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Abstract

Multirate systems are building blocks commonly used in digital signal processing (DSP). Their function is

to alter the rate of the discrete-time signals, which is achieved by adding or deleting a portion of the signal

samples. Multirate systems play a central role in many areas of signal processing, such as filter bank theory

and multiresolution theory. They are essential in various standard signal processing techniques such as signal

analysis, denoising, compression and so forth. During the last decade, however, they have increasingly found

applications in new and emerging areas of signal processing, as well as in several neighboring disciplines such

as digital communications.

The main contribution of this thesis is aimed towards better understanding of multirate systems and

their use in modern communication systems. To this end, we first study a property of linear systems

appearing in certain multirate structures. This property is called biorthogonal partnership and represents

a terminology introduced recently to address a need for a descriptive term for such class of filters. In the thesis

we especially focus on the extensions of this simple idea to the case of vector signals (MIMO biorthogonal

partners) and to accommodate for nonintegral decimation ratios (fractional biorthogonal partners).

Some of the main results developed here pertain to a better understanding of the biorthogonal partner

relationship. These include the conditions for the existence of stable and of finite impulse response (FIR)

biorthogonal partners. A major result that we establish states that under some generally mild conditions,

MIMO and fractional biorthogonal partners exist. Moreover, when they exist, FIR solutions are not unique.

We develop the parameterization of FIR solutions, which makes the search for the best partner in a given

application analytically tractable. This proves very useful in the central application of biorthogonal partners,

namely, channel equalization in digital communications with signal oversampling at the receiver. Sampling

the received signal at a rate higher than that defined by the transmitter provides some flexibility in the design

of the equalizer. A good channel equalizer in this context is one that helps neutralize the distortion on the

signal introduced by the channel propagation but not at the expense of amplifying the channel noise. This

presents the rationale behind the partner design problem which is formulated and solved. The performance

of such equalizers is then compared to several other equalization methods by computer simulations. These

findings point to the conclusion that the communication system performance can be improved at the expense

of an increased implementational cost of the receiver.

While the multirate DSP in the aforementioned communication systems serves to provide additional

degrees of freedom in the design of the receiver, another important class of multirate structures is used at the

transmitter side in order to introduce the redundancy in the data stream. This redundancy generally serves

to facilitate the equalization process by forcing certain structure on the transmitted signal. If the channel

is unknown, this procedure helps to identify it; if the channel is ill-conditioned, additional redundancy helps
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avoid severe noise amplification at the receiver, and so forth. In the second part of the thesis, we focus on

this second group of multirate systems, derive some of their properties and introduce certain improvements

of the communication systems in question.

We first consider the transmission systems that introduce the redundancy in the form of a cyclic prefix.

The examples of such systems include the discrete multitone (DMT) and the orthogonal frequency division

multiplexing (OFDM) systems. The cyclic prefix insertion helps to effectively divide the channel in a certain

number of nonoverlaping frequency bands. We study the problem of signal precoding in such systems that

serves to adjust the signal properties in order to fully take advantage of the channel and noise properties

across different bands. Our ultimate goal is to improve the overall system performance by minimizing the

noise power at the receiver. The special case of our general solution corresponds to the white channel noise

and the best precoder under these circumstances simply performs the optimal power allocation.

Finally, we study a different class of communication systems with induced signal redundancy, namely,

the multiuser systems based on code division multiple access (CDMA). We specifically focus on the special

class of CDMA systems called ‘a mutually orthogonal usercode receiver’ (AMOUR). These systems use

the transmission redundancy to facilitate the user separation at the receiver regardless of the (different)

communication channels. While the method also guarantees the existence of the zero-forcing equalizers

irrespective of the channel zero locations, the performance of these equalizers can be further improved by

exploiting the inherent flexibility in their design. We show how to find the best equalizer from the class of

zero-forcing solutions and then increase the size of this class by employing alternative sampling strategies

at the receiver. Our method retains the separability properties of AMOUR systems while improving their

robustness in the noisy environment.
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Chapter 1 Introduction

The theory of multirate digital signal processing (DSP) has traditionally been applied to the contexts of

filter banks [61], [13], [50] and wavelets [31], [72]. These play a very important role in signal decomposition,

analysis, modeling and reconstruction. Many areas of signal processing would be hard to envision without

the use of digital filter banks. This is especially true for audio, video and image compression, digital

audio processing, signal denoising, adaptive and statistical signal processing. However, multirate DSP has

recently found increasing application in digital communications as well. Multirate building blocks are the

crucial ingredient in many modern communication systems, for example, the discrete multitone (DMT),

digital subscriber line (DSL) and the orthogonal frequency division multiplexing (OFDM) systems as well

as general filter bank precoders, just to name a few. The interested reader is referred to numerous references

on these subjects, such as [7]–[9], [17]–[18], [27], [30], [49], [64], [89], etc.

This thesis presents a contribution to further understanding of multirate systems and their significance

in digital communications. To that end, we introduce some new signal processing concepts and investigate

their properties. We also consider some important problems in communications especially those that can

be formulated using the multirate methodology. In this introductory chapter, we give a brief overview of

the multirate systems and introduce some identities, notations and terminology that will prove useful in

the rest of the thesis. Every attempt is made to make the present text as self-contained as possible and

the introduction is meant to primarily serve this purpose. While some parts of the thesis, especially those

that cover the theory of biorthogonal partners and their extensions provide a rather extensive treatment

of the concepts, the material regarding the applications of the multirate theory in communication systems

should be viewed as a contribution to a better understanding and by no means the exhaustive treatment of

such systems. For a more comprehensive coverage the reader is referred to a range of extensive texts on the

subject, for example, [71], [18], [19], [39], [38], [53], etc.

1.1 Multirate systems

1.1.1 Basic building blocks

The signals of interest in digital signal processing are discrete sequences of real or complex numbers denoted

by x(n), y(n), etc. The sequence x(n) is often obtained by sampling a continuous-time signal xc(t). The

majority of natural signals (like the audio signal reaching our ears or the optical signal reaching our eyes)

are continuous-time. However, in order to facilitate their processing using DSP techniques, they need to be

sampled and converted to digital signals. This conversion also includes signal quantization, i.e.,discretization

in amplitude, however in practice it is safe to assume that the amplitude of x(n) can be any real or complex
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Y (z) = H(z)X(z)

x(n)

X(z)
H(z)

y(n) =

∞∑
k=−∞

x(k)h(n − k)

Figure 1.1: Filtering operation: linear time invariant system.

number. Signal processing analysis is often simplified by considering the frequency domain representation

of signals and systems. Commonly used alternative representations of x(n) are its z-transform X(z) and

the discrete-time Fourier transform X(ejω). The z-transform is defined as X(z) =
∑∞

n=−∞ x(n)z−n, and

X(ejω) is nothing but X(z) evaluated on the unit circle z = ejω.

Multirate DSP systems are usually composed of three basic building blocks, operating on a discrete-time

signal x(n). Those are the linear time invariant (LTI) filter, the decimator and the expander. An LTI

filter, like the one shown in Fig.1.1, is characterized by its impulse response h(n), or equivalently by its

z-transform (also called the transfer function) H(z). Examples of the M -fold decimator and expander for

M = 2 are shown in Fig.1.2. The rate of the signal at the output of an expander is M times higher than the

rate at its input, while the converse is true for decimators. That is why the systems containing expanders

and decimators are called ‘multirate’ systems. Fig.1.2 demonstrates the behavior of the decimator and the

expander in both the time and the frequency domains. In the z-domain this is described by

XE(z) = [X(z)]↑M = X(zM ) for M -fold expander, and (1.1)

XD(z) = [X(z)]↓M =
1
M

M−1∑
k=0

X(z
1

M e−
j2πk

M ) for M -fold decimator. (1.2)

The systems shown in Figs.1.1 and 1.2 operate on scalar signals and thus are called single input—

single output (SISO) systems. The extensions to the case of vector signals are rather straightforward: the

decimation and the expansion are performed on each element separately. The corresponding vector sequence

decimators/expanders are denoted within square boxes in block diagrams. In Fig.1.3 this is demonstrated for

vector expanders. The LTI systems operating on vector signals are called multiple input—multiple output

(MIMO) systems and they are characterized by a (possibly rectangular) matrix transfer function H(z).

1.1.2 Some multirate definitions and identities

The vector signals are sometimes obtained from the corresponding scalar signals by blocking. Conversely, the

scalar signals can be recovered from the vector signals by unblocking. The blocking/unblocking operations

can be defined using the delay or the advance chains [61], thus leading to two similar definitions. One way

of defining these operations is shown in Fig.1.4, while the other is obtained trivially by switching the delay

and the advance operators. Instead of drawing the complete delay/advance chain structure, we often use

the simplified block notation as in Fig.1.4. It is usually clear from the context which of the two definitions
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n

xE(n)

0 1 3 42 6 7

0 ωπ 2π−π

XE(ejω)

5

2

−2π0 π 2π−2π −π

X(ejω)

ω

x(n)

n0 1 3 4 52

Expander: XE(ejω) = X(ejωM)
( a )

2
x(n)

n0 1 3 4 52 0 1 3 42

xD(n)

n

0 π 2π−2π −π

X(ejω)

ω 0 π 2π−2π −π

XD(ejω)

ω

Decimator: XD(ejω) = 1
M

∑M−1
k=0 X(ej ω+2πk

M )
( b )

Figure 1.2: Multirate building blocks: (a) 2-fold expander and (b) decimator.

M

M

M

M

Figure 1.3: The definition and the notation of the vector signal expander.

of the unblocking and blocking operations is employed.

A very useful tool in multirate signal processing is the so-called polyphase representation of signals and

systems. It facilitates considerable simplifications of theoretical results as well as efficient implementation

of multirate systems. Since polyphase representation will play an important role in the rest of the thesis,

here we take a moment to formally define it. Consider an LTI system with a transfer function H(z) =∑∞
n=−∞ h(n)z−n and suppose we are given an integer M. We can decompose H(z) as

H(z) =
M−1∑
m=0

z−m
∞∑

n=−∞
h(nM + m)z−nM =

M−1∑
m=0

z−mHm(zM ) (Type 1 decomposition). (1.3)

Note that this is equivalent to dividing the impulse response h(n) into M nonoverlaping groups of samples
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B

blocking

K K U

unblocking

K

K

K

s(n) s(n)

K

K

K

z−1

z−1

z−1

s(n) s(n)

( b )

s(n)

z

z

z

s(n)

( a )

s(n) s(n)

Figure 1.4: Notations: blocking (a) and unblocking (b) operations.

hm(n), obtained from h(n) by M -fold decimation starting from sample m. In other words, h(n) can be

obtained by combining sequences hm(n) through the unblocking structure shown in Fig.1.4(b). Subsequences

hm(n) and the corresponding z-transforms defined in (1.3) are called the Type 1 polyphase components of

H(z) with respect to M . A variation of (1.3) is obtained if we decimate h(n) starting from sample −m, for

0 ≤ m ≤ M − 1. This gives rise to Type 2 polyphase components H̄m(z):

H(z) =
M−1∑
m=0

zmH̄m(zM ) (Type 2 decomposition). (1.4)

The polyphase notation will be used again very soon in Section 1.3.2 when we discuss the use of filter bank

precoders in modern digital communications. However, it is also an important tool in the rest of the thesis.

The reader will therefore often be referred to the results from this section. In the following we first describe

the notion that plays the central role in Chapters 2 and 3, namely, the concept of biorthogonal partners.

1.2 Biorthogonal partners

1.2.1 Generalized inverse

Consider the system shown in the first part of Fig.1.5(a), namely, the system for generating y(n) from x(n).

Traditionally, this structure has been called the system for digital interpolation since the rate of y(n) is M

times higher than that of x(n). Filter H(z) is usually referred to as the interpolation filter [61]. Suppose

the goal is to recover the signal x(n) from y(n). Conceptually the simplest way to achieve this is shown in

Fig.1.5(a). Namely, y(n) is first passed through the inverse of the interpolation filter 1/H(z). This recovers

the signal at the input of the M -fold expander. The M -fold decimator that follows simply discards the zeros

inserted by the expander and the recovery of x(n) is complete. Notice, however, that this is not the only

way to reconstruct x(n), simply because the inverse filter forces the discarded samples to be zero, while they

can take arbitrary values. Indeed, any filter F (z) with the property that its output preserves the desired

samples of x(n) in the appropriate locations, with arbitrary values in between [see Fig.1.5(b)] yields a valid
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M
x(n) x(n)y(n)

M H(z)

INVERSE

1/H(z)

( a )

M
x(n) x(n)y(n)

M H(z) F (z)

( b )

PARTNER
BIORTHOGONAL

Figure 1.5: Signal recovery after interpolation: (a) using filter inverses, and (b) using ‘generalized inverses.’

( a )

( b )

M F (z) MH(z)

G0(z)
x̂(n)x(n)

x(n) x̂(n)

Figure 1.6: Biorthogonal partners: (a) definition and (b) equivalent LTI system.

reconstruction scheme. Filters F (z) with the described property are called biorthogonal partners of H(z)

and were first introduced in [65]. Notice that the inverse filter is a valid biorthogonal partner. Therefore

biorthogonal partners can be thought of as generalized inverses.

Before we provide the formal definition of biorthogonal partners let us answer a potential question: why

would we even bother to use the more general reconstruction structure from Fig.1.5(b) if the one in Fig.1.5(a)

already works fine? In most practical applications where the interpolation structure arises (e.g.,[59], [74],

[65]) filter H(z) has finite impulse response (FIR). Therefore the solution in Fig.1.5(a) involves IIR (infinite

impulse response) filtering which is often times unstable or noncausal. In contrast to this, biorthogonal

partners often display many desirable properties. Under some mild conditions on H(z) and M there exist

stable and even FIR biorthogonal partners [65]. Moreover, whenever FIR solutions exist they are not unique.

This property will be of special importance in the study of multiple input—multiple output (MIMO) and

fractional biorthogonal partners in Chapters 2 and 3, respectively, where we use this non-uniqueness to find

the optimal biorthogonal partner for the application at hand.

1.2.2 Definition and relation to filter banks

Consider the system in Fig.1.6(a). We say [65] that the filters F (z) and H(z) are biorthogonal partners

with respect to an integer M if an arbitrary input x(n) to the system produces x̂(n) = x(n) as the output;
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n3 60−3−6

Figure 1.7: Nyquist(M) property demonstrated for M = 3.

in other words if the system in the figure is the identity. It is a simple exercise to show that the system

in question is indeed an LTI system. If we denote the product F (z) · H(z) = G(z), then system from

Fig.1.6(a) is equivalent to the one in Fig.1.6(b), where G0(z) denotes the zeroth polyphase component of

G(z) with respect to M . Therefore, F (z) and H(z) are said to form a biorthogonal pair (biorthogonal partner

relationship is symmetric) with respect to M if

G0(z) = [F (z)H(z)]↓M = 1. (1.5)

In the time domain (1.5) implies that g(n), the impulse response of G(z), satisfies the Nyquist(M) condition

demonstrated in Fig.1.7. In other words, the sequence g(n) has zero-crossings at all multiples of M except

when n = 0. Notice that if M is changed the two filters might not remain partners; however, the term ‘with

respect to M ’ is usually omitted whenever no confusion is anticipated.

As mentioned previously, the phrase ‘biorthogonal partners’ was first introduced in [65]. In the following

we motivate this terminology. Consider the perfect reconstruction (PR) or biorthogonal filter bank [61] shown

in Fig.1.8. Such system is by definition the identity, i.e.,for any input x(n), the output is x(n). Each pair

of filters {Hk(z), Fk(z)} in such filter bank forms a biorthogonal pair according to the definition (1.5). To

see this, append the analysis bank at the output of the PR filter bank as shown in Fig.1.8. The outputs are

obviously given by the same ui(n) that appear in the subbands of the PR filter bank. This is true for any

x(n) and thus for any choice of ui(n). Without loss of generality, let us concentrate on the first channel (see

the figure). We observe that the marked system between u1(n) and u1(n) is identical to the one in Fig.1.6(a)

and is nothing but the identity system. Therefore H1(z) and F1(z) are indeed biorthogonal partners with

respect to M .

For a more detailed treatment of biorthogonal partners, the reader is referred to [65]. The goal in this

section was just to provide some basics that will motivate the extensions of this theory developed in Chapters

2 and 3. Biorthogonal partners and their extensions arise in many diverse contexts such as filter bank

theory, exact and least squares signal interpolation and modeling, multiresolution theory as well as channel

equalization in digital communications. Although we will touch upon most of these applications in Chapters

2 and 3, the main focus of this thesis is the use of multiresolution methods in digital communications. For

this reason, the following section gives a brief overview of some of the important concepts and issues in
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u0(n)

u1(n)
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x(n)

M
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M

M

M

Figure 1.8: Biorthogonal partners in biorthogonal filter banks.

modern communication systems.

1.3 Multirate applications in digital communications

1.3.1 System for digital communication

The block diagram of the communication system that is the focus of this thesis is shown in Fig.1.9. Even

though the figure title reads ‘general,’ numerous variations and extensions are possible [39]. The system

focuses on a single user with the corresponding discrete message s(n). This message is to be transmitted to

the single receiver, only after sustaining the perturbations introduced by the transmission medium. These

perturbations are modeled by the continuous-time LTI channel cc(t) and the appropriate additive noise

at the input of the receiver. The design challenge amounts to ensuring that the received sequence ŝ(n)

resembles the original message under some criteria (usually in the �2 sense). To this end, the receiver often

introduces some redundancy combined with the appropriate pre-processing. The goal of this block is to

facilitate the signal reconstruction at the transmitter (more about this in the following subsection). The

obtained signal x(n) with rate 1/T is converted to analog and sent through the medium to the receiver, only

after the pulse-shaping. The combined effect of the pulse-shaping and the physical channel is often referred

to as the equivalent channel and denoted by fc(t). At the receiver, the corrupted signal is first sampled and

digitized, according to the sampling rate q/T . In this thesis we mostly focus on the case when q > 1 which

corresponds to acquiring ‘more information than absolutely necessary’ about the signal and the channel.

This further facilitates the signal recovery. The corresponding digital equalizer works at the higher rate

and that combined with its increased complexity is the price to pay for the improvement in performance

achieved by oversampling. Finally, the signal rate needs to be reduced back to the rate of s(n). This is

usually achieved after decimating by q and removing the redundancy.

All the signals in Fig.1.9 can be scalars or vectors. Correspondingly, the LTI systems can be SISO or

MIMO. The unconventional notation in Fig.1.9 is chosen to reflect these possibilities. Vector signals arise

naturally in situations when there is a number of sensors [53], but can also be obtained by blocking scalar

signals [39], [49]. The system is further complicated if there is more than one transmitter and/or receiver.



8
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channel
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Figure 1.9: Block diagram of a general communications system.

In this thesis we mainly focus on the blocks for redundancy insertion and pre-processing together with the

corresponding equalization and redundancy removal (Chapter 4), as well as equalization for different values of

the parameter q in the vector and the scalar case (Chapters 2, 3). Also, of special interest will be the system

modifications for application in multiuser communications and the corresponding equalization algorithms

(Chapter 5). Biorthogonal partners play a special role in the equalizer design whenever q > 1, and this is

investigated in Chapters 2 and 3. As for the material in the remainder of the thesis, it involves the use

of more general multirate structures sometimes called filter bank precoders. In the following subsection we

provide the corresponding notation and the equivalent representation.

1.3.2 Multirate systems in digital communications: filter bank precoders

As noted in Section 1.1.2, the polyphase representation of digital filters is put to use quite often in multirate

DSP. One example is in deriving the equivalence between a bank of filters and the corresponding polyphase

matrix. Consider the systems on the left-hand side of Fig.1.10. If P = K = J , the concatenation of systems

in Fig.1.10(b) and Fig.1.10(a) is better known as a P -channel maximally decimated filter bank [61]. However,

in most applications in communications P is assumed to be greater than K and J , therefore the structure

is sometimes referred to as an overdecimated filter bank. Consider the structure in Fig.1.10(a). It is better

known as the filter bank precoder. Note that the rate of x(n) is greater than the combined rates of the signals

in the vector s(n), therefore the structure is often used to introduce redundancy in the data stream at the

transmitter side of a communication system. As mentioned in Section 1.3.1, this redundancy proves useful

in solving several important practical problems. These include blind channel equalization, equalization of

ill-behaved channels and user separation in multiuser systems [18], [19]. We deal with some of these problems

in Chapters 4 and 5. At this point we first derive the aforementioned equivalence and then briefly motivate

the introduction of redundancy as a remedy for numerous practical problems in digital communications.

Polyphase matrix notation. The overdecimated filter banks in Fig.1.10 are equivalent to the respective

systems shown on the right-hand side. Rectangular matrices R(z) and E(z) are called polyphase matrices

for the corresponding banks of filters. Using the blocking and unblocking definitions as in Fig.1.4 it can be

shown that the kth column of R(z) consists of Type 1 polyphase components of Fk(z) and that the jth

row of E(z) consists of Type 2 polyphase components of Hj(z), both with respect to P . In other words, let
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Figure 1.10: Polyphase representations of (a) filter bank precoder and (b) analysis filter bank.

d(z) =
[
1 z−1 · · · z−(P−1)

]
; then we have

[F0(z) F1(z) · · · FK−1(z)] = d(z)R(zM ), and [H0(z) H1(z) · · · HJ−1(z)]T = E(zM )d̃(z). (1.6)

In addition to providing a compact notation, the structures on the right-hand side of Fig.1.10 are also

efficient from the computational point of view (they promote parallel computations). For example, the rate

of the vector signal at the entrance of R(z) is P times lower than that of the signal at the entrance of the

filters {Fk(z)}. Finally, note that even though the expanders and decimators do not appear explicitly in the

diagrams on the right-hand side of Fig.1.10, these are indeed multirate systems by the virtue of the fact that

the combined rates at the input and at the output of the systems are not equal.

Significance of filter bank precoders. Precoders find use in solving some of the following problems.

1. Blind channel equalization. If the channel is unknown but is assumed to be of finite length, its inter-

ference effect is modeled as an unknown FIR filter that should be undone at the receiver. Redundancy

introduced by the precoder at the transmitter makes it easier for the receiver to ‘guess’ this linear

transform [17], [42]–[43].

2. Equalization of ill-behaved channels. If the channel has zeros outside or close to the unit circle, the

inverse filtering required for equalization might be noncausal, unstable, or simply very sensitive to the

input noise. Introducing certain redundancy at the transmitter helps avoid inverse filtering altogether.
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Figure 1.11: Channel magnitude response divided in frequency bands.

Consequently, these alternative equalizers usually perform better in the presence of noise [5], [7], [27],

[30], [49].

3. Power and bit allocation in frequency bands. Some filter bank precoders together with the correspond-

ing equalization structures at the receiver effectively divide the channel frequency response into a

certain number of nonoverlaping channels, corresponding to different frequency bands (see Fig.1.11).

The data is then divided according to certain criteria and sent over these independent channels. In

order to achieve better performance of the overall system, it proves beneficial to allocate bits and

power nonuniformly across different bands. The optimal allocation algorithm is a function of the cor-

responding channel energies and the noise power spectral density (PSD) [5], [7]–[9], [27], [62]. Optimal

precoding in this context is the subject of Chapter 4.

4. User separation in multiuser systems. Consider the ‘uplink scenario’ when M different users simulta-

neously send messages to the common receiver. How to extract the message from user m, i.e.,cancel

the interference from the other users without compromising the quality of the desired signal? This

problem is investigated in Chapter 5. It is further complicated when different users communicate

through different, possibly unknown and time-varying channels. One approach involves using a filter

bank precoder for introducing the controlled redundancy which serves as a signature distinguishing the

desired user from the interfering ones [20]–[21], [41].

1.4 Outline of the thesis

1.4.1 MIMO biorthogonal partners: theory and applications (Chapter 2)

The material in Chapters 2 and 3 presents the extension of the concept of biorthogonal partners to the

case of vector signals and noninteger decimation ratios. Chapter 2 deals with multiple input—multiple

output (MIMO) biorthogonal partners. As mentioned previously, they arise in many different contexts.

The central application considered here is that of MIMO channel equalization, especially with fractionally
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spaced equalizers. Returning to the general communication system from Fig.1.9, this scenario corresponds to

communicating with vector signals and sampling the received signal at rate q/T , for some integer q > 1. In

this context we assume that no additional redundancy has been inserted in the data stream and that there

is no precoding in the system.

Chapter 2 is initiated by deriving the comprehensive theory of MIMO biorthogonal partners and answer-

ing some of the most important questions inherited from the scalar case. What are the conditions for the

existence of MIMO biorthogonal partners and what is their most general form? Under what conditions do

rational matrix transfer functions have polynomial (or FIR) biorthogonal partners? When are these FIR

partners unique? How to construct the most general FIR partner (of a given order)? After deriving the

theoretical framework of MIMO biorthogonal partners, we consider some of their applications. In MIMO

channel equalization, we exploit the inherent non-uniqueness of biorthogonal partners and construct frac-

tionally spaced equalizers (FSEs) that perfectly eliminate the inter-symbol interference (ISI) introduced by

the channel, and at the same time minimize the noise power at the receiver. Comparing the performance of

these flexible FSEs to the symbol-spaced solutions and FSEs without noise optimization, we conclude that

significant improvements in performance are possible with minimal or no increase in the receiver complexity.

Several other applications of MIMO biorthogonal partners are considered next. We review their role in

the least squares approximation of vector signals. In this context the least squares problem is limited to that

of finding the approximation for a vector signal x(n) within a class of signals described by a multirate model.

The optimal solution involves a certain form of biorthogonal partners. Finally, we consider the relation

between biorthogonal partners and multiwavelets, especially the multiwavelet prefiltering.

1.4.2 Fractional biorthogonal partners and applications (Chapter 3)

The work in Chapter 3 is yet another extension of the notion of biorthogonal partners to the case where

the upsampling and downsampling ratios are not integers but rational numbers. Hence the name fractional

biorthogonal partners (FBPs). The conditions for the existence of stable and of FIR FBPs are derived. It is

also shown that FIR solutions (when they exist) are not unique. The construction algorithm for FIR FBPs

is presented that captures the non-uniqueness of these solutions in the form of a polynomial factor to be

adjusted. This flexibility in the FBP design proves useful in solving the problem of scalar equalization with

oversampling at the receiver. In this case, however, the amount of oversampling (parameter q in Fig.1.9) is

not an integer but a rational number. We show that it is possible to optimize FIR FBPs so that when acting

as zero-forcing FSEs they also reduce the noise power at the receiver. The performance of such optimized

equalizers is evaluated by comparing it to the performance of several other equalization methods including the

minimum mean-squared error (MMSE) equalizer. Another application considered is the all-FIR interpolation

technique with the minimum amount of oversampling required in the input signal. Finally, we also consider

the extension of the least squares approximation problem to the setting of fractional biorthogonal partners.

The rest of the thesis deals with more general multirate structures in digital communications.
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1.4.3 Precoding in cyclic prefix-based communication systems (Chapter 4)

The focus of Chapter 4 is on the equalization techniques based on cyclic prefix which are widely used in high

speed data transmission over frequency selective channels, such as twisted pair channels in telephone cables

[5], [49]. Their use in conjunction with DFT filter banks is especially attractive, given the low complexity of

implementation. Some examples include the DFT-based DMT systems. In this chapter we consider a general

cyclic prefix based system for communications and show that the equalizer performance can be improved

by simple pre- and post-processing aimed at reducing the noise power at the receiver. This processing is

done independently of the channel equalization performed by the frequency domain equalizer. Drawing the

analogy to the system in Fig.1.9, the work in this chapter is focused on designing the optimal precoder

(for noise reduction) if the redundancy comes in the form of a cyclic prefix and there is no oversampling at

the receiver (q = 1). Perhaps not surprisingly, if the channel noise is uncorrelated, the optimal precoder is

shown to perform the optimal power allocation across frequency bands (see Fig.1.11), however according to

a somewhat less intuitive allocation procedure.

1.4.4 Equalization with oversampling in multiuser communications (Chapter 5)

Chapter 5 differs in theme from the earlier ones since it studies the communication systems with multiple

users, i.e.,multiple transmitters and receivers. Such systems are invariably present in modern wireless com-

munications. Some of the major challenges in the design of these systems are the suppression of multiuser

interference (MUI) and inter-symbol interference (ISI) within a single user created by the multipath prop-

agation. Both of these problems were addressed successfully in a recent design of a mutually-orthogonal

usercode-receiver (AMOUR) for code division multiple access (CDMA) systems [18]–[21]. While AMOUR

is successful in converting a multiuser CDMA system into parallel single-user systems with no ISI regardless

of the communication medium, the noise amplification at the receiver can be significant in some multipath

channels. In this chapter we provide an alternative approach to understanding AMOUR CDMA systems and

propose a modified receiver that incorporates signal oversampling by integer or rational factors. Comparing

the performance of such fractionally spaced AMOUR (FSAMOUR) systems to the conventional ones we

conclude that their robustness in noisy environments can be significantly improved at the cost of slightly

increased complexity of the receiver. The main scope of this chapter, therefore, is to provide a contribution

to the ongoing task of designing efficient and robust multiuser communication systems.

1.5 Notation

In general, notation in this thesis closely parallels that in [61]. Superscripts (∗) and (T ) denote the complex

conjugate and matrix (or vector) transpose respectively, while superscript dagger (†) denotes the conjugate

transpose. Boldface letters are used for matrices and vectors. Lowercase letters are used for discrete se-

quences, while uppercase letters are used for Fourier and z-transforms. If not stated otherwise, all matrices
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in the thesis are rectangular. The identity matrix of size N × N is denoted by IN . Let r(z) be the rank of

a polynomial matrix in z. The normal rank is defined as the maximum value of r(z) in the entire z plane.

For LTI transfer matrices H(z), the ‘paraconjugate’ H†(1/z∗) is denoted by H̃(z); thus H̃(ejω) = H†(ejω).

Equations (1.1), (1.2) together with Fig.1.2 establish notation for decimators and expanders. In the block

diagram vector and scalar expanders are denoted as in Fig.1.3. In the time domain the decimated and

expanded sequences are denoted by [x(n)]↓M and [x(n)]↑M respectively. Notice that

[
X(zM )Y (z)

]
↓M

= X(z) [Y (z)]↓M , and
[
X(zM )Y (z)

]
↓M↑M

= X(zM ) [Y (z)]↓M↑M .

The Kronecker delta function is denoted by δ(·) and defined as: δ(0) = 1 and δ(x) = 0 if x �= 0. We denote

by diag(A) the column vector consisting of the diagonal entries of the square matrix A and by diag(a)

the square diagonal matrix whose diagonal elements are given by the vector a. The trace matrix operator,

denoted by Tr{·} calculates the sum of the diagonal elements. A square polynomial matrix is said to be

unimodular if its determinant is a nonzero constant. A rectangular matrix is called fat if it has more columns

than rows; otherwise it is said to be tall. Throughout the thesis, by ‘existence of a biorthogonal partner’ we

actually mean ‘existence of a stable biorthogonal partner.’
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Chapter 2 MIMO biorthogonal partners: theory and

applications

The theory of biorthogonal partners has been developed in [65] and reviewed in Section 1.2 for the simple,

single input-single output (SISO) case. Multiple input—multiple output (MIMO) biorthogonal partners can

be defined using a similar approach. One distinction between scalar and vector biorthogonal partners should

be clearly noted. While it is understood that scalar biorthogonal partners can interchange places without

violating the Nyquist condition (1.5), in the MIMO case the biorthogonal partner relation is not symmetric.

Therefore, we distinguish between a left biorthogonal partner (LBP) and a right biorthogonal partner (RBP).

In this chapter we first derive some theoretical properties of MIMO biorthogonal partners. Many of these

properties are extensions to the vector case of some known results from the case of scalar signals [65].

However, some of the properties take a different form in the case of vector signals and, furthermore, lead to

several new applications. One of the applications of MIMO biorthogonal partners that will be explored in

the following is the equalization of vector digital communication channels. Specifically, we are interested in

zero-forcing fractionally spaced MIMO equalizers. Fractionally spaced equalizers (FSE) demonstrate many

advantages over symbol spaced equalizers (SSE), such as the existence of an FIR solution and reduced

sensitivity to the shift in sampling instances [39]. Moreover, FSEs turn out to be nothing but biorthogonal

partners of the equivalent channel transfer matrix and therefore we can resort to the theory of MIMO

biorthogonal partners in the process of equalizer design. The content of the chapter is mainly drawn from

[80] and its portions have been presented at [83], [85] and [81].

2.1 Chapter outline and relation to previous work

In Section 2.2 we introduce the precise definition of MIMO biorthogonal partners. We derive a general closed

form expression for a MIMO transfer function H(z) to be a biorthogonal partner of F(z). We also derive

a set of necessary and sufficient conditions on F(z) which allow for the existence of its MIMO biorthogonal

partner.

In Section 2.3 we consider FIR MIMO biorthogonal partners in greater detail. A set of necessary and

sufficient conditions for the existence of FIR MIMO biorthogonal partners is derived. We especially concen-

trate on the fact that FIR MIMO biorthogonal partners, when they exist, are not unique. In Section 2.4 we

exploit this non-uniqueness in order to reduce the noise power at the output of fractionally spaced equalizers

for vector channels. Finally, we address the performance of our algorithm through simple design examples

of FSEs for vector channels.
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In Section 2.5 we deal with other possible applications of MIMO biorthogonal partners. In particular,

we review their role in the least squares approximation of vector signals. For the purpose of this chapter,

the least squares problem is limited to that of finding the approximation for a vector signal x(n) within a

certain class of signals. In the scalar case the idea originated in the context of spline interpolation [6], where

it was suggested that the signal corrupted by noise could be approximated with an oversampled spline. We

show that in the vector case the solution to this problem involves a particular form of MIMO biorthogonal

partners. This is also closely related to the concept of oblique projections studied intensively in [3] and [4].

Finally, we consider the relation between biorthogonal partners and multiwavelets. In one of the pioneering

works on the subject [90], the use of prefiltering for multiwavelet transform was introduced. Here we consider

the prefiltering problem in the light of biorthogonal partners and draw the connection between the two. The

majority of the results in Section 2.5 are not new to the signal processing community. However, the significant

contribution of this section is in placing some of the well-known results in the biorthogonal partner setting.

2.2 MIMO biorthogonal partners: definition and properties

We start the discussion in this section by defining the notion of a MIMO biorthogonal partner.

Definition 2.1. MIMO biorthogonal partners. A MIMO transfer function H(z) is said to be a left

biorthogonal partner (LBP) of F(z) with respect to an integer M if

[H(z)F(z)]↓M = I. (2.1)

Similarly, a MIMO transfer function H(z) is said to be a right biorthogonal partner (RBP) of F(z) with

respect to an integer M if [F(z)H(z)]↓M = I.

The interpretation of the first part of the above definition is shown in Fig.2.1. Recall that the multirate

system in Fig.2.1 is just an LTI system with transfer function [H(z)F(z)]↓M , which under the condition (2.1)

becomes the identity. It can be seen that if H(z) is an LBP of F(z) this implies that F(z) is an RBP of

H(z), but it does not imply that H(z) is also an RBP of F(z). The latter would happen if, for example, the

two matrices commuted. The other important point to make here is that if M is changed, the two filters

might not remain partners. However, we will often omit the term ‘with respect to M ,’ since it will usually

be understood from the context.

In the following we concentrate on the existence issues and on the general form of MIMO biorthogonal

partners. The first result gives the most general form of a biorthogonal partner. In the subsequent discussion,

the question of uniqueness of biorthogonal partners will also be addressed. The second result states necessary

and sufficient conditions on a transfer matrix F(z) and integer M such that there exists a biorthogonal partner

of F(z) with respect to M .
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Figure 2.1: Block diagram interpretation of a left biorthogonal partner.

2.2.1 General expression

We first derive a general expression for H(z) in terms of F(z) in Fig.2.1. The theorem has two parts, one for

left biorthogonal partners and the other for right biorthogonal partners. It is very intuitive that whatever

holds for LBPs should also hold for RBPs (in a slightly modified form), and this comes into play in the proof

of Theorem 2.1.

Theorem 2.1. General form of biorthogonal partners.

1. A MIMO transfer function H(z) is an LBP of F(z) if and only if it can be written in the form

H(z) = ([G(z)F(z)]↓M↑M )−1 G(z) (2.2)

for some MIMO transfer function G(z).

2. A MIMO transfer function H(z) is an RBP of F(z) if and only if it can be written in the form

H(z) = G(z) ([F(z)G(z)]↓M↑M )−1 (2.3)

for some MIMO transfer function G(z).

Proof. First we will prove the backward part of the statement one. Given H(z) as in (2.2), we have

[H(z)F(z)]↓M = [([G(z)F(z)]↓M↑M )−1 G(z)F(z)]↓M = ([G(z)F(z)]↓M )−1 [G(z)F(z)]↓M = I

The backward proof of the second statement follows in the same manner. Next we give the forward proof

of the second statement. For this, first consider Fig.2.2(a). Here xi(n) is an arbitrary vector sequence and

gi(n) is the corresponding output of H(z). By assumption H(z) is an RBP of F(z) and from the definition

we have that the output of the system has to be xi(n) again. However, this also means that the signal gi(n)

at the input of the system in Fig.2.2(b) produces gi(n) at its output. Thus we have

H(z)[F(z)Gi(z)]↓M↑M = Gi(z). (2.4)
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Figure 2.2: Pertaining to the proof of Theorem 2.1.

This equality holds for any Gi(z) obtained as in Fig.2.2(a). We repeat the procedure sufficient number

of times, each time taking Xn(z) to be linearly independent from the previous vectors X1(z), X2(z), ...

Xn−1(z). Collecting those vectors as columns in a matrix X(z), and the corresponding vectors Gi(z) in a

matrix G(z), we have the following

H(z)[F(z)G(z)]↓M↑M = G(z),

which after solving for H(z) gives

H(z) = G(z) ([F(z)G(z)]↓M↑M )−1 (2.5)

and this concludes the proof of (2.3). Notice that [F(z)G(z)]↓M↑M = [X(z)]↑M so that by choosing the

sequences xi(n) carefully we can ensure that the matrix inversion in (2.5) is valid. Now we move on to prove

the forward direction of the first statement. For this we notice that if H(z) is an LBP of F(z), then HT (z)

is an RBP of FT (z). Thus from (2.3) we have

HT (z) = GT (z)
(
[FT (z)GT (z)]↓M↑M

)−1
,

for some matrix GT (z). Finally, taking the transpose of both sides we arrive at (2.2) and this concludes the

proof. ���
In the proof of Theorem 2.1 we transposed the result for RBP in order to arrive at a similar result for

LBP. The same trick could also be used for other results on MIMO partners and this is why we only consider

left biorthogonal partners in the following; very similar results hold for right biorthogonal partners.

Clearly, from the equations (2.2) and (2.3) we have that MIMO biorthogonal partners are in general not

unique. Any stable matrix transfer function G(ejω) such that det
(
[G(ejω)F(ejω)]↓M

)
is nonzero for all ω

gives rise to a stable LBP of F(z). The similar conclusion holds for right biorthogonal partners. Here are

some special cases of interest.
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Example 2.1: In the square case, if
∣∣det

[
F(ejω)

]∣∣ > 0 for all ω then H(z) = F−1(z) is a theoretically

stable biorthogonal partner (both LBP and RBP) of F(z). It can be obtained from (2.2) or (2.3) with the

choice G(z) = F−1(z). This is conceptually the simplest biorthogonal partner.

Example 2.2: If the construction of biorthogonal partners from Example 2.1 does not work for a particular

F(z), we can try the following. Suppose that det
[
[F(ejω)]↓M

]
is nonzero for all ω. Then, substituting

G(z) = I in (2.2) or (2.3) we get a biorthogonal partner H(z) = ([F(z)]↓M↑M )−1.

Example 2.3: To get yet another solution for an LBP, consider the matrix filter

H(z) =
(
[F̃(z)F(z)↓M↑M

)−1

F̃(z),

This solution is obtained from (2.2) with G(z) = F̃(z), and is valid as long as det
(
F†(ejω)F(ejω)]↓M

)
is

nonzero on the unit circle. It plays a significant role in the rest of this chapter, since it occurs in several

different contexts.

2.2.2 Existence

In the following, we look into the problem of the existence of biorthogonal partners more closely. Consider

a MIMO transfer function F(z) with the Type 2 polyphase representation

F(z) =
M−1∑
k=0

zkFk(zM ). (2.6)

We present a necessary and sufficient condition for the existence of its MIMO biorthogonal partner H(z).

Theorem 2.2. Existence of LBP. A MIMO transfer function F(z) given by (2.6) has an LBP if and

only if the following implication holds for each ω in 0 ≤ ω < 2π

CT (ejω)[FT
0 (ejω) FT

1 (ejω) · · · FT
M−1(e

jω)] = 0 ⇒ C(ejω) = 0.

Therefore, for any fixed ω there cannot exist a nonzero common annihilating vector C(ejω) for all M

polyphase components of F(ejω). Note that in order for F(z) to have an inverse we need to have det[F(ejω)] �=
0, for all ω, and that condition is stricter than the one in Theorem 2.2.

Proof. We start by proving the forward part of the theorem, i.e., supposing H(z) is a stable LBP of F(z),

we need to show that there cannot exist a nonzero common annihilating vector C(ejω). By the supposition,

we have that [H(z)F(z)]↓M = I, which implies that there cannot exist a nonzero vector C(z) such that

F(z)C(zM ) = 0. Indeed, if we assume there exists such nonzero vector C(z), we end up with the following

contradiction

0 = [H(z)F(z)C(zM )]↓M = C(z).

Rewriting F(z) in the Type 2 polyphase form (2.6) we then have that there cannot exist a nonzero vector
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C(z) such that
M−1∑
k=0

zkFk(zM )C(zM ) = 0

or equivalently, such that

Fk(z)C(z) = 0 ∀k, 0 ≤ k ≤ M − 1.

Therefore, if there is a stable LBP of F(z), there cannot exist a common nonzero annihilating vector C(ejω)

for all M polyphase components Fk(ejω).

Next we proceed to prove the converse. To that end, we suppose that for no ω does there exist a common

nonzero vector C(ejω) that annihilates all M polyphase components Fk(ejω). That is to say, given any

ω ∈ [0, 2π) such that C(ejω) �= 0, there exists k, satisfying 0 ≤ k ≤ M − 1, such that Fk(ejω)C(ejω) �= 0.

This implies that the following matrix S(ω) is positive definite for all ω

S(ω) =
M−1∑
k=0

F†
k(ejω)Fk(ejω). (2.7)

To justify this, observe that for any vector C(ejω) and S(ω) as in (2.7), the entity C†(ejω)S(ω)C(ejω) is a

summation of nonnegative terms. Moreover, as asserted previously, for any nonzero choice of C(ejω) at least

one of those terms is strictly positive, so that the overall result is positive. Now we observe that the matrix

S(ω) defined by (2.7) can be rewritten as S(ω) = [F†(ejω)F(ejω)]↓M and from the previous discussion we

have that

det
(
[F†(ejω)F(ejω)]↓M

)
> 0. (2.8)

The final conclusion is that if there does not exist a common nonzero annihilating vector C(ejω) for all M

polyphase components Fk(ejω) then F(z) has a stable LBP. In particular, one such LBP is obtained as in

Example 2.3 and is given by

H(z) =
(
[F̃(z)F(z)↓M

)−1

↑M
F̃(z). (2.9)

This concludes the proof. ���
In the following we will see that the LBP given by (2.9) has some other interesting properties. The next

corollary asserts that if F(z) has any stable LBP, the choice (2.9) will be a valid one.

Corollary 2.1. A MIMO transfer function F(z) has a left biorthogonal partner if and only if S(ω) =

[F†(ejω)F(ejω)]↓M is a positive definite matrix for all ω in the range [0, 2π).

Proof. If [F†(ejω)F(ejω)]↓M is a positive definite matrix for all ω then (2.8) holds and thus (2.9) is a

valid choice for LBP. Conversely, suppose that there exists a stable LBP of F(z). Consider S(ω), which is

obviously a positive semi-definite matrix for all ω. Writing S(ω) as in (2.7) and recalling from Theorem 2.1

that the polyphase components Fk(ejω) cannot have a common annihilating vector we finally conclude that

S(ω) has to be positive definite, which concludes the proof. ���
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2.3 Existence of FIR LBP

In Theorem 2.2 and Corollary 2.1, we saw the necessary and sufficient conditions for a matrix transfer

function F(z) to have a biorthogonal partner. In practice the situation of most significance is when F(z) is

a rational function of z. A question of considerable interest is the following: Under what conditions does

a rational function F(z) have an FIR biorthogonal partner H(z)? In fact it suffices to pose the previous

question for any FIR filter F(z), which is evident by the following reasoning. Let Fr(z) be an arbitrary

rational transfer matrix and let D(z) be the least common multiple of the polynomials appearing in the

denominators of the rational entries of Fr(z). Then we can write Fr(z) = F(z)/D(z), where F(z) is an

FIR matrix. If there exists an FIR biorthogonal partner H(z) of F(z), then Hr(z) = H(z)D(z) is the

corresponding FIR biorthogonal partner of Fr(z).

In view of all this, we begin the discussion in this section by finding the conditions for the existence of

an FIR biorthogonal partner of an FIR transfer matrix. To this end we need to revisit the notion of greatest

right common divisors (GRCD) of polynomial matrices [61], [26]. In the linear systems literature, GRCDs

are most commonly defined for square matrices. In this setting, we will extend this definition to the case of

rectangular matrices. In principle, we can define the GRCD of a p1 × r polynomial matrix A(z) and a p2 × r

polynomial matrix B(z) to be any m × r polynomial matrix R(z) such that

1. R(z) is a common right divisor of A(z) and B(z), i.e., there exist polynomial matrices A1(z) and B1(z)

such that A(z) = A1(z)R(z) and B(z) = B1(z)R(z);

2. If R1(z) is another m1 × r common right divisor of A(z) and B(z), then R1(z) is a right divisor of

R(z), i.e., there exists an m × m1 polynomial matrix T(z) such that R(z) = T(z)R1(z).

However, for the purpose of our discussion it is enough to consider only square GRCDs R(z), so from now

on by GRCD we shall mean square GRCD. Now we can state the following result.

Theorem 2.3. Existence of FIR LBP. Suppose F(z) is a causal and FIR p × r matrix, given

by (2.6). Then there exists a causal FIR r × p matrix H(z) such that [H(z)F(z)]↓M = I if and only if

GRCD[F0(z),F1(z), . . .FM−1(z)] is a unimodular matrix R(z).

Before proceeding to the proof of Theorem 2.3, several comments are due. Given an arbitrary MIMO

transfer function, the GRCD-condition is almost always satisfied. For example, let

F(z) =

 3 + 2z−1 + z−2 2 + 3z−1 + z−2

1 + 3z−2 2 + z−1 + 3z−2

 .

The trivial biorthogonal partner (as in Example 2.1) is IIR in this case, since det [F(z)] = 4+4z−1 +6z−2 −
2z−3. However, it can be verified that the GRCD of the two polyphase components of F(z) is unimodular,
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with one solution being (for a review on the construction of GRCDs, see [26])

R(z) = −2

 4 2

0 1

 .

Therefore, an FIR LBP for M = 2 indeed exists and one possibility is (see the proof of Theorem 2.3)

H(z) =
1
16

 8 + 4z−1 + 3z−2 −8 − z−2

−4 − 8z−1 − 6z−2 12 + 2z−2

 .

In the statement of Theorem 2.3 we have not assumed anything about the integers p and r - the dimensions

of F(z). It will soon become clear that the necessary relation between them is given by

r ≤ Mp. (2.10)

Also, the constraint on F(z) and its LBP to be causal is unnecessary; it can be avoided if we allow the

determinant of R(z) to be of the form czk, with k ∈ Z, rather than just a constant.

Proof of Theorem 2.3. First we consider the case M = 2. If F0(z) and F1(z) are right coprime [which

is equivalent to saying that R(z) = GRCD[F0(z),F1(z)] is unimodular] then there exist polynomial matrices

H0(z) and H1(z) such that

H0(z)F0(z) + H1(z)F1(z) = I. (2.11)

This follows from the simple Bezout identity [26], extended to the rectangular case. (Although the extension is

straightforward, we summarize these results in the Appendix for convenience.) In fact, from the construction

of GRCDs [26] it follows that there exists a unimodular matrix W(z) such that

r

2p−r

p p W11(z) W12(z)

W21(z) W22(z)


︸ ︷︷ ︸

W(z)

r F0(z)

F1(z)

 p

p

=

r R(z)

0

 r

2p−r

(2.12)

with indicated sizes of the building blocks. From (2.12) it is easy to see that we can choose

H0(z) = R−1(z)W11(z), H1(z) = R−1(z)W12(z) (2.13)

and that these are indeed polynomial (actually causal, FIR) matrices since R(z) is unimodular.

So far we have considered the M = 2 case, but the extension to arbitrary M follows readily by applying

the rule

GRCD0≤k≤M−1[Fk(z)] = GRCD {FM−1(z), GRCD0≤k≤M−2[Fk(z)]}. (2.14)
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Now, suppose by contradiction that F(z) has a causal FIR LBP H(z), but that

GRCD[F0(z),F1(z), . . .FM−1(z)] = C(z)

is not unimodular and let Fk(z) = F̂k(z)C(z). Writing H(z) in the Type 1 polyphase form (1.3) we have

I = [H(z)F(z)]↓M =
M−1∑
k=0

Hk(z)Fk(z) =

(
M−1∑
k=0

Hk(z)F̂k(z)

)
C(z) (2.15)

and it follows that
M−1∑
k=0

Hk(z)F̂k(z) = C−1(z).

The left-hand side of the above equation is a causal FIR matrix (since all Hk(z) and F̂k(z) are causal FIR),

but the right-hand side is not. This contradiction concludes the proof. ���
Notice that (2.12) readily implies that r ≤ 2p in order for this particular construction to work. To see

that (2.10), when M = 2, has to hold for any FIR LBP to exist, observe that (2.11) can be rewritten as

[
H0(z) H1(z)

] F0(z)

F1(z)


︸ ︷︷ ︸

P(z)

= I.

If r > 2p, the matrix P(z) above becomes fat, i.e., has no left inverse, thus in this case there is no FIR LBP

of F(z). We revisit this relation for a general integer M in Section 2.4.2.

It is important to notice here that, if it exists, FIR LBP is not unique. There are two reasons for

this. Firstly, the GRCD of two matrices is unique only up to a premultiplication by a unimodular matrix.

Secondly, there are many unimodular matrices W(z) that satisfy (2.12) and each of them provides a valid

solution. The issue of parameterization of these solutions will be treated in the following section. Also,

notice that in the successive applications of the construction (2.12), as implied by the right-hand side of

(2.14), GRCDs of rectangular p× r matrices Fi(z) and square r× r matrices R(z) are computed. The result

will again be a r × r matrix, and the necessary condition now becomes r ≤ p + r, which is always satisfied.

The sizes of the building blocks Wij(z) from (2.12) will also need to be adjusted accordingly.

2.4 Application in channel equalization

In the following, we consider the case where an FIR LBP is used as a MIMO channel equalizer. We will show

that the flexibility in the choice of H(z) can be exploited in order to reduce the undesirable amplification

of the channel noise. But, before proceeding to these results, we give a brief overview of some equalization

techniques for the vector channels.
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Figure 2.3: (a) Discrete-time equivalent of a digital communication system with SSE; the equivalent channel
is F2(z) = C2(z)G2(z). (b) Digital communication system from (a), now equalized with FSE H(z). (c)
Further simplification of the system from (b); the equivalent channel is F(z) = C(z)G(z).

The discrete-time equivalent of an MIMO digital communication system with a symbol spaced equalizer

(SSE) [39] is shown in Fig.2.3(a). The vector symbol rate at the input x(n) is 1/T . Notice that the equalizer

H2(z) works at the same rate (thus the name symbol spaced equalizer). The discrete versions of the pulse

shaping filter and the channel, G2(z) and C2(z), respectively, are obtained by sampling the corresponding

continuous-time impulse responses also at the rate 1/T . We will refer to their cascade F2(z) = C2(z)G2(z)

as the equivalent channel for the SSE case. Therefore, as for the signal x(n), the system from Fig.2.3(a)

can be represented as a cascade of the equivalent channel F2(z) and a SSE H2(z). An ideal equalizer (or a

zero-forcing equalizer [39]) H2(z) is then obtained as a left inverse of the equivalent channel F2(z).

From this discussion, several drawbacks of symbol spaced equalizers are apparent. The MIMO transfer

function F2(z) does not have a left inverse if it is a fat matrix. Even if the matrix is not fat, its invertibility

will depend on the rank. Furthermore, if F2(z) is invertible, its inverse is most probably IIR, which often

amplifies the noise at the receiver. Finally, it has been observed that the ISI suppression achieved by this

equalizer is very sensitive to the phase of the sampling at the receiver [39], [57]. For all these reasons, a

popular alternative is to use a so called fractionally spaced equalizer (FSE). It can be shown to be far less

sensitive to the sampling phase [57], it can be used with fat channel transfer functions, and it often allows

for FIR solutions while SSE does not.

The idea behind an FSE is to let the equalizer work at a higher rate. Because of this additional re-

dundancy, FSEs are both more flexible and more robust than SSEs. In a continuous-time communication

system, FSE is realized by sampling the received waveform at M times the symbol rate, and feeding such

oversampled signal to the equalizer, which now operates at the rate M/T . In this chapter, the oversampling
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ratio M is assumed to be an integer. In discrete time, this is modeled as shown in Fig.2.3(b). The discrete

transfer functions G(z) and C(z) are obtained after sampling the corresponding continuous-time impulse

responses at the rate M/T . Thus, the equivalent channel F(z) in this case is such that F2(z) = [F(z)]↓M

and the simplified scheme is shown in Fig.2.3(c). Note that the noise also needs to be modified, but this is

not the main point of discussion here. We recall from Section 2.3 that a zero-forcing FSE H(z) in Fig.2.3(c)

is nothing but an LBP of the channel matrix F(z). In this section we will exploit the non-uniqueness of this

biorthogonal partner with the aim of minimizing the noise power at the receiver.

The concept of fractionally spaced equalization is by no means new [57]; however, the original contribution

of this section is the attempt to parameterize the FIR FSE solutions, making the search for the ‘best’ solution

analytically tractable. On the other hand, the optimization of MIMO systems of the type shown in Fig.2.3(a)

has been considered by several authors in many different contexts (e.g., [32], [42], [91]). The authors in [91]

derive the optimal transmitter and receiver for a given channel in the sense of minimizing the overall mean

squared error. This MMSE solution clearly outperforms any zero-forcing equalizer, however the price is paid

in terms of complexity: the solution in [91] involves ideal filtering. Here we have taken a simplistic approach

of decoupling the problems of ISI and noise suppression. Moreover, the system shown in Fig.2.3(b) brings

in an additional element of freedom, which is exploited in the following.

2.4.1 Optimizing LBP for channel equalization (M = 2)

The size of the channel F(z) will be assumed to be p × r, with r ≤ Mp. We will first motivate the LBP

optimization assuming M is equal to 2 (see Fig.2.4(a)). Later on we derive the optimal solution for a general

M . The system from Fig.2.4(a) can be redrawn as in Fig.2.4(b). Here w0(n) and w1(n) are the corresponding

polyphase components of the noise vector sequence w(n) from Fig.2.4(a), while F0(z), F1(z) and Ĥ0(z),

Ĥ1(z) are the polyphase components of F(z) and Ĥ(z), respectively. Recall that if the conditions of Theorem

2.2 are satisfied, then H0(z) and H1(z) as in (2.13) lead to one possible solution for Ĥ(z). However, from

(2.12) we see that

W21(z)F0(z) + W22(z)F1(z) = 0,

and therefore another class of solutions for Ĥ(z) is given by

Ĥ0(z) = H0(z) + A(z)W21(z), Ĥ1(z) = H1(z) + A(z)W22(z) (2.16)

for an arbitrary r × 2p − r matrix A(z) and matrices Wij(z) defined by (2.12). The optimization problem

reduces to that of designing A(z) such that the noise component of y(n) in Fig.2.4(a) is minimized. To

facilitate this, we consider the noise model for the system shown in Fig.2.4(b). It is obtained by setting
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Figure 2.4: Block diagram interpretation of the construction of FSE for M = 2. (a) Discrete-time equivalent
communication channel with FSE, (b) equivalent of (a) obtained using noble identities [61], and (c) equivalent
model for noise.

x(n) = 0. Let us define

e(n) =

 w0(n)

w1(n)

 , B(z) =

 H0(z) H1(z)

W21(z) W22(z)

 . (2.17)

Then, the equivalent of the noise model from Fig.2.4(b) is shown in Fig.2.4(c). The task is now to find the

matrix A(z) =
∑NA−1

i=0 Aiz
−i such that the norm of

ê(n) = u(n) +
NA−1∑
i=0

Aiv(n − i)

is smaller than the corresponding norm when any other polynomial matrix Ā(z) of the same or lower order

is used. That turns out to be equivalent to the problem of finding the best linear estimator of order NA − 1

for the vector process −u(n) given the observations v(n). Rather than solving this problem for M = 2, we

will formulate and solve the equivalent problem for a general oversampling ratio M .

2.4.2 LBP optimization for general M

Consider the second equality in (2.15). If H(z) is an LBP of F(z), its Type 1 polyphase components need

to satisfy
M−1∑
k=0

Hk(z)Fk(z) = I. (2.18)
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Figure 2.5: (a)-(b) Equivalent structures for FIR LBPs.

In view of (2.18) we can redraw the structure from Fig.2.5(a) as shown in Fig.2.5(b). Next, we define the

Mp × r and r × Mp polynomial matrices E(z) and R(z) as

E(z)
�
= [FT

0 (z) FT
1 (z) · · · FT

M−1(z)]T , R(z)
�
= [H0(z) H1(z) · · · HM−1(z)]. (2.19)

From Fig.2.5 we conclude that constructing an FIR LBP H(z) is absolutely equivalent to finding a left

polynomial inverse of E(z), namely, R(z). This is possible as long as Mp ≥ r and the greatest common

divisor (GCD) of all the M×M minors of E(z) is a delay [14], [89]. From the previous discussion we conclude

that this condition is equivalent to GRCD[F0(z),F1(z), · · · ,FM−1(z)] being a unimodular matrix.

In order to find the general form of a left FIR inverse, we consider the Smith form [26] of E(z)

E(z) = U(z)Γ(z)V(z). (2.20)

Here U(z) and V(z) are Mp × Mp and r × r unimodular matrices respectively and Γ(z) is an Mp × r

diagonal matrix. If F(z) has an FIR LBP, the elements on the main diagonal of Γ(z) are nonzero constants

or delays, but without loss of generality we can assume that they are all constants [namely, any possible

delays can readily be ‘absorbed’ into U(z) or V(z)]. In other words, Γ(z) = [Γ 0]T , where Γ is an r × r

constant diagonal matrix. Now from (2.20) we have that the most general form for an FIR left inverse of

E(z) is given by

R(z) = V−1(z)[Γ−1 A(z)]U−1(z), (2.21)

where A(z) is an arbitrary r × (Mp − r) polynomial matrix. It is important to note here that although

(2.21) represents the general form of the solution for FIR LBPs, it still does not provide the complete

parameterization of all valid solutions. The reason for this is the fact that even though the Smith form
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decomposition is unique, the unimodular matrices U(z) and V(z) in (2.20) are not; moreover their complete

parameterization is still an open problem.

Next, we consider the problem of finding the optimal A(z) in (2.21) that results in the zero-forcing

equalizer H(z) [see Fig.2.6(a)] minimizing the output noise power. From the previous discussion it follows

that the simplified communication system from Fig.2.6(a) can be redrawn as in Fig.2.6(b). We proceed in a

fashion previously described in Section 2.4.1: by considering the noise model of the equivalent system from

Fig.2.6(b). This noise model is shown in Fig.2.7(a). Let us define the polynomial matrices D0(z), D1(z)

and G(z)

[DT
0 (z)︸ ︷︷ ︸
r

DT
1 (z)︸ ︷︷ ︸

Mp−r

]T= D(z)
�
= U−1(z), G(z)

�
= V−1(z). (2.22)

Now, we can rewrite (2.21) as

[H0(z) H1(z) · · · HM−1(z)] = G(z)Γ−1D0(z) + G(z)A(z)︸ ︷︷ ︸
�
=B(z)

D1(z). (2.23)

Using (2.23), Fig.2.7(a) can be equivalently presented as in Fig.2.7(b). The r× (Mp− r) polynomial matrix

of free parameters, A(z), is now replaced by another r × (Mp − r) polynomial matrix of free parameters,

B(z), and our goal is to find the optimal B(z) of a given order NB − 1 that will minimize the noise power.

Note that any B(z) produces a valid ZFE H(z). From Fig.2.7(b) we see that the optimal B(z) is nothing

but a matrix Wiener filter, or a linear estimator for recovering the desired vector signal −u(n) given the
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vector process v(n). The solution for the optimal B(z) of a given order NB − 1 can be readily obtained

using the orthogonality principle [54]. The details of the derivation are omitted for clarity and can be found

in the appendix. At this point it should only be noted that the final solution depends only on the statistics

of the input noise (Rε) and the elements of the previously determined matrices U(z), V(z) and Γ. It is to

be expected that the performance of the equalizer H(z) will improve with the increasing order of B(z) and

this is investigated in the section with experimental results.

2.4.3 Experimental results

In the following we present the results of numerical simulations. The system under investigation is the one

described in Fig.2.3. The input sequence x(n) consisted of vectors of length three, with the independent,

identically distributed scalar component sequences. The oversampling ratio was M = 2. The signal-to-noise

ratio (SNR) used in the experiments was obtained as [see Fig.2.4(a)]

SNR = 20 log10

||r||2
||w||2

.

In the first experiment, the elements were drawn with equal probability from a 64-QAM constellation [39].

We compare the performance of four different equalization methods:

1. traditional IIR SSE [Fig.2.3(a)],

2. plain FIR FSE (without optimization) obtained as an LBP with B(z) set to zero in (2.23),

3. optimized FIR FSE obtained by finding the optimal third order A(z) in Fig.2.4(c), and

4. optimized FIR FSE as in Section 2.4.2 with B(z) of order three obtained as in (2.44).

The corresponding scattering diagrams of the equalized signals are shown in Fig.2.8, with the probabilities of

error (clockwise in Fig.2.8) given by 0.24, 0.0036, 5.33×10−5 and 5.26×10−6 . The equivalent channel F(z)

in Fig.2.6(a) was a 3 × 3 polynomial matrix of order three and can be found at [92]. The transfer function

F2(z) of the equivalent channel in the SSE case [see Fig.2.3(a)] was chosen in such way that the inverse

matrix H2(z) is stable, but with two poles very close to the unit circle. This leads to its poor performance

in the presence of noise. The noise was white with SNR = 28 dB.

Matrix W(z) in (2.12) was obtained using the GRCD construction algorithm from [26]. As mentioned

in Sec. 2.4.2, matrices U(z) and V(z) in (2.20) are not unique and this is exploited in the equalization

example 4. Notice that there is an improvement by a factor of 10 in the probability of error with respect to

the method based on Fig.2.4 and this can mostly be attributed to the choice of U(z) and V(z). However,

at this point it is still unclear how to choose the optimal U(z) and V(z). The three unimodular matrices

used in this experiment [W(z), U(z) and V(z)] can be found at [92].

In the second experiment, we investigate the behavior of the optimal linear estimator B(z) as a function

of its order NB − 1. The input signal elements were drawn from a 16-QAM constellation. We evaluate our
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algorithm on two MIMO channels: a square 3×3 channel Fsq(z) and a rectangular, fat 2×3 channel Frec(z).

For simplicity Frec(z) was chosen such that it consists of the first two rows of Fsq(z). The MIMO channel

Fsq(z) was characterized by a 3× 3 matrix polynomial of order 6 and the corresponding coefficients can also

be found at [92]. The noise was taken to be white.
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Figure 2.8: Equalization results. Clockwise, starting from upper left: SSE, plain FIR FSE, optimized FIR
FSE as in Section 2.4.1, and optimized FIR FSE as in Section 2.4.2.

While it is intuitive that the higher order estimators B(z) should lead to a better performance than

the lower order ones, it is still of importance to quantitatively evaluate this improvement in performance.

What we have noticed in our examples is that, with increasing NB − 1, the performance of the equalizer

does not improve much after a certain point (see Fig.2.9). This is because all the terms in impulse response

matrices Bk tend to decay very rapidly for large values of k and their influence on the equalizer performance

diminishes in a similar fashion.

In the left part of Fig.2.9, we plotted the experimentally determined probability of error at the detector

in the 3× 3 channel case as a function of the order of estimator NB − 1. The probability of error is obtained

as the average value of the error probabilities in each of the three channels. The first measurement, for

NB − 1 = −1 corresponds to the case when there is no optimization of the equalizer, i.e., where B(z) is a

zero matrix. The probability of error in this case with SNR = 18 dB was equal to 0.82 percent. Interestingly,

the probability of error can be reduced by several orders of magnitude by employing just the zeroth order

(constant) matrix B(z). Only two out of 105 symbols were misinterpreted in this case. However, there is
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Figure 2.9: Probability of error as a function of the estimator order: (left) square 3× 3 channel, and (right)
rectangular 2 × 3 channel—see the text.

not much improvement as the order increases.

Very similar findings hold in the rectangular case as well. Although a left inverse does not exist in this

case, it is still possible to equalize the 2 × 3 channel Frec(z) with oversampling just by two [92]. However,

the default equalizer obtained by the LBP construction as in Section 2.3 does not perform very well. As

shown in the right part of Fig.2.9, for no estimator correction B(z) employed, the error rate was more than

20 percent for SNR = 32 dB. However, even the constant correction B0 resulted in a dramatic decrease in

the probability of error to about 10−4, while the higher order corrections kept the error probability below

4 × 10−5. This, together with the previous, square, example stands to show that exploiting the redundancy

of LBP even to the smallest extent can prove to be very fruitful.

2.5 Some further applications of biorthogonal partners

In this section we will consider two other situations where we encounter MIMO biorthogonal partners. In

both of these instances, the solutions are already well-known and our intention here is to place them in the

context of biorthogonal partners.

2.5.1 Least squares signal approximation

First we will address the problem of least squares signal approximation for vector signals. In the scalar case,

a similar problem is very common in multiresolution theory [31] as well as in the spline approximation theory

[59], [65]. This topic has been treated extensively in the mathematics literature, in the more general setting

of oblique projections [3], [4]. The article by Aldroubi and Unser [4] is especially insightful and is closely

connected to the material in this section. Another issue related to the design of projection prefilters is the

problem of energy compaction. The interested reader is referred to [55].

Suppose we are given the signal model as shown in Fig.2.10(a). The vector signal y(n) is obtained by

upsampling the vector sequence c(n) and passing the result through the matrix transfer function F(z). Now,
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Figure 2.10: Least squares signal modeling: (a) signal model and (b) least squares solution (see text).

given a vector signal x(n), suppose we want to approximate it by a signal y(n) admitting the described

model

y(n) =
∑
k∈Z

F(n − kM)c(k), (2.24)

or in the z-domain

Y(z) = F(z)C(zM ). (2.25)

It turns out that the optimum vector sequence c(n) can be determined as in Fig.2.10(b). The prefilter H(z)

turns out to be a particular form of a MIMO biorthogonal partner of F(z). In the following we refer to this

as the least squares problem.

A very similar problem arises in multiwavelet theory (see [90] and also the next section). Consider the

two-band multiwavelet transform. The multiresolution space V0 is spanned by N scaling functions and their

integer shifts. Similarly, the space W0 is spanned by N wavelets and their integer shifts. Those two spaces

together form a finer resolution space V1. Suppose we have a signal x1(n) belonging to the space V1 and we

want to find a coarser signal x0(n) from V0 such that the distance (in the �2 sense) from the signal x1(n)

is minimized. This problem can be formulated as a vector valued least squares problem, so the solution is

again given by Fig.2.10.

We first state the vector least squares problem in a more general form. Consider the space F of all vector

signals y(n) satisfying the model (2.24), where c(n) is an arbitrary �2 vector sequence.1 This situation is

depicted in Fig.2.10(a). Here F(z) is a given MIMO transfer function. The problem is as follows. Given any

vector signal x(n), we want to find the corresponding projection in F , i.e., the vector signal y(n) ∈ F such

that ∑
n

‖y(n) − x(n)‖2 (2.26)

is minimized. Here ‖ · ‖ denotes the vector norm in �2. The following theorem describes the algorithm by

which this is achieved and the corresponding corollary will address the uniqueness of the proposed solution.

Theorem 2.4. Solution of the least squares problem. Given a MIMO transfer function F(z) and

assuming that S(ejω) = [F†(ejω)F(ejω)]↓M is a positive definite matrix for all ω, we define the (orthogonal)

1This means that all the scalar sequences corresponding to the vector entries are square summable.
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projection filter by

H(z) =
(
[F̃(z)F(z)]↓M

)−1

↑M
F̃(z). (2.27)

If we pass the vector signal x(n) through the projection filter and decimate the outputs by M we get the

optimal driving sequence c(n) [see Fig.2.10(b)]. This c(n) can be used to find the least squares approximation

y(n) as in Fig.2.10(a).

Notice that the projection filter is equal to the generic LBP given by (2.9). The positive-definiteness

condition is necessary only to ensure the stability of H(z). The proof of Theorem 2.4 is provided in the

appendix.

The next corollary states that the least squares solution proposed by Theorem 2.4 is unique. While the

proposed proof provides an elegant argument, the result of Corollary 2.2 also follows from the uniqueness of

the orthogonal projection onto a closed subspace [4].

Corollary 2.2. Uniqueness of projection filter. Consider Fig.2.10. For fixed F(z) satisfying the

condition of Theorem 2.4 and x(n) ∈ �2, the least squares approximation y(n) is unique. Next, suppose the

prefilter H(z) in Fig.2.10(b) is such that the output of F(z) [Fig.2.10(a)] is the least squares approximation

of x(n) for any choice of the �2 input x(n). Then H(z) is unique and is therefore given by (2.27).

Proof. The uniqueness of c(n) and thus of y(n) follows from the proof of Theorem 2.4. Next, let two

different prefilters H(z) and H1(z) both be optimal for all x(n) ∈ �2. Thus by the uniqueness of c(n) we

have that

[(H(z) − H1(z))X(z)]↓M = 0

for any choice of X(z). The choice X(z) = zkei, where ei is the ith unit vector (i.e., the ith column of the

identity matrix), implies that the kth polyphase component of the ith column of H(z)−H1(z) is zero. This

holds for all i and k, so the conclusion is that all the polyphase components of all columns of H(z)−H1(z)

are zero, and thus H(z) = H1(z), i.e., the prefilter is indeed unique. ���

2.5.2 Multiwavelets and prefiltering

Multiwavelet theory emerged recently as the extension of wavelet theory to the case where there is more than

one scaling function and mother wavelet. It has been shown [52] that multiwavelets have some advantages

over the conventional wavelets, especially in data compression. In this section we provide the connection

between MIMO biorthogonal partners and prefilters employed in multiwavelet theory. To that end, we first

give a brief overview of some of the results in this area. For a more thorough and comprehensive exposition

to multiwavelets, reader is referred to the works by Geronimo et al. [15], [12], Xia et al. [90], [88], Vetterli

and Strang [73], [29], [51], and Selesnick [46], [45].

Consider the set of N scaling functions {φn(t)}, 0 ≤ n ≤ N − 1 and the corresponding set of N mother

wavelets {ψn(t)}. The scaling functions are chosen in such way that their integer shifts {φn(t−k)}, together

with the shifts of the dilated versions {φn(2jt − k)} span a sequence of nested subspaces of L2. These
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subspaces Vj ⊂ Vj+1, j ∈ Z (integer j is called the scale) form a multiresolution analysis [15] of L2. Some

of the desirable properties of the scaling functions are linear phase, orthogonality and compact support.

In the scalar case (for N = 1) these properties occur simultaneously only in the Haar basis, while in the

multiwavelet case (N > 1) many such examples are known [15], [51], [46]. In the following we will assume

that the scaling functions are orthogonal and compactly supported. Let xc(t) be a continuous-time signal

contained in V0. Then it can be written as

xc(t) =
N−1∑
n=0

∑
k∈Z

c0,n(k)φn(t − k)

=
N−1∑
n=0

∑
k∈Z

cJ0,n(k)2J0/2φn(2J0t − k) +
N−1∑
n=0

∑
J0≤j<0

∑
k∈Z

dj,n(k)2j/2ψn(2jt − k), (2.28)

where J0, j < 0. This decomposition algorithm suggests possibilities for a tree-like signal decomposition

in terms of the coefficients at coarser scales. In fact, given the coefficients {c0,n(k)} the corresponding

coefficients {cj,n(k)} and {dj,n(k)}, j < 0 can be found using the concept of vector-valued wavelets and

filterbanks (see [90] and references therein). Let us denote the vectors of stacked coefficients at scale j

cj(k) = [cj,0(k) cj,1(k) · · · cj,N−1(k)]T , dj(k) = [dj,0(k) dj,1(k) · · · dj,N−1(k)]T .

Starting from the dilation equation on scaling functions and wavelets, it can be shown that

cj−1(k) =
∑
m∈Z

Hmcj(2k − m) and dj−1(k) =
∑
m∈Z

Gmcj(2k − m)

for some appropriate matrix polynomials H(z) =
∑

m Hmz−m and G(z) =
∑

m Gmz−m. In other words,

this gives rise to the vector-valued filterbank pyramid for decomposition, as shown in Fig.2.11. From the

orthogonality condition on the scaling functions it follows [90] that the reconstruction part is as shown in

the lower part of Fig.2.11.

The initial step in the multiwavelet decomposition is the so-called prefiltering [90], [88] and is not shown

in Fig.2.11. In order to understand the nature of this operation, consider again the first equality in (2.28)

and rewrite it at instances t = n
M (the significance of the factor M will be clear shortly)

x(n)
�
= xc(

n

M
) =

∑
k∈Z

φT
c (

n

M
− k)c0(k), (2.29)

where we introduced the column vector φc(t) = [φ0(t) φ1(t) · · · φN−1(t)]
T . Now, let us define

φM (n)
�
= φc(

n

M
), with ΦM (z) =

∑
k∈Z

φM (n)z−n. Then we have
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Figure 2.11: Vector-valued wavelet pyramid: decomposition to coarser scales and reconstruction.

x(n) =
∑
k∈Z

φT
M (n − kM)c0(k), or X(z) = ΦT

M (z)C0(zM ). (2.30)

This is depicted in Fig.2.12(a). Notice here that x(n) is a sequence of samples of xc(t) oversampled by

M . The purpose of prefiltering is to obtain the multiwavelet coefficients c0(k) at scale 0 from the signal

samples x(n). This prefiltering is unnecessary in the case of the so called interpolating multiwavelets [45]. The

scaling functions there are chosen such that the multiwavelet coefficients are equal to signal samples. Balanced

multiwavelets [29], [46] present similar attempts at circumventing the prefiltering operation, however they

are in general only approximate methods. Therefore, in the most general multiwavelet setting the prefiltering

operation is unavoidable. To understand how this operation is performed, we define the scalar filter Fn(z)

to be the nth entry in the column vector ΦM (z). In other words we have

Fn(z) =
∑
k∈Z

φn(
k

M
)z−k.

Now we can redraw the signal model from Fig.2.12(a) as in the left half of Fig.2.12(b). Notice how this

figure resembles the transmultiplexer [61], where the composite signal x(k) is obtained as the sum of signals

c0,n(k) modulated by filters Fn(z), for n = 0, 1, . . . , N − 1. The recovery of partial signals c0,n(k) is then

achieved as in the right part of Fig.2.12(b), for appropriately chosen filters Hn(z). In order to find those

prefilters Hn(z), we present both filterbanks from Fig.2.12(b) in terms of their polyphase matrices, which is

shown in Fig.2.12(c). They are defined as

P(z) =


F0,0(z) F0,1(z) · · · F0,N−1(z)

F1,0(z) F1,1(z) · · · F1,N−1(z)

FM−1,0(z) FM−1,1(z) · · · FM−1,N−1(z)

 , (2.31)
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Figure 2.12: Prefiltering for multiwavelet transform. (a) Signal model. (b) Equivalent drawing of (a) together

with the prefiltering part. (c) Equivalent drawing using polyphase matrices. (d) Final form of the traditional

method for prefiltering by left-inverting the polyphase matrix. See text.

and

Q(z) =


H0,0(z) H0,1(z) · · · H0,M−1(z)

H1,0(z) H1,1(z) · · · H1,M−1(z)

HN−1,0(z) HN−1,1(z) · · · HN−1,M−1(z)

 . (2.32)

and their entries are nothing but the Type 1 and Type 2 polyphase components of order M of filters Fn(z) and

Hn(z). Now we see that given the samples xc( n
M ), we can obtain the corresponding multiwavelet coefficients

c0(n) at scale 0 as shown in the right half of Fig.2.12(c). Notice here that P(z) is a known M × N matrix

and Q(z) is an unknown N × M matrix, which describes the prefiltering operation. Next we note that the

middle part of Fig.2.12(c) (enclosed in a dashed box) is equivalent to the identity, since it is a cascade of

unblocking and blocking operators. Therefore, this is equivalently redrawn as in Fig.2.12(d). The matrix



36

Q(z) is, therefore, nothing but a left inverse of P(z), i.e., Q(z)P(z) = I. From here it immediately follows

that the minimum amount of oversampling M ≥ N is necessary, since we need P(ejω) to have rank N on

the unit circle.

As argued in Section 2.3, the polynomial matrix inversion problem and the problem of constructing MIMO

biorthogonal partners are completely equivalent. In the following we demonstrate this point by reducing the

problem of finding a left inverse Q(z) to the equivalent biorthogonal partner problem. For simplicity, in

the following we assume that M is an even integer, i.e., M = 2L. Then, we can redraw Fig.2.12(b) as in

Fig.2.13(a). Now we consider the middle part of Fig.2.13(a) (enclosed in a dashed box) and present it using

the polyphase matrices of filters Fn(z) and Hn(z), only now with respect to L = M
2 . This is shown in

Fig.2.13(b), with

P̄(z) =


F̄0,0(z) F̄0,1(z) · · · F̄0,N−1(z)

F̄1,0(z) F̄1,1(z) · · · F̄1,N−1(z)

F̄L−1,0(z) F̄L−1,1(z) · · · F̄L−1,N−1(z)

 , and (2.33)

Q̄(z) =


H̄0,0(z) H̄0,1(z) · · · H̄0,L−1(z)

H̄1,0(z) H̄1,1(z) · · · H̄1,L−1(z)

H̄N−1,0(z) H̄N−1,1(z) · · · H̄N−1,L−1(z)

 , (2.34)

and the entries in the above matrices satisfying

Fn(z) =
L−1∑
k=0

F̄k,n(zL)z−k, Hn(z) =
L−1∑
k=0

H̄n,k(zL)zk.

Comparing Fig.2.13(b) with Fig.2.1, we see that Q̄(z) is found as a left biorthogonal partner of P̄(z) with

respect to 2, or [Q̄(z)P̄(z)]↓2 = I. Therefore, we conclude that the problem of finding a left inverse Q(z) as in

Fig.2.12(d) is indeed completely equivalent to finding an LBP Q̄(z) as in Fig.2.13(b). Moreover, comparing

(2.33) and (2.34) to (2.31) and (2.32), we can easily verify the following relation

 P̄0(z)

P̄1(z)

 = P(z),
[

Q̄0(z) Q̄1(z)
]

= Q(z), with (2.35)

P̄(z) = P̄0(z2) + z−1P̄1(z2), and Q̄(z) = Q̄0(z2) + zQ̄1(z2). (2.36)

From the relation between the solutions Q(z) and Q̄(z), it is evident that many properties of one solution

immediately apply to the other as well. For example, if one matrix is rational/FIR, the other will also be

rational/FIR. The previous findings are summarized in the following lemma.

Lemma 2.1. Consider the continuous-time signal xc(t) ∈ V0, given by its samples xc( k
M ). Let the space
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Figure 2.13: Biorthogonal partners in prefiltering for multiwavelet transform. (a) Equivalent of Fig.2.12(b)
for even M . (b) Equivalent of Fig.2.12(d) for even M . See text.

V0 be spanned by a set of N scaling functions {φn(t)} and their integer shifts; furthermore, let M ≥ N be

an even integer and let P(z) be the corresponding polyphase matrix defined by (2.31). Then there will exist

(an FIR) prefilter Q(z) for the corresponding multiwavelet transform if and only if there exists (an FIR)

LBP Q̄(z) of the M
2 × N polyphase matrix P̄(z) given by (2.33). The relation between them is given by

(2.35) and (2.36).

The significance of Lemma 2.1 lies in the fact that the non-uniqueness and the parameterization of FIR

LBPs can be used in the construction of the multiwavelet prefilters. This may become useful in many

applications where prefilters are required to have certain properties [29], [90], [88], and is an interesting topic

for further investigation.

2.6 Concluding remarks

Multiple input—multiple output (MIMO) biorthogonal partners arise in several signal processing applications

including MIMO channel equalization and multiwavelet theory. The theory of MIMO biorthogonal partners

is to some extent a natural extension of the SISO case as considered in [65]. However, in the vector case we

are presented with additional degrees of freedom which may be useful in some applications. An important

application considered in this chapter is the MIMO channel equalization with fractionally spaced equalizers.

This problem has been converted to the problem of finding MIMO partners and the optimal solution of a

given orders have been derived. While the focus of this chapter has been the extension of scalar biorthogonal

partners to the vector case, in Chapter 3 we consider what happens if the decimation and expansion ratios

are no longer integers but rational numbers.
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2.7 Appendices

Appendix A: The simple Bezout identity

In the first appendix we provide the statement and the proof of the simple Bezout identity for rectangular

matrices. This result occurs frequently in linear systems theory (see [26] for example), but is usually stated

for the case where one of the matrices is square. In this context (cf. Section 2.3) both matrices are of the

same size and are allowed to be rectangular.

Theorem 2.5. Rectangular p × r polynomial matrices F0(z) and F1(z) are right coprime if and only if

there exist polynomial matrices H0(z) and H1(z) such that

H0(z)F0(z) + H1(z)F1(z) = I.

Before proving the simple Bezout identity for rectangular matrices, we need to introduce the following

results.

Lemma 2.2. Given any two p×r polynomial matrices F0(z) and F1(z), there exists a unimodular matrix

W(z), such that (2.12) holds true for some R(z). This R(z) is a GRCD of F0(z) and F1(z). Furthermore,

if R0(z) is any GRCD of F0(z) and F1(z), it can be written as

G0(z)F0(z) + G1(z)F1(z) = R0(z), (2.37)

for some polynomial matrices G0(z) and G1(z).

Proof of Lemma 2.2. The first statement about the existence of a unimodular matrix W(z) is proved

in the general case (see Theorem 2.6.3-2. of [26]). Now, since W(z) is unimodular, its inverse is a polynomial

matrix; call it V(z). Therefore, from (2.12) we have

 F0(z)

F1(z)

 =

 V11(z) V12(z)

V21(z) V22(z)


︸ ︷︷ ︸

V(z)

 R(z)

0

 ,

which implies

F0(z) = V11(z)R(z); F1(z) = V21(z)R(z).

Thus R(z) is a common right divisor of F0(z) and F1(z). If R̄(z) is any other common right divisor, we can

write similarly

F0(z) = X(z)R̄(z); F1(z) = Y(z)R̄(z) (2.38)

with the appropriately chosen polynomial matrices X(z) and Y(z). Now, reading the first matrix equality

from (2.12) we get

W11(z)F0(z) + W12(z)F1(z) = R(z), (2.39)
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which after substituting (2.38) leads to

(W11(z)X(z) + W12(z)Y(z))R̄(z) = R(z),

and this proves that R(z) is indeed a GRCD of F0(z) and F1(z). Finally, we use the fact that any two

GRCDs are identical up to a premultiplication by a unimodular matrix [26]. Therefore, an arbitrary GRCD

R0(z) can be written as R0(z) = T(z)R(z). Applying this to (2.39) leaves us with

T(z)W11(z)︸ ︷︷ ︸
G0(z)

F0(z) + T(z)W12(z)︸ ︷︷ ︸
G1(z)

F1(z) = R0(z),

which concludes the proof of Lemma 2.2. ���
Proof of Theorem 2.5. First we give the backward proof. From Lemma 2.2 we have that if R(z) =

GRCD[F0(z),F1(z)], then there exist polynomial matrices H̄0(z) and H̄1(z) such that

H̄0(z)F0(z) + H̄1(z)F1(z) = R(z). (2.40)

If F0(z) and F1(z) are right coprime, then H0(z)
�
= R−1(z)H̄0(z) and H1(z)

�
= R−1(z)H̄1(z) are also

polynomial matrices. Thus, premultiplying both sides of (2.40) by R−1(z) concludes the proof.

Conversely, suppose there exist polynomial matrices H0(z) and H1(z) such that (2.11) holds. Let R(z) be

any GRCD of F0(z) and F1(z). It follows that F0(z) = F̄0(z)R(z) and F1(z) = F̄1(z)R(z) for appropriate

polynomial matrices F̄0(z) and F̄1(z). Thus we have

[H0(z)F̄0(z) + H1(z)F̄1(z)]R(z) = I, or R−1(z) = H0(z)F̄0(z) + H1(z)F̄1(z).

Since the right-hand side of the above equation is a polynomial matrix, this shows that R(z) is a unimodular

matrix, which concludes the proof. ���

Appendix B: Optimal linear estimator B(z)

In this appendix we derive the expression for the optimal linear estimator B(z) from Fig.2.7(b) in the sense

defined in Section 2.4.2. Let C(z)
�
= V−1(z)Γ−1D0(z) and let the matrices Bi, Ci and Di represent the

impulse responses of B(z), C(z) and D1(z) respectively. Matrices C(z) and D1(z) are FIR by construction

and their impulse responses consist of NC and ND terms, respectively, while the solution for the optimal

matrix polynomial B(z) depends on its pre-specified order, namely, NB − 1. Next define the r × NCMp

matrix C and the (Mp − r)NB × Mp(NB + ND − 1) matrix D1

C �
= [C0 C1 · · · CNC−1],
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D1
�
=


D0 . . . DND−1 0 . . . 0

0 D0 . . . DND−1 . . . 0
...

. . . . . .

0 . . . 0 D0 . . . DND−1

 . (2.41)

We also define the NB(Mp − r) × 1 vector process V(n) and the r × NB(Mp − r) matrix B as

V(n)
�
= [vT (n) vT (n − 1) · · · vT (n − NB + 1)]T ,

B �
= [B0 B1 · · · BNB−1]. (2.42)

By the orthogonality principle we have that E{[BV(n)+u(n)]V†(n)}=0 (here E{·} denotes the expectation),

which leads to the optimal B as

B = −E{u(n)V†(n)} · R−1
VV , (2.43)

where RVV is the autocorrelation matrix of V(n). Given the definitions (2.41) and referring to Fig.2.7(b) we

see that u(n) = CENC
and V(n) = D1END+NB−1, where EN denotes the NMp × 1 vector of concatenated

input noise vectors e(n − i), 0 ≤ i ≤ N − 1. Substituting in (2.43) we get the optimal B(z) to be given by

its impulse response matrix

B = −CRε,1D†
1

(
D1RεD†

1

)−1

. (2.44)

Here, Rε is the Mp(NB + ND − 1) × Mp(NB + ND − 1) noise autocorrelation matrix and Rε,1 is its

NCMp×Mp(NB + ND − 1) submatrix consisting of the first NCMp rows. The solution (2.44) provides the

optimal impulse response matrices Bi, and the optimal linear predictor B(z) is found by

B(z) =
NB−1∑

i=0

Biz
−i.

Appendix C: Proof of Theorem 2.4

The error (2.26) that needs to be minimized can be rewritten in the frequency domain

∑
n

‖y(n) − x(n)‖2 =
∫ 2π

0

‖Y(ejω) − X(ejω)‖2 dω

2π
=

∫ 2π

0

‖F(ejω)C(ejωM ) − X(ejω)‖2︸ ︷︷ ︸
E(ω)

dω

2π
.

Note that C(ejωM ) appearing in the integrand is periodic with period 2π/M , and thus can be chosen

independently only in the range 0 ≤ ω ≤ 2π/M . That is why the integrand can be rewritten as

E(ω) =
M−1∑
k=0

‖F(ej(ω+ 2πk
M ))C(ejωM ) − X(ej(ω+ 2πk

M ))‖2.
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For each ω in 0 ≤ ω ≤ 2π/M we can choose C(ejωM ) such that the nonnegative integrand E(ω) is minimized

and that would in turn minimize the projection error (2.26). Define the vector a(ω) and the matrix B(ω) as

a(ω) = [XT (ejω) XT (ej(ω+ 2π
M )) . . .XT (ej(ω+

2π(M−1)
M ))]T

B(ω) = [FT (ejω) FT (ej(ω+ 2π
M )) . . .FT (ej(ω+

2π(M−1)
M ))]T .

The problem now reduces to that of minimizing

E(ω) = ‖B(ω)C(ejωM ) − a(ω)‖2

= [C†(ejωM ) − a†(ω)B(ω)S−1(ω)]S(ω)[C(ejωM ) − S−1(ω)B†(ω)a(ω)]

+a†(ω)a(ω) − a†(ω)B(ω)S−1(ω)B†(ω)a(ω) (2.45)

where S(ω) = B†(ω)B(ω). The form (2.45) was obtained by the ‘completion of squares.’ Consider the

right-hand side of the last equality in (2.45). It consists of two parts; the first part depends on the choice

of C(ejωM ) and the second part does not. Since the first part is always nonnegative, we should choose

C(ejωM ) such that it becomes zero. Note that the matrix S(ω) = B†(ω)B(ω) is positive definite, which

follows from the assumption [F†(ejω)F(ejω)]↓M > 0. Therefore, the only way to make the first part zero

is to choose C(ejωM ) =
(
B†(ω)B(ω)

)−1
B†(ω)a(ω). In order to rewrite this solution in terms of multirate

building blocks, we note from (1.2) that for any transfer function A(ejω)

[A(ejω)]↓M =
1
M

M−1∑
k=0

A(ej ω+2πk
M ).

Therefore

B†(ω)B(ω) =
M−1∑
k=0

F†(ej(ω+ 2πk
M ))F(ej(ω+ 2πk

M )) = M [F†(ejω)F(ejω)]↓M↑M ,

B†(ω)a(ω) =
M−1∑
k=0

F†(ej(ω+ 2πk
M ))X(ej(ω+ 2πk

M )) = M [F†(ejω)X(ejω)]↓M↑M .

The optimal C(ejωM ) is therefore

C(ejωM ) =
[(

[F†(ejω)F(ejω)]↓M

)−1

↑M
F†(ejω)X(ejω)

]
↓M↑M

.

Thus we have C(z) = [H(z)X(z)]↓M , with H(z) given by (2.27). This concludes the proof. ���
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Chapter 3 Fractional biorthogonal partners and

applications

While one of the applications of biorthogonal partners proposed originally in [65] was the reconstruction

of signals oversampled by integer amounts, in the following we extend this reasoning to the case when

the oversampling ratio is a rational number (or a fraction). This gives rise to the definition of fractional

biorthogonal partners (FBPs in the following). The chapter starts by providing a motivation for the study

of FBPs and defining them formally. Next we show a way to construct fractional biorthogonal partners. This

discussion leads to deriving the conditions for the existence of FIR FBPs and of stable FBPs. An immediate

consequence of the construction procedure is that FIR FBPs (when they exist) are not unique. This property

is used in the channel equalization in a similar way as in the previous chapter. Namely, it is shown that,

if the amount of oversampling at the receiver is a rational number, the problem of fractionally spaced

equalization in communications can be posed in terms of fractional biorthogonal partners. The advantage of

this approach is that many results developed in this and the previous chapter can be employed in FSE design.

For example, the flexibility in the choice of FBPs will again translate to the non-uniqueness in the equalizer

design. Moreover, as it was the case in Chapter 2, we will pose the problem of finding a fractionally spaced

equalizer that in addition to being zero-forcing also combats the channel noise. This design procedure follows

closely the one from Section 2.4.2. Another application of FBPs that is considered is spline interpolation of

slightly oversampled signals using exclusively FIR filtering. This technique is illustrated through an image

interpolation example. We also consider the least squares approximation problem in the setting of fractional

biorthogonal partners. The content of the chapter is drawn mainly from [77] and its portions have been

presented at [76] and [78].

3.1 Chapter outline and relation to past work

The relation between biorthogonal partners and biorthogonal filter banks was pointed out in Chapter 1. An

extension of filter banks to the case when the decimation ratios in subbands are rational numbers instead

of integers, namely, perfect reconstruction rational filter banks were treated by many authors [36], [28]. It

can be shown that every pair of filters {Hk(z), Fk(z)} in a perfect reconstruction rational filter bank forms a

fractional biorthogonal partner pair. However, the properties of such filters considered outside the filter bank

setup were not addressed previously and constitute a major part of this chapter. In addition to this, the

reader will find that the theory as well as the applications presented here are quite different from the results

on rational PR filter banks and are more related to the theory of biorthogonal [65] and MIMO biorthogonal
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partners.

In Section 3.2 we introduce the precise definition of fractional biorthogonal partners. We describe the

construction procedure for finding an FBP of a discrete-time filter F (z). Moreover, we derive a set of

necessary and sufficient conditions for the existence of stable and of FIR FBPs. One of the results which

follow from this derivation is that FIR FBPs (if they exist) are not unique.

Section 3.3 considers one of the applications of FBPs—the channel equalization with fractionally spaced

equalizers. The idea of signal oversampling at the receiver for the purpose of FIR equalization was motivated

in Chapter 2. A similar idea has also been used for blind channel identification [56], [47], [48]. In the

context of FBPs we are interested in fractionally spaced equalizers with fractional amount of oversampling

at the receiver. After reviewing the characteristics of FSEs, especially those with fractional amount of

oversampling, we draw a parallel between FSEs and FBPs. From the findings of Chapter 2 it is to be expected

that it is possible to optimize FIR FBPs for the purpose of zero-forcing equalization. The performance of

such optimized equalizers is evaluated in the section with experimental results where we compare it to the

performance of several other equalization methods including the minimum mean-squared error (MMSE)

equalizer.

In Section 3.4 we consider another application of FBPs, namely, the interpolation of signals described by

oversampled models. This method is a modification of the well-known spline interpolation technique [25], [44]

which requires the use of non-causal IIR filters. Efficient implementation of this filtering is treated in [59].

Here we show that by assuming even a slightly oversampled model for the signal, exact spline interpolation

is possible using only FIR filters. This approach is thus different from another all-FIR spline interpolation

method described in [74] where certain approximations were introduced.

Approximation of arbitrary signals by signals admitting a described oversampled model is treated in

Section 3.5. This discussion is an extension to rational oversampling ratios of a similar method for vector

signals treated in Chapter 2. Not surprisingly, the solution to this problem involves the use of fractional

biorthogonal partners. This solution makes use of the corresponding results in the MIMO biorthogonal

partner setting, even though the initial problem formulation seems rather different. In Section 3.6 we extend

the concept of scalar FBPs to the vector case.

3.2 Fractional biorthogonal partners

Biorthogonal partners as originally introduced in [65] arise in many different contexts. One of those not

treated in Chapter 2 is the reconstruction of continuous time signals admitting the model

x(t) =
∞∑

k=−∞
c(k)φ(t − k). (3.1)
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Figure 3.1: Example of a generating function φ(t) (cubic spline) and its three times ‘stretched’ version f(t).

Given the integer samples of x(t) admitting the model (3.1), namely

x(n) =
∞∑

k=−∞
c(k)φ(n − k) (3.2)

the reconstruction of the driving sequence c(n) and thus of x(t) is obtained by inverse filtering 1/Φ(z), with

Φ(z) denoting the z-transform of φ(n). This is a direct consequence of (3.2). It has been shown [65] that

the IIR reconstructive filtering 1/Φ(z) can often be replaced by simple FIR filtering if the continuous time

signal x(t) is sampled L times more densely (for an integer L ≥ 2). This is motivated in Fig.1.5. The FIR

filter is nothing but a biorthogonal partner of the corresponding oversampled version of Φ(z) with respect to

an integer L. In the following we consider the case where x(t) is oversampled by a rational number, possibly

less than two. We shall see that FIR reconstruction is often possible even under these relaxed conditions.

Suppose we are given the discrete-time signal y(n) that is obtained by sampling x(t) from (3.1) at the

rate L/M , i.e., y(n) = x(nM/L). For obvious reasons we will assume that M and L are coprime. We shall

see later that in most of the applications considered here L > M is required as well, although in principle

it is not necessary. Notice that y(n) is obtained by oversampling x(t) with respect to the usual integral

sampling strategy by a factor of L/M . Therefore we have

y(n) = x(
M

L
n) =

∞∑
k=−∞

c(k)φ(
M

L
n − k)

=
∞∑

k=−∞
c(k)f(Mn − kL), (3.3)

where f(t)
�
= φ(t/L) is the generating function ‘stretched’ by a factor of L. This is shown in Fig.3.1 for the

case where φ(t) is a cubic spline [25] and L = 3. The signal y(n) from (3.3) can thus be obtained as shown

in Fig.3.2(a).

Now consider the problem of signal reconstruction [recovering c(n) from y(n)]. We look for the solution
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Figure 3.2: (a) Signal model. (b) Scheme for reconstruction.

in the form depicted in Fig.3.2(b). It will be shown that under some mild assumptions this solution [i.e.,

filter H(z)] exists. Further, we establish the conditions under which an FIR filter F (z) yields an FIR solution

for H(z).

3.2.1 Definition

The preceding discussion leads naturally to the definition of fractional biorthogonal partners.

Definition 3.1. Transfer function H(z) is said to be a right fractional biorthogonal partner (RFBP)

of F (z) with respect to the fraction L/M if the system shown in Fig.3.3(a) is the identity. Under these

conditions F (z) is also said to be a left fractional biorthogonal partner (LFBP) of H(z) with respect to L/M .

This definition includes the notion of (integral) biorthogonal partners [65] as a special case when M = 1.

As mentioned in Chapter 1, the system in Fig.3.3(a) is LTI whenever M divides L. However, in general it is

not. Also, note that (similar to the MIMO case) we need to distinguish between left and right FBPs. The

results that hold for RFBPs can easily be modified to accommodate LFBPs, and therefore we only focus

on RFBPs in the following. It is important to note the distinction between this definition and a similar

definition of left (right) biorthogonal partners in the MIMO case. Right FBP appears on the right-hand side

in the diagram in Fig.3.3(a), while right MIMO biorthogonal partner appears on the right-hand side in the

equivalent transfer function (thus on the left-hand side in the diagram). The reason for this inconsistency

is that in general for M > 1 the system with fractional biorthogonal partners in Fig.3.3(a) is not LTI, so

we cannot write its transfer function. As a final remark, we note that the FBP relationship depends on the

fraction L/M . Nevertheless, this number will be omitted whenever no confusion is anticipated.

Returning to the previous discussion we see that the reconstruction of x(t) given by the model (3.1) from

its samples y(n) obtained at rate L/M is possible if F (z) has a stable RFBP H(z). Similarly, it is possible

to perform an FIR reconstruction whenever there exists an FIR RFBP. In the following we describe a way

of constructing fractional biorthogonal partners. This will result in a set of conditions for the existence of

FIR or just stable FBPs. Even though this introductory material might seem rather familiar, the reader will

soon discover that the FBP construction is rather different from the methods used in Chapter 2.
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Figure 3.3: (a)-(b) Equivalent presentations of fractional biorthogonal partners.

3.2.2 Existence and construction of FBPs

Consider the system in Fig.3.3(a). Write the filters F (z) and H(z) in terms of their Type 2 and Type 1

polyphase components

F (z) =
L−1∑
k=0

Fk(zL)zk, and H(z) =
L−1∑
k=0

Hk(zL)z−k. (3.4)

Then we can redraw the system as shown in Fig.3.3(b). Next, consider the left-hand side of Fig.3.3(b) and

focus on the system between the output of the ith filter Fi(z) and y(n), namely, a cascade of an expander

by L, advance operator zi and a decimator by M [see Fig.3.4(a)]. Since we assumed M and L are coprime,

there exist integers m and l such that

lL + mM = 1. (3.5)

In fact, the unique solution for the smallest m and l can be obtained by the Euclid’s algorithm. Writing the

delay zi = zilL · zimM , we can easily prove the multirate identity depicted in Fig.3.4(a). Similarly, it can be

shown that the system between y(n) and the input to Hi(z) can be equivalently presented as in Fig.3.4(b).

Substituting the described identities back to Fig.3.3(b) we obtain the equivalent structure shown in

Fig.3.5(a). Let us define

Pk(z)
�
= zklFk(z), and Qk(z)

�
= z−klHk(z), (3.6)

for 0 ≤ k ≤ L − 1. Since L and M are coprime, it follows that L and m are coprime as well. Under these

circumstances it can be shown that the L × L system shown in Fig.3.5(a) within the dashed box is the

identity. Thus, the whole structure can be redrawn as in Fig.3.5(b). It is important to notice here that the

original filters F (z) and H(z) are FIR if and only if the banks of filters {Pk(z)} and {Qk(z)} are FIR for

all k. The structure from Fig.3.5(b) is an L-channel, uniform, nonmaximally decimated filter bank. In our
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Figure 3.4: (a)-(b) Some multirate identities.

setting one side (analysis or synthesis) of this filter bank is usually known, and the task is to construct the

other side so that the whole system has perfect reconstruction property. For example, in the problem of

signal reconstruction, F (z) and thus {Pk(z)} are known and the goal is to find the corresponding synthesis

bank {Qk(z)}. Recall that at the same time this is exactly the problem of constructing an RFBP H(z),

since it is uniquely defined by the filters {Qk(z)}. Recalling the discussion in Section 1.3.2, we resort to the

polyphase matrix notation. Define the L × M analysis and the M × L synthesis polyphase matrices E(z)

and R(z) respectively

E(z) =


E0,0(z) E0,1(z) · · · E0,M−1(z)

E1,0(z) E1,1(z) · · · E1,M−1(z)
...

...
...

...

EL−1,0(z) EL−1,1(z) · · · EL−1,M−1(z)

 , and

R(z) =


R0,0(z) R0,1(z) · · · R0,L−1(z)

R1,0(z) R1,1(z) · · · R1,L−1(z)
...

...
...

...

RM−1,0(z) RM−1,1(z) · · · RM−1,L−1(z)

 , (3.7)

containing the Type 1 and Type 2 polyphase components (of order M this time) Ei,j(z) and Ri,j(z) defined

by

Pk(z) =
M−1∑
j=0

Ek,j(zM )z−j , and Qk(z) =
M−1∑
i=0

Ri,k(zM )zi, (3.8)

for 0 ≤ k ≤ L − 1. Now the system in Fig.3.5(b) can be equivalently redrawn as in Fig.3.5(c). We see that

the problem of finding an RFBP of F (z) becomes equivalent to that of finding a left inverse R(z) of an

L × M matrix E(z). Obviously, when computing an LFBP, we would need to find a right matrix inverse of

R(z). At this point it should be clear why the condition L > M was included in the problem formulation.
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Figure 3.5: (a)-(c) Further simplifications of fractional biorthogonal partners.

For L < M , the polyphase matrices E(z) and R(z) do not have the corresponding inverses; in other words,

there is not enough information in the samples y(n) to reconstruct x(t). On the other hand, when L = M

the system in Fig.3.3(a) is just a cascade of two LTI systems [namely, the zeroth polyphase components of

F (z) and H(z)], so the unique FBP is obtained by filter inversion. Based on the previous findings we prove

the following theorem.

Theorem 3.1. Given the transfer function F (z) and two coprime integers L and M , there exists a

stable right fractional biorthogonal partner of F (z) if and only if L > M , and the minimum rank of E(ejω)

pointwise in ω is M . For an FIR filter F (z) there exists an FIR right fractional biorthogonal partner if and

only if L > M , and the greatest common divisor (GCD) of all the M × M minors of E(z) is a delay. Here,

the polyphase matrix E(z) is defined by (3.7)–(3.8). Analogous results hold for left FBPs as well.

Proof. We have shown that there exists a stable (FIR) RFBP of F (z) if and only if there exists a stable
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Figure 3.6: Continuous-time communication system. (a) Transmitter and channel. (b) Receiver.

(polynomial) left inverse of a (polynomial) matrix E(z). We know that fat matrices do not have left inverses,

so we immediately have L > M as a necessary condition (L = M is eliminated for the reasons explained

earlier). Next, for the inverse of E(ejω) to be stable, we need the full column rank of E(ejω) pointwise in ω,

which is the same as saying that the minimum rank over all ω is M . Finally, using the result mentioned in

Section 2, we have that there is a left polynomial inverse of a L × M polynomial matrix if and only if the

GCD of all its M × M minors is a delay [14], [63]. ���
Due to a rather complicated relation between the starting filters F (z) and H(z) and the polyphase

matrices E(z) and R(z), it is not clear how the conditions appearing in Theorem 3.1 can be translated into the

corresponding conditions on the filters F (z) and H(z). Note that whenever the conditions for the existence

of FIR FBPs are satisfied, these solutions are not unique. This is a consequence of the construction for left

polynomial inverses of tall polynomial matrices, or equivalently right polynomial inverses of fat polynomial

matrices. In the next section we exploit this non-uniqueness in the process of constructing FIR zero-forcing

fractionally spaced equalizers for communication channels.

3.3 Channel equalization with fractionally spaced equalizers

Consider the continuous-time baseband communication system shown in Fig.3.6, where fc(t) denotes the

combined effect of the reconstruction filter from the D/A converter, pulse shaping filter as well as the

continuous-time channel. After passing through the channel, signal is corrupted by the additive noise and

the received waveform qc(t) is sampled at the rate (L/M)/T to produce the received sequence q(n). Recall

that if the ratio L/M is equal to 1, the equalizer at the receiver from Fig.3.6(b) is a symbol spaced equalizer

(SSE). As mentioned previously, the receiver in this case becomes very sensitive to the phase shift at the

sampling device; also, sampling at exactly the symbol rate may create some aliasing problems. In addition

to this, the zero-forcing SSE is nothing but the channel inverse, which is almost always IIR and sometimes

introduces stability issues, as demonstrated in Section 2.4.3. For all these reasons, the preferred alternative

is to keep L > M , giving rise to the receiver structure called the fractionally oversampled fractionally spaced

equalizer (FoFSE), or just FSE in this chapter. The received sequence q(n) with the denser spacing (higher

rate) enters the FoFSE hFSE(n), which now has to operate at a slightly higher rate. Accompanied with this
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process, some rate reduction also needs to take place at the receiver so that the final sequence x̂(n) entering

the decision device has exactly the same rate 1/T as the information sequence x(n).

FSEs are the preferred alternative to traditional channel equalization since they often lead to well-

behaved FIR solutions. Moreover, oversampling at the receiver often allows for blind channel identification

and equalization [56], [47], [48]. As stated previously, one popular equalization method involves the use of

zero-forcing equalizers (ZFEs). Note, however that the ZFEs are not necessarily the best solutions. Instead

of insisting on x̂(n) = x(x) in the absence of noise it might be advantageous to take into account the effect

of the additive noise as well and thus minimize the overall distortion at the output.

It should be noted that even though there are some similarities between the underlying filter bank

structures of the FSE system considered here and the discrete multitone (DMT) system [27], [30], [40], the

two problems do not have much in common. DMT systems make use of the transmultiplexer-like structures,

whereas this chapter deals with the dual system (analysis/synthesis) and uses fractional decimators. In

addition to that, FIR equalization in DMT systems is achieved by introducing some form of redundancy at

the transmitter which eventually leads to the bandwidth expansion. In contrast, the systems with fractionally

spaced equalizers in general do not introduce any bandwidth expansion, but require more computations at

the receiver. In this chapter we show that in most cases this computational overhead can be minimal since

even the slight amount of oversampling often leads to FIR solutions. This should be compared to FSEs

with integer oversampling where L/M = 2 is the minimum oversampling ratio and thus results in the

minimum computational overhead. FSEs with fractional oversampling were also treated by Ding and Qiu

in the context of blind identification [11]. Although the authors there use a different notation, it can be

shown that the problem formulation in [11] is equivalent to the one treated in this section. However, the

solution presented here is derived in the context of FBPs, which brings many advantages, like the theoretical

framework described in the previous section, as well as the the study of the optimal solutions described in

Section 3.3.2.

3.3.1 FSEs with fractional oversampling

In the following we first derive the equivalent digital structure of the system in Fig.3.6 and then we construct

the best FoFSE and evaluate its performance. As we did before, in the following we assume that L > M

and that L and M are coprime. Consider Fig.3.6(a) in the absence of noise. We can see that

q(n) = qc(n
M

L
T ) =

∞∑
k=−∞

x(k)fc(n
M

L
T − kT ). (3.9)

By defining the discrete-time sequence f(n)
�
= fc(nT/L), which is actually the function fc(t) sampled L

times more densely than at integers, we have

q(n) =
∞∑

k=−∞
x(k)f(nM − kL). (3.10)
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This identity is incorporated in Fig.3.7(a) where we show the discrete-time model of the communication sys-

tem from Fig.3.6. The discrete-time noise appearing in Fig.3.7(a) is obtained by sampling the corresponding

continuous-time noise from Fig.3.6(a) at the rate L/MT . In the following we focus on the box in Fig.3.7(a)

labeled ‘equalization and rate reduction.’ Recalling that in the zero-forcing setting the goal of this block is

to make x̂(n) = x(n) in the absence of noise, we conclude that this block needs to incorporate a right FBP

of F (z) with respect to L/M . In other words, we search for the equalizer of the form shown in Fig.3.7(b).

For the reasons explained in Chapter 2, of special interest are FIR solutions, and non-uniqueness of these

solutions is exploited in the following.

3.3.2 Optimizing FIR RFBPs for channel equalization

It follows from the previous discussion that the discrete-time equivalent communication system with frac-

tionally oversampled FSEs can be drawn as in Fig.3.8(a), which in turn can be equivalently presented as

in Fig.3.8(b). Matrices E(z) and R(z) are given by (3.7) and construction of the FSE H(z) amounts to

finding the appropriate left inverse R(z) of the matrix E(z). In the following we assume that the equivalent

channel fc(t) is of finite length, which implies that E(z) is a polynomial matrix. In practice, this is achieved

by applying one of the several methods for channel shortening [2] before equalization. We look for FIR

equalizers, implying that the corresponding polyphase matrix R(z) should be polynomial as well. Since the

solution to this problem is not unique, our goal is to find the one that performs favorably with respect to the
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noise amplification at the receiver. This problem is equivalent to the one studied in Section 2.4.2, so here we

skip many derivation details.

Consider the system in Fig.3.8(b). The equivalent model for noise is shown in Fig.3.9(a). Using the Smith

form decomposition of E(z) and the same notation as in Chapter 2, it can be shown that the most general

form of an FIR ZFE R(z) is given by Fig.3.9(b) for an arbitrary polynomial matrix B(z). The solution for

the optimal B(z) of a given order NB − 1 is again given by

B = −C · Rε,1 · D†
1 ·

(
D1 · Rεε · D†

1

)−1

, (3.11)

where Rεε is now a L(NB + ND − 1) × L(NB + ND − 1) autocorrelation matrix of the input noise process,

and Rε,1 consists of its first NCL rows.

3.3.3 MMSE equalizer

As mentioned earlier, although a zero-forcing equalizer completely eliminates the channel distortion, the

best equalizer R(z) of a given order NR − 1 in Fig.3.8(b) is the one that minimizes the mean-squared error

between x(n) and x̂(n). This is nothing but a vector Wiener filter [54] for recovering x(n) corrupted by a

linear distortion E(n) and an additive noise with the given statistics. Consider Fig.3.8(b). Let the matrices

Ei and Ri denote the impulse responses of E(z) and R(z) respectively and let the NRL×M(NR + NE − 1)

matrix G be defined as

G �
=


E0 . . . ENE−1 0 . . . 0

0 E0 . . . ENE−1 . . . 0
...

. . . . . .

0 . . . 0 E0 . . . ENE−1

 .

It can be shown [54] that the MMSE solution for R(z) is given by its impulse response

P �
= [R0 R1 · · · RNR−1] = RX ,1 · G† ·

(
G · RXX · G† + Ree

)−1
. (3.12)
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Here RXX is a M(NR + NE − 1) × M(NR + NE − 1) autocorrelation matrix of the input sequence x(n),

RX ,1 consists of its first M rows and Ree is a NRL × NRL autocorrelation matrix of the noise process.

Even though the MMSE method provides statistically the best solution, the equalizers based on zero-

forcing are often preferred for simplicity reasons. Namely, comparing the two solutions (3.11) and (3.12) we

see that as opposed to the MMSE method, the optimized FIR RFBP method does not require the knowledge

of the signal autocorrelation matrix nor the noise variance, whenever the noise is uncorrelated. The latter

can become a significant advantage, especially in a low signal to noise ratio environment, when the matrix

inversion in (3.12) depends significantly on the noise power. This point is illustrated in the next subsection.

Also, in certain communication systems the transmitter might change the coding technique during the

transmission (thus changing the signal covariance matrix), while the equalizer stages of the receiver might

not have this information available. This change in RXX would seriously affect the MMSE performance

(3.12), however the optimal solution (3.11) would remain unaltered.

3.3.4 Performance evaluation

Using computer simulations, we compare the equalization performance of four different methods

1. Traditional IIR SSE (simply a channel inverse), which corresponds to the case of no oversampling at

the receiver, i.e., when L = M (we call this method SSE).

2. Simple FIR FSE method using plain RFBPs without the optimization matrix B(z) in Fig.3.9(b)—plain

RFBP.

3. Optimized FIR RFBP method described in Section 3.3.2—optimized RFBP.

4. MMSE equalizer described in Section 3.3.3—MMSE.

The channel sampled at integers was taken to be of the fourth order, with coefficients

1.0000 0.7599 − 0.2600 − 0.1200 0.5000

and the corresponding sequence f(n) [fc(t) oversampled by L] was obtained by linear interpolation. Note

that two of the four complex zeros of the minimum phase channel lie very close to the unit circle and thus

the traditional SSE consists of a barely stable IIR filter which amplifies the channel noise. In all the FoFSE

implementations (2–4) we fixed L = 5 and M = 4, so that the amount of computational overhead for the

fractionally spaced equalizer (with respect to the symbol spaced one) was just 25%. The order of the MMSE

solution R(z) given by (3.12) was NR − 1 = 7. For the fairness of comparison, the optimized FIR RFBP

was chosen to be of the same order and thus the order of the linear estimator B(z) was NB − 1 = 3.

The noise was taken to be white and the signal-to-noise ratio (SNR) measured at the input to the receiver

was 29 dB. The obtained probabilities of error for the four methods were 0.0791, 1.4 × 10−3, 1.19 × 10−5

and 5.0 × 10−6 respectively. The corresponding scattering diagrams for the 64-QAM input constellation
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Figure 3.10: Equalization results. Clockwise, starting from upper left: SSE, plain FIR RFBP, optimized
FIR RFBP and MMSE methods.

are shown clockwise in Fig.3.10. The diagram presenting the probability of error in the four methods as a

function of SNR is shown in Fig.3.11.

The simulation example shows that the improvement in performance achieved by exploiting the redun-

dancy in the construction of FIR RFBPs can be significant. Also, both the plain RFBP and the optimized

RFBP methods perform significantly better than the SSE, at the expense of just 25% increase in the clock

rate at the receiver. It can also be observed that the method with optimized RFBP equalization does not

perform far from the optimal MMSE equalization of the same order, while it requires no knowledge of the

input statistics and the noise variance.

In Fig.3.12 we explore the sensitivity of the optimal MMSE equalizer to the estimate of the noise variance

at the receiver. Let the ratio between the estimated and the actual noise variances be σ2
est/σ2

act = α2. In

Fig.3.12 we show the probability of error achieved using the equalization methods three and four as a

function of the parameter α2 with a fixed SNR = 29 dB. We can see that whenever the noise variance gets

overestimated by a factor of two or more, the MMSE equalizer performance becomes comparable or even

worse than the performance of the optimized FIR RFBP equalizer.
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Figure 3.11: Probability of error as a function of SNR in the four equalization methods.
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Figure 3.12: Probability of error as a function of noise variance discrepancy α2.

3.4 Interpolation of oversampled signals

3.4.1 Spline models in conventional interpolation

In this section we consider the problem of linear signal interpolation using continuous-time signal models. We

develop the connection between FBPs and the corresponding interpolation systems for slightly oversampled

signals. Given a discrete-time signal x(n) and a function φ(t), we can almost always assume that x(n) is
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Figure 3.13: Interpolation of discrete signals using digital filtering. In the case of spline interpolation, φK(t)
is an oversampled B-spline.

obtained by sampling at integers the continuous-time signal x(t) given by the model (3.1), i.e.

x(n) =
∞∑

k=−∞
c(k)φ(n − k). (3.13)

The only condition is that Φ(ejω), the discrete-time Fourier transform of φ(n) is nonzero for all ω [65].

The driving coefficients c(n) can be obtained by the inverse filtering 1/Φ(ejω), if it is stable. These driving

coefficients can then be employed for signal reconstruction as in (3.1) or for the interpolation of discrete

signals. The signal x(n) interpolated by an integral factor K is obtained by sampling x(t) from (3.1) K

times more densely than at integers. Thus, the interpolation process for the signals admitting the model

(3.13) is shown in Fig.3.13, with φK(t)
�
= φ(t/K) and B(ejω)

�
= 1/Φ(ejω).

While in principle φ(t) can be chosen to be just about any function, various researchers have traditionally

used continuously differentiable interpolating functions such as B-splines [25], [44] to insure some smoothness

properties of the resulting interpolant. The mth order B-spline is given by the m-fold convolution of the

unit pulse function

p(t) =
{

1 for t ∈ [0, 1),

0 otherwise

with itself. The important property of B-splines is that they span the space of continuously differentiable

functions—splines [44]. In other words, the (m−1)th derivative of x(t) exists and is continuous if x(t) admits

the model (3.1), with φ(t) representing the mth order B-spline. The case when m = 3 is called cubic spline

interpolation and it has received much attention in the image processing community [59]. The cubic spline

φ(t) and its 3 times stretched version φ3(t) are shown in Fig.3.1.

Spline interpolation, though elegant, unfortunately comes at a certain price. It can be shown [59] that

in this case the inverse filtering by B(z) = 1/Φ(z) in Fig.3.13 is not only IIR but noncausal, so recursive

implementation [59] is required. The authors in [74] consider one way of modifying the interpolation structure

from Fig.3.13 in order to avoid IIR filtering. Although the technique proposed there is shown to produce

results very similar to the exact spline interpolation, it is still only an approximation of the exact method and

results in a reduced degree of smoothness or irreversibility of the interpolant [74]. In [65], the same problem

was considered from a slightly different point of view. It is shown that if x(n) is a spline function oversampled

by an integer amount, i.e., if x(n) admits the model (3.13), with φ(n) being a B-spline oversampled by some

integer, then the reconstruction prefilter B(z) in Fig.3.13 can be FIR and the system still produces the exact

spline interpolant. In the following we extend this work by showing that even if x(n) is a spline oversampled
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Figure 3.14: (a) Signal model and proposed interpolation. (b) Scheme for all-FIR interpolation.

by an arbitrarily small (rational) amount, the all-FIR interpolation is still possible.

3.4.2 FBPs in all-FIR interpolation of oversampled signals

Let x(t) be a third-order spline given by the model (3.1). Consider the discrete-time signal y(n) = x(M
L n)

(for L > M) which is obtained by oversampling x(t) by a factor of L/M . The signal y(n) can be constructed

as shown in the first half of Fig.3.14(a). Here FL(z) represents the z-transform of the sequence φL(n), which

is obtained by sampling φ(t) L times more densely than at integers. Our task is to find an interpolation

system as in Fig.3.14(a) consisting of FIR filters only, that produces the interpolated version x( n
K ), for an

arbitrary integer K. The interpolation by a rational amount K1/K2 can in principle be thought of as an

interpolation by K1 followed by a simple decimation by K2. Also, note that the oversampled signal y(n) as

in Fig.3.14(a) actually gets interpolated by a total factor of MK/L.

Following the discussion from Section 3.2 we conclude that the driving sequence c(n) can be recovered

as shown in the first half of Fig.3.14(b), where H(z) is an RFBP of FL(z) with respect to L/M . It is

often possible to find FIR solutions for H(z) as explained in Section 3.2.2. After this is achieved, the

interpolation by K is performed as in the second half of Fig.3.14(b), where FK(z) corresponds to the K-fold

oversampled cubic spline (see Fig.3.1). Summarizing, we have achieved an all-FIR spline interpolation, with

only one requirement: that the input signal admits a slightly oversampled model. By making L = M + 1

and choosing M large enough, this required overhead in the input signal rate can be made insignificant.

In Fig.3.15 we present an example of all-FIR cubic spline interpolation. In this example we used L = 6

and M = 5. The smaller image is a portion of the Parrots image, oversampled by 6/5. In other words,

this signal satisfies the model in Fig.3.14(a). It was obtained from the original image using the traditional

cubic spline interpolation by a factor of 6/5. Employing the system shown in Fig.3.14(b) with the FIR

reconstruction filter H(z) and K = 2, this image is next interpolated by a total factor of MK/L = 5/3

and the result is also shown in Fig.3.13. We note that this is precisely the same result as the one obtained

using recursive IIR filtering in traditional spline interpolation [59]. However, in this case we had to assume

a certain signal model, which is not valid for an arbitrary signal. A possible remedy is to approximate the

starting signal with a signal admitting the model and then proceed with the all-FIR interpolation. In the
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Figure 3.15: FIR interpolation example: a region of the image oversampled by L/M = 6/5 and its cubic
spline interpolation by a factor of MK/L = 5/3 obtained using FIR filters.

next section we formally define this approximation problem and derive the solution.

3.5 Least squares signal approximation

Consider the class F of discrete-time signals y(n) which can be modeled as the output of the system shown

in Fig.3.16(a). The signal model from Fig.3.16(a) appears in several different contexts; for example, see the

left half of Fig.3.7(a) or the left half of Fig.3.14(a). Here, c(n) is an arbitrary �2 sequence, and L and M

are coprime integers satisfying L > M . The problem of least squares approximation is as follows. Given

an arbitrary signal x(n) ∈ �2, find a signal y(n) ∈ F such that the �2 distance between these two signals,

namely ∑
n

|y(n) − x(n)|2

is minimized. Obviously, this problem is the same as finding the optimal driving sequence c(n). The reason

for the restrictions on L and M is similar as before; if L and M have a common factor, say P , then the

model reduces to a similar one with the expander and decimator ratios L/P and M/P , respectively, and

F (z) replaced by its zeroth polyphase component of order P . On the other hand if L < M , the class F
almost always incorporates all �2 signals and the approximation problem becomes degenerate. Note that

y(n) is nothing but the orthogonal projection of x(n) onto F .

In order to solve the least squares problem, notice that the structure from Fig.3.16(a) can be equivalently

redrawn as in Fig.3.16(b). Here Fi(z) for 0 ≤ i ≤ M − 1 are the Type 1 polyphase components of order

M of F (z). Next, notice that the structure between c(n) and the input to the filter Fi(z) is nothing but a
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Figure 3.16: Least squares problem. (a) Signal model. (b)-(c) Equivalent drawing.

cascade of an expander by L, delay z−i and a decimator by M . Using the identity shown in Fig.3.4(a), we

can redraw Fig.3.16(b) as in Fig.3.16(c). We also used the fact that L and M are coprime, and integers l

and m are chosen such that (3.5) is satisfied. Filters Ui(z) are defined as

Ui(z)
�
= z−im · Fi(z).

Now, notice that the subsequences ci(n) represent a complete partitioning of c(n), i.e., c(n) can be recov-

ered from ci(n) using a generalized unblocking structure shown in the right part of Fig.3.18(a). This is a

consequence of the fact that l and M are coprime as well. Therefore, the problem of finding the optimal

driving sequence c(n) in Fig.3.16(a) is equivalent to the problem of finding the optimal driving sequences

{ci(n)} for 0 ≤ i ≤ M − 1 in Fig.3.16(c). This problem represents a special, uniform case of a more general

multichannel, nonuniform least squares problem considered in [79]. Also, it can be viewed as a special case

of the least squares problem considered in the MIMO biorthogonal partner setting (Chapter 2).
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Figure 3.18: (a)-(b) Solution to the least squares problem.

Consider Fig.3.17(a), with the vector sequence c(n) and MISO filter U(z) defined by

c(n)
�
= [c0(n) c1(n) · · · cM−1(n)]T

U(z)
�
= [U0(z) U1(z) · · · UM−1(z)].

It is easily seen that the signal model in Fig.3.17(a) corresponds to the one in Fig.3.16(c) and thus the one

in Fig.3.16(a). According to the results in Section 2.5.1, the solution to the corresponding least squares

approximation problem is unique and is given by the structure shown in Fig.3.17(b). The SIMO filter V(z)

is defined by

V(z)
�
= [V0(z) V1(z) · · · VM−1(z)]T ,

and can be found as

V(z) =
(
[Ũ(z) · U(z)]↓L↑L

)−1

Ũ(z). (3.14)

Note that two of the necessary conditions for the existence of the matrix inverse in (3.14) are L ≥ M and[
|Fi(ejω)|2

]
↓L

> 0 for all ω and for 0 ≤ i ≤ M − 1. However, they are not sufficient. On the other hand, if

the matrix in question is not of full rank, we can use the Moore-Penrose generalized inverse (pointwise in ω)

instead and that would correspond to the least squares solution.
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Representing the SIMO system V(z) in the form of a filter bank, we can redraw the solution from

Fig.3.17(b) as in Fig.3.18(a), which also combines the optimal subsequences {ci(n)} back into the driving

sequence c(n). We can further simplify this system as shown in Fig.3.18(b), using a similar method as in

Fig.3.16. Here, H(z) is the optimum projection prefilter and is defined by

H(z)
�
=

M−1∑
i=0

zi(Mm+1) · Vi(zM ).

Summarizing, the solution to the least squares approximation problem defined by the signal model in

Fig.3.16(a) is given by the structure in Fig.3.18(b). Note that H(z) is a particular RFBP of F (z) with

respect to L/M , since the cascade of the systems from Fig.3.16(a) and Fig.3.18(b) is equal to the identity.

3.6 Vector signals

The problem of signal reconstruction discussed in Section 3.2 was originally posed for scalar signals. However,

an analogous problem can be considered in the case of vector signals as well. Suppose that a N × 1 vector

signal x(t) admits the model

x(t) =
∞∑

k=−∞
Φ(t − k)c(k), (3.15)

where c(k) is a K × 1 vector driving sequence and Φ(t) is a N ×K matrix model function. We consider the

discrete vector signal y(n) obtained by sampling x(t) at multiples of M/L. Thus we have y(n) = x(nM/L)

and the structure producing y(n) is shown on the left-hand side of Fig.3.19(a). Here, F(z) is a z-transform of

the integer samples of a N ×K matrix function F(t)
�
= Φ(t/L). The problem of vector signal reconstruction

can now be solved using the structure on the right-hand side of Fig.3.19(a). The matrix transfer function

H(z) for which the complete system shown in Fig.3.19(a) is the identity is called a right vector fractional

biorthogonal partner (RVFBP) with respect to the ratio L/M . In this case we call F(z) a left vector

fractional biorthogonal partner (LVFBP) with respect to L/M .

Similarly as before, we are usually concerned with the case when L and M are coprime, since otherwise

we can reduce both the expander and decimator by a common factor. Using the equivalent reasoning as in

the scalar case (Section 3.2), we conclude that the system from Fig.3.19(a) can be equivalently redrawn as

in Fig.3.19(b), where the block polyphase matrices (for vector signals) Ev(z) and Rv(z) have a form similar

to (3.7). The only difference is that the scalar polyphase components of filters {Pk(z)} and {Qk(z)} are

replaced by the N ×K and K×N matrix polyphase components of the corresponding matrix filters {Pk(z)}
and {Qk(z)}, defined similarly as in the scalar case (3.6). This discussion leads to the conditions for the

existence of FIR or just stable RVFBPs, which are summarized in the following theorem.

Theorem 3.2. Given a N × K matrix transfer function F(z) and two coprime integers L and M ,

there exists a stable right vector fractional biorthogonal partner of F(z) if and only if NL > KM , and the

minimum rank of Ev(ejω) [from Fig.3.19(b)] pointwise in ω is M . For an FIR matrix filter F(z) there exists
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Figure 3.19: (a) Definition of vector FBPs. (b) Construction of vector FBPs.

an FIR right vector fractional biorthogonal partner if and only if NL > KM , and the greatest common

divisor (GCD) of all the KM ×KM minors of Ev(z) is a delay. Analogous results hold for left vector FBPs

as well.

The proof of this theorem is completely equivalent to the proof of Theorem 3.1, and is therefore omitted.

Notice that the necessary condition L > M from the scalar case here gets modified into a more general

condition NL > KM . Similar to the scalar case, we conclude that whenever FIR VFBPs exist they are not

unique. However, the degrees of freedom that can be used in the construction of FIR VFBPs now depend

on the difference NL − KM rather than L − M .

In accordance with the discussion in Section 3.3.1, we can define the problem of vector channel equalization

using fractionally oversampled MIMO FSEs, and this would correspond to the extension of the material from

Chapter 2 to the FoFSE case. Again, the degrees of freedom in this FIR MIMO FoFSE optimization are a

consequence of the fact that NL > KM .

The other two applications of FBPs, considered in Section 3.4 and Section 3.5 can also be extended easily

to the case of vector signals. The interpolation of vector signals has the application whenever the task is

to asses the values of some vector-valued process at the instances between consecutive measurements. Of

course, in order for the theory of linear interpolation (described in Section 3.4 in the case of scalar signals) to

be applicable, the unknown continuous-time vector process should be assumed to satisfy a model of the form

similar to (3.15). As for the least squares signal approximation, problem formulation is the same regardless

of the dimensionality of the signals, the extension is straightforward and a similar problem has already been

treated in Section 2.5.1.
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3.7 Concluding remarks

The original theory of biorthogonal partners in the scalar and the vector case was derived from the signal

models with integral amount of oversampling. This chapter provides an extension of these results to the

case when the oversampling amount is fractional. One of the main conclusions drawn here is that fractional

biorthogonal partners always allow for additional flexibility in the design of FIR solutions. This design

closely follows the corresponding procedure from Chapter 2. In fact, the design of ZFEs for noise reduction

reduces to the problem treated in Section 2.4.2. One contribution of this chapter is that we have compared

the performance of FoFSEs to that of more complicated MMSE solutions and shown that the degradation

is not significant. Several other applications of fractional biorthogonal partners have also been considered,

including all-FIR signal interpolation and least squares signal approximation. The theory of FBPs has been

extended to the case of vector signals.
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Chapter 4 Precoding in cyclic prefix-based

communication systems

In this chapter we consider the digital communication systems with the equalization techniques based on

cyclic prefix. The application of these techniques to high-speed data transmission over frequency-selective

channels, such as twisted pair channels in telephone cables, has attracted considerable attention over the last

fifteen years [5], [8]-[9], [27], [49]. Cyclic prefix systems are invariably used in conjunction with the discrete

Fourier transform (DFT) matrices, and one example is the DFT-based discrete multitone modulation (DMT)

system [9]. Although it has been shown by Kalet [27] that the use of the ideal transmit and receive filters

in the multitone environment can lead to achieving signal-to-noise ratio (SNR) within 8-9 dB of the channel

capacity (depending on the probability of error), in practice the DFT filter bank is most commonly used

because of its low complexity. The development of cyclic prefix systems leads, for example, to asymmetric

digital subscriber loops (ADSL) and high-speed digital subscriber loops (HDSL) [49], [9].

The initial goal of cyclic prefix based methods for equalization is to cancel the intersymbol interference

(ISI) induced by the channel without inverting it. This task is achieved by introducing some redundancy in

the form of a cyclic prefix (see Section 4.2). However, depending on the nulls of the channel in question,

the noise can get severely amplified even in cyclic prefix based equalizers. In this chapter we consider a

general cyclic prefix based system with the aim of further reducing the noise power at the receiver. This

is achieved by performing the ISI cancellation and the noise suppression separately, in different modules.

The main module for ISI cancellation is based on cyclic prefix with the DFT filter bank and is unchanged.

It is preceded (followed) by the optimal precoder (equalizer) for the given input and noise statistics. These

blocks are realized by constant matrix multiplications, so that the overall communication system remains of

low complexity. We consider two different precoding schemes, which are developed based on two different

optimization criteria. In the presence of white noise, both of these reduce to simple power allocation across

different subbands of the channel (see Fig.1.11), however these allocation algorithms are different from the

classical water-filling solution [27]. Portions of the material in this chapter have been presented at [82] and

[68].

4.1 Chapter outline

The chapter begins with a brief overview of cyclic prefix systems with DFT matrices used for ISI cancellation

(Section 4.2). Cyclic prefix methods introduced here can in fact be applied in a much broader, filter inversion

setting, not necessarily related to digital communications. When it comes to data transmission, cyclic prefix
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has traditionally been used after bit parsing, combined with optimal bit allocation resulting in different

symbol constellations in different subbands [27], [49], [30]. However, in the setting of this chapter cyclic prefix

is directly applied on the data stream. The main thrust of this chapter is towards a better understanding

of the communication systems based on cyclic prefix. The authors of several different papers, including [27]

and [30] have considered the problem of optimal transmitter and receiver design in this context using the

information-theoretic criteria. Here, we consider the same problem from a signal processing point of view,

deriving two different solutions, corresponding to the two slightly different sets of objectives.

In Section 4.3 we introduce one way of dealing with noise suppression separately and derive the optimal

constrained pair precoder/equalizer for this purpose. The overall system is constrained to be ISI-free in the

absence of noise and the precoder is chosen to minimize the noise power at the receiver. The performance

of the proposed method is evaluated through computer simulations and a significant improvement over the

original system without precoding is demonstrated.

A slightly modified method for optimal pre- and post-processing is presented in Section 4.4. The design

procedure here aims at maximizing signal-to-noise ratio at the receiver, under the additional constraint that

SNR should be stationary, i.e., not time-dependent. Ideally, this approach should also result in minimizing

the probability of detection error under the ISI-free condition. Simulation results confirm a significant

improvement in performance over the plain channel inversion method. Throughout this chapter we assume

that the frequency-selective channel is a known FIR system of order L, i.e., it is given by

C(z) =
L∑

k=0

c(k)z−k.

4.2 Cyclic prefix systems in digital communications

In this section we give a review of cyclic prefix based systems for channel equalization that employ DFT filter

banks. Before deriving the complete communication system, we first introduce the concept of cyclic prefix.

It presents a way of inserting redundancy into the input data stream which becomes useful in the process of

channel equalization as will be explained later. Consider the symbol stream from Fig.4.1(a). It is divided

into blocks of length M . The last L symbols from each block are copied and inserted at the beginning of

that block (we assume hereafter that the block size M is greater than L). This is achieved by ‘squeezing’

the samples as explained in Fig.4.1(b)–(c). Obviously, this operation of inserting the redundancy into the

input data stream results in bandwidth expansion. In this case the bandwidth expansion ratio is given by

α = (M + L)/M , which can be made sufficiently small by making M large. The purpose of cyclic prefix

insertion is twofold: it allows the receiver to remove ISI using very simple operations, and it guarantees the

stability of such equalization regardless of the channel.

As a first step in understanding how this is achieved, consider the system with cyclic prefix in Fig.4.2,

ignoring the noise for the time being. The blocks labeled ‘blocking’ and ‘unblocking’ were explained in the
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introductory section, while the block ‘prefix’ inserts a cyclic prefix as described in Fig.4.1. It can be shown

that the blocked sequences q(n) and r(n) are related through a multiplication by the M ×M right circulant

[37] channel matrix C. The first column of C consists of the L + 1 channel coefficients c(k) followed by

M − L − 1 zeros. for example, if L = 3 and M = 6,

C =



c(0) 0 0 c(3) c(2) c(1)

c(1) c(0) 0 0 c(3) c(2)

c(2) c(1) c(0) 0 0 c(3)

c(3) c(2) c(1) c(0) 0 0

0 c(3) c(2) c(1) c(0) 0

0 0 c(3) c(2) c(1) c(0)


. (4.1)

Since we can safely assume1 c(0) �= 0, it follows that C is nonsingular and the effect of the channel can be

neutralized by inverting it. Next, we use the result that any circulant matrix can be diagonalized by a DFT

matrix [37], in other words we have

C = W−1ΓcW, (4.2)

1Otherwise we can shorten the impulse response of C(z).
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where W is the M × M DFT matrix and the diagonal matrix Γc has the eigenvalues of C on its diagonal.

Those eigenvalues, in turn, are nothing but the M -point DFT coefficients of c(k), thus we have

Γc =


CM [0] 0 0 . . . 0

0 CM [1] 0 . . . 0
...

. . .
...

0 0 0 . . . CM [M − 1]

 , (4.3)

with CM [n] =
∑L

k=0 c(k)e−j2πkn/M . As noted before, the ISI cancellation is achieved by inverting C in (4.2).

Therefore, the ISI-free communication system is given in Fig.4.3. Notice that in this representation, all the

computational complexity of the channel inversion is appointed to the receiver. It is possible to distribute

some of this complexity to the transmitter side by noting in Fig.4.3 that W−1 is a square inverse of the

matrix Γ−1
c WC. This observation results in the conventional DFT-based cyclic prefix system, shown in

Fig.4.4. The block labeled ‘channel and prefix system’ is given in Fig.4.2. Matrix Γ−1
c is better known as

the frequency domain equalizer and on its diagonal it contains the reciprocals of the DFT coefficients of the

channel. The input vector sequence s(n) in Fig.4.4 is obtained by blocking the symbol stream into blocks of

length M . The noise vector e(n) is obtained by blocking the discretized channel noise into blocks of length

M + L and then discarding L samples out of each block (see Fig.4.2).

The main merit of cyclic prefix systems with DFT matrices lies in their simplicity. From Fig.4.4 we see

that the transmitter only needs to perform the inverse DFT operation followed by a cyclic prefix insertion.

On the other hand, the receiver removes the cyclic prefix, performs the DFT operation and frequency domain

equalization, which simply amounts to multiplying the signal in each channel by a constant (see Fig.4.3).
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Moreover, if M is chosen as a power of two, both IDFT and DFT operations can be implemented using the

fast radix-2 algorithm.

The noise vector process e(n) at the receiver passes through the DFT matrix W and the frequency

domain equalizer Γ−1
c . Since W is a scaled unitary matrix, the main contribution to the noise power at the

receiver comes from the multipliers 1/CM [n] embedded in Γ−1
c . Obviously, if the channel C(z) has zeros near

the unit circle, these multipliers can get large, consequently boosting the noise at the receiver and degrading

the system performance. In the next section we propose a simple modification of the basic equalization

structure from Fig.4.4 that aims at improving the system performance.

4.3 Simple pre- and post-processing for noise suppression

4.3.1 Modified system design

Consider the system shown in Fig.4.5. It consists of the same basic cyclic prefix transceiver (the middle

portion) surrounded by the constant matrices T−1 and T. Notice that as for the signal part, this system

is completely equivalent to the one from Section 4.2, i.e., the signal still goes through the identity system.

Therefore, the only purpose of the precoder T−1 and the corresponding equalizer T is to reduce the noise

power at the receiver output ŝ(n). This is shown in Fig.4.6. It is clear that without any additional constraints

this task can be trivially accomplished by scaling the matrix T by a very small constant; without changing

the received signal, in this way we could arbitrarily reduce the received noise power. However, this would

in turn arbitrarily increase the power of the transmitted signal x(n), which is of course unacceptable. The

remedy, therefore, is to find the optimal precoder/equalizer pair subject to the constraint on the transmitted

power, proportional to E[x†x]. This power constraint is more conveniently rewritten as

Tr{E[xx†]} = Tr{T−1Rss(T−1)†} ≤ Px, (4.4)

where Rss denotes the autocorrelation matrix of the input vector process s(n). Quantity Px denotes the

maximum power in the transmitted signal x(n). Throughout this chapter we make the assumption that the

input symbols are independent, identically distributed, coming from a predefined constellation. Therefore,

the autocorrelation matrix becomes Rss = PsIM , where Ps is the power in the input symbol stream. Thus,

if the transmitted power needs to be unchanged after employing the precoder, the power constraint becomes

Tr{T−1(T−1)†} = Tr{(T−1)†T−1} = 1, (4.5)

using the identity Tr{AB} = Tr{BA}, for A,B square.

According to the polar decomposition theorem [24] an arbitrary square matrix T can be written as a

product T = UP, where U is unitary and P a positive semidefinite matrix (in our case, since T is obviously
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ŝ(n)

DFT domain
equalizer

Γc
−1
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desired to be nonsingular, P is positive definite). Therefore, the power constraint (4.5) becomes

Tr{U†U(P−1)†P−1} = Tr{P−2} = 1. (4.6)

Our objective as mentioned before is to minimize the output noise power (subject to the power constraint).

This can be written as

min
T

Tr{TΓ−1
c WReeW†(Γ−1

c )†T†}, that is

min
P

Tr{P†PQ}, with Q
�
= Γ−1

c WReeW†(Γ−1
c )†. (4.7)

Notice that neither the objective (4.7) nor the constraint (4.6) depend on the choice of the unitary matrix

U. This leads us to conclude that without loss of generality we can choose U = IM , or T = P. Furthermore,

it follows that we can achieve nothing in terms of noise suppression if T itself is unitary (this can also be

concluded directly from Fig.4.5).

In order to solve this problem of nonlinear optimization, namely, minimizing (4.7) subject to (4.6), it is

useful to consider the unitary diagonalization of the positive definite matrices

P = UpΛpU†
p, and Q = UqΛqU†

q. (4.8)

Namely, in (4.8) Up and Uq are unitary, while Λp and Λq are diagonal. Defining another unitary matrix

V
�
= U†

qUp, (4.9)
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the objective function (4.7) can be written as

min
V,Λp

Tr{V†ΛqVΛ2
p}. (4.10)

Notice that the matrices V and Λp are arbitrary, subject to being unitary and diagonal positive definite,

respectively. More importantly, optimal Λp can be chosen independently of optimal V. Let us define

A
�
= V†ΛqV, with diag(A) = [a1, a2, · · · , aM ]T

�
= a, (4.11)

diag(Λp) = [λp,1, λp,2, · · · , λp,M ]T
�
= λp, and diag(Λq) = [λq,1, λq,2, · · · , λq,M ]T

�
= λq. (4.12)

When considered as a function of {λp,i}, the minimization problem becomes

min
λp,i

M∑
i=1

aiλ
2
p,i, s.t.

M∑
i=1

λ−2
p,i = 1. (4.13)

The problem is conveniently reduced to scalar optimization which can be readily solved using the method of

Lagrange multipliers. The optimal solution for {λp,i} as a function of the diagonal elements of A is given by

λ
(opt)
p,i =

( √
ai∑M

i=1

√
ai

)−1/2

. (4.14)

The next step is to find the optimal set of diagonal elements of A, namely, {ai} that minimize the

objective (4.13). After substituting the solution for {λp,i}, the problem becomes

min
ai

 M∑
i=1

ai +
∑
i �=j

√
aiaj

 . (4.15)

Notice from (4.11) that
M∑
i=1

ai = Tr{Λq} = const. (4.16)

since Q is fixed, so that the objective given by (4.15) becomes that of minimizing

f(a)
�
=

∑
i �=j

√
aiaj , (4.17)

with the vector a defined in (4.11). It is important here to notice that f(·) is a concave function of a (see

Fig.4.7), since it is a positive linear combination of concave functions of the form √
aiaj . If we denote by
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Figure 4.7: Convex polytope defined by the doubly stochastic matrix Ω (left), and concave function f(·)
defined over this polytope (right).

vi,j the (i, j)th element of V defined previously, then from (4.11) we have

ai =
M∑

k=1

|vk,i|2λq,k,

or in other words

a = Ω · λq. (4.18)

Here Ω is a square doubly stochastic matrix [24], given by

Ω =


|v1,1|2 |v2,1|2 · · · |vM,1|2

|v1,2|2 |v2,2|2 · · · |vM,2|2
...

...
...

...

|v1,M |2 |v2,M |2 · · · |vM,M |2

 . (4.19)

It has been shown in [62] that under these conditions (4.18) defines a convex polytope in the first quadrant of

the real M -dimensional vector space. This is shown in Fig.4.7. The corners of that polytope are given by the

permutations of the vector λq and are denoted by pi in Fig.4.7. Since f(·) is a concave function defined over

a convex polytope its absolute minimum is reached at one of these corners [see Fig.4.7(right) for a simplified

argument]. That is to say, the optimal matrix V is a permutation matrix. But from the form (4.17) of the

objective function f(a) we conclude that without loss of generality we can take V = IM . Summarizing, we

have shown the following.

Theorem 4.1. Optimal precoder/equalizer (method 1). Consider the system for digital commu-

nications shown in Fig.4.5. The optimal precoder/equalizer matrix T in the sense of minimizing the output

noise power for the fixed transmitted power constrained as in (4.4) is given by T = UqΛpU†
q. Unitary matrix
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C(z) is FIR of order L=8:
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Figure 4.8: Summary of the parameters used: channel impulse response, zero magnitudes, SNR, probabilities
of error.

Uq is obtained as in (4.8), given the definition of Q in (4.7). The diagonal elements of Λp are given by

λ
(opt)
p,i =

( √
λq,i∑M

i=1

√
λq,i

)−1/2

. (4.20)

In other words, the optimal precoder T−1 determined in Theorem 4.1 simply performs the power allocation

according to (4.20) but on a modified signal that is essentially projected into the equivalent noise subspace

(operation defined by the unitary transform Uq). As a special case, if the noise is white, Q in (4.7) becomes

diagonal. Then Uq = I and the precoder T−1 allocates the power to s(n) divided in M subbands according

to the following allocation rule

diag [t1, t2, · · · , tM ]
�
= T−1, with ti ∝

1√
|CM [i]|

. (4.21)

Interestingly, (4.21) is opposite in nature to the well-known water-filling allocation algorithm [27] which

maximizes the channel throughput.

4.3.2 Experimental results

We now consider a simulation example designed to compare the equalization in the traditional cyclic prefix

system (without T) versus the modified system with optimal precoder for noise suppression. The parameters

used in the experiment are summarized in Fig.4.8. The channel was real, of order 8, so there are four pairs

of conjugate zeros, with magnitudes as in Fig.4.8. We see that four of these complex zeros are very close

to the unit circle. As a consequence, several DFT coefficients of CM [n] are very low in magnitude, so that

the frequency domain equalizer at those frequencies amplifies the noise severely. This resulted in very high

probabilities of error at signal-to-noise ratios that are moderate to high, when the traditional cyclic prefix

system is used. This can be seen in Fig.4.10. The quantity M was chosen to be 128, so that the FFT

algorithm can be used. The input signal was drawn from the 64-QAM constellation. The signal-to-noise

ratio used in the experiments was calculated at the input of the receiver (see Fig.4.5).
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Figure 4.9: Equalization results using a modified system without (left), and with the optimal pre-
coder/equalizer (right).
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Figure 4.10: Probability of error vs. SNR: without precoder (dashed line) and with precoder (solid line).

In Fig.4.9 we show the scatter plots resulting from the channel equalization using the traditional system

without precoding (left) and the modified system with optimal precoding (right). The plots are obtained at

the signal-to-noise ratio of 24 dB. The average probability of error corresponding to the traditional system

is slightly more than 8× 10−3, while the error probability in the system with precoder is less than 2× 10−5.

In Fig.4.10 we show the average symbol error probability as a function of signal-to-noise ratio for the two

systems (traditional and with pre- and post-processing). From this example we see that the improvement in

performance resulting from optimal precoding can be significant (more than 6-8 dB).

4.4 Precoder design: alternative approach

In the following we consider an alternative approach to designing the optimal precoder/equalizer pair. It is

different from the one presented in Section 4.3.1 in that the objective is to maximize SNR at the receiver

(which is equivalent to minimizing the noise power) under the additional constraint that the noise variance
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Figure 4.12: Channel input power constraint.

at the receiver should be constant, i.e., time-invariant. To see how this is achieved, consider the system in

Fig.4.11. The basic cyclic prefix system from Section 4.2 is now preceded by two matrices: a unitary matrix

U† and a diagonal matrix Λp. The effect of these two matrices on the signal s(n) is neutralized by placing

their inverses at the receiver; therefore the ISI-free condition is still satisfied.

Let us first study the purpose of a unitary matrix U at the receiver. If the noise e(n) is wide-sense

stationary (WSS) its autocorrelation matrix Ree is Toeplitz in structure [61]. However, the autocorrelation

of the noise component at the receiver, namely, v(n), is given by

Rvv = UΛ−1
p Γ−1

c WReeW†Γ−†
c Λ−†

p︸ ︷︷ ︸
Z

U†. (4.22)

In the absence of the correction matrix U, we have Rvv = Z. Notice that Z is in general not Toeplitz.

Indeed, even if the noise is white, the diagonal elements of Z are scaled by the channel magnitude responses

and by the premultipliers in Λp, so in general they are not equal. This implies that the unblocked noise

v(n) cannot be stationary, since its variance is a periodically time-varying signal. It is the purpose of U to

compensate for this effect. Namely, given any positive definite Z, there exists a unitary U, such that UZU†

has identical diagonal elements. The algorithm for finding such U can be found in [35]. Returning to the

special case of white noise, note that Zwn is diagonal. Recalling the property of circulant matrices (4.2) we

see that it suffices to take U = W−1, since UZwnU† then becomes circulant and in particular its diagonal

elements are equal, resulting in a constant variance of v(n).

Having chosen U, we proceed to find the optimal Λp, which results in the maximum SNR for a fixed

transmitted power. To determine the input power to the channel, we show the transmitter part in greater

detail in Fig.4.12. If the cyclic block length M is assumed to be very large compared to the channel order L,

we can make the approximation that the channel input power equals the power in signal x(n) (see Fig.4.12).
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Therefore, recalling that Rss is equal to a scaled identity, the channel input power becomes

Pchannel ≈
σ2

s

M
Tr{W−1ΛpΛ†

pW
−†} =

σ2
s

M2

M∑
i=1

|pi|2, (4.23)

where σ2
s is the signal variance and pi are the diagonal elements of Λp.

As for the SNR at the receiver, notice that the variance of the noise component v(n) can be written as

σ2
v =

1
M

Tr{Rvv} =
1
M

Tr{ΛWReeW†} =
1
M

M∑
i=1

λid
2
i , where (4.24)

Λ = diag [λ1, λ2, · · · , λM ] , λi
�
=

1
|C[i]pi|2

, and d2
i =

[
WReeW†]

ii
. (4.25)

Therefore, the constrained SNR maximization problem becomes

max
pi

[
SNR =

σ2
s

1
M

∑M
i=1 d2

i /|C[i]pi|2

]
, s.t.

M∑
i=1

|pi|2 = M2. (4.26)

Using the method of Lagrange multipliers, the optimal power allocation coefficients are evaluated as

pi = M
√
|di/C[i]|/

(
M∑

k=1

|dk/C[k]|
)1/2

, (4.27)

which is again inversely proportional to the square root of the channel magnitude response in the appropriate

subband (see Fig.1.11). For a more detailed treatment of this optimization problem, with insightful discussion

about the performance improvement resulting from the use of a precoder, the reader is referred to [68].

4.4.1 Experimental results

In computer simulations we compare the performance of two equalization methods: (a) plain channel inverse

given by 1/C(z) and (b) method based on cyclic prefix with the optimal precoding as in Fig.4.11. The

channel was of order 8 and all its zeros are inside the unit circle (channel zero plot is given in Fig.4.13).
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Figure 4.14: Equalization results using the channel inverse (left), and an optimal precoder/equalizer (right).
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Figure 4.15: Probability of error vs. SNR using the two methods.

For this reason, the simple channel inverse is a stable equalizer and its performance should be comparable

to that of a cyclic prefix system without precoding. However, a pair of conjugate zeros of C(z) is very

close to the unit circle (radius = 0.9755) and therefore the inverse 1/C(z) performs poorly in the presence

of noise. The noise was assumed correlated with ρ(k) = σ2
e(0.3)|k| and M = 256 was chosen. The scatter

diagrams comparing the performance of the two equalizers (at SNR = 33 dB) are given in Fig.4.14 and

the corresponding diagram relating the probabilities of error to the SNRs used is shown in Fig.4.15. In

another experiment, we used pi = const. for all i and compared the two performances as in Fig.4.14. The

(non-optimized) cyclic prefix system and the channel inverse performed practically the same, indicating that

nearly all the improvement comes as a result of optimizing pi. However, note that the advantage of the

cyclic prefix based method would be much more pronounced if C(z) was not minimum phase.
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4.5 Concluding remarks

We have considered cyclic prefix based systems with DFT matrices, commonly used in several equaliza-

tion methods, such as the DFT-based DMT. Our approach was to treat the problem of noise suppression

separately from the ISI cancellation and implement it in a separate module. With this in mind we have

constructed two optimal constant (precoder, equalizer) pairs for noise reduction based on two sets of con-

straints. Both designs were constrained on the transmitted power and the requirement that there is no ISI

in the absence of noise. In addition to that, the design procedure in Section 4.4 guarantees the constant

SNR at the detection.

A more general precoder design would involve matrices with memory and/or substitute the restraint on

the ISI-free solution by the minimum mean-squared error objective. A similar approach was taken in [91],

although the authors there do not consider a cyclic prefix system, and unfortunately the solution in that case

involves ideal (unrealizable) filtering. Another generalization of our approach would involve a tall instead of

a square matrix precoder, and thus allow for some additional redundancy in the system. Moreover, a similar

approach could be applied to modified DFT-based systems and generalized perfect DMT systems [30].

Finally, note that we referred to (4.20) and (4.27) as power allocation strategies that proved optimal in

the two scenarios. However, a careful observation reveals that the actual task of the optimal precoder is

simply to undo the effect of the equalizer part (for example, T in Section 4.3) on the signal. Consequently, it

is the equalizer, i.e., the inverse of the precoder, that really affects the performance of the system. Thus it is

not surprising that the water-filling precoder is not the optimal solution under these circumstances. Indeed,

the optimal strategy is to allocate as much signal power in the frequency bands where the channel magnitude

is low. This ensures that the noise amplification on the equalizer side is not severe in these regions, since

large values of 1/|CM [i]| in Γ−1
c are compensated for by the small values of p−1

i in Λ−1
p .
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Chapter 5 Equalization with oversampling in

multiuser communications

The area of multiuser communications has become increasingly important during the last decade as a result

of a rapid expansion present in the wireless industry. Consequently, the ongoing research in many related

fields, such as coding and information theory, communications, electromagnetics, etc., continues to attract

attention. In this chapter we consider some important problems present in multiuser communications,

however from the multirate signal processing perspective. Our focus is on the better understanding of these

issues in terms of basic signal processing concepts. We then resort to standard multirate DSP techniques in

solving these problems or proposing improvements to already existing solutions.

As opposed to single-user communication systems like the ones considered in the previous chapters, the

performance of the new generation wireless systems is limited by two distinct effects: multiuser interference

(MUI) and intersymbol interference (ISI). As a result, the receiver in multiuser systems first focuses on

extracting the signal from a desired user out of a received combination of (interfering) signals. This process

is called MUI cancellation or suppression. After that the aim is to mitigate the ISI effects present in the

extracted signal and this is achieved by one of the numerous equalization techniques, some of which have

been treated in the previous chapters.

The interference from other users (MUI) has traditionally been combated by orthogonal spreading codes

at the transmitter [71]; however, this orthogonality is often destroyed after the transmitted signals have

passed through the multipath channels. Furthermore, in the multichannel uplink scenario, exact multiuser

equalization is possible only under certain conditions on the channel matrices [58]. The alternative approach

is to suppress MUI statistically, however this is often less desirable.

In this chapter we concentrate on a recently developed method for MUI elimination called a mutually-

orthogonal usercode-receiver (AMOUR), which has been introduced by Giannakis et al. [21], [86]. This

approach aims at eliminating MUI deterministically and at the same time mitigating the undesired effects

of multipath propagation for each user separately. One clear advantage of this over the previously known

methods is that MUI elimination is achieved irrespective of the channel nulls. Moreover, ISI cancellation

can be achieved using one of the previously known methods for blind channel equalization [21]. In summary,

AMOUR can be used for deterministic MUI elimination and fading mitigation regardless of the (possibly

unknown) multipath uplink channels.

In the following we consider an improvement of the basic AMOUR-CDMA system achieved by signal

oversampling at the receiver. This equalizer structure can be considered as a fractionally spaced equalizer

(FSE), similar to the ones treated in the previous chapters, and thus the name Fractionally Spaced AMOUR
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(FSAMOUR). We consider two separate cases: integral and rational oversampling ratios. As mentioned

previously in Chapters 2 and 3, the advantages of FSEs over the conventional symbol spaced equalizers

(SSE) are lower sensitivity to the synchronization issues and freedom in the design of zero-forcing equalizers

(ZFE). We will see that this freedom translates to better performance of FSAMOUR ZFEs.

An additional improvement of multiuser communication systems is achieved by exploiting the fact that

zero-forcing channel equalizers in the multiuser setting are typically not unique. This non-uniqueness allows

us to design ZFEs that also combat the noise at the receiver. While this observation is true in general for

both AMOUR and FSAMOUR systems, shortly we will see that the improvement is more pronounced in

the latter case. The content of this chapter is closely related to the material presented in [75].

5.1 Chapter outline

In Section 5.2 we provide an overview of AMOUR-CDMA systems. While the content of this section is mainly

drawn from the original work by Giannakis et al. [20], [21], our approach to the system derivation is slightly

different from the one usually encountered in literature and leads to notable simplifications, which prove useful

in the derivation of FSEs in the subsequent sections. We should note that the multiuser system considered

here assumes that all users are synchronized and they communicate at the same rate. In [86] this basic

idea was extended to the case when different users communicate at different rates, and the synchronization

issue was treated in [21]. In the remaining sections, we consider the possible improvements of the original

AMOUR system obtained by oversampling the received signal, as well as the receiver optimization. The

material in Sections 5.3 and 5.4 represents the original contribution of this chapter.

In Section 5.3 we design the FSAMOUR system with integral amount of oversampling. The system

retains all the desired properties of conventional AMOUR and provides additional freedom in the design of

ZF solutions, which corresponds to finding left inverses of tall matrices with excess rows. This freedom is

further exploited and the corresponding improvement in performance over AMOUR systems is reported in

the subsection with the experimental results.

In Section 5.4 we generalize the notion of FSAMOUR to the case of fractional oversampling at the receiver.

If the amount of oversampling is given by (M + 1)/M for a large integer M the computational overhead in

terms of the increased data rate at the receiver becomes negligible. Experimental results in Section 5.4.5

confirm that the improvements in the equalizer performance can be significant even if the oversampling is

by just 6/5, i.e., only 20%.

5.2 AMOUR-CDMA systems

The structure in Fig.5.1 describes an AMOUR-CDMA system for M users, i.e., M transmitters and M

potential receivers. The upper part of the figure shows the mth transmitter followed by the uplink channel

corresponding to the mth user and the lower part shows the receiver tuned to the user m. The symbol
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Figure 5.1: Discrete-time equivalent of a baseband AMOUR system.

stream sm(n) is first blocked into a vector signal sm(n) of length K. This signal is upsampled by P > K

and passed through a synthesis filterbank {Cm,k(z)}K−1
k=0 . These filters are called the spreading codes for user

m and are assumed to be FIR of length P . Moreover, the last L samples of each spreading code are set to

zero, where L is the order of the channel Hm(z). This constraint is introduced to eliminate the inter-block

interference (IBI), a point that will be clear shortly.

A careful observation of Fig.5.1 reveals that each of the users introduces the redundancy in the amount of

P/K. In other words, the symbol rate of xm(n) at the entrance to the mth receiver is by P/K higher than

the rate of the information sequence sm(n). Based on the discussion in the introductory chapter, it should

be clear that the redundancy introduced by the transmitters serves to facilitate the user separation and

channel equalization at the receiver. The higher values of K tend to reduce the bandwidth expansion P/K.

However, it will be explained shortly that for any fixed K there is the minimum required P (a function of

K and the channel order L) for which user separation and perfect channel equalization is possible regardless

of the channel nulls. We will also see that the bandwidth expansion tends to M when K tends to infinity.

It is shown in [86] that a more general system where different users communicate at different information

rates can be reduced to the single rate system. Therefore in the following we consider the case where K and

P are fixed across different users.

The channels Hm(z) are considered to be FIR of order ≤ L and are obtained by sampling the correspond-
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ing physical continuous-time channels hm(n). For the purpose of MUI cancellation they can be considered

unknown. As in the rest of the thesis, we assume that the channel state information (CSI) for the mth

channel is available at the equalizer part of the mth receiver. If this is not the case, channel equalization

can be done by incorporating some of the well-known blind equalization techniques [43], [34], [16], [18], etc.

For a detailed treatment of blind AMOUR algorithms please refer to [21], [41].

At the mth receiver the signal from the user m, namely, xm(n) is corrupted by the interference from the

other users and by the additive channel noise. The receiver is functionally divided into three parts: filterbank

{Gm,j(z)}J−1
j=0 for MUI cancellation, block V−1

m which is supposed to eliminate the effects of {Cm,k(z)} and

{Gm,j(z)} on the desired signal, and the equalizer Γm aimed at reducing the ISI introduced by the multipath

channel Hm(z). Much like the spreading codes, filters Gm,j(z) are chosen to be FIR of length P . They are

designed jointly with {Cm,k(z)} so that the signals from the undesired users µ �= m are filtered out regardless

of their corresponding propagation channels. This design procedure will be described shortly. Notice that

the length of the vector signal entering V−1
m is J . We will see later that J > K is required for the guaranteed

recovery of sm(n) irrespective of the channel zeros. The vector signal at the entrance of V−1
m depends only

on the message from the desired user sm(n). However it is corrupted by the ISI effects introduced by the

block for MUI elimination [namely, {Cm,k(z)} and {Gm,j(z)}] and by the corresponding mth uplink channel

Hm(z). The square matrix V−1
m neutralizes the effect of the block for MUI elimination and the rectangular

matrix Γm depends only on the channel coefficients and is nothing but the blocked version of the equalizer

for the corresponding channel.

In the following we design each of these building blocks by rewriting them in a matrix form. The banks of

filters {Cm,k(z)} and {Gm,j(z)} can be represented in terms of the corresponding P ×K and J×P polyphase

matrices Ĉm and Gm respectively. The (j, i)th element of Gm is given by gm,j(i) and the (i, k)th element

of Ĉm by cm,k(i). Note that the polyphase matrices Ĉm and Gm are constant due to the aforementioned

length-P constraints on the filters.

The system from Fig.5.1 can now be redrawn as in Fig.5.2(a), where the receiver block is defined as

Tm
�
= ΓmV−1

m Gm. The P × P block in Fig.5.2(a) consisting of the signal unblocking, filtering through the

mth channel and blocking can be equivalently described as in Fig.5.2(b). Namely, it can be shown [61] that

the corresponding P × P LTI system is given by the following matrix

Ĥm = [Hm X(z)]. (5.1)
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Figure 5.2: (a)-(c) Equivalent drawings of a symbol spaced AMOUR system.

Here we denote by Hm the P × P − L full banded lower triangular Toeplitz matrix

Hm =



hm(0) 0 · · · 0
... hm(0)

...

hm(L)
...

. . . 0

0 hm(L) 0
...

...
. . .

...

0 0 · · · hm(L)


, (5.2)

and X(z) is the P × L block that introduces the IBI. Since the last L samples of the spreading codes

{Cm,k(z)} are chosen to be zero, Ĉm is of the form Ĉm = [CT
m 0T ]T with the L × K zero-block positioned

appropriately to eliminate the IBI block X(z), namely, we have

ĤmĈm = [Hm X(z)] ·

 Cm

0

 = HmCm.

Therefore the IBI-free equivalent scheme is shown in Fig.5.2(c), with the noise vector signal êm(n) obtained by

blocking the noise from Fig.5.2(a). Next we use the fact that full banded Toeplitz matrices are diagonalizable

by Vandermonde matrices. This is a generalization of the result used in Chapter 4 that provides the
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diagonalization of circulant matrices using DFT matrices [c.f. (4.2)]. Let us choose

Gm =


1 ρ−1

m,0 · · · ρ−P+1
m,0

1 ρ−1
m,1 · · · ρ−P+1

m,1

...
...

...

1 ρ−1
m,J−1 · · · ρ−P+1

m,J−1

 , for ρm,j ∈ C, (5.3)

denote by Θm the first P − L columns of Gm and define the diagonal matrix

Hm(ρm)
�
= diag[Hm(ρm,0),Hm(ρm,1), · · · ,Hm(ρm,J−1)], (5.4)

with the argument defined as ρm
�
= [ρm,0 ρm,1 · · · ρm,J−1]. For any J ∈ N and an arbitrary set of complex

numbers {ρm,j}J−1
j=0 the following holds

GmHm = Hm(ρm)Θm. (5.5)

The choice of {ρm,j}J−1
j=0 (which are also called signature points) is such that Gm eliminates MUI as explained

next. It will become apparent that the signature points need to be distinct.

Consider the interference from user µ �= m. From Fig.5.2(c) it follows that the interfering signal sµ(n)

passes through the concatenation of matrices

GmHµCµ = Hµ(ρm)ΘmCµ = Hµ(ρm)Cµ(ρm), where (5.6)

Cµ(ρm) =


Cµ,0(ρm,0) Cµ,1(ρm,0) · · · Cµ,K−1(ρm,0)

Cµ,0(ρm,1) Cµ,1(ρm,1) · · · Cµ,K−1(ρm,1)
...

...
...

Cµ,0(ρm,J−1) Cµ,1(ρm,J−1) · · · Cµ,K−1(ρm,J−1)

 . (5.7)

The first equality in (5.6) is a consequence of (5.5). From (5.6) we see that in order to eliminate MUI

regardless of the channels it suffices to choose {ρm,j}M−1,J−1
m,j=0 such that

Cµ,k(ρm,j) = 0, ∀m �= µ, ∀k ∈ [0,K − 1], ∀j ∈ [0, J − 1]. (5.8)

Equations (5.8) define (M − 1)J zeros of the polynomials Cm,k(z). In addition to this, let Cm,k(z) be such

that

Cm,k(ρm,j) = Amρ−k
m,j , (5.9)

where the multipliers Am introduce a simple power control for different users. At this point the total number

of constraints for each of the spreading polynomials is equal to MJ . Recalling that the last L samples
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of spreading codes are fixed to be zero, the minimum spreading code length is given by P = MJ + L.

Substituting (5.9) in (5.6) for µ = m and recalling (5.5) we have

GmHmCm = Am


1 ρ−1

m,0 · · · ρ−J+1
m,0

1 ρ−1
m,1 · · · ρ−J+1

m,1

...
...

...

1 ρ−1
m,J−1 · · · ρ−J+1

m,J−1


︸ ︷︷ ︸

Vm

H̄m, (5.10)

where H̄m is the J × K north-west submatrix of Hm.

The details on the construction of spreading codes under these conditions are provided in [20]. The

signature points are often chosen to be uniformly spaced around the unit circle [20]

ρm,l = ej
2π(m+lM)

MJ , 0 ≤ l ≤ J − 1, (5.11)

since this leads to FFT based AMOUR implementations having low complexity.

In order to perform the channel equalization after MUI has been eliminated we need to invert the matrix

product in (5.10), which in turn requires sufficient rank of the product in question. From (5.6) with µ = m

we conclude that (5.10) can be further written as a product of a diagonal matrix Hm(ρm) and a J × K

Vandermonde matrix Cµ(ρm). This product needs to be invertible regardless of the channel nulls and we

note that Cµ(ρm) is invertible as long as {ρm,j} are distinct. Now we consider the worst case scenario where

all the L zeros of Hm(z) occur at the signature points ρm,j . In this case the rank of Hm(ρm) drops to J −L

and thus the sufficient condition for the invertibility of (5.10) is J = K +L. In summary, the minimal system

parameters are given by

J = K, (known CSI), J = K + L, (unknown CSI) and P = MJ + L.

In the limit when K tends to infinity the bandwidth expansion becomes

BW expansion =
P

K
=

{
[MK + L]/K for known CSI

[M(K + L) + L]/K unknown CSI
K→∞−→ M.

From Fig.5.2(c) it readily follows that (ignoring the noise)

ŝm(n) = AmΓmV−1
m VmH̄msm(n) = AmΓmH̄msm(n). (5.12)

As noted in the previous chapters, when we considered equalizer design, Γm can be chosen to eliminate the ISI

in the absence of noise, which leads to a zero-forcing equalizer (ZFE). Further, it can be chosen to minimize

the expected error at the detector with noise taken into account, and this corresponds to the minimum mean-
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ŝm(n)um(n)
D/A hc(t)

RATE REDUCT.

( b ) MUI

NOISE

h(q)
m (n)

EQUALIZATION
AND

RATE REDUCT.
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Figure 5.3: (a) Continuous-time model for an AMOUR system with integral oversampling. (b) Discrete-time
equivalent drawing. (c) Polyphase representation for q = 2.

squared error (MMSE) solution. For more details, reader is referred to [20], [21]. In the following we consider

the improvement of this conventional AMOUR system obtained by sampling the received continuous-time

signal more densely than at the symbol-rate given by the transmitters.

5.3 AMOUR with integral oversampling

As demonstrated in Chapters 2 and 3, fractionally spaced equalizers typically show an improvement in

performance at the expense of more computations per unit time required at the receiver. In this section we

study the case when the received continuous-time signal is sampled q times faster than at the transmission

rate, where q is assumed to be an integer greater than one. This roughly corresponds to some of the material

presented in Chapter 2. However, the task here is complicated by the constraints on MUI elimination. Our

goal is to introduce the benefits of FSEs in the ISI suppression, without violating the conditions for perfect

MUI cancellation irrespective of the uplink channels. As will be clear shortly, this objective is achieved

through the use of the fractionally-sampled AMOUR (FSAMOUR) system, introduced in the following.

In order to develop the discrete-time equivalent structure for an AMOUR system with integral oversam-

pling at the receiver, we consider the continuous-time AMOUR system with an FSE shown in Fig.5.3(a). Let

T be defined as the symbol spacing at the output of the transmitter [signal um(n) in Fig.5.3(a)]. Working

backwards we conclude that the rate of the blocked signal sm(n) is P times lower, i.e., 1/PT . Since sm(n)

is obtained by parsing the information sequence sm(n) into blocks of length K as shown in Fig.5.2(a), we

conclude that the corresponding data rate of sm(n) at the transmitter is K/PT .

Each of the transmitted discrete signals um(n) is first converted into analog signals and passed through the
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corresponding equivalent channel denoted by hc(t). After going through the channel, the signal is corrupted

by the additive noise and interference from other users. The received waveform xc(t) is sampled at q times

the rate at the output of the transmitter [see Fig.5.3(a)]. The sequence xm(n) with rate q/T enters the

fractionally spaced equalizer which operates at the correspondingly higher rate. Before entering the decision

device at the detector, the signal rate needs to be reduced back to K/PT , so that it corresponds to that of

sm(n).

Deriving the discrete-time equivalent for the system in Fig.5.3(a) closely follows the corresponding dis-

cussion in Chapter 2. In the absence of noise and MUI we have

xm(n) = xc(n
T

q
) =

∞∑
k=−∞

um(k)hc(n
T

q
− kT ). (5.13)

Defining the discrete time sequence h
(q)
m (n)

�
= hc(nT/q), which is nothing but the waveform hc(t) sampled q

times more densely than at integers, we have

xm(n) =
∞∑

k=−∞
um(k)h(q)

m (n − kq). (5.14)

This is shown in Fig.5.3(b), where the noise and MUI which were continuous functions of time in Fig.5.3(a)

now need to be modified (by appropriate sampling). Once again, note that Fig.5.3(b) only corresponds to

the equivalent structure; receiver oversampling obviously does not result in any bandwidth expansion, since

the physical structure is still given in Fig.5.3(a). Our goal in this section is to design the block in Fig.5.3(b)

labeled ‘equalization and rate reduction.’ In the following we introduce one possible solution that preserves

the MUI cancellation property as it was described in Section 5.2 yet provides additional flexibility when it

comes to the ISI elimination part. For simplicity in what follows we assume q = 2; however, it is easy to

show that a similar design procedure follows through for any integer q.

Oversampling by q = 2. First we redraw the structure from Fig.5.3(b) as shown in Fig.5.3(c). Here

Hm,0(z) and Hm,1(z) are the Type 1 polyphase components [61] of the oversampled filter H
(2)
m (z). In other

words

H(2)
m (z) = Hm,0(z2) + z−1Hm,1(z2). (5.15)

In Fig.5.3(c) we also moved the additive noise and the interference past the delay and upsamplers by splitting

it into appropriate polyphase components in a fashion similar to (5.15). Before we proceed with the design

of the fractionally spaced AMOUR receiver, we recall that the construction of the spreading codes {Cm,k(z)}
and the receive filters {Gm,j(z)} in Section 5.2 ensured the elimination of MUI regardless of the propagation

channels as long as their orders are bounded by L. Returning to Fig.5.3(c) in view of (5.15) we notice that

Hm,0(z) is nothing but the original integer-sampled channel Hm(z). Also, each of the subchannels Hm,i(z)

can have the order at most equal to the order of Hm(z), i.e., the maximum order of Hm,i(z) is L. Moreover,
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each of the q polyphase components of MUI drawn in Fig.5.3(c) is obtained by passing the interfering signals

uµ(n) through the corresponding channel polyphase components Hµ,i(z). From the discussion in Section

5.2 we know how to eliminate each of these MUI components separately. Therefore, our approach in the

equalizer design will be to keep these polyphase channels separate, perform the MUI cancellation in each of

them and combine the results to obtain the MUI-free signal received from user m. This is achieved by the

structure shown in Fig.5.4.

The received oversampled signal is first divided into the Type 2 polyphase components (a total of q

polyphase components for oversampling by q). This operation assures that in each of the equalizer branches

the symbol rate is equal to 1/T . At the same time, each branch contains only one polyphase component of

the desired signal and MUI from Fig.5.3(c). These polyphase components are next passed through a system

that resembles the conventional AMOUR receiver structure from Fig.5.2(a). Notice one difference: while the

matrices Gm and V−1
m are kept the same as before, the matrices for ISI mitigation Γm,i are different in each

branch and their outputs are combined, forming the information signal estimate ŝm(n). Careful observation

confirms that the output symbol rate is equal to K/PT , precisely as desired.

In order to further investigate the properties of the proposed solution, we show the complete FSAMOUR

system in terms of the equivalent matrix building blocks in Fig.5.5(a). The effect of the oversampling

followed by the receiver structure with q branches is equivalent to receiving q copies of each transmitted

signal, but after going through different multipath fading channels Hm,i(z). This temporal diversity in the

received signal is obviously beneficial for the equalization process as will be demonstrated in Section 5.3.1.

As mentioned previously, MUI elimination in AMOUR systems does not depend on the uplink channels as

long as their order is upper-bounded by L, and that is why the proposed FSAMOUR system eliminates MUI

in each branch of Fig.5.5(a). Notice that the length conditions on P and J for MUI elimination remain the

same as in Section 5.2.

Repeating the matrix manipulations similar to those demonstrated in Section 5.2, but this time in

each branch separately, we conclude that the equivalent FSAMOUR system is shown in Fig.5.5(b). Lower

triangular Toeplitz matrices H̄m,i here correspond to different polyphase components of the oversampled

channel. Noise vectors ei(n) are obtained by appropriately blocking and filtering the noise from Fig.5.5(a).

As in [20], [21] the equalizer Γm = [Γm,0 Γm,1] can be constructed as a RAKE, zero-forcing or MMSE
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Ĉm U
V−1

m

Figure 5.5: (a) A possible overall structure for the FSAMOUR system. (b) Simplified equivalent structure
for ISI suppression.

receiver corresponding to the transmitter H̄m = [H̄T
m,0 H̄T

m,1]
T :

Γ(rake)
m = H̄†

m,

Γ(zfe)
m =

(
H̄†

mH̄m

)−1
H̄†

m (pseudo-inverse),

Γ(mmse)
m = RssH̄†

m

(
Ree + H̄mRssH̄†

m

)−1
, (5.16)

where Rss and Ree represent the autocorrelation matrices of the signal sm(n) and noise e(n)
�
= [eT

0 (n) eT
1 (n)]T

processes respectively. See Fig.5.5(b).

The improvement in performance over the conventional AMOUR system comes as a result of having more

degrees of freedom in the construction of equalizers, namely, qJ −K more rows than columns in FSAMOUR

compared to J − K in AMOUR. Another way to appreciate this additional freedom in the ZFE design is

as follows. In AMOUR systems the construction of ZFEs amounts to finding Γm as in (5.12) such that

ΓmĤm = IK , in other words Γm is a left inverse of Ĥm. On the other hand, referring to Fig.5.5(b) we

conclude that the ZFEs in the FSAMOUR systems need to satisfy

Γm,0Ĥm,0 + Γm,1Ĥm,1 = IK

thus providing more possibilities for the design of Γm,i. In addition to all this, the performance of the

zero-forcing solutions can be further improved by noticing that left inverses of H̄m are not unique. This

observation is closely related to similar claims from Chapters 2 and 3. Even though here the matrix under

consideration is constant, the design procedure for the best ZFE in a given FSAMOUR system with the

oversampling factor q is very similar in nature to the procedure in Section 2.4.2, for instance. This is why

in the next subsection we focus on discussing the consequences and deriving the special forms of the result.
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5.3.1 Optimal FSAMOUR ZFE

Consider the equivalent FSAMOUR system given in Fig.5.6(a). It corresponds to the system shown in

Fig.5.5(b) with one difference, namely, the block-equalizer is allowed to have memory. In the following we

consider the zero-forcing equalization, and therefore Γm(z) is designed to be a left inverse of H̄m. Under the

conditions on P and J described in Section 5.2 this inverse exists. Moreover, the fact that H̄m is tall implies

that this inverse is not unique. Our goal is to find the left inverse Γm(z) as in Fig.5.6(a) of a given order

that will minimize the noise power at the output, i.e., minimize the power of ŝm(n) given that sm(n) = 0.

Using the singular value decomposition (SVD) of H̄m, we have [24]

H̄m = Um ·

 Σm

0

 · Vm, (5.17)

where Um and Vm are qJ × qJ and K × K unitary matrices, respectively, and Σm is a K × K diagonal

matrix of singular values. Since we assumed H̄m has rank K it follows that Σm is invertible. It can be seen

from (5.17) that the most general form of a left inverse of H̄m is given by

Γm(z) = V†
m

[
Σ−1

m Am(z)
]
U†

m, (5.18)

where Am(z) is an arbitrary K × (qJ − K) polynomial matrix. This matrix of free parameters makes it

possible for constant matrices to have polynomial inverses. Defining the matrices D0, D1 and Bm(z) as

 D0

D1

 �
= U†

m, and Bm(z)
�
= V†

m · Am(z), (5.19)

Fig.5.6(a) can be presented as in Fig.5.6(b). Since there is a one to one correspondence (5.19) between the

matrices Am(z) and Bm(z), the design objective becomes that of finding the Bm(z) of a fixed order Nb − 1,

given by its impulse response

Bm(z) =
Nb−1∑
n=0

Bm,nz−n, (5.20)

that minimizes the noise power E{ê†mêm}/K at the output of Fig.5.6(b). Similar as before, the optimal

Bm(z) in this context is nothing but a linear estimator of a vector random process −u(n) given v(n). The

solution is given by

[Bm,0 Bm,1 · · · Bm,Nb−1]
�
= B = −E{u(n)V†(n)} · R−1

VV , (5.21)

where V(n)
�
= [vT (n) vT (n − 1) · · · vT (n − NB + 1)]T and RVV is its autocorrelation matrix. Next we

rewrite the solution (5.21) in terms of the input noise statistics, namely, its qJ×qJ cross-correlation matrices
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Figure 5.6: (a) Equivalent FSAMOUR system. (b) ZFE structure with noise input.

Ree(k)
�
= E{em(n)e†m(n − k)}. First note that

RVV =


D1Ree(0)D†

1 D1Ree(1)D†
1 · · · D1Ree(Nb − 1)D†

1

D1Ree(1)D†
1 D1Ree(0)D†

1 · · · D1Ree(Nb − 2)D†
1

...
...

. . .
...

D1Ree(Nb − 1)D†
1 D1Ree(Nb − 2)D†

1 · · · D1Ree(0)D†
1

 . (5.22)

Similarly, we can rewrite

E{u(n)V†(n)} = V†
m · Σ−1

m · D0 ·
[
Ree(0)D†

1 Ree(1)D†
1 · · · Ree(Nb − 1)D†

1

]
. (5.23)

For sufficiently large input block size qJ it is often safe to assume that the noise is uncorrelated across

different blocks; in other words Ree(k) = 0 for k �= 0. In this important special case the optimal Bm(z) is a

constant, namely

Bm(z) = Bm,0 = −V†
mΣ−1

m D0Ree(0)D†
1

(
D1Ree(0)D†

1

)−1

. (5.24)

From (5.24) and Fig.5.6 we get the optimal form of a ZFE

Γ(opt)
m = V†

mΣ−1
m

[
IK − D0Ree(0)D†

1

(
D1Ree(0)D†

1

)−1
]
U†

m. (5.25)

Another important special case occurs when the noise samples at the input of the receiver are i.i.d., i.e.,

when Ree(k) = δk · σ2
e · I. Note that in this case D0Ree(0)D†

1 = 0, so that

Γ(white noise)
m = V†

m

[
Σ−1

m 0
]
U†

m. (5.26)

At this point we would like to make a distinction between the optimal ZFEs in AMOUR and FSAMOUR
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systems. From the derivations presented in this subsection it is evident that the optimal ZFEs can be

constructed in a traditional AMOUR system of [20], [21] and it is to be expected that this solution would

perform better than the ordinary ZFE based on the matrix pseudo-inverse similar to (5.16). However, in the

following we show that if the channel noise in Fig.5.3(a) is i.i.d. then any optimization of ZFEs in AMOUR

systems will not improve their performance. This is not true for fractionally spaced AMOUR systems, since

the noise samples in vectors e0(n) and e1(n) in Fig.5.6(b) need not have the same variances although they

remain independent. This is due to the fact that e0(n) and e1(n) are obtained by passing the channel

noise through the filters corresponding to different polyphase components of the channel. Consequently, in

the FSAMOUR case, the noise autocorrelation matrix Ree(0) appearing in (5.25) in not given by a scaled

identity matrix and (5.26) does not correspond to the optimal solution. Now let us compare the optimal

AMOUR ZFE for white noise (5.26) to the corresponding zero-forcing solution given in (5.16). The result is

summarized as follows.

Proposition 1. Pseudo-inverse is the optimal AMOUR ZF SSE if the noise is white.

Proof. Starting from the traditional ZFE Γ(zfe)
m we have

Γ(zfe)
m =

(
H̄†

mH̄m

)−1
H̄†

m =

V†
m

[
Σ†

m 0
]
U†

mUm

 Σm

0

Vm

−1

V†
m

[
Σ†

m 0
]
U†

m

= V†
m

[
Σ−1

m 0
]
U†

m = Γ(white noise)
m . (5.27)

Therefore, a simple (Moore-Penrose) pseudo-inverse becomes the optimal ZFE in AMOUR systems with the

white channel noise; in other words there is nothing to be gained by using the optimal solution. In contrast

to this, using the optimal ZFEs in FSAMOUR systems leads to significant improvements in performance over

the simple pseudo-inverses as is demonstrated next. Also, notice that Γ(mmse)
m becomes practically equivalent

to Γ(zfe)
m in the high SNR environments. When SNR is high, Γ(mmse)

m in (5.16) behaves as H̄†
m

(
H̄mH̄†

m

)−1,

where the ‘inverse’ actually stands for a pseudo-inverse. Therefore, we have Γ(mmse)
m ≈ Γ(zfe)

m .

5.3.2 Performance evaluation

In this subsection we compare the performance of the conventional (SSE) AMOUR described in Section

5.2 and the FSAMOUR system from Section 5.3 with oversampling ratio q = 2. System parameters were

given by K = 12, M = 4, while J and P are chosen to be the minimum for the guaranteed existence of

ZFEs as explained in Section 5.2. The simulation results are averaged over thirty independently chosen real

random channels of order L = 4. The half-integer sampled channel impulse responses h
(2)
m (n) were also

chosen randomly, under the constraint that they coincide with AMOUR channels at integers. In other words

h
(2)
m (2n) = hm(n). The channel noise was taken to be AWGN. The signal-to-noise ratio (SNR) was measured

after sampling at the entrance of the receiver [point xm(n) in Fig.5.3(a)]. Notice that SNR does not depend

on the oversampling ratio q as long as the signal and the noise are stationary. The performance curves are
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Figure 5.7: Probability of error as a function of SNR in AMOUR and FSAMOUR systems.

shown in Fig.5.7. The acronyms ‘SSE’ and ‘FSE’ represent AMOUR and FSAMOUR systems, while the

suffices ‘ZF,’ ‘MMSE’ and ‘OPT’ correspond to zero-forcing, minimum mean-squared error and optimal ZFE

solutions respectively. There are several important observations that can be made from these results:

• The overall performance of AMOUR systems is significantly improved by signal oversampling at the

receiver.

• The performance of ZFEs in FSAMOUR systems can be further improved by about 0.7 dB if we use

the optimal equalizers, exploiting the redundancy in ZFE design as described in Section 5.3.1. This is

due to the fact that the optimal solution is given by (5.25) rather than (5.26). As explained previously,

the same does not hold for AMOUR systems.

• The performance of the optimal ZFEs in FSAMOUR systems is almost identical to the performance

of the corresponding MMSE equalizer. Thus there is practically no loss in performance as a result of

using the optimal ZFE given by (5.25) instead of the MMSE equalizer (5.16). The advantages of using

a ZFE become evident by comparing the expressions (5.25) and (5.16). As was elaborated in Chapter

3, as opposed to MMSE equalizers, ZFE solutions require no knowledge of the signal statistics Rss and

if the noise is white and stationary, the solution Γ(opt)
m is independent of the noise variance.

• Since a simple pseudo-inverse happens to be the optimal ZFE in AMOUR systems with no oversam-

pling, its performance is also almost identical to that of the MMSE equalizer.

In the next section we introduce the modification of the idea of the integral oversampling of the received

signal to a more general case when the amount of oversampling is a rational number.
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Figure 5.8: (a) Continuous-time model for an AMOUR system with fractional oversampling ratio q/r. (b)
Discrete-time equivalent drawing.

5.4 AMOUR with fractional oversampling

While FSAMOUR systems with integral oversampling can lead to significant improvements in performance

compared to traditional AMOUR systems, the notion of oversampling the received CDMA signal might be

less popular due to very high data rates of the transmitted CDMA signals. According to the scenario of

integral oversampling the data rates at the receiver are at least twice as high as the rates at the transmitter,

which makes them prohibitively high for most sophisticated equalization techniques. In this section we

explore the consequences of sampling the continuous-time received signal xc(t) in Fig.5.3(a) at a rate that

is higher than the symbol rate 1/T by a fractional amount. To be more precise, suppose the amount of

oversampling is q/r, where q and r are coprime integers satisfying q > r. If q = r +1 for high values of r the

data rate at the receiver becomes almost identical to the one at the transmitter which is rather advantageous

from the implementational point of view. As explained in Chapter 3, the case when q and r share a common

divisor can easily be reduced to the case of coprime factors. This said, it appears that the discussion from the

previous section is redundant since it simply corresponds to fractional oversampling with r = 1. However, it

is instructive to consider the integer case separately since it is easier to analyze, and provides some important

insights.

Consider Fig.5.3(a) and suppose xc(t) has been sampled at rate q/r. This situation is shown in Fig.5.8(a).

Performing the analysis very similar to the one in Section 5.3, we can easily show that in this case we have

xm(n) =
∞∑

k=−∞
um(k)h(q)

m (nr − kq). (5.28)

This is shown in Fig.5.8(b), with appropriate modification of the noise from Fig.5.8(a) and with h
(q)
m (n)

denoting hc(nT/q), just as it did in the case of integer oversampling.

Now we are ready for the problem of multiuser communications with the rational oversampling ratio of

q/r. The analysis of the fractionally oversampled FSAMOUR systems will turn out to be somewhat similar
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to the discussion in Section 5.2 and in order to make the presentation more accessible we have grouped

the most important steps into separate subsections. One noticeable difference with respect to the material

from Section 5.2 is that in this section we will mostly deal with larger, block matrices. This comes as a

consequence of a result on fractionally sampled channel responses, presented in Chapter 3.

5.4.1 Writing the fractionally sampled channel as a block convolution

Combining the elements from Figs. 5.8(a) and 5.8(b), we conclude that the discrete-time equivalent scheme

of the FSAMOUR system with the oversampling ratio q/r is shown in Fig.5.9(a). One of the results from

Chapter 3 states that the operation of filtering by H
(q)
m (z) surrounded by an expander and a decimator as it

appears in Fig.5.9(a) is equivalent to blocking the signal, passing it through a q × r matrix transfer function

Em(z) and then unblocking it. This equivalent structure is employed in Fig.5.9(b). The unblocking element

of darker shade represents the ‘incomplete’ unblocking, i.e., it converts a sequence of blocks of length P into

a higher rate sequence of blocks of length r. In other words, it can be thought of as the unblocking of a

length-P vector sequence into a scalar sequence, followed by the blocking of the obtained scalar signal into

a length-r vector signal. Here for simplicity we assumed r divides P , however this condition is unnecessary

for the above definition to hold and we return to this point later.

The relation between the filter H
(q)
m (z) and the corresponding matrix Em(z) is rather complicated and is
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introduced in the following. First, let us write H
(q)
m (z) in terms of its Type 2 q-fold polyphase components

H(q)
m (z) =

q−1∑
k=0

Hm,k(zq)zk. (5.29)

Next, recall from the Euclid’s algorithm for integers that since q and r are mutually coprime, there exist

Q,R ∈ Z such that

qQ + rR = 1. (5.30)

Let us define the filters Pm,k(z) and their Type 1 r-fold polyphase components Ek,l(z) as

Pm,k(z)
�
= zkQHm,k(z) =

r−1∑
l=0

Ek,l(zr)z−l, for 0 ≤ k ≤ q − 1. (5.31)

We have shown in Chapter 3 that the equivalent matrix transfer function Em(z) is given by

Em(z) =


E0,0(z) E0,1(z) · · · E0,r−1(z)

E1,0(z) E1,1(z) · · · E1,r−1(z)
...

...
...

Eq−1,0(z) Eq−1,1(z) · · · Eq−1,r−1(z)

 . (5.32)

Now consider the block surrounded by a dashed line in Fig.5.9(b). This can trivially be redrawn as in

Fig.5.9(c). The denoted P̄ × P transfer function Êm(z) is a block pseudo-circulant

Êm(z) =



E0 0 · · · 0 z−1EN z−1EN−1 · · · z−1E1

E1 E0 · · · 0 0 z−1EN · · · z−1E2

...
...

. . .
...

...
...

. . .
...

EN EN−1 · · · E0 0 0 · · · 0

0 EN · · · E1 E0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · EN EN−1 EN−2 · · · E0


. (5.33)

The q × r blocks En, for 0 ≤ n ≤ N in (5.33) represent the impulse response of Em(z), while N is the order

of the matrix polynomial and it depends on the choice of r and on the maximum channel order L. This issue

will be revisited shortly. It is implicitly assumed in (5.33) that q divides P̄ . For arbitrary values of r and q

we can write

P̄ = q · nq + eq and P = r · nr + er, (5.34)

where nq, eq, nr, er ∈ N and eq < q, er < r. Equation (5.33) obviously corresponds to eq = er = 0, i.e., when

r divides P and q divides P̄ . For general values of r and q, the block pseudo-circulant Êm(z) from (5.33) gets



96

transformed by inserting er additional columns of zeros in each block-row and by adding eq additional rows

at the bottom. In the following we will assume eq = er = 0 since this leads to essentially no loss of generality.

Furthermore, we will assume that nq = nr, or equivalently that P̄ = qnr, which is a valid assumption since

P̄ is a free design parameter.

5.4.2 Eliminating IBI

Next we would like to eliminate the memory dependence in (5.33) which is responsible for inter-block inter-

ference (IBI). It is apparent from Fig.5.9 that this can be achieved by choosing Ĉm such that its last rN

rows are zero. This effectively means that the transmitter is inserting a redundancy of rN symbols after

each block of length P − rN . Let us denote by Ēm the P̄ × (P −Nr) constant matrix obtained as a result of

premultiplying Ĉm by Êm(z). Next, we note that the blocked version of the equality (5.5) holds true as well.

In other words, Ēm can be block-diagonalized using block-Vandermonde matrices. Namely, let us choose

Gm =


Iq ρ−1

m,0Iq · · · ρ
−nq+1
m,0 Iq

Iq ρ−1
m,1Iq · · · ρ

−nq+1
m,1 Iq

...
...

...

Iq ρ−1
m,J−1Iq · · · ρ

−nq+1
m,J−1Iq

 , for ρm,j ∈ C, (5.35)

denote by Θm the following Jr × (P − Nr) matrix, recalling that nr = nq

Θm =


Ir ρ−1

m,0Ir · · · ρ
−(nr−N−1)
m,0 Ir

Ir ρ−1
m,1Ir · · · ρ

−(nr−N−1)
m,1 Ir

...
...

...

Ir ρ−1
m,J−1Ir · · · ρ

−(nr−N−1)
m,J−1 Ir

 , (5.36)

and define the qJ × rJ block-diagonal matrix

Em(ρm)
�
= diag[Em(ρm,0),Em(ρm,1), · · · ,Em(ρm,J−1)]. (5.37)

Then for any J ∈ N and any set of distinct complex numbers {ρm,j}J−1
j=0 the following holds

GmĒm = Em(ρm)Θm. (5.38)

Notice that we used the symbols Gm and Θm to represent different matrices from the ones in Section 5.2.

This is done for notational simplicity since no confusion is anticipated.

Once we have established the connection with the traditional AMOUR systems, we follow the steps

similar to those in Section 5.2 in order to get conditions for MUI cancellation and channel equalization

regardless of the channels hm(n). Given the analogy between the equations (5.38) and (5.5) we conjecture
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that the block at the receiver in Fig.5.9 responsible for MUI elimination should be given by Gm as in (5.35).

In the following we first clarify this point and then proceed to state the result on the existence of channel

ZFEs.

5.4.3 MUI cancellation

The interference at the mth receiver coming from the user µ �= m is proportional to the output of the

concatenation of matrices GmĒµCµ, where Cµ is the nonzero part of the spreading code matrix Ĉµ and is

exactly the same as the one used in (5.6). Using (5.38) we see that the MUI term is proportional to

GmĒµCµ = Eµ(ρm)ΘmCµ = Eµ(ρm)Cµ(ρm), with (5.39)

Cµ(ρm)
�
=


Cµ(ρm,0)

Cµ(ρm,1)
...

Cµ(ρm,J−1)

 , and Cµ(γ)
�
=


C

(0)
µ,0(γ) C

(0)
µ,1(γ) · · · C

(0)
µ,K−1(γ)

C
(1)
µ,0(γ) C

(1)
µ,1(γ) · · · C

(1)
µ,K−1(γ)

...
...

...

C
(r−1)
µ,0 (γ) C

(r−1)
µ,1 (γ) · · · C

(r−1)
µ,K−1(γ)

 . (5.40)

The entries C
(l)
µ,k(γ), for 0 ≤ k ≤ K−1, 0 ≤ l ≤ r−1 in (5.40) represent the lth Type 1 polyphase components

of the kth spreading code used by user µ, evaluated at z = γ. In other words, the kth spreading code in

Fig.5.1(a) can be written as

Cm,k(z) =
r−1∑
l=0

C
(l)
m,k(zr)z−l.

It follows from (5.39)-(5.40) that MUI elimination can be achieved by choosing {ρm,j}M−1,J−1
m,j=0 such that

C
(l)
µ,k(ρm,j) = 0, ∀m �= µ, ∀k ∈ [0,K − 1], ∀j ∈ [0, J − 1], ∀l ∈ [0, r − 1]. (5.41)

Equations (5.41) define (M − 1)J zeros for each of the r polyphase components of Cm,k(z). In addition to

this, we will choose the nonzero values similarly as in Section 5.2 such that the channel equalization becomes

easier. To this end, let us choose

C
(l)
m,k(ρm,j) = Am · δ(l − β) · ρ−α

m,j , (5.42)

for integers α and β with β < r chosen such that k = αr + β. This brings the total number of constraints in

each of the spreading code polynomials to MJr. Recalling that the last Nr samples of spreading codes are

fixed to be zero, the minimum spreading code length is given by P = (MJ + N)r.
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5.4.4 Channel equalization

The last step in the receiver design is to eliminate the ISI present in the MUI-free signal. For an arbitrary

choice of integers K and r with r < K, we can write

K = r · αr + βr, (5.43)

with αr, βr ∈ N and βr < r. Let us first assume that K was chosen such that βr = 0 in (5.43). Substituting

(5.42) in (5.40) for µ = m, we have

Cm(ρm,j) = Am

[
Ir ρ−1

m,jIr · · · ρ
−(αr−1)
m,j Ir

]
, (5.44)

which further leads to

GmĒµCµ = Am · Eµ(ρm) ·


Ir ρ−1

m,0Ir · · · ρ
−(αr−1)
m,0 Ir

Ir ρ−1
m,1Ir · · · ρ

−(αr−1)
m,1 Ir

...
...

...

Ir ρ−1
m,J−1Ir · · · ρ

−(αr−1)
m,J−1 Ir

 . (5.45)

Recalling the relationship (5.38) we finally have that

GmĒmCm = Am ·


Iq ρ−1

m,0Iq · · · ρ
−(αr+N−1)
m,0 Iq

Iq ρ−1
m,1Iq · · · ρ

−(αr+N−1)
m,1 Iq

...
...

...

Iq ρ−1
m,J−1Iq · · · ρ

−(αr+N−1)
m,J−1 Iq


︸ ︷︷ ︸

Vm

·Em, (5.46)

where Em is the (αr +N)q×K north-west submatrix of Ēm. If βr > 0 in (5.43) that simply leads to adding

the first βr columns of the next logical block to the right end in (5.44), consequently augmenting the matrices

Vm and Em in (5.46).

The channel equalization which follows the MUI cancellation amounts to finding a left inverse of the

matrix product Vm · Em appearing on the right-hand side of (5.46). The first matrix in this product is

block-Vandermonde and it is invertible if J ≥ αr + N and if {ρm,j}J−1
j=0 are distinct (the latter was assured

previously). Therefore we get the value for one of the parameters

J = αr + N. (5.47)

Notice that since q > r, from (5.47) and (5.43) it automatically follows that Vm · Em is a tall matrix, thus

it could have a left inverse. However, these conditions are not sufficient. Another condition that needs to be
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satisfied is the following

rank{GmĒmCm} = K ⇒ rank{Em(ρm)} = K. (5.48)

In other words, in order for the channel hm(n) to be equalizable using ZFEs after oversampling the received

signal by q/r and MUI cancellation, we can allow for the rank of Em(ρm) in (5.37) to drop by the maximum

amount of r, regardless of the choice of signature points {ρm,j}. Obviously, this cannot be guaranteed

regardless of the channel and other system parameters simply because the matrix polynomial Em(z) could

happen to be rank-deficient for all values of z. At best we can only hope to establish the conditions under

which the rank equality (5.48) stays satisfied regardless of the choice of signature points. This is different

from the conventional AMOUR and integral FSAMOUR methods described in Sections 5.2 and 5.3, where

we had two conditions on system parameters for guaranteed channel equalizability depending on whether

the channel was known (J ≥ K) or unknown (J ≥ K +L). Here we cannot guarantee equalizability even for

the known CSI, if the channel leads to rank-deficient Em(z). Luckily, this occurs with zero probability. If

this is not the case, the channel can be equalized under the same restrictions on the parameters regardless of

the specific channel in question. The following theorem establishes the result, under one extra assumption

on the decimation ratio r.

Theorem 5.1. Consider the FSAMOUR communication system given by its discrete-time equivalent in

Fig.5.9(a). Let the maximum order of all the channels {hm(n)}M−1
m=0 be L. Let us choose the integers r ≥ L+1

and q > r such that the irreducible ratio q/r closely approximates the desired amount of oversampling at

the receiver. Next, choose an arbitrary αr ≥ r and take the following values of the parameters:

K = r · αr, J = αr + 1, P = (MJ + 1)r, P̄ = (MJ + 1)q. (5.49)

1. Multiuser interference (MUI) can be eliminated by blocking the received signal into the blocks of length

P̄ and passing it through the matrix Gm as introduced in (5.35) with nq = MJ + 1, as long as the

spreading codes {cm,k(n)}K−1
k=0 are chosen according to (5.41) and (5.42).

2. Under the above conditions, the channel can either be equalized for an arbitrary choice of the signature

points {ρm,j} or it cannot be equalized regardless of this choice. More precisely, let Em(z) be the

polyphase matrix corresponding to hm(n) as derived in (5.29)-(5.32). Under the above conditions

there are two possible scenarios:

• max
z∈C

rank{Em(z)} = r. In this case the system is ZFE-equalizable regardless of {ρm,j}.

• max
z∈C

rank{Em(z)} < r. In this case there is no choice of {ρm,j} that can make the system ZFE-

equalizable.

Comment. The condition r ≥ L+1 introduced in the statement of the theorem might seem restrictive at

first. However, in most cases it is of special interest to minimize the amount of oversampling at the receiver

and try to optimize the performance under those conditions. This amounts to keeping q roughly equal to,

yet slightly larger than r and choosing r large enough so that the ratio q/r approaches unity. In such cases
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Figure 5.10: Proposed structure of the FSAMOUR receiver in systems with fractional oversampling

r happens to be greater than L + 1 by design. The condition αr ≥ r is not necessary for the existence of

ZFEs. It only ensures the absence of ZFEs if the rank condition on Em(z) is not satisfied.

Proof. The only result that needs proof in the first part of the theorem is that the order of Em(z) is

N = 1 whenever r ≥ L + 1. If N = 1, all the parameters in (5.49) are consistent with the values used so far

in Section 5.4. Then the first claim follows directly from the discussion preceding the theorem. In order to

prove that N = 1 we use the following lemma whose proof can be found in the appendix.

Lemma 5.1. Under the conditions of Theorem 5.1, Em(z) can be written as

Em(z) = Um · Dm(z)·

r Em,0(z)

Em,1(z)

r

q−r

, (5.50)

where Em,0(z) and Em,1(z) are polynomial matrices of order N = 1, Um is a unitary matrix and Dm(z) is

a diagonal matrix with advance operators zi on the diagonals.

Having established Lemma 5.1, the first part of the theorem follows readily since Um · Dm(z) can be

equalized effortlessly and thus the order of Em(z) is indeed N = 1 for all practical purposes.

For the second part of Theorem 5.1, we use Lemma 5.2 which is also proved in the appendix.

Lemma 5.2. The difference between the maximum and the minimum achievable rank of Em(ρm) given

by (5.37) is upper bounded by r − 1.

From the proof of Lemma 5.2 it follows that we can distinguish between two cases:

• If the normal rank of Em(z) is r, then the minimum rank of Em(ρm) over all choices of signature points

is lower bounded by rJ − r + 1 = K + 1 and therefore ZFE is achieved by finding a left inverse of the

product in (5.46).

• If the normal rank of Em(z) is less than r, then the maximum rank of Em(ρm) is given by

max
ρm,j

rank{Em(ρm)} ≤ (r − 1)J = (r − 1)(αr + 1) = K + (r − αr − 1) < K.

Therefore, regardless of the signature points, ZFE does not exist.

This concludes the proof of Theorem 5.1. ���
To summarize, in this section we established the algorithm for multiuser communications based on

AMOUR systems with fractional amount of oversampling at the receiver. The proposed form of the re-

ceiver (block labeled ‘equalization and rate reduction’ in Fig.5.9) is shown in Fig.5.10. As was the case with
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the simple AMOUR systems, the receiver is divided into three parts, namely, Gm, V
−1
m and Γm. The first

block Gm is supposed to eliminate MUI at the receiver. Second block V
−1
m represents the inverse of Vm

defined in (5.46) and essentially neutralizes the effect of Ĉm and Gm on the MUI-free signal. Finally, Γm is

the block that aims at equalizing the channel which is now embodied in the tall matrix Vm [see (5.46)].

Note that even though the notations may be similar as in Section 5.2, the building blocks in Fig.5.10

are quite different from the corresponding ones in AMOUR systems. The construction of Gm is described

in (5.35) with the signature points chosen in accordance with the spreading code constraints (5.41)-(5.42).

The channel equalizer Γm can be chosen according to one of the several design criteria described in (5.16).

Instead of H̄m in (5.16) we should use the corresponding matrix Em. In addition to these three conventional

solutions, we can choose the optimal zero-forcing equalizer as the one described in Section 5.3.1. The details

of the construction of this solution are omitted since they are analogous to the derivations in Section 5.3.1.

The conditions for the existence of any ZFE Γ(zfe)
m are described in the previous theorem. Under the

same conditions there will exist the optimal ZFE Γ(opt)
m as well. The event that the normal rank of Em(z)

is less than r occurs with zero probability and thus for all practical purposes we can assume the channel is

equalizable regardless of the choice of signature points. Again, for the reasons of computational benefits,

signature points can be chosen to be uniformly distributed on the unit circle [see (5.11)]. In the following we

demonstrate the advantages of the FSAMOUR systems with fractional oversampling over the conventional

AMOUR systems.

5.4.5 Performance evaluation

In this section we present the simulation results comparing the performance of the conventional AMOUR

system to the FSAMOUR system with a fractional oversampling ratio. The simulation results are averaged

over thirty independently chosen real random channels of order L = 4. The q-times oversampled channel

impulse responses h
(q)
m (n) were also chosen randomly, under the constraint that they coincide with AMOUR

channels at integers. In other words h
(q)
m (qn) = hm(n). The channel noise was taken to be colored in order

to demonstrate the difference of using optimal ZFEs to conventional ZFEs. Noise was modeled as an auto-

regressive process of first order [54], i.e., AR(1) process with the correlation given by ρ(k) = σ2
e(0.8)|k|. The

SNR was measured at the receiver as explained in Section 5.3.2. The amount of oversampling at the receiver

was chosen to be q/r = 6/5, and the parameter αr = 6. The other parameters were chosen as in (5.49).

Notice that the advantage of this system over the one described in Section 5.3 is in the lower data rate at

the receiver. Namely, for each 5 symbols of the input data stream sm(n) the receiver in Fig.5.3 needs to deal

with 10 symbols, while the receiver in Fig.5.9 deals with only 6. This represents not only the reduction in

complexity of the receiver, but also minimizes the additional on-chip RF noise resulting from fast-operating

integrated circuits.

The performance curves are shown in Fig.5.11. The acronyms ‘SSE’ and ‘FSE’ represent the AMOUR

system with no oversampling and the FSAMOUR system with the oversampling ratio 6/5, while the suffices
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Figure 5.11: Probability of error as a function of SNR in AMOUR and FSAMOUR systems with oversampling
ratio 6/5.

‘ZF,’ ‘MMSE’ and ‘OPT’ correspond to the zero-forcing, minimum mean-squared error and optimal ZFE

solutions, respectively. The optimal ZFEs are based on optimal matrix inverses as explained in Section 5.3.1.

Comparing these performances we conclude:

• When the noise is colored, the optimal ZFE in both AMOUR and FSAMOUR systems perform sig-

nificantly better than the conventional ZFE. This comes in contrast to some of the results in Section

5.3.2 where we presented the results with the white noise at the receiver.

• The optimal ZFEs in both systems on Fig.5.11 perform almost identically to the MMSE solutions. As

explained in Section 5.3.2 the complexity of Γ(opt)
m is reduced comparing to that of Γ(mmse)

m and so is

the required knowledge of the signal and the noise statistics.

• The FSAMOUR system with the oversampling ratio 6/5 performs better than the corresponding

AMOUR system with no oversampling. The price to be paid is in the data rate and the complex-

ity at the receiver. As expected, the FSAMOUR system with the oversampling ratio 6/5 is still

outperformed by the FSAMOUR system with the oversampling ratio q = 2 (this can be assessed by

comparing Fig.5.11 and Fig.5.7).

5.5 Concluding remarks

In this final chapter we have considered some of the problems facing the designers of modern wireless

communication systems. The recent development of a mutually-orthogonal usercode-receiver (AMOUR) for

asynchronous or quasi-synchronous CDMA systems [20], [21] represents a novel approach in dealing with

one of these problems, namely, multiuser interference. The main advantage over some of the other methods
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lies in the fact that both the suppression of multiuser interference (MUI) and inter-symbol interference

(ISI) within a single user can be achieved regardless of the multipath channels. For this reason it is very

easy to extend the AMOUR method to the case where these channels are unknown [21]. In this chapter

we have introduced a modification of the traditional AMOUR system in that the received continuous-time

signal is oversampled by an integral or a rational amount. This idea leads to the concept of Fractionally

Spaced AMOUR (FSAMOUR) receivers that have been derived for both integral and rational amounts of

oversampling. Their performance has been compared to the corresponding performance of the conventional

method and significant improvements are observed. An important point often overlooked in the design of

zero-forcing channel equalizers is that often they are not unique. This common theme propagated through

Chapters 2 and 3 as well. In the FSAMOUR setting we have exploited this flexibility in the receiver design

and further improved the performance of multiuser communication systems.

5.6 Appendix

Proof of Lemma 5.1. Without loss of generality we only consider r = L + 1, since the proof for r > L + 1

follows essentially the same lines. The polyphase components Hm,k(z) of the q-fold oversampled channel

H(q)(z) defined in (5.29) can be thought of as FIR filters of order L (or less). As a special case, note that

Hm,0(z) = Hm(z). Next, consider the auxiliary filters Pm,k(z) as in (5.31). From (5.30) it follows not only

that q and r are coprime, but at the same time that Q and r are coprime as well. For this reason the numbers

lk
�
= [kQ mod r]

are distinct for each 0 ≤ k ≤ r − 1. As a consequence, the first r filters

Pm,k(z) = zkQHm,k(z), 0 ≤ k ≤ r − 1

of length L + 1 are delayed by the amounts that are all different relative to the start of blocks of length r.

This combined with the fact that r = L + 1 leads us to conclude that the entries of Em(z), namely, Ek,l(z)

defined in (5.32) are all given by

Ek,l(z) = ẽk,l · znk,l . (5.51)

Here ẽk,l are constants, nk,l ≥ 0, nk,l+1 ≥ nk,l and nk,r−1 ≤ nk,0 + 1. Moreover, the index within the kth

row of Em(z) where the exponent nk,l increases by one is different for each of the first r rows and all the

polyphase components Ek,l(z) for k = 0 are constant. It follows that indeed Em(z) can be written as (5.50),

with Um denoting the unitary matrix corresponding to row permutations and Dm(z) given by

Dm(z) = diag [zm0 zm1 · · · zmq−1 ] , mk ∈ N
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whose purpose is to pull out any common delay elements from each row of Em(z). ���
Proof of Lemma 5.2. Consider (5.50). Depending on Um, Em,0(z) can be chosen to be of the form

Em,0(z) =



e0,0 e0,1 e0,2 · · · e0,r−1

e1,0 z · e1,1 z · e1,2 · · · z · e1,r−1

e2,0 e2,1 z · e2,2 · · · z · e2,r−1

...
...

...
. . .

...

er−1,0 er−1,1 er−1,2 · · · z · er−1,r−1


. (5.52)

From (5.52) it follows that

ord{det [Em,0(z)]} ≤ r − 1. (5.53)

Therefore, (5.52) can be rewritten using the Smith-McMillan form for the FIR case [61]

Em,0(z) = Û0(z)Λ0(z)V̂0(z), (5.54)

where Û0(z) and V̂0(z) are unimodular and Λ0(z) is diagonal with polynomials λi(z) on the diagonal for

0 ≤ i ≤ r − 1. From (5.53) it follows that

r−1∑
i=0

ord{λi(z)} ≤ r − 1. (5.55)

Note that some of the diagonal polynomials λi(z) can be identically equal to zero, and that will result in

rank{Em,0(γ)} < r regardless of γ. However, if this is not the case it follows from (5.55) that by varying z

the rank of Em,0(z) can drop by at most r − 1. This concludes the proof. ���
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Chapter 6 Conclusion

In this thesis, we have made an extensive study of multirate systems, especially those that are used in

modern communications. Our focus in the first part of the thesis was on communication systems with finer

signal sampling at the receiver. These considerations have led naturally to the introduction of an important

property of linear systems employed in multirate systems, namely, the biorthogonal partner property. We

have developed a comprehensive theory of the vector (or MIMO) biorthogonal partners as well as the frac-

tional biorthogonal partners. Many important results on the existence, uniqueness and parameterization of

biorthogonal partners have been derived, and several diverse applications of biorthogonal partners have been

closely examined. The special attention was placed on the applications in digital communications.

In the second part of the thesis we have considered another group of multirate structures appearing in

communication systems, better known as (filter bank) precoders. The goal of these systems is to introduce the

redundancy in the transmitted message, but in a controlled fashion so as to further facilitate the design of the

receiver. We have determined the optimal precoders in general systems with cyclic prefix-based redundancy.

We have also considered the multiaccess communication systems where the redundancy is meant to help

separate the users and neutralize the effects of their multipath propagations in the unknown or time-varying

channel environments. Our contribution was to help further understand such systems, design the optimal

equalizers and increase the design flexibility at the cost of an increased receiver complexity.

After this ample treatment, several theoretical and practical issues remain unanswered. It remains to

be seen if the paradigm of MIMO biorthogonal partners can be successfully extended to the case when the

expansion and decimation ratios in different channels are not equal. This theoretical problem might have a

practical significance in the communication systems with different users or array sensors communicating at

different rates and with different priorities. Also, the single-dimensional definition of biorthogonal partners

can be nontrivially extended to multiple dimensions. These considerations could, for example, lead to

improvements in some image processing algorithms that are inherently nonseparable. We can also ask the

question of the theoretical bounds on the improvement in performance of the flexible zero-forcing channel

equalizers if their order can be infinite. Yet another extension of the problems treated here would result in

new multirate concepts, such as ‘joint MIMO biorthogonal partners.’ Namely, suppose that instead of two

we now have a concatenation of three possibly rectangular matrix transfer functions. The question is: given

the middle transfer function, how to characterize the class of possible solutions for the surrounding MIMO

systems that guarantees the Nyquist properties of their combination. The solution to this problem would

lead to joint transmitter and receiver optimization in MIMO communication systems.

On the practical side, it would be interesting to consider more realistic multiuser systems than the ones

treated here. Some of the practical issues that should be taken into account are: (a) the transmitted power
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limitations across different users; (b) the sensitivity of the equalization algorithms to the channel order

estimates and the channel state information; (c) alternative sampling strategies at the receiver in a more

realistic case of nonuniform transmission rates for different users, and user synchronization issues; (d) design

of the multiaccess receivers with computational limitations: constraints on the number of operations per

unit time and/or receivers with limited precision operations. Indeed, even though present algorithms for

multiuser and multirate transmission systems go a long way in facilitating reliable communications, in many

aspects the research in this area is still at the beginning.
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