

Microsoft SharePoint 2013:
Developer Reference

Paolo Pialorsi

Copyright © 2013 by Paolo Pialorsi
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7071-6

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown

Production Editor: Christopher Hearse

Editorial Production: Zyg Group, LLC

Technical Reviewer: Jussi Roine

Copyeditor: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: Rebecca Demarest

This book is dedicated to my unique and infinite love: Paola!

Contents at a Glance

Introduction xix

PART I GETTING STARTED

ChaPteR 1 Microsoft SharePoint 2013: a quick tour 3

ChaPteR 2 SharePoint data fundamentals 31

PART II DEVELOPING SHAREPOINT SOLUTIONS

ChaPteR 3 Data provisioning 55

ChaPteR 4 SharePoint features and solutions 91

ChaPteR 5 Server Object Model 115

ChaPteR 6 LINQ to SharePoint 163

ChaPteR 7 Client-side technologies 201

PART III DEVELOPING SHAREPOINT APPS

ChaPteR 8 SharePoint apps 247

ChaPteR 9 the new SharePoint ReSt aPI 317

ChaPteR 10 Remote event receivers 351

PART IV EXTENDING SHAREPOINT

ChaPteR 11 Developing Web Parts 383

ChaPteR 12 Customizing the UI 421

ChaPteR 13 Web templates 465

ChaPteR 14 Business Connectivity Services 489

PART V DEVELOPING WORKFLOWS

ChaPteR 15 Windows Workflow Foundation 531

ChaPteR 16 SharePoint workflow fundamentals 549

ChaPteR 17 Developing workflows 579

ChaPteR 18 Advanced workflows 629

vi Contents at a Glance

PART VI SECURITY INFRASTRUCTURE

ChaPteR 19 authentication and authorization infrastructure 661

ChaPteR 20 Claims-based authentication, federated identities,
 and Oauth 681

Index 735

 vii

Contents

Introduction . xix

PART I GETTING STARTED

Chapter 1 Microsoft SharePoint 2013: A quick tour 3
What is SharePoint? . 3

Main benefits . 4

Share . 4

Organize . 5

Discover . 5

Build . 5

Manage . 6

SharePoint basic concepts . 6

SharePoint Central Administration . 6

SharePoint Administration via PowerShell . 8

Site collections and websites . 9

Lists, libraries, items, documents, and other apps11

App Parts and Web Parts .12

Architectural overview .13

Logical and physical architecture .15

Service applications . 17

The role of databases .18

SharePoint editions .19

SharePoint Foundation .19

SharePoint Server Standard .20

SharePoint Server Enterprise .20

SharePoint Online .21

viii Contents

SharePoint for developers .21

ASP.NET integration .21

Server-side technologies .22

Client-side technologies .22

App Parts, Web Parts, and the UI .22

Data provisioning .23

Event receivers and workflows .23

Features, solutions deployment, and sandboxing23

Security infrastructure .24

Business Connectivity Services .24

Windows PowerShell for developers .24

Developer tools .24

SharePoint Designer 2013 .25

Microsoft Visual Studio 2012 .26

SharePoint Server Explorer .28

Solution Explorer and the Feature Designer .30

Summary. .30

Chapter 2 SharePoint data fundamentals 31
Lists of items and contents .31

Creating a new list .32

Standard list templates .34

Custom list templates .35

Views . 41

Creating a document library .44

Site columns .47

Content types .48

Sites .51

Summary. .52

 Contents ix

PART II DEVELOPING SHAREPOINT SOLUTIONS

Chapter 3 Data provisioning 55
Site columns .55

Content types .60

Content type IDs .63

More about content types .67

Document content types .69

List definitions .70

List schema file .71

Defining a custom view .81

Summary. .89

Chapter 4 SharePoint features and solutions 91
Features and solutions .91

Feature element types .95

Feature deployment .97

Solution deployment .100

Packaging with Visual Studio 2012 .103

Upgrading solutions and features .105

Feature receivers .108

Handling FeatureUpgrading events .112

Summary. .114

Chapter 5 Server Object Model 115
Startup environment .116

Objects hierarchy .116

SPFarm, SPServer, SPService, and SPWebApplication 117

SPSite and SPWeb . 119

SPList and SPListItem . 125

SPDocumentLibrary and SPFile . 128

SPGroup, SPUser, and other security types .130

SPControl and SPContext . 132

x Contents

Common and best practices .133

Resource disposal .133

Handling exceptions .136

Transactions .138

AllowUnsafeUpdates and FormDigest . 139

Real-life examples .140

Creating a new site collection .140

Creating a new website .142

Lists and items .143

Document libraries and files. .152

Groups and users .158

Summary. .161

Chapter 6 LINQ to SharePoint 163
LINQ overview .163

The goal of LINQ .165

LINQ under the hood .166

Introducing LINQ to SharePoint .169

Modeling with SPMetal.exe .170

Querying data .179

Managing data .184

Inserting a new item .186

Deleting or recycling an existing item .187

Advanced topics .188

Handling concurrency conflicts .188

Identity management and refresh .192

Disconnected entities .194

Model extensions and versioning .196

Summary. .198

Chapter 7 Client-side technologies 201
Architectural overview .201

Client Object Model .202

 Contents xi

.NET Client-Side Object Model .203

Silverlight Client Object Model .213

The JSOM .218

Client Object Model examples .224

Creating a new list .225

Creating and updating a list item .226

Exception handling with lists .227

Deleting an existing list item .230

Paging queries of list items .230

Creating a new document library .231

Uploading and downloading documents .232

Checking documents in and out .233

Copying and moving files .233

The REST API .234

Querying for data with .NET and LINQ .237

Managing data .240

Summary .243

PART III DEVELOPING SHAREPOINT APPS

Chapter 8 SharePoint apps 247
Introducing apps .247

Development environment .248

Your first app .249

Sample SharePoint-hosted app outline .250

The app website .253

Provisioning content .254

Using the Client-Side Object Model .257

Inside AppManifest.xml .258

The General tab .259

The Permissions tab .260

The Prerequisites tab .265

The Supported Locales tab .267

The Remote Endpoints tab .268

xii Contents

App Parts and custom UI extensions .270

Creating App Parts .270

Creating custom UI extensions .279

Autohosted apps .285

Creating an autohosted app .285

Converting a site to a SharePoint app .287

Handling a SQL Azure database .289

The SharePoint Chrome control. .292

Provider-hosted apps .296

Publishing apps and the Office Store .298

Deploying a SharePoint app .298

Publishing a SharePoint app .298

The corporate app catalog .301

The Office Store .303

Upgrading apps .308

App management configuration and deployment309

Security infrastructure .312

Summary. .316

Chapter 9 The new SharePoint REST API 317
Introducing the REST API .317

API reference .322

Querying data .325

Managing data .329

Cross-domain calls .333

Security .335

Common REST API usage .336

Creating a new list .338

Creating and updating a list item .339

Deleting an existing list item .341

Querying a list of items .342

Creating a new document library .343

Uploading or updating a document .344

Document check-in and checkout .345

 Contents xiii

Deleting an existing document .347

Querying a list of documents. .348

Summary. .349

Chapter 10 Remote event receivers 351
Architecture of remote event receivers. .351

Architecture and contracts .352

Scopes and types of receivers .356

A sample remote event receiver .358

Deployment and registration .367

App-related receivers .370

Callback capability .377

Security .379

Summary. .380

PART IV EXTENDING SHAREPOINT

Chapter 11 Developing Web Parts 383
Web Part architecture .383

A Hello World Web Part .384

Web Part deployment .388

Real Web Parts .392

Classic Web Parts .392

Visual Web Parts .395

Configurable Web Parts .398

Configurable parameters .398

Editor Parts .400

Handling display modes .404

Custom Web Part verbs .405

Connectable Web Parts .407

Deployment and versioning .413

Security: Safe controls and cross-site-scripting safeguards 417

xiv Contents

The SharePoint-specific WebPart class .419

Summary. .420

Chapter 12 Customizing the UI 421
Custom actions .421

The CustomAction element .421

The CustomActionGroup element .428

The HideCustomAction element .430

Server-side custom actions .432

Ribbons .434

Ribbon commands .434

Custom content .446

Images and generic content. .446

Application pages .448

Content pages, Web Part pages, and galleries450

Status bar and notification area .456

Dialog framework .461

Summary. .464

Chapter 13 Web templates 465
The core techniques .465

Site definitions .466

Custom site definitions .471

Site definitions with Visual Studio .474

Site and web templates .482

Site definitions vs. web templates .487

Summary. .487

Chapter 14 Business Connectivity Services 489
Overview of BCS .489

Accessing a database .491

BDC authentication modes .499

 Contents xv

BDC model file .504

Offline capabilities .508

Accessing a WCF/SOAP service .510

Consuming OData services .516

.NET custom model .519

Developing a custom model from scratch. .521

Associating entities .525

Summary. .527

PART V DEVELOPING WORKFLOWS

Chapter 15 Windows Workflow Foundation 531
Architecture of Windows Workflow Foundation 4.5 531

Your first workflow project .535

Hosting and execution .539

Custom activities .540

Runtime scheduler and workflow process life cycle 544

Workflow persistence .546

Summary. .548

Chapter 16 SharePoint workflow fundamentals 549
The new architecture .549

Deployment of Workflow Manager 1.0 .553

Your first workflow with SharePoint Designer 2013561

More about workflows .573

Exception management .574

Reusable workflows .575

Versioning workflows .576

Summary. .578

xvi Contents

Chapter 17 Developing workflows 579
Consuming REST services .579

Visual Studio 2012 for creating workflows .585

Workflow and SharePoint apps .598

Workflow forms .604

Custom workflow tasks .615

Workflow deployment .620

Farm-level workflow .620

SharePoint app workflow .624

Flowcharts and state machines .625

Summary. .626

Chapter 18 Advanced workflows 629
Custom actions .629

Creating a declarative activity .630

Deployment of declarative actions .634

Creating a code activity .639

Deployment of code activities .640

Security and workflow app principal .643

Workflow Services Manager .649

Using Workflow Services Manager .650

Summary. .658

PART VI SECURITY INFRASTRUCTURE

Chapter 19 Authentication and authorization infrastructure 661
Authentication infrastructure .661

Claims-based authentication .663

Migrating from classic to claims-based mode664

Claims-based authentication types .665

Windows authentication .667

Forms-Based Authentication .669

 Contents xvii

Configuring FBA with SQL Membership Provider .670

Configuring the SQL Server database .670

Configuring SharePoint web.config files .673

Configuring SQL Server permissions .675

Configuring SharePoint .675

Enabling FBA users or roles .676

Authorization infrastructure .677

Summary. .680

Chapter 20 Claims-based authentication, federated identities,
and OAuth 681

Claims-based authentication and WS-Federation 681

Implementing an IP/STS with WIF .685

Building an STS .686

Building a relying party. .694

SharePoint trusted IPs .699

Trusting the IP/STS .699

Configuring the target web application .702

Creating a custom claims provider .704

Federating with Windows Azure ACS .713

Understanding OAuth .728

Configuring server-to-server apps .731

Summary. .733

Index 735

 xix

Introduction

Microsoft SharePoint is one of the biggest productivity frameworks released by
Microsoft during the last 10 years. SharePoint 2013 is just one more step of a

fabulous journey (that began in 2001) in the world of business productivity, collabora-
tion, knowledge sharing, search technologies, enterprise social networking, and web
content management.

From a developer’s perspective, SharePoint is a rich set of tools, classes, libraries, and
controls that are useful for building custom solutions and apps focused on making busi-
ness collaboration and enterprise social networking possible.

This book is an organized reference that provides the support that you need as you
develop real and concrete SharePoint solutions and apps, taking advantage of the main
libraries and tools offered by the product. This book covers the key topics in the field of
developing on SharePoint, targeting both junior and intermediate programmers who
want to improve their knowledge of SharePoint.

Beyond the explanatory content, each chapter includes clear examples and down-
loadable sample projects that you can explore for yourself.

Who should read this book

This book exists to help existing Microsoft .NET developers understand the architecture
and core topics of SharePoint 2013 while building Internet, intranet, and extranet sites,
as well as developing custom solutions and SharePoint apps.

Although most readers likely will have no prior experience with SharePoint 2013, the
book is also useful for those familiar with earlier versions of SharePoint and are inter-
ested in getting up to date on the newest features.

assumptions
This book expects that you have at least a minimal understanding of .NET development
and object-oriented programming concepts. Moreover, to develop SharePoint solu-
tions, you need to have a solid knowledge of ASP.NET and related technologies, such as
Simple Object Access Protocol (SOAP), Microsoft Windows Communication Foundation
(WCF), and web services. Although you can extend and customize SharePoint with most
(if not all) .NET language platforms, this book includes examples in C# only. If you are

xx Introduction

not familiar with this language, you might consider reading Microsoft Visual C# 2012
Step by Step, by John Sharp (Microsoft Press, 2013).

With a heavy focus on web development and server-side technologies, this book
assumes that you have a basic understanding of web platforms, application servers,
and scalable software architectures. Some of the topics covered in this book require a
robust knowledge of .NET Framework 4.x, and WCF in particular.

Who should not read this book

This book does not target IT professionals who are seeking information on how to
deploy, configure, and maintain a SharePoint farm. However, some discussion about
deployment is given throughout the book for the sake of completeness. Similarly, this
book does not cover topics concerning site branding or public-facing Internet sites.

Organization of this book

This book is divided into six parts, each of which focuses on a different aspect or tech-
nology within SharePoint 2013.

Part I, “Getting started,” provides a quick overview of SharePoint 2013 and its data
foundations, with a focus on using the technology as shipped, but not yet extending it
with custom code.

Part II, “Developing SharePoint solutions,” focuses on the core libraries for develop-
ing solutions on the server side using the SharePoint Server Object Model and the new
LINQ to SharePoint provider. It also focuses on developing for the client side, using the
various flavors of the SharePoint Client Object Model and SOAP services. This part of
the book is full of examples and code excerpts, and you can use it as a concrete refer-
ence for everyday solutions.

Part III, “Developing SharePoint apps,” covers how to develop SharePoint apps,
which are some of the most interesting new features of SharePoint 2013 from a devel-
oper perspective. You will find a step-by-step guide about how to create various kinds
of apps, as well as information about the new Representational State Transfer (REST)
APIs introduced with SharePoint 2013 for consuming SharePoint from external apps.
Moreover, you will learn how to develop remote event receivers to create apps capable
of reacting to events happening in SharePoint.

 Introduction xxi

Part IV, “Extending SharePoint,” provides deep coverage of the various techniques
and extensibility points available for customizing and extending the native SharePoint
environment. Four chapters full of realistic examples will help you learn how to create
Web Parts, custom pages, and web templates. You will also learn how to take advan-
tage of Business Connectivity Services (BCS) to consume external data sources.

Part V, “Developing workflows,” delves into workflow development. It starts with
a brief introduction of Windows Workflow Foundation (WF) 4.0 and the new work-
flow architecture in SharePoint 2013, moving to workflows designed with SharePoint
Designer 2013 or developed with Microsoft Visual Studio 2012. This part ends with
more advanced topics, such as workflow forms, custom activities, and workflow man-
agement services.

Part VI, “Security infrastructure,” examines the security infrastructure of SharePoint
from an architectural viewpoint, covering topics like authentication, authorization, and
the claims-based approach, and delves into identity federation and custom claims-
based scenarios. You will learn how to federate SharePoint 2013 with Windows Azure
Access Control Services (ACS) and with a custom self-developed identity provider.

Finding your best starting point in this book
The different sections of this book cover a wide range of technologies associated
with SharePoint. Depending on your needs and your existing understanding of the
SharePoint platform, you might wish to focus on specific areas of the book. Use Table 1
to determine how best to proceed.

TABLE 1 Where to start

If you are Follow these steps

New to SharePoint development or an
ASP.NET developer

Focus on Parts I, II, III, and IV, or read through the entire
book in written order.

Familiar with earlier releases of
SharePoint

Briefly skim Part I; Chapter 3, “Data provisioning,” in Part
II; and Part III if you need a refresher on the core con-
cepts. Then read about the new app model in Chapter 8,
“SharePoint apps,” in Part III; and be sure to read Parts V
and VI.

Interested primarily in developing
workflows

Read Part II; Chapter 9, “The new SharePoint REST API,” in
Part III; and Part V.

Interested primarily in developing
SharePoint apps

Read Part I; Chapter 3 and Chapter 4, “SharePoint features
and solutions,” in Part II; and Part III.

Most of the book’s chapters include hands-on samples that let you try out the
concepts you’ve learned. No matter which sections you choose to focus on, be sure to
download and install the sample applications on your system.

xxii Introduction

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ In most cases, the book includes exercises for Microsoft Visual C# programmers.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a task successfully.

■■ Language keywords (apart from code blocks) appear in italic font.

■■ A vertical bar between two or more menu items (for example, File | Close) means
that you should select the first menu or menu item, then the next, and so on.

System requirements

You will need the following hardware and software to complete the practice examples
in this book:

■■ Windows 7 (x86 and x64), Windows 8 (x86 and x64), Windows Server 2008 R2
(x64), or Windows Server 2012 (x64)

■■ Microsoft Visual Studio 2012 (Ultimate, Premium, or Professional)

■■ Microsoft Office Developer Tools for Visual Studio 2012

■■ A valid Microsoft Office 365 developer subscription

■■ A computer that has a 1.6 GHz or faster processor (2 GHz recommended)

■■ 1 GB (32-bit) or 2 GB (64-bit) RAM (add more RAM if running SharePoint on-
premises in virtual machines)

■■ 10 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9–capable video card running at a resolution of 1024×768 or higher

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software and chapter examples

 Introduction xxiii

To run an on-premises SharePoint farm, you will need the following:

■■ Windows Server 2008 R2 Service Pack 1 (SP1) (x64) or Windows Server 2012
(x64)

■■ SQL Server 2008 R2 SP1 (x64) or SQL Server 2012 (x64)

■■ A computer that has at least a 64-bit four-core processor

■■ A minimum of 8 GB RAM (16GB RAM recommended)

■■ 80 GB of available hard disk space

Depending on your Windows configuration, you might require local administrator
rights to install or configure Visual Studio 2012, SQL Server 2008/2012, and SharePoint
2013 products.

Code samples

You can download the code samples for this book from the following page:

http://aka.ms/SP2013DevRef/files

The code sample ZIP file includes a child ZIP file for each chapter, which provides
sample projects. In particular, you can find the following:

■■ Ch-03-Data-Provisioning.zip Includes a single Microsoft Visual Studio
2012 project, which provisions some data structures (content types and list
definitions).

■■ Ch-05-Server-Object-Model.zip Includes a single Visual Studio 2012 project
illustrating how to use the SharePoint Server Object Model.

■■ Ch-06-LINQ-for-SharePoint.zip Includes a single Visual Studio 2012 project
showing how to use LINQ to SharePoint.

■■ Ch-07-Client-Side-Technologies.zip Provides four Visual Studio 2012 proj-
ects, which illustrate, respectively, how to work with the .NET Client-Side Object
Model (CSOM), the JavaScript Object Model (JSOM), the Microsoft Silverlight
Object Model, and the REST service.

■■ Ch-08-SharePoint-Apps.zip Comprises a set of SharePoint app projects that
show how to create apps providing the various hosting models (SharePoint
hosted, autohosted, and provider-hosted).

xxiv Introduction

■■ Ch-09-New-REST-API.zip Illustrates how to use the new REST APIs through a
sample SharePoint app project.

■■ Ch-10-Remote-Event-Receivers.zip Explains how to create remote event
receivers by providing a single Visual Studio 2012 project of a SharePoint app.

■■ Ch-11-Developing-Web-Parts.zip Includes a couple of Visual Studio 2012
projects, which provide samples of basic web parts, as well as of advanced web
parts.

■■ Ch-12-Customizing-the-UI.zip Includes a single Visual Studio 2012 project
that provides many samples about how to create custom pages, custom rib-
bons, custom actions, and so on.

■■ Ch-13-Web-Templates.zip Provides samples about how to create a site defini-
tion, a site template, and a web template.

■■ Ch-14-Business-Connectivity-Services.zip Includes a Visual Studio 2012
project of a SharePoint app consuming a third-party OData service, a sample
project of a custom BCS model, and a WCF service available for consuming via
BCS.

■■ Ch-15-WF45-Intro.zip Provides a simple Visual Studio 2012 project that illus-
trates the basic capabilities of WF 4.5, aside from SharePoint 2013.

■■ Ch-16-SP-Workflow-Fundamentals.zip Includes basic samples of workflows
for SharePoint 2013 created by using Microsoft SharePoint Designer 2013.

■■ Ch-17-Workflow-Development.zip Provides some Visual Studio 2012 projects
that illustrate how to create basic workflows, workflows in SharePoint app, cus-
tom workflow forms, and custom tasks.

■■ Ch-18-Advanced-Workflows.zip Provides three Visual Studio 2012 projects
illustrating how to create advanced workflows and custom actions, and how to
consume the new workflow management services.

■■ Ch-20-Claims-Fed-OAuth.zip Includes a set of Visual Studio 2012 projects
that show how to create a custom identity provider, as well as a custom claims
provider.

You can use these sample projects as a reference for everyday needs, and you may
find it useful copy code excerpts from these samples into your real solutions.

 Introduction xxv

Acknowledgments

This book has been a long and time-consuming process for me. I have worked toward
the completion of this project for about one year. However, a book is the result of the
work of many people. Unfortunately, only the author has his or her name on the cover.
This section is only partial compensation for the other individuals who helped out.

First, I would like to thank Microsoft Press, O’Reilly, and all the publishing people
who contributed to this book project. Mainly, I’d like to thank Ben Ryan and Kenyon
Brown, who—once again—trusted in me and gave me the opportunity to realize an
idea I have believed in for a long time. Ken supported me through this book project for
more than a year; he helped me focus on the content outline, and provided suggestions
and guidelines to accomplish this task. Another person deserving a really big acknowl-
edgment is Linda Laflamme, who assisted me along the whole project timeline, keeping
me on track, reviewing my chapters, and providing thorough suggestions, feedback,
and tips. From the copyediting team, I would like to thank Christopher Hearse and
Damon Larson for their accurate work.

I would also like to thank Jussi Roine, one of the most brilliant SharePoint Microsoft
Certified Masters (MCMs) that I know, for his accurate, smart, proactive, and great tech-
nical review. Jussi, you did a really great job—thank you very much, buddy! You deserve
gallons of beer!

I will never stop thanking my mentor, Giovanni Librando. As usual, Giovanni pro-
vided me a wealth of ideas, feedback, and tips to achieve this goal.

I’d like to thank my parents and my original family for their support and presence
during the last year and for having trusted me during my entire professional career.

Lastly, but most importantly, I want to thank my family—my wife, Paola; my son,
Andrea; and my daughter, Marta—for their support, patience, and understanding
during the last year. It has been a difficult and very busy year. You have supported me
greatly, and you renounced spending many hours with me because of this book. I know
I’ve asked a huge sacrifice of you, and I want to thank you for your support, trust, and
understanding!

xxvi Introduction

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/SP2013DevRef/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

PART I

Getting started

 3

C H A P T E R 1

Microsoft SharePoint 2013:
a quick tour

This chapter explores Microsoft SharePoint 2013 and what it offers to developers who are creat-
ing real-world business solutions. To begin, you will focus on the main features and architecture

of SharePoint, as well as the rich set of capabilities the platform provides. Next, you will compare the
various SharePoint editions. Finally, you will explore the available developer tools. If you already know
SharePoint 2013 or have worked with it, you can probably skip this chapter; however, if you haven’t
yet acquired SharePoint at all, or if you are working on previous versions of SharePoint, such as
SharePoint 2007 or SharePoint 2010, you should continue on with the tour.

What is SharePoint?

Microsoft often defines SharePoint as a business collaboration platform that makes it easier for
people to work together. As a software developer, I prefer to define it as a platform with a rich frame-
work for developing business solutions. From a developer’s perspective, SharePoint is simply a rich set
of tools, classes, libraries, controls, and so on, that are useful for building business solutions focused
on collaboration, content management, social networking, content searches, and more.

Many people think of SharePoint as a platform that’s ready to use for building websites—usually
for intranet or extranet scenarios. That’s true, but it’s less than half the story! Certainly, SharePoint is a
platform for building websites, and of course, it can target intranet and extranet sites. But it is much
more, as well; you can use it to build any kind of web solution, including Internet publishing sites, by
taking advantage of its well-defined and ready-to-use set of tools, based on a secure, scalable, and
maintainable architecture. You can think of SharePoint as a superset of Microsoft ASP.NET, with a
broad set of services that can speed up the development of web-based collaborative solutions.

You should use SharePoint as a shared connection point between users, customers, and whoever
else uses your websites and the applications they utilize. The basic idea of SharePoint is to share con-
tent, applications, and data to improve collaboration and provide a unique user experience.

SharePoint itself is primarily a container of content and apps. Content is organized in lists, and each
list is made up of items. A list can consist of simple items with custom metadata properties called
fields. Lists can also be libraries of documents, which are a particular kind of item that correspond to
document files. Almost always when you develop a SharePoint solution, you manage lists and items.

4 PaRt I Getting started

In Chapter 2, “SharePoint data fundamentals,” you will learn more about the architecture of data
management in SharePoint 2013.

Main benefits

Microsoft grouped the features and services provided by SharePoint 2013 into five main categories of
benefits: Share, Organize, Discover, Build, and Manage. Figure 1-1 shows these benefits, and the sec-
tions that follow provide a brief description of each.

FIGURE 1-1 The native benefits of the SharePoint 2013 platform.

Share
SharePoint 2013 enables you to share ideas and content with others. For example, you can use
SharePoint for storing and sharing documents, contacts, and tasks; organizing meetings; managing
business processes; and more. When you share something with SharePoint, you can also put it in the
social network of your colleagues, customers, partners, and contacts in general, regardless of whether
they are on your corporate network, on Facebook, on Twitter, or elsewhere. Through SharePoint,
people can discover what you shared, as well as share contents with you. Using the new social features
of SharePoint 2013, you can keep track of what your colleagues are working on.

With SharePoint 2013 and the new Microsoft Office 2013, you can publish documents and content
from any Office application, sharing them with people inside or outside your organization. You can
take advantage of these capabilities from your desktop computer as well as from any Internet-capable
mobile device, such as Microsoft Surface and other tablets running Microsoft Windows 8 or RT, as
well as smartphones based on the Windows Phone operating system or devices based on iOS.

When you share content through SharePoint, you can update your activity feed in order to make
people aware of what you are doing, keeping in touch with your colleagues wherever you are, with
any kind of device.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 5

Organize
Through SharePoint 2013, you can organize your projects and tasks, and even integrate SharePoint
with Microsoft Outlook and Microsoft Project to keep your projects on track. The product will help
you manage tasks, as well as their status and due dates. You will be able to keep your team con-
nected, through specific team sites, which enable you and others to track meetings, share documents,
store emails, and do whatever else is useful for your team collaboration.

The new SkyDrive Pro feature provided by SharePoint 2013, which supersedes SharePoint
Workspace, allows you and your colleagues to sync all the shared files to your desktop, as well as to
your tablet, with Windows 8. This way, the content will always be with you, even when you are offline,
traveling, or working at home. Upon connection with the network, any files you worked on offline will
be automatically synchronized with their online counterparts.

Discover
Since it was first introduced, one of stand-out features of SharePoint has been its search engine.
Having a platform for storing, sharing, and organizing content would be useless without the capabil-
ity to discover and retrieve it. With SharePoint 2013, you can search for content via a professional
search engine, which can be customized for your needs.

With SharePoint 2010, Microsoft introduced an improved and more accurate relevance engine that
was based on usage and history. Moreover, it included the FAST for SharePoint edition for support-
ing large-scale search scenarios, together with professional search-oriented features. Now, the FAST
for SharePoint engine is no longer a separate product, and all of its main features are included in
the standard SharePoint 2013 search engine. In addition, the SharePoint 2013 search engine has the
ability to suggest more relevant results and provide recommendations on people and documents
to follow. The search engine is now people-centric and social-centric, enabling you to find people
and connect with them, based on their interests, projects they contributed to, and documents they
worked on.

You can use all the content, search results, people, and insights to create reports, scorecards,
dashboards, and whatever else is helpful for providing meaningful data. Microsoft Excel 2013, Excel
Services, PowerPivot, and Power View for SharePoint can assist you in this task as well.

Given all these capabilities, you can consider SharePoint 2013 a solid platform for building data
and content-based, search-driven applications, oriented toward social networking and collaboration.

Build
One of the most exciting new features of SharePoint 2013 is its apps-extensibility model. Thanks to
this new feature, you can develop custom apps for Office 2013 and SharePoint 2013, using the power
of the cloud. You can design everything from business apps for the marketplace at large to a corpo-
rate catalog targeting your employees.

6 PaRt I Getting started

Developing a custom app is as simple as combining the apps-extensibility model with such well-
known technologies and protocols as JavaScript, HTML, OAuth, and the versatility of the cloud. If you
prefer, of course, you can also host your custom apps on-premises, but hosting an app in the cloud
provides you with a more scalable infrastructure ready to grow with your business. For an in-depth
discussion of creating custom apps, see Part III, “Developing SharePoint apps.”

Manage
Nowadays, a key aspect of an IT solution is management, both from a tooling perspective and from
the viewpoint of budget and costs reduction. SharePoint 2013 gives you a mature, maintainable, and
manageable environment, which can be hosted on-premises as well as in the cloud, using Microsoft
Office 365. You can also keep some of your services and content on-premises while deploying others
on Office 365, within a hybrid infrastructure.

The new capabilities of Office 365 reduce the time to market for your solutions, allowing you to
concentrate your resources and time on the project, the contents, and the custom features, rather
than on the infrastructure under the cover.

Many of the solutions in this book are suitable both for on-premises and cloud scenarios, thanks to
the common infrastructure behind the scenes.

SharePoint basic concepts

To give you a better understanding of what SharePoint is and how to best use its features, this section
takes a brief tour through the product and provides introductions to a few of its most useful features
and capabilities.

SharePoint Central administration
The target audience for this book consists of SharePoint developers, not IT professionals. Therefore,
the book does not cover administrative tasks, and it does not provide instructions on how to set up
SharePoint from scratch. Nevertheless, as soon as you install a SharePoint server farm, you are pre-
sented with an administrative console called SharePoint Central Administration (SPCA) with which you
manage the entire farm.

More Info To learn how to deploy and administer a SharePoint farm, read Microsoft
SharePoint 2013 Administrator’s Companion, by Brian Alderman (Microsoft Press, 2013).

SPCA is a website based on the SharePoint engine; it’s designed to administer and monitor a
SharePoint server farm. When you deploy a new farm, by default the first server takes the role of
SPCA host. Nevertheless, in a well-defined SharePoint server farm, you should deploy at least two
servers hosting SPCA, for better availability and business continuity of the farm. Using SPCA, you

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 7

can configure servers and servers’ roles, define farm topology, and create new web applications and
site collections.

Because SPCA is an actual SharePoint site, you can use everything you will learn in this book to
customize this site, too. Thus, you can build solutions to extend the SharePoint administrative inter-
face. However, keep in mind that because SPCA is an administrative site responsible for the whole
farm, you should avoid using it as a development or test site.

The following list describes the main areas of SPCA:

■■ Application Management Here, you can manage existing web applications, as well as cre-
ate new web applications, site collections, and content databases. You will learn more about
these topics later in this chapter and in Chapter 2.

■■ Monitoring From this area, you have access to a set of tools for monitoring the farm, check-
ing for issues, and solving problems.

■■ Security Here, you can manage administrative accounts and services’ accounts of the farm,
and configure all the security-related features.

■■ General Application Settings This is the area where you manage general settings, such
as site directory and search engine settings, content deployment features, form services,
and more.

■■ System Settings From this area, you can manage servers in the farm, the farm topology,
services on servers, and farm customization features.

■■ Backup and Restore This area provides access to all the tools for managing and handling
disaster recovery tasks.

■■ Upgrade and Migration Here, you can manage upgrade and patching tasks.

■■ Apps This area provides access to the app configuration and management tools. You can
configure and monitor installed apps and apps licenses, as well as your corporate catalog
of apps.

■■ Configuration Wizards This area provides a wizard to configure the farm from scratch.

Note You should consider using the configuration wizards very carefully, and in most cases
you should avoid using them. In fact, a real SharePoint farm should never be installed using
a wizard. On the contrary, you or the IT professionals you work with should carefully design
the farm, assign roles to the servers, determine the services to run, and in general think
about and model whatever else is needed to make your SharePoint farm work properly.

Figure 1-2 shows the SPCA home page. Note the status bar at the top of the screen, which in
Figure 1-2 highlights some issues regarding the farm’s current configuration that were detected by

8 PaRt I Getting started

the SharePoint Health Analyzer service. The SharePoint Health Analyzer is a very useful tool that mon-
itors the status of the farm, helping to maintain it at the optimum service level.

FIGURE 1-2 The SPCA home page of a SharePoint 2013 farm.

SharePoint administration via PowerShell
As with many other server products from Microsoft, SharePoint can be managed using Windows
PowerShell and scripting. SPCA is a good option for managing a SharePoint farm through a set of
visual tools and a web browser. However, having a text-based scripting engine to query, manage,
configure, and even install a SharePoint farm from scratch is a fundamental aid for IT professionals. In
SharePoint 2013, everything you can do with SPCA can also be done using some PowerShell scripts.
Moreover, PowerShell enables additional controls that are not available from SPCA.

The power of having a scripting engine for managing almost every aspect of a SharePoint farm is
enormous and unpredictable. For example, you can define a PowerShell script to deploy a farm from
scratch, or you can use a script to add a server to an already existing farm. You can create and config-
ure web applications, sites, and services using a script. Moreover, you can create scripts to configure
the topology of your farms. All these scripts become extremely useful and powerful whenever you
need to reproduce the same tasks for multiple customers or sites.

Even if you are a developer, you can benefit from having a rich library of predefined and parame-
ter-based PowerShell scripts. In fact, you can use those scripts to deploy development farms, as well

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 9

as test environments. Moreover, using a script, you can deploy your customizations onto an on-prem-
ises farm. This book will not cover PowerShell in depth, because there are many other topics to cover
that deal more specifically with SharePoint development. Nevertheless, you should consider reading a
book on PowerShell for SharePoint as a companion to this book.

More Info To learn more about Windows PowerShell, consult “Windows PowerShell” on
MSDN (http://msdn.microsoft.com/en-us/library/dd835506.aspx) or Windows PowerShell
Pocket Reference, by Lee Holmes (O’Reilly, 2012).

Site collections and websites
One fundamental concept embodied by SharePoint is that of a site collection. A site collection is
a logical container that holds a set of SharePoint sites hosted in a web application. Whenever you
work in SharePoint and you want to publish a site, regardless of whether it’s an Internet, intranet, or
extranet solution, you will have at least one web application with one site collection, made of one site.
Grouping sites in site collections allows those sites to share content, administrative settings, security
rules, and, optionally, users and groups.

To create a new site collection, you need a web application, which you can create by selecting
the Manage Web Applications menu item from the SPCA home page, or by using the correspond-
ing PowerShell command. Avoid using the web application that hosts SPCA. After you have a web
application, you can create a new site collection by selecting the Create Site Collection menu item on
the SPCA home page. A dialog box will appear, asking you for a title, a description, and a URL relative
to the parent web application.

Every site collection is administered by a site collection administrator, who is a user authorized
to administer an entire site collection, including the websites it contains. Every site collection must
have at least one site collection administrator, but it can have more than one. Thus, when creating
a new site collection, you need to designate a primary site collection administrator and, optionally, a
secondary one. After having created a site collection, you will be able to add as many site collection
administrators as you like. A site collection administrator has the rights to create, update, or delete
any site contained in a site collection. The administrator also has full rights to administer content
within those sites.

When you create a site collection, you should also choose a template from which to start. If you
need, you can select it from a number of predefined templates that are shipped with SharePoint.
By default, the template will create a new site collection with at least one site at the root of the site
collection. Templates are divided into functional groups and into two families. In fact, SharePoint
2013 comes with a new family of templates, as well as the previous template family from SharePoint
2010, for backward compatibility. Following are the five main functional groups of SharePoint 2013
templates:

■■ Collaboration These are sites whose structure has been designed to facilitate collaboration.
The Collaboration group includes the following templates: Team Site, Blank Site, Document

10 PaRt I Getting started

Workspace, Blog, Group Work Site, Developer Site, Project Site, Community Site, and Visio
Process Repository.

■■ Meetings This group contains templates for sites related to meetings and meeting orga-
nization. The available templates are Basic Meeting Workspace, Blank Meeting Workspace,
Decision Meeting Workspace, Social Meeting Workspace, and Multipage Meeting Workspace.

■■ Enterprise These templates target enterprise-level needs in the areas of document manage-
ment, policies, and so on. They include Document Center, Discover Center, Records Center,
Business Intelligence Center, Enterprise Search Center, My Site Host, Community Portal, and
Basic Search Center.

■■ Publishing This group corresponds to sites intended for web-publishing purposes. The
available templates are Publishing Portal, Enterprise Wiki, and Product Catalog.

■■ Custom This is where you can develop your own site templates. Also in this group is a list of
all the available custom templates, if any exist.

Figure 1-3 shows the home page of a site collection created by using the Team Site template of
SharePoint 2013.

FIGURE 1-3 The home page of a Team Site template site collection.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 11

Lists, libraries, items, documents, and other apps
Every SharePoint site is composed of lists of items. When the items are simple—that is, they don’t
correspond to documents or files, but are made of custom metadata properties only—they’re
termed lists and list items. When the items correspond to files, they’re called document libraries or
just libraries.

Every site template includes some predefined lists that are created when you construct a site
using that template. For example, a team site provides a Documents library, a Site Assets library, a
Site Pages library, and a few other predefined lists and libraries. Regardless of the site template you
start from, you can always create new lists, libraries, and content, as well as activate features to cus-
tomize your site.

You can browse the contents of these lists and libraries, and, if you have the proper permissions,
you can create new apps, which can be lists of contents, libraries, or custom apps either taken from
the public marketplace or installed from the corporate catalog. Consider that in SharePoint 2013,
everything is called an app. However, a list or a library is still what it is—nothing more and nothing
less. You can also add items to already existing lists or upload new files (for libraries) by simply drag-
ging and dropping them from the file system to the webpage. Figure 1-4 shows the UI of SharePoint
2013 while browsing the contents of a document library.

FIGURE 1-4 The default UI of SharePoint while browsing the contents of a document library.

12 PaRt I Getting started

Note also that Figure 1-4 shows the ribbon, which is a feature introduced with SharePoint 2010, to
better support end users through a UI similar to the well-known Office interface.

When you want to create a new app, you simply click the gear icon, which is located in the upper-
right corner of the webpage, and then select Add An App. As shown in Figure 1-5, you’ll see the Apps
You Can Add list, from which you can select the type of app that you would like to create.

FIGURE 1-5 The UI for adding a new app to a SharePoint site.

If none of the supplied templates of lists and libraries quite fits your needs, you can try or buy an
app from the marketplace, and you can install an app from a corporate catalog. Of course, in order to
access these, your farm should be connected to the Internet and configured for supporting apps.

app Parts and Web Parts
App Parts are new features of SharePoint 2013, enabling you to enrich pages with external apps and
content, which you can create on site or download from third-party sites or the cloud—for example,
through the marketplace. An App Part is a block of HTML code, empowered with JavaScript and
secured with OAuth, typically hosted outside the current site, and eventually integrating and/or
consuming some contents within the current site. Later, in Part III of this book, you will learn how to
create App Parts and how to consume them from a SharePoint site.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 13

Web Parts have been some of the most notable features of SharePoint since its early versions. In
fact, in SharePoint you can define pages made of configurable building blocks (Web Parts) that can
be enabled, moved, or hidden by end users. The goal of this feature is to allow users to define their
own pages, selecting content from a set of available Web Parts, with full personalization. Every page
made of Web Parts is called a Web Part page.

With SharePoint 2013, the importance of Web Parts is declining, while the use of App Parts is
becoming more prominent. You can think about App Parts as the heirs of Web Parts. A typical
SharePoint 2013 solution contains some custom lists and document libraries, along with some apps
presented as App Parts and configured in custom pages that show and manage the data stored in
those lists and libraries, as well as outside the current site.

Architectural overview

In this section, you’ll take a look at SharePoint architecture from a developer’s perspective. Figure 1-6
shows some of the main components of SharePoint, from the foundation elements up to the main
enterprise-level features.

FIGURE 1-6 The architecture of SharePoint 2013.

14 PaRt I Getting started

At the very base of SharePoint 2013 sits the operating system. Starting with SharePoint 2013, the
minimum requirement for a production environment is Microsoft Windows Server 2008 R2 Service
Pack (SP) 1 (Standard, Enterprise, or Datacenter) or Microsoft Windows Server 2012 (Standard or
Datacenter). Although in SharePoint 2010 it was possible to install the product on a workstation
machine running Microsoft Windows 7 or Microsoft Windows Vista SP1/SP2, this is no longer allowed
with SharePoint 2013. Because SharePoint 2013 is available only in 64-bit versions, the minimum
requirement for a deployment environment is a server-based 64-bit operating system (Windows 8
does not qualify as a host operating system for SharePoint 2013).

More Info For further details about the software and hardware requirements of SharePoint
2013, read the document “Hardware and Software Requirements for SharePoint 2013” on
TechNet Online, at http://technet.microsoft.com/en-us/library/cc262485.aspx.

In addition to the operating system, SharePoint 2013 also requires a database server based on
Microsoft SQL Server 2008 R2 SP1 or Microsoft SQL Server 2012. Regardless of which edition of
SQL Server you plan to use, you must be running a 64-bit version of the product. SharePoint uses
the SQL Server database to store the configuration of SharePoint server farms, as well as the contents
of deployed websites and the configuration and contents of all the services under the cover of the
overall farm infrastructure.

On top of the operating system and database is an application server provided by Internet
Information Services (IIS) 7.5. IIS 7.5 is mandatory, both because it hosts the web applications and
because it publishes endpoints for SharePoint infrastructure services, making use of the Windows
Process Activation Service (WAS) feature of IIS 7. Use of IIS 8 is suggested in new scenarios that you
build from scratch, allowing you to take advantage of all the new features of Windows Server 2012
and IIS 8.

More Info You can find more details about WAS on the “Hosting in Windows Process
Activation Service” page on MSDN, at http://msdn.microsoft.com/library/ms734677.aspx.

Because SharePoint 2013 is based on Microsoft .NET Framework 4.5 and extends ASP.NET 4.5, the
infrastructure requires .NET Framework 4.5. Another element at the foundation of SharePoint 2013
is the Windows Identity Foundation 1.0 framework, which provides claims-based services, extended
in order to support OAuth and the new security model of SharePoint 2013. Part VI of this book,
“Security infrastructure,” digs deeper into these topics.

On top of this foundation sits Microsoft SharePoint Foundation 2013, which is a free platform
for building basic SharePoint solutions. Although free and the most basic edition of SharePoint,
SharePoint Foundation 2013 contains a great deal of functionality that developers can use to meet
the needs of basic portal scenarios.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 15

At the top of the architecture is the SharePoint Server 2013 platform, together with its high-level
and enterprise-level services, such as Excel Services, Managed Metadata Services, the User Profile
services, the search engine, and so forth.

From a hardware perspective, the minimum memory requirement for a SharePoint 2013 server is
8 GB for a development environment, but this hardly gives you enough room to work. A more realis-
tic minimum, however, is 16 GB for a successful development environment. For a production environ-
ment, the suggested memory is 12 GB for a web front-end or an application server, and 24 GB for an
all-in-one server. Moreover, every SharePoint 2013 server should have a 64-bit CPU with a minimum
of four cores.

Logical and physical architecture
Whenever you deploy a SharePoint environment, in reality, you’re deploying a logical architecture
called a SharePoint farm. A SharePoint farm is a set of servers that have different roles and offer vari-
ous services that together make up a server farm suitable for hosting a full SharePoint deployment.
Here are the common server roles in a SharePoint farm:

■■ Front-end web servers These servers publish websites, often called web applications.

■■ Application servers These servers host back-end services, such as Search services, the User
Profile service, Excel Services, and so forth.

■■ Database servers These servers store configuration and content data for the entire
SharePoint farm.

The smallest farm you can build is based on a single server; this type is often called the single
server farm deployment. However, it is highly recommended that you avoid such a scenario, except
for testing or development.

In fact, for the sake of scalability and business continuity, you should deploy a minimum of two
front-end web servers, two application servers, and a back-end database server capable of sup-
porting failover (clustering, mirroring, or AlwaysOn). This topology is commonly termed the small-
est fault-tolerant farm deployment. If you need to scale out and support a wider range of users and
sites, you can deploy a more complex farm by introducing some dedicated application servers. For
example, real medium-scale and large-scale farms typically have dedicated servers for the search
services, as well as dedicated servers for hosting the Office Web Apps services (which is a deployment
requirement).

Due to the number and size of servers required for hosting a real production SharePoint farm,
SharePoint 2013 farms are usually hosted in virtualized environments, either on-premises or in the
cloud. For example, you could evaluate hosting SharePoint 2013 on an Infrastructure as a Service
(IaaS) environment like Microsoft Windows Azure Virtual Machines. Moreover, you could also con-
sider directly using Microsoft Office 365.

16 PaRt I Getting started

More Info You can find further information about topologies and architectural
diagrams on the “Technical diagrams for SharePoint 2013” page, on TechNet at
http://technet.microsoft.com/en-us/library/cc263199(v=office.15).aspx.

Regardless of the deployment topology you choose, SharePoint uses a SQL Server database for
storing farm configurations and content. Specifically, it creates a main and fundamental farm configu-
ration database as soon as you deploy a new farm. Usually, this database is called SharePoint_Config
or SharePoint_Config_{UniqueId}. If you use the automated setup process, this database is created for
you when you deploy the farm for the first time. If you use PowerShell to deploy a new farm, which
is highly suggested, you can determine the name of this database by yourself. Furthermore, the
SharePoint Deployment And Configuration Wizard creates a set of satellite database files for the main
services deployed. For example, it creates a database that stores the contents of the SPCA adminis-
trative site. In case you use a PowerShell script to deploy the farm, you can determine the name and
location of all SharePoint databases.

From a hierarchical perspective, each SharePoint farm is composed of services, which include all
the infrastructure services that make up the SharePoint environment. The most important kind of ser-
vices are web application services, which correspond to the entry point for web-published solutions.
Each web application is made up of at least one site collection and one content database. However,
you can deploy multiple site collections within a single web application, and you can deploy mul-
tiple content databases for a single web application. A content database is a database file that stores
content for one or more site collections. As it relates to SharePoint, content can include items, docu-
ments, documents versions, pages, images, and so on. Thus, the database behind a site collection can
grow very fast.

Starting with SharePoint 2010 and much more with SharePoint 2013, the server roles and the
configurable services have been improved to better support scale-out scenarios. In fact, you can now
distribute different roles to dedicated servers, eventually with hardware redundancy.

Figure 1-7 shows a graphical representation of a SharePoint farm with a couple of front-end web
servers, both of which publish the same web applications with network load balancing. The first web
application (Web Application #1) is made of two site collections (Site Collections #1 and #2), both of
which share a common content database (Content #1). The second web application (Web Application
#2) is made up of a third site collection (Site Collection #3) and stores its contents in a dedicated con-
tent database (Content #2). All the site collections contain one or more websites.

On the back end, there are four application servers, hosting SPCA, the search services, Excel
Services, and some other services.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 17

FIGURE 1-7 A simplified schema of a sample SharePoint farm with an N-tier topology.

All the data are persisted in a back-end database server that stores various database files for differ-
ent purposes.

Service applications
Introduced in SharePoint Foundation 2010, service applications are software services that run in a
SharePoint farm. Service applications are intended for sharing resources and capabilities across mul-
tiple sites and servers in the same farm, or even across farms. Most importantly, they are extensible
and scalable, unlike the Shared Service Providers (SSPs) of Microsoft Office SharePoint 2007.

To clarify the idea of a service application, consider a couple of examples. The search engine in
SharePoint 2013 is based on a service application. This means that you can share the same search
engine across different servers in the same farm, which is not surprising, but you can also share the
same search service across multiple farms. For example, in very large scenarios, you could deploy
a search-dedicated farm, without any front-end web server, that exposes only a wide set of servers
providing query, index, crawler, content -processing, and analytics components. You could then use
this farm to serve many other SharePoint 2013 farms, taking advantage of that shared search service.
Another example is Excel Services: if you have a farm that uses Excel Services extensively to make

18 PaRt I Getting started

calculations and create reports on external data, you could decide to deploy Excel Services on two or
more dedicated servers in the farm, using them from all the other servers.

These configurations are possible because the architecture of service applications has been
designed with scalability in mind. Thus, every service application that runs on a server in the farm
can support scalability, and can be installed on two or more servers. At the same time, a farm uses a
proxy to consume a service application, which can be published locally, or in some cases can be pub-
lished by a third-party farm. While a front-end web server consumes a service application, however,
it ignores the real location of the service and simply concentrates on consuming it. This is possible
because each SharePoint Foundation 2013 farm has a native service application, called the Application
Discovery and Load Balancer Service, that coordinates service discovery and load balancing for
services deployed on more than one application server. By default, each service application proxy
communicates behind the scenes with the back-end service application via a secure channel based
on Windows Communication Foundation (WCF).

More Info You can find further information about service application architecture and
developing a custom service application in the book Microsoft SharePoint 2010 Developer
Reference, by Paolo Pialorsi (Microsoft Press, 2011), which is the previous edition of this book.

the role of databases
Every SharePoint farm includes one or more back-end database servers. In fact, the back-end SQL
server stores the entire configuration of the farm, as well as contents of every site collection and the
data for many service applications. For example, the search service stores crawled contents, properties
for crawled data, and configuration properties in multiple separate and dedicated database files. For
the sake of precision, in SharePoint 2013, the Search service application allocates four databases. The
Managed Metadata service has another dedicated database file, but the list of native services using
one or more databases on the back end could be longer.

Important Even though you can open a SharePoint database in SQL Server Management
Studio and inspect the databases of a SharePoint farm, you should avoid doing that. In ad-
dition, you should not base your software solutions on the data structure of SharePoint
databases. Thus, you should avoid querying and writing the content of these databases di-
rectly. If you do need to read or write their content, take advantage of the various libraries,
APIs, and object models discussed later in this book.

Now let’s concentrate on pages and content. Recall that each time you create a new site collection
using SPCA, you have the opportunity to choose a starting site template. The site template is a set of
configuration, layout, and content files that define a site model. You can build your own site templates
(you will learn how to do that later in Part IV, “Extending SharePoint”), or you can select one of the
existing site templates that are packaged with SharePoint. Whichever site template you choose, under

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 19

the covers, SharePoint starts from a set of files stored in the file system of all front-end web servers,
and then creates some records in the content database that will host the site collection that you are
creating. After the site collection has been created, when you browse to a page using a web browser,
the SharePoint engine determines whether the page you have requested resides entirely on the file
system, or whether it needs to retrieve some personalized content from the content database and
merges that with the page model from the file system, or even whether the page content is com-
pletely stored in the content database.

Having a back-end content database available gives you the option to deploy multiple front-end
web servers that can share the same content, improving horizontal scalability when necessary. At the
same time, maintaining basic page models in the file system improves performance, because loading
a page from the file system, unless it has been personalized, is generally faster than retrieving it from
an external database server. In the section “SharePoint for developers,” later in the chapter, you’ll see
how SharePoint differentiates between file system and database content sources.

SharePoint editions

SharePoint 2013 is offered in several editions. Even though this book is for developers (as opposed to
sales or marketing personnel), it is useful to know the main differences between each edition of the
product. The goal of this section is to give you the base knowledge required to choose the appropri-
ate SharePoint edition for each of your projects.

More Info For a full comparison of the SharePoint editions, see the page “SharePoint
Online” at http://technet.microsoft.com/en-us/library/jj819267.aspx.

SharePoint Foundation
SharePoint Foundation 2013 is the most basic edition of the product. It is free—providing that you
run it on a licensed copy of Microsoft Windows Server—and it offers the fundamental features for
building simple document storage and collaboration solutions. By default, this edition’s main capa-
bilities are accessibility, cross-browser support, basic search features, out-of-the-box pages and
Web Parts, new UI features based on dialogs and ribbons, blogs, and wikis.

The Foundation edition also supports the basic infrastructure of Business Connectivity Services,
although without any client-side or Office capability. Of course, you’ll also find the SPCA controls,
all the farm management tools, and services such as the SharePoint Health Analyzer. In fact, if you
wanted to, you could deploy a multitier farm using just SharePoint Foundation. Finally, SharePoint
Foundation offers all the features supporting custom development, including the Web Parts/App
Parts programming model, the Server Object Model, the Client Object Model, event receivers (local
or remote), claims-based security, and so on. All these topics will be covered in detail in Part II,
“Developing SharePoint solutions,” and Part III, “Developing SharePoint apps.”

20 PaRt I Getting started

You should use this edition of SharePoint whenever you want to develop custom solutions that do
not require any high-level features, such as the document management tools, user profiles, managed
metadata, and so on. When you simply need to use SharePoint as a web-based “sharing point” to
store content, such as documents, contacts, tasks, and so on, this is the edition that best meets those
needs. Quite often, SharePoint Foundation is the right starting point for gaining experience with
SharePoint. It also serves well as a bridge: you can start installing Foundation; plus, later on, you will
be able to upgrade to SharePoint Server, if the need arises.

SharePoint Server Standard
The Microsoft SharePoint Server 2013 Standard edition is built on top of SharePoint Foundation 2013,
adding useful features for building business-level solutions. In particular, you will find features sup-
porting Enterprise Content Management (ECM) and Web Content Management solutions. This edition
also provides legal compliance capabilities, including records management, legal holds, and docu-
ment policies. It also offers support for document sets, which give you the ability to manage related
documents as if they were a single entity. It supports document IDs, which assign a unique protocol
number to SharePoint site documents. Using this edition, you can target content based on audiences,
which are profile-based groups of targets. Moreover, you have the capability to use the Managed
Metadata service for managing common metadata properties, navigation elements, publishing, and
product catalogs across multiple site collections and web applications.

SharePoint Server is the right choice for implementing business-level solutions. For example,
SharePoint Server can help you create a content management system (CMS) solution that provides
content publishing, content approval, page layouts, web standards (XHTML, WCAG 2.0, and so on)
support, and so forth. This edition also supports tags and metadata-driven search refinement, people
search, and the whole set of social features. As a business-level tool, it provides features for manag-
ing not only content, but also people, profiles, and personal sites. Finally, this edition of the product
provides support for developing and executing workflows, hosted either on-premises or in the cloud
on Windows Azure.

SharePoint Server enterprise
Microsoft SharePoint Server 2013 Enterprise edition targets large business solutions and enterprise-
level organizations. It extends the capabilities of SharePoint Server Standard by offering support for
dashboards, key performance indicators (KPIs), and business intelligence features. It improves search
capabilities by offering contextual search, deep search query refinement, extreme scale-out search
capabilities, rich web indexing, and so on. It also provides support for Excel Services, Visio Services,
Forms Services, and Access Services.

When you need to develop business analysis solutions or complex search-based solutions, you
should choose the Enterprise edition.

From a developer perspective, you can install the SharePoint Server Enterprise edition if you
have licensing coverage for that, and you can develop solutions for all the editions using a unique
environment.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 21

SharePoint Online
Microsoft SharePoint Online is the cloud-based SharePoint offering, based on the Software as a
Service (SaaS) paradigm included in Microsoft Office 365. With this edition, you can build SharePoint
solutions without building a SharePoint farm on-premises. Instead, by having your farm in the cloud,
you can enjoy an external solution free of management costs. As a developer, you are freed to focus
only on data, processes, ideas, the content that you want to share, and the apps you want to build.
The SharePoint Online offering is available in Standard mode, as well as in Dedicated mode. The
Standard offering uses an environment shared with other customers, although it is isolated according
to a clear set of multitenancy rules, and you can only extend that environment with code executed in
a sandbox or custom apps. On the contrary, the Dedicated offering allows you to have a dedicated
server farm on which you can deploy custom solutions with full-trust execution rights, as long as your
solutions passes a verification process.

SharePoint for developers

SharePoint offers developers numerous features and capabilities for building custom web solutions.
This section provides an overview of those features and services so you can better understand the
topics that you will be exploring in the rest of this book.

aSP.Net integration
As a developer, you might be wondering how SharePoint 2013 integrates with ASP.NET to service
requests and provide its high-level features on top of the ASP.NET native infrastructure.

Since IIS 7.0, in Windows Server 2008, application pools can run in one of two modes: integrated
mode or classic mode. Classic mode works like older versions of IIS (IIS 6), taking advantage of the
Internet Server Application Programming Interface (ISAPI) filter based on the Aspnet_isapi.dll file.
Integrated mode provides a unified request-processing pipeline for requests that target both man-
aged (.NET) and unmanaged (non-.NET) resources. Every request is served by a module registered in
the application configuration.

SharePoint 2013 provides a Microsoft.SharePoint.ApplicationRuntime namespace in the Microsoft.
SharePoint.dll assembly. This namespace contains a set of classes that integrate and/or override the
default behavior of ASP.NET while in IIS integrated mode. The primary class that handles SharePoint
requests is called SPRequestModule. It is configured in the web.config file of every SharePoint site, in
the system.webServer/modules section. This class registers a number of application events that handle
requests, authentication, errors, and so on. One fundamental task of this module is to register the
virtual path provider (SPVirtualPathProvider), which resolves requests by determining whether the
requested content should be retrieved from the content database or from the file system. A virtual
path provider is a class that provides contents to the ASP.NET pipeline by retrieving them from a
virtual file system.

22 PaRt I Getting started

Server-side technologies
SharePoint offers developers a rich set of server-side tools. First, you can use the SharePoint Server
Object Model, which allows you to interact with SharePoint through a large set of libraries and classes.
Using these classes, you can read, manage, and administer data stored in SharePoint. More generally,
you can use the Server Object Model to do almost anything that SharePoint itself can do, because
SharePoint itself uses that same object model. You can use the Server Object Model on a SharePoint
server only, because it has some dependencies not satisfied by other servers. You will learn more
about this tool in Chapter 5, “Server Object Model.”

On the server side, you can also use the LINQ (Language Integrated Query) programming
model, exploiting the LINQ to SharePoint provider, by which you can query and manage SharePoint
data using a fully typed programming model, much as you would when managing data stored in
SQL Server using LINQ to SQL. Chapter 6, “LINQ to SharePoint,” discusses this LINQ query provider in
more detail.

Client-side technologies
One of the biggest news of SharePoint 2013, from a developer perspective, is the improvement of the
client-side technologies for consuming SharePoint data and interacting with remote SharePoint serv-
ers. In fact, you can exploit a rich set of client-side technologies offered specifically for this purpose.
For example, the SharePoint Client Object Model lets you interact with SharePoint from a client using
a set of classes that are similar to the Server Object Model, but work on any client that supports .NET,
Microsoft Silverlight, or JavaScript. The Client Object Model is available in three different flavors: .NET
managed, Silverlight, and JavaScript. The Client Object Model versions are almost functionally
identical on all three platforms. You can also use SOAP (Simple Object Access Protocol) services
published by SharePoint, even though they are deprecated and available for backward compatibility
only. Furthermore, you can use the REST (Representational State Transfer) API to access and manage
SharePoint data by using a protocol for querying and updating data via an HTTP/XML communication
channel called OData (Open Data Protocol, documented at http://www.odata.org). Moreover, start-
ing with SharePoint 2013, you can take advantage of a new and rich set of APIs published via HTTP
and accessible from any device; these APIs are useful for consuming data and interacting with site
collections, sites, services, and whatever else you could need to create a SharePoint app or solution.
From a security viewpoint, you can use the common OAuth (Open Authentication) standard to secure
communication and authenticate/authorize both users and apps while consuming data and interact-
ing with SharePoint services.

All of these client-side technologies are discussed throughout the book, and in particular in
Parts II and III.

app Parts, Web Parts, and the UI
Another area of interest for developers is customizing the UI. Many SharePoint developers work-
ing on SharePoint 2010 or earlier spent their time developing Web Parts, Web Part pages, and UI
customizations. SharePoint 2013 still provides a rich object model, and even backward compatibility,

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 23

for building custom Web Parts and Web Part pages, as well as a set of UI customization tools that
simplify working with AJAX (Asynchronous JavaScript and XML), dialog boxes, the ribbon, and so on.
Now, with SharePoint 2013, you can extend and customize the UI by creating apps and App Parts. You
can think about App Parts as blocks of content, consumed from a remote app, that play the same role
as Web Parts did in the past. You will see how to develop App Parts in Part III of this book.

Data provisioning
As soon as you begin working with SharePoint, you will face the need to define packages for auto-
matically deploying data structures. Working with SharePoint generally involves designing new lists
and new content types, which are reusable typed definitions of metadata models. However, if you
define your models using the web browser, you won’t have a high-level modeling approach; every-
thing you do must be migrated and/or executed again in the quality assurance (QA) and production
environment.

Fortunately, there are tools and techniques that allow you to model a data structure—optionally
based on custom contents and fields—and deploy that model to customers’ sites. These tools also pro-
vide support for deploying updated versions of the solution in the future. You’ll see more on this subject
later in this chapter, in the section “Features, solutions deployment, and sandboxing.” You will learn how
to define custom data models for automated provisioning in Chapter 3, “Data provisioning.”

Event receivers and workflows
With SharePoint, since version 2007, you can use local event receivers to intercept users’ actions
and/or events and subsequently execute some lightweight server-side code. Now, with SharePoint
2013, you also have the capability to create remote event receivers for invoking external and remote
services. These receivers are capable of handling events like item insertion, updating, deletion, and so
on. This is a useful feature for implementing simple process-handling solutions or business-processes
coordination, activating external processes upon user actions in SharePoint. Moreover, you can use
remote event receivers to make apps communicate with parent websites. Chapter 10, “Remote event
receivers,” dives into this subject.

Similarly, when you need to define complex and long-running business processes that respond to
events from the UI and interact with end users, you can define workflows. With SharePoint 2013, the
workflow engine has been redesigned from scratch, using the new Workflow Manager 1.0 engine,
based on Workflow Foundation 4.5, together with a new application server role that can be hosted
on Windows Azure or on-premises. This functionality deserves a thorough exploration, so this book
discusses it in four dedicated chapters, in Part V, “Developing workflows.”

Features, solutions deployment, and sandboxing
As a complete development platform, SharePoint 2010 introduced deployment services and capabili-
ties by which you can deploy and upgrade solutions during a project’s lifetime. In SharePoint 2013,
all these features are still available and suitable for developing complex customizations and solutions.

24 PaRt I Getting started

Specifically, SharePoint offers the opportunity to create deployment packages, called Windows
SharePoint Services Solution Packages (WSPs). You can use these packages to automate setup and
maintenance tasks across an entire server farm. In addition, you can deploy these solutions in a
sandboxed environment. The packages consist of features, which are atomic sets of extensions that
you can develop, install, activate, and manage with a specific set of administrative tools. In Chapter 4,
“SharePoint features and solutions,” you will learn how to create and deploy such packages. In Part III
of the book, you will learn how to create and deploy custom apps as a suitable alternative to imple-
menting SharePoint solutions.

Security infrastructure
The SharePoint security infrastructure is another topic that affects both software development and
the architecture of solutions. In fact, to develop robust and solid solutions, a developer should have
a high degree of confidence in, and knowledge about, SharePoint authentication and authorization
policies. The key security aspects of SharePoint 2013 are its claims-based approach and support for
the OAuth protocol. Part VI of the book is fully dedicated to security matters.

Business Connectivity Services
Business Connectivity Services is another feature that is generally useful when developing solutions.
This feature supports consuming external data within SharePoint, and has a design almost identical to
data directly stored in SharePoint. The sources of this external data can be an RDBMS, like SQL Server
or any ODBC-compliant data source; a WCF/SOAP service; a custom .NET object model; or an OData
service. Chapter 14, “Business Connectivity Services,” will cover this topic.

Windows PowerShell for developers
Another interesting capability is that you can administer and automate SharePoint administrative
tasks using the Windows PowerShell console. Windows PowerShell is a task-based command-line shell
and scripting language designed especially for system administration. It can execute commands and
scripts authored by developers or system administrators, as long as they have some minimal develop-
ment expertise. What makes Windows PowerShell a powerful framework for developers is its exten-
sibility model, together with its capability to execute custom code. For example, from the Windows
PowerShell console, you can not only administer a farm, but also create scripts for populating data
into target lists of SharePoint. You can manage, create, and configure testing environments, and you
can create custom scripts to deploy your solutions.

Developer tools

SharePoint developers can take advantage of some Microsoft-supplied tools to support their work
and reduce the effort involved in developing custom solutions. This section lists these tools and iden-
tifies when they might be useful.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 25

SharePoint Designer 2013
SharePoint Designer 2013 is a rapid application development (RAD) tool for develop-
ing SharePoint no-code solutions. You can download it for free from Microsoft’s website, at
http://www.microsoft.com/download/details.aspx?id=35491. SharePoint Designer 2013 targets
advanced users, who can use it to design and compose solutions without writing any code. For
example, using SharePoint Designer 2013, you can

■■ Personalize pages, page layouts, Web Parts, Web Part pages, layouts, and themes.

■■ Create and manage lists and document libraries.

■■ Design simple workflows or import workflows designed using Microsoft Visio 2010 or 2013.

■■ Manage content types and site columns to model typed lists of contents.

■■ Model and register external data sources using the Business Data Connectivity engine.

■■ Create pages with lists data bound to external data sources.

■■ Manage users and groups.

■■ Manage files and assets of the target site.

Figure 1-8 shows the main page of SharePoint Designer 2013 when connected to a SharePoint site.
As you can see, it provides a user-friendly interface, consistent with the Office 2013 user experience.

FIGURE 1-8 The SharePoint Designer 2013 main page.

26 PaRt I Getting started

As a developer, you will primarily use this tool to prototype solutions, to design Business Data
Connectivity models, and to customize layouts—working with themes, master pages, XSLTs, and pages.

Note This book will not cover SharePoint Designer 2013 in depth, because it is aimed at
developers who are willing to develop SharePoint solutions by writing custom code. For
deep coverage of SharePoint Designer 2013, read Microsoft SharePoint Designer 2013 Step
by Step, by Penelope Coventry (Microsoft Press, 2013).

Microsoft Visual Studio 2012
Visual Studio 2012 can be extended with a set of tools for developing SharePoint 2013 apps and
solutions. These tools are named the Microsoft Office Developer Tools for Visual Studio 2012 and
can be installed through the Web Platform Installer kit or downloaded manually from MSDN.
When you install Visual Studio 2012, you have also the opportunity to activate the SharePoint 2010
Developer Tools option, which installs a set of project and item templates that are ready to use in
SharePoint solutions that target SharePoint 2010. Most of the code and projects you develop using
the SharePoint 2010 developer tools are also supported by SharePoint 2013, for the sake of backward
compatibility. Nevertheless, it is highly recommended to develop using the SharePoint 2013 tools and
the new apps-oriented development model introduced in SharePoint 2013.

More Info The Microsoft Office Developer Tools for Visual Studio 2012 can be directly
downloaded from the following URL: http://msdn.microsoft.com/en-US/sharepoint/
aa905690.aspx.

The development tools for SharePoint also include some deployment tools, which are useful for pack-
aging, releasing, and upgrading a SharePoint solution.

Note To use Visual Studio 2012 for developing SharePoint 2013 apps and solutions, you
must run it under an administrative account, because you need some high-level permis-
sions to manage the SharePoint servers while deploying solutions. In addition, you need to
attach to the IIS worker process while debugging code. It is suggested to run your desktop
as a standard user, but run Visual Studio 2012 with a Run As command to impersonate an
administrative user. Moreover, to develop SharePoint solutions (WSPs), you need to have
SharePoint installed on your development machine. On the contrary, to develop SharePoint
apps, you do not need to have SharePoint on board, and you can remotely connect to an
external SharePoint environment, including SharePoint Online on Office 365.

Figure 1-9 shows the Add New Project form of Visual Studio 2012, showing the project templates
installed by the SharePoint extensions.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 27

FIGURE 1-9 The Add New Project form in Visual Studio 2012.

You can create the following types of projects:

■■ App for SharePoint 2013 This is the project template for creating a SharePoint 2013 app. It
will be discussed in depth in Chapter 8, “SharePoint apps.”

■■ SharePoint 2013 Project This is an empty project for starting a new SharePoint implemen-
tation. It provides a set of references to only the most useful libraries of SharePoint, and it
provides support for automatic deployment.

■■ SharePoint 2013 Silverlight Web Part This is a project intended for developing a Web Part
with a GUI based on Microsoft Silverlight.

■■ SharePoint 2013 Visual Web Part This is a project intended for developing a Web Part
with a GUI based on an ASCX web control of ASP.NET.

■■ Import SharePoint 2013 Solution Package This imports an old or third-party solution
package (WSP).

■■ Import Reusable SharePoint 2013 Workflow This project template is useful for importing
workflows designed with SharePoint Designer 2013 that need to be extended or improved
with Visual Studio 2012.

28 PaRt I Getting started

Regardless of which project template you start from, you can develop any of these extension
types, because these models simply prepare a preconfigured environment. In fact, it’s quite common
to start with the App for SharePoint 2013 template or the SharePoint 2013 - Empty Project template,
and then add items as you need them.

Microsoft Office Developer Tools for Visual Studio 2012 also provides a rich set of item tem-
plates for creating various types of content in SharePoint app projects. Here is a list of some of the
main items:

■■ List This is for specifying a custom list of fields or creating a new list from an existing list
template.

■■ Remote Event Receiver This allows you to handle SharePoint events using a remote service.

■■ Content Type This is for creating a reusable collection of fields and settings that you can
apply to a SharePoint list.

■■ Workflow This allows you to create and deploy a workflow for SharePoint, based on the
new workflow engine of SharePoint 2013.

■■ Empty Element This is an XML feature element for hosting files, pages, or any other cus-
tomization, compliant with the features and elements schema available in SharePoint since
version 2010.

■■ Site Column A site column item is useful for creating custom content types and list
definitions.

■■ Module This is a module item for deploying files, pages, assets, and more on SharePoint.

■■ Client Web Part (Host Web) This is a client Web Part (App Part) for supporting a custom
SharePoint app.

■■ UI Custom Action (Host Web) This is typically used in an app that adds a UI extension to
its host site; for example, it can add an action to the ribbon or to a list menu.

■■ Task Pane App This is an app that appears in the task pane of an Office application.

■■ Content App This is an app that appears in the body of an Office document.

SharePoint Server Explorer
Another interesting feature offered by Visual Studio 2012 is SharePoint Server Explorer, an extension
to Server Explorer in Visual Studio 2012 for targeting SharePoint servers. Through this extension, you
can register as many SharePoint servers as you need and browse their topology and configuration
using the classic tree-view approach, such as in Visual Studio Server Explorer windows.

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 29

As shown in Figure 1-10, the SharePoint Server Explorer interface lets you browse and manage the
following:

■■ Sites and subsites

■■ Content types

■■ Features

■■ List templates

■■ Lists and document libraries

■■ Workflows

In addition, because SharePoint Server Explorer is based on an extensible object model, you can
extend it to provide new functionalities, using Visual Studio 2012 to develop such solutions. You can
already find many custom extensions that can be downloaded for free.

FIGURE 1-10 The SharePoint Server Explorer UI in Visual Studio 2012.

30 PaRt I Getting started

Solution Explorer and the Feature Designer
One last set of tools available in Visual Studio 2012 include Solution Explorer and the Feature
Designer. These are tools for graphically designing and managing SharePoint packages (WSPs) and
features. They are particularly useful for automating deployment of SharePoint solutions. You will
learn more about these tools in Chapter 4.

Summary

This chapter explained what SharePoint is, what its main capabilities are, and how developers can take
advantage of those capabilities. It described the product architecture and gave a quick comparison
of the various SharePoint editions so that you can choose the one that best fits your needs. Finally, it
covered the main tools available for developing SharePoint solutions.

 55

C H A P T E R 3

Data provisioning

The previous chapters showed you how many Microsoft SharePoint solutions rely on lists of items
that contain data, such as contacts, files, and so on. When you develop a SharePoint solution,

therefore, one of your main tasks is to provision data structures for these lists of items. In fact, when-
ever you need to develop a reusable and maintainable solution that will reside on many different site
collections and has many different customers, you should formally define the data structures that you
will use. Simply designing them through the SharePoint visual design interface from a web browser
might seem easy (any end user can do it), but in the long run it will become a source of confusion.
Formal definitions can be reused many times in multiple sites and can be versioned. Meanwhile, data
structure definitions made manually through the visual design interface are difficult to reuse and can
lead to duplication of definitions in multiple sites. Also, when you create SharePoint apps hosted on
SharePoint, you can use the data model of lists and items provided by SharePoint for storing data and
content related to your apps.

Note Within the context of this book, the term data structure refers to the formal defini-
tions of custom list definitions, content types, and site columns. Such formal definitions
help to ensure data consistency across lists and sites.

This chapter explores the rules for custom lists and the tools that SharePoint 2013 provides to cre-
ate them. To learn how these tools behave in a real-world scenario, you will investigate how to define
a custom list of contacts that can use custom forms and can be browsed through specific list views.
The list in this case study will be based on two content types: Customer and Supplier.

Site columns

The first and main step in provisioning a custom data structure is to define site columns. A site col-
umn describes a reusable data type model that you can use in many different content types and list
definitions, across multiple SharePoint sites. Unless you have never used SharePoint at all, you will
have already defined many site columns using a web browser, within the appropriate section of the
Site Settings page. To create a more flexible and reusable solution, you can also define a site column
using some XML code, which in SharePoint is called a feature element.

56 PaRt II Developing SharePoint solutions

More Info For further details about features and feature elements, read Chapter 11,
“Developing Web Parts.”

Listing 3-1 shows a very simple site column definition for a Text column that contains the company
name of the sample contact.

LISTING 3-1 A simple site column defined in a feature element

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName"
 StaticName="DevLeapCompanyName"
 DisplayName="Company Name"
 Type="Text"
 Group="DevLeap Columns" />
</Elements>

Aside from the Elements tag itself, which is simply a container element, the interesting part of the
preceding column definition is the Field element. The most important feature of this element is the
ID attribute, which is a globally unique identifier (GUID) that uniquely identifies the site column. You
can use the ID attribute to reference this specific site column everywhere. Notice that you can create
unique GUIDs by using the GUIDGEN tool provided with Microsoft Visual Studio 2012.

Listing 3-1 declares that the Company Name column will have an internal Name attribute of
DevLeapCompanyName. Name is a required attribute, and like the ID attribute, it should also be
unique, because it provides an alternative way to exclusively reference the column from code. In
general, this example uses the developer’s company name value as a prefix to better ensure the
uniqueness of this name. The Name attribute value cannot contain spaces or any characters other
than numbers (0 through 9) and letters (a through z and A through Z). Any other characters will be
converted into the corresponding hexadecimal representation. For example, if you want to name
a field Company Name, you must define it as Company_x0020_Name. If you want to name a field
Revenue %, you must define it as Revenue_x0020__x0025_. The last thing to keep in mind is that the
Name attribute cannot be longer than 32 characters.

The preceding site column definition also defines the optional StaticName attribute, which is
another way of defining the internal name. The StaticName can be useful for referencing your
field in custom code, regardless of the encoding used in the Name field. Finally, the site col-
umn definition defines the field’s DisplayName attribute, whose value is the title that users

 CHAPTER 3 Data provisioning 57

will see in their browsers. This last attribute can take advantage of the multilanguage sup-
port provided by Microsoft .NET in general, so declaring its value as a resource string reference
(“$Resources:<Assembly_Name>,<Resource_Name>;”) instead of an explicit value will result in a
multilanguage value.

Why do you need three attributes to define field name types?
At first, using three attributes to define three kinds of names for a single field may seem
redundant and overly complex, but each attribute serves a purpose. Consider this: the XML
schema that we use as developers is also used internally by SharePoint to represent a site
column. When you define a column using the web browser interface, SharePoint automatically
determines the internal name (for instance, Name and StaticName) based on the name (which
becomes the display name) that you give it, automatically converting any nonalphanumeric
characters to their corresponding hexadecimal representations, and then trimming the result-
ing string to 32 characters for the Name attribute, leaving the StaticName attribute value as
long as needed. If a site column with the same Name already exists, SharePoint appends a
number to the name, using a zero-based index.

If you later change the DisplayName of the field, SharePoint will keep both the StaticName
and the Name unchanged. That scheme gives your site column three different values for the
three attributes: the DisplayName; the StaticName, which is simply the original DisplayName
with hexadecimal conversion of nonalphanumeric characters; and the Name, with hexadecimal
conversion of nonalphanumeric characters trimmed to 32 characters.

Lastly, using the SharePoint Server Object Model (for further details, see Chapter 5, “Server
Object Model”), you can change the StaticName, but you cannot change the internal Name
value. Therefore, when you have to define site columns using a feature element, the best prac-
tice is to assign the same value to the Name and to the StaticName (avoiding nonalphanumeric
characters) and to provide a descriptive value for the DisplayName attribute.

The Type attribute is mandatory for site column definitions. It defines the data type assigned to
the field. This Type attribute value can be one of a predefined set of SharePoint field types, or it can
be a custom field type that you have defined and deployed. Table 3-1 presents some of the main field
types provided by SharePoint.

More Info For a complete list of field types, refer to the online product reference at
http://msdn.microsoft.com/en-us/library/ms437580(v=office.15).aspx.

58 PaRt II Developing SharePoint solutions

TABLE 3-1 Common predefined field types

Field type name Description

Boolean Represents a Boolean value (TRUE or FALSE), stored as a bit in Microsoft SQL Server and
accessible as an SPFieldBoolean object through the Server Object Model.

Choice Allows the user to select a single value from a predefined set of values. The XML schema
of the Field element must declare the values (for further details, see Listing 3-2). It
is stored as an nvarchar in SQL Server, and is accessible as an SPFieldChoice object
through the Server Object Model.

MultiChoice Allows the user to select multiple values from a predefined set of values. The XML
schema of the Field element has to declare the values. It is stored as an ntext in SQL
Server, and is accessible as an SPFieldMultiChoice object through the Server Object
Model.

Currency Defines a currency value. Currency is bound to a specific locale, using an LCID attribute.
It can have constraints using Min, Max, and Decimals attributes. It is stored as a float
in SQL Server and is accessible as an SPFieldCurrency object through the Server Object
Model.

DateTime Saves a date and time value. DateTime is stored as a datetime in SQL Server, and is
accessible as an SPFieldDateTime object through the Server Object Model.

Lookup and LookupMulti Behave almost the same as Choice and MultiChoice; however, the set of values to
choose from is taken from another list of items within the same site. These field types
are stored as int types in SQL Server, and are accessible as SPFieldLookup objects
through the Server Object Model.

Note Stores multiple lines of text. Note is stored as an ntext in SQL Server, and is accessible as
an SPFieldMultiLineText object through the Server Object Model.

Number Defines a floating-point number. Number can have constraints using Decimals, Div,
Max, Min, Mult, and Percentage. It is stored as a float in SQL Server and is accessible as
an SPFieldNumber object through the Server Object Model.

Text Describes a single line of text of a configurable maximum length. Text is stored as an
nvarchar in SQL Server, and is accessible as an SPFieldText object through the Server
Object Model.

URL Defines a URL with a specific LinkType (Hyperlink or Image). URL is stored as an nvarchar
in SQL Server and is accessible as an SPFieldUrl object through the Server Object Model.

User and UserMulti Describe a lookup for a single user or a set of users. These are stored as an int types in
SQL Server, and are accessible as SPFieldUser objects through the Server Object Model.

The last attribute defined in the site column example is the Group attribute, which simply defines
a group membership to make it easier to find custom fields through the web browser administra-
tive interface. Group is an optional attribute, but it is better that you define it whenever you create a
custom site column, in order to organize your columns in personalized custom groups.

Although it’s not an exhaustive keyword reference, Table 3-2 shows some of the many
other interesting attributes that you can use when defining custom site columns. For a com-
plete reference of the available attributes, you can read the following page on MSDN:
http://msdn.microsoft.com/en-us/library/aa979575.aspx.

 CHAPTER 3 Data provisioning 59

TABLE 3-2 Interesting optional Boolean attributes available for the Field element

Field attribute Description

Hidden Can assume a value of TRUE or FALSE. When TRUE, the field will be completely hidden from
the UI and will be accessible only through code, using the Object Model.

ReadOnly Can assume a value of TRUE or FALSE. When TRUE, the field will not be displayed in new and
edit forms, but can be included in read-only data views. It will remain accessible using the
object model.

Required Can assume a value of TRUE or FALSE. Its name implies its role.

RichText Can assume a value of TRUE or FALSE. It determines whether a text field will accept rich text
formatting.

ShowInDisplayForm Can assume a value of TRUE or FALSE. When FALSE, the field will not be displayed in the
display form of the item containing the field.

ShowInEditForm Can assume a value of TRUE or FALSE. When FALSE, the field will not be displayed in the
editing form of the item containing the field.

ShowInNewForm Can assume a value of TRUE or FALSE. If it is FALSE, the field will not be displayed in the form
to add a new item containing the field.

While Listing 3-1 introduced a basic definition, Listing 3-2 adds another level of complexity by
declaring a Choice field that will be used to select the contact’s country affiliation.

LISTING 3-2 A Choice site column defined in a feature element

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry"
 StaticName="DevLeapCountry"
 DisplayName="Country"
 Type="Choice"
 Group="DevLeap Columns"
 Sortable="TRUE">
 <Default>Italy</Default>
 <CHOICES>
 <CHOICE>Italy</CHOICE>
 <CHOICE>USA</CHOICE>
 <CHOICE>Germany</CHOICE>
 <CHOICE>France</CHOICE>
 </CHOICES>
 </Field>
</Elements>

This example shows how you can define a set of available values for a Choice field. Note that the
list defines a Default element.

60 PaRt II Developing SharePoint solutions

Another interesting task that you can accomplish when defining a site column is to declare a cus-
tom validation rule for its content. To do that, you simply define a Validation element as a child of the
Field definition. The Validation element can have a Message attribute, which defines an error message
to display to end users when validation fails, and a Script attribute, which defines a JavaScript rule that
performs the validation. Alternatively, you can define a rule using the Formulas syntax of SharePoint,
putting the rule inside the Validation element.

More Info For further details on calculated fields and formulas in SharePoint, refer to
the “Calculated Field Formulas” MSDN page, at http://msdn.microsoft.com/en-us/library/
bb862071.aspx.

Content types

A content type schema defines a model for a specific SharePoint complex data type, and is based on a
set of site column references, together with some other optional information related to forms, render-
ing templates, a specific document template (only in the case of document items), and custom XML
configuration.

Chapter 2, “SharePoint data fundamentals,” showed how SharePoint uses a hierarchical structure
for defining content types, which consists of a base content type named System with a single child
named Item. SharePoint then applies an inheritance paradigm (similar to object-oriented class inheri-
tance) to define each content type descendant of Item. Figure 3-1 shows an excerpt of the hierarchical
inheritance tree for native content types. As a consequence of this behavior, you must define inheri-
tance information for each new content type that you declare. For more details, read the “Content
type IDs” section later in the chapter.

Listing 3-3 provides an example of the Contact content type, defined by referencing a set of site
columns.

 CHAPTER 3 Data provisioning 61

FIGURE 3-1 The content types inheritance hierarchy in SharePoint.

LISTING 3-3 A simple content type defined in a feature element, together with its site columns

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Site Columns used by the Content Type -->
 <Field
 ID="{C7792AD6-F2F3-4f2d-A7E5-75D5A8206FD9}"
 Name="DevLeapContactID"
 StaticName="DevLeapContactID"
 DisplayName="Contact ID"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />

62 PaRt II Developing SharePoint solutions

 <Field
 ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName"
 StaticName="DevLeapCompanyName"
 DisplayName="Company Name"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <Field
 ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry"
 StaticName="DevLeapCountry"
 DisplayName="Country"
 Type="Choice"
 Group="DevLeap Columns"
 Sortable="TRUE">
 <Default>Italy</Default>
 <CHOICES>
 <CHOICE>Italy</CHOICE>
 <CHOICE>USA</CHOICE>
 <CHOICE>Germany</CHOICE>
 <CHOICE>France</CHOICE>
 </CHOICES>
 </Field>
 <!-- Parent ContentType: Item (0x01) -->
 <ContentType ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F"
 Name="DevLeapContact"
 Group="DevLeap Content Types"
 Description="Base Contact of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}"
 Name="Title"
 DisplayName="Full name" />
 <FieldRef
 ID="{C7792AD6-F2F3-4f2d-A7E5-75D5A8206FD9}"
 Name="DevLeapContactID"
 DisplayName="Contact ID"
 Required="TRUE" />
 <FieldRef
 ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName"
 DisplayName="Company Name" />
 <FieldRef
 ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry"
 DisplayName="Country" />
 </FieldRefs>
 </ContentType>
</Elements>

 CHAPTER 3 Data provisioning 63

This feature element example contains a ContentType element, which defines some descrip-
tive information, such as the Name, Group, and Description. The ContentType element also defines
a Version attribute, which indeed is used for managing versioning, as its name implies, but is still
reserved by Microsoft for future use. Last, but most important, is the ID attribute, which defines the
unique identifier for this content type in the site collection where it is defined. Inside the ContentType
element is a FieldRefs element, which is the parent of a list of FieldRef or RemoveFieldRef elements.
Each element in this list references a specific site column to be added or removed from this content
type. You might notice that this example references all the site columns defined earlier in the fea-
ture element file. In fact, unless you are defining site columns for use in multiple content types, it’s
common to define the referenced site columns within the same feature element file—just before the
content type that will use them.

Listing 3-3 also references a site column with the name Title and the ID {fa564e0f-0c70-4ab9-
b863-0177e6ddd247}. This is the SharePoint native site column that defines the Title field for each
SharePoint item. In the content type example, we changed the DisplayName value from Title, which
still retains its internal name, to Full name, which will be the displayed name for this content type. By
default, the Title field is also used by SharePoint to render the Edit Control Block menu, which allows
you to display, edit, and manage a list item from the list UI.

Content type IDs
The ID attribute of a content type is not a simple GUID, as it was with the site columns definition;
instead, it’s a more complex value that describes the hierarchical inheritance of the type. In fact, every
content type ID is composed of the ID of its hierarchical parent content type, followed by a hexa-
decimal value that’s unique to the current content type. You could say that a content type ID defines
its genealogy. This logic is recursive, starting with the System content type and extending all the way
down to the current content type. Table 3-3 shows an excerpt of the base hierarchy of SharePoint
content type IDs.

TABLE 3-3 An excerpt of the base hierarchy of SharePoint content type IDs

Content type ID

System 0x

Item 0x01

Document 0x0101

XmlDocument 0x010101

Picture 0x010102

Event 0x0102

…

Contact 0x0106

Task 0x0108

…

Folder 0x0120

64 PaRt II Developing SharePoint solutions

Table 3-3 demonstrates that the root content type is System, which is a special hidden content type
with an ID value of 0x. The Item content type is the only child of System and has an ID value of 0x01
(the System ID + 01). The Document content type, which is a child of Item, has an ID value of 0x0101
(the Item ID + 01), while its sibling Event has an ID of 0x0102 (the Item ID + 02).

In general, the rule used to define content type IDs states that you can build an ID using either of
two techniques:

■■ Parent content type ID + two hexadecimal values (cannot be 00)

■■ Parent content type ID + 00 + hexadecimal GUID

Microsoft generally uses the first technique to define base content type IDs. Third parties, such as
vendors or ISVs, typically use the latter technique to define custom content type IDs. If you want to
define a hierarchy of custom content types of your own, follow these steps:

1. Identify the base content type from which you want to inherit.

2. Add 00 at the end of the base content type ID.

3. Add a hexadecimal GUID just after the 00.

4. Append two hexadecimal values to declare every specific child of your content type.

As a concrete example, suppose that you want to define a custom content type inher-
ited from the Document base content type. You would start with 0x0101, which is the
Document ID, append 00 to it, and then append a hexadecimal GUID, making your ID something like
0x010100BDD3EC87EA65463AB9FAA5337907A3ED.

If you wanted to use your custom content type as a base for some other inherited content types,
you would append 01, 02, and so on for each child content type, as in the following:

■■ Base ID 0x010100BDD3EC87EA65463AB9FAA5337907A3ED

■■ Child 1 0x010100BDD3EC87EA65463AB9FAA5337907A3ED01

■■ Child 2 0x010100BDD3EC87EA65463AB9FAA5337907A3ED02

More Info Content type IDs have a maximum length of 512 bytes. Because every two
hexadecimal characters correspond to a single byte, a content type ID has a maximum
length of 1,024 characters.

With that in mind, we can go back to the example custom Contact content type. First, you need to
choose the base content type from which you want to inherit. For example purposes, assume that you
decide to use the generic base Item as the parent content type. That means the custom content type
ID will start with 0x01, followed by 00 and then a hexadecimal GUID. The end result is the same as the
ID highlighted in bold in Listing 3-3:

ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F"

 CHAPTER 3 Data provisioning 65

The goal of the case study is to define a custom list that is based on a couple of content types
(Customer and Supplier) inherited from this base Contact content type. Listing 3-4 shows the defini-
tions of the Customer and Supplier content types.

LISTING 3-4 Customer and Supplier content type definitions

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel"
 StaticName="DevLeapCustomerLevel"
 DisplayName="Customer Level"
 Type="Choice"
 Group="DevLeap Columns">
 <Default>Level C</Default>
 <CHOICES>
 <CHOICE>Level A</CHOICE>
 <CHOICE>Level B</CHOICE>
 <CHOICE>Level C</CHOICE>
 </CHOICES>
 </Field>
 <Field
 ID="{A73DE518-B9B9-4e8d-9D94-6099B4603997}"
 Name="DevLeapSupplierAccount"
 StaticName="DevLeapSupplierAccount"
 DisplayName="Supplier Account"
 Type="User"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <ContentType ID=”0x0100A60F69C4B1304FBDA6C4B4A25939979F01”
 Name="DevLeapCustomer"
 Group="DevLeap Content Types"
 Description="Customer of DevLeap"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel"
 Required="TRUE" />
 </FieldRefs>
 </ContentType>
 <ContentType ID=”0x0100A60F69C4B1304FBDA6C4B4A25939979F02”
 Name="DevLeapSupplier"
 Group="DevLeap Content Types"
 Description="Supplier of DevLeap"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{A73DE518-B9B9-4e8d-9D94-6099B4603997}"
 Name="DevLeapSupplierAccount"
 Required="TRUE" />
 </FieldRefs>
 </ContentType>
</Elements>

66 PaRt II Developing SharePoint solutions

Both of these content types extend the base Contact content type; each adds a specific site col-
umn. The Customer content type adds a required field to define the customer level (A, B, or C) for
each Customer instance, while the Supplier content type adds a field to reference a local account,
which you can browse as a SharePoint user. You can see the inheritance hierarchy of these custom
types in Figure 3-2, which shows a portion of the Site Content Type page of a site collection.

FIGURE 3-2 The Site Content Type page of a site collection where the custom content types are provisioned.

Finally, consider that Visual Studio 2012 automatically calculates the content type IDs when
you add a new content type to a SharePoint project. In fact, if you try to add a content type to a
SharePoint project within Visual Studio 2012, you will be prompted with a one-step wizard, regardless
of whether you are creating a Windows SharePoint Services Solution Package (WSP) or a SharePoint
app. In the wizard’s first and only step, you must choose the basic content type from which you would
like your custom content type to inherit (Figure 3-3).

FIGURE 3-3 The wizard for creating a new content type.

After you make your choice and click finish to close the wizard, SharePoint displays a graphical
designer useful to define the columns of the content type and its overall configuration. Figure 3-4
shows the two tabs available in the Content Type designer: Columns and Content Type.

 CHAPTER 3 Data provisioning 67

FIGURE 3-4 The two tabs available in the Content Type designer.

As you can see, the Columns tab is active. Here you can reference the site columns to use in the
current content type. Note, however, that you can specify existing site columns only. The Content
Type tab enables you to define the name, the description, and the group of the current content type.
Lastly, through this second tab you can also determine whether the content type will inherit columns
from its parent type or not, as well as if the current type will be read-only and/or hidden. Based on
your settings, the designer creates an XML element manifest file that is similar to what you can code
manually. Although this might seem like a worthwhile shortcut, it is somewhat limited. When you
need a finer degree of flexibility in defining custom content types, manually creating or editing the
XML file is a better solution.

More about content types
Sometimes you need a more restricted content type; in such cases, SharePoint offers several other
interesting attributes to help you out. For example, the ReadOnly attribute makes the content type
read-only when its value is set to TRUE. Likewise, when the Sealed attribute is set to TRUE, it seals a
content type so that only a site collection administrator using the Server Object Model can unseal it
for editing. Lastly, the Hidden attribute is useful for making a content type invisible so that contribu-
tors cannot create new items of this type in list views, but you will still have access to it through your

68 PaRt II Developing SharePoint solutions

custom code. If you want to declare a content type as completely invisible—not only for end users
but also for site collection administrators—you can make it belong to a special group named _Hidden.

In addition, you can configure a content type not only through ContentType element attributes,
but also by declaring some child elements. One of these is the FieldRefs child element discussed ear-
lier in this chapter. Another useful element is XmlDocuments, with which you can define any kind of
custom XML configuration to apply to the content type. SharePoint itself uses this element to declare
custom controls and pages for the content type. Listing 3-5 shows how to use this element.

LISTING 3-5 Using the XmlDocuments element inside a content type definition

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ContentType ID="0x0100a60f69c4b1304fbda6c4b4a25939979f01"
 Name="DevLeapCustomer"
 Group="DevLeap Content Types"
 Description="Customer of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel"
 Required="TRUE" />
 </FieldRefs>
 <XmlDocuments>
 <XmlDocument NamespaceURI=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <FormTemplates xmlns=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <Display>DevLeapCustomerDisplay</Display>
 <Edit>DevLeapCustomerEdit</Edit>
 <New>DevLeapCustomerNew</New>
 </FormTemplates>
 </XmlDocument>
 </XmlDocuments>
 </ContentType>
</Elements>

Listing 3-5 shows that the XmlDocuments element is just a container for one or more
XmlDocument elements. Every XmlDocument element can have a NamespaceURI attribute that
declares the scope of the custom configuration defined. Listing 3-5 declares a configuration that
defines custom ASCX control files that are used for rendering display, edit, and add forms for
instances of the current content type. The ASCX control files referenced should be deployed inside

 CHAPTER 3 Data provisioning 69

the CONTROLTEMPLATES special folder of SharePoint, through a farm-level (full-trust) solution. The
content of each XmlDocument element derives from the referenced NamespaceURI. The only require-
ment is that the XML content must be valid against its declared XML schema.

When you consider that in a farm-level (full-trust) solution you can access any custom
XmlDocument that you define while provisioning content types later through the Server Object
Model, you can see that the model provides you with an extremely customizable environment.

Document content types
Content types inherited from the Document base content type (ID: 0x0101) are a special case that you
must analyze a bit more carefully than usual. In fact, every document has numerous specific con-
figurations that it must handle. For instance, in the “Content types” section earlier in the chapter, you
learned that a document can have a document template, a document information panel, or both.

Listing 3-6 shows the definition for a custom document content type that declares an Invoice
document model.

LISTING 3-6 Defining the Invoice content type, inherited from the Document content type

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Document (0x0101) -->
 <ContentType ID="0x010100A5FD8267A91945DF9F3884D9EAA4F12F"
 Name="DevLeapInvoice"
 Group="DevLeap Content Types"
 Description="Invoice of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <!-- Field References here -->
 </FieldRefs>
 <DocumentTemplate TargetName="Forms/DevLeapInvoiceTemplate.dotx" />
 </ContentType>
</Elements>

The Document portion of the ID is highlighted in bold to remind you of the underlying behavior
of SharePoint. The DocumentTemplate element (also highlighted) has a TargetName attribute that
defines the URL (relative for the site collection) of the template item to use for every new Invoice
instance. Listing 3-7 shows how to define a custom document information panel for a Document con-
tent type, assuming that you have already designed and deployed the panel.

70 PaRt II Developing SharePoint solutions

LISTING 3-7 Defining a custom document information panel for an Invoice content type, inherited from the
Document content type

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Document (0x0101) -->
 <ContentType ID="0x010100a5fd8267a91945df9f3884d9eaa4f12f"
 Name="DevLeapInvoice"
 Group="DevLeap Content Types"
 Description="Invoice of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <!-- Field References here -->
 </FieldRefs>
 <XmlDocuments>
 <XmlDocument NamespaceURI=
 "http://schemas.microsoft.com/office/2006/metadata/customXsn">
 <xsnLocation>http://URL/customXsn.xsn</xsnLocation>
 <cached>False</cached>
 <openByDefault>True</openByDefault>
 <xsnScope>http://URL/documentLibrary</xsnScope>
 </XmlDocument>
 </XmlDocuments>
 </ContentType>
</Elements>

Listing 3-7 declares the absolute URL of the document information panel by using the xsnLocation
element. It also disables caching in the Microsoft Office client by setting the cached element to
FALSE. Lastly, it defines how the document should behave relative to this new panel, through the
openByDefault element, which is set to TRUE, meaning that the panel should open by default. The
xsnScope element is required, but for now it is reserved by Microsoft for internal use only.

List definitions

Now that you have defined your content types, you are ready to use them in a real list of contacts,
comprising customers and suppliers. In fact, generally, whenever you define a set of custom content
types, you also define one or more list definitions that use these content types. A list definition is
simply a formal representation, using an XML schema, of a list data model from which you are able to
create one or more instances of items corresponding to that model.

 CHAPTER 3 Data provisioning 71

In SharePoint, a list definition is a combination of two files: a Schema.xml file, which defines the
data structure and configuration of the list definition model, and a feature element file that describes
the ListTemplate, which defines the information required for provisioning and deploying the list defi-
nition model.

List schema file
The list schema file is an XML document that describes all the metadata for the list data structure. The
following are the main areas of the Schema.xml file for a list definition:

■■ Content Types This section defines the content types that will be available within the list
definition.

■■ Fields This section declares the list-level site columns, which correspond to the entire set of
site columns referenced by all the content types associated with the list definition.

■■ Views This section defines the views that will be available to the end user for navigating
among the items of list template instances.

■■ Forms This section declares the ASPX pages that will be provided to the end user to add,
display, and update items of a list instance based on the current list definition.

■■ Validation This section defines the validation rules for list items.

■■ Toolbar This section declares the type of toolbar that must be provided in the browser
interface.

In addition to the preceding list, the complete XML schema contains some other elements as well.
Listing 3-8 shows an excerpt from a Schema.xml file that describes a list definition, together with
these main sections.

72 PaRt II Developing SharePoint solutions

LISTING 3-8 Excerpt of a list definition schema file

<?xml version="1.0" encoding="utf-8"?>
<List xmlns:ows="Microsoft SharePoint"
 Title="DevLeapContacts"
 FolderCreation="FALSE"
 Direction="$Resources:Direction;"
 Url="Lists/DevLeapContacts"
 BaseType="0"
 EnableContentTypes="TRUE"
 xmlns="http://schemas.microsoft.com/sharepoint/">
 <MetaData>
 <ContentTypes>
 <!-- Here are referenced the content types -->
 </ContentTypes>
 <Fields>
 <!-- Here are declared the list-level site columns -->
 </Fields>
 <Views>
 <!-- Here are defined the views -->
 </Views>
 <Forms>
 <!-- Here are declared the forms used to add, display, update items -->
 </Forms>
 <Validation>
 <!-- Here are declared the validation rules for list items -->
 </ Validation >
 <Toolbar />
 <!-- To define what kind of toolbar to use in the Web browser UI -->
 </MetaData>
</List>

the List element
The List element is the root of the schema file and declares some basic attributes for the list definition.
The Title attribute defines the name of the list definition. The BaseType attribute defines the base list
type to use for the current list definition. The global onet.xml file of SharePoint (for further details,
please read Chapter 13, “Web templates”) declares the list of all the available integer values for the
BaseType values within a BaseTypes element.

Note The global onet.xml file is located in the SharePoint15_Root\TEMPLATE\GLOBAL\XML
folder.

 CHAPTER 3 Data provisioning 73

The available BaseTypes values are

■■ 0 Generic/Custom List

■■ 1 Document Library

■■ 2 Not used, may be reserved for future use

■■ 3 Discussion Forum (deprecated, use 0 instead)

■■ 4 Vote or Survey

■■ 5 Issues List

For example, Listing 3-8 used a BaseType with a value of 0 because we are defining a generic/
custom list definition. The Url attribute is optional and defines the path to the root directory con-
taining any ASPX file specific for the list definition. The FolderCreation attribute is also optional, and
informs SharePoint whether to show (TRUE) or not show (FALSE) the New Folder command on the list
toolbar. Finally, the Direction attribute is optional and declares the reading direction: RTL (right to left)
or LTR (left to right). In Listing 3-8, the Direction value is read from a resource string so that the list
will be compliant with the current locale settings of the site collection. Lastly, to make the users aware
of the existence of the different available content types (Contact, Customer, and Supplier) when they
are creating new items, we need to explicitly enable content types on the list definition, setting the
EnableContentTypes attribute to a value of TRUE. There are many other attributes available for the List
definition element; Table 3-4 shows some of them.

More Info For a complete reference of all the available attributes for the List element,
refer to the official product documentation on MSDN, at http://msdn.microsoft.com/en-us/
library/ms415091(v=office.15).aspx.

TABLE 3-4 Some of the main attributes for the List element of a Schema.xml list definition file

Attribute Description

DisableAttachments Optional Boolean value to disable attachments on the list.

EnableMinorVersions Optional Boolean value that controls versioning with major and minor version of items.

ModeratedList Optional Boolean value to enable content approval on inserted items.

PrivateList Optional Boolean value to specify that the list is private.

VersioningEnabled Optional Boolean value to enable versioning on the list. This value can be changed when
creating a list instance.

74 PaRt II Developing SharePoint solutions

the MetaData element
The main child element of List is the MetaData element, which wraps all the other elements in the
Schema.xml file.

One of the main child nodes of MetaData is the ContentTypes element. This element declares
the entire list of content types referenced by the current list definition. Listing 3-9 declares the
ContentTypes element for the custom Contacts list.

LISTING 3-9 The ContentTypes section of metadata for the sample list definition

<ContentTypes>
 <ContentType
 ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F"
 Name="DevLeapContact"
 Group="DevLeap Content Types"
 Description="Base Contact of DevLeap"
 Inherits="TRUE" Version="0" Hidden="TRUE">
 <FieldRefs>
 <FieldRef ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}"
 Name="Title" DisplayName="Full name" Required="TRUE" />
 <FieldRef ID="{C7792AD6-F2F3-4f2d-A7E5-75D5A8206FD9}"
 Name="DevLeapContactID" DisplayName="Contact ID"
 Required="TRUE" />
 <FieldRef ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName" DisplayName="Company Name" />
 <FieldRef ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry" DisplayName="Country" />
 </FieldRefs>
 </ContentType>
 <ContentType
 ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F01"
 Name="DevLeapCustomer"
 Group="DevLeap Content Types"
 Description="Customer of DevLeap"
 Inherits="TRUE" Version="0">
 <FieldRefs>
 <FieldRef ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel" Required="TRUE" />
 </FieldRefs>
 <XmlDocuments>
 <XmlDocument NamespaceURI=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <FormTemplates xmlns=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <Display>DevLeapCustomerDisplay</Display>
 <Edit>DevLeapCustomerEdit</Edit>
 <New>DevLeapCustomerNew</New>
 </FormTemplates>
 </XmlDocument>
 </XmlDocuments>
 </ContentType>

 CHAPTER 3 Data provisioning 75

 <ContentType
 ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F02"
 Name="DevLeapSupplier"
 Group="DevLeap Content Types"
 Description="Supplier of DevLeap"
 Inherits="TRUE" Version="0">
 <FieldRefs>
 <FieldRef ID="{A73DE518-B9B9-4e8d-9D94-6099B4603997}"
 Name="DevLeapSupplierAccount" Required="TRUE" />
 </FieldRefs>
 </ContentType>
</ContentTypes>

Listing 3-9 defines all the content types already defined in the previous section, repeating their
IDs to link these copies to the original definitions. Why repeat these declarations instead of simply
referencing them in some way—such as by just linking their IDs, for example? During a content type’s
lifetime, its structure might change. To prevent and avoid any data loss, SharePoint copies content
type definitions inside the list definitions that use them. Doing so preserves data models and data
instances even if someone later changes them. Imagine what would happen if you had a simple con-
tent type reference rather than a copy; if you were to provision a Customer content type and use it
in a custom list, then a few months later, when you have thousands of customer instances in your list,
you delete a column from the Customer content type—or worse, you delete the entire content type!
Having a complete copy of the content type definition allows SharePoint to maintain your data, even
when the original content type changes or is removed.

On the other hand, whenever you want to make a change to one of your provisioned content
types and you want that change applied to every instance in a site collection, you need to explicitly
force the update through the browser-based content type administration page, through code using
the Server Object Model, or by manually updating any references in the provisioned XML files, includ-
ing the Schema.xml files for list definitions.

Listing 3-9 defines all three content types (Contact, Customer, and Supplier) and declares the base
Contact as hidden, which forces users to explicitly create Customer or Supplier instances.

Another child of MetaData is the Fields element. It defines the list-level columns used to store
metadata of item instances. These list-level columns are almost the same as the site columns defined
in the first section of this chapter. Once again, their definitions are duplicated rather than referenced,
and for the same reason: to support changes of the models without data loss during the site columns’
lifetimes. The Fields section of the list definition contains all the columns used by any of the content
types declared in the same Schema.xml file. Listing 3-10 shows the Fields element declared for the
custom Contacts list.

76 PaRt II Developing SharePoint solutions

LISTING 3-10 The Fields section of the MetaData element for the sample list definition

<Fields>
 <Field ID="{c7792ad6-f2f3-4f2d-a7e5-75d5a8206fd9}"
 Name="DevLeapContactID"
 StaticName="DevLeapContactID"
 DisplayName="Contact ID"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <Field ID="{a8f24550-55cd-4d34-a015-811954c6ce24}"
 Name="DevLeapCompanyName"
 StaticName="DevLeapCompanyName"
 DisplayName="Company Name"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <Field ID="{149bf9a1-5bbb-468d-aa35-91aceb054e3b}"
 Name="DevLeapCountry"
 StaticName="DevLeapCountry"
 DisplayName="Country"
 Type="Choice"
 Group="DevLeap Columns"
 Sortable="TRUE">
 <Default>Italy</Default>
 <CHOICES>
 <CHOICE>Italy</CHOICE>
 <CHOICE>USA</CHOICE>
 <CHOICE>Germany</CHOICE>
 <CHOICE>France</CHOICE>
 </CHOICES>
 </Field>
 <Field ID="{ac689935-8e8b-485e-a45e-ff5a338dd92f}"
 Name="DevLeapCustomerLevel"
 StaticName="DevLeapCustomerLevel"
 DisplayName="Customer Level"
 Type="Choice"
 Group="DevLeap Columns">
 <Default>Level C</Default>
 <CHOICES>
 <CHOICE>Level A</CHOICE>
 <CHOICE>Level B</CHOICE>
 <CHOICE>Level C</CHOICE>
 </CHOICES>
 </Field>
 <Field ID="{a73de518-b9b9-4e8d-9d94-6099b4603997}"
 Name="DevLeapSupplierAccount"
 StaticName="DevLeapSupplierAccount"
 DisplayName="Supplier Account"
 Type="User"
 Group="DevLeap Columns"
 Sortable="TRUE" />
</Fields>

 CHAPTER 3 Data provisioning 77

Just as with the ContentTypes section, the Fields section is simply a wrapper for the copies of all
the previously defined site columns. Notice that the ID values for the site columns are the same as
those of the global site columns, serving to keep the global site columns linked to the local list-level
columns.

Figure 3-5 shows how the List Settings page of a list based on the custom Contacts list definition
looks in a web browser. Note that all three content types and all the list-level columns are present.

FIGURE 3-5 The List Settings page of a list instance based on the custom Contacts list definition.

Just after the Fields section comes the Views element, which is a child of MetaData. This section
is really interesting because it is where you define the views on data that will be available to the end
users in the web browser. Each View element, which is a child of Views, defines a data view declaring
some configuration attributes (illustrated in Table 3-5).

More Info For a complete list of all the available View attributes, refer to the official docu-
mentation on MSDN, at http://msdn.microsoft.com/en-us/library/ms438338(v=office.15).aspx.

78 PaRt II Developing SharePoint solutions

TABLE 3-5 Some of the main attributes for the View element of a Schema.xml list definition file

Attribute Description

Type The type of view. Type can be HTML, Chart, or Pivot.

BaseViewID An Integer value that declares the ID of the view. BaseViewID must be unique within a
Schema.xml file.

Url The public URL to access the view from the browser.

DisplayName The name of the view in the web browser.

DefaultView A Boolean value that declares if the view is the default view for the current list.

MobileView A Boolean value that specifies if the current view has to be made available to mobile devices.

MobileDefaultView A Boolean value that declares if the view, enabled for mobile access, is the default view for
mobile devices.

SetupPath Defines the site-relative path to the ASPX file corresponding to the current view model. It
allows provisioning a custom page for the current view.

WebPartZoneID A string that declares the ID of the WebPartZone control where the current view will be
loaded, within the ASPX Web Part page.

The View element also allows you to declare some other configuration details using child elements.
Listing 3-11 shows the default view definition for the list of contacts.

LISTING 3-11 The default View definition for the sample list

<View BaseViewID="1" Type="HTML"
 WebPartZoneID="Main"
 DisplayName="$Resources:core,objectiv_schema_mwsidcamlidC24;"
 DefaultView="TRUE" MobileView="TRUE"
 MobileDefaultView="TRUE"
 SetupPath="pages\viewpage.aspx"
 ImageUrl="/_layouts/images/generic.png"
 Url="AllItems.aspx">
 <Toolbar Type="Standard" />
 <RowLimit Paged="TRUE">50</RowLimit>
 <ViewFields>
 <FieldRef Name="Attachments">
 </FieldRef>
 <FieldRef Name="LinkTitle">
 </FieldRef>
 </ViewFields>
 <Query>
 <OrderBy>
 <FieldRef Name="ID">
 </FieldRef>
 </OrderBy>
 </Query>
 <XslLink>main.xsl</XslLink>
 <JSLink>clienttemplates.js</JSLink>
</View>

 CHAPTER 3 Data provisioning 79

Listing 3-11 declares a BaseViewID with a value of 1, and specifies that this view will be the default
(DefaultView), not only for classic web browsers, but also for mobile devices (MobileDefaultView).
The URL to access the view will be AllItems.aspx, and this page will be based on the SetupPath file
pages\viewpage.aspx filling out the WebPartZone control whose ID is Main.

The child elements of the View tag in Listing 3-11 inform SharePoint to use the Standard value for
the toolbar. The maximum number of rows (RowLimit) is set to return a value of 50, enabling paging.

Note If not specified, the default RowLimit is 30.

After these configuration elements, Listing 3-11 defines some other elements that determine
the data to show, declaring a Query element to filter and sort data, and a set of ViewFields ele-
ments to show, as well as some optional grouping rules. The Query element is simply a Collaborative
Application Markup Language (CAML) query that defines the values to extract from the source list,
the ordering rule, and which values will be shown in the current view. For example, Listing 3-11
queries all the items in the list, sorting them by the value of their ID fields.

Note CAML is an XML-based querying language that can be used to define filtering,
sorting, and grouping on SharePoint data. The CAML language reference is available on
MSDN, at http://msdn.microsoft.com/en-us/library/ms467521(v=office.15).aspx. In case you
are a SharePoint 2010 developer, consider that CAML hasn’t changed that much between
SharePoint 2010 and SharePoint 2013.

Another important child section of the View element is the ViewFields element, which declares
the fields to show in the resulting view. These fields are referenced by their internal names, using a
specific FieldRef element.

The last child elements in the View are the XslLink and JsLink elements. Since SharePoint
2010, SharePoint can render views using XSLT transformations. The XslLink element speci-
fies the path to the XSLT file used to render the view. This XSLT file path is relative to the folder
SharePoint15_Root\TEMPLATE\LAYOUTS\XSL. Moreover, starting from SharePoint 2013, the JsLink
element allows declaring a JavaScript file to include and use for rendering the view.

Note SharePoint15_Root refers to the SharePoint root folder, which is typically located at
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15.

As an alternative to providing an explicit XSLT file path, you can use an Xsl element to simply
declare the XSLT transformation inside the Schema.xml file. Because you may want to reuse the XSLT
transformation, however, a better choice is to reference an external file. This is especially useful when
you are developing a full-trust solution. The capability to define the XSLT transformation inside the

80 PaRt II Developing SharePoint solutions

Schema.xml file is provided for those situations, such as for sandboxed solutions and SharePoint apps,
when you want to avoid copying files to the file system of the target SharePoint farm.

The Forms element is another important configuration section for the list definition, as shown in
Listing 3-12.

LISTING 3-12 The Forms configuration section of the custom Contacts list definition

<Forms>
 <Form Type="DisplayForm"
 Url="DispForm.aspx" SetupPath="pages\form.aspx" WebPartZoneID="Main" />
 <Form Type="EditForm"
 Url="EditForm.aspx" SetupPath="pages\form.aspx" WebPartZoneID="Main" />
 <Form Type="NewForm"
 Url="NewForm.aspx" SetupPath="pages\form.aspx" WebPartZoneID="Main" />
</Forms>

The Forms element contains a set of Form elements that declare the forms available to the end
user. Each Form element requires a Type attribute that takes one of the following values:

■■ DisplayForm The form to display a list item

■■ EditForm The form to edit an existing list item

■■ NewForm The form to add a new list item

Every form also requires a URL where it can be accessed. Forms might include an optional
SetupPath attribute from which to load the ASPX page model, as well as a WebPartZoneID attribute,
which specifies the ID of the Web Part zone used to load the rendering control of the form. As an
alternative to the SetupPath attribute, you could have a Path attribute, which defines a physical file
system path relative to the _layouts folder for a template file, and a Template attribute, which specifies
the name of the template to use. You can also use CAML syntax to define the template for the body,
buttons, opening section, and closing section of each of these forms, using these specific child nodes
of the Form element: ListFormBody, ListFormButtons, ListFormClosing, and ListFormOpening.

The last configuration section shown is the Validation element. This element, introduced with
SharePoint 2010, supports defining validation rules that can apply to each item of the list. Listing 3-13
shows how to declare a custom validation rule together with a validation error message that end
users will see if validation fails.

LISTING 3-13 Declaring a sample validation rule for the custom Contacts list definition items

<Validation Message="Please check your data, there is something wrong!">
 =Title<>"Blank"
</Validation>

 CHAPTER 3 Data provisioning 81

The validation rule forces the items to have a Title field with a value not equal to Blank. Notice that
list-level validation rules work properly only with fields shared by all the content types of the list. If
you enforce a rule against a field that is not defined in all the content types of the list, then your rule
will always throw an error when applied to the wrong content types. For example, if you define a rule
at the list level for the DevLeapCustomerLevel field of the Customer content type, you will not be able
to add or update any Supplier instances, because the DevLeapCustomer field is not present in the
Supplier content type. In such cases, you should instead define the validation rule at the site column
level.

Defining a custom view
When defining custom list definitions, you’ll frequently want to declare some custom views that cor-
respond to the business rules of your data model. For example, the sample model could feature one
view that shows only customers and another that shows only suppliers. This section demonstrates
how to define the former view; the latter’s definition will be almost identical.

First, define a new View element under the Views element of the Schema.xml file. The new view
will have a unique BaseViewID; in this example it will be 2. The DisplayName will be All Customers, the
Type will be HTML, and the Url will be AllCustomers.aspx. All the other attributes values of the View
element are trivial. You can see the complete definition of this view in Listing 3-14.

LISTING 3-14 Defining a custom view for a custom Contacts list definition

<View BaseViewID="2" Type="HTML"
 WebPartZoneID="Main"
 DisplayName="All Customers"
 DefaultView="FALSE" MobileView="TRUE"
 MobileDefaultView="FALSE"
 SetupPath="pages\viewpage.aspx"
 ImageUrl="/_layouts/images/generic.png"
 Url="AllCustomers.aspx">
 <Toolbar Type="FreeForm" />
 <XslLink>Contacts_Main.xsl</XslLink>
 <RowLimit Paged="TRUE">20</RowLimit>
 <ViewFields>
 <FieldRef Name="Attachments">
 </FieldRef>
 <FieldRef Name="LinkTitle">
 </FieldRef>
 <FieldRef Name="DevLeapContactID">
 </FieldRef>
 <FieldRef Name="DevLeapCompanyName">
 </FieldRef>
 <FieldRef Name="DevLeapCountry">
 </FieldRef>
 <FieldRef Name="DevLeapCustomerLevel">
 </FieldRef>
 </ViewFields>

82 PaRt II Developing SharePoint solutions

 <Query>
 <Where>
 <Eq>
 <FieldRef Name="ContentType" />
 <Value Type="Text">DevLeapCustomer</Value>
 </Eq>
 </Where>
 <OrderBy>
 <FieldRef Name="ID">
 </FieldRef>
 </OrderBy>
 </Query>
</View>

There are some areas of interest in this view definition. First, the code defines a Query to
filter only items with a ContentType value of DevLeapCustomer and orders the result by the
item ID. Then it references all the fields of the Customer content type, defining a set of FieldRef
elements within the ViewFields element. Lastly, a custom XSLT transformation is defined for
rendering the custom view. SharePoint will search for this XSLT file, Contacts_Main.xsl, in the
SharePoint15_Root\TEMPLATE\LAYOUTS\XSL folder. The file has to be placed in that folder using the
solution-provisioning tools provided by Visual Studio 2012 to create a full-trust solution. (For further
details, see Chapter 4, “SharePoint features and solutions.”) Otherwise, as you have already seen, you
can define the XSLT code directly in the View schema definition, inside an Xsl element.

The XSLT file you reference or define in the View definition is a common XSLT transformation that
will receive a wide range of parameters at run time from SharePoint. In the XSLT code, for example,
you can access the XmlDefinition variable, which provides the XML definition of the current View. To
define an XSLT for a custom view, you must provide an XSLT template that matches the BaseViewID of
the targeted view. For the Contacts example, the following template was defined:

<xsl:template match="View[@BaseViewID="2"]" mode="full">
 <!-- Here is our custom XSLT transformation -->
</xsl:template>

The XSLT also receives a parameter named Rows that contains all the items to be rendered. Listing
3-15 shows an excerpt of the XML content of the Rows parameter. You can read it simply by using an
XSLT template that copies the source content with an <xsl:copy-of /> element.

 CHAPTER 3 Data provisioning 83

LISTING 3-15 The content of the Rows parameter provided to a custom XSLT for rendering a list view

<Rows>
 <Row ID="1" PermMask="0x7fffffffffffffff" Attachments="0"
 Title="Customer 01" FileLeafRef="1_.000" FileLeafRef.Name="1_"
 FileLeafRef.Suffix="000" FSObjType="0"
 Created_x0020_Date="1;#2010-02-13 16:24:12" Created_x0020_Date.ifnew="1"
 FileRef="/sites/SP2010DevRef/Lists/Test/1_.000"
 FileRef.urlencode="%2Fsites%2FSP2010DevRef%2FLists%2FTest%2F1%5F%2E000"
 FileRef.urlencodeasurl="/sites/SP2010DevRef/Lists/Test/1_.000"
 File_x0020_Type=""
 HTML_x0020_File_x0020_Type.File_x0020_Type.mapall="icgen.gif||"
 HTML_x0020_File_x0020_Type.File_x0020_Type.mapcon=""
 HTML_x0020_File_x0020_Type.File_x0020_Type.mapico="icgen.gif" ContentTypeId
="0x0100A60F69C4B1304FBDA6C4B4A25939979F010044C1B948A829E64CBD49ED3F42A868C7"
DevLeapContactID="C01"DevLeapCompanyName="Company 01"
 DevLeapCountry="Italy" DevLeapCustomerLevel="Level C"
 ContentType="DevLeapCustomer"></Row>
 <!—And many other rows here, one for each list item to show -->
</Rows>

Listing 3-15 illustrates that the Rows parameter provides each row along with its data columns,
specified as attributes of a Row element. To output the content of the rows, you simply need to
retrieve the values of these attributes, placing them inside the proper HTML elements to adhere to
the graphical layout that you need to render.

However, many SharePoint developers do not like writing XSLT files, because XSLT is inflexible
(although very powerful) from a syntax viewpoint. Luckily, starting with SharePoint 2013, you have the
option to provide a custom JavaScript file through the JsLink child element of the View element, in
order to move rendering templates into client-side code. Generally speaking, this technique is known
as client-side rendering (CSR). Listing 3-16 uses this new technique to define a custom view.

LISTING 3-16 A custom view definition for the custom Contacts list definition using JavaScript rendering

<View BaseViewID="3" Type="HTML"
 WebPartZoneID="Main"
 DisplayName="All Customers via JS"
 DefaultView="FALSE" MobileView="TRUE"
 MobileDefaultView="FALSE"
 SetupPath="pages\viewpage.aspx"
 ImageUrl="/_layouts/images/generic.png"
 Url="AllCustomersViaJS.aspx">
 <Toolbar Type="FreeForm" />
 <XslLink>main.xsl</XslLink>
 <JsLink Default="TRUE">~site/Scripts/CustomCustomersView.js</JsLink>
 <RowLimit Paged="TRUE">20</RowLimit>

84 PaRt II Developing SharePoint solutions

 <ViewFields>
 <FieldRef Name="Attachments">
 </FieldRef>
 <FieldRef Name="LinkTitle">
 </FieldRef>
 <FieldRef Name="DevLeapContactID">
 </FieldRef>
 <FieldRef Name="DevLeapCompanyName">
 </FieldRef>
 <FieldRef Name="DevLeapCountry">
 </FieldRef>
 <FieldRef Name="DevLeapCustomerLevel">
 </FieldRef>
 </ViewFields>
 <Query>
 <Where>
 <Eq>
 <FieldRef Name="ContentType" />
 <Value Type="Text">DevLeapCustomer</Value>
 </Eq>
 </Where>
 <OrderBy>
 <FieldRef Name="ID">
 </FieldRef>
 </OrderBy>
 </Query>
</View>

In Listing 3-16, shows the JsLink element (highlighted in bold) configured as the default
(Default="TRUE") rendering template. SharePoint will look for the JavaScript file at a URL relative
to the current site collection, because of the ~site token at the very beginning of the URL. You can
deploy the JavaScript code of the CustomCustomerView.js file to the target site simply working at
the website level, using a sandboxed solution or an app deployment process. In the JavaScript code,
you can reference the Client Object Model of SharePoint in order to query the current list configura-
tion, as well as the items to render. This technique is extremely powerful. While provisioning lists for
Office 365, for example, you can use this technique to move all the rendering logic to the client side,
using jQuery or CSS rendering templates. With its XSLT and JavaScript support, SharePoint opens up
some great business opportunities; because it gives you the capability to display fully customized
rendering of list views, your solutions can support fully customized template layouts, even in extreme
web content management solutions.

More Info For more information about CSR, you can read the document “How to:
Customize a list view in apps for SharePoint using client-side rendering,” available at
http://msdn.microsoft.com/en-us/library/jj220045.aspx.

 CHAPTER 3 Data provisioning 85

the ListTemplate definition file
ListTemplate is the feature element file that declares all the deployment properties needed to provi-
sion the list definition. It must be provisioned into a custom feature together with the Schema.xml file.
Listing 3-17 shows the ListTemplate for the sample Contacts list definition.

LISTING 3-17 The ListTemplate feature element for the sample Contacts list definition

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListTemplate
 Name="DevLeapContacts"
 Type="10001"
 BaseType="0"
 OnQuickLaunch="TRUE"
 SecurityBits="11"
 Sequence="410"
 DisplayName="DevLeap Contacts"
 Description="A list of Contact for DevLeap"
 Image="/_layouts/images/dlcon.png"/>
</Elements>

The Type attribute is the most important attribute in the ListTemplate element. Type takes an
integer value that should be unique at the site collection level. The code sample uses a value of
10001 to avoid overlapping with values of out-of-the-box list templates. In general, you should use a
large integer value to avoid overlapping with SharePoint. Consider that values in the range between
100 and 1200 are already taken, and developers should allocate numbers greater than 10000. The
uniqueness of this attribute allows you to define custom UI extensions that will target the entire set of
lists with that Type value.

The other attributes are straightforward. The BaseType attribute states the base type for the cur-
rent list definition. The Name attribute represents the internal name of the list, and the DisplayName
is the text shown to end users, together with the Description and the Image. You can load the
values of these descriptive attributes from external resource strings to provision list definitions in a
multilanguage environment. The OnQuickLaunch Boolean attribute value controls whether SharePoint
shows any instance of the list in the Quick Launch menu. You can also provision a list instance through
a custom feature of type ListInstance, which will be explained in Chapter 4.

Finally, the SecurityBits attribute defines the security behavior of the list. This is a two-digit string,
where the first digit controls whether users can read all items (1) or only their own items (2). The sec-
ond digit defines edit access permissions. The possible values are

■■ 1 Users can edit any item.

■■ 2 Users can edit only their own items.

■■ 4 Users cannot edit items.

86 PaRt II Developing SharePoint solutions

For example, a value of 22 for the SecurityBits attribute means that users can see and edit only
their own items, while the default value of 11 means that users can see and edit all the items in
the list.

More Info For a complete list of attributes for the ListTemplate element, refer to the
official product documentation on MSDN, at http://msdn.microsoft.com/en-us/library/
ms462947(v=office.15).aspx.

Working with lists in Visual Studio 2012
Just as you can define content types with Visual Studio 2012 and its designers, you can also define
basic lists. In fact, whenever you add an item of type List to a SharePoint project, regardless of
whether it is a solution or an app, you are provided with a graphical designer that allows you to
design fields, content types, and views, and provide descriptive information for the list. First, you are
prompted with the wizard shown in Figure 3-6. Here you can specify the name of the target list and
create a customizable list definition based on a basic content type or a list instance based on an exist-
ing list definition.

FIGURE 3-6 The wizard for creating a new list in a SharePoint solution or app.

After you complete the page and click Finish, you can configure the resulting item through a
specific designer. If you created a new list definition, you will have access to a designer with three

 CHAPTER 3 Data provisioning 87

tabs, for configuring fields, content types, and views of the custom list definition. Figure 3-7 shows the
designer for this chapter’s example Contacts list, displaying the columns defined in the schema of the
list definition.

FIGURE 3-7 Configuring the fields of a custom list definition within Visual Studio 2012.

The designer also provides also a Content Types button; click it to open the dialog box shown in
Figure 3-8. Here you can determine the content types associated with the current list template.

FIGURE 3-8 The dialog box for configuring the content types associated with a list definition.

88 PaRt II Developing SharePoint solutions

Once you have defined the content types and the columns, you can determine the views for the
custom list definition. Click the Views tab to access the controls shown in Figure 3-9.

FIGURE 3-9 Determining the views for the custom list definition.

Whether you are defining an instance of your custom list definition or simply declaring an instance
of an already existing list definition, you can configure some descriptive aspects of the target list
using the List tab, shown in Figure 3-10.

 CHAPTER 3 Data provisioning 89

FIGURE 3-10 The List tab for configuring the list instance descriptive parameters.

By default, Visual Studio 2012 always defines a list instance together with the list definition. If you
do not want to provision a list instance, you can comment the code of the ListInstance element cre-
ated within the Elements.xml file available inside the list item in the Visual Studio project outline.

Summary

This chapter described how to define XML files to provision SharePoint data models and structures. In
particular, it showed how to use feature element files to deploy site columns, content types, and list
definitions. It also discussed how to do similar things using the designer provided by Microsoft Visual
Studio 2012, instead of using low-level XML files. These features promise a great return on investment
and a common maintenance plan.

 735

AddContentTypeField element, 106–107
Add Event Receiver menu item, 111
Add From Existing Site Columns command, 48
AddItem method, 126, 226
Add Items permission, 678
Add method, SPListCollection, 144, 145
Add New Item window, 605
Add New Project form, Visual Studio 2012, 27
addNotification method, 456
AddObject method, 241
add operator, 327
Add/Remove Personal Web Parts permission, 679
Add-SPShellAdmin command, 731
addStatus method, 457
Add Time to Date action, 564
AddToDevLeapContacts method, 241
AddToDictionary<TKey, TValue> activity, 592
AddTo{ListName} method, 241, 242
AddUser method, 131, 159
AD FS (Active Directory Federation Service), 685
AD FS (Active Directory Federation Services), 661
AdjustHijriDays attribute, 483
administration

via PowerShell, 8–9
SharePoint Central Administration, 6–8

ADO.NET Data Services namespace, 319
Advanced Settings page

figure of, 47
mapping custom content types to lists or libraries

using, 50
parameters on, 36

AfterDeserialize() method, 415
AfterProperties property, 364
Ajax method, 333
Alerts property, 131
AllCustomers.aspx, 81
AllowAppOnlyPolicy attribute, 313

Index

Symbols
$expand parameter, 236, 326, 329
$filter parameter, 236, 326, 329
$metadata parameter, 236
$orderby parameter, 236, 326
$realm variable, 701
$select parameter, 326, 329
$skip parameter, 236, 326, 329
$sort parameter, 329
$top parameter, 236, 326, 329
100-1000 document template IDs, 153
@Register directives, 454

A
Accept request header, 581
AccessChecker value, 507
access control list (ACL), 122
AccessControlList element, 506
Access Control Services (ACS), 296, 551
accessToken variable, 335
ACL (access control list), 122
ACS (Access Control Services), 296, 551
Action element, 640
actions

for workflows, 564–566
ActivateOnDefault attribute, 93
ActivationDependencies element, 94, 101
Active Directory Federation Service (AD FS), 685
Active Directory Federation Services (AD FS), 661
active requestor, 683
Activity Designer Library, 535
Activity Library, 535
Add a Comment action, 564
Add A Method command, 523
Add and Customize Pages permission, 678

AllowClose property

736 Index

AllowClose property, 390
AllowConnect property, 390
AllowEdit property, 390, 391
AllowHide property, 390
AllowMinimize property, 390
AllowOAuthHttp argument, 559
AllowsMultipleConnections property, 412
AllowUnsafeUpdates property, 121, 124, 139–140
AllowZoneChange property, 390
AllUsers property, 124
AllUsersWebPart element, 454
AllWebs property, 121, 136
AlternateCssUrl attribute, 483
AlternateHeader attribute, 483
AlwaysForceInstall attribute, 93
and operator, 326
Announcements template, 34
Anonymous Access page, 680
APIs (application programming interfaces), 165
AppContextSite() function, 334
AppDatabaseName property, 124
AppDatabaseServerReferenceId property, 124
appendStatus method, 457
AppEventProperties property, 355, 371
AppEventReceiver.svc file, 373
APP file, 301
AppIcon.png file, 250, 286
AppId property, 652
AppInstalled event, 358, 370
AppInstance class, 291
App.js file, 258
Application Management area, SPCA, 7
application pages, 448–450
application programming interfaces (APIs), 165
ApplicationResourceFiles element, 101
application servers, 15
AppliesTo attribute, 635
ApplyChanges method, 402
ApplyElementManifests tag, 107
Apply Style Sheets permission, 678
Apply Themes and Borders permission, 678
App Management service, 309, 310
AppManifest.xml file

General tab, 259–260
overview, 251, 258–259
Permissions tab, 260–265
Prerequisites tab, 265–267
Remote Endpoints tab, 268–269
sample, 372

Supported Locales tab, 267–268
AppOnlySequence activity, 591, 648
App Parts

overview, 12, 270–279
use by developers, 22–23

AppPermissionsRequests element, 313
AppPrerequisites element, 267
app principal, 260
AppPrincipal element, 297
app-related receivers, 370–377
ApprovalComment variable, 567
ApprovalOutcome variable, 564
ApprovalRequestMessage argument, 563, 569, 609,

614
Approve Items permission, 678
Approve method, 129
apps-extensibility model, 5–6
apps, SharePoint

AppManifest.xml file
General tab, 259–260
overview, 258–259
Permissions tab, 260–265
Prerequisites tab, 265–267
Remote Endpoints tab, 268–269
Supported Locales tab, 267–268

App Parts, 270–279
app website, 253–254
autohosted apps

Chrome control, 292–296
configuring SQL Azure database, 289–292
converting site to, 287–289
creating, 285–287
overview, 285

creating, 249–250
custom UI extensions, 279–284
development environment for, 248
JavaScript Client Object Model (JSOM), 257–258
on-premises farm for, 309–312
overview, 247–248
project structure for, 250–252
provider-hosted apps, 296–297
provisioning content, 254–257
publishing

to corporate app catalog, 301–303
deploying, 298–301
to Office Store, 303–307
overview, 298

security infrastructure for, 312–316
upgrading, 308–309
workflows in

 autohosted apps

 Index 737

defining, 598–604
deploying, 624
and security, 643–649

App Step ribbon button, 646
Apps You Can Add list, 12
AppUninstalling event, 256, 358, 370
AppUpgraded event, 358, 370
AppWebFullUrl property, 371
AppWebProxy.aspx page, 333
{AppWebUrl} token, 260, 282
architecture

client-side technologies, 201–202
databases, role of, 18–19
logical and physical architecture, 15–17
of remote event receivers

and contracts, 352–355
overview, 351–352
scopes, 356–358

service applications, 17–19
of Web Parts, 383–384
of workflows, 549–552
of WWF, 531–534

ArgumentException exception, 146
ASCX files, 68, 396
ASP.NET integration, 21
Aspnet_isapi.dll file, 21
ASPNET_REGSQL.EXE tool, 670
ASP.NET task form, 604
ASP.NET Web Site Administration Tool, 671
ASPX form file, 576
ASPX page file, 271
Assemblies element, 101
Assembly attribute, 454, 635
AssetId property, 371
Asset Library template, 34
Assign a Task action, 565
AssignedTo property, 600
Association And Initiation Form Parameters dialog

box, 563
association forms

for workflows
creating, 604–615
overview, 563–564

AssociationNavigator value, 507
AssociationUrl property, 622, 624
Associator value, 507
AsynCodeActivity class, 541
Atom Syndication format, 236
Attachments parameter, 37

Attachments property, 127
attributes for content types, 67–69
authentication

claims-based authentication
FBA, 669–670
overview, 665–666
Windows authentication, 667–668

claims-based authentication and WS-
Federation, 681–685

configuring server-to-server apps, 731–733
FBA with SQL membership provider

configuring SharePoint web.config files, 673–
674

configuring SQL server database, 670–673
configuring SQL Server permissions, 675
enabling providers for, 675–676
enabling users or roles, 676–677
overview, 670

implementing IP/STS with WIF
building relying party, 694–698
building STS, 686–694
overview, 685

infrastructure of
claims-based authentication, 663–664
migrating from classic-mode, 664–665
overview, 661–663

modes for BCS, 499–504
OAuth protocol, 728–731
overview, 681
trusted IPs

configuring target web application, 702–704
creating custom claims provider, 704–712
overview, 699
registering IP/STS in SharePoint, 700–701

with Windows Azure ACS
authenticating with Facebook, 726–728
configuring relying parties, 717–719
creating rule groups, 719–720
federating SharePoint with Windows Azure

ACS, 721–722
logon page for, 723–725
overview, 713–715
setting up Facebook app, 715–717

AuthenticationMode property, 205
Authentication Providers command, 702
Authorization HTTP header, 335
authorization infrastructure, 677–680
AutoActivateInCentralAdmin attribute, 93
autohosted apps

AutoProvisioning value

738 Index

Chrome control, 292–296
configuring SQL Azure database, 289–292
converting site to, 287–289
creating, 285–287
defined, 247
overview, 285

AutoProvisioning value, 267
autoResolveDeletes argument, 190

B
Backup and Restore area, SPCA, 7
-b argument, 731
BaseConfigurationID attribute, 483, 485
BaseTemplateID attribute, 264, 483, 485
BaseTemplateName attribute, 483, 485
BaseTemplate value, 343
BaseType attribute, 72, 85
BaseViewID attribute, 78, 81
Basic Meeting Workspace template, 10
Basic Search Center site definition, 469
Basic Search Center template, 10, 51
bConvertIfThere argument, 143
BCS (Business Connectivity Services)

accessing database, 491–499
accessing SOAP service, 510–515
accessing WCF service, 510–515
authentication modes, 499–504
consuming OData service, 516–519
defined, 24
entity associations, 525–527
model file for, 504–507
.NET custom model

designing, 521–524
overview, 519–521

offline capabilities of, 508–510
overview, 489–491
scope, 260

BDC (Business Data Connectivity), 489
BDC Client Runtime, 490
BDC Explorer toolbox, 520, 522
BeforeProperties property, 364
BeginVersion attribute, 107
benefit categories of SharePoint 2013, 4–6
BinarySecurityDescriptorAccessor value, 507
BLANKINTERNET#0 template, 143
Blank Meeting Workspace template, 10
Blank Site template, 9, 51, 469
BLOG#0 template, 143

Blog template, 10, 51, 469
body argument, 334
Body property, 600
Boolean field type, 40, 58
Boolean property, 365
BreakRoleInheritance method, 126, 127
Browsable parameter, 398
Browse Directories permission, 678
Browse User Information permission, 678
Build Dictionary action, 564, 580
BuildDictionary<TKey, TValue> activity, 592
BuildDynamicValue activity, 592, 631
BulkAssociatedIdEnumerator value, 507
BulkAssociationNavigator value, 507
BulkIdEnumerator value, 507
BulkSpecificFinder value, 507
Business Connectivity Services (BCS). See BCS
Business Data Connectivity (BDC), 489
Business Intelligence Center template, 10, 51, 469
Button element, 435, 437

C
Calculated field type, 40
Calendar template, 34
CalendarType attribute, 483
Calendar View, 42
callback capability of remote event receivers, 377–

378
Call HTTP Web Service action, 564, 579, 580
CAML (Collaborative Application Markup

Language), 79, 127, 168, 208, 275
CamlQuery class, 205, 231
Canceled value, 570
Canceling value, 570
CancelNoError value, 355
CancelWithError value, 355
CancelWithRedirectUrl value, 355
CancelWorkflow method, 655, 658
Cascading Style Sheets (CSS), 223
CatalogIconImageUrl property, 390
CatalogImageUrl property, 391
Category attribute, 635
CategoryAttribute attribute, 399
CDNs (content delivery networks), 223
ceiling() function, 328
Central Admin Site site definition, 469
ChangeConflictCollection class, 190
ChangeConflictException, 188, 189

 code argument

 Index 739

ChangeConflicts property, 189
ChangedIdEnumerator value, 507
ChangedItemProperties property, 355, 365
ChangeListItemConcurrently procedure, 148
Check Approval Outcome stage, 567
CheckBox attribute, 437
CheckedOutByUser property, 129
CheckForPermissions method, 121
Check In command, 46
checking documents in and out

using CSOM, 233
overview, 155–156

Check In Item action, 565
CheckInItem activity, 589
CheckIn method, 129, 156, 233, 347
Check Out command, 46
Check Out Item action, 565
CheckOutItem activity, 589
CheckOut method, 129, 156
CheckOutType property, 129, 156, 233
CheckPermissions method, 124, 126, 127
Choice field type, 39, 58
ChooseListItem value, 638
Chrome control for autohosted apps, 292–296
ChromeState property, 390
ChromeType property, 390, 391
claims augmentation, 704
claims-based authentication

FBA, 669–670
implementing IP/STS with WIF

building relying party, 694–698
building STS, 686–694
overview, 685

infrastructure of, 663–664
overview, 665–666
trusted IPs, 699

configuring target web application, 702–704
creating custom claims provider, 704–712
registering IP/STS in SharePoint, 700–701

Windows authentication, 667–668
and WS-Federation, 681–685

claims identity, 663
ClaimsIdentity instance, 698
ClaimsIdentity type, 664, 668
Claims namespace, 664
ClaimsPrincipal type, 664, 690
Claims property, 668
ClaimType property, 663
ClaimValue property, 663
ClaimValueType property, 663

classic-mode authentication, 664–665
Classic Web Part, 392–395
ClassName attribute, 634, 635
ClearDictionary<TKey, TValue> activity, 592
ClientContext class, 203, 205, 287, 363
Client.dll assembly, 203
ClientId attribute, 297
{clientId} token, 283
Client namespace, 203, 205, 323
Client Object Model. See also CSOM

JSOM, 218–224
Silverlight Client Object Model, 213–218

ClientObjectQueryableExtension method, 207, 208
ClientOnClickNavigateUrl property, 433
ClientOnClickPostBackConfirmation property, 433
ClientOnClickScript property, 433
ClientOnClickUsingPostBackEvent property, 433
ClientRuntimeContext class, 205
Client-Side Object Model (CSOM), 323, 360, 463,

490, 605, 650
client-side rendering (CSR), 40, 83
client-side technologies

architectural overview, 201–202
Client Object Model. See also CSOM

JSOM, 218–224
Silverlight Client Object Model, 213–218

overview, 22, 201
REST API

managing data, 240–243
overview, 234–236
querying for data with .NET and LINQ, 237–

240
Client.svc, 203
Client Web Part, 28
ClientWebPart element, 275
close method, 461
CLR (Common Language Runtime), 133, 414
CMS (content management system), 20
CMSPUBLISHING#0 template, 142, 143
CNAME record, 310
CodeAccessSecurity element, 101
code activities

defined, 629
for workflows

creating, 639–640
deploying, 640–643

CodeActivity activity, 593
CodeActivity class, 541, 542
CodeActivityContext argument, 544
code argument, 170

CodeBehind attribute

740 Index

CodeBehind attribute, 449
Collaboration group, 9
Collaborative Application Markup Language

(CAML), 79, 127, 168, 208, 275
Collation attribute, 483
Collection group, 537
ColorPicker attribute, 437
ColumnAttribute attribute, 177
Column element, 171
columns, site, 47–48
ComboBox attribute, 437
CommadUIHandlers element, 435
CommandAction attribute, 441
CommandUIDefinition element, 435, 436, 445
CommandUIExtension element, 435
CommandUIHandler element, 441
Common Language Runtime (CLR), 133, 414
commonModalDialogClose method, 461
commonModalDialogOpen method, 461
communication contract, 408
Community Portal template, 10, 142
Community Site template, 10, 51, 142
CompanyName field, 236
CompatibilityLevel property, 143
CompensableActivity activity, 138
CompletedStatus property, 600
Completed value, 570
CompositeTask activity, 590
concat() function, 328
concurrency conflicts

in LINQ to SharePoint, 188–192
overview, 147–148

conditions
for workflows, 566

configSections element, 673
configurable Web Parts

configurable parameters, 398–400
Editor Parts, 400–404
overview, 398

Configuration element, 471, 478
Configuration Wizards area, SPCA, 7
ConflictMode argument, 189
connectable Web Parts, 407–413
ConnectionConsumerAttribute attribute, 410, 412
ConnectionPointType property, 412
ConnectionProvider attribute, 409
ConnectionProviderAttribute attribute, 409, 412
connectionStrings element, 673
Connect To Outlook ribbon command, 508
Contact content type, 49, 63

ContactName property, 515
Contacts template, 34
ContainsDefaultLists attribute, 483
ContainsDynamicValueProperty activity, 592
Content App, 28
content delivery networks (CDNs), 223
content management system (CMS), 20
ContentMarket property, 371
Content pages, 450–456
ContentTypeBinding element, 96, 618, 619
ContentType element, 63, 96, 171
Content Type Hub service, 49
ContentTypeId property, 127, 210, 600
ContentType property, 127, 242
content types

attributes for, 67–69
defined, 28
Document content types, 69–70
ID attribute, 63–67
menu items scoped for, 280
overview, 48–51, 60–63

ContentTypesEnabled property, 112
Content Types parameter, 37
ContentTypes property, 124, 126
ContextInfo namespace, 323, 324
ContextPageInfo property, 132
ContextToken property, 355
ContextualGroup attribute, 437
ContextualTabs attribute, 437
ContinueOnConflict value, 188
Continue value, 355
contracts, 352–355
Contribute permission level, 32, 679
ControlAssembly attribute, 422, 432
ControlClass attribute, 422, 432
Control element, 96
Control Flow group, 536
Controls attribute, 437
Controls.js file, 295
ControlSrc attribute, 422
Convert-SPWebApplication cmdlet, 664
Copy Document action, 565
CopyDynamicValue activity, 592
CopyFrom method, 127
copying files

overview, 156–157
using CSOM, 233–234

CopyItem activity, 590
Copy method, 127
CopyTo method, 127, 129, 233

 custom tasks

 Index 741

CoreV15.css style, 273
corporate app catalog, publishing to, 301–303
CorrelationId property, 355
CountDictionary<TKey, TValue> activity, 592
CountDynamicValueItems activity, 592
CountInstances method, 655
CountInstancesWithStatus method, 655
Count Items in a Dictionary action, 564, 583
Country property, 184
Create Alerts permission, 678
Create All Operations command, 495
CreateChildControls method, 386, 395, 403, 411, 432
Create Column page, 38–39
CreateContex method, 523
Created by a Specific Person condition, 566
Created By field, 35
Created field, 35
Created in a Specific Date Span condition, 566
CreateDynamicValue activity, 592
CreateEditorParts method, 401, 402
Create Groups permission, 678
Create List Item action, 565
CreateListItem activity, 590
CreateListItem value, 638
Create List Workflow dialog box, 560
Create New Secure Store Target Application

wizard, 501, 502, 503
create, read, update, delete, and query

(CRUDQ), 489
CreateRemoteEventReceiverClientContext

method, 380
Create Site Collection option, 9
Create Subsites permission, 678
Create View command, 42
Create View page, 43
Creator attribute, 93
Creator value, 507
Credentials ribbon group, 503
CreditCardValidationActivity class, 639–640
cross-domain calls for REST API, 333–334
cross-site scripting (XSS), 268, 418
CRUDQ (create, read, update, delete, and

query), 489
CSOM (Client-Side Object Model), 463, 605, 650

authenticating, 205
ClientObject vs. ClientValueObject, 210–213
consuming BCS data, 490
data retrieval and projection, 206–210
examples

checking documents in and out, 233

copying and moving files, 233–234
creating and updating list item, 226
creating new document library, 231
creating new list, 225
deleting existing list item, 230
exception handling with lists, 227–230
overview, 224
paging queries of list items, 230–231
uploading and downloading

documents, 232–233
overview, 203–205
Site class, 323

CSR (client-side rendering), 40, 83
CSS (Cascading Style Sheets), 223
CultureLCID property, 355
culture parameter, 323
Currency field type, 39, 58
Current property, 132, 216
Current variable, 139
CustomAction element, 96, 282, 284, 421–428, 426,

432
CustomActionGroup element, 96, 428–430
custom actions

CustomAction element, 421–428
CustomActionGroup element, 428–430
HideCustomAction element, 430–431
overview, 421
server-side custom actions, 432–434
for workflows

creating code activities, 639–640
creating declarative activities, 630–633
deployment of code activities, 640–643
deployment of declarative actions, 634–638
overview, 629

custom activities
for workflows, 540–544

custom claims provider, 704–713
CustomerID property, 515
CustomerID token, 633
CustomerService.cs file, 523
CustomersList parameter, 522
Custom group, 10
CustomizedCssFiles attribute, 483
CustomJSUrl attribute, 483
custom list templates, 34, 35–41
CustomMapping attribute, 197
CustomPropertyToolPart class, 400, 402
Custom Send to Destination setting, 46
custom tasks

for workflows, 615–620

custom UI extensions

742 Index

custom UI extensions, 279–284
CustomUpgradeAction element, 107, 113
custom verbs for Web Parts, 405–407
Custom View in SharePoint Designer option, 42
custom views for list definitions, 81–84

D
DACPAC file, 299
data argument, 333
database servers, 15
dataBindList method, 223
Data Connection Library template, 34
DataContext class, 170, 179, 189, 194, 238, 240, 241,

242
DataContract serialization engine, 195, 511
data management features

content types, 48–51
lists of items and contents

creating new list, 32–34
custom list templates, 35–41
document library, creating, 44–46
standard list templates, 34–35

overview, 31
site columns, 47–48
sites, 51–52

data provisioning
content types

attributes for, 67–69
Document content types, 69–70
ID attribute, 63–67
overview, 60–63

list definitions
custom views for, 81–84
in Visual Studio 2012, 86–89
List element, 72–73
list schema file, 71–72
ListTemplate definition file, 85–86
MetaData element, 74–81
overview, 70–71

overview, 23, 55
site columns, 55–60

DataServiceContext class, 237
DataServiceQuery<T> class, 239
Datasheet parameter, 37
Datasheet View, 42
Data Source Explorer window, 494, 514
DataTemplate control, 214
DateTime field type, 39, 58

Date value, 638
day() function, 328
db_owner role, 665
Decision Meeting Workspace template, 10
declarative activities

defined, 629
for workflows

creating, 630–633
deploying, 634–638

Default.aspx page, 250, 251, 255, 686, 698
Default Configuration hyperlink, 702
DefaultCredentials class, 238
DefaultResourceFile attribute, 93, 95
DefaultTaskOutcome property, 600
DefaultValueAttribute attribute, 399
DefaultView attribute, 78
DeferredLoadingEnabled property, 183, 195
DefinitionId property, 652
Delay activity, 544
DelayUntil activity, 591
DeleteAllOnSubmit method, 187
DeleteDefinition method, 657
DeletedIdEnumerator value, 507
Delete Document command, 46
Deleted value, 185
Delete Item action, 565
Delete Items permission, 678
DeleteListItem activity, 590
Delete method, 121, 124, 126, 127, 129
DeleteObject method, 230, 242
DELETE operation, 319
Deleter value, 507
Delete Versions permission, 678
deleting list items

overview, 149
using CSOM, 230

Deny method, 129
Dependent value, 638
Deploy command, 298
DEPLOY file, 301
deploying

features, 97–100
remote event receivers, 367–370
solutions, 100–103
Web Parts, 388–392, 413–417
workflows

farm-level workflow, 620–623
overview, 620
SharePoint app workflow, 624

DeploymentServerType attribute, 101

 documents

 Index 743

deployment service, Workflow Services
Manager, 649

DeprecateDefinition method, 657
Description attribute, 93, 95, 101, 390, 422, 429, 483,

636
Description property, 131, 225
DesignerType attribute, 636, 638
Design permission level, 32, 679
design surface

for workflows, 561–562
DevbookDataContext class, 172
Developer Site template, 10
developers, tools and features for

App Parts, 22–23
ASP.NET integration, 21
Business Connectivity Services, 24
client-side technologies, 22
data provisioning, 23
event receivers, 23
features, 23–24
Microsoft Visual Studio 2012, 26–28
overview, 21
sandboxing, 23–24
security infrastructure, 24
SharePoint Designer 2013, 25–26
SharePoint Server Explorer, 28–29
Solution Explorer and Feature Designer, 30
solutions deployment, 23–24
UI, 22–23
Web Parts, 22–23
Windows PowerShell, 24
workflows, 23

Developer Tools option, 26
development environment, 248
DevLeapBookPortalDataContext class, 238
DevLeap Claims Provider item, 712
DevLeapContact class, 174, 187
DevLeapContacts property, 186, 238, 239
DevLeapInvoice type, 180
DevLeapOrderStatus field, 365
DevLeap Sample IP/STS option, 703
DevLeapSecurityTokenService class, 691
DevLeapSecurityTokenServiceConfiguration

class, 690, 691
Dialogs parameter, 37
DictionaryContains<TKey, TValue> activity, 592
Dictionary<String, Object> class, 539
Dictionary value, 638
Direction attribute, 636
DisableAttachments attribute, 73

Disassociator value, 507
Discard Check Out command, 46
Discard Check Out Item action, 565
disconnected entities, 194–196
Discover Center template, 10
DisplayCategory attribute, 483
DisplayFormToolbar location, 428
DisplayForm value, 80
DisplayModeChanged event, 405
DisplayModeChanging event, 405
DisplayMode property, 404
display modes for Web Parts, 404–405
DisplayName attribute, 56, 57, 78, 412, 537, 636
DisplayName property, 206
Dispose method, 133
<div> elements, 295, 386
div operator, 327
DLPROJECTS template, 476
Do Calculation action, 565
DocLibNames value, 638
Document Center template, 10, 51, 469
Document content type, 49, 63, 69–70
DocumentConverter element, 96
DocumentCreatedBy property, 174
document libraries

check-in and checkout of documents in, 155–156
copying and moving files in, 156–157
creating

using CSOM, 231
overview, 44–46

and custom site definitions, 471
downloading documents from, 155
managing versions of documents, 157–158
overview, 11–12
using REST API with

creating document library, 343
deleting document, 347–348
document check-in and checkout, 345–347
querying, 348–349
updating document, 344–345

uploading documents to, 154
Document Library template, 34, 44
DocumentModifiedBy property, 174
Document Object Model (DOM), 165
documents

checking in and out, 155–156, 233
copying, 156–157, 233–234
downloading, 155, 232–233
managing versions of, 157–158
moving, 156–157

document templates

744 Index

overview, 11–12
uploading, 154, 232–233

document templates
element for, 69
IDs of, 153
URL setting for, 46

DocumentTemplateType property, 231
Document Workspace template, 9, 469
DoesUserHavePermissions method, 122, 126, 127
DOM (Document Object Model), 165
Download a Copy command, Library tab, 46
downloading documents

using CSOM, 232–233
overview, 155

DropDown attribute, 437
Dropdown value, 638
DueDate property, 600
Duration property, 544
DwpFiles element, 101
DynamicMasterPageFile attribute, 449
DynamicValue group, 537

E
-e argument, 731
ECB (Edit Control Block), 247, 424
ECB (Edit Control Block) menu, 568
ECM (Enterprise Content Management), 20, 203
ECT (external content type), 490
Edit Authentication configuration page, 676, 702
Edit Control Block (ECB), 247, 424
Edit Control Block (ECB) menu, 568
EditControlBlock location, 428
Edit Document command, Library tab, 46
EditFormToolbar location, 428
EditForm value, 80
editions

SharePoint Foundation, 19–20
SharePoint Online, 21
SharePoint Server Enterprise, 20
SharePoint Server Standard, 20

Edit Items permission, 678
EditorPart class, 402
Editor Parts, 400–404
EditorZone class, 383
EditorZone control, 400
Edit permission level, 32, 679
Edit Personal User Information permission, 679
Edit Properties command, Library tab, 46

Edit Task command, ECB menu, 571
Edit This List command, 40
Edit Web Part menu, 278
ElementFile element, 95, 107
ElementManifest element, 94, 107
Elements element, 56
elements, feature, 95–97
Elements.xml file, 618
Email activity, 591
Email property, 131
Email value, 638
Empty Element feature, 28
EnableContentTypes attribute, 73
Enabled property, 652
EnableMinorVersions attribute, 73
Enable-SPFeature cmdlet, 97
Enable Workflow Debugging option, 602
endswith() function, 327
EndVersion attribute, 107
EnsureUser method, 159, 324
Enterprise Content Management (ECM), 20, 203
Enterprise group, 10
Enterprise Resources scope, 260
Enterprise Search Center template, 10, 51, 469
Enterprise Wiki template, 10, 469
entity associations, 525–527
Entity element, 506
EntityInstanceAdded event, 358
EntityInstanceDeleted event, 358
EntityInstanceEventProperties property, 355
EntityInstanceUpdated event, 358
EntityList<T> class, 186, 187, 196
EntityRef<T> class, 181
{Entity}Service.cs file, 520
EntitySet property, 182
EntityState property, 176, 185
EntityTracker class, 185
EnumerateDefinitions method, 657
EnumerateInstancesForListItem method, 655
EnumerateInstancesForSite method, 655
Enumerate Permissions permission, 678
EnumerateSubscriptionsByList method, 652
EnumItems element, 276
enum type, 276
eq operator, 326
error argument, 334
ErrorCode property, 355
Error Handling group, 537
ErrorMessage property, 355, 365
Establish Trust Relationship page, 699

 FieldDeleting event

 Index 745

ETag parameter, 329, 330
EventCategory attribute, 636
Event content type, 63
event receivers, 23
EventReceivers property, 122, 124, 126, 370
EventSourceId property, 652
EventType property, 355
EventTypes property, 652
exception handling

using CSOM, 227–230
overview, 136–138

ExceptionHandlingScope class, 228
exception management

for workflows, 574–575
ExcludeColumn element, 171
ExcludeContentType element, 172
ExcludeFromOfflineClient attribute, 483
ExcludeList element, 171
ExcludeOtherColumns element, 172
ExcludeOtherContentTypes element, 172
ExcludeOtherLists element, 171
executeAsync method, 334
executeQueryAsync method, 205, 258, 441
ExecuteQuery method, 205, 216, 225, 228
executing instances

of workflows, 539–540
$expand parameter, 236, 326, 329
ExportMode property, 390
Expression<Func<T, Object>> class, 207, 209
Extensible Application Markup Language

(XAML), 213
external authentication, 312
external content type (ECT), 490
External Content Type Repository, 490
External Data field type, 40
External List template, 35, 498
ExternalSecurityProvider, 487
Extract Substring from End of String action, 565
Extract Substring from Index of String action, 566
Extract Substring from Start of String action, 566
Extract Substring of String from Index with Length

action, 566

F
Facebook

authenticating with, 726–728
setting up app for Windows Azure ACS, 715–717

FailOnFirstConflict value, 188, 189

farm-level workflow
deploying, 620–623

FBA (Forms-Based Authentication)
defined, 661
overview, 669–670
with SQL membership provider

configuring SharePoint web.config files, 673–
674

configuring SQL server database, 670–673
configuring SQL Server permissions, 675
enabling providers for, 675–676
enabling users or roles, 676–677
overview, 670

FeatureActivated event, 108, 110, 112
feature activation dependency, 104
FeatureDeactivating event, 108, 110
Feature Designer, Visual Studio 2012, 30
feature elements, 55, 478
FeatureId attribute, 422, 471
feature installation event, 108
feature manifest, 91
FeatureManifests element, 101
feature receivers

handling FeatureUpgrading events, 112–113
overview, 108–112

features
deploying, 97–100
element types, 95–97
overview, 91–95
upgrading, 105–108
use by developers, 23–24

FeatureSiteTemplateAssociation element, 96
Features property, 122, 124
feature stapling, 466
FeatureUninstalling event, 108
FeatureUpgrading event

handling, 112–113
overview, 108

Feature.xml file, 91
FederatedPassiveSecurityTokenServiceOperations

type, 690
FederationMetadata.xml file, 686, 694
Fiddler Composer, 322
fidelityProgramLevel claim, 712
FieldAdded event, 357
FieldAdding event, 357
Field attribute, 636
FieldBind element, 635
FieldDeleted event, 357
FieldDeleting event, 357

Field element

746 Index

Field element, 56, 96
FieldRef element, 79
FieldRefs element, 63
Fields element, 75
Fields property, 124, 126
FieldUpdated event, 357
FieldUpdating event, 357
File class, 232, 233
FileCreationInformation class, 232
FileDialogPostProcessor, 487
File element, 451
File Extension option, 280
File property, 127, 132
files. See documents; document libraries
Files collection, 348
Files property, 124, 154
Files ribbon tab, 45
FillSearch method, 708
$filter parameter, 236, 326, 329
Filter Parameters Configuration page, 496
Finder method, 510, 514
Finder value, 507
Find Interval Between Dates action, 566
Find Substring in String action, 566
Float value, 638
floor() function, 328
Flowchart group, 536
flowcharts

using in workflows, 625–626
workflow model, 532, 625

FlowSwitch<T> activity, 537
FlyoutAnchor attribute, 437
Folder content type, 63
FolderCreation attribute, 73
Folder property, 128, 206
Folders parameter, 37
Folders property, 124, 126, 154
Force argument, 559
FormDigest control, 140
FormDigest property, 139–140
Form Library template, 35
FormsAuthenticationLoginInfo property, 205
Forms-Based Authentication (FBA). See FBA
Forms element, 80
front-end web servers, 15
Full Control permission level, 32, 262, 679
FunctionName attribute, 635

G
GAC (Global Assembly Cache), 388, 519, 640, 709
galleries, 450–456
Gallery attribute, 437
GalleryButton attribute, 437
Gantt View, 42
General Application Settings area, SPCA, 7
General tab, AppManifest.xml, 259–260
Generate Client ID button, 314
Generate New Key ribbon button, 500
GenericInvoker value, 507
ge operator, 326
Get an Item from a Dictionary action, 565, 583
GetAppOnlyAccessToken method, 313
GetCategoryProvider method, 409
GetCurrentItemId activity, 589
GetCurrentListId activity, 596
get_current() method, 220
GetCustomerById operation, 511
GetCustomListTemplates method, 122
GetCustomWebTemplates method, 122
GetDebugInfo method, 655
GetDefinition method, 657
GetDesignerActions method, 657
GetDictionaryValue<TKey, TValue> activity, 592
GetDynamicValueProperties activity, 592, 631
GetDynamicValueProperty<T> activity, 592
GetEffectiveRightsForAcl method, 122
GetEnumerator method, 168
GetFile method, 124
GetFolder method, 124
GetHistoryListId activity, 589
GetInstance method, 655
GetItemById method, 126, 145, 226
GetItemByIdSelectedFields method, 147
GetItems method, 126, 180, 205, 231
GetList<T> method, 173
GET method, 282, 318
GetODataProperties activity, 592
GetOutputClaimsIdentity method, 693
GetProperty method, 653
GetRecycleBinItems method, 122, 124
GetRecycleBinStatistics method, 122
GetS2SClientContextWithWindowsIdentity

method, 380
GetS2SSecurityToken activity, 592
GetScope method, 693
getSelectedItems() method, 441
GetSiteData method, 124

 IIS (Internet Information Services)

 Index 747

Get-SPWebTemplate cmdlet, 142
GetTaskListId activity, 589
get_title() method, 219
GetToolParts method, 400
GetUserEffectivePermissions method, 124
GetWebTemplates method, 323
GetWorkflowDeploymentService method, 652
GetWorkflowInstanceService method, 652, 655
GetWorkflowInteropService method, 652
GetWorkflowMessagingService method, 652
GetWorkflowSubscriptionService method, 652
Global Assembly Cache (GAC), 388, 519, 640, 709
GLOBAL definition, 470
globally unique identifier (GUID), 56, 120, 225, 267
Go To App button, 727
Go to Stage action, 566
Grid control, 214
GridView control, 360, 698
GroupAdded event, 358
GroupAdding event, 357
Group attribute, 58, 437
GroupDeleted event, 358
GroupDeleting event, 357
Group field type, 40
GroupId attribute, 423, 429, 431
groups. See also users

membership to, 159
permissions for, 160

Groups attribute, 437
Groups property, 124, 131
GroupTemplate attribute, 437
GroupUpdated event, 358
GroupUpdating event, 357
GroupUserAdded event, 358
GroupUserAdding event, 357
GroupUserDeleted event, 358
GroupUserDeleting event, 357
Group Work Site template, 10
gt operator, 326
GUIDGEN tool, 56
GUID (globally unique identifier), 56, 120, 225, 267

H
h1 element, 386
headers argument, 334
hello world Web Part, 384–387, 454
Hidden attribute, 59, 67, 93
Hidden property, 126

HideActionId attribute, 431
HideCustomAction element, 96, 430–431
Hide value, 638
high-trust configuration, 353
HistoryListId property, 623
home page, SPCA, 8
{HostLogoUrl} token, 260
{hostname} token, 322
{HostTitle} token, 260
{HostUrl} token, 260
HostWebFullUrl property, 371
hour() function, 328
href attribute, 235
HttpClient class, 321
HttpContext class, 132
HTTP GET request method, 580
HttpSend activity, 592, 631
HTTPS ports, 557
HTTP Web Service dialog box, 579
HyperlinkBaseUrl attribute, 451
Hyperlink type, 40

I
ICellConsumer interface, 413
ICellProvider interface, 413
ICredential interface, 238
ICustomMapping interface, 197
Id attribute, 93, 95, 423, 429, 431, 636
ID attribute, 56, 63–67, 267, 412
IdCulture argument, 467
Identity argument, 664
identity management and refresh, 192–194
identity provider, 663
identity provider (IP), 682
IdEnumerator value, 507
IDisposable interface, 109, 133
Idle event, 545
ID property, 122, 124, 126, 128, 131
IEnumerable<T> interface, 167, 210
If Any Value Equals Value condition, 566
IFilterConsumer interface, 413
IFilterProvider interface, 413
IF-MATCH header, 329
IgnoreIfAlreadyExists attribute, 452
IIdentity interface, 120, 690
IISAllowsAnonymous property, 122
IIS (Internet Information Services), 14, 31, 122, 287,

359, 532, 601

IISRESET command

748 Index

IISRESET command, 471, 472
IListConsumer interface, 413
IListProvider interface, 413
Image16by16Left attribute, 445
Image16by16Top attribute, 445
Image32by32 attribute, 445
Image32by32Left attribute, 445
Image32by32Top attribute, 445
images, custom, 446–448
ImageUrlAltText attribute, 94
ImageUrl attribute, 93, 423, 429, 484
Impersonating property, 122
ImportModelReceiver class, 520
InArgument<T> class, 543
IncludeHiddenColumns element, 172
IncludeHiddenContentTypes element, 172
IncludeHiddenLists element, 171
Include method, 209
IncludeWithDefaultProperties method, 207
{index} argument, 323
indexof() function, 327
Index variable, 584
infrastructure

of authentication
claims-based authentication, 663–664
migrating from classic-mode, 664–665
overview, 661–663

of authorization, 677–680
InheritanceBreaking event, 358
InheritanceBroken event, 358
InheritanceReset event, 358
InheritanceResetting event, 358
InitData method, 223
InitializeControl method, 395
InitialValue attribute, 636
Initiation Form Parameters button, 562
initiation forms

for workflows
creating, 604–615
overview, 563–564

InitiationUrl property, 614, 622, 624
init parameter, 216
INotifyPropertyChanged, 174
INotifyPropertyChanging, 174
InOutArgument<T> class, 543
InOutArgument<T> property, 543
Input Parameters Configuration wizard step, 515
InsertAllOnSubmit method, 187
InsertOnSubmit method, 186, 187
InsertTable attribute, 437

installing
Workflow Manager 1.0, 553–554

Install-SPFeature cmdlet, 97
instance service, 649
interface transformers, 413
internal authentication, 312
Internet Information Services (IIS), 14, 31, 122, 359,

532, 601
Internet Server Application Programming Interface

(ISAPI), 21
interop service, 650
InvalidOperationException, 216
Invalid value, 570
Invoice content type, 69
IParametersInConsumer interface, 413
IParametersInProvider interface, 413
IParametersOutConsumer interface, 413
IParametersOutProvider interface, 413
IP (identity provider), 682
IPostBackEventHandler interface, 433
IP/STS (Identity Provider/Security Token Service)

implementing with WIF
building relying party, 694–698
building STS, 686–694
overview, 685

IQueryable<T> interface, 167, 239
IRemoteEventService service contract, 363
IRowConsumer interface, 413
IRowProvider interface, 413
ISAPI (Internet Server Application Programming

Interface), 21
IsConnected property, 652
IsDesignTime property, 132
IsEmptyDynamicValue activity, 592
IsOf() function, 328
IsPopUI property, 132, 464
IsPropertyAvailable method, 213
IsSiteAdmin property, 131
Issue.aspx page, 686
IsUsedByDefault property, 709
ItemAdded event, 356, 362
ItemAdded value, 551, 623
ItemAdding event, 356, 362
ItemAttachmentAdded event, 356
ItemAttachmentAdding event, 356
ItemAttachmentDeleted event, 356
ItemAttachmentDeleting event, 356
ItemCheckedIn event, 356
ItemCheckedOut event, 356
ItemCheckingIn event, 356

 ListId property

 Index 749

ItemCheckingOut event, 356
Item content type, 63
ItemCount property, 126
ItemDeleted event, 356
ItemDeleting event, 356
ItemEventProperties property, 355, 364
ItemFileConverted event, 356
ItemFileMoved event, 356
ItemFileMoving event, 356
ItemId property, 132
{ItemId} token, 427, 442
Item-Level Permissions, 37
ItemProperties value, 638
Item property, 132
Items collection, 348
items in list. See list items
Items property, 127
ItemUncheckedOut event, 356
ItemUncheckingOut event, 356
ItemUpdated event, 356
ItemUpdated value, 551, 623
ItemUpdating event, 356, 364
{ItemUrl} token, 427, 442
ItemVersionDeleted event, 356
ItemVersionDeleting event, 356
ITrackEntityState interface, 174, 176, 185
ITrackOriginalValues interface, 174, 176
IVersioningPersonalizable interface, 415
IWebEditable interface, 401

J
JavaScript Client Object Model (JSOM), 650
JavaScript Object Notation (JSON), 537, 630
JsLink element, 79, 83
JSOM (JavaScript Client Object Model), 203,

218–224, 252, 257–258, 441, 650
JSON (JavaScript Object Notation), 203, 537, 630

K
Key Management ribbon group, 500
KPIs (key performance indicators), 20

L
Label attribute, 437
language argument, 170
Language-Integrated Query. See LINQ

{Language} token, 260
LayoutsPageBase class, 449
left to right (LTR), 73
length() function, 327
Length property, 129
le operator, 326
libraries. See document libraries
Library ribbon tab, 45
life cycle of workflow process, 544–546
Limited Access permission level, 32, 679
Links template, 35
Linq.dll assembly, 179
LINQ (Language-Integrated Query). See also LINQ

to SharePoint
goal of, 165–166
overview, 22, 163–164
under hood, 167–168

Linq namespace, 179
LINQ to SharePoint. See also LINQ

concurrency conflicts, handling, 188–192
disconnected entities, 194–196
identity management and refresh, 192–194
managing data

deleting or recycling item, 187
inserting new item, 186–187

model extensions and versioning, 196–197
modeling with SPMetal.exe, 169–179
overview, 169
querying data, 179–184

ListAdded event, 357
ListAdding event, 357
ListAllCustomers method, 511
List attribute, 451
ListAttribute attribute, 173
ListBox control, 214
ListCreationInformation class, 225
ListData.svc, 235, 237
list definitions

custom views for, 81–84
List element, 72–73
list schema file, 71–72
ListTemplate definition file, 85–86
MetaData element, 74–81
overview, 70–71
in Visual Studio 2012, 86–89

ListDeleted event, 357
ListDeleting event, 357
List element, 72–73, 171
ListEventProperties property, 355
ListId property, 132, 623

{ListId} token

750 Index

{ListId} token, 427, 442
ListID value, 149
ListInstance element, 96
List Instance option, 280
ListItemCollection class, 231
ListItemCollectionPosition property, 150, 152, 231
ListItemCreationInformation class, 226
ListItemID value, 149
ListItem property, 132, 206
list items. See also lists

creating, 145–147, 226
deleting, 149, 230
modifying, 147
paging queries of, 230–231
querying, 149–152
updating, 226

ListItem value, 638
List permission, 264
List property, 132, 206
lists. See also document library; list items

concurrency conflicts, 147–148
creating, 32–34, 144, 225
custom list templates, 35–41
exception handling with, 227–230
overview, 11–12
standard list templates, 34–35
using REST API with

creating lists, 338
deleting item, 341–342
querying, 342
updating items, 339–341

views of, 41–44
list schema file, 71–72
List scope, 261
List Settings command, 36
List Settings page, 36, 38
Lists property, 124
List<T> class, 522
ListTemplate definition file, 85–86
ListTemplate element, 96, 476
ListTemplateId attribute, 369
List Template option, 280
ListTemplateOwner attribute, 369
ListTemplates property, 144
ListTemplateType value, 231
ListUrl attribute, 369
{ListUrlDir} token, 442
LoadAfterUI argument, 218
Load method, 415
LoadQuery<T> method, 209, 210

Load<T> method, 205, 207, 210
LobSystem element, 506
Locale attribute, 484
localhost, 514
Localizable argument, 218
Local property, 117
Local Variables ribbon command, 564
Location attribute, 94, 423, 424, 429, 431, 435, 460
LockedByUser property, 129
Lock method, 129
logical architecture, 15–17
Login control, 689
LoginName property, 131
Log property, 180
Log to History List action, 565
Lookup field type, 40, 58
LookupMulti field type, 58
LookupSPChoiceFieldIndex activity, 591
LookupSPGroup activity, 590
LookupSPGroupMembers activity, 590
LookupSPList activity, 590
LookupSPListItem activity, 590
LookupSPListItemId activity, 590
LookupSPPrincipal activity, 591
LookupSPPrincipalId activity, 591
LookupSPUser activity, 591
LookupWorkflowContextProperty activity, 589
lt operator, 326
LTR (left to right), 73

M
main page, SharePoint Designer 2013, 25
MajorCheckIn value, 156
makecert command-line tool, 732
Manage Alerts permission, 678
Managed Metadata field type, 40
Managed Metadata service, 49
Manage Lists permission, 678
Manage Permissions permission, 678
Manage Personal Views permission, 679
Manage Service Application page, 500
Manage Service Applications page, 560
Manage Target Application ribbon group, 500
Manage Web Site permission, 678
ManualResetEvent object, 540
ManualStartBypassesActivationLimit property, 652
MapFrom method, 197
MapTo method, 197

 NotSpecified value

 Index 751

MaxSize attribute, 437
MaxSize element, 445
Meetings group, 10
MemberChangeConflict method, 197
MemberChangeConflict value, 189
MemberConflicts property, 189
Menu attribute, 437
MenuItemTemplate class, 433
MenuSection attribute, 437
MERGE operations, 318
Message attribute, 60
message broker communication, 557
Message property, 189, 544, 601
Messaging group, 536
messaging service, Workflow Services Manger, 650
MetaData element, 74–81
$metadata parameter, 236
method argument, 334
Method attribute, 631
MethodInstance type, 507, 526
Micro Feed scope, 261
Microsoft.IdentityModel.dll assembly, 707
Microsoft Open Specification Promise, 236
Microsoft SharePoint 2013. See SharePoint 2013
Microsoft.SharePoint.Administration.Claims

namespace, 707
Microsoft.SharePoint.IdentityModel.Pages

namespace, 701
Microsoft.SharePoint.WorkflowServices

namespace, 623
Microsoft Visual Studio 2012. See Visual Studio 2012
MigrateUsersToClaims method, 665
Migration group, 537
MinimumVersion attribute, 267
MinorCheckIn value, 156
minute() function, 328
MobileDefaultView attribute, 78
MobileView attribute, 78
ModalDialog class, 461, 461–464
model extensions in LINQ to SharePoint, 196–197
model file for BCS, 504–507
modeling with SPMetal.exe, 170–179
Model tag, 506
Model-View-Controller 4.0 (MVC4), 287
ModeratedList attribute, 73
Modified by a Specific Person condition, 566
Modified By field, 35
Modified field, 35
Modified in a Specific Date Span condition, 566
Modify View command, 42

mod operator, 327
Module element, 96, 250, 450, 474, 478
Monitoring area, SPCA, 7
month() function, 328
MoveTo method, 129, 233
moving documents

using CSOM, 233–234
overview, 156–157

MPS#0-4 templates, 142
MRUSplitButton attribute, 437
MS.SP.url parameter, 216
mul operator, 327
MultiChoice field type, 58
Multipage Meeting Workspace template, 10
Multiple Lines of Text field type, 39
Multiple Projects scope, 261
MVC4 (Model-View-Controller 4.0), 287
My Site Host template, 10
My Wiki Site template, 474

N
Name argument, 218
Name attribute, 56, 85, 451, 452, 468, 484, 635, 636
Name property, 129, 131, 652
namespace argument, 170
NamespaceURI attribute, 68
NativeActivity class, 541
NativeActivity<TResult> class, 541
NavBarHome attribute, 452
ne operator, 326
.NET custom model

designing, 521–524
overview, 519–522

network-level communication port, 557
New Document command, 45
New Folder command, 37, 45, 73
NewFormToolbar location, 428
NewForm value, 80
New Item command, 40
New Project window, 249
New-SPSite cmdlet, 312
New-SPTrustedIdentityTokenIssuer cmdlet, 701
New-SPTrustedRootAuthority cmdlet, 699
New Subsite command, 51
Note field type, 58
notification area, 456–460
not operator, 326
NotSpecified value, 570

NotStarted value

752 Index

NotStarted value, 570
Number field type, 39, 58
NumberOfTimes property, 416
NWCustomerLookup activity, 631

O
OAuth protocol, 352, 378, 728–731
ObjectChangeConflict class, 189, 190
ObjectChangeConflict method, 190, 197
object-relational mapper (O/RM), 240
objects hierarchy, Server Object Model

SPContext class, 132
SPControl class, 132
SPDocumentLibrary class, 128–130
SPFile class, 128–130
SPGroup class, 130–131
SPList class, 125–128
SPListItem class, 125–128
SPServer class, 118–119
SPService class, 118–119
SPSite class, 119–125
SPUser class, 130–131
SPWebApplication class, 118–119
SPWeb class, 119–125

ObjectTrackingEnabled property, 186
OData (Open Data Protocol)

consuming with BCS, 516–519
overview, 202

ODBC (Open Database Connectivity), 165
Office Store, publishing to, 303–307
offline capabilities of BCS, 508–510
Offline Client Availability parameter, 37
OnAuthenticate event, 689
OnCreated method, 173, 177
ONET.XML file, 469, 471
OnLoaded method, 177
on-premises farm, 309–312
OnPreRender method, 410
OnQuickLaunch attribute, 85
onUpdateSucceeded method, 441
OnValidate method, 177
OpenBinaryDirect method, 233
OpenBinary method, 129
OpenBinaryStream method, 130, 155
openByDefault element, 70
openChangeStatusDialog function, 462
Open Database Connectivity (ODBC), 165
Open Data Protocol (OData). See OData

Opening Documents in the Browser setting, 46
Open Items permission, 678
Open permission, 678
OpenPopUpPage method, 461
OpenWeb method, 122, 123
Operation Properties page, 495
Operations Designer window, 495
OperatorTypeFrom attribute, 636
Operator value, 638
OrderApprovalOutcome field, 616
OrderBy object, 167
$orderby parameter, 236, 326
Order content type, 359
organizing projects and tasks, 5
OriginalValues property, 176
O/RM (object-relational mapper), 240
or operator, 326
OutArgument<T> class, 543
OutcomeFieldName property, 600
Outcome property, 600
OverdueReminderRepeat property, 600
Override Check Out permission, 678
OverwriteCheckIn value, 156
OverwriteCurrentValues, 194

P
PackageDefinition method, 657
packages.config file, 251
packaging solutions with Visual Studio 2012, 103–

105
Page_Load event, 698
Page_Load method, 287
PagingInfo property, 152
paging queries of list items, 230–231
ParameterNames value, 638
parameters argument, 170
Parameters Configuration page, 495
Parameters element, 635, 636
Parent property, 110
ParseDynamicValue activity, 592
ParserEnabled attribute, 484
PartitionMode argument, 559
passive requestor, 683
PassThrough mode, 499
password argument, 170
PATCH operations, 318
Path attribute, 80, 451, 452
Pause for Duration action, 565

 Read permission level

 Index 753

Pause until Date action, 565
-pe argument, 731
PeopleManager namespace, 323
PeoplePicker control, 563, 609, 705
permission levels, 675, 677
Permission Levels ribbon command, 679
Permissions tab, AppManifest.xml, 260–265
persistence of workflows, 546–548
PersonalizableAttribute attribute, 398
PersonalizationScope attribute, 276
Personalization Site template, 469
Person field type, 40
Person Is a Valid SharePoint User condition, 566
Person value, 638
Photo field type, 40
physical architecture, 15–17
Picture content type, 49, 63
Picture Library template, 35
PlaceHolderAdditionalPageHead region, 605
PortalName attribute, 484
PortalUrl attribute, 484
POST operations, 318
PowerShell, 8–9, 24
Prerequisites tab, AppManifest.xml, 265–267
PresenceEnabled attribute, 484
PreviousVersion property, 371
Primitives group, 536
PrivateList attribute, 73
ProcessEvent method, 353, 356, 363, 373
process life cycle for workflows, 544–546
ProcessOneWayEvent method, 353, 356, 366, 374
ProcessRequest method, 690
Product Catalog template, 10
ProductId property, 371
ProductVersion attribute, 484
projects

organizing, 5
structure for SharePoint apps, 250–252

Project Server scope, 261
Project Site template, 10, 51
Properties element, 94, 372
PropertyBag element, 96
PropertyDefinitions property, 652
Property element, 275
PropertyOrFieldNotInitializedException, 206, 208,

212
protocol moniker, 322
provider-hosted apps, 248, 296–297
Provider property, 168
providers, FBA, 675–676

provisioning content, 254–257. See also data
provisioning

PublicKeyToken value, 415
PublishDefinition method, 657
PublishEvent method, 658
Publishing group, 10
publishing namespace, 323
Publishing Portal template, 10, 469
publishing SharePoint apps

to corporate app catalog, 301–303
deploying, 298–301
to Office Store, 303–307
overview, 298

Publish method, 130
publishSubscriptionForList method, 655
publishSubscription method, 655
PublishXamlWorkflowToWorkflowStore method, 658
purpose of SharePoint 2013, 3–4
PUT operations, 318

Q
QAT attribute, 438
quality assurance (QA), 23
Query argument, 150
QueryFeatures method, 106
querying

using LINQ to SharePoint, 179–184
lists items, 149–152
using .NET and LINQ, 237–240
with REST API

document libraries, 348–349
lists, 342
overview, 325–329

QuickLaunchEnabled attribute, 484
Quick Launch menu, 145
QuickLaunchOption property, 225

R
RAD (rapid application development), 25
RawSid property, 131
RdbCredentials mode, 499
ReadItem method, 514, 521
ReadList method, 521
ReadLocked property, 122
ReadOnly attribute, 59, 67
ReadOnly property, 122
Read permission level, 32, 679

ReceiverAssembly attribute

754 Index

ReceiverAssembly attribute, 94, 109, 113
ReceiverClass attribute, 94, 109, 113
Receivers element, 96, 368, 369
Records Center template, 10, 51, 469
{RecurrenceId} token, 427, 442
RecycleAllOnSubmit method, 187
RecycleBin property, 122, 124
Recycle method, 128, 130
RecycleOnSubmit method, 187
RedirectUrl property, 355
Redmond theme, 223
Refresh method, 194
RefreshMode argument, 189, 190
RefreshPage method, 441, 461
RegionalSettings property, 132
@Register directives, 454
Register-SPWorkflowService cmdlet, 559
RegistrationId attribute, 423
registration of remote event receivers, 367–370
RegistrationType attribute, 423, 424, 427
Reindex parameter, 37
relying parties

building, 694–698
configuring, 717–719
defined, 682

Relying Party Applications menu item, 717
~remoteAppUrl token, 282, 369, 427
Remote Endpoints tab, AppManifest.xml, 268–269
Remote Event Receive item, 28
remote event receivers

app-related receivers, 370–377
architecture of

and contracts, 352–355
overview, 351–352
scopes, 356–358

callback capability, 377–378
deployment of, 367–370
example of, 358–367
overview, 351
registration of, 367–370
security of, 379–380
types of, 356–358

remote procedure call (RPC), 122
removeAllStatus method, 457
RemoveFieldRef element, 63
RemoveFromDictionary<TKey, TValue> activity, 592
removeNotification method, 456
removeStatus method, 457
RemoveUser method, 131
replace() function, 327

Replace Substring in String action, 566
Reporting scope, 261
Representational State Transfer. See REST
Representational State Transfer (REST). See REST

(Representational State Transfer)
RequestExecutor class, 333, 341
RequestExecutor.js library, 332, 333, 334
RequestHeaders attribute, 580, 631
RequiredAdmin attribute, 422, 429
Required attribute, 59
requireExactUrl argument, 123
RequireResources attribute, 94, 95
RequiresDesignerPermission attribute, 276
RequiresDesignerPermissionAttribute attribute, 418
RequireSiteAdministrator attribute, 423
ResetItem method, 132
ResetWebServer attribute, 101
ResetWebServerModeOnUpgrade attribute, 101
Resolve method, 190
resource disposal, 133–136
ResourceName key, 275
Resources element, 101
ResponseContent attribute, 631
RestCall value, 638
REST (Representational State Transfer)

consuming services in workflows, 579–585
declarative activities and, 630
messaging activities using, 536
Workflow Services Manager and, 551

REST (Representational State Transfer) API
API reference, 322–325
cross-domain calls, 333–334
examples using

creating and updating list item, 339–341
creating document library, 343
creating list, 338
deleting document, 347–348
deleting list item, 341–342
document check-in and checkout, 345–347
querying list of documents, 348–349
querying list of items, 342
updating document, 344–345

managing data, 240–243, 329–333
OData, 22, 202
overview, 234–236, 317–322
querying data, 325–329
security, 335–336

RestrictToScope property, 622
RestrictToType property, 622
Result property, 542

 security

 Index 755

ResumeWorkflow method, 655
.resx files, 95, 267
retrieveContacts method, 220
Retrieve method, 213
Return Parameter Configuration wizard, 515
returnValue argument, 463
reusable workflows, 575–576
RevertToSelf mode, 499
Ribbon

attribute, 438
customizing

commands for, 434–446
overview, 434

Ribbon.js file, 218
RichText attribute, 59
Rights attribute, 423, 427
right to left (RTL), 73
RoleAssignmentAdded event, 358
RoleAssignmentAdding event, 358
RoleAssignmentDeleted event, 358
RoleAssignmentDeleting event, 358
RoleAssignments property, 206
RoleDefinitionAdded event, 358
RoleDefinitionAdding event, 357
RoleDefinitionDeleted event, 358
RoleDefinitionDeleting event, 358
RoleDefinitionUpdated event, 358
RoleDefinitionUpdating event, 358
roles, enabling, 676–677
RootFiles element, 101
RootFolder property, 127, 154
RootWebOnly attribute, 369, 423, 451
RootWeb property, 122
round() function, 328
Row element, 83
RowLimit element, 231
RowLimit property, 150
Rows parameter, 82
RPC (remote procedure call), 122
RSSFeedDynamicViewerWebPart control, 418
RTL (right to left), 73
RuleDesigner element, 635
rule groups

creating for Windows Azure ACS, 719–720
Rule Groups menu item, 719
Run As command, 26
Runtime.dll assembly, 203
Runtime group, 536
Runtime.js file, 218
runtime scheduler

for workflows, 544–546

S
S2S (server-to-server), 312, 353, 551, 731–733
SaaS (Software as a Service), 309. See

also SharePoint Online
SafeAgainstScript attribute, 418
SafeControl object, 388, 434
SafeControl tag, 418
SAML token, 718
SampleCRM database, 498
SampleWebPart feature, 97, 98, 105
SandboxedFunction attribute, 635
SaveBinaryDirect method, 232
SaveBinary method, 130
SaveChanges method, 241, 242
SaveDefinition method, 657
Scalar value, 507
Scale attribute, 438
Scaling attribute, 438
Schema.xml file, 71, 80
SchemaXml property, 127
Scope attribute, 94, 95, 369
ScopeName argument, 559
ScopePath property, 652
scopes, 356–358
Script attribute, 60
ScriptBlock attribute, 423, 460
ScriptLink control, 218
ScriptSrc attribute, 423, 460
SDK (software development kit), 154, 202
Sealed attribute, 67
SearchContactsAppPart, 271, 278
search engine feature, 5
search namespace, 323
Search parameter, 37
Search scope, 261
Search setting, 46
second() function, 328
SecurableObject property, 206
secure (HTTPS) port, 557
Secure Store Service administration page, 500
security

infrastructure of, 24
of remote event receivers, 379–380
for REST API, 335–336
for SharePoint apps, 312–316
for Web Parts, 417–419

securityadmin role

756 Index

for workflows, 643–649
securityadmin role, 665
Security area, SPCA, 7
SecurityBits attribute, 85
SecurityEventProperties property, 355
Security Setup Wizard, 673
security token, 663
SecurityTokenService class, 690
Security Token Service (STS), 312, 666
{SelectedItemId} token, 442
{SelectedListId} token, 442
Selection class, 441
$select parameter, 326, 329
Select People And Groups dialog box, 705, 711
Select The Data Entities wizard page, 518
Select The Server And Database page, 671
Send an Email action, 565
Send To command, Library tab, 46
Sentence attribute, 635
Sequence activity, 588
Sequence attribute, 423, 429, 435
sequential workflows, 532, 625
serialization argument, 170
ServerEmailFooter, 487
ServerException, 225
Server Explorer, 28–29
Server Object Model

common and best practices
AllowUnsafeUpdates, 139–140
FormDigest, 139–140
handling exceptions, 136–138
resource disposal, 133–136
transactions, 138–139

objects hierarchy
SPContext class, 132
SPControl class, 132
SPDocumentLibrary class, 128–130
SPFarm class, 117–118
SPFile class, 128–130
SPGroup class, 130–131
SPList class, 125–128
SPListItem class, 125–128
SPServer class, 118–119
SPService class, 118–119
SPSite class, 119–125
SPUser class, 130–131
SPWebApplication class, 118–119
SPWeb class, 119–125

overview, 115
real-life examples

document libraries and files, 154–158
groups and users, 158–160
lists and items, 144–152
site collection, creating, 140–142
website, creating, 142–143

startup environment, 116
server-side custom actions, 432–434
Server Side Object Model, 650
server-side technologies, 22
server-to-server (S2S), 312, 353, 551, 731–733
service provider, 663, 682
Services property, 118
SessionAuthenticationModule class, 697
SetCategoryProvider method, 410
Set Field in Current Item action, 565, 634, 635
SetProperty method, 653
Set ribbon button, 503
setStatusPriColor method, 457
Set Time Portion of Date/Time Field action, 565
SetupPath attribute, 78, 80, 451, 468
Set Workflow Status action, 565
Set Workflow Variable action, 565
ShapeImageUrl attribute, 635
Share command, Library tab, 46
Share dialog box, 677
Shared With command, Library tab, 46
SharePoint 2013

architectural overview
logical and physical architecture, 15–17
overview, 13–15
role of databases, 18–19
service applications, 17–18

basic concepts
administration via PowerShell, 8–9
App Parts, 12
documents, 11–12
libraries, 11–12
lists, 11–12
SharePoint Central Administration, 6–8
site collections, 9–10
Web Parts, 12–13
websites, 9–10

benefits of, 4–6
for developers

App Parts, 22–23
ASP.NET integration, 21
Business Connectivity Services, 24
client-side technologies, 22
data provisioning, 23
event receivers and workflows, 23

 $skip parameter

 Index 757

features, 23–24
Microsoft Visual Studio 2012, 26–28
overview, 21
sandboxing, 23–24
security infrastructure, 24
server-side technologies, 22
SharePoint Designer 2013, 25–26
SharePoint Server Explorer, 28–29
Solution Explorer and Feature Designer, 30
solutions deployment, 23–24
UI, 22–23
Web Parts, 22–23
Windows PowerShell, 24

editions
overview, 19
SharePoint Foundation, 19–20
SharePoint Online, 21
SharePoint Server Enterprise, 20
SharePoint Server Standard, 20

purpose/use of, 3–4
SharePoint Central Administration (SPCA), 303, 496,

560, 662, 699
SharePoint_Config database, 16
SharePoint Designer 2013, 25–26
SharePoint.dll assembly, 118
SharePoint Health Analyzer, 8
SharePoint-hosted model, 247
SharePoint namespace, 108
SharePointProductVersion attribute, 101
SharePoint Server Explorer, 28–29
sharing, 4
ShowInDisplayForm attribute, 59
ShowInEditForm attribute, 59
ShowInLists attribute, 423
ShowInNewForm attribute, 59
ShowInReadOnlyContentTypes attribute, 423
ShowInSealedContentTypes attribute, 423
showModalDialog method, 461, 462
ShowPopupDialog method, 461
showWaitScreenSize method, 461
showWaitScreenWithNoClose method, 461
Sid property, 131
Silverlight Client Object Model, 213–218
Silverlight.dll assembly, 213
Silverlight.Runtime.dll assembly, 213
Silverlight Web Part project, 27
Simple Object Access Protocol (SOAP), 22, 165, 490,

536, 683
Single Line of Text field type, 39
SinglePerson value, 638

Single Project scope, 261
SingleTask activity, 590, 599
Site Actions group, 99
Site App Permission page, 644
Site App Permissions menu, 643
Site Assets Library setting, 46
Site class, 323
Site Collection Administration group, 99
site collections

creating, 140–142
scope, 261

~sitecollection token, 427
Site Column Definition page, 48
site columns, 28, 47–48, 55–60
Site Columns page, 48
Site Contents page, 51, 264
Site Content Type page, 66
Site Content Types command, 49
SiteDefinitionManifests element, 101
site definitions

creating custom, 471–474
defined, 465
using, 466–470
in Visual Studio, 474–482
vs. web templates, 487

SiteDeleted event, 357
SiteDeleting event, 357
Site Features page, 645
site models

overview, 465–466
site definitions

creating custom, 471–474
using, 466–470
in Visual Studio, 474–482
vs. web templates, 487

web templates
creating custom, 482–486
vs. site definitions, 487

site namespace, 323
Site Permissions page, 679
Site property, 124, 132, 206
sites, 51–52
SiteSettings location, 428
Site Settings page, 47, 49, 99
site templates, 466
~site token, 427
{SiteUrl} token, 427, 442
SiteUsers property, 124
Size attribute, 445
$skip parameter, 236, 326, 329

-sky argument

758 Index

-sky argument, 731
SkyDrive Pro feature, 5
Slide Library template, 35
SOAP (Simple Object Access Protocol), 22, 165, 490,

536, 683
Social Core scope, 261
social.feed namespace, 323
Social Meeting Workspace template, 10
Software as a Service (SaaS), 309. See

also SharePoint Online
software development kit (SDK), 154, 202
Solution element, 100
Solution Explorer, Visual Studio 2012, 30
__SolutionId attribute, 635
SolutionId attribute, 94, 101
solutions

deploying, 100–103
manifest file for, 100
package, defined, 100
packaging with Visual Studio 2012, 103–105
upgrading, 105–108

Solutions property, 122
$sort parameter, 329
{Source} token, 442
SPActiveDirectoryClaimProvider, 704
-sp argument, 732
SPCA (SharePoint Central Administration), 6–8, 303,

496, 560, 662, 699
SPCheckOutType class, 156
SPClaimProvider class, 700, 707
SPClaimsProviderFeatureReceiver class, 709
SPContentType class, 551
SPContext class, 123, 132
SPControl class, 123, 132, 386
SP.Core.js file, 218
SPDocumentLibrary class, 128–130, 153
SpecificFinder method, 507, 510, 514, 521
Specify OData Source wizard page, 517
SPException, 148
SPFarm class, 117–118
SPFeatureReceiver class, 108
SPFeatureReceiverProperties class, 108, 109, 110
SPFile class, 128–130
SPFileCollectionAddParameters argument, 154
SPFile property, 155
SPFormsClaimProvider, 704
SPGroup class, 130–131
SPHostUrl parameter, 273
Spinner attribute, 438
SP.js file, 218

SPLimitedWebPartManager class, 136
SPList class, 125–128, 147, 180, 370
SPListCollection class, 144, 145
SPListItem class, 125–128, 146
SPListItemCollection class, 146
SPListItemCollectionPosition class, 152
SPListTemplateType, 144, 152
SplitButton attribute, 438
SplitKeyValuePair<TKey, TValue> activity, 592
SPMetal.exe, 170–179
SPPrincipal class, 130, 677
SPQuery class, 149
SPRemoteAppEventProperties class, 371
SPRemoteEventProperties class, 353, 354, 363, 371
SPRemoteEventResult class, 365
SPRequestModule class, 21
SPRoleAssignment class, 130
SPRoleDefinition class, 130
SPServer class, 118–119
SPService class, 118–119
SPServiceCollection class, 118
SPSite argument, 559
SPSite class, 106, 119–125, 123, 136
SPSiteCollection class, 141
SPSiteDataQuery class, 184
SPSPORTAL#0 template, 142
SPTrustedClaimProvider, 704
SPTrustedIdentityTokenIssuer class, 701
SPUrlZone enumeration, 120
SPUser class, 130–131, 664
SPUserCollection class, 159
SPUserToken class, 120
SPUtility class, 140
SPVirtualPathProvider class, 21
SPWebApplication class, 118–119, 120, 665
SPWebApplication.Sites property, 141
SPWeb class, 119–125, 155, 159, 551
SPWebCollection class, 142
SPWebPartManager class, 136, 384
SPWebService object, 120
SPWebService type, 118
SPWebTemplate class, 143
SPWindowsService class, 118
SPWorkflowPackageFeatureReceiver class, 623
SQL Azure database, 289–292
SqlClient class, 291
SqlConnection class, 290
SQL Server

configuring database, 670–673
configuring permissions, 675

 Taxonomy scope

 Index 759

configuring SharePoint web.config files, 673–674
enabling providers for, 675–676
enabling users or roles, 676–677
overview, 670

SqlWorkflowInstanceStore class, 547
SqlWorkflowInstanceStoreLogic.sql file, 546
SqlWorkflowInstanceStoreSchema.sql file, 546
-sr argument, 731
-ss argument, 731
stages

adding to workflows, 566–567
defined, 562

Stages value, 638
StandardMenu location, 428
{StandardTokens} token, 260
Standard View, 42
Start a List Workflow action, 564
Start a Site Workflow action, 564
Start a Task Process action, 565
Started value, 570
Start On Item Added property, 624
startswith() function, 327
StartWorkflow method, 609, 655, 658
StartWorkflowOnListItem method, 609, 612, 655
State Machine group, 536
state machine workflow, 532, 625–626
StaticName attribute, 56, 57
status bar, 456–460
StatusColumnCreated property, 623, 653
StatusFieldName property, 653
status fields

for workflows, 570–571
Statusing scope, 261
Status property, 365
Status type, 355
StreamAccessor value, 507
Stream class, 154
StringBuilder value, 638
STS#0 template, 142, 143
STS#1 template, 142, 143
STS#2 template, 142
STSADM.exe tool, 97, 102
STS (Security Token Service), 312, 666
subject, 682
SubMenuTemplate, 433
SubmitChanges method, 185, 186, 188
sub operator, 327
subscription service, 650
Subscription Settings service, 309
substring() function, 327

substringof() function, 327
Subweb attribute, 484
success argument, 334
Supported Locales tab, AppManifest.xml, 267–268
SupportsSearch property, 708
Survey template, 35
Suspended value, 570
SuspendWorkflow method, 655
-sy argument, 732
SyncChanges method, 402
Synchronization element, 369
SyndicationEnabled attribute, 484
System.Activities.Activity class, 629
System.Activities.DurableInstancing.dll

assembly, 546
System.Byte[] array, 154
System.ComponentModel.DataAnnotations

assembly, 639
System content type, 63
System.IdentityModel assembly, 686
system.identityModel section, 697
System.IdentityModel.Selectors assembly, 686
System.IdentityModel.Services assembly, 686
System.IdentityModel.Services namespace, 696
system.identityModel.services section, 697
System.Runtime.DurableInstancing.dll assembly, 546
System Settings page, 7, 102
SystemUpdate method, 128

T
Tab attribute, 438
Tabs attribute, 438
TargetApprover parameter, 563, 569, 609
TargetCountry argument, 537, 542
Target Framework setting, 116
TargetListID property, 402, 404
TargetListTitle property, 399, 402
TargetName attribute, 69
Task content type, 63
TaskId property, 600
TaskListId property, 623
Task Options designer, 599
Task Options pop-up window, 620
Task Outcome field type, 40
Task Pane App, 28
tasks, organizing, 5
Tasks template, 35
Taxonomy scope, 261

TCP ports

760 Index

TCP ports, 557
Team Site template, 9, 51, 469
TemplateAlias attribute, 436
Template attribute, 80
Template element, 468
TemplateFeatureId property, 225
TemplateFiles element, 101
templates

overview, 465–466
site definitions

creating custom, 471–474
using, 466–470
in Visual Studio, 474–482
vs. web templates, 487

web templates
creating custom, 482–486
vs. site definitions, 487

TemplateType property, 225
Tenant scope, 261
Terminated value, 570
TerminateWorkflow method, 655
testing workflows

overview, 567–570
in Visual Studio 2012, 594–597

TextArea value, 638
Text attribute, 636
TextBox attribute, 438
TextBox value, 638
Text column, 56
Text field type, 58
TextToRender property, 416
TextToRenderTimes property, 416
Time24 attribute, 484
TimeSpan value, 544
TimeZone attribute, 484
Title attribute, 72, 94, 95, 101, 423, 429, 484
Title Field Contains Keywords condition, 566
TitleIconImageUrl property, 390
Title property, 124, 125, 127, 128, 130, 210, 225, 287,

319, 339, 390, 600
To argument, 664
ToBeDeleted value, 185
ToBeInserted value, 185
ToBeRecycled value, 185
ToBeUpdated value, 185
ToggleButton attribute, 438
TokenHelper class, 287, 288, 313, 363, 380
tolower() function, 328
$top parameter, 236, 326, 329
toupper() function, 328

Transaction group, 537
transactions, 138–139
Translate Document action, 565
TranslateDocument activity, 591
TreeViewEnabled attribute, 484
trim() function, 328
Trim String action, 566
trusted IPs

configuring target web application, 702–704
creating custom claims provider, 704–712
overview, 699
registering IP/STS in SharePoint, 700–701

TrustedProviderSignInPage page, 701
TryGetAppDatabaseConnectionDirect method, 291
Type attribute, 57, 78, 80, 85, 267, 452, 471, 507, 636
TypeFrom attribute, 636

U
UICultureLCID property, 355
UI Custom Action, 28
UI (user interface)

custom actions
CustomAction element, 421–428
CustomActionGroup element, 428–430
HideCustomAction element, 430–431
overview, 421
server-side custom actions, 432–434

custom content
application pages, 448–450
Content pages, 450–456
galleries, 450–456
images, 446–448
Web Part pages, 450–456

ModalDialog class, 461–464
notification area, 456–460
overview, 421
Ribbon

commands for, 434–446
overview, 434

status bar, 456–460
UIVersion attribute, 94, 423
UIVersionConfigurationEnabled attribute, 484
ULS (Unified Logging System), 137, 665
Unchanged value, 185
UndoCheckOutItem activity, 590
UndoCheckOut method, 130
Unified Logging System (ULS), 137, 665
Update List Item action, 565

 WaitForCustomEvent activity

 Index 761

UpdateListItem activity, 590
UpdateListItem value, 638
Update method, 125, 128, 130, 131
UpdateObject method, 241
UpdateOverwriteVersion method, 128
Update Personal Web Parts permission, 679
Update property, 127
updateStatus method, 457
upgradeActionName argument, 113
UpgradeActions element, 94, 106, 107
Upgrade and Migration area, SPCA, 7
Upgrade method, 106
upgradesolution command, 106
upgrading

features, 105–108
SharePoint apps, 308–309
solutions, 105–108

Upload Document command, Library tab, 45
uploading documents, 154, 232–233
Uri attribute, 631
Uri class, 216
UrlAction element, 282, 424, 448, 449
url argument, 334
Url attribute, 73, 78, 451, 452
URL field type, 58
Url property, 122, 128, 130
Use A Business Identity Provider option, 696
Use Client Integration Features permission, 678
user argument, 170
useremoteapi argument, 170
Use Remote Interfaces permission, 678
User field type, 58
UserMulti field type, 58
User Profile scope, 261
users. See also groups

creating, 158–159
enabling for FBA with SQL Server, 676–677
permissions for, managing, 160

Users And Permissions group, 643
Users property, 125, 131
UserToken property, 131
UsesCurrentItem attribute, 635
Use Self-Service Site Creation permission, 678
useUniquePermissions argument, 143

V
ValidateActivity method, 657
ValidateFormDigest() method, 140

Validation element, 60, 80
.vbs file, 319
Verbs property, 407
Version attribute, 63, 94
versioning

in LINQ to SharePoint, 196–197
managing versions of documents, 157–158
for Web Parts, 413–417
for workflows, 576–578

VersioningEnabled attribute, 73
Version property, 371
VersionRange element, 107
Versions property, 128, 130
View Application Pages permission, 678
View definition, 82
View element, 79, 474
ViewFields element, 79
ViewFieldsOnly property, 150
ViewFields property, 150, 208
View Items permission level, 678
View Only permission level, 31, 32, 679
View Pages permission level, 678
View Properties command, Library tab, 46
views, 41–44
Views element, 77
Views ribbon command, 572
ViewToolbar location, 428
View Versions permission, 678
View Web Analytics Data permission, 678
virus keyword, 374
Visio Process Repository template, 10, 51, 469
Visual Designer view

for workflows, 572–573
Visual Studio 2012

list definitions in, 86–89
overview, 26–28
packaging solutions with, 103–105
site definitions in, 474–482
workflows in

activities available in, 589–593
building, 594–597
creating, 585–589
testing, 594–597

Visual Web Parts, 27, 395–397
VSDX file, 573

W
WaitForCustomEvent activity, 591

Wait for Event in List Item action

762 Index

Wait for Event in List Item action, 565
WaitForFieldChange activity, 590
Wait for Field Change in Current Item action, 565
WaitForItemEvent activity, 590
WaitForTaskCompletion property, 600
WAS (Windows Process Activation Service), 14
WCF (Windows Communication Foundation), 194,

203, 532
accessing with BCS, 490, 510–515
Connection dialog box for, 512
and remote event receivers, 351
WCF Data Services Client Library, 239

WCF Workflow Service Application, 535
WCM (web content management), 407
WebAdding event, 357
web argument, 170
WebBrowsable attribute, 276, 402
WebBrowsableAttribute attribute, 398
WebBrowsableObject property, 401
WebCategory attribute, 276
WebClient class, 237
web.config files, 673–674
web content management (WCM), 407
WebControl class, 432
WebControls namespace, 132, 449
WebDeleted event, 357
WebDeleting event, 357
WebDescription attribute, 276
WebDescriptionAttribute attribute, 399
Web Designer Galleries group, 47, 49
WebDisplayAttribute attribute, 399
WebDisplayName attribute, 276
Web element, 171
WebEventProperties property, 355
WebFeatures element, 478
WebMoved event, 357
WebMoving event, 357
web namespace, 323
WebPart class, 386, 419–420
WebPartConnection element, 456
Web Part page, 527
WebPartPage class, 140
WebPartPages namespace, 384, 387, 400
WebPartPage type, 139
Web Parts

architecture of, 383–384
Classic Web Part, 392–395
configurable Web Parts

configurable parameters, 398–400
Editor Parts, 400–404

overview, 398
connectable Web Parts, 407–413
custom verbs for, 405–407
deploying, 388–392, 413–417
display modes for, 404–405
hello world Web Part, 384–387
overview, 12–13, 383
security, 417–419
SharePoint-specific WebParts, 419–420
UI customization for, 450–456
versioning for, 413–417
Visual Web Part, 395–397
.webpart file, 390

WebParts namespace, 383
Web Part solution package (WSP), 388
WebPartToEdit property, 402
WebPartToolPart class, 400
WebPartVerbCollection class, 405
WebPartZone class, 256, 383, 453
WebPartZoneID attribute, 78
Web Platform Installer 4.0 tool, 248
Web Platform Installer UI, 553
Web Project property, 288
Web property, 132, 206
WebProvisioned event, 357
Web scope, 261
websites, creating, 142–143
WebTemplate element, 96, 482
web templates. See also site definitions

creating custom, 482–486
defined, 466
vs. site definitions, 487

webtemp*.xml files, 467
WebUri activity, 589
Where CAML clause, 209
WIF (Windows Identity Foundation)

implementing IP/STS with
building relying party, 694–698
building STS, 686–694
overview, 685

WIF (Windows Identity Foundation) 1.0, 664
WIKI#0 template, 143
Windows authentication, 667–668
Windows Azure ACS, 352

authenticating with Facebook, 726–728
configuring relying parties, 717–719
creating namespace in, 714
creating rule groups, 719–720
federating SharePoint with Windows Azure

ACS, 721–722

 Workflow Services Manager

 Index 763

logon page for, 723–725
overview, 713–715
setting up Facebook app, 715–717

Windows Azure Service Bus, 550
Windows Communication Foundation

(WCF), 532. See WCF
WindowsCredentials mode, 499
Windows Identity Foundation (WIF) 1.0, 664
Windows Management Instrumentation (WMI), 165
Windows PowerShell, 24
Windows Presentation Foundation (WPF), 217
Windows Process Activation Service (WAS), 14
Windows SharePoint Services Solution Packages

(WSPs), 24, 388, 575
WMI (Windows Management Instrumentation), 165
WorkflowActions element, 96
WorkflowApplication class, 539, 545
WorkflowAssociation element, 96
Workflow Console Application, 535
WorkflowDeploymentService class, 656–658
Workflow element, 96
WorkflowHostUri argument, 559
Workflow Initiation Form template, 604
WorkflowInstanceService class, 609, 655–656
WorkflowInterop activity, 591
WorkflowInteropService class, 658
WorkflowInvoker class, 539
Workflow Manager 1.0

configuring, 554–559
installing, 553–554
linking farm to SharePoint, 559–561

Workflow Manager Configuration Wizard, 554
Workflow Manager emulator, 596
WorkflowManager property, 122
WorkflowMessagingService class, 658
WorkflowParameters value, 638
workflows, 23

actions for, 564–566
adding stages to, 566–567
app principal for, 643–649
architecture of, 549–552
association form for, 563–564
association forms

creating, 604–615
conditions for, 566
consuming REST services, 579–585
creating, 535–538
custom actions in

creating code activities, 639–640
creating declarative activities, 630–633

deployment of code activities, 640–643
deployment of declarative actions, 634–638
overview, 629

custom activities for, 540–544
custom tasks for, 615–620
defining in SharePoint apps, 598–604
deploying

farm-level workflow, 620–623
overview, 620
SharePoint app workflow, 624

design surface for, 561–562
exception management, 574–575
executing instances of, 539–540
flowcharts in, 625–626
initiation form for, 563–564
initiation forms

creating, 604–615
overview, 579
persistence of, 546–548
process life cycle for, 544–546
reusable, 575–576
runtime scheduler for, 544–546
security for, 643–649
state machines in, 625–626
status fields for, 570–571
testing, 567–570
versioning for, 576–578
Visual Designer view for, 572–573
in Visual Studio 2012

activities available in, 589–593
building, 594–597
creating, 585–589
testing, 594–597

Workflow Manager 1.0
configuring, 554–559
installing, 553–554
linking farm to SharePoint, 559–561

Workflow Services Manager
overview, 649–650
WorkflowDeploymentService class, 656–658
WorkflowInstanceService class, 655–657
Workflow Services Manager, 651–652
WorkflowSubscription class, 652–655

Workflows Can Use App Permissions feature, 645
Workflow scope, 261
WorkflowServiceAddress property, 652
Workflow Service Application Proxy, 560
WorkflowServiceDefinition type, 622
WorkflowServiceHost host, 546
Workflow Services Manager

WorkflowServicesManager class

764 Index

overview, 649–650
WorkflowDeploymentService class, 656–658
WorkflowInstanceService class, 655–656
WorkflowServicesManager class, 651–652
WorkflowSubscription class, 652–655

WorkflowServicesManager class, 609, 651–652, 655
WorkflowServiceSubscription type, 622
Workflow Settings page, 594
Workflows property, 128
WorkflowStart value, 623
Workflow Status page, 602
WorkflowSubscription class, 652–655
WorkflowSubscriptionService class, 652, 653
WorkflowSubscription type, 614
WPF (Windows Presentation Foundation), 217
WriteLine activity, 537
WriteLocked property, 122
Write permission, 262
WriteToHistory activity, 591
WSDescription property, 622
WSDisplayName property, 622
WSEnabled property, 623
WSEventSourceGUID property, 623
WSEventType property, 623
WS-Federation and claims-based

authentication, 681–685
WSFederationAuthenticationModule class, 696
wsFederation element, 697
.wsp extension, 100
WSPs (Windows SharePoint Services Solution

Packages), 24, 388, 575
WS-Security specification, 683
WS-Trust specification, 683
WWF (Windows Workflow Foundation)

architecture of, 531–534
creating workflows, 535–538
custom activities for, 540–544
executing workflow instances, 539–540
overview, 531
runtime scheduler for, 544–546
workflow persistence, 546–548
workflow process life cycle, 544–546

X
X509Certificate2 class, 699
XAML (Extensible Application Markup

Language), 213
X-Http-Method header, 318

XmlDefinition variable, 82
XmlDocument content type, 63
XmlDocuments element, 68
Xml property, 128, 131
X-RequestDigest header, 323, 338
Xsl element, 79
XslLink element, 79
.xslt file, 82
XsltListViewWebPart control, 256, 476
xsnLocation element, 70
xsnScope element, 70
XSS (cross-site scripting), 268, 418

Y
year() function, 328
Yes/No field type, 40

Z
.zip file, 301
Zone property, 122

about the author

PAOLO PIALORSI is a consultant, trainer, and author who specializes in
developing distributed application architectures and Microsoft SharePoint–
based enterprise solutions. During his professional career, he has passed more
than 40 Microsoft certification exams. Paolo has a great deal of experience
working with SharePoint, and he is a Microsoft Certified Master (MCM) for
SharePoint 2010. He is one of the content owners of the Italian version of the

SharePoint & Office Conference, and he is a popular speaker at worldwide industry
conferences.

He is the author of many Microsoft Press books on Microsoft .NET, Microsoft Windows
8, and SharePoint. Recent books include Programming Microsoft LINQ in Microsoft
.NET Framework 4, Build Windows 8 Apps with Microsoft Visual C# and Visual Basic Step
by Step, Build Windows 8 Apps with Microsoft Visual C++ Step by Step, and Microsoft
SharePoint 2010 Developer Reference. He has also written three Italian-language books,
on the topics of .NET, XML, and web services.

You can reach Paolo via the following:

■■ The SharePoint Developer Reference
blog http://www.sharepoint-reference.com

■■ Twitter @PaoloPia; http://www.twitter.com/PaoloPia

■■ LinkedIn http://it.linkedin.com/in/paolopialorsi/

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

	Contents at a Glance
	Contents
	Introduction
	Chapter 1: Microsoft SharePoint 2013: A quick tour
	What is SharePoint?
	Main benefits
	Share
	Organize
	Discover
	Build
	Manage

	SharePoint basic concepts
	SharePoint Central Administration
	SharePoint Administration via PowerShell
	Site collections and websites
	Lists, libraries, items, documents, and other apps
	App Parts and Web Parts

	Architectural overview
	Logical and physical architecture
	Service applications
	The role of databases

	SharePoint editions
	SharePoint Foundation
	SharePoint Server Standard
	SharePoint Server Enterprise
	SharePoint Online

	SharePoint for developers
	ASP.NET integration
	Server-side technologies
	Client-side technologies
	App Parts, Web Parts, and the UI
	Data provisioning
	Event receivers and workflows
	Features, solutions deployment, and sandboxing
	Security infrastructure
	Business Connectivity Services
	Windows PowerShell for developers

	Developer tools
	SharePoint Designer 2013
	Microsoft Visual Studio 2012
	SharePoint Server Explorer
	Solution Explorer and the Feature Designer

	Summary

	Chapter 3: Data provisioning
	Site columns
	Content types
	Content type IDs
	More about content types
	Document content types

	List definitions
	List schema file
	Defining a custom view

	Summary

	Index

