
dart

#dart

Table of Contents

About 1

Chapter 1: Getting started with dart 2

Remarks 2

Links 2

Documentation 2

FAQ 3

Versions 3

Examples 5

Installation or Setup 5

Automated installation and updates 5

Manual install 5

Hello, World! 5

Http Request 6

Html 6

Dart 6

Example 6

Getters and Setters 6

Chapter 2: Asynchronous Programming 8

Examples 8

Returning a Future using a Completer 8

Async and Await 8

Converting callbacks to Futures 9

Chapter 3: Classes 10

Examples 10

Creating a class 10

Members 10

Constructors 11

Chapter 4: Collections 13

Examples 13

Creating a new List 13

Creating a new Set 13

Creating a new Map 13

Map each element in the collection. 14

Filter a list 14

Chapter 5: Comments 16

Syntax 16

Remarks 16

Examples 16

End of Line Comment 16

Multi-Line Comment 16

Documentation using Dartdoc 16

Chapter 6: Control Flow 18

Examples 18

If Else 18

While Loop 18

For Loop 19

Switch Case 19

Chapter 7: Converting Data 21

Examples 21

JSON 21

Chapter 8: Dart-JavaScript interoperability 22

Introduction 22

Examples 22

Calling a global function 22

Wrapping JavaScript classes/namespaces 22

Passing object literals 23

Chapter 9: Date and time 24

Examples 24

Basic usage of DateTime 24

Chapter 10: Enums 25

Examples 25

Basic usage 25

Chapter 11: Exceptions 26

Remarks 26

Examples 26

Custom exception 26

Chapter 12: Functions 27

Remarks 27

Examples 27

Functions with named parameters 27

Function scoping 27

Chapter 13: Libraries 29

Remarks 29

Examples 29

Using libraries 29

Libraries and visibility 29

Specifying a library prefix 30

Importing only part of a library 30

Lazily loading a library 30

Chapter 14: List Filters 32

Introduction 32

Examples 32

Filtering a list of integers 32

Chapter 15: Pub 33

Remarks 33

Examples 33

pub build 33

pub serve 33

Chapter 16: Regular Expressions 34

Syntax 34

Parameters 34

Remarks 34

Examples 34

Create and use a Regular Expression 34

Chapter 17: Strings 35

Examples 35

Concatenation and interpolation 35

Valid strings 35

Building from parts 35

Credits 37

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: dart

It is an unofficial and free dart ebook created for educational purposes. All the content is extracted
from Stack Overflow Documentation, which is written by many hardworking individuals at Stack
Overflow. It is neither affiliated with Stack Overflow nor official dart.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/dart
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with dart

Remarks

Dart is an open-source, class-based, optionally-typed programming language for building web
applications--on both the client and server--created by Google. Dart’s design goals are:

Create a structured yet flexible language for web programming.•
Make Dart feel familiar and natural to programmers and thus easy to learn.•
Ensure that Dart delivers high performance on all modern web browsers and environments
ranging from small handheld devices to server-side execution.

•

Dart targets a wide range of development scenarios, from a one-person project without much
structure to a large-scale project needing formal types in the code to state programmer intent.

To support this wide range of projects, Dart provides the following features and tools:

Optional types: this means you can start coding without types and add them later as
needed.

•

Isolates: concurrent programming on server and client•
Easy DOM access: using CSS selectors (the same way that jQuery does it)•
Dart IDE Tools: Dart plugins exist for many commonly used IDEs, Ex: WebStorm.•
Dartium: a build of the Chromium Web Browser with a built-in Dart Virtual Machine•

Links

The Dart Homepage•
Official Dart News & Updates•
The Dartosphere - A collection of recent Dart blog posts•
Dartisans Dartisans community on Google+•
Dart Web Development - Google Groups Page•
Dart Language Misc - Google Groups Page•
DartLang sub-Reddit•

Documentation

Tour of the Dart Language•
Tour of the Dart Libraries•
Dart Code samples•
Dart API Reference•

https://riptutorial.com/ 2

https://i.stack.imgur.com/aO6KF.png
https://webdev.dartlang.org/tools/webstorm
http://www.dartlang.org
http://news.dartlang.org
http://www.dartosphere.org
https://plus.google.com/communities/114566943291919232850
https://groups.google.com/a/dartlang.org/forum/#!forum/web
https://groups.google.com/a/dartlang.org/forum/#!forum/misc
http://www.reddit.com/r/dartlang/
http://www.dartlang.org/docs/dart-up-and-running/contents/ch02.html
http://www.dartlang.org/docs/dart-up-and-running/contents/ch03.html
http://try.dartlang.org/
http://api.dartlang.org/docs/releases/latest/

FAQ

Frequently Asked Questions•

Versions

Version Release Date

1.22.1 2017-02-22

1.22.0 2017-02-14

1.21.1 2016-01-13

1.21.0 2016-12-07

1.20.1 2016-10-13

1.20.0 2016-10-11

1.19.1 2016-09-07

1.19.0 2016-08-26

1.18.1 2016-08-02

1.18.0 2016-07-27

1.17.1 2016-06-10

1.17.0 2016-06-06

1.16.1 2016-05-23

1.16.0 2016-04-26

1.15.0 2016-03-09

1.14.2 2016-02-09

1.14.1 2016-02-03

1.14.0 2016-01-28

1.13.2 2016-01-05

1.13.1 2015-12-17

1.13.0 2015-11-18

https://riptutorial.com/ 3

https://www.dartlang.org/support/faq.html

Version Release Date

1.12.2 2015-10-21

1.12.1 2015-09-08

1.12.0 2015-08-31

1.11.3 2015-08-03

1.11.1 2015-07-02

1.11.0 2015-06-24

1.10.1 2015-05-11

1.10.0 2015-04-24

1.9.3 2015-04-13

1.9.1 2015-03-25

1.8.5 2015-01-13

1.8.3 2014-12-01

1.8.0 2014-11-27

1.7.2 2014-10-14

1.6.0 2014-08-27

1.5.8 2014-07-29

1.5.3 2014-07-03

1.5.2 2014-07-02

1.5.1 2014-06-24

1.4.3 2014-06-16

1.4.2 2014-05-27

1.4.0 2014-05-20

1.3.6 2014-04-30

1.3.3 2014-04-16

1.3.0 2014-04-08

https://riptutorial.com/ 4

Version Release Date

1.2.0 2014-02-25

1.1.3 2014-02-06

1.1.1 2014-01-15

1.0.0.10_r30798 2013-12-02

1.0.0.3_r30188 2013-11-12

0.8.10.10_r30107 2013-11-08

0.8.10.6_r30036 2013-11-07

0.8.10.3_r29803 2013-11-04

Examples

Installation or Setup

The Dart SDK includes everything you need to write and run Dart code: VM, libraries, analyzer,
package manager, doc generator, formatter, debugger, and more. If you are doing web
development, you will also need Dartium.

Automated installation and updates

Installing Dart on Windows•
Installing Dart on Mac•
Installing Dart on Linux•

Manual install

You can also manually install any version of the SDK.

Hello, World!

Create a new file named hello_world.dart with the following content:

void main() {
 print('Hello, World!');
}

In the terminal, navigate to the directory containing the file hello_world.dart and type the following:

dart hello_world.dart

https://riptutorial.com/ 5

https://www.dartlang.org/install/windows
https://www.dartlang.org/install/mac
https://www.dartlang.org/install/linux
https://www.dartlang.org/install/archive

Hit enter to display Hello, World! in the terminal window.

Http Request

Html

Dart

import 'dart:html';

/// Stores the image in [blob] in the [ImageElement] of the given [selector].
void setImage(selector, blob) {
 FileReader reader = new FileReader();
 reader.onLoad.listen((fe) {
 ImageElement image = document.querySelector(selector);
 image.src = reader.result;
 });
 reader.readAsDataUrl(blob);
}

main() async {
 var url = "https://upload.wikimedia.org/wikipedia/commons/2/28/Tortoiseshell_she-cat.JPG";

 // Initiates a request and asynchronously waits for the result.
 var request = await HttpRequest.request(url, responseType: 'blob');
 var blob = request.response;
 setImage("#cats", blob);
}

Example

see Example on https://dartpad.dartlang.org/a0e092983f63a40b0b716989cac6969a

Getters and Setters

void main() {
 var cat = new Cat();

 print("Is cat hungry? ${cat.isHungry}"); // Is cat hungry? true
 print("Is cat cuddly? ${cat.isCuddly}"); // Is cat cuddly? false
 print("Feed cat.");
 cat.isHungry = false;
 print("Is cat hungry? ${cat.isHungry}"); // Is cat hungry? false
 print("Is cat cuddly? ${cat.isCuddly}"); // Is cat cuddly? true
}

class Cat {
 bool _isHungry = true;

 bool get isCuddly => !_isHungry;

https://riptutorial.com/ 6

https://dartpad.dartlang.org/a0e092983f63a40b0b716989cac6969a

 bool get isHungry => _isHungry;
 bool set isHungry(bool hungry) => this._isHungry = hungry;
}

Dart class getters and setters allow APIs to encapsulate object state changes.

See dartpad example here: https://dartpad.dartlang.org/c25af60ca18a192b84af6990f3313233

Read Getting started with dart online: https://riptutorial.com/dart/topic/843/getting-started-with-dart

https://riptutorial.com/ 7

https://www.dartlang.org
https://dartpad.dartlang.org
https://dartpad.dartlang.org/c25af60ca18a192b84af6990f3313233
https://riptutorial.com/dart/topic/843/getting-started-with-dart

Chapter 2: Asynchronous Programming

Examples

Returning a Future using a Completer

Future<Results> costlyQuery() {
 var completer = new Completer();

 database.query("SELECT * FROM giant_table", (results) {
 // when complete
 completer.complete(results);
 }, (error) {
 completer.completeException(error);
 });

 // this returns essentially immediately,
 // before query is finished
 return completer.future;
}

Async and Await

import 'dart:async';

Future main() async {
 var value = await _waitForValue();
 print("Here is the value: $value");
 //since _waitForValue() returns immediately if you un it without await you won't get the
result
 var errorValue = "not finished yet";
 _waitForValue();
 print("Here is the error value: $value");// not finished yet
}

Future<int> _waitForValue() => new Future((){

 var n = 100000000;

 // Do some long process
 for (var i = 1; i <= n; i++) {
 // Print out progress:
 if ([n / 2, n / 4, n / 10, n / 20].contains(i)) {
 print("Not done yet...");
 }

 // Return value when done.
 if (i == n) {
 print("Done.");
 return i;
 }
 }
});

https://riptutorial.com/ 8

See example on Dartpad: https://dartpad.dartlang.org/11d189b51e0f2680793ab3e16e53613c

Converting callbacks to Futures

Dart has a robust async library, with Future, Stream, and more. However, sometimes you might
run into an asynchronous API that uses callbacks instead of Futures. To bridge the gap between
callbacks and Futures, Dart offers the Completer class. You can use a Completer to convert a
callback into a Future.

Completers are great for bridging a callback-based API with a Future-based API. For example,
suppose your database driver doesn't use Futures, but you need to return a Future. Try this code:

 // A good use of a Completer.

 Future doStuff() {
 Completer completer = new Completer();
 runDatabaseQuery(sql, (results) {
 completer.complete(results);
 });
 return completer.future;
 }

If you are using an API that already returns a Future, you do not need to use a Completer.

Read Asynchronous Programming online: https://riptutorial.com/dart/topic/2520/asynchronous-
programming

https://riptutorial.com/ 9

https://dartpad.dartlang.org/11d189b51e0f2680793ab3e16e53613c
https://api.dartlang.org/stable/1.17.1/dart-async/Future-class.html
https://api.dartlang.org/stable/1.17.1/dart-async/Stream-class.html
https://riptutorial.com/dart/topic/2520/asynchronous-programming
https://riptutorial.com/dart/topic/2520/asynchronous-programming

Chapter 3: Classes

Examples

Creating a class

Classes can be created as follow:

class InputField {
 int maxLength;
 String name;
}

The class can be instantiated using the new keyword after which the field values will be null by
default.

var field = new InputField();

Field values can then be accessed:

// this will trigger the setter
field.name = "fieldname";

// this will trigger the getter
print(field.name);

Members

A class can have members.

Instance variables can be declared with/without type annotations, and optionally initialized.
Uninitialised members have the value of null, unless set to another value by the constructor.

class Foo {
 var member1;
 int member2;
 String member3 = "Hello world!";
}

Class variables are declared using the static keyword.

class Bar {
 static var member4;
 static String member5;
 static int member6 = 42;
}

If a method takes no arguments, is fast, returns a value, and doesn't have visible side-effects, then

https://riptutorial.com/ 10

a getter method can be used:

class Foo {
 String get bar {
 var result;
 // ...
 return result;
 }
}

Getters never take arguments, so the parentheses for the (empty) parameter list are omitted both
for declaring getters, as above, and for calling them, like so:

main() {
 var foo = new Foo();
 print(foo.bar); // prints "bar"
}

There are also setter methods, which must take exactly one argument:

class Foo {
 String _bar;

 String get bar => _bar;

 void set bar(String value) {
 _bar = value;
 }
}

The syntax for calling a setter is the same as variable assignment:

main() {
 var foo = new Foo();
 foo.bar = "this is calling a setter method";
}

Constructors

A class constructor must have the same name as its class.

Let's create a constructor for a class Person:

class Person {
 String name;
 String gender;
 int age;

 Person(this.name, this.gender, this.age);
}

The example above is a simpler, better way of defining the constructor than the following way,
which is also possible:

https://riptutorial.com/ 11

class Person {
 String name;
 String gender;
 int age;

 Person(String name, String gender, int age) {
 this.name = name;
 this.gender = gender;
 this.age = age;
 }
}

Now you can create an instance of Person like this:

var alice = new Person('Alice', 'female', 21);

Read Classes online: https://riptutorial.com/dart/topic/1511/classes

https://riptutorial.com/ 12

https://riptutorial.com/dart/topic/1511/classes

Chapter 4: Collections

Examples

Creating a new List

Lists can be created in multiple ways.

The recommended way is to use a List literal:

var vegetables = ['broccoli', 'cabbage'];

The List constructor can be used as well:

var fruits = new List();

If you prefer stronger typing, you can also supply a type parameter in one of the following ways:

var fruits = <String>['apples', 'oranges'];
var fruits = new List<String>();

For creating a small growable list, either empty or containing some known initial values, the literal
form is preferred. There are specialized constructors for other kinds of lists:

var fixedLengthList1 = new List(8);
var fixedLengthList2 = new List.filled(8, "initial text");
var computedValues = new List.generate(8, (n) => "x" * n);
var fromIterable = new List<String>.from(computedValues.getRange(2, 5));

See also the Effective Dart style guide about collections.

Creating a new Set

Sets can be created via the constructor:

var ingredients = new Set();
ingredients.addAll(['gold', 'titanium', 'xenon']);

Creating a new Map

Maps can be created in multiple ways.

Using the constructor, you can create a new map as follow:

var searchTerms = new Map();

https://riptutorial.com/ 13

https://www.dartlang.org/guides/language/effective-dart
https://www.dartlang.org/guides/language/effective-dart/usage#collections

Types for the key and value can also be defined using generics:

var nobleGases = new Map<int, String>();
var nobleGases = <int, String>{};

Maps can otherwise be created using the map literal:

var map = {
 "key1": "value1",
 "key2": "value2"
};

Map each element in the collection.

All collection objects contain a map method that takes a Function as an argument, which must take
a single argument. This returns an Iterable backed by the collection. When the Iterable is
iterated, each step calls the function with a new element of the collection, and the result of the call
becomes the next element of the iteration.

You can turn an Iterable into a collection again by using the Iterable.toSet() or Iterable.toList()
methods, or by using a collection constructor which takes an iterable like Queue.from or List.from.

Example:

main() {
 var cats = [
 'Abyssinian',
 'Scottish Fold',
 'Domestic Shorthair'
];

 print(cats); // [Abyssinian, Scottish Fold, Domestic Shorthair]

 var catsInReverse =
 cats.map((String cat) {
 return new String.fromCharCodes(cat.codeUnits.reversed);
 })
 .toList(); // [nainissybA, dloF hsittocS, riahtrohS citsemoD]

 print(catsInReverse);
}

See dartpad example here: https://dartpad.dartlang.org/a18367ff767f172b34ff03c7008a6fa1

Filter a list

Dart allows to easily filter a list using where.

var fruits = ['apples', 'oranges', 'bananas'];
fruits.where((f) => f.startsWith('a')).toList(); //apples

Of course you can use some AND or OR operators in your where clause.

https://riptutorial.com/ 14

https://dartpad.dartlang.org/a18367ff767f172b34ff03c7008a6fa1

Read Collections online: https://riptutorial.com/dart/topic/859/collections

https://riptutorial.com/ 15

https://riptutorial.com/dart/topic/859/collections

Chapter 5: Comments

Syntax

// Single-line comment•
/* Multi-line/In-line comment */•
/// Dartdoc comment•

Remarks

It is good practice to add comments to your code to explain why something is done or to explain
what something does. This helps any future readers of your code to more easily understand your
code.

Related topic(s) not on StackOverflow:

Effective Dart: Documentation•

Examples

End of Line Comment

Everything to the right of // in the same line is commented.

int i = 0; // Commented out text

Multi-Line Comment

Everything between /* and */ is commented.

void main() {
 for (int i = 0; i < 5; i++) {
 /* This is commented, and
 will not affect code */
 print('hello ${i + 1}');
 }
}

Documentation using Dartdoc

Using a doc comment instead of a regular comment enables dartdoc to find it and generate
documentation for it.

/// The number of characters in this chunk when unsplit.
int get length => ...

https://riptutorial.com/ 16

https://www.dartlang.org/guides/language/effective-dart/documentation
https://github.com/dart-lang/dartdoc

You are allowed to use most markdown formatting in your doc comments and dartdoc will process
it accordingly using the markdown package.

/// This is a paragraph of regular text.
///
/// This sentence has *two* _emphasized_ words (i.e. italics) and **two**
/// __strong__ ones (bold).
///
/// A blank line creates another separate paragraph. It has some `inline code`
/// delimited using backticks.
///
/// * Unordered lists.
/// * Look like ASCII bullet lists.
/// * You can also use `-` or `+`.
///
/// Links can be:
///
/// * http://www.just-a-bare-url.com
/// * [with the URL inline](http://google.com)
/// * [or separated out][ref link]
///
/// [ref link]: http://google.com
///
/// # A Header
///
/// ## A subheader

Read Comments online: https://riptutorial.com/dart/topic/2436/comments

https://riptutorial.com/ 17

https://daringfireball.net/projects/markdown/
https://pub.dartlang.org/packages/markdown
https://riptutorial.com/dart/topic/2436/comments

Chapter 6: Control Flow

Examples

If Else

Dart has If Else:

if (year >= 2001) {
 print('21st century');
} else if (year >= 1901) {
 print('20th century');
} else {
 print('We Must Go Back!');
}

Dart also has a ternary if operator:

var foo = true;
print(foo ? 'Foo' : 'Bar'); // Displays "Foo".

While Loop

While loops and do while loops are allowed in Dart:

while(peopleAreClapping()) {
 playSongs();
}

and:

do {
 processRequest();
} while(stillRunning());

Loops can be terminated using a break:

while (true) {
 if (shutDownRequested()) break;
 processIncomingRequests();
}

You can skip iterations in a loop using continue:

for (var i = 0; i < bigNumber; i++) {
 if (i.isEven){
 continue;
 }
 doSomething();

https://riptutorial.com/ 18

}

For Loop

Two types of for loops are allowed:

for (int month = 1; month <= 12; month++) {
 print(month);
}

and:

for (var object in flybyObjects) {
 print(object);
}

The for-in loop is convenient when simply iterating over an Iterable collection. There is also a
forEach method that you can call on Iterable objects that behaves like for-in:

flybyObjects.forEach((object) => print(object));

or, more concisely:

flybyObjects.forEach(print);

Switch Case

Dart has a switch case which can be used instead of long if-else statements:

var command = 'OPEN';

switch (command) {
 case 'CLOSED':
 executeClosed();
 break;
 case 'OPEN':
 executeOpen();
 break;
 case 'APPROVED':
 executeApproved();
 break;
 case 'UNSURE':
 // missing break statement means this case will fall through
 // to the next statement, in this case the default case
 default:
 executeUnknown();
}

You can only compare integer, string, or compile-time constants. The compared objects must be
instances of the same class (and not of any of its subtypes), and the class must not override ==.

https://riptutorial.com/ 19

https://api.dartlang.org/stable/1.17.1/dart-core/Iterable/forEach.html

One surprising aspect of switch in Dart is that non-empty case clauses must end with break, or
less commonly, continue, throw, or return. That is, non-empty case clauses cannot fall through.
You must explicitly end a non-empty case clause, usually with a break. You will get a static
warning if you omit break, continue, throw, or return, and the code will error at that location at
runtime.

var command = 'OPEN';
switch (command) {
 case 'OPEN':
 executeOpen();
 // ERROR: Missing break causes an exception to be thrown!!

 case 'CLOSED': // Empty case falls through
 case 'LOCKED':
 executeClosed();
 break;
}

If you want fall-through in a non-empty case, you can use continue and a label:

 var command = 'OPEN';
 switch (command) {
 case 'OPEN':
 executeOpen();
 continue locked;
locked: case 'LOCKED':
 executeClosed();
 break;
 }

Read Control Flow online: https://riptutorial.com/dart/topic/923/control-flow

https://riptutorial.com/ 20

https://riptutorial.com/dart/topic/923/control-flow

Chapter 7: Converting Data

Examples

JSON

 import 'dart:convert';

 void main() {
 var jsonString = """
 {
 "cats": {
 "abysinnian": {
 "origin": "Burma",
 "behavior": "playful"
 }
 }
 }
 """;

 var obj = JSON.decode(jsonString);

 print(obj['cats']['abysinnian']['behavior']); // playful
 }

See example on dartpad: https://dartpad.dartlang.org/7d5958cf10e611b36326f27b062108fe

Read Converting Data online: https://riptutorial.com/dart/topic/2778/converting-data

https://riptutorial.com/ 21

https://dartpad.dartlang.org/7d5958cf10e611b36326f27b062108fe
https://riptutorial.com/dart/topic/2778/converting-data

Chapter 8: Dart-JavaScript interoperability

Introduction

Dart-JavaScript interoperability lets us run JavaScript code from our Dart programs.

The interoperability is achieved by using the js library to create Dart stubs. These stubs describe
the interface we'd like to have with the underlying JavaScript code. At runtime calling the Dart stub
will invoke the JavaScript code.

Examples

Calling a global function

Suppose we'd like to invoke the JavaScript function JSON.stringify which receives an object,
encodes it into a JSON string and returns it.

All we'd have to do is write the function signature, mark it as external and annotate it with the @JS
annotation:

 @JS("JSON.stringify")
external String stringify(obj);

The @JS annotation will be used from here on out to mark Dart classes that we'd like to use in
JavaScript as well.

Wrapping JavaScript classes/namespaces

Suppose we'd like to wrap the Google Maps JavaScript API google.maps:

@JS('google.maps')
library maps;

import "package:js/js.dart";

@JS()
class Map {
 external Map(Location location);
 external Location getLocation();
}

We now have the Map Dart class which corresponds to the JavaScript google.maps.Map class.

Running new Map(someLocation) in Dart will invoke new google.maps.Map(location) in JavaScript.

Note that you don't have to name your Dart class the same as the JavaScript class:

@JS("LatLng")

https://riptutorial.com/ 22

https://pub.dartlang.org/packages/js

class Location {
 external Location(num lat, num lng);
}

The Location Dart class corresponds to the google.maps.LatLng class.

Using inconsistent names is discouraged as they can create confusion.

Passing object literals

It's common practice in JavaScript to pass object literals to functions:

// JavaScript
printOptions({responsive: true});
Unfortunately we cannot pass Dart Map objects to JavaScript in these cases.

What we have to do is create a Dart object that represents the object literal and contains all of its
fields:

// Dart
@JS()
@anonymous
class Options {
 external bool get responsive;

 external factory Options({bool responsive});
}

Note that the Options Dart class doesn't correspond to any JavaScript class. As such we must
mark it with the @anonymous annotation.

Now we can create a stub for the original printOptions function and call it with a new Options
object:

// Dart
@JS()
external printOptions(Options options);

printOptions(new Options(responsive: true));

Read Dart-JavaScript interoperability online: https://riptutorial.com/dart/topic/9240/dart-javascript-
interoperability

https://riptutorial.com/ 23

https://riptutorial.com/dart/topic/9240/dart-javascript-interoperability
https://riptutorial.com/dart/topic/9240/dart-javascript-interoperability

Chapter 9: Date and time

Examples

Basic usage of DateTime

DateTime now = new DateTime.now();
DateTime berlinWallFell = new DateTime(1989, 11, 9);
DateTime moonLanding = DateTime.parse("1969-07-20 20:18:00"); // 8:18pm

You can find more in depth information here.

Read Date and time online: https://riptutorial.com/dart/topic/3322/date-and-time

https://riptutorial.com/ 24

https://api.dartlang.org/stable/1.17.1/dart-core/DateTime-class.html
https://riptutorial.com/dart/topic/3322/date-and-time

Chapter 10: Enums

Examples

Basic usage

enum Fruit {
 apple, banana
}

main() {
 var a = Fruit.apple;
 switch (a) {
 case Fruit.apple:
 print('it is an apple');
 break;
 }

 // get all the values of the enums
 for (List<Fruit> value in Fruit.values) {
 print(value);
 }

 // get the second value
 print(Fruit.values[1]);
}

Read Enums online: https://riptutorial.com/dart/topic/5107/enums

https://riptutorial.com/ 25

https://riptutorial.com/dart/topic/5107/enums

Chapter 11: Exceptions

Remarks

Dart code can throw and catch exceptions. Exceptions are errors indicating that something
unexpected happened. If the exception isn’t caught, the isolate that raised the exception is
suspended, and typically the isolate and its program are terminated.

In contrast to Java, all of Dart’s exceptions are unchecked exceptions. Methods do not declare
which exceptions they might throw, and you are not required to catch any exceptions.

Dart provides Exception and Error types, as well as numerous predefined subtypes. You can, of
course, define your own exceptions. However, Dart programs can throw any non-null object—not
just Exception and Error objects—as an exception.

Examples

Custom exception

class CustomException implements Exception {
 String cause;
 CustomException(this.cause);
}

void main() {
 try {
 throwException();
 } on CustomException {
 print("custom exception is been obtained");
 }
}

throwException() {
 throw new CustomException('This is my first custom exception');
}

Read Exceptions online: https://riptutorial.com/dart/topic/3334/exceptions

https://riptutorial.com/ 26

https://api.dartlang.org/stable/dart-core/Exception-class.html
https://api.dartlang.org/stable/dart-core/Error-class.html
https://riptutorial.com/dart/topic/3334/exceptions

Chapter 12: Functions

Remarks

Dart is a true object-oriented language, so even functions are objects and have a type, Function.
This means that functions can be assigned to variables or passed as arguments to other functions.
You can also call an instance of a Dart class as if it were a function.

Examples

Functions with named parameters

When defining a function, use {param1, param2, …} to specify named parameters:

void enableFlags({bool bold, bool hidden}) {
 // ...
}

When calling a function, you can specify named parameters using paramName: value

enableFlags(bold: true, hidden: false);

Function scoping

Dart functions may also be declared anonymously or nested. For example, to create a nested
function, just open a new function block within an existing function block

void outerFunction() {

 bool innerFunction() {
 /// Does stuff
 }
}

The function innerFunction may now be used inside, and only inside, outerFunction. No other other
functions has access to it.

Functions in Dart may also be declared anonymously, which is commonly used as function
arguments. A common example is the sort method of List object. This method takes an optional
argument with the following signature:

int compare(E a, E b)

The documentation states that the function must return 0 if the a and b are equal. It returns -1 if a <
b and 1 if a > b.

https://riptutorial.com/ 27

Knowing this, we can sort a list of integers using an anonymous function.

List<int> numbers = [4,1,3,5,7];

numbers.sort((int a, int b) {
 if(a == b) {
 return 0;
 } else if (a < b) {
 return -1;
 } else {
 return 1;
 }
});

Anonymous function may also be bound to identifiers like so:

Function intSorter = (int a, int b) {
 if(a == b) {
 return 0;
 } else if (a < b) {
 return -1;
 } else {
 return 1;
 }
}

and used as an ordinary variable.

numbers.sort(intSorter);

Read Functions online: https://riptutorial.com/dart/topic/2965/functions

https://riptutorial.com/ 28

https://riptutorial.com/dart/topic/2965/functions

Chapter 13: Libraries

Remarks

The import and library directives can help you create a modular and shareable code base. Every
Dart app is a library, even if it doesn’t use a library directive. Libraries can be distributed using
packages. See Pub Package and Asset Manager for information about pub, a package manager
included in the SDK.

Examples

Using libraries

Use import to specify how a namespace from one library is used in the scope of another library.

import 'dart:html';

The only required argument to import is a URI specifying the library. For built-in libraries, the URI
has the special dart: scheme. For other libraries, you can use a file system path or the package:
scheme. The package: scheme specifies libraries provided by a package manager such as the pub
tool. For example:

import 'dart:io';
import 'package:mylib/mylib.dart';
import 'package:utils/utils.dart';

Libraries and visibility

Unlike Java, Dart doesn’t have the keywords public, protected, and private. If an identifier starts
with an underscore _, it’s private to its library.

If you for example have class A in a separate library file (eg, other.dart), such as:

library other;

class A {
 int _private = 0;

 testA() {
 print('int value: $_private'); // 0
 _private = 5;
 print('int value: $_private'); // 5
 }
}

and then import it into your main app, such as:

https://riptutorial.com/ 29

https://www.dartlang.org/tools/pub

import 'other.dart';

void main() {
 var b = new B();
 b.testB();
}

class B extends A {
 String _private;

 testB() {
 _private = 'Hello';
 print('String value: $_private'); // Hello
 testA();
 print('String value: $_private'); // Hello
 }
}

You get the expected output:

String value: Hello
int value: 0
int value: 5
String value: Hello

Specifying a library prefix

If you import two libraries that have conflicting identifiers, then you can specify a prefix for one or
both libraries. For example, if library1 and library2 both have an Element class, then you might
have code like this:

import 'package:lib1/lib1.dart';
import 'package:lib2/lib2.dart' as lib2;
// ...
var element1 = new Element(); // Uses Element from lib1.
var element2 =
 new lib2.Element(); // Uses Element from lib2.

Importing only part of a library

If you want to use only part of a library, you can selectively import the library. For example:

// Import only foo and bar.
import 'package:lib1/lib1.dart' show foo, bar;

// Import all names EXCEPT foo.
import 'package:lib2/lib2.dart' hide foo;

Lazily loading a library

Deferred loading (also called lazy loading) allows an application to load a library on demand, if and
when it’s needed. To lazily load a library, you must first import it using deferred as.

https://riptutorial.com/ 30

import 'package:deferred/hello.dart' deferred as hello;

When you need the library, invoke loadLibrary() using the library’s identifier.

greet() async {
 await hello.loadLibrary();
 hello.printGreeting();
}

In the preceding code, the await keyword pauses execution until the library is loaded. For more
information about async and await, see more examples here asynchrony support or visit the
asynchrony support part of the language tour.

Read Libraries online: https://riptutorial.com/dart/topic/3332/libraries

https://riptutorial.com/ 31

http://www.riptutorial.com/dart/topic/2520/asynchronous-programming
https://www.dartlang.org/guides/language/language-tour#asynchrony
https://riptutorial.com/dart/topic/3332/libraries

Chapter 14: List Filters

Introduction

Dart filters lists through the List.where and List.retainWhere methods. The where function takes one
argument: a boolean function that is applied to each element of the list. If the function evaluates to
true then the list element is retained; if the function evaluates to false, the element is removed.

Calling theList.retainWhere(foo) is practically equivalent to setting theList = theList.where(foo).

Examples

Filtering a list of integers

[-1, 0, 2, 4, 7, 9].where((x) => x > 2) --> [4, 7, 9]

Read List Filters online: https://riptutorial.com/dart/topic/10948/list-filters

https://riptutorial.com/ 32

https://riptutorial.com/dart/topic/10948/list-filters

Chapter 15: Pub

Remarks

When you install the Dart SDK, one of the tools that you get is pub. The pub tool provides
commands for a variety of purposes. One command installs packages, another starts up an HTTP
server for testing, another prepares your app for deployment, and another publishes your package
to pub.dartlang.org. You can access the pub commands either through an IDE, such as
WebStorm, or at the command line.

For an overview of these commands, see Pub Commands.

Examples

pub build

Use pub build when you’re ready to deploy your web app. When you run pub build, it generates
the assets for the current package and all of its dependencies, putting them into new directory
named build.

To use pub build, just run it in your package’s root directory. For example:

$ cd ~/dart/helloworld
$ pub build
Building helloworld......
Built 5 files!

pub serve

This command starts up a development server, or dev server, for your Dart web app. The dev
server is an HTTP server on localhost that serves up your web app’s assets.

Start the dev server from the directory that contains your web app’s pubspec.yaml file:

$ cd ~/dart/helloworld
$ pub serve
Serving helloworld on http://localhost:8080

Read Pub online: https://riptutorial.com/dart/topic/3335/pub

https://riptutorial.com/ 33

https://pub.dartlang.org/
https://www.dartlang.org/tools/pub/cmd
https://www.dartlang.org/tools/pub/glossary#asset
https://www.dartlang.org/tools/pub/glossary#asset
https://riptutorial.com/dart/topic/3335/pub

Chapter 16: Regular Expressions

Syntax

var regExp = RegExp(r'^(.*)$', multiLine: true, caseSensitive: false);•

Parameters

Parameter Details

String source The regular expression as a String

{bool multiline}
Whether this is a multiline regular expression. (matches ^ and $ at the
beginning and end of each line individually not the whole String)

{bool
caseSensitive} If the expression is case sensitive

Remarks

Dart regular expressions have the same syntax and semantics as JavaScript regular expressions.
See http://ecma-international.org/ecma-262/5.1/#sec-15.10 for the specification of JavaScript
regular expressions.

This means that any JavaScript resource you find about Regular Expressions online applies to
dart.

Examples

Create and use a Regular Expression

var regExp = new RegExp(r"(\w+)");
var str = "Parse my string";
Iterable<Match> matches = regExp.allMatches(str);

It's a good idea to use "raw strings" (prefix with r) when writing regular expressions so you can
use unescaped backslashes in your expression.

Read Regular Expressions online: https://riptutorial.com/dart/topic/3624/regular-expressions

https://riptutorial.com/ 34

http://ecma-international.org/ecma-262/5.1/#sec-15.10
https://riptutorial.com/dart/topic/3624/regular-expressions

Chapter 17: Strings

Examples

Concatenation and interpolation

You can use the plus (+) operator to concatenate strings:

'Dart ' + 'is ' + 'fun!'; // 'Dart is fun!'

You can also use adjacent string literals for concatenation:

'Dart ' 'is ' 'fun!'; // 'Dart is fun!'

You can use ${} to interpolate the value of Dart expressions within strings. The curly braces can
be omitted when evaluating identifiers:

var text = 'dartlang';
'$text has ${text.length} letters'; // 'dartlang has 8 letters'

Valid strings

A string can be either single or multiline. Single line strings are written using matching single or
double quotes, and multiline strings are written using triple quotes. The following are all valid Dart
strings:

'Single quotes';
"Double quotes";
'Double quotes in "single" quotes';
"Single quotes in 'double' quotes";

'''A
multiline
string''';

"""
Another
multiline
string""";

Building from parts

Programmatically generating a String is best accomplished with a StringBuffer. A StringBuffer
doesn't generate a new String object until toString() is called.

var sb = new StringBuffer();

sb.write("Use a StringBuffer");

https://riptutorial.com/ 35

http://api.dartlang.org/docs/releases/latest/dart_core/StringBuffer.html

sb.writeAll(["for ", "efficient ", "string ", "creation "]);
sb.write("if you are ")
sb.write("building lots of strings");

// or you can use method cascades:

sb
 ..write("Use a StringBuffer")
 ..writeAll(["for ", "efficient ", "string ", "creation "])
 ..write("if you are ")
 ..write("building lots of strings");

var fullString = sb.toString();

print(fullString);
// Use a StringBufferfor efficient string creation if you are building lots of strings

sb.clear(); // all gone!

Read Strings online: https://riptutorial.com/dart/topic/5003/strings

https://riptutorial.com/ 36

https://riptutorial.com/dart/topic/5003/strings

Credits

S.
No

Chapters Contributors

1
Getting started with
dart

4444, Challe, Community, Damon, Florian Loitsch, Gomiero,
Kleak, losnake, martin, Raph, Timothy C. Quinn

2
Asynchronous
Programming

Challe, Damon, Ray Hulha, Zied Hamdi

3 Classes Ganymede, Hoylen, Jan Vladimir Mostert, Raph

4 Collections
Alexi Coard, Damon, Jan Vladimir Mostert, Kleak, lrn, Pacane,
Raph

5 Comments Challe

6 Control Flow Ganymede, Jan Vladimir Mostert, Pacane, Raph

7 Converting Data Damon

8
Dart-JavaScript
interoperability

Meshulam Silk

9 Date and time Challe

10 Enums Challe

11 Exceptions Challe

12 Functions Jan Vladimir Mostert, Kim Rostgaard Christensen

13 Libraries Challe, Ganymede

14 List Filters jxmorris12

15 Pub Challe

16 Regular Expressions enyo

17 Strings Challe

https://riptutorial.com/ 37

https://riptutorial.com/contributor/1464444/4444
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1204142/damon
https://riptutorial.com/contributor/997251/florian-loitsch
https://riptutorial.com/contributor/3134655/gomiero
https://riptutorial.com/contributor/5246559/kleak
https://riptutorial.com/contributor/7444162/losnake
https://riptutorial.com/contributor/310726/martin
https://riptutorial.com/contributor/4413773/raph
https://riptutorial.com/contributor/286807/timothy-c--quinn
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/1204142/damon
https://riptutorial.com/contributor/756233/ray-hulha
https://riptutorial.com/contributor/2033675/zied-hamdi
https://riptutorial.com/contributor/2680310/ganymede
https://riptutorial.com/contributor/232064/hoylen
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/4413773/raph
https://riptutorial.com/contributor/5578655/alexi-coard
https://riptutorial.com/contributor/1204142/damon
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/5246559/kleak
https://riptutorial.com/contributor/2156621/lrn
https://riptutorial.com/contributor/505810/pacane
https://riptutorial.com/contributor/4413773/raph
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/2680310/ganymede
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/505810/pacane
https://riptutorial.com/contributor/4413773/raph
https://riptutorial.com/contributor/1204142/damon
https://riptutorial.com/contributor/1124853/meshulam-silk
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/527533/jan-vladimir-mostert
https://riptutorial.com/contributor/6629711/kim-rostgaard-christensen
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/2680310/ganymede
https://riptutorial.com/contributor/2287177/jxmorris12
https://riptutorial.com/contributor/416534/challe
https://riptutorial.com/contributor/170851/enyo
https://riptutorial.com/contributor/416534/challe

	About
	Chapter 1: Getting started with dart
	Remarks
	Links
	Documentation
	FAQ
	Versions
	Examples
	Installation or Setup

	Automated installation and updates
	Manual install
	Hello, World!
	Http Request

	Html
	Dart
	Example
	Getters and Setters

	Chapter 2: Asynchronous Programming
	Examples
	Returning a Future using a Completer
	Async and Await
	Converting callbacks to Futures

	Chapter 3: Classes
	Examples
	Creating a class
	Members
	Constructors

	Chapter 4: Collections
	Examples
	Creating a new List
	Creating a new Set
	Creating a new Map
	Map each element in the collection.
	Filter a list

	Chapter 5: Comments
	Syntax
	Remarks
	Examples
	End of Line Comment
	Multi-Line Comment
	Documentation using Dartdoc

	Chapter 6: Control Flow
	Examples
	If Else
	While Loop
	For Loop
	Switch Case

	Chapter 7: Converting Data
	Examples
	JSON

	Chapter 8: Dart-JavaScript interoperability
	Introduction
	Examples
	Calling a global function
	Wrapping JavaScript classes/namespaces
	Passing object literals

	Chapter 9: Date and time
	Examples
	Basic usage of DateTime

	Chapter 10: Enums
	Examples
	Basic usage

	Chapter 11: Exceptions
	Remarks
	Examples
	Custom exception

	Chapter 12: Functions
	Remarks
	Examples
	Functions with named parameters
	Function scoping

	Chapter 13: Libraries
	Remarks
	Examples
	Using libraries
	Libraries and visibility
	Specifying a library prefix
	Importing only part of a library
	Lazily loading a library

	Chapter 14: List Filters
	Introduction
	Examples
	Filtering a list of integers

	Chapter 15: Pub
	Remarks
	Examples
	pub build
	pub serve

	Chapter 16: Regular Expressions
	Syntax
	Parameters
	Remarks
	Examples
	Create and use a Regular Expression

	Chapter 17: Strings
	Examples
	Concatenation and interpolation
	Valid strings
	Building from parts

	Credits

