnmodifiableMapView

Choosing the right collection
How do you choose the right collection for specific cases? I'm sure many of us have
asked that question at least once. Let me try to help you to make the right choice:

• The List, Set (such as LinkedHasSet), and Map (such as LinkedHashMap)
classes are perfect choices for general purposes. They have enough
functionality to cover all of your needs.

• Choosing a class implements the minimum functionality that you require.
Don't choose a class that supports sorting if you don't actually need it.

Here is a table that combines all the classes with the supported features:

Class Order Sort Random
access

Key-
values

Duplicates Null

List Yes Yes Yes No Yes Yes
LinkedList Yes No No No Yes Yes
Set or
LinkedHashSet

Yes No No No No No

HashSet No No No No No No
SplayTreeSet Yes Yes No No No No
Queue or
ListQueue

Yes Yes No No Yes Yes

Map or
LinkedHashMap

Yes No Yes Yes No Yes

HashMap No No Yes Yes No Yes
SplayTreeMap Yes Yes Yes Yes No Yes

The Collection Framework

[154]

The order is supported via iteration. Sort is supported via a collection-compare
function via a Comparator or an object-compare method via the Comparable interface.

Summary
We have now discovered the collection framework, and it's time to have a look at
what we have mastered.

The collection framework is set for high-performance classes to store and manipulate
groups of objects. The framework provides a unified architecture to store and
manipulate the elements of a collection and hide the actual implementation.

Several collections implicitly support ordering of elements and help us to
sort elements without effort. We can also sort collections by providing a
collection-compare function via a Comparator or an object-compare method
via the Comparable interface.

The Iterable interface defines the common behavior of all the classes in a
collection framework that supports a mechanism to iterate through all the
elements of a collection. The Iterator follows the fail-fast principles to immediately
report whether the iterating collection was modified. If you plan to create your
own implementation of the Iterable interface, you need to extend IterableBase
or IterableMixin. BidirectionalIterator helps to iterate over collections
of elements in both directions.

The collection framework also has the List, Map, Queue, and Set classes for all
occasions. LinkedList does not extend the List class. HashSet, LinkedHashSet,
and SplayTreeSet are implementations of the Set interface. ListQueue is the
implementation of the Queue interface. HasMap, LinkedHasMap, and SplayTreeMap
are implementations of the Map interface.

The collection framework has a couple of unmodifiable implementations of known
interfaces, such as UnmodifiableListView and UnmodifiableMapView.

Many different programs can be written in JavaScript. In the next chapter, you will
learn how to communicate with them from Dart. We will shed light on how to use
Dart and JavaScript together to build web applications.

Dart and JavaScript
Interoperation

A lot of web applications are written in JavaScript nowadays and in this chapter,
we will focus on how to communicate with them using Dart. We will also cover
the following topics:

• The dart:js library
• Type conversion
• JsObject and instantiation
• JsFunction and the this keyword
• Dart with jQuery

Interoperation at a glance
Web applications written in Dart can be executed only in a Dart VM that is
embedded in a browser called Dartium, a special build of Chromium. To be executed
in other web browsers, the Dart code must be compiled to JavaScript—the language
supported by all web browsers. Latest tendencies indicate that JavaScript will exist
as the language for web development for a long time to come, as it is popular among
people and has a lot of tools and frameworks. This means that Dart must have the
ability to communicate with the JavaScript code in any web browser.

The JavaScript libraries need to be included in HTML before
the Dart code.

Dart and JavaScript Interoperation

[156]

The dart:js library
The core set of Dart libraries include dart:js to facilitate interoperation between
the Dart and JavaScript code. The Dart code can create new instances, invoke
methods, and read and write properties of the code written in JavaScript. While
communicating, the dart:js library translates the JavaScript objects to Dart objects
and vice versa, or uses proxy classes. Let's take a look at the class hierarchy of the
dart:js library:

JsFunction

JsObject ListMixin

JsArray

with

JsObject
Similar to an Object class in JavaScript, JsObject is a main class in the
dart:js library. It represents a proxy of a JavaScript object and provides
the following advantages:

• Access to all the properties of the underlying JavaScript object by indexing
the [] and []= operators

• Access to invoke any methods of the underlying JavaScript object through
callMethod

• Access to the global JavaScript object (usually window) in the web browser
through the context property

• Usage of the instanceOf method to check if the underlying JavaScript object
has the specified type in its prototype chain

• Checks the existence of the property of the underlying JavaScript object
via the hasProperty method; this method is equivalent to the in operator
in JavaScript

• Any property of the underline JavaScript object can be removed with the
deleteProperty method; this method is equivalent to the delete operator
in JavaScript

Chapter 7

[157]

JsObject can be acquired from the JavaScript object or can be created using the
following factory constructors:

• factory JsObject(JsFunction constructor, [List arguments]):
This constructor creates a new JavaScript object from the JavaScript
constructor function and returns a proxy on it.

• factory JsObject.fromBrowserObject(object): This constructor creates
a new JavaScript object from a native Dart object and returns a proxy on it.
Use this factory constructor only if you wish to access the properties of the
browser-hosted objects such as Node or Blob. This constructor throws an
exception if the object is null or has the type bool, num, or string.

• factory JsObject.jsify(object): This constructor creates a new
JavaScript object or an array from the Dart Map or Iterable and returns a
proxy on it. This constructor recursively converts each Dart object from the
collection into a JavaScript object.

A library has a top-level context getter that provides the JsObject class instance,
which represents the JavaScript global object in a web browser, as shown in the
following code:

import 'dart:js' as js;

void main() {
 print('Context is ${js.context}');
}

The print result of the preceding code confirms that the context points to the
Window object:

Context is [object Window]

Let's assume we need to log some information on the console from Dart. This can be
done as follows:

import 'dart:js' as js;

void main() {
 js.JsObject console = js.context['console'];
 console.callMethod('log', ['Hello World!']);
}

Dart and JavaScript Interoperation

[158]

Firstly, we used js.context to receive the proxy of the JsObject console
object. Then, we used callMethod of JsObject to invoke the log function of
the console. The second optional argument of callMethod delivers arguments
in the underline JavaScript function. Finally, we get the Hello World! message
on the web browser's console.

The context returns null if the requested object does not exist.

JsFunction
The next important piece of JavaScript is the Function type. The dart:js
library has the JsFunction class that extends JsObject to represent a proxy to
the JavaScript function. To call the alert JavaScript function from the Dart code,
you can use the following code:

import 'dart:js' as js;

void main() {
 js.JsFunction alert = js.context['alert'];
 alert.apply(['Hello World!']);
}

When we get a proxy of the alert function, we invoke the apply method with a list
of parameters and get the following result:

Chapter 7

[159]

JsArray
An array in JavaScript is the object used to store multiple values in a single variable.
JsArray extends the JsObject class by representing a JavaScript array and proxy
underlying instance to be available in the Dart code. I created a JavaScript code with
the colors array, as shown in the following code:

var colors = ['red', 'green', 'white'];

To get all the colors and print them in Dart, we use the following code:

import 'dart:js' as js;

void main() {
 js.JsArray colorsArray = js.context['colors'];
 print(colorsArray);
}

Now, we assign a proxy to the array from the colors in JavaScript and finally print
them all, as shown in the following screenshot:

If you select the colorsArray property in the variable inspector of Dart Editor when
it reaches the breakpoint, you might see a set of items from the JavaScript array:

Dart and JavaScript Interoperation

[160]

Type conversion
All the code we've seen so far was based on the automatic type conversion
that happens inside the dart:js library. This conversion always happens in
both directions. Once you know how this happens, you will have a better
understanding of the limits of that solution and it will help you avoid mistakes.

Direct type conversion
Dart supports the following small subset of types by directly converting them from
the JavaScript types:

• null, bool, num, String, and DateTime (basic types)
• Blob

• Event

• HtmlCollection

• ImageData

• KeyRange

• Node

• NodeList

• TypedData (including its subclasses such as Int32List, but not ByteBuffer)
• Window

Here is set of different types of JavaScript variables that we prepared in the
JavaScript file:

var v_null = null;
var v_bool = true;
var v_num = 1.2;
var v_str = "Hello";
var v_date = new Date();
var v_blob = new Blob(
 ['<b id="b">hey!'],
 {type : 'text/html'});
var v_evt = new Event('click');
var v_nodes = document.createElement("form").children;
var v_img_data = document.createElement("canvas").
 getContext("2d").createImageData(10, 10);
var v_key_range = IDBKeyRange.only(100);
var v_node = document.createElement('div');
var v_node_list = document.createElement('div').childNodes;
var v_typed = new Int32Array(new ArrayBuffer(8));
var v_global = window;

Chapter 7

[161]

Now, we'll use reflection to investigate how conversion happens in Dart in the
following code:

import 'dart:js' as js;
import 'dart:mirrors';

void main() {
 print(getFromJSContext('v_null'));
 print(getFromJSContext('v_bool'));
 print(getFromJSContext('v_num'));
 print(getFromJSContext('v_str'));
 print(getFromJSContext('v_date'));
 print(getFromJSContext('v_blob'));
 print(getFromJSContext('v_evt'));
 print(getFromJSContext('v_nodes'));
 print(getFromJSContext('v_img_data'));
 print(getFromJSContext('v_key_range'));
 print(getFromJSContext('v_node'));
 print(getFromJSContext('v_node_list'));
 print(getFromJSContext('v_typed'));
 print(getFromJSContext('v_byte_data'));
 print(getFromJSContext('v_global'));
}

getFromJSContext(name) {
 var obj = js.context[name];
 if (obj == null) {
 return name + ' = null';
 } else {
 return name + ' = ' + obj.toString() + ' is ' + getType(obj);
 }
}

getType(obj) {
 Symbol symbol = reflect(obj).type.qualifiedName;
 return MirrorSystem.getName(symbol);
}

Dart and JavaScript Interoperation

[162]

In the preceding code, the getFromJSContext method returned the name, value,
and type of the converted JavaScript object. Here is the result printed on the web
browser's console:

v_null = null
v_bool = true is dart.core.bool
v_num = 1.2 is dart.core._Double
v_str = Hello is dart.core._OneByteString
v_date = 2014-06-21 18:09:03.145 is dart.core.DateTime
v_blob = Instance of 'Blob' is dart.dom.html.Blob
v_evt = Instance of 'Event' is dart.dom.html.Event
v_nodes = [object HTMLCollection] is dart.js.JsObject
v_img_data = Instance of 'ImageData' is dart.dom.html.ImageData
v_key_range = Instance of 'KeyRange' is dart.dom.indexed_db.KeyRange
v_node = div is dart.dom.html.DivElement
v_node_list = [object NodeList] is dart.js.JsObject
v_typed = [0, 0] is dart.typed_data._ExternalInt32Array
v_byte_data = null
v_global = <window> is dart.dom.html.Window

You can check which Dart type will be converted from the JavaScript object with the
preceding technique.

Proxy type conversion
All the other JavaScript types are converted to Dart types with the help of a proxy.
Let's take a look at the following JavaScript code:

var Engine = function(type) {
 this.type = type;
 this.start = function() {
 alert('Started ' + type + ' engine');
 };
};

var v_engine = new Engine('test');

In the preceding code, we instantiated the Engine class and assigned it to the
v_engine variable. The following code helps to investigate the conversion of
the Engine class to Dart:

import 'dart:js' as js;
import 'dart:mirrors';

void main() {

Chapter 7

[163]

 print(getFromJSContext('v_engine'));
}

getFromJSContext(name) {
 var obj = js.context[name];
 if (obj == null) {
 return name + ' = null';
 } else {
 return name + ' = ' + obj.toString() + ' is ' + getType(obj);
 }
}

getType(obj) {
 Symbol symbol = reflect(obj).type.qualifiedName;
 return MirrorSystem.getName(symbol);
}

In the preceding code, we copied getFromJSContext and getType from the previous
code. Here is the result that is displayed in the web browser console:

v_engine = [object Object] is dart.js.JsObject

This result confirms that any ordinary object can be converted to Dart with the
JsObject proxy.

Collection conversion
Dart collections can be converted into JavaScript collections with the jsify
constructor of JsObject. This constructor converts Dart Maps and Iterables into
JavaScript objects and arrays recursively, and returns a JsObject proxy to it.
It supports internal collections as well. The following JavaScript code has the
variable data and the toType and log methods:

function toType(obj) {
 return ({}).toString.call(obj).
 match(/\s([a-zA-Z]+)/)[1].toLowerCase()
};

var data;

function log() {
 console.log(toType(data));
 for (i in data) {
 console.log('- ' + i.toString() + ': ' +
 data[i].toString() + ' (' + toType(data[i]) + ')');
 }
};

Dart and JavaScript Interoperation

[164]

Let's take a look at the Dart code that has references to the log function of JavaScript:

import 'dart:js' as js;

void main() {
 js.JsFunction log = js.context['log'];

 js.JsArray array = new js.JsObject.jsify([1, 'a', true]);
 js.context['data'] = array;
 log.apply([]);

 js.JsObject map = new js.JsObject.jsify(
 {'n':1, 't':'a', 'b':true, 'array':array}
);
 js.context['data'] = map;
 log.apply([]);
}

In the preceding code, we created an array and assigned it to a JavaScript data
variable. We logged all the items of the JavaScript array via the apply method
of log. We send empty array as argument of the apply function because the
corresponding JavaScript function doesn't have parameters. Later, we created a
map object, filled it, and then call a log JavaScript function again. To check the
support of the internal collections, we inserted the array into the map object as
the last item. Here is the result:

array
- 0: 1 (number)
- 1: a (string)
- 2: true (boolean)
object
- n: 1 (number)
- t: a (string)
- b: true (boolean)
- array: 1,a,true (array)

All our objects and internal collections were converted into the correct
JavaScript objects.

Chapter 7

[165]

JsObject and instantiation
The object constructor function is a standard way to create an instance of an Object
class in JavaScript. An object constructor is just a regular JavaScript function and it
is robust enough to define properties, invoke other functions, and do much more.
To create an instance of the object, we need to call the object constructor function
via a new operator. Let's have a look at the next JavaScript code:

function Engine(type) {
 this.type = type;
 this.start = function() {
 console.log ('Started ' + type + ' engine');
 };
};

Engine is an object constructor function. It has a type property and a start method.
Here is how we can create an instance of the JavaScript object from Dart:

import 'dart:js' as js;

void main() {
 js.JsFunction JsEngine = js.context['Engine'];
 js.JsObject engineObj = new js.JsObject(JsEngine, ['diesel']);
 assert(engineObj.instanceof(JsEngine));
 engineObj.callMethod('start');
}

We created a JsFunction variable, JsEngine, as a reference to the JavaScript object
constructor function Engine. To create an object type engineObj, we used an object
constructor created via the JsObject proxy. The function arguments must be sent
via a second parameter, so we specified diesel as the engine type. Later, we check
whether engineObj is an instance of the JsEngine type. Finally, we call the start
method from engineObj and it prints the following message on the console:

Started diesel engine

Dart and JavaScript Interoperation

[166]

If you select the JsEngine property in the variable inspector of the Dart Editor when
the breakpoint is reached, you will see the source code of the JavaScript function,
as shown in the following screenshot:

JsFunction and the this keyword
The this keyword refers to the current instance of a class in Dart and never changes
once the class object is instantiated. Generally, we should omit the this keyword
and use it only if we have name conflicts between the class members and function
arguments or variables. In JavaScript, the this keyword refers to the object that
owns the function and behaves differently compared to Dart. It mostly depends
on how a function is called. We can't change the value of this during function
execution and it can be different every time the function is called. The call and
apply methods of Function.prototype were introduced in ECMAScript 3 to
bind any particular object on the value of this in the call of these methods:

fun.call(thisArg[, arg1[, arg2[, ...]]])
fun.apply(thisArgs[, argsArray])

While the syntax of both these functions looks similar, the fundamental difference
is that the call method accepts an argument list while the apply method accepts a
single array of arguments.

All the functions in JavaScript inherit the call and apply methods from Function.
prototype, so both the methods invoke the original function and assign the first
argument to the value of the this keyword permanently so it cannot be overridden.

The following bind method of Function.prototype was introduced in
ECMAScript 5:

fun.bind(thisArg[, arg1[, arg2[, ...]]])

Chapter 7

[167]

This method creates a new function with the same body and scope as the original
function, but the this keyword is permanently bound to the first argument of
the bind function, regardless how the function is being used. The call and bind
methods can solve the issues we face while changing the this keyword. Let's take
a look at how we can do this with the following JavaScript code:

this.name = 'Unknown';

function sendMessage(message) {
 console.log('Send message: ' + this.name + ' ' + message);
}

function DieselEngine() {
 this.name = 'Diesel';
}

sendMessage('engine started');

var engine = new DieselEngine()

var dieselLog = sendMessage.bind(engine);
dieselLog('engine started');

The invocation of the sendMessage function results in the following console log:

Send message: Unknown engine started

The sendMessage function prints a message on the console with the Unknown name
because this references the global object in the web browser. Then, we create an
instance of Engine and bind the sendMessage function to engine. The bind method
creates a new function dieselLog with the same body, but the this keyword is
permanently bound to engine. So, when you call the dieselLog function, it uses
the name from DieselEngine and prints the following message:

Send message: Diesel engine started

If we need to use the Dart version of sendMessage instead of the original one, we can
use JsFunction instantiated with the withThis constructor of the JsObject class to
call the function with the value of this passed as the first argument:

import 'dart:js' as js;

void main() {
 js.context['sendMessage'] = new
 js.JsFunction.withThis(otherSendMessage);

Dart and JavaScript Interoperation

[168]

 js.JsFunction DieselEngine = js.context['DieselEngine'];
 js.JsObject engine = new js.JsObject(DieselEngine);

 js.JsFunction sendMessage = js.context['sendMessage'];
 sendMessage.apply(['engine started'], thisArg: engine);
}

otherSendMessage(self, String message) {
 print('Message sent: ' + self['name'] + ' ' + message);
}

First, we assigned Dart's otherSendMessage function to JavaScript's sendMessage
function. The named constructor withThis creates a JavaScript function pattern and
uses the reference on otherSendMessage instead of func in all the future calls:

function () {
 return func(this, Array.prototype.slice.apply(arguments));
}

So, when we call the apply method of sendMessage, the JavaScript function calls
the original otherSendMessage function. It passes the engine object to the self
parameter of the otherSendMessage function and passes the engine started
string in the message parameter. The result is printed to the web console:

Send message: Unknown engine started
Send message: Diesel engine started
Message sent: Diesel engine started

Bear in mind that the type of parameter self of the otherSendMessage function
depends on the value passed as the second argument of the apply method of
sendMessage instance.

Dart with jQuery
There is no doubt that jQuery has become very popular among developers because
of its simplicity. Let's try to combine the simplicity of jQuery and the power of Dart
in a real example. For demonstration purposes, we created the js_proxy package to
help the Dart code to communicate with jQuery. It is available on the pub manager
at https://pub.dartlang.org/packages/js_proxy. This package is layered on
dart:js and has a library of the same name and sole class JProxy. An instance of
the JProxy class can be created via the generative constructor where we can specify
the optional reference on the proxied JsObject:

JProxy([this._object]);

https://pub.dartlang.org/packages/js_proxy

Chapter 7

[169]

We can create an instance of JProxy with a named constructor and provide the name
of the JavaScript object accessible through the dart:js context as follows:

JProxy.fromContext(String name) {
 _object = js.context[name];
 }

The JProxy instance keeps the reference on the proxied JsObject class and makes
all the manipulation on it, as shown in the following code:

js.JsObject _object;
js.JsObject get object => _object;

How to create a shortcut to jQuery
We can use JProxy to create a reference to jQuery via the context from the dart:js
library as follows:

var jquery = new JProxy.fromContext('jQuery');

Another very popular way is to use the dollar sign as a shortcut to the jQuery
variable as shown in the following code:

var $ = new JProxy.fromContext('jQuery');

Bear in mind that the original jQuery and $ variables from JavaScript are functions,
so our variables reference to the JsFunction class. From now, jQuery lovers
who moved to Dart have a chance to use both the syntax to work with selectors
via parentheses.

Why does JProxy need a method call?
Usually, jQuery sends a request to select HTML elements based on IDs, classes,
types, attributes, and values of their attributes or their combination, and then
performs some action on the results. We can use the basic syntax to pass the
search criteria in the jQuery or $ function to select the HTML elements:

$(selector)

Dart and JavaScript Interoperation

[170]

As mentioned in Chapter 3, Object Creation, Dart has a syntactic sugar method, call,
that helps us to emulate a function and we can use the call method in the jQuery
syntax. Dart knows nothing about the number of arguments passing through the
function, so we use the fixed number of optional arguments in the call method.
Through this method, we invoke the proxied function (because jquery and $ are
functions) and returns results within JProxy:

dynamic call([arg0 = null, arg1 = null, arg2 = null,
 arg3 = null, arg4 = null, arg5 = null, arg6 = null,
 arg7 = null, arg8 = null, arg9 = null]) {
 var args = [];
 if (arg0 != null) args.add(arg0);
 if (arg1 != null) args.add(arg1);
 if (arg2 != null) args.add(arg2);
 if (arg3 != null) args.add(arg3);
 if (arg4 != null) args.add(arg4);
 if (arg5 != null) args.add(arg5);
 if (arg6 != null) args.add(arg6);
 if (arg7 != null) args.add(arg7);
 if (arg8 != null) args.add(arg8);
 if (arg9 != null) args.add(arg9);
 return _proxify((_object as js.JsFunction).apply(args));
}

How does JProxy invoke jQuery?
The JProxy class is a proxy to other classes, so it marks with the @proxy annotation.
We override noSuchMethod intentionally to call the proxied methods and properties
of jQuery when the methods or properties of the proxy are invoked. The logic flow
in noSuchMethod is pretty straightforward. It invokes callMethod of the proxied
JsObject when we invoke the method on proxy, or returns a value of property of
the proxied object if we call the corresponding operation on proxy. The code is
as follows:

@override
dynamic noSuchMethod(Invocation invocation) {
 if (invocation.isMethod) {
 return _proxify(_object.callMethod(
 symbolAsString(invocation.memberName),
 _jsify(invocation.positionalArguments)));
 } else if (invocation.isGetter) {
 return
 _proxify(_object[symbolAsString(invocation.memberName)]);
 } else if (invocation.isSetter) {

Chapter 7

[171]

 throw new Exception('The setter feature was not implemented
 yet.');
 }
 return super.noSuchMethod(invocation);
}

As you might remember, all Map or Iterable arguments must be converted to
JsObject with the help of the jsify method. In our case, we call the _jsify method
to check and convert passed arguments aligned with a called function, as shown in
the following code:

List _jsify(List params) {
 List res = [];
 params.forEach((item) {
 if (item is Map || item is List) {
 res.add(new js.JsObject.jsify(item));
 } else {
 res.add(item);
 }
 });
 return res;
 }

Before return, the result must be passed through the _proxify function as follows:

dynamic _proxify(value) {
 return value is js.JsObject ? new JProxy(value) : value;
}

This function wraps all JsObject classes within a JProxy class and passes other
values as it is.

An example project
Now create the jquery project, open the pubspec.yaml file, and add js_proxy to
the dependencies. Open the jquery.html file and make the following changes:

<!DOCTYPE html>

<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <title>jQuery</title>

Dart and JavaScript Interoperation

[172]

 <link rel="stylesheet" href="jquery.css">
 </head>
 <body>
 <h1>Jquery</h1>

 <p>I'm a paragraph</p>
 <p>Click on me to hide</p>
 <button>Click me</button>
 <div class="container">
 <div class="box"></div>
 </div>

 </body>

 <script src="//code.jquery.com/jquery-1.11.0.min.js"></script>

 <script type="application/dart" src="jquery.dart"></script>
 <script src="packages/browser/dart.js"></script>
</html>

This project aims to demonstrate that:

• Communication is easy between Dart and JavaScript
• The syntax of the Dart code could be similar to the jQuery code

In general, you can copy the JavaScript code, paste it in the Dart code, and probably
make slightly small changes.

How to get the jQuery version
It's time to add js_proxy in our code. Open jquery.dart and make the
following changes:

import 'dart:html';
import 'package:js_proxy/js_proxy.dart';

/**
 * Shortcut for jQuery.
 */
var $ = new JProxy.fromContext('jQuery');

/**
 * Shortcut for browser console object.
 */

Chapter 7

[173]

var console = window.console;

main() {
 printVersion();
}

/**
 * jQuery code:
 *
 * var ver = $().jquery;
 * console.log("jQuery version is " + ver);
 *
 * JS_Proxy based analog:
 */
printVersion() {
 var ver = $().jquery;
 console.log("jQuery version is " + ver);
}

You should be familiar with jQuery and console shortcuts by now. The call to jQuery
with empty parentheses returns JProxy and contains JsObject with reference to
jQuery from JavaScript. The jQuery object has a jquery property that contains the
current version number, so we reach this one via noSuchMethod of JProxy. Run the
application, and you will see the following result in the console:

jQuery version is 1.11.1

Let's move on and perform some actions on the selected HTML elements.

How to perform actions in jQuery
The syntax of jQuery is based on selecting the HTML elements and it also performs
some actions on them:

$(selector).action();

Let's select a button on the HTML page and fire the click event as shown in the
following code:

/**
 * jQuery code:
 *
 * $("button").click(function(){
 * alert('You click on button');
 * });
 *

Dart and JavaScript Interoperation

[174]

 * JS_Proxy based analog:
 */
events() {
 // We remove 'function' and add 'event' here
 $("button").click((event) {
 // Call method 'alert' of 'window'
 window.alert('You click on button');
 });
}

All we need to do here is just remove the function keyword, because anonymous
functions on Dart do not use it, and then add the event parameter. This is because
this argument is required in the Dart version of the event listener. The code calls
jQuery to find all the HTML button elements to add the click event listener to each
of them. So when we click on any button, a specified alert message will be displayed.
On running the application, you will see the following message:

How to use effects in jQuery
The jQuery supports animation out of the box, so it sounds very tempting to use it
in Dart. Let's take a look at the following code snippet:

/**
 * jQuery code:
 *
 * $("p").click(function() {
 * this.hide("slow",function(){
 * alert("The paragraph is now hidden");
 * });
 * });
 * $(".box").click(function(){
 * var box = this;

Chapter 7

[175]

 * startAnimation();
 * function startAnimation(){
 * box.animate({height:300},"slow");
 * box.animate({width:300},"slow");
 * box.css("background-color","blue");
 * box.animate({height:100},"slow");
 * box.animate({width:100},"slow",startAnimation);
 * }
 * });
 *
 * JS_Proxy based analog:
 */
effects() {
 $("p").click((event) {
 $(event['target']).hide("slow",(){
 window.alert("The paragraph is now hidden");
 });
 });
 $(".box").click((event) {
 var box = $(event['target']);
 startAnimation() {
 box.animate({'height':300},"slow");
 box.animate({'width':300},"slow");
 box.css("background-color","blue");
 box.animate({'height':100},"slow");
 box.animate({'width':100},"slow",startAnimation);
 };
 startAnimation();
 });
}

This code finds all the paragraphs on the web page to add a click event listener to
each one. The JavaScript code uses the this keyword as a reference to the selected
paragraph to start the hiding animation. The this keyword has a different notion
on JavaScript and Dart, so we cannot use it directly in anonymous functions on
Dart. The target property of event keeps the reference to the clicked element and
presents JsObject in Dart. We wrap the clicked element to return a JProxy instance
and use it to call the hide method.

The jQuery is big enough and we have no space in this book to discover all its features,
but you can find more examples at https://github.com/akserg/js_proxy.

https://github.com/akserg/js_proxy

Dart and JavaScript Interoperation

[176]

What is the impact on performance?
Now we should talk about the performance impact of using different approaches
across several modern web browsers. The algorithm must perform all the
following actions:

• It should create 10000 DIV elements
• Each element should be added into the same DIV container
• Each element should be updated with one style
• All elements must be removed one by one

This algorithm must be implemented in the following solutions:

• The clear jQuery solution on JavaScript
• The jQuery solution calling via JProxy and dart:js from Dart
• The clear Dart solution based on dart:html

We implemented this algorithm on all of them, so we have a chance to compare the
results and choose the champion. The following HTML code has three buttons to run
independent tests, three paragraph elements to show the results of the tests, and one
DIV element used as a container. The code is as follows:

<div>
 <button id="run_js" onclick="run_js_test()">Run JS</button>
 <button id="run_jproxy">Run JProxy</button>
 <button id="run_dart">Run Dart</button>
</div>

<p id="result_js"></p>
<p id="result_jproxy"></p>
<p id="result_dart"></p>

<div id="container"></div>

The JavaScript code based on jQuery is as follows:

function run_js_test() {
 var startTime = new Date();
 process_js();
 var diff = new Date(new Date().getTime() –
 startTime.getTime()).getTime();
 $('#result_js').text('jQuery tooks ' + diff +
 ' ms to process 10000 HTML elements.');
}

Chapter 7

[177]

function process_js() {
 var container = $('#container');
 // Create 10000 DIV elements
 for (var i = 0; i < 10000; i++) {
 $('<div>Test</div>').appendTo(container);
 }
 // Find and update classes of all DIV elements
 $('#container > div').css("color","red");
 // Remove all DIV elements
 $('#container > div').remove();
}

The main code registers the click event listeners and the call function
run_dart_js_test. The first parameter of the run_dart_js_test function
must be a function which we will investigate. The second and third parameters
are used to pass the selector of the result element and test the title:

void main() {
 querySelector('#run_jproxy').onClick.listen((event) {
 run_dart_js_test(process_jproxy, '#result_jproxy', 'JProxy');
 });
 querySelector('#run_dart').onClick.listen((event) {
 run_dart_js_test(process_dart, '#result_dart', 'Dart');
 });
}

run_dart_js_test(Function fun, String el, String title) {
 var startTime = new DateTime.now();
 fun();
 var diff = new DateTime.now().difference(startTime);
 querySelector(el).text = '$title tooks ${diff.inMilliseconds} ms
 to process 10000 HTML elements.';
}

Here is the Dart solution based on JProxy and dart:js:

process_jproxy() {
 var container = $('#container');
 // Create 10000 DIV elements
 for (var i = 0; i < 10000; i++) {
 $('<div>Test</div>').appendTo(container.object);
 }
 // Find and update classes of all DIV elements
 $('#container > div').css("color","red");
 // Remove all DIV elements
 $('#container > div').remove();
}

Dart and JavaScript Interoperation

[178]

Finally, a clear Dart solution based on dart:html is as follows:

process_dart() {
 // Create 10000 DIV elements
 var container = querySelector('#container');
 for (var i = 0; i < 10000; i++) {
 container.appendHtml('<div>Test</div>');
 }
 // Find and update classes of all DIV elements
 querySelectorAll('#container > div').forEach((Element el) {
 el.style.color = 'red';
 });
 // Remove all DIV elements
 querySelectorAll('#container > div').forEach((Element el) {
 el.remove();
 });
}

All the results are in milliseconds. Run the application and wait until the web page
is fully loaded. Run each test by clicking on the appropriate button. My result of
the tests on Dartium, Chrome, Firefox, and Internet Explorer are shown in the
following table:

Web browser jQuery framework jQuery via JProxy Library dart:html
Dartium 2173 3156 714
Chrome 2935 6512 795
Firefox 2485 5787 582
Internet Explorer 12262 17748 2956

Now, we have the absolute champion—the Dart-based solution. Even the Dart code
compiled in the JavaScript code to be executed in Chrome, Firefox, and Internet
Explorer works quicker than jQuery (four to five times) and much quicker than
dart:js and JProxy class-based solutions (four to ten times).

Chapter 7

[179]

Summary
Let me finish the story of Dart to JavaScript interoperation to highlight our expertise.

The core set of Dart libraries include dart:js to help you interoperate between
the Dart and JavaScript code. The dart:js library converts the original JavaScript
objects, functions, and collections with the help of JsObject, JsFunction, and
JsArray. It supports automatic type of conversion in both directions. Dart supports a
small subset of types, transferring directly from JavaScript types. All other JavaScript
types are converted to Dart types with the help of a proxy. Dart Map and Iterable
collections could be translated into JavaScript collections with the jsify constructor
of JsObject.

We compared jQuery, JProxy, and dart:js and cleared the Dart code based on
the dart:html solutions to identify who is quicker than the others. The dart:html
library-based solution is the unbeatable champion and hero of this chapter.

In the next chapter, we will talk about how i18n and l10n accesses can be
embedded into our code to help design and develop web applications that
enable easy localization for different cultures, regions, and languages.

Internalization and
Localization

If you are planning to work with multiple languages, you need to add internalization
support to your web applications. We will see how the i18n and l10n access can be
embedded in our code to help design and develop web applications that enable easy
localization for different cultures, regions, and languages. The topics that will be
covered in this chapter are as follows:

• The key principles
• The Intl library
• How to internationalize a web application
• How to extract messages
• How to use Google Translator Toolkit
• How to use translated messages

The key principles
The development of globalized software is not a simple task. In general, the standard
development process to create globalized software includes the following steps:

• Internalization that covers designing and developing web applications
• Localization that covers translating and customizing web applications for

a specific locale

We will start designing and developing globalized software with the Intl library
from the intl package available on the pub manager and follow some rules that
will help us to easily translate and customize our application.

Internalization and Localization

[182]

Executable code versus User Interface
All executable code must be separated from the programming code that implements
the User Interface (UI). Also, code that describes the UI elements and the layout
of the UI elements must be kept separated from the code that implements and
manages them.

Numbers and dates
Various cultures have different ways to represent numbers and dates. You must
avoid converting numbers and dates into strings directly.

Converting numbers and dates must be done with special formatters.

Messages
Often, messages that contain individual pieces of text are used together to create
complete sentences. In the process of localization, these pieces of text might go
together in a different order. Using the message method of the Intl class allows
you to display messages as simple expressions.

Measuring units and currencies
Measuring units such as meters and miles and currencies such as USD and Euro
are ubiquitous and depend on the locale. The NumberFormat class contains special
constructors for the quick creation of frequently used patterns that can be very handy
to measure units and currencies.

Text input and layout
The size of the text on the screen is one of the biggest problems that affect
programmers who develop globalized software. The main reason for this is that
any assumption about the width of the text, the direction of its flow, and its position
on the screen, if incorrect, can hamper well-structured layouts in a flash. Using
the BidiFormatter class helps manage messages that contain text in both the
text directionalities.

Formatting date and time
The locale determines how the date and time must be displayed. The DateFormat
class has a big set of naming patterns that is useful to avoid mistakes and display
data in the correct format.

Chapter 8

[183]

The Intl library
The Intl library can help you design and develop globalized server and web client
applications. It supports all major locales and sublanguage pairs. As all information
on the screen represents a set of strings, we must translate the other types of
objects into the string format with special formatters provided by the Intl library.
Translated versions of displayed strings are bundled in separate text files. The Intl
library contains a class of the same name that is used to work with messages. The
Intl library considers numbers, dates, and messages in different internalization
areas. Each area is intentionally initialized separately to reduce the application size
and avoid loading unnecessary resources. The internalization of numbers and dates
is implemented via formatters. Messages are internalized through special functions
and can be externalized into files in the Application Resource Bundle (ARB) format.

Changing a locale
By default, the current locale is set to the English language of USA (en_US). A new
value assigned to defaultLocale can affect all the methods of the Intl library using
the following code:

Intl.defaultLocale = "fr_FR";

There are several ways to use a different locale on a temporary basis than using the
current one. They are as follows:

• Specify the locale directly when you call the methods of the Intl class
• Provide the locale when you create an instance of the formatter class
• Use the following special withLocale method of the Intl class:

static withLocale(String locale, Function message_function)

The main purpose of the withLocale method is to delay calling the message_
function function until the proper locale has been set. The message_function
function can be a simple message function, a wrapper around the message function,
or a complex wrapper that manipulates multiple message functions. As the locale
string is not known at the static analysis time, this method silently performs the
following steps:

1. It swaps the specified locale string with the current one.
2. Then, it executes the message_function function and saves the result.
3. It swaps the locales back.
4. Finally, it returns the result of the message_function function.

Internalization and Localization

[184]

International Components for Unicode (ICU) is an open source
project created for the Unicode support via the implementation of
the Unicode standard. The Intl library uses the ICU patterns for
internalization and localization.

Formatting numbers
The NumberFormat class provides the ability to format a number in a locale-specific
manner. To create NumberFormat, we must specify the pattern in the ICU format,
as shown in the following code:

var f = new NumberFormat("###.0#");
print(f.format(12.345));
// Result: 12.35

The second optional parameter of the NumberFormat factory constructor is the locale.
If the locale parameter is not specified, the constructor uses a default value in the
current locale. The NumberFormat class contains the following named constructors
for the quick creation of frequently used patterns in a specific locale:

• The decimal format uses the decimal pattern, that is, #,##0.###:
var d = new NumberFormat.decimalPattern("de_DE");
print(d.format(12.345));
// Result: 12,345

• The percent format uses the percent pattern, that is, #,##0%:
var p = new NumberFormat.percentPattern("de_DE");
print(p.format(12.345));
// Result: 1.235%

• The scientific format prints only the terms equivalent to #E0 and does not
take into account the significant digits:
var s = new NumberFormat.scientificPattern("de_DE");
print(s.format(12.345));
// ==> 1E1

• The currency format always uses the name of the currency passed as the
second parameter:
var c = new NumberFormat.currencyPattern("de_DE", 'EUR');
print(c.format(12.345));
// ==> 12,35EUR

Chapter 8

[185]

Formatting dates
The DateFormat class can format and parse the date in a locale-sensitive manner. We
can choose the format-parse pattern from a set of standard date and time formats, or
we can create a customized one under certain locales. The DateFormat class formats
the date in the default en_US locale without any initialization. For other locales,
the formatting data must be obtained and the global initializeDateFormatting
function must be called to return Future that is complete once the locale data is
available. Depending on the type of the application you develop, you can choose one
of the following libraries that provide this function implementation and enables you
to access to the formatting data:

• date_symbol_data_local: For a small application, the data to be formatted
can be embedded in the code that is available locally so that you can choose
the date_symbol_data_local library. In the following code, we initialize
the date formatting for all the locales at once. Both the parameters of the
initializeDateFormatting method are ignored because the data for
all the locales is directly available, as shown in the following code:
import 'package:intl/date_symbol_data_local.dart';
import 'package:intl/intl.dart';

void main() {
 initializeDateFormatting(null, null)
 .then((_) {
 Intl.defaultLocale = "de_DE";
 DateFormat df = new DateFormat("EEE, MMM d, yyyy");
 print(df.format(new DateTime.now()));
 }).catchError((err) {
 print(err);
 });
 // Result: Sa., Sep. 20, 2014
}

• date_symbol_data_http_request: For the client side, you need an
application that runs inside the web browser and possibly compiles into
the JavaScript code. You need to read the data from the server using the
XmlHttpRequest mechanism so that you can choose the date_symbol_data_
http_request library. We need set up the lookup for the date symbols using
URL as a second parameter of the initializeDateFormatting method.
We use the path package that provides common operations to manipulate
paths in our example:
import 'package:intl/date_symbol_data_http_request.dart';
import 'package:intl/intl.dart';
import 'package:path/path.dart' as path;

Internalization and Localization

[186]

void main() {
 String datesPath = path.join(path.current,
 path.fromUri("packages/intl/src/data/dates/"));
 initializeDateFormatting("pt_BR", datesPath)
 .then((_) {
 Intl.defaultLocale = "pt_BR";
 DateFormat df = new DateFormat("EEE, MMM d, yyyy");
 print(df.format(new DateTime.now()));
 }).catchError((err) {
 print(err);
 });
}
// Result: sáb, set 20, 2014

In the preceding code, we requested the date formats for Portuguese –
BRAZIL locale and then set them as a default locale. After that, we used
DateFormat to format current date and time.

• date_symbol_data_file: For the server side, you need an application that
executes inside the Dart VM so that you can choose the date_symbol_data_
file library that helps you to read the data from the files in the filesystem.
We use the second parameter of the initializeDateFormatting method
to pass the path to those files. The path parameter will end with a directory
separator that is appropriate for the platform. We use the path package for
the following example again:

import 'package:intl/date_symbol_data_local.dart';
import 'package:intl/Intl.dart';
import 'package:path/path.dart' as path;

void main() {
 String datesPath = path.join(path.current,
 path.fromUri("packages/intl/src/data/dates/"));
 initializeDateFormatting("fr", datesPath)
 .then((_) {
 DateFormat df = new DateFormat("EEE, MMM d, yyyy",
 "fr_FR");
 print(df.format(new DateTime.now()));
 }).catchError((err) {
 print(err);
 });
 // Result: sam., sept. 20, 2014
}

Chapter 8

[187]

When the locale data is ready to use, we need to specify the ICU date/time patterns,
which should be used either in full names or preferably their compact skeleton forms
as shown in the following code:

new DateFormat.yMd(); // Skeleton form
new DateFormat(DateFormat.YEAR_NUM_MONTH_DAY); // ICU full name
// Result: 7/10/2005

We can create compound formats with a set of the add_* methods as follows:

new DateFormat.yMd().add_Hm();
// Result: 7/10/2005 09:10 PM

The DateFormat class accepts custom formats that follow the explicit pattern syntax.
The constructor resolves a custom pattern and adapts it in different locales, as shown
in the following code:

new DateFormat("EEE, MMM d, yyyy");
// Result: Fri, October 7, 2005

The locale is the second optional parameter of the DateFormat constructor that helps
to create the formatter in a specific locale. The constructor generates ArgumentError
if a specified locale does not exist in the set of supported locales.

Internalizing messages
The internalization of messages is based on a lookup via a named localized version
of messages and returning the translated message, possibly interpolated with a list of
specified arguments. So, to localize any message, such as Hello $name from Dart!,
we will create a lookup message function that returns the result of the Intl.message
method call, as shown in the following code:

String hello(name) => Intl.message(
 "Hello $name from Dart!",
 name:"hello",
 args: [name],
 examples: {"name":"World"},
 desc: "Greet the user with specified name");

We will use the hello message function as a wrapper due to the following reasons:

• The function scope can encapsulate an implementation
• The function parameters can be passed as parameters in the

Intl.message method

Internalization and Localization

[188]

The message string that is passed as the first parameter must be a simple expression
where only function parameters and curly brackets are allowed. Other parameters
must be literal and should not contain any interpolation expressions.

The name and args arguments of the message function are required and
the name argument must match the name of the caller function.

Now, instead of assigning the message to our code, we will call the hello function to
return the translated message for us, as shown in the following code:

querySelector("#dart_greating")
 ..text = hello('John');

In other cases that are similar to our example, the hello function can interpolate
the results of the translated message with a list of arguments that is passed in. The
examples and desc parameters are not used at runtime and are only made available
to the translators. Now, we ready to start using the message functions without any
localization and will finally have the correct translation in the current locale.

Adding parentheses
We can use parentheses to combine the singular and the plural forms into one string
with the plural method of the Intl class, as shown in the following code:

String replace(int num, String str) => Intl.plural(
 num,
 zero: "No one occurrence replaced for $str",
 one: "$num occurrence replaced for $str",
 other: "$num occurrences replaced for $str",
 name: "replace",
 args: [num, str],
 desc:"How many occurrences replaced for string",
 examples: {'num':2, 'str':'hello'});

The plural method translates and interpolates the contents of the zero, one,
and other parameters into a localized message. We missed the two, few, and many
parameters because a method can only combine the one and other methods but you
can specify them if necessary. The plural method when represented as a String
expression can be used as part of Intl.message, which specifies only the plural
attributes as shown in the following code:

String replace(int num, String str) => Intl.message(
 """${Intl.plural(
 num,

Chapter 8

[189]

 zero: "No one occurrence replaced for $str",
 one: "$num occurrence replaced for $str",
 two: "$num occurrence replaced for $str",
 few: "$num occurrences replaced for $str",
 other: "$num occurrences replaced for $str")}""",
 name: "replace",
 args: [num, str],
 desc:"How many occurrences replaced for string",
 examples: {'num':2, 'str':'hello'});
);

Adding gender
The gender method of the Intl class provides out-of-the-box support for
gender-based selection, as shown in the following code:

String usage(String name, String gender, String car) =>
 Intl.gender(
 gender,
 male: "$name uses his $car",
 female: "$name uses her $car",
 other: "$name uses its car",
 name: "usage",",
 args: [name, gender, car],
 desc: "A person uses the car.");

The gender parameter must equal to one of the literal values: male, female,
or other. This method can be used as a part of the Intl.message method:

String usage(String name, String gender, String car) =>
 Intl.message(
 """${Intl.gender(
 gender,
 male: "$name uses his $car",
 female: "$name uses her $car",
 other: "$name uses its car")}""",
 name: "usage",
 args: [name, gender, car],
 desc: "A person uses the car.");

Internalization and Localization

[190]

Adding select
Last but not least, a select method from the Intl class is used to format messages
differently, depending on the available choice:

String currencySelector(currency, amount) => Intl.select(currency,
 {
 "USD": "$amount United States dollars",
 "CDN" : "$amount Canadian dollars",
 "other" : "$amount some currency or other."
 },
 name: "currencySelector",
 args: [currency, amount],
 examples: {'currency': 'USD', 'amount':'20'},
 desc: "Translate abbreviation into full name of currency");

The select method looks up the value of the currency in a map of cases and
returns the results that are found or returns an empty string. It can be a part
of the Intl.message method, as shown in the following code:

String currencySelector(currency, amount) => Intl.message(
 """${Intl.select(currency,
 {
 "USD": "$amount United States dollars",
 "CDN" : "$amount Canadian dollars",
 "other" : "$amount some currency or other."
 })}""",
 name: "currencySelector",
 args: [currency, amount],
 examples: {'currency': 'USD', 'amount':'20'},
 desc: "Translate abbreviation into full name of currency");

Creating complex message translations
The message, plural, gender, and select methods can be combined with each
other to create complex message translations as shown in the following code:

String currencySelector(currency, amount) => Intl.select(currency,
 {
 "USD": """${Intl.plural(amount,
 one: '$amount United States dollar',
 other: '$amount United States dollars')}""",
 "CDN": """${Intl.plural(amount,
 one: '$amount Canadian dollar',
 other: '$amount Canadian dollars')}""",

Chapter 8

[191]

 "other": "$amount some currency or other.",
 },
 name: "currencySelector",
 args: [currency, amount],
 examples: {'currency': 'USD', 'amount':'20'},
 desc: "Translate abbreviation into full name of currency");

In the preceding code, we translated the abbreviation into a full currency name
depending on the amount of money and use them to create the available choice.

Bidirectional formatting
The Intl library supports the development of web applications localized for both
right-to-left (RTL) and left-to-right (LTR) locales.

We can combine languages with locales that have different directions in only one
text by easily using the HTML markup wrappers. In the following code, we use
the HTML tags to embed the company name in Hebrew and have the
surrounding text in English:

Copyright 2014 ףותישו דיתע

In cases where the information is entered by the user or if it comes from the backend
or third-party web resources, the BidiFormatter class can insert it automatically at
runtime as shown in the following code:

copyrightLbl() => Intl.message("Copyright 2014 ףותישו דיתע",
 name: "copyrightLbl",
 desc: "Copyright label");
…
BidiFormatter bidiFormatter = new BidiFormatter.UNKNOWN();
querySelector("#copyrightLbl").text =
 bidiFormatter.wrapWithUnicode(copyrightLbl());

Internationalizing your web application
Let's see an example of how we can internationalize a standard web application.
To do so, we will create a simple web application in Dart Editor, designed the
registration form, and embedded it inside the body of an index.html file.
The code is as follows:

<h1>Registration Form</h1>
<form>
 <table>
 <tr>
 <td><label for="firstName">First Name:</label></td>

Internalization and Localization

[192]

 <td><input type="text" id="firstName" name="firstName"></td>
 </tr>
 <tr>
 <td><label for="lastName">Last Name:</label></td>
 <td><input type="text" id="lastName" name="lastName"></td>
 </tr>
 <tr>
 <td><label>Gender:</label></td>
 <td>
 <input type="radio" name="sex" value="male">
 Male
 <input type="radio" name="sex" value="female">
 Female
 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" value="Register"></td>
 </tr>
 <tr>
 <td colspan="2">
 Copyright 2014 ףותישו דיתע
 </td>
 </tr>
 </table>
</form>

The following screenshot shows the result of the preceding code in a web browser:

Chapter 8

[193]

First of all, we add the intl package in the dependency section of our pubspec.
yaml file. Then, we decide to try out a combination of naming conventions and
internationalization methods to offer the utmost flexibility in setting up the display
names, because meaningful display names are very important here. To create a
display name of a component, we will perform the following actions:

• Make all the levels of the header tag end with the Head suffix
• End all the labels with the Lbl suffix
• End the input elements to be submitted with the Btn suffix

Each referencing element must use the identifier name of the references element
in combination with the previously mentioned suffix. So, now we are ready to
internationalize the registration form.

All elements in the form that contains the string messages must have unique
identifiers. We will remove all the text messages from the registration form,
using the following code:

<h1 id="formHead"></h1>
<form>
 <table>
 <tr>
 <td><label for="firstName" id="firstNameLbl"></label></td>
 <td><input type="text" id="firstName" name="firstName"></td>
 </tr>
 <tr>
 <td><label for="lastName" id="lastNameLbl"></label></td>
 <td><input type="text" id="lastName" name="lastName"></td>
 </tr>
 <tr>
 <td><label id="genderLbl"></label></td>
 <td>
 <input type="radio" name="sex" value="male">

 <input type="radio" name="sex" value="female">

 </td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit" id="registerBtn"></td>
 </tr>
 <tr>
 <td colspan="2"></td>
 </tr>
 </table>
</form>

Internalization and Localization

[194]

We need to create one function per message that is getting translated in the Dart
code. In such cases, you must choose the naming convention for the following code:

formHead() => "Registration Form";
firstNameLbl() => "First name:";
lastNameLbl() => "Last name:";
genderLbl() => "Gender:";
maleLbl() => "Male";
femaleLbl() => "Female";
registerBtn() => "Register";
copyrightLbl() => "Copyright 2014 ףותישו דיתע";

We will use the querySelector function to find all the elements that are translated
by the unique identifier and assign the translated messages to their appropriate
property, as shown in the following code:

querySelector("#formHead").text = formHead();
querySelector("#firstNameLbl").text = firstNameLbl();
querySelector("#lastNameLbl").text = lastNameLbl();
querySelector("#genderLbl").text = genderLbl();
querySelector("#maleLbl").text = maleLbl();
querySelector("#femaleLbl").text = femaleLbl();
(querySelector("#registerBtn") as InputElement)
 .value = registerBtn();
BidiFormatter bidiFormatter = new BidiFormatter.UNKNOWN();
querySelector("#copyrightLbl").text =
 bidiFormatter.wrapWithUnicode(copyrightLbl());

Now, apply the Intl.message method to every function that's created, as shown in
the following code:

formHead() => Intl.message("Registration Form",
 name:"formHead",
 desc: "Registration Form title");
firstNameLbl() => Intl.message("First name:",
 name: "firstNameLbl",
 desc: "First Name label");
lastNameLbl() => Intl.message("Last name:",
 name: "lastNameLbl",
 desc: "Last Name label");
genderLbl() => Intl.message("Gender:",
 name: "genderLbl",
 desc: "Gender label");
maleLbl() => Intl.message("Male",
 name: "maleLbl",
 desc: "Male label");

Chapter 8

[195]

femaleLbl() => Intl.message("Female",
 name: "femaleLbl",
 desc: "Female label");
registerBtn() => Intl.message("Register",
 name: "registerBtn",
 desc: "Registration Button name");
copyrightLbl() => Intl.message("Copyright 2014 ףותישו דיתע",
 name: "copyrightLbl",
 desc: "Copyright label");

If you open your page in a web browser, it will now look like the original one.
Now that you know how messages can be translated with the Intl class, it's time
to discuss localization.

Extracting messages
Now, we have all the messages separated from the UI and we are ready for
translation. We need to extract them from the source code into the external file
with a special program called extract_to_arb.dart from the intl package,
as shown in the following code:

pub run intl:extract_to_arb --output-dir=web web/registration_form.
dart

The preceding program generates the intl_messages.arb file inside the
specified web directory. This file contains all the messages in the ARB format.
ARB is a localization resource format based on JSON. This format provides the
following benefits:

• Simplicity: This format is simple and human-readable because it is based
on JSON

• Extensibility: In this format, vocabulary can be added without affecting
the existing tools and usage

• Direct usability: Applications can access the resource directly from this
format without converting them to another form

You can find more about the ARB format in the specification available at https://
code.google.com/p/arb/wiki/ApplicationResourceBundleSpecification.

After this, you can send the files in the ARB format to the human translator. This is
done as the form in our case is quite simple and we can translate the files into other
languages ourselves by using Google Translator Toolkit.

https://code.google.com/p/arb/wiki/ApplicationResourceBundleSpecification
https://code.google.com/p/arb/wiki/ApplicationResourceBundleSpecification

Internalization and Localization

[196]

Using Google Translator Toolkit
The following steps will show you how to use Google Translator Toolkit:

1. Open your web browser and navigate to https://translate.google.
com/toolkit. Click on the UPLOAD button to upload a file as shown in the
following screenshot:

2. You will be taken to another web page where you can add the content
that you want to translate. You can choose the intl_messages.arb file
to be translated:

3. Select the appropriate translating language that you want the message to be
translated into, and then click on the Next button:

https://translate.google.com/toolkit
https://translate.google.com/toolkit

Chapter 8

[197]

4. On the next page, you can choose any one of the vendors that are ready
for translation or click on the No, thanks button to translate the messages
yourselves. The resulting new file will appear in the list of files ready for
translation, as shown in the following screenshot:

5. Now click on the filename in the list of files and Google Translator Toolkit
will open it in the editor:

Internalization and Localization

[198]

6. Google Translator Toolkit helps you translate your messages easily, giving
you suggestions. You can just choose all of them and click on the Complete
button, but you can play with the translation options to properly translate
your messages if you want. Finally, choose Save and close the menu item in
the File menu to return to the main page of Google Translator Toolkit:

7. We selected our file and clicked on the Download button to save it with
the name translate_de.arb. We also changed the name of the file from
intl_messages.arb to translate_en.arb to keep all the filenames similar.

Using translated messages
Now, it's time to generate a set of Dart libraries that contain translated versions
of our messages—one per locale from the ARB files prepared before. We use the
generate_from_arb program from the intl package:

pub run intl:generate_from_arb --output-dir=web web/registration_form.
dart web/translate_en.arb web/translate_de.arb

The program generates the message_de.dart, message_en.dart, and messages_
all.dart files in the specified web directory. Each message_<locale_tag>.dart
file contains the MessageLookup class that implements MessageLookupByLibrary.
The MessageLookup class has a getter method localeName, a set of static functions
that are returned translated on the specific locale text messages, and final constant
messages that contain the name of all the static methods. The messages_all.dart
file combines all the lookups in one place to make them available for the localization
code from the Intl library. The single available public method of the message_all
library is initializeMessages, as shown in the following code:

Future initializeMessages(String localeName)

Chapter 8

[199]

This method should be called first before using the specified localeName
method. Let's change our code to make the German locale available by default.
All we need to do is import the messages_all.dart file to our project and add
initializeMessages in the main method, as shown in the following code:

import 'messages_all.dart';
…
void main() {
 initializeMessages('de').then((_) {
 Intl.defaultLocale = 'de';
 querySelector("#formHead").text = formHead();
 querySelector("#firstNameLbl").text = firstNameLbl();
 querySelector("#lastNameLbl").text = lastNameLbl();
 querySelector("#genderLbl").text = genderLbl();
 querySelector("#maleLbl").text = maleLbl();
 querySelector("#femaleLbl").text = femaleLbl();
 (querySelector("#registerBtn") as InputElement)
 .value = registerBtn();
 BidiFormatter bidiFormatter = new BidiFormatter.UNKNOWN();
 querySelector("#copyrightLbl").text =
 bidiFormatter.wrapWithUnicode(copyrightLbl());
 });
}

In the preceding code, we specified the German locale when we initialized the
messages as default. Now, open the index.html file in the browser to see the
correct translation of our form in the German locale:

Internalization and Localization

[200]

Summary
In this chapter, we discussed some important aspects of internalization and
localization of projects based on the Dart language. The development of globalized
software includes internationalization and covers designing and developing web
applications, and localization that includes translating and customizing web
applications for a specific locale.

The intl package from the pub manager helps you design and develop applications
for the server side and client side in a pretty straightforward manner. All the
executable code must be separated from the programming code that implements
the UI. You must avoid converting numbers and dates into strings directly because
various cultures have different ways of presenting numbers and dates.

The NumberFormat class contains special constructors to quickly create the frequently
used patterns, which can be very handy to measure units and currencies. The
BidiFormatter class helps manage messages that contain text in both directions
with the BiDi wrapping, automatic directionality estimation, and character escaping.
The DateFormat class has a huge set of naming patterns that are useful to avoid
mistakes and display data in the correct format. The internalization of messages is
based on the lookup via the named localized version of messages and returns the
translated messages, possibly those interpolated with a list of specified arguments.

The plural method of the Intl class can help use parentheses to combine the
singular and the plural forms to one string. The gender method of the Intl class
provides out-of-the-box support for gender-based selection. The select method
from the Intl class helps format the message differently based on the available
choice. The message method of the Intl class can represent messages as simple
expressions with possibilities of interpolating them with attributes.

In the next chapter, we will show you how to properly organize client to server
communication. You will find answers on presumably important questions about
the right choice of Dart classes using the client-to-server communication.

Client-to-server
Communication

In this chapter, we will discuss how to organize client-to-server communication.
We will find answers to presumably the important questions, such as the right
choice of Dart classes using the client-to-server communication. In this chapter,
we will cover the following topics:

• Communication at a glance
• Hypertext Transfer Protocol
• AJAX polling request
• AJAX long polling request
• Server-Sent Events
• WebSocket

Communication at a glance
Some of us can't imagine the modern world without the Internet, cell phones,
or computers. Each device connected to the Internet can either be a client, a server,
or both of these simultaneously. Communication between a client and a server is
the basis of modern digital world. Communication based on a system of special rules
and format of messages is known as a communication protocol that enables data
exchange between clients and servers.

Client-to-server Communication

[202]

The Internet protocol stack
Any device connected to the Internet has an Internet Protocol (IP) address.
An IP address can be permanent or temporary when it is obtained from the
Dynamic Host Configuration Protocol (DHCP) server. In any case, any device that
is connected to the Internet has a unique IP address. Many programs working in
scope of a single unique IP address use different port numbers to have access to the
Internet simultaneously. A message transmitted from one device to another over the
Internet is delivered through a long route via the protocol stack, which is represented
as a set of layers that lie on top of one another as shown in the following diagram:

Application Layer

Transmission Control Layer

Internet Layer

Hardware Layer

Application Layer

Transmission Control Layer

Internet Layer

Hardware Layer

Internet

Let's see what actually happens with a message:

1. A message arrives at the application protocol layer present on the top of the
protocol stack, and then moves down. Usually, the application layer formats
the message in one of the standard ways that is applicable to applications
such as HTTP, SMTP, FTP, or others.

2. The formatted message is then forwarded to the transmission control
protocol (TCP) layer. It splits the message into small, manageable chunks of
data known as packets and assigns a number to each of them. This number
specifies the order of the packets and allows the recipient's TCP layer to
reconstruct the original message from the packets. It assigns a port number
to each packet, depending on the protocol being used at the application level.

3. Then, these packets proceed to the IP layer. It attaches the IP address of the
sender and recipient to each packet. A combination of the IP address and
port number is called a socket address.

4. Finally, a hardware layer attaches the Media Access Control (MAC) address
of the sender and recipient to the packets. It allows the packets to be directed
to a specific network interface on the IP address of the destination device. On
the hardware layer, all packets are converted to electronic signals one by one,
transmitted over the wire, and connected to the Internet Service Provider
(ISP) modem.

5. From here, it is the ISP's task to deliver packets of message to the specified IP
address on the Internet via routers and ISP backbones.

Chapter 9

[203]

6. Packets delivered by the ISP start at the bottom of the protocol stack of
the destination device. Any extra information stripped from the packets
goes upwards.

7. Eventually, data reaches the top of the stack where it is decoded into the
original message.

Hypertext Transfer Protocol
The World Wide Web (WWW) is one of the most commonly used services on
the Internet. The Hypertext Transfer Protocol (HTTP) is a text-based application
layer protocol that makes it work. All web browsers and web service applications
use HTTP to communicate with each other over the Internet. A web browser or
standalone application opens a connection and sends a request to the web server.
The web server services the request and closes the connection to the web client.

HTTP is a stateless protocol.

You cannot find any information about persistent connections in the HTTP 1.0
specification. However, in essence, it was unofficially added to an existing
protocol via the following additional header to the request:

Connection: Keep-Alive

So, if a client supports Keep-Alive, it adds the preceding header to his request.
A server receives this request and generates a response includes this header.

Starting from HTTP 1.1, all the connections are considered persistent unless
declared otherwise. A HTTP persistent connection does not use external Keep-Alive
messages. Multiple requests could be sent to use a single opened connection.

We can use the HTTP protocol for communication purposes via the following
different libraries:

• The dart:io library from the Dart SDK contains the HttpClient class,
which communicates with the server over the HTTP protocol.

• The dart:html library from the Dart SDK has the HttpRequest class uses a
client-side XMLHttpRequest to obtaining data from the URL. It also helps in
obtaining data from HTTP or FTP, or updating page content via AJAX.

Client-to-server Communication

[204]

• The http package from the pub server written by the Google development
team contains a future-based library to create HTTP requests. It is platform
independent, so we can use the http.dart library to generate HTTP requests
from standalone applications or the browser_client.dart library for
web browser-based applications.

Let's see how we can organize communication between the web browser or
standalone application on one side and the web server on the other side.

Web server
In this chapter, we will create a simple web server that can be used for all examples
as follows:

import 'dart:io';
import 'package:route/server.dart';

import 'urls.dart' as urls;
import 'files.dart';
main() {
 final allUrls = new RegExp('/(.*)');

 HttpServer.bind(urls.serverAddress, urls.serverPort)
 .then((server) {
 print("Server runs on ${server.address.host}:${server.port}");
 new Router(server)
 ..serve(urls.dataUrl, method:'GET').listen(processParams)
 ..serve(urls.dataUrl, method:'DELETE').listen(processParams)
 ..serve(urls.dataUrl, method:'POST').listen(processBody)
 ..serve(urls.dataUrl, method:'PUT').listen(processBody)
 ..serve(allUrls).listen(serveDirectory('', as: '/'))
 ..defaultStream.listen(send404);
 });
}

In the preceding code, we intentionally used the route package from the pub server
to reduce the number of code wraps around the main functionality. Our code serves
the client's request to match dataUrl. Depending on the method of request, the code
invokes the processParams or processBody functions. We keep serverAddress,
serverPort, and dataUrl inside the urls.dart file. We especially move them away
to the external file to share this data with client code. We set the shared headers in
the setHeaders method as shown in following code:

setHeaders(HttpRequest request) {
 request.response.headers.contentType =
 new ContentType("text", "plain", charset: "utf-8");
}

Chapter 9

[205]

The following method processes the query parameters:

processParams(HttpRequest request) {
 setHeaders(request);
 request.response.write(
 "${request.method}: ${request.uri.path}");
 if (request.uri.queryParameters.length > 0) {
 request.response.write(", Params:" +
 request.uri.queryParameters.toString());
 }
 request.response.close();
}

The following method processes the requested message body. Depending on the
amount of the content, we write the content in the output stream or just return the
message with the method name and path, as follows:

processBody(HttpRequest request) {
 setHeaders(request);
 if (request.contentLength > 0) {
 request.listen((List<int> buffer) {
 request.response.write(
 "${request.method}: ${request.uri.path}");
 request.response.write(", Data:" +
 new String.fromCharCodes(buffer));
 request.response.close();
 });
 } else {
 request.response.write(
 "${request.method}: ${request.uri.path}");
 request.response.close();
 }
}

Client-to-server Communication

[206]

Our server doesn't do anything special. It responds with the method's name, query
parameters, or the message body, which is represented as a string per request. The
server must always be online to handle our requests. Dart Editor can run different
Dart programs simultaneously. To do this, just right-click on the server.dart file
and run it as shown in the following screenshot:

Standalone HTTP communication via the
dart:io library
Let's start from the standard dart:io library and the HttpClient class to organize
communication from the standalone client to the web server. Any method of the
HttpClient class that is used for communication is a two-step process. The first
time we call the original method, it returns Future with HttpClientRequest. From
now, the underlying network communication is opened but no data is sent yet. You
can set the HTTP headers or body on the request and finally return the results of the
request's close method. Take a look at the following code based on the HttpClient
class from the dart:io library:

import 'dart:io';
import 'dart:convert';
import 'urls.dart' as urls;

var url = "http://${urls.serverAddress}:${urls.serverPort}${urls.
 dataUrl}";
var name = "HttpClient Standalone";
// The following method processes all responses:
responseHandler(response) {

Chapter 9

[207]

 if (response is HttpClientResponse) {
 response.transform(UTF8.decoder).listen((contents) {
 print("${response.statusCode}: ${contents}");
 });
 } else {
 print("Readed: " + response.toString());
 }
}
// We send data to a server via this method:
sendData(HttpClientRequest request, data) {
 request.headers.contentType =
 new ContentType("application", "json", charset: "utf-8");
 List<int> buffer = JSON.encode(data).codeUnits;
 request.contentLength = buffer.length;
 request.add(buffer);
}

main() {
 // We need to encode name before sending it:
 String query = "name=" + Uri.encodeQueryComponent(name);
 // We create the client instance to send multiple requests:
 HttpClient client = new HttpClient();
 // Make a GET request with query:
 client.getUrl(Uri.parse("$url?$query"))
 .then((HttpClientRequest request) {
 return request.close();
 }).then(responseHandler);
 // Here we send a map with data via the POST request:
 client.postUrl(Uri.parse(url))
 .then((HttpClientRequest request) {
 sendData(request, {'post name': name});
 return request.close();
 }).then(responseHandler);
 // The PUT request is very similar to the POST one:
 client.putUrl(Uri.parse(url))
 .then((HttpClientRequest request) {
 sendData(request, {'put name': name});
 return request.close();
 }).then(responseHandler);
 // Here is the DELETE request:
 client.deleteUrl(Uri.parse("$url?$query"))
 .then((HttpClientRequest request) {
 return request.close();
 }).then(responseHandler);
}

Client-to-server Communication

[208]

Run the server code as explained in the Web server section and then run the code in
standalone_dart_io.dart via the context-sensitive menu. Refer to the following
client output:

200: GET: /data, Params:{name: HttpClient Standalone}
200: DELETE: /data, Params:{name: HttpClient Standalone}
200: POST: /data, Data:{"post name":"HttpClient Standalone"}
200: PUT: /data, Data:{"put name":"HttpClient Standalone"}

The HttpClient class provides a set of methods to create HTTP requests but a two-
step process is a real disadvantage.

Standalone HTTP communication via the http
package
Let's see how the http library from the http package can improve the client-side
development experience. Before using the http library, we should add the http
package in a group of dependencies in the pubspec.yaml file of our project.
We create a standalone_http.dart file with the help of the following code:

import 'package:http/http.dart' as http;
import 'dart:async';
import 'urls.dart' as urls

var url = "http://${urls.serverAddress}:${urls.serverPort}${urls.
 dataUrl}";
var name = "Http Standalone";
// We process all responses in this method:
responseHandler(response) {
 if (response is http.Response) {
 print("${response.statusCode}: ${response.body}");
 } else {
 print("Readed: " + response.toString());
 }
}

main() {
 // We need to encode name before sending it:
 String query = "name=" + Uri.encodeQueryComponent(name);
 // Static functions such as GET, POST, and so on create new
instances of the Client interface per request:
 // All static functions such as get from the http library always
create
 // new instance of the Client class
 http.get("$url?$query").then(responseHandler);

Chapter 9

[209]

 var client = new http.Client();
 Future.wait([
 client.get("$url?$query").then(responseHandler),
 client.post(url, body: {"name": name}).then(responseHandler),
 client.put(url, body: {"name": name}).then(responseHandler),
 client.delete("$url?$query").then(responseHandler)])
.then((list) {
 client.close();
});
}

A huge advantage of using the Client class from the http library over HttpClient
from the dart:io library is less verbose code with a similar result:

200: GET: /data, Params:{name: Http Standalone}
200: GET: /data, Params:{name: Http Standalone}
200: POST: /data, Data:name=Http+Standalone
200: PUT: /data, Data:name=Http+Standalone
200: DELETE: /data, Params:{name: Http Standalone}

Web browser HTTP communication via the
dart:html library
You cannot use the dart:io library to write a web browser-based application
because this library was written especially for standalone and server applications.
Instead, we will use the HttpRequest class from the dart:html library to achieve the
same result. This class can be used to obtain data from the HTTP or FTP application
protocols as well as AJAX polling requests, as shown in the following code:

import 'dart:html';
import 'dart:convert';
import 'urls.dart' as urls;

var url = "http://${urls.serverAddress}:${urls.serverPort}${urls.
dataUrl}";
var name = "HttpClient Browser";
// We save the response text in a DIV element and append it to the
// DIV container:
responseHandler(DivElement log, responseText) {
 DivElement item = new DivElement()
 ..text = responseText.toString();
 log.append(item);
}

void main() {
 DivElement log = querySelector("#log");
 // Here we prepare query to send:
 String query = "name=" + Uri.encodeQueryComponent(name);
 String data = JSON.encode({"name": name});

Client-to-server Communication

[210]

 HttpRequest request = new HttpRequest();
 // We open a connection to the server via HttpRequest:
 request.open("GET", "$url?$query");

 request.onLoad.listen((ProgressEvent event) {
 responseHandler(log, request.response);
 });
 // Now send data via call the send method:
 request.send();

 request.open("POST", url);
 request.onLoad.listen((ProgressEvent event) {
 responseHandler(log, request.response);
 });
 request.send(data);

 request.open("PUT", url);
 request.onLoad.listen((ProgressEvent event) {
 responseHandler(log, request.response);
 });
 request.send(data);

 request.open("DELETE", "$url?$query");
 request.onLoad.listen((ProgressEvent event) {
 responseHandler(log, request.response);
 });
 request.send();
 // HttpRequest supports less verbose code:
 HttpRequest.request("$url?$query")
 .then((HttpRequest request)
 => responseHandler(log, request.response));

 HttpRequest.request(url, method: "POST", sendData: data)
 .then((HttpRequest request)
 => responseHandler(log, request.response));

 HttpRequest.request(url, method: "PUT", sendData: data)
 .then((HttpRequest request)
 => responseHandler(log, request.response));

 HttpRequest.request("$url?$query", method: "DELETE")
 .then((HttpRequest request)

Chapter 9

[211]

 => responseHandler(log, request.response));

 // The getString method is the absolute champion of size
 // if you need a simple GET request:
 HttpRequest.getString("$url?$query")
 .then((response) => responseHandler(log, response));

We now create a launch target to run the index.html file via the Manage Launches
item from the Run menu, as shown in the following screenshot:

This Dartium launch configuration opens the index.html file in the default web
browser. Take into account the fact that the Use pub service to serve the application
option is unchecked because we are using our own server to serve all the browser
requests. You could set breakpoints and debug code if necessary. Run the server
code as mentioned in the Web server section and index.html through the launcher.
The following is the result of our requests when printed on the web page:

DELETE: /data, Params:{name: HttpClient Browser}
DELETE: /data, Params:{name: HttpClient Browser}
DELETE: /data, Params:{name: HttpClient Browser}
DELETE: /data, Params:{name: HttpClient Browser}
DELETE: /data, Params:{name: HttpClient Browser}
GET: /data, Params:{name: HttpClient Browser}
POST: /data, Data:{"name":"HttpClient Browser"}
DELETE: /data, Params:{name: HttpClient Browser}
PUT: /data, Data:{"name":"HttpClient Browser"}
GET: /data, Params:{name: HttpClient Browser}

Client-to-server Communication

[212]

Web browser HTTP communication via the
http package
As mentioned earlier, the http package combines two sorts of libraries to help in
client-to-server communication. Let's see how the BrowserClient class from the
http package can help us achieve the same result with less effort:

import 'dart:html' as dom;
import 'package:http/browser_client.dart';
import 'package:http/src/request.dart';
import 'package:http/src/streamed_response.dart';
import 'dart:convert';
import 'urls.dart' as urls;

var url = "http://${urls.serverAddress}:${urls.serverPort}${urls.
 dataUrl}";
var name = "HttpClient Browser";
// The response handler is as follows:
responseHandler(dom.DivElement log, StreamedResponse response) {
 dom.DivElement item = new dom.DivElement();
 response.stream.transform(UTF8.decoder).listen((contents) {
 item.text = contents;
 });
 log.append(item);
}

void main() {
 dom.DivElement log = dom.querySelector("#log");
 String query = "name=" + Uri.encodeQueryComponent(name);
 String data = JSON.encode({"name": name});

 BrowserClient client = new BrowserClient();
 Request request = new Request("GET", Uri.parse("$url?$query"));
 // We organize request via call the send method of BrowserClient
 // class:
 client.send(request).then((StreamedResponse response)
 => responseHandler(log, response));

 request = new Request("POST", Uri.parse(url));
 request.body = data;
 client.send(request).then((StreamedResponse response)
 => responseHandler(log, response));

Chapter 9

[213]

 request = new Request("PUT", Uri.parse(url));
 request.body = data;
 client.send(request).then((StreamedResponse response)
 => responseHandler(log, response));

 request = new Request("DELETE", Uri.parse("$url?$query"));
 client.send(request).then((StreamedResponse response)
 => responseHandler(log, response));
}

Create a Dartium launch configuration and open the index.html file in a web
browser. Run the server and launch the new configuration to see the following
expected result:

GET: /data, Params:{name: HttpClient Browser}
POST: /data, Data:{"name":"HttpClient Browser"}
DELETE: /data, Params:{name: HttpClient Browser}
PUT: /data, Data:{"name":"HttpClient Browser"}

You now know how to easily create client-to-server communication via the
BrowserClient and Request classes from the http and html packages.

AJAX polling request
Usually, a web browser sends requests and immediately receives responses.
Every new portion of data requested from the server starts to reload a whole
web page. Asynchronous JavaScript and XML (AJAX) is a technology that allows
the client-side JavaScript code to request data from a server without the need to
reload the current page in the web browser. An important advantage of using
AJAX compared to traditional flow of web pages is its ability to bring usability and
behavior of desktop applications into a web application. HttpRequest is a client-side
XHR request to get data from a URL, formally known as XMLHttpRequest, and has
an important role in the AJAX web development technique.

All the requests created within HttpRequest must be in the server from
the same origin as the requested resource.

Client-to-server Communication

[214]

The state of many web applications is inherently volatile. Changes can come from
numerous sources, such as other users, external news and data, results of complex
calculations, and triggers based on the current time and date. The solution is to
periodically issue a request to gain new information. For this purpose, we can
use the AJAX polling request technique. Let's take a look at the client side of
our web application:

import 'dart:html';
import 'dart:async';
import 'urls.dart' as urls;

var url = "http://${urls.serverAddress}:${urls.serverPort}${urls.
 dataUrl}";

To print the timestamp, use the following code:

timeStamp() {
 DateTime dt = new DateTime.now();
 return " (${dt.minute}:${dt.second})";
}

The response keeps a request number as follows:

responseHandler(DivElement log, responseText) {
 DivElement item = new DivElement()
 ..text = responseText.toString() + timeStamp;
 // We insert a new element at the top of the log:
 log.insertAdjacentElement('beforebegin', item);
}

void main() {
 DivElement log = querySelector("#log");
 int num = 0;
 // A timer in 2 seconds interval calls the callback function:
 new Timer.periodic(new Duration(seconds: 2), (Timer timer) {
 // We generate the query parameter with number:
 String query = "number=${num++}";
 HttpRequest.getString("$url?$query")
 .then((response) => responseHandler(log, response));
 });
}

Chapter 9

[215]

This is a simple implementation that creates new requests in every 2 seconds.
Each request has a unique number; when the server returns it, this helps us check the
order of responses. We'll make small changes to the server code to add some random
generated data to the response. The readyChecker variable is a random generator
whose values determine whether the data is ready to be fetched. The dataGenerator
variable is a random generator of integer numbers in a range between 0 and 100,
as shown in the following code:

import 'dart:math';
Random readyChecker = new Random(
 new DateTime.now().millisecondsSinceEpoch);
Random dataGenerator = new Random(
 new DateTime.now().millisecondsSinceEpoch);
//…
In the fetchData function, we check whether the data is ready to be
fetched or returns an empty string:
String fetchData() {
 if (ready.nextBool()) {
 return data.nextInt(100).toString();
 } else {
 return "";
 }
}

In the following code, we add the fetched data to the response:

processQueryParams(HttpRequest request) {
 setHeaders(request);
 request.response.write(
 "${request.method}: ${request.uri.path}");
 request.response.write(", Data:" + fetchData());
 if (request.uri.queryParameters.length > 0) {
 request.response.write(", Params:" +
 request.uri.queryParameters.toString());
 }
 request.response.close();
}

Client-to-server Communication

[216]

Create a Dartium launch configuration and open the index.html file in the web
browser. Run the server and launch a new configuration to see the following result:

GET: /data, Data:4, Params:{number: 0} (31:28)
GET: /data, Data:26, Params:{number: 1} (31:30)
GET: /data, Data: , Params:{number: 2} (31:32)
GET: /data, Data: , Params:{number: 3} (31:34)
GET: /data, Data:47, Params:{number: 4} (31:36)
GET: /data, Data:69, Params:{number: 5} (31:38)
GET: /data, Data: , Params:{number: 6} (31:40)
GET: /data, Data: , Params:{number: 7} (31:42)
GET: /data, Data:98, Params:{number: 8} (31:44)

The polling requests have the following disadvantages:

• Periodical requests consume bandwidth and server resources
• The server must always respond with or without data; as a result, the client

receives a lot empty strings

Let's try to use the AJAX long polling request to fix them.

AJAX long polling request
From a client perspective, the AJAX long polling request looks similar to normal one.
An important difference between them on the server side is that if the server doesn't
have any information available or the client, it holds the request and waits for
information to become available or for a suitable timeout, after which a completed
response is sent to the client. The long polling requests reduces the amount of data
that needs to be sent because the server only sends data when it is really available.

The long pooling request is useful in the following cases:

• When your solution must work in old web browsers
• When the data traffic between the client and server is low
• When the implementation is very simple

The advantages of using the long pooling request are as follows:

• It works across all browsers
• It is easy to develop and perfectly fits in the legacy code without significant

changes and effort
• It can detect a connection failure quickly and resume a session to avoid

data loss

Chapter 9

[217]

• It has a strong immunity against IP address changes for free, because
requests are short-lived and their state is stored independently

• It performs well for most real-time applications and reduces bandwidth
consumption and server resources utilization

The disadvantages of using this request are as follows:

• The client constantly has to establish connections; if the server sends the
information back to the client and the connection is closed, it must wait
until the client sends the next request to open a new connection

• The client needs to create an extra connection to send data to the server
• There are problems with parallel requests
• The volume of data can make the next update from the server quite excessive

if the data comes to the server until then it waits for the new connection from
the client

The following browsers are supported by the long pooling request:

• Chrome 1.0+
• Firefox 0.6+
• Opera 8.0+
• Safari 1.2+
• Internet Explorer 5.0+

To implement a long-lasting HTTP connection, you need to make changes on the
client side and the server side. We introduce the longLasting method to manage
requests and register it instead of using processParams:

//…
main() {
 final allUrls = new RegExp('/(.*)');

 HttpServer.bind(urls.serverAddress, urls.serverPort)
 .then((server) {
 print("Server runs on ${server.address.host}:${server.port}");
 new Router(server)
 ..serve(urls.dataUrl, method: 'GET').listen(longLasting)
 ..serve(allUrls).listen(serveDirectory('', as: '/'))
 ..defaultStream.listen(send404);
 });
}

Client-to-server Communication

[218]

// Next function was changed to return data only:
String fetchData() {
 return dataGenerator.nextInt(100).toString();
}

The new longLasting function is shown in the following code. It runs two
periodic timers. The first one emulates the process based on the request timeout.
If no data was collected every 30 seconds, it resets the second timer and response
with an empty string. The second one is managing the data availability. If the data
is available in a second's interval, it resets the first timer and responds with the
collected data:

longLasting(HttpRequest request) {
 Timer reqTimer, dataReadyTimer;

 reqTimer = new Timer.periodic(
 new Duration(seconds:30), (Timer t) {
 dataReadyTimer.cancel();
 processParams(request);
 });

 dataReadyTimer = new Timer.periodic(
 new Duration(seconds:1), (Timer t) {
 if (ready.nextBool()) {
 reqTimer.cancel();
 processQueryParams(request, ready:true);
 }
 });
}

The updated version of the processQueryParams function is illustrated in the
following code. This function returns data from fetchData or returns an empty
string depending on the value of the ready attribute. The code is as follows:

processQueryParams(HttpRequest request, {bool ready:false}) {
 request.response.write(
 "${request.method}: ${request.uri.path}");
 if (ready) {
 request.response.write(", Data:" + fetchData());
 } else {
 request.response.write(", Data:");
 }
 if (request.uri.queryParameters.length > 0) {

Chapter 9

[219]

 request.response.write(", Params:" +
 request.uri.queryParameters.toString());
 }
 request.response.close();
}

Let's take a look at how we change the AJAX polling request example to organize
the long polling request at the client side. You can initiate the long polling request
by calling the longPolling function as follows:

void main() {
 DivElement log = querySelector("#log");
 int num = 0;
 longPolling(log, num);
}

In this function, we send the AJAX request and wait for the response from the server.
When the response is available, we call the responseHandler function and start the
new request immediately:

longPolling(DivElement log, int num) {
 String query = "number=${num++}";
 HttpRequest.getString("$url?$query")
 .then((response) {
 responseHandler(log, response);
 longPolling(log, num);
 });
}

Create a Dartium launch configuration, run the server, and open the index.html file
in the web browser to see the following result:

GET: /data, Data:12, Params:{number: 0} (51:0)
GET: /data, Data:9, Params:{number: 1} (51:2)
GET: /data, Data:60, Params:{number: 2} (51:3)
GET: /data, Data:41, Params:{number: 3} (51:5)
GET: /data, Data:15, Params:{number: 4} (51:7)
GET: /data, Data:0, Params:{number: 5} (51:8)

For now, we reduced the consumption of bandwidth and server utilization;
hence, the clients will mostly receive only valid data.

Client-to-server Communication

[220]

Server-Sent Events
Another AJAX-based technique is Server-Sent Events (SSE), which is also known as
Server Push or HTTP Streaming. In this, the client opens a connection to the server
via an initial HTTP request, and the server sends events to the client when there
is new information available. So, if the usual functions of your clients are similar
to stock tickers or news feeds and they need updates from the server with time,
then the SSE technique is the ideal solution for you. By the way, if a client has new
information to send to the server, it can send it through a new HTTP request.

SSE is useful in the following cases:

• The client is oriented towards receiving large volume of data
• The solution must work in old web browsers

The advantages of SSE are as follows:

• The server implementation is simple enough
• A web browser can automatically reconnect to the server
• The format of exchanging messages is flexible enough
• The solution is based on one permanent connection to the server
• The solution well enough for a real-time application
• Clients don't need to establish a new connection after every response
• Server solutions can be based on the event loop

The disadvantages of SSE are as follows:

• It works only from a server to client
• Internet Explorer doesn't support it
• It can be blocked by proxy servers
• It is impossible to connect to the server from another domain

The following browsers are supported:

• Chrome 6.0+
• Firefox 6.0+
• Opera 9.0+
• Safari 5.0+

Chapter 9

[221]

The EventSource class is used to receive SSE. This class connects via a specified URL
to a server over HTTP and receives server events without closing the connection.
The events come in a text/event-stream format. To open a connection to a server
and start receiving events, we create a new instance of the EventSource class via
a factory constructor and pass the URL of the resource that generates the events
through it. Once the connection is established, we wait for the messages.

The URL of the resource that generates the events must match the
origin of the calling page.

On the server side, each message is sent as a block of text terminated by a pair of new
lines. The text data is encoded with UTF-8. Each message consists of one or more
lines of text listing the fields for that message. Each field is represented by the field
name, followed by a colon and the text data for that field's value. Here is an example
of data-only messages:

; this is a comment
data: some text

data: another text

In the preceding code, the first line is just a comment. All the text messages starting
with a colon character are comments. A comment could be useful as Keep-Alive if
the messages are not sent regularly. The second and the third line contains just a data
field with a text value. The third line contains an extra new line character terminating
a message. Several events could be sent via a message. Each event has a name
specified in the event field and data field whose values are any string. Data
could also be in a JSON format as shown in the following code:

event: userLogon
data: {"username": "John", "time": "01:22:45", "text": "Hello World"}

event: userMessage
data: "Any data"

You can use unnamed events in messages without the event field. The SSE
implementation uses message as a name for unnamed events. Each event
might have an id. In this scenario, data can be combined as follows:

id: 123
data: some text
data: {"text": "Another text}

Client-to-server Communication

[222]

Let's take a look at the server side of our example:

 //…
main() {
 final allUrls = new RegExp('/(.*)');

 HttpServer.bind(urls.serverAddress, urls.serverPort)
 .then((server) {
 print("Server runs on ${server.address.host}:${server.port}");
 new Router(server)
 ..serve(urls.dataUrl, method: 'GET').listen(processSSE)
 ..serve(allUrls).listen(serveDirectory('', as: '/'))
 ..defaultStream.listen(send404);
 });
}

String fetchData() {
 return dataGenerator.nextInt(100).toString();
}

The EventSource class instance, which is created on the client side, opens a
connection that submits the HTTP request with the text/event-stream value in the
accept header. This is a signal for the server to start the SSE communication. In our
example, we send the logon event first. The server connection remains open to the
client so we can send message events periodically, as shown in the following code:

processSSE(HttpRequest request) {
 if (request.headers.value(HttpHeaders.ACCEPT) == EVENT_STREAM) {
 writeHead(request.response);
 int num = 0;

 new Timer.periodic(new Duration(seconds:5), (Timer t) {
 sendMessageEvent(request.response, num++);
 });

 sendLogonEvent(request.response);
 }
}

Chapter 9

[223]

To allow you to send the push events, the output buffering in HttpResponse must be
disabled. In addition to this, you need to specify content type, cache control, and the
type of connection via the header attributes, as follows:

writeHead(HttpResponse response) {
 response.bufferOutput = false;
 response.headers.set(HttpHeaders.CONTENT_TYPE, EVENT_STREAM);
 response.headers.set(HttpHeaders.CACHE_CONTROL, 'no-cache');
 response.headers.set(HttpHeaders.CONNECTION, "keep-alive");
}

To send a message, you can use the writeln method of response. It automatically
assigns to a newline character to each string, so you need to add only one newline
character at the end of your event. Finally, the flush method of the response
pushes the event to the client, as shown here:

sendMessageEvent(HttpResponse response, int num) {
 print("Send Message event $num");
 response.writeln('id: 123');
 response.writeln('data: {"msg": "hello world", "num": $num, "value":
${fetchData()}}\n');
 response.flush();
}

For the logon message, we create a custom-defined userLogon event type. If
the connection opened via the EventSource terminates, the web browser will
automatically re-establish the connection to the server after three seconds. You can
change this value via the retry property of the event. This value must be an integer
that specifies the reconnection time in milliseconds:

sendLogonEvent(HttpResponse response) {
 print("Send Logon event");
 response.writeln('event: userlogon');
 response.writeln('retry: 15000');
 response.writeln('id: 123');
 response.writeln('data: {"username": "John", "role":
 "admin"}\n');
 response.flush();
}

Client-to-server Communication

[224]

The SSE code implementation at the client side is as follows:

import 'dart:html';
import 'urls.dart' as urls;

var url = "http://${urls.serverAddress}:${urls.serverPort}${urls.
 dataUrl}";
String get timeStamp {
 DateTime dt = new DateTime.now();
 return " (${dt.minute}:${dt.second})";
}

responseHandler(DivElement log, String data) {
 DivElement item = new DivElement();
 item.text = data + timeStamp;
 log.insertAdjacentElement('beforebegin', item);
}

In the preceding code, we created an instance of EventSource with the specified
URL. From now, we will start listening to the events from the server. We add the
open and error event listeners. The EventSource class informs the code about the
closed connection from the server side via changes in the readyState property.
The message listener handles all the unknown events. A special event listener
for the userlogon event handles the sort of events that could be added via the
addEventListener method of the EventSource class. The event keeps the message
information in the data property. An event identifier assigned on the server side is
available via the lastEventId property, as shown in the following code:

main() {
 DivElement log = querySelector("#log");
 EventSource sse = new EventSource(url);
 sse.onOpen.listen((Event e) {
 responseHandler(log, "Connected to server: ${url}");
 });

 sse.onError.listen((Event e) {
 if (sse.readyState == EventSource.CLOSED) {
 responseHandler(log, "Connection closed");
 } else {
 responseHandler(log, "Error: ${e}");
 }
 });
 sse.onMessage.listen((MessageEvent e) {
 responseHandler(log,
 "Event ${e.lastEventId}: ${e.data}");

Chapter 9

[225]

 });
 sse.addEventListener("userlogon", (Event e) {
 responseHandler(log,
 "User Logon: ${(e as MessageEvent).data}");
 }, false);
}

Now, create a Dartium launcher, run the server, and open index.html in the web
browser to see the following result:

Connected to server: http://localhost:8080/data (43:33)
User Logon: {"username": "John", "role": "admin"} (43:33)
Event 123: {"msg": "hello world", "num": 0, "value": 45} (43:38)
Event 123: {"msg": "hello world", "num": 1, "value": 1} (43:43)
Event 123: {"msg": "hello world", "num": 2, "value": 65} (43:48)
Event 123: {"msg": "hello world", "num": 3, "value": 10} (43:53)
//…

Let's take a look at the server log to see the server-generated messages:

Server runs on 127.0.0.1:8080
Send Logon event
Send Message event 0
Send Message event 1
Send Message event 2
Send Message event 3
//…

WebSocket
WebSocket is a bidirectional, message-oriented streaming transport between a
client and a server. It is a built in TCP that uses an HTTP upgrade handshake.
WebSocket is a message-based transport. Its simple and minimal API abstracts
all the complexity and provides the following extra services for free:

• The same-origin policy enforcement
• Interoperability with the existing HTTP infrastructure
• Message-oriented communication
• Availability of subprotocol negotiation
• Low-cost extensibility

Client-to-server Communication

[226]

WebSocket is one of the most flexible transports available in the browser. The API
enables the layer and delivers arbitrary application protocols between the client and
server in a streaming fashion, and it can be initiated on either side at any time.

WebSocket is a set of multiple standards: the WebSocket API and the
WebSocket protocol and its extensions.

WebSocket can be useful for the following cases:

• When the relevance of data is very critical
• When the solutions very often are based on high-volume data or

data transmission

The advantages of WebSocket are as follows:

• It's a full-duplex, bidirectional communications channel that operates
through a single socket

• It provides a quick file exchange based on the socket protocol
• It supports the binary format

The disadvantages of WebSocket are as follows:

• It is not HTTP and can be blocked by proxy servers
• Debugging is complicated
• It is supported only by the modern version of all browsers

The following browsers are supported:

• Chrome 14.0+
• Firefox 11.0+
• Opera 8.0+
• Safari 6.0+
• Internet Explorer 10.0+

Chapter 9

[227]

Bear in mind that the WebSocket uses a custom WS protocol instead of HTTP.
The use case for the WebSocket protocol was to provide an optimized, bidirectional
communication channel between applications running in the browser and the server
where using the HTTP protocol is obvious. WebSocket uses a custom URL schema
because the WebSocket wire protocol can be used outside the browser and could be
established via a non-HTTP exchange and the BiDirectional or Server-Initiated HTTP
(HyBi) working group chooses to adopt a custom URL schema. Let's take a look at
the client code of our example:

import 'dart:html';
import 'dart:convert';
import 'dart:typed_data';
import 'urls.dart' as urls;

var url = "ws://${urls.serverAddress}:${urls.serverPort}${urls.
 dataUrl}";

String get timeStamp {
 DateTime dt = new DateTime.now();
 return " (${dt.minute}:${dt.second})";
}

responseHandler(DivElement log, String data) {
 DivElement item = new DivElement();
 item.text = data + timeStamp;
 log.insertAdjacentElement('beforebegin', item);
}

First, we create a WebSocket class instance to initiate a new connection with the
specified URL. Then, we create listeners for the open, error, close, and message
events. As you can see, the API looks very similar to the EventSource API that
we saw in the last topic. This is intentional because WebSocket offers a similar
functionality and could help in the transition from the SSE solution quickly.
When a connection is established, we can send data to the server. As WebSocket
makes no assumption and no constrains on the application payload, we can send
any data types such as Map, String, and Typed:

void main() {
 DivElement log = querySelector("#log");
 var webSocket = new WebSocket(url);
 if (webSocket != null) {
 webSocket.onOpen.listen((Event e) {

Client-to-server Communication

[228]

 responseHandler(log, "Connected to server: ${url}");
 sendData(webSocket);
 });
 webSocket.onError.listen((Event e)
 => responseHandler(log, "Error: ${e}"));
 webSocket.onClose.listen((CloseEvent e)
 => responseHandler(log, "Disconnected from server"));
 webSocket.onMessage.listen((MessageEvent e)
 => responseHandler(log, "Event ${e.type}: ${e.data}"));
 }
}
sendData(WebSocket webSocket) {
 webSocket.send(JSON.encode({'name':'John', 'id':1234}));
 webSocket.sendString("Hello World");
 webSocket.sendTypedData(new Int16List.fromList([1, 2, 3]));
}

The browser automatically converts the received text-based data into a DOMString
object and the binary data into a Blob object, and then passes them directly to the
application. We can force an arrayBuffer conversion when a binary message is
received via the binaryType property of the WebSocket class:

webSocket.binaryType = "arraybuffer";

This is the perfect hint to the user agents on how to handle incoming binary data
depending on the value in binaryType:

• If it is equal to Blob, then save it to the disk
• If it is equal to arrayBuffer, then keep it in the memory

The data in a Blob object is immutable and represents raw data. It could be the
optimal format to keep the images downloaded from the server. We can pass that
data directly to an image tag. On the other hand, the arrayBuffer object is likely
a better fit for additional processing on binary data. In our example, we used a
UTF-8 encoded text message, a UTF-8 encoded JSON payload, and the arrayBuffer
object of the binary payload. All the send methods of the WebSocket class are
asynchronous, but they are delivered in the exact order in which they are queued up
by the client. As a result, a large number of messages in the queue will be delayed
in delivery. To solve this problem, the application can split a large message into
small chunks and monitor sending data via the bufferingAmount property of the
WebSocket class as follows:

if (webSocket.bufferingAmount == 0) {
 ws.send(nextData);
}

Chapter 9

[229]

The application that uses WebSocket should pay close attention to how
and when to send messages in a queued socket.

Now let's take a look at the server side:

import 'dart:io';
import 'package:route/server.dart';

import 'urls.dart' as urls;
import 'files.dart';

main() {
 final allUrls = new RegExp('/(.*)');

 HttpServer.bind(urls.serverAddress, urls.serverPort)
 .then((server) {
 print("Server runs on ${server.address.host}:${server.port}");
 new Router(server)
 ..serve(urls.dataUrl).listen(processWS)
 ..serve(allUrls).listen(serveDirectory('', as: '/'))
 ..defaultStream.listen(send404);
 });
}

WebSocket upgrades the HTTP request to start listening to the data:

processWS(HttpRequest request) {
 WebSocketTransformer.upgrade(request)
 .then((WebSocket webSocket) {
 webSocket.listen((data) {
 webSocket.add("Received $data");
 });
 });
}

Finally, create a Dartium launcher, start the server, and open the index.html file in
web browser to see the result of the short communication:

Connected to server: ws://127.0.0.1:8080/ws (8:55)
Event message: Received {"name":"John","id":1234} (8:55)
Event message: Received Hello World (8:55)
Event message: Received [1, 0, 2, 0, 3, 0] (8:55)

Client-to-server Communication

[230]

Summary
To summarize what has been discussed so far, I would like to highlight some of the
important aspects of the client-to-server communication. Communications based on
a system of special rules and formats for messages to enable data exchange between
clients and servers is known as a communication protocol. Any device connected to
the Internet has a unique IP address. A message transmitted from one device to other
over the Internet follows a long route to be delivered via the protocol stack. HTTP is a
text-based application protocol that makes the Web work. Web browsers or standalone
applications send a request and open a connection to the web server. The web server
complies with the request and closes the connection to the web client.

AJAX is a technology that allows client-side JavaScript code to request data from
a server without reloading the current page in the web browser. HttpRequest
(formerly XMLHttpRequest) has an important role in the AJAX web development
technique. The AJAX polling request periodically issues a request to gain new
information. A long polling request always keeps an open connection to the server.
This connection is still alive until the server decides to submit the information back
to the client where there are changes and then closes the connection. The client will
again open a connection to the server to start a new long polling request.

In SSE, a client opens a connection to the server via an initial HTTP request, and
the server sends events to the client when there is new information available. The
response sent back via SSE is plain text served with a text/event-stream content
type. It contains one or more lines of string that begins with a data: string and
ends with a newline character. Finally, the whole message ends with an extra
newline character.

WebSocket is a bidirectional, message-oriented streaming transport between a
client and server. It is built on TCP that uses an HTTP upgrade handshake. The
API enables the layer and delivers arbitrary application protocols between a client
and server in a streaming fashion and is initiated on either side at any time.

In the next chapter, we will discuss the ability to store data locally on a client and
break the storage limit of cookies in our web applications. We will also demonstrate
how to use Web Storage and explore a more powerful and useful IndexedDB to store
a large amount of data in the user's web browser.

Advanced Storage
In this chapter, we will talk about Dart's ability to store data locally on a client, break
the storage limit, and prevent security issues in our web applications. We will also
take a look at the good old cookies, show you how to use Web Storage, and elaborate
on the more powerful and useful IndexedDB to store large amount of data in the
user's web browser. The following topics will be covered in this chapter:

• Cookies
• Web Storage
• Web SQL
• IndexedDB

Cookies
The concept of cookies was introduced for the first time in 1994 in the Mosaic
Netscape web browser. A year later, this concept was introduced in Internet
Explorer. From that time, the idea of tracking contents of shopping cart baskets
across browser sessions remains relevant until today. So, what problem do
cookies solve?

An HTTP protocol is stateless and doesn't allow the server to remember the
request later. Because it was not designed to be stateful, each request is distinct and
individual. This simplifies contracts and minimizes the amount of data transferred
between the client and the server. In order to have stateful communication between
web browsers, you need to provide an area in their subdirectories where the state
information can be stored and accessed. The area and the information stored in this
area is called a cookie. Cookies contain the following data:

• A name-value pair with the actual data
• An expiry date after which the cookie is no longer valid
• The domain and path of the server it should be sent to

Advanced Storage

[232]

Cookies are handled transparently by the web browser. They are added to the header
of each HTTP request if its URL matches the domain and the path is specified in the
cookie. Cookies are accessible via the document.cookie property. Bear in mind that
when you create a cookie, you specify the name, value, expiry date, and optionally
the path and domain of cookies in a special text format. You can find a cookie by its
name and fetch the value only, as all the other information that is specified while
creating a cookie is used by the web browser and is not available to you. We created
the cookies.dart file to keep small library wrappers of the original API of the
cookie to avoid boilerplate and code duplication, which allow you to easily set, get,
and remove cookies from any application. The cookies use the date format derived
from the RFC 1123 International format, that is, Wdy, DD Mon YYYY HH:MM:SS
GMT. Let's look at them in more detail:

• Wdy: This is a three-letter abbreviation that represents the day of the week,
and is followed by a comma

• DD: These are two numbers that represent the day of the month
• Mon: These are three letters that represent the name of the month
• YYYY: These are four numbers that represent the year
• HH: These are two numbers that represent the hour
• MM: These are two numbers that represent the minutes
• SS: These are two numbers that represent the seconds

You can see the date in this example: Thu, 09 Oct 2014 17:16:29 GMT.

Let's go through the following code and see how cookies can be reached by Dart.
We import the dart:html package especially to make document.cookies available
in our code. The intl.dart package is imported because of DateFormat usage in the
toUTCString function to calculate the expiry date in the UTC format of the cookie
based on the value in the days attribute and transforms it into a string. If the value
of days is less than one, then the toUTCString function returns an empty string.
To create cookies with the setCookie function, we need to specify the name of the
cookie, value, and the number of days to expire. We can provide the optional path
and domain information as well. In practice, you cannot use non-ASCII characters in
cookies at all. To use Unicode, control codes, or other arbitrary byte sequences, you
must use the most popular UTF-8-inside-URL-encoding that is produced by different
encoding methods of the Uri class. To return cookies via getCookie, we only need
the name of the cookie. At the end, you will find the removeCookie function.

library cookie;

import 'dart:html';
import 'package:intl/intl.dart';

Chapter 10

[233]

// Number milliseconds in one day
var theDay = 24*60*60*1000;

DateFormat get cookieFormat =>
 new DateFormat("EEE, dd MMM yyyy HH:mm:ss");

String toUTCString(int days) {
 if (days > 0) {
 var date = new DateTime.now();
 date = new DateTime.fromMillisecondsSinceEpoch(
 date.millisecondsSinceEpoch + days*24*60*60*1000);
 return " expires=${cookieFormat.format(date)} GMT";
 } else {

 return " ";
 }
}

void setCookie(String name, String value, int days,
 {String path:'/', String domain:null}) {
 StringBuffer sb = new StringBuffer(
 "${Uri.encodeQueryComponent(name)}=" +
 "${Uri.encodeQueryComponent(value)};");
 sb.write(toUTCString(days));
 sb.write("path=${Uri.encodeFull(path)}; ");
 if (domain != null) {
 sb.write("domain=${Uri.encodeFull(domain)}; ");
 }
 document.cookie = sb.toString();
}

String getCookie(String name) {
 var cName = name + "=";
 document.cookie.split("; ").forEach((String cookie) {
 if (cookie.startsWith(cName)) {
 return cookie.substring(cName.length);
 }
 });
 return null;
}

void removeCookie(String name) {
 setCookie(name, '', -1);
}

Advanced Storage

[234]

The domain of the cookie tells the browser the domain where the cookie should be
sent, and in its absence, the domain of the cookie becomes the domain of the page.
It allows cookies to cross subdomains, but it does not allow the cookies to cross
domains. The path of the domain is the directory present in the root of the domain
where the cookie is active.

For a better understanding of the use of cookies in the real world, you can look at
the shopping_cart_cookie project. This project is very big, so I will show you small
code snippets and point you in the right direction. This project contains the following
main classes:

• Product: This class describes the items in a cart with the ID, description,
and price. Users can specify the quantity of items they want to buy, so the
amount can be calculated by multiplying the quantity with the price.

• ShoppingModel: This class helps you to fetch products from the
product.json file and returns the Future instance with a list of products.

• ShoppingController: This class renders the grid of products and updates
the amount per product and the total amount. We can send a reference in
the body of the table. This reference on the element keeps the total amount
and the instance of the ShoppingModel and StorageManager class via a
constructor injection.

We will call getProducts from the model in the constructor especially to return
data from the server and when the data is ready, we will call the _init method to
initialize our application. The readQuantity method is called for the first time to
check and return the quantity of the product saved in the cookie. Later in the code,
we will call calculateAmount of the product based on the quantity and price, as
shown in the following code:

ShoppingController(this.tBody, this.totalAmount, this.service,
 this.storage) {
 model.getProducts().then((List<Product> products) {
 _products = products;
 _init();
 });
}

_init() {
 update().then((value) {
 draw();
 drawTotal();
 });
 }

Chapter 10

[235]

Future update() {
 return Future.forEach(_products, (Product product) {
 // Read quantity of product from cookie
 return readQuantity(product);
 });
}

Future readQuantity(Product product) {
 return storage.getItem(Product.toCookieName(product))
 .then((String quantity) {
 if (quantity != null && quantity.length > 0) {
 product.quantity = int.parse(quantity);
 } else {
 product.quantity = 0;
 }
 });
}
//…

The Product.toCookieName method creates a unique string identifier with a
combination of Product.NAME and product.id. Now launch the application and
open the index.html file on the Dartium web browser to see a list of products.

Advanced Storage

[236]

We can check the existence of cookies in the web browser. In Dartium, open
Developer tools from the Tools menu item and choose the Resources tab,
as shown in the following screenshot:

Select Cookies and choose localhost to ensure that no cookies are associated with
our web server.

If the user changes the quantity of any product via the text input field, then
the number of products and the total number of selected products will be
recalculated. At the same time, our code calls the saveQuantity method of
the ShoppingController class, as follows:

saveQuantity(Product product) {
 if (product.quantity == 0) {
 storage.removeItem(Product.toCookieName(product));
 } else {
 storage.setItem(Product.toCookieName(product),
 product.quantity.toString());
 }
 }

Chapter 10

[237]

The product is removed from the cookie if the number in the Quantity field equals
zero. In other cases, we will create or update the quantity value in cookies.

Let's check the preceding information. Return to the Resources tab and navigate to
the localhost tree item. Click on the Refresh icon at the bottom of the window to see
the list of cookies associated with our server.

Now, close the index.html page and open it again. Information about the selected
products along with their specified quantity and number will be available here. Click
on the Check Out button to invoke a cart.checkOut method to show a message
about the paid items and remove the cookies from them. The code is as follows:

checkOut.onClick.listen((Event event){
 cart.checkOut();
});

Advanced Storage

[238]

The following screenshot shows the resulting message:

Cookies are a universal mechanism that help to persist user-specific data in the web
browser. They can be very useful while essaying the following roles:

• Tracking a cookie helps compile long-term records of the browsing history.
• The authentication cookie used by the web server helps you know whether

the user was logged in or not.
• Session cookies exist until the user navigates to a website and expires after a

specified interval, or if the user logs in again via the server logic.
• Persistent cookies live longer than session cookies and may be used to keep

vital information about the user, such as the name, surname, and so on.
• Secure cookies are only used via HTTPS with a secure attribute enabled

to ensure that the cookie transmission between the client and the server is
always secure.

• Third-party cookies are the opposite of first-party cookies, and they don't
belong to the same domain that is displayed in the web browser. Different
content presented on web pages from third-party domains can contain
scripts that help track users' browser history for effective advertising.

You can combine different roles to the achieve specific requirements of your business
logic. The following are the benefits of having cookies:

• Convenience: Cookies can remember every website you have been to and
also the information in forms such as residential or business address, e-mail
address, username, and so on

Chapter 10

[239]

• Personalization: Cookies can store preferences, which helps every user to
personalize the website content

• Effective advertising: Cookies can help run marketing campaigns to offer
products or services relevant to a specific user

• Ease of control: Cookies can be cleared or disabled via the client's
web browser

The following are the disadvantages of cookies:

• Privacy: Cookies keep a track of all the websites that you have visited
• Security: Implementation of cookies on different web browsers is

accompanied by the detection of various security holes
• Limitation: Cookies have a limit of 4095 bytes per cookie
• Data: Cookies can overhead each request with excessive extra data

So, the main purpose of cookies is to make the client-to-server communication
stateful. If you need to only save data on a client or work offline, you can use other
techniques and one of them is Web Storage.

Web Storage
Web Storage (or DOM storage) represents a mechanism for a better and more
secured way of persisting data on the client than cookies. Web Storage is better
in the following situations:

• When you need greater storage capacity (it can keep 5 - 10 MB per the
available storage, depending on the web browser)

• When you don't need to communicate with the server to manage the
client data

• When you don't want the stored data to expire
• When the stored data spans across different tabs or windows of the

same browser

There are two Web Storage objects (Session and Local) that can be used to persist
the user data in the web browser for the length of the session and indefinitely. Both
of them have a similar simple API declared via the Storage interface. Web Storage
has an event-driven implementation. The storage event is fired whenever a storage
area changes.

Advanced Storage

[240]

The Session storage
The Session storage is available through the window.sessionStorage attribute.
It is intended to keep short-lived data opened in the same tab or window and
shared only between the pages of the same domain. The browser creates a new
session storage database every time a user opens a new tab or a window.

The Local storage
As opposed to the Session storage, the Local storage is available via the window.
localStorage attribute and allows you to keep data longer than a single session.
The Local storage saves all data in a special local storage area and is not limited
to the lifetime of the tab or a window. The local storage area is shared between
different tabs and windows and can be very handy in multitransactional scenarios.

Let's see how we can change the examples from the previous Cookies section to use
them in Web Storage. We will not delete the cookie completely so that we have
chance to compare different persisting techniques. Open the shopping_cart_web_
storage project. In the following code, we add the business logic to check whether
Web Storage is supported by the web browser with the StorageManager class:

abstract class StorageManager {
 factory StorageManager() {
 if (WebStorageManager.supported) {
 return new WebStorageManager();
 } else {
 return new CookieStorageManager();
 }
 }

 Future<String> getItem(key);
 Future setItem(key, value);
 Future removeItem(key);
}

In the preceding code, you can see the new WebStorageManager class. It is quite
difficult to determine whether the web browser supports Web Storage or not. You
may find one of the possible solutions in the following code that uses the supported
getter method. The getItem function returns the value associated with the given
key. The setItem function sets a key-value pair in this method and the last method
removes the item with the specified key. The code is as follows:

class WebStorageManager implements StorageManager {
 static bool get supported {
 if (window.localStorage != null) {
 try{
 window.localStorage["__name__"] = "__test__";

Chapter 10

[241]

 window.localStorage.remove("__name__");
 return true;
 } catch(e) {
 return false;
 }
 } else {
 return false;
 }
 }

Future<String> getItem(key) {
 return new Future.sync(() {
 return window.localStorage[key];
 });
}

Future setItem(key, value) {
 return new Future.sync(() {
 window.localStorage[key] = value;
 });
}
Future removeItem(key) {
 return new Future.sync(() {
 window.localStorage.remove(key);
 });
}

The following screenshot shows the result of executing the program:

Advanced Storage

[242]

You can find information about the status of the local storage in the same place
where we saw the cookies. Expand the Local Storage tree item and choose the
localhost option to see the local storage data:

Now, we can use Web Storage and cookies to store a date for the client. We will
continue our trip across advanced storages and the next target is Web SQL.

Web SQL
Web SQL was introduced by Apple and is based on a free database SQLite. It will
be discontinued very soon, and I intend to add it here only to show you how it could
be used and how we can migrate to other advanced techniques without glitches. In
the following code, we created a new shopping_cart_web_sql project as a copy of
the project from the Web Storage section and added WebSQLStorageManager into the
StorageManager class:

abstract class StorageManager {
 factory StorageManager() {
 if (WebSQLStorageManager.supported) {
 return new WebSQLStorageManager();
 } else if (WebStorageManager.supported) {
 return new WebStorageManager();
 } else {
 return new CookieStorageManager();
 }
 }

 Future<String> getItem(key);
 Future setItem(key, value);
 Future removeItem(key);
}

Chapter 10

[243]

First of all, check whether the web browser supports Web SQL and instantiate it if
successful. You should specify the version and initial size of the database to be used.
The web browser support for Web SQL can be quickly checked with the supported
property SqlDatabase class. Web SQL needs a big preparation before it can be used.
First of all, we need to open the database. After the database is open, we can create
a table if it does not exist. Web SQL has a more complex API than a cookie and Web
Storage; each method increases in size exponentially. It is vital that all methods
must execute very specific SQL statements. WebSQL also supports read and write
transactions. When a transaction begins, you need to specify the key that will be
assigned to the SQL parameters. The instance of SqlResultSet keeps a track of the
transactions. The rows.isEmpty property of SqlResultSet is an important property
that tells us exactly how many rows were returned, as shown in the following code:

class WebSQLStorageManager implements StorageManager {

 static const SHOPPING = "SHOPPING";
 static const PRODUCT = "PRODUCT";
 static const TRANS_MODE = "readwrite";
 static final String VERSION = "1";
 static const int SIZE = 1048576;

 SqlDatabase _database;
 static bool get supported => SqlDatabase.supported;
 Future<SqlDatabase> _getDatabase(
 String dbName, String storeName) {
 if (_database == null) {
 _database = window.openDatabase(dbName, VERSION,
 dbName, SIZE);
 var sql = 'CREATE TABLE IF NOT EXISTS ' +
 storeName +
 ' (id NVARCHAR(32) UNIQUE PRIMARY KEY, value TEXT)';
 var completer = new Completer();
 _database.transaction((SqlTransaction tx) {
 tx.executeSql(sql, [],
 (SqlTransaction txn, SqlResultSet result) {
 completer.complete(_database);
 }, (SqlTransaction transaction, SqlError error) {
 completer.completeError(error);
 });
 }, (error) => completer.completeError(error));
 return completer.future;
 } else {
 return new Future.sync(() => _database);
 }

Advanced Storage

[244]

 }

 Future<String> getItem(key) {
 var sql = 'SELECT value FROM $PRODUCT WHERE id = ?';
 var completer = new Completer();
 _getDatabase(SHOPPING, PRODUCT).then((SqlDatabase database) {
 database.readTransaction((SqlTransaction tx) {
 tx.executeSql(sql, [key],
 (SqlTransaction txn, SqlResultSet result) {
 if (result.rows.isEmpty) {
 return completer.complete(null);
 } else {
 Map row = result.rows.first;
 return completer.complete(row['value']);
 }
 }, (SqlTransaction transaction, SqlError error) {
 completer.completeError(error);
 });
 });
 });
 return completer.future;
 }

For the create and update operations, we use the following transaction and specify
the special SQL statement, and we need to specify the SQL parameters key and
value as well:

 Future setItem(key, value) {
 var sql = 'INSERT OR REPLACE INTO $PRODUCT (id, value) ' +
 'VALUES (?, ?)';
 var completer = new Completer();
 _getDatabase(SHOPPING, PRODUCT).then((SqlDatabase database) {
 database.transaction((SqlTransaction tx) {
 tx.executeSql(sql, [key, value],
 (SqlTransaction txn, SqlResultSet result) {
 return completer.complete(value);
 }, (SqlTransaction transaction, SqlError error) {
 completer.completeError(error);
 });
 }, (error) => completer.completeError(error));
 });
 return completer.future;
 }

Chapter 10

[245]

To remove an item, we use the following transaction and specify the key parameter
that will be assigned to the SQL parameters:

 Future removeItem(key) {
 var sql = 'DELETE FROM $PRODUCT WHERE id = ?';
 var completer = new Completer();
 _getDatabase(SHOPPING, PRODUCT).then((SqlDatabase database) {
 database.transaction((SqlTransaction tx) {

 tx.executeSql(sql, [key],
 (SqlTransaction txn, SqlResultSet result) {
 return completer.complete();
 }, (SqlTransaction transaction, SqlError error) {
 completer.completeError(error);
 });
 }, (error) => completer.completeError(error));
 });
 return completer.future;
 }
}

Launch our application and change the number of products. Expand the Web SQL
tree item from the Resources tab to see the Web SQL storage data. The following
screenshot shows the SHOPPING database and the PRODUCT table with the
stored data:

The Web SQL database API isn't actually a part of the HTML5 specification.
Therefore, it's time to migrate to IndexedDB if you have a code that uses Web SQL.

Advanced Storage

[246]

IndexedDB
IndexedDB was introduced by Oracle and became popular very quickly. It's a Not
Only SQL (NoSQL) database. The IndexedDB API is a more capable and far more
complex API. IndexedDB has the following significant benefits:

• It improves the responsiveness and speed of web programs by minimizing
the number of HTTP requests

• It provides more space for data without Web Storage limits
• It provides the ability to work offline
• A NoSQL database helps you work directly with Dart and JavaScript objects
• It allows fast indexing, object searching, and granular locking per transaction
• It supports synchronous and asynchronous APIs

One of the major disadvantages can be the difficulty in understanding it if you are
coming from the world of rational databases. In IndexedDB, we can store a large
amount of structured data, images, arrays, and whole objects; you just need to index
them with a key. It follows the same origin policy, so we cannot access data across
different domains. If you still use Web SQL database with your products, it's time
to migrate to IndexedDB because the Web SQL database was deprecated by World
Wide Web Consortium (W3C) in November 2010.

IndexedDB is an indexed table system.

IndexedDB doesn't have any limits on a single database item's size, but it may
impose a limit on each database's total items. We will use the asynchronous API
because it works in most scenarios, including Web Workers. IndexedDB is a real
database; therefore, before we use it, we need to specify a database schema, open a
connection, and start using it to retrieve and update data within transactions. In this
case, it gets very close to the Web SQL solution but is much simpler. Let's take a look
at how we can use our example with IndexedDB. We will use the dart:indexed_db
package from the Dart SDK to work with IndexedDB. You can make a copy of the
project from the Web SQL section, rename it shopping_cart_indexed_db, and use
IndexedDBStorageManager instead of WebSQLStorageManager. The code is
as follows:

abstract class StorageManager {
 factory StorageManager() {
 if (IndexedDBStorageManager.supported) {
 return new IndexedDBStorageManager();

Chapter 10

[247]

 } else if (WebStorageManager.supported) {
 return new WebStorageManager();
 } else {
 return new CookieStorageManager();
 }
 }

 Future<String> getItem(key);
 Future setItem(key, value);
 Future removeItem(key);
}

The preceding code shows the IndexedDBStorageManager class. We constructed
a special _getDatabase method to retrieve an instance of the Database class.
As we mentioned earlier, before we use IndexedDB, we need to open the
IndexedDB database. In the following code, we use the window.indexedDB.
open method to open our database. Next, we need to check whether the store
exists in an objectStoreNames array of the database. If it doesn't exist, we must
close the database and open it again with a higher version number. Because this
process is asynchronous, we create a new instance of the store object inside the
onUpgradeNeeded listener. Each manipulation of the objects of the database happens
inside a transaction. So, we will create a new transaction every time and return the
ObjectStore instance in the startTransaction method. We will return the value
of ObjectStore via the getObject method. To set an item in the database, we use
the put method of ObjectStore. To remove the object from the store, just call the
delete method, as shown in the following code:

class IndexedDBStorageManager implements StorageManager {

 Database _database;

 static const SHOPPING = "SHOPPING";
 static const PRODUCT = "PRODUCT";
 static const TRANS_MODE = "readwrite";
 Future _getDatabase(String dbName, String storeName) {
 if (_database == null) {

 return window.indexedDB.open(dbName).then((Database d) {
 _database = d;
 if (!_database.objectStoreNames.contains(storeName)) {
 _database.close();
 return window.indexedDB.open(dbName,
 version: (d.version as int) + 1,
 onUpgradeNeeded: (e) {

Advanced Storage

[248]

 Database d = e.target.result;
 d.createObjectStore(storeName);
 }).then((Database d) {
 _database = d;
 return _database;
 });
 }
 return _database;
 });
 } else {
 return new Future.sync(() => _database);
 }
 }
 Future
 <ObjectStore> startTransaction(String storeName) {
 return _getDatabase(SHOPPING, PRODUCT)
 .then((Database database) {
 Transaction transaction =
 _database.transactionStore(storeName, TRANS_MODE);
 return transaction.objectStore(storeName);
 });
 }
 Future
 <String> getItem(key) {
 return new Future.sync(() {
 return startTransaction(PRODUCT).then((ObjectStore store) {
 return store.getObject(key);
 });
 });
 }
 Future
 setItem(key, value) {
 return new Future.sync(() {
 return startTransaction(PRODUCT).then((ObjectStore store) {
 return store.put(value, key);
 });
 });
 }
 Future
 removeItem(key) {
 return new Future.sync(() {
 return startTransaction(PRODUCT).then((ObjectStore store) {
 return store.delete(key);
 });
 });
 }
}

Chapter 10

[249]

That's it. We can perform all manipulations on the data within ObjectStore. The fact
that the ObjectStore class instance was returned via a Transaction class indicates
that all steps in the original one will be surrounded by a transaction. Let's expand the
IndexedDB tree item in the Resources tab to see the SHOPPING database.

The version number of the database is 2. Now, choose the PRODUCT tree item and
you will see that the same name contains our data.

When compared to Web SQL, IndexedDB is more simple and flexible. It uses indexes
to access objects in the database within transactions.

Advanced Storage

[250]

Summary
To summarize, we will highlight some important facts about advanced storage space.

The concept of cookies was introduced for the first time on the Netscape web
browser and was later migrated to Internet Explorer. It still remains relevant today.
In order to have stateful communication, web browsers provide an area in their
subdirectories where state information can be stored and accessed. The area and
information stored in this area is called a cookie. The domain of cookies tells the
browser the domain where the cookie should be sent. It allows a cookie to cross
subdomains but does not allow it to cross domains. The path is the directory in the
root of the domain where the cookie is active. Cookies are the universal mechanism
that helps persist user-specific data in web browsers.

Web Storage represents a mechanism for better and a more secured way to persist
data on the client than cookies. There are two Web Storage objects (Session and
Local) that can be used to persisting user data in a web browser for the length of
a session and indefinitely. Both of them have a similar simple API declared via a
Storage interface.

Web SQL was introduced by Apple and is based on a free database SQLite. It will
be discontinued very soon, and we used it here only to see how it could be used
and how migration to other advanced technologies can be done painlessly.

In IndexedDB, we can store large amount of structured data, images, arrays, and
whole objects, and just index them with a key. IndexedDB doesn't have any limits
on a single database item's size, but it might impose a limit on each database's
total items.

In the next chapter, we will demonstrate how different HTML5 features can be used
in Dart.

Supporting Other
HTML5 Features

HTML5 was designed to deliver rich, cross-platform content without the need to use
additional plugins. In this chapter, we will learn how different HTML5 features can
be used in Dart. We will cover the following topics:

• The notification APIs
• The native drag-and-drop APIs
• The geolocation APIs
• Canvas

The notification APIs
Processes that occur in web applications are asynchronous, and as time passes,
they generate event messages to alert end users about the start, end, or progress
of the process execution. The web notification API allows you to display
notifications outside the context of web pages. The user agent determines the
optimum presentation of the notification. This aspect depends on the device on
which it is running. Usually, it can present notifications in the following areas:

• At a corner of the display
• In an area within the user agent
• On the home screen of a mobile device

Supporting Other HTML5 Features

[252]

The web notification API, available as part of the dart:html package, allows you to
send information to a user even if the application is idle. Notifications can be useful
in the following use cases:

• To notify users about new incoming messages
• To notify users about special events in game applications
• To notify users about the connection status of an application, the battery

status of a device, and so on

When to notify
When you build web applications, you can use the notification API in the event
handlers or polling functions to notify the users. Event handlers are the obvious
choice when it comes to responding to various happenings. Event handlers use
simple, required conditions that can detect events from the DOM elements and
send a notification event to the user. Sometimes, the conditions required can be
a lot more complex and event handlers may not be suitable to cover them. In
such cases, you can use a polling function (implemented as a combination of
event handlers) to periodically check for given conditions to send notifications.
Notifications can be of the following two types:

• DOM notifications: These come from within a web application and are very
useful when detecting manipulations with the DOM structure or properties

• System notifications: These come from an external source (outside the
application) and are used to notify users about the status of a program
or system

Let's see how we can use the web notification API for our needs. You can find
the source code in the notification project. In the following code, we used the
standard button event handler to send notifications to the user:

void main() {
 var notifyBtn = querySelector("#notify_btn")
 ..onClick.listen((Event event) {
 sendNotification();
 });
}

void sendNotification() {
 Notification.requestPermission().then((String permission) {
 if (permission == "granted") {

Chapter 11

[253]

 Notification notification =
 new Notification('My Notification', body: "Hello World");
 }
 });
}

Before you send any notifications to the user, the website must have permissions.
You can let websites send a notification automatically or by means of a permission
request first. This is a common requirement when an API tries to interact with
something outside a web context, especially to avoid sending useless notifications
to the user. To see the notification settings, follow these steps:

1. Open the Settings option in Dartium and type notifications in the search
field, as shown in the following screenshot:

2. Open the Content settings pop-up dialog by clicking on the button of the
same name, and then scroll down to find the Notification settings:

Supporting Other HTML5 Features

[254]

3. Choose the recommended option and open the Notifications exceptions
dialog by clicking on the Manage exceptions button. For now, it will not
contain our website, as shown in the following screenshot:

4. Now, run the application and click on the Notify button. As shown in
the following screenshot, the requestPermission static method of the
Notification class requests a permission to allow desktop notifications
for the localhost:

5. You can allow or deny notifications for this website. Your choice will
complete the future permission requests with the value of the chosen
permission. The desktop notifications that are allowed are added to the list
of Notifications exceptions. Now, open the Notifications exceptions dialog
again to see your website, as shown in the following screenshot:

Chapter 11

[255]

6. The next step is to create a notification. It is enough to specify only the
title of the notification to create an original one. The constructor of the
Notification class has optional properties that help us create notifications
with a body and icon. A notification when instantiated is displayed as soon
as possible, as shown in the following screenshot:

A notification triggers the following four events that track the current state of
the notification:

• show: This event is triggered when the notification is displayed
• click: This event is triggered when the user clicks on the notification
• close: This event is triggered when the notification is closed
• error: This event is triggered when something goes wrong while

displaying notifications

Supporting Other HTML5 Features

[256]

Notifications are still open until the user closes them, but you can use the close
method of the Notification class to close them via a program, as shown in the
following code:

void sendNotification() {
 Notification.requestPermission().then((String permission) {
 if (permission == "granted") {
 Notification notification =
 new Notification('My Notification', body: "Hello World");
 notification.onShow.listen((Event event) {
 new Timer(new Duration(seconds:2), () {
 notification.close();
 });
 });
 }
 });
}

Preventing repeated notifications
Every time you click on the Notify button in your application, the web notification
API generates new notifications and puts them on top of the previous one. Similar
notifications can be marked with the following tag attribute to prevent crowding a
user's desktop with hundreds of analogous notifications:

void sendNotification() {
 Notification.requestPermission().then((String permission) {
 if (permission == "granted") {
 Notification notification =
 new Notification('My Notification', body: "Hello World",
 tag: "myNotification");
 notification.onShow.listen((Event event) {
 new Timer(new Duration(seconds:2), () {
 notification.close();
 });
 });
 }
 });
}

Now when you generate a notification with the same tag, the web notification
API removes the previous one and adds the new one instead. Web notification
specifications are not stable yet, and they are supported only by the latest version
of web browsers such as Chrome, Firefox, Safari, and Opera.

Chapter 11

[257]

The native drag-and-drop APIs
Drag-and-drop is a way to convert the pointing device's movements and clicks
to special commands that are recognized by software to provide quick access
to common functions of a program. The user grabs a virtual object, drags it to
a different location or another virtual object, and drops it there. Drag-and-drop
support for a native browser means faster, more responsive, and more intuitive
web applications. Before you use the drag-and-drop feature, make sure you have
draggable content.

Draggable content
An abstract Element class has a draggable attribute that indicates whether the
element can be dragged and dropped. As all the DOM elements emerge from the
Element abstract class, this means all of them support the drag-and-drop operation
by default. To make elements draggable, we need to set their draggable attribute
to true. This can be done using the following code:

var dragSource = querySelector("#sample_drag_id");
dnd.draggable = true;

Alternatively, you can do this using the following HTML markup:

<p id="sample_dnd_id" draggable="true">Drag me!</p>

If you want to prevent the text contents of draggable elements from being selected,
you can style the element, as shown in the following code:

[draggable] {
 -moz-user-select: none;
 -khtml-user-select: none;
 -webkit-user-select: none;
 user-select: none;
 -khtml-user-drag: element;
 -webkit-user-drag: element;
}

Supporting Other HTML5 Features

[258]

Let's open the drag_and_drop project and run it. In the following screenshot, you
will see that you can drag the text element within the window of the browser but
cannot drop it:

To manage the drag-and-drop operations in the example, add the drag-and-drop
event listeners described in the next section.

During a drag operation, the native drag-and-drop API is fired only
by the drag events and not the mouse events.

The drag-and-drop events
The native drag-and-drop API fires the following events:

• dragstart: This event is fired on an element when a drag starts. Information
such as the drag data and image to be associated with the drag operation can
be set in the listener.

• dragenter: This event is fired when the cursor is hovered over an element
for the first time while a drag begins. A drop operation is not allowed
by default. There are one or more listeners that perform drag-and-drop
operations. Usually, the listener highlights or marks the drop element
where the drop can occur.

• dragover: This event is fired when the cursor is hovered over an element
and a drag is in process.

• dragleave: This event is fired when the cursor leaves an element while a
drag is in process. The listener will remove highlights or markers from the
element where the drop can occur.

• drag: This event is fired on an element where the dragstart event was fired.

Chapter 11

[259]

• drop: This event is fired on an element where the drop occurred. It is fired
only if the drop is allowed. Users can cancel the drag operation by pressing
the Esc key or releasing the mouse button on an invalid drop area.

• dragend: This event is fired on an element on which the drag was started
to inform that the drag operation is complete, regardless of whether it is
successful or not.

We will continue to make elements draggable from our example. We need to add a
listener for the dartstart event and set the drag data within the listener, as follows:

var dragSource = querySelector("#sample_drag_id")
..draggable = true
..onDragStart.listen((MouseEvent event) {
 //…
});

If an element is made draggable, you cannot select the text by clicking-and-dragging
with the mouse.

 User must hold down the Alt key to select text with the mouse.

Dragging data
Each drag event has a dataTransfer property that is used to hold data associated
with the drag operation. If you drag the selected text, then the associated data is
text. If you drag an image, then the associated data is the image itself. The drag data
combines the string representation of the format of the data and the data value. We
will use the format of the data in the event listeners for the dragenter and dragover
events to check whether the drop operation is allowed or not. You can set multiple
drag data to call the setData method multiple times with different formats.
To delete them, call the clearData method of the dataTransfer property,
as shown in the following code:

var dragSource = querySelector("#sample_dnd_id")
..draggable = true
..onDragStart.listen((MouseEvent event) {
 event.dataTransfer.setData("text/plain", "I'm draggable");
 event.dataTransfer.setData("text/data", "1234");
});

Supporting Other HTML5 Features

[260]

Dragging the feedback image
Usually, native drag-and-drop APIs automatically create translucent images that
are generated from the drag target of the dragstart event, which follows the mouse
pointer during the drag operation. You can use the setDragImage method of the
dataTransfer property to specify a custom drag image. The first argument of this
function is a custom drag image, which could be a reference to a real image, canvas,
or other elements. The second and third arguments are offsets where the image
should appear relative to the mouse pointer. The code is as follows:

var dragSource = querySelector("#sample_drag_id")
..draggable = true
..onDragStart.listen((MouseEvent event) {
 event.dataTransfer.setData("text/plain", "I'm draggable");
 event.dataTransfer.setDragImage(new
 ImageElement(src:'notification.png'), 0, 0);
});

The following feedback image will appear instead of the standard translucent image:

Dragging effects
The drag-and-drop API supports operations such as copy, move, link, and their
combinations that may be performed on data that is draggable. We can use the copy
operation to indicate that the data being dragged will be copied from its present
location to the drop location. Similarly, you can use the move operation to indicate
that the data being dragged will be moved, and the link operation indicates that
connections will be created between the source and drop locations. You should
specify which operation or combinations are allowed and are performed by setting
the effectAllowed property of the dragstart event within a listener, as shown in
the following code:

var dragSource = querySelector("#sample_drag_id")
..draggable = true

Chapter 11

[261]

..onDragStart.listen((MouseEvent event) {
 event.dataTransfer.setData("text/plain", "I'm draggable");
 event.dataTransfer.setDragImage(new
 ImageElement(src:'notification.png'), 0, 0);
 event.dataTransfer.effectAllowed = 'copy';
});

In the preceding example, we allowed only the copy operation. Let's see all the
values that we can use as the name for an operation:

• none: This operation means that no operation is permitted
• copy: This operation means that the drag data can only be copied from

source to drop location
• move: This operation means that the drag data can only be moved from

source to drop location
• link: This operation means that the drag data can only be linked from source

to drop location
• copyMove: This operation means that the drag data can be copied or moved

from source to drop location
• copyLink: This operation means that the drag data can be copied or linked

from source to drop location
• all: This operation means that the drag data can be copied, moved, or linked

from source to drop location

By default, the effectAllowed property allows all three operations. The permitted
operation can be checked in a listener for the dragenter or dragover events via the
effectAllowed property, and it should be set in a related dropEffect property to
specify which single operation should be performed. The valid operations for the
dropEffect property are none, move, or link only, and any other combinations are
prohibited. The desired operation will change the mouse pointer, so the cursor might
appear with a plus for the copy operation. The desired effect can be modified by a
user by pressing the modifier keys. The exact keys vary by platform. On Windows
OS, a user typically uses the Shift and Ctrl keys to switch between the copy, move,
and link operations. During the dragenter and dragover events, we can modify
both the effectAllowed and dropEffect properties to specify the supported
operations by a drop target. The effect specified in dropEffect must be the one that
is listed within the effectAllowed property. The value of the dropEffect property
can tell us exactly the result of the drag operation. If the value of the dropEffect
property is none, then the drag was cancelled; otherwise, the specified effect holds
the performed operation. The drag-and-drop operation is considered complete after
the dragevent is finished.

Supporting Other HTML5 Features

[262]

The none value can be used for either of the property to indicate that no
drop operation is allowed at the target location.

The drop target
The drop target is a place where the dragged item may be dropped. The drop target
is very important because most areas of a web page are not permitted to drop. Event
listeners for the dragenter and dragover events are used to indicate a valid drop
target through preventing default handling by canceling events, as shown in the
following code:

var dropTarget = querySelector("#sample_drop_id")
 ..onDragOver.listen((MouseEvent event) {
 if (checkTarget(event.target)) {
 event.preventDefault();
 event.dataTransfer.dropEffect = 'copy';
 }
 });

In the preceding code, we call the checkTarget method to be sure that the target
is in the right place to be dropped. In our case, the drop target must have the
droppable attribute, as shown in the following code:

bool checkTarget(Element target) {
 return target.attributes.containsKey('droppable');
}

However, it is common that the drop will be accepted or rejected based on the type
of drag data within the dataTransfer property. In this case, we should check the
property types of the dataTransfer property to decide whether the data can be
accepted to be dropped. The code is as follows:

var dropTarget = querySelector("#sample_drop_id")
 ..onDragOver.listen((MouseEvent event) {
 if (checkTarget(event.target) &&
 checkTypes(event.dataTransfer.types)) {
 event.preventDefault();
 event.dataTransfer.dropEffect = 'copy';
 }
 });

Chapter 11

[263]

In the following code, the checkTypes function accepts only the text/data types
specified through the setData method of dataTransfer inside the listener of the
dragstart event:

bool checkTypes(List<String> types) {
 return types.contains("text/data");
}

You can now run the web application, drag your box with the Drag me! text, and
drop it inside the box with the Drop here text. Let's polish our application and
change the text of the drop zone.

Finishing a drop
When a user releases the mouse, the drag-and-drop operation ends. If this happened
over an element that was identified as a valid drop target, the drag-and-drop API
will fire a drop event at the target. The dataTransfer property of the drop event
holds the data that is being dragged. To retrieve the dragged data, we will use the
getData method of the dataTransfer property, as follows:

var dropTarget = querySelector("#sample_drop_id")
..onDragOver.listen((MouseEvent event) {
 if (checkTarget(event.target) &&
 checkTypes(event.dataTransfer.types)) {
 event.preventDefault();
 event.dataTransfer.dropEffect = 'copy';
 }
})
..onDrop.listen((MouseEvent event) {
 Element dropTarget = event.target;
 dropTarget.innerHtml = event.dataTransfer.getData('text/plain');
 event.preventDefault();
});

Supporting Other HTML5 Features

[264]

The getData method will retrieve the string value that was set when the setData
method was called. When an empty string is returned from getData, this means that
data of the specified type does not exist. At the end of the getData method, you need
to call the preventDefault method of the event if you have accepted the drop. Here
is the result of the drag-and-drop operation:

Finishing a drag
Finally, when the drag operation is complete, the drag-and-drop API generates a
dragend event at the source element that received the dragstart event. The API
generates that event regardless of the result of the drag-and-drop operation. The
value of the dropEffect property can tell us the exact result of the drag operation.
If the value of the dropEffect property is none, then the drag was cancelled;
otherwise, the specified effect holds the performed operation. The drag-and-drop
operation is considered complete after dragevent is finished.

The geolocation APIs
A geolocation API is a high-level interface used to locate information. It lets you
find out where the user is and keep a track of his/her location when he/she moves.
The geolocation API is device-agnostic of the underlying location source and doesn't
care how the web browser determines the location. The following are the common
sources for the location:

• GPS
• The network IP address
• RFID
• Wi-Fi
• The Bluetooth MAC address
• The GSM/CDMA cell ID
• User inputs

Chapter 11

[265]

The API represents location by latitude and longitude coordinates.

The geolocation APIs do not guarantee returning the actual
location of the device.

The geolocation API has the following classes:

• Geolocation: This class is used to determine the location information
associated with the hosting device

• Geoposition: This class is used to store the coordinates and timestamp
• Coordinates: This class is used to store the location information and speed

of the device

Determining the current location
Let's see how we can use the geolocation API to obtain information about the
current location:

import 'dart:html';

void main() {
 window.navigator.geolocation.getCurrentPosition()
 .then((Geoposition geoposition) {
 querySelector("#latitude").text = geoposition.coords.latitude
 .toStringAsFixed(6);
 querySelector("#longitude").text = geoposition.coords.longitude
 .toStringAsFixed(6);
}, onError: (PositionError error) {
 print(error.message);
});
}

We can request the geolocation instance from the navigator property of
the window object. The getCurrentPosition method of geolocation returns
Geoposition in the Future object. When the Future will be resolved, we will
assign the geoposition coordinates to the latitude and longitude HTML fields.

Dartium doesn't support geolocation, so run pub serve
and iterate with Chrome web browser.

Supporting Other HTML5 Features

[266]

The website must have permission before use your location information.
You can let websites use your location information automatically or obtain a
permission request first. This is a common requirement when an API tries to
interact with something outside a web context, especially to avoid sharing
user-specific information. To see the geolocation information, follow these steps:

1. Open the Settings option in Chrome and type location in the search field,
as shown in the following screenshot:

2. Open the Content settings pop-up dialog by clicking on the button of the
same name, scroll down the content, and you'll find the Location settings:

Chapter 11

[267]

3. Choose the recommended option and open the Geolocation exceptions
dialog by clicking on the Manage exceptions button. For now, it will not
contain our website, as shown in the following screenshot:

4. Run the geolocation application. The Chrome web browser will ask
you for permission to use your location information, as shown in the
following screenshot:

Supporting Other HTML5 Features

[268]

5. You can allow or deny location requests for this website. Your choice
completes the future permission requests with the value of geoposition.
The website is then added to the list of Geolocation exceptions. Open the
Geolocation exceptions dialog again to see your website:

Any error that occurs in the geolocation service will be printed:

Network location provider at 'https://www.googleapis.com/'
: Returned error code 400.

6. We will now run pub serve from the root folder of our project:
Loading source assets...
Serving geolocation web on http://localhost:8080
Build completed successfully
[web] GET /geolocation.html => geolocation|web/geolocation.html
[web] GET /geolocation.css => geolocation|web/geolocation.css
[web] GET /packages/browser/dart.js => browser|lib/dart.js
[Info from Dart2JS]:
Compiling geolocation|web/geolocation.dart...
[Info from Dart2JS]:
Took 0:00:27.723586 to compile geolocation|web/geolocation.dart.
Build completed successfully
[web] GET /geolocation.dart.js => geolocation|web/geolocation.
dart.js
[web] GET /geolocation.dart.js.map => geolocation|web/geolocation.
dart.js.map

Chapter 11

[269]

7. Then, open the web application in the Chrome web browser to get the
following result:

Your example will be more interesting if you add Google Maps to show your current
position on a real map.

Geolocation on maps
Add the google_maps package to your project and make the following changes to
the code:

import 'dart:html';
import 'package:google_maps/google_maps.dart';

void main() {
 final mapOptions = new MapOptions()
 ..zoom = 15
 ..mapTypeId = MapTypeId.ROADMAP;
 final map = new GMap(querySelector("#map_canvas"), mapOptions);

 window.navigator.geolocation.getCurrentPosition()
 .then((Geoposition geoposition) {
 Coordinates coords = geoposition.coords;
 querySelector("#latitude").text = coords.latitude
 .toStringAsPrecision(6);
 querySelector("#longitude").text = coords.longitude
 .toStringAsPrecision(6);
 //
 map.center = new LatLng(coords.latitude, coords.longitude);
 }, onError: (PositionError error){
 print(error.message);
 });
}

Supporting Other HTML5 Features

[270]

In mapOptions, we specified the zoom and type of view. Maps can be presented
in terms of the satellite, terrain, or hybrid view. Using the Google Maps API is
very simple. Just add the div element with the specified ID to your HTML page.
Then, execute the pub serve command to compile your code and run the server.
When you open the Geolocation page in the Chrome web browser, you will get the
following result:

Tracking the present location
Geolocation APIs can monitor the current location of your device using the
watchPosition method. With the enableHighAccuracy parameter, the geolocation
API starts to use more accurate hardware available on your device. This method
returns a stream of geoposition coordinates. You only need to listen to the events
to track changes in your current position. The code is as follows:

import 'dart:html';
import 'package:google_maps/google_maps.dart';

Chapter 11

[271]

void main() {
 final mapOptions = new MapOptions()
 ..zoom = 25
 ..mapTypeId = MapTypeId.ROADMAP;
 final map = new GMap(querySelector("#map_canvas"), mapOptions);

 window.navigator.geolocation
 .watchPosition(enableHighAccuracy:true)
 .listen((Geoposition geoposition) {
 Coordinates coords = geoposition.coords;
 map.center = new LatLng(coords.latitude, coords.longitude);
 //
 querySelector("#location_tracker").append(new DivElement()
 ..text = coords.latitude.toStringAsPrecision(6) + " x " +
 coords.longitude.toStringAsPrecision(6));
 }, onError: (PositionError error){
 print(error.message);
 });
}

When you run the web application, you will receive the following result:

Supporting Other HTML5 Features

[272]

Canvas
The HTML5 canvas is a fantastic feature that allows you to code programmatic
drawing operations. It has become very popular because it allows you to create
and manipulate imagery directly within web pages. The canvas is one of the most
flexible tags in new HTML5 features. This tag is a blank state. It defines a context
object that users can draw inside. The actual drawing operations can be split in the
following ways:

• Drawing a 2D context
• Drawing a 3D context formally known as a WebGL

A 2D context is available in all modern web browsers. It is more established and
stable, while the 3D context is in the early process of being defined. Let's discuss
the 2D context as it is more widely supported.

The canvas API is simple and powerful at the same time. You can only draw on a 2D
bitmap surface using script. In the process of drawing, you do not have any DOM
nodes for the shapes you draw. All that you produce is pixels, so you can forget
about the performance penalties event if the image complexity increases.

Drawing on a canvas is all about adding pixels in the appropriate coordinates on
the screen. In general, the coordinates of the pixels on the screen correlate to the
points in the canvas that are represented as a grid, but they can vary when we zoom
in or out of the screen or when a canvas is resized with CSS. The key point on the
grid is the origin located in the left-hand side corner of the canvas with coordinates
(0, 0). Each shape drawn on the canvas has an offset of x and y axes and size by width
and height.

Example – the canvas editor
The canvas API gives you access to perform the following actions:

• Draw shapes such as rectangles, ellipses, lines, and so on
• Render text
• Pixel manipulation
• Fill colors in areas, shapes, or text
• Create gradients and patterns to fill areas, shapes, or text
• Copy images, other canvases, or video frames
• Export the content of a canvas to a file

Chapter 11

[273]

We don't want to pass through all these features with simple examples, so let's
just create a canvas painting application to discover how to use many of them
practically. You can find a prepared project in the code that accompanies this
book. The application is based on Bootstrap 3.2 and jQuery 1.11.1. I have made a
port of bootstrap-colorselector (https://github.com/flaute/bootstrap-
colorselector) to Dart specially to show you how easily it can be done. In the
following screenshot, you can see it running in the web browser application:

At the top of the application, we placed a Bootstrap navigation bar. It contains a
select component with a drop-down option representing a list of available tools,
such as Pen, Rectangle, Line, and Oval. There are two color selectors that we use to
stroke and fill canvas styles. The Clear button helps wipe out the content of a canvas.
Last but not least, the Preview button opens another window with the content of a
canvas. Let's go deeper to discover different parts of the application
and how they communicate with each other.

Beginning with HTML
The content of the head tag is shown in the following code:

<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-
scale=1">
<title>Canvas</title>

https://github.com/flaute/bootstrap-colorselector
https://github.com/flaute/bootstrap-colorselector

Supporting Other HTML5 Features

[274]

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.2.0/css/
bootstrap.min.css">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.2.0/css/
bootstrap-theme.min.css">

<link rel="stylesheet" type="text/css" href="css/bootstrap-
colorselector.css" />
<link rel="stylesheet" type="text/css" href="css/index.css">

<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and
media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via
file:// -->
<!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.
js"></
script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></
script
>
<![endif]-->

<!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.
min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/
bootstrap.
min.js"></script>

<script async type="application/dart" src="index.dart"></script>
<script async src="packages/browser/dart.js"></script>

All bootstrap style sheets and the JavaScript code included in the HTML page are
downloaded from a free and public content delivery network (CDN). The html5shiv
and respond libraries help run HTML5 features on IE Version 8 or higher.

The body of the web page is split into two sections. The first one is the responsive
navbar component that serves as a navigation header for our application. It
is collapsed and toggled in a mobile view, and then becomes horizontal if the
available width space increases. We split the navigation bar into two subsections.
The first subsection is the primary toolbar that keeps all components related to the
direct canvas manipulation. The other one is the secondary toolbar that contains
components that play a supporting role in the application.

Chapter 11

[275]

The first component of the primary toolbar is toolSelector, which keeps all the
registered tools, as shown in the following code:

<div class="form-group">
<select class="form-control" id="toolSelector"
 name="toolSelector">
</select>
</div>

The next two components are stroke_color_selector and fill_color_selector,
which contain lists of colors presented as palettes. We will include only the first one
in the following code snippet because of their similarity:

<div class="form-group">
 <select class="stroke_color_selector">
 <option value="#000000" data-color="black">Black</option>
 <option value="#808080" data-color="gray">Gray</option>
 <option value="#C0C0C0" data-color="silver">Silver</option>
 <option value="#FFFFFF" data-color="white">White</option>
 <option value="#800000" data-color="maroon">Maroon</option>
 <option value="#FF0000" data-color="red">Red</option>
 <option value="#808000" data-color="olive">Olive</option>
 <option value="#FFFF00" data-color="yellow">Yellow</option>
 <option value="#008000" data-color="green">Green</option>
 <option value="#00FF00" data-color="lime">Lime</option>
 <option value="#008080" data-color="olive">Teal</option>
 <option value="#00FFFF" data-color="aqua">Aqua</option>
 <option value="#000080" data-color="navy">Navy</option>
 <option value="#0000FF" data-color="olive">Blue</option>
 <option value="#800080" data-color="purple ">Purple </option>
 <option value="#FF00FF" data-color="fuchsia">Fuchsia</option>
</select>
</div>

Both of the components, stroke_color_selector and fill_color_selector, are
represented by the component ported from bootstrap-colorselector. The result
of the color palette is shown in the following screenshot:

Supporting Other HTML5 Features

[276]

The last one in this group of components is the Clear button. The user can click on
this button to clear the content of the canvas, as shown in the following code:

<div class="form-group">
 <button type="button"
 class="btn btn-default clear-btn">Clear</button>
</div>

The secondary toolbar is right aligned. It has only a Preview button component,
as shown in the following code:

<ul class="nav navbar-nav navbar-right">
 Preview

Now, let's see our canvas components:

<div class="col-lg-12 text-center canvas-container">
 <canvas class="canvas view-canvas" width="600px"
 height="400px">
 <p>Unfortunately, your browser is currently unsupported by
 our web application.</p>
 </canvas>
 <canvas class="canvas draw-canvas" width="600px"
 height="400px">
 <p>Unfortunately, your browser is currently unsupported by
 our web application.</p>
 </canvas>
</div>

We use two canvases in our application. The first one is marked with a view-canvas
class. It is only used to present data opposite to the second one marked with the
draw-canvas class. The purpose of the second canvas is that all the tools must draw
here. When their drawing operation ends, the pixels that they generated are then
moved into the first canvas.

Moving to the main function
The foundation of our application is the components separated in to two types:
widgets and tools. Widgets are components dealing with HTML elements and
include extra behavior. All tool components are based on the Tool class. We use
the tool-based components to draw in the canvas. Here is the main function of
our application:

// Calculate absolute value of number
num abs(num value) => value < 0 ? -value : value;

Chapter 11

[277]

// Return offset of mouse pointer from any mouse event
Point offset(MouseEvent event) => event.offset;

void main() {
 // Create an instance of [CanvasWidget]
 CanvasWidget canvas = new CanvasWidget(
 ".view-canvas", ".draw-canvas");
 // Create an instance of [BrushSelectorWidget]
 ToolSelectorWidget tools = new ToolSelectorWidget(
 ".tool-selector")
 ..onToolSelected.pipe(canvas);
 // Create and add tools to [ShapeSelectorWidget]
 tools.addTool(new Pen());
 tools.addTool(new Rectangle(), select:true);
 tools.addTool(new Line());
 tools.addTool(new Oval());
 // Create a stroke color selector
 new ColorSelectorWidget(".stroke_color_selector",
 ColorSelectedEvent.STROKE_COLOR, 'black')
 ..onColorSelected.pipe(canvas);
 // Create a fill color selector
 new ColorSelectorWidget(".fill_color_selector",
 ColorSelectedEvent.FILL_COLOR, 'aqua')
 ..onColorSelected.pipe(canvas);
 // Register a clear button listener
 querySelector(".clear-btn").onClick.listen((MouseEvent event) {
 canvas.clear();
 });
 // Register a preview button listener
 querySelector(".preview-btn").onClick.listen((MouseEvent event)
 {
 event.preventDefault();
 window.open(canvas.viewCanvas.toDataUrl("image/png"),
 "Image Preview");
 });
}

Now, let's discuss each component in order to better understand how they interact
with each other.

Supporting Other HTML5 Features

[278]

The CanvasWidget component
As mentioned earlier, the application uses two canvas components—one on top
of the other. Both of them are available via selectors. When we create an instance
of the CanvasWidget component, we pass these selectors as arguments of the
constructor. This component references the Tool component that is used to draw.
The code is as follows:

/**
 * Canvas widget listens for mouse events from [CanvasElement] to draw
 * with selected tool.
 */
class CanvasWidget implements StreamConsumer {

 CanvasElement _viewCanvas, _drawCanvas;

 CanvasElement get viewCanvas => _viewCanvas;
 CanvasElement get drawCanvas => _drawCanvas;
 CanvasRenderingContext2D get context => _viewCanvas.context2D;
 CanvasRenderingContext2D get drawContext => _drawCanvas.context2D;

 Tool _tool;

/**
 * Create an instance of CanvasWidget. The [viewCanvasSelector] and
 * [drawCanvasSelector] need to find CanvasElements.
 */
CanvasWidget(String viewCanvasSelector, String drawCanvasSelector) {
 // Find canvas elements
 _viewCanvas = querySelector(viewCanvasSelector);
 _drawCanvas = querySelector(drawCanvasSelector);
 // Add mouse event listeners
 _drawCanvas.onMouseDown.listen((evt) =>
 _tool.beginDraw(drawContext, offset(evt)));
 _drawCanvas.onMouseMove.listen((evt) =>
 _tool.drawing(drawContext, offset(evt)));

 var _finishDraw = (evt) {
 _tool.finishDraw(drawContext, offset(evt));
 copyContext();
 };

 _drawCanvas.onMouseUp.listen(_finishDraw);
 _drawCanvas.onMouseLeave.listen(_finishDraw);
}

Chapter 11

[279]

The user holds down the mouse button when he/she begins to draw. As a result,
the onMouseDown listener invokes the beginDraw method of the Tool class. The
drawContext method and the offset of the mouse coordinates are passed as
parameters of this method. The drawing method of the Tool class is called every
time the mouse is moved. Finally, the finishDraw method is called when the user
releases the mouse button, and we call the local copyContext method to copy the
content of the draw canvas to the view canvas. The CanvasWidget component
implements the StreamConsumer interface via the addStream method to listen to
two sorts of events, that is, ColorSelectedEvent from ColorSelectorWidget and
ToolSelectedEvent from ToolSelectorWidget. The addStream method processes
the incoming events, as shown in the following code:

/**
 * Copy drawn image from draw canvas into view context.
 * After all it clears the draw canvas.
 */
copyContext() {
 context.drawImage(_drawCanvas, 0, 0);
 _drawCanvas.context2D.clearRect(0, 0,
 _drawCanvas.width, _drawCanvas.height);
}

/**
 * Clear the view canvas
 */
 clear() {
 context.clearRect(0, 0, _viewCanvas.width, _viewCanvas.height);
 }

/**
 * Consumes the elements of [stream].
 * Listens on [stream] and does something for each event.
 */
 Future addStream(Stream stream) {
 return stream.listen((event) {
 if (event is ColorSelectedEvent) {
 if (event.type == ColorSelectedEvent.STROKE_COLOR) {
 drawContext.strokeStyle = event.value;
 } else {
 drawContext.fillStyle = event.value;
 }
 } else if (event is ToolSelectedEvent) {

Supporting Other HTML5 Features

[280]

 _tool = event.tool;
 }
}).asFuture();
}

We use the clear method to wipe out the content of _viewCanvas.

The ToolSelector widget
This component keeps the tool-based components and presents them in
SelectElement. A tool-based component can be added via the addTool
method, as shown in the following code:

class ToolSelectorWidget {
 SelectElement _selectElement;
 Tool selectedTool;
 Map<String, Tool> _tools = new Map<String, Tool>();

 Iterable<String> get toolsNames => _tools.keys;

 StreamController<ToolSelectedEvent> _toolSelectedController =
 new StreamController<ToolSelectedEvent>();
 Stream<ToolSelectedEvent> get onToolSelected =>
 _toolSelectedController.stream;

 ToolSelectorWidget(String selector) {
 _selectElement = querySelector(selector);
 _selectElement.onChange.listen((Event event) {
 selectTool(_selectElement.value);
 });
 }

 void addTool(Tool tool, {bool select: false}) {
 _tools[tool.name] = tool;
 OptionElement item = new OptionElement(
 data: tool.name, value: tool.name);
 _selectElement.append(item);
 if (select) {
 selectTool(tool.name);
 }
 }

 Tool getTool(String name) {
 if (_tools.containsKey(name)) {
 return _tools[name];

Chapter 11

[281]

 }
 throw new Exception("Brush with $name not found");
 }

 selectTool(String name) {
 selectedTool = getTool(name);
 _toolSelectedController.add(new ToolSelectedEvent(selectedTool));
 _selectElement.value = selectedTool.name;
 }
}

When the user selects a new tool, this component generates a ToolSelectedEvent
method with the selected tool instance as the parameter. The StreamController
method is used to broadcast ToolSelectedEvent to any listener, that is,
CanvasWidget.

The ColorSelector widget
This widget is a port of bootstrap-colorselector to Dart. This component
creates a drop-down color palette from a predefined set of colors only. We have set
predefined colors for and via the HTML markup. Every time the user chooses a new
color, the StreamController method broadcasts a ColorSelectedEvent event to
the CanvasWidget class.

The Tool class
Our application has an abstract Tool class to abstract the common behavior and
properties of all the tool-based components, as shown in the following code:

/**
 * Abstract class defines common behavior and properties
 * for all tools.
 */
abstract class Tool {
 bool isDrawing = false;
 Point startPoint;

 String get name;

 void beginDraw(CanvasRenderingContext2D context, Point point) {
 isDrawing = true;
 startPoint = point;
 }

Supporting Other HTML5 Features

[282]

 void drawing(CanvasRenderingContext2D context, Point point);

 void finishDraw(CanvasRenderingContext2D context, Point point) {
 if (isDrawing) {
 drawing(context, point);
 isDrawing = false;
 }
 }
}

The isDrawing property reflects the status of the drawing operation.
The startPoint property simply holds the cursor coordinates relative to the canvas
when the user starts drawing on the canvas. The read-only property name returns the
name of the tool. This name is used when the tool is added to ToolSelectorWidget.
Each tool has three methods, and the whole drawing process is split into the
following three phases:

• Start the drawing phase: The program calls the beginDraw method when
a user starts holding down the mouse button. We always switch on the
isDrawing property and remember the cursor coordinates in startPoint.

• Drawing phase: The drawing method is called every time the user moves the
cursor. Implementation of this method strongly depends on the tool, so we
do not implement it in the abstract class Tool.

• End the drawing phase: The program invokes the finishDraw method
when the user releases the mouse button. In this method, we need to call
the drawing method for the last time and switch off isDrawing only if the
drawing process has happened.

Now, it's time to look at our tools implementation in detail.

The Pen tool
As the canvas element doesn't directly support drawing a single point, we use lines
instead. Drawing in a canvas is similar to using a virtual pen. At the beginning, we
must call beginPath of context where we begin drawing. This method creates a
new drawing path, so future drawing commands will be directed to the path and
will be used to build the path. We start our path by moving to the startPoint
coordinates with the moveTo method of context, as shown in the following code:

/**
 * Simple pen tool
 */
class Pen extends Tool {

Chapter 11

[283]

 String get name => "Pen";

 @override
 void beginDraw(CanvasRenderingContext2D context, Point point) {
 super.beginDraw(context, point);
 context.beginPath();
 context.moveTo(startPoint.x, startPoint.y);
 }

 @override
 void drawing(CanvasRenderingContext2D context, Point point) {
 if (isDrawing) {
 context.lineTo(point.x, point.y);
 context.stroke();
 }
 }
}

Every time a user moves the mouse, the program calls the drawing method to
connect our drawn path to next line's point with the lineTo method of context.
Finally, it calls the stroke method to draw the shape by stroking its outline.

The Line tool
The behavior of the Line tool is similar to that of the Pen tool, but with a different
drawing logic. We only implement the drawing method of the Tool class to draw
our shape in a path. A path is a list of subpaths, and each of them is a list of points
that are connected by straight or curved lines. Each one also contains a flag that
indicates whether it is closed, so the last point of the closed subpath is connected
to the first point by a straight line, as illustrated by the following code:

/**
 * Line tool is used to create lines.
 */
class Line extends Tool {

 String get name => "Line";

 @override
 void drawing(CanvasRenderingContext2D context, Point point) {
 if (isDrawing) {
 context.clearRect(0, 0,
 context.canvas.width, context.canvas.height);
 context.beginPath();

Supporting Other HTML5 Features

[284]

 context.moveTo(startPoint.x, startPoint.y);
 context.lineTo(point.x, point.y);

 context.stroke();
 context.closePath();
 }
 }
}

We must always clear the whole drawing canvas and start a new path via the
beginPath method of context. We move the first point to the startPoint position
and draw the line within the current cursor coordinates. Finally, we draw the line
shape by stroking its outline and close the drawing path.

The Rectangle tool
We can draw a rectangle with individual lines, but the Rectangle tool makes the task
much easier. The context object has the following methods to draw rectangles:

• strokeRect: This method uses the current stroke style to draw the box that
outlines the given rectangle onto the canvas

• fillRect: This method uses the current fill style to draw the given rectangle
onto the canvas

• clearRect: This method clears all the pixels on the canvas in the given
rectangle to transparent black

The easiest way to draw a rectangle on the canvas is use the fillRect method of
context. The fillRect method uses color from the fillStyle property, black by
default. The Rectangle class, as shown in the following code:

/**
 * Rectangle tool
 */
class Rectangle extends Tool {

 String get name => "Rectangle";

 @override
 void drawing(CanvasRenderingContext2D context, Point point) {
 if (isDrawing) {
 context.clearRect(0, 0,
 context.canvas.width, context.canvas.height);

 int x = min(point.x, startPoint.x).round(),

Chapter 11

[285]

 y = min(point.y, startPoint.y).round(),
 w = abs(point.x - startPoint.x).round(),
 h = abs(point.y - startPoint.y).round();

 context.fillRect(x, y, w, h);
 context.strokeRect(x, y, w, h);
 }
 }
}

In the preceding code, we drew a rectangle with fillRect and finally called
strokeRect to draw the border line shape by stroking its outline.

The Oval tool
Drawing ovals is a breeze too. The easiest way to draw ovals is using the arc method
of context. The arc method takes the following five parameters:

arc(x, y, radius, startAngle, endAngle, anticlockwise)

The x and y parameters are the coordinates of the center of the oval on which the arc
should be drawn. The radius parameter is the radius of the oval. The startAngel
and endAngel parameters define the start and end coordinates of the arc in radians,
measured from the x axis along with the curve of the oval. Finally, the last parameter
is anticlockwise, which tells the canvas to draw the arc anticlockwise. The code is
as follows:

/**
 * This tool transforms a drawing context into a rectangle
 * enclosing the oval and uses the arc method to draw it.
 */
class Oval extends Tool {

 String get name => "Oval";

 @override
 void drawing(CanvasRenderingContext2D context, Point point) {
 if (isDrawing) {
 context.save();
 context.clearRect(0, 0,
 context.canvas.width, context.canvas.height);
 context.beginPath();

 var rx = (point.x - startPoint.x) / 2;
 var ry = (point.y - startPoint.y) / 2;

Supporting Other HTML5 Features

[286]

 context.translate(startPoint.x + rx, startPoint.y + ry);

 rx = abs(rx);
 ry = abs(ry);
 if (rx < ry)
 {
 context.scale(1, abs(ry / rx));
 context.arc(1, 1, rx, 0, 2 * PI, false);
 }
 else
 {
 context.scale(abs(rx / ry), 1);
 context.arc(1, 1, ry, 0, 2 * PI, false);
 }

 context.stroke();
 context.restore();
 }
 }
}

First, we saved the current context's settings, cleared it, and started a new path.
Then, we calculated the coordinates of the center of our oval and placed the result
in rx and ry. After that, we moved the origin from (0, 0) to a new place via the
translate method of context. For now, we took the absolute values for rx and
ry so that we can draw an oval in different directions. Depending on the drawing
direction, we can draw an oval by scaling it along the x or y axis. Finally, we draw
the oval shape by stroking its outline and restored the parameters of context to
prepare it for further use.

How to clear the context
Many times, we try to clear the drawing context before we actually start to draw
a new shape in the drawing context. So, now it's time to look at the following self-
explanatory code from the CanvasWidget class that demonstrates how the view
context can be cleaned:

/**
 * Clear the view canvas
 */
 clear() {
 context.clearRect(0, 0,
 _viewCanvas.width, _viewCanvas.height);
 }

Chapter 11

[287]

How to preview the context
If you need to preview the result of what you've done in the view canvas, you can
open a new window with the content of the view canvas as shown here:

 // Register a preview button listener
 querySelector(".preview-btn").onClick
 .listen((MouseEvent event) {
 event.preventDefault();
 window.open(canvas.viewCanvas.toDataUrl("image/png"),
 "Image Preview");
 });

Now if you click on the Preview link, you will see the next result in a new window in
your web browser, as shown in the following screenshot:

Here, we opened a new browser window with the image data URI directly and we
could save it in the represented format. The data URI format shown in the address
of the web browser is as follows:

data:[<MIME-type>][;charset=<encoding>][;base64],<data>

Supporting Other HTML5 Features

[288]

The toDataUrl method has an optional second parameter, quality. It represents
the image quality in the range of 0.0 to 1.0 when the requesting type is image/jpeg
or image/webp.

Summary
To summarize, we will discuss the important facts about how to support other
HTML5 features in Dart.

The web notification API allows you to display notifications outside the context of
the web page. The user agent defines the best presentation of notifications, which
depends on the location of the device. The web notification API is available as a part
of the dart:html package and allows you to send information to a user even if the
application is idle. When you build web applications, you can use the notification
API in event handlers or polling functions to notify users.

Before you send any notifications to the user, the website must have permissions.
Users can let websites send notifications automatically or with the permission
request first. All the websites that request access to the notification API are added to
the list of the notification exceptions. The constructor of the Notification class has
optional properties that help you create notifications with the body and icon.

Dragging-and-dropping is a way to convert pointing device movements and clicks
to special commands that are recognized by software to provide quick access to
common functions of a program. Native drag-and-drop support in a browser means
faster and more responsive web applications. Each drag event has a dataTransfer
property that is used to hold data associated with a drag operation. The drop target
is very important because most areas of the web page are not permitted to drop.

The geolocation API is a high-level interface used for location information. The API
is device-agnostic of the underlying location source and is not affected by how the
web browser determines a location. Using the Google Maps API with the geolocation
API is very simple.

The HTML5 canvas is a fantastic feature that allows you to code programmatic
drawing operations. It has become very popular because it allows you to create
and manipulate imagery directly within web pages. It defines a context object
that users can draw inside.

In the next chapter, we will discuss the different aspects of security. As a best
practice, we will focus on validation input and escape and filter output data in
our web applications.

Security Aspects
In this chapter, we will talk about different aspects of security. You will learn
about validation of user data input and security best practices in our web
application. This chapter covers the following topics:

• Web security
• Securing a server
• Securing a client
• Security best practices

Web security
Crime is a disease that plagues the minds of many individuals. Hackers are
interested in everything from personal mailbox credentials to bank account details.
The responsibility of maintaining security lies with web developers. Developers
should use HTTPS to access web pages and resources with sensitive data.

Transport Layer Security and Secure Socket
Layer at a glance
Secure Socket Layer (SSL) is one of the most common protocols in use on the
Internet today. SSL is capable of securing any transmission over TCP. The Transport
Layer Security (TLS) protocol is a successor of SSL and is based on the older SSL
specifications. TLS Version 1.0 was defined for the first time in January 1999 as an
upgrade of SSL Version 3.0. Both of them are based on asymmetric keys to encrypt
data and digital certificates for authentication through an untrusted third party. We
use TLS in a client-server model, but the client usually does not provide a certificate.
Instead, the server is responsible for its own authentication through signed
certificates and encryption via public and private keys.

Security Aspects

[290]

There are several versions of protocols used in web browsing, e-mail, internet faxing,
instant messaging, and Voice over IP (VoIP). TLS has the following benefits:

• It encrypts information
• It provides authentication
• It accepts credit card payments on websites
• It protects against phishing
• It adds power to brands and improves customer trust

Information submitted on the Internet passes through more than one node in the
network before reaching the final destination, so it can be obtained by a third party.
A TLS certificate inserts random characters into the original information to change
it beyond recognition so that only the proper encryption key can help decrypt it.
Server certification is another type of protection issued when the server's owner
obtains a TLS certificate. This certificate is available to the client to validate that the
TLS certificate is up to date and the client's information is being delivered to the
right place. Online businesses that use credit card payments must be in compliance
with the Payment Card Industry standards. This means that the server needs a TLS
certificate with the proper encryption of at least 128 bits. Online businesses often
offer site seals and other brand images to indicate that a trusted encryption is in
use. This information gives customers an added level of assurance and creates trust
between the customer and the business.

The TLS certificate
It is really complicated to decide at which level we can address the TLS protocol in
the TCP/IP stack. The TLS security protocol describes how algorithms should be
used and how the TLS certificate establishes a secure connection. To get a certificate,
you must create a Certificate Signing Request (CSR) on your server. This process
creates a pair of private and public keys on your server. Then, you must send the
CSR datafile that contains the public key to a Certified Authority (CA) in order
to obtain the TLS certificate. The CA creates a data structure from the CSR file to
match a private key in the future. The CA never sees the private key and it can't be
compromised. Once you receive the TLS certificate, you can install it on the server.
Dart uses the Network Security Services (NSS) library of Mozilla to handle TLS.
We need to use certutil, a certificate database tool from NSS Security Tools, to
manipulate the certificate database. You can obtain the source code and quickly build
certutil for your platform, but I have installed the following prebuilt version of the
program on my Ubuntu workstation:

sudo apt-get install libnss3-tools

Chapter 12

[291]

The process of installation is successful and you can now check the result by running
the program with the following command:

certutil

On receiving the request, the program returns information on how to use it and gives
a list of available command options, as follows:

certutil - Utility to manipulate NSS certificate databases

Usage: certutil <command> -d <database-directory> <options>

…

For now, we want to create a command-line application project with the name
server in Dart Editor. Then, open the terminal and go into the bin directory of
our project.

In real life, you must obtain a real certificate from a CA such
as Thawte, Entrust, and others.
It is recommended to use self-signed TLS certificates for
development and testing, but they are not recommended for
production sites.

Follow the next steps to create a self-signed CA certificate for development and
testing purposes inside the bin directory:

1. Create an NSS database in the pkcert folder. The folder name should be the
name of the NSS database used on our server:
mkdir -p pkcert

certutil -N -d sql:/home/akserg/Project/server/bin/pkcert

The -N command option creates a new certificate and key databases.
Specify the prefix sql in front of the full path to the database folder as
Dart uses the new SQLite database (cert9.db, key4.db, and pkcs11.txt)
rather than a legacy security database (cert8.db, key3.db, and secmod.db).
The certutil command will ask us to enter a password that will be used to
encrypt our keys. Let's set the password to changeit.

2. Create a self-signed CA certificate with the following command:
certutil -S -s "CN=CA Issuer" -n CACert -x -t "C,C,C" -v 120 -m
1234 -d sql:/home/akserg/Project/server/bin/pkcert

Security Aspects

[292]

The –S command option creates an individual certificate and adds it to a
certificate database. The text after -s option provides a subject that identifies
an owner of certificate. The –x option tells the certutil command that the
created certificate is self-signed. The –v option sets the number of months
for which a new certificate will be valid. The –m option sets a unique
serial number to the certificate being created. When we run the certutil
command, it asks us to press the keys on the keyboard to create a random
seed that will be used in the creation of our key.

3. We now have a CA certificate and need to generate the key and certificate
signing request. Let's do that with the following command:
certutil -R -s "CN=localhost, O=Mastering Dart, L=Cape Town,
ST=WC, C=CA" -p "+27 21 1234567" -o mycert.req -d sql:/home/
akserg/Project/server/bin/pkcert

The –R command option creates a certificate request file that can be
submitted to a CA to be processed into a finished certificate. We specify the
subject to identify the certificate owner; in this case, it's me. Extra information
such as your telephone number can be an input as well. Output defaults
to the output file marked with the –o option. When we run the certutil
command, it asks for a password, and we can generate the key with a
random seed again.

4. Now, we can see the list of keys in the database with the following command:
certutil -K -d sql:/home/akserg/Project/server/bin/pkcert

The result will be as follows:

< 0> rsa e22c881d9eb382ea69257410cf464dfedcd49354 NSS
Certificate DB:CACert

< 1> rsa b909266e0d5a14523158bfc7903ea9460fad2da6 (orphan)

5. We need to sign in the key with the following command:
certutil -C -m 2345 -i mycert.req -o mycert.crt -c CACert -
d sql:/home/akserg/Project/server/bin/pkcert

6. Finally, it's time to add a certificate to the database with the
following command:
certutil -A -n localhost_cert -t "p,p,p" -i mycert.crt -d sql:/
home/akserg/Project/server/bin/pkcert

The name of our certificate is localhost_cert after the –n option.

Chapter 12

[293]

7. You can see the information about a specific certificate with the
following command:
certutil -L -n localhost_cert -d
sql:/home/akserg/Project/server/bin/pkcert

The result is as follows:

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 2345 (0x929)

 Signature Algorithm: PKCS #1 SHA-1 With RSA
Encryption

 Issuer: "CN=CA Issuer"

 Validity:

 Not Before: Thu Aug 21 17:15:05 2014

 Not After : Fri Nov 21 17:15:05 2014

 Subject: "CN=Sergey Akopkokhyants,O=Mastering
Dart,L=Cape Town,ST=WC, C=CA"

 Subject Public Key Info:

 Public Key Algorithm: PKCS #1 RSA Encryption

…

8. Alternatively, you can validate a specific certificate with the
following command:
certutil -V -n localhost_cert -b 9803201212Z -u SR -e -l -d
sql:/home/akserg/Project/server/bin/pkcert

The result is as follows:

localhost_cert : Peer's Certificate has expired.

localhost_cert : Peer's certificate has been marked as not
trusted by the user.

Now that we are done with our self-signed certificate, it's time to go back to our
server code and secure it.

Security Aspects

[294]

Securing a server
Open the server.dart file and type the following lines:

import 'dart:io';

main() {
 var pkcertDB = Platform.script.resolve('pkcert').toFilePath();
 SecureSocket.initialize(database: pkcertDB,
 password: 'changeit');

 HttpServer
 .bindSecure(InternetAddress.ANY_IP_V6, 8443,
 certificateName: 'localhost_cert')
 .then((server) {
 server.listen((HttpRequest request) {
 request.response.write('Hello, world!');
 request.response.close();
 });
 });
}

This is an implementation of the well-known Hello, World! example. I always keep
the password of my certificate in the code only for demonstration purposes. Please
keep your password in an external encrypted file. The code of the server is pretty
straightforward. One small exception is that it references SecureSocket instead of
the Socket class. By calling a static initialize method of this class, we initialize the
NSS library. Now, we should organize binding with the static bindSecure method
of HttpServer to create an HTTPS server. Let's run it and open the following URL in
the Dartium web browser:

https://localhost:8443/index.html

All the magic, such as TLS handshaking, keys, and message exchange, happens
behind the scenes. As our server's certificate is self-signed, a web browser
informs us about that fact, as shown in the following screenshot:

Chapter 12

[295]

Click on the Certificate information link to see the full certificate information,
as shown in the following screenshot:

Now, close the warning message and click on the Proceed anyway button to see the
result of the HTTP request:

We were successful in achieving the following goals:

• We generated a self-signed certificate and registered it in the CA database
• Dart's HttpServer accepts the self-signed certificate and works with it
• The web browser shows the self-signed certificate information
• Client-to-server communication is granted

Securing a client
We have prepared our server side to secure the communication, and now it's time to
talk about the security of the client side of our web application. For all our content,
we will start using secure communication with TLS and we will start updating our
client side using cookies.

Security Aspects

[296]

Attributes of cookies
A cookie has two special attributes: Secure and HttpOnly. The Secure attribute of a
cookie allows it to be sent only to the TLS connection. The other attribute, HttpOnly,
marks the cookie that is accessible only via HTTP or HTTPS connections. Mark both
of them as true and this small improvement in cookies prevents the web browser
from sending a cookie via an insecure connection. With each request sent, the
cookies are accompanied to follow the server inside headers. Let's check what
we can improve in other headers.

HTTP Strict Transport Security
The well-known SSL man-in-the-middle attacks can be safely fixed with a HTTP
Strict Transport Security (HSTS) header sent from the server via the HTTP response
header, which obliges the web browser to interact with the server through a secure
HTTPS connection. The code is as follows:

Strict-Transport-Security: max-age=31536000; includeSubDomains

The server must specify the max-age option in seconds; this is the time for which
the pages should be served with HTTPS. In our example, this value is equal to 365
days. The includeSubDomains option is optional and tells the web browser that
all subdomains must be served with a secure connection as well. This header is
supported in the following browsers:

• Firefox 4
• Chromium and Google Chrome 4.0.211.0
• Safari 7
• Opera 12
• Internet Explorer in the next major release after IE 11

Content Security Policy
The web application security model is based on the same-origin policy principle.
The origin is a combination of schema, hostname, and port number. The policy
permits us to download and run scripts from the same origin. As time has shown,
this policy may be broken very easily and quickly with Cross Site Scripting (XSS)
or data injection attacks. Content Security Policy (CSP) is an added layer of security.
It allows the web server to define the origin of each resource by securing the website
and mitigates and reports on XSS attacks. Blocking all the inline scripts and styles
can prevent the execution of code injected in comments or posts. CSP is backward
compatible, so web browsers that don't support it still work using the standard
same-origin policy.

Chapter 12

[297]

The web browser assumes that all origins are allowed if a directive is not set.
CSP can be set via an HTTP response header on a server or an HTML meta tag
on a web page, as shown in the following code:

Content-Security-Policy: policy

The policy string is the one that contains the policy directives describing CSP with
semicolon separation as source of whitelists.

Not all web browsers support HTML meta elements to configure a policy.

The policy should include the default-src or script-src directives. This has the
following advantages:

• This restricts inline scripts from running
• This blocks the use of the eval function
• This restricts inline styles from being applied from a style element or the

style attribute of an element

The inline JavaScript code includes the eval function; hence, the JavaScript URLs
will not be executed. You need to slightly change your mind about development
with CSP. Here is an example of restricting all the content that comes only from the
site's own domain and subdomains:

Content-Security-Policy: default-src 'self' *.mydomain.com

The following example shows how to restrict all the content from being loaded via a
secure connection:

Content-Security-Policy: default-src https://ibank.mydomain.com

In the following example, we will allow all the assets to be loaded from our site and
scripts from the Google API server:

Content-Security-Policy: default-src: 'self'; script-src: https://apis.
google.com;

We created the csp project to see how CSP works. The server-side code is a slightly
modified version of the server code from the previous topic, and it includes the
route library, as shown in the following code:

import 'dart:io';
import 'dart:async';
import 'package:route/server.dart';
import 'urls.dart';

Security Aspects

[298]

import 'files.dart';

main() {
 var pkcertDB = Platform.script.resolve('pkcert').toFilePath();
 SecureSocket
 .initialize(database: pkcertDB, password: 'changeit');

 HttpServer
 .bindSecure(InternetAddress.ANY_IP_V6, 8443,
 certificateName: 'localhost_cert')
 .then((server) {
 new Router(server)
 ..filter(allUrls, filter)
 ..serve(allUrls).listen(serveDirectory('', as: '/'))
 ..defaultStream.listen(send404);
 });
}

Future<bool> filter(HttpRequest request) {
 HttpResponse response = request.response;
 response.headers.add("Content-Security-Policy",
 "default-src 'self'; style-src 'self'");
 return new Future.value(true);
}

We now use a filter method of the Route class to intercept each request and
inject the Content-Security-Policy header in response, as shown in the
following screenshot:

From the content of our header, it should be clear that all the scripts and styles from
our website are permitted. Let's imagine a use case where you need to add a Google
+1 button to your web application to allow users to recommend the content to their
circles and drive traffic to your website, so simply include a +1 button on the web
page via a JavaScript resource and add a +1 button tag. The script must be loaded
using the HTTPS protocol. Here is the code of the changed web page:

<!DOCTYPE html>
<html>

Chapter 12

[299]

 <head>
 <meta charset="utf-8"> <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <title>Cookie</title>
 <script type="text/javascript"
 src="https://apis.google.com/js/plusone.js"></script>
 <link type="text/css" href="index.css">
 </head>
 <body>
 <p>This is a test page for CSP. <g:plusone></g:plusone></p>
 </body>
</html>

Let's run the server and open the modified web page in Dartium. In a moment, you
will receive the following CSP violation message about loading an untrusted script:

To make the +1 button work, you need to add different policies to the server code to
allow trusted resources on your web page, as shown in the following code:

Future<bool> filter(HttpRequest request) {
 HttpResponse response = request.response;
 response.headers.add("Content-Security-Policy",
 "default-src 'self';" +
 "style-src 'self' 'unsafe-inline';" +
 "script-src 'self' https://apis.google.com;" +
 "frame-src https://*.google.com;" +
 "img-src https://*.gstatic.com;"
);
 return new Future.value(true);
}

The result of the preceding code is as follows:

Security Aspects

[300]

CSP is very flexible and useful when it is used properly. This header is supported by
the following browsers:

• Chrome 25 (from v14 with the prefix webkit)
• Firefox 23 (from v4 with the prefix moz)
• Safari 7 (from v5 with the prefix webkit)
• Opera 15
• Internet Explorer 10 only supports the sandbox directive with the prefix ms

Cross Origin Resource Sharing versus JSON
with padding
JSON with padding (JSONP) is a client-side technique used to request data from a
server in a different domain. This is possible because web browsers do not enforce
the same-origin policy on the HTML script tag. The parameters of the JSONP
request are passed as arguments to a script. The format of a JSONP result is different
from the format of JSON, so the server must know how to respond to it. JSONP
supports only the GET request method and accepts the callback function as the
recipient of data, as shown in the following code:

<script src="http://my.com/data?format=jsonp&callback=cb"></script>

A web browser will call a cb function at the end of the request. With this script, we
will get the JavaScript code and the web browser will run it as a normal script file.
This could be a big risk because the server from which we are getting this script
could be compromised and easily cause an XSS attack. Cross-origin resource sharing
(CORS) can be used as a modern alternative to JSONP, which allows cross-domain
communication from the web browser. As opposed to JSONP, CORS supports all
the HTTP methods and allows you to do the following tasks:

• Make an AJAX request, but in a cross-site manner
• Load web fonts for use in @font-face within CSS
• Load WebGL textures
• Load images drawn on a canvas with the help of the drawImage method

Chapter 12

[301]

CORS headers must be returned in the header of the requested web server.
To initiate a cross-origin request, we need to add new HTTP headers that allow
the web browser to communicate freely with the API on another domain.
The cors project contains two servers. The first one, located in the server.dart
file is a web server listening to the secure connection on port 8443 from our
previous topic, as shown in the following code:

import 'dart:io';
import 'dart:async';

import 'package:route/server.dart';

import 'urls.dart';
import 'files.dart';

main() {
 var pkcertDB = Platform.script.resolve('pkcert').toFilePath();
 SecureSocket
 .initialize(database: pkcertDB, password: 'changeit');

 HttpServer
 .bindSecure(InternetAddress.ANY_IP_V6, 8443,
 certificateName: 'localhost_cert')
 .then((server) {
 new Router(server)
 ..filter(allUrls, filter)
 ..serve(allUrls).listen(serveDirectory('', as: '/'))
 ..defaultStream.listen(send404);
 });
}

Future<bool> filter(HttpRequest request) {
 HttpResponse response = request.response;
 response.headers.add("Content-Security-Policy",
 "default-src 'self';" +
 "style-src 'self' 'unsafe-inline';" +
 "script-src 'self' https://apis.google.com;" +
 "frame-src https://*.google.com;" +
 "img-src https://*.gstatic.com;"
);
 return new Future.value(true);
}

Security Aspects

[302]

The second server, located in cors_server.dart, is the CORS web server listening on
port 8080 and is not using HTTPS, as shown in the following code:

import 'dart:io';
import 'dart:async';

import 'package:route/server.dart';

import 'files.dart';

final allUrls = new RegExp('/(.*)');
final productUrl = new UrlPattern('/product');

main() {
 HttpServer
 .bind(InternetAddress.ANY_IP_V6, 8080)
 .then((server) {
 new Router(server)
 ..filter(allUrls, filter)
 ..serve(productUrl).listen(serverProduct)
 ..defaultStream.listen(send404);
 });
}

Future<bool> filter(HttpRequest request) {
 return new Future.value(true);
}

serverProduct(HttpRequest request) {
 return serveFile('products.json')(request);
}

The function filter in the second web server intends to set the header with CORS and
allows any client to make cross-domain requests to this server. Our client will now
look like the following code:

import 'dart:html';
import 'dart:convert';

void main() {
 onloadHandler();
}

onloadHandler() {
 var xhr = new HttpRequest();

Chapter 12

[303]

 xhr.open('GET', 'http://localhost:8080/product', async:true);
 xhr.onLoad.listen((e) {
 Map repos = JSON.decode(xhr.response);
 var reposHTML = "";
 for (int i = 0; i < repos["repositories"].length; i++) {
 reposHTML += "<p>" +
 repos["repositories"][i]["name"] + "
" +
 repos["repositories"][i]["description"] + "</p>";
 }
 document.getElementById("allRepos").setInnerHtml(reposHTML);
 }).onError((e) {
 print('error making the request. ${e.toString()}');
 });
 xhr.send();
}

The client code makes a cross-domain request and prints the markup with the
result. Let's run both the servers and open our web page in Dartium on the
address https://localhost:8443/index.html. It immediately comes with
the cross-domain violation exception, as shown in the following screenshot:

Let's add connect-src in the following server code for a quick fix:

Future<bool> filter(HttpRequest request) {
 HttpResponse response = request.response;
 response.headers.add("Content-Security-Policy",
 "default-src 'self';" +
 "style-src 'self' 'unsafe-inline';" +
 "script-src 'self' https://apis.google.com;" +
 "frame-src https://*.google.com;" +
 "img-src https://*.gstatic.com;" +
 "connect-src http:/localhost:8080/product"
);
 return new Future.value(true);
}

Restart the server and refresh the web page, and you will get the following exception:

Security Aspects

[304]

Our request cannot pass the border of origins, so we will change the filter method
in the CORS web server, as follows:

Future<bool> filter(HttpRequest request) {
 HttpResponse response = request.response;
 response.headers.add("Access-Control-Allow-Origin", "*");
 return new Future.value(true);
}

The preceding code will give the following result:

This was a simple demonstration of how we can use CORS on data provided
by the web server. Dartium sends an initial request to the CORS server with an
Origin HTTP header that matches the origin of our web page, as shown in the
following screenshot:

We intend to specify Access-Control-Allow-Origin in the CORS server to allow
all domains and a server-sent response with an asterisk symbol (*), as shown in the
following screenshot:

Chapter 12

[305]

This pattern is widely used to organize accessible resources by anyone who knows
the secret. The asterisk symbol is special as it tells the web browser that it doesn't
allow requests without the following credentials:

• HTTP authentication
• Client-side SSL certificates
• Cookies

In order to include the credentials from the preceding list, you can use the other
CORS header as follows:

Future<bool> filter(HttpRequest request) {
 HttpResponse response = request.response;
 response.headers.add("Access-Control-Allow-Origin", "*");
 response.headers.add("Access-Control-Allow-Credentials",
 "true");
 return new Future.value(true);
}

It works in conjunction with the credentials on HttpRequest, as shown in the
following code:

var xhr = new HttpRequest();
xhr.open('GET', 'http://localhost:8080/product');
xhr.withCredentials = true;
…

It will also include any cookies from a remote domain in the request.

Do not set the Access-Control-Allow-Credentials header if you
don't want to include cookies in the CORS request.

The CORS server can set any header, but the getResponseHeader method of the
HttpRequest class can read only the following simple headers:

• Cache-Control

• Content-Language

• Content-Type

• Expires

• Last-Modified

• Pragma

Security Aspects

[306]

If you need access to other headers, you must expose them via the Access-Control-
Expose-Headers header as follows:

Future<bool> filter(HttpRequest request) {
 HttpResponse response = request.response;
 response.headers.add("Access-Control-Allow-Origin", "*");
 response.headers.add("Access-Control-Expose-Headers",
 "session-id");
 response.headers.add("session-id", "123456");
 return new Future.value(true);
}

We added a sessionId span element to the web page as follows:

<p>This is a test page for CORS. <g:plusone></g:plusone></p>
 Session ID:
<div id="allRepos"></div>

The following web page source code was updated as well:

var xhr = new HttpRequest();
xhr.open('GET', 'http://localhost:8080/product');
xhr.onLoad.listen((e) {
 var sessionId = xhr.getResponseHeader("session-id");
 document.getElementById("sessionId").text = sessionId;

Now, restart the CORS server and reload the web page to get the following result:

CORS is supported across the following well-known web browsers:

• Chrome 3
• Firefox 3.5
• Opera 12
• Safari 4
• Internet Explorer 8

Chapter 12

[307]

CAPTCHA
Completely Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) is a program whose main purpose is differentiating a human from a
machine. Actually, CAPTCHA is a reverse Turing test because it is administrated by
a computer. It is a barrier that prevents bots from using web services or collecting
certain types of sensitive information. One of the ways of using CAPTCHA in Dart
is using the free service reCAPTCHA of Google, so I decided to create a project with
a sensible name, captcha, that contains one web page for user registration. We can
follow several simple steps to add the reCAPTCHA solution into our project, but first
we need to sign up for the API keys for our website with the following steps:

1. Visit https://www.google.com/recaptcha and click on the Get
reCAPTCHA button, as shown in the following screenshot:

2. On the Get reCAPTCHA page, click on the Sign up Now! button
and type your web server name in the Domain field, as shown in the
following screenshot:

You can type as many domain names as you need; just separate them with
commas. You can also use localhost or 127.0.0.1 as the name of your
server, because all the API keys work on it and you can develop and test
your solution on your local machine.

https://www.google.com/recaptcha

Security Aspects

[308]

3. Click on the CREATE button to create new API key. The server move you to
the list of your domains, as shown in the following screenshot:

4. Choose your domain to see the following details:

There are public and private keys that we will use in our solution. To integrate the
reCAPTCHA solution in the captcha project, we used the small library recaptcha
created by me and which is available on the https://pub.dartlang.org/ server.
So, we can add it in the pubspec.yaml file under the dependencies packages.
Open the captcha project in Dart Editor and navigate to index.html, which is
shown in the following code:

<!DOCTYPE html>
<html>
 <head>
 <title>Registration</title>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1">

https://pub.dartlang.org/

Chapter 12

[309]

 <link type="text/css" href="index.css">
 </head>
 <body>
 <H1>Registration form with CAPTCHA</H1>
 <form name="captcha_form" method="post" action="/register">
 <label for="username">Username:</label>
 <input type="text" name="username">

 <label for="password">Password:</label>
 <input type="password" name="password">
 <script type="text/javascript"
 src="http://www.google.com/recaptcha/api/challenge?k=6Lc8a_
kSAAAAA
Bk-6joEQu_wurhopTGt4xCPndnX">
 </script>
 <noscript>
 <iframe src="http://www.google.com/recaptcha/api/
noscript?k=6Lc8a_kSAAAAAB
k-6joEQu_wurhopTGt4xCPndnX"
 height="300" width="500" frameborder="0"></iframe>

 <textarea name="recaptcha_challenge_field" rows="3"
 cols="40"></textarea>
 <input type="hidden" name="recaptcha_response_field"
 value="manual_challenge">
 </noscript>
 <button type="submit" value="Submit">Submit</button>
 </form>
 </body>
</html>

Copy and paste the public key of the domain registered on reCAPTCHA as the
parameter for JavaScript and the parameter for the source of the iframe tag. You
need to change these values for your public key. Now, let's open the server.dart
file and move to line 10 where we created an instance of the ReCaptcha class. Again,
copy and paste a pair of private and public keys of your domain here so that the
class instance can pass them via the free service reCAPTCHA on Google in order
to ensure that the sender is correct and has a registered domain, as shown in the
following code:

…
final ReCaptcha reCaptcha = new ReCaptcha(
 '6Lc8a_kSAAAAABk-6joEQu_wurhopTGt4xCPndnX', // public key
 '6Lc8a_kSAAAAAB49Z1belTOeM2e3SDmPG4ZvXVNL'); // private key

Security Aspects

[310]

Then, create a map of the error code and human-readable text as shown in the
following code:

final Map MESSAGES = {
 'invalid-site-private-key':'Incorrect private key',
 'invalid-request-cookie':'The challenge parameter of the verify
script was incorrect',
 'incorrect-captcha-sol':'The CAPTCHA solution was incorrect',
 'captcha-timeout':'The solution was received after the CAPTCHA
timed out',
 'recaptcha-not-reachable':"Unknown error in CAPTCHA"};

Then, read the POST method parameters in the serverRegister function and
convert them into a map to easily access them later. All the parameters follow the
reCAPTCHA verification via the checkAnswer method of ReCaptcha, as shown in the
following code:

serveRegister(HttpRequest request) {
 HttpResponse response = request.response;
 request.listen((List<int> buffer) {
 String strBuffer = new String.fromCharCodes(buffer);
 Map data = postToMap(strBuffer);
 //
 String userName = data.containsKey('username') ?
 data['username'] : '';
 String password = data.containsKey('password') ?
 data['password'] : '';
 String cptChallenge =
 data.containsKey('recaptcha_challenge_field') ?
 data['recaptcha_challenge_field'] : '';
 String cptResponse =
 data.containsKey('recaptcha_response_field') ?
 data['recaptcha_response_field'] : '';
 reCaptcha.checkAnswer(request.uri.host, cptChallenge,
cptResponse).then((ReCaptchaResponse cptResponse) {
 response.statusCode = HttpStatus.OK;
 setCORSHeader(response);
 if (cptResponse.valid) {
 response.write("Registration success.");
 } else {
 response.write(MESSAGES[cptResponse.errorCode]);
 }
 response.close();
 });
 });
}

Chapter 12

[311]

In the setCORSHeader function, add the CORS headers to allow the POST requests
from the cross-origin web resources as follows:

setCORSHeader(HttpResponse response) {
 response.headers.add('Access-Control-Allow-Origin', '*');
 response.headers.add('Access-Control-Allow-Methods', 'POST,
OPTIONS');
 response.headers.add('Access-Control-Allow-Headers',
 'Origin, X-Requested-With, Content-Type, Accept');
}

Let's run the server and open http://localhost:8080/index.html in Dartium to
get the following result:

Try to input a wrong CAPTCHA solution and submit the form. After submitting it,
you will see the following error message:

Security Aspects

[312]

Let's go back quickly and type the correct CAPTCHA solution. After submitting,
you will see the following success message:

Security best practices
It's time to discuss the best security practices, without which this story would not
be complete:

• Do not retain the password: The HTTP basic authentication is deprecated,
so use other techniques such as OAuth to make a more secure application
following standards. Use safe OAuth tokens instead of passwords.

• Perform the input validation: You should always sanitize all input data.
You need to check string length, validate file types, and check the minimum
and maximum values to be sure that all the data sent to the server via the
POST request is in the proper format and length.

• Filter input and sanitize output: You should always filter all the data that
comes from the client to the web server and sanitize all the data coming
back to the client.

• Use a secure connection: Use the TLS certificate to organize a secure
connection between the web browser and server to provide all REST APIs
or AJAX requests over TLS. TLS in conjunction with OAuth is a safe
and suggested solution.

• Do not expose the debug information: Don't forget to switch off the debug
logs because they can contain sensitive information.

• Test boundaries: Your tests must check all the possible positive and negative
cases and scenarios.

• Hide the server information: Don't display the server information on any
server-generated documents as this will allow hackers to select the right
kind of hack from the hacks that are either available freely on the web or
developed by hackers themselves.

Chapter 12

[313]

Summary
In this chapter, you learned how to create a TLS certificate with NSS tools.
You saw that the certificate can be quickly embedded into a Dart web server
without extra effort on the developer's part.

We discovered how to secure the client side with the Secure and HttpOnly special
attributes of cookies to prevent the web browser from sending cookies via an
insecure connection.

We used HSTS to prevent SSL man-in-the-middle attacks. We applied CSP to make
sure that only allowed content can be loaded and used by the web browser. We
also used CORS to specify what resources from our web server can be shared and
why that solution is much better than JSONP. Finally, we embedded the CAPTCHA
solution based on the free service reCAPTCHA from Google in our project.

Index
Symbols
-m option 292
-N command 291
-R command 292
-S command 292
-v option 292
-x option 292

A
access

minimizing to Stream class members,
StreamView used 116

accessor methods
versus variables 23

action
introspection, using in 50-52
reflection, using in 52-54

actions, jQuery
performing 173, 174

addError method 117
add method 39
addStream method 117, 279
AJAX long polling request

about 216-219
advantages 216
disadvantages 217
implementing 217
SSE 220
supported browsers 217

AJAX polling request
about 213-215
advantages 213
disadvantages 216

all operation 261
animation prefix 11
annotations

about 43
built-in annotations 44
custom annotations 48, 49

any method 128
ARB (Application Resource Bundle)

about 183, 195
benefits 195
direct usability 195
extensibility 195
simplicity 195
URL 195

arc method 285
argument

functions, passing as 14
asMap method 139
assert statement 27
Asynchronous JavaScript and

XML (AJAX) 213
asynchronous programming 77
asynchrony code

versus synchrony code 80

B
back parameter 135
BidiFormatter class 182
bidirectional formatting 191
BidirectionalIterator 135-137
binary search tree (BST) 145
bind method 118
body argument 86

[316]

bootstrap-colorselector
URL 273

broadcast stream
about 103
versus single-subscription stream 103

bufferingAmount property 228
built-in annotations

about 44
deprecated 44
override 44
proxy 45, 46

C
callback 79
call method 74, 75
call-stack architectures

about 77, 78
versus event-driven architectures 77

Canceled state 111-113
cancelOnError flag 115
canvas

about 272
editor 272, 273

canvas editor
about 272, 273
CanvasWidget component 278, 279
ColorSelector widget 281
context, clearing 286
context, previewing 287
HTML 273-276
Line tool 283, 284
main function, moving to 276, 277
Oval tool 285, 286
Pen tool 282
Rectangle tool 284, 285
Tool class 281, 282
ToolSelector widget 280, 281

CanvasWidget component 278, 279
CAPTCHA 307-312
Car class 19
cascade method invocation 75, 76
catchError method 82
Certificate Signing Request (CSR) 290
Certified Authority (CA) 290
check over collection 128

classes
about 18, 55
and mixins 17
inheritance 19
inheritance, versus composition 24-26
interface 19, 20
mixins 20, 21
type annotations 17
types 17
variables, versus accessor methods 23
well-designed class, creating 22, 23
well-designed classes 21

class variables 71
clearRect method 284
click event 255
client, securing

about 295
CAPTCHA 307-312
cookies, attributes 296
CORS, versus JSONP 300-306
CSP 296-299
HSTS 296

Closed state 111-113
close event 255
close method 117, 256
closures

about 16
used, in different scopes 13

collection
about 126
converting over 132
generating 132
reducing 131, 132
selecting 153

collection classes
about 137
hierarchy 126, 127
LinkedList class 140, 141
List class 137-140
Map class 137, 147
Queue class 137, 146, 147
Set class 137, 142, 143

collection conversion 163, 164
ColorSelector widget 281
communication

about 201
Internet protocol stack 202, 203

[317]

Comparable interface 124
Comparator type 125, 126
compareTo method 124
Completely Automated Public Turing test

to tell Computers and Humans
Apart. See CAPTCHA

complex message translations
creating 190, 191

composition
versus inheritance 24-26

computation function 83
Configuration class 66
constant constructor

about 68-70
restrictions 70

constructor
with optional parameters 56, 57

contains method 128
content delivery network (CDN) 274
Content Security Policy. See CSP
context

clearing 286
previewing 287, 288

context object
clearRect method 284
fillRect method 284
strokeRect method 284

cookies
about 231-238
attributes 296
benefits 238
disadvantages 239
HttpOnly attribute 296
Secure attribute 296

copyLink operation 261
copyMove operation 261
copy operation 261
CORS (Cross-origin resource sharing)

versus JSONP 300-306
Cross Site Scripting (XSS) 296
CSP

about 296-299
advantages 297

current location
determining 265-268

current property 134
custom annotations 48, 49

D
Dart

about 7, 74
modularity, using 8, 9
with jQuery 168, 169

dart:html library
about 203
web browser HTTP communication,

used via 209-211
dart:io library

about 203
standalone HTTP communication,

used via 206-208
dart:js library

about 156
JsArray 159
JsFunction 158
JsObject 156-158

Dart collection framework
about 123
benefits 123

Dartium
about 155
launch configuration, creating 216

Dartium launcher
creating 229

Dart VM
about 27
execution model 78, 79

dataGenerator variable 215
data structures

function, storing in 15, 16
dataTransfer property 259, 263
DateFormat class 182, 185, 187
dates

formatting 185-187
date_symbol_data_http_request library 185
date_symbol_data_local library 185
decomposition 8
deprecated, built-in annotation 44
development phase

benefits 8
direct type conversion 160-162
document.cookie property 232
DOM notifications 252
DoublingTransformer class 109

[318]

drag-and-drop APIs
about 257
drag-and-drop events 258, 259
drag data, using 259
drag, finishing 264
draggable content 257, 258
dragging effects 260, 261
drop, finishing 263, 264
drop target, using 262, 263
feedback image, dragging 260

drag-and-drop events
about 258, 259
dragend event 259
dragenter event 258
drag event 258
dragleave event 258
dragover event 258
dragstart event 258
drop event 259

drag data
using 259

dragend event 259
dragenter event 258, 262
drag event

about 258
finishing 264

draggable attribute 257
draggable content 257, 258
dragging effects 260, 261
dragleave event 258
dragover event 258, 262
dragstart event 258
drawImage method 300
drawing process

Drawing phase 282
End the drawing phase 282
Start the drawing phase 282

dropEffect property 261
drop event

about 259
finishing 263, 264

drop target
using 262, 263

Dynamic Host Configuration Protocol
(DHCP) 202

E
effectAllowed property 261
effects, jQuery

using 174, 175
elementAt method 129
elements, ordering

about 124
Comparable interface 124
Comparator type 125, 126

enableHighAccuracy parameter 270
encapsulation

benefits 22
endAngel parameter 285
Entity class 124
equals attribute 150
equals function 149
error event 255
errors

about 40
versus exceptions 39

event-driven architectures
about 78
benefits 78
versus call-stack architectures 77

EventSink interface 117
EventSource class 221, 224
every method 128
exceptions

about 41-43
versus errors 39

executable, versus User Interface
about 182
currencies, measuring 182
date, formatting 182
layout 182
messages 182
numbers and dates 182
text input 182
time, formatting 182
units, measuring 182

executor function 14
expand method 130

[319]

F
factory constructor

about 62
factory method design pattern 63-66
singleton design pattern 66-68

factory method design pattern 63-66
feedback image

dragging 260
fillRect method 284
first property 127
firstWhere method 129
fixed-length type

features 137
flush method 223
fold method 132
forEach method 128
for loop statement 135
forwarding 26
function

naming, with variable 13
passing, as argument to another

function 14
properties 13
returning, as result of another

function 14, 15
storing, in data structures 15, 16
used, in different scopes 13

Future class
about 81, 82
and Microtask 83
and Timer class 83
benefits 85
delaying 84
new stream, creating from 106
sync version, creating of 83
value, creating with 84
with error 84

G
gender

adding 189
gender method 189
gender parameter 189
generative constructor 56

generics
about 31, 126
functions 38, 39
raw types 32, 33
types 36, 37
using 34, 35

generics, in collection
advantages 126

geolocation
on map 269, 270

geolocation APIs
about 264, 265
current location, determining 265-269
geolocation, on map 269, 270
present location, tracking 270, 271

geolocation APIs, classes
Coordinates 265
Geolocation 265
Geoposition 265

getData method 264
getItem function 240
getResponseHeader method 305
Google Translator Toolkit

URL 196
using 196-198

H
hashCode 144
hashCode function 149
HashMap class 148
HashSet class 143, 144
hello function 188
hello message function 187
HSTS 296
HTML 273-276
HTTP

about 203, 204
protocol, for libraries 203
standalone HTTP communication,

via dart:io library 206-208
standalone HTTP communication,

via http package 208, 209
web browser HTTP communication,

via dart:html library 209-211

[320]

web browser HTTP communication, via
http package 212, 213

web server, creating 204, 205
HttpOnly attribute 296
http package

standalone HTTP communication,
used via 208, 209

web browser HTTP communication,
used via 212, 213

HTTP protocol 231
HttpRequest 213
HttpServer object 102
HTTP Streaming 220
HTTP Strict Transport Security. See HSTS
Hypertext Transfer Protocol. See HTTP

I
includeSubDomains option 296
IndexedDB

about 246-249
benefits 246
disadvantages 246

inheritance
about 19
versus composition 24-26

initializeDateFormatting function 185, 186
Initial state 111-113
instance variables 71
instantiation

about 55
and JsObject 165, 166

inst variable 51
interface 19
International Components for

Unicode (ICU) 184
Internet Protocol (IP) 202
Internet protocol stack 202, 203
Internet Service Provider (ISP) 202
Intl library

about 183, 184
bidirectional formatting 191
complex message translations,

creating 190, 191
dates, formatting 185-187
gender, adding 189
locale, changing 183

messages, internalizing 187, 188
numbers, formatting 184
parentheses, adding 188
select, adding 190

introspection
about 49
used, in action 50-52

isActive variable 73
isDrawing property 282
isEmpty property 127
isNotEmpty property 127
isolates 96-99
IterableBase class 127
Iterable class

new stream, creating from 107
Iterable collection

first property 127
isEmpty property 127
isNotEmpty property 127
iterator property 127
last property 127
length property 127
single property 127

Iterable interface
about 127
check over collection 128
collection, converting over 132
collection, generating 132
collection, reducing 131
Iterable collection, properties 127
iterate over collection 128
Lazy Iterable 132
new collection, creating 130, 131
search over collection 128, 129

IterableMixin class 127
iterate over collection 128
Iterator interface 134, 135
iterator property 127

J
join method 132
JProxy

invoking, jQuery 170, 171
jQuery

actions, performing 173, 174
Dart, used with 168, 169

[321]

effects, using 174, 175
example project 171, 172
invoking, by JProxy 170, 171
method call 170
method call, need for 169
performance, impacts 176-178
shortcut, creating with 169
version, getting 172, 173

JsArray 159
JsFunction 158, 166, 167
JsObject

about 156-158
and instantiation 165, 166
factory JsObject.fromBrowserObject(object)

157
factory JsObject(JsFunction constructor,

[List arguments]) constructor 157
factory JsObject.jsify(object) constructor 157

JSONP (JSON with padding)
versus CORS 300-306

K
key principles, globalized software

about 181
executable, versus User Interface 182

L
last property 127
lastWhere method 129
Lazy Iterable

about 132
benefits 133

left-to-right (LTR) 191
length property 127
libraries

about 9-12
private members 10
public members 10

Line tool 283, 284
LinkedHashMap class 149, 150
LinkedHashSet class 144
LinkedList class

about 140, 141
advantages 141

disadvantages 141
link operation 261
List class 137-140
ListQueue class 146
locale

changing 183
Local storage 240-242
log variable 64
longLasting method 217
longPolling function 219

M
main function

moving to 276, 277
Map class

about 147
HashMap class 148
LinkedHashMap class 149, 150
SplayTreeMap class 150, 151

map method 130
Media Access Control (MAC) 202
message_function function 183
MessageLookup class 198
message method 182
messages

extracting 195
internalizing 187, 188

messages_all.dart file 198
method call 74, 75
method call, JProxy

need for 170
methods

and operators 26
parameter values, checking 26-28
selecting 28
well-designed methods 28, 29

Microtask
and Future class 83

Mirrors
advantages 50
URL 50

mixins
about 20, 21, 127
and classes 17

[322]

modularity
about 7
benefits 8
in Dart 8, 9
in software development 8

moveNext method 120, 136
move operation 261

N
named constructor 58-60
name property 282
namespace

about 7
libraries 9-12

navbar component 274
Network Security Services (NSS) 290
new collection

creating 130
new stream

creating, from Future class 106
creating, from Iterable class 107
creating, from StreamController 110-115
creating, from transformation pipe 108-110
creating, with periodically generated

events 108
none operation 261
notification APIs

about 251
repeated notifications, preventing 256
using 252-256

notifications
about 252
DOM notifications 252
system notifications 252

NumberFormat class 182, 184
numbers

formatting 184
nums function 133

O
object creation

about 55
constant constructor 68-70
constructor, with optional

parameters 56, 57

factory constructor 62
generative constructor 56
named constructor 58-60
private constructor 61
redirecting constructor 60, 61
syntactic sugar 73
variables, initializing 71-73

object-oriented programming (OOP) 9
openRead method 102
operators

and methods 26
optional parameters

constructor, used with 56, 57
Oval tool 285, 286
override, built-in annotation 44

P
packages

about 9
URL 9

parameter values
checking 26-28

parent argument 92
parentheses

adding 188
Pen tool 282
periodically generated events

new stream, creating with 108
pipe method 102
plural method 188
policy string 297
Postman extension

URL 90
postproduction phase

benefits 8
present location

tracking 270, 271
print function 91
private constructor 61
private members 10
Product class 234
Product.toCookieName method 235
proxy, built-in annotation 45-47
proxy type conversion 162, 163

[323]

pub
URL 9

public members 10
pub manager

URL 168
pub serve command 270
pubspec.yaml file

about 9
URL 9

Q
querySelector function 194
Queue class 146, 147

R
raw types 32, 33
readQuantity method 234
readyChecker variable 215
Rectangle tool 284, 285
redirecting constructor 60, 61
reduce method 131
reflectClass function 52
reflect function 52
reflection

about 49, 50
implementing 49
in action 52-54
introspection, in action 50-52

reflectType function 52
repeated notifications

preventing 256
result

function, returning as 14, 15
Result class 68
result variable 68
retry property 223
right-to-left (RTL) 191
rows.isEmpty property 243

S
scopes

closures, using 13
functions, using 13

search methods, Stream class
about 105

firstWhere 105
lastWhere 105
singleWhere 105

search over collection 128, 129
Secure attribute 296
Secure Socket Layer. See SSL
security

best practices 312
select method 190
self argument 92
server

securing 294, 295
Server Push 220
Server-Sent Events. See SSE
Session storage 240
Set class

about 142, 143, 147
HashSet class 143, 144
LinkedHashSet class 144
SplayTreeSet class 145

setDragImage method 260
setItem function 240
ShoppingController class 234
ShoppingModel class 234
shortcut, jQuery

creating 169
show event 255
shuffle method 139
single property 127
single-subscription stream

about 103
versus broadcast stream 103

single thread 96
singleton design pattern

about 66-68
disadvantages 67

singleWhere method 129
Sink class 117
Sink interface 117
skip method 131
skipWhile method 131
software development

modularity, using 8
sort method 125
SplayTreeMap class 150, 151
SplayTreeSet class 145

[324]

SSE
about 220, 221
advantages 220
disadvantages 220
implementing 221-225
supported browsers 220
using 220

SSL 289, 290
standalone HTTP communication

via dart:io library 206-208
via http package 208, 209

startAngel parameter 285
startEngine method 28
startPoint property 282
Stream class

about 104
URL 105

StreamConsumer interface 117
StreamController

Canceled state 111-113
Closed state 111-113
Initial state 111-113
new stream, creating from 110-115
Subscribed state 111-113

StreamController method 281
stream framework API

about 104
EventSink interface 117
new stream, creating from Future

class 106, 107
new stream, creating from Iterable

class 107
new stream, creating from

StreamController 110-115
new stream, creating from transformation

pipe 108-110
new stream, creating with periodically

generated events 108
search methods, Stream class 105
Sink interface 117
Stream class 104
StreamConsumer interface 117
stream, creating 106
StreamSink class, using 117

streams, transforming with
StreamTransformer class 118, 119

StreamSubscription class, using 115, 116
subset methods, Stream class 105
traverse streams, with

StreamIterator 120, 121
validation methods, Stream class 104

StreamIterator
traverse streams, using with 120, 121

stream property 111
streams

creating 106
transforming, with StreamTransformer

class 118-120
using 101, 102

StreamSink class
conditions 117
using 117

StreamSubscription class
using 115, 116

StreamTransformer class
streams, transforming with 118-120

StreamView
used, for minimizing access to Stream class

members 116
stroke method 283
strokeRect method 284
Subscribed state 111-113
subset methods, Stream class

about 105
skip 105
skipWhere 105
take 105
takeWhere 105
where 105

sync attribute 111
synchrony code

versus asynchrony code 80
sync version

creating, of Future class 83
syntactic sugar

about 73
cascade method invocation 75, 76
method call 74, 75

system notifications 252

[325]

T
take method 130
takeWhile method 130
this keyword 166-168
Timer class

and Future class 83
timer function 74
TLS

about 289, 290
benefits 290
certificate 290-293

toDataUrl method 288
toList method 131
Tool class 281, 282
ToolSelector widget 280, 281
toSet method 131
toUTCString function 232
transformation pipe

new stream, creating from 108-110
transformer function 118
translated messages

using 198, 199
transmission control protocol (TCP) 202
Transport Layer Security. See TLS
traverse streams

used, with StreamIterator 120, 121
type annotations

about 17
need for 17
using 17

type conversion
about 160
collect conversion 163, 164
direct type conversion 160-162
proxy type conversion 162, 163

U
union method 142
unmodifiable collections

about 151
unmodifiable list 151, 152
unmodifiable map 152

useConsoleLog static variable 66

User Interface (UI)
about 80, 182
versus executable 182

V
validation methods, Stream class

about 104
any 104
contains 105
every 105

value
creating, with Future class 84

variables
functions, naming with 13
initializing 71-73
versus accessor methods 23

version, jQuery
obtaining 172, 173

Voice over IP (VoIP) 290

W
watchPosition method 270
web application

internationalizing 191-195
web browser HTTP communication

via dart:html library 209-211
via http package 212, 213

web notification API 252
Web security

about 289
SSL 289, 290
TLS 289, 290
TLS certificate 290-293

web server
creating 204, 205

WebSocket
about 225
advantages 226
creating 227-229
disadvantages 226
using 227

Web SQL 242-245

[326]

Web Storage
about 239
Local storage 240-242
Session storage 240

well-designed classes
creating 22, 23
features 21

well-designed methods 28, 29
whenComplete method 83
where method 131
widgets 276
window.sessionStorage attribute 240
withLocale method 183
World Wide Web Consortium (W3C) 246
World Wide Web (WWW) 203
writeln method 223

X
XMLHttpRequest class 203, 213

Z
zone argument 92
zone execution

tracking 94, 95
zone-local variables 89
zones

about 85, 86
example 87
execution, tracking 94, 95
interaction between 93
nesting 87, 88
specifications 91-93
values 88-90

Thank you for buying
Mastering Dart

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Dart
ISBN: 978-1-84969-742-2 Paperback: 388 pages

Learn how to program applications with Dart 1.0,
a language specifically designed to produce
better-structured, high-performance applications

1. Develop apps for the Web using Dart
and HTML5.

2. Build powerful HTML5 forms, validate
and store data in local storage, and use web
components to build your own user interface.

3. Make games by drawing and integrate audio
and video in the browser.

HTML5 for Flash Developers
ISBN: 978-1-84969-332-5 Paperback: 322 pages

Leverage your Flash skill set and learn to create
content using a wide range of HTML5 web
development features

1. Discover and utilize the wide range of
technologies available in the HTML5 stack.

2. Develop HTML5 applications with external
libraries and frameworks.

3. Prepare and integrate external HTML5
compliant media assets into your projects.

Please check www.PacktPub.com for information on our titles

Easy Web Development with
WaveMaker
ISBN: 978-1-78216-178-3 Paperback: 306 pages

A practical, hands-on guide for amateur developers
to design, develop, and deploy web and mobile
applications using WaveMaker

1. Develop and deploy custom, data-driven,
and rich AJAX web and mobile applications
with minimal coding using the drag-and-drop
WaveMaker Studio.

2. Use the graphical WaveMaker Studio IDE to
quickly assemble web applications and learn to
understand the project's artifacts.

3. Customize the generated application and
enhance it further with custom services and
classes using Java and JavaScript.

HTML5 Web Application
Development By Example
Beginner's Guide
ISBN: 978-1-84969-594-7 Paperback: 276 pages

Learn how to build rich, interactive web applications
from the ground up using HTML5, CSS3, and jQuery

1. Packed with example applications that show
you how to create rich, interactive applications
and games.

2. Shows you how to use the most popular and
widely supported features of HTML5.

3. Full of tips and tricks for writing more efficient
and robust code while avoiding some of the
pitfalls inherent to JavaScript.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Beyond Dart's
Basics
	Modularity and a namespace
	Modularity in software development
	Modularity in Dart
	Libraries

	Functions and closures in different scopes
	Naming functions with a variable
	Passing a function as an argument to another function
	Returning a function as a result of another function
	Storing a function in data structures
	Closures

	Classes and mixins
	Types
	Classes
	Inheritance
	Interface
	Mixins
	Well-designed classes
	To be private or not
	Variables versus the accessor methods
	Inheritance versus composition

	Methods and operators
	Checking the values of the parameters before using them
	Well-designed methods

	Summary

	Chapter 2
: Advanced Techniques
and Reflection
	Generics
	Raw types
	Using generics
	Generic types
	Generic functions

	Errors versus exceptions
	Errors
	Exceptions

	Annotations
	Built-in annotations
	Deprecated
	Override
	Proxy

	Custom annotations

	Reflection
	Introspection in action
	Reflection in action

	Summary

	Chapter 3
: Object Creation
	Creating an object
	A generative constructor
	A constructor with optional parameters
	A named constructor
	A redirecting constructor
	A private constructor
	A factory constructor
	The factory method design pattern
	The singleton design pattern

	A constant constructor
	Initializing variables
	Syntactic sugar
	Method call
	Cascade method invocation

	Summary

	Chapter 4
: Asynchronous Programming
	Call-stack architectures versus
event-driven architectures
	Call-stack architectures
	Event-driven architectures
	The Dart VM execution model
	Synchronous versus Asynchronous code

	Future
	Future and Timer
	Future and Microtask
	Sync the Future class
	Future with a value
	Future with an error
	Delaying the Future class

	Zones
	Simple zone example
	Zone nesting
	Zone values
	Zone specifications
	Interaction between zones
	Tracking the zone execution

	Isolates
	Summary

	Chapter 5
: The Stream Framework
	Why you should use streams
	Single-subscription streams versus broadcast streams
	A single-subscription stream
	A broadcast stream

	An overview of the stream framework API
	The Stream class
	The validation methods of the Stream class
	The search methods of the Stream class
	The subset methods of the Stream class
	Creating a stream
	A new stream from the Future class
	A new stream from the Iterable class
	A new stream with periodically generated events
	A new stream from the transformation pipe
	A new stream from StreamController
	What does the StreamSubscription class do?
	Minimizing access to the Stream class members using StreamView
	The Sink and EventSink interfaces
	Importance of the StreamConsumer interface
	What does the StreamSink class do?
	Transforming streams with the StreamTransformer class
	Traverse streams with StreamIterator

	Summary

	Chapter 6
: The Collection Framework
	A Dart collection framework
	Ordering of elements
	The Comparable interface
	The Comparator type

	Collections and generics
	The collection class hierarchy
	The Iterable interface
	Properties of the Iterable collection
	Checking the items of a collection on a condition
	The iterate over collection
	The search over collection
	Creating a new collection
	Reducing a collection
	Converting a collection
	Generating a collection
	The Lazy Iterable

	The Iterable interface
	BidirectionalIterator
	The collection classes
	List
	LinkedList
	Set
	HashSet
	LinkedHashSet
	SplayTreeSet

	Queue
	Map
	HashMap
	LinkedHashMap
	SplayTreeMap

	Unmodifiable collections
	The unmodifiable list
	The unmodifiable map

	Choosing the right collection
	Summary

	Chapter 7
: Dart and JavaScript Interoperation
	Interoperation at a glance
	The dart:js library
	JsObject
	JsFunction
	JsArray

	Type conversion
	Direct type conversion
	Proxy type conversion
	Collection conversion

	JsObject and instantiation
	JsFunction and the this keyword
	Dart with jQuery
	How to create a shortcut to jQuery
	Why does JProxy need a method call?
	How does JProxy invoke jQuery?
	An example project
	How to get the jQuery version
	How to perform actions in jQuery
	How to use effects in jQuery
	What is the impact on performance?

	Summary

	Chapter 8
: Internalization and Localization
	The key principles
	Executable code versus User Interface
	Numbers and dates
	Messages
	Measuring units and currencies
	Text input and layout
	Formatting date and time

	The Intl library
	Changing a locale
	Formatting numbers
	Formatting dates
	Internalizing messages
	Adding parentheses
	Adding gender
	Adding select
	Creating complex message translations
	Bidirectional formatting

	Internationalizing your web application
	Extracting messages
	Using Google Translator Toolkit
	Using translated messages
	Summary

	Chapter 9
: Client-to-server Communication
	Communication at a glance
	The Internet protocol stack

	Hypertext Transfer Protocol
	Web server
	Standalone HTTP communication via the dart:io library
	Standalone HTTP communication via the http package
	Web browser HTTP communication via the dart:html library
	Web browser HTTP communication via the http package

	AJAX polling request
	AJAX long polling request
	Server-Sent Events

	WebSocket
	Summary

	Chapter 10
: Advanced Storage
	Cookies
	Web Storage
	The Session storage
	The Local storage

	Web SQL
	IndexedDB
	Summary

	Chapter 11
: Supporting Other
HTML5 Features
	The notification APIs
	When to notify
	Preventing repeated notifications

	The native drag-and-drop APIs
	Draggable content
	The drag-and-drop events
	Dragging data
	Dragging the feedback image
	Dragging effects
	The drop target
	Finishing a drop
	Finishing a drag

	The geolocation APIs
	Determining the current location
	Geolocation on maps
	Tracking the present location

	Canvas
	Example – the canvas editor
	Beginning with HTML
	Moving to the main function
	The CanvasWidget component
	The ToolSelector widget
	The ColorSelector widget
	The Tool class
	The Pen tool
	The Line tool
	The Rectangle tool
	The Oval tool
	How to clear the context
	How to preview the context

	Summary

	Chapter 12
: Security Aspects
	Web security
	Transport Layer Security and Secure Socket Layer at a glance
	The TLS certificate

	Securing a server
	Securing a client
	Attributes of cookies
	HTTP Strict Transport Security
	Content Security Policy
	Cross Origin Resource Sharing versus JSON with padding
	CAPTCHA

	Security best practices
	Summary

	Index

