
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/304823432

Introduction to XML and its applications

Chapter · January 2013

DOI: 10.1142/9789812836304_0006

CITATIONS

0
READS

11,645

1 author:

Some of the authors of this publication are also working on these related projects:

OPEN DATA for Public Administration View project

AIM@SHAPE - Advanced and Innovative Models And Tools for the development of Semantic-based systems for Handling, Acquiring, and Processing knowledge Embedded in

multidimensional digital objects View project

Laura Papaleo

Rensselaer Polytechnic Institute

48 PUBLICATIONS 562 CITATIONS

SEE PROFILE

All content following this page was uploaded by Laura Papaleo on 14 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/304823432_Introduction_to_XML_and_its_applications?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/304823432_Introduction_to_XML_and_its_applications?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/OPEN-DATA-for-Public-Administration?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AIMSHAPE-Advanced-and-Innovative-Models-And-Tools-for-the-development-of-Semantic-based-systems-for-Handling-Acquiring-and-Processing-knowledge-Embedded-in-multidimensional-digital-objects?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laura-Papaleo?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laura-Papaleo?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rensselaer-Polytechnic-Institute?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laura-Papaleo?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laura-Papaleo?enrichId=rgreq-d92502b3cbf2b2e0e2c09be5641577d7-XXX&enrichSource=Y292ZXJQYWdlOzMwNDgyMzQzMjtBUzo2NzA3Mzc4MTE2NTY3MDhAMTUzNjkyNzc2NDY4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

CHAPTER

INTRODUCTION TO XML AND ITS APPLICATIONS

Laura Papaleo

Department of Informatics and Computer Science, University of Genova
Via Dodecaneso, 35 16100 Genova, Italy

E-mail: papaleo@disi.unige.it – laura.papaleo@gmail.com

Extensible Markup Language (XML) is a meta-language for defining new
languages. Its impact on the modern and emerging web technologies has been
(and will be) incredible and it has represented the foundation of a multitude of
applications. This chapter is devoted to the presentation of XML and its
applications. It provides an introduction to this wide topic, covering the
principal arguments and providing references and examples.

1. Introduction

XML is hugely important. It has been defined as “the holy grail of computing,
solving the problem of universal data interchange between dissimilar systems”
(Dr. Charles Goldfarb). XML is basically a handy format for everything from
configuration files to data and documents of almost any type. The first version of
XML became a W3C Recommendation in 1998, while its fifth edition has been
declared recommendation last year, in 2008 [1].

XML is significant, but it is a hard subject to describe briefly in a chapter,
because it describes a whole family of technologies and specifications. In 10
years, its success has been incredible and it has represented the foundation of a
multitude of applications.

This chapter has the goal to present the XML meta-language, trying to give an
overview of the most significant parts. We will describe the syntax to create
XML documents and how we can structure them by defining specific grammars
(DTDs and XML Schemas). We will also show how to render XML documents
using CSS style sheets and how to transform and render them with a family of
XML-based languages (XSL, XSLT and XPath). The end of the chapter will be
dedicated to provide a snapshot of the “life” around XML, to let the reader
understand the immense impact of XML in the actual technological world.

L. Papaleo

2

2. What Extensible Markup Language (XML) is

Extensible Markup Language (XML) [1] is a simple, very flexible text format
used for the description of marked-up electronic content. XML is classified as
extensible because it allows the user to define the mark-up elements [2]. It is
defined as a markup language because it allows to make explicit an interpretation
of a text using a set of markup conventions (tags).

More exactly, XML is a meta-language, that is, a means of formally
describing a language, in this case, a markup language. Today, XML is playing
an important role in the exchange of a wide variety of data on the Web and
elsewhere [1]. Generally speaking, XML's purpose is to aid information systems
in sharing structured data, especially via the Internet, to encode documents, and
to serialize data. XML, in combination with other standards, makes it possible to
define the content of a document separately from its formatting, making it easy to
reuse that content [2]. Most importantly, XML provides a basic syntax that can
be used to share information between different applications and different
organizations without using expensive and time-consuming conversion [3].

3. Origins of the Extensible Markup Language

XML emerged as a way to overcome the shortcomings of its two
predecessors, the Standard Generalized Markup Language (ISO 8879:1986
SGML) and the HyperText Markup Language (HTML) which are both restricted
in some ways. Roughly speaking, HTML is too limited, while SGML is too
complex. XML, instead, is a software- and hardware-independent light and
simple tool for carrying information [4,5].

The key point is that using XML, scientific organizations, industries and other
companies, can specify how to store specific data in a machine-understandable
form so that applications - running on any platform - can easily import and
process these data. In the following subsections we will briefly present SGML
and HTML and we will outline their main differences with respect to XML. This
will help the reader to understand why XML has been defined. Finally, we will
shortly recall the history of the XML birth.

3.1 Standardized Generalized Markup language - SGML

The Standardized Generalized Markup Language (SGML, for short) -
conceived notionally in the 1960s - 1970s, has been considered, since its
beginning, the international standard for marking up data and it is an ISO

Introduction to XML and its Applications

3

standard since 1986, ISO 8879:1986. SGML has been defined as a powerful and
extensible markup language with the main goal to semantic markup any type of
content. This functionality is particularly useful for cataloging and indexing data
[7]. SGML can be used to create an infinite number of markup languages and has
a host of other resources as well.

Historically it has been used by experts and scientific communities. However,
SGML is really complex and expensive: adding SGML capability to an
application could double its price. Thus, from the Web point of view, the
commercial browsers decided not to support SGML.

Both SGML and XML are widely-used for the definition of device-
independent, system-independent methods of storing and processing texts in
electronic form. Comparing the two languages, basically, XML is a
simplification or derivation of SGML, developed thinking at the emerging Web
technologies [7].

3.2 Hypertext Markup Language - HTML

A well known application of SGML is HTML (Hypertext Markup Language),
which is the publishing language of the World Wide Web. HTML defines a
specific (finite) set of tags for structuring content and for publishing it over
internet. HTML is free, simple and widely supported. Thousand of online
tutorials, books and web portals exist describing the HTML language. In this
section we would like to concentrate on the main problems of the old versions of
HTML, which have had a certain significance in pushing the formalization of
XML.

HTML has serious defects. The original thinking was to separate content from
presentation, but the evolution of HTML lost this purpose (as for example due to
the use of tags as and). Web pages began to be used for things that
went wildly beyond the original concept, including multimedia (using the tag
<object>), animation and many more. Thus, they started to become more
containers of more fascinating objects (e.g. flash animations) than pages
describing content, arising big problems in web searching performance. Also,
browsers tried to be tolerant of incorrect web pages and this tolerance became a
barrier to programmatic interpretation of published content, as for the use of
HTML for structured data.

XML arose from the recognition that key components of the original web
infrastructure - HTML tagging, simple hypertext linking, and hardcoded
presentation - would not scale up to meet the future needs of the web [8].

L. Papaleo

4

Compared with HTML, XML has some important characteristics. First of all
XML is extensible so it does not contain a fixed set of tags. Additionally, XML
documents must be well-formed according to a strict set of rules, and may be
formally validated (using DTDs or XML Schemas), while HTML documents can
contain errors and still the browsers render the pages as well as possible. Also,
XML focuses on the meaning of data, not its presentation.

It is important to understand that XML is not a replacement for HTML. In
most web applications, XML is used to transport data, while HTML is used to
format and display the data for the Web. Additionally, thanks to XML, HTML
evolved into XHTML [9] which is basically a reformulation of HTML (version
4) in XML 1.0.

3.3 The birth of XML

In 1996, discussions began which focused on how to define a markup
language with the power and extensibility of SGML but with the simplicity of
HTML. The World Wide Web Consortium (W3C) founded a working group [9]
on this goal, which came up with XML, the eXtensible Markup Language. Like
SGML, XML had to be not itself a markup language, but a specification for
defining markup languages. Like HTML, XML was planning to be very simple
to learn and clear in the syntax.

Since the beginning, the design goals for XML were clear to the working
group and they can be summarized in the following 10 points:
(i) XML shall be straightforwardly usable over the Internet.

(ii) XML shall support a wide variety of applications.
(iii) XML shall be compatible with SGML.
(iv) It shall be easy to write programs which process XML documents.
(v) The number of optional features in XML is to be kept to the absolute

minimum, ideally zero.
(vi) XML documents should be human-legible and reasonably clear.

(vii) The XML design should be prepared quickly.
(viii) The design of XML shall be formal and concise.

(ix) XML documents shall be easy to create.
(x) Terseness in XML markup is of minimal importance.

Over the next years, XML evolved: by mid 1997 The eXtensible Linking
Language XLL project was underway and by the summer of 1997, Microsoft had
launched the Channel Definition Format (CDF) as one of the first real-world
applications of XML. Finally, in 1998, the W3C approved Version 1.0 of the
XML specification as Recommendation. A new language was born reaching

Introduction to XML and its Applications

5

completely the planned goals. In 2008, the fifth edition of XML has been
approved as W3C recommendation and the working groups on XML are still
active.

4. XML Documents: Syntax

As we have seen, XML is a formal specification for markup languages. Every
formal language specification has an associated syntax. In this section, we will
briefly recall the syntax of XML documents. More details and information can be
found in the XML specifications from W3C [1] or in books as [3,4,6]

An XML document consists of a prolog, that includes an XML declaration
and an optional reference to external structuring documents and the body
consisting of a number of elements which may contain also attributes. These
elements are organized in a hierarchical structure (a tree), meaning that there can
only be one root element, also called the Document element, and all other
elements lie within the root. In Fig. 1 we show an example of an XML document
and the corresponding tree structure.

Fig. 1 – an example of XML document (left) and the associate tree structure (right)

The first line of the prolog is the declaration (see Fig. 2) and it serves to let
the machine understanding that what follows is XML, plus additional
information such as the encoding. Other components that can be inserted in the
prolog of an XML document as, for example, the associated schemas (either
DTDs or XML Schema – see Section 6 and Section 7) or the attached style sheets
(in CSS or XSL – see Section 8 and 9).

<?xml version=“1.0” standalone=“yes” ?>
<message>
 <from> Robert </from>
 <to> Mario </to>
</message>

message

from to

L. Papaleo

6

Fig. 2 – an example of XML document. The prolog and the body are outlined as the root element.
The image also show the syntax for opening and closing a tag and the syntax for an attribute.

XML document body is made up of elements (see Fig. 2). Each element is
defined using two basic components data and markup. Data represents the actual
content, thus the information to be structured. Markup, instead, are meta-
information about data that describes it. What follows is an example for an
element, structuring the information regarding a message body:

<message> This is the content </message>

For a reader who is familiar with HTML, the XML elements will be easy to

understand, since the syntax is very similar. The markup are tags in the form
<tagName>…</tagName>. Elements can also contain other elements and can
have attributes. For the attributes, again, the syntax is very simple. Each attribute
can be specified only in the element start tag and it has a name and a value and
the value is enclosed strictly in double quotation-mark. Fig. 2 shows an example
of XML document outlining the prolog, the body, the elements and the attributes.

Empty elements do not have the closing tag </tagName>, instead, they have
a “/” at the end. Code (4.1) represents an empty tag with attributes.

<book isbn=”A234DX” /> (4.1)

When an element contains additional elements or attributes, it is defined as

complex. In the following we present two codes in XML of complex elements,
structuring the same information:

<?xml version="1.0" encoding="iso-8859-1"?>
[…]

<book>
 <title>A story about you</title>
 <author id=”ABC”>Frank Tallero</author>
 […]
</book>

Prolog

Body

XML declaration version encoding

root element

root element closure

open tag … close tag

attribute: name & value

Introduction to XML and its Applications

7

<message>
 From Robert (4.2)
 <to>Mario</to>
</message>

<message from=”Robert”> (4.3)
 <to>Robert</to>
</message>

In the years, different discussions are arisen within scientific and technical

communities on when and why to encode information into attributes or as content
in elements. There is not a specific rule and the choice depends on the designer.
However, XML attributes are normally used to describe elements, or to provide
additional information about elements. So, basically, metadata (data about data)
should be stored as attributes, and that data itself should be stored as elements.

When necessary, comments can be inserted into an XML document. Their
syntax is the same as for comments in HTML and it is the following:

<!-- This is a comment -->

An XML document can also contain processing instructions. Generally

speaking, processing instructions encode application-specific data. The document
declaration which opens every XML document is an example of a processing
instruction. Processing instructions contain a target followed by data. Each
instruction is enclosed in <? and ?> delimiters. The target identifies the
application, and an application should ignore processing instructions for targets it
does not recognize. Basically, processing instructions allow to enter directives
into a XML document which are not part of the actual content, but which are
passed up to different ad-hoc applications.

An XML document can use also entities. It could be easier to think of entities
as a macro for programmers, or as aliases for more complex functions. A single
entity name can take the place of a whole lot of text. An example of entity is
showed below:

<!ENTITY myname "Laura">

Once defined, an entity can be recalled in the content of the document using

the syntax “&myname;” and the following is a piece of XML code showing how
to use the entity myname.

L. Papaleo

8

<details> My name is &myname; </details>

Finally, in a XML document CDATA elements can be used. A CDATA

element tells the XML parser not to interpret or parse characters that appear in
the section. An example is the following, where the content is parsable, even
though it contains an unparsable character (the ampersand):

<hobbies><![CDATA[Singing & Swimming]]></hobbies>

4.1 Well-formed XML documents

Unlike HTML, which allows to create documents with errors in the structure
which will be still rendered in a browser, XML has strict rules and a XML
document must be correctly structured in order to be machine-understandable.
The XML specification prohibits XML parsers from trying to fix and understand
malformed documents. All a conforming parser is allowed to do is report the
error.

Thus, a XML document must be well-formed. According to W3C, a well-
formed XML document is defined as a document that:
• has at least one element
• contains a unique opening and closing tag that enclose the whole document,

called the root element
• has all the elements with the closing tag, or empty elements correctly written
• has all the tags and attributes names written accordingly to the case-sensitive

rule, that is, for example that the tag <name> cannot be closed with
</Name>. In other words, elements and attribute names may be any case
chosen, as long as they are consistent.

• has all the elements properly nested, i.e. there must be an opening and a
closing tag and the tags cannot overlap. For example if the tag <name> has
been opened after the tag <person>, it must be closed before.

• has all the attribute values always quoted correctly.
These are the most important constraints for the well formdness, but they are

far to be a complete list: the XML Specifications [1] provides all the necessary
details.

Well formed XML documents simply markup content with descriptive tags.
This means that there is not the necessity to describe or explain what the chosen
tags mean. We will see in Section 6 and Section 7 how DTDs and XML Schemas
can define the meaning of the tags and can force the structure.

Introduction to XML and its Applications

9

5. Namespaces

In XML, element names are defined by developers. This means that different
organizations can use the same tag to markup content with different semantics.
But XML has been invented also to allow interoperability and data exchange
among different organizations so there must exist a way to combine several XML
sources without ambiguity.

XML namespaces are used for providing uniquely named elements and
attributes in an XML instance [13]. They are defined by a W3C recommendation
called Namespaces in XML. As defined by the W3C, an XML namespace is a
collection of XML elements and attributes identified by an Internationalized
Resource Identifier (IRI); this collection is often referred to as an XML
vocabulary [14].

Using namespaces, name conflicts can be solved thus allowing the correct
integration among data. This means that, if each vocabulary has given a
namespace then the ambiguity between identically named elements or attributes
can be resolved.

Namespaces are declared as an attribute of an element by using the xmlns
name attribute in the start tag of the element. It is not mandatory to declare
namespaces only at the root element; rather it could be declared at any element in
the XML document. A namespace has a scope which begins at the element where
it has been declared and applies to the entire content of that element, unless
overridden by another namespace declaration with the same prefix name [15]. A
namespace is declared as follows, that can be read as binding the prefix
"myname" with the namespace http://www.whatever.com:

<someTag xmlns:myname="http://www.whatever.com" />

So, the namespace declaration has the following syntax.

xmlns:prefix="URI". A Uniform Resource Identifier (URI) [3,16] is a string
of characters which identifies an Internet Resource. The most common URI is the
Uniform Resource Locator (URL) which identifies an Internet domain address.
Another, not so common type of URI is the Universal Resource Name (URN).
Note that the URI is not actually read as an online address; it is simply treated by
an XML parser as a string. Note also that, the empty string, though it is a legal
URI reference, cannot be used as a namespace name.

A specific namespace identifies a collection of names. This collection can be
made of element names, as in the case of the standard XHTML [9] or it can be a
collection of attribute names, as in the case of XLink [17]. A namespace can

L. Papaleo

10

collects names of properties (e.g. FOAF [18]) or can describe a set of functions,
as it is the case for the XPath 2.0 Data Model [19].

6. Structuring XML Documents: Document Type Definition

As we said before, using XML, any developer can create his own well-formed
documents in freedom, without any restriction or specific template rules on how
to organize the tags. But, in case of organizations in which the XML documents
must follow a specific grammar to be sharable and usable (as in the case of
technical reports, e-commerce transactions, workers details), tools for describing
the shape of all specific-topic XML documents are necessary [20].

The purpose of DTDs is exactly this. They provide a framework for validating
XML documents by defining the legal building blocks of XML documents [3].
Basically, a Document Type Definition (DTD) outlines what elements can be in
an XML document and the attributes and sub-elements that they can take. Thus
DTDs allow different organizations to create shareable data files.

A DTD can be part of the XML document, or it can be referred to by the
XML document. In the first case, we call it an inline DTD while in the second
case it is called external and it is a simple text file with “.dtd” extension.

DTDs embody a small syntax that can be mastered quite quickly. This syntax
has several important components but can be summed into two essential
structures, which are the element and the attribute. In the following subsections,
we will describe the syntax used for these two type of declarations.

6.1 Element Declarations

Element declarations describe the allowable set of elements within the document,
and specify whether and how declared elements (and character data) may be
contained within each element.

Recall that (Section 4) elements in XML documents can enclose other
elements, can be empty, can contain content or can be mixed (containing content
and other elements). In a DTD the possible declarations for elements are the
following:
• <!ELEMENT element-name (child1,child2,...)> , for an element

containing other elements
• <!ELEMENT element-name EMPTY>, for an empty element
• <!ELEMENT element-name (#PCDATA)>, for an element containing

directly content

Introduction to XML and its Applications

11

• <!ELEMENT element-name (#PCDATA|child1|otherchild1)*>, for
a mixed element

• <!ELEMENT element-name ANY>, for defining an element for which no
further details are provided

Additionally, a DTD must specify, by using special characters, how the

elements can appear (i.e. in a given order) and if they can be repeated.
Specifically, the character “,” defines an order, “|” defines alternatives
(either...or), “()” group elements, “*” indicates any number (zero or more), “+”
means at least once (one or more) and “?” marks for optional (zero or one). If
there is no *, + or ?, the element must occur exactly one time.

Term Meaning

, Separates members of a sequence list and indicates
sequential use of all members

| Separates members of a choice list and requires use of one
and only one member

+ Indicates a required and repeatable occurrence
* Indicates an optional and repeatable occurrence
? Indicates an optional occurrence

Table 1 – A table indicating the special character to formalize repetitions and order when defining
elements in a DTD

For example, in case of XML documents describing books, with a title,

multiple authors and different chapters, the definition of the element book will be
the following:

<!element book (title,author+,chapter+)>

where we define that the element book can contain only other elements (not

directly content) and, specifically a title (title), then one or more authors
(author+) and successively one or more chapters (chapter+).

6.2 Attribute-list Declarations

In the DTD, XML element attributes are declared with an ATTLIST declaration.
Attribute-list declarations name the allowable set of attributes for each declared
element, including the type of each attribute value, if not an explicit set of valid
value(s) [22]. An attribute declaration has the following syntax:

L. Papaleo

12

<!ATTLIST elementName attributeName Type defaultValue>

There are the following attribute types: CDATA (Character set of data), ID,

IDREF and IDREFS, NMTOKEN and NMTOKENS, ENTITY and ENTITIES,
NOTATION and NOTATIONS, listings and NOTATION-listings. These data types
are listed in Table 2

Value Explanation
CDATA The value is character data
(eval|eval|..) The value must be an enumerated value
ID The value is an unique id
IDREF The value is the id of another element
IDREFS The value is a list of other ids
NMTOKEN The value is a valid XML name
NMTOKENS The value is a list of valid XML names
ENTITY The value is an entity
ENTITIES The value is a list of entities
NOTATION The value is a name of a notation
xml: The value is predefined

Table 2 – A table showing the possible type of an attribute in a DTD declaration.

A default value can be used to define whether an attribute must occur
(#REQUIRED) or not (#IMPLIED), whether it has a fixed value (#FIXED), and
which value should be used as a default value ("…") in case the given attribute is
left out in an XML tag.

6.3 Valid XML documents: Including DTDs into XML

The document type declaration, which is situated after the XML declaration, is a
mechanism for naming the document type to which a document complies and for
including its definition. Valid XML documents must declare the document type
the follow so that editors, browsers or converters can read the DTD to understand
the template structure.

Well-formed documents can also include a document type declaration and
include markup declarations in its external subset but are not required to do so.
The document type declaration names the document type by making reference to
the root element of the document. It can make reference to an external DTD,

Introduction to XML and its Applications

13

called the external DTD subset, include the DTD internally in the internal DTD
subset or use both. Document type declarations take the general form [22]:

<!DOCTYPE NAME SYSTEM "file">

An XML document which must be compliant with respect to a DTD has the

attribute standalone in the XML declaration set to yes. This means that the
very first line of a document which follows a specific DTD will be the following:

<?xml version=”1.0” standalone=”no” […] ?>

A XML document is defined to be valid if it is a well-formed document and it

is conforms to the rules of a given Document Type Definition (DTD). Valid
XML documents offer much more to the document process than their well-
formed counterparts. Document authoring, processing, storage and display are
made easier because documents exist in a structured environment.

In the following, Fig. 3, we show an example of DTD and a valid XML
document with respect to it.

DTD
<!ELEMENT message (from,to+,body) >
<!ELEMENT from #PCDATA >
<!ELEMENT to #PCDATA >
<!ELEMENT body #PCDATA >
<!ATTLIST message reply (yes|no) "no" >

Valid XML document

<?xml version="1.0" standalone=”no”
 encoding="iso-8859-1"?>
<!DOCTYPE message SYSTEM "message.dtd">
<message reply=”yes”>
 <from>Laura</from>
 <to>John</to>
 <to>Robert</to>
 <body>this is the message body</body>
</message>

Fig. 3 – a DTD modeling the structure of XML documents containing messages and a valid XML
document with respect to the given DTD.

L. Papaleo

14

7. Structuring XML Documents: XML Schemas

DTDs have been inherited by XML from its predecessor SGML, and were a good
way to get XML started off quickly and give SGML people something familiar to
work with. Nevertheless it soon became apparent that a more expressive solution
that itself uses XML was needed.

First of all DTDs do not make use of XML syntax. Second, DTDs have no
constraints on character data, meaning that if a character data is allowed, any
character data is allowed. Also, for DTDs, there is not a good support for schema
evolution, extension, or inheritance of declarations. For what concern elements
and attributes, DTDs provide too simple attribute value models, since
enumerations are clearly insufficient, they provide a too simple ID attribute
mechanism and allow only default values for attributes, not for elements.

XML Schema (second edition), which became a W3C recommendation in
2004, offers a rich and flexible mechanism for defining XML vocabularies, in
alternative to DTDs. The main differences between DTDs and Schemas are that
the second are written in XML syntax and that are always external documents.
The XML Schema specification is divided into three specifications:
• XML Schema Part 0: Primer [23], which intends to provide a description of

the XML Schema facilities and of the language
• XML Schema Part 1: Structures [24] and XML Schema Part 2: Datatypes

[25] which provide the complete normative description of the XML Schema
language.

To describe all the characteristics of the XML Schema language is out of the
scope of this chapter, since a book by itself would be necessary. Here, we will
outline the properties of the language providing explicative examples. The reader
can refer to the online specifications [26] or to the available books on this topics
[6,22] to have more details.

An XML schema (called also XSD) is an XML document. It starts with the
document declaration and continues by opening the root element <schema> and
by defining the specific namespace. Within this root element all the
specifications are defined. The schema ends closing the root element
</schema>, as any well-formed XML document. Thus, in an XSD file (a simple
text file with extension “.xsd”), the skeleton is the following:

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>
 [… body of the schema …]
</xsd:schema>

Introduction to XML and its Applications

15

The body of the schema contains element declarations. There exist four main

schema elements:
• xsd:element declares an element and assigns it a type
• xsd:attribute declares an attribute and assigns it a type
• xsd:complexType defines a new complex type
• xsd:simpleType defines a new simple type
This means that elements are declared using the element xsd:element, and

attributes are declared using the xsd:attribute element. XML Schema
provides a set of 19 primitive data types (e.g. boolean, string, decimal, date, time,
dateTime, gYear, gDay, and NOTATION). They can be used directly in an
element or attribute definition, as the examples below

 <xsd:element name="name" type="xsd:string" />

<xsd:attribute name="age" type="xsd:integer" />

The two tags xsd:complexType and xsd:simpleType are used, instead,

to define new types. Simple declarations define elements that do not have any
children or attributes and can only contain text, while complex declarations
describe elements that can have children and attributes as well as text.

The declarations are not themselves types, but rather an association between a
name and the constraints which govern the appearance of that name in documents
governed by the associated schema [22]. The following is an example of an XSD
portion defining a element “book” of a user-defined complex type “bookType”.
Any sub-elements in the bookType definition is a simple element of type
string or a number (gYear). The element <xsd:sequence> identifies a
sequence of elements.

 <xsd:element name="book" type="bookType"/>
 <xsd:complexType name="bookType">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="author" type="xsd:string" />
 <xsd:element name="year" type="xsd:gYear" />
 </xsd:sequence>
 </xsd:complexType>

XSD documents have more possibilities than DTDs for expressing

cardinalities on elements belonging to a specific type. In a DTD repetitions and
order can be given using special characters (Section 5) such as * or +. XSD uses

L. Papaleo

16

the attributes minOccurs and maxOccurs to define cardinalities. In the example
above, the directive says that the element “title” will occur only one time
within the element “book”. Also, it is possible to define a complex type inside
the element that will use it (if it will be used only for that specific element). In
this case, the complex type is called anonymous and the syntax will be the
following:

<xsd:element name="book">
 <xsd:complexType>
 [… complex type definition …]
 </xsd:complexType>
</xsd:element>

If necessary, XSD documents allow to derive new simple types from existing

types, by using the xsd:simpleType element. It basically defines a subtype.
The name attribute assigns a name to the new type, by which it can be referred to
in a xsd:element type attributes. Different type of elements can be used to
define the subtype. In particular:

• An xsd:restriction child element derives by restricting the legal
values of the base type

• An xsd:list child element derives a type as a white space separated list
of base type instances

• An xsd:union child element derives by combining legal values from
multiple base types

In the following we present an example in which a new simple type (animal)
is defined as enumeration of possible string values (dog or cat) and an element
(webby) is defines of type animal.

<xsd:simpleType name="animal">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="dog"/>
 <xsd:enumeration value="cat"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:element name=”webby” type="animal" />

In the following we provide an example of XML Schema to define the

structure of XML documents which must follow the grammar defined by the
DTD in the section before

Introduction to XML and its Applications

17

XML Schema
<?xml version=”1.0”?>
<xsd:schema
 xmlns:xsd=http://www.w3.org/2001/XMLSchema>
<xsd:element name="message" type="messageType"/>
 <xsd:complexType name="messageType">
 <xsd:sequence>
 <xsd:element name="from" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="to" type="xsd:string"
 minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="author" type="xsd:string" />
 <xsd:element name="body" type="xsd:string"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>

 <xsd:attribute
 name="reply" type="xsd:boolean" default="no"/>

 </xsd:complexType>
</xsd:element>
</xsd:schema>

To complete this section, we recall that there is a multitude of tools for

validating and editing schemas in XSD on the net, open source or commercial.
To have an idea the reader can visit the XML Schema Working Group website at
W3C [26].

8. Rendering XML Documents via CSS

As we have said in the previous sections, XML is born to structure content, not
to display it. This means that, if an XML document is displayed in a browser it
will be showed as text, without any formatting (actually some browsers support
the user by showing the tree structure of the document, but nothing more). See,
for example Fig. 4-(a). This is perfectly in line with the main goals of XML.

Anyway, there is a way in which the web representation of an XML
document can be improved. Basically, a CSS style sheet can be applied similarly
to what can be done (and must be done) with HTML files.

Cascading Style Sheet Language (CSS) is a language used to describe the
presentation (that is, the look and formatting) of a document written in a markup
language [27,28,29]. A CSS document is basically constituted by a set of rules

L. Papaleo

18

that must be applied to elements in the reference file. A rule consists of two parts:
a selector and a declaration, with the syntax:

 selector {property1:value; property2:value;}

The selector is the reference to the element in the file that must be rendered

and the declaration is that part of the rule that sets forth what the effect will be.
The following is an example of rule applied to an element H1 in a HTML page.

 H1 {color:black;}

CSS2 (Cascading Stylesheet Level 2) defines around 120 properties and for

all of them, different values can be assigned. For a tutorial on CSS/CSS2 see, for
example [28] or the last specification at [29].

CSS/CSS2 style sheet can be easily added to HTML documents using the
link element which create a link to the external style sheet. In XML it is
possible to attach external style sheets by means of the xml-stylesheet
processing instruction, which must be placed in the prolog of the XML
document. The syntax is the following:

<?xml-stylesheet href="thestyle.css" type="text/css"?>

Just as with the link element of HTML, there can be multiple xml-

stylesheet processing instructions, meaning that is it possible to attach
multiple style sheets to an XML document. The possible attributes are type,
medium and title, so that each stylesheet can have a local name (title), can be
applied if the display medium is of a given type (print, screen..) and it has a
specific type (usually text/css).

To show how attach a CSS style sheet to an XML document, we provide here
a very simple example. Given the following XML code, it will be rendered in a
browser as showed in Fig. 4-(a).

<?xml version="1.0" standalone="yes" ?>
<exercise>
 <title>Example with CSS</title>
 <body>This is the body</body>
</exercise>

Introduction to XML and its Applications

19

 (a) (b)
Fig. 4 – (a) an example of an XML document and how it is rendered in a browser. No specific
formatting is applied. (b) the same XML document with a CSS style sheet applied.

By adding the processing instruction for including a CSS style sheet (named

style1.css), the resulting XML code will be

<?xml version="1.0" standalone="yes" ?>
<?xml-stylesheet href="style1.css" type="text/css" ?>
<exercise>
 <title>Example with CSS</title>
 <body>This is the body</body>
</exercise>

The CSS file contains the following simple rules, one for the element

exercise (thus it applies to the element and all its children), one for the element
title and another for the element body. The results of applying style1.css to
the XML document is showed in Fig. 4-(b).

exercise { font-family:Arial }
title { display:block; color:red;
 font-size:14pt;
 font-weight:bold }
body { color:black; font-size:12px }

Note that, even if the tags are no more visible in the browser window, the

entire XML document is freely readable looking at the code of the page. Also,
the way in which the information are presented follows strictly the order in which
they have been modeled in the XML document (as in the case of simple HTML
pages). Suppose, for example, that the initial XML document was related to a list
of books for a library, it is impossible to show them in an alphabetic order, if the

L. Papaleo

20

books have not been inserted in that order. Additionally, if part of the content has
been modeled inside attributes, there is no way to access to the attributes values
and to show them in the rendered page. These are some of the limitations of CSS
(CSS2) in the context of XML documents. An immediate observation is that
XML is not a replacement of HTML, thus, for creating web pages, HTML (or –
better- XHTML) is more than enough. XML exists for structuring data and
means for modifying, transforming and interrogating this data are necessary.

In the following section we will show how XSL and XSLT support this type
of functionalities.

9. Transforming and Rendering XML Documents: XSLT, XPath, XSL-FO

XSL is a family of recommendations for defining XML document transformation
and presentation [30]. Extensible Stylesheet Language (languages) has the main
goal to create style sheets. Basically, an XSL engine uses these style sheets to
transform XML documents into other documents, and to format the output
according to specific formatting templates. The XSL family consists of three
main sub-languages:
• XSL Transformations (XSLT) [31] which is an XML-based language for

transforming XML documents into other XML documents (even XHTML)
• the XML Path Language (XPath), [19] which is an expression language used

by XSLT to access or refer to parts of an XML document
• XSL Formatting Objects (XSL-FO), [32] which is an XML vocabulary for

specifying formatting semantics (that can be used instead of CSS)
In the following subsections we will briefly review the three languages, with

simple examples that will support the reader in understanding how the
transformation and rendering operations work on XML documents. The topic,
however, is too large to be condensed in a single section of a chapter. Thus, we
suggest the reader to consult books on these topics [33, 34] or the W3C online
specifications [31].

Since XML documents can be represented as trees, in XSL, usually, the input
document is called the source tree, and the output document the result tree.

9.1 XSL Transformations (XSLT) and the XML Path Language (XPath)

XSLT is a powerful language for transforming XML documents into something
else that can be an HTML document, another XML document, a Portable
Document Format (PDF) file, a Scalable Vector Graphics (SVG) file, a flat text
file, or most anything possible [34]. The general idea is that, an XSLT stylesheet

Introduction to XML and its Applications

21

defines the rules for transforming an XML document and the chosen XSLT
processor does the work and produces the output.

XSLT relies on a technology called XPath. The XPath language allows XSLT
identify nodes (elements, attributes, and other objects) in XML documents, as
well as it provides functions for performing calculations [33].

To understand how XSLT works, we start from a XML document and we
apply a XSLT template to transform the content of this document in a HTML
page. The input XML document is the following:

<?xml version=”1.0” standalone=”yes” ?>
<TitleBook>This title will become H1</TitleBook>

It is a very simple document, with only the root element TitleBook which

contains directly the content, with no other sub-elements. The objective of the
XSLT transformation we are going to produce, is to take the content in the
element TitleBook and to put it inside an H1 tag of a HTML page.

Recall that an XSLT transformation file is, first of all, an XML document,
thus it follows the same syntax of any other XML. Also, in order to “use” the
XSLT language we have to define the appropriate namespace. The skeleton of
transformation file will be:

<?xml version=”1.0” standalone=”yes” ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<output method="html"/>
 [… other directives …]
</xsl:stylesheet>

The first line is the XML declaration, the second defines the root element

<xsl:stylesheet> and the XSLT namespace (prefix xsl:) with the official
W3C URI http://www.w3.org/1999/XSL/Transform. The third line,
instead, provides a directive on the output method, namely HTML. As any well-
formed XML, the style sheet ends with the root element closing tag, in this case,
</xsl:stylesheet>.

The other necessary directives are few and simple. First of all we need to
intercept the root element and we need to apply a stylesheet template on it, taking
the content associate and rewriting it as content of the HTML tag H1.

For doing this, we use the following code:

L. Papaleo

22

<xsl:template match = "/" >
 <html><body>
 <h1><xsl:value-of select = "TitleBook" /></h1>
 </body></html>
</xsl:template>

Basically, we define a template and we apply it to the XML portion which is

described in the attribute match. In this case XPath language is used to intercept
the desired element. In the example, the expression “/” identifies the root
element (similarly to what we can do in a file system). There are different
possible XPath expressions the can be used which allow to fetch every element,
entity or attribute in the document. Table 3 provides a selection of XPath
expressions [35].

Name Return value

Node-Set-oriented
last() Number (of elements)
count(node-set) Number of nodes in node-set
name(node-set?) First node name in node-set
Sign oriented
concat(string,string*) Sequence of arguments
starts-with(string,string) True if first string begins with

second one
contains(string,string) True if first string includes second

one
Boolean

not() True if argument is not true
true()/false() True/not true

Table 3 – a selection of XPath expressions, divided into node oriented, sign oriented and Boolean

Once the root element (node in the source tree) has been selected, we

“extract” the content using another XSLT directive <xsl:value-of…>. It has
an attribute select which contains another XPath expression. In the case of the
example, we extract the content inside the element TitleBook. Finally, by
putting the necessary HTML tags and the h1 tag “around” the extracted content,
we create the web page.

Taking a XSLT processor (even the modern browsers support this feature)
and giving in input both the XML and the XSLT documents, it interprets the

Introduction to XML and its Applications

23

XSLT directive and creates the new HTML page. Actually, XML, XSLT, and
XPath are correctly supported by the following browsers: Mozilla Firefox 3,
Internet Explorer 6+, Google Chrome, Opera 9 and Apple Safari 3+.

The operational schema of an XSLT transformation is the one presented in
Fig. 5.

Fig. 5 – one or more XML documents with one or more XSLT transformations are passed to the
XSLT processor which builds the output document.

The element <template> is the main element of a XSLT document. The

number of elements (directives) it can contain is very high. We provide here
some examples to let the user understand the power of the language.

A template can be iteratively applied to elements in the XML document using
different tags, as, for example <xsl:for-each …>. This is the case of a loop
for each element satisfying the XPath expression inside the attribute select of
the <xsl:for-each …> tag. For example the following code applies a template,
selecting the content of each paragraph inside a chapter in the input XML
document:

<xsl:template match="chapter">
 <xsl:for-each select="paragraph">
 <xsl:value-of select=".">
 </xsl:for-each>
</xsl:template>

Table 4 presents a set of elements for XSLT to provide an idea of the main

functionalities

L. Papaleo

24

Element syntax Meaning and Notes
<xsl:if test="…">
 …
</xsl:if>

Yes or No conditions
The condition is inside attribute test

<xsl:variable
 name="type"
 select="@type"/>

Allows a variable to be declared
name is the variable name. It can be
referred to later with $name select is the
value of the variable

<xsl:when test="…">
 …
</xsl:when>

Yes or No conditions
test specifies criteria for entering the if

<xsl:choose>
 …
</xsl:choose>

Multiple choices
No attributes

<xsl:for-each
 select="…">
 …
</xsl:for-each>

Creates a loop which repeats for every
match. select designates the match
criteria

<xsl:apply-templates/> Specifies that other matches may exist
within that node; if this is not specified any
matches will be ignored
If select is specified, only the templates
that specify a match that fits the selected
node or attribute type will be applied. If
mode is specified, only the templates that
have the same mode and have an
appropriate match will be applied

<xsl:text>
 a text
</xsl:text>

Outputs the tag content

<xsl:value-of
select="$s"/>

Outputs a variable
Select specifies the variable

Table 4 – few examples of elements in XSLT for capturing, choosing content in XML documents,
as well as defining templates of transformations on the basis of specific conditions.

9.2 XSL Formatting Objects XSL-FO

XSL Formatting Objects (or Flow Objects) [32], or XSL-FO, is a XML-based
markup language which describes the formatting of XML data for output to

Introduction to XML and its Applications

25

screen, paper or other media. Thanks to XSL-FO it is possible to produce, for
example, documents in PDF format, RTF or even PS, starting from an input
XML document. XSL-FO covers the basic presentation requirements for a wide
range of display devices, including reflow or repagination for palmtop devices,
and for the accessibility requirements that are now mandated by governments.

XSL-FO is used inside XSLT transformations. As described in the above
subsection, an XSLT transformation take an XML document (source tree) and
gives the directive to produce a result tree (the work is done by the processor,
which interprets the directives). Once transformed, the operation of formatting –
done by the XSL processor - interprets the result tree looking at the formatting
objects contained into the directives specialized with the XSL-FO language.

The XSL-FO language was designed for paged media, thus the concept of
page is an important part of its structure, and the formatting objects it provides
give significant expressive power in dealing with how information is displayed
on a page.

So, basically, XSL-FO documents are XML files with output information,
usually stored in files with .fo or .fob extension. They contain two required
sections: (i) the first section details a list of named page layouts; (ii) the second
section is a list of document data, with markup, that uses the various page layouts
to determine how the content fills the various pages. The skeleton of an XSL-FO
document is the following:

<?xml version="1.0"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="A4">
 <!-- Page template goes here -->
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="A4">
 <!-- Page content goes here -->
 </fo:page-sequence>
</fo:root>

As for the other XML-based languages described before, a XSL-FO

document starts with a root element <fo:root> containing the appropriate
namespace declaration, namely “http://www.w3.org/1999/XSL/Format”.
Two main elements are successively declared:

L. Papaleo

26

• fo:layout-master-set which contains the collection of definitions of
page geometries and page selection patterns

• fo:page-sequence which contains the definition of information for a
sequence of pages with common static information

The interpretation of the two main elements above it the following: when the

formatter reads the XSL-FO document, it creates a page based on the first
template in the fo:layout-master-set. Then it fills it with content from the
fo:page-sequence. When it's filled the first page, it instantiates a second page
based on a template, and fills it with content. The process continues until the
formatter runs out of content [22].

9.3 Page Formatting

The page templates are called page masters. Each defines a general layout for
a page including its margins, the sizes of the header, footer, and body area of the
page, and so forth. XSL-FO 1.0 defines exactly one kind of page master, the
fo:simple-page-master, which represents a rectangular page. The
fo:layout-master-set contains one or more fo:simple-page-master
elements that define master pages.

For example, we present in the following portion of XSL-FO code a
fo:layout-master-set containing one fo:simple-page-master. It
contains a single region, the body, into which all content will be placed.

<fo:layout-master-set>
 <fo:simple-page-master master-name="…"
 page-height=".." page-width=".." […]>
 <fo:region-body/>
 </fo:simple-page-master>
</fo:layout-master-set>

9.4 Page sequence management

In addition to a fo:layout-master-set, as we said before, each
formatting object document contains one or more fo:page-sequence
elements. In this case, the XSL-FO specifies the sequence of pages, where each
page has an associated page master that defines how the page will look. Each
page sequence contains three child elements in this order:

Introduction to XML and its Applications

27

(i) An optional fo:title element containing inline content that can be used as
the title of the document.

(ii) Zero or more fo:static-content elements containing the for every page
(iii) One fo:flow element containing data to be placed on each page in turn (in

case of pagination)
The following is an example of code for defining the pages sequence:

 <fo:page-sequence master-reference="chaps">
 <fo:static-content flow-name="…">
 <fo:block text-align="outside" …>
 Chapter
 <fo:retrieve-marker
 retrieve-class-name="chapNum"/>
 <fo:leader leader-pattern="space" />
 <fo:retrieve-marker retrieve-class-name="chap"/>
 <fo:leader leader-pattern="space" />
 Page
 <fo:page-number font-style="normal" />
 of
 <fo:page-number-citation ref-id='end'/>
 </fo:block>
 </fo:static-content>
 <fo:flow flow-name="…">
 <fo:block>
 <!-- Output goes here -->
 </fo:block>
 </fo:flow>
</fo:page-sequence>

In the example, the sequence of pages is defined for chapters in a book and

the portion of document gives directives for the rendering of the chapter
numbers, the page number and other information.

9.5 Formatting Objects

The vocabulary of formatting objects supported by XSL-FO represents the set
of typographic abstractions available. Some of them are very similar to properties
that can be found in CSS. For example, it is possible to enrich text with

L. Papaleo

28

character-level formatting. There exist several properties control font styles —
family, size, color, weight, etc. The following is an example:

<fo:block font-family="Times" font-size="14pt">
 This text will be Times of size 14pt!
</fo:block>

Other formatting objects are specialized to described the output on different

media (pagination, borders and so on). Each formatting object class represents a
particular kind of formatting behavior. For example, the block formatting object
class represents the breaking of the content of a paragraph into lines [32,37]. The
following is an example:

<fo:block line-height="1.0" text-align="justify">
 Example of a justified formatted block.
 The space between lines is 1.0.
</fo:block>

Another example is the list-item formatting object which is a box

containing two other formatting objects, namely list-item-label and list-
item-body. The first one (list-item-label) is basically a box that contains
a bullet, a number, or another indicator placed in front of a list item, the second
one (list-item-body) is a box that contains the text of the list item.

Tables, lists, side floats, and a variety of other features are available. These
features are comparable to CSS's layout features, though some of those features
are expected to be built by the XSLT even before the application of XSL-FO, if
necessary.

To conclude this section, we outline that there is a multitude of processors
which are able to interpret the XSL family of technologies. The reader can refer
to the official XSL web page at W3C for a complete list [30].

10. Conclusions and Outlook

In this chapter we have provided an introduction to XML, presenting its main
goals and trying to focus on the great impact it had in the development of the
modern Web Technologies. We outlined how XML is a meta-language for
defining new languages potentially on every application domain.

We provided notions on the syntax and the ways in which organizations,
companies and institutions can structure the content of XML documents by using

Introduction to XML and its Applications

29

DTDs and XML Schemas. We reviewed also how XML documents can be
rendered, using CSS style sheets and how they can be transformed and rendered
using XSL/XSLT, which are a powerful XML-based languages for creating
directives to deal with XML documents.

It can be easily understood, by simply searching on the web the “XML” word,
which is the incredible impact of XML in the scientific and industrial scenarios.
It has been proved to be a powerful means to allow interoperability and to
improve communications among business entities, which has emerged to be a
real necessity thanks also the evolution of the Web. Looking at the W3C home
page, it is clear how many different technologies have been developed upon pr
around XML. Several working groups and activities have been defined and are
active in many different topics related to XML.

In the context of this book, the Semantic Web Activity is maybe the most
interesting [38]. The Semantic Web is a web of data, as the reader will discover
in the other chapters of this book. This activity includes different
recommendations, most of them designed on XML, as for example:
• Resource Description Framework (RDF) [12] is an XML text format that

supports resource description and metadata applications.
• GRDDL [40] is a mechanism for gleaning resource descriptions from

dialects of languages. It introduces markup based on existing standards for
declaring that an XML document includes data compatible with the Resource
Description Framework (RDF) and for linking to algorithms (typically
represented in XSLT), for extracting this data from the document.

• The Web Ontology Language OWL [39] is a semantic markup language for
publishing and sharing ontologies on the World Wide Web. OWL is
developed as a vocabulary extension of RDF (the Resource Description
Framework) and is derived from the DAML+OIL Web Ontology Language.

• SPARQL query language for RDF, which can be used to express queries
across diverse data sources [41].

However, for sake of completeness, we would like to remember that there are
many other standards and on-going works of XML-based languages, as for
example:
• XHTML: This is the XML-version of HTML 4.0 [9].
• Chemical Markup Language (CML): CML is used for molecular information

management. [10].
• Simple Object Access Protocol (SOAP): A protocol that is object based and

used for information exchange in a decentralized and distributed
environment.[11]

L. Papaleo

30

• Synchronized Multimedia Integration Language (SMIL, pronounced
"smile"). SMIL 3.0 defines an XML-based language that allows authors to
write interactive multimedia presentations.

• Scalable Vector Graphics (SVG), is a language for describing two-
dimensional graphics and graphical applications in XML

• XML Query (XQuery), is a standardized language for combining documents,
databases, Web pages and almost anything else.

• WSDL: Web Service Description Language. An XML format for describing
XML web services, including the type definitions, messages and actions used
by that service. The WSDL document should tell applications all they need to
know to invoke a particular web service

Acknowledgments

This work was supported by the University of Genova. I would like to thank all
the authors of existing books and online tutorials on XML who, being also on the
web, allow to spread the knowledge on this powerful technology.

11. References

1. Extensible Markup Language (XML) 1.0 Fifth Edition (2008). W3C Recommendation, Eds.
T. Bray, J.Paoli, C. M. Sperberg-McQueen, E.Maler, F.Yergeau, www.w3.org/TR/REC-xml/

2. XML, Wikipedia, the free encyclopedia (last access 2009), http://en.wikipedia.org/wiki/XML
3. St. Laurent, Simon. (1999). XML: A Primer. Foster City: M&T Books.
4. Bryan, Martin. (1998). "An Introduction to the Extensible Markup Language (XML)."

Bulletin of the American Society for Information Science 25, 1. 11-14.
5. Introduction to XML, W3Schools (last access 2009), www.w3schools.com/XML/
6. Møller Anders and Schwartzbach Michael I, An Introduction to XML and Web Technologies,

Addison-Wesley, ISBN: 0321269667 January 2006
7. A.Attipoe and P.Vijghen (1999). “XML/SGML: On the Web and Behind the Web."

InterChange: Newsletter of the International SGML/XML Users' Group Volume 5, Issue 3,
pages 25-29

8. Jon Bosak, (2003), The Birth of XML: A Personal Recollection, http://java.sun.com/xml/
9. XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition) A

Reformulation of HTML 4 in XML 1.0 (2002) W3C Recommendation www.w3.org/TR/html/
10. P.M. Rust and H.S. Rzepa (1999), Chemical Markup, XML, and the World Wide Web. Basic

Principles, J. Chem. Inf. Comput. Sci., 39, 928-942
11. SOAP Version 1.2 Part 0: Primer (Second Edition) (2007), W3C Recommendation

www.w3.org/TR/soap/
12. Resource Description Framework (RDF), (2004) W3C Recommendation, www.w3.org/RDF
13. XML namespace, Wikipedia, the free encyclopedia (last access 2009)

http://en.wikipedia.org/wiki/XML_namespace

Introduction to XML and its Applications

31

14. Namespaces in XML 1.0 (Second Edition) (2006), W3C Recommendation,
www.w3.org/TR/xml-names/

15. R. Srivastava (last access 2009) XML Schema: Understanding Namespaces, Oracle
www.oracle.com/technology/pub/articles/srivastava_namespaces.html

16. Uniform Resource Identifier, (last access 2009) Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

17. XML Linking Language (XLink) Version 1.0, (2001), W3C Recommendation,
www.w3.org/TR/xlink/

18. FOAF Vocabulary Specification 0.91, (2007), Namespace Document OpenID Edition,
http://xmlns.com/foaf/spec/

19. XML Path Language (XPath) Version 1.0 (1999), W3C Recommendation
www.w3.org/TR/xpath

20. E. Maler, (last access 2009) Guide to the W3C XML Specification ("XMLspec") DTD,
Version 2.1, www.w3.org/XML/1998/06/xmlspec-report-v21.htm

21. XML Core Working Group Public Page (last access 2009), www.w3.org/XML/Core/
22. E.R. Harold XML Bible, 2nd edition (2001), John Wiley & Sons, Inc. New York, NY, USA
23. XML Schema Part 0: Primer Second Edition, (2004) W3C Recommendation, Eds. David C.

Fallside, Priscilla Walmsley - www.w3.org/TR/xmlschema-0/
24. XML Schema Part 1: Structures Second Edition, (2004) W3C Recommendation, Eds. H.S.

Thompson, D. Beech, M. Maloney, N. Mendelsohn, www.w3.org/TR/xmlschema-1/
25. XML Schema Part 2: Datatypes Second Edition, (2004) W3C Recommendation, Eds. P.V.

Biron, K.Permanente, A.Malhotra, www.w3.org/TR/xmlschema-2/
26. The XML Schema Working Group (2001) - www.w3.org/XML/Schema
27. Cascading Style Sheets Home Page (2009) - www.w3.org/Style/CSS/
28. H.W Lie and B. Bos (1999). Cascading Style Sheets, designing for the Web, 2nd edition,

Addison Wesley, ISBN 0-201-59625-3
29. Cascading Style Sheets Level 2 (CSS 2.1) Specification (2009), W3C Candidate

Recommendation, Eds. B. Bos, T. Çelik, I. Hickson , H.W. Lie www.w3.org/TR/REC-CSS2
30. The Extensible Stylesheet Language Family (XSL), http://www.w3.org/Style/XSL/
31. XSL Transformations (XSLT) Version 2.0 (2007) W3C Recommendation

www.w3.org/TR/xslt20/
32. Extensible Stylesheet Language (XSL) Version 1.1 (2006), W3C Recommendation

www.w3.org/TR/xsl/
33. M. Fitzgerald (2003), Learning XSLT, O’Reilly Press. ISBN 10: 0-596-00327-7
34. D. Tidwell (2008), XSLT, Second Edition, Mastering XML Transformations O’Reilly Press.

ISBN 10: 0-596-52721-7
35. Michael Kay; XSLT Programmer’s Reference; Birmingham (Wrox Press) 2000
36. G.K. Holman, (2002), What Is XSL-FO, online article www.xml.com/pub/a/2002/03/20/xsl-

fo.html
37. How to Develop Stylesheet for XML to XSL-FO Transformation (2007), Antenna House, Inc.

www.antennahouse.com/XSLsample/howtoRC/Howtodevelop-en-2a.pdf
38. The Semantic Web Activity, W3C, www.w3.org/2001/sw/
39. The Web Ontology Language OWL, (2004), W3C Recommendation, www.w3.org/TR/owl-

ref/

L. Papaleo

32

40. Gleaning Resource Descriptions from Dialects of Languages (GRDDL), (2007) W3C
Recommendation www.w3.org/TR/grddl/

41. SPARQL Query Language for RDF, (2008), W3C Recommendation www.w3.org/TR/rdf-
sparql-query/

View publication statsView publication stats

https://www.researchgate.net/publication/304823432

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

