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The study of signals and systems is considered to be a classic subject in the
curriculum of most engineering schools throughout the world. The theory of
signals and systems is a coherent and elegant collection of mathematical re-

sults that date back to the work of Fourier and Laplace and many other famous
mathematicians and engineers. Signals and systems theory has proven to be an
extremely valuable tool for the past 70 years in many fields of science and engi-
neering, including power systems, automatic control, communications, circuit de-
sign, filtering, and signal processing. Fantastic advances in these fields have
brought revolutionary changes into our lives.

At the heart of signals and systems theory is mankind’s historical curiosity and
need to analyze the behavior of physical systems with simple mathematical mod-
els describing the cause-and-effect relationship between quantities. For example,
Isaac Newton discovered the second law of rigid-body dynamics over 300 years
ago and described it mathematically as a relationship between the resulting force
applied on a body (the input) and its acceleration (the output), from which one 
can also obtain the body’s velocity and position with respect to time. The develop-
ment of differential calculus by Leibniz and Newton provided a powerful tool for
modeling physical systems in the form of differential equations implicitly relating
the input variable to the output variable. 

A fundamental issue in science and engineering is to predict what the behav-
ior, or output response, of a system will be for a given input signal. Whereas sci-
ence may seek to describe natural phenomena modeled as input-output systems,
engineering seeks to design systems by modifying and analyzing such models.
This issue is recurrent in the design of electrical or mechanical systems, where a
system’s output signal must typically respond in an appropriate way to selected
input signals. In this case, a mathematical input-output model of the system would
be analyzed to predict the behavior of the output of the system. For example, in the
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design of a simple resistor-capacitor electrical circuit to be used as a filter, the en-
gineer would first specify the desired attenuation of a sinusoidal input voltage of a
given frequency at the output of the filter. Then, the design would proceed by se-
lecting the appropriate resistance R and capacitance C in the differential equation
model of the filter in order to achieve the attenuation specification. The filter can
then be built using actual electrical components.

A signal is defined as a function of time representing the evolution of a vari-
able. Certain types of input and output signals have special properties with respect
to linear time-invariant systems. Such signals include sinusoidal and exponential
functions of time. These signals can be linearly combined to form virtually any
other signal, which is the basis of the Fourier series representation of periodic sig-
nals and the Fourier transform representation of aperiodic signals. 

The Fourier representation opens up a whole new interpretation of signals in
terms of their frequency contents called the frequency spectrum. Furthermore, in the
frequency domain, a linear time-invariant system acts as a filter on the frequency
spectrum of the input signal, attenuating it at some frequencies while amplifying it
at other frequencies. This effect is called the frequency response of the system.
These frequency domain concepts are fundamental in electrical engineering, as they
underpin the fields of communication systems, analog and digital filter design, feed-
back control, power engineering, etc. Well-trained electrical and computer engi-
neers think of signals as being in the frequency domain probably just as much as
they think of them as functions of time. 

The Fourier transform can be further generalized to the Laplace transform in
continuous-time and the z-transform in discrete-time. The idea here is to define
such transforms even for signals that tend to infinity with time. We chose to adopt
the notation X( jω), instead of X(ω) or X( f ), for the Fourier transform of a contin-
uous-time signal x(t). This is consistent with the Laplace transform of the signal 
denoted as X(s), since then X( jω) = X(s)|s = jω. The same remark goes for the dis-
crete-time Fourier transform: X(ejω) = X(z)|z = e jω.

Nowadays, predicting a system’s behavior is usually done through computer
simulation. A simulation typically involves the recursive computation of the out-
put signal of a discretized version of a continuous-time system model. A large part
of this book is devoted to the issue of system discretization and discrete-time sig-
nals and systems. The MATLAB software package is used to compute and display
the results of some of the examples. The companion CD-ROM contains the MAT-
LAB script files, problem solutions, and interactive graphical applets that can help
the student visualize difficult concepts such as the convolution and Fourier series. 

xvi Preface
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Undergraduate students see the theory of signals and systems as a difficult sub-
ject. The reason may be that signals and systems is typically one of the first courses
an engineering student encounters that has substantial mathematical content. So
what is the required mathematical background that a student should have in order
to learn from this book? Well, a good background in calculus and trigonometry def-
initely helps. Also, the student should know about complex numbers and complex
functions. Finally, some linear algebra is used in the development of state-space
representations of systems. The student is encouraged to review these topics care-
fully before reading this book. 

My wish is that the reader will enjoy learning the theory of signals and systems
by using this book. One of my goals is to present the theory in a direct and straight-
forward manner. Another goal is to instill interest in different areas of specializa-
tion of electrical and computer engineering. Learning about signals and systems
and its applications is often the point at which an electrical or computer engineer-
ing student decides what she or he will specialize in.

Benoit Boulet
March 2005 

Montréal, Canada
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((Lecture 1: Signal Models))

In this first chapter, we introduce the concept of a signal as a real or complex
function of time. We pay special attention to sinusoidal signals and to real and
complex exponential signals, as they have the fundamental property of keeping

their “identity” under the action of a linear time-invariant (LTI) system. We also in-
troduce the concept of a system as a relationship between an input signal and an
output signal.



2 Fundamentals of Signals and Systems

SYSTEMS IN ENGINEERING

The word system refers to many different things in engineering. It can be used to
designate such tangible objects as software systems, electronic systems, computer
systems, or mechanical systems. It can also mean, in a more abstract way, theoret-
ical objects such as a system of linear equations or a mathematical input-output
model. In this book, we greatly reduce the scope of the definition of the word
system to the latter; that is, a system is defined here as a mathematical relationship
between an input signal and an output signal. Note that this definition of system is
different from what we are used to. Namely, the system is usually understood to 
be the engineering device in the field, and a mathematical representation of this
system is usually called a system model.

FUNCTIONS OF TIME AS SIGNALS

Signals are functions of time that represent the evolution of variables such as a fur-
nace temperature, the speed of a car, a motor shaft position, or a voltage. There are
two types of signals: continuous-time signals and discrete-time signals.

Continuous-time signals are functions of a continuous variable (time).

Example 1.1: The speed of a car v(t) as shown in Figure 1.1.

FIGURE 1.1 Continuous-time signal
representing the speed of a car.

Discrete-time signals are functions of a discrete variable; that is, they are de-
fined only for integer values of the independent variable (time steps).

Example 1.2: The value of a stock x[n] at the end of month n, as shown in Figure
1.2.



Note how the discrete values of the signal are represented by points linked to
the time axis by vertical lines. This is done for the sake of clarity, as just showing
a set of discrete points “floating” on the graph can be confusing to interpret.

Continuous-time and discrete-time functions map their domain (time inter-
val) into their co-domain (set of values). This is expressed in mathematical
notation as . The range of the function is the subset of the
co-domain, in which each element has a corresponding time t in the
domain such that . This is illustrated in Figure 1.3.v f t= ( )T

v fR{ }
R V{ }ff :T V

V
T
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FIGURE 1.2 Discrete-time signal
representing the value of a stock.

FIGURE 1.3 Domain, co-domain, and range
of a real function of continuous time.

If the range is a subset of the real numbers , then f is said to be a real
signal. If is a subset of the complex numbers , then f is said to be a com-
plex signal. We will study both real and complex signals in this book. Note that we
often use the notation x(t) to designate a continuous-time signal (not just the value

CR{ }f
RR{ }f



4 Fundamentals of Signals and Systems

of x at time t) and x[n] to designate a discrete-time signal (again for the whole sig-
nal, not just the value of x at time n).

For the car speed example above, the domain of v(t) could be with
units of seconds, assuming the car keeps on running forever, and the range is

, the set of all non-negative speeds in units of kilometers per hour.
For the stock trend example, the domain of x[n] is the set of positive natural num-

bers , the co-domain is the non-negative reals , and
the range could be in dollar unit.

An example of a complex signal is the complex exponential , for
which , , and ; that is, the set of all complex
numbers of magnitude equal to one.

TRANSFORMATIONS OF THE TIME VARIABLE

Consider the continuous-time signal x(t) defined by its graph shown in Figure 1.4
and the discrete-time signal x[n] defined by its graph in Figure 1.5. As an aside,
these two signals are said to be of finite support, as they are nonzero only over a
finite time interval, namely on for x(t) and when for x[n].
We will use these two signals to illustrate some useful transformations of the time
variable, such as time scaling and time reversal.

n { , , }3 3…t [ , ]2 2

R{ } { : }x z z= =C 1V = CT = �
x t e j t( ) = 10

R{ } [ , ]x = 0 100
V = +[ , )0 RT ={ , , , }1 2 3…

V = +[ , )0 R

T = +[ , )0

FIGURE 1.4 Graph of continuous
time signal x(t).

FIGURE 1.5 Graph of discrete-time
signal x[n].

Time Scaling

Time scaling refers to the multiplication of the time variable by a real positive con-
stant . In the continuous-time case, we can write

(1.1)y t x t( ) ( ).=



Case 0 < < 1: The signal x(t) is slowed down or expanded in time. Think of
a tape recording played back at a slower speed than the nominal speed.

Example 1.3: Case � shown in Figure 1.6.
1

2
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FIGURE 1.6 Graph of expanded signal
y(t) = x(0.5t).

Case > 1: The signal x(t) is sped up or compressed in time. Think of a tape
recording played back at twice the nominal speed.

Example 1.4: Case = 2 shown in Figure 1.7.

FIGURE 1.7 Graph of compressed signal y(t) = x(2t).

For a discrete-time signal x[n], we also have the time scaling

(1.2)

but only the case > 1, where is an integer, makes sense, as x[n] is undefined for
fractional values of n. In this case, called decimation or downsampling, we not only
get a time compression of the signal, but the signal can also lose part of its infor-
mation; that is, some of its values may disappear in the resulting signal y[n].

y n x n[ ] [ ],=



Example 1.5: Case = 2 shown in Figure 1.8.

6 Fundamentals of Signals and Systems

FIGURE 1.8 Graph of compressed signal
y[n] = x[2n].

In Chapter 12, upsampling, which involves inserting m – 1 zeros between con-
secutive samples, will be introduced as a form of time expansion of a discrete-time
signal.

Time Reversal

A time reversal is achieved by multiplying the time variable by –1. The resulting
continuous-time and discrete-time signals are shown in Figure 1.9 and Figure 1.10,
respectively.

FIGURE 1.9 Graph of time-reversed
signal y(t) = x(–t).

FIGURE 1.10 Graph of time-reversed
signal y[n] = x[–n].



Time Shift

A time shift delays or advances the signal in time by a continuous-time interval
:

(1.3)

For T positive, the signal is advanced; that is, it starts at time t � –4, which is
before the time it originally started at, t � –2, as shown in Figure 1.11. For T neg-
ative, the signal is delayed, as shown in Figure 1.12.

y t x t T( ) ( ).= +

T R
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FIGURE 1.11 Graph of time-advanced
signal y(t ) = x(t + 2). FIGURE 1.12 Graph of time-delayed

signal y(t ) = x(t – 2).

Similarly, a time shift delays or advances a discrete-time signal by an integer
discrete-time interval N:

(1.4)

For N positive, the signal is advanced by N time steps, as shown in Figure 1.13.
For N negative, the signal is delayed by time steps.N

y n x n N[ ] [ ].= +

FIGURE 1.13 Graph of time-advanced
signal y[n] = x[n + 2].
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PERIODIC SIGNALS

Intuitively, a signal is periodic when it repeats itself. This intuition is captured in
the following definition: a continuous-time signal x(t) is periodic if there exists a
positive real T for which

(1.5)

A discrete-time signal x[n] is periodic if there exists a positive integer N for
which

(1.6)

The smallest such T or N is called the fundamental period of the signal.

Example 1.6: The square wave signal in Figure 1.14 is periodic. The fundamental
period of this square wave is T = 4, but 8, 12, and 16 are also periods of the signal.

x n x n N n[ ] [ ], .= + Z

x t x t T t( ) ( ), .= + R

FIGURE 1.14 A continuous-time periodic square wave signal.

Example 1.7: The complex exponential signal :

(1.7)

The right-hand side of Equation 1.7 is equal to for 
, so these are all periods of the complex exponential. The fundamen-

tal period is .
It may become more apparent that the complex exponential signal is periodic

when it is expressed in its real/imaginary form:

(1.8)x t t j te j t( ) cos( ) sin( ).= = +0
0 0

2

0

T =
k = ± ±1 2, ,…

k2

0

,T =x t e j t( ) = 0

x t T e e ej t T j t j T( ) .( )+ = + =0 0 0

x t e j t( ) = 0



where it is clear that the real part, , and the imaginary part, , are
periodic with fundamental period .

Example 1.8: The discrete-time signal in Figure 1.15 is periodic
with fundamental period N = 2.

x n n[ ] ( )= 1

2

0

T =
sin( )

0
tcos( )

0
t

Elementary Continuous-Time and Discrete-Time Signals and Systems 9

FIGURE 1.15 A discrete-time periodic signal.

EXPONENTIAL SIGNALS

Exponential signals are extremely important in signals and systems analysis be-
cause they are invariant under the action of linear time-invariant systems, which
will be discussed in Chapter 2. This means that the output of an LTI system sub-
jected to an exponential input signal will also be an exponential with the same ex-
ponent, but in general with a different real or complex amplitude.

Example 1.9: Consider the LTI system represented by a first-order differential
equation initially at rest, with input :

(1.9)

Its output signal is given by . (Check it!)

Real Exponential Signals

Real exponential signals can be defined both in continuous time and in discrete time.

Continuous Time

We can define a general real exponential signal as follows:

(1.10)x t Ce Ct( ) , , .= 0 R

y t e t( ) = 2

dy t

dt
y t x t

( )
( ) ( ).+ =

x t e t( ) = 2
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We now look at different cases depending on the value of parameter .
Case � 0: We simply get the constant signal .
Case > 0: The exponential tends to infinity as , as shown in Figure

1.16, where C > 0. Notice that .
Case < 0: The exponential tends to zero as ; see Figure 1.17, where

C < 0.
t +

x C( )0 =
t +

x t C( ) =

FIGURE 1.16 Continuous-time
exponential signal growing unbounded
with time.

FIGURE 1.17 Continuous-time
exponential signal tapering off to
zero with time.

Discrete Time

We define a general real discrete-time exponential signal as follows:

(1.11)

There are six cases to consider, apart from the trivial cases � 0 or C = 0: 
� 1, > 1, , < –1, � –1, and . Here we assume that 

C > 0, but for C negative, the graphs would simply be flipped images of the ones
given around the time axis.

Case � 1: We get a constant signal x[n] = C.
Case > 1: We get a positive signal that grows exponentially, as shown in

Figure 1.18.

< <1 00 1< <

x n C Cn[ ] , , .= R

FIGURE 1.18 Discrete-time exponential
signal growing unbounded with time.



Case : The signal is positive and decays exponentially, as
shown in Figure 1.19.

Case : The signal alternates between positive and negative
values and grows exponentially in magnitude with time. This is shown in Figure 1.20.

x n C n[ ] =< 1

x n C n[ ] =0 1< <

Elementary Continuous-Time and Discrete-Time Signals and Systems 11

FIGURE 1.19 Discrete-time
exponential signal tapering off to
zero with time. FIGURE 1.20 Discrete-time

exponential signal alternating and
growing unbounded with time.

FIGURE 1.21 Discrete-time exponential
signal reduced to an alternating periodic
signal.

FIGURE 1.22 Discrete-time exponential
signal alternating and tapering off to zero
with time.

Case � –1: The signal alternates between C and –C, as seen in Figure 1.21.
Case : The signal alternates between positive and negative values

and decays exponentially in magnitude with time, as shown in Figure 1.22.
< <1 0



((Lecture 2: Some Useful Signals))

Complex Exponential Signals

Complex exponential signals can also be defined both in continuous time and in
discrete time. They have real and imaginary parts with sinusoidal behavior.

Continuous Time

The continuous-time complex exponential signal can be defined as follows:

(1.12)

where is expressed in polar form, and 
is expressed in rectangular form. Thus, we can write

(1.13)

If we look at the second part of Equation 1.13, we can see that x(t) represents
either a circular or a spiral trajectory in the complex plane, depending whether is
zero, negative, or positive. The term describes a unit circle centered at the
origin counterclockwise in the complex plane as time varies from to

, as shown in Figure 1.23 for the case � 0. The times indicated in the
figure are the times when the complex point has a phase of .4e j tk0

t
kt = +

t =
e j t( )0 +

x t Ae e

Ae e

j j t

t j t

( ) ( )

( )

=

=

+

+

0

0

j
0 0
, , �

a = +C Ae A Aj= >, , ,� 0

x t Ce C aat( ) : , , ,= C
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FIGURE 1.23 Trajectory described by the complex exponential.



Using Euler’s relation, we obtain the signal in rectangular form:

(1.14)

where and are the real
part and imaginary part of the signal, respectively. Both are sinusoidal, with time-
varying amplitude (or envelope) . We can see that the exponent 
defines the type of real and imaginary parts we get for the signal.

For the case � 0, we obtain a complex periodic signal of period 
(as shown in Figure 1.23 but with radius A) whose real and imaginary parts are 
sinusoidal:

(1.15)

The real part of this signal is shown in Figure 1.24.

x t A t jA t( ) cos( ) sin( ).= + + +
0 0

2

0

T =

= Re{ }aAe t

Im{ ( )} sin( )x t Ae tt= +
0

Re{ ( )} cos( )x t Ae tt= +
0

x t Ae t jAe tt t( ) cos( ) sin( ),= + + +
0 0

Elementary Continuous-Time and Discrete-Time Signals and Systems 13

FIGURE 1.24 Real part of periodic complex
exponential for � 0.

For the case < 0, we get a complex periodic signal multiplied by a decaying ex-
ponential. The real and imaginary parts are damped sinusoids that are signals that can
describe, for example, the response of an RLC (resistance-inductance-capacitance)
circuit or the response of a mass-spring-damper system such as a car suspension. The
real part of x(t) is shown in Figure 1.25.

For the case > 0, we get a complex periodic signal multiplied by a growing
exponential. The real and imaginary parts are growing sinusoids that are signals
that can describe the response of an unstable feedback control system. The real part
of x(t) is shown in Figure 1.26.
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The MATLAB script given below and located on the CD-ROM in D:\Chap-
ter1\complexexp.m, where D: is assumed to be the CD-ROM drive, generates and
plots the real and imaginary parts of a decaying complex exponential signal.

%% complexexp.m generates a complex exponential signal and plots

%% its real and imaginary parts.

% time vector

t=0:.005:1;

% signal parameters

A=1;

FIGURE 1.25 Real part of damped complex exponential
for < 0.

FIGURE 1.26 Real part of growing complex exponential
for > 0.



theta=pi/4;

C=A*exp(j*theta);

alpha=-3;

w0=20;

a=alpha+j*w0;

% Generate signal

x=C*exp(a*t);

%plot real and imaginary parts

figure(1)

plot(t,real(x))

figure(2)

plot(t,imag(x))

Discrete Time

The discrete-time complex exponential signal can be defined as follows:

(1.16)

where .
Substituting the polar forms of C and a in Equation 1.16, we obtain a useful ex-

pression for x[n] with time-varying amplitude:

(1.17)

and using Euler’s relation, we get the rectangular form of the discrete-time com-
plex exponential:

(1.18)

Clearly, the magnitude r of a determines whether the envelope of x[n] grows,
decreases, or remains constant with time.

For the case r � 1, we obtain a complex signal whose real and imaginary parts
have a sinusoidal envelope (they are sampled cosine and sine waves), but the sig-
nal is not necessarily periodic! We will discuss this issue in the next section.

(1.19)

Figure 1.27 shows the real part of a complex exponential signal with r � 1.

x n A n jA n[ ] cos( ) sin( )= + + +
0 0

x n Ar n jAr nn n[ ] cos( ) sin( ).= + + +
0 0

x n Ae r e

Ar e

j n j n

n j n

[ ]

,( )

=

= +

0

0

C a C Ae A A a re r rj j, , , , , , ,= > = >C, � �0 00

0

x n Can[ ] ,=
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For the case r < 1, we get a complex signal whose real and imaginary parts are
damped sinusoidal signals (see Figure 1.28).

FIGURE 1.27 Real part of discrete-
time complex exponential for r = 1. FIGURE 1.28 Real part of discrete-time

damped complex exponential for r < 1.

For the case r > 1, we obtain a complex signal whose real and imaginary parts
are growing sinusoidal sequences, as shown in Figure 1.29.

FIGURE 1.29 Real part of growing complex exponential
for r > 1.

The MATLAB script given below and located on the CD-ROM in D:\Chapter1\
complexDTexp.m generates and plots the real and imaginary parts of a decaying
discrete-time complex exponential signal.



%% complexDTexp.m generates a discrete-time

%% complex exponential signal and plots

%% its real and imaginary parts.

% time vector

n=0:1:20;

% signal parameters

A=1;

theta=pi/4;

C=A*exp(j*theta);

r=0.8;

w0=0.2*pi;

a=r*exp(j*w0);

% Generate signal

x=C*(a.^n);

%plot real and imaginary parts

figure(1)

stem(n,real(x))

figure(2)

stem(n,imag(x))

PERIODIC COMPLEX EXPONENTIAL AND SINUSOIDAL SIGNALS

In our study of complex exponential signals so far, we have found that in the cases
in continuous time and in discrete time, we obtain sig-

nals whose trajectories lie on the unit circle in the complex plane. In particular,
their real and imaginary parts are sinusoidal signals. We will see that in the con-
tinuous-time case, these signals are always periodic, but that is not necessarily the
case in discrete time. Periodic complex exponentials can be used to define sets of
harmonically related exponentials that have special properties that will be used
later on to define the Fourier series.

Continuous Time

In continuous time, complex exponential and sinusoidal signals of constant ampli-
tude are all periodic.

Periodic Complex Exponentials

Consider the complex exponential signal . We have already shown that this
signal is periodic with fundamental period . Now let us consider harmoni-
cally related complex exponential signals:

(1.20)k

jk tt e k( ) : , , , , , , , ,= =0 2 1 0 1 2… …

2

0

T =
e j t0

r a= = 1= =Re{ }a 0
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that is, complex exponentials with fundamental frequencies that are integer multi-
ples of 0. These harmonically related signals have a very important property: they
form an orthogonal set. Two signals are said to be orthogonal over an in-
terval if their inner product, as defined in Equation 1.21, is equal to zero:

(1.21)

where x*(t) is the complex conjugate of x(t). This notion of orthogonality is a gen-
eralization of the concept of perpendicular vectors in three-dimensional Euclidean

space . Two such perpendicular (or orthogonal) vectors have an
inner product equal to zero:

(1.22)

We know that a set of three orthogonal vectors can span the whole space 
by forming linear combinations and therefore would constitute a basis for this
space. It turns out that harmonically related complex exponentials (or complex
harmonics) can also be seen as orthogonal vectors forming a basis for a space of
vectors that are actually signals over the interval . This space is infinite-
dimensional, as there are infinitely many complex harmonics of increasing fre-
quencies. It means that infinite linear combinations of the type can
basically represent any function of time in the signal space, which is the basis for
the Fourier series representation of signals.

We now show that any two distinct complex harmonics and
, where are indeed orthogonal over their common period 

:

(1.23)

However, the inner product of a complex harmonic with itself evaluates to
:2

0

T =

k m

jk t jm tt t dt e e dt e( ) ( ) = =
0

2

0

2

0

0 0

0
jj m k t

j m k

dt

j m k
e

( )

( )

( ) =

=

0

0

0

2

0

2

1

1
��� ��� =1 0.

2

0
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m km
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(1.24)

Sinusoidal Signals

Continuous-time sinusoidal signals of the type or 
such as the one shown in Figure 1.30 are periodic with (fundamental)

period , frequency in Hertz, angular frequency 0 in radians per
second, and amplitude |A|. It is important to remember that in sinusoidal signals, or
any other periodic signal, the shorter the period, the higher the frequency. For
instance, in communication systems, a 1-MHz sine wave carrier has a period of 
1 microsecond (10–6s), while a 1-GHz sine wave carrier has a period of 1 nano-
second (10–9s).

0

2
f

0
=2

0

T =
A tsin( )+

0

x t( ) =x t A t( ) cos( )= +
0

k k

jk t jk tt t dt e e dt d( ) ( ) = =
0

2

0

2

0

0 0

0

tt
0

2

0

0 2
= .

FIGURE 1.30 Continuous-time sinusoidal signal.

The following useful identities allow us to see the link between a periodic
complex exponential and the sine and cosine waves of the same frequency and
amplitude.

(1.25)

(1.26)A t
A

j
e e

A

j
e e Aej j t j j tsin( ) Im{

0 2 2
0 0+ = = jj t( )}.0 +

A t
A

e e
A

e e Aej j t j j t jcos( ) Re{ (

0 2 2
0 0+ = + = 0t+ )},



Discrete Time

In discrete time, complex exponential and sinusoidal signals of constant amplitude
are not necessarily periodic.

Complex Exponential Signals

The complex exponential signal is not periodic in general, although it seems
like it is for any 0. The intuitive explanation is that the signal values, which are
points on the unit circle in the complex plane, do not necessarily fall at the same
locations as time evolves and the circle is described counterclockwise. When the
signal values do always fall on the same points, then the discrete-time complex
exponential is periodic. A more detailed analysis of periodicity is left for the next
subsection on discrete-time sinusoidal signals, but it also applies to complex expo-
nential signals.

The discrete-time complex harmonic signals defined by

(1.27)

are periodic of (not necessarily fundamental) period N. They are also orthogonal,
with the integral replaced by a sum in the inner product:

(1.28)

Here there are only N such distinct complex harmonics. For example, for N =
8, we could easily check that . These signals will be used in Chap-
ter 12 to define the discrete-time Fourier series.

Sinusoidal Signals

Discrete-time sinusoidal signals of the type are not always
periodic, although the continuous envelope of the signal is periodic
of period . A periodic discrete-time sinusoid such as the one in Figure 1.31 is
such that the signal values, which are samples of the continuous envelope, always
repeat the same pattern over any period of the envelope.

2
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Mathematically, we saw that x[n] is periodic if there exists an integer N > 0
such that

(1.29)

That is, we must have for some integer m, or equivalently:

(1.30)

that is, must be a rational number (the ratio of two integers.) Then, the funda-
mental period N > 0 can also be expressed as m , assuming m and N have no 
common factor. The fundamental frequency defined by

(1.31)

is expressed in radians. When the integers m and N have a common integer factor,
that is, and , then N0 is the fundamental period of the sinusoid.
These results hold for the complex exponential signal as well.

FINITE-ENERGY AND FINITE-POWER SIGNALS

We defined signals as very general functions of time, although it is of interest to de-
fine classes of signals with special properties that make them significant in engi-
neering. Such classes include signals with finite energy and signals of finite power.

e j n( )0 +
N N q=

0m m q=
0

0
02

:= =
N m

2

0

0

2

0

2
=

m

N
;

0
2N m=

x n x n N A n N[ ] [ ] cos( ).= + = + +
0 0

FIGURE 1.31 A periodic discrete-time
sinusoidal signal.



The instantaneous power dissipated in a resistor of resistance R is simply the
product of the voltage across and the current through the resistor:

(1.32)

and the total energy dissipated during a time interval is obtained by inte-
grating the power

(1.33)

The average power dissipated over that interval is the total energy divided by
the time interval:

(1.34)

Analogously, the total energy and average power over of an arbitrary 
integrable continuous-time signal x(t) are defined as though the signal were a volt-
age across a one-ohm resistor:

(1.35)

(1.36)

The total energy and total average power of a signal defined over are de-
fined as

(1.37)

(1.38)

The total energy and average power over of an arbitrary discrete-time
signal x[n] are defined as
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(1.40)

Notice that is the number of points in the signal over the interval
. The total energy and total average power of signal x[n] defined over

are defined as

(1.41)

(1.42)

The class of continuous-time or discrete-time finite-energy signals is defined
as the set of all signals for which .

Example 1.10: The discrete-time signal , for which
is a finite-energy signal.

The class of continuous-time or discrete-time finite-power signals is defined as
the set of all signals for which .

Example 1.11: The constant signal has infinite energy, but a total aver-
age power of 16:

(1.43)

The total average power of a periodic signal can be calculated over one period
only as .

Example 1.12: For , the total average power is computed as

(1.44)

Note that has unit power.

EVEN AND ODD SIGNALS

A continuous-time signal is said to be even if , and a discrete-time sig-
nal is even if . An even signal is therefore symmetric with respect to
the vertical axis.
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A signal is said to be odd if or . Odd signals are
symmetric with respect to the origin. Another way to view odd signals is that their
portion at positive times can be flipped with respect to the vertical axis, then with
respect to the horizontal axis, and the result corresponds exactly to the portion of
the signal at negative times. It implies that or .

Figure 1.32 shows a continuous-time even signal, whereas Figure 1.33 shows
a discrete-time odd signal.

x[ ]0 0=x( )0 0=

x n x n[ ] [ ]=x t x t( ) ( )=
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FIGURE 1.32 Even continuous-time signal.

FIGURE 1.33 Odd discrete-time signal.

Any signal can be decomposed into its even part and its odd part as follows:

(1.45)

Even part: (1.46)

Odd part: (1.47)x t x t x t
o
( ) : [ ( ) ( )]=

1

2

x t x t x t
e
( ) : [ ( ) ( )]= +

1

2

x t x t x t
e o

( ) ( ) ( )= +



The even part and odd parts of a discrete-time signal are defined in the exact
same way.

DISCRETE-TIME IMPULSE AND STEP SIGNALS

One of the simplest discrete-time signals is the unit impulse , also called the
Dirac delta function, defined by

(1.48)

Its graph is shown in Figure 1.34.

[ ] :
,

,
n

n

n
=

=1 0

0 0

[ ]n
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FIGURE 1.34 Discrete-time unit impulse.

The discrete-time unit step signal u[n] is defined as follows:

(1.49)

The unit step is plotted in Figure 1.35.

u n
n

n
[ ] :

,

,
=

<
1 0

0 0

FIGURE 1.35 Discrete-time unit
step signal.
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The unit step is the running sum of the unit impulse:

(1.50)

and conversely, the unit impulse is the first-difference of a unit step:

(1.51)

Also, the unit step can be written as an infinite sum of time-delayed unit impulses:

(1.52)

The sampling property of the unit impulse is an important property in the the-
ory of sampling and in the calculation of convolutions, both of which are discussed
in later chapters. The sampling property basically says that when a signal x[n] is
multiplied by a unit impulse occurring at time n0, then the resulting signal is an im-
pulse at that same time, but with an amplitude equal to the signal value at time n0:

(1.53)

Another way to look at the sampling property is to take the sum of Equation
1.53 to obtain the signal sample at time n0:

(1.54)

((Lecture 3: Generalized Functions and Input-Output System Models))

GENERALIZED FUNCTIONS

Continuous-Time Impulse and Step Signals

The continuous-time unit step function u(t), plotted in Figure 1.36, is defined as
follows:
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Note that since u(t) is discontinuous at the origin, it cannot be formally differ-
entiated. We will nonetheless define the derivative of the step signal later and give
its interpretation.

One of the uses of the step signal is to apply it at the input of a system in order
to characterize its behavior. The resulting output signal is called the step response
of the system. Another use is to truncate some parts of a signal by multiplication
with time-shifted unit step signals.

Example 1.13: The finite-support signal x(t) shown in Figure 1.37 can be writ-
ten as or as .x t e u t u tt( ) ( ) ( )= +1x t e u t u tt( ) [ ( ) ( )]= 1

Elementary Continuous-Time and Discrete-Time Signals and Systems 27

FIGURE 1.36 Continuous-time unit step signal.

FIGURE 1.37 Truncated exponential signal.

The running integral of u(t) is the unit ramp signal tu(t) starting at t = 0, as
shown in Figure 1.38:

(1.56)u d tu t
t

( ) ( )=
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Successive integrals of u(t) yield signals with increasing powers of t :

(1.57)

The unit impulse , a generalized function that has infinite amplitude over
an infinitesimal support at , can be defined as follows. Consider a rectangu-
lar pulse function of unit area shown in Figure 1.39, defined as:

(1.58)( ) :
,

,

t
t= < <

1
0

0 otherwise

t = 0
( )t


 
u d d d
k

t u t
k

t
k

k

( )
!

( )
1 1

11 1
=

FIGURE 1.38 Continuous-time unit ramp signal.

FIGURE 1.39 Continuous-time
rectangular pulse signal.



The running integral of this pulse is an approximation to the unit step, as shown
in Figure 1.40.

(1.59)u t d tu t t u t
t

( ) : ( ) ( ) ( ) ( )= =
1 1
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FIGURE 1.40 Integral of rectangular pulse signal
approximating the unit step.

As tends to 0, the pulse gets taller and thinner but keeps its unit area,
which is the key property here, while approaches a unit step function. At the
limit,

(1.60)

(1.61)

Note that , and in this sense we can write at the

limit, so that the impulse is the derivative of the step. Conversely, we have the
important relationship stating that the unit step is the running integral of the unit
impulse:

(1.62)

Graphically, is represented by an arrow “pointing to infinity” at t � 0
with its length equal to the area of the impulse, as shown in Figure 1.41.

( )t

u t d
t

( ) ( )=

( )u td

dt
( )t =( )u td

dt
=( )t =

u t u t( ) lim ( )=
0

( ) : lim ( )t t=
0

u t( )
( )t
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We mentioned earlier that the key property of the pulse is that its area is
invariant as . This means that the impulse packs significant “punch,”
enough to make a system react to it, even though it is zero at all times except at

. The output of a system subjected to the unit impulse is called the impulse 
response.

Note that with the definition in Equation 1.60, the area of the impulse lies to the 

right of t � 0, so that integrating from t � 0 yields . Had we

defined the impulse as the limit of the pulse whose area

lies to the left of t � 0, we would have obtained . In order to “catch

the impulse” in the integral, the trick is then to integrate from the left of the y-axis,
but infinitesimally close to it. This time is denoted as t � 0–. Similarly, the time

is to the right of t � 0 but infinitesimally close to it, so that for our defini-
tion of in Equation 1.60, the above integral would have evaluated to zero: 

.

The following example provides motivation for the use of the impulse signal.

Example 1.14: Instantaneous discharge of a capacitor.
Consider the simple RC circuit depicted in Figure 1.42, with a constant voltage

source V having fully charged a capacitor C through a resistor R1. At time t � 0,
the switch is thrown from position S2 to position S1 so that the capacitor starts dis-
charging through resistor R. What happens to the current i(t) as R tends to zero?

A t dt( ) 0=
0+

( )t
t = +0

A t dt( ) 0=
0

[ ( ) ( )]u t u t+1
~

( ) :t =

A t dt A( ) =
0

A t( )

t = 0

( )t0
( )t

FIGURE 1.41 Unit impulse signal.



The capacitor is charged to a voltage V and a charge at t � 0–. When
the switch is thrown from S2 to S1 at t � 0, we have:

(1.63)

(1.64)

Combining Equation 1.63 and Equation 1.64, we get

(1.65)

The solution to this differential equation is

(1.66)

and the current is simply

(1.67)

If we let R tend to 0, i(t) tends to a tall, sharp pulse whose area remains con-

stant at , the initial charge in the capacitor (as ). We get an im-

pulse. Of course if you tried this in reality, that is, shorting a charged capacitor, it
would probably blow up, thereby demonstrating that the current flowing through
the capacitor went “really high” in a very short time, burning the device.

i t dt( )=
0

Q =Q CV=

i t
V

R
e u tt RC( ) ( ),/=

v t Ve u tt RC( ) ( ),/=

RC
dv t

dt
v t

( )
( ) .+ = 0

i t C
dv t

dt
( )

( )
.=

i t
v t

R
( )

( )
,=

Q CV=
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FIGURE 1.42 Simple RC circuit for analysis of
capacitor discharge.



Some Properties of the Impulse Signal

Sampling Property

The pulse function can be made narrow enough so that ,
and at the limit, for an impulse at time ,

(1.68)

so that

(1.69)

This last equation is often cited as the correct definition of an impulse, since it
implicitly defines the impulse through what it does to any continuous function
under the integral sign, rather than using a limiting argument pointwise, as we did
in Equation 1.60.

Time Scaling

Time scaling of an impulse produces a change in its area. This is shown by cal-
culating the integral in the sampling property with the time-scaled impulse. 
For :R, 0

x t t t dt x t( ) ( ) ( )=
0 0

x t t t x t t t( ) ( ) ( ) ( )=
0 0 0

t
0

x t t x t( ) ( ) ( ) ( )0( )t
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FIGURE 1.43 Capacitor discharge
current in RC circuit.



(1.70)

Hence, 

(1.71)

Note that the equality sign in Equation 1.71 means that both of these impulses
have the same effect under the integral in the sampling property.

Time Shift

The convolution of signals x(t) and y(t) is defined as

(1.72)

The convolution of signal x(t) with the time-delayed impulse delays
the signal by T:

(1.73)

Unit Doublet and Higher Order “Derivatives” of the Unit Impulse

What is , the unit doublet? That is, what does it do for a living? To an-
swer this question, we look at the following integral, integrated by parts:

( )d t

dt
'( ) :t =

( ) ( ) ( ) ( ) ( )t T x t T x t d x t T= =

( )t T

x t y t x y t d y x t d( ) ( ) : ( ) ( ) ( ) ( )= =
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| |

( ).t t=
1

x t t dt x d

x

( ) ( ) ( ) ( )

( )

+ +

=

=

1

1 +

+

>

<

( ) ,

( ) ( ) ,

d

x d

0

1
0

=

=

+1

1
0

x d

x

( ) ( )

| |
( )
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(1.74)

Thus, the unit doublet samples the derivative of the signal at time t � 0 (mod-
ulo the minus sign.) For higher order derivatives of , we have

(1.75)

Why is called a “doublet?” A possible representation of this generalized
function comes from differentiating the pulse , which produces two impulses,
one negative and one positive. Then by letting , we get a “double impulse”
at t � 0, as shown in Figure 1.44. Note that the resulting “impulses” are not regu-
lar impulses since their area is infinite.

0
( )t

'( )t

( ) ( ) ( ) ( )
( )

.k k
k

k
t x t dt

d x

dt
= 1

0

( )t

'( ) ( ) ( ) ( ) ( ) ( )t x t dt x t t
d

dt
x t= 0 ddt

dx

dt

dx

dt
= =0

0 0( ) ( )
.
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FIGURE 1.44 Representation of the unit doublet.

SYSTEM MODELS AND BASIC PROPERTIES

Recall that we defined signals as functions of time. In this book, a system is also
simply defined as a mathematical relationship, that is, a function, between an input
signal x(t) or x[n] and an output signal y(t) or y[n]. Without going into too much d
etail, recall that functions map their domain (set of input signals) into their co-
domain (set of output signals, of which the range is a subset) and have the special
property that any input signal in the domain of the system has a single associated
output signal in the range of the system.



Input-Output System Models

The mathematical relationship of a system H between its input signal and its out-
put signal can be formally written as (the time argument is dropped here,
as this representation is used both for continuous-time and discrete-time systems).
Note that this is not a multiplication by H—rather, it means that system (or func-
tion) H is applied to the input signal. For example, system H could represent a very
complicated nonlinear differential equation linking y(t) to x(t).

A system is often conveniently represented by a block diagram, as shown in
Figure 1.45 and Figure 1.46.

y Hx=
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FIGURE 1.45 Block diagram representation of
a continuous-time system H.

FIGURE 1.46 Block diagram representation of
a discrete-time system G.

System Block Diagrams

Systems may be interconnections of other systems. For example, the discrete-time
system shown as a block diagram in Figure 1.47 can be described by
the following system equations:

(1.76)

v n G x n

w n G v n

z n G x n

s n w n

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

=
=
=
=

1

2

3

zz n

y n G s n

[ ]

[ ] [ ]=
4

y n Gx n[ ] [ ]=
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We now look at some basic system interconnections, of which more complex
systems are composed.

Cascade Interconnection

The cascade interconnection shown in Figure 1.48 is a successive application of
two (or more) systems on an input signal:

(1.77)y G G x
y

=
2 1

1

( )�

FIGURE 1.47 A discrete-time system composed of an interconnection of other
systems.

FIGURE 1.48 Cascade interconnection of systems.

Parallel Interconnection

The parallel interconnection shown in Figure 1.49 is an application of two (or
more) systems to the same input signal, and the output is taken as the sum of the
outputs of the individual systems.



(1.78)

Note that because there is no assumption of linearity or any other property for
systems , we are not allowed to write, for example, . System
properties will be defined later.

y G G x= +( )
1 2

G G
1 2
,

y G x G x= +
1 2
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FIGURE 1.49 Parallel interconnection of systems.

Feedback Interconnection

The feedback interconnection of two systems as shown in Figure 1.50 is a feedback
of the output of system G1 to its input, through system G2. This interconnection is
quite useful in feedback control system analysis and design. In this context, signal
e is the error between a desired output signal and a direct measurement of the out-
put. The equations are

(1.79)

e x G y

y G e

=
=

2

1

FIGURE 1.50 Feedback interconnection of systems.



Example 1.15: Consider the car cruise control system in Figure 1.51, whose task
is to keep the car’s velocity close to its setpoint. The system G is a model of the car’s
dynamics from the throttle input to the speed output, whereas system C is the con-
troller, whose input is the velocity error e and whose output is the engine throttle.
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FIGURE 1.51 Feedback interconnection of a car cruise control system.

((Lecture 4: Basic System Properties))

Basic System Properties

All of the following system properties apply equally to continuous-time and discrete-
time systems.

Linearity

A system S is linear if it has the additivity property and the homogeneity property.
Let y1 := Sx1 and y2 := Sx2.

Additivity: y1 + y2 = S(x1 + x2) (1.80)

That is, the response of S to the combined signal x1 + x2 is the sum of the indi-
vidual responses y1 and y2.

Homogeneity: (1.81)

Homogeneity means that the response of S to the scaled signal ax1 is a times
the response y1 = Sx1. An important consequence is that the response of a linear
system to the 0 signal is the 0 signal. Thus, the system y(t) = 2x(t) + 3 is nonlinear
because for x(t) = 0, we obtain y(t) = 3.

ay S ax a
1 1
= ( ), C



The linearity property (additivity and homogeneity combined) is summarized in
the important Principle of Superposition: the response to a linear combination of
input signals is the same linear combination of the corresponding output signals.

Example 1.16: Consider the ideal operational-amplifier (op-amp) integrator 
circuit shown in Figure 1.52.
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FIGURE 1.52 Ideal op-amp integrator circuit.

The output voltage of this circuit is given by a running integral of the input
voltage:

(1.82)

If , then

(1.83)

and hence this circuit is linear.

Time Invariance

A system S is time-invariant if its response to a time-shifted input signal x[n – N]
is equal to its original response y[n] to x[n], but also time shifted by N: y[n – N].
That is, if for y[n] := Sx[n], y1[n] := Sx[n – N], the equality y1[n] = y[n – N] holds
for any integer N, then the system is time-invariant.

Example 1.17: is time-invariant since 
.y t T( )

y t x t T
1
( ) sin( ( ))= =y t x t( ) sin( ( ))=

v t
RC

v d
a

RC
v d

b

RC
v

out in

t t

( ) ( ) ( )= = +
1

1 22
( )d

t

v t av t bv t
in

( ) ( ) ( )= +
1 2

v t
RC

v d
out in

t

( ) ( )=
1



On the other hand, the system is not time-invariant (it is time-
varying) since .

The time-invariance property of a system makes its analysis easier, as it is suf-
ficient to study, for example, the impulse response or the step response starting at
time t � 0. Then, we know that the response to a time-shifted impulse would have
the exact same shape, except it would be shifted by the same interval of time as the
impulse.

Memory

A system is memoryless if its output y at time t or n depends only on the input at
that same time.

Examples of memoryless systems:

Resistor: .
Conversely, a system has memory if its output at time t or n depends on input

values at some other times.
Examples of systems with memory:

Causality

A system is causal if its output at time t or n depends only on past or current val-
ues of the input.

An important consequence is that if and 
, then . This means that a causal system

subjected to two input signals that coincide up to the current time t produces out-
puts that also coincide up to time t. This is not the case for noncausal systems
because their output up to time t depends on future values of the input signals,
which may differ by assumption.

y y t
1 2
( ) ( ), ( , ]=t( , ]

x x
1 2
( ) ( ),=y Sx y Sx

1 1 2 2
: , := =

y t x d
t

( ) ( )=

y n x n x n x n[ ] [ ] [ ] [ ]= + + +1 1

v t Ri t( ) ( )=

y t
x t

x t
( )

( )

( )
=

+1

y n x n[ ] [ ]= 2

y n nx n N n N x n N y n N
1
[ ] [ ] ( ) [ ] [ ]= =

y n nx n[ ] [ ]=
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Examples of causal systems: 
A car does not anticipate its driver’s actions, or the road condition ahead.

Example of a noncausal system:

Bounded-Input Bounded-Output Stability

A system S is bounded-input bounded-output (BIBO) stable if for any bounded
input x, the corresponding output y is also bounded. Mathematically, the continuous-
time system is BIBO stable if

(1.84)

In this statement, means implies, means for every, and means there
exists.

In other words, if we had a system S that we claimed was BIBO stable, then for
any positive real number K1 that someone challenges us with, we would have to
find another positive real number K2 such that, for any input signal x(t) bounded in
magnitude by K1 at all times, the corresponding output signal y(t) of S would also
be bounded in magnitude by K2 at all times. This is illustrated in Figure 1.53.
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FIGURE 1.53 BIBO stability of a system.



Example 1.18: A resistor with characteristics is BIBO stable. For all
currents i(t) bounded by K1 amperes in magnitude, the voltage is bounded by

volts. However, the integrator op-amp circuit previously discussed is not
BIBO stable, as a constant input would result in an output that tends to infinity as

.
BIBO stability is very important to establish for feedback control systems and

for analog and digital filters.

Invertibility

Recall that a system was defined as a function mapping a set of input signals (do-
main) into a set of output signals (co-domain). The range of the system is the sub-
set of output signals in the co-domain that are actually possible to get.

It turns out that one can always restrict the co-domain of the system to be
equal to its range, thereby making the system onto (surjective). Assuming this is
the case, a system S is invertible if the input signal can always be uniquely recov-
ered from the output signal. Mathematically, for , , we
have , which restricts the system to be one-to-one (injective). This means
that two distinct input signals cannot lead to the same output signal. More gener-
ally, functions are invertible if and only if they are both one-to-one and onto.

The inverse system, formally written as S –1 (this is not the arithmetic inverse),
is such that the cascade interconnection in Figure 1.54 is equivalent to the identity
system, which leaves the input unchanged.

y y
1 2

y Sx y Sx
1 1 2 2
= =,x x

1 2

t

K RK
2 1
=

v t Ri t( ) ( )=
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FIGURE 1.54 Cascade interconnection of a
system and its inverse.

Example 1.19: The inverse system for y = 2x is just x.
Exercise: Check that the inverse system of the discrete-time running sum

is the first-difference system .

SUMMARY

In this chapter, we introduced the following concepts.

A signal was defined as a function of time, either continuous or discrete.
A system was defined as a mathematical relationship between an input signal
and an output signal.

y n x n x n[ ] [ ] [ ]= 1x k[ ]
k

n

=
y n[ ] =

1

2
y =



Special types of signals were studied: real and complex exponential signals, si-
nusoidal signals, impulse and step signals.
The main properties of a system were introduced: linearity, memory, causality,
time invariance, stability, and invertibility.

TO PROBE FURTHER

There are many introductory textbooks on signals and systems, each organizing
and presenting the material in a particular way. See, for example, Oppenheim,
Willsky, and Nawab 1997; Haykin & Van Veen, 2002; and Kamen & Heck, 1999.
For applications of signal models to specific engineering fields, see, for example,
Gold & Morgan, 1999 for speech and signal processing; Haykin, 2000 for modu-
lated signals in telecommunications; and Bruce, 2000 for biomedical signals. For
further details on system properties, see Chen, 1999.

EXERCISES

Exercises with Solutions

Exercise 1.1

Write the following complex signals in polar form, that is, in the form
for continuous-time signals and 

for discrete-time signals.

(a)

Answer:
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(b)

Answer:

Exercise 1.2

Determine whether the following systems are: (1) memoryless, (2) time-invariant, (3)
linear, (4) causal, or (5) BIBO stable. Justify your answers.

(a)

Answer:
1. Memoryless? No. For example, the output depends on a future

value of the input.
2. Time-invariant? No.

3. Linear? Yes. Let . Then, 
the output of the system with is given by:

4. Causal? No. For example, the output depends on a future value
of the input.

5. Stable? Yes. .

(b)

Answer:
1. Memoryless? No. The system has memory since at time t, it uses the past

value of the input .

2. Time-invariant? Yes. .y t Sx t T
x t T
x t T

y t T1 1 1
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3. Linear? No. The system S is nonlinear since it does not have the superpo-
sition property:

4. Causal? Yes. The system is causal, as the output is a function of the past
and current values of the input and x(t) only.

5. Stable? No. For the bounded input , that is, the
output is unbounded.
(c)

Answer:
1. Memoryless? Yes. The output at time t depends only on the current value

of the input x(t).
2. Time-invariant? No. .
3. Linear? Yes. Let . Then,

4. Causal? Yes. The output at time t depends on the present value of the input
only.

5. Stable? No. Consider the constant input 

, namely, ; that is, the output is unbounded.

(d)

Answer:
1. Memoryless? No. The output y[n] is computed using all future values of

the input.
2. Time-invariant? Yes. .y n Sx n N x n N k y n N
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3. Linear? Yes. Let 

. Then, the output of the system with

is given by

4. Causal? No. The output y[n] depends on future values of the input .

5. Stable? No. For the input signal 

; that is, the output is unbounded.

Exercise 1.3

Find the fundamental periods (T for continuous-time signals, N for discrete-time
signals) of the following periodic signals.

(a)

Answer:

will equal x(t) if , which yields 

. The numerator and denominator are coprime (no common

divisor except 1); thus we take , and the fundamental period is

.
(b)

Answer:

; thus the frequency is and the num-
ber 7351 is prime, so the fundamental period is .N = 20001
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Exercise 1.4

Sketch the signals and 
.

Answer: Signals x[n] and y[n] are sketched in Figure 1.55 and Figure 1.56.

nu n n nu n n u n[ ] [ ] [ ] ( ) [ ]+1 3 4 6
y n[ ] =x n u n u n u n u nn n[ ] [ ] [ ] . [ ] . [ ]= + +3 0 5 0 5 44
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FIGURE 1.55 Signal x[n].

FIGURE 1.56 Signal y[n].

(b) Find expressions for the signals shown in Figure 1.57.

Answer:

y t t k u t k t k u t k u t( ) ( ) ( ) ( ) ( ) (= 2 3 3 2 3 1 3 1 2
=

2 3k
k

)

x t t u t t u t u t u t( ) ( ) ( ) ( ) ( ) ( ) ( )= + + + + +
2

3
3 3

2

3
3 2 22 1 3( ) ( )t t+
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Exercise 1.5

Properties of even and odd signals.
(a) Show that if x[n] is an odd signal, then .

Answer:
For an odd signal,

(b) Show that if x1[n] is odd and x2[n] is even, then their product is odd.

Answer:

(c) Let x[n] be an arbitrary signal with even and odd parts . Show

that .x n x n x n
n

e
n

o
n

2 2 2[ ] [ ] [ ]
=

+

=

+

=

+

= +

x n x n
e o
[ ], [ ]

x n x n x n x n

x n x n x
1 1 2 2

1 2 1

[ ] [ ], [ ] [ ]

[ ] [ ]

= =
= [[ ] [ ]n x n

2

x n x n x x n x x n
n

[ ] [ ] [ ] [ ] [ ] ( [= = = +
=

+

0 0 0and ]] [ ]) ( [ ] [ ])+ = =
=

+

=

+

x n x n x n
n n1 1

0

x n
n

[ ]
=

+

= 0

FIGURE 1.57 Plots of continuous-time signals x(t) and y(t).
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Answer:

(d) Similarly, show that .

Answer:

Exercises

Exercise 1.6

Write the following complex signals in rectangular form: 
for continuous-time signals and for

discrete-time signals.
(a)
(b)

Exercise 1.7

Use the sampling property of the impulse to simplify the following expressions.
(a)

(b)

(c)

Answer:

x n n n k
k

[ ] cos( . ) [ ]=
=

0 2 10
0

x t t t k
k

( ) sin( ) ( )=
=

2
0

x t e t tt( ) cos( ) ( )= 10

x t e u t e u tj t j t( ) ( ) ( )( )= + +2

x t e j t( ) ( )= +2 3

x n a n jb n a n b n[ ] [ ] [ ], [ ], [ ]= + Rb t( ) R
x t a t jb t a t( ) ( ) ( ), ( ),= +

x t dt x t x t dt x t dt
e o e

2 2 2( ) ( ( ) ( )) ( )
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= + =
+ +

+ +2
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2x t x t dt x t dt
e o o
( ) ( ) ( )

� ��� ���
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+ +

= +x t dt x t dt
e o

2 2( ) ( )

x t dt x t dt x t dte o
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x n x n x n x n
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e
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=
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=

+
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Exercise 1.8

Compute the convolution .

Exercise 1.9

Write the following complex signals in (i) polar form and (ii) rectangular form.
Polar form: for continuous-time signals and

for discrete-time signals.
Rectangular form: for continuous-time sig-

nals and for discrete-time signals.

(a)

(b)

Answer:

Exercise 1.10

Determine whether the following systems are (i) memoryless, (ii) time-invariant,
(iii) linear, (iv) causal, or (v) BIBO stable. Justify your answers.

(a) , where the time derivative of is defined as 

.

(b) 

(c) 

(d) 

(e) 

(f) y n x n x n[ ] [ ] [ ]= + 2

y n x n nx n[ ] [ ] [ ]= + +1

y n x k n
k

n

[ ] [ ]=
=

y t tx t( ) ( )= 2 2

y t
t

x t
( )

( )
=

+1 1

d
dt

x t
x t x t t

tt
( ) : lim

( ) ( )=
0

x t( )y t
d
dt

x t( ) ( )=

x n jn e j n
2

2[ ] = +

x t j
t

j1 1
( ) = +

x n a n jb n a n b n[ ] [ ] [ ], [ ], [ ]= + R
x t a t jb t a t b t( ) ( ) ( ), ( ), ( )= + R

x n r n e r n nj n[ ] [ ] , [ ], [ ][ ]= R
x t r t e r t tj t( ) ( ) , ( ), ( )( )= R

( ) ( ) ( ) ( )( )t T e u t T e u t dt t=2 2
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Exercise 1.11

Find the fundamental periods and fundamental frequencies of the following peri-
odic signal.

(a)

(b) . Sketch this

signal.

Answer:

x t e t k u t k u t kt k( ) cos ( ) ( ) ( )( )= ( )2 4 2 2 2 1
=k

x n n e j n[ ] cos( . ) .= 0 01 0 13
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Linear Time-Invariant
Systems

2

In This Chapter

Discrete-Time LTI Systems: The Convolution Sum
Continuous-Time LTI Systems: The Convolution Integral
Properties of Linear Time-Invariant Systems
Summary
To Probe Further
Exercises

((Lecture 5: LTI Systems; Convolution Sum ))

Many physical processes can be represented by, and successfully analyzed
with, linear time-invariant (LTI) systems as models. For example, both a
DC motor or a liquid mixing tank have constant dynamical behavior

(time-invariant) and can be modeled by linear differential equations. Filter circuits
designed with operational amplifiers are usually modeled as LTI systems for analy-
sis. LTI models are also extremely useful for design. A process control engineer
would typically design a level controller for the mixing tank based on a set of lin-
earized, time-invariant differential equations. DC motors are often used in indus-
trial robots and may be controlled using simple LTI controllers designed using LTI
models of the motors and the robot.
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DISCRETE-TIME LTI SYSTEMS: THE CONVOLUTION SUM

It is arguably easier to introduce the concept of convolution in discrete time, which
amounts to a sum, rather than in continuous time, where the convolution is an in-
tegral. This is why we are starting the discussion of LTI systems in discrete time.
We will see that the convolution sum is the mathematical relationship that links the
input and output signals in any linear time-invariant discrete-time system. Given an
LTI system and an input signal x[n], the convolution sum will allow us to compute
the corresponding output signal y[n] of the system.

Representation of Discrete-Time Signals in Terms of Impulses

A discrete-time signal x[n] can be viewed as a linear combination of time-shifted
impulses:

(2.1)

Example 2.1: The finite-support signal x[n] shown in Figure 2.1 is the sum of
four impulses.

x n x k n k
k

[ ] [ ] [ ].=
=

FIGURE 2.1 Decomposition of a discrete-time signal as a sum of shifted
impulses.



Thus the signal can be written as .

Response of an LTI System as a Linear Combination of Impulse Responses

We now turn our attention to the class of linear discrete-time systems to which the
Principle of Superposition applies.

By the Principle of Superposition, the response y[n] of a discrete-time linear
system is the sum of the responses to the individual shifted impulses making up the
input signal x[n].

Let hk[n] be the response of the LTI system to the shifted impulse .

Example 2.2: For , the response to might look like the
one in Figure 2.2.

[ ]n + 4h n
4
[ ]k = 4

[ ]n k

x n n n n n[ ] [ ] [ ] [ ] [ ]= + + + +2 1 2 1 2 2

Linear Time-Invariant Systems 55

FIGURE 2.2 Impulse response for an impulse
occurring at time –4.

Example 2.3: For the input signal 
in Example 2.1, the response of a linear system would be 

.
Thus, the response to the input x[n] can be written as an infinite sum of all the

impulse responses:

(2.2)

If we knew the response of the system to each shifted impulse , we
would be able to calculate the response to any input signal x[n] using Equation 2.2.
It gets better than this: for a linear time-invariant system (the time-invariance prop-
erty is important here), the impulse responses are just shifted versions of the
same impulse response for :k = 0

h n
k
[ ]

[ ]n k

y n x k h n
k

k

[ ] [ ] [ ].=
=

h n h n h n[ ] [ ] [ ]+ +2 2
0 1 2

y n h n[ ] [ ]= +2
1

x n n n n n[ ] [ ] [ ] [ ] [ ]= + + + +2 1 2 1 2 2
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(2.3)

Therefore, the impulse response of an LTI system characterizes it
completely. This is not the case for a linear time-varying system: one has to spec-
ify all the impulse responses hk[n] (an infinite number) to characterize the system.

Example 2.4: Consider the first-order constant-coefficient causal differential
equation

(2.4)

and assume the input signal x(t) is given. It is desired to compute the output 
signal y(t). Suppose that this differential equation is discretized in time in the

following manner for simulation purposes: the derivative is approximated 

by , where is the time step (or the sampling period) and nTs, 

is the discrete time at the sampling instant. Let .
Equation 2.4 then becomes the discrete-time LTI system described by the follow-
ing causal constant-coefficient difference equation:

(2.5)

Its impulse response can be computed recursively with and the ini-
tial condition :

(2.6)
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Hence, the impulse response of the discretized version of the differential equa-

tion is . It should become clear that this discrete-time system is

indeed time-invariant by computing by recursion its response to the impulse
occurring at time N, with the initial condition , which yields

(2.7)

The Convolution Sum

If we substitute for in Equation 2.2, we obtain the convolution sum
that gives the response of a discrete-time LTI system to an arbitrary input.

(2.8)

Remark: In general, for each time n, the summation for the single value y[n]
runs over all values (an infinite number) of the input signal x[n] and of the impulse
response h[n].

The Convolution Operation

More generally, the convolution of two discrete-time signals v[n] and w[n], denoted
as (or sometimes ), is defined as follows:

(2.9)

The convolution operation has the following properties. It is

Commutative:

(2.10)

(after the change of variables )m n k=

v n w n v k w n k v n m w m
k m

[ ] [ ] [ ] [ ] [ ] [ ]= =
= =

== =
=

+

w m v n m w n v n
m

[ ] [ ] [ ] [ ]

v n w n v k w n k
k

[ ] [ ] [ ] [ ].=
=

( )[ ]v w nv n w n[ ] [ ]

y n x k h n k
k

[ ] [ ] [ ]=
=

h n
k
[ ]h n k[ ]

h n h n N
T

T
u n N

N
s

s
n N

[ ] [ ]
( )

[ ].= =
+ +1 3 1

y N[ ] =1 0[ ]n N

u n[ ]
T

T
s

s
n( )+ +1 3 1

h n[ ] =
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Associative:

(2.11)

Distributive:

(2.12)

Commutative with respect to multiplication by a scalar:

(2.13)

Time-shifted when one of the two signals is time-shifted:

(2.14)

Finally, the convolution of a signal with a unit impulse leaves the signal
unchanged (this is just Equation 2.1), and therefore the LTI system defined by
the impulse response is the identity system.h n n[ ] [ ]=

[ ]n

v n w n N v k w n N k v w n N
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Graphical Computation of a Convolution

One way to visualize the convolution sum of Equation 2.8 for simple examples is
to draw the weighted and shifted impulse responses one above the other and to add
them up.

Example 2.5: Let us compute for the 

impulse response and input signal shown in Figure 2.3.

x k h n k[ ] [ ]
0k=0

2

x k h n k[ ] [ ] =
k=

y n[ ] =
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FIGURE 2.3 Graphical computation of a convolution.

Another way to visualize the convolution sum is to draw the signals x[k] and
as functions of k (for a fixed n), multiply them to form the signal g[k], and

then sum all values of g[k]. Both of these approaches to computing a convolution
are included in the interactive Java Convolution applet on the companion CD-
ROM (in D:\Applets\Convolution\SignalGraph\Convolution.html).

Example 2.6: Let us compute y[0] and y[1] for the input signal and impulse re-
sponse of an LTI system shown in Figure 2.4.

h n k[ ]
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Case n = 0:

Step 1: Sketch x[k] and as in Figure 2.5.h k h k[ ] [ ]0 =

FIGURE 2.4 Convolution of an input
signal with an impulse response.

FIGURE 2.5 Impulse response
flipped around the vertical axis.



Step 2: Multiply x[k] and to get g[k] shown in Figure 2.6.h k[ ]
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FIGURE 2.6 Product of flipped impulse
response with input signal for n = 0.

Step 3: Sum all values of g[k] from to to get y[0]:

Case n = 1:

Step 1: Sketch x[k] and (i.e., the signal delayed
by 1) as in Figure 2.7.

h k[ ]h k h k[ ] [ ( )]1 1=

y[ ]0 3=

+k =

FIGURE 2.7 Time-reversed and shifted
impulse response for n = 1.



Step 2: Multiply x[k] and to get g[k] shown in Figure 2.8.h k[ ]1
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FIGURE 2.8 Product of flipped
and shifted impulse response with
input signal for n = 1.

Step 3: Sum all values of g[k] from to to get y[1]:

((Lecture 6: Convolution Sum and Convolution Integral))

Numerical Computation of a Convolution

The numerical computation of a convolution sum is illus-

trated by means of an example. Let us compute the response of an LTI system de-

scribed by its impulse response: to the input pulse signal
x[n] shown in Figure 2.9.

nn( . ) ,

,

0 8 0 5

0 otherwise
h n[ ] =

x k h n k[ ] [ ]
k=

y n[ ] =

y[ ]1 2 3 5= + =

+k =

FIGURE 2.9 Impulse response and input signal for numerical computation of a
convolution.

First, we sketch and x[k], one above the other as shown in Figure 2.10,
taking care to indicate where time n is (here n = 0) as a label attached to the time-
reversed impulse response. The label will move with the impulse response as

is shifted left or right as n changes.h k n h n k[ ( )] [ ]=

h k[ ]



Now, imagine grabbing the whole signal in your hands and bringing it
to by making . Then, you gradually slide the signal back to the
right by increasing n (as is a time delay by n of ), and you fig-
ure out for what values of n the signals and x[k] start to overlap. The
overlapping intervals in time k are used as limits in the convolution sum. What is
important to determine is for what values of n these limits change so that the cal-
culation of the convolution effectively changes.

In doing this for the above example, we find that the problem can be broken
down into five intervals for n.

For n < 0: There is no overlap, so is zero for all k, and hence
. This is the situation in Figure 2.10.

For : There is some overlap as for .
The case n = 2 is shown in Figure 2.11.

We get

(2.15)

where we used the change of variable .m k= 1
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= =1 1
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1
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n n

(( . ) ,0 8 n

k n= 1, ,…g k x k h n k[ ] [ ] [ ]= 01 3n

y n[ ] = 0
x k h n k[ ] [ ]
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h k[ ]h k n[ ( )]

nk =
h k[ ]
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FIGURE 2.10 Time-reversed impulse response and
input signal for numerical computation of a convolution.
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For : for . The case n = 5 is shown
in Figure 2.12.

k = 1 3, ,…g k x k h n k[ ] [ ] [ ]= 04 6n

FIGURE 2.11 Time-reversed and shifted impulse
response for n = 2 with interval of overlap.

FIGURE 2.12 Time-reversed and shifted impulse
response for n = 5 with interval of overlap.



We get

(2.16)

where we used the change of variables .
For : for (see Figure 2.13).n k5 3g k x k h n k[ ] [ ] [ ]= 07 8n
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FIGURE 2.13 Time-reversed and shifted impulse
response for n = 7 with interval of overlap.

We have

(2.17)

where we used the change of variables .
For : the two signals do not overlap, so .y n[ ] = 0x k h n k[ ], [ ]n 9

m k n= ( )5
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In summary, the output signal y[n] of the LTI system as given by 
is

(2.18)

which is sketched in Figure 2.14.

y n

n

nn

[ ]

,

( . ) ,

( . ) ( .=

0 0

5 5 0 8 1 3

5 0 8 5 0 83 )) ,
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n
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4 6

5 0 8 5 0 8 7 8

0 9

3 6

x n h n[ ] [ ]
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FIGURE 2.14 Output signal obtained by numerical
computation of a convolution.

The following MATLAB M-file located on the CD-ROM in D:\Chapter2\
DTconv.m computes the convolution between two discrete-time signals.

%% DTconv.m computes the convolution of two discrete-time

%% signals and plots the resulting signal

% define the signals

% first value is for time n=0

x=[1 4 -3 -2 -1];

h=[2 2 2 2 -3 -3 -3 -3 -3];

% compute the convolution

y=conv(x,h);

% time vector

n=0:1:length(y)-1;

%plot real and imaginary parts

stem(n,y)



CONTINUOUS-TIME LTI SYSTEMS: THE CONVOLUTION INTEGRAL

In much the same way as for discrete-time systems, the response of a continuous-
time LTI system can be computed by a convolution of the system’s impulse re-
sponse with the input signal, using a convolution integral rather than a sum.

Representation of Continuous-Time Signals in Terms of Impulses

A continuous-time signal x(t) can be viewed as a linear combination of a contin-
uum of impulses (an uncountable set of impulses infinitely close to one another):

(2.19)

We arrive at this result by “chopping up” the signal x(t) in sections of width 
as shown in Figure 2.15 and taking the sum in Equation 2.20 to an integral as

.0

x t x t d( ) ( ) ( )=
+
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FIGURE 2.15 Staircase approximation to a
continuous-time signal.

Recalling our definition of the unit pulse (width and height ), we
can define a signal as a linear combination of delayed pulses of height 
(each rectangular section in the above plot.)

(2.20)

Taking the limit as , we obtain the integral of Equation 2.19 above.

Remarks: As ,

The summation approaches an integral.
, so .x k x( ) ( )k

0

0

ˆ( ) : ( ) ( )x t x k t k
k

=
=

x k( )ˆ( )x t

1( )t



.
.

Equation 2.19 can also be arrived at by using the sampling property of the im-
pulse function. If we consider t to be fixed and to be the time variable, then we
have

(2.21)

Hence,

(2.22)

Impulse Response and the Convolution Integral Representation 
of a Continuous-Time LTI System

The linearity property of an LTI system allows us to apply the Principle of Super-
position to calculate the system’s response to the piecewise-constant input signal

defined previously. Let be the “pulse responses” of the linear time-
varying system S to the unit area pulses for . Then, by
linearity, the response of S to is simply given by

(2.23)

Note that the response tends to the impulse response (corre-
sponding to an impulse at time ) as . Then, at the limit, we get the response
of system S to the input signal :

(2.24)

For an LTI (not time-varying) system S, the impulse responses are all the
same as , except that they are shifted by , just like the discrete-time case. We
define the unit impulse response (or impulse response for short) of the LTI system
S as follows:
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=

=
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+
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Then, the response of the LTI system S is given by the convolution 
integral

(2.26)

Note that an LTI system is completely determined by its impulse response.

The Convolution Operation

Recall that we defined the convolution operation for discrete-time signals in the
previous section. The convolution operation for continuous-time signals is defined
in an analogous manner. The convolution of v(t) and w(t), denoted as ,
or sometimes , is defined as follows:

(2.27)

Just like the discrete-time case, the convolution operation is (check as an 
exercise):

Commutative: 
Associative: 
Distributive: 
Commutative with respect to multiplication by a scalar: 

Finally, the convolution of any signal with a unit impulse leaves the signal un-
changed: . Hence, if the impulse response of an LTI system is
the unit impulse, then this system is the identity system. This is expressed in
Equation 2.19.

((Lecture 7: Convolution Integral ))

Calculation of the Convolution Integral

The calculation of a convolution integral is very similar to the calculation of a con-
volution sum. To evaluate the integral in Equation 2.26 for a specific value of t, we
first obtain the signal viewed as a function of , then we multiply it by x( )
to obtain the function g( ), and finally we integrate g( ) to get y(t).

h t( )

v t t v t( ) ( ) ( )=

v t w t v t w t( ) ( ) ( ) ( )=
v t w t( ) ( ) =

r t v t w t r t v t r t w t( ) ( ) ( ) ( ) ( ) ( ) ( )+ = +
r t v t w t r t v t w t( ) ( ) ( ) ( ) ( ) ( )=
v t w t w t v t( ) ( ) ( ) ( )=

v t w t v w t d( ) ( ) ( ) ( )=
+

( )( )v w t
v t w t( ) ( )

y t x h t d( ) ( ) ( )=
+
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We now introduce a method to obtain the graph of from the graph of
h( ):

Step 1: Sketch the time-reversed impulse response . This involves
flipping the graph of h( ) around the vertical axis.

Step 2: Then, shift this new function to the right by t (time delay) for t > 0 to
obtain , or to the left by (time advance) for t < 0 to
obtain .

This method has the advantage of always starting from a single sketch of
.

Example 2.7: Given h( ) in Figure 2.16, sketch for and t = 2.
Time reversal is shown in Figure 2.17, and the shifts to the left for and

to the right for t = 2 are shown in Figure 2.18 and Figure 2.19, respectively.
t = 2

t = 2h t( )

h( )

h t h t( ( )) ( )+ =
| |th t h t( ( )) ( )=

h( )

h t( )
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FIGURE 2.16 Impulse
response of a continuous-
time system.

FIGURE 2.17 Time-reversed
impulse response.

FIGURE 2.18 Time-reversed impulse
response shifted to the left.

FIGURE 2.19 Time-reversed
impulse response shifted to the
right.



Remark: A convolution being commutative, sometimes it proves easier to work
with h( ) and , instead of x( ) and .

Now, we look at a convolution example. We will compute the response 
of a continuous-time LTI system described by its impulse response

to the step input signal , as shown in Figure 2.20.
Sketch as in Figure 2.21.
Immediately, we see that for in Figure 2.22, the two signals x( ) and

do not overlap, so and hence, for .
However, for , the two functions overlap, as can be seen in Figure 2.23,

and for .0 < < tg x h t( ) ( ) ( )= 0
t > 0

t 0y t( ) = 0g x h t( ) ( ) ( )= = 0h t( )
t 0

h( )
x t u t( ) ( )=h t e u t aat( ) ( ),= > 0

h t( )x t( )
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FIGURE 2.21 Time-reversed
impulse response.

FIGURE 2.22 Time-reversed
impulse response shifted to
the left for negative times.

FIGURE 2.23 Time-
reversed impulse response
shifted to the right for
positive times.

FIGURE 2.20 Exponential impulse response and unit step input to
be convolved.

Thus, for , we have

(2.28)

y t g d g d

x h t d
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= =

=
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0 0

1
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Finally, combining the results for and , we get the response

(2.29)

Since “practice makes perfect,” let us look at a second example.

Example 2.8: We want to calculate the response of the continuous-time LTI 
system described by its impulse response to the input signal

(see Figure 2.24).x t e u tt( ) ( ( ))( )= 2 1 1
h t u t( ) ( )= +1

y t
a

e u t tat( ) ( ) ( ), .= < <
1

1

t > 0t 0
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FIGURE 2.24 Impulse response and input signal to be convolved.

The time-reversed impulse response is plotted in Figure 2.25.
We can see from Figure 2.26 and Figure 2.24 that there are two distinct cases:

for , the two functions overlap over the interval .< < +t 1t 0

h( )

FIGURE 2.25 Time-reversed
impulse response.

FIGURE 2.26 Time-reversed
impulse response shifted to the left.



For t > 0 the two functions overlap over the fixed interval (see Fig-
ure 2.27). Thus, for , we get

(2.30)

and for t > 0 we get

(2.31)

Piecing the two intervals together we obtain the response

(2.32)

This sum of two signals forming the output is illustrated in Figure 2.28.
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FIGURE 2.27 Time-reversed impulse
response shifted to the right.
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((Lecture 8: Properties of LTI Systems))

PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

LTI systems are completely characterized by their impulse response (a nonlinear
system is not). It should be no surprise that their properties are also characterized
by their impulse response.

The Commutative Property of LTI Systems

The output of an LTI system with input x and impulse response h is identical to the
output of an LTI system with input h and impulse response x, as suggested by the
block diagrams in Figure 2.29. This results from the fact that a convolution is com-
mutative, as we have already seen.

FIGURE 2.28 Overall response of the LTI system
as a sum of two signals.



(2.33)

(2.34)y t x h t d h x t d( ) ( ) ( ) ( ) ( )= =
+ +

y n x k h n k h k x n k
k k

[ ] [ ] [ ] [ ] [ ]= =
= =
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FIGURE 2.29 Equivalent block diagrams
of LTI systems with respect to the output.

The Distributive Property of LTI Systems

The distributive property of LTI systems comes from the fact that a convolution is
distributive:

(2.35)

which means that summing the outputs of two systems subjected to the same input
is equivalent to a system with an impulse response equal to the sum of the impulse
responses of the two individual systems, as shown in Figure 2.30.

x h h x h x h+ = +( )
1 2 1 2

FIGURE 2.30 System equivalent to a
parallel interconnection of LTI systems.
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Application: The distributive property sometimes facilitates the evaluation of a
convolution integral.

Example 2.9: Suppose we want to calculate the output of an LTI system with 

impulse response to the input signal ; it is

easier to break down h[n] as a sum of its two components, and

, then calculate the two convolutions 
and sum them to obtain y[n].

The Associative Property of LTI Systems

The associative property of LTI systems comes from the convolution operation
being associative.

(2.36)

This implies that a cascade of two (or more) LTI systems can be reduced to a
single system with impulse response equal to the convolution of the impulse re-
sponses of the cascaded systems. Furthermore, from the commutative property, the
order of the systems in the cascade can be modified without changing the impulse
response of the overall system.

y x h h x h h= =( ) ( )
1 2 1 2

y n x n h n
2 2
[ ] [ ] [ ]=

y n x n h n
1 1
[ ] [ ] [ ],=h n u nn

2
4[ ] [ ]=

u n[ ]
n

1

4
h n

1
[ ] =

x n u n[ ] [ ]=u n u nn[ ] [ ]+ 4
n

1

4h n[ ] =

FIGURE 2.31 System equivalent
to a cascade interconnection of
LTI systems.

Application: A bandpass filter design problem is sometimes approached in two
stages, where a first filter stage with impulse response would filter out
the high frequencies in the input signal, while a high-pass stage with impulse re-
sponse would filter out the low frequencies and DC component of the
input signal. Once the two stages are designed (i.e., their impulse responses have

h t
hipass

( )

h t
lowpass

( )



been determined), they are combined together as for
a more efficient implementation as an op-amp circuit (one may be able to save a
few op-amps while reducing the potential sources of noise).

LTI Systems Without Memory

Recall that a system S is memoryless if its output at any time depends only on the
value of its input at that same time.

For an LTI system, this property can only hold if its impulse response is itself
an impulse, as is easily seen from the convolution Equations 2.8 and 2.26. When
h[n] and h(t) are impulses, and are nonzero only for and

, and then and

(2.37)

Thus, to be memoryless, a continuous-time LTI system must have an impulse
response of the form , and a discrete-time LTI system must have an im-
pulse response of the form . The LTI system has memory otherwise.

Invertibility of LTI Systems

We have already seen that a system S is invertible if and only if there exists an in-
verse system for it such that is the identity system.

For an LTI system with impulse response h, this is equivalent to the existence
of another system with impulse response such that , as shown in Fig-
ure 2.32.

h h =
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h
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FIGURE 2.32 Cascade of an LTI
system and its inverse.

Application: For low-distortion transmission of a signal over a communication
channel (telephone line, TV cable, radio link), the signal at the receiving end is
often processed through a filter whose impulse response is designed to be the in-
verse of the impulse response of the communication channel.



Example 2.10: A system with impulse response delays its input
signal by time T. Its inverse system is a time advance of T with impulse response

, as we now show. (Here we make use of the sampling property of
the impulse function and we use the fact that .)

(2.38)

Causality of an LTI System

Recall that a system is causal if its output depends only on past and/or present val-
ues of the input signal. Specifically, for a discrete-time LTI system, this require-
ment is that y[n] should not depend on x[k] for k > n. Thus, looking back at the
convolution sum in Equation 2.8, the impulse response should satisfy 
for k > n, which is equivalent to for k < 0. Therefore, a discrete-time LTI
system is causal if and only if its impulse response is zero for negative times. This
makes sense, as a causal system should not exhibit a response before the impulse
is applied at time n = 0.

A similar analysis for a continuous-time LTI system leads us to the same con-
clusion. Namely, a continuous-time LTI system is causal if and only if

.

Example 2.11: A linear time-invariant circuit is causal. In fact, virtually all phys-
ical systems are causal since it is impossible for them to predict the future.

BIBO Stability of LTI Systems

Recall that a system is BIBO stable if for every bounded input, the output is also
bounded. Let us consider a discrete-time system with impulse response h[n]. As-
sume that the discrete-time signal x[n] is bounded by B for all n. Then, the magni-
tude of the system’s output can be bounded using the triangle inequality as follows:
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(2.39)

and we conclude that if , then is bounded and the LTI system

is stable. It turns out that this condition on the impulse response is also necessary

for BIBO stability, as we now show. Suppose that . Then we can

construct an input signal using the so-called signum function 

, which is bounded by 1 and leads to an output that is unbounded at 

n = 0:

(2.40)

Therefore, a discrete-time LTI system is BIBO stable if and only if 
, that is, the impulse response must be absolutely summable.

The same analysis applies to continuous-time LTI systems for which BIBO

stability is equivalent to , that is, for which the impulse response 

is absolutely integrable.

Example 2.12: The discrete-time system with impulse response 

is unstable because does not converge as .

Example 2.13: Is the continuous-time integrator system stable?

Let us calculate its impulse response first: , the unit step. A

unit step is not absolutely integrable, so the system is unstable.

The Unit Step Response of an LTI System

The step response of an LTI system is simply the response of the system to a unit
step. It conveys a lot of information about the system. For a discrete-time system
with impulse response h[n], the step response is .
This convolution can be interpreted as the response of the accumulator system
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with impulse response u[n] to the signal h[n]. Hence, the step response of a discrete-
time LTI system is just the running sum of its impulse response:

(2.41)

Conversely, the impulse response of the system is the output of the first-
difference system with the step response as the input:

(2.42)

For a continuous-time system with impulse response h(t), the step response is
. This convolution can also be interpreted as the re-

sponse of the integrator system with impulse response u(t) to the signal h(t). Again,
the step response of a continuous-time LTI system is just the running integral of its
impulse response:

(2.43)

Conversely, the first-order differentation system (the inverse system of the in-
tegrator), applied to the step response, yields the impulse response of the system:

(2.44)

Example 2.14: The impulse response and the step response of the RC
circuit of Figure 2.33 are shown in Figure 2.34.

h t
d

dt
s t( ) ( ).=

s t h d
t

( ) ( ) .=

s t u t h t h t u t( ) ( ) ( ) ( ) ( )= =

h n s n s n[ ] [ ] [ ].= 1

s n h k
n

[ ] [ ].=

FIGURE 2.33 Setup for step response of an RC circuit.

FIGURE 2.34 Impulse response and step response of the RC circuit.



SUMMARY

In this chapter, we have studied linear time-invariant systems.

An LTI system is completely characterized by its impulse response.
The input-output relationship of an LTI discrete-time system is given by the
convolution sum of the system’s impulse response with the input signal.
The input-output relationship of an LTI continuous-time system is given by the
convolution integral of the system’s impulse response with the input signal.
Given the impulse response of an LTI system and a specific input signal, the
convolution giving the output signal can be computed using a graphical ap-
proach or a numerical approach.
The main properties of an LTI system were derived in terms of its impulse
response.

TO PROBE FURTHER

For a more detailed presentation of linear time-invariant and time-varying systems,
including multi-input multi-output systems, see Chen, 1999.

EXERCISES

Exercises with Solutions

Exercise 2.1

Compute the convolutions :
(a) . Sketch the output signal y[n] for

the case , .

Answer:

y n x k h n k

u k u n k

k

k n k

k

[ ] [ ] [ ]

[ ] [ ]

=

=

=

+

=

++

=

= n

k

k

n

n
0

0,

= 0 9.= 0 8.
x n u n h n u nn n[ ] [ ], [ ] [ ],= =

y n x n h n[ ] [ ] [ ]=
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For , we obtain

which is plotted in Figure 2.35.

y n u n
n n

n[ ]
( . ) ( . )
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[ ] ( . )= =

+ +0 9 0 8
0 1

9 0 9
1 1

8 0 8( . ) [ ]n u n

= =0 8 0 9. , .

+

= n

n 1

1

1

=
+ +

u n

n n

[ ]

1 1

u n[ ],

FIGURE 2.35 Output of discrete-time LTI system
obtained by convolution in Exercise 2.1(a).

(b)

Answer:
= u[n] – u[n – 2].

(c) The input signal and impulse response depicted in Figure 2.36. Sketch the
output signal y[n].

Answer:
Let us compute this one by time-reversing and shifting x[k] (note that time-

reversing and shifting h[k] would lead to the same answer) as shown in Figure 2.37.

k k u n k[ ] [ ] [ ]( )2
k==

+
x k h n k[ ] [ ] =

k=

+

y n[ ] =

x n n n h n u n[ ] [ ] [ ], [ ] [ ]= =2



Intervals:

Figure 2.38 shows a plot of the output signal:
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FIGURE 2.36 Input signal and impulse
response in Problem 2.1(c).

FIGURE 2.37 Time-reversing and shifting the
input signal to compute the convolution in
Exercise 2.1(c).

FIGURE 2.38 Output of discrete-time LTI system
obtained by convolution in Exercise 2.1(c).
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(d) 

Answer:

Exercise 2.2

Compute and sketch the output y(t) of the continuous-time LTI system with im-
pulse response h(t) for an input signal x(t) as depicted in Figure 2.39.
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=
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=

+
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1 1 0

0 0
0

= +( ) [ ]n u n1

x n u n h n u n[ ] [ ], [ ] [ ]= =

FIGURE 2.39 Input signal and impulse response in
Exercise 2.2.



Answer: Let us time-reverse and shift the impulse response. The intervals of inter-
est are

t < 1: no overlap as seen in Figure 2.40, so .y t( ) = 0
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FIGURE 2.40 Time-reversed and shifted impulse response and
input signal do not overlap for t < 1, Exercise 2.2.

: overlap for as shown in Figure 2.41. Then,

y t h t x d e d e
t

t
t

( ) ( ) ( ) ( ) (= = =
0

1
1

0

1
tt

t
te t= <1

0

1
11 1 4) ( )( ),

0 1< < t1 4<t

FIGURE 2.41 Overlap between the impulse response and the
input for 1 t < 4 in Exercise 2.2.
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: overlap for as shown in Figure 2.42. Then,

y t h t x d e d et t( ) ( ) ( ) ( ) (= = =
0

3
1

0

3
11

0

3
4 1 4 1 4) ( ) ( ) ,= =e e e e e tt t t

0 3< <t 4

FIGURE 2.42 Overlap between the impulse response and the
input for t ≥ 4 in Exercise 2.2.

FIGURE 2.43 Output signal in Exercise 2.2.

Finally, the output signal shown in Figure 2.43 can be written as follows:
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Exercises

Exercise 2.3

Compute the output y(t) of the continuous-time LTI system with impulse response
subjected to the input signal .

Answer:

Exercise 2.4

Determine whether the discrete-time LTI system with impulse response
is BIBO stable. Is it causal?

Exercise 2.5

Compute the step response of the LTI system with impulse response
.

Answer:

Exercise 2.6

Compute the output y(t) of the continuous-time LTI system with impulse response
h(t) for an input signal x(t) as depicted in Figure 2.44.

h t e t u tt( ) cos( ) ( )= 2

h n u nn[ ] ( . ) [ ]= 0 9 4

x t u t u t( ) ( ) ( )= +1 1h t u t u t( ) ( ) ( )= +1 1
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FIGURE 2.44 Impulse response and input signal
in Exercise 2.6.
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Exercise 2.7

Compute the convolutions .
(a) The input signal x[n] and impulse response h[n] are depicted in Figure

2.45. Sketch the output signal y[n].

y n x n h n[ ] [ ] [ ]=

FIGURE 2.45 Input signal and impulse response
in Exercise 2.7.

(b) . Sketch the input signal x[n],
the impulse response h[n], and the output signal y[n].

Answer:

Exercise 2.8

Compute and sketch the output y(t) of the continuous-time LTI system with im-
pulse response h(t) for an input signal x(t) as depicted in Figure 2.46.

Exercise 2.9

Compute the response of an LTI system described by its impulse response 

to the input signal shown in Figure 2.47.
nn( . ) ,

,

0 8 0 5

0 otherwise

h n[ ] =

x n u n u n h n u n u n[ ] [ ] [ ], [ ] [ ] [ ]= = +4 4



Answer:

Problem 2.10

The input signal of the LTI system shown in Figure 2.48 is the following:

The impulse responses of the subsystems are .
(a) Compute the impulse response h(t) of the overall system.

(b) Find an equivalent system (same impulse response) configured as a paral-
lel interconnection of two LTI subsystems.

(c) Sketch the input signal x(t). Compute the output signal y(t).

h t e u t h t e u tt t
1 2

2( ) ( ), ( ) ( )= =

x t u t u t t( ) ( ) ( ) ( )= + +2 1
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FIGURE 2.46 Impulse response and input signal in
Exercise 2.8.

FIGURE 2.47 Input signal and impulse response in Exercise 2.9.
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FIGURE 2.48 Cascaded LTI systems in Exercise 2.10.
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Differential and Difference
LTI Systems

3

In This Chapter

Causal LTI Systems Described by Differential Equations
Causal LTI Systems Described by Difference Equations
Impulse Response of a Differential LTI System
Impulse Response of a Difference LTI System
Characteristic Polynomials and Stability of Differential and 
Difference Systems
Time Constant and Natural Frequency of a First-Order LTI 
Differential System
Eigenfunctions of LTI Difference and Differential Systems
Summary
To Probe Further
Exercises

((Lecture 9: Definition of Differential and Difference Systems))

Differential and difference linear time-invariant (LTI) systems constitute an
extremely important class of systems in engineering. They are used in cir-
cuit analysis, filter design, controller design, process modeling, and in

many other applications. We will review the classical solution approach for such
systems. Figure 3.1 shows that differential systems form a subset of the set of con-
tinuous-time LTI systems. A consequence of this set diagram is that any differen-
tial system has an impulse response. The same is true for difference systems. We
will show techniques to compute their impulse response.
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CAUSAL LTI SYSTEMS DESCRIBED BY 
DIFFERENTIAL EQUATIONS

Differential systems form the class of systems for which the input and output sig-
nals are related implicitly through a linear, constant coefficient ordinary differen-
tial equation. Note that partial differential equations, such as the heat equation, are
excluded here, as they represent distributed-parameter or infinite-dimensional
systems, which are out of the scope of this book.

Example 3.1: Consider a first-order differential equation relating the input x(t) to
the output y(t):

(3.1)

This equation could represent the evolution of the velocity y(t) in meters per
second of a car of mass m = 1000 kg, subjected to an aerodynamic drag force pro-
portional to its speed Dy(t), where and in which x(t) is the tractive
force in newtons applied on the car (Figure 3.2). According to Newton’s law, the
sum of forces accelerates the car so that we can write m , where
the derivative of the velocity is the car’s acceleration. Rearranging this equa-
tion, we obtain Equation 3.1. Note that the aerodynamic drag force is more typi-
cally modeled as being proportional to the square of the velocity of the vehicle, but
this leads to a nonlinear differential equation, which is beyond the scope of this
book. A version of the car’s dynamics linearized around an operating velocity, such

dy t

dt

( )
Dy t x t( ) ( )= − +dy t

dt

( )

N

m/sD = 300

1000 300
dy t

dt
y t x t

( )
( ) ( )+ =

FIGURE 3.1 Differential systems form a subset of
continuous-time LTI systems.



as given in Equation 3.1, would often be used in a preliminary analysis. Given the
input signal x(t), that is, the tractive force, we would normally have to solve the dif-
ferential equation to obtain the output signal (the response) of the system, that is,
the speed of the car.
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FIGURE 3.2 Forces acting on a car.

In general, an Nth-order linear constant coefficient differential equation has the
form

(3.2)

which can be expanded to

(3.3)

The constant coefficients and are assumed to be real, and some of
them may be equal to zero, although it is assumed that without loss of gen-
erality. The order of the differential equation is defined as the order of the highest
derivative of the output present in the equation. To find a solution to a differential
equation of this form, we need more information than the equation provides. We
need N initial conditions (or auxiliary conditions) on the output variable y(t) and its
derivatives to be able to calculate a solution.

Recall from previous math courses that the complete solution to Equation 3.2
is given by the sum of the homogeneous solution of the differential equation (a
solution with the input signal set to zero) and of a particular solution (an output
signal that satisfies the differential equation), also called the forced response of the
system.

The usual terminology is as follows:

Forced response of the system = particular solution (usually has the same form
as the input signal)
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b
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Natural response of the system = homogeneous solution (depends on initial
conditions and forced response)

A few authors use the term forced response as meaning the system’s response
to the input with zero initial conditions. However, in this book, and in most of the
relevant literature, such a response is called a zero-state response (more on this
later.)

Example 3.2: Consider the LTI system described by the causal linear constant
coefficient differential Equation 3.1. We will calculate the output of this system,
that is, the car velocity, from a standstill, to the input tractive force signal

. This input signal could correspond to the driver stepping 
on the gas pedal from a standstill and then rapidly easing the throttle. As stated
above, the solution is composed of a homogeneous response (natural response) and
a particular solution (forced response) of the system:

(3.4)

where the particular solution satisfies Equation 3.1, and the homogeneous solution
yh(t) satisfies

(3.5)

Step 1: For the particular solution for t > 0, we consider a signal yp(t) of the
same form as x(t) for t > 0: , where coefficient is to be de-
termined. Substituting the exponentials for x(t) and yp(t) in Equation 3.1, we
get

(3.6)

which simplifies to and yields .
Thus, we have

(3.7)

Remark: The particular solution seems to indicate a negative velocity, that is,
the car moving backward, which would not make sense, but the full solution needs
to be considered, not just the particular solution.
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Step 2: Now we want to determine yh(t), the natural response of the system.
We assume a solution of the form of an exponential: yh(t) = Aest, where A ≠ 0 .
Substituting this exponential into Equation 3.5, we get

(3.8)

which simplifies to . This equation holds for . Also, with
this value for s, is a solution to the homogeneous Equation 3.5 for any
choice of A.

Combining the natural response and the forced response, we find the solution
to the differential Equation 3.1:

(3.9)

Now, because we have not yet specified an initial condition on y(t), this re-
sponse is not completely determined, as the value of A is still unknown.

Strictly speaking, for causal LTI systems defined by linear constant-coefficient
differential equations, the initial conditions must be ,
what is called initial rest. That is, if at least one initial condition is nonzero, then
strictly speaking, the system is nonlinear. In practice, we often encounter nonzero
initial conditions and still refer to the system as being linear.

In Example 3.2, initial rest implies that y(0) = 0, so that

(3.10)

and we get A = 2.941. Thus, for t > 0, the car velocity is given by

(3.11)

What about the negative times t < 0? The condition of initial rest and the
causality of the system imply that since . Therefore,
we can write the speed of the car as follows:

(3.12)

This speed signal is plotted in Figure 3.3, and we can see that the car is mov-
ing forward, as expected.
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The above remark on initial rest is true in general for causal LTI systems, as we
now show. A linear system is causal if its output depends only on past and present
values of x(t), but for a linear system y = Sx, the output to the zero input is zero, as

. Since we assumed that and that y(t) only de-
pends on past or current values of the input, then we have .

The condition of initial rest means that the output of the causal system is zero
until the time when the input becomes nonzero.

CAUSAL LTI SYSTEMS DESCRIBED BY DIFFERENCE EQUATIONS

In a causal LTI difference system, the discrete-time input and output signals are re-
lated implicitly through a linear constant-coefficient difference equation.

In general, an Nth-order linear constant coefficient difference equation has the
form:

(3.13)

which can be expanded to

(3.14)a y n N a y n a y n b x n M b x n
N M
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FIGURE 3.3 Car speed signal as the solution of a
differential equation.



The constant coefficients and are assumed to be real, and although
some of them may be equal to zero, it is assumed that without loss of gen-
erality. The order of the difference equation is defined as the longest time delay of
the output present in the equation. To find a solution to the difference equation, we
need more information than what the equation provides. We need N initial condi-
tions (or auxiliary conditions) on the output variable (its N past values) to be able
to compute a specific solution.

General Solution

A general solution to Equation 3.13 can be expressed as the sum of a homogeneous

solution (natural response) to and a particular solution (forced 

response), in a manner analogous to the continuous-time case.

(3.15)

The concept of initial rest of the LTI causal system described by the difference
equation here means that implies .

Example 3.3: Consider the first-order difference equation initially at rest:

(3.16)

The solution is composed of a homogeneous response (natural response), and
a particular solution (forced response) of the system:

(3.17)

where the particular solution satisfies Equation 3.16 for n ≥ 0, and the homoge-
neous solution satisfies

(3.18)

For the particular solution for n ≥ 0, we look for a signal yp[n] of the same form
as x[n]: . Then, we get

(3.19)

Y Y

Y

n n n( . ) . ( . ) ( . )

. ( . )

− + − = −
⇔

+ −

−0 8 0 5 0 8 0 8

1 0 5 0 8

1

−−⎡
⎣

⎤
⎦ =

=

1 1

8
3

Y ,

y n Yp
n[ ] ( . )= −0 8

y n y nh h[ ] . [ ] .+ − =0 5 1 0

y n y n y nh p[ ] [ ] [ ],= +

y n y n u nn[ ] . [ ] ( . ) [ ].+ − = −0 5 1 0 8

y n n n[ ] ,= ∀ <0
0

x n n n[ ] ,= ∀ <0
0

y n y n y n
h p

[ ] [ ] [ ].= +

a y n k
k

[ ]− =∑ 0
k

N

=
∑

0

a
N
≠ 0

b
i i

M{ } =1
a

i i

N{ } =1

Differential and Difference LTI Systems 97



which yields

(3.20)

Now let us determine yh[n], the natural response of the system. We hypothesize
a solution of the form of an exponential signal: . Substituting this ex-
ponential in Equation 3.18, we get

(3.21)

With this value for z, is a solution to the homogeneous equa-
tion for any choice of A. Combining the natural response and the forced response,
we find the solution to the difference Equation 3.16 for n ≥ 0:

(3.22)

The assumption of initial rest implies y [–1] = 0, but we need to use an initial
condition at a time where the forced response exists ( for n ≥ 0), that is, y[0], which
can be obtained by a simple recursion.

(3.23)

Note that this remark also holds for higher-order systems. For instance, the re-
sponse of a second-order system initially at rest satisfies the conditions y [–2] =
y[–1] = 0, but y[0], y[1] must be computed recursively and used as new initial con-
ditions in order to obtain the correct coefficients in the homogeneous response. In
our example, the coefficient is computed as follows:

(3.24)
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Therefore, the complete solution is (check that it satisfies Equation 3.16 as an
exercise)

(3.25)

Recursive Solution

In the discrete-time case, we have an alternative to compute y[n]: we can compute
it recursively using Equation 3.13 rearranged so that all the terms are brought to the
right-hand side, except y[n]:

(3.26)

Suppose that the system is initially at rest and that x[n] has nonzero values
starting at n = 0. Then, the condition of initial rest means that y [–1] = y[–2] = . . .

= y[–N] = 0, and one can start computing y[n] recursively. This is often how digi-
tal filters are implemented on a computer or a digital signal processor board. This
is also how a simulation of the response of a differential equation is typically com-
puted: first, the differential equation is discretized at a given sampling rate to ob-
tain a difference equation, and then the response of the difference equation is
computed recursively. We will talk about sampling and system discretization in
some detail in subsequent chapters.

Example 3.4: Consider the difference equation:

(3.27)

Taking the second and third terms on the left-hand side of Equation 3.27 to the
right-hand side, we obtain the recursive form of the difference equation:

(3.28)

Assuming initial rest and that the input is an impulse , we have
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(3.29)

The following MATLAB program, which can be found on the CD-ROM in
D:\Chapter3\recursion.m, computes and plots the response of the difference system
in Example 3.4 by recursion.

%% recursion.m computes the response of a difference system recursively

% time vector

n=0:1:15;

% define the input signal

x=[1 zeros(1,length(n)-1)];

y=zeros(1,length(n));

% initial conditions

yn_1=0;

yn_2=0;

xn_1=0;

xn=0;

% recursion

for k=1:length(n)

xn=x(k);

yn=(5/6)*yn_1-(1/6)*yn_2+3*xn-2*xn_1;

y(k)=yn;

yn_2=yn_1;

yn_1=yn;

xn_1=xn;

end

% plot output

stem(n,y)
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Note that because this system is LTI, it is completely determined by its impulse
response. Thus, the response to the unit impulse that we obtain here numerically by
recursion is actually the impulse response of the system. For a simpler first-order
system, it is often easy to find the “general term” describing the impulse response
h[n] for any time step n. For example, you can check that the causal LTI system de-
scribed by the difference equation,

(3.30)

has an impulse response given by .

((Lecture 10: Impulse Response of a Differential System))

IMPULSE RESPONSE OF A DIFFERENTIAL LTI SYSTEM

Consider again the general form of a causal LTI differential system of order N:

(3.31)

In this section, we give two methods to compute the impulse response of such
a system.

Method 1: Impulse Response Obtained by Linear Combination of Impulse
Responses of the Left-Hand Side of the Differential Equation

The step-by-step procedure to find the impulse response of a differential LTI sys-
tem is as follows:

1. Replace the whole right-hand side of the differential Equation 3.31 by δ(t).
2. Integrate this new equation from t = 0– to t = 0+ to find a set of initial con-

ditions at t = 0.
3. Calculate the homogeneous response ha(t) to the homogeneous equation

with these initial conditions.
4. Finally, differentiate the homogeneous response ha(t) and use linear super-

position according to the right-hand side of the differential equation to
form the overall response of the system.

The procedure is based on the properties of linearity and commutativity of LTI
systems. Differential systems can be seen as the combination of two subsystems,
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each one defined by a side of the differential equation, as illustrated in Figure 3.4.
The first subsystem processes the input signal by implementing the right-hand side
of the equation, that is, by forming a linear combination of the input and its deriv-
atives. The second subsystem implements the left-hand side of the differential
equation, with its input being the output of the first subsystem. Both of these sub-
systems are LTI, and therefore each one has an impulse response. Let the impulse
response of the second one be denoted as ha(t). Another consequence of the LTI
properties is that, by commutativity, the order of the subsystems can be inter-
changed, as shown in  Figure 3.5.

FIGURE 3.4 Differential system as the cascade of two LTI subsystems.

The block diagram in Figure 3.5 suggests how the procedure works. Steps 1–3
compute the impulse response ha(t) of the first block, and Step 4 computes the im-
pulse response of the overall differential system by applying the second block (the
right-hand side of the differential equation) to ha(t) in order to get h(t).

Step 1: Under the assumption that and the system is initially at rest,
that is, 

y
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FIGURE 3.5 Cascade of two LTI subsystems equivalent to the differential system.



we first replace the right-hand side of Equation 3.31 with a single unit impulse:

(3.32)

Step 2: To solve this equation for ha(t), we first observe that the impulse can
only be generated by the highest-order derivative (i.e., k = N) of ha(t). Other-
wise, we would have derivatives of the impulse function in the right-hand side

of Equation 3.5. This means that the functions are
smooth or have finite discontinuities at worst. Such functions integrated over
an infinitesimally small interval simply vanish. This important observation
(make sure you understand it!) gives us the first N – 1 initial conditions for ha(t)
when we integrate those functions from t = 0– to t = 0+:

(3.33)

Then, integrating both sides of Equation 3.32 from t = 0– to t = 0+, we obtain

(3.34)

which gives us our Nth initial condition at t = 0+:

(3.35)

Step 3: Thus, starting at time t = 0+, we need to solve the homogeneous
equation,

(3.36)

subject to the above initial conditions. Assume that the solution has the form of
a complex exponential Aest for t > 0, where . Substituting this expo-
nential into Equation 3.36, we get a polynomial in s multiplying an exponen-
tial on the left-hand side:
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With the assumption that A ≠ 0, this equation holds if and only if the charac-

teristic polynomial vanishes at the complex number s:

(3.38)

By the fundamental theorem of algebra, Equation 3.38 has at most N distinct
complex roots. Assume for simplicity that the N roots are distinct, and let them be
denoted as . This means that there are N distinct functions that satisfy
the homogeneous Equation 3.36. Then, the solution to Equation 3.36 can be writ-
ten as a linear combination of these complex exponentials:

(3.39)

The N complex coefficients can be computed using the initial conditions:

(3.40)

This set of linear equations can be written as follows:

(3.41)

The N � N matrix with complex entries in this equation is called a Vander-
monde matrix and it can be shown to be nonsingular (invertible). Thus, a unique
solution always exists for the Ak’s, which gives us the unique solution ha(t) through
Equation 3.39.
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Step 4: Finally, the impulse response of the general causal LTI system described
by Equation 3.31 is a linear combination of ha(t) and its derivatives as shown in
the second block of Figure 3.4. Hence, the impulse response is given by

(3.42)

Example 3.5: Consider the first-order system initially at rest with time constant 
τ0 > 0:

(3.43)

Step 1: Set up the first problem of calculating the impulse response of the left-
hand side of the differential equation.

(3.44)

Step 2: Find the initial condition of the homogeneous equation at t = 0+ by
integrating on both sides of Equation 3.2 from t = 0– to t = 0+. Note that the im-
pulse is produced by the term , so ha(t) will have a finite jump at most.
Thus we have

(3.45)

and hence is our initial condition for the homogeneous equation:

(3.46)

Step 3: The characteristic polynomial is and it has one 
zero at s = –τ0

–1 which means that the homogeneous response has the form 

for t > 0. The initial condition allows us to determine the con-
stant A:
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so that

(3.48)

Step 4: Finally, the impulse response of the differential system of Equation
3.43 is computed by applying the right-hand side of Equation 3.43 to ha(t) as
follows:

(3.49)

Notice how the chain rule and the sampling property of the impulse are applied

in differentiating , which gives rise to the impulse in the bottom

equality of Equation 3.49. The impulse response is shown in Figure 3.6.
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FIGURE 3.6 Impulse response of
a first-order system.

Method 2: Impulse Response Obtained by Differentiation of the Step Response

We have seen that the impulse response of an LTI system is the derivative of its
step response, that is, . Thus, we can obtain the impulse response of 
an LTI differential system by first calculating its step response and then 

ds t
dt
( )h t( ) =



differentiating it. This method is useful when the right-hand side of the differential
equation does not have derivatives of the input signal.

Example 3.6: We will illustrate this technique with an example of a second-
order system. Consider the following causal LTI differential system initially at
rest:

(3.50)

Let x(t) = u(t). The characteristic polynomial of this system is

(3.51)

and its zeros (values of s for which p(s) = 0) are s = –2 and s = –1. Hence, the
homogeneous solution has the form

(3.52)

We look for a particular solution of the form yp(t) = K for t > 0 when x(t) = 1.
Substituting in Equation 3.50, we find

(3.53)

By adding the homogeneous and particular solutions, we obtain the overall step
response for t > 0:

(3.54)

The initial conditions at t = 0– are . Because the input sig-

nal has a finite jump at t = 0+, it will be included in only, and will

be continuous. Hence, , and we have

(3.55)
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The solution to these two linear algebraic equations is , which
means that the step response of the system is

(3.56)

This step response is shown in Figure 3.7.
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FIGURE 3.7 Step response of the
second-order system.

Finally, the impulse response of the second-order system is obtained by differ-
entiating its step response. It is interesting to look around the origin to see whether
or not there is a jump in the derivative of the step response. The derivative is obvi-
ously 0 for t < 0. For t > 0,

(3.57)

which evaluates to 0 at time t = 0+. Hence there is no jump, and the impulse re-
sponse, shown in Figure 3.8 is given by (check that it solves Equation 3.50)

(3.58)

Of course, we can directly differentiate the step response as given in Equation
3.56 using the chain rule and the sampling property of the impulse, which yields
the same impulse response shown in Figure 3.8:

(3.59)
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((Lecture 11: Impulse Response of a Difference System; Characteristic Polynomial
and Stability))
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FIGURE 3.8 Impulse response obtained
by differentiating the step response.

IMPULSE RESPONSE OF A DIFFERENCE LTI SYSTEM

Consider the general form of a causal LTI difference system:

(3.60)

We briefly discuss one method to obtain the impulse response of this general
causal LTI difference system initially at rest. It is similar to Method 1 for a contin-
uous-time differential system, but it is simpler, as there is no integration involved.

Impulse Response Obtained by Linear Combination of Shifted Impulse Responses
of the Left-Hand Side of the Difference Equation

The step-by-step procedure to find the impulse response of a difference LTI system
is as follows.

1. Replace the whole right-hand side of the difference Equation 3.60 by δ[n].
2. Find initial conditions on y[n] at times for a homoge-

neous response starting at time n = 1.
3. Calculate the homogeneous response ha[n] to the homogeneous equation

with these initial conditions.
4. Finally, calculate h[n] as a linear combination of the current and delayed

versions of ha[n] according to the right-hand side of the difference Equa-
tion 3.60.
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Step 1: Under the assumption that the system is initially at rest, that is,
, let and replace the right-hand

side of Equation 3.60 with a single unit impulse:

(3.61)

Step 2: To solve this equation for ha[n], we first observe that, by causality,
the impulse can only be part of ha[n], not its delayed versions ha[n – k], k ≠ 0. 

This immediately gives us . Causality and the initial rest condition
yield the remaining initial conditions .
Step 3: Thus, starting at time n = 1, we need to solve the homogeneous equa-
tion for n > 0:

(3.62)

subject to the N initial conditions obtained in Step 2. Assume that the solution
has the form of a complex exponential Czn for n > 0. Substituting this exponen-
tial into Equation 3.62, we get a polynomial in z–1, multiplying an exponential
on the left-hand side. Dividing both sides by Czn and multiplying both sides by
zN, we get an equivalent equation:

(3.63)

and this equation holds if and only if the characteristic polynomial

vanishes at the complex number z; that is,

(3.64)

By the fundamental theorem of algebra, this equation has at most N distinct
roots. Assume that the N roots are distinct for simplicity and let them be denoted
as . This means that there are N distinct exponential signals that sat-
isfy the homogeneous Equation 3.62. Then the solution to Equation 3.62 can be
written as a linear combination of these complex exponentials:
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The complex coefficients can be computed using the initial conditions:

(3.66)

This set of linear equations can be written as

(3.67)

The Vandermonde matrix on the right-hand side of Equation 3.67 can be
shown to be nonsingular. Hence, a unique solution always exists for the Cks, which
gives us the unique solution ha[n] through Equation 3.65.

Step 4: Finally, by the LTI properties of the difference system, the response
of the left-hand side of Equation 3.60 to its right-hand side is a linear combi-
nation of ha[n] and delayed versions of it. Therefore, the impulse response of
the general causal LTI system described by the difference Equation 3.60 is
given by

(3.68)

Example 3.7: Consider the following second-order, causal LTI difference sys-
tem initially at rest:

(3.69)

The characteristic polynomial is given by
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(3.70)

and its zeros are . The homogeneous response is given by

(3.71)

The initial conditions for the homogeneous equation for n > 0 are 
and . Now, we can compute the coefficients  A and B:

(3.72)

(3.73)

Hence, , and the impulse response is obtained by performing
Step 4:

(3.74)

CHARACTERISTIC POLYNOMIALS AND STABILITY OF
DIFFERENTIAL AND DIFFERENCE SYSTEMS

The BIBO stability of differential and difference systems can be determined by an-
alyzing their characteristic polynomials.

The Characteristic Polynomial of an LTI Differential System

Recall that the characteristic polynomial of a causal differential LTI system of the
type

(3.75)

is given by

(3.76)

This polynomial depends only on the coefficients on the left-hand side of the
differential equation. It characterizes the intrinsic properties of the differential sys-
tem, as it does not depend on the input. The zeros of the characteristic polynomial

are the exponents of the exponentials forming the homogeneous response, so
they give us an indication of the system properties, such as stability.

s
k k

N{ } =1

p s a s a s a
N

N
N

N( ) : .= + + +−
−

1
1

0
�

a
d y t

dt
b

d x t

dtk

k

k
k

N

k

k

k
k

M( ) ( )

= =
∑ ∑=

0 0

h n h n u na
n n[ ] [ ] ( . ) ( . ) [ ]= − = − +⎡

⎣
⎤
⎦ −− −1 2 0 2 3 0 3 11 1 ..

A B= − =2 3,

h A Ba[ ] .0 1= + =

h A B A Ba[ ] ( . ) ( . ) ,− = + = + =− −1 0 2 0 3 5
10
3

01 1

ha[ ] [ ]0 0 1= =δ
ha[ ]− =1 0

h n A B na
n n[ ] ( . ) ( . ) , .= + >0 2 0 3 0

z z
1 2

0 2 0 3= =. , .

p z z z z z( ) . . ( . )( . ),= − + = − −2 0 5 0 06 0 2 0 3

112 Fundamentals of Signals and Systems



Stability of an LTI Differential System

We have seen that an LTI system is BIBO stable if and only if its impulse response

is absolutely integrable, that is, . We have also figured out that a

general formula for the impulse response of the system described by Equation 3.31
is given by

(3.77)

where the zeros of the characteristic polynomial are assumed to be distinct.
Now we have to be concerned with the possibility of derivatives of impulses at
time t = 0 in h(t). Recall that the first N – 1 derivatives of ha(t) are either smooth
functions or may have a finite jump (for k = N – 1), while the impulse appears in

. Thus, under the assumption that N ≥ M, the impulse response h(t) will have
at worst a single impulse at t = 0, which integrates to a finite value when integrated
from to t = 0+. Under these conditions, the stability of the system is entirely
determined by the exponentials in Equation 3.77. To show this, let us find an upper

bound on :

(3.78)

We can see from the last upper bound in Equation 3.78 that the integral of the
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some . This occurs only if . It can be shown that this nec-
essary condition of stability is also sufficient modulo the next remark. That is, if at
least one of the zeros of the characteristic polynomial has a nonnegative real part,
then the system is unstable.

With the earlier assumptions that the zeros of the characteristic polynomial are
distinct and that , a causal LTI differential system is BIBO stable if and
only if the real part of all of the zeros of its characteristic polynomial are negative
(we say that they lie in the left half of the complex plane).

Remark: The purist might say that the causal differential system described by

(3.79)

is BIBO stable, even though the zero of its characteristic polynomial lies in
the right half of the complex plane. Indeed, if one computed the impulse response
of this system by using the procedure outlined above, one would get the identity
system h(t) = δ(t), whose impulse response is absolutely integrable. Thus, strictly
speaking, the system of Equation 3.79 is BIBO stable, but as engineers, we must be
aware that even if the input signal is identically zero for all times, any nonzero ini-
tial condition on the output signal, even infinitesimal, or any perturbation of the co-
efficients will excite the unstable exponential et in the homogeneous response and
will drive the output to infinity. Therefore, this type of system must be considered
unstable. We will describe such systems in subsequent chapters as having a pole
canceling a zero in the closed right half of the complex plane. A physical system
described by such a differential equation will surely be unstable in practice.

Example 3.8: Let us assess the stability of the causal LTI differential system de-
fined as

(3.80)

The characteristic polynomial is , which has its zero at s = 2. This
system is therefore BIBO unstable, which is easy to see with an impulse response
of the form Ae2tu(t ), a growing exponential.

The Characteristic Polynomial of an LTI Difference System

Recall that the characteristic polynomial of a causal difference LTI system of the
type
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(3.81)

is given by

(3.82)

This polynomial depends only on the coefficients on the left-hand side of the dif-
ference equation. The zeros (assumed to be distinct) of the characteristic
polynomial are the arguments of the exponentials forming the homogeneous re-
sponse, so they also give us an indication of system properties, such as stability.

Stability of an LTI Difference System

Recall that a discrete-time LTI system is stable if and only if its impulse response 

is absolutely summable, that is, . For the causal difference system

above, this leads to the following upper bound:

(3.83)

and this last upper bound is finite if and only if for all . Hence,
the causal LTI difference system is BIBO stable only if all the zeros of its charac-
teristic polynomial have a magnitude less than 1. This necessary condition for 
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stability turns out to be sufficient as well, and hence BIBO stability is equivalent
to having all the zeros have a magnitude less than 1. Note that the previous 
remark also applies to discrete-time difference systems: a system of the type

must be considered unstable even though its im-
pulse response is absolutely summable. Round-off errors in a digital
implementation of such a difference system would destabilize it.

Example 3.9: Consider the causal first-order LTI difference system:

(3.84)

Its characteristic polynomial is , which has a single zero at
. Hence, this system is stable, as . Its impulse response is

shown in Figure 3.9.
z
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FIGURE 3.9 Impulse response of the
first-order system.

TIME CONSTANT AND NATURAL FREQUENCY OF 
A FIRST-ORDER LTI DIFFERENTIAL SYSTEM

In general, the impulse response of an LTI differential system is a linear combina-
tion of complex exponentials of the type and their derivatives. Consider
the stable, causal first-order LTI differential system:

(3.85)

Its impulse response is a single exponential, , where 

and . The real number is called the natural frequency of the 

first-order system, and its inverse is called the time constant of the1
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first-order system. The time constant indicates the decay rate of the impulse re-
sponse and the rise time of the step response. At time t = τ0, the impulse response

is , so the impulse response has decayed to 37% of its
initial value, as shown in Figure 3.10. The step response is also shown in this fig-
ure, and it can be seen that it has risen to 63% of its settling value after one time
constant.

h Ae Ae A( ) .τ
τ
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0
1

0

0 0 37= = =
−

−
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FIGURE 3.10 Impulse response and step response of the first-order system.

EIGENFUNCTIONS OF LTI DIFFERENCE AND 
DIFFERENTIAL SYSTEMS

We have used the fact that complex exponential signals of the type Czn and Aest re-
main basically invariant under the action of time shifts and derivatives, respec-
tively, to find the homogeneous responses of LTI difference and differential
systems.

The response of an LTI system to a complex exponential input is the same
complex exponential, with only a change in (complex) amplitude.

Continuous-time LTI system: (3.86)

Discrete-time LTI system: (3.87)

The complex amplitude factors H(s) and H(z) are in general functions of the
complex variables s and z.

Input signals like and for which the system output is a
complex constant times the input signal are called eigenfunctions of the LTI sys-
tem, and the complex gains are the system’s eigenvalues corresponding to the
eigenfunctions. To show that est is indeed an eigenfunction of any LTI system of
impulse response h(t), we look at the following convolution integral:

x t est( ) =x n zn[ ] =

z h n H z zn n∗ =[ ] ( )

e h t H s est st∗ =( ) ( )



(3.88)

The system’s response has the form , where ,
assuming the integral converges. For LTI discrete-time systems, the complex ex-
ponential zn is an eigenfunction:

(3.89)

The system’s response has the form , where ,

assuming that the sum converges. The functions H(s) and H(z) are, respectively, the
Laplace transform and the z-transform of the system’s impulse response. Each is
called the transfer function of the system; more on this in Chapter 6 and Chapter 13.

SUMMARY

In this chapter, we introduced special classes of LTI systems: differential and dif-
ference systems.

The classical solution composed of the sum of the forced response and the nat-
ural response was reviewed for both differential and difference systems.
Since an LTI system is completely characterized by its impulse response, we
gave step-by-step techniques to compute the impulse responses of differential
and difference systems.
The BIBO stability of differential and difference systems was analyzed with
respect to the characteristic polynomial.
The time constant of a first-order differential system and its corresponding
natural frequency were introduced.
Finally, it was pointed out that exponential signals are basically invariant (only
their complex amplitude varies) when processed by a differential or difference
system.
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TO PROBE FURTHER

The classical subject of linear constant-coefficient ordinary differential equations
can be found in many basic mathematics textbooks, for example, Boyce and
Diprima, 2004. An advanced treatment of difference equations can be found in
Kelley and Peterson, 2001.

EXERCISES

Exercises with Solutions

Exercise 3.1

Consider the following first-order, causal LTI differential system S1 initially at rest:

(a) Calculate the impulse response h1(t) of the system S1. Sketch it for a = 2.

Answer:

Step 1: Set up the problem to calculate the impulse response of the left-hand
side of the equation:

(3.59)

Step 2: Find the initial condition of the corresponding homogeneous equa-
tion at t = 0+ by integrating the above differential equation from t = 0– to t = 0+.

Note that the impulse will be in the term , so ha(t) will have a finite jump

at most. Thus, we have , and hence is our 

initial condition for the homogeneous equation for t > 0:

dh t

dt
ah ta
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Step 3: The characteristic polynomial is , and it has one zero at
, which means that the homogeneous response has the form

for t > 0. The initial condition allows us to determine the constant
A: , so that

Step 4: LTI systems are commutative, so we can apply the right-hand side of the
differential equation to ha(t) in order to obtain h1(t):

This impulse response is plotted in Figure 3.11 for a = 2.
(b) Is the system S1 BIBO stable? Justify your answer.

h t
dh t

dt
h t

d
dt

e u t e u
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at at

1 2

2
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( ) (
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( ) ( ) ( )= − + +−2 δ

h t e u ta
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h Aa ( )0 1+ = =
h t Aea

at( ) = −
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p s s a( ) = +

FIGURE 3.11 Impulse response of the first-order
differential system.

Answer:
Yes, it is stable. The single real zero of its characteristic polynomial is negative:

.s a= − < 0



Exercise 3.2

Consider the following second-order, causal LTI differential system S2 initially at
rest:

Calculate the impulse response  of the system S2.

Answer:
Solution 1:

Step 1: Set up the problem to calculate the impulse response of the system:

Step 2: Find the initial conditions of the corresponding homogeneous equa-
tion at t = 0+ by integrating the above differential equation from t = 0– to t = 0+.

Note that the impulse will be in the term , so dh2(t) will have a finite jump
at most. Thus we have

Hence, is one of our two initial conditions for the homogeneous
equation for t > 0:

Since has a finite jump from t = 0– to t = 0+, the other initial condition is
.

Step 3: The characteristic polynomial is and it has zeros at
, which means that the homogeneous response has the form

for t > 0. The initial conditions allow us to determine
constants A and B:
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so that , and finally,

Solution 2 (step response approach):

Step 1: Set up the problem to calculate the step response of the system:

Step 2: Compute the step response as the sum of a forced response and a ho-
mogeneous response.

The characteristic polynomial of this system is

Hence, the homogeneous solution has the form

We look for a particular solution of the form for t > 0 when .
We find

Adding the homogeneous and particular solutions, we obtain the overall step
response for t > 0:

The initial conditions at t = 0– are . Thus,
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which means that the step response of the system is

Step 3: Differentiating, we obtain the impulse response,

Exercise 3.3

Consider the following second-order, causal LTI differential system S initially at
rest:

(a) Compute the response y(t) of the system to the input using the
basic approach of the sum of the forced response and the natural response.

Answer:
First we seek to find a forced response of the same form as the input: .
This yields A = 2. Then, the natural response of the homogeneous equation

will be a linear combination of terms of the form est. Substituting, we get the char-
acteristic equation with complex roots:

Thus, the natural response is given by

The response of the system is the sum of the forced response and the natural
response:
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The initial conditions (zero) allow us to compute the remaining two unknown
coefficients:

We find , , which are complex conjugates of 

each other, as expected. Finally the response of the system is the signal

(b) Calculate the impulse response h(t) of the system.

Answer:
Step 1: Set up the problem to calculate the impulse response of the left-hand
side of the equation. Note that this will directly give us the impulse response
of the system:

Step 2: Find the initial conditions of the corresponding homogeneous equation
at t = 0+ by integrating the above differential equation from t = 0– to t = 0+. Note
that the impulse will be in the term , so will have a finite jump at
most. Thus we have
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Hence, = 1 is one of the two initial conditions for the homogeneous
equation for t > 0:

Since has a finite jump from t = 0– to t = 0+, the other initial condition is
.

Step 3: From (a), the natural response is given by

The initial conditions allow us to determine the constants:

so that , and finally,

Exercise 3.4

Consider the following second-order, causal difference LTI system S initially at
rest:

Compute the response of the system to the input .x n u nn[ ] ( . ) [ ]= 0 2
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Answer:
The characteristic polynomial is , with zeros

. The homogeneous response is given by

The forced response for n ≥ 1 has the form :

Notice here that we assume that n ≥ 1 so that all the terms on the right-hand
side of the difference equation are present in the computation of the coefficient C.
The assumption of initial rest implies , but we need to use initial
conditions at times when the forced response exists (for n ≥ 1), that is, y[1], y[2],
which can be obtained by a simple recursion:

Now, we can compute the coefficients A and B:

This yields . Finally, the overall response is
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Exercise 3.5

Consider the causal LTI system initially at rest and described by the difference
equation

Find the response of this system to the input depicted in Figure 3.12 by
convolution.

y n y n x n x n[ ] . [ ] [ ] [ ].+ − = + −0 4 1 1
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FIGURE 3.12 Input signal of the difference
system.

Answer:
First we need to find the impulse response of the difference system. The character-
istic polynomial is given by

and its zero is . The homogeneous response is given by

The initial condition for the homogeneous equation for n > 0 is .
Now, we can compute the coefficient A:

Hence, , and the impulse response is obtained as follows:

Secondly, we compute the convolution . Perhaps the easiest
way to compute it is to write
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Exercises

Exercise 3.6

Determine whether the following causal LTI second-order differential system is
stable:

Exercise 3.7

Consider the following first-order, causal LTI difference system:

Compute the impulse response h[n] of the system by using recursion.

Answer:

Exercise 3.8

Suppose that a $1000 deposit is made at the beginning of each year in a bank ac-
count carrying an annual interest rate of r = 6%. The interest is vested in the ac-
count at the end of each year. Write the difference equation describing the
evolution of the account and find the amount accrued at the end of the 50th year.
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Exercise 3.9

Find the impulse response h(t) of the following second-order, causal LTI differen-
tial system:

Answer:

Exercise 3.10

Compute and sketch the impulse response h(t) of the following causal LTI, first-
order differential system initially at rest:

Exercise 3.11

Compute the impulse response h[n] of the following causal LTI, second-order dif-
ference system initially at rest:

Simplify your expression of h[n] to obtain a real function of time.

Answer:

Exercise 3.12

Calculate the impulse response h(t) of the following second-order, causal LTI dif-
ferential system initially at rest:
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Exercise 3.13

Consider the following second-order, causal difference LTI system S initially at rest:

(a) What is the characteristic polynomial of S? What are its zeros? Is the sys-
tem stable?

(b) Compute the impulse response of S for all n.

(c) Compute the response of S for all n for the input signal x[n] = 2u[n] using
the conventional solution (sum of particular solution and homogeneous 
solution).

Answer:

S y n y n y n x n: [ ] . [ ] . [ ] [ ].− − + − = −0 9 1 0 2 2 1
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Fourier Series Representation
of Periodic Continuous-Time
Signals

In This Chapter

Linear Combinations of Harmonically Related Complex Exponentials
Determination of the Fourier Series Representation of a Continuous-
Time Periodic Signal
Graph of the Fourier Series Coefficients: The Line Spectrum
Properties of Continuous-Time Fourier Series
Fourier Series of a Periodic Rectangular Wave
Optimality and Convergence of the Fourier Series
Existence of a Fourier Series Representation
Gibbs Phenomenon
Fourier Series of a Periodic Train of Impulses
Parseval Theorem
Power Spectrum
Total Harmonic Distortion
Steady-State Response of an LTI System to a Periodic Signal
Summary
To Probe Further
Exercises

((Lecture 12: Definition and Properties of the Fourier Series))

Asignal is defined as a function of time representing the evolution of a vari-
able. Certain types of signals have the special property of remaining basi-
cally invariant under the action of linear time-invariant systems. Such

signals include sinusoids and exponential functions of time. These signals can be
linearly combined to form virtually any other signal, which is the basis of the
Fourier series representation of periodic signals and the Fourier transform repre-
sentation of aperiodic signals.

4
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The Fourier representation opens up a whole new interpretation of signals in
terms of their frequency contents, called their frequency spectrum. Furthermore, in
the frequency domain, a linear time-invariant system acts as a filter on the fre-
quency spectrum of the input signal, attenuating it at some frequencies while am-
plifying it at other frequencies. This property is called the frequency response of
the system. These frequency domain concepts are fundamental in electrical engi-
neering, as they underpin the fields of communication systems, analog and digital
filter design, feedback control, power engineering, etc.

Well-trained electrical and computer engineers think of signals in terms of
their frequency spectrum probably just as much as they think of them as functions
of time.

LINEAR COMBINATIONS OF HARMONICALLY RELATED
COMPLEX EXPONENTIALS

Recall that periodic signals satisfy for some positive
value of T. The smallest such T is called the fundamental period of the signal, and
its fundamental frequency is defined as . One thing to remember is
that the periodic signal x(t ) is entirely determined by its values over one period T.
Also recall that we looked at harmonically related complex exponentials with fre-
quencies that are integer multiples of 0:

(4.1)

We saw that these harmonically related signals have a very important property:
they form an orthogonal set. That is,

(4.2)

Each of these signals has a fundamental frequency that is a multiple of 0, and
therefore each is periodic with period T (although for , the fundamental pe-
riod of is T ). Let us look at the imaginary part of for and

shown in Figure 4.1.T = 1s
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A linear combination of the complex exponentials is also periodic with
fundamental period T:

(4.3)

The two terms with in this series are collectively called the fundamen-
tal components, or the first harmonic components, of the signal. The two terms
with are referred to as the second harmonic components (with fundamen-
tal frequency ), and more generally the components for are called the
Nth harmonic components.

Example 4.1: Consider the periodic signal with fundamental frequency
made up of the sum of five harmonic components:

(4.4)

Collecting the harmonic components together, we obtain

(4.5)
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The resulting signal represents an approximation to a triangular wave, as seen
in Figure 4.2.

FIGURE 4.2 Signal as a sum of five harmonic components.

DETERMINATION OF THE FOURIER SERIES REPRESENTATION OF
A CONTINUOUS-TIME PERIODIC SIGNAL

Assume that a periodic signal can be expressed as a linear combination of har-
monically related signals as in Equation 4.3. Then, by the orthogonality property of
the harmonically related complex exponentials, we can easily compute the ak co-
efficients. To obtain an, we just have to multiply both sides of Equation 4.3 by
e–jn 0t and integrate over one fundamental period of the signal (here from 0 to T, but
it could be from any time t0 to time , which is denoted as ):

(4.6)
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Thus,

To recap, if a periodic signal x(t ) has a Fourier series representation, then we
have the equation pair

(4.7)

(4.8)

which gives us two representations of the signal. Equation 4.7 is a time-domain
representation of the signal as a sum of periodic complex exponential signals. This
is the synthesis equation. Equation 4.8, called the analysis equation, gives us a fre-
quency-domain representation of the signal as the Fourier series coefficients, also
referred to as the spectral coefficients of x(t ). That is, each one of these complex
coefficients tells us how much the corresponding harmonic component of a given
frequency contributes to the signal. 

Remarks:
The coefficient is the DC component of the signal (average

value of the signal over one period). It should always be computed separately
from ak to avoid indeterminacies of the type 0/0 in the expression for ak eval-
uated at .
For a real signal x(t), we have . Let . Then we
have a real form of the Fourier series:

(4.9)

For a real signal x(t ), if we represent the Fourier series coefficients as
, we obtain another real form of the Fourier series:a B jC B Ck k k k k= + , , R
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FIGURE 4.3 Periodic “sawtooth” signal.

The fundamental period is ; hence . First, the average
over one period (the DC value of the signal) is 0, so . For ,
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Example 4.2: Let us find the fundamental period T, the fundamental frequency
0, and the Fourier series coefficients ak of the periodic “sawtooth” signal x(t )

shown in Figure 4.3. Then, we will express x(t ) as a Fourier series.
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(4.11)

Note that the coefficients are purely imaginary and form an odd
sequence, which is consistent with our real, odd signal. The Fourier series repre-
sentation of x(t ) is

(4.12)

GRAPH OF THE FOURIER SERIES COEFFICIENTS: 
THE LINE SPECTRUM

The set of complex Fourier series coefficients of a signal can be plotted
with separate graphs for their magnitude and phase. The combination of both plots
is called the line spectrum of the signal.

Example 4.3: Consider the Fourier series coefficients of the sawtooth signal 
obtained in the previous example. Their magnitudes are given by ,

, and , and their phases are given by and

. The corresponding line spectrum is shown in Figure 4.4.

The following MATLAB M-file located in D:\Chapter4\linespectrum.m dis-
plays the line spectrum of the sawtooth signal. 
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%% Line spectrum of Fourier series coefficients

% signal amplitude and period

A=1;

T=1;

% number of harmonics

N=10;

% first compute the ak’s

a0=0;

spectrum=zeros(1,2*N+1);

for k=-N:N

% spectral coefficients of sawtooth signal

if k>0

eval([‘a’ num2str(k) ‘=-j*A/(k*pi)’])

eval([‘spectrum(k+N+1)=a’ num2str(k)]); 

elseif k<0

eval([‘a_’ num2str(abs(k)) ‘=-j*A/(k*pi)’]) 

eval([‘spectrum(k+N+1)=a_’ num2str(abs(k))]);

end

FIGURE 4.4 Line spectrum of the sawtooth signal.



eval([‘spectrum(N+1)=a0’]);

end

% line spectrum

K=[-N:N];

subplot(211)

stem(K,abs(spectrum),’.-’)

subplot(212)

stem(K,phase(spectrum),’.-’)

Remark: A common mistake is to forget that the magnitude line spectrum must
always be nonnegative. This mistake might arise, for example, when one writes

, which is obviously wrong since k can be negative.

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Note that if the periodic signal x(t ) admits a Fourier series representation, then its
set of spectral coefficients determines x(t ) completely. The duality be-
tween the signal and its spectral representation is denoted as . The fol-
lowing properties of the Fourier series are easy to show using Equations 4.7 and
4.8. (Do it as an exercise.) Note that these properties are also listed in Table D.3 of
Appendix D.

Linearity

The operation of calculating the Fourier series coefficients of a periodic signal 

is linear. For , , if we form the linear combination
, , then

(4.13)

Time Shifting

Time shifting leads to a multiplication by a complex exponential. For ,
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Remark: The magnitudes of the Fourier series coefficients are not changed, only
their phases.

Time Reversal

Time reversal leads to a “sequence reversal” of the corresponding sequence of
Fourier series coefficients:

(4.15)

Interesting consequences are that

For x(t ) even, the sequence of coefficients is also even ( ).
For x(t ) odd, the sequence of coefficients is also odd ( ).

Time Scaling

Time scaling applied on a periodic signal changes the fundamental frequency of 
the signal (but it remains periodic “with the same shape”). For example, has
fundamental frequency and fundamental period –1T. The Fourier series co-
efficients do not change:

(4.16)

but the Fourier series itself has changed, as the harmonic components are now at
the frequencies .

Application: For a given periodic signal (a specific waveform) such as a square
wave, one can compute the Fourier series coefficients for a single normalized fun-
damental frequency. Then, the Fourier series of a square wave of any frequency has
the same coefficients. 

Multiplication of Two Signals

Suppose that x(t ) and y(t ) are both periodic with period T. For ,

, we have
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that is, a convolution of the two sequences of spectral coefficients.

Conjugation and Conjugate Symmetry

Taking the conjugate of a periodic signal has the effect of conjugation and index re-
versal on the spectral coefficients:

(4.18)

Interesting consequences are that

For x(t) real, and the sequence of coefficients is conjugate sym-
metric; that is, . This implies (magnitude is even),

(phase is odd), .
For x(t ) real and even, the sequence of coefficients is also real and even
( ).
For x(t ) real and odd, the sequence of coefficients is imaginary and odd
( ).
For an even-odd decomposition of the signal , we have

.

((Lecture 13: Convergence of the Fourier Series))

FOURIER SERIES OF A PERIODIC RECTANGULAR WAVE

Consider the following periodic rectangular wave (or square wave) of fundamen-
tal period T and fundamental frequency (see Figure 4.5).2
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FIGURE 4.5 Periodic rectangular wave.
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This signal is even and real and hence its Fourier series coefficients are also
real and form an even sequence. Its DC value is equal to the area of one rectangle
divided by the period: . The other spectral coefficients are obtained as 
follows:

(4.19)

As previously mentioned, the coefficient a0 is the signal average over one
period. The other coefficients are scaled samples of the real continuous sinc func-
tion defined as follows:

(4.20)

This function is equal to one at u = 0 and has zero crossings at 
, as shown in Figure 4.6. n = , , ,1 2 3…
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Now, define the duty cycle of the rectangular wave as the fraction of
time the signal is “on” (equal to one) over one period. The duty cycle is often given
as a percentage. The spectral coefficients expressed using the sinc function and the
duty cycle can be written as

(4.21)

For a 50% duty cycle, that is, , we get the Fourier series coefficients
given in Equation 4.22 and whose line spectrum is shown in Figure 4.7. Note that
the coefficients are real, so a single plot suffices. However, one could also choose
to sketch the magnitude (absolute value of ak) and the phase (0 for ak nonnegative,

for ak negative) on two separate graphs.
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FIGURE 4.7 Spectral coefficients of the rectangular wave for a
50% duty cycle.

Remember that k is a multiple of the fundamental frequency. So for a 60 Hz
(120 rad/s) square wave, the coefficients are the fundamental components at
60 Hz, are the second harmonic components at 120 Hz, etc.

For shorter duty cycles (shorter pulses with respect to the fundamental pe-
riod), the “sinc envelope” of the spectral coefficients expands, and we get more co-
efficients in each lobe. For example, the real line spectrum of a rectangular wave
with is shown in Figure 4.8.=

1

8
=
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Remarks:
In general, the coefficients are complex, and one would have to sketch two
graphs to represent them (magnitude and phase).
For a long duty cycle tending to 1, the waveform approaches a constant signal,
and at the limit all the spectral coefficients vanish except the DC value: .
For a short duty cycle tending to 0, there are more and more lines in the main
lobe of the sinc envelope. In fact, the first zero crossings bounding the main
lobe are at when these numbers turn out to be integers. This means that
a periodic signal with short pulses has several significant harmonic compo-
nents at high frequencies. This observation holds true in general for other sig-
nals in that signals with fast variations display significant high-frequency
harmonics.
The interactive Fourier Series Applet on the companion CD-ROM located in
D:\Applets\FourierSeries\FourierApplet.html can help visualize the decompo-
sition of a signal as a sum of harmonic components. 

OPTIMALITY AND CONVERGENCE OF THE FOURIER SERIES

To study the convergence of the Fourier series, let us first look at the problem of
approximating a periodic signal with a finite sum of harmonics (a truncated version
of the infinite sum). The question here is as follows: What coefficients will give us
the “best” approximation to the signal? Let the truncated Fourier sum be defined as
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and define the approximation error as

(4.24)

Now, consider the energy in one period of the error signal as the quantity to
minimize to get the best approximation.

(4.25)

We proceed by first expanding this equation:

(4.26)

Then, we write the coefficients in rectangular coordinates and
seek to minimize the energy by taking its partial derivatives with re-
spect to k and k and setting them equal to zero. Let us do it for the real part k:

(4.27)

Differentiating with respect to k, we obtain

(4.28)

This equation is satisfied with . Similarly, minimizing the

energy of the approximation error with respect to k yields .

Therefore, the complex coefficients minimize the approxi-
mation error.
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If the signal x(t) has a Fourier series representation, then the limit of the energy

in the approximation error as N tends to infinity is zero. In this
sense, the Fourier series converges to the signal x(t ).

EXISTENCE OF A FOURIER SERIES REPRESENTATION

What classes of periodic signals have Fourier series representation? One that does
is the class of periodic signals with finite energy over one period (finite total aver-
age power), that is, signals for which

(4.29)

These signals have Fourier series that converge in the sense that the power in
the difference between the signal and its Fourier series representation is zero. Note
that this does not imply that the signal x(t ) and its corresponding Fourier series are
equal at every value of time t. The class of periodic signals with finite energy over
one period is broad and quite useful for us.

Another broad class of signals that have Fourier series representation are sig-
nals that satisfy the three Dirichlet conditions. These signals equal their Fourier
series representation, except at isolated values of t where x(t ) has finite disconti-
nuities. At these times, the Fourier series converges to the average of the signal
values on either side of the discontinuity.

Dirichlet Conditions

Condition 1: Over any period, x(t) must be absolutely integrable; that is,

.

Condition 2: In any finite interval of time, x(t ) must be of bounded varia-
tions. This means that x(t ) must have a finite number of maxima and minima
during any single period.

Example 4.4: The signal does not meet this require-
ment, as it has an infinite number of oscillations as time approaches zero.

Condition 3: In any finite interval of time, x(t ) has a finite number of dis-
continuities. Furthermore, each of these discontinuities is finite.
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GIBBS PHENOMENON

An interesting observation can be made when one looks at the graph of a truncated
Fourier series of a square wave. This is easy to do using, for example, MATLAB:
compute the spectral coefficients as given in Equation 4.21 and up to 
(N = 7) and plot the real approximation to the square wave signal. The MATLAB
M-file Fourierseries.m located in D:\Chapter4 on the companion CD-ROM can be
used. 

(4.30)

The graph over one period looks like the one in Figure 4.9.
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FIGURE 4.9 Gibbs phenomenon for truncated
Fourier series of a square wave with seven
harmonic components.

We can see that there are ripples of a certain amplitude in the approximation,
especially close to the discontinuities in the signal. The surprising thing is that the
peak amplitude of these ripples does not diminish when we add more terms in the
truncated Fourier series. For example, for in Figure 4.10; the approxima-
tion gets closer to a square wave, but we can still see rather large, but narrow, rip-
ples around the discontinuities.

This is called the Gibbs phenomenon after the mathematical physicist who
first provided an explanation of this phenomenon at the turn of the twentieth cen-
tury. Indeed, the peak amplitude does not diminish as N grows larger, and the first
overshoot on both sides of the discontinuity remains at 9% of the height of the dis-
continuity. However, the energy in these ripples vanishes as . Also, for
any fixed time t1 (not at the discontinuity), the approximation tends to the signal
value (this is called pointwise convergence). At the discontinuity

for time t0, the approximation converges to a value corresponding to half of the
jump.
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((Lecture 14: Parseval Theorem, Power Spectrum, Response of LTI System to Pe-
riodic Input))

FOURIER SERIES OF A PERIODIC TRAIN OF IMPULSES

It would be useful to have a Fourier series representation of a periodic train of im-
pulses, called an impulse train as shown in Figure 4.11.

FIGURE 4.10 Gibbs phenomenon for a truncated Fourier
series of a square wave with 19 harmonic components.

FIGURE 4.11 Impulse train.

A train of singularity functions such as impulses does not meet the Dirichlet
conditions, nor is it of finite energy over one period. We can nevertheless calculate

the Fourier series coefficients of the impulse train by using
the formula
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We can see in Figure 4.12 that the spectrum of an impulse train is a real, con-
stant sequence. This means that the impulse train contains harmonics of equal
strength at all frequencies, up to infinity. 

Example 4.5: A periodic signal x(t ) can be described as a convolution of a sin-
gle period of the signal with a train of impulses as shown in Figure 4.13. Let

. Then,

(4.32)
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FIGURE 4.12 Spectral coefficients of the impulse
train.

FIGURE 4.13 Conceptual setup for generating a periodic signal.



The Fourier series coefficients of the periodic signal x(t ) are obtained by mul-
tiplying the spectrum (Fourier transform) of xT (t ) by the spectrum of the impulse
train (more on this later when we study the Fourier transform).

The operation of periodically sampling a continuous-time signal can also be
conveniently represented by a multiplication of an impulse train with the signal, as
depicted in Figure 4.14. Sampling will be studied in detail in Chapter 15.
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FIGURE 4.14 Conceptual setup for signal sampling.

PARSEVAL THEOREM

The Parseval theorem or Parseval equality simply says that the total average power
of a periodic signal x(t ) is equal to the sum of the average powers in all of its har-
monic components.

The power in the k th complex harmonic of a periodic signal is given by

(4.33)

Note that , so the total power of the kth harmonic components of the
signal (i.e., the total power at frequency ) is .

The total average signal power is given in the frequency domain by the Parse-
val theorem, which can be derived using the orthogonality property of the complex
harmonics:

(4.34)

This elegant result basically states that the total average power of a signal can
be computed using its frequency domain representation. We will see in the next
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section that we can compute the average power of a signal in different frequency
bands. It makes the Parseval theorem very useful to, for example, electrical engi-
neers trying to figure out the power losses of a signal transmitted over a communi-
cation channel at various frequencies.

Example 4.6: Let us compute the total average power in the unit-amplitude
square wave of period T and 50% duty cycle. We have already computed its spec-
tral coefficients: . First, using Parseval’s relation in the frequency
domain, we obtain

(4.35)

Now we check this result against the time-domain formula to compute the
power:

(4.36)

POWER SPECTRUM

The power spectrum of a signal is the sequence of average powers in each complex
harmonic: . For real periodic signals, the power spectrum is a real even se-
quence, as .

Example 4.7: The power spectrum of the unit-amplitude rectangular wave with 

duty cycle is given by . This power spec-)k
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trum is shown in Figure 4.15. We can see that most of the power is concentrated at
DC and in the first seven harmonic components, that is, in the frequency range 

.] rad/s,
14 14

T T
[

FIGURE 4.15 Power spectrum of the rectangular wave of duty
cycle = .1

8

Example 4.8: The Fourier series coefficients and the power spectrum of the sine
wave can be easily computed using Euler’s formula:

, so that 

. The power spectrum shown in Figure 4.16 is given by and

, and the total average power is .A2
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FIGURE 4.16 Power spectrum of a sine wave.



TOTAL HARMONIC DISTORTION

Suppose that a signal that was supposed to be a pure sine wave of amplitude A is
distorted, as shown in Figure 4.17. This can occur in the line voltages of an indus-
trial plant making heavy use of nonlinear loads such as electric arc furnaces, solid
state relays, motor drives, etc.
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FIGURE 4.17 Distorted sine wave.

Clearly, some of the harmonics for are nonzero in the signal x(t) shown
in Figure 4.17. One way to characterize the distortion in the signal is to compute the
ratio of average power in all the harmonics that “should not be there,” that is, for

, to the total average power of the sine wave, that is, the power in its funda-
mental components. The square root of this ratio is called the total harmonic dis-
tortion (THD) in the signal.

Let us first define a classical quantity in electrical engineering called the RMS
value of a periodic signal (RMS stands for root mean square):

(4.37)

The RMS value is a measure of the power in a signal, but the square root is
taken to get back to the units of volt or ampere when one works with voltage or cur-
rent signals.

Notice that the quantity inside the square root is nothing but the total average
power . From the Parseval theorem, we have
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Thus, assuming that the signal is real and , we have 

and we can define the total harmonic distortion in this periodic signal as the ratio
of the RMS value of all the higher harmonics for (the distortion) to the RMS

value of the fundamental (the pure sine wave) which is :

(4.39)

This definition of THD is the one generally adopted in power engineering, and
other areas of engineering, although audio engineers often use a different defini-
tion, which compares the RMS value of the distortion to the RMS value of the dis-
torted sine wave:

(4.40)

Example 4.9: For the distorted sine wave of Figure 4.17, suppose the power
spectrum is as given in Figure 4.18, where . Figure 4.18 illustrates
how the THD is computed.
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FIGURE 4.18 Computation of THD for a distorted
sine wave.



STEADY-STATE RESPONSE OF AN LTI SYSTEM 
TO A PERIODIC SIGNAL

We have seen that the response of an LTI system with impulse response h(t ) to a
complex exponential signal est is the same complex exponential multiplied by a
complex gain: , where

(4.41)

In particular, for , the output is simply . The complex
functions and are called the system’s transfer function and fre-
quency response, respectively.

By superposition, the output of an LTI system to a periodic input signal repre-

sented by a Fourier series is given by

(4.42)

which is itself a Fourier series. That is, the Fourier series coefficients bk of the
periodic output y(t ) are given by:

(4.43)

This is an important fact: The effect of an LTI system on a periodic input
signal is to modify its Fourier series coefficients through a multiplication by its
frequency response evaluated at the harmonic frequencies.

Example 4.10: Consider a periodic square wave as the input to an LTI system of
impulse response h(t ) and frequency response . The spectrum of the output
signal of the system is shown in Figure 4.19.
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FIGURE 4.19 Effect of an LTI system on a periodic input in the frequency domain.



Remarks:
It is assumed that the system is in steady-state; that is, it has been submitted to
the same input from time . Thus, there is no transient response from ini-
tial conditions in the output signal.
If the system is unstable, then the output would tend to infinity, so we assume
that the system is stable.

Filtering

Filtering is based on the concepts described earlier. Filtering a periodic signal with
an LTI system involves the design of a filter with a desirable frequency spectrum

that retains certain frequencies and cuts off others. 

Example 4.11: A first-order lowpass filter with impulse response 
(a simple RC circuit with ) cuts off the high-frequency harmonics in a
periodic input signal, while low-frequency harmonics are mostly left intact. The
frequency response of this filter is computed as follows:

(4.44)

We can see that as the frequency increases, the magnitude of the frequency

response of the filter decreases. If the periodic input signal is a

unit-amplitude rectangular wave of duty cycle , then the output signal will have
its Fourier series coefficients bk given by:

(4.45)

(4.46)

The reduced power at high frequencies produces an output signal that is
“smoother” than the input signal. Remember that discontinuities can only result
from a significant contribution of high-frequency harmonic components in the
Fourier series, so when these harmonics are filtered out, the result is a smoother
signal, as shown in Figure 4.20.
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SUMMARY

This chapter introduced the frequency-domain interpretation of periodic continu-
ous-time signals.

We have shown that most periodic continuous-time signals can be decom-
posed as an infinite sum of complex harmonics using the Fourier series. These
include finite-power signals and signals satisfying the Dirichlet conditions.
Complex harmonics are periodic complex exponential signals of fundamental
frequency equal to an integer times the fundamental frequency of the signal.
These harmonics were shown to be orthogonal.
The line spectrum and power spectrum plots of a periodic signal are based on
its Fourier series coefficients and indicate the relative importance of the dif-
ferent harmonic components making up the signal. The total harmonic distor-
tion in a signal approximating a pure sine wave can be computed from the
power spectrum of the signal.
The Gibbs phenomenon was shown to produce oscillations in the truncated
Fourier series approximation of a signal around first-order discontinuities.
Finally, filtering was introduced as the action of an LTI system on the Fourier
series coefficients of the input signal to either amplify or attenuate the har-
monic components at different frequencies.

TO PROBE FURTHER

Further information on Fourier series can be found in Brown and Churchill, 2001.

FIGURE 4.20 Effect of a first-order, low-pass filter on a
rectangular wave.
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EXERCISES

Exercises with Solutions

Exercise 4.1: Fourier Series of the Output Voltage of an Ideal Full-Wave Diode
Bridge Rectifier

The nonlinear circuit in Figure 4.21 is a full-wave rectifier. It is often used as a first
stage of a power supply to generate a constant voltage from the 60 Hz sinusoidal line
voltage for all kinds of electronic devices. Here the input voltage is not sinusoidal.

FIGURE 4.21 Full-wave rectifier circuit.

The voltages are , and
.

(a) Let T1 be the fundamental period of the rectified voltage signal v(t ) and let
be its fundamental frequency. Find the fundamental period .

Sketch the input and output voltages .

Answer:
Let us first sketch the input voltage, which is the periodic sawtooth signal shown
in Figure 4.22. Then the output voltage is simply the absolute value of the input sig-
nal that results in a triangular wave as shown in Figure 4.23.
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FIGURE 4.22 Input voltage of the full-wave rectifier.



We can see that the fundamental period of the output signal is the same as that
of the input: .

(b) Compute the Fourier series coefficients of . Sketch the spectrum for
.

Answer:
The DC component of the input is obviously 0:
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FIGURE 4.23 Output voltage of the full-wave rectifier.
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The spectrum is imaginary, so we can use a single plot to represent it as in Fig-
ure 4.24.

FIGURE 4.24 Line spectrum of input voltage, case A = 1.

(c) Compute the Fourier series coefficients of v(t ). Write v(t ) as a Fourier se-
ries. Sketch the spectrum for A = 1.

Answer:
Let us first compute the DC component of the output signal:

For , the spectral coefficients are computed as follows:
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The spectrum of the triangular wave is real and even (because the signal is
real and even), so we can use a single plot to represent it as in Figure 4.25.
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FIGURE 4.25 Line spectrum of output voltage, case A = 1.
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is the Fourier series expansion of the full-wave rectified voltage.
(d) What is the average power of the input voltage at frequencies higher

than or equal to its fundamental frequency? Answer the same question for
the output voltage v(t ). Discuss the difference in power.

Answer:
Since , and given the Parseval theorem, the average power of the input volt-
age at frequencies higher than or equal to its fundamental frequency is equal
to its total average power computed in the time domain:

The average power in all harmonic components of v(t ) excluding the DC com-
ponent (call it ) is computed as follows:

Note that the input and output signals have the same total average power, but
some of the power in the input voltage (namely ) was transferred over to DC
by the nonlinear circuit.

Exercise 4.2
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properties:
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Answer:

Therefore, .

(b) Periodic convolution: 
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Exercise 4.3: Fourier Series of the Output of an LTI System

Consider the familiar rectangular waveform x(t ) in Figure 4.26 of period T and
duty cycle . This signal is the input to an LTI system with impulse response

.h t e t u tt( ) sin( ) ( )= 5 10

2
0

t

T
=
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FIGURE 4.26 Rectangular wave input to an LTI system.

(a) Find the frequency response H( j ) of the LTI system. Give expressions
for its magnitude |H( j )| and phase as functions of .

Answer:
The frequency response of the system is given by
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Magnitude:

Phase:

(b) Find the Fourier series coefficients ak of the input voltage x(t ) for T = 1s
and a 60% duty cycle.

Answer:
The period given corresponds to a signal frequency of 1 Hz, and the 60% duty
cycle means that , so that the spectral coefficients of the rectangular wave are

given by .
(c) Compute the Fourier series coefficients bk of the output signal y (t ) (for the

input described in (b) above) and sketch its power spectrum.

Answer:

The power spectrum of the output signal is given by the expression below and
shown in Figure 4.27.
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FIGURE 4.27 Power spectrum of the output signal.
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(d) Using MATLAB, plot an approximation to the output signal over three pe-
riods by summing the first 100 harmonics of y(t ), that is, by plotting

.

Answer:

Figure 4.28 shows a plot of from 0 s to 3 s that was made using the MAT-
LAB M-file Fourierseries.m located in D:\Chapter4 on the companion CD-ROM. 
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FIGURE 4.28 Approximation of the output signal
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Exercise 4.4: Digital Sine Wave Generator

A programmable digital signal generator generates a sinusoidal waveform by fil-
tering the staircase approximation to a sine wave shown in Figure 4.29.

Fourier Series Representation of Periodic Continuous-Time Signals 167

FIGURE 4.29 Staircase approximation to a sinusoidal wave in Exercise 4.4.

(a) Find the Fourier series coefficients ak of the periodic signal x(t). Show that
the even harmonics vanish. Express x(t ) as a Fourier series.

Answer:
First, the average over one period is 0, so . For ,
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Note that the coefficients are purely imaginary, which is consistent with our
real, odd signal. The even spectral coefficients are for:

Figure 4.30 shows a plot of x(t) computed using 250 harmonics in the MAT-
LAB program Fourierseries.m, which can be found in the Chapter 4 folder on the
companion CD-ROM. 

The Fourier series representation of x(t ) is

(b) Write x(t ) using the real form of the Fourier series.

x t a B k t C k t
k k

k

( ) [ cos( ) sin( )]= +
=

+

0 0 0
1

2

x t a e
jA

k
kk

jk
T

t

k

( ) cos co= = +
=

+ 2

2 3
ss cosk k e

jk
T

t

k
k

2
3

1
2

0

+ ( )
=

+

.

a a
jA

m
m mk m= = +2 2 2

2
3

4
3

1cos cos ++ ( )

= + +

cos

cos co

m

jA
m

m m

2

2 2 3
ss

cos cos

m m

jA
m

m

3

2 2 3

+

= mm m
3

0( ) =cos

jA
T

k
T

t
2= sin dt

j A
T

k
T

t dt
jA
T

T

T

T

0

6

6

32 2
sin sinn

cos

k
T

t dt

jA
T

T
k

k
T

t

T

T

2

2
2

3

2

= + +
0

6

6

32
2

2
T

T

T

j A
T

T
k

k
T

tcos
jjA
T

T
k

k
T

t

jA
k

k

T

T

2
2

2

3

2

=

cos

cos
33

1 2
2
3

2
3

+ +cos cos cosk k kk k

jA
k

k

( )

=

cos

cos

2
3

2 3
+ + ( )cos cos .k k

2
3

1



Recall that the Ck coefficients are the imaginary parts of the aks. Hence

(c) Design an ideal lowpass filter that will produce the perfect sinusoidal
waveform at its output, with x(t ) as its input. Sketch its fre-
quency response and specify its gain K and cutoff frequency c.

Answer:
The frequency response of the lowpass filter is shown in Figure 4.31.
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FIGURE 4.30 Truncated Fourier series approximation to the staircase
signal and first harmonic in Exercise 4.4(a).

FIGURE 4.31 Frequency response
of the lowpass filter.



The cutoff should be between the fundamental and the second harmonic, for
example, . The gain should be

(d) Now suppose that the first-order lowpass filter whose differential equation
follows is used to filter x(t ):

where the time constant is chosen to be . Give the Fourier series representa-
tion of the output y(t ). Compute the total average power in the fundamental com-
ponents and in the third harmonic components . Find the value of the DC
gain B such that the output w(t ) produced by the fundamental harmonic of the real
Fourier series of x(t) has unit amplitude.

Answer:
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For the filter’s DC gain B, we found that the gain at 0 should be

Exercises

Exercise 4.5

The output voltage of a half-wave rectifier is given by .

Suppose that the periodic input voltage signal is .
Find the fundamental period T and the fundamental frequency 0 of the half-wave
rectified voltage signal v(t ). Compute the Fourier series coefficients of v(t ) and
write the voltage as a Fourier series.

Answer:

Exercise 4.6

Suppose that the voltages in the full-wave bridge rectifier circuit of Figure 4.21 are
, and . Let be the fundamen-

tal period of the rectified voltage signal v(t ) and let be its fundamental
frequency.

(a) Compute the Fourier series coefficients of v(t ) and write v(t ) as a Fourier
series.

(b) Express v(t ) as a real Fourier series of the form 
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Exercise 4.7: Fourier Series of a Train of RF Pulses

Consider the following signal x(t ) of fundamental frequency , a periodic
train of radio frequency (RF) pulses. Over one period from to , the sig-
nal is given by

This signal could be used to test a transmitter-receiver radio communication
system. Assume that the pulse frequency is an integer multiple of the signal fre-
quency; that is, . Compute the Fourier series coefficients of x(t ).

Answer:

Exercise 4.8

(a) Compute and sketch (magnitude and phase) the Fourier series coefficients
of the sawtooth signal of Figure 4.32.

c
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FIGURE 4.32 Periodic sawtooth signal in Exercise 4.8(a).

(b) Express x(t ) as its real Fourier series of the form

x t a B k t C k t
k k

k

( ) [ cos( ) sin( )].= +
=

+

0 0 0
1

2



(c) Use MATLAB to plot, superimposed on the same figure, approximations
to the signal over two periods by summing the first 5 and the first 50 har-

monic components of x(t ), that is, by plotting . Discuss
your results.

(d) The sawtooth signal x(t ) is the input to an LTI system with impulse re-
sponse . Let y(t ) denote the resulting periodic out-
put. Find the frequency response of the LTI system. Give
expressions for its magnitude and phase as functions of

. Find the Fourier series coefficients bk of the output y(t ). Use your com-
puter program of (c) to plot an approximation to the output signal over two
periods by summing the first 50 harmonic components of y(t ). Discuss
your results.

Exercise 4.9

Consider the sawtooth signal y(t ) in Figure 4.33.

H j( )H j( )
H j( )

h t e t u tt( ) sin( ) ( )= 2

a ek

jk
T

t

N

N 2

x t( ) =

Fourier Series Representation of Periodic Continuous-Time Signals 173

FIGURE 4.33 Periodic sawtooth signal in Exercise 4.9.

(a) Compute the Fourier series coefficients of y(t ) using a direct computation.

(b) Compute the Fourier series coefficients of y(t ) using properties of Fourier
series, your result of Exercise 4.8(a) for x(t ), and the fact that y(t ) =
x(t ) – x(–t). 

Answer:



Exercise 4.10

Compute and sketch (magnitude and phase) the Fourier series coefficients of the
following signals:

(a) Signal x(t ) shown in Figure 4.34.

(b) x t t t( ) sin( ) cos( )= +10 20

174 Fundamentals of Signals and Systems

FIGURE 4.34 Periodic rectangular signal in Exercise 4.10(a).
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The Continuous-Time
Fourier Transform

5

In This Chapter

Fourier Transform as the Limit of a Fourier Series
Properties of the Fourier Transform
Examples of Fourier Transforms
The Inverse Fourier Transform
Duality
Convergence of the Fourier Transform
The Convolution Property in the Analysis of LTI Systems
Fourier Transforms of Periodic Signals
Filtering
Summary
To Probe Further
Exercises

((Lecture 15: Definition and Properties of the Continuous-Time Fourier Transform))

The Fourier series is a frequency-domain representation of a continuous-time
periodic signal. What about aperiodic signals? The concept of Fourier series
can be extended to the Fourier transform, which applies to many aperiodic

signals. For instance, all signals of finite energy have a Fourier transform, also
called a spectrum.

As mentioned earlier, engineers often like to think of a signal as a spectrum
whose energy is mostly contained in certain frequency bands. For instance, the
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Fourier transform of a human voice signal would show that most of the spectral
contents of the signal are contained between 300 Hz and 3400 Hz. This is why the
old telephone lines, seen here as linear time-invariant (LTI) systems that transmit
continuous-time voice signals as voltage signals, were designed to have a flat fre-
quency response over that band so as to maintain signal integrity.

FOURIER TRANSFORM AS THE LIMIT OF A FOURIER SERIES

In order to introduce the Fourier transform, we will use the specific example of a
periodic rectangular signal, and we will let the period tend to infinity so as to have
only the base period effectively remaining, that is, the part of the waveform around
time t = 0. We will see that the Fourier transform in this particular case is nothing
but the sinc envelope of the Fourier series coefficients.

Consider the Fourier series representation of the rectangular wave shown
in Figure 5.1.

x t( )

FIGURE 5.1 Periodic rectangular waveform.

Suppose we normalize the spectral coefficients of by multiplying them by
T, and we assume that t0 is fixed, so that the duty cycle will decrease with
an increase in T:

(5.1)

Then, the normalized coefficients Tak of the rectangular wave have a sinc en-
velope with a constant amplitude at the origin equal to 2t0 and a zero crossing at the
fixed frequency , both independent of the value of T. This is illustrated in
Figure 5.2 with a 50% duty cycle and in Figure 5.3 for a 12.5% duty cycle; that 
is, the fundamental period T in Figure 5.3 is four times as long as T in Figure 5.2.
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Ta T k t k
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2
0

t

T
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x t( )



We see that as the fundamental period increases, we get more and more lines
packed in the lobes of the sinc envelope. These normalized spectral coefficients turn
out to be samples of the continuous sinc function in the line spectrum of . Also,
note that the two above spectra are plotted against the frequency variable with
units of rad/s, rather than the index of each harmonic component. We can see that 
the first zeros on each side of the main lobe are at frequencies and these 
frequencies are invariant with respect to the period T. They only depend on the
width of the pulse.

Thus, our intuition tells us the following:

rad/s
t
0

= ±

k
0

x t( )
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FIGURE 5.2 Sinc envelope of the spectral coefficients of a rectangular
wave with a 50% duty cycle.

FIGURE 5.3 Sinc envelope of the spectral coefficients of a rectangular
wave with a 12.5% duty cycle.
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An aperiodic signal of finite support that has been made periodic by “repeat-
ing its graph” every T seconds will have a line spectrum that becomes more
and more dense as the fundamental period T is made longer and longer, but the
line spectrum has the same continuous envelope.
As T goes to infinity, the line spectrum will become a continuous function of
frequency : the envelope.

It turns out that this intuition is right, and the resulting continuous function of
frequency is the Fourier transform. Recall that the Fourier series coefficients for the
rectangular wave were computed using the formula

(5.2)

where as usual. Now define a signal x(t) equal to over one period
and zero elsewhere, as shown in Figure 5.4.

x t( )2

T0
=

a
T

x t e dt
k
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=
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2

2

( ) ,
/

/

FIGURE 5.4 An aperiodic rectangular pulse signal corresponding
to one period of .x t( )

This aperiodic signal, a single rectangular pulse, can be thought of as being pe-
riodic with an infinite fundamental period (we will let later). Since

over , the spectral coefficients of the periodic sig-
nal can be written in terms of the aperiodic signal x(t) as follows:

(5.3)

Let us define the envelope of (we already know that it is the sinc
function):

Ta
k

X j( )

a
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x t e dtk
jk t=
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x t( )
akt T T2 2,x t x t( ) ( )=
T +



(5.4)

The coefficients are therefore samples of the continuous envelope :

(5.5)

Now, the periodic signal has the Fourier series representation

(5.6)

Or, equivalently, since ,

(5.7)

At the limit, as in Equation 5.7, we get

(The fundamental frequency becomes infinitesimally small.)
(Harmonic frequencies get so close together that they become a

continuum.)
The summation tends to an integral.

(The periodic signal tends to the aperiodic signal.)

All of these elements put together give us an expression for the aperiodic sig-
nal in terms of its Fourier transform:

Inverse Fourier Transform: . (5.8)

Let us rewrite Equation 5.4 for an arbitrary x(t) here for convenience:

Fourier Transform: (5.9)

These two equations are called the Fourier transform pair. Equation 5.9 gives
the Fourier transform or the spectrum of signal x(t), while Equation 5.8 is the in-
verse Fourier transform equation. Thus, the Fourier transform of the rectangular
pulse signal of Figure 5.4 is , as obtained in Equation 5.4.X j t
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PROPERTIES OF THE FOURIER TRANSFORM

We denote the relationship between a signal and its Fourier transform as

. Try to derive the following properties of the Fourier transform by
using Equation 5.8 and Equation 5.9 as an exercise. Note that these properties are
summarized in Table D.2 of Appendix D.

Linearity

The Fourier transform is a linear operation:

(5.10)

Time Shifting

A time shift results in a phase shift in the Fourier transform:

(5.11)

Time/Frequency Scaling

Scaling the time variable with either expands or contracts the Fourier trans-
form:

(5.12)

For > 1, the signal x( t) is sped up (or compressed in time), so intuitively its
frequency contents should extend to higher frequencies. This is exactly what hap-
pens: the spectrum (Fourier transform) of the signal expands to higher frequencies.
On the other hand, when the signal is slowed down ( < 1), the Fourier transform
gets compressed to lower frequencies.

Conjugation and Conjugate Symmetry

In general, the signal is complex, so we can take its conjugate and we obtain

(5.13)

In particular, if the signal is real, that is, , then the Fourier trans-
form has conjugate symmetry . Other interesting consequences
include
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, an even function of 
, an odd function of 

, an even function of 
, an odd function of 

Furthermore, if is real and even, then we can show that
, that is, the spectrum is even and real.

Similarly, if x(t) is real and odd, we have
, that is, the spectrum is odd and purely 

imaginary.

Differentiation

Differentiating a signal results in a multiplication of the Fourier transform by j :

(5.14)

Integration

Integration of a signal results in a division of the Fourier transform by j . How-
ever, to account for the possibility that x(t) has a nonzero, but finite, average value,

that is, , we must add the term to the

Fourier transform. That is, upon integrating x(t), the nonzero average value of x(t)
produces a constant part with finite power concentrated at DC ( = 0), and this is
represented as an impulse at that frequency.

(5.15)

Convolution

The convolution of two signals results in the multiplication of their Fourier trans-
forms in the frequency domain:

(5.16)

A direct application of this property is the calculation of the response of an LTI
system with impulse response h(t) to an arbitrary input signal x(t), which is given
by the convolution . The Fourier transform of the output Y( j ) is
obtained by multiplying the Fourier transform of the input signal X( j ) with the
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frequency response of the system H( j ) (the Fourier transform of its impulse re-
sponse). The output signal in the time domain is obtained by taking the inverse
Fourier transform of its spectrum.

Multiplication

The multiplication property is the dual of the convolution property. The multipli-
cation of two signals results in the convolution of their spectra:

(5.17)

Amplitude modulation is based on this property. For example, consider the
modulation system described by

(5.18)

where the signal x(t) is modulated by multiplying it with a sinusoidal wave of fre-
quency 0. We will see later that the Fourier transform of the carrier

is composed of two impulses of area , one at – 0 and the other at
0, as shown on the right in Figure 5.5. Suppose that the spectrum of x(t) has a tri-

angular shape as shown on the left in Figure 5.5.

c t t( ) : cos( )= 0

y t t x t( ) cos( ) ( ),=
0

x t y t X j Y j
FT

( ) ( ) ( ) ( ).
1

2

FIGURE 5.5 Spectra of the signal and the carrier.

Recall that the convolution of a function with an impulse simply shifts the
function to the location of the impulse. For a time-domain signal, this amounts to
a time shift, and for a Fourier transform, it amounts to a frequency shift. Thus, the
Fourier transform of the resulting amplitude modulated signal y(t) is as shown in
Figure 5.6.

Multiplication of a signal by a sinusoid shifts its spectrum to another frequency
band (it also creates a mirror image at the negative frequencies) for easier trans-
mission over a communication channel. For example, music (bandwidth less than



20 kHz) transmitted over typical AM radio has modulation frequencies in the range
of 500 kHz to 1500 kHz. Modulated signals in this range can be conveniently
transmitted at reasonable power by using “reasonable size” antennas (actually they
seem large by today’s standards!). The basic theory of modulation is presented in
Chapter 16.

Energy-Density Spectrum

Recall that the power spectrum of a periodic signal is defined as the squared mag-
nitudes of its Fourier series coefficients. A plot of the power spectrum of a signal
gives us an idea of the density of power at different frequencies (harmonics).

Similarly, the energy-density spectrum of an aperiodic signal is defined as 
the magnitude squared of its spectrum; that is, is the energy-density spec-
trum of x(t). We can find the energy of a signal in a given frequency band by inte-
grating its energy-density spectrum over the interval of frequencies.

For example,

(5.19)

Note that for real signals, it is customary to include the negative frequency
band as well. For example, if we wanted to compute the energy contained in a real
signal between, for example, 5 kHz and 10 kHz, we would compute
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FIGURE 5.6 Spectrum of an amplitude modulated signal.



Parseval Equality

Just like the total average power of a periodic signal is equal to the sum of the pow-
ers of all its harmonics, the total energy in an aperiodic signal is equal to the total
energy in its spectrum. This is the Parseval equality for Fourier transforms:

(5.21)

((Lecture 16: Examples of Fourier Transforms, Inverse Fourier Transform))

EXAMPLES OF FOURIER TRANSFORMS

Let us compute the Fourier transforms of a few signals.

Fourier Transform of the Complex Exponential Signal

The Fourier transform of is computed as follows:

(5.22)

Figure 5.7 shows a plot of the magnitude and phase of X( j ) for the important
case a > 0 real (a = ). Call it X1( j ).

Remarks:

For the case where x(t) is the impulse response h(t) of a first-order differential
LTI system:
• The system is a lowpass filter with DC gain of .
• High frequencies in the input signal are attenuated.
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• The cutoff frequency of the filter is , where frequency components of

the input signal are attenuated by a factor .
• The maximum phase added to the input signal is for .
In the case of , the Fourier transform of the complex
exponential can be obtained by shifting the magnitude and phase of

:

(5.23)X j X j
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( ) ( ( ))

( )
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X j
1
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2
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1 2
c
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FIGURE 5.7 Fourier transform of a real exponential signal.

Note that this is a shift to the left in the frequency domain when , so in
this case the magnitude and phase of X2( j ) would look like the ones plotted in
Figure 5.8.

> 0



186 Fundamentals of Signals and Systems

Suppose we want to calculate the Fourier transform of the damped sinusoid
. By the linearity and conjugation properties

and by using our result for a complex exponential signal, we can write

(5.24)

Here, the damped sinusoid signal is real, so we should get an even 
and an odd . This turns out to be the case as shown in Figure 5.9. If weX j
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FIGURE 5.8 Fourier transform of a complex exponential signal.



The Continuous-Time Fourier Transform 187

assume that , it can be shown that the magnitude peaks to at the fre-
quencies . The phase tends to – as , and it is equal to – /2
and /2 at the frequencies and , respectively.+

0
2 2=+

0
2 2=

+0
2 2= ±

1
20

>

FIGURE 5.9 Fourier transform of a damped sinusoid.

Fourier Transform of an Aperiodic Sawtooth Signal

Let us calculate the Fourier transform of the aperiodic sawtooth signal x(t) shown
in Figure 5.10.

FIGURE 5.10 Aperiodic sawtooth signal.



(5.25)

This Fourier transform is purely imaginary and odd, as we would expect since
the signal is real and odd. Hence, this Fourier transform is equal to zero at = 0;
that is, the signal’s average value is zero (apply L’Hopital’s rule twice).

THE INVERSE FOURIER TRANSFORM

In general, one would have to use the integral of Equation 5.8 to obtain the time-
domain representation of a signal from its Fourier transform.

Example 5.1: Consider the ideal lowpass filter with cutoff frequency c and

given by its spectrum . The corresponding impulse response is
calculated as follows.
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(5.26)

Thus, the impulse response of an ideal lowpass filter is a real-valued sinc func-
tion extending from to , as shown in Figure 5.11.t = +t =
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FIGURE 5.11 Impulse response of a perfect lowpass filter.

Very often, the Fourier transform will be in the form of a rational function of
j (a ratio of two polynomials in j ). In this case, it is much easier to perform a
partial fraction expansion of the Fourier transform and then to identify each term
in this expansion using a table of Fourier transforms and their corresponding time-
domain signals. This method is usually preferred to obtain the output response of
a stable differential LTI system using the convolution property.

Example 5.2: Consider the response of an LTI system with impulse response 
, (which meets the Dirichlet conditions) to the input .

Rather than computing their convolution, we will find the response by multiplying
the Fourier transforms of the input and the impulse response. From Equation 5.22,
we have

(5.27)X j
j

H j
j

( ) , ( ) .=
+

=
+

1

3

1

2

x t e u tt( ) ( )= 3h t e u tt( ) ( )= 2
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Then,

(5.28)

The partial fraction expansion consists of expressing this transform as a sum of
simple first-order terms.

(5.29)

The constants A, B can be determined by substituting values for the frequency
(e.g., 0) and solving the resulting system of linear equations. An easier technique

consists of applying the following procedure.

1. Equate the right-hand sides of Equations 5.28 and 5.29 and let .

(5.30)

2. To obtain A, multiply both sides of the equation by and evaluate for
.

(5.31)

Applying Step 2 for the constant B, we obtain

(5.32)

3. Finally, the partial fraction expansion of the Fourier transform of the out-
put is given by
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Using Table D.1 of basic Fourier transform pairs in Appendix D, we find that

(5.34)

For the case where the two exponents are equal, for example, 
and , the partial fraction expansion of Equation 5.33 is not valid. On

the other hand, in this case the spectrum of y(t) is given by , which

in the table corresponds to the signal . The partial fraction expan-
sion technique will be reviewed in more detail in Chapter 6.

DUALITY

The Fourier transform pair is quite symmetric. This results in a duality between the
time domain and the frequency domain. For example, Figure 5.12 shows that a rec-
tangular pulse signal in the time domain has a Fourier transform that takes the form
of a sinc function of frequency. The dual of this situation is a rectangular spectrum
that turns out to be the Fourier transform of a signal that is a sinc function of time.

y t te u tt( ) ( )= 2
j( )+

1

2 2Y j( ) =
x t e u tt( ) ( )= 2

h t e u tt( ) ( )= 2

y t e u t e u tt t( ) ( ) ( ).= 2 3
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FIGURE 5.12 Duality between time-domain and frequency-domain functions.

When such a rectangular spectrum centered at = 0 is the frequency response
of an LTI system, it is often referred to as an ideal lowpass filter because it lets the
low frequency components pass undistorted while the high frequencies are com-
pletely cut off. The problem is that the impulse response of this LTI system, the



time-domain sinc function, is noncausal. Filter design will be discussed in more de-
tail later on.

((Lecture 17: Convergence of the Fourier Transform, Convolution Property and
LTI Systems))

CONVERGENCE OF THE FOURIER TRANSFORM

There are two important classes of signals for which the Fourier transform converges:

1. Signals of finite total energy, that is, signals for which 
2. Signals that satisfy the Dirichlet conditions:

a. x(t) is absolutely integrable, that is, .

b. x(t) has a finite number of maxima and minima over any finite interval
of time.

c. x(t) has a finite number of discontinuities over any finite interval of
time. Furthermore, each one of these discontinuities must be finite.

The type of convergence that we get for signals of finite energy is similar to 
the convergence of Fourier series for signals of finite power. That is, there is no 
energy in the error between a signal x(t) and its inverse Fourier transform 

. For signals x(t) satisfying the Dirichlet conditions, it

is guaranteed that is equal to x(t) at every time t, except at discontinuities
where will take on the average of the values on either side of the discontinuity.

Later, we will extend the Fourier transform to include periodic signals (infinite en-
ergy, finite power) by allowing the use of impulse functions in the frequency domain.

THE CONVOLUTION PROPERTY IN THE ANALYSIS 
OF LTI SYSTEMS

General LTI Systems

We have seen that the response of a stable LTI system to a complex exponential 
of the type is simply the same exponential multiplied by the frequency re-
sponse of the system . We used this fact to find the Fourier series co-
efficients of the output of an LTI system as the product for a
periodic input of frequency 0 with spectral coefficients ak.

b H jk a
k k
= ( )

0

H j e j t( )
e j t

x t( )
x t( )

X j e dj t( )
+1

2
x t( ) =

x t dt( ) < +
+

x t dt( )
2

< +
+
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In Example 5.2, we computed the output signal of an LTI system by using the
convolution property of the Fourier transform. That is, even though the output y(t)
of a stable LTI system with impulse response h(t) and subjected to an input x(t) is
given by the convolution , we can also compute it by 
taking the inverse Fourier transform of . This is repre-
sented in the block diagram of Figure 5.13.

Y j H j X j( ) ( ) ( )=
x h t d( ) ( )

+
y t( ) =
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FIGURE 5.13 Block diagram of an LTI
system in the frequency domain.

For a cascade of two stable LTI systems with impulse responses h1(t), h2(t), we
have

(5.35)

This is illustrated in Figure 5.14.

Y j H j H j X j( ) ( ) ( ) ( ).=
2 1

FIGURE 5.14 Cascade interconnection of two LTI systems
in the frequency domain.

For a parallel interconnection of two stable LTI systems with impulse re-
sponses h1(t), h2(t), we have

(5.36)

This parallel interconnection is shown in Figure 5.15.
For a feedback interconnection of two stable LTI systems with impulse re-

sponses h1(t), h2(t), we have

(5.37)Y j
H j

H j H j
X j( )

( )

( ) ( )
( ).=

+
1

1 2
1

Y j H j H j X j( ) [ ( ) ( )] ( ).= +
1 2



This feedback interconnection is shown in Figure 5.16.
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FIGURE 5.15 Parallel interconnection of two LTI
systems in the frequency domain.

FIGURE 5.16 Feedback interconnection of two LTI
systems in the frequency domain.

LTI Differential Systems

We already know how to solve for the response of an LTI differential system,
which, in general, is given by the sum of a forced response and a natural response.
However, it is often easier to use a Fourier transform approach, provided the sys-
tem is known to be stable.

Consider the stable LTI system defined by an N th-order linear constant-
coefficient causal differential equation initially at rest:

(5.38)a
d y t

dt
b

d x t

dtk

k

k
k

N

k

k

k
k

M( ) ( )
.

= =

=
0 0



Assume that denote the Fourier transforms of the input x(t)
and the output y(t), respectively. Recall that differentiation in the time domain is
equivalent to a multiplication of the Fourier transform by j . Thus, if we take the
Fourier transform of both sides of Equation 5.38, we get

(5.39)

Since , the frequency response of the system is given by

(5.40)

Example 5.3 The frequency response of the causal second-order LTI differential 
system,

(5.41)

is calculated as follows:

(5.42)

(5.43)

Note that the order of the system is the highest power of j in the denomina-
tor of the frequency response. Now, suppose we want to obtain the system’s re-
sponse when the input signal is a unit step function. From Table D.1, The Fourier
transform of the step function has the form

(5.44)

so that
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(5.45)

Letting s = j and expanding the rational function on the right-hand side into
partial fractions, we get

(5.46)

and the coefficients are computed as follows:

(5.47)

(5.48)

(5.49)

Hence,

(5.50)

and using Table D.1 of Fourier transform pairs, we find the output by inspection:
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Remark: When in differential Equation 5.38, the frequency response
has a numerator of equal or higher order than the denominator polynomial. It is
then necessary to express the frequency response as a sum of a strictly proper
rational function (it means that the numerator polynomial is of lower order than the
denominator) and a polynomial in j of order . Each term of this polyno-
mial is associated either with an impulse (constant term), a doublet (term in j ), or
a k th-order derivative of the impulse (term in ( j )k). Then, one only needs to per-
form a partial fraction expansion of the resulting strictly proper rational function to
find the other time-domain components of the response.

((Lecture 18: LTI Systems, Fourier Transform of Periodic Signals))

Example 5.4: Consider the causal LTI differential system initially at rest de-
scribed by

(5.52)

The frequency response of this system is

(5.53)

Let s = j and write H(s) as

(5.54)

Multiplying both sides by 2(s + 0.5), we can identify each coefficient:

(5.55)
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and

(5.58)

Finally, the inverse Fourier transform of Equation 5.58 gives us the impulse
response

(5.59)

Example 5.5: Consider a stable causal second-order LTI differential system
whose characteristic polynomial has complex zeros:

(5.60)

The frequency response of this system is given by

(5.61)

Letting s = j and expanding the right-hand side into partial fractions, we get

(5.62)

The coefficients are computed as follows:
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Hence,

(5.65)

and using Table D.1 of Fourier transform pairs, we find the output by inspection:

(5.66)

Remarks:

For complex conjugate zeros of the characteristic polynomial, the two coeffi-
cients of the first-order terms in the partial fraction expansion are also complex
conjugates of each other. Therefore it is sufficient to compute only one,
that is, in the above example, and then one can write directly

. However, it is good practice to compute the second coefficient
just to double-check that the calculation is correct.
It is usually not sufficient to write the impulse response as a sum of two com-
plex signals as in the first line of Equation 5.66. These signals are complex
conjugates of each other, so that their sum can be simplified to get a real sig-
nal at the end. More generally, if the differential system has real coefficients,
the impulse response can always be expressed as a sum of real signals.

FOURIER TRANSFORMS OF PERIODIC SIGNALS

Periodic signals are neither finite-energy, nor do they meet the Dirichlet conditions.
We will nonetheless use the Fourier transform to represent them by using singu-
larity functions such as impulses in the frequency domain. We have already stud-
ied the Fourier series representation of periodic signals with their spectra. We will
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see that the Fourier transforms of these signals are the same spectra, but the coef-
ficients (times 2 ) now represent the impulse areas at the harmonic frequencies
k 0.

Let us consider a signal x(t) with Fourier transform that is a single impulse of
area 2 at frequency k 0:

(5.67)

Taking the inverse Fourier transform of this impulse, we obtain by using the
sampling property:

(5.68)

Thus, the frequency-domain impulse corresponds to a single complex har-
monic component whose amplitude is one. Therefore, by linearity, a more general
signal with Fourier transform,

(5.69)

has the time-domain form

(5.70)

which is the Fourier series representation of x(t). Therefore the Fourier transform
of a periodic signal with Fourier series coefficients ak is a train of impulses of areas
2 ak occurring at the frequencies k 0.

Example 5.6: The Fourier transform of a sinusoidal signal of the form
is .

Fourier Transform of a Periodic Impulse Train

Consider the impulse train signal shown in Figure 5.17, which can be written as
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There are two ways to derive the Fourier transform of an impulse train. The
first method is the one introduced above: use the Fourier series coefficients times
2 as the areas of a periodic train of impulses in the frequency domain of frequency

. We know that the spectral coefficients of the impulse train are
; hence,

(5.72)

The second method consists of calculating the Fourier transform of the impulse
train using the integral formula. This yields

(5.73)

This Fourier transform, shown in Figure 5.18, is actually a periodic train of im-
pulses of period (note that the period is a frequency) in the frequency
domain. That is, the series in Equation 5.73 converges to the impulse train of Equa-
tion 5.72.
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FIGURE 5.17 Impulse train signal.
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((Lecture 19: Filtering))

FILTERING

In this section, we discuss an important application of the Fourier transform: fil-
tering. Filtering is a rich topic often taught in graduate courses in electrical and
computer engineering. We only give a rudimentary introduction to filtering to
show how the frequency-domain viewpoint can help us understand the concept of
shaping the spectrum of a signal by using filters. Sampling and modulation are also
important applications of the Fourier transform. They will be studied in Chapters
15 and 16, respectively.

Frequency-Selective Filters

Ideal frequency-selective filters are filters that let frequency components over a
given frequency band (the passband) pass through undistorted, while components
at other frequencies (the stopband) are completely cut off. A typical scenario
shown in Figure 5.19, where filtering is needed, is when a noise n(t) is added to a
signal x(t), but the noise has most, or all, of its energy at frequencies outside of the
bandwidth of the signal. By linearity of the Fourier transform, the spectra of the
signal and the noise are also summed together. We want to recover the original sig-
nal from its noisy measurement x1(t).

Here the noise spectrum is assumed to have all of its energy at higher frequen-
cies than the bandwidth W of the signal. Thus, an ideal lowpass filter would per-
fectly recover the signal, that is, , as seen in Figure 5.20.x t x t( ) ( )=

FIGURE 5.18 Fourier transform of an impulse
train signal.



Lowpass Filters

An ideal lowpass filter cuts off frequencies higher than its cutoff frequency, c. The
frequency response of this filter, shown in Figure 5.21, is given by

(5.74)

The impulse response of the ideal lowpass filter shown in Figure 5.22
was found to be a sinc function of time (it is even and real, as expected):

h t
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FIGURE 5.19 Typical filtering problem.

FIGURE 5.20 Effect of filtering in the frequency domain.
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(5.75)h t t
lp

c c( ) .= sinc

FIGURE 5.21 Frequency response
of an ideal lowpass filter.

FIGURE 5.22 Impulse response of an ideal lowpass filter.

Recall that the convolution property of the Fourier transform is the basis for

filtering: the output of an LTI system with impulse response sub-

jected to an input signal is given by 
.

Even though the above filter is termed “ideal” in reference to its frequency re-
sponse, it may not be so desirable in the time domain for some applications because
of the ripples in its impulse response. For example, the step response of the ideal
lowpass filter is the running integral of the sinc function shown in Figure 5.22. Its
plot in Figure 5.23 indicates that there are potentially undesirable oscillations be-
fore (because the impulse response is noncausal) and after the discontinuity. Such
a signal in an electronic circuit might cause improper switching of a binary latch.
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As mentioned before, the impulse response of the ideal lowpass filter is not re-
alizable, as it is noncausal. Approximations to the ideal lowpass filter that can be
realized by stable causal LTI differential equations have been proposed in the past,
and some of them have found widespread use. One of these filters is the Butter-
worth filter. The magnitude of the frequency response of an Nth-order Butterworth
filter with cutoff frequency c is given by

(5.76)

Remarks:

The DC gain is .
The attenuation at the cutoff frequency is for any order N.

Figure 5.24 shows a plot of the filter’s magnitude for N = 2 (second-order)
compared to the ideal “brick wall” magnitude. The transition band is the frequency
band around c, where the magnitude rolls off. The higher the order of the Butter-
worth filter, the narrower the transition band gets.

The second-order Butterworth filter is defined by its characteristic polynomial:

(5.77)
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FIGURE 5.23 Step response of an ideal lowpass filter.
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Therefore the differential equation relating the input and output signals of this
filter must have the form

(5.78)

Note that it is necessary to add a gain of , multiplying the input signal to ob-
tain a DC gain of 1 for the filter. Recall that the DC gain is the gain of the filter
when the input and output signals are constant, which means that the derivatives of
y(t) are zero in Equation 5.78.

Let us check that the frequency response of this differential equation has the
magnitude of Equation 5.76. The frequency response of the second-order Butter-
worth filter is obtained from Equation 5.78:

(5.79)
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FIGURE 5.24 Magnitude of frequency response of
a second-order Butterworth filter.



and the magnitude is

(5.80)

The impulse response of a Butterworth filter is given by (following a partial
fraction expansion of the frequency response):

(5.81)

This impulse response does not oscillate much even though it is a damped si-
nusoid. The decay rate is fast enough to damp out the oscillations. For example, if
we plot the step response of this second-order Butterworth filter, we obtain the
graph of Figure 5.25 with a single overshoot.
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FIGURE 5.25 Step response of a second-order
Butterworth filter.

Highpass Filters

An ideal highpass filter cuts off the part of the input signal’s spectrum that is at
lower frequencies than the filter’s cutoff frequency, c. The frequency response of
this filter, shown in Figure 5.26, is given by
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Notice that the frequency response of an ideal highpass filter can be written as
the difference between 1 and the frequency response of an ideal lowpass filter:

(5.83)

The resulting impulse response is simply

(5.84)

This suggests one possible, but naïve, approach to obtaining a realizable high-
pass filter. First, design a lowpass filter with cutoff frequency c and desirable
characteristics in the transition band and the stopband. Second, form the frequency
response of the highpass filter using Equation 5.83.

Example 5.7: We can design a highpass filter using the second-order lowpass
Butterworth filter of the above example. The resulting highpass magnitude of the
frequency response of the filter is shown in Figure 5.27.

(5.85)

H j H j

j j

j

Bhp B

c

c c

( ) ( )

( )

( )

=

=
+ +

=

1

1
2

2

2 2

22 2 2

2 2

2

2

2

2

+ +

+ +

=
+

c c c

c c

c

j

j j

j j

( )

( )

(( )j j
c c

2 22+ +

h t t h t
hp lp

( ) ( ) ( ).=

H j H j
hp lp

( ) ( ).= 1

FIGURE 5.26 Frequency response
of an ideal highpass filter.



The causal LTI differential system corresponding to this highpass filter is the
following:

(5.86)

and the impulse response is as given by Equation 5.87:

(5.87)

Bandpass Filters

An ideal bandpass filter cuts off frequencies lower than its first cutoff frequency
c1 and higher than its second cutoff frequency c2, as shown in Figure 5.28. The

frequency response of such a filter is given by

(5.88)

The frequency response of an ideal bandpass filter can be written as the prod-
uct of the frequency responses of overlapping ideal lowpass and highpass filters.
The highpass filter should have a cutoff frequency of c1 and the lowpass filter c2.

(5.89)

This is one approach to designing bandpass filters.
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FIGURE 5.27 Magnitude of frequency response of a
second-order highpass filter.
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SUMMARY

In this chapter, we have extended the concept of Fourier series to aperiodic con-
tinuous-time signals, which resulted in the Fourier transform.

The Fourier transform was derived as the limit of the Fourier series of a periodic
signal whose period tends to infinity. Classes of signals that have a Fourier
transform include finite-energy signals and signals satisfying the Dirichlet 
conditions.
The Fourier transform of a signal, also called a spectrum, is in most cases a
complex-valued continuous function of frequency. Its magnitude and phase are
usually plotted separately. The energy-density spectrum plot of a signal is the
squared magnitude of its spectrum.
The inverse Fourier transform is given by an integral formula. However, a par-
tial fraction expansion of a Fourier transform can often be performed, and the
time-domain signal is then obtained from a table of Fourier transform pairs.
The Fourier transform of a periodic signal can be defined with frequency-do-
main impulses located at the harmonic frequencies, whose areas are a constant
times the Fourier series coefficients of the signal.
In the frequency domain, signal filtering using an LTI system is simply the
multiplication of the frequency response of the system with the spectrum of the
input signal to either amplify or attenuate different frequencies. We briefly dis-
cussed lowpass, bandpass, and highpass filters.

FIGURE 5.28 Frequency response of an
ideal bandpass filter.



TO PROBE FURTHER

For a more detailed treatment of the Fourier transform and its applications, see
Bracewell, 2000. For a specialized treatment of filtering and filter design, see
Schaumann and Van Valkenburg, 2001 and Winder, 2002.

EXERCISES

Exercises with Solutions

Exercise 5.1

Sketch the following signals and find their Fourier transforms.

(a) . Show that is real and even.

Answer:
The signal is sketched in Figure 5.29.

X j( )x t e u t u t
t

( ) ( ) ( )= ( ) +1 1 1
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FIGURE 5.29 Signal of Exercise 5.1(a).

Its Fourier transform is computed as follows:
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This Fourier transform is obviously real. To show that it is even, we consider
:

(b) Periodic signal x(t) in Figure 5.30.
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FIGURE 5.30 Signal of Exercise 5.1(b).

Answer:
This signal is the sum of the constant signal –1 with our familiar rectangular wave
of amplitude 2 and duty cycle . Therefore, its Fourier series coefficients are

2 1T

T
=



Note that since , then depending on the duty cycle. The
Fourier transform of the signal is given by

Exercise 5.2

Sketch the following signals and compute their Fourier transforms using the inte-
gral formula.

(a)

Answer:
This real, odd signal is composed of two periods of a sine wave. Its sketch is in Fig-
ure 5.31.
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FIGURE 5.31 Signal composed of two periods
of a sine wave in Exercise 5.2(a).

Let us compute its Fourier transform:



This Fourier transform is imaginary and odd, as expected.
(b) , where x1(t) is as defined in (a) and 

is an impulse train.

Answer:
Note that is just the regular sine wave of frequency 0 since 

. Thus,
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We know that the Fourier transform of is given by , so

We can obtain the same result by applying the convolution property:

Thus,

The term in the above summation for is equal to zero for all integers
. In the case of , we have a indeterminacy, and using l’Hopital’s

rule we find that
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Exercise 5.3

Find the time-domain signals corresponding to the following Fourier transforms.

(a) 

Answer:

From Table D.1 (Appendix D) of Fourier transform pairs,
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(b)

Answer:
Let . Partial fraction expansion:

Thus, .

Exercise 5.4

Consider the feedback interconnection in Figure 5.32 of two causal LTI differen-

tial systems defined by , .x t( )+dx t
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FIGURE 5.32 Feedback interconnection of two LTI systems
in Exercise 5.4.

(a) Find the frequency response of the overall system and plot its
magnitude and phase using MATLAB.

H j( )



Answer:

The overall closed-loop frequency response is obtained by first writing the
loop equations for the error signal e(t) (output of the summing junction) and the
output.

Solving the first equation for , we obtain

Thus,

Magnitude and phase:
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Using MATLAB, we obtain the frequency response plots of Figure 5.33. These
so-called Bode plots have a logarithmic frequency axis and a logarithmic scale for
the magnitude as well (more on Bode plots in Chapter 8.)

H j

H j

( )

( ) arctan arc

= +

+ +

= +

2

2 2

4

9 1

2
ttan arctan+

3 1

The Continuous-Time Fourier Transform 219

FIGURE 5.33 Frequency response of feedback
system in Exercise 5.4(a).

(b) Find the output signal y(t) (the step response) using the Fourier transform
technique and sketch it.

Answer:
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Taking the inverse transform, we obtain the step response shown in Figure 5.34.
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FIGURE 5.34 Step response of feedback system
in Exercise 5.4(b).

Exercises

Exercise 5.5

Compute the energy-density spectrum of the signal . Now,
suppose that this signal is filtered by a unit-gain ideal bandpass filter with cutoff
frequencies , . Compute the total energy contained in the
output signal of the filter.

Answer:

Exercise 5.6

Compute the Fourier transform of the signal x(t) shown in Figure 5.35.

c2
4= rad/s

c1
2= rad/s

x t e u tt( ) ( )( )= 5 2 2



Exercise 5.7

Find the time-domain signal corresponding to the Fourier transform:

.

Answer:

Exercise 5.8

Sketch the signal and com-
pute its Fourier transform.

Exercise 5.9

Find the time-domain signals corresponding to the following Fourier transforms.
You can use Table D.1 of Fourier transform pairs.
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FIGURE 5.35 Signal in Exercise 5.6.
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Answer:

Exercise 5.10

Compute the Fourier transform of the periodic signal x(t) shown in Figure 5.36.

FIGURE 5.36 Periodic triangular waveform of Exercise 5.10.

Exercise 5.11

Find the inverse Fourier transform x(t) of , whose magnitude and phase are
shown in Figure 5.37.

X j( )

FIGURE 5.37 Magnitude and phase of Fourier transform in Exercise 5.11.

Answer:
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The Laplace Transform6

In This Chapter

Definition of the Two-Sided Laplace Transform
Inverse Laplace Transform
Convergence of the Two-Sided Laplace Transform
Poles and Zeros of Rational Laplace Transforms
Properties of the Two-Sided Laplace Transform
Analysis and Characterization of LTI Systems using the 
Laplace Transform
Definition of the Unilateral Laplace Transform
Properties of the Unilateral Laplace Transform
Summary
To Probe Further
Exercises

((Lecture 20: Definition of the Laplace Transform))

So far, we have studied the Fourier series and the Fourier transform for the
analysis of periodic and aperiodic signals, and linear time-invariant (LTI)
systems. These tools are useful because they allow us to analyze continuous-

time signals and systems in the frequency domain. In particular, signals can be
represented as linear combinations of periodic complex exponentials, which are
eigenfunctions of LTI systems, but if we replace j with the more general complex
variable s in the Fourier transform equations, we obtain the Laplace transform, a
generalization of the Fourier transform.
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The Fourier transform was defined only for signals that taper off at infinity,
that is, signals of finite energy or signals that are absolutely integrable. On the other
hand, the Laplace transform of an unbounded signal or of an unstable impulse re-
sponse can be defined. The Laplace transform can also be used to analyze differ-
ential LTI systems with nonzero initial conditions.

DEFINITION OF THE TWO-SIDED LAPLACE TRANSFORM

The two-sided Laplace transform of x(t) is defined as follows:

(6.1)

where s is a complex variable. Notice that the Fourier transform is given by the
same equation, but with .

Let the complex variable be written as . Then the Laplace transform
can be interpreted as the Fourier transform of the signal :

(6.2)

Given x(t), this integral may or may not converge, depending on the value of
(the real part of s).

Example 6.1: Let us find the Laplace transform of the signal
shown in Figure 6.1.x t e u t aat( ) ( ),= R

X j x t e e dtt j t( ) ( ) .+ =
+

x t e t( )
s j= +
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FIGURE 6.1 Real decaying
exponential signal.



(6.3)

This Laplace transform converges only for values of s in the open half-plane to
the right of . This half-plane is the region of convergence (ROC) of the
Laplace transform. It is depicted in Figure 6.2.
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FIGURE 6.2 Region of convergence of 
Laplace transform of x(t) = e–atu(t), a .�

Recall that the Fourier transform of converges only for
(decaying exponential), whereas its Laplace transform converges for any a

(even for growing exponentials), as long as . In other words, the
Fourier transform of converges for .

Example 6.2: Find the Laplace transform of the signal 
shown in Figure 6.3.

x t e u t aat( ) ( ),= �

> ax t e e u tt a t( ) ( )( )+=
Re{ }s a>

a > 0
x t e u t aat( ) ( ),= R

FIGURE 6.3 Real growing exponential
signal identically zero at positive times.
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(6.4)

This Laplace transform converges only in the ROC that is the open half-plane
to the left of (see Figure 6.4).s a=

X s e u t e dt

e dt

at st

s a t
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=

=

=

+

+
0

1
ss a
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<, Re{ }

FIGURE 6.4 Region of convergence of
Laplace transform of x(t) = e–atu(–t), a .�

Important note: The ROC is an integral part of a Laplace transform. It
must be specified. Without it, we cannot tell what the corresponding time-domain
signal is.

INVERSE LAPLACE TRANSFORM

The inverse Laplace transform is in general given by the following integral:

(6.5)

This contour integral, where the contour in the ROC is parallel to the imaginary
axis and wraps around at infinity on the side that includes all the poles of X(s)
within the contour, is rarely used because we are mostly dealing with linear sys-
tems and standard signals whose Laplace transforms are found in tables of Laplace
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j

( ) : ( ) .=
+1

2



transform pairs such as Table D.4 in Appendix D. Thus, in this book we will
mainly use the partial fraction expansion technique to find the continuous-time sig-
nal corresponding to a Laplace transform.

Before turning our attention to partial fraction expansion, let us look at one
example of how the contour integral and the residue theorem are used to compute the
inverse Laplace transform of a simple rational function . Assume for
simplicity that all the poles of X(s) are distinct. Recall that in the theory of complex
functions, the residue at the simple pole s0 of a given analytic function X(s) is given

by . For instance, if , then the

residue at the pole –2 is given by .
The well-known residue theorem in the context of the Laplace transform basi-

cally states that, given an analytic function F(s) with N poles , and given a

simple closed contour C lying in the region of analyticity of F(s) (here the ROC)
but encircling all of its poles, the following contour integral evaluates to

(6.6)

The residue theorem can be directly applied to the contour integral of Equation
6.5 with and the contour C defined as a vertical line in the ROC,
wrapping around at infinity in the complex plane so as to encircle all the poles of

, which turn out to be the same as the poles of X(s).

Example 6.3: Let us compute the inverse Laplace transform of ,
. We will see later that the first piece of information that we

can use is that the ROC is specified to be a right half-plane, which tells us that x(t)
will be right-sided. In addition, this Laplace transform is rational, so x(t) will be
zero at negative times.

Using Equation 6.5, we get

(6.7)
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of a vertical line in the ROC wrapping around at infinity in the right half-plane to
encircle the pole, in the clockwise direction, and we would finally compute the sig-
nal to be , where the negative sign in front comes from the fact that
the contour must be traversed clockwise instead of counterclockwise.

Partial Fraction Expansion

In the previous example, we were able to find the inverse Laplace transforms of
two first-order Laplace transforms, one leading to a right-sided complex exponen-
tial signal, and the other leading to a left-sided complex exponential signal. These
two inverse transforms are the foundation for a technique known as partial fraction

expansion. Assuming there is no multiple-order pole in the set of poles of

the rational transform X(s), and assuming that the order of the denominator poly-
nomial is greater than the order of the numerator polynomial, we can always ex-
pand X(s) as a sum of partial fractions:

(6.8)

From the ROC of X(s), the ROC of each of the individual terms in Equation 6.8
can be found, and then the inverse transform of each one of these terms can be de-
termined. If the ROC of the term is to the right of the pole at , then the
inverse transform of this term is , a right-sided signal. If, on the other
hand, the ROC is to the left of the pole at for the term , then its inverse
transform is , a left-sided signal. Note that the poles and their associ-
ated coefficients can be real or complex. Adding the inverse transforms of the in-
dividual terms in Equation 6.8 yields the inverse transform of X(s).

The technique of partial fraction expansion of a rational Laplace transform is
introduced here and will be illustrated by means of a few examples. As discussed
above, the idea behind the partial fraction expansion is to expand a Laplace trans-
form X(s) as a sum of first-order rational functions. Assuming for the moment that
X(s) has distinct poles , each one of the first-order fractions contains one of
the poles:

(6.9)

Then, using Table D.4 of Laplace transform pairs, one can easily obtain the
time-domain signal x(t). Assuming that the ROC of X(s) is an open right half-plane,
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then all the ROCs of the partial fractions must also be open right half-planes for
consistency. In fact, ROC of X(s) must at least contain the intersection of all the
ROCs of the fractions . Then we have

(6.10)

If the ROC of X(s) is an open left half-plane, then all the ROCs of the partial
fractions must also be open left half-planes, and we get

(6.11)

The last case to consider for X(s) with distinct poles is when the ROC of X(s)
is an open vertical strip between two adjacent poles, for example, pm to the left and
pm+1 to the right, without loss of generality. In this case, all the poles to the left of,
and including, pm must have their ROCs as open right half-planes, and all the poles
to the right of, and including, pm+1 must have their ROCs as open left half-planes.
Then, holds and we have

(6.12)

For multiple poles in X(s), the partial fraction expansion must contain fractions
with all the powers of the multiple poles up to their multiplicity. To illustrate this,
consider X(s) with ROC and with one multiple pole pm of multi-
plicity r, that is,

(6.13)

where n(s) is the numerator polynomial. Its partial fraction expansion is

(6.14)
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The question now is, How do we compute the coefficients Ai for a given
Laplace transform? For a single pole pk, coefficient Ak is simply the residue at the
pole, that is,

Example 6.4: Let us compute the inverse of the following Laplace transform:

(6.15)

(6.16)

In order to have , the only possibility for the
individual fractions’ ROCs is the following:

.

, , .

Thus,

(6.17)

We compute coefficient A1:

(6.18)

Then, we obtain coefficient A2:
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Finally, coefficient A3 is computed:

(6.20)

Hence, the transfer function can be expanded as

(6.21)

and from Table D.4 of Laplace transform pairs, we obtain the signal

(6.22)

For a multiple pole pm of multiplicity r, the coefficients are com-
puted as follows:

(6.23)

where by convention. To compute the coefficient of the term with the high-
est power of the repeated pole, we simply have to compute

(6.24)

It should be clear that after multiplication by on both sides of Equa-
tion 6.14, all the terms on the right-hand side will vanish upon letting s = pm,

except the term , which yields . Now, consider the computation of

using the formula . After multiplication by
, the terms on the right-hand side corresponding to the multiple pole 

become

(6.25)

After differentiating with respect to s and letting s = pm, we obtain

(6.26)
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All the other terms of the partial fraction expansion disappear.
In practice, differentiating X(s) can be tedious. Thus, at least for a pen and

paper solution of a simple problem with only one double pole, one can compute co-
efficient Am+1 as in Equation 6.24, and the other coefficient Am can be computed by
multiplying both sides of the partial fraction equation by and by letting

, which yields

(6.27)

Example 6.5:

(6.28)

Let us compute coefficient A3 first:

(6.29)

We then compute coefficient A2:

(6.30)

Finally, coefficient A1 is found:

(6.31)

Hence, we have

(6.32)

We can check that this partial fraction expansion is correct by bringing all the
terms together with a common denominator:
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(6.33)

Finally, using Table D.4 of Laplace transform pairs, we obtain

(6.34)

A pair of complex conjugate poles in a Laplace transform can be dealt with in-
dividually using the residue technique outlined above. The two complex coeffi-
cients obtained are complex conjugates of each other. A pair of complex conjugate
poles can also be treated by including a second-order term in the partial fraction ex-
pansion. The idea is to make use of the damped or growing sinusoids in the table
of Laplace transforms, such as

(6.35)

(6.36)

by creating a term in the partial fraction expansion. It is perhaps best to
explain this technique by means of an example.

Example 6.6: Let us compute the inverse of the following Laplace transform:

(6.37)
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(6.38)

Coefficient C is easily obtained with the residue technique: C = . Now, let

to compute , and then multiply both sides by s and let

to get . Then we have the following expansion:

(6.39)

Taking the inverse Laplace transform using Table D.4, we obtain

(6.40)

CONVERGENCE OF THE TWO-SIDED LAPLACE TRANSFORM

As mentioned above, the convergence of the integral in Equation 6.1 depends on
the value of the real part of the complex Laplace variable. Thus, the ROC in the
complex plane or s-plane is either a vertical half-plane, a vertical strip, or nothing.
We have seen two examples above that led to open half-plane ROCs. Here is a sig-
nal for which the Laplace transform only converges in an open vertical strip.

Example 6.7: Consider the double-sided signal shown in
Figure 6.5.
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The Laplace Transform 235

Its Laplace transform is given by

(6.41)

The ROC is a vertical strip between the real parts 2 and 1, as shown in Fig-
ure 6.6.
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FIGURE 6.5 Double-sided signal.

FIGURE 6.6 Region of convergence of
Laplace transform of the double-sided signal.

POLES AND ZEROS OF RATIONAL LAPLACE TRANSFORMS

Complex or real exponential signals have rational Laplace transforms. That is, they
are ratios of a numerator polynomial and a denominator polynomial.
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(6.42)

The zeros of the numerator n(s) are called the zeros of the Laplace transform.
If z1 is a zero, then . The zeros of the denominator d(s) are called the
poles of the Laplace transform. If p1 is a pole, then .

Example 6.8: , has poles at .
For differential LTI systems, the zeros of the characteristic polynomial are

equal to the poles of the Laplace transform of the impulse response.

((Lecture 21: Properties of the Laplace Transform, Transfer Function of an LTI
System))

PROPERTIES OF THE TWO-SIDED LAPLACE TRANSFORM

The properties of the two-sided Laplace transform are similar to those of the
Fourier transform, but one must pay attention to the ROCs. Take for example the
sum of two Laplace transforms: the resulting Laplace transform exists if and only
if the two original ROCs have a nonempty intersection in the complex plane. Note
that the properties of the Laplace transform described in this section are summa-
rized in Table D.5 of Appendix D.

Linearity

The Laplace transform is linear. If and 
, then

(6.43)

Time Shifting

If , then

(6.44)

Example 6.9: Consider an LTI system with an impulse response that is a unit
rectangular pulse of duration T: . Thenh t u t u t T( ) ( ) ( )=
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(6.45)

Note that the ROC is the whole complex plane because the impulse response
is of finite support. There is no pole at s = 0.

Shifting in the s-Domain

If , then

(6.46)

where the new ROC is the original one shifted by , to the right if this num-
ber is positive, to the left otherwise.

Time Scaling

If , then

(6.47)

where the new ROC is the original one, expanded or contracted by and
flipped around the imaginary axis if < 0.

Example 6.10: Consider a signal x(t) whose Laplace transform has the ROC
shown on the left in Figure 6.7. After the time expansion and reversal , the
resulting Laplace transform has the ROC shown on the right in Figure 6.7.

(6.48)
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FIGURE 6.7 Expansion of region of convergence after time scaling.



Conjugation

If , then

(6.49)

Therefore, for x(t) real, .
An important consequence is that if x(t) is real and X(s) has a pole (or zero) at 

, then X(s) has also a pole (or zero) at the complex conjugate point .
Thus, the complex poles and zeros of the Laplace transform of a real signal always
come in conjugate pairs.

Convolution Property

If and , then

(6.50)

This is of course an extremely useful property for LTI system analysis. Note
that the resulting ROC includes the intersection of the two original ROCs, but it
may be larger, for example, when a pole-zero cancellation occurs.

Example 6.11: The response of the LTI system with to the 
input is given by the inverse Laplace transform of Y(s):

(6.51)

and

(6.52)

Expanding this transform into partial fractions, we get
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We find coefficient B first:

(6.54)

and coefficient A is then obtained:

(6.55)

Therefore, using Table D.4 of Laplace transform pairs, we obtain

(6.56)

Differentiation in the Time Domain

If , then

(6.57)

ROC1 can be larger than ROC, namely when there is a pole-zero cancellation
at s = 0.

Differentiation in the Frequency Domain

If , then

(6.58)

This property is useful to obtain the Laplace transform of signals of the form
.

Integration in the Time Domain

If , then:
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For example, since the unit step response of an LTI system is given by the run-
ning integral of its impulse response , we have 
with the appropriate ROC. Note that ROC1 can be bigger than the intersection,
namely when there is a pole-zero cancellation at s = 0.

The Initial and Final Value Theorems

Under the assumptions that for t < 0 and that it contains no impulse or
higher order singularity, one can directly calculate the initial value and the
final value using the Laplace transform.

The initial-value theorem states that

(6.60)

and the final-value theorem states that

(6.61)

A typical use of the final-value theorem is to find the settling value of the out-
put of a system.

Example 6.12: Let us find the final value of the step response of the causal LTI

system with , shown in Figure 6.8.
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FIGURE 6.8 System subjected to a step input.

Note that in the above example, the multiplication by s cancels out the output’s
pole at the origin. Thus, it is sufficient to evaluate the system’s Laplace transform
at s = 0 to obtain the final value. This is true for most problems of this type, that is,
finding the final value of the step response of a system.



ANALYSIS AND CHARACTERIZATION OF LTI SYSTEMS 
USING THE LAPLACE TRANSFORM

We have seen that the convolution property makes the Laplace transform useful to
obtain the response of an LTI system to an arbitrary input (with a Laplace trans-
form). Specifically, the Laplace transform of the output of an LTI system with im-
pulse response h(t) is simply given by

(6.63)

Also recall that the frequency response of the system is .

The Laplace transform H(s) of the impulse response is called the transfer func-
tion. Many properties of LTI systems are associated with the characteristics of
their transfer functions.

Causality

Recall that for for a causal system and thus is right-sided. Therefore,
the ROC associated with the transfer function of a causal system is a right half-plane.

The converse is not true. For example, a right-sided signal starting at 
also leads to an ROC that is a right half-plane. However, if we know that the trans-
fer function is rational, then it suffices to check that the ROC is the right half-plane
to the right of the rightmost pole in the s-plane to conclude that the system is
causal.

Example 6.13: The transfer function corresponds to a

causal system. On the other hand, the transfer function is 

noncausal (causal h(t) time-advanced by 1), whereas is
causal (causal h(t) time-delayed by 1).

Stability

So far, we have seen that bounded-input bounded-output (BIBO) stability of a
continuous-time LTI system is equivalent to its impulse response being absolutely 
integrable, in which case its Fourier transform converges. Also, the stability of an
LTI differential system is equivalent to having all the zeros of its characteristic
polynomial having a negative real part.

For the Laplace transform, the first stability condition translates into the 
following:

An LTI system is stable if and only if the ROC of its transfer function contains
the j -axis.
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Example 6.14: Consider an LTI system with proper transfer function:

(6.64)

Three possible ROCs could be associated with this transfer function. Table 6.1
gives the impulse response for each ROC. Only one ROC leads to a stable system.
Note that the system poles are marked with an X and the system zeros are marked
with an O in the s-plane.

First, let us compute the partial fraction expansion of H(s):

(6.65)

To obtain A, let : A = 1. Then, we find the coefficient B:

(6.66)

and finally we get coefficient C:

(6.67)

Hence, the transfer function can be expanded as

(6.68)

The first term is constant and corresponds to an impulse . The two other
terms are partial fractions that can correspond to right-sided or left-sided signals,
depending on the chosen ROCs, as presented in Table 6.1.

The stability condition for a causal LTI system with a proper, rational trans-
fer function is stated as follows. Note that a large class of causal differential LTI
systems have rational transfer functions.

A causal system with a proper rational transfer function H(s) is stable if and
only if all of its poles are in the left-half of the s-plane; that is, if all of the poles
have negative real parts.
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Notice that the transfer function must be proper; otherwise when the degree of
the numerator exceeds that of the denominator, the impulse response contains the
derivative of an impulse that is not absolutely integrable.

((Lecture 22: Definition and Properties of the Unilateral Laplace Transform))

DEFINITION OF THE UNILATERAL LAPLACE TRANSFORM

The one-sided, or unilateral, Laplace transform of x(t) is defined as follows:

(6.69)X ( ) : ( ) ,s x t e dtst=
+

0
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ROC h(t) Causal Stable

Yes No
ROC is 
a right 
half-plane

No Yes
-axis
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ROC

No No
h t e e u t

t
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= +

+

2
3
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3
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j
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TABLE 6.1 Correspondence Between a Transfer Function and Its Impulse Response Depending
on the ROC



where s is a complex variable. Notice that this transform considers only the sig-
nal for nonnegative times. The lower limit of integration is , which means
that singular functions such as impulses at t = 0 will be taken into account in the
unilateral Laplace transform.

We will use the following notation for the unilateral Laplace transform:

(6.70)

Note that two signals that differ for t < 0 but are equal for will have the
same unilateral Laplace transform. Also note that the unilateral Laplace transform
of x(t) is identical to the two-sided Laplace transform of , assuming there
is no impulse at t = 0. A direct consequence of this is that the Laplace transform
properties for causal, right-sided signals apply to the unilateral transform as well.
Moreover, the ROC of a unilateral Laplace transform is always an open right half-
plane or the entire s-plane.

PROPERTIES OF THE UNILATERAL LAPLACE TRANSFORM

The properties of the unilateral Laplace transform are identical to those of the reg-
ular two-sided Laplace transform, except when time shifts are involved, which can
make part of the signal “disappear” to the negative times. Note that the following
properties are summarized in Table D.6 of Appendix D.

Linearity

The unilateral Laplace transform is linear. If and

, then

(6.71)

Time Delay

For , if , then for a time delay of ,

(6.72)

Thus, for a time delay, this time-shifting property is exactly the same as that for
the two-sided Laplace transform. In the case where x(t) is nonzero at negative
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times, a time delay can make a part of the signal “appear” at positive times, which
could change the unilateral Laplace transform. For a time advance, the part of the
signal shifted to negative times is lost. In both of these cases there is no simple re-
lationship between the resulting and the original unilateral transforms.

Shifting in the s-Domain

If , then

(6.73)

where the new ROC is the original one shifted by , to the right if this num-
ber is positive, to the left otherwise.

Time Scaling

If , then for ,

(6.64)

where the new ROC is the original one, expanded or contracted by .

Conjugation

If , then

(6.75)

Therefore, for x(t) real, , and we have the important conse-
quence that the complex poles and zeros of the unilateral Laplace transform of a
real signal always come in conjugate pairs.

Convolution Property

Assume that . If and 

, then

(6.76)

This is a useful property for causal LTI system analysis with signals that are
identically zero at negative times.
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Differentiation in the Time Domain

The differentiation property of the unilateral Laplace transform is particularly useful
for analyzing the response of causal differential systems to nonzero initial conditions.

If , then

(6.77)

ROC1 can be larger than ROC when there is a pole-zero cancellation at s = 0.
Note that the value is 0 for signals that are identically 0 for t < 0, but not for
signals that extend to negative times. Furthermore, can be used to set an ini-
tial condition on the output of a causal differential system as shown in Example 6.15.

Example 6.15: Let us calculate the output of the following homogeneous causal
LTI differential system with initial condition :

(6.78)

We take the unilateral Laplace transform on both sides:

(6.79)

Solving for Y(s), we obtain

(6.80)

which corresponds to the time-domain output signal:

(6.81)

Note that the unilateral Laplace transform of the -order derivative of x(t) is
given by the following formula, which is derived by successive applications of
Equation 6.77.

(6.82)
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Differentiation in the Frequency Domain

If , then

(6.83)

Integration in the Time Domain

If , then

(6.84)

The Initial and Final Value Theorems

Even though these theorems were introduced as two-sided Laplace transform prop-
erties, they are basically unilateral transform properties, as they apply only to sig-
nals that are identically 0 for .

The initial-value theorem states that

(6.85)

and the final-value theorem states that

(6.86)

Example 6.16: Let us find the initial value of the signal whose unilat-
eral Laplace transform is :

(6.87)

SUMMARY

In this chapter, we introduced the Laplace transform of a continuous-time signal as
a generalization of the Fourier transform.
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The Laplace transform can be defined for signals that tend to infinity, as long
as the integral converges for some values of the complex variable s. The set of
all such values in the complex plane is the region of convergence of the
Laplace transform.
The inverse Laplace transform is given by a contour integral in the complex
plane, and the residue theorem can be used to solve it. However, the Laplace
transforms that we have to deal with in engineering are often rational functions,
and these can be inverted by first expanding the transform into a sum of partial
fractions, and then by using a table of basic Laplace transform pairs. The
region of convergence of each individual fraction must be found to select the
correct time-domain signal in the table.
We discussed many of the properties of Laplace transforms, but one is partic-
ularly useful in engineering: the convolution property, which states that the
Laplace transform of the convolution of two signals is equal to the product of
their Laplace transforms. This allows us to compute a convolution, for exam-
ple, to obtain the output signal of an LTI system, simply by forming and in-
verting the product of two Laplace transforms.
The Fourier transform of a signal is simply equal to its Laplace transform eval-
uated on the -axis, provided that it is included in the region of convergence.
The unilateral Laplace transform was introduced mostly for its differentiation
property, which proves particularly useful in solving for the response of dif-
ferential systems with initial conditions.

TO PROBE FURTHER

References on the Laplace transform include Oppenheim, Willsky, and Nawab,
1997; Kamen and Heck, 1999; and Haykin and Van Veen, 2002. The theory of
complex variables and complex functions is covered in Brown and Churchill, 2004.

EXERCISES

Exercises with Solutions

Exercise 6.1

Compute the Laplace transforms of the following three signals (find the numerical
values of 0 and in (c) first). Specify their ROC. Find their Fourier transforms if
they exist.

(a) as shown in Figure 6.9.x t e u t e u tt t
1

2 0 5 210 2 10 2( ) ( ) ( )( ) . ( )= + +

j
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Answer:
Using Table D.4 and the time-shifting property, we get

The Fourier transform exists since the ROC contains the imaginary axis, that
is, . It is given by

(b) Signal x2(t) shown in Figure 6.10.
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FIGURE 6.9 Double-sided signal of Exercise 6.1(a).
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Answer:
We can compute this one by using the integral defining the Laplace transform. Here
x2(t) has finite support; hence the Laplace transform integral converges for all s.

The Fourier transform of this signal is given by
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FIGURE 6.10 Sawtooth signal of
Exercise 6.1(b).



It is odd and purely imaginary, as expected. Applying L’Hopital’s rule twice,
we can also check that is finite, as it should be.

(c) Damped sinusoid signal of Figure 6.11.x t e t u tt
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FIGURE 6.11 Damped sinusoid signal of
Exercise 6.1(c).

Answer:
Let us first find the values of the parameters and 0. We have
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and

The signal’s Laplace transform can be obtained as follows:

Using Table D.4, we get
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The Fourier transform of x3(t) exists since the imaginary axis lies in the ROC.

Exercise 6.2

For the causal LTI system shown in Figure 6.12, find the

output responses y1(t) and y3(t) to the input signals x1(t) and x3(t) of Exercise 6.1.
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FIGURE 6.12 Causal LTI system of
Exercise 6.2.

The Laplace transform of the output response y1(t) is given by
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The coefficients are computed:

and taking the inverse Laplace transform, we get

The Laplace transform of the output response y3(t) is given by

We find the coefficients by first multiplying on both sides by the common de-
nominator and then by identifying the coefficients of the polynomials.

We obtain the linear vector equation:

from which we compute
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Thus,

and taking the inverse Laplace transform, we get

Exercise 6.3

Find all possible ROCs for the transfer function and give the
corresponding impulse responses. Specify for each ROC whether the correspond-
ing system is causal and stable.

Answer:
The complex poles are found by identifying the damping ratio and undamped nat-
ural frequency n of the second-order denominator factor with the standard sec-
ond-order polynomial . Here . Thus, the poles are

There are three possible ROCs: .
The partial fraction expansion of H(s) yields

Using Table D.4 and simplifying, we find the following impulse responses:
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ROC h(t) Causal Stable

Yes No
ROC is -axis
a right out of ROC
half-plane

No Yes

No No
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TABLE 6.2 Impulse Responses in Exercise 6.3 for the Three Possible ROCs

These are further simplified to their real form in Table 6.2.
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Exercises

Exercise 6.4

Compute the step response of the LTI system .s, Re{ } > 0s

s s

( )

( )

+
+

6 1

3
H s( ) =



Exercise 6.5

Compute the output y(t) of the LTI system for the
input signal .

Answer:

Exercise 6.6

Suppose that the LTI system described by is known to be stable.
Is this system causal? Compute its impulse response h(t).

Exercise 6.7

Consider an LTI system with transfer function . Sketch all possible
regions of convergence of H(s) on pole-zero plots and compute the associated im-
pulse responses h(t). Indicate for each impulse response whether it corresponds to
a system that is causal/stable.

Answer:

Exercise 6.8

Consider an LTI system with transfer function . Sketch all possi-

ble ROCs of H(s) on a pole-zero plot and compute the associated impulse re-
sponses h(t). Indicate for each impulse response whether it corresponds to a system
that is causal/stable.

Exercise 6.9

Suppose we know that the input of an LTI system is . The output
was measured to be . Find the transfer
function H(s) of the system and its ROC and sketch its pole-zero plot. Is the sys-
tem causal? Is it stable? Justify your answers.

Answer:

y t e t u t e u t e u tt t t( ) sin( ) ( ) ( ) ( )= + + 2
x t e u tt( ) ( )=

s s

s s

( )

+ +
1

2 12H s( ) =

s s

s s+ +

2

2

2

5 6
H s( ) =

s s( )( )+
2

3 1
H s( ) =

x t e u tt( ) ( )= 4
s, Re{ } > 5

s s+ +
100

10 1002H s( ) =
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Exercise 6.10

(a) Find the impulse response of the system ,
. Hint: this system has a pole at –2.

(b) Find the settling value of the step response of H(s) given in (a).
sRe{ } > 2

s s

s s s+ + +
3 3 6

12 120 200

2

3 2H s( ) =
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Application of the 
Laplace Transform to 
LTI Differential Systems

7

In This Chapter

The Transfer Function of an LTI Differential System
Block Diagram Realizations of LTI Differential Systems
Analysis of LTI Differential Systems With Initial Conditions Using
the Unilateral Laplace Transform
Transient and Steady-State Responses of LTI Differential Systems
Summary
To Probe Further
Exercises

((Lecture 23: LTI Differential Systems and Rational Transfer Functions))

The Laplace transform is a powerful tool to solve linear time-invariant (LTI)
differential equations. We have used the Fourier transform for the same pur-
pose, but the Laplace transform, whether bilateral or unilateral, is applicable

in more cases, for example, to unstable systems or unbounded signals.
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THE TRANSFER FUNCTION OF AN LTI DIFFERENTIAL SYSTEM

We have seen that the transfer function of an LTI system is the Laplace transform
of its impulse response. For a differential LTI system, the transfer function can be
readily written by inspecting the differential equation, just like its frequency re-
sponse can be obtained by inspection.

Consider the general form of an LTI differential system:

(7.1)

We use the differentiation and linearity properties of the Laplace transform to
obtain the transfer function :

(7.2)

(7.3)

Note that we have not specified a region of convergence (ROC) yet. This
means that differential Equation 7.1 can have many different impulse responses;
that is, it is not a complete specification of the LTI system. If we know that the dif-
ferential system is causal, then the ROC is the open right half-plane to the right of
the rightmost pole in the s-plane. The impulse response is then uniquely defined.

Poles and Zeros of the Transfer Function

Let be the numerator polynomial of the transfer function H(s) in
Equation 7.3 and let be its denominator polynomial. Then,

The poles of H(s) are the N roots of the characteristic equation , or,
equivalently, the N zeros of the characteristic polynomial.
The zeros of H(s) are the M roots of equation .
If , then , and the transfer function is sometimes said to

have poles at . 
If , then , and the transfer function is sometimes said to

have zeros at . N M
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Example 7.1: Find the transfer function poles of the following causal differen-
tial LTI system.

(7.4)

Taking the Laplace transform on both sides, we get

(7.5)

which yields

(7.6)

The poles are the roots of (note that this is the second-
order Butterworth characteristic polynomial). Identifying the coefficients with the
standard second-order denominator , one finds the damping ratio

and the undamped natural frequency . The poles of
H(s) are then given by the following formulas:

(7.7)

and its two zeros are

(7.8)

The poles and zeros of a transfer function are usually denoted with the symbols
X and O, respectively, in the s-plane, as shown in Figure 7.1, which is the pole-zero
plot of H(s).

Causality

The transfer function of an LTI system by itself does not determine whether the
system is causal or not. We have seen that for rational Laplace transforms, causal-
ity is equivalent to the ROC being an open right half-plane (open means that the
half-plane’s boundary is not included) to the right of the rightmost pole. Hence,
since differential LTI systems considered in this section have rational transforms,
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the LTI differential system of Equation 7.1 is causal if and only if the ROC of its
transfer function is an open right half-plane located to the right of the rightmost
pole.

FIGURE 7.1 Pole-zero plot of transfer function in
Example 7.1.

We normally deal with causal differential systems, as analog engineering sys-
tems are naturally causal.

BIBO Stability

The stability of an LTI differential system is directly related to the poles of the
transfer function and its region of convergence. Recall that an LTI system (includ-
ing a differential LTI system) is stable if and only if the ROC of its transfer func-
tion includes the j -axis. Assume there is no pole-zero cancellation in the closed
right half-plane when is formed. Then, a causal LTI differential
system is stable if and only if the poles of its transfer function all lie in the open left
half-plane.

Remark: It is customary to refer to the set as the right half-
plane (or to as the open right half-plane) and to as
the left half-plane (or to as the open left half-plane).

Recall that for the case where a zero cancels out an unstable pole (call it p0 ) in
the transfer function, the corresponding differential LTI system is considered to be
unstable. The reason is that any nonzero initial condition would cause the output 
to either grow unbounded (case ), oscillate forever (case p0 imaginary),
or settle down to a nonzero value (case p0= 0).

Re{ }p
0

0>

{ :Re{ } }s s < 0
{ :Re{ } }s s 0{ :Re{ } }s s > 0

{ :Re{ } }s s 0

H s n s d s( ) ( ) ( )=



In Example 7.1, the two complex conjugate poles are in the open left half-
plane, so the system is stable.

Example: System Identification

Suppose we know that the input of the differential LTI system depicted in Figure
7.2 is .x t e u tt( ) ( )= 2
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FIGURE 7.2 Finding the transfer function of an
LTI system.

If the output was measured to be , let us find
the transfer function H(s) of the system and its ROC and sketch its pole-zero plot.
Let us also determine whether the system is causal and stable. This is known as
system identification, studied here in its simplest, noise-free form.

First, let us take the Laplace transforms of the input and output signals using
Table D.4 in Appendix D:

(7.9)
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Then, the transfer function is simply
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To determine the ROC, first note that the ROC of Y(s) should contain the in-
tersection of the ROCs of H(s) and X(s). There are three possible ROCs for H(s):

ROC1: an open left half-plane to the left of 

ROC2: an open right half-plane to the right of 

ROC3: a vertical strip between and 

Since the ROC of X(s) is an open right half-plane to the right of , the
only possible choice is ROC2. Hence, the ROC of H(s) is .

The system is causal, as the transfer function is rational and the ROC is a right
half-plane. It is also stable, as the transfer function is proper and all three poles

are in the open left half-plane, as shown in Figure 7.3.p j p1 2 32 2 1, ,= ± =

s s >{ }C :Re{ } 1
Re{ }s = 1

Re{ }s = 1Re{ }s = 2

Re{ }s = 1

Re{ }s = 2

FIGURE 7.3 Pole-zero plot of identified
transfer function.

A causal LTI differential equation representing the system is obtained by in-
spection of the transfer function:

(7.12)

((Lecture 24: Analysis of LTI Differential Systems with Block Diagrams))

BLOCK DIAGRAM REALIZATIONS OF 
LTI DIFFERENTIAL SYSTEMS

Block diagrams are useful to analyze LTI differential systems composed of sub-
systems. They are also used to represent a realization of an LTI differential system
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as a combination of three basic elements: the integrator, the gain, and the summing
junction.

System Interconnections

We have already studied system interconnections using block diagrams in the con-
text of general systems (not necessarily linear) and also in the context of LTI sys-
tems with the convolution property and Fourier transforms. However, this
approach to analyzing complex systems becomes quite powerful when one uses
transfer functions to describe the interconnected LTI systems. The reason is that the
space of all transfer functions forms an algebra with the usual arithmetic opera-
tions (+,-,×,/). That is, the sum, difference, multiplication, or division of two trans-
fer functions yield another transfer function.

Example 7.2: Find the step response of the car cruise control system depicted in
Figure 7.4 to a step in the desired velocity input vdes from 0 km/h to 100 km/h, where

(7.13)

and the time unit is the minute.
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FIGURE 7.4 Block diagram of a car cruise control system. 

This feedback system represents a car cruise control system where P(s) is the
car’s dynamics from the engine throttle input to the speed output, F(s) is a scaling
factor on the tachometer speed measurement to get, for example, kilometer per
hour units, and K(s) is the controller, here a pure integrator that integrates the error
between the desired speed and the actual car speed to obtain a throttle command
u(t) for the engine.



It is interesting to note that the theory of Laplace transforms and transfer func-
tions allows us to analyze within a single framework a mechanical system (the car),
an electromechanical sensor (the tachometer), and a control circuit or a control al-
gorithm residing in a microcontroller chip.

The first task of a control engineer would be to check that this system is stable.
We do not want the car to accelerate out of control when the driver switches the
cruise control system on. Thus, we need to find the transfer function relating the
input vdes(t) to the scaled measured speed of the car v(t) and compute its poles. Let
us denote the Laplace transforms of the signals with “hats.” We have

(7.14)

Thus, the error can be expressed as

(7.15)

and substituting this expression back into the first equation of Equation 7.14, we
obtain

(7.16)

This is the transfer function relating the desired car velocity to its measure-
ment. Using the actual transfer functions provided above, we get

(7.17)

This is a second-order transfer function with undamped natural frequency

rad/min and damping ratio . Hence, the poles are in the
open left-half plane:

(7.18)
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which means that the system is stable and the ROC of H(s) is . The
Laplace transform of the car speed response to a step in the desired velocity input
vdes from 0 km/h to 100 km/h is

(7.19)

where the second-order term of the partial fraction expansion was written to match
the form of the Laplace transform of the sum of a damped sine and cosine (see
Table D.4). We find

(7.20)

which, for the ROCs of Equation 7.19 and using the table, corresponds to

(7.21)

This speed response is shown in Figure 7.5.
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FIGURE 7.5 Step response of car cruise control system.
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It can be seen on this plot that there is too much overshoot in the speed re-
sponse. By choosing a smaller integrator gain in K(s), we would obtain a smoother
response with less overshoot. This is a problem typical to the area of control engi-
neering introduced in Chapter 11.

Realization of a Transfer Function

It is possible to obtain a realization of the transfer function of an LTI differential
system as a combination of three basic elements shown in Figure 7.6: the integra-
tor, the gain, and the summing junction.

FIGURE 7.6 Basic elements to realize any transfer function.

Simple First-Order Transfer Function

Consider the transfer function . It can be realized with a feedback in-
terconnection of the three basic elements, as shown in Figure 7.7.

s a+
1H s( ) =

FIGURE 7.7 Realization of first-order transfer function.

The feedback equation associated with this block diagram is as follows:

(7.22)
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With this simple block diagram, we can realize any transfer function of any
order after it is written as a partial fraction expansion. This leads to the parallel
form introduced below.

Simple Second-Order Transfer Function

Consider the transfer function . It can be realized with a feedback
interconnection of the three basic elements in a number of ways. One way is to ex-
pand the transfer function as a sum of two first-order transfer functions (partial
fraction expansion). The resulting form is called the parallel form and is discussed
below. Another way is to break up the transfer function as a cascade (multiplica-
tion) of two first-order transfer functions. This cascade form is also discussed
below. Yet another way to realize the second-order transfer function is the so-
called direct form or controllable canonical form. To develop this form, consider
the system equation

(7.23)

This equation can be realized as in Figure 7.8. The idea is that the variable at
the input of an integrator is thought of as the derivative of its output.

s Y s a sY s a Y s X s2
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1

2
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FIGURE 7.8 Direct form realization of a second-order transfer
function.

Parallel Realization

A parallel realization can be obtained by expanding the transfer function into
partial first-order fractions with real coefficients or complex coefficients for com-
plex poles.

Example 7.3: Consider the system . Its parallel re-
alization is shown in Figure 7.9.
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Cascade Realization

A cascade realization can be obtained by expressing the numerator and denomina-
tor of the transfer function as a product of zeros of the form and of poles
of the form , respectively, and by arbitrarily grouping a pole with a zero
until all zeros are matched to form first-order subsystems. The poles left at the end
of this procedure are taken as first-order subsystems with constant numerators.

Example 7.4: Consider the system . Its cascade form is shown

in Figure 7.10 for the grouping . The zero in the first first-order 

subsystem is implemented using a feedthrough term. This first subsystem is actu-
ally realized in a direct form, which is explained next.
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FIGURE 7.9 Parallel realization of a second-order
transfer function.

FIGURE 7.10 Cascade realization of a second-order transfer function.



Direct Form (Controllable Canonical Form)

The direct form, also called the controllable canonical form, can be obtained by
breaking up a general transfer function into two subsystems as in Figure 7.11.
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FIGURE 7.11 Transfer function as a cascade of two LTI subsystems.

The input-output system equation of the first subsystem is

(7.24)

and for the second subsystem, we have

(7.25)

To get the direct form realization, a cascade of N integrators is first sketched,
and the input to the first integrator is labeled . The output of this first inte-

grator is . The outputs of the remaining integrators are 
labeled successively from the left: , etc. Then, the feedback paths with
gains equal to the coefficients of the denominator as expressed in Equation 7.24 are
added. Finally, Equation 7.25 is implemented by tapping the signals , multi-
plying them with coefficients of the numerator of the transfer function, and summing
them. Figure 7.12 shows a direct form realization of a second-order transfer function.
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FIGURE 7.12 Direct form realization of a second-order transfer function



((Lecture 25: Response of LTI Differential Systems with Initial Conditions))

ANALYSIS OF LTI DIFFERENTIAL SYSTEMS WITH INITIAL
CONDITIONS USING THE UNILATERAL LAPLACE TRANSFORM

Recall the differentiation property of the unilateral Laplace transform:

If , then

(7.26)

We have already solved a first-order system with an initial condition. Let us
now look at a second-order LTI differential system with initial conditions and a
nonzero input.

Example 7.5: Consider the causal second-order system described by

(7.27)

and with initial conditions . Suppose that this system is sub-
jected to the input signal:

(7.28)

What is the output of the system? Take the unilateral Laplace transform on
both sides of Equation 7.27.

(7.29)

Note that . Collecting the terms containing Y(s) on the left-hand side
and putting everything else on the right-hand side, we can solve for Y(s).

(7.30)
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We have,

(7.31)

and thus,

(7.32)

Taking the inverse Laplace transform of each term, we obtain

(7.33)

Zero-Input Response and Zero-State Response

The response of a causal LTI differential system with initial conditions and a
nonzero input can be decomposed as the sum of a zero-input response and a zero-
state response. As these names imply, the zero-input response is due to the initial
conditions only, whereas the zero-state response is produced by the input only.
Note that the term state refers to the initial state in a state-space description of a dif-
ferential system. We will study state-space systems in Chapter 10.

In Example 7.5, the zero-input and zero-state responses in the Laplace domain
are identified as follows.
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TRANSIENT AND STEADY-STATE RESPONSES OF 
LTI DIFFERENTIAL SYSTEMS

The transient response (also called natural response) of a causal, stable LTI dif-
ferential system is the homogeneous response.

The steady-state response (or forced response) is the particular solution corre-
sponding to a constant or periodic input. We say that a stable system is in steady-
state when the transient component of the output has practically disappeared. For
example, consider the step response

(7.35)

The transient part of this response is the term , and the steady-state part
is u(t).

As another example, assume that a causal LTI differential system is subjected to
the sinusoidal input signal . Suppose that the resulting output is

(7.36)

Then the transient response of the system to the input is ,
while is the steady-state response.

The steady-state response of a causal, stable LTI system to a sinusoidal input
of frequency 0 is also a sinusoid of frequency 0, although in general with a dif-
ferent amplitude and phase.

Transient and Steady-State Analysis Using the Laplace Transform

For a causal, stable LTI system with a real-rational transfer function, a partial frac-
tion expansion of the transfer function allows us to determine which terms corre-
spond to transients (the terms with the system poles) and which correspond to the
steady-state response (terms with the input poles).

Example 7.6: Consider the step response.

(7.37)
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The steady-state response corresponds to the last term, C, which in the time-
domain is Cu(t). The other two terms correspond to the transient response

.
If we are only interested in the steady-state response of an LTI system, there is

no need to do a partial fraction expansion. The transfer function and the frequency
response of the system (which is the transfer function evaluated at s = j ) directly
give us the answer.

Step Response

We can use the final value theorem to determine the steady-state component of a
step response. In general, this component is a step function Au(t). The “gain” A is
given by

(7.38)

Response to a Sinusoid or a Periodic Complex Exponential

The frequency response of the system directly gives us the steady-state response to
a sinusoid or a periodic complex exponential signal. For the latter, ,
the steady-state response is

(7.39)

For a sinusoidal input, say , the steady-state response is as fol-
lows (the same for a cosine signal):

(7.40)

where we used the fact that the frequency response magnitude is even and the phase
is odd for a real-rational transfer function. An important application is the steady-
state analysis of circuits at a fixed frequency, for instance, 60 Hz. For example, if a
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circuit is described by its impedance, Z(s), seen as a transfer function, then its
steady-state response to a 60 Hz sinusoidal current is characterized by the complex
number .

Response to a Periodic Signal

Again, the frequency response of the system gives us the steady-state response to
a periodic signal admitting a Fourier series representation. For ,
the steady-state response is the periodic signal:

(7.41)

SUMMARY

In this chapter, we studied the application of the Laplace transform to differential
systems.

The transfer function of an LTI differential system can be obtained by inspec-
tion of the differential equation.
The zeros and poles of a transfer function were defined as the zeros of its nu-
merator and denominator, respectively.
Transfer functions can be interconnected in block diagrams to form more com-
plex systems whose transfer functions can be obtained using simple rules.
Any proper real-rational transfer function can be realized using an intercon-
nection of three basic elements: the gain, the summing junction, and the inte-
grator. We discussed the parallel, cascade, and direct form realizations.
The unilateral Laplace transform can be used to compute the response of a dif-
ferential system with initial conditions. The overall response is composed of a
zero-state response coming from the input only (assuming zero initial condi-
tions) and of a zero-input response caused by the initial conditions only. An-
other way to decompose the overall response of the system is to identify the
transient response and the steady-state response.

TO PROBE FURTHER

On the response of LTI differential systems, see, for example, Oppenheim, Will-
sky, and Nawab, 1997. We will revisit realization theory in the context of state-
space systems in Chapter 10.
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EXERCISES

Exercises with Solutions

Exercise 7.1

Consider the system described by

(a) Find the direct form realization of the transfer function H(s). Is this system
BIBO stable? Is it causal? Why?

Answer:
The direct form realization is obtained by splitting up the system into two systems
as in Figure 7.13.
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s s s
s( ) , Re{ } .=

+ + +
>

3 3 6

12 120 200
2
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FIGURE 7.13 Transfer function split up as a cascade of two subsystems,
Exercise 7.1(a).

The input-output system equation of the first subsystem is

and we begin the diagram by drawing a cascade of three integrators with their in-
puts labeled as . Then, we can draw the feedbacks to a
summing junction whose output is the input of the first integrator, labeled .
The input signal is also an input to that summing junction. For the second subsys-
tem we have

which can be drawn as taps on the integrator inputs, summed up to form the output
signal. The resulting direct form realization is shown in Figure 7.14.
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The system is BIBO stable, as its rational transfer function is proper and its
ROC contains the j -axis. It is also causal because its ROC is an open right-half
plane and its transfer function is rational.

(b) Give a parallel form realization of H(s) with (possibly complex-rational)
first-order blocks.

Answer:
The partial fraction expansion for the parallel realization of the transfer function is
as follows. Figure 7.15 shows the corresponding parallel realization.

(c) Give a parallel form realization of H(s) using a real-rational first-order
block and a real-rational second-order block.

Answer:
The transfer function can be expanded as follows:
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FIGURE 7.14 Direct form realization of transfer function, Exercise 7.1(a).



which corresponds to the desired parallel realization in Figure 7.16.
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FIGURE 7.15 Parallel form realization of transfer function in
Exercise 7.1(b).

FIGURE 7.16 Real-rational parallel form realization of transfer function in
Exercise 7.1(c).



Exercise 7.2

Consider the causal differential system described by

with initial conditions . Suppose this system is subjected to 

a unit step input signal .
Find the system’s damping ratio and undamped natural frequency n. Give

the transfer function of the system and specify its ROC. Compute the steady-state
response yss(t) and the transient response ytr(t) for . Compute the zero-input re-
sponse yzi(t) and the zero-state response yzs(t).

Answer:
Let us take the unilateral Laplace transform on both sides of the differential equation.

Collecting the terms containing Y(s) on the left-hand side and putting every-
thing else on the right-hand side, we can solve for Y(s).

The transfer function is , and since the system is causal, the
ROC is an open right half-plane to the right of the rightmost pole. The poles are

. Therefore, the ROC is . The unilateral Laplace
transform of the input is given by
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and thus,

Let us compute the zero-state response first:

Let to compute = , then 

multiply both sides by s and let to get :

Notice that the second term, , is the steady-state response, and thus,
.

Taking the inverse Laplace transform using Table D.4, we obtain

Let us compute the zero-input response:
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The inverse Laplace transform using the table yields

Finally, the transient response is the sum of the zero-input and zero-state re-
sponses minus the steady-state response.

Exercises

Exercise 7.3

Consider the causal differential system described by

with initial conditions . Suppose that this system is sub-
jected to the input signal, . Find the system’s damping ratio and
undamped natural frequency n. Compute the output of the system y(t) for .
Find the steady-state response yss(t), the transient response ytr(t), the zero-input
response yzi(t), and the zero-state response yzs(t) for .

Answer:

Exercise 7.4

Use the unilateral Laplace transform to compute the output response y(t) to the
input of the following causal LTI differential system with ini-
tial conditions :

Exercise 7.5

Compute the steady-state response of the causal LTI differential system 5 +
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Answer:

Exercise 7.6

(a) Find the direct form realization of the transfer function ,
. Is this system BIBO stable? Is it causal? Why? Let y(t) be the

step response of the system. Compute and .

(b) Give a parallel form realization of H(s) given in (a) with first-order blocks.

Exercise 7.7

(a) Find the direct form realization of the following transfer function. Is this
system BIBO stable? Is it causal? Why?

(b) Give a parallel form realization of H(s) with first-order blocks.

(c) Give a cascade form realization of H(s) with first-order blocks.

Answer:

Exercise 7.8

Consider the causal differential system described by

with initial conditions . Suppose this system is subjected to

the input signal . Give the transfer function of the system and specify its
ROC. Compute the steady-state response and the transient response 
for .t 0
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((Lecture 26: Qualitative Evaluation of the Frequency Response from the Pole-
Zero Plot))

In this chapter, we will analyze the behavior of stable continuous-time linear
time-invariant (LTI) systems by looking at both the time-domain and the fre-
quency-domain points of view. We will see how to get a feel for the frequency

response of a system by looking at its transfer function in pole-zero form. We will
also introduce the Bode plot, which is a representation of the frequency response
of a system that can be sketched by hand.
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RELATION OF POLES AND ZEROS OF THE TRANSFER FUNCTION
TO THE FREQUENCY RESPONSE

A standing assumption here is that the causal LTI system is stable. This means that
all the poles of the transfer function lie in the open left half-plane. On the other
hand, the zeros do not have this restriction.

We want to be able to characterize qualitatively the system’s frequency re-
sponse from the knowledge of the poles and zeros of the transfer function. Consider
a transfer function written in its pole-zero form:

(8.1)

When we let s = j , each first-order pole and zero factor can be seen as a vector
whose origin is at the pole (zero) and whose endpoint is at j . For a fixed frequency

, each of these vectors adds a phase contribution and a magnitude factor to the
overall frequency response. Let us illustrate this by means of two examples.

Example 8.1: A stable first-order system with transfer function

(8.2)

has the frequency response

(8.3)

In the s-plane, the complex denominator 2 + j can be seen as a vector-valued
function of , with the vector’s origin at the pole and its endpoint at j on the
imaginary axis, as depicted in Figure 8.1 for .

Thus, as goes from – to 0 rad/s, the magnitude of 2 + j (the vector’s
length) goes from to 2, while its phase goes from – /2 to 0 rad. This in turn im-
plies that the magnitude of varies from 0 to 0.5, while its
phase goes from /2 to 0 rad.

Then, as goes from 0 to rad/s, the magnitude of 2 + j (the vector’s length)
goes from 2 to , while its phase goes from 0 to /2 rad. This implies that the mag-
nitude of varies from 0.5 to 0, while its phase goes from 0 to
– /2 rad. Using this information, we can roughly sketch the magnitude and phase
of the frequency response as shown in Figure 8.2.
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Of course, for this simple example we know that

(8.4)

For a higher-order system, the vector representation of each first-order pole
and zero factor can help us visualize its contribution to the overall frequency re-
sponse of the system.
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FIGURE 8.1 Denominator j + 2 seen as a vector-
valued function of frequency in the complex plane.

FIGURE 8.2 Sketch of the frequency
response of 1/(s + 2).
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Example 8.2: A stable third-order system with transfer function

(8.5)

has the frequency response

(8.6)

In the s-plane, the vector-valued functions of originating at the poles and
zeros are depicted in Figure 8.3.
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FIGURE 8.3 Vector representation of the
first-order terms in the pole-zero form of the
transfer function. 

The phase at frequency is given by the sum of the angles of the vectors origi-
nating at the zeros minus the sum of the angles of the vectors originating at the poles.

The magnitude at frequency is given by the product of the lengths of the vec-
tors originating at the zeros divided by the product of the lengths of the vectors
originating at the poles.

For Example 8.2, we can make the following qualitative observations:

At = 0 rad/s, the lengths of the vectors originating from the two zeros are
minimized, and hence we would expect that the DC gain would be somewhat
lower than the gain at medium frequencies.

At rad/s, the lengths of the vectors originating from the poles

are minimized, and hence we could expect that the gain at
those frequencies would be somewhat higher than the gain at low and high
frequencies.

p j
1 2

2 2
,
= ±
= ± 2



The phase at = 0 is – rad and has a net contribution of – rad only from the
zero . This is to be expected since the transfer function of Equation 8.5
at s = 0 is equal to –1/6. The angles of the two vectors originating from the
complex conjugate poles cancel each other out.
The phase around rad/s should be more sensitive to a small change
in than elsewhere. This is even more noticeable when the complex poles are
closer to the imaginary axis. For rad/s, the angle of the vector origi-
nating from the pole quickly goes from a significant negative
angle to a significant positive angle as varies from to rad/s.
This implies a relatively fast negative drop in the phase plot of the frequency

response around rad/s.
At , the phase is – /2 rad. This comes from a contribution of – /2 from
the three pole vectors, a contribution of /2 from the right half-plane (RHP)
zero vector, and a contribution of /2 from the left half-plane (LHP) zero vec-
tor. The magnitude at is 0 as the two zero vectors tending to infinity
in length are not sufficient to counteract the three pole vectors also tending to
infinity in length.
At , the phase is /2 rad. This comes from a contribution of /2 from
the three pole vectors, a contribution of – /2 from the RHP zero vector, and a
contribution of – /2from the LHP zero vector. The magnitude at is 0.

A portion of the magnitude of the transfer function H(s) of Equation 8.5, which
is represented as a surface over the complex plane, is shown in Figure 8.4. The
edge of that surface along the imaginary axis is nothing but the magnitude of the
frequency response of the system.
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FIGURE 8.4 Magnitudes of the transfer function and its
frequency response over a portion of the complex plane.



Remark: The definition of an angle is sometimes ambiguous. In Example 8.2, we
have defined the angle of the right half-plane zero vector as being measured counter-
clockwise along positive angles for > 0 and as being measured clockwise along neg-
ative angles for < 0. This allowed us to obtain rad,
which is consistent with the fact that the frequency-response phase of an LTI differ-
ential system with real coefficients is an odd function of frequency. However, for most
purposes, the angle /2 rad can be considered the same as –3 /2 rad.

((Lecture 27: The Bode Plot))

BODE PLOTS

It is often convenient to use a logarithmic scale to plot the magnitude of a fre-
quency response. One reason is that frequency responses can have a wide dynamic
range covering many orders of magnitude. Some frequencies may be amplified by
a factor of 1000, while others may be attenuated by a factor of 10–4. Another rea-
son is that using a log scale, we can add rather than multiply the magnitudes of cas-
caded Fourier transforms, which is easier to do graphically:

(8.7)

It is customary to use the decibel (dB) as the logarithmic unit. The bel (B) was
defined (after Alexander Graham Bell) as a power amplification of 
for a system. The decibel is one tenth of a bel. Therefore, for a system with a power
gain of 10 at frequency , its power gain in dB is

(8.8)

To measure the actual magnitude gain (not the power gain) of a system, we use
the identity

(8.9)

Thus, a magnitude plot of is represented as using
a linear scale in dB. Table 8.1 shows the correspondence between some gains and
their values expressed in dB.
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It is also convenient to use a log scale for the frequency, as features of a fre-
quency response can be spread over a wide frequency band.

A Bode plot is the combination of a magnitude plot and a phase plot using log
scales for the magnitude and the frequency and using a linear scale (in radians or
degrees) for the phase. Only positive frequencies are normally considered. As
stated above, the Bode plot is quite useful since the overall frequency response of
cascaded systems is simply the graphical summation of the Bode plots of the indi-
vidual systems. In particular, this property is used to hand sketch a Bode plot of a
rational transfer function in pole-zero form by considering each first-order factor
corresponding to a pole or a zero to be an individual system with its own Bode plot.

Example 8.3: Consider again the first-order system with transfer function

(8.10)

which has the frequency response

(8.11)

It is convenient to write this frequency response as the product of a gain and a
first-order transfer function with unity gain (0 dB) at DC:
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Gain Gain (dB)

0 – dB

0.01 40 dB

0.1 20 dB

1 0 dB

10 20 dB

100 40 dB

1000 60 dB

TABLE 8.1 Gain Values Expressed in Decibels
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The break frequency is 2 rad/s. The Bode magnitude plot is the graph of:

(8.13)

Note that for low frequencies, that is, << 2,

(8.14)

and for high frequencies, that is, ,

(8.15)

For = 10 rad/s in Equation 8.15, we get –20 dB, for = 100 rad/s, we get
–40 dB, etc. The slope of the asymptote is therefore –20 decibels
per decade of frequency (a decade is an increase by a factor of 10.) With the as-
ymptotes meeting at the break frequency 2 rad/s, we can sketch the magnitude
Bode plot as shown in Figure 8.5 (dotted line: actual magnitude.)
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FIGURE 8.5 Bode magnitude plot of a first-order
transfer function.
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FIGURE 8.6 Bode phase plot of a first-order transfer function.

The Bode phase plot is the graph of

(8.16)

We know that the phase is 0 at = 0 and at . A piecewise linear ap-
proximation (with a log frequency scale) to the phase that helps us sketch it is given
by

(8.17)

The approximation given by Equation 8.17 deserves some explanations. The
phase approximation is constructed as follows:

At frequencies lower than one decade below the break frequency, the phase is 0.
At frequencies higher than one decade above the break frequency, the phase is
– /2.
In the interval from one decade below to one decade above the break fre-
quency, the phase is linear and goes from 0 to – /2 with a slope – /4 radian per
decade.

The Bode phase plot is shown in Figure 8.6. The interactive Bode applet on the
companion CD-ROM located in D:\Applets\BodePlot\Bode.exe lets the user enter
poles and zeros of a transfer function on a pole-zero plot and it then produces a
Bode plot of the transfer function. Both the actual frequency response plot and the
broken line approximation obtained using the above rules are shown on the applet’s
Bode plot for comparison.
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Note that the Bode magnitude plot of s + 2 (the inverse of H(s)) is simply the
above magnitude plot flipped around the frequency axis (see Figure 8.7), and like-
wise for the phase plot in Figure 8.8.

FIGURE 8.7 Bode magnitude plot of s + 2.

FIGURE 8.8 Bode phase plot of s + 2.

Example 8.4: Consider the second-order stable system with transfer function

(8.18)

which has the frequency response

(8.19)H j
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The break frequencies are at 1, 10, and 100 rad/s. For the Bode magnitude plot,
we can sketch the asymptotes of each first-order term in Equation 8.19 on the same
magnitude graph (as dashed lines) and then add them together as shown in Figure 8.9.
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FIGURE 8.9 Bode magnitude plot of a second-order example.

We proceed in a similar fashion to obtain the Bode phase plot of Figure 8.10.

FIGURE 8.10 Bode phase plot of a second-order example.

A Bode plot can easily be obtained in MATLAB. The following MATLAB
script bodeplot.m, which is located on the CD-ROM in D:\Chapter8, produces the
Bode plot of Example 8.4. 



%% bodeplot.m Bode plot of a transfer function

% transfer function numerator and denominator

num=[1 100];

den=[1 11 10];

sys=tf(num,den);

% frequency vector

w=logspace(-2,4,200);

% Bode plot

bode(sys,w)

((Lecture 28: Frequency Responses of Lead, Lag, and Lead-Lag Systems))

FREQUENCY RESPONSE OF FIRST-ORDER LAG, LEAD, AND
SECOND-ORDER LEAD-LAG SYSTEMS

First-order lag systems and lead systems can be considered as building blocks in
filter and controller design. They have simple transfer functions with lowpass and
highpass frequency responses, respectively, which can be combined into a second-
order lead-lag system that has applications in sound equalization and feedback
control design.

First-Order Lag

A first-order lag has a transfer function of the form

(8.20)

where , is the time constant and (the absolute value of the pole)
is called either the natural frequency, the cutoff frequency, or the break frequency,
depending on the application. This system is called a lag because it has an effect
similar to a pure delay of seconds at low frequencies, especially for = 0.
To see this, expand H(s) as a Taylor series around s = 0:

(8.21)
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To first order, these systems are identical. In the previous section, we studied
the frequency response of a first-order lag as an example with and = 0.
In the case ≠ 0, the Bode plot is as shown in Figure 8.11 and Figure 8.12.

= 1 2

FIGURE 8.11 Bode magnitude plot of a first-order lag.

FIGURE 8.12 Bode phase plot of a first-order lag.

The general first-order lag can be thought of as a lowpass filter. Note that the
high-frequency gain is , and the phase tends to 0 at high frequencies, unless =
0, in which case it tends to – /2. A first-order lag can be realized with the block di-
agram shown in Figure 8.13.
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FIGURE 8.13 Realization of a first-order lag.

First-Order Lead

A first-order lead also has a transfer function of the form

(8.23)

where but > 1. The Bode plot for this system (assuming that > 10) is
shown in Figure 8.14 and Figure 8.15.

> 0

H s
s

s
s( ) , Re{ } ,=

+
+

>
1

1

1

FIGURE 8.14 Bode magnitude plot of a first-order lead.

For the case where , the first-order lead is equivalent to a dif-
ferentiator with gain T in parallel with the identity system:

(8.24)H s Ts( ) ,= +1

0, T



and its Bode plot is given in Figure 8.16. Note that the high frequencies are ampli-
fied: the higher the frequency, the higher the gain of the system is. This is a prop-
erty of differentiators, and it explains why high-frequency noise is greatly
amplified by such devices. The maximum positive phase is /2 rad for .= +
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FIGURE 8.15 Bode phase plot of a first-order lead.

FIGURE 8.16 Bode plot of a limit case of first-order lead H(s) = Ts + 1.
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Applications: The first-order lead may be used to “differentiate” signals at fre-
quencies higher than but lower than . It can help “reshape”
pulses that have been distorted by a communication channel with a lowpass fre-
quency response. It is also often used as a controller because it adds positive phase
to the overall loop transfer function (more on this in Chapter 11.) A first-order lead
system can be realized with the same interconnection as that shown in Figure 8.13
for a first-order lag.

Second-Order Lead-Lag

A second-order lead-lag system has a transfer function of the form

(8.25)

where are the lead and lag frequencies, respectively, and
. This system amplifies the low frequencies and the high frequen-

cies, like a rudimentary equalizer in a stereo system. It is often used as a feedback
controller to get more gain at low frequencies and positive phase at the mid-
frequencies. This should become clear in Chapter 11, where feedback control the-
ory is introduced. The Bode magnitude plot for this lead-lag system, where

, is shown in Figure 8.17.K = 1
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FIGURE 8.17 Bode magnitude plot of a second-order lead-lag.

((Lecture 29: Frequency Response of Second-Order Systems))

FREQUENCY RESPONSE OF SECOND-ORDER SYSTEMS

A general second-order system has a transfer function of the form



(8.26)

It can be stable, unstable, causal, or not causal, depending on the signs of the
coefficients and the specified region of convergence (ROC). Let us restrict our at-
tention to causal, stable LTI second-order systems of this type. A necessary and
sufficient condition for stability is that the coefficients ai be either all positive or all
negative, which ensures that the poles are in the open left half-plane. This is also a
necessary, but not sufficient, condition for stability of higher-order systems. Let us
also assume that ; that is, we basically have a lowpass system with two
poles and no finite zero. Under these conditions, the transfer function can be ex-
pressed as

(8.27)

where is the damping ratio and n is the undamped natural frequency of the 
second-order system. Systems that can be modeled by this transfer function include
the mechanical mass-spring-damper system, and the lowpass second-order RLC
filter, which is a circuit combining an inductance L, a capacitance C, and a resis-
tance R.

Example 8.5: Consider the causal second-order transfer function

(8.28)

Its undamped natural frequency is , and its damping ratio is

(8.29)

Since the damping ratio is less than one, the two poles are complex. The poles
are given by

(8.30)
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There are three cases of interest for the damping ratio that lead to different pole
patterns and frequency response types.

Case > 1

In the case > 1, the system is said to be overdamped. The step response does 
not exhibit any oscillation. The two poles are real, negative, and distinct:

and . The second-order system
can then be seen as a cascade of two standard first-order systems:

(8.31)

The Bode plot of can be sketched using the technique

presented in the previous section for systems with real poles and zeros.

Case = 1

In the case = 1, the system is said to be critically damped. The two poles 
are negative and real, but they are identical. We say that it is a repeated pole; 

. In this situation, the second-order system
can also be seen as a cascade of two first-order transfer functions with the same
pole:

(8.32)

Case < 1

In the case < 1, the system is said to be underdamped. The step response exhibits

some oscillations, although they really become visible only for .

The two poles are complex and conjugates of each other: ,  

.
The magnitude and phase of the frequency response
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are given by

(8.34)

(8.35)

Notice that the denominator in Equation 8.33 was written in such a way that its
DC gain is 1. The break frequency is simply the undamped natural frequency. At
this frequency, the magnitude is

(8.36)

For example, with = 0.1 and A = 1, the magnitude at n is 13.98 dB. Note that
this is not the maximum of the magnitude, as it occurs at the resonant frequency,

(8.37)

which is close to n for low damping ratios. At the resonant frequency, the mag-
nitude of the peak resonance is given by

(8.38)

and thus for our example with = 0.1 and A = 1, .
The Bode plot for the case < 1 can be sketched using the asymptotes as in

Figure 8.18, but at the cost of an approximation error around n that increases as
the damping ratio decreases. The roll-off rate past the break frequency is 40
dB/decade. The phase starts at 0 and tends to – at high frequencies.

The Bode plot approximation using the asymptotes does not convey the infor-
mation about the resonance in the system caused by the complex poles. That is, the
damping ratio was not used to draw the asymptotes for the magnitude and phase
plots. The peak resonances in the magnitude produced by different values of ≤ 1
are shown in Figure 8.19. This figure also shows that the phase drop around the
normalized undamped natural frequency n = 1 becomes steeper as the damping
ratio is decreased.
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FIGURE 8.18 Bode plot of a second-order system:
broken line approximation.

The following MATLAB script, zetas.m, located on the CD-ROM in D:\Chap-
ter8, was used to produce the Bode plots in Figure 8.19. 

%% zetas.m Script used to produce the Bode plots of second-order

systems

%% with different damping ratios

zeta=[0.01 [.1:.2:0.9] 1]

num=1;

w=logspace(-1,1,1000);

for k=1:length(zeta)

den(k,:)=[1 2*zeta(k) 1];

[mag(:,k), ph(:,k)]=bode(num,den(k,:),w);

end

figure(1)

semilogx(w,20*log10(mag),’-k’)

figure(2)

semilogx(w,pi*ph/180,’-k’)



Quality Q

In the field of communications engineering, the underdamped second-order filter
has played an important role as a simple frequency-selective bandpass filter. When
the damping ratio is very low, the filter becomes highly selective due to its high
peak resonance at max. The quality Q of the filter is defined as
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FIGURE 8.19 Bode plots of second-order system for
various damping ratios.

s s+ +
1
2 12H s( )=
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(8.39)

The higher the quality, the more selective the bandpass filter is. To support 
this claim, the –3 dB bandwidth (frequency band between the two frequencies
where the magnitude is 3 dB lower than ) of the bandpass sec-
ond-order filter shown in Figure 8.20 is given by

(8.40)=max
max .

Q
2

20
10

log ( )
max

H j

Q : .=
1

2

FIGURE 8.20 Bode magnitude plot of a second-order
bandpass system.

Maximal Flatness and the Butterworth Filter

In the transition from a second-order system without resonance to one that starts to
exhibit a peak, there must be an optimal damping ratio for which the magnitude
stays flat over the widest possible bandwidth before rolling off. It turns out that this
occurs for . For this damping ratio, the real part and imaginary part
of the two poles have the same absolute value, and the poles can be expressed as

(8.41)

We recognize the poles of a lowpass second-order Butterworth filter with cut-
off at n. Thus, a Butterworth filter is optimized for its magnitude to be maximally
flat, as can be seen in Figure 8.19 for the case = 0.7.
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((Lecture 30: The Step Response))

STEP RESPONSE OF STABLE LTI SYSTEMS

A step response experiment is a simple way to characterize a stable LTI system. It
is often used in the process industry to help identify an LTI model for the process.
Theoretically, the step response conveys all the dynamical information required to
characterize the system uniquely, since it is the integral of the impulse response.
Note that only step responses of lowpass systems with nonzero DC gains are of in-
terest here. We are not really interested in step responses of highpass or bandpass
systems, or more generally of systems with a DC gain of 0.

As engineers, we would like to be able to perform quick quantitative and qual-
itative analyses on the step response of a system without first having to transform
it to the Laplace domain. Qualitative observations can be made about the rise time
(fast, sluggish), the overshoot and ringing, etc. On the other hand, more quantita-
tive observations can also be made once unequivocal definitions for quantities like
the rise time and the settling time are given.

Rise Time

The rise time of a step response is often used as a qualitative measure of how fast
or sluggish a system is, but we can define it unambiguously and use this definition
to compare systems between them. One typical definition for the rise time tr of a
system initially at rest is the time taken by the output to rise from 5 to 95% of its
final value, as illustrated in Figure 8.21.
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FIGURE 8.21 Definition of rise time.

Note that a step response could have a desirably fast rise time but so much
overshoot and ringing that the corresponding system may be judged to have poor
performance. A measure of overshoot is given in the next section.



308 Fundamentals of Signals and Systems

One thing to remember is that the larger the frequency bandwidth of a system,
the shorter the rise time. For instance, the step response of a lowpass filter with a
cutoff frequency of 1 MHz will have a fast, sub-microsecond rise time.

First-Order Lag

For a first-order lag with = 0 and time constant , that is,

(8.42)

the step response is
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FIGURE 8.22 Rise time of a first-order lag with = 0.

The 95% rise time is given by the difference between the times when the re-
sponse reaches the value 0.95 and the value 0.05, as shown in Figure 8.22:

(8.44)

(8.45)

(8.46)

For the case and time constant , that is,0 1< <

t
r
= =2 9957 0 0513 2 9444. . . .

0 05 1 0 95 0 0513
5

5
. ln . . .

%

%
= = =e t

t

0 95 1 0 05 2 9957
95

95
. ln . . .

%

%
= = =e t

t



(8.47)

the step response is

(8.48)

The 95% rise time is given by the difference between the times when the re-
sponse reaches the value 0.95 and the value 0.05. If , then the output is
already larger than 0.05 at (see Figure 8.23).t = +0

> 0 05.

s t u t e u t
t

( ) ( ) ( )( ) ( ).= + 1 1

H s
s

s

s

( ) =
+
+

= +
+

1

1
1

1

Time and Frequency Analysis of BIBO Stable, Continuous-Time LTI Systems 309

FIGURE 8.23 Rise time for a first-order lag. 

On the other hand, if , then the rise time is 0.
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(8.52)

Notice that the rise time is 0 for , as expected.
For the case and time constant , the system has an open right half-

plane (RHP) zero,

(8.53)

and the step response is (see Figure 8.24)

(8.54)s t u t e u t
t

( ) ( ) ( )( ) ( ).= + 1 1

H s
s

s

s

( ) =
+
+

= +
+

1

1
1

1

< <1 0
= 0 95.

t t
r
= = +

95
2 9957 1

%
[ . ln( )] .

FIGURE 8.24 Rise time of a non-minimum phase system. 

According to our definition, the 95% rise time is given by the difference be-
tween the times when the response reaches the value 0.95 and the value 0.05:
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An important thing to notice in Figure 8.24 is that the step response starts in the
“wrong direction.” That is, we want the output to go to 1, but it actually goes neg-
ative first before rising toward 1. This phenomenon, which causes problems for
feedback control systems, is associated with systems with RHP zeros, which are
also called non-minimum phase systems.

Second-Order Systems

We could do a similar analysis for the step response of second-order systems, al-
though it is perhaps better to do it on a case-by-case basis. Suffice it to say that the
rise time primarily depends on the undamped natural frequency, but also on the
damping ratio. For a given n, the rise time is fastest for << 1, at the expense of
a large overshoot. A good tradeoff for a relatively fast rise time with low or no
overshoot is obtained for .

Overshoot

A step response is said to overshoot if it goes past its settling value (see Figure
8.25). The amount of overshoot (we usually consider the first overshoot) can be
measured as a percentage of the final value of the output signal.

0 5 1.
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FIGURE 8.25 Definition of overshoot in the step response. 

There is no overshoot to speak of for first-order systems, except for first-order
leads. Step responses of lead systems have an initial value that is larger than the
final value (use the initial value theorem to show this).

The step response of a second-order order system of the form
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overshoots if < 1. The percentage overshoot OS can be computed by finding the
maximum value of the step response of the system. The maximum occurs for

(8.59)

and thus, we must solve Equation 8.59 for tmax. The impulse response h(t) of the
second-order system of Equation 8.58 is given by

(8.60)

Note that is called the damped natural frequency. Solving Equation
8.59, we find

(8.61)

It can be shown that the step response of the system is given by the right-hand
side of the first equality in Equation 8.62. We now have to evaluate :

(8.62)

Finally, the percentage overshoot is given by

(8.63)

The percentage overshoot is given for different values of the damping ratio in
Table 8.2.
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Settling Time

The settling time measures how fast the response practically reaches steady-state.
It is defined as the time when the response first reaches the final value to a certain
percentage and stays within that percentage of the final value for all subsequent
times. For example, the ±5% settling time ts is the time when the response gets to
within 5% of its final value for all subsequent times, as depicted in Figure 8.26.
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OS (%)

0.1 72.9

0.2 52.7

0.3 37.2

0.4 25.4

0.5 16.3

0.6 9.5

0.707 4.3

0.8 1.5

0.9 0.2

1 0.0

TABLE 8.2 Percentage Overshoot
Versus Damping Ratio

FIGURE 8.26 Definition of settling time.
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First-Order Lag

For a first-order lag with = 0 and time constant , that is,

(8.64)

the step response is (see Figure 8.27)

(8.65)s t e u t
t

( ) ( ) ( ).= 1

H s
s

( ) ,=
+
1

1

FIGURE 8.27 Settling time for a first-order lag with = 0.

We know that this step response increases monotonically toward 1. Hence the
±5% settling time is given by

(8.66)

and we have the following rule of thumb:

The ±5% settling time of a first-order lag of the form of Equation 8.64 is equal
to three time constants.

Note that the settling time for first-order lags with different values of con-
sidered above is equal to t95%.

Second-Order Systems

The settling time for a second-order system depends primarily on the undamped
natural frequency, but also on the damping ratio. It should be determined on a case-
by-case basis because for a given n, the settling time is a nonlinear function of .

0 95 1 0 05 2 9957 3. ln . . ,= = =e t
t

s

s



We can see this from the step response plot in Figure 8.26. The response enters the
±5% band from the top, but if we gradually increased the damping ratio, then the
response would eventually enter that band from below, causing a discontinuity in
the settling time as a function of .

Remark: The step response of a system is easy to plot in MATLAB. Consider,
for example, the M-file D:\Chapter8\stepresp.m given below. 

%% stepresp.m Plots the step response of a system

% numerator and denominator of transfer function

num=[1];

den=[1 3 9];

sys=tf(num,den);

% time vector

tfinal=10;

step(sys,tfinal);

IDEAL DELAY SYSTEMS

The transfer function of an ideal delay of T time units is

(8.67)

The magnitude of its frequency response is 1 for all frequen-
cies, whereas its phase is linear and negative for positive frequencies. The Bode
plot of a pure delay system is shown in Figure 8.28. Note that the phase appears to
be nonlinear because of the logarithmic frequency scale.

H j e j T( ) =

H s e sT( ) .=
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FIGURE 8.28 Bode plot of an ideal delay system.



GROUP DELAY

We have just seen that a pure delay corresponds to a linear negative phase shift. A
lowpass system also has a negative phase, so it must have an effect similar to a time
delay on the input signal. If we look at a narrow frequency band where the phase
is almost linear, then an input signal with energy restricted to that band will be de-
layed by a value given by the slope of the phase function. This is called the group
delay, and it is defined as follows:

(8.68)

Suppose that the magnitude of a system is constant, but its phase is not. The
output signal will be distorted if the group delay is not constant, that is, if the phase
is nonlinear. In this case, the complex exponentials at different frequencies that
compose the input signal get delayed by different amounts of time, thereby caus-
ing distortion in the output signal.

NON-MINIMUM PHASE AND ALL-PASS SYSTEMS

Systems whose transfer functions have RHP zeros are said to be non-minimum
phase. This comes from the Bode phase plot of such systems. There always exists
a minimum-phase system whose Bode magnitude plot is exactly the same as that
of the non-minimum phase system but whose phase is “less negative.”

Hendrik Bode showed that for a given magnitude plot, there exists only one
minimum-phase system that has this magnitude. Moreover, the phase of this sys-
tem can be uniquely determined from the magnitude plot. There also exists an in-
finite number of non-minimum phase systems that have the same magnitude plot,
yet their phase plots are “more negative”; that is, they fall below the phase plot of
the minimum-phase system.

Example 8.6: Consider the minimum-phase system H(s) = 1. The magnitude of
its frequency response if 1, and its phase is zero for all frequencies. Now consider
the system

(8.69)H s
s

s1

1

1
( ) .=

+
+

( ) : ( ).=
d

d
H j
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This is a non-minimum phase system whose magnitude of the frequency re-
sponse is 1 for all frequencies. Its phase is given by

(8.70)

which tends to – as . The Bode plot of this system is given in Figure 8.29.

= + =H j1 1 1
2( ) arctan arctan arrctan ,( )

FIGURE 8.29 Bode plot of a first-order non-minimum
phase system.

Such a system is called an allpass system because it passes all frequencies with
unity gain. Thus an allpass system has unity magnitude for all frequencies but can
have any phase function.

Example 8.7: The non-minimum phase system

(8.71)

has the same magnitude as the minimum-phase system

(8.72)H s
s
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given in Example 8.4, but its phase is more negative, as shown in the Bode phase
plot of Figure 8.30. Note that any non-minimum phase transfer function can be ex-
pressed as the product of a minimum phase transfer function and an allpass trans-
fer function. For the Example 8.7, we can write

(8.73)

The Bode phase plots of H(s) and H1(s) are shown in Figure 8.30.

H s
s

s s1

100

1 10
( )

( )( )
=

+
+ +

minimum phase
� ��� ���

ss

s

+
+

100

100
allpass
��� ��

.

FIGURE 8.30 Bode phase plot of minimum phase and non-minimum phase
systems.

Finally, as mentioned earlier, the step response of a non-minimum-phase sys-
tem often starts off in the wrong direction, which makes these systems difficult to
control.



SUMMARY

In this chapter, we analyzed stable continuous-time LTI systems in the frequency
domain and in the time domain.

A qualitative relationship between the pole-zero plot and the frequency re-
sponse of a stable LTI system was established.
The Bode plot was introduced as a convenient representation of the frequency
response of a system that can be sketched by hand.
We characterized the frequency responses of first-order lag and lead systems
and of second-order systems.
The time domain performance of first- and second-order systems was quanti-
fied using the step response. The classical performance criteria of rise time, set-
tling time, and overshoot were discussed.
We briefly discussed the issues of group delay, allpass systems, and non-
minimum phase systems.

TO PROBE FURTHER

Bode plots can be used in the analysis of feedback control systems as we will find
out in Chapter 11. See also Bélanger, 1995 and Kuo and Golnaraghi 2002. For fur-
ther examples of step responses of LTI systems, see Kamen and Heck 1999.

EXERCISES

Exercises with Solutions

Exercise 8.1

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase)
for the following systems. Specify if the transfer functions have poles or zeros at
infinity.

(a)

Answer:

H s
s s

s

s s
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The break frequencies are at .
The pole-zero plot is shown in Figure 8.31, and the Bode plot is shown in Figure 8.32.

(b) H s
s

s s
s( )

( . )
, Re{ }=

+
+

>
10

0 001 1
0

1 2 31 10 100= = =,  (zeros);    (double pole)
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FIGURE 8.31 Pole-zero plot of the transfer
function of Exercise 8.1(a).

FIGURE 8.32 Bode plot of the transfer function
of Exercise 8.1(a).



Answer:

The pole-zero plot is given in Figure 8.33.
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FIGURE 8.33 Pole-zero plot of the transfer
function of Exercise 8.1(b).

The break frequencies are , and the
transfer function has one zero at . The Bode plot is shown in Figure 8.34.

1 2 310 0 1000= = = (zero);   (poles),

FIGURE 8.34 Bode plot of the transfer function of Exercise 8.1(b).
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(c)

Answer:
We can write the transfer function as follows:

The pole zero plot is shown in Figure 8.35, and the Bode plot is shown in Fig-
ure 8.36.
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2
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5

FIGURE 8.35 Pole-zero plot of the
transfer function of Exercise 8.1(c).

Exercise 8.2

Consider the mechanical system in Figure 8.37 consisting of a mass m attached to
a spring of stiffness k and a viscous damper (dashpot) of coefficient b, both rigidly
connected to ground. This basic system model is quite useful for studying a num-
ber of systems, including a car’s suspension or a flexible robot link.

Assume that the mass-spring-damper system is initially at rest, which means
that the spring generates a force equal, but opposite to, the force of gravity to sup-
port the mass. The balance of forces on the mass causing motion is the following:

(a) Write the differential equation governing the motion of the mass.

Answer:

m
d y t

dt
b
dy t

dt
ky t x t

2

2

( ) ( )
( ) ( )+ + =

x t F t F t m
d y t

dtk b( ) ( ) ( )
( )

=
2

2
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FIGURE 8.36 Bode plot of the transfer function of Exercise 8.1(c).

FIGURE 8.37 Mass-spring-damper system of Exercise 8.2.



(b) Find the transfer function of the system relating the applied force to the

mass position. Express it in the form . What is the 

damping ratio for this mechanical system? What is its undamped natural
frequency n?

Answer:

The natural frequency is given by . Note that the larger the 

mass, the lower the undamped natural frequency; the stiffer the spring, the higher
the undamped natural frequency. The damping ratio of the system is then

For a given dashpot, the larger the mass and/or spring constant, the less
damped the system will be.

(c) Let the physical constants have numerical values , ,
and . Suppose that the applied force is a step .
Compute and sketch the resulting mass position for all times. What is the
mass position in steady-state? What is the percentage of the first overshoot
in the step response? What is the ±5% settling time of the mass? (a nu-
merical answer will suffice.)

Answer:
With the numerical values given, the damping ratio and undamped natural fre-
quencies are
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The step input force is . The Laplace transform of
the step response is given by

Taking the inverse Laplace transforms of the partial fractions and simplifying,
we get

This step response is plotted in Figure 8.38. The mass position in steady state
is 0.375 m.
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FIGURE 8.38 Step response of the mass-spring-
damper system of Exercise 8.2.

The ±5% settling time of the mass is found to be . The percentage
of overshoot is
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Exercises

Exercise 8.3

Compute the 95% rise time tr and the ±5% settling time ts of the step response of
the system .

Answer:

Exercise 8.4

Compute the DC gain in decibels, the peak resonance in decibels, and the quality
Q of the second-order causal filter with transfer function .

Exercise 8.5

Compute the actual value of the first overshoot in the step response of the causal
LTI system

Answer:

Exercise 8.6

Compute the group delay of a communication channel represented by the causal
first-order system . Compute the approximate value
of the channel’s delay at very low frequencies.

Exercise 8.7

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase)
for the following systems. Specify whether the transfer functions have poles or
zeros at infinity.
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(c)

Answer:

Exercise 8.8

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase)
for the following systems. Specify if the transfer functions have poles or zeros at
infinity.

(a)

(b)

(c)

Exercise 8.9

Consider the causal differential system described by

with initial conditions . Suppose that this system is subjected
to the input signal .

(a) Find the system’s damping ratio and undamped natural frequency n.
Compute the output of the system y(t) for t ≥ 0. Find the steady-state re-
sponse yss(t), the transient response ytr(t), the zero-input response yzi(t), and
the zero-state response yzs(t) for t ≥ 0.

(b) Plot yss(t), ytr(t), yzi(t), and yzs(t) for t ≥ 0, all on the same figure using
MATLAB or any other software of your choice.

(c) Find the frequency response of the system and sketch its Bode plot.

Answer:
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Exercise 8.10

Consider the causal differential system described by its direct form realization
shown in Figure 8.39.

FIGURE 8.39 System of Exercise 8.10.

This system has initial conditions . Suppose that the

system is subjected to the unit step input signal .
(a) Write the differential equation of the system. Find the system’s damping

ratio and undamped natural frequency n. Give the transfer function of
the system and specify its ROC. Sketch its pole-zero plot. Is the system sta-
ble? Justify.

(b) Compute the step response of the system (including the effect of initial
conditions), its steady-state response yss(t), and its transient response ytr(t)
for t ≥ 0. Identify the zero-state response and the zero-input response in the
Laplace domain.

(c) Compute the percentage of first overshoot in the step response of the sys-
tem assumed this time to be initially at rest.

x t u t( ) ( )=
y, ( )1 0 2= =dy

dt

( )0



329

Application of Laplace
Transform Techniques to
Electric Circuit Analysis

9

In This Chapter

Review of Nodal Analysis and Mesh Analysis of Circuits
Transform Circuit Diagrams: Transient and Steady-State Analysis
Operational Amplifier Circuits
Summary
To Probe Further
Exercises

((Lecture 31: Review of Nodal Analysis and Mesh Analysis of Circuits))

The Laplace transform is a very useful tool for analyzing linear time-invariant
(LTI) electric circuits. It can be used to solve the differential equation relat-
ing an input voltage or current signal to another output signal in the circuit.

It can also be used to analyze the circuit directly in the Laplace domain, where cir-
cuit components are replaced by their impedances seen as transfer functions.
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REVIEW OF NODAL ANALYSIS AND 
MESH ANALYSIS OF CIRCUITS

Let us quickly review some of the fundamentals of circuit analysis, such as nodal
and mesh analysis based on Kirchhoff’s current and voltage laws.

Nodal Analysis

Kirchhoff’s Current Law (KCL) states that the sum of all currents entering a node
is equal to zero. This law can be used to analyze a circuit by writing the current
equations at the nodes (nodal analysis) and solving for the node voltages. Nodal
analysis is usually applied when the unknowns are voltages. For a circuit with N
nodes and N – 1 unknown node voltages, one needs to solve N – 1 nodal equations.

Example 9.1: Suppose we have the resistor-inductor-capacitor (RLC) circuit of
Figure 9.1 and we want to solve for the voltage across the resistor v(t).

Node 1:

Node 2:

FIGURE 9.1 RLC circuit with a current source input.

There are three nodes. The bottom one is taken to be the reference node (volt-
age = 0). We can solve this circuit by writing the node equations at the other two
nodes by applying KCL.
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Given the source current , the voltage is obtained by solving
the first-order differential Equation (9.2). Suppose there is an initial condition

on the capacitor voltage and the current is a unit step function. We use the
unilateral Laplace transform to obtain

(9.3)

Taking the inverse Laplace transform, we get

(9.4)

When voltage sources are present in the circuit, we can create “supernodes”
around them. KCL applies to these supernodes. However, there are two node volt-
ages associated with them, not just one.

Example 9.2: Consider the RLC circuit of Figure 9.2.
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FIGURE 9.2 RLC circuit with voltage source input and supernode.

Since there is one supernode for which we know that and one
ordinary node, we need only one node equation:

v t v t
s1

( ) ( )=
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(9.5)

Mesh Analysis

Kirchhoff’s Voltage Law (KVL) states that the sum of all voltages around a mesh
(a loop that has no element within it) is equal to zero. This law can be used to an-
alyze a circuit by writing the voltage equation for each mesh (mesh analysis) and
solving for the mesh currents. Mesh analysis is usually applied when the unknowns
are currents.

Example 9.3: Suppose that we have the circuit in Figure 9.3 and we want to
solve for the current flowing in the capacitor.i t i t i t( ) ( ) ( )=
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FIGURE 9.3 RLC circuit with voltage source input and
mesh currents

Mesh 1:

(9.6)

Mesh 2:

(9.7)
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We can transform these two equations to the Laplace domain before solving
them for the mesh currents. Equation 9.6 becomes

(9.8)

and Equation 9.7 becomes

(9.9)

Substituting for in Equation 9.8, we get

(9.10)

and

(9.11)

Now, we find the Laplace transform of the capacitor current to be

(9.12)

When current sources are present in the circuit, it actually simplifies the mesh
analysis.

Example 9.4: Consider the circuit shown in Figure 9.4.
The current source specifies mesh current i1(t):
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and we only need the other mesh equation:

Mesh 2: (9.14)

which is a simple first-order equation expressed in the Laplace domain as

(9.15)

((Lecture 32: Transform Circuit Diagrams, Op-Amp Circuits))

TRANSFORM CIRCUIT DIAGRAMS: 
TRANSIENT AND STEADY-STATE ANALYSIS

The nice thing about using the Laplace transform for circuit analysis is that we can
replace each impedance in a circuit by its equivalent unilateral Laplace transform,
and solve the circuit as if all the impedances were simple resistors. Initial condi-
tions can also be treated easily as additional sources.

Transform Circuit for Nodal Analysis

As we have just seen in the previous section, nodal analysis can be used to analyze
a circuit by writing the current equations at the nodes and solving for the node volt-
ages. For a resistive network, the currents are usually written as the difference be-
tween two voltages divided by the impedance (resistance). For a transform circuit,
the same principle applies, although the impedance of each element is in general a
function of the complex variable s.
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FIGURE 9.4 RLC circuit with current source input and mesh currents.



Example 9.5: For the circuit shown in Figure 9.5, we want to solve for the volt-
age v(t) from t = 0. Let us assume that there is an initial current in the
inductor and an initial voltage in the capacitor.v

C
( )0

i
L
( )0
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FIGURE 9.5 RLC circuit with a current source input.

Using the unilateral Laplace transform, the inductor current can be written as

(9.16)

and the corresponding circuit diagram combining the impedance Ls in the Laplace
domain and the initial condition seen as a current source for the inductor is shown
in Figure 9.6.

Ls s Li s

s
Ls

s
s

i

L L L

L L L

I V

I V

( ) ( ) ( )

( ) ( ) (

=

= +

0

1 1
0 ))

FIGURE 9.6 Equivalent circuit of
inductor in the Laplace domain for
nodal analysis.

The capacitor’s voltage-current relationship in the Laplace domain is written as

(9.17)I V
C C C

s Cs s Cv( ) ( ) ( )= 0
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and the corresponding circuit diagram combining the impedance in the Laplace
domain and the initial condition seen as a current source for the capacitor is given
in Figure 9.7.

1

Cs

FIGURE 9.7 Equivalent circuit of
the capacitor in the Laplace domain
for nodal analysis.

A resistor of resistance R is just an impedance R in the Laplace domain. With
these impedances and equivalent current sources defined, the transform circuit is
depicted in Figure 9.8.

FIGURE 9.8 Transform circuit diagram with current source.

We can solve this circuit by writing the node equations.

Node 1:

(9.18)

I V V

V I

s L
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s
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Node 2:

(9.19)

Substituting this expression for V2(s) in Equation 9.18, we obtain

(9.20)

Assuming that the source current is a unit step, the voltage is
obtained by substituting for in Equation 9.19 first and by taking the in-
verse Laplace transform:

(9.21)

The voltage V1(s) is obtained in a similar way by using Equation 9.20.

(9.22)

Notice that there is an impulse in the node 1 voltage response, which is not sur-
prising since the voltage across the inductor is proportional to the derivative of the
unit step current.

Example 9.6: Recall that when voltage sources are present in the circuit, we can
create “supernodes” around them, as shown in Figure 9.9.
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FIGURE 9.9 Transform circuit diagram for a circuit with a supernode.
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We have one supernode for which we know that and one ordinary
node; thus, we need only one node equation:

Node 2:

(9.23)

Transform Circuit for Mesh Analysis

Mesh analysis can be used to analyze a circuit by applying KVL around the circuit
meshes. For a resistive network, the voltages are usually written as the mesh
current times the resistances. The same principle applies for a transform circuit,
although in this case the impedance of each element is in general a function of the
Laplace variable.

Example 9.7: Suppose that we have the circuit in Figure 9.10 and we want to
solve for the current in the capacitor. Let us assume that there 
is an initial current in the inductor and an initial voltage in the 
capacitor.
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FIGURE 9.10 RLC circuit with voltage source input
and mesh currents.

Using the unilateral Laplace transform, the inductor voltage can be written as

(9.24)

The corresponding circuit diagram combining the impedance Ls in the Laplace
domain and the initial condition seen as a voltage source for the inductor is shown
in Figure 9.11.

V I
L L L

s Ls s Li( ) ( ) ( )= 0



The capacitor voltage-current relationship in the Laplace domain is written as

(9.25)

The corresponding circuit diagram combining the impedance in the Laplace
domain and the initial condition seen as a voltage source for the capacitor is as
shown in Figure 9.12.
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V I
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FIGURE 9.11 Equivalent circuit of inductor
in the Laplace domain for mesh analysis.

FIGURE 9.12 Equivalent circuit of
capacitor in the Laplace domain for
mesh analysis.

With these impedances and equivalent current sources defined, the transform
circuit can be depicted as in Figure 9.13.

FIGURE 9.13 Transform RLC circuit with voltage sources
for the input and initial conditions and with mesh currents
in the Laplace domain.



Suppose we want to find the capacitor current . We can
solve this circuit by applying KVL to each mesh.

Mesh 1:

(9.26)

Mesh 2:

(9.27)

Substituting the expression for I2(s) in Equation 9.18, we obtain

(9.28)

Substituting back into Equation 9.7, we obtain

(9.29)

Finally, we can solve for the capacitor current:

(9.30)

OPERATIONAL AMPLIFIER CIRCUITS

The operational amplifier (op-amp) is an important building block in analog elec-
tronics, notably in the design of active filters. The ideal op-amp is a linear differ-
ential amplifier with infinite input impedance, zero output impedance, and a gain
A tending to infinity. A schematic of the equivalent circuit of an ideal op-amp is
shown in Figure 9.14.

Because of its very high gain, the op-amp is meant to be used in a feedback
configuration using additional passive components. Such circuits can implement
various types of transfer functions, notably typical first-order leads and lags, and
second-order overdamped an underdamped transfer functions.
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Example 9.8: Consider the causal op-amp circuit initially at rest depicted in Fig-
ure 9.15. Its LTI circuit model with a voltage-controlled source is also given in the
figure. Let us transform the circuit in the Laplace domain and find the transfer
function . Then, we will let the op-amp gain to
obtain the ideal transfer function .H s H s

A
A( ) lim ( )=

+

A +H s V s V sA out in( ) ( ) ( )=

FIGURE 9.14 Equivalent circuit of an ideal op-amp.

FIGURE 9.15 Op-amp circuit and its equivalent circuit.

The Laplace domain circuit is shown in Figure 9.16.
There are two supernodes for which the nodal voltages are given by the source

voltages. The remaining nodal equation is obtained as follows:

(9.31)
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where = and are the resulting

impedances of the parallel connections of the individual impedances. Simplifying
the above equation, we get

(9.32)

Thus, the transfer function between the input voltage and the node voltage is
given by

(9.33)

and the transfer function between the input voltage and the output voltage can be
obtained:

(9.34)

The ideal transfer function is obtained as the limit of Equation 9.34 as the op-
amp gain tends to infinity:
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FIGURE 9.16 Laplace transform circuit.



This is a second-order system with negative DC gain and one zero .
Assume that the desired circuit must have a DC gain of –50, one zero at –1, and two
complex conjugate poles with . Let . Let us find
the values of the remaining circuit components . These component
values are obtained by setting

(9.36)

which yields . With these values,

the frequency response of the op-amp circuit is . Fig-
ure 9.17 shows the Bode plot of the circuit with the phase expressed in degrees.
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FIGURE 9.17 Bode plot of an op-amp circuit.
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SUMMARY

This chapter was a brief overview of the analysis of LTI circuits using the Laplace
transform.

The Laplace transform can be used to solve the differential equation relating an
input voltage or current signal to another output signal in the circuit.
The Laplace transform can also be used to analyze the circuit directly in the
Laplace domain. Circuit components are replaced by their impedances, and
Kirchhoff’s laws are applied to get algebraic equations involving impedances
and signals in the Laplace domain.
The ideal operational amplifier was described, and an active filter op-amp cir-
cuit example was solved to illustrate the use of op-amps in realizing transfer
functions.

TO PROBE FURTHER

There are many references on circuit analysis. See, for example, Johnson, Johnson,
Hilburn, and Scott, 1997. For an in-depth treatment of op-amp circuits, see Schau-
mann and Van Valkenburg, 2001.

EXERCISES

Exercises with Solutions

Exercise 9.1

The circuit in Figure 9.18 has initial conditions on the capacitor and in-
ductor .iL ( )0

v
C

( )0

FIGURE 9.18 Circuit of Exercise 9.1.

(a) Transform the circuit using the unilateral Laplace transform.

Answer:
The transform circuit is given in Figure 9.19.



(b) Find the unilateral Laplace transform V (s) of v(t).

Answer:
Let us use mesh analysis. For mesh 1,

For mesh 2,

Substituting, we obtain

.
Solving for I2(s), we get

Finally, the unilateral Laplace transform of the output voltage is given by

(c) Give the transfer function H (s) from the source voltage Vs(s) to the output
voltage V (s). What type of filter is it (lowpass, highpass, bandpass)? As-
suming that the poles of H (s) are complex, find expressions for its un-
damped natural frequency n and damping ratio .
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FIGURE 9.19 Transform circuit of Exercise 9.1.



Answer:
Notice that the transfer function from the source voltage to the output voltage is
bandpass. Its gain at DC and infinite frequencies is 0. The transfer function H(s)
from the source voltage V s(s) to the output voltage V (s) is given by

Its undamped natural frequency is . The damping ratio is com-
puted from

(d) Assume that . Find the values of L and C
to get Butterworth poles.

Answer:
The Butterworth poles are for

Furthermore, , and substituting in the previous
equation, we get
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Finally,

Exercises

Exercise 9.2

The circuit in Figure 9.20 has initial conditions on its capacitor and induc-
tor .iL ( )0

v
C

( )0

L
C

= = =
1

50

1

50
1

100 50

100

50
H

FIGURE 9.20 Circuit in Exercise 9.2.

(a) Transform the circuit using the unilateral Laplace transform.

(b) Find the unilateral Laplace transform V(s) of v(t).

(c) Give the transfer function H (s) from the source voltage Vs(s) to the output
voltage V(s) (it should be second-order). What type of filter is it (lowpass,
highpass, bandpass)? Assuming that the poles of H(s)are complex, find ex-
pressions for its undamped natural frequency n and damping ratio .

Exercise 9.3

Consider the causal ideal op-amp circuit in Figure 9.21 (initially at rest), which im-
plements a lowpass filter.

FIGURE 9.21 Op-amp filter circuit of Exercise 9.3.
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(a) Sketch the LTI model of the circuit with a voltage-controlled source rep-
resenting the output of the op-amp, assuming that its input impedance is in-
finite. Also, assume for this part that the op-amp gain A is finite.

(b) Transform the circuit using the Laplace transform and find the transfer
function . Then, let the op-amp gain to ob-
tain the transfer function .

(c) Find expressions for the circuit’s undamped natural frequency and damp-
ing ratio.

Answer:

Exercise 9.4

Consider the causal op-amp circuit initially at rest depicted in Figure 9.22. Its LTI
circuit model with a voltage-controlled source is also given in the figure.

H s H s
A

A( ) lim ( )=
+

A +H s V s V sA out in( ) ( ) ( )=

FIGURE 9.22 Op-amp circuit of Exercise 9.4.

(a) Transform the circuit using the Laplace transform and find the transfer
function . Then, let the op-amp gain to ob-
tain the ideal transfer function .H s H s

A
A( ) lim ( )=

+

A +H s V s V sA out in( ) ( ) ( )=



(b) Assume that the transfer function has a DC gain of –50 and
that H(s) has one zero at 0 and two complex conjugate poles with

. Let . Find the values of the remaining
circuit components .

(c) Give the frequency response of H(s) and sketch its Bode plot.

Exercise 9.5

The circuit in Figure 9.23 has initial conditions on the capacitor and in-
ductor .i

L
( )0

v
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R R C1 2, ,
L1 10= Hn = =10 0 5 rad/s, .

H s

s
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H s1( ) =
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FIGURE 9.23 Circuit of Exercise 9.5.

(a) Transform the circuit using the unilateral Laplace transform.

(b) Find the unilateral Laplace transform of v(t).

(c) Sketch the Bode plot (magnitude and phase) of the frequency response
from the input voltage to the output voltage . Assume that
the initial conditions on the capacitor and the inductor are 0. Use the 

numerical values .

Answer:

C 1=H, F1

891L =,109

891
R R

1 2
1= =,

V ( )jV
s

j( )



This page intentionally left blank 



351

State Models of
Continuous-Time
LTI Systems

10

((Lecture 33: State Models of Continuous-Time LTI Systems))

In Chapter 3 we studied an important class of continuous-time linear time-
invariant (LTI) systems defined by linear, causal constant-coefficient differen-
tial equations. For a system described by an Nth-order differential equation, it is

always possible to find a set of N first-order differential equations and an output
equation describing the same input-output relationship. These N first-order differ-
ential equations are called the state equations of the system. The states are the N
variables seen as outputs of the state equations.

The concept of state is directly applicable to certain types of engineering sys-
tems such as linear circuits and mechanical systems. The state variables in a circuit

In This Chapter

State Models of Continuous-Time LTI Differential Systems
Zero-State Response and Zero-Input Response of a Continuous-Time
State-Space System
Laplace-Transform Solution for Continuous-Time State-Space 
Systems
State Trajectories and the Phase Plane
Block Diagram Representation of Continuous-Time State-Space 
Systems
Summary
To Probe Further
Exercises
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are the capacitor charges (or equivalently the voltages since q = Cv) and the in-
ductor currents. In a mechanical system, the state variables are generally the posi-
tion and velocity of a body.

Before we move on, an important word on notation: for state-space systems,
the input signal is conventionally written as u(t) (not to be confused with the unit
step) instead of x(t), as the latter is used for the vector of state variables. Hence, in
this chapter we will use q(t) to denote the unit step signal.

STATE MODELS OF CONTINUOUS-TIME LTI 
DIFFERENTIAL SYSTEMS

Consider the general Nth-order causal linear constant-coefficient differential equa-
tion with :

(10.1)

which can be expanded to

(10.2)

Controllable Canonical Realization

We can derive a state-space model for the system in Equation 10.1 by first finding
its controllable canonical form (or direct form) realization. The idea is to take the
intermediate variable w in the direct form realization introduced in Chapter 7, and
its successive N – 1 derivatives, as state variables. Recall that the Laplace variable
s represents the differentiation operator , and its inverse s–1 is the integration op-
erator. Let without loss of generality. Taking the Laplace transform on both
sides of the differential Equation 10.2, we obtain the transfer function (with the re-
gion of convergence [ROC] a right half-plane to the right of the rightmost pole):

(10.3)
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A controllable canonical realization can be obtained by considering the trans-
fer function H(s) as a cascade of two subsystems as shown in Figure 10.1.

FIGURE 10.1 Transfer function as a cascade of two LTI subsystems.

The input-output system equation of the first subsystem is

(10.4)

which, as seen in Chapter 7, corresponds to feedback loops around a chain of inte-
grators. For the second subsystem we have

(10.5)

The controllable canonical realization is then (assuming M = N without loss of
generality) as shown in Figure 10.2.

Y s b s W s b s W s b sW s b W sM
M

M
M( ) ( ) ( ) ( ) ( )= + + + +1

1
1 0
 ..

s W s a s W s a sW s a W s U sN
N

N( ) ( ) ( ) ( ) ( ),= +1
1

1 0


FIGURE 10.2 Controllable canonical realization of transfer function.
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From this block diagram, define the state variables as follows.

(10.6)

The state equations on the right can be rewritten in vector form:

(10.7)

where the constant matrices A and B are defined in Equation 10.7 and the notation
is used for the time derivative. Let the state vector (or state) be defined

as

(10.8)

The space in which the state evolves is called the state space. Then the
state equation can be written as
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From the block diagram in Figure 10.2, the output equation relating the output
y(t) to the state vector can be written as follows:

(10.10)

If H(s) is strictly proper, that is, if M < N, then the output equation becomes

(10.11)

Note that the input has no direct path to the output in this case, as in
Figure 10.2 and in the state model. The order of the state-space system de-
fined by Equations 10.9 and 10.10 is N, the dimension of the state vector.

Observable Canonical Realization

We now derive a state-space model for the system of Equation 10.2 by first find-
ing its observable canonical form realization. The idea is to write the transfer func-
tion H(s) as a rational function of s–1:

(10.12)

Assume without loss of generality that M = N (if they are not equal, then just
set ) so that

(10.13)

Then, the input-output relationship between U(s) and Y(s) can be written as

(10.14)

The interpretation is that the output is a linear combination of successive inte-
grals of the output and the input. The block diagram for the observable canonical
form consists of a chain of N integrators with summing junctions at the input of
each integrator as shown in Figure 10.3.
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The state variables are defined as the integrator outputs, which gives us

(10.15)

The state equations on the right can be rewritten in vector form:

(10.16)
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FIGURE 10.3 Observable canonical realization of transfer function.



The output equation is simply

(10.17)

If H(s) is strictly proper, then, again and hence D = 0.

Remarks:
A general linear time-invariant state-space system has the form 

, y(t) = Cx(t) + Du(t) which is often denoted as (A, B, C, D). 
The matrices A, B, C, D are called state-space matrices.
Given a system defined by a proper rational transfer function, a state-space de-
scription of it is not unique, as we have shown that there exist at least two: the
controllable and observable canonical realizations. It can be shown that there
exist infinitely many state-space realizations, as we will find out later.

MATLAB can be used to get a canonical state-space realization of a transfer
function. For example, the following M-file found on the CD-ROM in D:\Chap-
ter10\realization.m generates the controllable canonical realization. 

%% realization.m State-space realization of a transfer function

% transfer function numerator and denominator

num=[1 100];

den=[1 11 10];

% state-space realization

[A,B,C,D]=tf2ss(num,den)

Circuit Example

We will derive controllable and observable canonical state-space representations, and
a direct state-space representation for the second-order resistor-inductor-
capacitor (RLC) circuit of Figure 10.4. The state variables are the inductor current iL(t)
and the capacitor voltage vC(t). Suppose that we want to solve for the voltage vC(t).

Bu t( )
�x t Ax t( ) ( )= +
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y t x t b u t

Cx t Du t
C

N

D

( ) ( ) ( )

( ) (

= [ ] +
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0 0 1
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))
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FIGURE 10.4 RLC circuit.
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Direct State-Space Realization

Left mesh:

(10.18)

Node:

(10.19)

Letting , we can write
the system in state-space form:

(10.20)

with the output equation 

(10.21)

Controllable Canonical State-Space Realization

Combining Equations 10.18 and 10.19, we get the second-order differential equation

(10.22)

Upon rearranging, we obtain
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which in the Laplace domain becomes

(10.24)

and has the controllable canonical realization given in Figure 10.5.

s V s
RC

sV s
LC

V s
LC

V sC C C s
2 1 1 1

( ) ( ) ( ) ( )+ + =

FIGURE 10.5 Controllable canonical realization of a circuit system.

Let . The controllable canonical state-space form is
then given by

(10.25)

and the output equation has the form

(10.26)

Observable Canonical State-Space Realization

Equation 10.24 is divided by s2 on both sides to obtain
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which is rewritten as

(10.28)

This equation is represented by the block diagram in Figure 10.6.
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FIGURE 10.6 Observable canonical realization of a circuit system.

Let . The observable canonical state-space realiza-
tion is given by

(10.29)

and the output equation is simply
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((Lecture 34: Zero-State Response and Zero-Input Response))

ZERO-STATE RESPONSE AND ZERO-INPUT RESPONSE OF A
CONTINUOUS-TIME STATE-SPACE SYSTEM

Recall that the response of a system with nonzero initial conditions is composed of
a zero-state response due to the input signal only and a zero-input response due to
the initial conditions only. For a state-space system, the initial conditions are cap-
tured in the initial state x(0).

Zero-Input Response

Consider the following general continuous-time, single-input, single-output,  Nth-
order LTI state-space system:

(10.31)

where , and .
The zero-input response is the response to an initial state only.
The state equation is then

(10.32)

The solution to this homogeneous state equation involves the matrix exponen-
tial function, which is defined as a power series of a square matrix :

(10.33)

where is the identity matrix. It can be shown that this power series con-
verges for any matrix A. Note that this definition generalizes the definition of the
scalar exponential function . How do we compute ? One way is to
diagonalize the matrix A and take the exponential of the eigenvalues. Specifically,
if matrix diagonalizes A, that is,
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where is the eigenvalue (all eigenvalues are assumed to be distinct) of
the matrix A, then the exponential of A is given by

(10.35)

The matrix of eigenvectors of A is diagonalizing, so we can use it as matrix T.
The time-dependent matrix exponential is simply

(10.36)

Now consider the vector-valued function of time

(10.37)

where and . The claim is that this function is the state response
of the system to the initial state for . To show this, simply substitute Equation
10.37 into the left-hand side of Equation 10.32:

(10.38)
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Therefore, the zero-input state response is as given in Equation 10.37 for ,
and the corresponding zero-input response is

(10.39)

where q(t) is the unit step signal.

Example 10.1: Let us revisit the circuit example with its first physically moti-
vated state-space representation:

(10.40)

(10.41)

Suppose , the initial capacitor voltage is x1(0) = 10 V,
and the initial inductor current is x2(0) = 0 A. With these numerical values, the state
equation becomes

(10.42)

We want to find the zero-input state response of the circuit. We first compute
the eigenvalues of A:

(10.43)
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Then, the corresponding eigenvectors are computed:

(10.44)

Letting
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(10.47)

Finally, the zero-input state response is calculated using Equations 10.36 and
10.37:

(10.48)
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Zero-State Response
The zero-state response is the response of the system to the input only (ini-
tial rest). A recursive solution cannot be obtained in continuous time, so we resort
to the impulse response technique. Let in Equation 10.31 to find the im-
pulse response.

(10.49)

Integrate the state equation in Equation 10.49 from to to “get rid
of the impulse” and obtain

(10.50)

Thus, from , we have a zero-input (autonomous) state equation
to solve for with the initial condition obtained in Equation

10.50. The solution as given by Equation 10.37 is

(10.51)

and hence, the impulse response of the state-space system is given by

(10.52)

The zero-state response is just the convolution of the input with the impulse re-
sponse of the system. Assume that the input starts at , that is, :

(10.53)
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((Lecture 35: Laplace Transform Solution of State-Space Systems))

LAPLACE-TRANSFORM SOLUTION FOR CONTINUOUS-TIME
STATE-SPACE SYSTEMS

Consider the state-space system of Equation 10.31 with initial state de-
picted in Figure 10.7.

x x( )0 0=

FIGURE 10.7 Block diagram of
a state-space system.

Taking the unilateral Laplace transform on both sides of Equation 10.31, we
obtain

(10.54)

Solving for the Laplace transform of the state, we get

(10.55)

and the Laplace transform of the output is found:

(10.56)

The first term on the right-hand side is the Laplace transform of the zero-state
response of the system to the input u(t), whereas the second term is the Laplace
transform of the zero-input response. The time-domain version of Equation 10.56
is thus

(10.57)

y t y t y t

Ce Bu t d Du t C

zs zi

A
t

( ) ( ) ( )

( ) ( )

= +

= + +
0

ee x q tAt
0 ( ).

Y U( ) ( ) ( ) ( ) .s C sI A B D s C sI A xN N= + +1 1
0

X U( ) ( ) ( ) ( ) ,s sI A B s sI A xN N= +1 1
0

s s x A s B s

s C s D s

X X U
Y X U

( ) ( ) ( )

( ) ( ) ( ).

= +
= +

0



The transfer function of the system is given by

(10.58)

Remark: Earlier, we said that there exist infinitely many state-space realizations
of a single transfer function. To convince ourselves of this fact, let us simply 
consider the (infinitely many) realizations expressed by 

whose transfer functions are all equal to the one given in
Equation 10.58:

Note that in Equation 10.58, we can write the ratio of the two Laplace trans-
forms only because this is a single-input, single-output system. For multi-
input, multi-output (MIMO, multivariable) systems, and U(s) are vectors and
it would not make sense to have a ratio of two vectors. Nevertheless, the formula
for the transfer function matrix of the system is still given by Equation 10.58, and
one can write

(10.59)

Recall that the inverse of a square matrix is equal to its adjoint (transposed ma-
trix of cofactors) divided by its determinant. Therefore, we have

(10.60)

The adjoint matrix only contains polynomials; thus, is a poly-
nomial in the Laplace variable s. It follows that the poles of H(s) can only come
from the zeros of the polynomial , which are nothing but the eigen-
values of matrix A. This is not to say that the set of poles is equal to the set of eigen-
values of A in all cases (it can be a subset). However, for minimal state-space
systems as defined below, these two sets are the same.

The ROC of the transfer function will be specified after we give a result relat-
ing the eigenvalues of A to the poles of the transfer function for minimal systems.

det( )sI AN

C sI A BNadj( )

H ( )
det( )

( ) .s
sI A

C sI A B D
N

N= +
1

adj

H U Y( ) ( ) ( ) ( ) .s s s C sI A B DN= = +� 1

Y( )s

Y
U

( )

( )

s

s

CP sI P AP P B D CP sP P P AP P BN( ) ( )+ =1 1 1 1 1 1 1 ++

= +

=

D

CP P sI A P P B D

CPP sI A

N

N

1 1 1

1

( )

( ) 11 1

1

PP B D

C sI A B DN

+

= +( ) .

, det( )P PN N× 0R
( , , , ),P AP P B CP D1 1

H
Y
U

( )
( )

( )
( ) .s

s

s
C sI A B DN= = +1

368 Fundamentals of Signals and Systems



Bounded-Input, Bounded-Output Stability

Minimal state-space realizations are realizations for which all N eigenvalues of ma-
trix A appear as poles in the transfer function given by Equation 10.58 with their
multiplicity. In other words, minimal state-space realizations are those realizations
for which the order of the transfer function is the same as the dimension of the state
vector.

Fact: For a minimal state-space realization (A, B, C, D) of a continuous-time
system with transfer function H(s), the set of poles of H(s) is equal to the set of
eigenvalues of A.

Since we limit our analysis to causal, minimal state-space realizations, this 
fact yields the following stability theorem for such continuous-time, LTI state-
space systems.

Stability Theorem: The continuous-time causal, minimal, LTI state-space sys-
tem (A, B, C, D), where , is bounded-input,
bounded-output (BIBO) stable if and only if all eigenvalues of A have a negative
real part.

Mathematically, (A, B, C, D) is BIBO stable if and only if 
.

The ROC of the transfer function in Equation 10.58 is the open right half-plane
to the right of .

We found earlier that the impulse response of the state-space system is given
by , where q(t) is the unit step function. Comparing 
this expression with Equation 10.58, the inverse Laplace transform of

is found to be equal to ; that is,

(10.61)

Example 10.2: Find the transfer function of the causal minimal state-space sys-
tem described by

(10.62)

First, we compute the eigenvalues of the A matrix by solving 
to obtain . Thus, the system is BIBO stable since the poles of the
transfer function are negative, being equal to the eigenvalues. We use Equation
10.58 to calculate H(s):
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(10.63)

The eigenvalues of the A matrix are the same as the poles of the transfer func-
tion, as expected since the realization is minimal. Now that the transfer function is
known, the output response of the system for a specific input can be found by the
usual method of partial fraction expansion of Y(s) = H(s)U(s).

STATE TRAJECTORIES AND THE PHASE PLANE

The time evolution of an N-dimensional state vector x(t) can be depicted using N
plots of the state variables versus time. On the other hand, the state trajectory,
that is, the locus of points traced by x(t), is a curved line in hyperspace .

For a two-dimensional state vector, we can conveniently plot the state trajec-
tory on a phase plane that is a plot of x2(t) versus x1(t) (or vice versa). For exam-
ple, the state trajectory in the phase plane of a second-order system responding to
an initial vector as a damped sinusoid will look like a spiral encircling and going
toward the origin.

Example 10.3: Consider the causal second-order mass-spring-damper system of
Figure 10.8 modeled as a state-space system.

Assume that the mass-spring-damper system is initially at rest, which means
that the spring generates a force equal to the force of gravity to support the mass.
The balance of forces on the mass and Newton’s law gives us an equation for state
variable x2(t):

(10.64)

and the second equation simply relates velocity and position:
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Let the state vector be . The state equation can be written as

(10.66)

Suppose the physical constants have numerical values , ,
and . We get

(10.67)

The zero-input state response to the initial condition of the mass displaced by

5 cm so that gives rise to the spiral-shaped state trajectory shown on 

the phase plane in Figure 10.9.
This phase plane plot was generated by the following MATLAB script, which

can be found on the CD-ROM in D:\Chapter10\phaseplane.m. 

%% Phase plane state trajectory of mass-spring-damper system

% Define state-space system

A=[0 1; -1 -0.5];

B=[0; 0.1];

C=eye(2);

D=zeros(2,1);

x0=[0.05; 0];

% time vector

T=0:.1:100;

% input signal (zero)

U=zeros(length(T),1);

.0 05

0
x( )0 =

�x t x t u t( )
.

( )
.

( ).= +
0 1

1 0 5

0

0 1

b = 5 N m
s

k = 10 N mm = 10 kg

�x t k
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b
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x t
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u t( ) ( ) ( ).= +
0 1 0
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x t

x t

( )

( )
1

2

x t( ) :=

FIGURE 10.8 Mass-spring-damper system.
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%simulate

SYS=ss(A,B,C,D);

[YS,TS,XS] = LSIM(SYS,U,T,x0);

plot(100*XS(:,1),100*XS(:,2))

FIGURE 10.9 Phase plane trajectory of a second-order
state-space system.

BLOCK DIAGRAM REPRESENTATION OF CONTINUOUS-TIME
STATE-SPACE SYSTEMS

The block diagram in Figure 10.10 is often used to describe a continuous-time
state-space system. Note that some of the signals represented by arrows are vector-
valued and the gains are “matrix gains.”

FIGURE 10.10 Block diagram of a state-space system.



One can see that this is a generalization of a scalar first-order system, with N
integrators in parallel instead of just one. Remember that matrices do not commute
in general, even if they are conformable. Thus, in deriving the equations for 
the above block diagram, one has to be careful not to write something like

. In other words, the order in
which subsystems appear in block diagrams of multivariable LTI systems cannot
be changed.

SUMMARY

In this chapter, we introduced LTI state-space systems.

A state model of a physical system can often be obtained from first principles
as a collection of first-order differential equations together with an output
equation.
Two state-space realizations of any proper rational transfer function can be eas-
ily obtained: the controllable canonical realization and the observable canoni-
cal realization. However, there exist infinitely many realizations of any given
proper rational transfer function.
We derived the formulas for the zero-input and zero-state responses, the im-
pulse response, and the transfer function of a general LTI state-space system.
A causal minimal state-space system was shown to be BIBO stable if and only
if all of the eigenvalues of its A matrix lie in the open left half-plane.
We briefly discussed state trajectories, and the phase plane was illustrated with
an example.

TO PROBE FURTHER

State-space modeling of engineering systems is covered in Bélanger, 1995. For an
advanced text on state-space systems, see Chen, 1999.

EXERCISES

Exercises with Solutions

Exercise 10.1

Consider the causal LTI state-space system:

C sI A B B sI A C CB sI AN N N( ) ( ) ( )= =1 1 1
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where .

(a) Is the system stable? Justify your answer.

Answer:
We compute the eigenvalues of the A matrix:

The eigenvalues of the A matrix have a negative real part; there-
fore the system is stable.

(b) Compute the transfer function H(s) of the system. Specify its ROC.

Answer:

The poles of the transfer function are 
, equal to the eigenvalues, as expected.

(c) Compute the impulse response h(t) of the system using the matrix 
exponential.

Answer:
The eigenvectors of the A matrix are computed as follows:
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Thus, , and

Thus, .

Exercise 10.2

Find the controllable and observable canonical state-space realizations for the fol-
lowing LTI system:
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Answer:
The system’s controllable canonical state-space realization is shown in Figure 10.11.

FIGURE 10.11 Controllable canonical realization of the system of Exercise 10.2.

Referring to Figure 10.11, we can write down the state-space equations of the
controllable canonical realization of the system:

The observable canonical realization is the block diagram of  Figure 10.12.
From Figure 10.12, the state-space equations of the observable canonical real-

ization of the system can be written as
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Exercises

Exercise 10.3

Compute for .

Answer:

Exercise 10.4

Consider the causal LTI state-space system

, where .

(a) Is the system stable? Justify.

(b) Compute the transfer function H(s) of the system. Specify its ROC.

(c) Compute the impulse response h(t) of the system using the matrix exponential.

C = [ ]1 1,
1

0
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1 1
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2 0
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3
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FIGURE 10.12 Observable canonical realization of the system of Exercise 10.2.
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Exercise 10.5

Repeat Exercise 10.4 with . What type of sys-
tem is this?

(a) Is the system stable? Justify.

(b) Compute the transfer function H(s) of the system. Specify its ROC.

(c) Compute the impulse response h(t) of the system using the matrix expo-
nential.

Answer:

Exercise 10.6

Find the controllable and observable canonical state-space realizations for each of
the following LTI systems.

(a)

(b)

Exercise 10.7

Find the controllable and observable canonical state-space realizations for each of
the following LTI systems.

(a)

(b)

(c) , , causal

Answer:

Exercise 10.8
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(b) Compute the zero-input state and output responses at time for the
causal LTI state-space system

, y = Cx where , 

with initial state .

Exercise 10.9

Consider the causal LTI state-space system

, y = Cx where .

(a) Is the system minimal? Is it stable? Justify.

(b) Compute the transfer function H(s) of the system. Specify its ROC.

(c) Compute the state transition matrix defined as . This ma-
trix has the property of taking the zero-input state response from the initial
state to the state x(t) as follows: .

(d) Compute the impulse response h(t) of the system using the matrix 
exponential.

Answer:

Exercise 10.10

Consider the LTI causal state-space system

where . Show that any state transformation ,
where is invertible, of the above state-space system keeps its transfer
function invariant. This means that there are infinitely many state-space represen-
tations of any given proper rational transfer function.
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Application of Transform
Techniques to LTI Feedback
Control Systems

11

In This Chapter

Introduction to LTI Feedback Control Systems
Closed-Loop Stability and the Root Locus
The Nyquist Stability Criterion
Stability Robustness: Gain and Phase Margins
Summary
To Probe Further
Exercises

((Lecture 36: Introduction to LTI Feedback Control Systems))

The use of feedback dates back more than two thousand years to the Greeks
and the Arabs, who invented the water clock based on a water level float
regulator. Closer to us, and marking the beginning of the industrial revolu-

tion in 1769, was the invention by James Watt of the Watt governor, shown in Fig-
ure 11.1. The Watt governor was used to regulate automatically the speed of steam
engines by feedback. This device measures the angular velocity of the engine shaft
with the help of the centrifugal force acting on two spinning masses hinged at the
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top of the engine shaft. The centrifugal force is counteracted by the gravitational
force. When in balance at a constant engine speed, the vertical positions of the
masses are given by a function of the shaft angular velocity, and their vertical dis-
placement is linked to a valve controlling the flow of steam to the engine. Thus, the
Watt governor is a mechanical implementation of proportional control of the en-
gine shaft velocity.

FIGURE 11.1 Schematic of the Watt governor.

It has only been about 70 years since engineers and mathematicians developed
the mathematical tools to analyze and design feedback control systems. However,
feedback control has proven to be an enabling technology in many industries and
it has enjoyed a lot of interest in research and development circles. This chapter
only gives a brief introduction to linear time-invariant (LTI) feedback control sys-
tems and studies them with the use of the Laplace transform. The most important
property of a feedback control system is its stability, and therefore we present var-
ious means of ensuring that the closed-loop system will be stable. Tracking systems
and regulators are defined and their performance is studied with the introduction of
the sensitivity function and the complementary sensitivity function. 

INTRODUCTION TO LTI FEEDBACK CONTROL SYSTEMS

A feedback control system is a system whose output is controlled using its mea-
surement as a feedback signal. This feedback signal is compared with the reference
signal to generate an error signal that is filtered by a controller to produce the
system’s control input. We will concentrate on single-input, single-output (SISO)



continuous-time LTI feedback systems. Thus, the Laplace transform will be our
main tool for analysis and design. The block diagram in Figure 11.2 depicts a gen-
eral feedback control system. Note that all LTI systems represented by transfer
functions in this chapter are assumed to be causal, and consequently we omit their
regions of convergence (ROCs), which are always understood to be open right
half-planes (RHPs).
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FIGURE 11.2 LTI feedback control system.

The controlled system is called the plant, and its LTI model is the transfer
function P(s). The disturbed output signal of the plant is y(t) and its noisy mea-
surement is ym(t), corrupted by the measurement noise n(t). The error between the
desired output yd(t) (or reference) and ym(t) is the measured error, denoted as em(t).
The actual error between the plant output and the reference is .
The output disturbance is the signal do(t). The feedback measurement sensor dy-
namics are modeled by Gm(s). The actuator (e.g., a valve) modeled by Ga(s) is the
device that translates a control signal from the controller K(s) into an action on the
plant input. The input disturbance signal di(t) (e.g., a friction force) disturbs the
control signal from the actuator to the plant input.

In many cases, we will assume that the actuator and sensor are perfect (mean-
ing ) and that measurement noise can be neglected so that

. This will simplify the analysis.
Why do we need feedback anyway? Fundamentally, for three reasons:

To counteract disturbance signals affecting the output
To improve system performance in the presence of model uncertainty
To stabilize an unstable plant

n t( ) = 0
G s G sa m( ) ( )= = 1

e t y t y td( ) : ( ) ( )=
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Example 11.1: A classical technique to control the position of an inertial load
driven by a permanent-magnet DC motor is to vary the armature current based on
a potentiometer measurement of the load angle as shown in Figure 11.3.

FIGURE 11.3 Schematic of an electromechanical feedback
control system.

Let us identify the components of this control system. The plant is the load.
The actuator is the DC motor, the sensor is the potentiometer, and the controller
K(s) could be an op-amp circuit driving a voltage-to-current power amplifier.

The open-loop dynamics of this system are now described. The torque (t) in
newton-meters applied to the load by the motor is proportional to the armature cur-
rent in amperes: , so that

(11.1)

The plant (or load) is assumed to be an inertia with viscous friction. The equa-
tion of motion for the plant is

(11.2)

which yields the unstable plant transfer function:
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The potentiometer can be modeled as a pure gain mapping the load angle in the
range of to a voltage in the range of : 

; thus,

(11.4)

Assume that the measurement noise is negligible and that there is only an input
torque disturbance i(t) representing unmodeled friction. A block diagram for this
example is given in Figure 11.4.
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FIGURE 11.4 Block diagram of an electromechanical feedback control system.

Other examples of feedback control systems abound:

Car cruise control system
Flight control system (autopilot, fly-by-wire control)
Satellite attitude control system
Phase-lock loop (circuit used to tune in to FM radio stations in radio receivers)
Robot
Human behavior (this one is hard to model)
Nuclear reactor

Tracking Systems

Two types of control systems can be distinguished: tracking systems and regula-
tors. As the name implies, a tracking system controls the plant output, so it tracks
the reference signal. From the simplified block diagram in Figure 11.5 (no noise or
disturbance), good tracking is obtained when the error signal for all de-
sired outputs yd(t). Then, .y t y td( ) ( )

e t( ) 0
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This diagram represents a general unity feedback system. Such a system has no
dynamics in the feedback path, just a simple unity gain. The mechanical load angle
control system in Example 11.1 is a unity feedback tracking system. The closed-
loop transfer function from the reference to the output, called the transmission, is
given by

(11.5)

The tracking objective of translates into the following require-
ment on the transmission:

(11.6)

We see that this objective will be attained for a “large” loop gain, that is, for
, which, for a given plant, suggests that the magnitude of the con-

troller be made large. However, we will see later that a high-gain controller often
leads to instability of the closed-loop transfer function.

Regulators

A regulator is a control system whose main objective is to reject the effect of dis-
turbances and maintain the output of the plant to a desired constant value (often
taken to be 0 without loss of generality). An example is a liquid tank level regula-
tor. The block diagram shown in Figure 11.6 is for a regulator that must reject the
effect of an output disturbance.

The transfer function from the output disturbance to the output, called the sen-
sitivity, is obtained from the following loop equation:
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FIGURE 11.5 Unity feedback control system
for tracking.
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which yields

(11.8)

The objective that for expected output disturbance signals translates
into the requirement that . Again, a high loop gain would
appear to be the solution to minimize the sensitivity, but the closed-loop stability
constraint often makes this difficult.

((Lecture 37: Sensitivity Function and Transmission))

Sensitivity Function

We introduced the sensitivity function as the transfer function from the output dis-
turbance to the output of the plant,

(11.9)

for the standard block diagram in Figure 11.6. The term sensitivity can be attributed
in part to the fact that the transfer function S(s) represents the level of sensitivity of
the output to an output disturbance:

(11.10)

If the disturbance signal has a Fourier transform, then (assuming S(s) is stable
and hence has a frequency response S( j )), the Fourier transform of the output is
given by

(11.11)ˆ( ) ( ) ˆ ( ).y j S j d j= 0

ˆ( ) ( ) ˆ ( ).y s S s d s= 0

S s
y s

d s K s P so
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1
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.= =
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1

1

FIGURE 11.6 Unity feedback control system for
regulation.
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Therefore, the frequency response of the sensitivity S( j ) amplifies or attenu-
ates the output disturbance at different frequencies. Note that since the error is sim-
ply the negative of the output, we also have

(11.12)

Example 11.2: Suppose for the control system depicted in Figure
11.7.

d t e q tt
0 ( ) ( )=

ˆ( ) ( ) ˆ ( ).e s S s d s= 0

FIGURE 11.7 Regulator with exponential
output disturbance.

The Fourier transform of the disturbance signal d0(t) is given by

(11.13)

The sensitivity function is calculated as follows:

(11.14)

This sensitivity function is stable because its complex conjugate poles lie in the
open left half-plane (LHP). Its frequency response is given by

(11.15)

The magnitudes of are plotted using a linear scale in
Figure 11.8.
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It can be seen that the controller reduces the effect of the output disturbance by
roughly a factor of five in the frequency domain, as opposed to the open-loop case.
That is, the sensitivity was made small in the bandwidth of the disturbance. In the
time domain, the closed-loop plant response

(11.16)

to the disturbance is smaller in magnitude than the open-loop response
, as shown in Figure 11.9.y t d t e q tOL

t( ) ( ) ( )= =0

y t S s d s e t tt( ) ( ) ˆ ( ) cos sin= { } = +L 1
0

2 3
1

3
3 q t( )
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FIGURE 11.8 Magnitude of the output caused by
the disturbance in closed loop.

FIGURE 11.9 Open-loop and closed-loop
response to disturbance in the time domain.



However, if the disturbance signal had energy around , it would be
amplified around this frequency.

The main reason S(s) is called the sensitivity function is because it is equal to
the sensitivity of the closed-loop transmission T(s) to an infinitesimally small
perturbation of the loop gain defined as . That is, for an infinites-
imally small relative change in the loop gain, the corresponding relative

change in the transmission is given by

(11.17)

Transmission

The transmission is the closed-loop transfer function T(s) introduced earlier. The
transmission is also referred to as the complementary sensitivity function, as it
complements the sensitivity function in the following sense:

(11.18)

We have seen that T(s) is the closed-loop transfer function,

(11.19)

from the reference signal (desired output) to the plant output in tracking control
problems for the standard unity feedback control system shown in Figure 11.10.
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FIGURE 11.10 Feedback control system for
input tracking.



Usually, reference signals have the bulk of their energy at low frequencies
(e.g., piecewise continuous signals) but not always (e.g., fast robot joint trajecto-
ries). The main objective for tracking is to make over the frequency
band where the reference has most of its energy.

Example 11.3: Consider the previous regulator example now set up as the track-
ing system in Figure 11.11.

T j( ) 1
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FIGURE 11.11 Feedback control system for
input tracking.

The transmission can be calculated using Equation 11.18:

(11.20)

Although its DC gain of is not close to 1, the magnitude
of its frequency response is reasonably flat and the phase reasonably close to 0 up
to , as can be seen in Figure 11.12.

Suppose that the reference signal is a causal rectangular pulse of 10-second
duration:

(11.21)

Its Laplace transform is given by

(11.22)

so that the Laplace transform of the plant output is
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The corresponding time-domain output signal is plotted in Figure 11.13, to-
gether with the reference signal.
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FIGURE 11.12 Frequency response of transmission.

FIGURE 11.13 Closed-loop response of
tracking system to a 10-second pulse.

Apart from a settling value lower than 1 due to the DC gain, the response is not
too bad. This must mean that in the frequency domain, the Fourier transform of the



reference must have most of its energy in the passband of the transmission. It is in-
deed the case, as seen in the plot of in Figure 11.14:

(11.24)ˆ ( ) ).y j
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5

ˆ ( )y jd
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FIGURE 11.14 Magnitude of the input pulse’s
spectrum.

A Naive Approach to Controller Design

Given a plant model P(s) and a desired stable closed-loop sensitivity or transmis-
sion, it is often possible to back solve for the controller K(s) using Equation 11.9
or 11.19.

Example 11.4: A plant is modeled by the transfer function . Let us
find the controller that will yield the desired complementary sensitivity function

. From Equation 11.19, we have
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This looks easy, and it is. However, this approach has many shortcomings,
including

For unstable plant models (i.e., P(s) with at least one pole in the open RHP),
the resulting controller K(s) will often have a zero canceling the unstable plant
pole in the loop gain, which is unacceptable in practice.
For a non-minimum phase plant model P(s), that is, with at least one zero in the
open RHP, the controller K(s) will often have an unstable pole canceling the
RHP plant zero in the loop gain, which may be undesirable in practice.
This method cannot meet other specifications or requirements on closed-loop
time-domain signals, low controller order, etc.
The controller may not always be proper; that is, its transfer function may
sometimes have a numerator of higher order than the denominator. Such a
controller is not realizable by a state-space system or by using integrators. One
would then need to use differentiators that should be avoided because they tend
to amplify the noise.

((Lecture 38: Closed-Loop Stability Analysis))

CLOSED-LOOP STABILITY AND THE ROOT LOCUS

Closing the loop on a stable plant with a stable controller will sometimes result in
an unstable closed-loop system; that is, the sensitivity and the transmission will be
unstable. Hence, a number of stability tests have been developed over the last cen-
tury in order to avoid the tedious trial and error approach to obtain closed-loop sta-
bility in the design of a controller. The idea is to test for stability, given only the
open-loop transfer functions of the plant and the controller.

Closed-Loop Stability

The most fundamental property of a feedback control system is its stability. Obvi-
ously, an unstable feedback system is useless (unless the goal was to build an os-
cillator using positive feedback in the first place). In this section, we give four
equivalent theorems to check the stability of a unity feedback control system.

We shall use the following definition of bounded-input bounded-output
(BIBO) stability (or stability in short) for a unity feedback system. This is a re-
quirement that any bounded-input signal injected at any point in the control system
results in bounded-output signals measured at any point in the system.

The unity feedback system in Figure 11.15 is said to be stable if, for all
bounded inputs , the corresponding outputs y(t), uc(t) are also bounded.y t d td i( ), ( )
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The idea behind this definition is that it is not enough to look at a single input-
output pair for BIBO stability. Note that some of these inputs and outputs may not
appear in the original problem formulation, but they can be defined as fictitious in-
puts or outputs for stability assessment.

Recall that a transfer function G(s) is BIBO stable if and only if

1. All of its poles are in the open LHP and
2. It is proper; that is, or, equivalently, the order of the numer-

ator is less than or equal to the order of the denominator for G(s) rational.

The second condition is required because otherwise a bounded input 
with arbitrarily fast variations would produce an unbounded output for an improper
transfer function. Consider for example a pure differentiator with the
input . Its output is , which is unbounded as .

Closed-Loop Stability Theorem I

The closed-loop system in Figure 11.15 is stable if and only if the transfer functions
T(s), , and P(s)S(s) are all stable (unstable pole-zero cancellations are
allowed in these products).

Proof: It is easy to find the relationship between the inputs and the outputs (do it
as an exercise):

(11.26)

This matrix of transfer function (called a transfer matrix) is stable if and only if
each individual transfer function entry of the matrix is stable. The theorem follows.
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FIGURE 11.15 Setup to test the BIBO stability of a closed-
loop system.



Example 11.5: Let us assess the stability of the tracking control system shown in
Figure 11.16.
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FIGURE 11.16 Closed-loop system whose stability is to
be determined.

Note that the open-loop plant P(s) is unstable. We calculate the three transfer
functions:

(11.27)

and conclude that this closed-loop system is unstable. The problem here is that the
controller attempts to cancel out the plant’s unstable pole.

We know that stability is directly related to the location of the poles in the s-
plane. Since control systems are causal, the ROC of S(s) and T(s) is an open RHP
to the right of the rightmost pole. For BIBO stability, the ROC must include the 
j -axis, (including ), which means that all the closed-loop poles must be in the
open LHP and that S(s) and T(s) must be proper. Note that the poles of S(s) and T(s)
are the same, and if either of these two transfer functions is proper, then the other
one must also be proper. This is easy to see from the identity:

(11.28)

If , then and vice versa.
Another equivalent closed-loop stability theorem can now be stated (without

proof) for a unity feedback control system if we explicitly rule out any pole-zero
cancellation occurring in the closed RHP when forming the loop gain K(s)P(s).
One only needs to check the stability of either S(s) or T(s).
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Closed-Loop Stability Theorem II

The unity feedback control system in Figure 11.15 is stable if and only if

1. Either S(s) or T(s) is stable, and
2. No pole-zero cancellation occurs in the closed RHP when forming the

loop gain K(s)P(s).

Now suppose that the plant and controller transfer functions are written as

(11.29)

where the plant numerator and denominator are coprime polynomials,
that is, they have no common factors, and likewise for the controller numerator and
denominator. Define the characteristic polynomial

(11.30)

of the closed-loop system. The closed-loop poles of the system are defined to be
the zeros of the characteristic polynomial p(s). Our third equivalent stability result
follows.

Closed-Loop Stability Theorem III

The unity feedback control system is stable if and only if all of the closed-loop poles
of the system lie in the open LHP and the order of p(s) is equal to the order of
dp(s)dK(s).

Proof (sufficiency only; the proof of necessity is more involved): we use the result
of stability Theorem I to write

(11.31)
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All transfer functions in this matrix are proper and have the characteristic poly-
nomial p(s) as their denominator. Therefore, if all closed-loop poles (i.e., zeros of
p(s)) are in the open LHP, then the transfer matrix is stable, and by virtue of The-
orem I, we conclude that the closed-loop system is stable.

Example 11.6: For Example 11.5, we have

(11.32)

and

(11.33)

which clearly has a zero at s = 1. Therefore the control system is unstable.
Finally, we have a fourth equivalent theorem on closed-loop stability, which is

really just a restatement of Theorem II (taking S(s)).

Closed-Loop Stability Theorem IV

The unity feedback control system is stable if and only if

1. The transfer function 1 + K(s)P(s) has no closed RHP zeros (including at ),
and

2. No pole-zero cancellation occurs in the closed RHP when forming the
loop gain K(s)P(s).

Routh’s Criterion

The stability of a causal LTI system whose transfer function is rational and proper is
determined by its poles. An open-loop transfer function is stable if and only if all of
its poles lie in the open LHP. A closed-loop system is stable if and only if all 
of the closed-loop poles lie in the open LHP (closed-loop theorem III). In both cases,
we need to solve for the N roots of the characteristic equation

to find the poles and determine whether the
system is stable or not. There are various ways to do this numerically using a com-
puter, for example, by computing the eigenvalues of the A matrix of a state-space re-
alization of the system. However, in 1877, E. J. Routh devised an extremely simple
and clever technique to determine the stability of a system. Routh’s criterion is based
on an array formed with the coefficients of the denominator of an open-loop transfer
function or the closed-loop characteristic polynomial of a feedback system. Assume
that , and recall that a necessary condition for the system to be stable is that
all coefficients of its characteristic polynomial be of the same sign. Thus, if any of the
coefficients of the polynomial are negative, the system is unstable. With this neces-
sary condition fulfilled, we want to determine whether the system is stable or not.

aN > 0

a s a s a s aN
N

N
N+ + + + =1

1
1 0 0


p s s s s( ) ( ) ( ) ( ),= + +1 1 12

n s d s s s n s s d sP P K K( ) , ( ) ( )( ), ( ) ( ), ( )= = + = =1 1 1 1 (( )s +1
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The Routh array is formed as follows. The rows are labeled with descending
powers of the Laplace variable s. The first two rows of the array are composed of
the coefficients of the characteristic polynomial. They can be written down by in-
spection. The third row of the Routh array is calculated from the first and second
rows. The looping arrow on the array attempts to show how the coefficients on a
diagonal are multiplied before they are subtracted. Notice that this loop always
starts and ends on the first column.

The fourth row is computed in the same manner from the two rows immedi-
ately above it, and so on until the last row labeled s0 is reached. Once this Routh
array has been computed, we have the following theorem:

Theorem (Routh): The system is stable if and only if all the entries in the first
column of the Routh array are positive. If there are sign changes in this column,
then there are as many unstable poles are there are sign changes.

Example 11.7: Let us determine whether the following causal system is stable:

The Routh array is computed.
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We conclude that this system is unstable. Furthermore, since there are two sign
changes in the first column, that is, from positive to negative to positive, we know
that the system has two unstable poles.

Example 11.8: Consider a unity feedback control system with plant 

and a pure gain controller . Let us find for what values of k the system is
stable. The closed-loop characteristic polynomial is . We
compute the Routh array.

Since it is assumed that controller gain k is positive, the system is stable for 
0 < k < 1. For k > 1, there are two sign changes in the first column; therefore the
closed-loop system has two unstable poles. The limit case where k = 1 results in
two poles sitting directly on the j -axis. This special case of purely imaginary
poles is treated in a slightly different way in the Routh array. When the Routh array
is computed, this case leads to a row of zeros, for example, the row labeled sm–1.
Then we write down the mth-order polynomial whose coefficients are the entries in
row sm, the row above the row of zeros. This polynomial is differentiated and the
coefficients of the resulting polynomial are used to replace the zeros in row sm–1.

((Lecture 39: Stability Analysis Using the Root Locus))

The Root Locus

The root locus is the locus in the s-plane described by the closed-loop poles 
(i.e., the zeros of the characteristic polynomial p(s)) as a real parameter k varies
from 0 to + in the loop gain. It is a method for studying the effect of a parameter
on the locations of the closed-loop poles, in particular to find out for what values
of the parameter they become unstable.

The parameter is usually the controller gain, but it could be a parameter of the
plant transfer function. The usual setup is shown in Figure 11.17.
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Factor P(s) and K(s) as ratios of coprime polynomials:

(11.34)

Then, . If and have a
common factor, take it out; the zeros of this factor are fixed (i.e., fixed closed-loop
poles) with respect to the gain k. Now, assuming there is no common factor, define

(11.35)

Then the loop gain is . Locate the poles and zeros of
L(s) in the s-plane.

We now give a minimal set of rules that help in sketching the root locus.

Rule 1: For k = 0, the root locus starts at the poles of L(s).

Proof: The characteristic polynomial is …

Rule 2: As , μ branches of the root locus go to the zeros of L(s), and
branches go to 

Proof: There are v branches of the root locus, that is, roots of .
Now, for :
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FIGURE 11.17 Closed-loop system with variable
gain on the controller for the root locus.



Let p0 be a closed-loop pole corresponding to k. Then

(11.37)

If is bounded as , then

(11.38)

That is, the pole p0 converges to a zero of L(s). Otherwise, is unbounded;
that is, .

Rule 3: The root locus is symmetric with respect to the real axis.

Proof: All complex poles come in conjugate pairs…

Rule 4: A point on the real axis, not a pole or zero of L(s), is on the root locus if
and only if it lies to the left of an odd number of real poles and real zeros (counted
together) of L(s).

Rule 5: For the branches of the root locus going to infinity, their asymptotes are
described by

Center of asymptotes .

Angles of asymptotes .

Example 11.9: Sketch the root locus of the tracking system shown in Figure
11.17, where

We find . The loop gain is 
. Its poles are at and . The root

locus starts at these poles for k = 0, and two branches tend to the zeros
of L(s) as . There is only one asymptote on the real line

going to – . A sketch of the root locus based on the preceding rules is shown in
Figure 11.18.
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The root locus is a technique for conducting interactive control analysis and de-
sign. Factors limiting its usefulness include the following:

The closed-loop poles do not completely characterize a system’s behavior.
The root locus can be used for one varying parameter only.

Thus, the root locus is a tool that can be useful for simple problems. It is best
computed and plotted using a CAD software such as MATLAB.

Example 11.10: Root locus using MATLAB
Suppose we want to plot the root locus of a unity feedback control system with

plant and controller for a controller gain k varying
between 0 and 1000. The following MATLAB program does the job, producing the
root locus in Figure 11.19. This M-file can be found on the companion CD-ROM
in D:\Chapter11\rootlocus.m

%% rootlocus.m Root locus of a feedback control system

% vector of gains

K=0:1:1000;

% loop gain

numK=[2 1];

denK=[1 -1];

numP=[1];

denP=[1 2 4];

numL=conv(numK,numP);

s

s

+2 1

1
K s k( ) =s s+ +

1

2 42P s( ) =

FIGURE 11.18 Root locus of a closed-loop system with variable gain on
the controller.
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denL=conv(denK,denP);

polesL=roots(denL);

zerosL=roots(numL);

L=tf(numL,denL);

% root locus 

rlocus(L,K);

FIGURE 11.19 Root locus of a closed-loop system using MATLAB.

((Lecture 40: The Nyquist Stability Criterion))

THE NYQUIST STABILITY CRITERION

The Nyquist criterion uses a plot of the frequency response of the loop gain, called
the Nyquist plot, to determine the stability of a closed-loop system. It can also be
used to find measures of stability robustness called the gain margin and the phase
margin. These margins represent the additional gain or negative phase on the loop
gain that would take the feedback system to the verge of instability.

The Principle of the Argument and the Encirclement Property

The Principle of the Argument states that the net change in phase (argument) of a
transfer function G(s) (as the complex variable s describes a closed contour C



clockwise in the complex plane) is equal to the number of poles of G(s) enclosed in
C minus the number of zeros of G(s) enclosed in C, times 2 .

This is a particular case of conformal mappings in the complex plane, where a
closed contour is mapped to the locus of G(s) in the complex plane. One result that
is of interest to us from conformal mapping theory is that a closed contour in the s-
plane is mapped by G(s) to another closed contour in the complex plane.

Another equivalent form of the principle of the argument is the encirclement
property, which states that as a closed contour C in the s-plane is traversed once
in the clockwise direction, the corresponding plot of G(s) (for values of s along C)
encircles the origin in the clockwise direction a net number of times equal to the
number of zeros of G(s) minus the number of poles of G(s) contained within the
contour C.

In applying this property, a counterclockwise encirclement of the origin is in-
terpreted as one negative clockwise encirclement.

The Nyquist Criterion

The Nyquist criterion is an application of the encirclement property to the Nyquist
plot of the loop gain to determine the stability of a closed-loop system. It provides
a check for stability but says nothing about where the closed-loop poles are. The
root locus can provide that information, but it requires analytical descriptions of the
controller and the plant, that is, transfer functions. On the other hand, the Nyquist
criterion can be applied to a plant or loop gain whose frequency response has been
measured experimentally, but whose transfer function is unavailable.

Recall our closed-loop stability theorem IV: the unity feedback control system
is stable if and only if the transfer function 1 + K(s)P(s) has no closed RHP zeros,
and no pole-zero cancellation occurs in the closed right half-plane when forming
the loop gain K(s)P(s). Assume the latter condition holds and suppose the con-
troller can be factorized as a pure gain times a transfer function: kK(s). Then for
stability we must ensure that 1 + kK(s)P(s) has no closed RHP zeros. Further as-
sume that 1 + kK(s)P(s) is proper.

Nyquist Contour

To use the encirclement property, we must choose a closed contour that includes
the closed RHP. This contour is called the Nyquist contour and is shown in Figure
11.20. It produces the Nyquist plot of a transfer function. The Nyquist contour in-
cludes the entire imaginary axis (including ) and a semicircle of radius

to the right of the j -axis. Because we assumed that 1 + kK(s)P(s) is
proper, the Nyquist plot will remain at the constant value as
the Laplace variable describes the infinite semicircle.

lim ( ) ( ) :
s

kK s P s b+ =1
R

± j
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If there are any poles or zeros on the j -axis, they can be included in the
Nyquist contour by indenting it to the left of (but infinitesimally close to) them.

Nyquist Plot of L(s)

The Nyquist plot of a transfer function L(s) is the locus of L(s) as the complex vari-
able s describes the Nyquist contour. Because of the special shape of the Nyquist
contour, the Nyquist plot is basically the locus of the frequency response L( j ) in
the complex plane as goes from – to + . In other words, for every fixed , the
complex number L( j ) is represented by a point in the complex plane. The locus
of all these points forms the Nyquist plot of L( j ).

Example 11.11: The Nyquist plot of the first-order loop gain is

shown in Figure 11.21. It starts at 0 (magnitude of 0, phase of /2) at ; then
the phase of L( j ) starts to decrease, while its magnitude increases, as increases
towards 0. At DC, (the phase is 0). The magnitude begins to decrease
again as increases from 0 to + , while the phase becomes negative. It eventually
tends to – /2 as .

We now have all the elements in place to derive the Nyquist criterion. The
transfer function 1 + kK(s)P(s) must not have any zero within the Nyquist contour
for stability. The encirclement property states that

where # means “number of.” An equivalent stability condition is that the loop gain
L(s) must not be equal to within the Nyquist contour. Also, since L s( ) =1

k

# clockwise encirclements of the origin

by thee Nyquist plot of 

closed RHP 

( ( ))

#

1+
=

kL s
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closed RHP zeros of 

( ( ))

# (

1

1

+
+

kL s

++ kL s( ))
0

� ������� �������

+

L j( )0 1=

=
s.

=
+

1

0 1 1
L s( ) =

FIGURE 11.20 Definition of the Nyquist contour.



, the number of encirclements of the point by the Nyquist plot
of L(s) is exactly the same as the number of encirclements of the origin by the
Nyquist plot of 1 + kL(s). Furthermore, the closed RHP poles of L(s) are the same
as those of 1 + kL(s). Therefore, we have the equivalent stability condition, called
the Nyquist criterion.

The Nyquist Criterion: Assuming that no pole-zero cancellation occurs in the
closed right half-plane when forming the loop gain K(s)P(s), the unity feedback
closed-loop system is stable if and only if:

Remarks:
The Nyquist plot is simply a representation of the frequency response of a sys-
tem as a locus in the complex plane, parameterized by the frequency. As pre-
viously mentioned, the Nyquist criterion could be checked for a loop gain
whose frequency response is known, but not its transfer function.
The frequency-response magnitude and phase plots of L( j ) can be used to
draw its Nyquist plot: for each frequency, read off the magnitude and phase of
L( j ) and mark the corresponding point in the complex plane.
For LTI systems with a real impulse response (real coefficients for rational
transfer functions), the Nyquist plot is symmetric with respect to the real axis.

# counterclockwise encirclements of  by t
1

k
hhe Nyquist plot of closed RHP poles L s( ) #= oof L s( ).

1

kk

1kL s( ( ))+1k

1
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FIGURE 11.21 Nyquist plot of a first-order system.
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Example 11.12: We want to check whether the feedback control system in 
Figure 11.22 is stable, where and k = 2.s.

=
+

1

0 5 1
P s, ( ) =

s +
1

1
K s( ) =

FIGURE 11.22 Closed-loop system whose stability
is assessed using the Nyquist criterion.

The frequency response of the loop gain is 
. Note that this loop gain is stable, as both poles are in the open LHP.

Moreover, there is no pole-zero cancellation. Therefore, the closed-loop system
will be stable if and only if the net number of counterclockwise encirclements of
the critical point by the Nyquist plot of L( j ) is 0. We see in Figure 11.23 that
for , that is, on the infinite semicircle of the Nyquist contour, the Nyquist
plot of L( j ) stays at the origin. We also have L( j0) = 1.

±

1

2

j j( . )( )+ +
1

0 5 1 1

L j K j P j( ) ( ) ( )= =

FIGURE 11.23 Nyquist plot of a second-order system.

We can see that the point is to the left of the Nyquist plot, and hence the
control system is stable. We can actually find the range of k’s for which the con-
trol system would be stable. From the Nyquist plot, we can see that all points 

1

k

1

2



to the left of the origin lie outside of the loop formed by the Nyquist plot, as well
as all points to the right of 1. This implies that the system is stable for and
for . Therefore the complete range of gains to get stability is .

((Lecture 41: Gain and Phase Margins))

STABILITY ROBUSTNESS: GAIN AND PHASE MARGINS

Bode Plot of Loop Gain

The Nyquist criterion gives us the ability to check the stability of a unity feedback
system by looking at the Nyquist plot of its loop gain only. This is useful for at least
two reasons.

We can design a controller K(s) based on a plant transfer function P(s) or 
just its frequency response P( j ) and ensure that the closed-loop system 
will be stable by looking at the frequency response of the loop gain

. We do not have to compute the characteristic polyno-
mial (which cannot be done anyway if only P( j ) is available).
Closed-loop stability robustness can be assessed by looking at the Nyquist
plot. Stability robustness refers to how much variation in the loop gain’s fre-
quency response L( j ) (mostly coming from uncertainty in the plant’s fre-
quency response) can be tolerated without inducing instability of the control
system. Think of stability robustness as how far away the Nyquist plot is from
the critical point . Here we are assuming that the Nyquist criterion was sat-
isfied to start with, meaning that the nominal closed-loop system is stable. In
this case, the closed loop will become unstable when L( j ) varies to the point
of touching the critical point .

Note that we will set k = 1 in the remainder of this section, such that the criti-
cal point is now –1, that is, the controller is thought to be the fixed transfer func-
tion K(s). An example is shown in Figure 11.24, where the nominal Nyquist plot of
L( j ) (no closed RHP poles in L(s)) of a closed-loop stable system is perturbed to
Lp( j ), which touches the critical point 1. The closed-loop system with loop gain
Lp( j ) is unstable.

By conjugate symmetry, the magnitude and phase plots (the Bode plot) of the
loop gain’s frequency response L( j ) convey the same information as the Nyquist
plot. Therefore, it is possible to use the Nyquist criterion to check closed-loop sta-
bility by looking at the Bode plot of L( j ), although this often proves to be diffi-
cult. It is relatively easy only for low-order, “well-behaved” loop gains, which

1

k

1

k

L j K j P j( ) ( ) ( )=

k > 1< <1 0k
k 0
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FIGURE 11.24 Perturbed Nyquist plot of
loop gain touching the critical point.

fortunately make up many of the SISO control systems that we have to analyze or
design in practice.

For a stable loop gain, the Nyquist plot should neither encircle, nor touch the
critical point 1 for closed-loop stability. Let us further restrict our attention to sta-
ble and “well-behaved” loop gains (including many low-order, minimum-phase,
proper rational transfer functions L(s) with positive DC gains.) For the Bode plot
of a well-behaved loop gain, the above requirement translates into the following:
the magnitude of the loop gain in decibels should be less than 0 dB at frequencies
where the phase is – or less, that is, °.

Example 11.13: Consider the second-order plant model and pure gain controller 
, K(s) = 100 of a unity feedback control system. The Bode plot

of L(s) and its Nyquist plot are shown in Figure 11.25.
The loop gain is stable, and hence the Nyquist criterion is satisfied since the

Nyquist plot of L( j ) does not encircle the critical point 1. On the Bode plot, we
see that for any finite frequency, the critical point 1 (i.e., 0 dB and phase of 

180°) is not reached. It would be if, for example, the phase of L( j ) was 180°
at the frequency where the magnitude is 0 dB (around 300 rad/s). This additional
negative phase is similar to (but not the same as) a clockwise rotation of the lower
part of the Nyquist plot (and a corresponding counterclockwise rotation of its upper
part to keep the symmetry) until it touches the critical point.

Gain and Phase Margins

In this section, we assume that the Nyquist criterion is satisfied for L( j ) so that
the closed-loop system is stable. Let us define the crossover frequency as the
frequency where the magnitude of the loop gain is 0 dB (or 1). The crossover

co

s s( . )( . )+ +
1

0 1 1 0 01 1
P s( ) =

L j( ) 180



frequency is easy to find on the Bode plot. In the previous example, the crossover
frequency is . We saw in that example that the closed-loop system
was stable, but additional negative phase at the crossover frequency could destabi-
lize it. The absolute value of this additional negative phase (at ) taking the
control system to the verge of instability is called the phase margin of the feed-
back control system.

The phase margin is easy to read off a Bode plot of the loop gain. For the above
example, the phase margin is approximately since the phase at the
crossover frequency is . This means that additional negative
phase coming, for example, from a time delay of seconds in the loop gain with
frequency response could destabilize the control system. We can compute the
minimum time delay that would destabilize the system as follows:

(11.39)

co m

co
m

=

= = =

180

180

20

180 300
0 0012. s,

e j

L j co( ) 160�
m = 200

m

co

co = 300 rad/s
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FIGURE 11.25 Bode plot and Nyquist plot of a second-order loop gain.
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which means that a time delay of 1.2 ms or more in the loop gain (e.g., if the plant
is with ) would destabilize the feedback system.
The phase margin can also be found on the Nyquist plot as the angle between the
point where the locus crosses the unit circle and the real line.

Similarly, the gain margin km is defined as the minimum additional positive
gain such that the closed-loop system is taken to the verge of instability. The gain
margin is also easy to read off the Bode plot. It is the negative of the magnitude of
the loop gain in decibels at the frequency where the phase is –180° (call it ).
On the Nyquist plot, the gain margin is the negative of the inverse of the real value
where the locus of L( j ) crosses the real line in the left half-plane.

For our previous example, the gain margin is actually infinite because
and . This means that no matter how large the

controller gain is, the feedback system will always be stable.

Example 11.14: Consider the second-order plant model 
and the controller of a unity feedback control system. The Bode plot of
L(s) and its Nyquist plot are shown in Figure 11.26.

s +
10

1
K s( ) =

s s( . )( . )+ +
1

0 1 1 0 01 1
P s( ) =

= +20 10log ( )L j= +

>1 2. ms
e

s s

s

( . )( . )+ +0 1 1 0 01 1P s( ) =

FIGURE 11.26 Bode plot and Nyquist plot of a third-order loop gain.



For this example, the crossover frequency is approximately ,
and the frequency where the phase is 180° is approximately .
The phase margin is given by

(11.40)

The phase margin is also indicated on the Nyquist plot as the angle between the
point where the locus crosses the unit circle and the real line.

The gain margin is given by

(11.41)

SUMMARY

In this chapter, we analyzed LTI feedback control systems.

Feedback control has the ability to reject system output disturbances, reduce
the effect of uncertainty, and stabilize unstable systems.
We distinguished between two types of feedback control systems: regulators
and tracking systems.
Closed-loop stability is a necessary requirement for any feedback system. We
gave four equivalent stability theorems for unity-feedback control systems.
We also introduced Routh’s criterion, the root locus, and the Nyquist criterion
as different means of assessing closed-loop stability.
Two simple measures of closed-loop stability robustness were defined: the
gain margin and the phase margin.

TO PROBE FURTHER

Feedback control systems are studied in detail in control engineering texts
(Bélanger, 1995; Kuo and Golnaraghi, 2002). For a more theoretical treatment of
control systems, see Doyle, Francis and Tannenbaum, 1992. 

EXERCISES

Exercises with Solutions

Exercise 11.1

Consider the causal LTI unity feedback regulator in Figure 11.27, where 

, and .k +[ )0,s s

s s( )( )

+ +
+ +

2 3 2 9

2 3
K s( ) =s

s s s

( )

( )( )+ + +
1

1 5 2 252

P s( ) =

k L jm = =20 2210log ( ) dB.

=L j co m( ) .125 55� �

= 33 7. rad/s
co = 7 8. rad/s

Application of Transform Techniques to LTI Feedback Control Systems 413



414 Fundamentals of Signals and Systems

(a) Use properties of the root locus to sketch it. Check your sketch using
MATLAB (rlocus command).

Answer:
The loop gain is .

The root locus starts at the (open-loop) poles of L(s): 

for k = 0. It ends at the zeros of L(s): j for .
On the real line, the root locus will have one branch between the pole at 1 and
the zero at 2, and also one branch between the poles at 3 and 2 (Rule 4).
Let and . For the two branches of the root
locus going to infinity, the asymptotes are described by

Center of asymptotes: 

Angles of asymptotes:

Root locus: See Figure 11.28.
(b) Compute the value of the controller gain k for which the control system be-

comes unstable.
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FIGURE 11.27 Regulator of root locus Exercise 11.1.



Answer:
The characteristic polynomial is obtained:

From the root locus, we see that the onset of instability occurs when a real pole
crosses the imaginary axis at 0. At that point, we have

Exercise 11.2

We want to analyze the stability of the tracking control system shown in Figure

11.29, where and .s

s
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FIGURE 11.28 Root locus for Exercise 11.1.



(a) Assess the stability of this closed-loop system using any two of the four
stability theorems.

Using Theorem I: We have to show that T(s), and P(s)S(s) are all
stable.

is stable (all three poles in LHP, strictly proper). The poles are 2017, 2.1, and 0.2.

is also stable (same poles as above, proper).

is stable (same poles as above, strictly proper). Therefore the feedback system is stable.

Using Theorem II: We have to show that either T(s) or S(s) is stable and that 
no pole-zero cancellation occurs in the closed RHP in forming the loop gain. The
latter condition holds, and
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FIGURE 11.29 Tracking system of Exercise 11.2.
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is stable (all three poles in LHP, strictly proper). The poles are 2017, 2.1, and 
0.2. Therefore the feedback system is stable.

Using Theorem III: We have to show that the closed-loop poles, that is, the zeros
of the characteristic polynomial p(s), are all in the open LHP. The plant and the
controller are already expressed as ratios of coprime polynomials.

All three closed-loop poles 2017, 2.1, and 0.2 lie in the open LHP, and
therefore the feedback system is stable.

Using Theorem IV: We have to show that 1 + K(s)P(s) has no zero in the closed
RHP and that no pole-zero cancellation occurs in the closed RHP in forming the
loop gain. The latter condition obviously holds, and

All three zeros of this transfer function 2017, 2.1, and 0.2 lie in the open
LHP, and therefore the feedback system is stable.

(b) Use MATLAB to sketch the Nyquist plot of the loop gain L(s) = K(s)P(s).
Give the critical point and discuss the stability of the closed-loop system
using the Nyquist criterion.

Answer:
The Nyquist plot given in Figure 11.30 was produced using the Nyquist command
in MATLAB.

The loop gain has one RHP pole, and according to the Nyquist criterion, the
Nyquist plot should encircle the critical point –1 once counterclockwise. This is in-
deed what we can observe here, and hence the closed-loop system is stable.

Exercise 11.3

We want to analyze the stability of the tracking control system in Figure 11.31, 

where and .s=
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FIGURE 11.31 Tracking control system of
Exercise 11.3.

FIGURE 11.30 Nyquist plot of Exercise 11.2(b).

Sketch the Bode plot in decibels (magnitude) and degrees (phase) of the loop
gain (you can use MATLAB to check if your sketch is right). Find the frequencies

and . Assess the stability robustness by finding the gain margin km and
phase margin of the system. Compute the minimum time delay in the plant that
would cause instability.

Answer:
The loop gain is and its Bode plot is shown in Figure 11.32.s
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FIGURE 11.32 Bode plot of loop gain in Exercise 11.3.

Frequency is undefined, as the phase never reaches –180°. Thus, the gain
margin km is infinite, and the phase margin is at . The min-
imum time delay in the plant that would cause instability is obtained as follows:

Exercises

Exercise 11.4

Consider the LTI feedback control system shown in Figure 11.33.
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The transfer functions of the different causal components of the control system

are , , and .
(a) Compute the loop gain L(s) and the closed-loop characteristic polynomial

p(s). Is the closed-loop system stable?

(b) Find the sensitivity S(s) and complementary sensitivity T(s) functions.

(c) Find the steady-state error signal of the closed-loop response y(t) to the
input .

(d) Assume that the real parameter k is an additional gain on the controller;
that is, the controller is kK(s). Sketch the root locus for the real parameter
varying in .

Exercise 11.5

We want to analyze the stability of the tracking control system shown in Figure

11.34, where and . Assess the stability of this

closed-loop system using any two of the four stability theorems.
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FIGURE 11.34 Feedback control system of
Exercise 11.5.

FIGURE 11.33 Feedback control system of Exercise 11.4.

Answer:



Exercise 11.6

Consider the LTI unity feedback regulator in Figure 11.35.
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FIGURE 11.35 Feedback regulator of Exercise 11.6.

FIGURE 11.36 Feedback control system of Exercise 11.7.

The transfer functions in this regulator are , , 

and . Use properties of the root locus to sketch it. Check your sketch
using MATLAB (rlocus command).

Exercise 11.7

Consider the LTI feedback control system shown in Figure 11.36, where 

, , and the plant model P is .
(a) Compute the loop gain L(s) and the closed-loop characteristic polynomial

p(s). Is the closed-loop system stable?

(b) Find the sensitivity function S(s) and the complementary sensitivity func-
tion T(s).

(c) Find the steady-state error of the closed-loop step response y(t), that is, for
the step reference .

(d) Assume that the real parameter k is an additional gain on the controller,
that is, the controller is kK(s). Sketch the root locus for the real parameter
varying in .k +[ )0,
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Answer:

Exercise 11.8

Sketch the Nyquist plots of the following loop gains. Assess closed-loop stability
(use the critical point –1.)

(a)

(b)

Exercise 11.9

We want to analyze the stability of the tracking control system in Figure 11.37, 

where and .
s

s

( )+1
K s( ) =s

s s

.

( )( )

+
+ +

0 1 1

1 10 1P s( ) =

s s( )( )+
1

1 1
L s( ) =

s( )+
1

1 2L s( ) =

FIGURE 11.37 Feedback control system of
Exercise 11.9.

Hand sketch the Bode plot in decibels (magnitude) and degrees (phase) of the loop
gain. You can use MATLAB to check if your sketch is right. Find the crossover
frequency and the frequency where the phase is –180°: . Assess the 
stability robustness by finding the gain margin km and phase margin of the sys-
tem. Compute the minimum time delay in the plant that would cause instability.

Answer:

Exercise 11.10

Sketch the Nyquist plot of the loop gain . Identify the frequencies
where the locus of L( j ) crosses the unit circle and the real axis (if it does.)

Exercise 11.11

Consider the spacecraft shown in Figure 11.38, which has to maneuver in order to
dock on a space station.

s

s s( )( )

+
+ +

2

1 10 1
L s( ) =

m

co



For simplicity, we consider the one-dimensional case where the state of each vehi-
cle consists of its position and velocity along a single axis z. Assume that the space
station moves autonomously according to the state equation

where , , and the spacecraft’s equation of motion is

where , uc(t) is the thrust, , and .

(a) Write down the state-space system of the state error , which de-
scribes the evolution of the difference in position and velocity between the
spacecraft and the space station. The output is the difference in position.

(b) A controller is implemented in a unity feedback control system shown in
Figure 11.39 to drive the position difference to zero for automatic docking.
The controller is given by

Find G(s) and assess the stability of this feedback control system (hint: one of the
closed-loop poles is at –10).

K s
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FIGURE 11.38 Spacecraft docking on a space station in Exercise 11.11.

FIGURE 11.39 Feedback control system of Exercise 11.11.



(c) Find the loop gain, sketch its Bode plot, and compute the phase margin 
of the closed-loop system. Assuming for the moment that the controller would
be implemented on Earth, what would be the longest communication delay that
would not destabilize the automatic docking system?

(d) Compute the sensitivity function of the system and give the steady-state error
to a unit step disturbance on the output.

Answer:
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((Lecture 42: Definition of the Discrete-Time Fourier Series))

In this chapter, we go back to the study of discrete-time signals, this time fo-
cusing on the frequency domain. We will see that periodic discrete-time signals
can be expanded in a finite Fourier sum of complex harmonics. However, ape-

riodic discrete-time signals require a continuum of complex exponentials to repre-
sent them. Thus, the Fourier transform of a discrete-time signal is a continuous
function of frequency.
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RESPONSE OF DISCRETE-TIME LTI SYSTEMS TO 
COMPLEX EXPONENTIALS

Recall that complex exponentials of the type Czn are eigenfunctions of discrete-
time linear time-invariant (DLTI) systems; that is, they remain basically invariant
under the action of delays. For example, they are used to find homogeneous re-
sponses of difference systems. The response of a DLTI system to a complex expo-
nential input is the same complex exponential with only a change in (complex)
amplitude: . The complex amplitude factor is in general a func-
tion of the complex number z. To show that the complex exponential zn is an eigen-
function of a DLTI system, we write,

(12.1)

The system’s response has the form , where ,

assuming that the sum converges. The function H(z) is called the z-transform of the
impulse response of the system. For Fourier analysis, we will restrict our attention
to complex exponentials that have z lying on the unit circle, that is, of the form e j n.

FOURIER SERIES REPRESENTATION OF 
DISCRETE-TIME PERIODIC SIGNALS

The complex exponential of frequency is periodic with fundamen-

tal period N and fundamental frequency . The set of all discrete-time
complex exponentials that are periodic with (not necessarily fundamental) period
N is given by

(12.2)

This set of harmonically related complex exponentials is actually redundant, as 

there are only N distinct exponentials in it. For example, , so
, and in general, for any integer r,

(12.3)
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Remarks:
The set of harmonically related complex exponentials are distinct
only over an interval of N consecutive values of k (starting at any k). This
set is denoted as .

The set is orthogonal. To prove this, first consider the case k = r:

(12.4)

Then for ,

(12.5)

The fundamental period of distinct harmonically related complex exponentials
is not necessarily N for all. For example, the case N = 6 is considered in Table 12.1.

k r
n p

p N
jk

N
n jr

N
n

n p

p N

n n e e[ ] [ ]
=

+

=

+

=
1 2 211

21

= =
=

+

, , ,

,
( )

r k N r k

e m n
j k r

N
n

n p

p N

let pp

e

e e

j k r
N

m p

m

N

j k r p
N

j k

,

( ) ( )

( ) (

=

=

+

=

2

0

1

2
rr

N
m

m

N

j k r p
N

j k r
N

N

j
e

e

e

)

( )
( )

2

0

1

2
2

1

1

=

=
(( )

( )

( )k r
N

j k r p
N

j k r
e

e

=
2

2

2

1 1

1 NN

= 0.

k r

k k
n p

p N
jk

N
n jk

N
n

n p

p N

n n e e[ ] [ ]
=

+

=

+

=
1 2 211

21

= =
=

+

e N
j k k

N
n

n p

p N
( )

.

k k N
n[ ]{ } =

k k N
n[ ]{ } =

N
k

jk
N

n
n e[ ] =

2

Discrete-Time Fourier Series and Fourier Transform 427

Frequency 0

Fundamental frequency (or 0)

Fundamental period 1 6 3 2 3 6

3
2
3

2
3320

5
3

4
3

2
331

e
j n5

2
6e

j n4
2
6e

j n3
2
6e

j n2
2
6e

j n
2
6e

j n0
2
6 1=k n[ ]

TABLE 12.1 Frequencies of Discrete-Time Complex Harmonics for N = 6
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Fourier Series Representation

We consider a periodic discrete-time signal of period N that has the form of a lin-

ear combination of the exponentials in :

(12.6)

Noticing that the set of N harmonically related complex expo-

nentials is orthogonal, we can compute the coefficients ak by multiplying Equation

12.6 by and summing over the interval of time :

(12.7)

Hence,

(12.8)

The remaining question is, Can any discrete-time periodic signal x[n] of period
N be written as a linear combination of complex exponentials as in Equation 12.6?
To show that this is true, we need to show that the relationship between x[n] and ak

is invertible. In other words, given any x[n] of period N, the corresponding set of
N coefficients computed using Equation 12.8 should be unique, and vice-versa.
Expanding and repeating Equation 12.8, and choosing as the
interval , we obtain

(12.9)
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which can be written in matrix-vector form as follows:

(12.10)

The matrix in this equation can be shown to be invertible; hence, a unique set
of coefficients corresponds to each x[n] of period N, and vice versa.

The coefficients are called the discrete-time Fourier series (DTFS) 

coefficients of x[n]. The DTFS pair is given by

(12.11)

(12.12)

where Equation 12.11 is the synthesis equation (or the Fourier series of x[n]), and
Equation 12.12 is the analysis equation.

Remarks:
The coefficients can be seen as a periodic sequence with , as

they repeat with period N.
All summations are finite, which means that the sums always converge. Thus,
the DTFS could be more accurately described as the discrete-time Fourier sum.

Example 12.1: Consider the following discrete-time periodic signal x[n] of pe-
riod N = 4 shown in Figure 12.1.
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We can compute its four distinct Fourier series coefficients using Equation
12.12.

(12.13)

Let us see if we can recover x[1] using the synthesis equation:

(12.14)

((Lecture 43: Properties of the Discrete-Time Fourier Series))

PROPERTIES OF THE DISCRETE-TIME FOURIER SERIES

We will use the notation to represent a DTFS pair. The properties of the
DTFS are similar to those of continuous-time Fourier series. All signals in the fol-
lowing subsections are assumed to be periodic with fundamental period N, unless
otherwise specified. The DTFS coefficients are often called the spectral coeffi-
cients. The properties of the DTFS are summarized in Table D.9 in Appendix D.
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FIGURE 12.1 Discrete-time square
wave signal.



Linearity

The operation of calculating the DTFS of a periodic signal is linear.

For , , if we form the linear combination 
, , we have

(12.15)

Time Shifting

Time shifting leads to a multiplication by a complex exponential. For ,

(12.16)

where n0 is an integer.

Remarks:
The magnitudes of the Fourier series coefficients are not changed; only their
phases are.
A time shift by an integer number of periods, that is, of 
does not change the DTFS coefficients, as expected.

Time Reversal

Time reversal leads to a “frequency reversal” of the corresponding sequence of
Fourier series coefficients:

(12.17)

Interesting consequences are that

For x[n] even, the sequence of coefficients is also even ( ).
For x[n] odd, the sequence of coefficients is also odd ( ).

Time Scaling

Let us first examine the periodicity of and (defined in
Equation 12.18), where m is a positive integer. The first signal is called a
decimated, or downsampled, version of x[n]; that is, only every mth sample of x[n]
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This condition is verified if , such that , which is always
satisfied by picking . Therefore, the signal is periodic of pe-
riod N. However, its fundamental period can be smaller than N. For example, if N
is a multiple of m, we can select , and the fundamental period of

is . In order to find the DTFS coefficients of , we would
need to use results in sampling theory for discrete-time signals. This will be cov-
ered in Chapter 15.

Consider the signal defined as

(12.18)

where m is a positive integer. This is called an upsampled version of the original
signal x[n]. Thus, the upsampling operation inserts m – 1 zeros between consecu-
tive samples of the original signal. The upsampled signal is periodic as shown
below, but its fundamental period is mN and its fundamental frequency is .

(12.19)

Example 12.2: Upsampling of a periodic square wave signal is shown in Figure
12.2.
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FIGURE 12.2 Upsampling a discrete-time square wave signal.



The Fourier series coefficients of the upsampled signal are given by

(12.20)

where is viewed as a periodic sequence of period mN.

Proof:

(12.21)

Periodic Convolution of Two Signals

Suppose that x[n] and y[n] are both periodic with period N. For , 

, we have

(12.22)

Remarks:
The periodic convolution is itself periodic of period N (show it as an exercise).
What is the use of a periodic convolution? It is useful in periodic signal filter-
ing. The DTFS coefficients of the input signal are the ak’s, and the bk’s are cho-
sen by the filter designer to attenuate or amplify certain frequencies. The
resulting discrete-time output signal is given by the periodic convolution
above. But it is mostly useful for convolving signals of finite support: with suf-
ficient zero-padding, we can pretend that each one of the zero-padded signals
represents a period of a periodic signal and use Equation 12.22 to compute the
convolution in the frequency domain. The zero padding has the effect of turn-
ing the periodic convolution into an ordinary convolution. We can then obtain
the corresponding time-domain signal by solving Equation 12.10. This idea
leads to the discrete Fourier transform (DFT) and the fast Fourier transform
(FFT) algorithm, which are widely used techniques although beyond the scope
of this book.
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Multiplication of Two Signals

The time domain multiplication of the two signals defined earlier yields

(12.23)

that is, a periodic convolution of the two sequences of spectral coefficients. This
property is used in discrete-time modulation of a periodic signal.

First Difference

The first difference of a periodic signal (often used as an approximation to the
continuous-time derivative) has the following spectral coefficients:

(12.24)

Running Sum

The running sum of a signal is the inverse of the first difference “system.” Note that
the running sum of a periodic signal is periodic if and only if a0 = 0; that is, the DC
component of the signal is 0. In this case,

(12.25)

Conjugation and Conjugate Symmetry

The complex conjugate of a periodic signal yields complex conjugation and fre-
quency reversal of the spectral coefficients:

(12.26)

Interesting consequences are that

For x[n] real, the sequence of coefficients is conjugate symmetric ( ).
This implies 

.
For x[n] real and even, the sequence of coefficients is also real and even
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For x[n] real and odd, the sequence of coefficients is purely imaginary and odd
( ).
For an even-odd decomposition of the signal , we have

.

((Lecture 44: Definition of the Discrete-Time Fourier Transform))

DISCRETE-TIME FOURIER TRANSFORM

We now turn our attention to Fourier transforms of aperiodic discrete-time signals.
The development of the Fourier transform is based on the Fourier series of a peri-
odic discrete-time signal whose period tends to infinity. Consider the following pe-
riodic signal of period N = 7, shown in Figure 12.3.x n[ ]

x n a x n j ae

FS

k o

FS

k[ ] Re{ }, [ ] Im{ }

x n x n x n
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[ ] [ ] [ ]= +
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FIGURE 12.3 Discrete-time periodic signal.

Define x[n] to be equal to over one period, and zero elsewhere, as shown
in Figure 12.4.

x n[ ]

FIGURE 12.4 A periodic discrete-time signal corresponding
to one period of the periodic signal.



Let us examine the DTFS pair of given by

(12.27)

(12.28)

Referring to Figure 12.4, if we pick the summation interval such that
, we can substitute x[n] for in Equation 12.6:

(12.29)

Define the function

(12.30)

We see that the DTFS coefficients ak are scaled samples of this continuous
function of frequency . That is,

(12.31)

Using this expression for ak in Equation 12.27, we obtain

(12.32)

At the limit, as in Equation 12.32, we get

.
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which, together with Equation 12.11, rewritten here for convenience,

(12.34)

form the discrete-time Fourier transform (DTFT) pair. Equation 12.33 is the syn-
thesis equation, meaning that we can synthesize the discrete-time signal from the
knowledge of its frequency spectrum. The function in the analysis equa-
tion (Equation 12.34) is the Fourier transform of x[n]. It is periodic of period 2
as we now show:

(12.35)

Example 12.3: Consider the exponential signal , as
shown in Figure 12.5 for .0 1< <a
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FIGURE 12.5 Discrete-time
exponential signal.

Its Fourier transform is

(12.36)

Note that this infinite sum converges because . The magnitude
of for is plotted in Figure 12.6.

Example 12.4: Consider the even rectangular pulse signal of width as
shown in Figure 12.7 for the case .n0 2=

2 10n +

0 1< <aX e j( )
ae aj = <1

X e a e ae
ae

j n j n

n

j n

n
j

( ) ( )= = =
=

+

=

+

0 0

1

1
.



438 Fundamentals of Signals and Systems

FIGURE 12.6 Magnitude of Fourier transform
of discrete-time exponential signal.

FIGURE 12.7 Rectangular pulse signal.

Its Fourier transform is given by

(12.37)
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This function is the discrete-time counterpart of the sinc function that was the
Fourier transform of the continuous-time rectangular pulse. However, the function
in Equation 12.37 is periodic of period 2 , whereas the sinc function is aperiodic.
The Fourier transform of a pulse with is shown in Figure 12.8.n0 2=
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FIGURE 12.8 Fourier transform of discrete-time
rectangular pulse signal.

Convergence of the Discrete-Time Fourier Transform

We now give sufficient conditions for convergence of the infinite summation of the
DTFT. The DTFT of Equation 12.34 will converge either if the signal is absolutely
summable, that is,

(12.38)

or if the sequence has finite energy, that is,

(12.39)

In contrast, the finite integral in the synthesis Equation 12.33 always converges.

((Lecture 45: Properties of the Discrete-Time Fourier Transform))

PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

We use the notation to represent a DTFT pair. The following prop-
erties of the DTFT are similar to those of the DTFS. These properties are summa-
rized in Table D.8 in Appendix D.
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Linearity

The operation of calculating the DTFT of a signal is linear. For ,

, if we form the linear combination , ,
then we have:

(12.40)

Time Shifting

Time shifting the signal by leads to a multiplication of the Fourier trans-
form by a complex exponential:

(12.41)

Remark: Only the phase of the DTFT is changed.

Frequency Shifting

A frequency shift by leads to a multiplication of x[n] by a complex
exponential:

(12.42)

Time Reversal

Time reversal leads to a frequency reversal of the corresponding DTFT:

(12.43)

Proof:

(12.44)

Consequences: For x[n] even, is also even; for x[n] odd, is also
odd.

X e j( )X e j( )

x n e x m e X ej n

n

j m

m

j[ ] [ ] ( )= =
=

+

=

x n X e
F j[ ] ( ).

e x n X ej n F j0 0[ ] ( ).( )

0 �

x n n e X e
F j n j[ ] ( ).

0
0

n0 �

z n aX e bY e
F j j[ ] ( ) ( ).+

a b, �z n ax n by n[ ] [ ] [ ]= +y n Y e
F

j[ ] ( )

x n X e
F

j[ ] ( )

440 Fundamentals of Signals and Systems



Discrete-Time Fourier Series and Fourier Transform 441

Time Scaling

Upsampling (Time Expansion)

Recall that the upsampled version of signal x[n], denoted as , has m – 1
zeros inserted between consecutive samples of the original signal. Thus, upsam-
pling can be seen as a time expansion of the signal. The Fourier transform of the
upsampled signal is given by

(12.45)

Note that the resulting spectrum is compressed around the frequency ,
but since is periodic of period 2 , its compressed version can still have a
significant magnitude around , which is the highest possible frequency in
any discrete-time signal. This energy at high frequencies corresponds to the fast
transitions between the original signal values and the zeros that were inserted in the
upsampling operation. Figure 12.9 shows the Fourier transform of a rectangular
pulse signal x[n] before and after upsampling by a factor of 2, giving . Al-
though not shown in the figure, the phase undergoes the same compression effect.
Notice how the magnitude of the upsampled signal is larger than the original at
high frequencies (around ). Because of this effect, the upsampling operator
is often followed by a discrete-time lowpass filter (more on this in Chapter 15).

=

x n
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=
X ej( )
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FIGURE 12.9 Effect of upsampling on the Fourier transform of a discrete-time
rectangular pulse signal.

Downsampling (Decimation)

Recall that the signal is a decimated or downsampled version of x[n];
that is, only every mth sample of x[n] is retained. Since aliasing may occur, we will
postpone this analysis until Chapter 15, where sampling is studied.

x x mn
m
=: [ ]



Differentiation in Frequency

Differentiation of the DTFT with respect to frequency gives a multiplication of the
signal by n:

(12.46)

Convolution of Two Signals

For , , we have

(12.47)

Proof: Under the appropriate assumption of convergence, to be able to interchange
the order of summations, we have

(12.48)

Remarks:
The basic use of this property is to compute the output signal of a system for a
particular input signal, given its impulse response or DTFT.
The convolution property is also useful in discrete-time filter design and feed-
back controller design.

Example 12.5: Given a system with and an input
, the DTFT of the output is given by
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We perform a partial fraction expansion of to be able to use Table D.7
in Appendix D to obtain y[n]. Note that the first-order terms in the partial fraction

expansion should have the form , not , which usually leads to a wrong
solution. Let for convenience.

(12.50)

(12.51)

(12.52)

Finally, we use Table D.7 to get

(12.53)

Multiplication of Two Signals

With the two signals as defined above,

(12.54)

Remarks:
Note that the resulting DTFT is a periodic convolution of the two DTFTs.
This property is used in discrete-time modulation and sampling.

First Difference

The first difference of a signal has the following spectrum:
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Running Sum (Accumulation)

The running sum of a signal is the inverse of the first difference:

(12.56)

The frequency-domain impulses at DC account for the possibility that signal
x[n] has a nonzero DC component .

Conjugation and Conjugate Symmetry

Taking the conjugate of a signal has the effect of conjugation and frequency re-
versal of the DTFT:

(12.57)

Interesting consequences are that

For x[n] real, the DTFT is conjugate symmetric: . This implies

For x[n] real and even, the DTFT is also real and even: .
For x[n] real and odd, the DTFT is purely imaginary and odd:

.
For an even-odd decomposition of the signal , 

, .

Parseval Equality and Energy Density Spectrum

The Parseval equality establishes a correspondence between the energy of the sig-
nal and the energy in its spectrum:

(12.58)

The squared magnitude of the DTFT is referred to as the energy-
density spectrum of the signal .

((Lecture 46: DTFT of Periodic and Step Signals, Duality))
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FIGURE 12.10 Truncated Fourier transform sum of
a complex exponential signal.

Thus, as , we get an impulse located at for the DTFT of the com-
plex exponential , and this impulse is repeated every 2 radians, since any
DTFT is periodic of period 2 .
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DTFT OF PERIODIC SIGNALS AND STEP SIGNALS

Fourier transforms of discrete-time periodic signals can be defined by using im-
pulses in the frequency domain.

DTFT of Complex Exponentials

Consider the complex exponential signal . Its Fourier transform is given
by

(12.59)

This last sum does not converge to a regular function, but rather to a distribu-
tion, that is, an impulse train. For example, consider the finite sum

(12.60)

It is basically the DTFT of a rectangular pulse, but shifted in frequency, as
shown in Figure 12.10. Notice that the amplitude of the main lobes grows with N,
while their width decreases with N. Their area tends to 2 .
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Check: Inverse Fourier transform. Note that there is only one impulse per inter-
val of width 2 .

(12.62)

DTFT of the Step Signal

Since the constant signal x[n] = 1 can be written as , it follows that its
DTFT in the interval is an impulse located at . Thus,

(12.63)

In order to find the Fourier transform of the unit step u[n], for which the analy-
sis Equation 12.34 does not converge, we write this signal as the limit of two
exponential signals pieced together at the origin plus the constant , as shown in
Figure 12.11:
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FIGURE 12.11 Piecewise exponential signal tending to the unit step.

We already know that the DTFT of is , and by the time 
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Taking the Fourier transform of the right-hand side of Equation 12.64 before tak-
ing the limit, we obtain

(12.65)

Hence, the Fourier transform of the unit step is given by 

.

From the Fourier Series to the Fourier Transform

Recall that a periodic signal of fundamental period N can be represented as a
Fourier series as follows:

(12.66)

Using the DTFT formula and the above result, we obtain

(12.67)
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Thus, we can write the DTFT of a periodic signal by inspection from the
knowledge of its Fourier series coefficients (recall that they are periodic).

Example 12.6: Let us find the DTFT of . We first
have to determine whether this signal is periodic. The sine term repeats every three
time steps, whereas the cosine term repeats every seven time steps. Thus, the sig-
nal is periodic of fundamental period N = 21. Write

(12.68)

The nonzero DTFS coefficients of the signal are , 

; hence we have

(12.69)

DTFT of a Periodic Discrete-Time Impulse Train

Let us now find the DTFT of the discrete-time impulse train .

This signal is periodic of period N. Its DTFS coefficients are given by

(12.70)

and hence, the DTFT of the impulse train is simply a train of impulses in the fre-
quency domain, equally spaced by radians.

(12.71)

This transform is shown in Figure 12.12.
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DUALITY

There is an obvious duality between the analysis and synthesis equations of the
discrete-time Fourier series. The Fourier series coefficients can be seen as a peri-
odic signal, and the time-domain signal as the coefficients. Specifically, the spec-
tral coefficients of the sequence ak are . That is, we have

(12.72)

(12.73)

This duality can be useful in solving problems for which we are given, for
example, a time-domain signal that has the form of a known spectral coefficient
sequence whose corresponding periodic signal is also given. Properties of the
DTFS also display this duality. For example, consider a time-shift and coefficient
index shift (frequency shift):
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FIGURE 12.12 Impulse train and its Fourier transform.



(12.75)

There is no such duality for the DTFT since it is continuous, whereas the sig-
nal is discrete.

SUMMARY

This chapter introduced Fourier analysis for discrete-time signals.

Periodic discrete-time signals of fundamental period N have a Fourier series
representation, where the series is a finite sum of N complex harmonics.
Many aperiodic discrete-time signals have a Fourier transform representation,
for instance the class of finite-energy signals. The discrete-time Fourier trans-
form is typically a continuous function of frequency, and it is always periodic
of period 2 radians.
The inverse discrete-time Fourier transform is given by an integral over one
period of 2 radians. If the DTFT is a rational function of , then a partial
fraction expansion approach can be used to get the time-domain signal.
The DTFT of a periodic discrete-time signal can be defined with the help of
frequency-domain impulses.

TO PROBE FURTHER

For more details on Fourier analysis of discrete-time signals, see Oppenheim,
Schafer and Buck, 1999.

EXERCISES

Exercises with Solutions

Exercises 12.1

Compute the Fourier series coefficients {ak} of the signal x[n] shown in Figure
12.13. Sketch the magnitude and phase of the coefficients. Write x[n] as a Fourier
series.

e j

e x n a
jm

N
n FS

k m

2

[ ] .
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Answer:
The fundamental period of this signal is N = 6 and its fundamental frequency is

. The DC component is . The other coefficients are obtained using
the analysis equation of the DTFS:

Numerically,

All coefficients are real, as the signal is real and even. The magnitude and
phase of the spectrum are shown in Figure 12.14.

We can write the Fourier series of x[n] as
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FIGURE 12.13 Periodic signal of Exercise 12.1.
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Exercise 12.2

(a) Compute the Fourier transform of the signal x[n] shown in Figure
12.15 and plot its magnitude and phase over the interval .[ , ]

X e j( )

FIGURE 12.14 Magnitude and phase of DTFS of Exercise 12.1.

FIGURE 12.15 Signal of Exercise 12.2.

Answer:

The magnitude given below is shown in Figure 12.16 for .
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FIGURE 12.16 Magnitude of DTFT of Exercise 12.2.

The phase is given by

and is plotted in Figure 12.17 for .[ , ]

=X ej( ) arctan
sin( ) sin2 2 2

1

FIGURE 12.17 Phase of DTFT of Exercise 12.2.



Exercise 12.3

Compute the Fourier transforms of the following discrete-time signals.
(a)

Answer:

Using Table D.7, we obtain the DTFT:

(b) , where * is the convolu-
tion operator.

Answer:
First consider the DTFT of the pulse signal , which is

Y e j( )
sin( )

sin( )
.=

5 2

2

y n u n u n[ ] : [ ] [ ]= + 2 3

x n u n u n u n u n[ ] ( [ ] [ ]) ( [ ] [ ])= + +2 3 2 3

X e
j e e

j
j j( ) ( ) ( )= +

1

2

1

1

1

10 0
++

=
++

1

1

0 5 1 0 5 10

e

j e j

j

j( . )( ) ( . )(( ) ee

e e e

j

j j j+
+

=

( ) )

cos

0

1 2

1

10
2 2

(( . ) ( . ) )

cos

( ) ( )0 5 0 5

1 2

0 0j e j ej j+ +

00
2 2

0

1

1

1 2

e e e

e

j j j

j

+
+

=
sin

cos 00
2 2

0

1

1

1

e e e

e e

j j j

j j

+
+

=
sin ( )) cos

( cos

+ +
+
1 2

1 2
0

2 2

0
2

e e

e e

j j

j jj j

j

e

e

2

0 0

1

1 2

)( )

(sin cos ) ( s
=

+ + + iin )

( cos )( )
0

2

0
2 21 2 1

e

e e e

j

j j j+
..

x n
j

e e u n

j

n j n j n n[ ] [ ]

(

= ( ) +

=

1

2

1

2

0 0

ee u n
j

e u n u nj n j n n0 0
1

2
) [ ] ( ) [ ] ( ) [ ]+

x n n u nn n[ ] [ sin( ) ] [ ], , .= + < <0 1 1
X e j( )

454 Fundamentals of Signals and Systems



Discrete-Time Fourier Series and Fourier Transform 455

Now, , and hence,

Exercises

Exercise 12.4

Given an LTI system with and an input , compute
the DTFT of the output and its inverse DTFT y[n].

Exercise 12.5

Consider the signal .
(a) Is this signal periodic? If the signal is periodic, what is its fundamental 

period?

(b) Compute the discrete-time Fourier series coefficients of x[n].

Answer:

Exercise 12.6

Compute the Fourier transforms of the following signals:
(a)

(b) where * is the convolution
operator

Exercise 12.7

Compute the Fourier transform of the impulse response h[n] shown in
Figure 12.18 and find its magnitude over the interval .

Answer:
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Exercise 12.8

Compute the Fourier transform of the signal x[n] shown in Figure 12.19
and sketch its magnitude and phase over the interval .[ , ]

X e j( )

FIGURE 12.18 Signal in Exercise 12.7.

FIGURE 12.19 Signal in Exercise 12.8.

Exercise 12.9

Compute the Fourier series coefficients {ak} of the signal x[n] shown in Figure
12.20. Sketch the magnitude and phase of the coefficients. Write x[n] as a Fourier
series.

FIGURE 12.20 Periodic signal in Exercise 12.9.



Answer:

Exercise 12.10

Consider a DLTI system with impulse response .
Compute the output signal y[n] for the input . Use the DTFT.

Exercise 12.11

Compute the Fourier transform of the signal 

Answer:

.<1
x n ne u n

j n n[ ] [ ],= 8 3 3X e j( )

x n u nn[ ] ( . ) [ ]= 0 2
h n u n u nn n[ ] ( . ) [ ] ( . ) [ ]= 0 4 0 5 22
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The z-Transform13

In This Chapter

Development of the Two-Sided z-Transform
ROC of the z-Transform
Properties of the Two-Sided z-Transform
The Inverse z-Transform
Analysis and Characterization of DLTI Systems Using the
z-Transform
The Unilateral z-Transform
Summary
To Probe Further
Exercises

((Lecture 47: Definition and Convergence of the z-Transform))

Recall that the Laplace transform was introduced as being a more general
tool to represent continuous-time signals than the Fourier transform. For
example, the latter could not be used for signals tending to infinity. In dis-

crete time, the z-transform defined as a Laurent series plays the role of the Laplace
transform in that it can be used to analyze signals going to infinity—as long as an
appropriate region of convergence (ROC) is determined for the Laurent series. In
this chapter, we will define the z-transform and study its properties. We will see
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that the z-transform of the impulse response of a discrete-time linear time-invariant
(DLTI) system, called the transfer function, together with its region of convergence,
completely define the system. In particular, the transfer function evaluated on the
unit circle in the complex plane is nothing but the frequency response of the system.

DEVELOPMENT OF THE TWO-SIDED Z-TRANSFORM

The response of a DLTI system to a complex exponential input zn is the same com-
plex exponential, with only a change in (complex) amplitude: ,
as shown below. The complex amplitude factor is in general a function of the
complex variable z.

(13.1)

The system’s response has the form , where ,

assuming that this infinite sum converges. The function H(z) is called the z-trans-
form of the impulse response of the system. The z-transform is also defined for a
general discrete-time signal x[n]:

(13.2)

which in expanded form is seen to be a Laurent series:

(13.3)

Note that the discrete-time Fourier transform (DTFT) is a special case of the 
z-transform:

(13.4)

In the z-plane, the DTFT is simply X(z) evaluated on the unit circle, as depicted
in Figure 13.1.
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Figure 13.1 was done with the MATLAB script zTFmagsurface.m, which is lo-
cated on the companion CD-ROM in D:\Chapter13.

Analogously, the continuous-time Fourier transform is the Laplace transform
evaluated on the j -axis. Thus, the j -axis of the s-plane in continuous time cor-
responds to the unit circle of the z-plane in discrete time.

Writing , we can analyze the convergence of the infinite summation in
Equation 13.2:

(13.5)

We see that the convergence of the z-transform is equivalent to the conver-
gence of the DTFT of the signal for any given circle in the z-plane of
radius r. That is,

(13.6)X re x n rj n( ) [ ] .= { }F

x n r n[ ]

X re x k r ej k j k

k

( ) ( [ ] ) .=
=

+

z re j=
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FIGURE 13.1 Relationship between the magnitudes of a z-transform and its
corresponding Fourier transform.
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Thus, the convergence of the z-transform will be described in terms of disk-
shaped or annular regions of the z-plane centered at . Note that the exponen-
tial weight multiplying the signal is either a constant-magnitude or
decaying exponential ( ), or a growing exponential ( ).

Example 13.1: The z-transform of the basic exponential signal 
is computed as follows:

(13.7)

The ROC of this z-transform is the region in the complex plane where values
of z guarantee that , or equivalently . Then

(13.8)

A special case is the unit step signal u[n] ( ), whose z-transform is

(13.9)

Example 13.2: Consider the signal

(13.10)

Its z-transform is computed as follows.
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(13.11)

The ROC of X(z) can be displayed on a pole-zero plot as shown in Figure 13.2.
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FIGURE 13.2 Pole-zero plot of a z-transform.
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Note that a z-transform X(z) is rational whenever the signal x[n] is a linear
combination of real or complex exponentials.

ROC OF THE Z-TRANSFORM

Similar to the ROC of the Laplace transform, the ROC of the z-transform has
several properties that can help us find it. The ROC is the region of the z-plane
( ) where the signal has a DTFT. That is, the ROC consists of values 
of z where the signal is absolutely summable; that is, . 

Convergence is dependent only on r, not on . Hence, if X(z) exists at ,
then it also converges on the circle . This guarantees that the
ROC will be composed of concentric rings. It can be shown that it is a single ring.
This ring can extend inward to zero, in which case it becomes a disk, or extend out-
ward to infinity. However, it is often bounded by poles, and the boundary of the
ring is open. We list some of the properties of ROCs of z-transforms.

The ROC of X(z) does not contain any poles.
If x[n] is of finite duration, then the ROC is the entire z-plane, except possibly

and .

In this case, the finite sum of the z-transform converges for (almost) all z. The
only two exceptions are because of the negative powers of z and be-

cause of the positive powers of z in .

If x[n] is right-sided, then the ROC of X (z) contains the exterior of a disk that
either extends to in the case , or does not include .
If in addition, X(z) is rational, then the ROC is the open exterior of a disk
bounded by the farthest pole from the origin.
If x[n] is left-sided, then the ROC of X(z) contains the interior of a disk that
either includes in the case or does not include . If in
addition, X(z) is rational, then the ROC is the open disk bounded by the clos-
est pole to the origin.
If x[n] is two-sided, then the ROC of X(z) contains a ring with open boundaries
in the z-plane. If in addition, X(z) is rational, then the ROC is an open ring
bounded by poles of X(z).

Remarks:
For a given pole-zero pattern, or equivalently, a rational X(z), there are a lim-
ited number of ROCs that are consistent with the properties just described.
The DTFT of a signal exists if the ROC of its z-transform includes the unit circle.
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((Lecture 48: Properties of the z-Transform))

PROPERTIES OF THE TWO-SIDED Z-TRANSFORM

The notation is used to represent a z-transform pair. In this section,
we discuss the main properties of the z-transform. These properties are summarized
in Table D.11 in Appendix D.

Linearity

The operation of calculating the z-transform of a signal is linear.

For , ; if we form the linear
combination , then we have

(13.12)

Time Shifting

Time shifting leads to a multiplication by a complex exponential:

(13.13)

Scaling in the z-Domain

(13.14)

where the ROC is the scaled version of . Also, if X(z) has a pole or zero at
, then has a pole or zero at . An important special case is

when . In this case , and

(13.15)

This corresponds to a counterclockwise rotation by an angle of radians of
the pole-zero pattern of X(z). On the unit circle (i.e., the DTFT), this rotation cor-
responds to a frequency shift.
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Time Reversal

Reversing the time in signal x[n] leads to

(13.16)

that is, if , then .

Upsampling

The upsampled signal

(13.17)

has a z-transform given by:

(13.18)

That is, if , then . Also,

if X(z) has a pole (or a zero) at , then the z-transform of has 

m poles (or m zeros) at . The upsampling prop-

erty can be interpreted through the power series representation of the z-transform
in Equation 13.18:

(13.19)

Differentiation in the z-Domain

Differentiation of the z-transform with respect to z yields

(13.20)

Convolution of Two Signals

The convolution of x[n] and y[n] has a resulting z-transform given by
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Remark: The ROC can be larger than if pole-zero cancella-
tions occur when forming the product .

First Difference

The first difference of a signal has the following z-transform:

(13.22)

Running Sum

The running sum, or accumulation, of a signal is the inverse of the first difference.

(13.23)

Conjugation

(13.24)

Remark: For x[n] real, we have: . Thus, if X(z) has a pole (or a
zero) at , it must also have a pole (or a zero) at . That is, all complex
poles and zeros come in conjugate pairs in the z-transform of a real signal.

Initial-Value Theorem

If x[n] is a signal that starts at n = 0, that is, , we have

(13.25)

This property follows from the power series representation of X(z):

(13.26)

Remark: For a transform X(z) expressed as a ratio of polynomials in z, the order
of its numerator cannot be greater than the order of its denominator for this prop-
erty to apply, because then x[n] would have at least one nonzero value at negative
times.
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Final-Value Theorem

If x[n] is a signal that starts at n = 0, that is, , we have

(13.27)

This formula gives us the residue at the pole z = 1 (which corresponds to DC).
If this residue is nonzero, then X(z) has a nonzero final value.

((Lecture 49: The Inverse z-Transform))

THE INVERSE Z-TRANSFORM

The inverse z-transform is obtained by contour integration in the z-plane. This sec-
tion presents a derivation of this result and discusses the use of the partial fraction
expansion technique to invert a z-transform.

Contour Integral

Consider the z-transform X(z) and let be in its ROC. Then, we can write

(13.28)

where denotes the operation of taking the Fourier transform. The inverse
DTFT is then

(13.29)

and hence,

(13.30)
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(13.31)

so that

(13.32)

where the integral is evaluated counterclockwise around the closed circular contour
lying in the ROC (or any other circle centered at the origin in

the ROC) in the z-plane. Thus, the inverse z-transform formula is

(13.33)

From the theory of complex functions, we find that this integral is equal to the
sum of the residues at the poles of contained in the closed contour (this
is the residue theorem). That is,

(13.34)

Example 13.3: Suppose that we want to compute the inverse z-transform of

. First, we form the product . Then, we take 

the circle as the closed contour in the ROC. The function has only
one pole at , and hence it has a single residue given by

(13.35)

Now, because the ROC of X(z) is the exterior of a disk (including infinity) of
radius equal to the magnitude of the outermost pole, the corresponding signal must
be right-sided and causal. Therefore the inverse z-transform of X(z) is
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Partial Fraction Expansion

An easier way to get the inverse z-transform is to expand X(z) in partial fractions
and use Table D.10 (Appendix D) of basic z-transform pairs. This technique is
illustrated by two examples.

Example 13.4: Find the signal with z-transform

(13.37)

We first write X(z) as a rational function of z in order to find the poles and zeros:

(13.38)

It is clear that the poles are and the zeros are . The
pole-zero plot with the ROC is shown in Figure 13.3.

Noting that the transform in Equation 13.38 is a biproper rational function, that
is, the numerator and denominator are of the same order, we write the partial frac-
tion expansion of X(z) as

(13.39)

where the ROCs of the individual terms are selected for consistency with the ROC
. Coefficients A, B, and C are computed as follows.
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Thus,

(13.43)

Had the ROC of X(z) been specified as , then the inverse z-transform
would have been

(13.44)

In the next example, the z-transform has a double pole.

x n n u n u n
n n

[ ] [ ] [ ] [ ].= + +6 3
1

2
4

1

3

>
1

2z >

X z
z z

z z

( ) = +
+

+

< >

6
3

1

4

11
2

1

1
2

1
3

1

1
3

��� �� ��� ��
= +

Z
n

x n n u n[ ] [ ] [ ]6 3
1

2
1 4

1

3

nn

u n[ ].

The z-Transform 471

FIGURE 13.3 Pole-zero plot of a z-transform.



Example 13.5: Find the signal with z-transform:

(13.45)

We write X(z) as a rational function of z in order to find the poles and zeros:

(13.46)

The poles are (multiplicity m = 2), and the zeros are
. The partial fraction expansion of X(z) can be expressed as follows,

where partial fractions of order 1 to m = 2 are included for the multiple pole:

(13.47)

where the ROCs of the individual terms are selected for consistency with the ROC
. Coefficients A, B, and C are computed as follows.

(13.48)

(13.49)

(13.50)

Finally, the signal is obtained using Table D.10:

(13.51)
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Power Series Expansion

The definition of the z-transform is a power series whose coefficients equal the sig-
nal values. Thus, given X(z), we can expand it in a power series and directly iden-
tify the signal values to obtain the inverse z-transform.

Example 13.6: Usually the power series of a z-transform is infinite, and we can use
long division to obtain the signal values. For example, consider ,

. Long division yields

(13.52)

Note that the resulting power series converges because the ROC implies
. Here, we can see a pattern, that is,

(13.53)

so that

(13.54)

Now suppose that the ROC is specified as the disk for the same 

z-transform. Then, , and we can expand = as
a power series with positive powers of z by long division:

(13.55)
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Again, we can see a pattern:

(13.56)

so that

(13.57)

((Lecture 50: Transfer Function Characterization of DLTI Systems))

ANALYSIS AND CHARACTERIZATION OF DLTI SYSTEMS 
USING THE Z-TRANSFORM

Transfer Function Characterization of DLTI systems

Suppose we have the DLTI system in Figure 13.4.

x n u n u nn n[ ] [ ] ( . ) [ ].= =2 1 0 5 1

x n n n n kk[ ] [ ] [ ] [ ] ,= + + +2 1 2 2 22 … …

FIGURE 13.4 DLTI system.

The convolution property of the z-transform allows us to write

(13.58)

so that we can find the response by computing the inverse z-transform of Y(z):

(13.59)

The z-transform H(z) of the impulse response h[n] is called the transfer func-
tion of the DLTI system. The transfer function together with its ROC uniquely de-
fine the DLTI system. Properties of DLTI systems are associated with some
characteristics of their transfer functions (poles, zeros, ROC.)

y n Y z[ ] ( ) .= { }Z-1

Y z H z X z( ) ( ) ( ),= ROC ROC ROC
X H



Causality

Recall that h[n] = 0 for n < 0 for a causal system, and thus the impulse response is
right-sided. We have seen that the ROC of a right-sided signal is the exterior of a
disk. If is also included in the ROC, then the signal is also causal because the
power series expansion of H(z) does not contain any positive powers of z. There-
fore, A DLTI system is causal if and only if the ROC of its transfer function H(z)
is the exterior of a circle including infinity.

If the transfer function H(z) is rational, then we can interpret this result as fol-
lows. A DLTI system with a rational transfer function H(z) is causal if and only if:

1. The ROC is the exterior of a circle of radius equal to the magnitude of the
outermost pole, and

2. With H(z) expressed as a ratio of polynomials in z, the order of the nu-
merator is less than or equal to the order of the denominator.

Stability

We have seen that the bounded-input bounded-output (BIBO) stability of a DLTI
system is equivalent to its impulse response being absolutely summable, in which
case its Fourier transform converges. This also implies that the ROC contains the
unit circle. We have just shown necessity (the “only if” part) of the following re-
sult on stability: A DLTI system is stable if and only if the ROC of its transfer func-
tion contains the unit circle.

For a DLTI system with a rational and causal transfer function, the above sta-
bility condition translates into the following: A causal DLTI system with rational
transfer function H(z) is stable if and only if all of its poles lie inside the unit circle.

Remarks:
A DLTI system can be stable without being causal.
A DLTI system can be causal without being stable.

Example 13.7 Consider the transfer function of a third-order system with two

complex poles at and one real pole at :

(13.60)
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This system can have three ROCs:

ROC 1: , corresponding to an anticausal and unstable system

ROC 2: , corresponding to a noncausal but stable system

ROC 3: , corresponding to a causal and unstable system

These ROCs are shown on the pole-zero plots in Figure 13.5.

z z: .>{ }1 5

z z: . .0 9 1 5< <{ }
z z: .<{ }0 9

FIGURE 13.5 Possible ROCs of transfer function.



Transfer Function Algebra and Block Diagram Representations

Just like Laplace-domain transfer functions of continuous-time LTI systems can be
interconnected to form more complex systems, we can interconnect transfer func-
tions in the z-domain to form new DLTI systems. Transfer functions form an alge-
bra, which means that the usual operations of addition, subtraction, division, and
multiplication of transfer functions always result in new transfer functions.

Cascade Interconnection

A cascade interconnection of two DLTI systems, as shown in Figure 13.6, results
in the product of their transfer functions:

(13.61)

(13.62)H z H z H z( ) ( ) ( ), .=
2 1

ROC ROC ROC
1 2

Y z H z H z X z( ) ( ) ( ) ( ),=
2 1
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FIGURE 13.6 Cascade interconnection of
transfer functions.

Parallel Interconnection

A parallel interconnection of two DLTI systems, as shown in Figure 13.7, results
in the sum of their transfer functions:

(13.63)

(13.64)H z H z H z( ) ( ) ( ), .= +
2 1

ROC ROC ROC
1 2

Y z H z H z X z( ) [ ( ) ( )] ( ),= +
2 1

FIGURE 13.7 Parallel interconnection of
transfer functions.



Feedback Interconnection

A feedback interconnection of two DLTI systems is depicted in the block diagram
in Figure 13.8. Feedback systems are causal, but their poles are usually different
from the poles of H1(z) and H2(z), so they have to be computed on a case-by-case
basis. The ROC of the closed-loop transfer function H(z) can be determined after-
wards as the exterior of a disk of radius equal to the magnitude of the farthest pole
from the origin.

(13.65)

(13.66)
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FIGURE 13.8 Feedback interconnection
of transfer functions.

((Lecture 51: LTI Difference Systems and Rational Transfer Functions))

Transfer Function Characterization of LTI Difference Systems

For systems characterized by linear constant-coefficient difference equations, the
z-transform provides an easy way to obtain the transfer function, the Fourier trans-
form, and the time-domain system response to a specific input.



Consider the Nth-order difference equation:

(13.67)

which can be expanded into

(13.68)

Using the time-shifting property of the z-transform, we directly obtain the 
z-transform on both sides of this equation:

(13.69)

or

(13.70)

The transfer function is then given by the z-transform of the output divided by
the z-transform of the input:

(13.71)

Hence, the transfer function of an LTI difference system is always rational. If
the difference equation is causal, which is the case in real-time signal processing,
then the region of convergence of the transfer function will be the open exterior of
a disk of radius equal to the magnitude of the farthest pole from the origin. The re-
gion of convergence of a transfer function obtained by taking the ratio of trans-
forms of specific input and output signals must be consistent with the ROCs of Y(z)
and X(z). Specifically, it must satisfy . If the rational
transfer function is given without an ROC, then knowledge of system properties
such as causality or stability can help us find it.

Example 13.8: Consider a DLTI system defined by the difference equation

(13.72)

Taking the z-transform, we get
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which yields the transfer function:

(13.74)

This provides the algebraic expression for H(z), but not the ROC. There are
two impulse responses that are consistent with the difference equation.

A right-sided impulse response corresponds to the ROC . Using the time-
shifting property, we get

(13.75)

In this case the system is causal and stable.
A left-sided impulse response corresponds to the ROC . Using the time-

shifting property again, we get

(13.76)

This case leads to an unstable, anticausal system. It is hard to imagine the
effect of an anticausal system on an input signal, especially if we think of the dif-
ference equation as being implemented as a filter in a real-time signal processing
system (more on this in Chapter 15). When the constraint of real time is not an
issue, such as in off-line image processing or time-series analysis, then one can de-
fine the time n = 0 at will, time reverse a signal stored in a vector in a computer
without any consequence, use anticausal systems, etc.

Block Diagram Realization of a Rational Transfer Function

It is possible to obtain a realization of the transfer function of a DLTI difference
system as a combination of three basic elements: the gain, the summing junction,
and the unit delay. These elements are shown in Figure 13.9.
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1
1
3

1

1
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FIGURE 13.9 Three basic elements used to realize any transfer function.
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Simple First-Order Transfer Function

Consider the transfer function , which corresponds to the first-order
difference equation

(13.77)

It can be realized by a feedback interconnection of the three basic elements as
shown in Figure 13.10.

y n ay n x n[ ] [ ] [ ].= +1

az

1

1 1H z( ) =

FIGURE 13.10 Realization of a first-order transfer function.

With this block diagram, we can realize any transfer function of any order in
parallel form after it is written as a partial fraction expansion.

Simple Second-Order Transfer Function

Consider the transfer function . It can be realized with a feed-
back interconnection of the three basic elements in a number of ways. One way is
to expand the transfer function as a sum of two first-order transfer functions (par-
tial fraction expansion). The resulting form is called the parallel form, which is a
parallel interconnection of the two first-order transfer functions. Another way is to
break up the transfer function as a cascade (multiplication) of two first-order trans-
fer functions. Yet another way to realize the second-order transfer function is the
so-called direct form or controllable canonical form. To derive this form, consider
the system equation

(13.78)

This equation can be realized as in Figure 13.11 with two unit delays.

Y z a z Y z a z Y z X z( ) ( ) ( ) ( ).= +
1

1
2
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a z a z+ +
1

1
1

1
2

2H z( ) =
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Direct Form (Controllable Canonical Form)

A direct form can be obtained by breaking up the general transfer function in Equa-
tion 13.79 into two subsystems as shown in Figure 13.12.

(13.79)

Assume without loss of generality that a0 = 1 (if not, just divide all bi’s by a0.)

H z
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X z

b b z b z

a a z a
M
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( )
= =

+ + +
+ + +

0 1
1

0 1
1





 zz N

FIGURE 13.11 Realization of a second-order
transfer function.

FIGURE 13.12 Transfer function as a cascade of two DLTI subsystems.

The input-output system equation of the first subsystem is

(13.80)

and for the second subsystem, we have

(13.81)

The direct form realization is then as shown in Figure 13.13 for a second-order
system.
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1
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((Lecture 52:The Unilateral z-Transform))

THE UNILATERAL Z-TRANSFORM

Recall from Chapter 7 that the unilateral Laplace transform was used for the causal
part of continuous-time signals and systems. We now study the analogous unilat-
eral z-transform defined for the causal part of discrete-time signals and systems.

The unilateral z-transform of a sequence x[n] is defined as

(13.82)

and the signal/transform pair is denoted as .
The series in Equation 13.82 only has negative powers of z since the summa-

tion runs over nonnegative times. One implication is that

(13.83)

Another implication is that the ROC of a unilateral z-transform is always the
exterior of a circle.

Example 13.9: Consider the step signal starting at time n = –2:

(13.84)x n u n[ ] [ ].= + 2

UZ UZx n x n u n[ ] [ ] [ ] .{ } = { }

x n z x n
UZ

[ ] ( ) [ ]= { }X UZ

X ( ) : [ ] ,z x n z n

n

=
=

+

0
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FIGURE 13.13 Direct form realization of a second-order system.



The bilateral z-transform of x[n] is obtained by using the time-shifting
property:

(13.85)

The unilateral z-transform of x[n] is computed as

(13.86)

Thus, in this case, the two z-transforms are different.

Inverse Unilateral z-Transform

The inverse unilateral z-transform can be obtained by performing a partial fraction
expansion, selecting all the ROCs of the individual first-order fractions to be exte-
riors of disks. The power series expansion technique using long division can be
used as well. The series must be in negative powers of z.

Properties of the Unilateral z-Transform Differing from 
Those of the Bilateral z-Transform

The properties of the bilateral z-transform apply to the unilateral z-transform, 
except the ones listed below. Consider the unilateral z-transform pair 
in the following.

Time Delay

(13.87)

The value x[–1] originally at time n = –1 “reappears” at n = 0, within the sum-
mation interval of the unilateral z-transform, after the shift by one time step to the
right. The result is the power series

(13.88)

Time Advance

(13.89)ROC ROC except possible removal of 0X= ,x n z z zx
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After a time advance, the first value of the signal x[0] is shifted to the left, out-
side of the interval of the unilateral z-transform. The resulting power series is

(13.90)

Convolution

For signals that are nonzero only for , , and , we
have the familiar result

(13.91)

Note that the resulting signal will also be causal since

(13.92)

and the last sum is equal to 0 for n < 0.

Solution of Difference Equations with Initial Conditions

The main use of the unilateral z-transform is for solving difference equations with
nonzero initial conditions. The time delay property can be used recursively to show
that

(13.93)

Thus, we can deal with the initial conditions of a difference system by using
the unilateral z-transform.

Example 13.10: Consider the causal difference equation

(13.94)

where the input signal is and the initial condition is .y y[ ] =1 1x n u nn[ ] ( . ) [ ]= 0 5
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Taking the unilateral z-transform on both sides of Equation 13.94, we obtain

(13.95)

which yields

(13.96)

The first term on the right-hand side is nonzero if and only if the initial condi-
tion is nonzero. It is called the zero-input response of the system for the obvious
reason that if the input is 0, then the output depends only on the initial condition.

The second term on the right-hand side of Equation 13.96 is the response of the
system when the initial condition is zero ( ). It is called the zero-state re-
sponse (we will study the notion of the discrete-time state in Chapter 17). Here, we
need to expand the zero-state response in partial fractions:

(13.97)

Finally, the unilateral z-transform of the system is given by

(13.98)

and its corresponding time-domain signal is

(13.99)

SUMMARY

In this chapter, we introduced the z-transform for discrete-time signals.

The bilateral z-transform was defined as a Laurent series whose coefficients are
the signal values. It is a generalization of the discrete-time Fourier transform
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that applies to a larger class of signals. Every z-transform has an associated re-
gion of convergence, and together they uniquely define a time-domain signal.
The DTFT of a signal is simply equal to its z-transform evaluated on the unit
circle, provided the latter is contained in the ROC.
The inverse z-transform is given by a contour integral, but in most cases it is
easier to expand the transform in partial fractions and use Table D.10 of basic
z-transform pairs to obtain the signal. A power series expansion approach can
also be used to obtain the signal in simple cases.
Discrete-time LTI systems were studied using the z-transform. It was shown
that the z-transform of the impulse response, that is, the transfer function and
its ROC, completely characterize a system.
Difference systems were shown to have rational transfer functions. These can
be realized through an interconnection of three basic elements: the gain, the
summing junction, and the unit delay.
The unilateral z-transform considers only the portion of discrete-time signals at
nonnegative times. Its time-delay property makes it useful in the solution of
causal difference equations with initial conditions.

TO PROBE FURTHER

For a detailed coverage of the z-transform, see Oppenheim, Schafer and Buck,
1999 and Proakis and Manolakis, 1995.

EXERCISES

Exercises with Solutions

Exercise 13.1

Sketch the pole-zero plot and compute the impulse response h[n] of the system
with transfer function

and with ROC: . Specify whether or not the system is causal and stable.0 8 2. < <z

H z
z z

z z z
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( . )
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1 0 8

0 8 0 64 1 2

1

2 1
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Answer:

The coefficients are given by

Thus,

The inverse z-transform is obtained using Table D.10:

The pole-zero plot is shown in Figure 13.14.
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The system is not causal since the ROC is a ring, but it is stable, as it includes
the unit circle.

Exercise 13.2

Compute the inverse z-transform of using the power
series expansion method.

Answer:

X z
z

z

z

z
( )

( . )
,= =

1 0 5

2

2 11

2

z, .< 0 5z

z( . )1 0 5 1X z( ) =

FIGURE 13.14 Pole-zero plot of transfer function in Exercise 13.1.



Long division yields

Note that the resulting power series converges because the ROC implies
. The signal is

Exercise 13.3

Consider the stable LTI system defined by its transfer function

(a) Sketch the pole-zero plot for this transfer function and give its ROC. Is the
system causal?

Answer:
The poles are . The zeros are . The
system is stable, so its ROC must include the unit circle. Because is finite,
we can conclude that the system is causal. The pole-zero plot is shown in Figure
13.15.

(b) Find the corresponding difference system relating the output y[n] to the
input x[n].

Answer:
We first write the transfer function as a function of of the form
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The corresponding difference system is

(c) Sketch the direct form realization of this system.

Answer:
The direct form realization of the system is given in Figure 13.16.

y n y n y n x n x n x n[ ] [ ] . [ ] [ ] [ ] [ ].+ + = +1 0 5 2 1 2 2

FIGURE 13.15 Pole-zero plot of transfer function in Exercise 13.3(a).

FIGURE 13.16 Direct form realization of transfer
function in Exercise 13.3.



Exercise 13.4 (a bit of actuarial mathematics using the unilateral z-transform…)

The balance of a bank account after each year with interest compounded annually
may be described by the difference equation

where r is the annual interest rate, y[n] is the account balance at the beginning of
the (n + 1)st year, the input “signal” is composed of L
consecutive annual deposits of M dollars, and the initial condition is the
initial amount in the account before the first deposit.

(a) Is this system stable?

Answer:
The system is unstable since the system is causal and the pole 1 + r is larger than
1, that is, outside of the unit circle.

(b) Use the unilateral z-transform to compute Y(z).

Answer:
Taking the unilateral z-transform on both sides, we obtain

(c) Find the annual deposit M as a function of the final balance in the account
after L years, , and the interest rate r. Compute the annual deposit
M if you want to accrue $100,000 after 20 years at 5% annual interest rate
with an initial balance of .y =1 1000$
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Answer:
The account balance at the beginning of the (n + 1)st year is

When the last payment is made at , we get

which yields

Exercises

Exercise 13.5

Compute the z-transform of each of the following signals and sketch its pole-zero
plot, indicating the ROC.
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(a) Use the values ,
for the pole-zero plot.

(b)

(c)

Answer:

Exercise 13.6

Compute the inverse z-transform of using the power
series expansion method.

Exercise 13.7

Consider the following so-called auto-regressive moving-average causal filter S
initially at rest:

S: 
(a) Compute the z-transform of the impulse response of the filter H(z) (the

transfer function) and give its ROC. Sketch the pole-zero plot.

(b) Compute the impulse response h[n] of the filter.

(c) Compute the frequency response of the filter. Plot its magnitude. What
type of filter is it (lowpass, highpass, or bandpass)?

(d) Compute and sketch the step response s[n] of the filter.

Answer:

Exercise 13.8

Consider a DLTI system with transfer function .
(a) Sketch the pole-zero plot of the system.

(b) Find the ROC that makes this system stable.

(c) Is the system causal with the ROC that you found in (b)? Justify your
answer.

(d) Suppose that is bounded for all frequencies. Find the response of
the system y[n] to the input .x n u n[ ] [ ]=

H e j( )

z z

z z

.

( . )( . )+
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0 8 0 8
H z( ) =

y n y n y n x n x n[ ] . [ ] . [ ] [ ] [ ]+ =0 9 1 0 81 2 2

z, . < <0 2
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4
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4
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Exercise 13.9

Compute the inverse z-transform x[n] of using the
method of long division and sketch it.

Answer:

Exercise 13.10

Sketch the pole-zero plot and compute the impulse response h[n] of the stable sys-
tem with transfer function

Specify its ROC. Specify whether or not the system is causal.

Exercise 13.11

Consider the DLTI system with transfer function .
(a) Sketch the pole-zero plot of the system.

(b) Find the ROC that makes this system stable.

(c) Is the system causal with the ROC that you found in (b)? Justify your
answer.

(d) Suppose that is bounded for all frequencies. Calculate the response
of the system y[n] to the input x[n] = u[n].

Answer:

H e j( )

z

z z( . )+
1
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Time and Frequency
Analysis of Discrete-Time
Signals and Systems

14

((Lecture 53: Relationship Between the DTFT and the z-Transform))

We have seen that the discrete-time Fourier transform (DTFT) of a
system’s impulse response (the frequency response of the system) exists
whenever the system is bounded-input bounded-output stable or,

equivalently, whenever the region of convergence (ROC) of the system’s transfer
function includes the unit circle. Then, the frequency response of the system is
simply its transfer function H(z) evaluated on the unit circle , that is, .
In this chapter, we discuss the geometric relationship between the poles and zeros

z e j=z = 1

In This Chapter

Geometric Evaluation of the DTFT from the Pole-Zero Plot
Frequency Analysis of First-Order and Second-Order Systems
Ideal Discrete-Time Filters
Infinite Impulse Response and Finite Impulse Response Filters
Summary
To Probe Further
Exercises
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of the z-transform of a signal and its corresponding Fourier transform. It is possi-
ble to estimate qualitatively the frequency response of a system just by looking at
the pole-zero plot of its transfer function. For example, referring back to Figure
13.1, complex poles close to the unit circle will tend to raise the magnitude of the
frequency response at nearby frequencies.

We will look in some detail at the connections between the frequency re-
sponses of first-order and second-order systems and their time-domain impulse and
step responses. Finally, the analysis and design of discrete-time infinite impulse re-
sponse filters and finite impulse response filters will be discussed. In particular, the
window design technique of finite impulse response filters will be introduced.

GEOMETRIC EVALUATION OF THE DTFT FROM 
THE POLE-ZERO PLOT

If we write the rational transfer function H(z) of a causal stable system in the pole-
zero form,

(14.1)

then its magnitude is given by

(14.2)

Evaluating this magnitude on the unit circle, we obtain

(14.3)

Since the system is assumed to be stable, all poles lie inside the unit circle, but
the zeros do not have that restriction. The magnitude of the frequency response, as
a function of frequency varying over the range [– , ], can be analyzed qualita-
tively as the point e j moves along the unit circle. The contribution of each pole
and zero to the magnitude can be analyzed by viewing as the
length of the vector from the pole to the point e j and from the zero to the point e j ,
respectively. In particular,

A pole close to the unit circle will tend to increase the magnitude at
frequencies because the distance between e j and in the 
z-plane is small.
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A zero close to the unit circle will tend to decrease the magnitude at
frequencies .

The phase of is given by

(14.4)

Thus, the total phase is the sum of the individual angles of the pole and zero
factors seen as vectors in the z-plane and the phase of the gain A.

First-Order Systems

Consider the first-order causal system with :

(14.5)

This system is stable, and hence it has a Fourier transform given by

(14.6)

The geometric interpretation described above can be depicted on the pole-zero
plot shown in Figure 14.1, where a is real, 0 < a < 1.
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FIGURE 14.1 Pole-zero plot showing the vectors
associated with the pole-zero form of a first-order
transfer function with one real positive pole.
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When the tip of the vector v1 is at 1 ( = 0), the magnitude of v2 is minimum, 

and hence the magnitude of H(ej ) is maximized as . When 

goes from 0 to , or from 0 to , the length of v2 increases monotonically, which
means that the magnitude will decrease monotonically. Hence, this is a lowpass filter.
Thus, for 0 < a < 1, the magnitude plot will look like the one shown in Figure 14.2.

v

v v
=1

2 2

1
H e j( ) =

FIGURE 14.2 Magnitude sketch of the
frequency response of a first-order transfer
function with a positive pole.

The phase is given by the angle of v1 minus the angle of v2:

(14.7)

Thus, the phase plot looks like the one sketched in Figure 14.3.
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H e v v
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a
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arctan
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cos Re{

1 2

}}

arctan
sin

cos
, .=

a
afor �

H e j( )

FIGURE 14.3 Phase sketch of the
frequency response of a first-order transfer
function with a positive real pole.



For the case , the vectors are shown on the pole-zero plot of Figure
14.4.

< <1 0a
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FIGURE 14.4 Pole-zero plot showing the vectors
associated with the pole-zero form of a first-order
transfer function with one real negative pole.

When the tip of the vector v1 is at 1 ( = 0), the magnitude of v2 is at its 

maximum, and hence the magnitude of H(ej ) is minimized as . 

When goes from 0 to , or from 0 to , the length of v2 decreases monotonically,
which means that the magnitude will increase monotonically. At the highest fre-
quencies , the magnitude of v2 is at its minimum, so the magnitude of
H(ej ) is at its maximum. Hence, this is a highpass filter, and its magnitude plot
will look like the one in Figure 14.5 for .< <1 0a

= ±

v

v v
=1

2 2

1H e j( ) =

FIGURE 14.5 Magnitude sketch of the
frequency response of a first-order transfer
function with a negative pole.



The phase is again given by the angle of v1 minus the angle of v2 as
expressed in Equation 14.7. It should look like the phase sketched in Figure 14.6.

H e j( )
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FIGURE 14.6 Phase sketch of the
frequency response of a first-order transfer
function with a negative real pole.

Second-Order Systems

Consider the stable second-order causal system with poles at :

(14.8)

The impulse response of this system is obtained from Table D.10 and by using
the linearity and time-advance properties of the z-transform:

(14.9)

Its Fourier transform is given by

(14.10)

The magnitude of H(ej ) can be analyzed qualitatively by looking at the pole-
zero plot in Figure 14.7 showing the vectors as defined above.
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The magnitude is given by = , which gets large as the 

frequency approaches (see Figure 14.8).±
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FIGURE 14.7 Pole-zero plot showing the vectors
associated with the pole-zero form of a second-order
transfer function with complex poles.

FIGURE 14.8 Magnitude sketch of the
frequency response of a second-order transfer
function with complex poles.

It is clear that the peaks on the magnitude sketch of Figure 14.8 will get larger
as the poles get closer to the unit circle ( ), the limit being poles sitting
directly on the unit circle and peaks going to infinity. Thus, r has an effect similar
to the damping ratio of continuous-time second-order systems.

The phase of H(ej ) is given by twice the angle of v3 minus the sum of the an-
gles of v1 and v2:

r 1



(14.11)

The phase might look like the one sketched in Figure 14.9, although it varies
greatly with pole locations. Typically, the closer the poles are to the unit circle, the
sharper the phase drop near = , since the angle of the vector v1 changes more
rapidly with in that frequency band.
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FIGURE 14.9 Phase sketch of the
frequency response of a second-order
transfer function with complex poles.

((Lecture 54: Frequency Analysis of First-Order and Second-Order Systems))

FREQUENCY ANALYSIS OF FIRST-ORDER AND 
SECOND-ORDER SYSTEMS

In this section, we look in a bit more detail at the frequency responses of first-order
and second-order discrete-time linear time-invariant (DLTI) systems.

First-Order Systems

Let us consider again a first-order causal, stable system with :

(14.12)

Its Fourier transform is given by
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Its impulse response is

(14.14)

and its unit step response is computed as the running sum of its impulse response:

(14.15)

The magnitude of the parameter a plays a role similar to that of the time con-
stant of a continuous-time first-order system. Specifically, determines the rate
at which the system responds. For small , the impulse response decays sharply
and the step response settles quickly. For close to 1, the transients are much
slower. Figure 14.10 shows the step responses of two first-order systems, one with
a = 0.5 and the other with a = 0.8.
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FIGURE 14.10 Step responses of two first-order DLTI
systems with a real positive pole.

From a frequency point of view, the lowpass frequency response of the system
corresponding to small has a wider bandwidth than for close to 1. This is eas-
ier to see when the frequency response H(ej ) is normalized to have a unity DC
gain:

(14.16)
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The magnitude in Equation 14.16 is plotted in Figure 14.11 for the cases a =
0.5 and a = 0.8.

FIGURE 14.11 Magnitude of the frequency responses of first-order
transfer functions with positive poles.

The phase changes more abruptly around DC for close to 1, as shown in
Figure 14.12.
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FIGURE 14.12 Phase of the frequency responses of first-order
transfer functions with positive poles.



Second-Order Systems

We now turn to a second-order causal, stable system with poles at 
:

(14.18)

Its frequency response is given by

(14.19)

whose magnitude is

(14.20)

We see that the magnitude will peak around = ± . The DC gain is obtained
by substituting = 0 in this expression, and we get

(14.21)

For comparison, let us normalize the system so that its DC gain is unity for any
pole parameters r, :
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Then,

(14.23)

Figure 14.13 shows the frequency response magnitude of the second-order
system for = and two values of pole magnitude, namely r = 0.6 and r = 0.8.4
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FIGURE 14.13 Frequency response magnitude of second-order transfer
functions with two pole magnitudes.

The phase of the frequency response for = in Equation 14.24 is shown in
Figure 14.14 for r = 0.6 and r = 0.8.

(14.24)

The impulse response of this system for = is
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This impulse response is shown in Figure 14.15, again for the cases r = 0.6 and
r = 0.8.
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FIGURE 14.14 Frequency response phase of second-order transfer
functions with two pole magnitudes.

FIGURE 14.15 Impulse responses of second-order
transfer functions with two pole magnitudes.

We can see that the impulse response for r = 0.8 displays larger oscillations,
which corresponds to the higher peaks in the frequency response.

((Lecture 55: Ideal Discrete-Time Filters))



IDEAL DISCRETE-TIME FILTERS

Ideal frequency-selective filters are filters that let frequency components over a
given frequency band (the passband) pass through undistorted, while components
at other frequencies (the stopband) are completely cut off.

The usual scenario where filtering is needed is when a noise w[n] is added to a
signal x[n], but the noise has most of its energy at frequencies outside of the band-
width of the signal. We want to recover the original signal from its noisy measure-
ment. Note that the “noise” can be composed of other modulated signals as in the
frequency division multiplexing technique.

Ideal Lowpass Filter

An ideal lowpass filter with the proper bandwidth can recover a signal x[n] from its
noisy measurement as illustrated in the filtering block diagram of Figure
14.16.

x n[ ]
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FIGURE 14.16 Typical discrete-time
filtering problem.

In this idealized problem, the noise spectrum is assumed to have all of its en-
ergy at frequencies higher than the bandwidth W of the signal, as shown in Figure
14.17. Thus, an ideal lowpass filter would perfectly recover the signal, that is, 
y[n] = x[n].

The frequency response of the ideal lowpass filter with cutoff frequency c

depicted in Figure 14.18 is simply given by

(14.26)

Its impulse response (from Table D.7 in Appendix D) is noncausal, real, and
even:
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which unfortunately makes a real-time implementation of this filter impossible.

First-Order Approximation

We have seen that the frequency response magnitude of a normalized causal, sta-
ble, first-order filter is given by
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FIGURE 14.17 Fourier transforms of signals in filtering problem.

FIGURE 14.18 Frequency response of an
ideal discrete-time lowpass filter.



Suppose the cutoff frequency c (bandwidth) of the filter is defined as the fre-
quency where the magnitude is 3 dB. Then, we can find an expression for the real
pole in terms of the cutoff frequency c.

(14.29)

This quadratic equation can be solved for the pole

(14.30)

Note that the plus sign leads to a pole larger than one; hence we select

(14.31)

The poles corresponding to different cutoff frequencies as given by Equation
14.31 are listed in Table 14.1.
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c

a 0.821841 0.677952 0.563235 0.472582 0.401309 0.3454

3
8

5
164

3
16816

TABLE 14.1 Pole of First-Order Lowpass Filter vs. Cutoff Frequency



Example 14.1: For the cutoff frequencies and , the poles are 
and , respectively. The magnitudes of the first-order filters with these
poles are plotted over the ideal brickwall magnitudes in Figure 14.19. We can see
from this figure that a first-order filter is a very crude approximation to an ideal
lowpass filter.

a = 0 472582.
a = 0 821841.416
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FIGURE 14.19 Frequency response magnitudes of first-order
discrete-time lowpass filters.

Second-Order Approximation

The frequency response magnitude of a normalized causal, stable, second-order
filter with complex poles and two zeros at z = 0 was computed as

(14.32)

Here, we have two parameters to shape the frequency response, namely r and
. Without getting into specific optimal design techniques, we could see by trial

and error using a software package such as MATLAB that it is possible to get a bet-
ter approximation to an ideal lowpass filter using a second-order filter. For exam-
ple, the magnitude of a second-order lowpass filter with is plotted over
that of a first-order filter with the same cutoff in Figure 14.20. An easy improve-
ment to the second-order lowpass filter would be to move one of its two zeros to z
= –1, forcing the magnitude down to zero at c = ± .
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Ideal Highpass Filter

An ideal highpass filter with cutoff frequency c is given by

(14.33)

This highpass frequency response is shown in Figure 14.21.
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FIGURE 14.20 Frequency response magnitudes of second-order and first-order
discrete-time lowpass filters.

FIGURE 14.21 Frequency response of an ideal
discrete-time highpass filter.



The ideal highpass frequency response can be seen as the ideal lowpass spec-
trum with cutoff frequency – c and frequency-shifted by radians. From the
frequency shifting property of the DTFT, we find that the impulse response of the
ideal highpass filter is:

(14.34)

Unfortunately, this highpass filter is also impossible to implement in real time,
as it is noncausal and the impulse response extends to infinity both toward the neg-
ative times and the positive times.

First-Order Approximation

The ideal highpass frequency response can be approximated by a normalized
causal, stable, first-order filter with a negative pole –1 < a < 0. The normalization
is done at the highest frequency = ; that is, z = –1 so that H(–1) = 1.

(14.35)

(14.36)

Note that the relationship between the cutoff frequency c and the pole a is
given by Equation14.31, but using the “new” pole and the “new” cutoff fre-
quency – c. After is obtained from the equation, the pole of the highpass fil-
ter is just a = – .

Example 14.2: The poles corresponding to the cutoff frequencies and of
a first-order highpass filter are a = –0.472582 and a = –0.821841, respectively. The
corresponding filter magnitudes are plotted in Figure 14.22 over the ideal brickwall
highpass frequency responses.
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Second-Order Approximation

The frequency response of a normalized (at z = –1) causal, stable, second-order fil-
ter with two zeros at 0 is given by

(14.37)

Here, we restrict the poles to be in the left half of the unit disk; that is, < < .

Example 14.3: Let us compare a second-order highpass filter, designed by trial 
and error to get , with a first-order filter with the same cutoff frequency, as
shown in Figure 14.23. The complex poles’ magnitude and angles obtained were

. Clearly, the second-order filter offers a better approximation
to the ideal highpass filter than the first-order filter.
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FIGURE 14.22 Frequency response magnitudes of first-order discrete-time
highpass filters.



Ideal Bandpass Filter

As shown in Figure 14.24, an ideal bandpass filter with a passband between c1,
c2 has a frequency response given by

(14.38)
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FIGURE 14.23 Frequency response magnitudes of first-order discrete-time
highpass filters.

FIGURE 14.24 Frequency response of an ideal
discrete-time bandpass filter.



Second-Order Approximation

The second-order frequency response is normalized at the frequencies ± p where
the peaks occur. These frequencies are found to be:

(14.39)

Thus, the normalized magnitude of the second-order frequency response is

(14.40)

We can use this expression to carry out a design by trial and error. Suppose we
are given the frequencies c1, c2 of the ideal bandpass filter that we have to ap-
proximate with a second-order filter. We first set p = , and we compute the
pole angle by using the inverse of the relationship in Equation 14.39:

(14.41)

Then, we can try out different values of 0 < r < 1 to obtain the proper passband.

Example 14.4: Let us design a second-order bandpass filter approximating the

ideal bandpass frequency response with c1 = , c1 = . We compute p = =
= 1.1781. Table 14.2 shows the pole angle for different values of r.
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r 0.6 0.7 0.8 0.9

1.226366 1.202992 1.18818 1.180386

TABLE 14.2 Magnitude and Angle of Complex Pole for the Design of a Second-Order
Bandpass Filter.



The magnitude plot in Figure 14.25 shows that a (more or less) reasonable ap-
proximation is obtained with .r = =0 7 1 203. , .
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FIGURE 14.25 Frequency response magnitudes of second-order
bandpass filters.

((Lecture 56:IIR and FIR Filters))

INFINITE IMPULSE RESPONSE AND FINITE IMPULSE 
RESPONSE FILTERS

There exist two broad classes of discrete-time filters: infinite impulse response
(IIR) filters and finite impulse response (FIR) filters. This section introduces both
classes of filters and gives some basic analysis and design strategies for each.

IIR Filters

IIR filters have impulse responses extending to . This includes the class of
DLTI recursive filters, that is, filters represented by difference equations including
delayed versions of the output y[n]. Consider the general Nth-order difference equa-
tion of a stable, causal system with :

(14.42)a y n a y n a y n N b x n b x n
N0 1 0 1

1 1[ ] [ ] [ ] [ ] [ ]+ + + = + +
 

+ b x n M
M

[ ].

a
0

0

n



This equation represents an IIR filter if at least one of the coefficients
is nonzero. In terms of transfer functions, IIR filters have transfer functions with at
least one pole pm different from 0:

(14.43)

The usual first-order and second-order filters are examples of IIR filters, for
example,

(14.44)

whose associated recursive difference equation is

(14.45)

We have already studied simple design methods for these types of filters (with
their zeros restricted to be at 0) to approximate ideal filters in the previous section.
There exist several approaches to design accurate high-order IIR filters. One of
them is to design the filter in continuous time (in the Laplace domain), using, for
example, the Butterworth, Chebyshev, or elliptic pole patterns and then transform-
ing the Laplace-domain transfer function into the z-domain using the bilinear trans-
formation. Other computer-aided techniques use iterative optimization methods
on the discrete-time filter coefficients to minimize the error between the desired
frequency response and the filter’s actual frequency response.

Benefits of IIR filters include the following:

Low-order filters can offer relatively sharp transition bands.
They have low memory requirements when implemented as a recursive equation.
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One disadvantage of IIR filters is that a frequency response with an approxi-
mately linear phase is difficult to obtain. A linear phase, corresponding to a time
delay, is important in communication systems in order to avoid signal distortion
caused by signal harmonics being subjected to different delays.

FIR Filters

FIR filters have, as the name implies, impulse responses of finite duration. For
instance, causal FIR filters are non-recursive DLTI filters in the sense that their
corresponding difference equations in the regular form have only a0y[n] on the left-
hand side:

(14.46)

Even though this difference equation is 0th-order according to our original de-
finition, as an FIR filter the system is said to be Mth-order. Moving-average filters
are of the FIR type. The impulse response of a causal FIR filter (with a0 = 1 with-
out loss of generality) is simply

(14.47)

That is,

(14.48)

The transfer function of a causal FIR filter is given by

(14.49)

Note that all the poles are at z = 0. Thus, only the zeros’ locations in the z-plane
will determine the filter’s frequency response. A realization of a second-order
causal FIR filter with unit delays is shown in Figure 14.26.
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Moving-Average Filters

A special type of FIR filter is the causal moving-average filter, whose coefficients
are all equal to a constant (chosen so that the DC gain is 1); that is, the impulse re-
sponse is a rectangular pulse:

(14.50)

This impulse response is shown in Figure 14.27 for M = 4.
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FIGURE 14.26 Realization of a second-order
causal FIR filter.

FIGURE 14.27 Impulse response of
fourth-order moving average filter.

The moving average filter is often used to smooth economic data in order to
find the underlying trend of a variable. Its transfer function is



(14.51)

The frequency response of the causal moving average filter is computed as
follows.

(14.52)

Alternatively, we can use the finite geometric sum formula in Table B.2 (Ap-
pendix B) to obtain a single equivalent expression for H(ej ):

(14.53)

The magnitude of this frequency response displays M zeros, the first one being

at = , as shown in Figure 14.28. Thus, the bandwidth of this lowpass filter
depends only on its length and cannot be specified otherwise.
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Also, since there are M zeros in H(ej ), these zeros must be zeros of H(z) on
the unit circle. Thus, the pole-zero plot of a moving average filter is as shown in
Figure 14.29 (case M = 4.)

FIGURE 14.28 Frequency response magnitudes of moving average FIR filters.

FIGURE 14.29 Pole-zero plot of moving average FIR
filter of order 4.

The zeros are equally spaced on the unit circle as though there were M + 1
zeros, with the one at z = 1 removed.

((Lecture 57:FIR Filter Design by Windowing))



FIR Filter Design by Impulse Response Truncation

FIR filters can be designed via a straight truncation of a desired infinite impulse
response. This method is very effective and popular because it is straightforward,
and one can get extremely sharp transitions and linear phases, but at the cost of
long filter lengths.

Consider for example the noncausal, real, even, infinite impulse response of
the ideal lowpass filter:

(14.54)

This impulse response is plotted in Figure 14.30 for the cutoff frequency c = .4
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FIGURE 14.30 Impulse response of ideal lowpass IIR filter.

A first attempt would be to truncate this response and keep only the first M +
1 values of the causal part. However, this does not produce very good results. For
a given filter length M + 1 and assuming that M is even, it is much better to time-
delay the impulse response by M/2 first and then truncate it to retain only the val-
ues for .

Example 14.5: Suppose we select M = 40, and we want to have a cutoff fre-
quency of c = . Then, we delay the impulse response shown above by 20 time
steps and truncate it to obtain the finite impulse response h[n] = hlp[n – 20](u[n] –
u[n – 41]) shown in Figure 14.31.

4

n M= 0, ,…
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The frequency response of this causal FIR filter can be obtained numerically
from the following expression:

(14.55)

Its magnitude is plotted in Figure 14.32 and is compared to the ideal lowpass

filter with cutoff frequency c = .4
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FIGURE 14.31 Impulse response of a causal FIR filter
obtained by truncation and time shifting of an ideal
lowpass IIR filter.

FIGURE 14.32 Frequency response magnitudes of causal FIR and ideal
lowpass filters for M = 40 and c = .4



The phase is piecewise linear and linear in the passband where
.

Remarks:
Longer finite impulse responses yield increasingly better filters.
The causal FIR filter equation y[n] = h[0]x[n] + h[1]x[n – 1] + ... + h[M]x[n – M]
is nothing but the discrete-time convolution sum.

FIR Filter Design Using Windows

A straight truncation of a desired infinite impulse response can be seen as the mul-
tiplication in the time domain of a rectangular window w[n] with the infinite im-
pulse response of the filter. Then, the resulting finite impulse response centered at
n = 0 is time-delayed to make it causal. The resulting effect in the frequency do-
main is the periodic convolution of the Fourier transforms of the infinite impulse
response Hlp(ej ) and of the rectangular window W(ej ).

Example 14.6: Suppose we select M = 20. The even rectangular window

(14.56)

is applied to the impulse response hlp[n] of the ideal lowpass filter with cutoff fre-
quency c = in order to truncate it. The impulse response of the FIR filter before
the time shift is given by

(14.57)

Its corresponding frequency response is the convolution of the spectra of the
rectangular window and the ideal lowpass filter:

(14.58)

This convolution operation in the frequency domain is illustrated in Figure
14.33.

The subsequent time shift only adds a linear negative phase
component to H0(ej ), but it does not change its magnitude. The magnitude of
H(ej ) is shown in Figure 14.34.

The truncation method can be improved upon by using windows of different
shapes that have “better” spectra. Note that the best window would be the infinite
rectangular window, since its DTFT is an impulse at = 0. Then the convolution
of W(ej ) = ( ) with the rectangular spectrum of the lowpass filter would leave it
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unchanged. This limit case helps us understand that the Fourier transform of a
good window should have as narrow a main lobe as possible and very small side
lobes. Essentially, the narrower the main lobe is, the sharper the transition will be
around the cutoff frequency. Large side lobes in W(ej ) lead to larger ripples in the
passband and stopband of the filter.
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FIGURE 14.33 Convolution of the frequency response of an ideal lowpass filter with the
DTFT of a rectangular window.

FIGURE 14.34 Frequency response magnitudes of causal
FIR and ideal lowpass filters for M = 20 and c = .2



In general, there is a tradeoff in selecting an appropriate window: For a fixed
order M, windows with a narrow main lobe have larger side lobes, and windows
with smaller side lobes have wider main lobes.

This tradeoff led researchers to propose different windows such as the Han-
ning, Hamming, Bartlett, Blackman window, etc. Note that as the window length
M + 1 gets longer, the main lobe gets narrower, leading to a sharper transition, but
the maximum magnitude of the side lobes does not decrease. The even Hamming
window with M even, shown in Figure 14.35, is defined as follows:

(14.59)w n
n

M
u n M u[ ] . . cos [ ] [= + +0 54 0 46

2
2 nn M( )2 1] .
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FIGURE 14.35 Hamming window for M = 20.

The Fourier transform of the Hamming window has smaller side lobes but a
slightly wider main lobe than the rectangular window, as can be seen in Figure 14.36.

FIGURE 14.36 DTFT of a Hamming window for M = 20.
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For the same lowpass FIR filter design as above, namely M = 20 and c = ,
but this time using the Hamming window instead of the rectangular window, we
obtain the finite impulse response of Figure 14.37.

2

FIGURE 14.37 Impulse response of a causal FIR
filter obtained by windowing and time shifting of an
ideal lowpass IIR filter, using a Hamming window
with M = 20.

The magnitude of the filter’s frequency response is shown in Figure 14.38. We
can see that the passband and stopband are essentially flat, but the transition band
is wider than the previous design done by truncation.

FIGURE 14.38 Magnitudes of causal FIR and ideal lowpass
filters for M = 20 and c = , designed using a Hamming
window.

2



Linear Phase Condition

A causal FIR filter of order M has a linear phase if and only if its impulse response
satisfies the following condition:

(14.60)

This simply means that the filter is symmetric around its middle point. For a
filter h0[n] centered at n = 0 (before it is time-shifted to make it causal), the linear
phase condition becomes the zero-phase condition, and it holds if h0[n] is even.

It turns out that only FIR, not IIR, filters can have a linear phase. The fre-
quency response of a linear phase FIR filter is given by

(14.61)

SUMMARY

In this chapter, we analyzed the behavior of DLTI systems in both the time and fre-
quency domains.

The frequency response can be characterized in a qualitative fashion just by
looking at the pole-zero plot. The frequency, impulse, and step responses of
first-order and second-order systems were analyzed.
Ideal frequency-selective discrete-time filters were discussed, and first and
second-order approximations were given.
Discrete-time IIR and FIR filters were introduced, and the windowing tech-
nique for FIR filter design was presented.

TO PROBE FURTHER

For comprehensive treatments of discrete-time systems and filter design, see Op-
penheim, Schafer and Buck, 1999; Proakis and Manolakis, 1995; and Winder,
2002.
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EXERCISES

Exercises with Solutions

Exercise 14.1

(a) Design a discrete-time second-order IIR bandpass filter approximating the

ideal bandpass filter with frequencies and normalize it
to have a passband-frequency gain of 1.

Answer:
We compute . The pole angle is independent of r, as

The transfer function is

The magnitude plot in Figure 14.39 shows that a “reasonable” design is ob-
tained with r = 0.52.

(b) Plot the magnitude of its frequency response and the magnitude of the
ideal bandpass filter on the same graph.

Answer:
The frequency response magnitudes of the bandpass filters are plotted in Figure
14.39.
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Exercise 14.2

(a) First, design a lowpass FIR filter of length M + 1 = 17 with cutoff fre-
quency c = using a Hamming window. Plot its magnitude over the
magnitude of the ideal filter.

Answer:
Windowed ideal lowpass filter:

where the Hamming window is

After the shift:
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FIGURE 14.39 Magnitudes of second-order IIR and ideal
bandpass filters (Exercise 14.1).
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Frequency response:

The magnitude of this frequency response, which is just the absolute value of
the big bracket in the last line of the above equation, is plotted in Figure 14.40.
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FIGURE 14.40 Magnitudes of 16th-order Hamming-
windowed FIR and ideal lowpass filters (Exercise 14.2).

The following MATLAB M-file used to design the FIR filter can be found on
the companion CD-ROM in D:\Chapter14\FIRdesign.m. 



%% Freq resp of FIR filter

% number of points in FIR filter is M+1

M=16;

% cutoff frequency of lowpass

wc=pi/4;

% freq vector

w=[-pi:0.01:pi]’;

% FR computation using cosine formula

Hjw=(wc/pi)*ones(length(w),1);

for k=0:M/2-1

Hjw=Hjw+2*sin((k-M/2)*wc)/((k-M/2)*pi)*(0.54+0.46*cos(2*pi*(k-

M/2)/M))*cos(w*(M/2-k));

end

% Ideal lowpass

Hlp=zeros(length(w),1);

for k=1:length(w)

if (abs(w(k)) < wc)

Hlp(k)=1;

end

end

%plot frequency response

plot(w,abs(Hjw),w,Hlp);

(b) Use the filter in (a) to form a real bandpass FIR filter with cutoff frequen-

cies . Give its impulse response and plot its magnitude over the mag-
nitude of the ideal bandpass filter and that of the IIR filter in Exercise 14.1.

Answer:
Using frequency shifting,
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The impulse response is given by ; thus,

The frequency response magnitudes of this FIR bandpass filter and of the sec-
ond-order IIR filters of Exercise 14.1 are shown in Figure 14.41. 
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FIGURE 14.41 Magnitudes of bandpass filters (Exercise 14.2).

(c) Give an expression for the phase in the passband of the FIR bandpass filter.

Answer:
The phase in the passband is –8 .

Exercises

Exercise 14.3

Consider the following moving-average filter S initially at rest:



S: .

(a) Find the impulse response h[n] of the filter. Is it causal?

(b) Find the transfer function of the filter H(z) and give its region of conver-
gence. Sketch the pole-zero plot.

(c) Find the frequency response of the filter. Sketch its magnitude.

(d) Compute the 3 dB cutoff frequency c.

Answer:

Exercise 14.4

Suppose we want to design a causal, stable, first-order highpass filter of the type

with 3 dB cutoff frequency c = and a real.
(a) Express the real constant B in terms of the pole a to obtain unity gain at the

highest frequency = .

(b) Design the filter; that is, find the numerical values of the pole a and the
constant B.

(c) Sketch the magnitude of the filter’s frequency response.

Exercise 14.5

(a) Design a discrete-time second-order IIR lowpass filter approximating the
ideal lowpass filter with –3 dB cutoff frequency c = and normalize it
to have a DC gain of 1. You can proceed by trial and error. Plot the mag-
nitude of its frequency response (use MATLAB) and the magnitude of the
ideal lowpass filter on the same figure.

(b) Add a zero at = to your design to improve the response at high fre-
quency. Plot the resulting frequency response magnitude as well as the re-
sponse in (a) and discuss the results.

Answer:
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Exercise 14.6

(a) First, design a lowpass FIR filter of order M = 256 with cutoff frequency

c = radians using a Hamming window. Plot its magnitude over the
magnitudes of the ideal filter and the filters in Exercise 14.5.

(b) Give an expression for the phase in the passband of the FIR bandpass filter.

(c) Simulate the filter for the input until the
output reaches steady-state and plot the results. Also plot the input on a
separate graph.

Exercise 14.7

(a) Design a first-order discrete-time lowpass filter with a 3 dB cutoff fre-
quency c = and a DC gain of 1.

(b) Plot the magnitude of its frequency response.

(c) Write the filter as a difference equation and plot the first 20 values of the
filtered signal y[n] for the input signal with the
filter being initially at rest.

Answer:

Exercise 14.8

(a) Design a DT second-order IIR bandpass filter approximating the ideal

bandpass filter with frequencies and normalize it to
have a passband-frequency gain of 5.

(b) Plot the magnitude of its frequency response and the magnitude of the
ideal bandpass filter on the same figure.

Exercise 14.9

(a) Design a first-order DT lowpass filter with a –3 dB cutoff frequency

c = and a DC gain of 1.

(b) Plot the magnitude of its frequency response.

(c) Write the filter as a difference equation, and plot the first 15 values of the
filtered signal y[n] for the input signal .x n u n[ ] [ ]= 2

12

2c2 =,3

8
=c1 =

x n u n u n[ ] [ ] [ ]= 10

12

x n n u n n u n[ ] cos( ) [ ] cos( ) [ ]= +8 4
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Answer:

Exercise 14.10

(a) Design a 20th-order (i.e., M = 20) DT causal FIR highpass filter approxi-

mating the ideal highpass filter with c = and normalized to have a
high-frequency gain of 1. Use the straight truncation (rectangular window)
technique.

(b) Repeat (a) using the Hamming window.

(c) Plot the magnitudes of the frequency responses of the two FIR filters, the
magnitude of the IIR filter obtained in Exercise 14.4, and the magnitude of
the ideal highpass filter on the same figure.

(d) Plot the first 20 values of the two filtered signals y[n], i.e., the output of
each filter, for the step input signal x[n] = u[n].

2

3
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Sampling Systems15

((Lecture 58: Sampling))

This chapter introduces the important bridge between continuous-time and
discrete-time signals provided by the sampling process. Sampling records
discrete values of a continuous-time signal at periodic instants of time, either

for real-time processing or for storage and subsequent off-line processing. Sam-
pling opens up a world of possibilities for the processing of continuous-time sig-
nals through the use of discrete-time systems such as infinite impulse response
(IIR) and finite impulse response (FIR) filters.

In This Chapter

Sampling of Continuous-Time Signals
Signal Reconstruction
Discrete-Time Processing of Continuous-Time Signals
Sampling of Discrete-Time Signals
Summary
To Probe Further
Exercises
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SAMPLING OF CONTINUOUS-TIME SIGNALS

Recall that the Fourier transform of the continuous-time signal x(t) is given by

(15.1)

Under certain conditions, a continuous-time signal can be completely repre-
sented by (and recovered from) its samples taken at periodic instants of time. The
sampling operation can be seen as the multiplication of a continuous-time signal
with a periodic impulse train of period Ts, as depicted in Figure 15.1. The spectrum
of the sampled signal is the convolution of the Fourier transform of the signal with
the spectrum of the impulse train, which is itself a frequency-domain impulse train
of period equal to the sampling frequency . This frequency-domain
analysis of sampling is illustrated in Figure 15.2.

s sT= 2

X j x t e dtj t( ) ( ) .=
+

FIGURE 15.1 Impulse train sampling of a continuous-time signal.

FIGURE 15.2 Frequency domain representation of impulse train sampling of a
continuous-time signal.



The resulting sampled signal in the time domain is a sequence of impulses
given by

(15.2)

where the impulse at time has an area equal to the signal value at that time.
In the frequency domain, the spectrum of the sampled signal is a superposition of
frequency-shifted replicas of the original signal spectrum, scaled by .

(15.3)

The Sampling Theorem

The extremely useful sampling theorem, also known as the Nyquist theorem, or the
Shannon theorem, gives a sufficient condition to recover a continuous-time signal
from its samples .

Sampling theorem: Let x(t) be a band-limited signal with .
Then x(t) is uniquely determined by its samples if

(15.4)

where is the sampling frequency.

Figure 15.2 suggests that given the signal samples, we can recover the signal
x(t) by filtering xs(t) using an ideal lowpass filter with DC gain Ts and with a cut-
off frequency between M and s – M, usually chosen as , which is called the
Nyquist frequency. It is indeed the case, and the setup to recover the signal is shown
in Figure 15.3.

The sampling theorem expresses a fact that is easy to observe from the exam-
ple plot of Xs( j ) in Figure 15.2: the original spectrum centered at = 0 can be
recovered undistorted provided it does not overlap with its neighboring replicas.
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Sampling Using a Sample-and-Hold Operator

The sample-and-hold (SH) operator retains the value of the signal sample up until
the following sampling instant. It basically produces a “staircase” signal, that is, a
piecewise constant signal from the samples. A schematic of an ideal circuit imple-
menting a sample-and-hold is shown in Figure 15.4. The switch, which is assumed
to close only for an infinitesimal period of time at the sampling instants to charge the
capacitor to its new voltage, is typically implemented using a field effect transistor.

FIGURE 15.3 Ideal lowpass filter used
to recover the continuous-time signal
from the impulse train sampled signal.

FIGURE 15.4 Simplified sample-and-hold circuit.

The theoretical representation of a sample-and-hold shown in Figure 15.5
consists of a sampling operation (multiplication by an impulse train), followed by
filtering with a linear time-invariant (LTI) system of impulse response h0(t), which
is a unit pulse of duration equal to the sampling period Ts. Note that the sample-
and-hold operator is sometimes called zero-order-hold (ZOH), although here 
we call zero-order-hold only the LTI system block with impulse response h0(t) in
Figure 15.5.

Example 15.1: The continuous-time signal x(t) shown in Figure 15.6 is sam-
pled using a sample-and-hold operator, resulting in the continuous-time piecewise
constant signal x0(t).



Note that the sampled signal x0(t) carries the same information as the samples
themselves, so according to the sampling theorem, we should be able to recover the
entire signal x(t). It is indeed the case. From the block diagram of the sample-and-
hold, what we would need to do is find the inverse of the ZOH system with impulse
response h0(t) and then use a perfect lowpass filter. The frequency response H0( j )
is given by the usual sinc function for an even rectangular pulse signal, multiplied

by because of the time delay of Ts/2 seconds to make the pulse causal:

(15.5)

The inverse of H0( j ) is given by

(15.6)

The reconstruction filter is the cascade of the inverse filter and the lowpass filter,

(15.7)

whose magnitude and phase are sketched in Figure 15.8.
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FIGURE 15.5 Sample-and-hold operator.

FIGURE 15.6 Effect of sample-and-hold operator on an input signal.
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Unfortunately, this frequency response cannot be realized exactly in practice,
one of the difficulties being that its phase reflects a time advance of Ts/2 seconds,
but it can be approximated with a causal filter. In fact, in many practical situations,
it is often sufficient to use a simple (nonideal) lowpass filter with a relatively flat
magnitude in the passband to recover a good approximation of the signal. For ex-
ample, many audio systems have a ZOH at the output of each channel and rely on
the natural lowpass frequency responses of the loudspeakers and the human ear to
smooth the signal.

((Lecture 59: Signal Reconstruction and Aliasing))

SIGNAL RECONSTRUCTION

Assume that a band-limited signal is sampled at the frequency that satis-
fies the condition of the sampling theorem. What we have as a result is basically 
a discrete-time signal from which we would like to recover the original
continuous-time signal.

x nTs( )

sT
=

2
s =

FIGURE 15.7 Signal reconstruction from the output of the sample-and-hold.

FIGURE 15.8 Frequency response of the reconstruction filter.



Perfect Signal Interpolation Using Sinc Functions

As seen above, the ideal scenario to reconstruct the signal would be to construct a
train of impulses xs(t) from the samples and then to filter this signal with an ideal
lowpass filter. In the time domain, this is equivalent to interpolating the samples
using time-shifted sinc functions with zeros at nTs for as shown in Fig-
ure 15.9. Each impulse in xs(t) triggers the impulse response of the lowpass filter
(the sinc signal), and the resulting signal x(t) at the output of the filter is the sum of
all of these time-shifted sinc signals with amplitudes equal to the samples .

(15.8)

This is clearly unfeasible, at least in real time. However, there are a number of
ways to reconstruct the signal by using different types of interpolators and recon-
struction filters.
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FIGURE 15.9 Perfect signal interpolation using an ideal lowpass filter.

Zero-Order Hold

The ZOH, now viewed as an interpolator in Figure 15.10, offers a coarse way to re-
construct the signal. It interpolates the signal samples with a constant line segment
over a sampling period for each sample. Another way to look at it is to observe that
the frequency response H0( j ) is a (poor) approximation to the ideal lowpass fil-
ter’s, as shown in Figure 15.11, where the spectrum of the signal x(t) is a triangle.
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First-Order Hold (Linear Interpolation)

The first-order hold (FOH) has a triangular impulse response instead of a rectan-
gular pulse. The resulting interpolation is linear between each sample. It is closer
to the signal than what a ZOH could achieve but it is noncausal. However, the FOH
can be made causal by delaying its impulse response by Ts seconds, although this
also causes a delay Ts between the original signal and its interpolated version. In the
frequency domain, the Fourier transform of h1(t) is also a better approximation to
the ideal lowpass filter than H0( j ) is, essentially because the magnitude 
is the square of the sinc function; that is, , as shown in Figure
15.12.

H j H j1 0

2
( ) ( )=

H j1( )

FIGURE 15.10 Signal interpolation using a ZOH.

FIGURE 15.11 Spectrum of a signal interpolated using a ZOH.
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Aliasing

When a sampling frequency is too low to avoid overlapping between the spectra,
we say that there is aliasing. Aliasing occurs when sampling is performed at too
low a frequency that violates the sampling theorem, that is, when . Look-
ing at Figure 15.13, we see that the high frequencies in the replicas of the original
spectrum shifted to the left and to the right by get mixed with lower frequen-
cies in the original spectrum centered at 0. With aliasing creating distortion in the
spectrum, the original signal cannot be recovered by lowpass filtering.

The effect of aliasing can sometimes be observed on television, particularly in
video footage of cars whose wheels appear to be slowing down when the car is in
fact accelerating. The video frames have a frequency of 30 frames per second (30
Hz), which is the standard video sampling rate. Aliasing can occur when the iden-
tical wheel spokes repeat their geometrical pattern (e.g., with one spoke vertical)
for example, 20 times per second. This could produce the impression that the wheel
pattern is repeating 10 times a second (30–20 Hz), making the wheels appear to be
spinning slower than the speed of the car would suggest.

s

s m< 2

FIGURE 15.12 Signal interpolated using an FOH.
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FIGURE 15.13 Aliasing due to a low sampling frequency.

Another classical way to illustrate aliasing is the sampling of a sinusoidal sig-
nal at less than twice its fundamental frequency, as given in the following example.

Example 15.2: Assume signal is sampled at the rate of
, violating the sampling theorem. Figure 15.14 shows the resulting

effect of aliasing in the frequency domain, which brings two impulses at the fre-
quencies . If the sampled signal were lowpass filtered
with a prescribed cutoff frequency of and a gain of Ts, then only those
two impulses would remain at the output of the filter, corresponding to the signal

. Figure 15.15 shows that this sinusoidal signal of a
fundamental frequency half that of the original sinusoidal signal also interpolates
the samples.

x t t t1 1 00 5( ) cos( ) cos( . )= =

c s= 0 5.
± = ± = ±1 0 00 5( ) .s

s = 1 5 0.
x t t( ) cos( )= 0

FIGURE 15.14 Aliasing of a sinusoidal signal.



Remarks:
Most continuous-time signals in practical situations have a spectrum that is not
band-limited, but instead tapers off to zero as the frequency goes to infinity.
Sampling such signals will produce aliasing and therefore distort the base spec-
trum of the sampled signal, centered around , with a resulting loss of in-
formation. In order to avoid this situation, a continuous-time antialiasing filter
must be used to band-limit the signal before sampling. An antialiasing filter is
a lowpass filter whose cutoff frequency is set lower than half the sampling fre-
quency. Though it will introduce some distortion at high frequencies in the
original spectrum, it is often a better solution than introducing aliasing distor-
tion at lower frequencies by not using an antialiasing filter. Comparing for ex-
ample the spectrum of the sampled signal in Figure 15.16 with the aliased
spectrum in Figure 15.13, we can see that the use of an antialiasing filter has
significantly reduced the distortion.
It is also possible to increase the sampling rate such that the spectrum of the
signal has negligible energy past the Nyquist frequency ( s/2). Care must be
exercised though, since any noise energy present at frequencies higher than

s/2 will be aliased to low frequencies as well, generating distortion. Thus, this
is typically not a good solution.
In practice, a generally safe rule of thumb is to choose the sampling frequency
to be five to ten times higher than the bandwidth of the signal. However, this
choice may prove too conservative for some applications.

= 0
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FIGURE 15.15 Aliasing effect: two sinusoidal signals
of different frequencies interpolate the samples.
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((Lecture 60: Discrete-Time Processing of Continuous-Time Signals))

DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS

Discrete-time processing of continuous-time signals has been made possible by the
advent of the digital computer. With today’s fast, inexpensive microprocessors
and dedicated digital signal processor chips, it is advantageous to implement
sophisticated filters and controllers for continuous-time signals as discrete-time
systems.

We have reviewed all the mathematical machinery needed to analyze and de-
sign these sampled-data systems. The fundamental result provided by the sam-
pling theorem allows us to make the connection between continuous time and
discrete time. Consider the block diagram of a sampled-data system in Figure
15.17. The blocks labeled CT/DT and DT/CT are conversion operators described
in the next section.

FIGURE 15.16 Aliasing avoided using an antialiasing filter.

FIGURE 15.17 Sampled-data system for discrete-time processing of continuous-time
signals.



CT/DT Operator

As indicated in Figure 15.17, the continuous-time to discrete-time operator CT/DT
is simply defined by

CT/DT: (15.9)

It is also useful to think of the CT/DT operator as impulse train sampling fol-
lowed by a conversion of the impulse areas to values of a discrete-time signal rep-
resented by the operator in Figure 15.18. To be fancy, operator , which maps
the set of impulse-sampled signals into the set of discrete-time signals , can
be defined as follows:

(15.10)

Note that the information is the same in both representations xs(t) and of
the sampled signal, as suggested by Figure 15.19.
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FIGURE 15.18 CT/DT conversion operator.

FIGURE 15.19 Impulse train sampled signal and its discrete-time counterpart in the
CT/DT operation.
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The sampling period of Ts seconds is normalized to 1 in the discrete-time sig-
nal xd[n]. For the remainder of this section, let the continuous-time frequency vari-
able be denoted as , and the discrete-time frequency variable as . Recall that the
spectrum Xs( j ) of the sampled signal xs(t) is an infinite sum of replicas of X( j )
shifted at integer multiples of the sampling frequency . Hence, Xs( j ) is
periodic of period s. The discrete-time Fourier transform (DTFT) of
xd[n] is also periodic, but of period 2 . The relationship between the two spectra is
then simply

(15.11)

as we now show.

(15.12)

Thus, we have , or equivalently Equation 15.11. This im-
portant result means that the shape of the spectrum of the discrete-time signal xd[n]
is the same as the shape of the spectrum of the sampled signal xs(t). The only dif-
ference is that the former is compressed in frequency in such a way that the
frequency range [– s/2, s/2] is mapped to the discrete-time frequency range 
[– , ]. Figure 15.20 shows an example of a continuous-time signal with a trian-
gular spectrum that is sampled and converted to a discrete-time signal with the
CT/DT operator.
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FIGURE 15.20 Frequency-domain view of sampled signal and its discrete-time
counterpart in the CT/DT operation.



The last step in characterizing the CT/DT operator is to relate to
X( j ). Recall that

(15.13)

Thus, from Equation 15.11 we obtain

(15.14)

Remarks:
An analog-to-digital (A/D) converter is the practical device used to imple-
ment the ideal CT/DT operation. However, an A/D converter quantizes the sig-
nal values with a finite number of bits, for example, a 12-bit A/D.
If the sampling rate satisfies the sampling theorem, that is, , where

M is the bandwidth of the continuous-time signal, then there will not be any
aliasing in .

DT/CT Operator

The discrete-time to continuous-time DT/CT conversion operator in Figure 15.17
consists first of forming a train of impulses occurring every Ts seconds, with the
impulse at time nTs having an area yd[n]. This operation is simply the inverse of op-
erator defined in Equation 15.10, denoted as . Then, an ideal lowpass filter
with its cutoff frequency set at the Nyquist frequency and with a gain
of Ts is applied to the impulse train, as shown in Figure 15.21.

c s= 2
V 1V

X e
d

j( )

s M
> 2

X e X j T

T
X j

k

T

d
j

s s

s sk

( ) ( )

( )

=

=
=

+1 2
.

X j
T

X j ks
s

s
k

( ) ( ( )).=
=

+1

X e
d

j( )

Sampling Systems 555

FIGURE 15.21 DT/CT conversion operator.



Remarks:
A digital-to-analog (D/A) converter is the practical device used to implement
the ideal DT/CT operation. Typical D/A converters use a ZOH in place of the
ideal lowpass filter.
If the discrete-time signal comes from a sampled continuous-time signal for
which the sampling theorem was satisfied, then it should be clear that DT/CT
will recover the continuous-time signal perfectly.

((Lecture 61: Equivalence to Continuous-Time Filtering; Sampling of Discrete-
Time Signals))

Equivalence to a Continuous-Time LTI System

Can the system depicted in Figure 15.22 be equivalent to a purely continuous-time
LTI system as represented by its frequency response H( j )? The answer is yes, but
only for input signals of bandwidth . In this case, the frequency response
up to the Nyquist frequency of the equivalent continuous-time LTI system is given
by

(15.15)

Thus, an input signal of bandwidth in the block diagram of Figure
15.22 would have its spectrum compressed from the frequency interval [– s/2,

s/2] to the discrete-time frequency interval [– , ]  via the mapping be-
fore being filtered by .H ed
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FIGURE 15.22 Sampled-data system.

An important question remains: suppose we want to design a sampled-data sys-
tem that would match the behavior of, for instance, a high-order Butterworth filter
that was previously designed as a continuous-time system with transfer function
HB(s). Further assume that the input signals are known to have a bandwidth lower



than the Nyquist frequency. How can we design such a system? What is required
is a discrete-time version of the Butterworth filter represented by a transfer func-
tion in the z-domain HBd(z), which can be obtained through discretization of the
system HB(s). Discretization of a continuous-time system is discussed in Chapter
17. In an algorithm implementing the middle block of the sampled-data system of
Figure 15.22, the discretized system HBd(z) would be programmed either as a re-
cursive difference equation, a convolution, or sometimes as a recursive state-space
system.

SAMPLING OF DISCRETE-TIME SIGNALS

With the growing popularity of digital signal processing and digital communica-
tions, more and more operations on signals normally carried out in continuous
time are implemented in discrete time. For example, modulation and sampling can
be done entirely in discrete time. In this section, we look at the process of sampling
discrete-time signals and the related operations of decimation and upsampling.

Impulse Train Sampling

Let v[n] be a discrete-time impulse train of period Ns; that is, .
Then, impulse train sampling of x[n] is defined as

(15.16)

In the frequency domain, this corresponds to the periodic convolution of the
DTFTs:

(15.17)

where

(15.18)

and , is the discrete-time sampling frequency. Thus, the
spectrum of the sampled signal is given by
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(15.19)

Note that is a finite sum over , as the convolution in
Equation 15.17 is computed over an interval of width 2 , for example, over

, and there are only Ns impulses in in this interval.

Example 15.3: A signal x[n] with DTFT shown at the top of Figure 15.23 is
band-limited to /4. The signal is sampled at twice the bandwidth of the signal, that

is, with a sampling frequency corresponding to the sampling period Ns = 4
and yielding . The DTFT of the impulse train v[n], which
is convolved with the signal spectrum, is composed of impulses located at integer
multiples of .=
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FIGURE 15.23 Discrete-time sampling in the frequency domain.

((Lecture 62: Decimation, Upsampling and Interpolation))



Decimation

Recall that impulse train sampling of x[n], defined as 

, yields the spectrum . The 

purpose of decimation is to compress a discrete-time signal, but the sampled sig-
nal xs[n] still has Ns – 1 zeros in between the values of x[nNs], carrying no infor-
mation. Decimation gets rid of these zeros after sampling, thereby compressing the
number of values in x[n] and xs[n] by a factor Ns.

The signal is called a decimated, or downsampled, version
of x[n], that is, only every Ns

th sample of x[n] is retained. Also note that
.

In a real-time communication system, this means that the decimated signal can
be transmitted at a rate Ns times slower than the rate of the original signal. It also
means that for a given channel with a fixed bit rate, more decimated signals can be
transmitted through the channel at the same time using time-division multiplexing
(more on this in Chapter 16).

Frequency Spectra of Decimated Signals

Let the integer N > 1 be the sampling period. The DTFT of a downsampled signal
is given by

(15.20)

Thus, ; that is, the spectrum of the decimated signal
is the frequency-expanded version of the spectrum of the sampled signal

xs[n].

Example 15.4: Consider the signal x[n], whose Fourier transform shown in the
top plot in Figure 15.24 has a bandwidth of /4. The signal , decimated by
a factor of 4, has the DTFT shown at the bottom of the figure, while the signal xs[n],
sampled at frequency corresponding to the sampling period N = 4, has the
DTFT in the middle. It can be seen that the spectrum is a stretched ver-
sion of Xs(e j ), expanded by a factor of N = 4.
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Aliasing

What happens if the sampling period N is a large number? Can 
expand so much that it is no longer a periodic spectrum of period 2 ? No. In this
case, aliasing occurs in Xs(e j ), but the center of the first (distorted) copy of the
spectrum to the right of the main one (centered at = 0) is at frequency in
Xs(e j ). This means that the aliased Xs(e j ) is periodic of period 2 . Its subsequent

expansion through decimation by a factor of N brings back to
a period of 2 , with the first copy of the spectrum to the right of the main one now
being centered at = 2 .

Aliasing occurs when , where M is the bandwidth of the signal,
in both operations of sampling and decimation. This is the discrete-time version of
the sampling theorem.

Reconstruction of Decimated Signals: Upsampling and Interpolation

Recall that the upsampling operation is defined as:

(15.21)x n
x n N n N

N
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FIGURE 15.24 Effect of downsampling in the frequency domain.



The upsampling operation inserts N – 1 zeros between consecutive samples of
the original signal. The Fourier transform of the upsampled signal is given
by

(15.22)

that is, its spectrum is a frequency-compressed version of X(e j ).
Assume that a signal x[n] was downsampled to without aliasing. The

signal x[n] can be recovered from its downsampled version by first upsampling the
decimated signal, shown as the block labeled in Figure 15.25, followed by
lowpass filtering with an ideal lowpass filter of cutoff frequency = and
gain N.

N
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N

x n
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x n X e
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FIGURE 15.25 Upsampling followed by lowpass filtering for
signal reconstruction after decimation.

Example 15.5: The decimated signal of the previous example is upsam-
pled by a factor of 4, yielding the signal xs[n], with three zeros inserted in-between
each sample. The ideal lowpass filter interpolates the samples and turns the inserted
zeros into the original values of the signal, as shown in Figure 15.26. Figure 15.27
illustrates the operations used to reconstruct the decimated signal in the frequency
domain.

Notice in Figure 15.27 how the upsampled signal has copies of the main part
of the spectrum at high frequencies (around ± ). These high-frequency compo-
nents (coming from the fast variations in the upsampled signal that flips between
sample values and the inserted zeros ) must be removed by the lowpass filter

to recover x[n].

Maximum Decimation

Maximum signal compression through decimation (without aliasing) can be
achieved by expanding the bandwidth M of the original signal spectrum up to .
However, it is usually not possible to do this exactly, as decimation results in spec-
tral expansion by an integer factor N.

4H elp
j( )

x n
4
[ ]
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FIGURE 15.26 Time-domain view of
upsampling followed by lowpass filtering for
signal reconstruction after decimation.

FIGURE 15.27 Frequency-domain view of upsampling followed
by lowpass filtering for signal reconstruction after decimation.



One way to expand the spectrum up to, or close to, is to upsample the signal
first (followed by lowpass filtering) and then to decimate it. This two-stage proce-
dure can produce a rational spectral expansion factor, which can bring the edge of
the spectrum arbitrarily close to .

Example 15.6: Suppose that the discrete-time signal to be downsampled to reach

maximal decimation has a bandwidth of . Then, we require a rational
spectral expansion factor of to bring the edge of the DTFT of the signal to . This
is clearly impossible to achieve with decimation alone, which at best could expand
the spectrum by a factor of 2 without aliasing with N = 2. The trick here is to up-
sample by a factor of 2 (insert a 0 between each value of x[n]) first, thereby com-
pressing the spectrum to a bandwidth of , and then to apply an ideal lowpass filter
to remove the unwanted replicas centered at frequencies ± in , which
could cause aliasing to occur. Finally, the upsampled filtered signal with DTFT

is decimated by a factor of 5 to obtain a bandwith of . These operations
are shown in Figure 15.28.

Remark: Because aliasing of the spectrum of the upsampled signal can easily
occur in the decimation operation, upsampling should be followed by lowpass filtering
with unity gain and cutoff frequency , where N is the upsampling factor.Nc =
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FIGURE 15.28 Maximal decimation via upsampling
followed by decimation.



SUMMARY

Sampling was introduced in this chapter as an important bridge between continuous-
time and discrete-time signals, with the focus of processing continuous-time sig-
nals using discrete-time systems.

The sampling theorem establishes a sufficient condition on the sampling rate
for a continuous-time signal to be reconstructed from its sampled version.
Sampling is easier to understand in the frequency domain.
Perfect signal reconstruction from the samples can be done with a perfect low-
pass filter. Imperfect, but simpler, signal reconstruction can be performed
using a zero-order hold or a first-order hold.
Discrete-time processing of a continuous-time signal is theoretically equivalent to
filtering with a corresponding continuous-time system within a frequency band
extending to half of the sampling frequency, provided the proper setup is in place.
Sampling of discrete-time signals leads to the important operations of decima-
tion and upsampling. These operations can be used for discrete-time signal
compression in communication systems.

TO PROBE FURTHER

On sampling systems, see Oppenheim, Schafer and Buck, 1999 and Proakis and
Manolakis, 1995. Decimation and upsampling are covered in Oppenheim, Willsky,
and Nawab, 1997 and in Haykin and Van Veen, 2002.

EXERCISES

Exercises with Solutions

Exercise 15.1

The system shown in Figure 15.29 filters the continuous-time noisy signal
composed of the sum of a signal x(t) and a noise n(t).x t x t n tn ( ) ( ) ( )= +
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FIGURE 15.29 Sampled-data system with antialiasing filter of Exercise 15.1.
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The signal and noise have their respective spectrum, X( j ), N( j ) shown in
Figure 15.30. The frequency response of the antialiasing lowpass filter is also
shown in the figure.

FIGURE 15.30 Antialiasing filter and signal and noise spectra in
Exercise 15.1.

(a) Let the sampling frequency be rad/s. Sketch the spectrum
W( j ) of the signal w(t). Also sketch the spectrum . Indicate the
important frequencies and magnitudes on your sketch. Discuss the results.

Answer:
The Nyquist frequency is . The spectra W( j ) and are shown
in Figure 15.31.

W ed
j( )5500=s

2

W ed
j( )

s = 11000  

FIGURE 15.31 Fourier transform of output of antialiasing filter
and DTFT of signal after CT/DT (Exercise 15.1).
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(b) Design an ideal discrete-time lowpass filter (give its cutoff
frequency c and gain K) so that the signal x(t) (possibly distorted by lin-
ear filtering) can be approximately recovered at the output. Sketch the
spectrum with this filter.

Answer:
From Figure 15.31, the ideal lowpass would have a cutoff frequency in
order to remove the remaining noise, and unity gain since the DT/CT operator
already contains a gain of Ts. The frequency response of the lowpass filter

is shown in Figure 15.32, and the DTFT of the output of the filter
is in Figure 15.33.Y ed

j( )
H elp

j( )

10

11c =

Y ed
j( )

KH elp
j( )

FIGURE 15.32 Frequency response of ideal lowpass filter (Exercise 15.1).

FIGURE 15.33 DTFT of output of ideal lowpass filter (Exercise 15.1).

(c) Sketch the spectrum Y( j ) and compute the ratio of linear distortion in the
output y(t) with respect to the input signal; that is, compute in
percent, where .E x t y t Eerror x: ( ) ( ), : energy of      energy oof x t( )

E

E
error

x
100 ×



Answer:
The Fourier transforms of the output Y( j ) and the error signal X( j ) – Y( j ) are
sketched in Figure 15.34.
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FIGURE 15.34 Fourier transforms of continuous-time output signal
and error signal (Exercise 15.1).

The energy of the signal and the energy of the error signal are computed using
the Parseval equality as follows.
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Exercise 15.2

Consider the discrete-time system shown in Figure 15.35, where represents
decimation by N. The operator denotes upsampling by N followed by an
ideal unity-gain lowpass filter with cutoff frequency . This system transmits a
signal x[n] that comes in at a rate of 100 kilosamples/second over a channel with
limited bit-rate capacity. At each time n, the 16-bit quantizer rounds offs the real
value x2[n] to a 16-bit value y[n].

N

{ }N lp

N

FIGURE 15.35 Block diagram of discrete-time system (Exercise 15.2).

(a) Given that the input signal x[n] is bandlimited to 0.13 radians, find the in-
tegers N1, N2 that will minimize the sample rate for transmission over the
channel. Give the bit rate that you obtain.

Answer:
Bandwidth of signal x[n]: = . We want the DTFT of x2[n] to cover as
much of the frequency interval [– , ] as possible using upsampling and decima-
tion. We can upsample first by a factor of N1 = 13, which compresses the band-
width to , and then we can decimate by a factor of N2 = 100 to expand the spec-

trum up to . The resulting sample rate is reduced by a factor of to 13 
kilosamples/s. With a 16-bit quantizer, the bit rate needed to transmit the signal
y[n] is 16 bits/sample × 13,000 samples/s = 208,000 bits/s.

(b) With the values obtained in (a), assume a triangular spectrum for x[n] of
unit amplitude at DC and sketch the spectra , , , 
indicating the important frequencies and magnitudes.

Answer:
The spectra X(e j ), X1(e j ), X2(e j ) are sketched in Figure 15.36.
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Exercises

Exercise 15.3

The signals below are sampled with sampling period Ts. Determine the bounds on
Ts that guarantee there will be no aliasing.

(a)

(b)

Answer:

x t e u t
Wt

t
t( ) ( )

sin( )
= 4

x t t
t

t
( ) cos( )

sin( )
= 10

2
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FIGURE 15.36 DTFTs of upsampled filtered and decimated signals (Exercise 15.2).
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Exercise 15.4

A continuous-time voltage signal lies in the frequency band . This
signal is contaminated by a large sinusoidal signal of frequency . The
contaminated signal is sampled at a sampling rate of .

(a) After sampling, at what frequency does the interfering sinusoidal signal
appear?

(b) Now suppose the contaminated signal is passed through an antialiasing fil-

ter consisting of an RC circuit with frequency response .
Find the value of the time constant RC required for the sinusoid to be
attenuated by a factor of 1000 (60 dB) prior to sampling.

Exercise 15.5

Consider the sampling system in Figure 15.37 with an ideal unit-gain, lowpass
antialiasing filter Hlp( j ), with cutoff frequency c, and where the sampling fre-
quency is .

sT

2
s =

RCj +
1

1H j( ) =

s = 13  rad/s
120  rad/s
< 5  rad/s

FIGURE 15.37 Sampling system in Exercise 15.5.

The input signal is , and the sampling period is set at .
(a) Give a mathematical expression for X( j ), the Fourier transform of the

input signal, and sketch it (magnitude and phase.) Design the antialiasing
filter (i.e., find its cutoff frequency) so that its bandwidth is maximized
while avoiding aliasing of its output w(t) in the sampling operation. With
this value of c, sketch the magnitudes of the Fourier transforms W( j )
and Ws( j ).

(b) Compute the ratio of total energies in percent, where E w is the
total energy in signal w(t) and E x is the total energy in signal x(t). This
ratio gives us an idea of how similar w(t) is to x(t) before sampling. How

similar is it? (Hint: = )C+u

a
arctana

1du

a u2 2+

E

E
w

x
r = 100

3
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Answer:

Exercise 15.6

Consider the sampling system in Figure 15.38, where the sampling frequency is
.

sT

2
s =
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FIGURE 15.38 Sampling system in Exercise 15.6.

The input signal is and the spectra of the ideal bandpass
filter and the ideal lowpass filter are shown in Figure 15.39.

W
t

2sinc2W
=

2

2
x t( ) =

FIGURE 15.39 Frequency responses of ideal lowpass and bandpass filters in
Exercise 15.6.

(a) Compute and sketch X( j ), the Fourier transform of the input signal. For
what range of sampling frequencies is the sampling theorem sat-
isfied for the first sampler?

(b) Assume that the sampling theorem is satisfied with the slowest sampling
frequency s in the range found in (a). Sketch the spectra Y( j ), W( j ),
and Z( j ) for this case.

sT

2
s =
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(c) Sketch the Fourier transforms Xr( j ) and E( j ). Compute the total energy
in the error signal .

Exercise 15.7

Consider the sampling system in Figure 15.40, where the input signal is 

and the spectra of the ideal bandpass filter and the ideal lowpass

filter are shown in Figure 15.41.

x t tW W( ) )= sinc (

e t x t x t
r

( ) : ( ) ( )=

FIGURE 15.40 Sampling system in Exercise 15.7.

FIGURE 15.41 Frequency responses of the ideal lowpass and bandpass filters
in Exercise 15.7.

(a) Find and sketch X( j ), the Fourier transform of the input signal
. For what range of sampling frequencies is the

sampling theorem satisfied?

(b) Assume that the sampling theorem is satisfied with for the re-
maining questions. Sketch the Fourier transforms Y( j ) and W( j ).

(c) Sketch the Fourier transforms Z( j ) and Xr( j ).

(d) Using the Parseval equality, find the total energy of the error signal e(t), 
defined as the difference between the input signal x(t) and the “recon-
structed” output signal xr(t).

s W= 3

sT

2
s =x t tW W( ) )= sinc (



Answer:

Exercise 15.8

The system depicted in Figure 15.42 is used to implement a continuous-time band-
pass filter. The discrete-time filter has frequency response on [– , ]
given as

Find the sampling period Ts, and frequencies a, b, and W1 so that the equiv-
alent continuous-time frequency response G( j ) satisfies G( j ) = 1 for

, and G( j ) = 0 elsewhere. In solving this problem, choose W1

as small as possible and choose Ts as large as possible.
100 200< <

H ed
j a b( )

,

,
=

1

0 otherwise

H ed
j( )
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FIGURE 15.42 System implementing a continuous-time bandpass filter in
Exercise 15.8.

Exercise 15.9

The signal x[n] with DTFT depicted in Figure 15.43 is decimated to obtain
. Sketch .X ej

4
( )x n x n=

4
4[ ] [ ]

FIGURE 15.43 DTFT of signal in Exercise 15.9.
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Answer:

Exercise 15.10

Suppose that you need to transmit a discrete-time signal whose DTFT is shown in
Figure 15.44 with a sample rate of 1 MHz. The specification is that the signal
should be transmitted at the lowest possible rate, but in real time; that is, the signal
at the receiver must be exactly the same with a sample rate of 1 MHz. Design a sys-
tem (draw a block diagram) that meets these specs. Both before transmission and
after reception, you can use upsampling-filtering denoted as , decimation
denoted as , ideal filtering, modulation, demodulation, and summing junc-
tions. (You might want to read the section on amplitude modulation and synchro-
nous demodulation in Chapter 16 first.)

N
{ }N lp

FIGURE 15.44 Spectrum of discrete-time signal to be transmitted
in Exercise 15.10.

Exercise 15.11

Consider the decimated multirate system shown in Figure 15.45 used for voice data
compression. This system transmits a signal x[n] over two low-bit-rate channels.
The sampled voice signal is bandlimited to .2

5M =

FIGURE 15.45 Decimated multirate system in Exercise 15.11.



Numerical values:
Input lowpass filter’s cutoff frequency 

Input highpass filter’s cutoff frequency 

Signal’s spectrum over [– , ]: 

(a) Sketch the spectra X(e j ), X1(e j ), and X2(e j ), indicating the important
frequencies and magnitudes.

(b) Find the maximum decimation factors N1 and N2, avoiding aliasing, and
sketch the corresponding spectra V1(e j ), V2(e j ), W1(e j ), and W2(e j ), in-
dicating the important frequencies and magnitudes. Specify what the ideal
output filters H1(e j ) and H2(e j ) should be for perfect signal reconstruc-
tion. Sketch their frequency responses, indicating the important frequen-
cies and magnitudes.

(c) Compute the ratio of total energies at the output between the high-
frequency subband y2[n] and the output signal x[n]; that is, compute 

, where the energy is given by .

(d) Now suppose each of the two signal subbands v1[n] and v2[n] are quantized
with a different number of bits to achieve good data compression, without
losing intelligibility of the voice message. According to your result in 
(c), it would seem to make sense to use fewer bits to quantize the high-
frequency subband. Suppose that the filter bank operates at an input/output
sample rate of 10 kHz, and you decide to use 12 bits to quantize v1[n] and
4 bits to quantize v2[n]. Compute the bit rates of channel 1 and channel 2
and the overall bit rate of the system.

Answer:
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((Lecture 63: Amplitude Modulation and Synchronous Demodulation))

The field of telecommunications engineering has radically changed our lives
by allowing us to communicate with other people from virtually any loca-
tion on earth and even from space. Who could have imagined two hundred

years ago that this could ever be possible? The study of communication systems is
largely based on signals and systems theory. In particular, the time-domain multi-
plication property of Fourier transforms is used in amplitude modulation. This
chapter is a brief introduction to the basic theory of modulation for signal trans-
mission.
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COMPLEX EXPONENTIAL AND SINUSOIDAL 
AMPLITUDE MODULATION

Recall the time-domain multiplication property for Fourier transforms: the multi-
plication of two signals results in the convolution of their spectra:

(16.1)

Amplitude modulation (AM) is based on this property. For example, consider
the modulation system described by

(16.2)

where the modulated signal y(t) is the product of the carrier signal c(t) and the
modulating signal x(t), also called the message. The carrier signal can be a complex
exponential or a sinusoid, or even a pulse train.

An important objective in modulation is to produce a signal whose frequency
range is suitable for transmission over the communication channel to be used. In
telephone systems, long-distance transmission is often accomplished over mi-
crowave (300 MHz to 300 GHz) or satellite links (300 MHz to 40 GHz), but most
of the energy of a voice signal is in the range of 50 Hz to 5 kHz. Hence, voice sig-
nals have to be shifted to much higher frequencies for efficient transmission. This
can be achieved by amplitude modulation.

Amplitude Modulation with a Complex Exponential Carrier

In amplitude modulation with a complex exponential carrier, the latter can be writ-
ten as

(16.3)

where the frequency c is called the carrier frequency. Let c = 0 for convenience.
We have seen that the Fourier transform of a complex exponential is an impulse of
area 2 , so that

(16.4)

The frequency-domain convolution of C( j ) and X( j ) yields

C j
c

( ) ( ).= 2

c t e j tc c( ) ,( )= +

y t x t c t( ) ( ) ( ),=

x t y t X j Y j
FT

( ) ( ) ( ) ( ).
1

2



(16.5)

Thus, the spectrum of the modulated signal y(t) is that of the modulating sig-
nal x(t) frequency-shifted to the carrier frequency, as shown in Figure 16.1.

An obvious demodulation strategy would be to multiply the modulated signal
by 

(16.6)

In the frequency domain, this operation simply brings the spectrum back
around 

Amplitude Modulation with a Sinusoidal Carrier

In sinusoidal amplitude modulation, the carrier signal is given by

(16.7)c t t
c c

( ) cos( ).= +

= 0.
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FIGURE 16.1 Amplitude modulation with a complex exponential carrier.
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Sinusoidal AM can be represented by the diagram in Figure 16.2, where the
modulated signal y(t) is fed into an antenna for transmission.

FIGURE 16.2 Diagram of sinusoidal AM.

FIGURE 16.3 Sinusoidal AM in the frequency domain.

Again, let for convenience. The spectrum of the carrier signal is

(16.8)

and the spectrum of the modulated signal is obtained through a convolution:

(16.9)

We see in Figure 16.3 that there are two replicas of X( j ), one at c and the
other at – c.

Y j X j C j

X j X j
c

( ) ( ) ( )

( ( )) ( (

=

= + +

1

2
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2

1

2 cc
)).

C j
c c

( ) ( ) ( ),= + +

c
= 0



Note that the two copies of the original spectrum can overlap if the carrier fre-
quency is not high enough, that is, if c < M, which is not the case for AM with a
complex exponential carrier. The modulating signal may be unrecoverable if this
happens.

DEMODULATION OF SINUSOIDAL AM

In a communication system, the information-bearing (modulating) signal x(t) is re-
covered at the receiver end through demodulation. There are two commonly used
methods for sinusoidal AM demodulation: synchronous demodulation, in which
the transmitter and receiver are synchronized and in phase, and asynchronous
demodulation, which does not require accurate knowledge of the carrier signal.

Synchronous Demodulation

Assuming that c > M, synchronous demodulation is straightforward. Consider
the modulated signal to be demodulated:

(16.10)

If we multiply this signal again by the carrier at the receiver, that is,

(16.11)

then the two replicas of Y( j ) will be such that the left part of one adds up to the
right part of the other, thereby reforming the original spectrum of x(t) around 

= 0. Then x(t) can be recovered by an ideal lowpass filter with a gain of 2 and
cutoff frequency co, satisfying This principle of synchro-
nous demodulation is illustrated by Figure 16.4.

Also, using the trigonometric identity,

(16.12)

we can express the signal (t) as follows:

(16.13)
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where it is clear that the message is recovered in the first term, and the second term
is akin to an amplitude modulation at twice the carrier frequency, which is subse-
quently removed by lowpass filtering.

Now, suppose that the receiver and the transmitter use exactly the same carrier
frequency, but with a phase difference, that is,

(16.14)

and

(16.15)

Then, using the trigonometric identity

(16.16)

we have

(16.17)w t x t x t t
c c c c c
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1
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FIGURE 16.4 Synchronous demodulation of sinusoidal AM.



This means that the amplitude of the signal recovered at the output of the
lowpass filter is smaller than the original amplitude by a factor of In
particular, when the demodulating carrier is out of phase by the output of the
demodulator is zero.

Equation 16.17 also helps explain the beating phenomenon heard on some
older radio receivers in which the volume of a demodulated voice or music signal
seems to periodically go up and down. Suppose that the phase of the receiver’s
carrier is actually the linear function of time where is a very small real
number in proportion to the carrier frequency. In this case, the carrier frequency
used by the receiver is slightly off with respect to the carrier frequency used to
modulate the signal as

(16.18)

Then, Equation 16.17 becomes

(16.19)

where the amplitude of the first term containing the message is affected by a sinu-
soidal gain which produces the beating effect.

((Lecture 64: Asynchronous Demodulation))

Asynchronous Demodulation

In contrast to synchronous demodulation of AM signals, asynchronous demodula-
tion does not require that the receiver have very accurate knowledge of the carrier’s
phase and frequency. Asynchronous demodulation is used in simple AM radio re-
ceivers: it is a cheap, but lower quality, alternative to synchronous demodulation.

Asynchronous demodulation involves a nonlinear operation and is therefore
easier to understand in the time domain. Suppose that we add a positive constant to
the signal to be transmitted before modulation:

(16.20)

where A is large enough to make This amounts to transmitting the
carrier signal as well as the modulated signal. Let K be the maximum amplitude of
x(t), that is, and assume A ≥ K. The modulation index m is the ratio

(16.21)m K A: .=

x t K( ) ,<

A x t t+ >( ) , .0

y t A x t tc( ) ( ) cos( ),= +
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2,
cos( ).
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The modulating signal x(t) turns out to be the envelope of the modulated sig-
nal y(t), as the example in Figure 16.5 shows with A = 1 and m = 0.3.
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FIGURE 16.5 AM signal with a 0.3 modulation index.

FIGURE 16.6 Envelope detector

Thus, the asynchronous demodulator should be an envelope detector. An en-
velope detector such as the one in Figure 16.6 can be implemented with a simple
RC circuit and a diode.

The diode half-wave rectifies the signal. When the voltage y(t) gets higher than
the capacitor voltage, the latter follows y(t). When y(t) drops below the voltage of
the capacitor, the diode switches off and the capacitor discharges through the re-
sistor with time constant = RC. The resulting signal w(t) is shown in Figure 16.7.



The envelope detector circuit is normally followed by a lowpass filter to get rid
of the components at frequencies around the carrier frequency. This would smooth
out the jagged graph of signal w(t) in Figure 16.7.

Example 16.1: Let us design an envelope detector to demodulate the AM 
signal:

(16.22)

The output voltage of the detector, going from one peak at voltage v1 to the
next when it intersects the modulated carrier at voltage v2 after approximately one
period T = 1 μs of the carrier, is given by:

(16.23)

Since the time constant = RC of the detector should be large with respect to
T = 1 μs we can use a first-order approximation of the exponential such that

(16.24)

This is a line of negative slope between the initial voltage v1 and the final
voltage v2 so that

(16.25)
v v
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FIGURE 16.7 Detector output in asynchronous
demodulation of an AM signal.
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This negative slope must be steeper than the maximum negative slope of the

envelope of y(t), denoted as which is obtained as follows.

(16.26)

Taking the worst-case voltage v1 = 0.5, in the sense that must still be
below –100 with this voltage, we must have

(16.27)

Thus, we could take to get RC = 0.001 s.

Remarks:
The envelope detector circuit works best when the modulation index m is
small. This is because large variations in the envelope (negative derivative) for
m close to 1 are “difficult to follow” by the detector since the capacitor dis-
charge rate is fixed. The tradeoff in the choice of the time constant of the de-
tector is that a small time constant is desirable for such fast variations of
negative slope, but on the other hand, a large time constant is desirable to min-
imize the amount of high-frequency ripple on w(t).
A small modulation index m means that a large part of the power transmitted
is “wasted” on the carrier, which makes the system inefficient.
AM radio broadcasting uses sinusoidal AM, and the previous generation of re-
ceivers typically used asynchronous envelope detectors.

((Lecture 65: Single Sideband Amplitude Modulation))
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SINGLE-SIDEBAND AMPLITUDE MODULATION

There is redundancy of information in sinusoidal AM. Two copies of the spectrum
of the original real signal of bandwidth M are shifted to c and – c, each one now
occupying a frequency band of width 2 M. Because bandwidth is a valuable com-
modity, we would like to use the redundancy in the positive and negative frequen-
cies to our advantage.

The idea behind single-sideband AM (SSB-AM) is to keep only one half of the
original spectrum around c and to keep the other half around – c, as shown in Fig-
ure 16.8. The net result is that instead of having a positive-frequency bandwidth of
2 M, the modulated signal uses a bandwidth of M only.
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FIGURE 16.8 Upper and lower single-sideband AM compared
to sinusoidal AM.

We can see from this figure that demodulation will consist of bringing the two
halves of the original spectrum together around = 0.



Generating the Sidebands

One obvious method to generate the upper sidebands is to use an ideal highpass fil-
ter with cutoff frequency c at the output of a sinusoidal AM modulator, as shown
in Figure 16.9.
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FIGURE 16.9 Upper SSB-AM using a highpass filter.

FIGURE 16.10 Lower SSB-AM using a lowpass filter.

FIGURE 16.11 Lower SSB-AM using a phase-shift filter.

Similarly, the lower sidebands can be generated using an ideal lowpass filter
(an ideal bandpass filter would also work) with cutoff frequency c following a
sinusoidal AM modulator (see Figure 16.10).

In practice, these techniques would require quasi-ideal filters with high cutoff
frequencies, which can be difficult to design. Yet another technique to generate
upper or lower sidebands is to use the system in Figure 16.11 with two modulation
operations and a phase-shift filter (this one keeps the lower sidebands).2



The upper path of the block diagram in Figure 16.11 produces the usual dou-
ble-sideband spectrum Y1( j ), while the lower path produces a negative copy of the
upper sidebands in Y2( j ), but keeping the lower sidebands intact. Thus, the sum
of Y1( j ) and Y2( j ) cancels off the upper sidebands and keeps only the lower side-
bands. Note that the perfect phase-shifter, also called a Hilbert transformer, is im-
possible to obtain in practice, but good approximations can be designed.

To understand how the lower path works, let the spectrum of the modulating
signal be decomposed as

(16.28)

where X-( j ) is the component at negative frequencies, and X+( j ) is the compo-
nent at positive frequencies. Then, after filtering x(t) with the phase-shifter H( j ),
we obtain

(16.29)

The spectrum of the sinusoidal carrier is

(16.30)

and that of the modulated signal y2(t) is

(16.31)

Now,

(16.32)

Hence,

(16.33)

is composed of the lower sidebands only.
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Demodulation

Synchronous demodulation is required for SSB-AM/SC (single-sideband ampli-
tude modulation, suppressed carrier). In SSB-AM/WC (single-sideband amplitude
modulation with carrier), synchronous demodulation could be implemented with a
highly selective bandpass filter to recover the carrier. Here it is assumed that the
spectrum of the original signal has no energy around DC. A block diagram of the
demodulator and the signal spectra are shown in Figure 16.12.
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FIGURE 16.12 Demodulation of lower single-sideband
AM signal using a bandpass filter.

Remarks:
High resolution digital TV broadcasting (HDTV) uses a form of SSB-AM for
signal transmission.
Regular sinusoidal AM is often called double-sideband AM (DSB-AM).
A phase-lock loop is sometimes used in the receiver to reproduce the carrier
accurately and use it in a synchronous demodulator. The phase-lock loop is
discussed in the section on angle modulation.



((Lecture 66: Pulse-Train and Pulse Amplitude Modulation))

MODULATION OF A PULSE-TRAIN CARRIER

The carrier signal can be a train of finite rectangular pulses in the modulation 
system shown in Figure 16.13 and characterized by the equation .
Define the rectangular pulse

(16.34)

and the pulse train

(16.35)c t p t nT
n

( ) : ( ).=
=

+

p t
t

( ) :
,
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2
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y t x t c t( ) ( ) ( )=
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FIGURE 16.13 Pulse-train modulation.

Let In the frequency domain, this modulation is quite similar to im-
pulse train sampling, as we can see from Figure 16.14. The only difference is that
the Fourier transform of c(t) in impulse train sampling is an impulse train of con-
stant area, whereas here the areas of the impulses follow the “sinc envelope” of the
Fourier transform P( j ) of the pulse p(t). That is, the impulse areas are the Fourier
series coefficients ak of c(t).

The spectrum of the modulated signal is given by

(16.36)

where
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The replicated spectra do not overlap in Y( j ) if the sampling theorem is 
satisfied, that is, if The original modulating signal x(t) can then be
recovered by lowpass filtering. Note that bandpass filtering around would
produce a DSB-AM spectrum.

What is pulse-train modulation used for? It is used in time-division multiplex-
ing, which will be studied later.

PULSE-AMPLITUDE MODULATION

We have seen that pulse-train modulation basically corresponds to time-slicing of the
signal x(t). Based on the sampling theorem, it should be sufficient to use only one
sampled value of the signal x(nT) rather than its whole continuous range of values
over the pulse duration. This type of modulation is called pulse-amplitude modula-
tion (PAM). The analysis is different from pulse-;train modulation: rather than ob-
taining scaled, undistorted copies of the original spectrum in the modulated signal
y(t), PAM creates some distortion in the spectral replicas in Y( j ). This distortion
comes from the zero-order-hold (ZOH)–like operation as shown in Figure 16.15.

The frequency response H0( j ) of h0(t) is given by

(16.38)

and the spectrum Y( j ) shown in Figure 16.16 is given by
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FIGURE 16.14 Pulse-train modulation in the frequency domain.



The distortion caused by the sinc frequency response H0( j ) can be substan-
tially decreased by using narrow pulses, that is, choosing small (although this
may lead to a low signal-to-noise power ratio), and by using an inverse filter

before lowpass filtering at the receiving end.
On the other hand, pulse-amplitude modulation is often demodulated by a

CT/DT sampling operator at the receiver to create a discrete-time signal, which au-
tomatically resolves the distortion problem.

H j H j
1 0

1( ) ( )
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FIGURE 16.15 Pulse-amplitude modulation.

FIGURE 16.16 Pulse-amplitude modulation in the frequency domain.
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Intersymbol Interference in PAM Systems

PAM systems are time-domain based. The transmission of a PAM signal over a
real communication channel is not easy. For example, let us consider a finite-band-
width communication channel with a frequency response similar to a first-order
system. The amplitude modulated pulses will get distorted and delayed through the
channel, to the point where each pulse gets “smeared” in time and interferes with
its neighbors. This is called intersymbol interference.

Example 16.2: A PAM signal representing signal samples x(nT) = 1 with T = 1,
= 0.3 is transmitted through a first-order channel with frequency response

. The pulses at the output of the channel are plotted in Figure
16.17, where we can see that each received pulse has an effect on the next ones.

j. +
1

0 2 1H j
ch

( ) =

FIGURE 16.17 Transmission of a PAM signal
through a first-order channel.

If the intersymbol interference is only due to the limited bandwidth of the
channel, for example,

(16.40)

then one way to get rid of it is to use a bandlimited pulse, for example, a sinc pulse:
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so that the pulse is transmitted undistorted since

(16.42)

and we assume that One potential problem with this strategy is that the

sinc pulse is of infinite duration. However, p(t) has zero crossings at each sampling
instant so that only the contribution of the current pulse is sampled at the receiver.
Obviously, the CT/DT operation at the receiver must be very well synchronized to
sample y(t) at the right time.

This may not be obvious, but with the ideal sinc pulse p(t), the PAM signal is
equal to x(t) (refer back to Figure 15.9). One might as well transmit the signal x(t)
directly. The main benefit of using sinc pulses is for time-division multiplexing
(TDM), where many signals are pulse-amplitude modulated and multiplexed for
transmission over a single channel. Then it is crucial to separate the pulses at the
sampling instants; otherwise a phenomenon called crosstalk can occur. An exam-
ple of crosstalk is when one is having a conversation on the phone and suddenly
hears in the background someone else’s voice on a different call.

((Lecture 67: Frequency-Division and Time-Division Multiplexing; Angle Modulation))

TIME-DIVISION MULTIPLEXING

TDM is used to transmit more than one pulse-amplitude modulated signal over a
single channel. TDM can be represented as a rotating switch connecting each sig-
nal to the channel for a brief period of time, as shown in Figure 16.18.
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FIGURE 16.18 Time-division multiplexing of two signals.
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As mentioned before, it is crucial to avoid intersample interference in such a
system when y(t) is transmitted over a communication channel. Intersample inter-
ference occurs in bandlimited channels (even with flat frequency responses). The
use of sinc pulses, or other types of bandlimited pulses with zero crossings at the
sampling instants, can greatly reduce intersample interference.

Demodulation

The ideal demodulator for TDM in Figure 16.19 is composed of impulse train
samplers synchronized with each PAM subsignal of y(t) (an operation called 
demultiplexing), followed by ideal lowpass filters to reconstruct the continuous-
time signals.

FIGURE 16.19 Demodulation of a TDM signal.

The structure of the demodulator depends on what format the demultiplexed
signals should take at the receiver. For example, since TDM is often used for dig-
ital communication systems, it might be desirable to generate discrete-time signals
following the demultiplexing operation. In this case a CT/DT operation would re-
place the impulse train samplers and the filters in Figure 16.19. A practical imple-
mentation might use a synchronized analog-to-digital (A/D) converter sampling
y(t) at the rate of . Demultiplexing is then performed digitally in the
processor.

Non-Ideal Channels

At least three types of distortion can occur when a TDM signal is transmitted over
a realistic (non-ideal) communication channel:

s T= 4



Distortion caused by a finite bandwidth channel: the ideal rectangular pulse has
a spectrum extending to infinite frequencies, and the high-frequency part of the
spectrum cut off by the channel results in a distorted pulse causing intersym-
bol interference. A solution to this problem is to use bandlimited pulses as pre-
viously mentioned.
Distortion caused by a channel with non-flat magnitude or nonlinear phase:
this can distort the pulse so that its amplitude is changed and can also cause in-
tersymbol interference. Channel equalization at the receiver using an equalizer
can improve this situation.
Distortion caused by additive noise: this situation can be improved by filtering
if the power spectral density of the noise is outside of the bandwith of the TDM
signal (using bandlimited pulses). If the noise cannot be filtered out, then
pulse-code modulation (PCM) can be used if it is acceptable to quantize the
amplitude of the original PAM signals to be transmitted. Suppose that the sig-
nal amplitudes are quantized using 8 bits (256 values); then each of the 8 bits
can be transmitted successively. In this case, the transmitted voltage pulses
would represent either a 0 (e.g., 0 V) or a 1 (e.g., 10 V), and it should be easy
to decide at the receiver whether it was a 0 or a 1 being transmitted, even in the
presence of significant additive noise.

FREQUENCY-DIVISION MULTIPLEXING

Frequency-division multiplexing (FDM) is used to transmit more than one ampli-
tude modulated (or frequency modulated) signal over a single channel. Note that
FDM and TDM are dual modes of communication: TDM multiplexes and demul-
tiplexes signals in the time domain using PAM and sampling at the receiver,
whereas FDM does the same thing in the frequency domain with AM (or FM),
bandpass filters, and demodulation.

An FDM system for DSB-AM/SC signals is shown in Figure 16.20.
The individual input signals are allocated distinct segments of the frequency

band. To recover the individual channels in the demultiplexing process requires
two steps (see Figure 16.21):

1. Bandpass filtering to extract the modulated signal of interest in the band 

2. Synchronous or asynchronous demodulation to recover the original signal

ci M ci M+,
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In a simple AM radio receiver such as the one in Figure 16.22, there is only one
bandpass filter at a fixed intermediate frequency IF. Two copies of the spectrum
of the received FDM signal w(t) are shifted to ci + IF and to – ci – IF so that the
spectrum of the desired radio station is aligned with the bandpass filter. This
process is called the superheterodyne receiver. It avoids the use of a complex, ex-
pensive tunable bandpass filter. An envelope detector (or a synchronous demodu-
lator) does the rest.

Note that the envelope detector also does not have to be tunable. Rather, it is
designed to be optimal for the intermediate frequency. Also note that in practice
there would normally be a coarse tunable filter applied on w(t) before the super-
heterodyning operation to remove the possibility of spectral overlaps.

FIGURE 16.20 Frequency-division multiplexing of two signals.

FIGURE 16.21 Demultiplexing and demodulation of an FDM signal.



For the above example with two signals (radio stations) and the tuner set to re-
ceive station 1, the spectra would be as shown in Figure 16.23.
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FIGURE 16.22 Superheterodyne AM receiver.

FIGURE 16.23 Tuning the superheterodyne AM receiver to receive signal 1.

ANGLE MODULATION

Instead of modulating the amplitude of the carrier, it is often preferable to modu-
late its frequency or phase. This section is a brief overview of angle modulation,
encompassing these two techniques. Define the instantaneous frequency i(t) as
the derivative of the angle of the carrier c t t( ) cos( ( )).=



(16.43)

The integral form is

(16.44)

In amplitude modulation, we have and Note that angle
modulation is difficult to analyze in the frequency domain, so this is outside of the
scope of this book.

Frequency Modulation

In frequency modulation, the instantaneous modulation frequency is set to

(16.45)

so that

(16.46)

and the frequency modulated signal is given by

(16.47)

Note that its amplitude is constant.

Phase Modulation

In phase modulation, the angle is set to

(16.48)

and the phase modulated signal is given by
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Demodulation of FM Signals: The Discriminator and the Phase-Lock Loop

Demodulation of angle-modulated signals can be carried out using a discrimi-
nator, which is composed of a differentiator followed by an envelope detector, as
shown in Figure 16.24.
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FIGURE 16.24 Discriminator for demodulation of
FM signals.

At the output of the differentiator, signal w(t) = –A[ c + k f x(t)]

is essentially an AM signal because the frequency of the FM

“sine” wave (acting as a carrier) is much higher than the bandwidth of the modu-
lating signal. Therefore, an envelope detector will generate z(t) A[ c + k f x(t)], a
scaled version of the modulating signal.

Demodulation of angle-modulated signals can also be carried out more effi-
ciently using a system called a phase-lock loop (PLL). This is a feedback control
system that tracks the frequency of the modulated signal by reducing the phase
error between the modulated signal and a sinusoid generated by a local oscillator.
A block diagram of a typical phase-lock loop is shown in Figure 16.25.

t k x dc f

t

( )+sin

FIGURE 16.25 Phase-lock loop.

The voltage controlled oscillator (VCO) outputs a sine wave with a fre-
quency proportional to its input voltage. If this frequency is below the frequency of
the FM signal, the phase difference between y(t) and will increase linearly,
causing the output of the controller to increase the VCO frequency until it “locks”
on the FM signal’s frequency.

y t( )

y t( )
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Let us analyze a basic implementation of the phase-lock loop. An important as-
sumption is that the frequencies, and furthermore the angles, of the modulated sig-
nal and the sinusoid at the output of the VCO are very close. The phase comparator
can be implemented by multiplying the signals y(t) and .

(16.50)

To first order, the first term is proportional to the phase difference. The second
term is at twice the carrier frequency and can easily be removed by a lowpass fil-
ter (with a gain of –1 to get negative feedback.) The resulting phase error signal is
then:

(16.51)

A block diagram of the phase comparator is shown in Figure 16.26.
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FIGURE 16.26 Phase comparator.

The PLL is in phase lock when the error is equal to zero, that is, when

In this case, the instantaneous frequency of the output 

of the VCO is given by

(16.52)
VCO c c f

d

dt
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Generally, a VCO produces an instantaneous frequency that is proportional to
its input voltage, which we denoted as Here, we assume that for a zero input
voltage, the VCO oscillates at frequency c.

(16.53)

Therefore, the phase of the VCO is the integral of its input voltage:

(16.54)

The PLL can now be analyzed as a linear time-invariant (LTI) feedback con-
trol system with the block diagram in Figure 16.27, where the controller block is
an LTI controller with transfer function K(s), and its output is the signal that
should be proportional to the message signal x(t).
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FIGURE 16.27 LTI feedback control model of PLL.

Recall from Chapter 11 that the closed-loop transmission of this feedback
tracking system can be computed as follows:

(16.55)

Assuming that K(s) = k is a pure gain controller, we obtain what is called a PLL
of order 1, whose transmission is
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The DC gain of this closed-loop transfer function is 1, which represents near-
perfect tracking of the phase of the FM signal when it changes slowly. The magni-
tude of the Bode plot of T(s) stays close to 1 (0 dB) up until the break frequency

This frequency must be made higher than the bandwidth of the refer-
ence signal, which is essentially the bandwidth of the message signal (modulo the

effect of integration), by selecting the controller gain k appropriately. Also
recall that the linear approximation of the sine function of the phase error holds for
small angles only. This is another important consideration to keep in mind in the
design of K(s), as the PLL could “unlock” if the error becomes too large.

Finally, the message-bearing signal of interest in the PLL is the output of the
controller, which is given by

(16.57)

Thus, signal is a filtered version of where the deriva-

tive comes from the numerator s, but the effect of the first-order lowpass filter
can be neglected if the controller gain k is chosen high enough, which

pushes the cutoff frequency outside of the bandwidth of the message
signal. Therefore, with a large controller gain, the first-order PLL effectively de-
modulates the FM signal by giving the voltage signal:

(16.58)

SUMMARY

This chapter was a brief introduction to the theory of communication systems.

Amplitude modulation of a message signal is obtained by multiplying the sig-
nal with a sinusoidal carrier. This shifts the spectrum of the message and re-
centers it around the carrier frequency. The AM signal can be demodulated by
a synchronous demodulator whose frequency must be made equal to the carrier
frequency, or by a simpler asynchronous demodulator essentially consisting of
an envelope detector.
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Many AM signals can be transmitted over the same channel using frequency
division multiplexing.
We discussed pulse-train modulation and pulse-amplitude modulation for
transmitting sampled signals. Time-division multiplexing can be used to trans-
mit many PAM signals at the same time, but intersymbol interference can be-
come a problem if the pulses are not sufficiently bandlimited.
Angle modulation was discussed with an emphasis on frequency modulation.
The basic discriminator and phase-lock loop were analyzed as two possible de-
modulators of FM signals.

TO PROBE FURTHER

For a more complete introduction to communication systems, see Roden, 1995 and
Haykin, 2000.

EXERCISES

Exercises with Solutions

Exercise 16.1

Consider the DSB-AM/WC signal:

where the periodic modulating signal is 

(a) Sketch the modulating signal x(t) and the spectrum of the modulated 
signal Y( j ).

Answer:
The modulating signal x(t) sketched in Figure 16.28 is a full-wave rectified sine
wave.

x t t( ) sin( ) .= 1000

y t x t t( ) [ . ( )]cos( ),= +1 0 2 2 105
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Let T1 = 0.001 be the fundamental period of the signal x(t), let be

its fundamental frequency, and be the fundamental frequency
of sin(1000 t). The spectrum of the modulated signal is obtained by first comput-
ing the Fourier series coefficients of the message signal:

Thus, the spectrum X( j ) is given by
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FIGURE 16.28 Modulating signal of Exercise 16.1. 
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and the spectrum of the modulated signal is found to be

This spectrum is sketched in Figure 16.29.
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FIGURE 16.29 Spectrum of modulated signal of Exercise 16.1.

(b) Design an envelope detector to demodulate the AM signal. That is, draw a
circuit diagram of the envelope detector and compute the values of the cir-
cuit components. Justify all of your approximations and assumptions. Pro-
vide rough sketches of the carrier signal, the modulated signal, and the
signal at the output of the detector. What is the modulation index m of the
AM signal?

Answer:
An envelope detector can be implemented with the simple RC circuit with a diode
shown in Figure 16.30.

FIGURE 16.30 Envelope detector
in Exercise 16.1.



The output voltage of the detector, when it goes from one peak at voltage v1 to
the next when it intersects the modulated carrier at voltage v2 after approximately

one period T = 10 μs of the carrier, is given by Since the time con-

stant of the detector should be large with respect to T = 10 μs, we can use
a first-order approximation of the exponential such that This is

a line of negative slope between the initial voltage v1 and the final voltage
v2 so that

This slope must be “more negative” than the maximum negative slope of the
envelope of v1; thus we have to solve the following minimization problem:

Taking the worst-case v1 = 1, we must have

We could take R = 1 k , C = 1 μF to get RC = 0.001s.
Let K be the maximum amplitude of 0.2x(t), that is, and let

A = 1. The modulation index m is computed as 

Exercise 16.2
The system shown in Figure 16.31 demodulates the noisy modulated continuous-
time signal composed of the sum of

Signal y(t) which is a lower SSB-AM/SC of x(t) (assume a magnitude of half
that of X( j ))
A noise signal n(t)

y t y t n tn ( ) ( ) ( )= +

m K A= = 0 2. .
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The carrier signal is where rad/s. The antialiasing
filter is a perfect unity-gain lowpass filter with cutoff frequency a.

The modulating signal x(t) has a triangular spectrum X( j ) as shown in Figure
16.32. The spectrum N( j ) of the noise signal is also shown in Figure 16.32.

H ja ( )
c = 100000cos( ),ct
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FIGURE 16.31 Discrete-time SSB-AM demodulator in Exercise 16.2.

FIGURE 16.32 Fourier transforms of signal and noise in Exercise 16.2.

(a) Find the minimum antialiasing filter’s cutoff frequency a that will avoid
any unrepairable distortion of the modulated signals due to the additive
noise n(t). Sketch the spectra Yn( j ) and W( j ) of signals yn(t) and w(t)
for the frequency a that you found. Indicate the important frequencies and
magnitudes on your sketch.

Answer:
Minimum cutoff frequency of antialiasing filter: The spectra
Yn( j ) and W( j ) are sketched in Figure 16.33.

a = 100 000, rad/s



(b) Find the minimum sampling frequency and its corresponding
sampling period Ts that would allow perfect reconstruction of the modu-
lated signal. Give the corresponding cutoff frequency 1 of the perfect
unity-gain lowpass filter and the demodulation frequency c. (What does
the discrete-time synchronous demodulation amount to here?) Using these
frequencies, sketch the spectra 

Answer:
Sampling frequency: 

Demodulation frequency: c = . The synchronous demodulation amounts to
multiplying the signal by (–1)n.

Cutoff frequencies: The DTFTs 

are shown in Figure 16.34.X ed
j( )

W e V ed
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d
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FIGURE 16.33 Fourier transforms of signal and noise in Exercise 16.2.

FIGURE 16.34 Fourier transforms of signal and noise in Exercise 16.2.
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Exercise 16.3

You have to design an upper SSB amplitude modulator in discrete-time as an im-
plementation of the continuous-time modulator shown in Figure 16.35.

FIGURE 16.35 Continuous-time and discrete-time upper SSB-AM 
modulators of Exercise 16.3.

The modulating signal has the Fourier transform shown in Figure 16.36, and
the carrier frequency is rad/s (1 MHz).c

= 2 000 000, ,

FIGURE 16.36 Spectrum of the
message signal in Exercise 16.3.
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Design the modulation system (with ideal components) for the slowest possi-
ble sampling rate. Find an expression for the ideal discrete-time phase shift filter

and compute its impulse response hd[n]. Explain how you could imple-
ment an approximation to this ideal filter and describe modifications to the overall
system so that it would work in practice.

Answer:
First, the ideal phase-shift filter should have the following frequency response:

The inverse Fourier transform yields

To compute the slowest sampling frequency, we start from the desired upper
SSB-AM signal at the output, whose bandwidth is which
should correspond to the highest discrete-time frequency = . Thus, we can

compute the sampling period from the relationship which

yields 
This system could be implemented in practice using an FIR approximation to

the ideal phase-shift filter. Starting from hd[n], a windowed impulse response of
length M + 1 time-delayed by M / 2 to make it causal would work. However, the re-
sulting delay of M / 2 samples introduced in the lower path of the modulator should
be balanced out by the introduction of an equivalent delay block z –M/2 in the upper
path.

Exercises

Exercise 16.4

The superheterodyne receiver in Figure 16.22 consists of taking the product of the
AM radio signal with a carrier whose frequency is tuned by a variable-frequency
oscillator. Then, the resulting signal is filtered by a fixed bandpass filter centered
at the intermediate frequency (IF) IF. The goal is to have a fixed high-quality fil-
ter, which is cheaper than a high-quality tunable filter. The output of the IF band-
pass filter is then demodulated with an oscillator at constant frequency to tune in
to your favorite radio station. Suppose that the input signal is an AM wave of
bandwidth 10 kHz and carrier frequency c that may lie anywhere in the range
0.535 MHz to 1.605 MHz (typical of AM radio broadcasting). Find the range of

T s= ×4 99 10 7. .
T

T
M

= = ,

M
= 2 004 000, , ,

h n H e e d
nd d

j j n n[ ] ( ) [ ( ) ].= =
1

2

1
1 1

H e
j

jd
j( )

,

,
.=

< <
< <

0

0

H e
d

j( )



tuning that must be provided in the local oscillator VCO in order to achieve this 
requirement.

Exercise 16.5

In the operation of the superheterodyne receiver in Figure 16.22, it should be clear
from Figure 16.23 that even though the receiver is tuned in to station 1, the “ghost”
spectrum of a radio station at a carrier frequency higher than c1 could appear in
the passband of the IF bandpass filter if an additional filter is not implemented. De-
termine that ghost carrier frequency.

Answer:

Exercise 16.6

Design an envelope detector to demodulate the AM signal

where x(t) is the periodic modulating signal shown in Figure 16.37. That is, draw
a circuit diagram of the envelope detector and compute the values of the circuit
components. Justify all of your approximations and assumptions. Provide rough
sketches of the carrier signal, the modulated signal, and the signal at the output of
the detector. What is the modulation index m of the AM signal?

y t x t t( ) [ . ( )]cos( ),= +1 0 4 2 103
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FIGURE 16.37 Modulating signal in Exercise 16.6.

Exercise 16.7

The sampled-data system shown in Figure 16.38 provides amplitude modulation of

the continuous-time signal x(t). The impulse train signal is p n n kN
k

[ ] [ ].=
=

+
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FIGURE 16.38 Modulation system in Exercise 16.7.

The antialiasing filter Ha( j ) is an ideal unity-gain lowpass filter with cutoff 
frequency a, and the perfect discrete-time highpass filter has gain N
(which is also the period of p[n]) and cutoff frequency 

The modulating (or message) signal x(t) has spectrum X( j ) as shown in Fig-
ure 16.39. The spectrum of the noise signal N( j ) is also shown in the figure.

1
0 6= . .
H ehp

j( )

FIGURE 16.39 Fourier transforms of signal and noise in Exercise 16.5.

(a) Find the minimum antialiasing filter’s cutoff frequency a that will avoid
any unrepairable distortion of the signal x(t) due to the additive noise n(t).
Sketch the spectra Xn( j ) and W( j ) of signals xn(t) and w(t) for the fre-
quency a that you found. Indicate the important frequencies and magni-
tudes on your sketches.

(b) Find the minimum sampling frequency and its corresponding

sampling period Ts that would allow amplitude modulation of the signal
x(t) at a carrier frequency of Find the corresponding
discrete-time sampling period N of p[n] for the system to work. Using
these frequencies, sketch the spectra and Y( j ).W e V e Y ed

j
d

j
d

j( ), ( ), ( )

c
= 8000  rad/s.

s
sT

= 2



Answer:

Exercise 16.8

The system shown in Figure 16.40 is a lower single-sideband, suppressed-carrier
AM modulator implemented in discrete time. The message signal x(t) is corrupted
by an additive noise n(t): xn(t) = x(t) + n(t) before sampling. We want the modula-
tor to operate at a carrier frequency (1 MHz).c = ×2 106  rad/s
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FIGURE 16.40 Discrete-time SSB modulator of Exercise 16.8.

The antialiasing filter Ha( j ) is a perfect unity-gain lowpass filter with cutoff
frequency a. The antialiased signal w(t) is first converted to a discrete-time signal
wd[n] via the CT/DT operator. Signal wd[n] is modulated with frequency c and 
bandpass filtered by to create the lower sidebands. Finally, the DT/CT
operator produces the continuous-time lower SSB/SC AM signal y(t).

The Fourier transforms of the modulating signal x(t) and the noise X( j ) and
N( j ) are shown in Figure 16.41.

(a) The antialiasing filter’s cutoff frequency is given as Sketch
the spectra Xn( j ) and W( j ) of signals xn(t) and w(t). Indicate the im-
portant frequencies and magnitudes on your sketch.

(b) Find the minimum sampling frequency s and corresponding sampling
period Ts that will produce the required modulated signal. Find the dis-
crete-time modulation frequency c that will result in a continuous-time
carrier frequency Give the cutoff frequencies 1 < 2

of the bandpass filter to obtain a lower SSB-AM/SC signal. Using these
frequencies, sketch the spectra and Y( j ).W e V e Y ed

j
d

j
d

j( ), ( ), ( )

c = ×2 106  rad/s.

a = 3000 .

H ebp
j( )



Exercise 16.9

A DSB/SC AM signal y(t) is generated with a carrier signal 
Suppose that the oscillator of the synchronous AM demodulator at the receiver in
Figure 16.42 is slightly off:

c t trec c( ) cos(( ) ).= +

c t ttransm c( ) cos( ).=
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FIGURE 16.41 Fourier transforms of signal and noise in Exercise 16.8.

FIGURE 16.42 Synchronous demodulator
at the receiver in Exercise 16.9.

(a) Denoting the modulating signal as x(t), write the expression for w(t), and
for z(t) after perfect unity-magnitude lowpass filtering with cutoff at c.

(b) Let rad/s. Plot z(t) for the modulating signal

Answer:

x t t( ) sin( ).= 20000
c = =2 10 2 106 3,
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System Discretization and
Discrete-Time LTI 
State-Space Models

17
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Zero-State and Zero-Input Responses of a Discrete-Time 
State-Space System
z-Transform Solution of Discrete-Time State-Space Systems
Discretization of Continuous-Time Systems
Summary
To Probe Further
Exercises

((Lecture 68: State Models of LTI Difference Systems))

In this last chapter, causal discrete-time state-space models of linear time-in-
variant (LTI) systems are introduced mainly as a means of providing methods
to discretize continuous-time LTI systems. The topic of system discretization is

an important one for at least two reasons. First, engineers often need to simulate the
behavior of continuous-time systems, and analytical solutions can be very difficult
to obtain for systems of order three or more. Second, many filter design and con-
troller design techniques have been developed in continuous time. Discretizing the
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resulting system often yields a sampled-data implementation that performs just as
well as the intended continuous-time design.

Of course, discrete-time LTI (DLTI) state-space models are of interest in their
own right, particularly in advanced multivariable discrete-time filter design and
controller design techniques, which are beyond the scope of this textbook. An im-
portant word on notation before we move on: for discrete-time state-space systems,
the input signal is conventionally written as u[n] (not to be confused with the unit
step) instead of x[n], as the latter is used for the vector of state variables. Hence, in
this chapter we will use q[n] to denote the unit step signal.

CONTROLLABLE CANONICAL FORM

In general, an Nth-order linear constant-coefficient causal difference equation with
M ≤ N has the form

, (17.1)

which can be expanded into

(17.2)

Just like the continuous-time case, we can derive a state-space model for this
system by first finding its controllable canonical form (direct form) realization. We
take the intermediate variable w[n] and its successive delayed versions as
state variables. Let without loss of generality. Taking the z-transform  on
both sides of the difference Equation 17.1, we obtain the transfer function (with re-
gion of convergence [ROC] the exterior of a disk of radius equal to the magnitude
of the outermost pole):

(17.3)
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A direct form can be obtained by considering the transfer function H (z) as a
cascade of two subsystems as shown in Figure 17.1.

The input-output system equation of the first subsystem is

(17.4)

For the second subsystem we have

(17.5)

The direct form realization is shown in Figure 17.2, where it is assumed that
M = N without loss of generality. 
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FIGURE 17.1 Discrete-time transfer function as cascade of two LTI systems.

FIGURE 17.2 Direct form realization of a discrete-time transfer function.



620 Fundamentals of Signals and Systems

From this block diagram, define the state variables as follows.

(17.6)

The state equations on the right can be rewritten in vector form:

(17.7)

Let the state vector (or state) be defined as

(17.8)

Then the state equation (Equation 17.7) can be written as

(17.9)

From the block diagram in Figure 17.2, the output equation relating the output
y[n] to the state vector can be written as follows.

(17.10)y n b a b b a b b a b

C

N N N N[ ] = 0 1 1 0 1 1 0

� ���������� ��������� �x n b

D

u n

Cx n Du n

[ ] [ ]

[ ] [ ]

+

= +

0

x n Ax n Bu n[ ] [ ] [ ]+ = +1

x n

x n

x n

x n

x n
N

N

[ ] :

[ ]

[ ]

[ ]

[ ]

=

1

2

1

� .

x n

x n

x n

x n
N

N

1

2

1

1

1

1

1

[ ]

[ ]

[ ]

[ ]

+

+

+

+

� =

0 1 0 0

0 0 0 0

0 0 0 1

1 2 1




� � �


a a a aN N

A

x n

x n

xN

� ������ ������

�

1

2

1

[ ]

[ ]

[nn

x nN

]

[ ]

+

0

0

0

1

�

B

u n

�

[ ].

X z z W z x n x n

X z z W z

N

N

1 1 2

2
1

1( ) : ( ) [ ] [ ]

( ) : ( )

= + =

= + xx n x n

X z z W z x n xN n

2 3

1
2

1

1

1

[ ] [ ]

( ) : ( ) [ ]

+ =

= + =
� �

NN

N N N N

n

X z z W z x n a x n a x

[ ]

( ) : ( ) [ ] [ ] [= + =1
1 2 11 nn a x n u nN] [ ] [ ]+
 1

xi i

N{ } =1



If H(z) is strictly proper as a rational function of z, that is, the order of the nu-
merator is less than the order of the denominator, then the output equation becomes

(17.11)

Note that the input has no direct path to the output in this case, as 

OBSERVABLE CANONICAL FORM

We now derive an observable canonical state-space realization for the system of
Equation 17.1. Assume without loss of generality that M = N. First, let us rewrite
the transfer function H(z) of Equation 17.3 for convenience:

(17.12)

Then, the input-output relationship between U(z) and Y(z) can be written as

(17.13)

The block diagram of Figure 17.3 for the observable canonical form consists of
a chain of N unit delays with a summing junction at the input of each.
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FIGURE 17.3 Observable canonical form realization of a discrete-time transfer
function.



The state variables are defined as the outputs of the unit delays, which gives us:

(17.14)

The state equations on the right can be rewritten in vector form:

(17.15)

Again this state equation can be written as in Equation 17.9. From the block di-
agram in Figure 17.3, the output equation relating the output y[n] to the state vec-
tor can be written as follows.

(17.16)

((Lecture 69: Zero-State and Zero-Input Responses of Discrete-Time State 
Models))

ZERO-STATE AND ZERO-INPUT RESPONSES OF A DISCRETE-
TIME STATE-SPACE SYSTEM

Recall that the response of a causal LTI difference system with nonzero initial 
conditions is composed of a zero-state response due to the input signal only and a
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zero-input response due to the initial conditions only. For a discrete-time state-
space system, the initial conditions are captured in the initial state x[0].

Zero-Input Response

The zero-input response of a state-space system is the response to a nonzero initial
state only. Consider the following general state-space system:

(17.17)

where (the values, not the signals) and 
with initial state and input

Let the unit step signal be denoted as A solution can be readily ob-
tained recursively:

(17.18)

Hence, the zero-input response is and the corresponding
state response is 

Zero-State Response

The zero-state response is the response of the system to the input only (zero
initial conditions). A recursive solution yields
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(17.19)

These last two equations look like convolutions, and indeed they are. The 
impulse response of the state-space system of Equation 17.17 is obtained by setting

with a zero initial state.

(17.20)

The recursive solution for the impulse response yields

(17.21)
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Thus, the impulse response of the system is given by

(17.22)

State-space systems are not different from other LTI systems, in that the zero-
state response of an LTI state-space system is the convolution of the impulse re-
sponse with the input. Assume that the input is zero at negative times, then

(17.23)

This last expression for the zero-state response is the same as the last equality
in Equation 17.19. Finally, the overall response of a causal DLTI state-space sys-
tem is the combination of the zero-state and the zero-input response:

(17.24)

Z-TRANSFORM SOLUTION OF DISCRETE-TIME 
STATE-SPACE SYSTEMS

Consider the general LTI discrete-time state-space system:

(17.25)

where and 
with initial state Taking the unilateral z-transform on both sides of Equa-
tion 17.25, we obtain
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(17.26)

Solving for the z-transform of the state in Equation 17.26, we get

(17.27)

and the z-transform of the output is

(17.28)

The first term on the right-hand side of Equation 17.28 is the z-transform of the
zero-state response of the system to the input whereas the second term is the
z-transform of the zero-input response. Thus, the transfer function of the system is
given by:

(17.29)

Note that we have not specified an ROC yet. First, we need a result relating the
eigenvalues of matrix A to the poles of the transfer function.

Bounded-Input Bounded-Output Stability

Minimal state-space realizations are realizations for which all N eigenvalues of A
appear as poles in the transfer function given by Equation 17.29 with their multi-
plicity. In other words, minimal state-space realizations are those realizations for
which the order of the transfer function as obtained from Equation 17.29 is the
same as the dimension N of the state.

Fact: For a minimal state-space realization of a system with trans-
fer function H(z) the set of poles of H(z) is equal to the set of eigenvalues of A.

Since we limit our analysis to minimal state-space realizations, this fact yields
the following stability theorem for DLTI state-space systems.

Stability theorem: The minimal causal DLTI state-space system 
where is bounded-input,
bounded-output (BIBO) stable if and only if all eigenvalues of A have a magnitude
less than one. Mathematically: is BIBO stable if and only if 

Furthermore, since the eigenvalues of A are equal to the poles of H(z) the ROC
of the transfer function in Equation 17.29 is the exterior of a disk of radius
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This radius is called the spectral radius of the matrix A, denoted 

as 

We found earlier that the impulse response of the system in Equation 17.25 is
given by Hence, by identification with Equation

17.29, the inverse z-transform of must be 
which is indeed the case. (Show it as an exercise using a power series expansion 

of the matrix function ) That is, we have

(17.30)

Example 17.1: Let us find the transfer function of the causal system described by

(17.31)

First, we compute the eigenvalues of the A matrix to obtain 
Therefore, the spectral radius of the matrix is and the ROC should 
contain (or be equal to it if the realization is found to be minimal). We use
Equation 17.29 to calculate H(z).

(17.32)

The eigenvalues of the A matrix are the same as the poles of the transfer func-
tion, and hence the realization is minimal.
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((Lecture 70: Discretization of Continuous-Time LTI Systems))

DISCRETIZATION OF CONTINUOUS-TIME SYSTEMS

Continuous-time differential systems can be discretized to obtain difference 
equations. This is usually done for simulation purposes, that is, to obtain a numerical
solution of the differential system’s response. In particular, discretization of a 
continuous-time state-space system yields the discrete-time state-
space system 

Discretization Using the Step-Invariant Transformation (c2d operator)

One way to discretize a continuous-time system is to use the step-invariant trans-
formation. It consists of a zero-order-hold (ZOH)–like operator at the input of the
state-space system, which we call DT/ZOH, and a CT/DT operator at its output. A
block diagram of the step-invariant transformation, also known as the c2d opera-
tor, is given in Figure 17.4.

The overall mapping of to the discrete-time state-space system
through the step-invariant transformation is called the c2d opera-

tor in reference to the c2d command in the MATLAB Control Systems Toolbox,
and we can write

(17.33)

The DT/ZOH operator shown in Figure 17.5 is defined as a mapping from a
discrete-time signal to an impulse train (operator consisting of forming a train
of impulses occurring every seconds, with the impulse at time having an area

followed by a ZOH function that holds each value for a period Ts
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The CT/DT operator defined in Chapter 15 is shown in Figure 17.6.

It is easy to see why c2d is a step-invariant transformation in Figure 17.4: the
continuous-time step response y(t) to a step u(t) = q(t) is the same whether the step
is applied in continuous time, u(t) = q(t), or in discrete time, There-
fore, the discrete-time step response will be the sampled continuous-time step 
response: 

Let us have a second look at the matrix exponential It is called the state
transition matrix when it is time shifted to since for the continuous-time system

it takes the state to the state for when the input is
zero:

(17.34)

The state response of the state-space system to be discretized is
given by the combination of the zero-input state response and the zero-state state
response.
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(17.35)

Notice that the input signal u(t) is a “staircase” function, as it is held constant
between sampling instants. Thus, if we take and in Equation
17.35, we can write

(17.36)

where we use the fact that A–1 (assuming it exists) commutes with If
we define the discrete-time state the last equality in Equation 17.36
can be rewritten as a discrete-time state equation as follows, while the output equa-
tion does not change:

(17.37)
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(17.38)

Discretization Using the Bilinear Transformation

The bilinear transformation (also called Tustin’s method) is a mapping from the
Laplace domain to the z-domain via

(17.39)

Example 17.2: Let us discretize the causal first-order lag using

a sampling period of using the bilinear transformation. We have

(17.40)

The DC gain of this discretized system is given by

and hence both systems have the same 

low-frequency gain. In fact, the bilinear transformation provides a very good ap-
proximation to the frequency response of the continuous-time transfer function, at
least up to frequencies close to the Nyquist rate as seen in the Bode plots of-
Figure 17.7.
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Remark: Once a system has been discretized, it must be simulated off-line or
run in real-time at the same sampling frequency as was used in the discretization
process. Otherwise, the poles and zeros migrate and the correspondence with the
original continuous-time system is lost. It is a common mistake to only change the
sampling rate of a sampled-data system while neglecting to replace the discretized
filter with a new one obtained by discretizing again with the new sampling period.

The formula in Equation 17.39 comes from the trapezoidal approximation to
an integral which is s–1 in the Laplace domain.

Suppose we want to approximate the continuous-time integrator system of 
Figure 17.8. Consider the plot of a signal v (t) to be integrated between 
t0 = (n – 1)Ts, t1 = nTs, as shown in Figure 17.9.
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FIGURE 17.7 Bode plots of first-order lag and its bilinear discretization 
up to the Nyquist frequency.



The trapezoidal approximation of the integral system s–1 is given by

(17.41)

which in discrete time can be written as (taking the approximation as an equality)

(17.42)

In the z-domain, the transfer function of this system is given by 

Thus, we have and Equation 17.39 follows.

Now, applying this bilinear transformation to the state equation of our continuous-
time state-space system in the Laplace domain

(17.43)
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we obtain

(17.44)

Note that the following derivation of the formulas in Equation 17.51 is not 
essential. Multiplying Equation 17.44 on both sides by z, we get

(17.45)

In the time domain,

(17.46)

We have to get rid of the last term on the right-hand side in order to obtain the
usual form of a state-space system. That term is a direct path to the state, and hence
to the output In order to do this, let us define the new state

(17.47)
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(17.48)

and the output equation is computed as follows:

(17.49)

Hence, the state-space system discretized using the bilinear transformation is
given by

(17.50)

where

(17.51)

Remark: The MATLAB c2d command with the “tustin” option implements the
bilinear transformation
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(17.52)

with different Bd and Cd matrices from those given in Equation 17.51 but yield-
ing the same transfer function as the state-space realization. Either realization can
be used.

SUMMARY

This chapter introduced discrete-time state-space LTI systems and the discretiza-
tion of continuous-time systems.

Difference LTI systems represented by proper rational transfer functions can
be realized as state-space systems. We gave procedures to compute the con-
trollable and the observable canonical realizations, but just like the continuous-
time case, there exist infinitely many realizations of any given proper rational
transfer function.
We derived the formulas for the zero-input and zero-state responses, the im-
pulse response, and the transfer function of a general discrete-time state-space
system.
A minimal state-space system was shown to be BIBO stable if and only if 
all of the eigenvalues of its A matrix lie in the open unit disk centered at the 
origin.
Two system discretization techniques were derived: the step-invariant trans-
formation, called c2d, and the bilinear transformation.
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TO PROBE FURTHER

Discrete-time state-space systems and discretization are discussed in Chen, 1999.

EXERCISES

Exercises with Solutions

Exercise 17.1

We want to implement a causal continuous-time LTI Butterworth filter of the sec-
ond order as a discrete-time system. The transfer function of the Butterworth

filter is given by , where and 

(a) Find a state-space realization of the Butterworth filter and discretize it with
a sampling frequency 10 times higher than the cutoff frequency of the filter.
Use the bilinear transformation.

Answer:

The controllable canonical state-space realization is given by

and D = 0.
The cutoff frequency of the filter is so we set the sampling

frequency at so that Ts
= 10 4 s.s

= 20000  rad/s,
n
= 2000  rad/s,
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(b) Plot the frequency responses of both the continuous-time and the discrete-
time filters on the same graph up to the Nyquist frequency (half of the sampling
frequency) in radians/second. Discuss the results and how you would imple-
ment this filter.

Answer: The transfer function is computed as

The Bode plots of H(j ) and up to the Nyquist frequency
10,000 rad/s are computed using the following MATLAB program, which is 
located in D:\Chapter17\discretized.m on the companion CD-ROM.

%% Exercise 17.1 discretization of Butterworth filter

% transfer function and CT state-space model

num=[1];

den=[1/(2000*pi)^2 sqrt(2)/(2000*pi) 1];
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C=C*T;

H ebilin
j( ).0 0001

G z C zI A B Dbilin bilin n bilin bilin bilin( ) ( )= +1

== + +
+

0 06396 0 1279 0 06396

1 1 1683 0

1 2

1

. . .

.

z z

z ..
, . .

4241
0 65

2z
z >

A I
T

A I
T

A

I

bilin
s s:= +

= ×

2

1

2

2

2 2

5 100
0 1

4 10 2000 2
5 15

2 6

1

2×
+ ×I 00

0 1

4 10 2000 2
5

2 6×

=
0.8721 0..00006481

=

2559 0 2962

22

.

:B T I
T

bilin s
s AA B

Cbi

=
2

0 00000000513

0 0000379

.

.

llin

bilin
s s

C

D D
T

C I
T

A

: .

:

= = ×

= +

3 948 10 0

2 2

7

2 =
1

B 0.06396

638 Fundamentals of Signals and Systems



H=ss(A,B,C,D);

% bilinear transf

Ts=0.0001

Ab=inv(eye(2)-0.5*Ts*A)*(eye(2)+0.5*Ts*A);

Bb=Ts*inv(eye(2)-0.5*Ts*A)*inv(eye(2)-0.5*Ts*A)*B;

Cb=C;

Db=D+0.5*Ts*C*inv(eye(2)-0.5*Ts*A)*B;

Hb=ss(Ab,Bb,Cb,Db,Ts);

% Frequency response of CT Butterworth and its discretized version

w=logspace(1,log10(10000*pi),200);

w=w(1,1:199);

[MAG,PHASE] = bode(H,w);

[MAGbilin,PHASEbilin] = bode(Hb,w);

figure(1)

semilogx(w,20*log10(MAGbilin(:,:)),w,20*log10(MAG(:,:)))

figure(2)

semilogx(w,PHASEbilin(:,:),w,PHASE(:,:))

The resulting Bode plots are shown in Figure 17.10.

System Discretization and Discrete-Time LTI State-Space Models 639

FIGURE 17.10 Bode plots of second-order Butterworth filter and 
its bilinear discretization up to the Nyquist frequency.
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The filter can be implemented as a second-order recursive difference equation:

(c) Compute and plot on the same graph the first 30 points of the step response
of the Butterworth filter and its discretized version.

Answer: The following MATLAB script (last part of discretized.m, run after
the script given in (b)) computes the continuous-time step response using the lsim
command (which internally uses a c2d discretization) with a sampling period 10
times shorter than Ts.

% Step responses

figure(3)

t=[0:0.00001:.00299]; % time vector to plot step resp of CT system

[y,ts,x]=lsim(H,ones(1,300),t);

plot(ts,y)

hold on

[yb,tsb,xb]=lsim(Hb,ones(1,30));

plot(tsb,yb,'o')

hold off

The resulting plot is shown in Figure 17.11.

y n y n y n x n[ ] . [ ] . [ ] . [ ]= + +1 1683 1 0 4241 2 0 06396 00 1279 1 0 06396 2. [ ] . [ ].x n x n+

FIGURE 17.11 Step responses of second-order Butterworth filter 
and its bilinear discretization.



Exercise 17.2

Consider the causal DLTI system given by its transfer function

(a) Find the controllable canonical state-space realization of the
system (draw the block diagram and give the realization.) Assess its stability
based on the eigenvalues of A.

Answer: The direct form realization is shown in Figure 17.12.

Controllable canonical state-space realization:

Eigenvalues of A: 0.8,– 0.9 are inside the unit circle, and therefore the system
is stable.
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FIGURE 17.12 Direct form realization in Exercise 17.2.
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(b) Compute the impulse response of the system h[n] by diagonalizing the A
matrix.

Answer: The impulse response of the system h[n] is given by

Exercises

Exercise 17.3

The causal continuous-time LTI system with transfer function is

discretized with a sampling period of for simulation purposes. Use the

c2d transformation first to get then the bilinear transformation to get

Answer:

Exercise 17.4

The causal continuous-time LTI system with transfer function 

is discretized with a sampling period of for simulation purposes. The 
c2d transformation will be used first, and then it will be compared to the bilinear
transformation.

(a) Find a continuous-time state-space realization of the system.

Ts = 0 1.  s

s
s s( )( )+ +1 2

G s( ) =

G zbilin ( ).
G zc d2 ( ),

Ts = 0 01.  s

s. +
1

0 1 1G s( ) =

h n CA Bq n D nn[ ] [ ] [ ]

. .
.

= +

=

1 1

0 72 1 1
0 1

0 72 00 1

0

1
1

0 72 1 1

1

.
[ ] [ ]

. .

+

=

n

q n n

0.7809 0.7433

0.6247 0.6690

0 8 0

0 0 9

.

.

0.7809 0.7433

0.6247 0.6690

1

+

=

n

q n n

1

0

1
1

0 72 1 1

[ ] [ ]

. .
0.77809 0.7433

0.6247 0.6690

0 8 0

0 0 9

1.

( .

n

))n 1

0.7809 0.7433

0.6247 0.6690
+

=

1
0

1
1

0 0941 0 8

q n n[ ] [ ]

[ . .(( ) ( ) +
n n

q n n
1 1

1 0059 0 9 1. . ] [ ] [ ].



(b) Compute the discrete-time state-space system for

G(s) and its associated transfer function specifying its ROC.
(c) Compute the discrete-time state-space system representing the bilinear 

transformation of G(s), and its associated transfer

function specifying its ROC.

(d) Use MATLAB to plot the frequency responses

up to frequency on the same graph, where is the continuous-time
frequency. Use a decibel scale for the magnitude and a log frequency scale
for both magnitude and phase plots. Discuss any difference you observe.

Exercise 17.5

Consider the causal DLTI system specified by its transfer function:

(a) Find the controllable canonical state-space realization of the
system. Assess its stability based on the eigenvalues of A.

(b) Compute the zero-input response of the system for the initial state

by diagonalizing the A matrix.

Answer:

Exercise 17.6

Consider the causal DLTI system with transfer function 

(a) Find the observable canonical state-space realization of the
system. Assess its stability based on the eigenvalues of A.

(b) Compute the zero-input response of the system for the initial state
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Exercise 17.7

Find the controllable canonical state-space realization of the causal LTI system 
defined by the difference equation and
compute its transfer function from the state-space model, specifying its ROC.

Answer:

Exercise 17.8

The causal continuous-time LTI system with transfer function is 

discretized with sampling period for simulation purposes. The c2d
transformation is used first, and then it is compared to the bilinear transformation.

(a) Find a state-space realization of 

(b) Compute the discrete-time state-space system for G(s) using c2d and its as-
sociated transfer function specifying its ROC.

(c) Find the bilinear transformation of G(s), specifying its ROC.
Compute the difference between the two frequency responses obtained 
with c2d and the bilinear transformation; that is, compute

Evaluate this difference at DC and at the
highest discrete-time frequency.
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MATLAB® is a useful and widespread software package developed by The
MathWorks Inc. for numerical computation in engineering and science.
MATLAB is easy to use and can be learned quickly. It comes with very

good manuals. The purpose of this appendix is simply to provide a brief overview
on how to use MATLAB and present some of its capabilities.

In order to perform computations, one can use the command line, or write a
program as a script, called an M-file, in MATLAB’s own language. This language
is well suited to handling large vectors and matrices as single objects. Consider the
following script: 

% Simple matrix-vector computations...

% Define 3x3 matrix A

A=[1 2 3; 4 0 -2; 1 2 -3]

% Define 3x1 vector x

x=[-1; 0; 1]

% Compute eigenvalues and eigenvectors of A

[T,L]=eig(A)

% L is the diagonal matrix of eigenvalues, 

T is the matrix of eigenvectors

% Diagonalize matrix A with T

D=inv(T)*A*T

% Compute the product A.x

y=A*x

Also, mathematical functions can be used on an entire vector or matrix in one
shot. This greatly simplifies the code. For example, the following script plots ten
cycles of a sine wave in only three lines. 

% time vector

t=0:.01:1;y=sin(20*pi*t);

plot(t,y)

Using MATLAB
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The help command tells the user how to use any other command. For instance, 

» help eig

EIG    Eigenvalues and eigenvectors.

E = EIG(X) is a vector containing the eigenvalues of a square 

matrix X.

[V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a

full matrix V whose columns are the corresponding eigenvectors so

that X*V = V*D.

Finally, many people have developed MATLAB toolboxes over the years,
which are collections of functions targeted at specific areas of engineering. For ex-
ample, in this book we use commands from the Control System Toolbox, such as
lsim to simulate the response of LTI systems. 

%simulate state-space LTI system

SYS=ss(A,B,C,D);

[YS,TS,XS] = LSIM(SYS,U,T,x0);

plot(XS(:,1),XS(:,2))
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Notation Meaning Remark

Real numbers

Integers
Complex numbers

j Imaginary number
For every, for all
There exists
Element of
Defined as being equal to 

Factorial,
, CT, DT unit impulse
, CT, DT unit step signal Except for state-space 

systems for which 
, are the inputs,

notably in Chapters 10 
and 17

, CT, DT unit step signal In Chapters 10, 11 and 17
, CT, DT impulse response
, CT, DT step response

(dx/dt)

Undamped natural frequency Second-order systems
Damping ratio Second-order systems
Continuous-time frequency Units of rad/s

, Discrete-time frequency Units of rad
eigenvalue of square 

matrix A
Spectral radius of matrix A

Four-quadrant arctan 
are displayed with their own sign

, �
arctan

( ) : max
, ,

A A
i N i

= ( )
=1…

N N×( )A

ith

i
A( )

n

�x
s n[ ]s t( )
h n[ ]h t( )
q n[ ]q t( )

u n[ ]u t( )

u n[ ]u t( )
[ ]n( )t

0 1!=N N N!: ( )= 1 3 2 1N !
:=

j := 1

�
�
�
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Mathematical Notation and
Useful Formulas

Appendix

B
TABLE B.1 Mathematical Notation
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Formula Remark

Geometric sum

Geometric series

z j re z j re

r z

j j

z

= + = = =

= + = ==

�,

, a2 2 rrctan

cos , sin= =r r

a
a

a ak

k=

+

= <
0

1

1
1, ,�

a
a

a
ak

k

N N

=

+

=
0

11

1
, �

sin( )sin( ) cos( ) cos( )= +
1

2

1

2

sin( )cos( ) sin( ) sin( )= + +
1

2

1

2

cos( )cos( ) cos( ) cos( )= + +
1

2

1

2

e jj = +cos( ) sin( )

sin( ) Im{ }= =
1

2

1

2j
e

j
e ej j j

cos( ) Re{ }= + =
1

2

1

2
e e ej j j

TABLE B.2 Useful Formulas

Various representations of
complex number z and its
conjugate
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CD-ROM FOLDERS

Applets: The Learnware applets

Chapter folders: Solutions to selected problems, MATLAB scripts, and all of
the figures from the book, organized by chapter

Sample exams: Sample midterm and final examinations

The companion CD-ROM to the textbook contains files for

Solutions to odd-numbered problems in each chapter plus sample exams in
PDF format

The detailed solutions to odd-numbered problems at the end of Chapter 
k {1,2,...,17}, are given in the file D:\Chapterk\Chapterkproblems.pdf, where
D: is assumed to be the CD-ROM drive. The sample midterm tests and final
exams are located in D:\Sample Exams\Covering Chapters 1 to 9, and D:\
Sample Exams\Covering Chapters 10 to 17. All of the figures from each chap-
ter can be found as TIFF files in D:\Chapterk\Figures.
Learnware applets (discrete-time convolution, Fourier series, Bode plot)

The discrete-time convolution Java applet allows the user to enter the val-
ues of an input signal and an impulse response and to visualize the convolution
either as a sum of scaled and time-shifted impulse responses or as the sum of
the values of a signal that is the product of the input signal and the time-re-
versed and shifted impulses response. The convolution applet can be run by
pointing a Java-enabled browser to 

D:\Applets\Convolution\SignalGraph\Convolution.html.

The Fourier series Java applet uses an intuitive graphical user interface.
One period of a periodic signal can be drawn using a mouse or a touchpad, and
the applet computes the Fourier series coefficients and displays a truncated

About the CD-ROM
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sum as an approximation to the signal at hand. The convolution applet can be
run by pointing a Java-enabled browser to 

D:\Applets\FourierSeries\FourierApplet.html.

The Bode applet is a Windows executable (.exe) file and can be found at
D:\Applets\BodePlot\Bode.exe. Just double-click on it and you will be able to
build a transfer function by dragging poles and zeros onto a pole-zero plot.
Add a value for the DC gain of the overall transfer function and you will get
the Bode plot showing the actual frequency response of the system together
with its broken line approximation discussed in the text.
MATLAB M-files of selected examples in the text.  

These MATLAB script files, called M-files (with a .m extension) contain
sequences of MATLAB commands  that perform a desired computation for an
example. The selected M-files are located in the Chapterk folders. 

SYSTEM REQUIREMENTS

Minimum: Pentium II PC running Microsoft Windows 98. Microsoft Internet
Explorer 5 or Netscape 7 browser with Java Plug-in 1.4 (www.sun.com). Ac-
robat Reader 5 (www.adobe.com). MATLAB 5.3 with Control System Tool-
box (www.mathworks.com).

Recommended: Pentium 4 PC running Microsoft Windows XP or Windows
2000. Microsoft Internet Explorer 6 or Netscape 7 browser with Java Plug-in
1.4 (www.sun.com). Acrobat Reader 5 (www.adobe.com). MATLAB 6.5 with
Control System toolbox (www.mathworks.com).
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Tables of Transforms

Appendix

D
Time domain x(t) Frequency domain X(j )

TABLE D.1 Fourier Transform Pairs

(Fourier series)



Time domain Frequency domain
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TABLE D.3 Properties of the Fourier Series

Time domain 
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Time domain x(t) Laplace domain X(s)
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TABLE D.5: Properties of the Laplace Transform
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TABLE D.6 Properties of the Unilateral Laplace Transform

Final value theorem

Initial value theorem

Time domain x(t) Laplace domain X(s)
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TABLE D.7 Discrete-Time Fourier Transform Pairs
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Time domain Frequency domain

TABLE D.8: Properties of the Discrete-Time Fourier Transform
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Time domain
x[n], y[n] periodic, fund.

period N, fund. freq.

Frequency domain

TABLE D.9: Properties of the Discrete-Time Fourier Series
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TABLE D.10 z-Transform Pairs

Time domain x[n] z domain X(z)
ROC
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TABLE D.11: Properties of the z-Transform Pairs

Time domain z domain
ROC
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TABLE D.12: Properties of the Unilateral z-Transform
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ROC
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Index

A
active filters and operational amplifier

circuits, 340–343
actuators in feedback control systems, 383
algebra, transfer function, 477
aliasing

and continuous-time signal sampling,
549–552

and discrete-time signal sampling, 560
all-pass systems, 316–319
amplitude modulation (AM)

with complex exponential, sinusoidal
carriers, 578–581

single-sideband (SSB-AM), 587–590
analog filter control and Fourier series

representation, 132
analog-to-digital (A/D) converter, 555
analysis

closed-loop stability, of LTI feedback
control systems, 394–400

of DLTI systems using z-transform,
474–478

of linear time-invariant LTI electrical
circuits, 329

of LTI systems using Laplace trans-
form, 241–243, 272–273

of LTI systems with block diagrams,
264–271

stability, using root locus, 400–404
angle modulation, 599–604
antialiasing filters, 551–552, 614–615
aperiodic signals

energy-density spectrum of, 183
Fourier transform of sawtooth,

187–188
applets, Java Convolution, 59
arrays, Routh, 399–400
associative property

convolution operation, 69
of LTI systems, 76–77

asynchronous demodulation, 583–586

B
bandpass filters

and associative property of LTI
systems, 76–77

ideal, 517–519
beating phenomenon, 583
bel unit described, 290
Bell, Alexander Graham, 290
BIBO stability

See also stability
of differential and difference LTI

systems, 112–116
of LTI systems, 78–79
and LTI systems using Laplace

transform, 241–243
system property, 41–42
and transfer function of LTI system,

262–263
bilateral z-transform, 484–485
bilinear transformation, using for dis-

cretization, 631–635

block diagrams
analysis of LTI differential systems,

264–271
car cruise control system, 265–266
electromechanical feedback control

system (fig.), 385
LTI feedback control system (fig.), 383
realization of rational transfer function,

480–483
representation of DLTI systems, 477
representation of continuous-time

state-space systems, 372–373
system, 35–38

Bode, Hendrik, 316
Bode plots

and frequency response plots, 219
of third-order loop gain (fig.), 412
time and frequency analysis of continu-

ous time TLI systems, 290–296
bounded-input bounded-output. See BIBO
Butterworth filters, 205–207, 306,

637–640

C
c2d operator, 628–631
calculating

convolution integral, 69–74
impulse response of differential,

difference LTI systems, 101–109
capacitors, instantaneous discharge of,

30–32
car cruise control system, 265–267
carriers, Fourier transform of, 182
cars

cruise control system, 265–267
forces acting on, and differential

equations, 93
cascade interconnection, 36, 42
cascade realization, obtaining of transfer

function, 270
cascades of LTI systems, 76
causal LTI systems

described by difference equations,
96–101

described by differential equations,
92–96

causality
of LTI systems, 78, 241
system property, 40–41
of transfer function of LTI system,

261–262
and z-transform, 475

CD-ROM, accompanying this book
folders, system requirements, 649–650
interactive Bode applet, 293, 650
Java Convolution applet, 59

chain rule of impulse, 106
characteristic polynomials

and differential and difference LTI
system stability, 112–116

impulse response of differential LTI
systems, 104

characterization

of DLTI systems using z-transform,
474–478

of LTI systems using Laplace trans-
form, 241–243

circuit analysis
and differential and difference LTI

systems, 91
mesh analysis review, 332–334
nodal analysis review, 330–332

circuits
electrical. See electrical circuits
filter, and LTI controllers, 53
operational amplifier (op-amp),

340–343
transform circuit diagrams, 334–340

closed-loop stability analysis, 394–400
co-domains of continuous-time function, 3
coefficients, Fourier series, 135, 137–139,

142
communicative property

convolution operation, 69, 71
of LTI systems, 74–75, 120

communication systems
angle modulation, 599–604
frequency-division multiplexing,

597–599
introduction to, 577
modulation of a pulse-train carrier,

591–592
pulse-amplitude modulation, 592–595
single-sideband amplitude modulation,

586–590
sinusoidal AM, and complex exponen-

tials, 578–581
sinusoidal AM, demodulation of,

581–586
time-division multiplexing, 595–597

complex exponential signals
amplitude modulation with, 578–579
DTFT of, 445–446
Fourier transform of, 184–187
harmonically related, 17–18

complex harmonics, 18
compression of signals, 5
computations of convolution, 59–66
conjugate symmetry

and DTFS, 434–435
and DTFT, 444
of Fourier transform, 180–181

conjugation
and DTFS, 434–435
and DTFT, 444
of Fourier transform, 180
of periodic signals, and conjugate

symmetry, 141
of two-sided Laplace transform, 238
and unilateral Laplace transform, 245
and z-transform, 467

continuous-time Fourier transform,
175–184

continuous-time LTI systems
convolution integral, 67–74
discretization of, 617–622



relation of transfer function poles and
zeros to frequency response, 286–290

state models of, 351–360
continuous-time signals

complex exponential signals, 12–17
described, 2–3
discrete-time processing of, 552–557
even signals, 23
Fourier series representation pf periodic,

134–137
periodic complex exponentials, 17–19
properties of Fourier series, 139–141
real exponential signals, 9–12
sinusoidal signals, 19
unit step signal (fig.), 27

continuous-time state-space systems
block diagram representation of,

372–373
Laplace transform solution for, 367–370
zero-state, zero-input response of,

361–366
continuous-time systems, discretization of,

628–636
continuous-time to discrete-time operator

(CT/DT), 553
contour integration in the z-plane, 468
contour, Nyquist, 405
control systems, introduction to LTI

feedback, 381–394
controllable canonical form

deriving state-space model from,
352–355, 618–621

described, 271, 269
transfer function, 482

controllers
in feedback control systems, 382–383
naive approach to design, 393–394

convergence
of discrete-time Fourier transform, 439
of Fourier series, 141–148
of Fourier transform, 192
pointwise, 147
region of convergence (ROC), Laplace

transform, 225
of two-sided Laplace transform,

234–235
and z-transform, 464

convolution
and Fourier transform, 181–182
graphical computation of, 59–62
integral, 69–74
integral, continuous-time LTI systems,

54–66
and LTI system properties, 74–80
numerical computation of, 62–66
periodic, of two signals, 433–434
property in LTI system analysis,

192–199
property of two-sided Laplace trans-

form, 238–239
property of unilateral Laplace transform,

245
sum, convolution integral, 62–69
sum, discrete-time LTI systems, 54–66
of two signals, DTFT, 442–443
of two signals, z-domain, 466

critically damped systems, 302
CT/DT (continuous-time to discrete-time)

operator, 553
cycles, duty, 143–144

D
damped

natural frequency, 312
and overdamped systems, 302–305
sinusoidal signals, 13–15, 187

dampening ratio vs. percentage overshoot
(table), 313

DC motors and LTI controllers, 53
decibels

described, 290
gain values expressed in (table), 291

decimation of signals
See also downsampling
described, 5
and impulse train sampling, 559

delay, group, 316
delay systems, ideal, 315
demodulation

of FM signals, 601–604
of sinusoidal AM, 581–586
synchronous, 590
for time-division multiplexing, 595–597

demultiplexing, 598
design

of controllers, 393–394
FIR filters by windowing, 527–531
use of differential and difference LTI

systems in, 91
diagonalizing matrixes, 361
diagrams

Bode plots, 290–296
system block, 35–38
transform circuit, 334–340

difference LTI systems
See also LTI difference systems
definition of, 96–101
impulse response of, 109–112

differential equations describing casual LTI
systems, 91–101

differential LTI systems
See also LTI differential systems
definition of, 92–96
impulse response of, 101–109

differentiation
signals, and Fourier transform, 181
and two-sided Laplace transform, 239
and unilateral Laplace transform, 247
in z-domain, 466

digital filter control and Fourier series
representation, 132

digital-to-analog (D/A) converter, 556
direct form transfer function, 269, 271
Dirichlet conditions and Fourier series

representation, 146
discrete-time

filters, ideal, 510–519
processing of continuous-time signals,

552–557
discrete-time Fourier series (DTFS)

described, 425–430
properties of, 430–435

duality between analysis and synthetic
equations of, 449–450

discrete-time Fourier transform (DTFT)
described, 435–439
geometric evaluation from pole-zero

plot, 498–504
of periodic, and step signals, 445–449
properties of, 439–444
and z-transform, 460, 497–504

discrete-time impulse and step signals,
25–26

discrete-time linear time-invariant systems.
See DLTI systems

discrete-time signals
described, 2–3
complex exponential, sinusoidal signals,

20–21
convolution between, 66
Fourier transforms of aperiodic,

435–439

odd signals, 23
real, complex exponential, 9–17
representing in terms of impulses, 54–57
sampling, 542–546
sampling of, 557–563

discrete-time state-space systems
z-transform solution of, 625–627
zero-state, zero-input responses of,

622–625
discretization. See system discretization
discriminators, 601
distributive property

convolution operation, 69
of LTI systems, 75–76

DLTI (discrete-time linear time-invariant)
systems analysis and characterization
using z-transform, 474–478
convolution sum, 54–66
described, 426

domains
mapped by time functions, 3
time. See time domain

downsampling
described, 5
and DTFT, 441

DTFS. See discrete-time Fourier series
DTFT. See discrete-time Fourier transform

duality
in discrete-time Fourier series, 449–450
and Fourier transform, 191–192

duty cycle described, 143

E
eigenfunctions, eigenvalues of LTI systems,

117–118
electrical circuits

See also circuits
Laplace transform technique application

to, 329–343
electrical engineering, Parseval theorem

applicability, 151
energy-density spectrum

of aperiodic signal, 183
and DTFT, 444

engineering systems described, 2
envelope detectors, 584, 586, 598, 607
equality, Parseval, 150–151
equations

See also specific equations
difference. See difference equations
differential. See differential equations
state, of systems, 351–352
synthesis, 135

error signals in feedback control systems,
382–383

Euler’s relation, 13, 15
even and odd signals, 23–25
expanded signals, 5
expanding periodic discrete-time signals,

425
exponential signals

linear combinations of harmonically
related complex, 132–134

real and complex, 9–17
truncated (fig.), 27

F
feedback control

car cruise control system, 265–266
and Fourier series representation, 132
history of, 381
and rise time, 311
systems described, 382–383

feedback interconnection
described, 37–38
between two LTI systems (fig.), 217
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filter circuits and LTI controllers, 53
filter design and differential and difference

LTI systems, 91
filtering

the Fourier transform and, 202–210
periodic signals with LTI system, 156

filters
active, and operational amplifier cir-

cuits, 340–343
antialiasing, 551–552
Butterworth, 205–207, 306
finite-impulse response (FIR), 521–531
and Fourier series representation, 132
ideal discrete-time, 510–519
infinite impulse response (IIR), 519–521
quality Q of, 305

final-value theorem, 240, 247
finite-energy signals and finite-power

signals, 21–23
finite-impulse response (FIR) filters,

521–531
finite-power and finite-energy signals,

21–23
finite support, signal characteristic, 4
FIR filters, 521–531
first-order 

lag, transfer function of, 296–298
lead, transfer function of, 298–300
systems, frequency analysis of, 504–506

first-order hold (FOH) and signal recon-
struction, 548–549

flatness of filters, maximum, 306
folders, CD-ROM, 649–650
forced response, 94, 98
formulas, mathematical (table), 647–648
Fourier series

coefficients, graph of, 137–139
convergence of, 141–148
definition and properties of, 131–141
discrete-time. See discrete-time Fourier

series
Fourier transform. See Fourier transform
optimality and convergence of, 144–146
of periodic rectangular wave, 141–144
of periodic train of impulses, 148–150
properties of continuous-time, 139–141
representation of, 131–137, 146–148

Fourier transform
of aperiodic discrete-time signals,

435–439
continuous-time, definition and proper-

ties, 175–184
convergence of, 192
discrete-time. See discrete-time Fourier

transform
duality, 191–192
examples of, 184–188
filtering and, 202–210
inverse, 188–191
and Laplace transform, 223
as limit of Fourier series, 176–179
and LTI differential systems, 194–199
of periodic signals, 197–202
properties of, 180–184

frequency
modulation (FM) and demodulation of

signals, 601–604
natural, of first-order LTI differential

system, and time constant, 116–118
and period in sinusoidal signals, 19
scaling of Fourier transform, 180
shifting and DTFT, 440
of signals, and Fourier representation,

132
frequency analysis

of first-order systems, 504–506

of second-order systems, 506–509
frequency-division multiplexing (FDM),

597–599
frequency domain

differentiation in two-sided Laplace
transform, 239

filtering effect in (fig.), 203
frequency response

and Bode plots, 290–296
determining with pole-zero plot, 498
of first-order lag, lead, and second-order

lead-lag systems, 296–300
relation of transfer function poles and

zeros to, 286–290
of second-order systems, 300–307

frequency-selective filters, 202–203
functions

domains, co-domains, ranges, 3
generalized, and input-output system

models, 26–32
sinc, Fourier series representation (fig.),

142
transfer, 118

G
gain

loop, 386
matrix gains, 372
and phase margins, stability robustness,

409–413
of system, and frequency, 299
of system, measuring, 290
values expressed in decibels (table), 291

generalized functions and input-output
system models, 26–32

generating periodic signals, 149
geometric evaluation of DTFT from pole-

zero plot, 498–504
Gibbs phenomenon and Fourier series

representation, 147–148, 157
governor, Watt, 381–382
graphical computation of convolution,

59–62
group delay, definition of, 316
growing sinusoidal signals, 13–15

H
Hamming window, 529
harmonic distortion, total (THD), 153–155
harmonically related complex exponential

signals, 17–18, 132–134
harmonics, complex, 18
help, MATLAB, 646
highpass filters

and Fourier transform, 207– 210
ideal, 514–517

Hilbert transformers, 589
homogeneity, system property, 38–39

I
ideal delay systems, 315
ideal discrete-time filters, 510–519
ideal highpass filters, 207–210
ideal lowpass filters, 191, 203–207
IIR filters, 519–521
impulse response

described, 30
of difference LTI systems, 109– 112
of differential LTI system, 101–109
of ideal lowpass filter (fig.), 204
and input signal for numerical computa-

tion of convolution (fig.), 59
z-transform of, 460

impulse signal properties, 32–33
impulse train

described (fig.), 148

and its Fourier transform (fig.), 449
sampling, 557–558
signals, Fourier transform of periodic,

200–202
impulses

Fourier series of periodic train of,
148–150

representation of continuous-time
signals, 67–68

representation of discrete-time signals,
54–55

infinite impulse response (IIR) filters,
519–521

initial rest condition
of LTI casual system, 97
of systems, 95

initial-value theorem, 240, 247
input-output, system models, 26–38
input signal, notation in state-space sys-

tems, 352
integral, convolution, 54–66, 69–74
integration of signals, and Fourier trans-

form, 181
interconnection

cascade, parallel, feedback, 36– 38
system, using transfer functions, 265

interest, calculating with differential
equation, 128

intersymbol interference in PAM systems,
594–595

inverse Fourier transform, 188–191
inverse Laplace transform, 226–234, 331
inverse systems, 42
inverse unilateral z-transform, 484
inverse z-transform, 468–474
invertibility

of LTI systems, 77–78
system property, 42

K
Kirchhoff’s Current Law (KCL), 330
Kirchhoff’s Voltage Law (KVL), 332

L
lag systems, frequency responses of,

296–300
Laplace function of system’s impulse

response, 118
Laplace transform

application to LTI differential systems,
259–271

convergence of two-sided, 234–235
definition of two-sided, 224–226
inverse, 226–234
poles and zeros of rational, 235–236
state-space systems solutions, 367–373
two-sided. See two-sided Laplace

transform
unilateral. See unilateral Laplace

transform
Laurent series and z-transform, 459
lead, lead-last systems, frequency responses

of, 296–300
Learnware applets, 649
l’Hopital’s rule, 215, 251
line spectrum of signals, 137–139
linear constant-coefficient difference

equation, 96
linear time-invariant. See LTI
linearity

continuous-time Fourier series, 139
and DTFS, 431
and DTFT, 440
of Fourier transform, 180
system property, 38–39
of two-sided Laplace transform, 236

Index 667



of unilateral Laplace transform, 244
and z-transform, 465

logarithmic scale and Bode plots, 290
loop gain described, 386
lowpass filters, 169–171

and Fourier transform, 203–207
ideal, 191, 510–514
second-order RLC, 301

LTI (linear time-invariant) systems
analysis and characterization using

Laplace transform, 241–243
continuous-time. See continuous-time

LTI systems
convolution property in, 192–199
convolution sum, 53–62
described, 1, 91–96
difference. See difference LTI systems
differential. See differential LTI systems
discrete-time, convolution sum, 54–66
eigenfunctions, eigenvalues, 117–118
exponential signals, 9–17
frequency response of, 132
invertibility of, 77–78
modeling physical processes with, 53
multivariable, 373
properties of, 74–80
response to periodic input, 155–157
Routh’s stability criterion, 398–400
steady-state response to periodic signals,

155–157
transfer function of, 260–264
without memory, 77

LTI difference systems
See also difference LTI systems
state models of, 617–622
transfer function characterization of,

478–480
LTI differential systems

See also differential LTI systems
analysis with initial conditions using

unilateral Laplace transform,
272–273

application of Laplace transform to,
259–271

BIBO stability of, 113–114
Fourier transform and, 194–199
time constant and natural frequency of

first-order, 116–118
transient and steady-state responses of,

274–276
LTI feedback control systems

closed-loop stability analysis, 394–400
introduction to, 381–394
stability analysis using root locus,

400–404

M
M-files, 645
mass-spring-damper system, 301, 322–325
mathematical notation, formulas (table),

647–648
MathWorks Inc., 645
MATLAB software package, using,

645–646
maximum flatness of filters, 306
mechanical mass-spring-damper system,

301
memory

LTI systems without, 77
and memoryless systems, 40

mesh analysis
of circuits, 332–334
transform circuit for, 338–340

minimal state-space realizations, 369
models

input-output system, 26–38
signal, 1–11
state. See state models
system. See system models

modulation
angle, 599–604
pulse-amplitude (PAM), 592–595
of pulse-train carrier, 591–592

motors, DC, and LTI controllers, 53
moving-average filters, 522–524
multiplexing

frequency-division (FDM), 597–599
time-division, 595–597

multiplication
and convolution property, 182
of two signals, 140–141
of two signals, DTFS, 434
of two signals, DTFT, 443

N
nodal analysis

of electrical circuits, 330–332
transform circuit for, 334–338

noise and ideal discrete-time filters, 510
non-minimum phase systems, 316–319
noncausal systems, 41
notation, mathematical (table), 647–648
Nth harmonic components of signals, 133
numerical computation of convolution,

62–66
Nyquist criterion for stability analysis,

404–409

O
observable canonical form

deriving state-space model from,
621–622

deriving state-space system model from,
355–357

odd and even signals, 23–25
op-amp circuits, 340–343
operational amplifier circuits, 340–343
operators

c2d, 628–631
CT/DT (continuous-time to discrete-

time), 553
DT/CT (discrete-time to continuous-

time), 555–556
optimality of Fourier series, 144–146
orthogonal sets of signals, 18
output disturbance, 383
overdamped systems, 302
overshoot of step response, 311–313

P
PAM (pulse-amplitude modulation)

systems, 594–595
parallel interconnection, 36–37
Parseval equality

and DTFT, 444
for Fourier transforms, 184

Parseval theorem and signal power,
150–151, 162

partial fraction expansion, 228
passband described, 202, 510
period and frequency in sinusoidal signals,

19
periodic 

complex exponential and sinusoidal
signals, 17–21

input, LTI systems’ response to,
155–157

rectangular waves, Fourier series of,
141–144

periodic signals

classes with Fourier series representa-
tion, 146

continuous-time, Fourier series repre-
sentation of, 134–137

described, 8–9
discrete-time (fig.), 435
DTFT of, 445–449
Fourier transform of, 197–202
fundamental frequency of, 132
power spectrum of, 151–152
setup for generating (fig.), 149
steady-state response of LTI system to,

155–157
phase-lock loop (PLL), 601, 603
phase 

margins in stability analysis, 409–413
plane, state trajectories and, 370–372
systems, non-minimum, 316–319

PLL (phase-lock loop), 601, 603
pointwise convergence, 147
pole-zero plot

determining system’s frequency re-
sponse with, 498

geometric evaluation of DTFT from,
498–504

qualitative evaluation of frequency
response from, 285–290

of transfer function (fig.), 321
of z-transform (fig.), 463, 468

poles
and zeros of rational Laplace transforms,

235–236
and zeros of transfer function, 260–261

polynomials
characteristic, of LTI difference system,

114–116
characteristic, of LTI differential

system, 112
power engineering and Fourier series

representation, 132
power series of z-transform, 473–474
power spectrum of signals, 151–152
Principle of Argument, 404–405
Principle of Superposition

and linear discrete-time systems, 55
and linear property of LTI systems, 68

process models and differential and differ-
ence LTI systems, 91

properties
basic system, 38–42
of continuous-time Fourier series,

139–141
convolution, in LTI system analysis,

192–199
of discrete-time Fourier series, 430–435
of discrete-time Fourier transform,

439–444
of Fourier series, 131–141
of Fourier transform, 180–184
of impulse signal, 32–33
LTI systems, 74–80
of two-sided Laplace transform,

236–240
two-sided z-transform, 465–468
of unilateral Laplace transform, 

244–247
unilateral z-transform, 484–485
of z-transform, 465–468

pulse-amplitude modulation (PAM),
592–595

pulse signals
continuous-time rectangular (fig.), 28
integration of rectangular, and step unit

(fig.), 29
pulse-train carrier, modulation of, 591–592
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Q
qualitative evaluation of fre-quency

response from pole-zero plot, 
285–290

quality Q of filters, 305–306

R
range of continuous-time function, 3
rational transfer functions

block diagram realization of, 480–483
LTI differential systems and, 259–264

RC circuits
filtering periodic signal with, 156
impulse response, step response (figs.),

80
real discrete-time exponential signals, 10
real exponential signals, 9–12
realizations

of first-order lag (fig.), 298
of LTI differential systems, 264
obtaining of transfer function, 268–272

reconstructing signals, 546–549, 560–563
rectangular waves

input to LTI system (fig.), 164
periodic, Fourier series of, 141–144

reference signals in feedback control
systems, 382–383

region of convergence (ROC)
of inverse Laplace transform, 226–234
of Laplace transform, 225
of z-transform, 464–465, 474–476

regulators in feedback control systems,
386–387

repeating signals. See periodic signals
representing

continuous-time signals in terms of
impulses, 67–68

discrete-time periodic signals with
Fourier series, 426–430

discrete-time signals in terms of im-
pulses, 54–57

Fourier series, 131–132
periodic signals using Fourier transform,

197–202
resistance, finite-energy and finite-power

signals, 21–23
resistances and impedances in Laplace

domain, 336
resistor-inductor-capacitor. See RLC

circuits
responses

forced, zero-state, 94
frequency. See frequency response
impulse. See impulse response
steady-state, of LTI system to period

signal, 155–157
step. See step response
zero-state, zero-input, 360–366

reversal, time, 6
rise time of step response, 307–311
RLC (resistor-inductor-capacitor) circuits,

deriving state-space representations
from, 357–360

robustness, stability, 409–413
ROC. See region of convergence
root locus and stability analysis, 400–404
Routh, E.J., 398
running sum of signals, 434

S
sampled-data systems, 552, 556
sampling

aliasing and, 549–552
described, 541

of discrete-time signals, 542–546,
557–563

property, impulse signal, 32–33, 106
sawtooth signals

in Fourier series representation, 136
Fourier transform of aperiodic, 187–188
line spectrum of (fig.), 138

scaling
time. See time scaling
in z-domain, 465

second-order systems
frequency analysis of, 506–509
frequency response of, 300–307

sensitivity function and feedback control
systems, 387–390

settling time of step response, 313–315
shift, time, 7
sidebands, AM, 587–590
signal interpolation using perfect sinc

function, 547
signal models, 1–11
signal reconstruction, 546–549
signals

See also specific signal type
continuous-time, discrete-time, 2–3
described, 1
discrete-time impulse and step, 25–26
even and odd, 23–25
exponential, described, 9–17
finite-energy, and finite-power, 21–23
frequency spectrum of, 132
function of time as, 2–4
fundamental components of, 133
impulse, 32–33
and Laplace transform. See Laplace

transform
low-distortion transmission over com-

munication channel, 77
orthogonal sets, 18
periodic complex exponential and

sinusoidal, 17–21
periodic, described, 8–9
power spectrum of, 151–152
satisfying Dirichlet conditions, 146
sawtooth. See sawtooth signals
some useful, 12–26

sinc function
Fourier series representation, 142
perfect signal interpolation using, 547

single-sideband amplitude modulation
(SSB-AM), 587–590

sinusoidal AM
and AM radio, 586
demodulation of, 581–586

sinusoidal signals
aliasing of (fig.), 550
amplitude modulation with, 579–581
complex exponentials, 20–21
continuous-time, 19
dampened, growing, 13–15
and periodic complex exponential

signals, 17–21
slowed down signals, 5
spectral coefficients

and Fourier series representation, 135
of impulse train (fig.), 149

spectrum
energy-density, of aperiodic signal, 183
line, of signals, 137–139
of signal and carrier (fig.), 182
signal frequency, 132

sped up signals, 5
square wave signal, continuous-time

periodic (fig.), 8

stability
See also BIBO stability
closed-loop analysis, 394–400
for DLTI systems, 475–476
Nyquist criterion, plot, 404– 409
robustness, 409–413
Routh’s criterion for, 398–400
theorem, 369, 626
using Fourier transform on LTI differen-

tial systems, 194
stability analysis using root locus, 400–404
stable LTI systems

step response of, 307–315
time and frequency analysis of continu-

ous time, 285–290
state models of continuous-time LTI

systems, 351–360
state-space models

deriving with controllable canonical
form, 618–621

deriving with observable canonical
form, 621–622

state-space systems, Laplace transform
solution for continuous-time, 367–373

state trajectories and the phase plane, 370–372
states in systems described, 351–352
steady-state and transient response of LTI

differential systems, 274–276
step-invariant transformation, using for

discretization, 628–636
step response

impulse response obtained by differenti-
ation of, 106–109

of stable LTI systems, 307–315
of systems, 27
unit, of LTI system, 79–80

step signals
and discrete-time impulse signals, 25–26
DTFT of, 445–449

stopband described, 202, 510
sum, convolution, 54–66
superheterodyne receivers, 598–599,

612–613
supernodes, 331, 337, 341
superposition principle, 55
suspension systems, 322, 323
synchronous demodulation, 581–583, 590
synthesis equation, 135
system

step response of, 27
term’s use in engineering, 2

system discretization
of continuous-time systems, 628–636
described, 617–618
using bilinear transformation, 631–635
using step-invariant transformation,

628–631
system models

basic system properties, 38–42
input-output, 26–38, 35
system block diagrams, 35–38

system requirements, CD-ROM, 650
systems

See also specific system
basic properties, 38–42
feedback control, described, 382–383
first-order. See first-order systems
ideal delay, 315
initial rest state, 95
linear time-invariant. See LTI
PAM, 594–595
sampled-data, 552, 556
second-order. See second-order systems
states in, 351–352
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T
THD (total harmonic distortion), 153–155
time

constant of first-order LTI differential
system, and natural frequency,
116–118

delay and unilateral Laplace transform,
244–245

functions of, as signals, 2–4
settling, vs. percentage overshoot

(table), 313
time-division multiplexing, 595–597
time domain

differentiation in two-sided Laplace
transform, 239

differentiation of unilateral Laplace
transform, 246

time expansion. See upsampling
time invariance, system property, 39–40
time reversal

in continuous-time Fourier series, 140
and DTFS, 431
and DTFT, 440
functions for, 6
and z-transform, 466

time scaling
in continuous-time Fourier series, 140
described, 4–6
and DTFS, 431–433
and DTFT, 441
of Fourier transform, 180
of impulse signal, 32–33
of two-sided Laplace transform, 237
and unilateral Laplace transform, 245

time-shifted impulses
in continuous-time Fourier series,

139–140
in discrete-time signals, 54–77

time shifting
described, 7
and DTFS, 431
and DTFT, 440
of Fourier transform, 180
of two-sided Laplace transform,

236–237
and z-transform, 465

time variable, transformation of, 4–7
total harmonic distortion (THD), 153–155
tracking with unity feedback system, 385
train, impulse (fig.), 148
transfer function

algebra, and z-domain, 477
Bode magnitude plots (fig.), 292, 295

Bode phase plots (fig.), 293, 295
characterization of LTI difference

systems, 478–480
of differential LTI system, 260–264
of DLTI systems, 474
first-order lag, 296–298
ideal delay systems, 315
of LTI systems, 118, 241
Nyquist plot of, 406–409
obtaining realizations of, 268– 272
pole-zero plot of (fig.), 321
poles and zeros, relation to frequency

response, 286– 290
rational, and LTI differential systems,

259–264
transform circuit

diagrams, 334–340
for mesh analysis, 338–340
for nodal analysis, 334–338

transformations of time variable, 4–7
transforms

Fourier. See Fourier transform
Laplace. See Laplace transform
z-transform. See z-transform

transient and steady-state response of LTI
differential systems, 274–276

transmission
in closed-loop transfer function, 386
as complementary sensitivity function in

feedback system, 390–393
Tustin’s method, 631
two-sided Laplace transform

definition of, 224–226
properties of, 236–240

two-sided z-transform
development of, 460–465
properties of, 465–468

U
underdamped systems, 302
unilateral Laplace transform

analysis of LTI differential systems with
initial conditions, 272–273

definition of, 243–244
properties of, 244–247

unilateral z-transform, 483–486
unit doublet described, 33–34
unit impulse

described, 25
generalized function definition, 28
response of LTI system, 68–69
signal (fig.), 30

unit doublet and higher derivatives,
33–34

unit ramp signal, 27
unit step response of LTI system, 79–80
unity feedback systems

described, 385
stability in, 394

upsampling
described, 5, 432
and DTFT, 441
and z-transform, 466

V
Vandermonde matrix, 111
variables, continuous vs. discrete, 2
voltage, Kirchhoff’s Voltage Law (KVL),

332
voltage controlled oscillator (VCO), 601

W
Watt, James, 381
waves, Fourier series of periodic rectangu-

lar, 141–144
windowing, FIR filter design by, 527–531

Z
z-transform

development of two-sided, 460–465
discrete-time state-space systems

solution, 625–627
and DTFT, relationship between,

497–504
inverse, 468–474
pole-zero plot (fig.), 463, 468
properties of, 465–468
of system’s impulse response, 118
two-sided. See two-sided z-transform
unilateral, 483–486

zero-input responses
described, 273
of discrete-time state-space systems,

622–625
of continuous-time state-space systems,

360–366
zero-order hold (ZOH) and signal recon-

struction, 547–548
zero-state response, 94, 273, 360–366,

622–625
zeros

and poles of rational Laplace transforms,
235–236

and poles of transfer function, 260–261
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