

ARDUINO	PROJECT	HANDBOOK
VOLUME	2:

25	SIMPLE	ELECTRONICS
PROJECTS	FOR	BEGINNERS

MARK	GEDDES

SAN	FRANCISCO

ARDUINO	PROJECT	HANDBOOK,	VOLUME	2.	Copyright	©	2017	by	Mark	Geddes.

All	 rights	 reserved.	No	part	 of	 this	work	may	be	 reproduced	or	 transmitted	 in	 any	 form	or	 by	 any
means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or
retrieval	system,	without	the	prior	written	permission	of	the	copyright	owner	and	the	publisher.

ISBN-10:	1-59327-818-7
ISBN-13:	978-1-59327-818-2

Publisher:	William	Pollock
Production	Editor:	Serena	Yang
Cover	and	Interior	Design:	Beth	Middleworth
Cover	Photo:	Max	Burger
Developmental	Editor:	Liz	Chadwick
Technical	Reviewer:	Sam	Stratter
Copyeditor:	Rachel	Monaghan
Compositor:	Serena	Yang
Proofreader:	James	Fraleigh

Circuit	diagrams	made	using	Fritzing	(http://fritzing.org/).

For	 information	 on	 distribution,	 translations,	 or	 bulk	 sales,	 please	 contact	 No	 Starch	 Press,	 Inc.
directly:

No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

The	Library	of	Congress	has	catalogued	the	first	volume	as	follows:

Names: Geddes, Mark.
Title: Arduino project handbook : 25 practical projects to get you started /
					by Mark Geddes.
Description: San Francisco : No Starch Press, [2016] | Includes index.
Identifiers: LCCN 2015033781| ISBN 9781593276904 | ISBN 1593276907
Subjects: LCSH: Programmable controllers. | Microcontrollers--Programming. |
					Science projects--Design and construction. | Arduino (Programmable
					controller)
Classification: LCC TJ223.P76 G433 2016 | DDC 629.8/9551--dc23
LC record available at http://lccn.loc.gov/2015033781

No	Starch	 Press	 and	 the	No	 Starch	 Press	 logo	 are	 registered	 trademarks	 of	No	 Starch	 Press,	 Inc.
Other	 product	 and	 company	 names	 mentioned	 herein	 may	 be	 the	 trademarks	 of	 their	 respective
owners.	Rather	 than	use	 a	 trademark	 symbol	with	every	occurrence	of	 a	 trademarked	name,	we	are
using	 the	 names	 only	 in	 an	 editorial	 fashion	 and	 to	 the	 benefit	 of	 the	 trademark	 owner,	 with	 no
intention	of	infringement	of	the	trademark.

The	 information	 in	 this	 book	 is	 distributed	 on	 an	 “As	 Is”	 basis,	 without	 warranty.	 While	 every
precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.
shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to
be	caused	directly	or	indirectly	by	the	information	contained	in	it.

http://fritzing.org/
mailto:info@nostarch.com
http://www.nostarch.com
http://lccn.loc.gov/2015033781

CAMERON	AND	JEMMA,	YOU	ARE	THE	CREATORS	AND
MAKERS	OF	THE	FUTURE.
THIS	BOOK	IS	FOR	YOU!

CONTENTS

Introduction
Primer:	Getting	Started

LEDs
Project	1:	LED	Light	Bar
Project	2:	Light-Activated	Night-Light
Project	3:	Seven-Segment	LED	Count	Down	Timer
Project	4:	LED	Scrolling	Marquee
Project	5:	Mood	Light
Project	6:	Rainbow	Strip	Light
Project	7:	NeoPixel	Compass

Sound
Project	8:	Arduino	Piano
Project	9:	Audio	LED	Visualizer

Motors
Project	10:	Old-School	Analog	Dial
Project	11:	Stepper	Motor
Project	12:	Temperature-Controlled	Fan

LCDs
Project	13:	Ultrasonic	Range	Finder
Project	14:	Digital	Thermometer
Project	15:	Bomb	Decoder	Game
Project	16:	Serial	LCD	Screen
Project	17:	Ultrasonic	People	Counter
Project	18:	Nokia	5110	LCD	Screen	Pong	Game
Project	19:	OLED	Breathalyzer

Security
Project	20:	Ultrasonic	Soaker
Project	21:	Fingerprint	Scanner

Smart	Machines
Project	22:	Ultrasonic	Robot
Project	23:	Internet-Controlled	LED
Project	24:	Voice-Controlled	LED
Project	25:	GPS	Speedometer

Troubleshooting	Tips	for	Common	Errors
Components
Arduino	Pin	Reference

Acknowledgments

Once	again,	many	thanks	to	Bill	Pollock	and	the	fantastic	team	at	No	Starch
Press	for	their	dedicated	support	and	guidance	in	the	creation	of	this	book,
particularly	Liz	Chadwick	and	Serena	Yang	for	being	so	patient	through	the
process.	Thanks	also	to	Sam	Stratter	for	his	technical	reviews	and
suggestions.

This	 book	 wouldn’t	 exist	 if	 it	 wasn’t	 for	 the	 inspirational	 Arduino
founders;	Massimo	Banzi,	David	Cuartielles,	Tom	Igoe,	Gianluca	Martino,
and	David	Mellis.	Thank	you	again	for	introducing	me	and	the	world	to	the
wonder	that	is	Arduino.

Special	thanks	to	Warwick	Smith,	James	Newbould,	Joey	Meyer,	Chase
Cooley,	 Onur	 Avun,	 Nick	 Koumaris,	 Chris	 Campbell,	 Mouad	 Er	 Rafay,
Pololu,	and	Brainy-Bits.com	for	their	amazing	support	and	kind	permission
to	 reproduce	 their	 projects.	 The	 creativity	 of	 the	 ever-growing	 Arduino
community	never	ceases	to	amaze	me.

Thanks	to	everyone	who	read	Arduino	Project	Handbook,	Volume	1	for	the
kind	words	and	messages	of	encouragement—it’s	made	writing	this	volume
that	little	bit	easier.

Finally,	 I	 have	 to	 thank	 my	 wonderful	 wife,	 Emily,	 for	 being	 so
supportive	and	patient	over	the	last	year—I	promise	that	my	“man	cave”	will
not	expand	any	further!

http://Brainy-Bits.com

Introduction

Welcome	to	Arduino	Project	Handbook,	Volume	2.	If	you	haven’t	read	the	first
volume,	don’t	worry—each	project	in	this	book	is	completely	independent
and	designed	to	gently	introduce	you	to	the	world	of	building	with	Arduino.
We’ll	cover	some	of	the	important	aspects	of	getting	started	with	Arduino
here	and	in	the	next	chapter,	so	if	you’ve	read	Volume	1	you	can	either	skim
through	as	a	refresher	or	skip	ahead	to	dive	straight	into	the	new	projects.

This	book	uses	the	Arduino	Uno,	a	small,	inexpensive	computer	that	can
be	programmed	to	control	endless	devices	and	creations.	You’ll	soon	use	the
Arduino	 to	 control	 a	 whole	 host	 of	 projects,	 like	 a	 musical	 keyboard,
temperature-controlled	 fan,	 digital	 thermometer,	 fingerprint	 entry	 system,
and	many	others.

The	Arduino	board	is	composed	of	two	main	elements:	the	hardware,	or
microcontroller,	which	is	the	brain	of	the	board;	and	the	software	that	you’ll
use	 to	 send	your	program	 to	 the	microcontroller.	The	 software,	 called	 the
Arduino	 integrated	 development	 environment	 (IDE),	 is	 available	 free	 for
download,	and	I’ll	show	you	how	to	use	it	to	set	up	a	simple	project	in	the
primer.

ABOUT	THIS	BOOK
What	inspired	me	to	write	this	book?	The	internet	is	bursting	with	tutorials,
videos,	and	articles	covering	the	Arduino	and	potential	projects,	but	many
lack	detailed	visuals	or	the	code	required	to	build	these	projects.	This	book	is
intended	to	help	you	build	simple	projects	that	will	inspire	you	to	create
your	own	inventions	as	you	apply	the	skills	and	techniques	that	you’ll	learn.

NOTE

In	this	book	you’ll	create	your	projects	on	a	breadboard.	This	is	the	best	way	to
learn	about	how	circuits	work,	because	the	connections	are	not	permanent;	if	you
make	a	mistake,	you	can	just	unplug	the	wire	or	component	and	try	again.

Each	 project	 includes	 a	 description	 of	what	 it	 will	 do,	 the	 items	 you’ll

need,	pictures	of	 the	 setup,	 simple	 step-by-step	 instructions	with	 tables	 for
quick	 connection	 references,	 a	 circuit	 diagram	 (see	 Figure	 1),	 and	 the
necessary	code,	so	you	don’t	have	to	worry	about	learning	to	program	before
you	 begin.	 The	 early	 projects	 provide	 simple	 explanations	 of	 what’s
happening	in	the	code,	to	help	you	understand	the	process	of	programming
enough	to	make	your	own	modifications	if	you	want	to.	If	you	don’t	want	to
type	 that	 much	 code	 out,	 the	 sketches	 are	 available	 to	 download	 at
https://www.nostarch.com/arduinohandbook2/.

FIGURE	1:	The	circuit	diagrams	in	this	book	were	created	with	Fritzing	(http://www.fritzing.org/),	a
free,	open	source	program.

At	the	beginning	of	each	project,	I	include	an	indication	of	the	cost	of	the
components	required	 in	addition	to	the	Arduino	Uno	(see	Table	1)	and	an
estimated	time	for	the	build.	At	the	end,	I	provide	a	troubleshooting	section
specific	to	that	project.

TABLE	1:	The	cost	indication	used	in	this	book

INDICATOR COST

$
$1–$9

$$
$10–$19

$20–$29

https://www.nostarch.com/arduinohandbook2/
http://www.fritzing.org/

$$$
$20–$29

$$$$
$30+

I’ve	written	this	book	to	teach	you	how	to	create	your	own	gadgets.	By
giving	 you	 the	 technical	 know-how,	 I	 allow	 you	 to	 focus	 on	 the	 creative
design	element.	The	idea	is	that	learning	the	function	of	circuits	can	open	up
your	imagination	to	ways	of	using	those	circuits	practically.	Although	I	don’t
delve	 deeply	 into	 electronics	 theory	 or	 programming,	 the	 projects	 in	 this
book	progress	steadily	in	compexity	and	will	give	you	a	good	starting	point.

This	 book	 gives	 you	 practical	 information	 so	 you	 can,	 for	 example,
reference	the	pin	connections	and	replicate	them	when	needed	in	a	different
project.	 You	 can	 also	 combine	 projects	 to	 make	 more	 complicated	 and
interesting	 gadgets.	 A	 lot	 of	 Arduino	 books	 focus	 on	 the	 programming
element,	 and	 that’s	 great	 for	 a	 certain	kind	of	 learning,	but	 I	 think	 there’s
also	 a	 place	 for	 plug-and-play	 electronics.	 By	 following	 the	 steps	 in	 the
projects,	you’ll	learn	as	you	go.

I’ve	 written	 the	 book	 that	 I	 was	 looking	 for	 but	 couldn’t	 find	 when	 I
started	 out	 with	 the	 Arduino.	 I	 hope	 you’ll	 enjoy	 reading	 and	 working
through	this	book	as	much	as	I	enjoyed	writing	it.

ORGANIZATION	OF	THIS	BOOK
I	recommend	you	try	out	some	of	the	earlier	projects	first,	as	you’ll	find
information	there	that’s	useful	for	the	more	complicated	builds,	but	if	you
see	a	project	you	like	and	feel	confident	enough	to	take	it	on,	you	can	skip	to
it.	The	parts	of	the	book	are	organized	as	follows:

Primer:	Getting	Started	Learn	all	about	the	Arduino	Uno	and	how	to	use	a
breadboard,	and	then	test	your	board	with	a	simple	program	and	get	a	crash
course	in	soldering.

Part	I:	LEDs	Here	you’ll	start	out	by	learning	how	to	control	simple	light-
emitting	diodes	(LEDs)	with	variable	resistors,	and	then	combine
components	to	build	a	light-activated	LED,	a	scrolling	text	display,	a
flashing	multicolored	compass,	and	more.

Part	II:	Sound	In	this	part,	you’ll	use	a	piezo,	a	device	that	emits	sound,	to
make	tunes	with	a	musical	keyboard	and	create	a	simple	audio	visualizer	that
makes	LEDs	dance	to	your	music.

Part	III:	Motors	These	projects	use	various	types	of	motors	to	bring	your
creations	to	life.	You’ll	build	an	analog	dial	that	gauges	light	levels,	learn
how	a	stepper	motor	works,	and	build	a	temperature-controlled	fan	to	keep
you	cool.

Part	IV:	LCDs	The	LCD	screen	is	useful	in	lots	of	projects	for	displaying
messages	and	results.	In	these	projects,	you’ll	learn	how	to	set	up	a	serial
LCD	screen	and	then	build	a	defusable	bomb	game,	an	ultrasonic	range
finder,	a	mobile	Pong	game,	and	even	an	alcohol	breathalyzer.

Part	V:	Security	Protect	your	space	with	a	motion	sensor	that	triggers	an
ultrasonic	soaker	water	pistol	and	a	security	system	that	uses	a	fingerprint
scanner	to	keep	unauthorized	persons	out.

Part	VI:	Smart	Machines	In	this	final	part	you’ll	combine	the	Arduino	with
motors	and	sensors	to	create	an	intelligent	robot,	control	lights	using
Bluetooth	technology,	and	even	build	a	GPS	speedometer	to	track	your
movements.

At	 the	 end	 of	 the	 book,	 I	 provide	 some	 helpful	 reference	 information,
including	a	review	of	some	of	the	more	common	program	errors	and	how	to
fix	them,	information	on	the	components	used	in	this	book	and	where	to	buy
them,	and	a	reference	table	for	the	pins	on	the	Arduino	Uno.

Primer:	Getting	Started
Before	you	start	building	with	the	Arduino,	there	are	a	few	things	you
need	to	know	and	do.	First,	let’s	take	a	look	at	the	hardware	and
software	you’ll	need	for	this	book.	Then,	you’ll	test	out	the	Arduino
with	a	simple	LED	project	and	get	started	with	a	few	techniques	that
will	come	in	handy,	like	soldering	and	downloading	useful	code
libraries.

HARDWARE
First	let’s	look	at	the	Arduino	Uno	board	and	a	few	pieces	of	hardware	that
you’ll	use	in	almost	every	project.

The	Arduino	Uno
There	are	numerous	types	of	Arduino	boards	available,	but	this	book	uses
only	the	most	popular	one,	the	Arduino	Uno	shown	in	Figure	0-1.	The
Arduino	Uno	is	open	source	(meaning	its	designs	may	be	freely	copied),	so
as	well	as	the	official	board,	which	costs	about	$25,	you	will	find	numerous
compatible	clone	boards	for	around	$15.

FIGURE	0-1:	The	Arduino	Uno	board

The	Arduino	controls	components	you	attach	to	it,	like	motors	or	LEDs,
by	 sending	 information	 to	 them	 as	 output	 (information	 sent	 out	 from	 the
Arduino).	Data	 that	 the	Arduino	 reads	 from	 a	 sensor	 is	 input	 (information
going	in	to	the	Arduino).	There	are	14	digital	input/output	pins	(pins	0–13)
on	the	Arduino.	Each	can	be	set	to	either	input	or	output	(see	“Arduino	Pin
Reference”	on	page	253	for	a	full	pin	reference	table).

Power
When	you	connect	the	Arduino	Uno	board	to	your	PC	to	upload	a	program,
it	is	powered	from	your	computer’s	USB	port.	When	the	Arduino	is	not
linked	to	your	PC,	you	can	have	it	run	independently	by	connecting	it	to	a
9-volt	AC	adapter	or	9-volt	battery	pack	with	a	2.1	mm	jack,	with	the	center
pin	connected	to	positive	power	as	shown	in	Figure	0-2.	Simply	insert	the
jack	into	the	power	socket	of	the	Arduino.

FIGURE	0-2:	A	9-volt	battery	pack,	which	you	can	plug	into	the	Arduino	to	give	it	power

Breadboards
A	breadboard	acts	as	a	construction	base	for	electronics	prototyping.	You’ll
use	a	breadboard	for	all	of	the	projects	in	this	book	instead	of	soldering	parts
together.

The	 name	 breadboard	 dates	 back	 to	 when	 electronics	 projects	 were
created	 on	 wooden	 boards.	Hobbyists	 hammered	 nails	 into	 the	 wood	 and
wrapped	wires	around	them	to	connect	components	without	having	to	solder
them	permanently.	Today’s	breadboards	are	made	of	plastic	with	predrilled
holes	(called	tie	points)	into	which	you	insert	components	or	wires,	which	are
held	in	place	by	clips	underneath.	The	tie	points	are	connected	by	lengths	of
conductive	material	that	run	beneath	the	board,	as	shown	in	Figure	0-3.

FIGURE	0-3:	Breadboard	connections

Breadboards	 come	 in	 various	 sizes.	To	 build	 the	 projects	 in	 this	 book,
you’ll	ideally	need	three	breadboards:	one	full-size,	typically	with	830	holes;
one	half-size,	with	about	420	holes;	and	one	mini	board	with	170	holes.	The
full-size	breadboard	is	ideal	for	projects	that	use	an	LCD	screen	or	a	lot	of
components,	and	the	half-size	and	mini	boards	are	best	for	smaller	projects.
For	 the	projects	 in	 this	book,	 I	 recommend	 that	you	buy	breadboards	 that
look	like	the	one	shown	in	Figure	0-3,	with	red	and	blue	lines	and	a	center
break	between	the	holes.

TIP

It’s	useful	to	use	red	wires	for	connections	to	5V	and	black	wires	for	connections
to	ground	(GND).	The	rest	of	the	wires	can	be	your	choice	of	color.

The	main	 board	 area	 has	 30	 columns	 of	 tie	 points	 that	 are	 connected
vertically,	as	shown	in	Figure	0-3.	You’ll	often	have	to	position	components
so	they	straddle	the	breadboard’s	center	break	to	complete	your	circuit.	This
break	helps	 to	prevent	 components	 from	short-circuiting,	which	can	derail
your	 project	 and	 even	 damage	 your	 components.	 You’ll	 learn	more	 about
this	as	you	start	to	build.

The	blue	and	red	lines	at	the	top	and	bottom	are	power	rails	that	you	use
to	power	the	components	 inserted	in	the	main	breadboard	area	(see	Figure
0-4).	The	power	rails	connect	all	 the	holes	 in	 the	rail	horizontally;	 the	red
lines	are	for	positive	power	and	the	blue	lines	for	negative	power	(or	ground,
as	you’ll	often	see	it	called).

FIGURE	0-4:	Positive	and	negative	breadboard	rails

Jumper	Wires
You’ll	use	jumper	wires	to	make	connections	on	the	breadboard.	Jumper
wires	are	solid-core	wire	with	a	molded	plastic	holder	on	each	end	that
makes	it	easier	to	insert	and	remove	the	wires.	(You	could	use	your	own	wire
if	you	have	it,	but	make	sure	to	use	solid-core	wire—stranded	wire	is	not
strong	enough	to	push	into	the	hole	clips.)

When	you	insert	a	jumper	wire	into	a	breadboard	hole,	it’s	held	in	place
from	 beneath	 the	 board	 by	 a	 small	 spring	 clip,	 making	 an	 electrical
connection	 in	 that	 row.	 You	 can	 then	 place	 a	 component	 in	 an	 adjoining
hole	to	help	create	a	circuit,	as	shown	in	Figure	0-5.

FIGURE	0-5:	An	example	breadboard	circuit

NOTE

Because	the	IDE	versions	can	change	fairly	quickly,	I	won’t	take	you	through
installing	them,	but	installation	should	be	straightforward	and	the	instructions
on	the	Arduino	site	are	clear.	All	versions	of	the	IDE	and	full	details	of	how	to
install	for	your	operating	system	are	available	at	http://www.arduino.cc/.

PROGRAMMING	THE	ARDUINO
To	make	our	projects	do	what	we	want,	we	need	to	write	programs	that	give
the	Arduino	instructions.	We	do	so	using	the	Arduino	integrated	development
environment	(IDE).	The	Arduino	IDE	is	available	to	download	free	from
http://www.arduino.cc/,	and	will	run	on	Microsoft	Windows,	OS	X,	and
Linux.	It	enables	you	to	write	computer	programs	(a	set	of	step-by-step
instructions,	known	as	sketches	in	the	Arduino	world)	that	you	then	upload	to
the	Arduino	using	a	USB	cable.	Your	Arduino	will	carry	out	the	instructions
based	on	its	interaction	with	the	outside	world.

The	IDE	Interface

http://www.arduino.cc/
http://www.arduino.cc/

When	you	open	the	Arduino	IDE,	it	should	look	similar	to	Figure	0-6.	The
IDE	screen	is	divided	into	a	toolbar	at	the	top	with	buttons	for	the	most
commonly	used	functions;	the	sketch	window	in	the	center,	where	you’ll
write	or	view	your	programs;	and	the	Serial	Output	window	at	the	bottom.
The	Serial	Output	window	displays	communication	messages	between	your
PC	and	the	Arduino,	and	also	lists	any	errors	if	your	sketch	doesn’t	compile
properly.

FIGURE	0-6:	The	Arduino	IDE

Arduino	Sketches
I’ll	give	you	the	sketch	for	each	project	within	the	relevant	project	itself,	and
talk	through	it	there.	All	of	the	sketches	are	available	to	download	from
http://www.nostarch.com/arduinohandbook2/.

Like	any	program,	sketches	are	a	very	strict	set	of	 instructions	and	very
sensitive	to	errors.	It’s	best	to	download	the	sketch	and	open	the	file	in	the
IDE,	 rather	 than	 try	 to	 copy	 it	 from	 the	 book.	 To	 make	 sure	 it	 works
correctly,	 click	 the	 green	 check	mark	 at	 the	 top	 of	 the	 screen.	This	 is	 the
Verify	button,	and	it	checks	for	mistakes	and	tells	you	in	the	Serial	Output
window	whether	the	sketch	has	compiled	correctly.

Libraries
In	the	Arduino	world	a	library	is	a	piece	of	code	that	carries	out	a	specific
function.	Rather	than	enter	this	same	code	repeatedly	in	your	sketches
wherever	you	need,	you	can	simply	add	a	command	that	borrows	that	code
from	the	library.	This	shortcut	saves	time	and	makes	it	easy	for	you	to
connect	to	items	such	as	a	sensor,	display,	or	module.

The	Arduino	 IDE	 includes	 a	 number	 of	 built-in	 libraries—such	 as	 the
LiquidCrystal	 library,	 which	 makes	 it	 easy	 to	 talk	 to	 LCD	 displays—and
there	 are	many	more	 available	 online.	To	 create	 the	 projects	 in	 the	 book,
you’ll	 need	 to	 import	 the	 following	 libraries:	 PololuLedStrip,	 FastLED,
HMC5883L,	Keypad,	Tone,	Adafruit_GFX,	Adafruit_SDD1306,	NewPing,
Adafruit	 Fingerprint	 Sensor,	 and	 Adafruit	Motor	 Shield.	 You’ll	 find	 all	 of
the	 libraries	 you	 need	 in	 the	 resources	 at
http://www.nostarch.com/arduinohandbook2/.

Installing	Libraries
Once	you’ve	downloaded	the	libraries,	you’ll	need	to	install	them.	To	install
a	library	in	Arduino	version	1.0.5	and	higher,	follow	these	steps:

1.	 Choose	Sketch	▸	Include	Library	▸	Add	.ZIP	Library.
2.	 Browse	to	the	ZIP	file	you	downloaded	and	select	it.	In	older	versions

of	Arduino,	unzip	the	library	file	and	put	the	whole	folder	and	its
contents	into	the	sketchbook/libraries	folder	on	Linux,	My
Documents\Arduino\Libraries	on	Windows,	or

http://www.nostarch.com/arduinohandbook2/
http://www.nostarch.com/arduinohandbook2/

Documents/Arduino/libraries	on	OS	X.

To	 install	 a	 library	manually,	 go	 to	 the	ZIP	 file	 containing	 the	 library
and	 uncompress	 it.	 For	 example,	 to	 install	 a	 library	 called	 keypad	 in	 a
compressed	 file	 called	 keypad.zip,	 you	 would	 uncompress	 keypad.zip,	 which
expands	into	a	folder	called	keypad,	which	in	turn	contains	files	like	keypad.cpp
and	 keypad.h.	 Once	 the	 ZIP	 file	 is	 expanded,	 you	 would	 drag	 the	 keypad
folder	into	the	libraries	folder	on	your	operating	system:	sketchbook/libraries	in
Linux,	 My	 Documents\Arduino\Libraries	 on	 Windows,	 and
Documents/Arduino/libraries	 on	 OS	 X.	 Then	 you’d	 restart	 the	 Arduino
application.

Libraries	 are	 listed	 at	 the	 start	 of	 a	 sketch	 and	 are	 easily	 identified
because	 they	 begin	 with	 the	 command	 #include.	 Library	 names	 are
surrounded	by	< >	and	end	with	.h,	as	in	this	code	to	call	the	Servo	library:

#include <Servo.h>

Go	ahead	and	install	the	libraries	you’ll	need	for	the	projects	now	to	save
yourself	a	bit	of	time	later.

TESTING	YOUR	ARDUINO:	BLINKING	AN	LED
Let’s	begin	our	tour	with	the	classic	first	Arduino	project:	blinking	an	LED
(short	for	light-emitting	diode,	which	is	like	a	little	light	bulb).	Not	only	is	this
the	simplest	way	to	make	sure	that	your	Arduino	is	working	correctly,	but	it
will	also	introduce	you	to	a	simple	sketch.	The	Arduino	can	hold	only	one
program	at	a	time,	so	once	you	upload	your	sketch	to	your	Arduino,	that
sketch	will	run	every	time	the	Arduino	is	switched	on	until	you	change	it.

The	Build
For	this	project	we’ll	use	the	Blink	example	sketch	that	comes	with	the	IDE.
The	Blink	program	turns	an	LED	on	for	1	second	and	then	off,	repeatedly.
The	LED	works	only	with	current	flowing	in	one	direction,	so	its	longer
wire	must	connect	to	a	positive	power	connection.	LEDs	require	a	current-
limiting	resistor	or	else	the	bulb	may	burn	out.	There	is	a	built-in	resistor	in
pin	13	of	the	Arduino	that	we’ll	use.

Follow	these	steps	to	set	up	your	test:

1.	 Insert	the	longer,	positive	leg	of	the	LED	to	pin	number	13	on	the
Arduino,	as	shown	in	Figure	0-7.	Connect	the	shorter,	negative	wire	to
the	GND	pin	next	to	pin	13.

FIGURE	0-7:	The	Blink	project	setup

2.	 Connect	the	Arduino	to	your	computer	with	the	USB	cable.

3.	 Open	the	Arduino	IDE	on	your	computer,	then	choose	File	▸
Examples	▸	Blinking	LED	from	the	drop-down	menu.	The	sketch	will
appear	in	the	main	program	area	of	the	IDE.

➊// Blinking LED Project - This example code is in the public domain

➋ int led = 13;

➌ void setup() {

➍ pinMode(led, OUTPUT);
 }

➎ void loop() {

➏ digitalWrite(led, HIGH);

➐ delay(1000);

➑ digitalWrite(led, LOW);

➒ delay(1000);

➓ }

4.	 In	the	IDE,	click	the	Verify	button	to	check	that	the	sketch	is	working
correctly.

5.	 Click	the	Upload	button	to	send	the	sketch	to	your	Arduino.	Running
this	code	should	make	your	LED	flash	on	and	off.

Understanding	the	Sketch
Here’s	what’s	happening	on	each	line	of	the	sketch:

➊	This	is	a	comment.	Any	line	in	your	program	starting	with	//	is	meant	to
be	read	by	the	user	only	and	is	ignored	by	the	Arduino,	so	use	this
technique	to	enter	notes	and	describe	your	code	(called	commenting	your
code).	If	a	comment	extends	beyond	one	line,	start	the	first	line	with	/*
and	end	the	comment	with	*/.	Everything	in	between	will	be	ignored	by
the	Arduino.

➋	This	gives	pin	13	the	name	led.	Every	mention	of	led	in	the	sketch	will
refer	to	pin	13.

➌	The	code	between	the	curly	brackets,	{},	will	run	once	when	the	program
starts.	The	open	curly	bracket,	{,	begins	the	setup	code.

➍	This	tells	the	Arduino	that	pin	13	is	an	output	pin,	indicating	that	we
want	to	send	power	to	the	LED	from	the	Arduino.	The	closing	curly
bracket,	},	ends	the	setup	code.

➎	This	creates	a	loop.	Everything	between	the	curly	brackets,	{},	after	the
loop()	statement	will	run	once	the	Arduino	is	powered	on	and	then	repeat
until	it	is	powered	off.

➏	This	tells	the	Arduino	to	set	led	(pin	13)	to	HIGH,	which	sends	power	to	that
pin.	Think	of	it	as	switching	the	pin	on.	In	this	sketch,	this	turns	on	the
LED.

➐	This	tells	the	Arduino	to	wait	for	1	second.	Time	on	the	Arduino	is
measured	in	milliseconds,	so	1	second	=	1,000	milliseconds.

➑	This	tells	the	Arduino	to	set	led	(pin	13)	to	LOW,	which	removes	power	and
switches	off	the	pin.	This	turns	off	the	LED.

➒	Again	the	Arduino	is	told	to	wait	for	1	second.

➓	This	closing	curly	bracket	ends	the	loop.	All	code	after	the	initial	setup
must	be	enclosed	within	curly	brackets.	A	missing	bracket	can	easily	be

overlooked	and	is	a	common	cause	of	errors	that	will	prevent	your	sketch
from	compiling	correctly.	After	this	curly	bracket,	the	code	goes	back	to
the	start	of	the	loop	at	➎.

Now	that	you’ve	tested	your	Arduino	and	understand	how	a	sketch	works
and	 how	 to	 upload	 it,	 we’ll	 take	 a	 look	 at	 the	 components	 you’ll	 need	 to
carry	 out	 all	 of	 the	 projects	 in	 this	 book.	 “Components”	 on	 page	 238	 has
more	details	about	each	component,	what	it	looks	like,	and	what	it	does.

PROJECT	COMPONENT	LIST
This	is	a	complete	list	of	the	items	you’ll	need	in	order	to	complete	the
projects	in	this	book.	The	most	important	part,	of	course,	is	the	Arduino
board	itself,	and	all	projects	use	the	Arduino	Uno	R3	version.	Only	the
official	boards	are	named	Arduino,	but	you’ll	find	compatible	clone	boards
from	companies	like	SlicMicro,	Sainsmart,	and	Adafruit.	(You’ll	find	a	list	of
official	suppliers	at	http://arduino.cc/en/Main/Buy/.)

You	can	buy	each	item	individually,	but	I	suggest	buying	an	electronics
hobby	starter	kit	or	Arduino	kit,	which	will	provide	you	with	several	of	the
items	 here.	 See	 the	 “Retailer	 List”	 on	 page	 249	 for	 a	 list	 of	 suggested
suppliers.	Alternatively,	each	project	begins	with	a	list	of	the	required	parts,
so	 you	 can	 flip	 to	 a	 project	 that	 interests	 you	 and	 obtain	 just	 those
components	if	you’d	like.

1	Arduino	Uno	R3	(or	compatible)
1	9V	battery	pack	with	2.1	mm	jack	for	6	AA	batteries
1	9V	battery	snap	and	battery
3	breadboards:	1	full-size,	1	half-size,	1	mini
50	male-to-male	jumper	wires
10	female-to-male	jumper	wires
Solid-core	wire
9	220-ohm	resistors
4	10k-ohm	resistors
8	1k-ohm	resistors
40	5	mm	LEDs	in	red,	green,	yellow,	blue	(10	of	each)
1	RGB	common-cathode	LED

http://arduino.cc/en/Main/Buy/

1	RGB	common-cathode	LED
1	RGB	LED	strip	(WS2812B	5V	32-LED	strip)
1	Adafruit	NeoPixel	ring	with	16	RGB	LEDs
1	HMC5883L	three-axis	sensor
2	50k-ohm	potentiometers
1	10k-ohm	potentiometer
8	momentary	tactile	pushbuttons
1	seven-segment,	single-digit	common-cathode	LED
1	piezo	sounder
1	3.5	mm	female	headphone	jack
1	Tower	Pro	SG90	9g	servomotor
1	photoresistor	(light-dependent	resistor,	or	LDR)
1	28BYJ-48	stepper	motor	with	ULN2003	driver	module
1	HC-SR04	ultrasonic	sensor
1	3×4	membrane	keypad
1	LM35	temperature	sensor
1	12V	mini	computer	cooling	fan
1	5V	single-channel	relay	module
1	HD44780	16×2	LCD	screen
1	Nokia	5110	LCD	screen
1	serial	LCD	screen	module
1	OLED	monochrome	screen	(128×64)
1	8×8	LED	Maxim	7219	matrix	module
1	Keyes	MQ3	alcohol	sensor	module
1	optical	fingerprint	sensor	(ZFM-20	series)
1	L293d	motor	shield
1	robot	chassis	kit,	including	two	DC	motors	and	wheels,	center	wheel,

base,	and	fittings
1	Ethernet	shield	W5100	LAN	expansion	board
1	Ethernet	cable
1	WLToys	V959-18	Water	Jet	Pistol

1	WLToys	V959-18	Water	Jet	Pistol
1	HC-06	Bluetooth	module
1	Ublox	NEO-6M	GPS	module	aircraft	flight	controller	and	antenna

QUICK	SOLDERING	GUIDE
The	majority	of	the	projects	in	this	book	do	not	requiring	soldering,	but
there	are	a	few	components	that	may	come	with	their	header	pins	(Figure	0-
8)	unattached	for	ease	of	transport.	Header	pins	come	in	strips	that	can	be
easily	snapped	to	the	size	needed.

FIGURE	0-8:	Header	pins

For	example,	the	GPS	module	used	in	Project	25	doesn’t	come	with	the
pins	attached,	so	I’ll	explain	how	to	solder	those	in	place.	A	general-purpose,
30-watt	 soldering	 iron	 with	 a	 fine	 tip	 should	 meet	 your	 needs.	 It	 is
worthwhile	 to	 buy	 a	 kit	 that	 includes	 a	 soldering	 iron,	 stand,	 and	 solder
(Figure	0-9).

FIGURE	0-9:	Soldering	iron

1.	 Plug	in	your	soldering	iron	and	wait	at	least	5	minutes	for	it	to	reach
operating	temperature.

2.	 To	solder,	break	off	a	strip	of	header	pins	with	the	number	you	need.
Insert	them	into	the	module	as	shown	in	Figure	0-10.

FIGURE	0-10:	Insert	the	header	pins	into	the	module.

3.	 Now	solder	the	pins	in	place,	starting	with	the	leftmost	pin.	Hold	the
heated	tip	of	the	soldering	iron	to	both	the	pin	and	module	contact	at
the	same	time.	You	only	need	to	hold	it	there	for	about	2	seconds.
While	holding	the	iron	in	place,	add	solder	to	the	area;	the	solder

should	melt	and	flow	and	create	a	join.	Note	that	you	do	not	apply
solder	directly	to	the	iron,	only	to	the	joint	you	are	soldering.	Quickly
remove	both	the	iron	and	solder—more	than	a	couple	of	seconds	of
contact	could	damage	your	components.

4.	 A	good	solder	joint	should	look	like	a	shiny	cone	(Figure	0-11).	With	a
little	bit	of	practice,	you	will	be	able	to	solder	cleanly	in	no	time	at	all.

FIGURE	0-11:	Solder	joins	should	look	like	this.

Safety	First
Soldering	irons	get	very,	very	hot	and	should	be	used	with	extreme	care
under	adult	supervision.	Here	are	a	few	safety	tips:

•	Be	sure	to	use	a	stand	and	never	lay	a	hot	soldering	iron	down	on	a	table.

•	Solder	in	a	well-ventilated	room.	The	fumes	released	from	melting
solder	can	be	harmful.

•	Keep	flammable	materials	away	from	your	work	area.

•	Keep	equipment	out	of	reach	of	children.

•	Wear	eye	protection.

•	Wait	for	a	soldering	iron	to	cool	down	completely	before	storing	it.

LEDs

1
LED	Light	Bar
In	this	project	we’ll	flash	a	row	of	LEDs	back	and	forth	in
sequence,	sort	of	like	KITT	from	the	1980s	TV	series	Knight
Rider.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
8	LEDs
8	220-ohm	resistors

HOW	IT	WORKS
An	LED	emits	light	when	a	small	current	is	passed	through	it.	LEDs	are
polarized,	which	means	one	side	is	positive	and	one	side	is	negative.	This	is
because	the	LED	will	work	only	with	current	flowing	in	one	direction,	from
positive	to	negative.	The	longer	leg	of	the	LED	is	positive	and	must	connect
to	a	positive	power	connection.	The	Arduino	sketch	controls	the	sequence	of
flashes.

LEDs	are	delicate	parts,	requiring	only	a	small	amount	of	voltage	to	light
up—smaller	 than	 the	 voltage	 the	Arduino	 provides.	To	prevent	 the	LEDs
from	being	overloaded	with	voltage	and	burning	out,	we	use	resistors,	which
limit	the	amount	of	voltage	passing	through	them	to	the	LED	on	the	other
end.

You	can	change	the	color	of	your	LEDs	and	use	this	light	bar	to	decorate
a	 car,	 scooter,	 bike,	 picture	 frame,	 subwoofer,	 or	 almost	 anything	 else	 you
choose.	You	can	add	up	to	10	LEDs	on	the	Uno	before	you	run	out	of	pins.

THE	BUILD

1.	 Insert	the	LEDs	into	the	breadboard	with	their	shorter,	negative	legs	in
the	GND	rail	at	the	top	of	your	breadboard.	Then	connect	this	rail	to
GND	on	the	Arduino,	as	shown	in	Figure	1-1.

FIGURE	1-1:	The	LEDs	flash	back	and	forth	in	sequence.	The	short	leg	of	the	LED	is	in	the
GND	rail	of	the	breadboard,	and	the	long	leg	is	connected	to	the	Arduino	via	a	resistor.

2.	 Connect	the	LEDs	in	sequence	to	Arduino	digital	pins	2–9,	as	shown	in
the	following	circuit	diagram.	Place	a	220-ohm	resistor	between	each
LED	and	digital	pin,	ensuring	that	the	resistors	bridge	the	center	divide
in	the	breadboard.

LEDS ARDUINO

Positive	legs Pins	2–9	via	resistor

Negative	legs GND

3.	 Check	your	setup	against	Figure	1-2,	and	then	upload	the	code	in	“The
Sketch”	below.

FIGURE	1-2:	The	circuit	diagram	for	the	LED	light	bar	

THE	SKETCH
The	sketch	sets	the	pins	connected	to	the	LEDs	as	outputs,	and	then	defines
a	function	to	turn	all	the	LEDs	off	at	the	same	time.	This	function	is	called
in	the	loop	cycle	to	turn	the	LEDs	off,	and	then	the	LEDs	are	turned	on	one
at	a	time—with	a	200-millisecond	delay	between	each	one—to	create	a
sweeping	effect.	Another	loop	sends	the	sequence	back	the	other	way.

// Used with kind permission from
// Warwick A Smith, startingelectronics.com
// Knight Rider display on eight LEDs

void setup() {
 for (int i = 2; i < 10; i++) { // Choose pins 2-9
 pinMode(i, OUTPUT); // Set the pins as outputs
 }
}
// Define function to turn off all LEDs at the same time
void allLEDsOff(void) {
 for (int i = 2; i < 10; i++) {
 digitalWrite(i, LOW);
 }
}

// Switch on LEDs in sequence from left to right
void loop() {
 for (int i = 2; i < 9; i++) { // Run loop once for each LED
 allLEDsOff(); // Turn off all LEDs
 digitalWrite(i, HIGH); // Turn on current LED
 delay(200); // Delay of 200 ms,
 // then repeat loop to move on to next LED
 }
 for (int i = 9; i > 2; i--) { // Light LEDs from right to left

 allLEDsOff();
 digitalWrite(i, HIGH);
 delay(200);
 }
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	some	or	all	of	the	LEDs	do	not	light	up	as	expected.

•	If	none	of	the	LEDs	light,	make	sure	you’ve	connected	the	GND	wire
from	the	Arduino	to	the	correct	breadboard	power	rail	and	that	the
Arduino	has	power	connected.

•	If	only	some	LEDs	light,	check	that	the	LEDs	are	inserted	the	correct
way,	with	the	longer	wire	to	positive	power	and	the	shorter	wire	to
GND.	Because	LEDs	are	polarized,	they	must	be	connected	the	correct
way.	Check	that	the	resistors	are	inserted	fully	and	lined	up	in	the	same
row	as	the	corresponding	LED	leg.

•	Make	sure	the	LEDs	are	connected	to	the	Arduino	pins	defined	in	“The
Sketch”	on	page	19.	The	first	part	of	the	sketch	defines	pins	2–9	as
outputs,	so	these	are	the	pins	you	should	use.

•	If	an	LED	still	fails	to	light,	it	may	have	burnt	out	or	be	faulty.	An	easy
way	to	check	is	to	swap	the	LED	with	another	in	the	sequence	and	see	if
that	resolves	the	issue.	If	you	find	that	the	LED	works	in	another
position,	it	means	the	resistor	is	either	faulty	or	not	inserted	fully.
Depending	on	the	outcome,	replace	the	LED	or	resistor	with	a
functioning	component.

2
Light-Activated	Night-Light
This	project	is	a	simple	test	of	a	photoresistor’s	functionality:	we’ll
create	a	night	light	that	gets	brighter	depending	on	the	amount	of
light	detected.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
Photoresistor
LED
10k-ohm	resistor

HOW	IT	WORKS
A	photoresistor	is	a	variable	resistor	that	reacts	to	light;	the	less	light	that
shines	on	it,	the	higher	the	resistance	it	provides.	This	resistance	value	varies
the	voltage	that’s	sent	to	the	input	pin	of	the	Arduino,	which	in	turn	sends
that	voltage	value	to	the	output	pin	as	the	power	level	of	the	LED,	so	in	low
light	the	LED	will	be	bright.	There	are	different	styles	of	photoresistors,	but
they	usually	have	a	small,	clear,	oval	head	with	wavy	lines	(see	Figure	2-1).
Photoresistors	do	not	have	polarity,	so	it	doesn’t	matter	which	way	you
connect	the	legs.

The	principles	at	work	here	are	similar	to	those	of	a	child’s	night-light.
You	can	use	a	photoresistor	to	control	more	than	just	LEDs,	as	we’ll	see	in
upcoming	chapters.	Since	we	only	have	 two	power	and	GND	connections,
we	won’t	be	using	the	breadboard	power	rails	here.

FIGURE	2-1:	A	photoresistor	

THE	BUILD

1.	 Place	your	photoresistor	in	the	breadboard,	connecting	one	leg	to
GND	directly	on	the	Arduino	and	the	other	leg	to	Arduino	A0.

2.	 Connect	one	leg	of	the	10k-ohm	resistor	to	+5V,	and	connect	the	other
leg	to	the	A0	photoresistor	leg,	as	shown	in	the	circuit	diagram	in
Figure	2-2.

FIGURE	2-2:	The	circuit	diagram	for	the	light-activated	LED

3.	 Insert	the	longer,	positive	leg	of	the	LED	directly	into	pin	13	on	the
Arduino	and	the	shorter,	negative	leg	directly	into	Arduino	GND.	We
would	normally	use	a	resistor	to	limit	the	current	to	an	LED,	but	we
don’t	need	one	here	because	pin	13	on	the	Arduino	has	one	built	in.

4.	 Upload	the	code	in	“The	Sketch”	below.

THE	SKETCH
The	sketch	first	connects	the	photoresistor	to	Arduino	pin	A0	as	our	INPUT
and	the	LED	to	pin	13	as	our	OUTPUT.	We	run	the	serial	communication	with
Serial.begin(9600),	which	(when	your	Arduino	is	connected	to	your	PC)	will
send	information	to	the	Arduino’s	Serial	Monitor.	This	means	the	resistance
value	of	the	photoresistor	will	be	displayed	in	the	Serial	Monitor	on	your
computer,	as	shown	in	Figure	2-3.

FIGURE	2-3:	The	Serial	Monitor	will	display	the	resistance	of	the	photoresistor.

The	loop	reads	the	photoresistor’s	analog	value	and	sends	it	to	the	LED
as	a	voltage	value.	The	A0	pin	can	read	1,024	values,	which	means	there	are
1,024	 possible	 brightness	 levels	 for	 the	 LED.	Minuscule	 changes	 between
this	many	 levels	aren’t	very	visible,	 so	we	divide	 that	number	by	4	 to	 scale
down	to	only	256	values,	making	it	easier	to	detect	when	there	is	a	change	in
voltage	to	the	LED.

int lightPin = A0; // Pin connected to the photoresistor
int ledPin = 13; // Pin connected to the LED
void setup() {

 Serial.begin(9600); // Begin serial communication
 pinMode(ledPin, OUTPUT); // Setting the LED pin as an output
}

// This loop reads the analog pin value and
// sends that to the LED as an output
void loop() {
 // Read the value of the photoresistor
 Serial.println(analogRead(lightPin));
 // Write the value to the Serial Monitor
 // Send the value to the ledPin and divide by 4
 analogWrite(ledPin, analogRead(lightPin) / 4);
 delay(10); // Short delay before the sequence loops again
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	LED	does	not	light	when	it’s	dark.

•	Make	sure	that	the	LED	is	inserted	with	the	long,	positive	leg	in	pin	13
and	the	short,	negative	leg	in	GND	next	to	it.

•	Make	sure	the	photoresistor	is	connected	to	Arduino	A0	as	shown	in	the
circuit	diagram	in	Figure	2-2.	Open	the	Serial	Monitor	to	see	if	there’s	a
reading.	If	you’re	getting	a	reading	but	the	LED	doesn’t	light,	the	LED
may	be	faulty,	so	try	replacing	it	with	another	one.

3
Seven-Segment	LED	Count	Down	Timer
In	this	project	we’ll	create	a	simple	timer	that	counts	down	from	9
to	0.	This	can	be	used	in	any	number	of	useful	projects!

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
Seven-segment,	single-digit	common-cathode	LED
8	220-ohm	resistors

HOW	IT	WORKS
A	seven-segment	LED	display	shows	a	single	digit	or	character	using	LED
segments.	Each	segment	is	an	individual	LED,	and	by	controlling	which
segments	are	lit	at	any	time,	we	can	display	numeric	values.	We’re	using	a
single-digit	display	in	this	project,	shown	in	Figure	3-1,	but	there	are	also
two-,	three-,	four-,	and	eight-digit	variations	available.

FIGURE	3-1:	A	seven-segment	LED

NOTE

The	cathode	of	a	device	is	the	negative	connection,	usually	indicated	with	a

minus	sign	(–)	and	sometimes	referred	to	as	ground	(abbreviated	GND).	It	is
connected	to	negative	power.	The	anode	of	a	device	is	the	positive	connection,
usually	indicated	with	a	plus	sign	(+)	and	connected	to	positive	power.

This	project	will	create	a	simple	timer	to	count	down	from	9	to	0.	The
seven-segment	LED	has	 10	 pins.	 Seven	 pins	 control	 the	 seven	LEDs	 that
light	up	 to	 form	each	digit,	 and	 the	eighth	pin	controls	 the	decimal	point.
The	other	two	pins	are	the	common-cathode	(–)	or	common-anode	(+)	pins,
which	 add	 power	 to	 the	 project.	 Our	 seven-segment	 LED	 is	 common
cathode,	meaning	 one	 side	 of	 each	LED	 needs	 to	 connect	 to	 ground.	 It’s
important	 to	 note	 that	 the	 code	 will	 work	 only	 with	 a	 common-cathode
LED.	 If	 you	 have	 a	 common-anode	 LED	 you	 want	 to	 use,	 check	 the
troubleshooting	 section	 at	 the	 end	 of	 this	 chapter	 before	 uploading	 the
sketch.	 Each	 LED	 segment	 requires	 a	 resistor	 to	 limit	 the	 current;
otherwise,	it	will	burn	out.

The	pins	are	labeled	with	a	letter,	as	shown	in	Figure	3-2.	The	numbered
pins	 control	 the	 segments	 as	 shown	on	 the	 right.	The	Arduino	creates	 the
number	by	turning	the	LEDs	off	or	on	in	different	combinations.

FIGURE	3-2:	A	typical	pin	layout	for	a	seven-segment	LED

THE	BUILD

1.	 Place	the	seven-segment	display	in	a	breadboard	as	shown	in	Figure	3-
3,	making	sure	the	pins	straddle	either	side	of	the	center	break.	Connect
LED	pins	3	and	8	to	the	GND	rail.

FIGURE	3-3:	The	seven-segment	LED	pins	should	straddle	the	center	break	of	the
breadboard.

2.	 Connect	LED	pins	1,	2,	4,	5,	6,	7,	and	9	as	shown	in	the	following	table,
remembering	to	insert	a	220-ohm	resistor	between	the	LED	and	the
Arduino	connection.	It’s	important	that	the	resistors	straddle	the	center
break	on	the	breadboard,	as	shown	in	the	circuit	diagram	in	Figure	3-4.

ARDUINO SEVEN-SEGMENT
LED	SECTION

SEVEN-SEGMENT
LED	DISPLAY

Pin	2 A Pin	7

Pin	3 B Pin	6

Pin	4 C Pin	4

Pin	5 D Pin	2

Pin	6 E Pin	1

Pin	7 F Pin	9

Pin	8 G Pin	10

Pin	9 DP Pin	5

FIGURE	3-4:	The	circuit	diagram	for	the	seven-segment	LED	countdown	timer

3.	 Upload	the	code	in	“The	Sketch”	on	page	32.

THE	SKETCH
The	sketch	starts	by	defining	the	digits	0	to	9	as	combinations	of	off	(0)	and
on	(1)	LEDs.	The	pins	controlling	the	LEDs	are	set	as	output,	so	they	can
set	their	corresponding	LEDs	to	either	HIGH	or	LOW.	The	combination	of	1	and
0	values	lights	up	to	form	the	digit.

Note	that	these	patterns	are	for	common-cathode	displays.	For	common-
anode	displays,	change	each	1	to	0	and	each	0	to	1.	In	the	code,	a	value	of	1
means	the	LED	is	on,	and	0	means	the	LED	is	off.

// Arduino seven-segment display example software
// http://hacktronics.com/Tutorials/arduino-and-7-segment-led.html
// License: http://www.opensource.org/licenses/mit-license.php

// Define the LEDs to be lit to create a number
byte seven_seg_digits[10][7] = { { 1, 1, 1, 1, 1, 1, 0 }, // = 0
 { 0, 1, 1, 0, 0, 0, 0 }, // = 1
 { 1, 1, 0, 1, 1, 0, 1 }, // = 2
 { 1, 1, 1, 1, 0, 0, 1 }, // = 3
 { 0, 1, 1, 0, 0, 1, 1 }, // = 4
 { 1, 0, 1, 1, 0, 1, 1 }, // = 5
 { 1, 0, 1, 1, 1, 1, 1 }, // = 6
 { 1, 1, 1, 0, 0, 0, 0 }, // = 7
 { 1, 1, 1, 1, 1, 1, 1 }, // = 8
 { 1, 1, 1, 0, 0, 1, 1 } // = 9
};

// Set the seven-segment LED pins as output
void setup() {
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 writeDot(0); // Start with the decimal point off
}

void writeDot(byte dot) {
 digitalWrite(9, dot);
}

void sevenSegWrite(byte digit) {
 byte pin = 2;
 for (byte segCount = 0; segCount < 7; ++segCount) {
 digitalWrite(pin, seven_seg_digits[digit][segCount]);
 ++pin;
 }
}
void loop() {
 for (byte count = 10; count > 0; --count) { // Start the countdown
 delay(1000); // 1 second between each digit
 sevenSegWrite(count - 1); // Counting down by 1
 }
 delay(4000);
}

http://hacktronics.com/Tutorials/arduino-and-7-segment-led.html
http://www.opensource.org/licenses/mit-license.php

TROUBLESHOOTING
Q.	Some	LED	segments	do	not	light	up.

Check	that	the	LEDs’	wires	are	inserted	securely	and	line	up	with	the
resistors	on	the	breadboard.

Q.	The	display	is	not	showing	numbers	correctly	and	looks	erratic.

•	Recheck	that	your	wiring	matches	the	diagrams	as	shown,	as	it’s	easy	to
insert	some	wires	in	the	wrong	place.

•	If	all	wiring	is	in	the	correct	place	and	the	timer’s	still	not	working,	the
configuration	of	your	seven-segment	LED	may	be	different	from	the	one
used	here.	Check	the	data	sheet	for	your	part	and	use	that	to	direct	your
circuit	along	with	the	seven-segment	pin	table.	You	can	also	check	which
pin	corresponds	to	each	LED	by	connecting	it	up:	attach	the	GND	pin
of	the	seven-segment	LED	to	the	negative	end	of	a	battery;	connect	a
jumper	wire	to	the	positive	end	of	the	battery,	via	a	220-ohm	resistor;
and	touch	each	pin	in	turn	to	light	the	segments	individually.	Note	which
segment	each	pin	lights	up.

•	Remember,	this	wiring	is	for	a	seven-segment,	common-cathode	LED;
for	common-anode	displays,	change	each	1	to	0	and	each	0	to	1	in	the
sketch.

4
LED	Scrolling	Marquee
In	this	project	we’ll	use	a	built-in	driver	module	to	create	a
scrolling	message	on	an	8×8	matrix.

PARTS	REQUIRED
Arduino	board
Female-to-male	jumper	wires
8×8	LED	Maxim	7219	matrix	module

LIBRARY	REQUIRED
MaxMatrix

HOW	IT	WORKS
An	LED	matrix	is	an	array	of	LEDs	that	you	can	control	individually	to
make	patterns,	text,	images,	or	whatever	you	can	program.	The	8×8	LED
matrix	we’ll	use	in	this	project	comes	prebuilt	with	a	driver	module—a	board,
driven	by	a	Maxim	7219	chip,	that	lets	you	control	the	entire	matrix	with
only	five	pins	connected	to	your	Arduino.	These	modules	are	inexpensive
and	can	be	chained	together	so	you	have	multiple	matrices	running	from	one
sketch.

The	matrix	module	has	three	pins:	DIN,	CS,	and	CLK,	shown	in	Figure
4-1.	DIN	stands	for	Data	IN,	CS	for	Chip	Select,	and	CLK	for	CLocK.	The
remaining	two	pins	connected	to	your	Arduino	power	the	matrix.	The	CLK
pin	 senses	 pulses	 and	 controls	 the	 speed	 at	which	 the	Arduino	 and	matrix
communicate	 with	 each	 other	 in	 sync.	 The	 matrix	 uses	 a	 serial	 peripheral
interface	 (SPI)	 communication	protocol	 to	 speak	with	 the	Arduino,	 and	 the
CS	pin	detects	which	SPI	device	is	in	use.	DIN	reads	the	data—in	this	case,
the	project’s	sketch—from	the	Arduino.

FIGURE	4-1:	The	Maxim	7219	chip	controls	the	LED	matrix.

Each	module	has	extra	connections	so	you	can	add	another	module.	By
chaining	 together	 modules	 and	 changing	 the	 number	 of	 matrices	 in	 the
code,	you	could	scroll	a	message	over	a	larger	area.

THE	BUILD

1.	 Connect	the	module	directly	to	the	Arduino	using	the	female-to-male
jumper	wires,	connecting	the	female	end	to	the	module.	As	shown	in
the	following	table,	connect	VCC	on	the	LED	matrix	module	to	+5V
on	the	Arduino,	GND	to	GND,	DIN	to	Arduino	pin	8,	CS	to	Arduino
pin	9,	and	CLK	to	Arduino	pin	10.

LED	MATRIX	MODULE ARDUINO

VCC +5V

GND GND

DIN Pin	8

DIN Pin	8

CS Pin	9

CLK Pin	10

2.	 Confirm	that	your	setup	matches	the	circuit	diagram	in	Figure	4-2,	and
upload	the	code	in	“The	Sketch”	on	page	38.

FIGURE	4-2:	The	circuit	diagram	for	the	scrolling	LED	marquee

THE	SKETCH
This	sketch	works	by	calling	on	the	MaxMatrix	library	to	control	the	matrix
module.	We	then	define	the	characters	to	display,	and	set	the	Arduino	pins
that	control	the	matrix.	Your	message	will	be	displayed	in	a	continuous	loop

that	control	the	matrix.	Your	message	will	be	displayed	in	a	continuous	loop
on	the	LEDs.

#include <MaxMatrix.h> // Call on the MaxMatrix library

PROGMEM const unsigned char CH[] = {
3, 8, B00000000, B00000000, B00000000, B00000000, B00000000, // space
1, 8, B01011111, B00000000, B00000000, B00000000, B00000000, // !
3, 8, B00000011, B00000000, B00000011, B00000000, B00000000, // "
5, 8, B00010100, B00111110, B00010100, B00111110, B00010100, // #
4, 8, B00100100, B01101010, B00101011, B00010010, B00000000, // $
5, 8, B01100011, B00010011, B00001000, B01100100, B01100011, // %
5, 8, B00110110, B01001001, B01010110, B00100000, B01010000, // &
1, 8, B00000011, B00000000, B00000000, B00000000, B00000000, // '
3, 8, B00011100, B00100010, B01000001, B00000000, B00000000, // (
3, 8, B01000001, B00100010, B00011100, B00000000, B00000000, //)
5, 8, B00101000, B00011000, B00001110, B00011000, B00101000, // *
5, 8, B00001000, B00001000, B00111110, B00001000, B00001000, // +
2, 8, B10110000, B01110000, B00000000, B00000000, B00000000, // ,
4, 8, B00001000, B00001000, B00001000, B00001000, B00000000, // -
2, 8, B01100000, B01100000, B00000000, B00000000, B00000000, // .
4, 8, B01100000, B00011000, B00000110, B00000001, B00000000, // /
4, 8, B00111110, B01000001, B01000001, B00111110, B00000000, // 0
3, 8, B01000010, B01111111, B01000000, B00000000, B00000000, // 1
4, 8, B01100010, B01010001, B01001001, B01000110, B00000000, // 2
4, 8, B00100010, B01000001, B01001001, B00110110, B00000000, // 3
4, 8, B00011000, B00010100, B00010010, B01111111, B00000000, // 4
4, 8, B00100111, B01000101, B01000101, B00111001, B00000000, // 5
4, 8, B00111110, B01001001, B01001001, B00110000, B00000000, // 6
4, 8, B01100001, B00010001, B00001001, B00000111, B00000000, // 7
4, 8, B00110110, B01001001, B01001001, B00110110, B00000000, // 8
4, 8, B00000110, B01001001, B01001001, B00111110, B00000000, // 9
2, 8, B01010000, B00000000, B00000000, B00000000, B00000000, // :
2, 8, B10000000, B01010000, B00000000, B00000000, B00000000, // ;
3, 8, B00010000, B00101000, B01000100, B00000000, B00000000, // <
3, 8, B00010100, B00010100, B00010100, B00000000, B00000000, // =
3, 8, B01000100, B00101000, B00010000, B00000000, B00000000, // >
4, 8, B00000010, B01011001, B00001001, B00000110, B00000000, // ?
5, 8, B00111110, B01001001, B01010101, B01011101, B00001110, // @
4, 8, B01111110, B00010001, B00010001, B01111110, B00000000, // A
4, 8, B01111111, B01001001, B01001001, B00110110, B00000000, // B
4, 8, B00111110, B01000001, B01000001, B00100010, B00000000, // C
4, 8, B01111111, B01000001, B01000001, B00111110, B00000000, // D
4, 8, B01111111, B01001001, B01001001, B01000001, B00000000, // E
4, 8, B01111111, B00001001, B00001001, B00000001, B00000000, // F
4, 8, B00111110, B01000001, B01001001, B01111010, B00000000, // G
4, 8, B01111111, B00001000, B00001000, B01111111, B00000000, // H
3, 8, B01000001, B01111111, B01000001, B00000000, B00000000, // I
4, 8, B00110000, B01000000, B01000001, B00111111, B00000000, // J
4, 8, B01111111, B00001000, B00010100, B01100011, B00000000, // K
4, 8, B01111111, B01000000, B01000000, B01000000, B00000000, // L
5, 8, B01111111, B00000010, B00001100, B00000010, B01111111, // M
5, 8, B01111111, B00000100, B00001000, B00010000, B01111111, // N
4, 8, B00111110, B01000001, B01000001, B00111110, B00000000, // O
4, 8, B01111111, B00001001, B00001001, B00000110, B00000000, // P

4, 8, B00111110, B01000001, B01000001, B10111110, B00000000, // Q
4, 8, B01111111, B00001001, B00001001, B01110110, B00000000, // R
4, 8, B01000110, B01001001, B01001001, B00110010, B00000000, // S
5, 8, B00000001, B00000001, B01111111, B00000001, B00000001, // T
4, 8, B00111111, B01000000, B01000000, B00111111, B00000000, // U
5, 8, B00001111, B00110000, B01000000, B00110000, B00001111, // V
5, 8, B00111111, B01000000, B00111000, B01000000, B00111111, // W
5, 8, B01100011, B00010100, B00001000, B00010100, B01100011, // X
5, 8, B00000111, B00001000, B01110000, B00001000, B00000111, // Y
4, 8, B01100001, B01010001, B01001001, B01000111, B00000000, // Z
2, 8, B01111111, B01000001, B00000000, B00000000, B00000000, // [
4, 8, B00000001, B00000110, B00011000, B01100000, B00000000, // \
2, 8, B01000001, B01111111, B00000000, B00000000, B00000000, //]
3, 8, B00000010, B00000001, B00000010, B00000000, B00000000, // hat
4, 8, B01000000, B01000000, B01000000, B01000000, B00000000, // _
2, 8, B00000001, B00000010, B00000000, B00000000, B00000000, // `
4, 8, B00100000, B01010100, B01010100, B01111000, B00000000, // a
4, 8, B01111111, B01000100, B01000100, B00111000, B00000000, // b
4, 8, B00111000, B01000100, B01000100, B00101000, B00000000, // c
4, 8, B00111000, B01000100, B01000100, B01111111, B00000000, // d
4, 8, B00111000, B01010100, B01010100, B00011000, B00000000, // e
3, 8, B00000100, B01111110, B00000101, B00000000, B00000000, // f
4, 8, B10011000, B10100100, B10100100, B01111000, B00000000, // g
4, 8, B01111111, B00000100, B00000100, B01111000, B00000000, // h
3, 8, B01000100, B01111101, B01000000, B00000000, B00000000, // i
4, 8, B01000000, B10000000, B10000100, B01111101, B00000000, // j
4, 8, B01111111, B00010000, B00101000, B01000100, B00000000, // k
3, 8, B01000001, B01111111, B01000000, B00000000, B00000000, // l
5, 8, B01111100, B00000100, B01111100, B00000100, B01111000, // m
4, 8, B01111100, B00000100, B00000100, B01111000, B00000000, // n
4, 8, B00111000, B01000100, B01000100, B00111000, B00000000, // o
4, 8, B11111100, B00100100, B00100100, B00011000, B00000000, // p
4, 8, B00011000, B00100100, B00100100, B11111100, B00000000, // q
4, 8, B01111100, B00001000, B00000100, B00000100, B00000000, // r
4, 8, B01001000, B01010100, B01010100, B00100100, B00000000, // s
3, 8, B00000100, B00111111, B01000100, B00000000, B00000000, // t
4, 8, B00111100, B01000000, B01000000, B01111100, B00000000, // u
5, 8, B00011100, B00100000, B01000000, B00100000, B00011100, // v
5, 8, B00111100, B01000000, B00111100, B01000000, B00111100, // w
5, 8, B01000100, B00101000, B00010000, B00101000, B01000100, // x
4, 8, B10011100, B10100000, B10100000, B01111100, B00000000, // y
3, 8, B01100100, B01010100, B01001100, B00000000, B00000000, // z
3, 8, B00001000, B00110110, B01000001, B00000000, B00000000, // {
1, 8, B01111111, B00000000, B00000000, B00000000, B00000000, // |
3, 8, B01000001, B00110110, B00001000, B00000000, B00000000, // }
4, 8, B00001000, B00000100, B00001000, B00000100, B00000000, // ~
};

 int data = 8; // Pin connected to DIN pin of MAXIM7219 module
 int load = 9; // Pin connected to CS pin of MAXIM7219 module
 int clock = 10; // Pin connected to CLK pin of MAXIM7219 module

➊ int maxInUse = 1; // Set the number of matrices you are using
 MaxMatrix m(data, load, clock, maxInUse); // Define the module
 byte buffer[10];

 // Set message to scroll on the screen

➋ char string1[] = " Arduino Project Handbook . . . ";
 void setup() {
 m.init(); // Start module
 m.setIntensity(0);
 Serial.begin(9600); // Start serial communication
 }

 void loop() {
 byte c;
 while (Serial.available() > 0) {
 byte c = Serial.read();
 Serial.println(c, DEC);
 printCharWithShift(c, 100);
 }
 delay(100);
 m.shiftLeft(false, true);
 printStringWithShift(string1, 100);
 }

 // The remainder of this sketch moves the scrolling characters
 // depending on the number of matrices that are attached
 void printCharWithShift(char c, int shift_speed) {
 if (c < 32) return;
 c -= 32;
 memcpy_P(buffer, CH + 7 * c, 7);
 m.writeSprite(maxInUse * 8, 0, buffer);
 m.setColumn(maxInUse * 8 + buffer[0], 0);
 for (int i = 0; i < buffer[0] + 1; i++) {
 delay(shift_speed);
 m.shiftLeft(false, false);
 }
 }

 void printStringWithShift(char* s, int shift_speed) {
 while (*s != 0) {
 printCharWithShift(*s, shift_speed);
 s++;
 }
 }

 void printString(char* s) {
 int col = 0;
 while (*s != 0) {
 if (*s < 32) continue;
 char c = *s - 32;
 memcpy_P(buffer, CH + 7 * c, 7);
 m.writeSprite(col, 0, buffer);
 m.setColumn(col + buffer[0], 0);
 col += buffer[0] + 1;
 s++;
 }
}

You	 can	 change	 the	 message	 on	 the	 LED	matrix	 by	 altering	 the	 text
inside	the	quotation	marks	at	➋.	If	you	want	to	chain	your	matrices	together,
change	the	number	at	➊	to	the	number	you	have	(the	maximum	number	of
matrices	you	can	chain	together	is	seven).

TROUBLESHOOTING
Q.	The	matrix	does	not	light	up	or	the	LED	shows	erratic	symbols.

•	If	none	of	the	LEDs	light,	make	sure	you	have	connected	the	matrix	as
shown	in	the	circuit	diagram	in	Figure	4-2;	the	pins	must	match	exactly.

•	Make	sure	that	your	Arduino	is	powered	and	the	TX	light	is	flashing.	If
not,	recheck	your	batteries	or	power	supply.

•	Make	sure	the	Maxim	7219	chip	is	securely	inserted	in	the	module.

5
Mood	Light
In	this	project	we’ll	create	a	soothing	mood	light	using	a	single
multicolored	LED.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
RGB	common-cathode	LED
3	220-ohm	resistors

HOW	IT	WORKS
LEDs	come	in	many	different	colors	and	forms,	but	one	of	the	most	useful	is
the	RGB	LED.	As	its	name	implies,	an	RGB	LED	is	actually	three	LEDs	in
one:	red,	green,	and	blue	(see	Figure	5-1).

FIGURE	5-1:	The	primary	colors	of	the	RGB	LED

RGB	is	an	additive	color	model,	which	means	that	by	combining	the	light

of	two	or	more	colors	we	can	create	other	colors.	Red,	green,	and	blue	are
the	 additive	 primary	 colors	 used	 as	 the	 base	 for	 other	 colors,	 as	 shown	 in
Figure	5-2.

FIGURE	5-2:	RGB	is	an	additive	color	model.

Let’s	look	at	an	RGB	LED	in	a	bit	more	detail	in	Figure	5-3.

FIGURE	5-3:	An	RGB	LED

You’ll	see	that	the	RGB	LED	has	four	legs	instead	of	the	usual	two:	one
each	 for	 red,	 green,	 and	 blue,	 and	 the	 fourth	 one	 is	 either	 the	 cathode	 or
anode.	We’ll	be	using	a	common-cathode	RGB	LED	like	the	one	in	the	figure,
where	the	longest	leg	is	the	cathode	and	connects	to	ground.

We	can	use	our	RGB	LED	to	create	a	random-color	output	that	cycles
through	the	colors	of	the	rainbow,	fading	each	one	in	and	out.	This	lighting
effect	 is	 used	 quite	 often	 in	 clubs	 or	 bars	 to	 create	 a	 relaxing	mood.	 You

could	 also	 place	 the	LED	 in	 an	 opaque	 vase	 or	 box	 for	 a	 soothing	 night-
light.

THE	BUILD

1.	 Begin	by	placing	the	common-cathode	RGB	LED	into	your	breadboard
with	the	red	leg	in	the	hole	to	the	left	of	the	long	GND	(or	cathode)
leg.	Connect	a	220-ohm	resistor	to	each	of	the	three	color	legs.

NOTE

On	some	RGB	LEDs	the	green	and	blue	legs	are	the	other	way	around.

2.	 Connect	the	red	leg	to	Arduino	pin	11,	GND	to	Arduino	GND,	green
to	Arduino	pin	10,	and	blue	to	Arduino	pin	9.

COMMON-CATHODE	RGB	LED ARDUINO

Red Pin	11

GND GND

Green Pin	10

Blue Pin	9

3.	 Confirm	that	your	setup	matches	the	circuit	diagram	in	Figure	5-4,	and
upload	the	code	in	“The	Sketch”	on	page	47.

FIGURE	5-4:	The	circuit	diagram	for	the	mood	light

THE	SKETCH
The	sketch	first	sets	Arduino	pins	9,	10,	and	11	as	outputs.	This	sketch	varies
the	brightness	(power)	value	of	each	light	on	the	RGB	LED	in	turn	by

switching	them	on	and	off	incredibly	quickly—the	longer	an	LED	is	lit	for,
the	brighter	it	appears.	To	do	this	the	Arduino	uses	a	technique	called	pulse
width	modulation	(PWM).	The	Arduino	creates	a	pulse	by	switching	the
power	on	and	off	very	quickly.	The	duration	that	the	power	is	on	or	off
(known	as	the	pulse	width)	in	the	cycle	determines	the	average	output,	and	by
varying	this	pulse	width	the	Arduino	can	simulate	voltages	between	full	on	(5
volts)	and	off	(0	volts).	If	the	signal	from	the	Arduino	is	on	for	half	the	time
and	off	for	half,	the	average	output	will	be	2.5	volts,	halfway	between	0	and
5.	If	the	signal	is	on	for	80	percent	and	off	for	20	percent,	the	voltage	is	4
volts,	and	so	on.

We	define	an	RGB	value	between	0	and	255,	with	an	increment	of	5	volts,
to	 create	 a	 fade	 effect.	 In	 simple	 terms,	 each	 color	 of	 the	 LED	 brightens
from	 0	 to	 5	 volts	 in	 sequence,	 and	 then	 fades	 out	 when	 it	 reaches	 its
maximum	 value	 of	 255.	The	Arduino	 can	 handle	 values	 between	 0	 and	 1023
(1,024	values	in	total),	but	because	this	is	such	a	high	number	we	divide	it	by
4	 and	 use	 255	 as	 the	 maximum	 LED	 value	 so	 the	 color	 change	 is	 more
noticeable.

int redPin = 11; // Pin connected to red leg of the RGB LED
int greenPin = 10; // Pin connected to green leg of the RGB LED
int bluePin = 9; // Pin connected to blue leg of the RGB LED

void setup() {
 setRgb(0, 0, 0); // Set all colors at 0
}

void loop() {
 int Rgb[3]; // 3 RGB pins

 Rgb[0] = 0; // A value for each
 Rgb[1] = 0;
 Rgb[2] = 0;

 // Colors increase and decrease in value
 for (int decrease = 0; decrease < 3; decrease += 1) {
 int increase = decrease == 2 ? 0 : decrease + 1;

 for (int i = 0; i < 255; i += 1) { // Fade the colors
 Rgb[decrease] -= 1;
 Rgb[increase] += 1;
 setRgb(Rgb[0], Rgb[1], Rgb[2]);
 delay(20);
 }
 }
}

void setRgb (int red, int green, int blue) {

 analogWrite(redPin, red);
 analogWrite(greenPin, green);
 analogWrite(bluePin, blue);
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	RGB	LED	does	not	light	up	as	expected.

•	If	the	RGB	LED	does	not	light	at	all,	make	sure	you’ve	connected	the
GND	wire	from	the	Arduino	to	the	correct	leg	on	the	RGB	LED—the
long	cathode	leg—and	that	the	Arduino	has	power	connected.

•	If	you	have	a	common-anode	RGB	LED,	then	you	should	connect	the
long	leg	to	+5V	on	the	Arduino.	Check	the	data	sheet	for	your	part	to
find	out	which	kind	of	RGB	LED	you	have.

•	If	the	colors	don’t	appear	as	expected,	your	RGB	LED	may	have	a
different	pin	configuration;	check	your	data	sheet	or	try	swapping	the
connections	to	the	green	and	blue	legs	around.

6
Rainbow	Strip	Light
In	this	chapter	we’ll	use	an	RGB	LED	strip	light	to	create	a
decorative	ambient	strip	of	rainbow	colors.

PARTS	REQUIRED
Arduino	board
Solid-core	wires
RGB	LED	strip	(WS2812B	5V	32-LED	strip)

LIBRARY	REQUIRED
PololuLedStrip

HOW	IT	WORKS
LED	strip	lights	are	often	used	to	create	ambiance	as	a	decorative	feature,
such	as	backlighting	for	a	TV	or	lighting	beneath	kitchen	cabinets.	They	are
low-powered,	typically	between	5	and	12	volts,	so	they’re	easy	to	install
anywhere	with	their	own	power	supply—and	they	look	good	too!

Strip	 lights	 generally	 come	 in	 two	 varieties.	 Single-color	 or	multicolor
nonaddressable	strips	can	only	light	all	the	LEDs	in	one	color	at	a	time.	RGB
multicolored	strips	are	generally	addressable,	which	means	that	each	LED	has
its	own	chip	and	can	be	individually	controlled,	allowing	multiple	colors	on
different	LEDs	to	light	at	a	time.

We’ll	be	using	a	strip	light	of	addressable	RGB	LEDs.	Unlike	the	RGB
LED	 from	 Project	 5,	 the	 LEDs	 on	 a	 strip	 light	 are	 surface	 mounted.	 This
means	that	the	components	are	placed	directly	onto	the	surface	of	a	printed
circuit	 board—in	 this	 case,	 a	 flexible	 strip—rather	 than	 being	 individually
inserted	into	a	circuit.

There	 are	 two	main	 kinds	 of	 addressable	 RGB	 strip	 lights.	 Three-pin
RGB	 LED	 strips	 have	 GND,	 Data,	 and	 +5V	 connections	 to	 control	 the
LEDs.	The	Data	pin	connects	to	the	Arduino	and	uses	the	same	pulse	width
modulation	 (PWM)	 function	explained	 in	Project	5	 to	create	 the	colors	 and
sequence	on	 the	strip.	Four-pin	RGB	LED	strips	have	GND,	Clock,	Data
In,	and	+5V	connections	and	use	Serial	Peripheral	 Interface	 (SPI)	 to	control
their	 LEDs.	 SPI	 is	 a	 communication	 method	 that	 allows	 the	 two-way
transfer	of	data	between	devices.

Our	addressable	RGB	LED	strip,	shown	in	Figure	6-1,	 is	the	three-pin
type	using	PWM.	It	calls	on	 the	PololuLedStrip	 library,	created	by	Pololu
Robotics	and	Electronics	(https://www.pololu.com/),	to	control	the	LEDs.

https://www.pololu.com/

FIGURE	6-1:	A	three-pin	addressable	RGB	LED	strip	light	

We’ll	 use	 our	 RGB	 LED	 strip	 to	 create	 a	 color	 output	 that	 cycles
through	the	colors	of	the	rainbow,	fading	each	color	in	and	out,	as	shown	in
Figure	6-2.

FIGURE	6-2:	RGB	LED	strip	cycling	through	the	colors	of	the	rainbow	

THE	BUILD

1.	 Download	and	add	the	PololuLedStrip	library	to	your	Arduino	IDE
(check	the	primer	for	guidance	on	saving	libraries).

2.	 The	setup	for	this	project	is	very	simple	and	doesn’t	take	long	to
complete.	Most	three-pin	addressable	RGB	LED	strips	come	without
wires	attached	to	the	strip	connections,	so	you’ll	have	to	connect	them.
With	the	LEDs	facing	upward,	begin	by	soldering	solid-core	wire	to
the	three	connections	at	the	left	end	of	the	strip,	as	shown	in	Figure	6-

3.

FIGURE	6-3:	Soldering	wires	to	the	left-side	connections	

3.	 Connect	the	LED’s	GND	pin	to	Arduino	GND,	DI	to	Arduino	pin	12,
and	+5V	to	Arduino	+5V,	as	shown	in	the	following	table.

RGB	LED	STRIP ARDUINO

GND GND

DI	(data	in) Pin	12

+5V +5V

4.	 Check	your	setup	against	the	circuit	diagram	in	Figure	6-4,	and	then
upload	the	code	in	“The	Sketch”	below	and	power	the	Arduino	using
your	battery	pack.

FIGURE	6-4:	The	circuit	diagram	for	the	rainbow	strip	light	

THE	SKETCH
The	sketch	first	calls	on	the	PololuLedStrip	library,	which	we	use	to	control
the	individual	LEDs.	Next,	it	defines	the	pin	to	control	the	data	going	from
the	Arduino	to	the	LED	strip	as	12	and	sets	the	number	of	LEDs	on	the
strip	to	32—you	would	change	this	if	your	strip	had	a	different	number	of
LEDs.

LEDs.
Next	 is	a	calculation	to	control	 the	hue,	saturation,	and	value	(HSV)	of

our	LEDs	to	generate	the	RGB	colors.	You	can	change	these	using	an	HSV
chart	if	you	want;	just	do	a	quick	internet	search	to	find	a	chart	for	reference.

The	WS2812B	data	sheet	states	that	the	color	of	each	LED	is	encoded	as
three	LED	brightness	values,	which	must	be	sent	 in	GRB	(green-red-blue)
order.	The	 first	color	 transmitted	applies	 to	 the	LED	that	 is	closest	 to	 the
data	input	connector,	the	second	color	transmitted	applies	to	the	next	LED
in	the	strip,	and	so	on.

/* PololuLedStrip Library Copyright (c) 2012 Pololu Corporation.
For more information, see http://www.pololu.com/;
http://forum.pololu.com/

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON
INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

LedStripRainbow: Example Arduino sketch that shows how to make a
moving rainbow pattern on an Addressable RGB LED Strip from Pololu.
To use this, you will need to plug an Addressable RGB LED strip from
Pololu into pin 12. After uploading the sketch, you should see a
moving rainbow. */

#include <PololuLedStrip.h>

// Create an ledStrip object and specify the pin it will use.
PololuLedStrip<12> ledStrip;

// Create a buffer for holding the colors (3 bytes per color).
#define LED_COUNT 32
rgb_color colors[LED_COUNT];

void setup() {
}

http://www.pololu.com/
http://forum.pololu.com/

// Converts a color from HSV to RGB.
// h is hue, as a number between 0 and 360.
// s is saturation, as a number between 0 and 255.
// v is value, as a number between 0 and 255.

rgb_color hsvToRgb(uint16_t h, uint8_t s, uint8_t v) {
 uint8_t f = (h % 60) * 255 / 60;
 uint8_t p = (255 - s) * (uint16_t)v / 255;
 uint8_t q = (255 - f * (uint16_t)s / 255) * (uint16_t)v / 255;
 uint8_t t = (255 - (255 - f) * (uint16_t)s / 255) * (uint16_t)v / 255;
 uint8_t r = 0, g = 0, b = 0;
 switch((h / 60) % 6) {
 case 0: r = v; g = t; b = p; break;
 case 1: r = q; g = v; b = p; break;
 case 2: r = p; g = v; b = t; break;
 case 3: r = p; g = q; b = v; break;
 case 4: r = t; g = p; b = v; break;
 case 5: r = v; g = p; b = q; break;
 }
 return (rgb_color) {
 r, g, b
 };
}

void loop() {
 // Update the colors.
 uint16_t time = millis() >> 2;
 for (uint16_t i = 0; i < LED_COUNT; i++) {
 byte x = (time >> 2) - (i << 3);
 colors[i] = hsvToRgb((uint32_t)x * 359 / 256, 255, 255);
 }

 // Write the colors to the LED strip.
 ledStrip.write(colors, LED_COUNT);
 delay(10);
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	RGB	LED	does	not	light	up	as	expected.

•	If	the	RGB	LED	strip	does	not	light,	make	sure	that	your	wires	are
connected	as	shown	in	Figure	6-4,	and	that	your	LED	strip	is	the
WS2812B	type	specified.

•	If	you	aren’t	doing	so	already,	use	an	external	power	source	for	the	RGB
LED	strip.

7
NeoPixel	Compass
In	this	chapter	we’ll	use	a	three-axis	sensor	and	an	RGB	LED	ring
to	create	a	compass	that	indicates	north	by	lighting	the	LEDs	in
that	direction.

PARTS	REQUIRED
Arduino	board
Jumper	wires
HMC5883L	three-axis	sensor
Adafruit	NeoPixel	ring	with	16	RGB	LEDs
9V	battery	pack	with	6	AA	batteries

LIBRARIES	REQUIRED
Wire
FastLED
HMC5883L

HOW	IT	WORKS
The	HMC5883L	three-axis	sensor	(Figure	7-1)	is	a	multichip	module	that
senses	magnetic	force.	The	module	measures	both	the	direction	and	the
magnitude	of	Earth’s	magnetic	fields.	We	will	use	the	HMC5883L	library	to
turn	our	project	into	an	electronic	compass.

FIGURE	7-1:	The	HMC5883L	three-axis	module	runs	on	3.3V	rather	than	5V.

Earth’s	magnetic	field	is	believed	to	be	generated	by	electric	currents	in
the	conductive	material	of	 its	core	 that	are	created	by	heat	escaping.	Since
Earth	is	effectively	a	magnet,	the	north	end	of	a	compass	magnet	is	drawn	to

align	with	its	magnetic	field.
To	 visualize	 our	 compass	 direction	 we	 will	 use	 the	 Adafruit	 NeoPixel

ring,	shown	in	Figure	7-2.	The	NeoPixel	ring	is	made	up	of	16	RGB	LEDs,
each	of	which	has	its	own	driver	chip	and	so	can	be	controlled	individually.	A
single	 data	 line	 controls	 the	 LEDs,	 and	 we’ll	 use	 the	 FastLED	 library	 to
control	the	colors.

FIGURE	7-2:	The	Adafruit	16	RGB	NeoPixel	ring	

When	 the	 project	 is	 powered	 up,	 the	 HMC5883L	module	 will	 detect
magnetic	north	and	display	it	on	the	NeoPixel	ring	by	lighting	the	LEDs	in
that	 direction.	 If	 you	 turn	 around	 while	 holding	 the	 powered	 NeoPixel
compass,	the	LED	lights	will	move	to	always	point	north.

THE	BUILD

NOTE

The	pin	labeled	DRDY	on	the	compass	module	is	not	used	in	this	project.

Your	HMC5883L	module	may	arrive	with	the	header	pins	loose,	so	the	first
step	is	to	solder	the	header	pins	into	the	module.	You	will	need	the	strip	of

five	header	pins	that	should	come	with	the	module.	Insert	the	header	pins
into	the	five	available	holes	on	the	module	and	solder	each	pin	for	a	couple
of	seconds	(check	the	“Quick	Soldering	Guide”	on	page	12	if	you	need	help).
The	module	communicates	with	the	Arduino	using	I2C	and	the	Wire
library.

1.	 In	order	to	use	the	compass	properly	you	need	to	calibrate	the
HMC5883L	module.	Connect	the	module	to	the	Arduino	as	shown	in
the	following	table.

HMC5883L	MODULE ARDUINO

VCC +3.3V

GND GND

SCL Pin	A5	(SLC)

SDA Pin	A4	(SDA)

2.	 Download	the	HMC5883L	library	and	add	it	to	the	Arduino	library
folder	on	your	PC.	Check	the	library	section	in	the	primer	if	you	need	a
reminder	of	how	to	do	this.	Once	you	have	the	library	saved,	restart
your	Arduino	IDE.	When	it	opens	again,	it	should	have	the	library
saved	in	Examples.	Select	File	▸	Examples	▸	Arduino-HMC5883L-
Master	▸	HMC5883L_calibrate.	If	you	can’t	see	the	sketch,	make	sure
you’ve	saved	the	library	in	your	Arduino	library	folder.	The	following
sketch	will	be	shown	in	the	IDE	main	window:	/*
			Calibrate	HMC5883L.	Output	for
HMC5883L_calibrate_processing.pde
			Read	more:	http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-
osiowy-magnetometr-hmc5883l.html
			GIT:	https://github.com/jarzebski/Arduino-HMC5883L
			Web:	http://www.jarzebski.pl
			(c)	2014	by	Korneliusz	Jarzebski
*/

#include	<Wire.h>

http://www.jarzebski.pl/arduino/czujniki-i-sensory/3-osiowy-magnetometr-hmc5883l.html
https://github.com/jarzebski/Arduino-HMC5883L
http://www.jarzebski.pl

#include	<HMC5883L.h>

HMC5883L	compass;

int	minX	=	0;
int	maxX	=	0;
int	minY	=	0;
int	maxY	=	0;
int	offX	=	0;
int	offY	=	0;

void	setup()	{
		Serial.begin(9600);

		//	Initialize	Initialize	HMC5883L
		while	(!compass.begin())	{
				delay(500);
		}
		//	Set	measurement	range
		compass.setRange(HMC5883L_RANGE_1_3GA);
		//	Set	measurement	mode
		compass.setMeasurementMode(HMC5883L_CONTINOUS);
		//	Set	data	rate
		compass.setDataRate(HMC5883L_DATARATE_30HZ);
		//	Set	number	of	samples	averaged
		compass.setSamples(HMC5883L_SAMPLES_8);
}

void	loop()	{
		Vector	mag	=	compass.readRaw();
		//	Determine	Min	/	Max	values
		if	(mag.XAxis	<	minX)	minX	=	mag.XAxis;
		if	(mag.XAxis	>	maxX)	maxX	=	mag.XAxis;
		if	(mag.YAxis	<	minY)	minY	=	mag.YAxis;
		if	(mag.YAxis	>	maxY)	maxY	=	mag.YAxis;

		//	Calculate	offsets

		offX	=	(maxX	+	minX)/2;
		offY	=	(maxY	+	minY)/2;

		/*Serial.print(mag.XAxis);
		Serial.print(":");
		Serial.print(mag.YAxis);
		Serial.print(":");
		Serial.print(minX);
		Serial.print(":");
		Serial.print(maxX);
		Serial.print(":");
		Serial.print(minY);
		Serial.print(":");
		Serial.print(maxY);
		Serial.print(":"); */
		Serial.print(offX);
		Serial.print(":");
		Serial.print(offY);
		Serial.print("\n");
}

3.	 We	only	need	the	X	and	Y	Serial.print	lines	in	this	last	bunch	of
Serial.print	commands,	so	comment	out	the	Serial.print	lines	of	the
sketch	shown	in	bold.	Upload	the	sketch	to	the	Arduino	and	open	the
Serial	Monitor.	A	series	of	numbers	will	display,	as	shown	in	Figure	7-3.

FIGURE	7-3:	The	calibration	numbers	will	be	shown	in	the	IDE	Serial	Monitor	window.

4.	 Rotate	the	sensor	360	degrees	while	it’s	connected	to	the	Arduino	IDE
Serial	Monitor,	and	you	should	see	two	digits	displayed;	in	Figure	7-3,
they’re	13	and	–294.	You’ll	need	these	calibration	numbers	in	the	sketch
later,	so	make	a	note	of	them.

5.	 You	can	improve	the	accuracy	of	your	compass	by	finding	the	magnetic
declination	for	your	location.	The	magnetic	declination,	or	variation,	is
the	angle	on	the	horizontal	plane	between	magnetic	north	(where	a
compass	points)	and	true	north	(the	direction	toward	the	geographic
North	Pole).	You	can	find	your	magnetic	declination	by	visiting
http://www.magnetic-declination.com/	and	entering	your	location	in	the
search	bar	at	the	top	left.	Your	result	will	appear	as	shown	in	Figure	7-
4.

FIGURE	7-4:	The	magnetic	declination	for	your	location	can	be	found	at	http://www.magnetic-
declination.com/.

http://www.magnetic-declination.com/
http://www.magnetic-declination.com/

6.	 The	values	you	need	are	the	magnetic	declination	and	the	declination;
in	Figure	7-4,	they’re	–2°	26'	and	NEGATIVE	(WEST),	respectively,
but	yours	will	be	different.	Record	these	values	too,	as	we’ll	use	them	in
the	sketch	at	the	end	of	the	project—with	one	minor	change.	For
example,	my	values	were	–2	and	26.	We	don’t	put	the	negative	(minus)
sign	before	the	first	value	but	instead	put	it	after,	like	so:	float
declinationAngle	=	(2	-	(26.0	60.0))	(180	/	M_PI);	If	your	location’s
declination	were	POSITIVE	(WEST),	then	you	would	add	the	positive
(plus)	sign	instead:	float	declinationAngle	=	(2	+	(26.0	60.0))	(180	/
M_PI);	Next,	add	the	NeoPixel	ring	to	the	Arduino	by	connecting	V	on
the	NeoPixel	to	+5V	on	the	Arduino,	GND	to	GND,	and	In	on	the
NeoPixel	to	pin	3	on	the	Arduino.

NEOPIXEL ARDUINO

V +5V

GND GND

In Pin	3

7.	 Check	your	setup	against	the	circuit	diagram	in	Figure	7-5,	and	then
upload	the	code	in	“The	Sketch”	below.

FIGURE	7-5:	The	circuit	diagram	for	the	NeoPixel	compass	

THE	SKETCH
First	we	call	on	the	Wire,	FastLED,	and	HMC5883L	libraries.	The	Wire
library	is	installed	with	the	Arduino	IDE,	but	you	need	to	add	the	others.
Download	them	in	the	book’s	resources	at
http://www.nostarch.com/arduinohandbook2/,	and	follow	the	guide	in	the
primer	for	more	information	on	adding	libraries.

Next	 we	 declare	 the	 number	 of	 LEDs	 on	 the	NeoPixel	 ring	 (16)	 and
assign	 pin	 3	 on	 the	 Arduino	 to	 control	 it.	We	 then	 call	 on	 a	 number	 of
settings	in	the	HMC5883L	library	to	control	the	compass	module.	At	➊	we
add	 the	 compass	 offset	 values	 for	 X	 and	 Y,	 which	 should	 match	 your
calibration	 from	Step	4	 earlier;	mine	were	13,	 –294,	 respectively.	At	➋	we
add	the	magnetic	declination	from	Step	6.	Again,	remember	to	change	it	to
the	one	for	your	location.

The	 next	 set	 of	 calculations	 allows	 the	 sensor	 to	map	 to	 a	 360-degree
rotation.	Then	we	set	the	LEDs	on	the	NeoPixel	to	move	depending	on	the
readings	of	the	sensor	to	point	north.	Three	LEDs	are	lit:	one	red	LED	that
points	north	and	a	green	LED	on	either	side	of	it.	The	compass	is	best	used
outdoors	 with	 the	 module,	 away	 from	 any	 strong	 electrical	 or	 magnetic
sources,	 and	 should	 be	 powered	 from	 a	 battery	 pack	 rather	 than	 a	 USB

http://www.nostarch.com/arduinohandbook2/

connection.

// Code by brainy-bits.com and used with kind permission
// https://brainy-bits.com/tutorials/find-your-way-using-the-hmc5883l/

#include <Wire.h>
#include "FastLED.h"
#include <HMC5883L.h>

#define NUM_LEDS 16 // Number of LEDs on Ring
#define DATA_PIN_RING 3 // Pin 3 connected to RGB Ring

CRGB leds_RING[NUM_LEDS];

HMC5883L compass;
int fixedHeadingDegrees; // Used to store Heading value

void setup() {
 Serial.begin(9600);
 Wire.begin(); //Setup I2C
 // Set up the FastLED library with the neopixel ring data
 FastLED.addLeds<NEOPIXEL,DATA_PIN_RING>(leds_RING, NUM_LEDS);

 // Set measurement range
 compass.setRange(HMC5883L_RANGE_1_3GA);

 // Set measurement mode
 compass.setMeasurementMode(HMC5883L_CONTINOUS);

 // Set data rate
 compass.setDataRate(HMC5883L_DATARATE_30HZ);

 // Set number of samples averaged
 compass.setSamples(HMC5883L_SAMPLES_8);

 // Set calibration offset. See HMC5883L_calibration.ino

➊ compass.setOffset(13, -224);
 }

 void loop() {
 Vector norm = compass.readNormalize();

 // Calculate heading
 float heading = atan2(norm.YAxis, norm.XAxis);

 // Set declination angle on your location and fix heading
 // Find your declination on http://magnetic-declination.com/
 // (+) Positive or (-) for negative
 // For Dumfries, Scotland declination angle is -2 '26W (negative)
 // Formula: (deg + (min 60.0)) (180 / M_PI);
 float declinationAngle = (2.0 – (26.0 60.0)) (180 / M_PI);

➋ heading -= declinationAngle;

 // Correct for heading < 0deg and heading > 360deg

https://brainy-bits.com/tutorials/find-your-way-using-the-hmc5883l/

 if (heading < 0) {
 heading += 2 * PI;
 }

 if (heading > 2 * PI) {
 heading -= 2 * PI;
 }

 // Convert to degrees
 float headingDegrees = heading * 180 / M_PI;

 // To fix rotation speed of HMC5883L compass module
 if (headingDegrees >= 1 && headingDegrees < 240) {
 fixedHeadingDegrees = map(headingDegrees * 100, 0, 239 100, 0, 179 100) / 100.00;
 }
 else {
 if (headingDegrees >= 240) {
 fixedHeadingDegrees = map(headingDegrees*100, 240*100, 360*100, 180*100,
360*100) / 100.00;
 }
 }

 int headvalue = fixedHeadingDegrees / 18;
 int ledtoheading = map(headvalue, 0, 15, 15, 0);

 // Clear the ring
 FastLED.clear();

 // New heading
 if (ledtoheading == 0) {
 leds_RING[15] = CRGB::Red;
 leds_RING[0] = CRGB::Green;
 leds_RING[14] = CRGB::Green;
 }
 else {
 if (ledtoheading == 15) {
 leds_RING[0] = CRGB::Red;
 leds_RING[15] = CRGB::Green;
 leds_RING[1] = CRGB::Green;
 }
 else {
 leds_RING[ledtoheading] = CRGB::Red;
 leds_RING[ledtoheading+1] = CRGB::Green;
 leds_RING[ledtoheading-1] = CRGB::Green;
 }
 }

 FastLED.setBrightness(50);
 FastLED.show();
 delay(100);
}

TROUBLESHOOTING

Q.	The	code	compiles,	but	the	RGB	LEDs	do	not	light	up	as	expected.

•	If	no	LEDs	are	lit,	double-check	your	wiring,	particularly	that	the	data
pin	of	the	NeoPixel	is	connected	to	pin	3	on	the	Arduino.

•	Check	that	your	power	for	the	NeoPixel	is	connected	to	GND	and	+5V.
The	compass	module	should	be	connected	to	GND	and	+3.3V.	The
Arduino	should	be	powered	by	your	battery	pack,	not	the	USB	cable
from	your	PC.

•	Make	sure	you	have	calibrated	the	module	and	entered	the	values	using
the	steps	shown	earlier.	The	compass	module	should	be	held	horizontally
and	in	line	with	the	RGB	ring.	The	ring	and	the	module	should	always
be	moved	together.

•	The	module	is	best	used	outdoors,	as	it	is	very	sensitive	to	metal	and
electrical	interference.

•	Try	to	keep	the	power	for	your	Arduino	and	the	sensor	as	far	apart	as
possible	to	avoid	interference.

Sound

8
Arduino	Piano
In	this	project	we’ll	use	some	momentary	pushbuttons	and	a	piezo
sounder	to	create	a	simple	piano.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
Piezo	sounder
8	momentary	tactile	pushbuttons
8	1k-ohm	resistors

HOW	IT	WORKS
Each	pushbutton	in	our	project	(see	Figure	8-1)	is	connected	to	an	Arduino
pin,	and	when	the	pushbutton	is	pressed,	the	piezo	sounder	will	emit	one	of
eight	notes.

FIGURE	8-1:	A	momentary	pushbutton	and	its	circuit	

When	pressed,	a	pushbutton	completes	a	circuit,	turning	it	on.	As	soon
as	 the	 button	 is	 released,	 the	 connection	 will	 spring	 back	 and	 break	 that
circuit,	 turning	it	off.	The	pushbutton	switch	is	also	known	as	a	momentary

or	 normally	 open	 switch,	 and	 is	 used	 in,	 for	 example,	 computer	 keyboards.
This	 is	 in	 contrast	 to	 a	 toggle	 switch,	which	 stays	 either	on	or	off	until	 you
toggle	it	to	the	other	position,	like	a	light	switch.

This	type	of	pushbutton	has	four	pins,	but	you	generally	use	only	two	at
a	time	for	connection.	We’re	using	the	top	pins	in	this	project	so	it’s	easier
to	 reach	 the	 button	 and	 play	 a	 tune,	 although	 the	 two	 unused	 pins	 at	 the
bottom	 would	 do	 the	 same	 job.	 As	 Figure	 8-2	 shows,	 the	 pins	 work	 in	 a
circuit.	Pins	A	and	C	are	always	connected,	as	are	pins	B	and	D.	When	the
button	is	pressed,	the	circuit	is	complete.

FIGURE	8-2:	A	pushbutton’s	incomplete	circuit	

The	Arduino	piano	uses	a	piezo	sounder,	shown	in	Figure	8-3,	to	create
frequencies	that	resemble	recognizable	notes.	Piezo	sounders,	or	just	piezos
for	short,	are	inexpensive	buzzers	often	used	in	small	toys.	A	piezo	element
without	 its	 plastic	 housing	 looks	 like	 a	 gold	 metallic	 disc	 with	 connected
positive	(typically	red)	and	negative	(typically	black)	wires.	A	piezo	is	capable
only	of	making	a	clicking	sound,	which	we	create	by	applying	voltage.

FIGURE	8-3:	A	piezo	sounder	

We	can	make	recognizable	notes	by	getting	the	piezo	to	click	hundreds
of	 times	 a	 second	 at	 a	 particular	 frequency,	 so	 first	 we	 need	 to	 know	 the
frequency	 of	 the	 different	 tones	 we	 want.	 Table	 8-1	 shows	 the	 notes	 and
their	 corresponding	 frequencies.	 Period	 is	 the	 duration	 of	 the	 cycle,	 in
microseconds,	 at	 which	 the	 frequency	 is	 created.	 For	 example,	 to	 get	 a	C
note	(261	Hz),	we	need	the	piezo	to	cycle	at	a	period	of	3,830	microseconds.
We	halve	 the	period	 to	get	 the	timeHigh	 value,	which	 is	used	 in	 the	code	 to
create	 the	note.	 (The	 tone	 is	 caused	by	 the	piezo	being	 turned	on	 and	off
very	 quickly,	 so	 the	 time	 that	 the	 piezo	 is	 on,	 or	 HIGH,	 is	 half	 the	 period.)
TABLE	8-1:	The	Musical	Notes	and	Frequencies	Used	in	the	Code

NOTE FREQUENCY PERIOD TIMEHIGH

c 261	Hz 3,830 1915

d 294	Hz 3,400 1700

e 329	Hz 3,038 1519

f 349	Hz 2,864 1432

g 392	Hz 2,550 1275

g 392	Hz 2,550 1275

a 440	Hz 2,272 1136

b 493	Hz 2,028 1014

C 523	Hz 1,912 956

THE	BUILD

1.	 Insert	the	momentary	pushbuttons	into	the	breadboard	with	the	pins
straddling	the	center	break	of	the	breadboard.

2.	 Looking	at	the	breadboard	face	on,	number	the	pushbuttons	1–8	from
left	to	right.	Connect	the	top-left	pin	(A)	of	pushbutton	1	to	Arduino
pin	2	using	a	jumper	wire.	Connect	the	top-left	pins	of	the	other
pushbuttons	to	the	Arduino	as	shown	here.

PUSHBUTTON NOTE ARDUINO

1 c 2

2 d 3

3 e 4

4 f 5

5 g 6

6 a 7

7 b 8

8 C 9

3.	 Insert	a	1k-ohm	resistor	into	the	breadboard	in	line	with	the	first
pushbutton’s	top-left	pin,	as	shown	in	Figure	8-4,	and	connect	the	other
side	of	the	resistor	to	the	GND	rail	of	the	breadboard.	Repeat	this	for

the	other	pushbuttons.	The	resistor	pulls	the	switch	to	GND	when	the
button	is	not	pressed	to	tell	the	Arduino	that	it’s	not	in	a	positive	state;
when	the	button	is	pressed,	the	positive	power	sounds	the
corresponding	note.

FIGURE	8-4:	A	1k-ohm	resistor	connects	the	pushbutton	pin	to	GND.

4.	 Connect	the	top-right	pin	(B)	of	each	of	the	pushbuttons	to	the	positive
breadboard	power	rail	using	jumper	wire.

5.	 Connect	the	piezo’s	red	wire	to	Arduino	pin	13	and	its	black	wire	to	the
GND	rail	of	the	breadboard,	then	connect	the	power	rails	to	GND	and
+5V	on	the	Arduino.

6.	 Make	sure	that	your	setup	matches	the	circuit	diagram	in	Figure	8-5,
and	then	upload	the	code	in	“The	Sketch”	on	page	74.

FIGURE	8-5:	The	circuit	diagram	for	the	Arduino	piano	

THE	SKETCH
The	sketch	first	defines	the	pin	that	the	piezo	sounder	is	connected	to	and
the	pins	for	the	pushbuttons.	A	value	is	defined	for	each	pushbutton,	and	a
tone	is	assigned	to	correspond	with	that	value.	The	pushbuttons	are	set	as
inputs	and	the	piezo	sounder	as	an	output.	The	loop	cycle	checks	each
button,	playing	the	corresponding	tone	for	as	long	as	the	button	is	held
down.	Only	one	note	can	be	played	at	a	time	because	each	note	requires	the
loop	to	begin	again,	so	when	the	button	is	released,	the	piezo	sounder	stops
playing	the	tone	and	the	loop	starts	over.

int speakerPin = 13; // Piezo defined as pin 13
int key_c = 2; // Define Arduino pins for the keys
int key_d = 3;
int key_e = 4;
int key_f = 5;
int key_g = 6;
int key_a = 7;
int key_b = 8;
int key_C = 9;

// Value for each key press

int keypress_c = 0; int keypress_d = 0; int keypress_e = 0;
int keypress_f = 0; int keypress_g = 0; int keypress_a = 0;
int keypress_b = 0; int keypress_C = 0;

// Define the frequency of each note
int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956 };
// 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C'
int keytone = 0; // Give a value for keytone

void setup() {
 pinMode(key_c, INPUT); // Set up key pins as inputs
 pinMode(key_d, INPUT);
 pinMode(key_e, INPUT);
 pinMode(key_f, INPUT);
 pinMode(key_g, INPUT);
 pinMode(key_a, INPUT);
 pinMode(key_b, INPUT);
 pinMode(key_C, INPUT);
 pinMode(speakerPin, OUTPUT); // Set up piezo pin as an output
}

// Start a loop to read the press of each key
void loop() {
 keypress_c = digitalRead(key_c); keypress_d = digitalRead(key_d);
 keypress_e = digitalRead(key_e); keypress_f = digitalRead(key_f);
 keypress_g = digitalRead(key_g); keypress_a = digitalRead(key_a);
 keypress_b = digitalRead(key_b); keypress_C = digitalRead(key_C);

 // And if the key press is HIGH, play the corresponding tone
 if ((keypress_c == HIGH) || (keypress_e == HIGH) ||
 (keypress_g == HIGH) || (keypress_d == HIGH) ||
 (keypress_f == HIGH) || (keypress_a == HIGH) ||
 (keypress_b == HIGH) || (keypress_C == HIGH))
 {
 if (keypress_c == HIGH) {
 keytone = tones[0];
 }
 if (keypress_d == HIGH) {
 keytone = tones[1];
 }
 if (keypress_e == HIGH) {
 keytone = tones[2];
 }
 if (keypress_f == HIGH) {
 keytone = tones[3];
 }
 if (keypress_g == HIGH) {
 keytone = tones[4];
 }
 if (keypress_a == HIGH) {
 keytone = tones[5];
 }
 if (keypress_b == HIGH) {
 keytone = tones[6];
 }
 if (keypress_C == HIGH) {

 keytone = tones[7];
 }
 digitalWrite(speakerPin, HIGH); // Turn on piezo to play tone
 delayMicroseconds(keytone);
 digitalWrite(speakerPin, LOW); // Turn off after a short delay
 delayMicroseconds(keytone);
 }
 else { // If no key is pressed, piezo remains silent
 digitalWrite(speakerPin, LOW);
 }
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	some	or	all	of	the	buttons	do	not	produce	a	tone.

•	If	the	piezo	sounder	makes	no	noise	at	all,	check	that	the	piezo’s	red	wire
is	connected	to	pin	13	and	its	black	wire	to	GND	on	the	breadboard.
Make	sure	you	have	connected	GND	on	the	Arduino	to	the	correct
breadboard	power	rail	and	that	the	Arduino	has	power	connected.

•	If	only	some	buttons	make	a	sound,	recheck	the	wiring	for	the
pushbuttons	that	are	silent.	It’s	easy	to	misalign	the	jumper	wires	in	the
breadboard	so	they	don’t	actually	line	up	in	the	row	with	the	pushbutton
pins.

•	If	you	still	have	an	issue,	try	swapping	the	offending	pushbutton	for	one
you	know	works;	if	this	resolves	your	problem,	then	your	original
pushbutton	may	have	been	faulty.

9
Audio	LED	Visualizer
In	this	project	we’ll	use	a	sound	sensor	that	will	light	a	series	of
LEDs	depending	on	the	beat	and	volume	of	the	sound	it	detects.

PARTS	REQUIRED
Arduino	board
Breadboard
Solid-core	wires	with	ends	stripped
Jumper	wires
2	red	LEDs
2	yellow	LEDs
5	green	LEDs
9	220-ohm	resistors
3.5	mm	female	headphone	jack

HOW	IT	WORKS
In	Project	2	we	created	an	LED	night-light	that	was	controlled	by	a	light
sensor.	This	project	is	similar,	but	the	LEDs	will	be	controlled	by	sound.
We’ll	connect	a	headphone	jack	to	the	Arduino,	hook	the	jack	up	to	an	MP3
player,	and	watch	the	lights	“dance”	to	the	music.	The	signal	from	the	MP3
player	is	picked	up	by	the	headphone	jack	and	received	as	pulses	by	the
Arduino	A0	pin.	The	pattern	of	the	pulses	depends	on	the	beat	and	volume
of	the	music.	The	Arduino	then	sends	power	to	the	LEDs	in	direct	response
to	the	pattern	of	the	music.	As	an	alternative	to	using	the	MP3	player,	you
could	add	a	microphone	and	have	your	own	voice	visualized	in	colored
lights.

THE	BUILD

1.	 Place	the	LEDs	into	the	breadboard	with	the	short,	negative	legs	in	the
GND	rail.	Connect	the	GND	rail	on	the	breadboard	to	Arduino	GND.

2.	 Insert	a	220-ohm	resistor	for	each	LED,	making	sure	the	resistors
straddle	the	center	break,	and	connect	one	leg	to	each	positive	LED	leg
(see	Figure	9-1).	Connect	the	other	leg	of	each	resistor	to	Arduino
digital	pins	2	through	10	with	jumper	wires,	as	shown	in	the	following
table.

LED ARDUINO

Positive	leg Digital	pins	2–10	(via	resistor)

Negative	leg GND

FIGURE	9-1:	A	resistor	is	required	between	the	LEDs	and	power.

NOTE

This	headphone	jack	was	reclaimed	from	a	radio	bought	in	a	dollar	store,
but	if	you	can	find	one	to	purchase,	that	will	work	too.	On	the	headphone
jack,	the	pins	are	GND,	right	channel,	and	left	channel.

3.	 Connect	the	ground	pin	of	the	headphone	jack	directly	to	GND,	and
the	left	channel	of	the	jack	to	Arduino	pin	A0,	as	outlined	in	the
following	table.	You	could	use	jumper	wire	for	this,	but	I’ve	used	solid-
core	wire	and	stripped	the	ends	for	connections.	Stranded	wire	is	too
thin	and	won’t	connect	easily	to	the	Arduino	pins.	(See	Figure	9-2	for
the	positions	of	the	jack	pins.)

HEADPHONE	JACK ARDUINO

Ground GND

Ground GND

Left	channel A0

FIGURE	9-2:	3.5	mm	headphone	jack	with	MP3	player	jack	plugged	in	

4.	 Check	your	setup	against	the	circuit	diagram	in	Figure	9-3,	and	then
upload	the	code	in	“The	Sketch”	on	page	81.

FIGURE	9-3:	The	circuit	diagram	for	the	audio	LED	visualizer	

Plug	 your	 MP3	 player	 into	 the	 headphone	 jack	 for	 audio	 input.	 The
LEDs	will	dance	to	the	beat	and	volume	of	your	music!

THE	SKETCH
The	sketch	first	sets	the	Arduino	pins	connected	to	the	LEDs,	pins	2–10,	as
outputs.	The	input	in	this	sketch	is	the	signal	from	the	MP3	player,	received
through	the	headphone	jack,	which	is	read	by	analog	pin	A0.	The	music	sent
by	the	player	is	picked	up	as	a	series	of	pulses	by	A0,	and	the	volume	and
beat	of	the	music	determine	how	the	LEDs	light	up.	The	louder	the	music,
the	more	LEDs	will	light;	and	the	faster	the	music’s	beat,	the	faster	the
LEDs	will	flash.

// Used with kind permission from James Newbould
int led[9] = {2, 3, 4, 5, 6, 7, 8, 9, 10}; // Pins connected to LEDs
int leftChannel = A0; // Pin connected to headphone jack
int left, i; // Create a variable for left and i
void setup() {
 for (i = 0; i < 9; i++)
 pinMode(led[i], OUTPUT); // Set LEDs as output
}
void loop() { // Light LEDs from left to right and back again
 // depending on the value from A0
 left = analogRead(leftChannel); // Read left value

 left = left / 10; // Set level of sensitivity between 1 and 50
 if (left == 0) {
 for (i = 0; i < 9; i++) { // If value is low, turn off LED
 digitalWrite(led[i], LOW);
 }
 }
 else { // Or else turn on LEDs in sequence
 for (i = 0; i < left; i++) {
 digitalWrite(led[i], HIGH);
 }
 for (i = i; i < 9; i++) {
 digitalWrite(led[i], LOW);
 }
 }
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	some	or	all	of	the	LEDs	do	not	light	up	as	expected.

•	If	none	of	the	LEDs	light,	make	sure	you’ve	connected	the	GND	wire
from	the	Arduino	to	the	correct	breadboard	power	rail	and	that	the
Arduino	has	power	connected.

•	If	only	some	LEDs	light,	check	that	the	LEDs	are	inserted	the	correct
way,	with	the	longer	leg	connected	to	the	positive	power	and	the	short
leg	to	GND.	LEDs	have	polarity,	so	they	must	be	connected	correctly.
Check	that	each	resistor	is	inserted	fully	and	lines	up	in	the	same	row	as
the	corresponding	LED	leg.

•	Make	sure	the	LEDs	are	connected	to	the	Arduino	pins	defined	in	the
sketch	and	match	the	circuit	diagram	in	Figure	9-3;	the	first	part	of	the
sketch	defines	pins	2–10	as	outputs,	so	these	should	be	used.

•	If	an	LED	still	fails	to	light,	it	may	be	burned	out	or	faulty.	An	easy	way
to	check	is	to	swap	the	LED	with	another	in	the	sequence	and	see	if	that
solves	the	issue.	If	you	find	that	the	LED	works	in	another	position,	it
means	the	resistor	is	either	faulty	or	not	inserted	fully.	Depending	on	the
outcome,	replace	the	LED	or	resistor	with	a	functioning	component.

Motors

10
Old-School	Analog	Dial
Old-fashioned	analog	displays	have	a	certain	charm.	In	this	project
I’ll	demonstrate	how	to	make	your	own.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
Tower	Pro	SG90	9g	servomotor
Photoresistor
10k-ohm	resistor

LIBRARY	REQUIRED
Servo

HOW	IT	WORKS
Today,	visual	representations	of	measurements	are	usually	displayed	digitally
on	an	LCD	screen	or	with	LED	digits,	but	not	that	long	ago	analog	dials
were	always	used	to	show	pressure,	speed,	and	even	time!	The	Arduino	can
detect	a	voltage	input	from	a	sensor,	and	we’ll	use	that	capability	here	to
create	a	dial	that	the	Arduino	moves	in	response	to	the	input	received.	We
can	use	this	dial	in	lots	of	ways	to	show	measurements	for	different	projects.

In	this	project,	we’ll	use	a	photoresistor	to	measure	light	input,	but	you
could	easily	swap	in	a	water	sensor	to	make	a	rain	detector,	or	a	gas	sensor
for	 a	 warning	 meter.	 A	 photoresistor,	 also	 referred	 to	 as	 a	 light-dependent
resistor,	produces	a	variable	resistance	depending	on	the	amount	of	light	the
sensor	detects,	as	discussed	in	Project	2.

The	principles	 for	 adding	an	 analog	 sensor	 are	 the	 same	 for	whichever
sensor	you	choose.	Most	sensors	have	three	connections:	ground,	+5V,	and	a
signal	connection	that	connects	 to	 the	analog	A0	pin	on	the	Arduino—this
makes	 it	 easy	 to	 swap	 in	 a	 different	 sensor.	 The	 photoresistor	 is	 slightly
different	because	 it	has	only	 two	connections,	 so	one	will	go	 to	power	and
one	to	A0.

We’ll	use	the	sensor	to	measure	light	levels,	and	the	Arduino	will	use	that
measurement	to	move	the	arm	of	a	small	servomotor	(or	“servo”	for	short)
to	 the	 corresponding	 angle.	 The	 angle	 of	 the	 motor	 arm	 indicates	 the
strength	of	the	light	input.

A	 servo,	 shown	 in	Figure	 10-1,	 is	 a	 small,	 cheap,	mass-produced	motor

used	 for	 small	 robotics	 and	 a	 variety	 of	 electronics	 tasks.	 The	 servo	 is
controlled	by	three	wires:	ground	(black	or	brown),	power	(red),	and	signal
or	 control	 (typically	 orange,	 yellow,	 or	 white).	 Pulses	 are	 sent	 from	 the
Arduino	over	the	control	wire	via	pulse	width	modulation	(PWM;	discussed
in	 Project	 5),	 and	 the	 input	 received	 by	 the	 photoresistor	 determines	 the
angle	 of	 the	 servo’s	 actuator	 arm.	 The	 servo	 expects	 a	 pulse	 every	 20
milliseconds	in	order	to	retrieve	the	correct	information	about	the	angle.

The	 pulse	 width	 dictates	 the	 range	 of	 the	 servo’s	 angular	 motion.
Typically,	 a	 servo	 pulse	 width	 of	 1.5	 milliseconds	 sets	 the	 servo	 to	 its
“neutral”	position	of	45	degrees,	a	pulse	width	of	1.25	milliseconds	sets	the
angle	to	0	degrees,	and	a	pulse	width	of	1.75	milliseconds	sets	the	angle	to	90
degrees.

FIGURE	10-1:	A	servomotor	

The	 physical	 limits	 of	 the	 arm	 angle	 and	 the	 timing	 of	 the	 servo
hardware	 vary	 across	 brands	 and	models,	 but	 in	 general	 a	 servo’s	 angular
motion	travels	in	the	range	of	90	to	180	degrees	and	the	neutral	position	is
almost	always	at	1.5	milliseconds.

THE	BUILD

1.	 Connect	the	servo’s	red	(power)	wire	directly	to	+5V	on	the	Arduino,
the	brown	(ground)	wire	to	Arduino	GND,	and	the	yellow	(signal)	wire
to	Arduino	pin	9,	as	shown	in	the	following	table.

SERVO ARDUINO

Red	(power)	wire +5V

Brown	(ground)	wire GND

Yellow	signal	(control)	wire Pin	9

2.	 Place	the	photoresistor	in	the	breadboard	and	connect	one	leg	to	+5V
on	the	Arduino.	Connect	the	photoresistor’s	other	leg	to	a	10k-ohm
resistor,	as	shown	in	the	circuit	diagram	in	Figure	10-2,	and	use	a
jumper	wire	to	connect	this	resistor	leg	to	Arduino	pin	A0	(see	the
following	table).	Connect	the	other	leg	of	the	10k-ohm	resistor	to
GND.

PHOTORESISTOR ARDUINO

Leg	1 +5V

Leg	2 Pin	A0	via	10k-ohm	resistor

FIGURE	10-2:	The	photoresistor	is	connected	to	Arduino	pin	A0	and	measures	the	amount	of
light.	The	servo	is	connected	to	pin	9	and	moves	according	to	the	amount	of	light.

3.	 Upload	the	code	in	“The	Sketch”	on	page	89.

4.	 Make	a	faceplate	for	your	dial,	like	the	one	in	Figure	10-3,	and	attach	it
to	the	servo.	Be	sure	the	servo	arm	can	move	over	the	measurements	of
the	dial	like	a	pointer.	Cover	the	photoresistor	completely	when	you
add	power	to	the	Arduino,	and	then	mark	this	position	as	0	on	the
faceplate.	Shine	a	bright	flashlight	at	the	light	resistor	to	get	the
maximum	value,	and	then	mark	that	position	on	the	faceplate	as	well.
Add	equally	spaced	marks	between	0	and	the	max	value	to	give	you	a
scale.

FIGURE	10-3:	An	example	faceplate	

The	 servo’s	 actuator	 arm	 will	 move	 up	 the	 scale	 as	 it	 detects	 light,
depending	on	 the	brightness.	For	 example,	 on	 the	 left	 of	Figure	 10-4,	 the
servo	arm	 is	 shown	at	position	0.	On	 the	 right,	 the	 servo	arm	displays	 the
brightness	measurement	when	light—in	this	case,	a	 laser—is	applied	to	the
photoresistor.

FIGURE	10-4:	When	light	shines	on	the	photoresistor,	the	servo	arm	moves.

THE	SKETCH
The	sketch	first	calls	the	Servo	library,	which	is	already	built	into	the
Arduino	IDE	(so	there’s	no	need	to	download	and	install	this	library).	We
give	the	servo	position	a	starting	value	of	0,	and	set	the	photoresistor	pin	as
A0.	We	assign	Arduino	pin	9	to	control	the	servo	and	then	read	the	value
from	the	analog	pin.	Pin	A0	is	capable	of	reading	an	analog	value	from	the
photoresistor	and	converting	it	to	a	digital	value	in	the	range	0–1,023,	so	we

scale	this	down	to	0–179	(180	possible	values)	to	fit	the	servo	arm’s	180-
degree	range	of	movement.	If	no	light	is	applied	to	the	photoresistor,	the
value	will	be	0	and	the	servo	position	will	be	0.	As	you	add	light,	the	servo
arm	will	move,	up	to	a	maximum	of	180	degrees.	The	angle	depends	on	the
brightness.

/* Created by David Cuartielles modified 30 Aug 2011 by Tom Igoe
This example code is in the public domain http://arduino.cc/en/Tutorial/AnalogInput */
#include <Servo.h> // Call the Servo library (built into the IDE)
Servo myservo;
int pos = 0; // Give the position a value
int lightPin = A0; // Pin connected to the photoresistor

void setup() {
 myservo.attach(9); // Pin connected to the servo
}

void loop() {
 // Read voltage from photoresistor, can read 1024 possible values
 int lightLevel = analogRead(lightPin);
 // Scale 1024 values to 180
 lightLevel = map(lightLevel, 0, 1023, 0, 179);
 // Scale of 0-179 (180 values)
 pos = constrain(lightLevel, 0, 179);

 myservo.write(pos); // Set the servo angle
 delay(100);
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	servo	does	not	move	when	light	is	applied	to	the

photoresistor.

•	If	the	servo	does	not	move	at	all,	make	sure	that	your	wiring	matches	the
diagram	in	Figure	10-2	and	that	there’s	power	going	to	the	Arduino.

•	Connect	the	Arduino	to	your	PC	and	open	the	Serial	Monitor	to	check
that	there’s	a	reading	from	the	photoresistor.	If	no	reading	is	registered,
check	that	the	photoresistor	is	securely	inserted	into	the	breadboard.	If
you	still	get	no	reading,	your	photoresistor	may	be	faulty,	so	replace	it
with	another	one.

http://arduino.cc/en/Tutorial/AnalogInput

11
Stepper	Motor
In	this	project	I’ll	introduce	you	to	a	stepper	motor	(or	step
motor),	set	it	up,	and	discuss	how	it	works.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
28BYJ-48	stepper	motor	with	ULN2003	driver	module
50k-ohm	potentiometer

LIBRARY	REQUIRED
Stepper

HOW	IT	WORKS
A	stepper	motor,	like	the	one	shown	in	Figure	11-1,	is	a	direct	current	(DC)
electric	motor	that	divides	a	full	rotation	of	the	arm	into	a	number	of	equal
steps.	Unlike	the	servomotor	used	in	Project	10,	this	stepper	motor	turns
360	degrees	and	has	the	advantage	of	being	able	to	position	itself	with	great
accuracy	or	rotate	continuously.

FIGURE	11-1:	A	28BYJ-48	stepper	motor	

The	stepper	motor’s	data	sheet	will	state	the	number	of	steps	it	performs

per	revolution;	a	 step	 is	 just	one	movement	within	one	revolution.	A	motor
with	200	steps	per	revolution	will	turn	through	360	degrees	in	200	steps,	or
1.8	degrees	per	step.	Within	a	stepper	motor	there	are	two	interlocked	discs,
similar	 to	 gears,	 with	 teeth	 of	 opposing	 magnetism	 that	 alternate	 and
connect	to	the	center	shaft	or	rotor.	The	motor	moves	in	steps	when	power
is	 sent	 to	 its	 windings—a	 series	 of	 wire	 coils	 that	 become	 electromagnets
when	 voltage	 is	 applied.	 When	 powered,	 these	 electromagnets	 attract	 or
oppose	the	gear-shaped	discs	and	rotate	the	shaft.

You	 can	 control	 the	motor’s	 position	 and	 speed	 by	 commanding	 it	 to
move	to	and	hold	at	one	of	these	steps.	Since	we	know	the	angle	each	step
represents,	 we	 can	 get	 accurate	 and	 precise	 turning	 angles	 and	 distance
measurements.	Stepper	motors	are	commonly	used	in	CD	and	DVD	players
and	in	3D	printers,	where	movements	need	to	be	very	accurate.

When	you’re	 looking	to	buy	a	stepper	motor,	 there	are	a	 few	things	 to
consider.	The	first	is	whether	or	not	it	has	a	gearbox.	A	gearbox	will	improve
the	 torque	 (moving	 power)	 but	 reduce	 the	 revolutions	 per	minute	 (RPM,	 or
speed).

The	 next	 consideration	 is	 whether	 the	 stepper	 motor	 is	 bipolar	 or
unipolar.	Bipolar	motors	switch	polarity	of	the	coils.	Polarity	is	the	direction
the	 current	 flows;	 so	 if,	 for	 example,	 we	 reversed	 the	 5V	 and	 GND
connections,	the	motor	would	turn	in	the	opposite	direction.	Bipolar	motors
have	simpler	windings	but	require	more	complicated	drivers	as	they	reverse
the	polarity	for	us.	Unipolar	motors	essentially	have	a	winding	per	polarity,
but	 they	 can	 use	 simpler	 drivers.	 You	 can	 check	 whether	 your	 motor	 is
bipolar	or	unipolar	by	looking	at	the	connections:	a	bipolar	motor	has	four
connections,	 and	 a	 unipolar	 motor	 has	 five	 to	 eight	 connections.	 In	 this
project	we’re	using	a	unipolar	motor,	the	28BYJ-48	stepper	motor	with	the
ULN2003	 driver	 test	 module—a	 board	 that	 makes	 it	 easy	 to	 control	 the
motor	 with	 the	 Arduino,	 like	 the	 module	 board	 for	 the	 LED	 matrix	 in
Project	 4.	 Some	 driver	 boards	 will	 have	 a	 slightly	 different	 setup,	 so	 I’d
recommend	getting	the	model	of	motor	listed	here	for	the	project	so	you	can
follow	the	instructions	closely.

Turning	the	potentiometer	alters	the	angle	of	the	stepper	motor	arm,	so
as	you	move	 the	potentiometer	 to	 the	 left	or	 right,	 the	 stepper	motor	arm
will	 follow	 your	 input.	 (A	 potentiometer	 is	 a	 variable	 resistor	 with	 a	 knob.)
The	resistance	of	the	potentiometer	changes	as	you	turn	the	knob.	They	are

commonly	 used	 in	 electrical	 devices	 such	 as	 volume	 controls	 on	 audio
equipment.

THE	BUILD

1.	 Connect	the	stepper	motor	to	the	driver	board,	as	shown	in	Figure	11-
2.	From	the	outermost	pin	to	the	innermost	pin	in	the	middle	of	the
board,	connect	the	wires	from	the	motor	in	the	following	order:	blue,
pink,	yellow,	orange,	red.	The	connector	can	only	be	inserted	in	this
way.

FIGURE	11-2:	Connecting	the	stepper	to	the	driver	board	

2.	 Connect	the	driver	board	pins	1,	2,	3,	and	4	at	the	other	end	of	the
board	directly	to	Arduino	pins	8,	9,	10,	and	11,	respectively.

STEPPER	DRIVER	BOARD ARDUINO

IN1 Pin	8

IN2 Pin	9

IN3 Pin	10

IN4 Pin	11

GND GND

+5V +5V

+5V +5V

3.	 Insert	a	potentiometer	into	the	breadboard,	connecting	its	center	pin	to
Arduino	A0	and	its	outer	two	pins	to	Arduino	+5V	and	GND	in	any
order.

POTENTIOMETER ARDUINO

Left	pin GND

Center	pin A0

Right	pin +5V

4.	 Connect	the	driver	board	GND	and	+5V	to	the	breadboard	GND	and
+5V,	and	connect	the	breadboard	rails	to	the	Arduino.	Don’t	forget	to
attach	the	power	rails	of	the	breadboard	to	GND	and	+5V	too.

5.	 Make	sure	that	your	setup	matches	the	final	configuration	shown	in
Figure	11-3,	and	upload	the	code	in	“The	Sketch”	below.

FIGURE	11-3:	The	circuit	diagram	for	the	stepper	motor	

THE	SKETCH
This	code	comes	with	the	Arduino	IDE	and	can	be	found	at	File	▸	Examples
▸	Stepper	▸	MotorKnob.	I’ve	reproduced	it	here	as	you’ll	see	it	in	the	IDE.
It	uses	the	built-in	stepper	library,	<Stepper.h>.	The	potentiometer	is
connected	to	the	Arduino	A0	pin	and	gives	a	variable	voltage	depending	on
the	turn	of	the	potentiometer,	which	then	controls	the	position	of	the
stepper	motor.

/* MotorKnob
 * http://www.arduino.cc/en/Reference/Stepper
 * This example code is in the public domain.
 */

http://www.arduino.cc/en/Reference/Stepper

#include <Stepper.h>
// Change this to the number of steps on your motor
#define STEPS 100

// Create an instance of the stepper class, specifying the number of
// steps of the motor and the pins it's attached to
Stepper stepper(STEPS, 8, 10, 9, 11);
// The previous reading from the analog input
int previous = 0;

void setup() {
 // Set the speed of the motor to 700 RPM
 stepper.setSpeed(30);
}

void loop() {
 // Get the sensor value
 int val = analogRead(0);

 // Move a number of steps equal to change in the sensor reading
 stepper.step(val - previous);

 // Remember the previous value of the sensor
 previous = val;
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	stepper	motor	does	not	move.

•	When	you	power	the	motor,	lights	should	blink	on	the	driver	motor
board.	If	they	don’t,	there’s	an	issue	with	power,	so	check	that	your	setup
matches	the	circuit	diagram	in	Figure	11-3.	Make	sure	the	stepper	motor
connection	is	firmly	inserted	into	the	driver	motor	board—it	can	only	go
in	one	way.

•	If	the	driver	board	lights	but	the	motor	does	not	move,	check	that	the
connections	to	the	potentiometer	are	secure	and	match	the	tables	shown
earlier.

12
Temperature-Controlled	Fan
In	this	project,	we’ll	use	an	LM35	temperature	sensor	to	turn	a	fan
on	automatically	when	the	temperature	is	too	high.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
LM35	temperature	sensor
5V	single-channel	relay	module
12V	mini	computer	cooling	fan
9V	battery	snap	and	battery

HOW	IT	WORKS
The	LM35	temperature	sensor	(shown	in	Figure	12-1)	senses	the
temperature	and	sends	that	measurement	to	the	Arduino	in	voltage.	The
Arduino	converts	this	voltage	value	to	temperature	in	degrees	Celsius	and
then	converts	this	value	to	degrees	Fahrenheit.	When	the	temperature
reading	is	above	71	degrees	Fahrenheit,	the	Arduino	sends	power	to	the
relay,	which	turns	on	the	computer	fan.

FIGURE	12-1:	The	LM35	temperature	sensor:	the	left	pin	is	+5V,	center	is	data	out,	and	right	is
GND.

The	computer	fan	requires	more	power	than	the	Arduino	can	provide,	so
we	 need	 to	 give	 it	 its	 own	 power	 supply:	 a	 9V	 battery.	 This	 circuit	 is
controlled	by	an	electronic	relay—an	electronically	operated	switch	that	in	this
case	uses	an	electromagnet	to	mechanically	open	or	close	the	circuit	(shown
in	 Figure	 12-2).	 A	 relay	 is	 generally	 used	 when	 a	 low-power	 device	 is
required	 to	 switch	 on	 or	 off	 a	 much	 higher-voltage	 device.	 Our	 relay	 is
powered	 by	 5	 volts	 to	 operate	 the	 mechanical	 switch.	 In	 this	 project	 the

circuit	 is	only	9	volts,	but	 the	relay	could	control	a	circuit	up	to	240	volts.
Adding	higher-voltage	 circuits	 can	 be	 very	 dangerous,	 however,	 so	 do	 this
only	if	you	are	comfortable	working	with	electricity	or	can	seek	professional
advice.

FIGURE	12-2:	A	5V	single-channel	relay	

THE	BUILD

1.	 Insert	the	LM35	sensor	into	the	breadboard	with	the	front	of	the	sensor
(the	flat	surface	with	text	on	it)	facing	you.	Connect	the	left	pin	to	the
+5V	rail	on	the	breadboard,	the	center	pin	to	Arduino	A0,	and	the	right
pin	to	the	GND	rail,	as	shown	in	the	following	table.

LM35	SENSOR ARDUINO

Left	pin +5V

Center	pin A0

Right	pin GND

2.	 There	are	a	number	of	connections	on	the	relay,	as	shown	in	Figure	12-
3.	If	your	relay	module	has	a	different	layout,	adapt	the	wiring

accordingly	(using	the	data	sheet	or	the	pin	markings	on	the	module).
Our	relay	has	an	LED	marked	PWR	to	indicate	when	it’s	receiving
power,	and	another	LED	to	show	when	the	electromagnetic	switch	is
on	(you	can	usually	hear	this,	too,	as	it	makes	a	satisfying	clicking	noise).
The	relay	can	be	set	to	be	HIGH	or	LOW	when	triggered,	as	indicated	by	a
small	jumper	switch	or	pins.	For	our	project,	make	sure	the	jumper	is
set	to	HIGH	so	the	relay	will	send	power	when	it	is	triggered.

FIGURE	12-3:	Relay	connections	(your	relay	pins	may	differ,	so	follow	the	data	sheet

provided)	

3.	 As	Figure	12-3	shows,	the	pins	on	the	right	side	of	the	relay	module	are
Signal,	GND,	and	+5V.	Attach	the	relay’s	Signal	pin	to	Arduino	pin	5,
GND	to	Arduino	GND,	and	+5V	to	the	Arduino	power	via	the
breadboard	rails.

5V	RELAY ARDUINO

Signal Pin	5

GND GND

+5V +5V

4.	 On	the	left	side	of	the	relay	module	are	the	connections	for	the
electromagnetic	switch	(Figure	12-3).	The	center	pin	is	the	common
connection;	the	left	pin	is	marked	NO	for	normally	open,	meaning	the
circuit	is	broken	and	the	default	state	is	off;	and	the	right	pin	is	marked
NC	for	normally	closed,	meaning	the	default	state	is	on.	If	the	relay	is	not
switched,	the	common	pin	is	connected	to	the	NC	pin.	If	the	relay	is
switched,	the	common	pin	is	connected	to	the	NO	pin.	Because	we
want	the	circuit	to	be	off	until	we	use	the	switch,	we	will	use	the	NO
pin.

5.	 Next,	connect	the	black	GND	wire	of	the	fan	to	the	GND	wire	of	the

9V	battery.	Then,	as	shown	in	the	following	table,	attach	the	red
positive	wire	of	the	fan	to	the	common	pin	on	the	relay,	and	connect
the	positive	wire	of	the	9V	battery	to	NO	on	the	relay.

5V	RELAY FAN/9V	BATTERY

NO	(normally	open) 9V	battery’s	positive	wire

Common Fan’s	positive	wire

NC	(normally	closed) Not	connected

6.	 Connect	the	breadboard	power	rails	to	each	other	and	to	the	Arduino
GND	and	+5V	pins.

7.	 Make	sure	your	setup	matches	the	circuit	diagram	in	Figure	12-4,	and
then	upload	the	code	in	“The	Sketch”	on	page	103.

FIGURE	12-4:	The	circuit	diagram	for	the	temperature-controlled	fan	

THE	SKETCH
In	this	sketch	we	first	set	the	sensor	pin	for	the	LM35	as	A0	on	the	Arduino,
define	the	fan	as	pin	5,	and	create	a	variable	to	read	the	value	from	the
LM35.	We	then	create	a	variable	to	store	the	temperature	and	set	the	fan

LM35.	We	then	create	a	variable	to	store	the	temperature	and	set	the	fan
pin	as	an	output.	A	small	calculation	turns	the	voltage	reading	from	the
sensor	into	a	temperature	value	in	degrees	Fahrenheit.	We	then	start	the
Serial	Monitor	so	you	can	see	the	LM35	reading	value	when	the	Arduino	is
connected	to	your	PC,	which	is	handy	for	making	sure	the	sensor	is	working
correctly.	A	loop	reads	the	sensor	every	second,	and	if	the	temperature
reaches	71	degrees	Fahrenheit,	power	is	sent	to	the	fan	pin,	which	triggers
the	relay	and	switches	on	the	fan.	If	the	temperature	falls	below	71,	the	relay
switches	the	fan	off.

#define SENS_PIN A0 // Defines A0 pin as "sensor"
#define FAN_PIN 5
int Vin; // Reads value from Arduino pin
float Temperature; // Receives converted voltage value to temp
float TF; // Receives converted value in °F

void setup() {
 pinMode(FAN_PIN, OUTPUT); // Fan pin as an output
 Serial.begin(9600); // Start Serial Monitor
}

void loop() {
 // Tells Arduino to read pin and stores value in Vin
 Vin = analogRead(SENS_PIN);

 // Converts voltage value into temperature and
 // stores value in Temperature (as °F)
 Temperature = (500 Vin) / 1023 (1.8) + 32;

 TF = Temperature;
 Serial.print("Temperature: "); // Sends text to display screen
 Serial.print(TF); // Shows value of temperature in Serial Monitor
 Serial.println(" F"); // Writes F to indicate it is in Fahrenheit
 if (TF > 71) { // If temperature is more than 71
 digitalWrite(FAN_PIN, HIGH); // Turn fan on
 }
 else if (TF < 71) {
 digitalWrite(FAN_PIN, LOW); // Or keep fan off
 }
 delay(1000); // Waits for a second to read the pin again
}

TROUBLESHOOTING
Q.	The	fan	does	not	turn	on	when	expected.

•	Make	sure	the	connections	to	the	LM35	match	the	tables	in	this	chapter
and	the	circuit	diagram	in	Figure	12-4.	Connect	the	Arduino	to	your

computer	and	open	the	IDE	Serial	Monitor	to	check	whether	the
Arduino	is	reading	the	sensor	correctly.	If	the	reading	is	incorrect,
recheck	your	wiring	or	change	the	sensor	to	another.

•	Remember,	your	relay	may	not	match	the	one	used	here,	so	the
connections	may	be	in	a	slightly	different	order;	alter	the	wiring
according	to	your	relay	and	data	sheet.

•	The	fan	used	here	takes	between	9	and	12	volts,	so	a	9V	battery	has
enough	power	to	run	it.	If	you	used	a	fan	that	requires	more	voltage,	you
will	need	to	match	its	voltage	input	accordingly	with	a	more	powerful
battery.

LCDs

13
Ultrasonic	Range	Finder
In	this	project	we’ll	create	a	simple	ultrasonic	range	finder	with	a
screen	that	displays	the	distance	of	an	object	up	to	5	meters	from
the	sensor.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
HD44780	16x2	LCD	screen
HC-SR04	ultrasonic	sensor
50k-ohm	potentiometer

LIBRARY	REQUIRED
LiquidCrystal

HOW	IT	WORKS
The	ultrasonic	range	finder	sends	out	a	burst	of	ultrasound	and	listens	for
the	echo	that	bounces	off	an	object.	The	Arduino	sends	out	a	short	pulse	on
the	trigger	pin	to	send	the	ultrasonic	burst,	then	listens	for	a	pulse	on	the
echo	pin	using	the	pulseIn	function.

This	 duration	 between	 sending	 and	 receiving	 the	 pulse	 is	 equal	 to	 the
time	taken	by	the	ultrasound	to	travel	to	the	object	and	back	to	the	sensor.
The	 Arduino	 converts	 this	 time	 to	 distance	 and	 displays	 it	 on	 the	 LCD
screen.	You	can	find	an	HC-SR04	unit	(Figure	13-1)	from	one	of	the	sources
listed	in	the	“Retailer	List”	on	page	249,	or	you	can	search	online	for	HC-
SR04	ultrasonic	module.

FIGURE	13-1:	The	HC-SR04	ultrasonic	sensor	

An	 LCD	 (liquid	 crystal	 display)	 screen	 is	 made	 of	 two	 sheets	 of
polarizing	 material	 with	 a	 liquid	 crystal	 solution	 between	 them.	 Current
passing	 through	 the	 solution	 makes	 the	 screen	 opaque,	 so	 by	 controlling
which	 areas	 of	 the	 screen	 current	 passes	 through,	 the	 Arduino	 creates	 an
image	 or,	 in	 this	 case,	 characters.	 You’ll	 need	 an	 LCD	 screen	 that’s
compatible	 with	 the	 Hitachi	 HD44780	 driver	 for	 it	 to	 work	 with	 the
Arduino;	there	are	lots	of	them	out	there	and	you	can	usually	identify	them
by	 their	 16-pin	 interface.	 We’ll	 use	 the	 LiquidCrystal	 library	 to	 send
characters	to	the	LCD	screen	(refer	to	the	primer	if	you	need	a	refresher	on
libraries).	The	LiquidCrystal	 library	maps	 the	characters	and	uses	 the	 print
commands	to	send	messages	to	the	screen.

PREPARING	THE	LCD	SCREEN
The	LCD	screen	will	probably	require	a	bit	of	assembly.	Your	screen	should
have	come	with	16	holes,	as	shown	in	Figure	13-2,	and	a	separate	strip	of
header	pins.	Break	off	a	row	of	16	pins	from	the	strip.	Insert	the	shorter	side
of	the	pins	into	the	16	LCD	holes.	You’ll	need	to	solder	these	in	place;	the
primer	has	a	quick	soldering	guide	if	you	need	pointers.	Solder	the	far-right
and	far-left	pins	first	to	hold	the	strip	in	place	and	wait	a	moment	for	them

to	set.	Then	solder	each	pin	in	turn.	Holding	the	iron	to	the	pins	for	too
long	will	damage	them,	so	solder	them	only	for	a	couple	of	seconds.

FIGURE	13-2:	A	16×2	LCD	screen	

THE	BUILD

1.	 Place	your	LCD	screen	in	the	breadboard,	inserting	the	header	pins
into	the	breadboard	holes.	Also	place	the	potentiometer	in	the
breadboard,	and	use	jumper	wires	to	connect	your	LCD	screen,
Arduino,	and	potentiometer	as	shown	in	the	following	table.	The	pins
of	the	LCD	screen	should	be	labeled	or	numbered,	either	on	the	back
or	the	front.	If	not,	they	usually	start	at	1	from	the	left	when	the	pins
are	along	the	top.	There	are	a	number	of	connections	from	the	LCD
screen	to	Arduino	GND,	so	use	the	breadboard	ground	rail	to	make
multiple	connections	to	the	Arduino	GND	pin.

LCD	SCREEN ARDUINO

1	VSS GND

2	VDD +5V

3	VO	contrast Potentiometer	center	pin

4	RS Pin	11

5	R/W Pin	10

6	Enable Pin	9

7	D0 No	connection

8	D1 No	connection

9	D2 No	connection

10	D3 No	connection

11	D4 Pin	7

12	D5 Pin	6

13	D6 Pin	5

14	D7 Pin	4

15	A	BcL+ +5V

16	K	BcL– GND

2.	 You	should	have	already	connected	the	center	pin	of	the	50kohm
potentiometer	to	LCD	pin	3	(VO).	Now	connect	one	of	the	outer
potentiometer	pins	to	GND	and	the	other	to	+5V.	Twist	the
potentiometer	to	control	the	contrast	of	your	LCD	screen.

3.	 Backlit	LCD	screens	will	have	resistors	built	in,	but	if	you	have	a
nonbacklit	LCD	screen,	insert	a	220-ohm	resistor	between	LCD	15	and
+5V.	Check	the	data	sheet	for	your	screen	if	you’re	unsure.

4.	 Add	the	ultrasonic	sensor	module	to	your	breadboard	and	connect	VCC
to	+5V,	Trig	to	Arduino	pin	13,	Echo	to	Arduino	pin	12,	and	GND	to
GND,	as	shown	in	the	following	table.

ULTRASONIC	SENSOR ARDUINO

VCC +5V

Trig Pin	13

Echo Pin	12

GND GND

5.	 Connect	your	breadboard	rails	to	Arduino	+5V	and	GND	for	power.

6.	 Check	that	your	setup	matches	the	circuit	diagram	in	Figure	13-3,	and
upload	the	code	in	“The	Sketch”	on	page	112.

FIGURE	13-3:	The	circuit	diagram	for	the	ultrasonic	range	finder	

THE	SKETCH
The	sketch	first	calls	on	the	LiquidCrystal	library	and	defines	the	LCD	pins
connected	to	the	Arduino.	Pin	13	on	the	Arduino,	connected	to	the	trigger
pin	of	the	sensor,	sends	an	ultrasonic	signal	out,	and	Arduino	pin	12,
connected	to	the	echo	pin	of	the	sensor,	receives	the	returning	signal.	The
Arduino	converts	the	time	between	sending	and	receiving	the	signal	into
distance	and	displays	the	result	on	the	LCD	screen,	in	both	inches	and
centimeters.	This	sketch	can	be	found	on	the	Arduino	site,	so	I’ve	copied	it
here	exactly	as	it	appears	there.

/*
 Created 3 Nov 2008 by David A. Mellis;
 Modified 30 Aug 2011 by Tom Igoe
 This example code is in the public domain.
 */
#include <LiquidCrystal.h>

LiquidCrystal lcd(11, 10, 9, 7, 6, 5, 4);
int pingPin = 13;
int inPin = 12;

void setup() {
 lcd.begin(16, 2);
 lcd.print("testing...");
}

void loop() {
 // Establish variables for duration of the ping,
 // and the distance result in inches and centimeters:
 // long duration, inches, cm;

 // The PING))) is triggered by a HIGH pulse of 2 ms or more
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
 pinMode(pingPin, OUTPUT);
 digitalWrite(pingPin, LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(pingPin, LOW);

 // The same pin is used to read the signal from the PING))):
 // a HIGH pulse whose duration is the time (in microseconds)
 // from the sending of the ping to the reception of its echo off
 // of an object.
 pinMode(inPin, INPUT);
 duration = pulseIn(inPin, HIGH);

 // Convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);

 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print(inches);
 lcd.print("in, ");
 lcd.print(cm);
 lcd.print("cm");

 delay(100);
}

long microsecondsToInches(long microseconds) {
 // According to Parallax's datasheet for the PING))),
 // there are 73.746 ms/in (i.e. sound travels at 1130 fps).
 // This gives the distance traveled by the ping, outbound,
 // and return, so divide by 2 to get the distance of the obstacle.
 return microseconds 74 2;
}

long microsecondsToCentimeters(long microseconds) {
 // The speed of sound is 340 m/s or 29 ms/cm.
 // The ping travels out and back, so to find the distance
 // of the object, take half of the distance traveled.
 return microseconds 29 2;
}

TROUBLESHOOTING
Q.	Nothing	is	displayed	on	the	LCD	screen.

•	Make	sure	you’ve	connected	power	to	the	breadboard	rails	and	the
connections	match	the	tables	given	earlier.

•	Turn	the	potentiometer	to	change	the	contrast	of	the	screen	until	you
see	text.

•	If	the	screen	has	garbled	messages	on	it,	you	have	not	wired	it	up
correctly;	recheck	your	wiring	against	Figure	13-3.

14
Digital	Thermometer
This	project	will	add	an	LM35	temperature	sensor	to	an	LCD
screen	and	Arduino	to	give	you	a	digital	thermometer.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
HD44780	16×2	LCD	screen
LM35	temperature	sensor
50k-ohm	potentiometer

LIBRARY	REQUIRED
LiquidCrystal

HOW	IT	WORKS
The	Arduino	takes	the	voltage	reading	from	the	same	LM35	temperature
sensor	we	used	in	Project	12	and	converts	that	value	to	temperature	in
degrees	Celsius.	The	sketch	then	changes	this	value	to	Fahrenheit	by
multiplying	the	value	by	9,	dividing	the	result	by	5,	and	adding	32.	The
LiquidCrystal	library	does	all	the	hard	work	in	displaying	the	temperature
on	the	LCD	screen	using	the	lcd.print	command.	This	project	can	easily	be
adapted	with	more	sensors	for	an	all-around	weather	center.

THE	BUILD
First,	prepare	the	LCD	screen	according	to	“Preparing	the	LCD	Screen”	on
page	109.	Then	follow	these	steps:

1.	 Insert	your	LCD	screen	and	potentiometer	into	the	breadboard;	then
use	your	breadboard	and	jumper	wires	to	make	the	connections	for	the
LCD	screen	as	shown	in	the	following	table.

LCD	SCREEN ARDUINO

1	VSS GND

2	VDD +5V

3	VO	contrast Potentiometer	center	pin

4	RS Pin	12

5	R/W GND

6	Enable Pin	11

7	D0 No	connection

8	D1 No	connection

9	D2 No	connection

10	D3 No	connection

11	D4 Pin	5

12	D5 Pin	4

13	D6 Pin	3

14	D7 Pin	2

15	A	BcL+ +5V

16	K	BcL– GND

2.	 Connect	the	GND	and	+5V	rails	to	Arduino	GND	and	+5V.

3.	 You	should	have	already	connected	the	center	pin	of	the	50k-ohm
potentiometer	to	LCD	pin	3	(VO).	Now	connect	one	of	the	outer	pins
to	GND	and	the	other	to	+5V.

4.	 Connect	the	center	pin	of	the	LM35	temperature	sensor	to	Arduino	A0,
the	left	pin	to	the	+5V	rail,	and	the	right	pin	to	the	GND	rail,	as	shown
in	the	following	table.

LM35	SENSOR ARDUINO

Left +5V

Center A0

Right GND

Right GND

5.	 Make	sure	your	setup	matches	the	circuit	diagram	shown	in	Figure	14-
2,	and	upload	the	code	in	“The	Sketch”	on	page	118.

FIGURE	14-1:	The	circuit	diagram	for	the	digital	thermometer	

THE	SKETCH
The	sketch	uses	the	LiquidCrystal	library	to	display	a	value	on	the	screen
according	to	what	the	LM35	sensor	detects.	The	LM35	sensor	sends	a

according	to	what	the	LM35	sensor	detects.	The	LM35	sensor	sends	a
reading	to	Arduino	pin	A0,	which	is	read	as	voltage.	The	sketch	converts	the
voltage	reading	to	a	temperature	value	in	Celsius,	and	then	it	uses	a	couple
of	calculations	to	show	the	final	reading	in	Fahrenheit.	The	sketch	updates
and	displays	the	reading	every	second.

#include <LiquidCrystal.h> // Call the LCD library
#define sensor A0 // Pin connected to LM35 sensor (A0)
int Vin; // Reads the value from the Arduino pin
float Temperature; // Receives the voltage value converted to temp
float TF; // Receives the converted value in °F
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Pins connected the LCD

void setup() {
 lcd.begin(16, 2); // The display is 16x2
 lcd.print("Temperature: "); // Sends text to the LCD
}

void loop() {
 // Reads the A0 pin and stores the value in Vin
 Vin = analogRead (sensor);
 // Converts voltage value to temperature and
 // stores value in Temperature (in °C)
 Temperature = (500 * Vin) / 1023;
 TF = ((9 * Temperature) / 5) + 32; // Changes °C to °F
 lcd.setCursor(0, 1); // Move cursor of LCD to next line
 lcd.print(TF); // Display the temperature on the LCD screen
 lcd.print(" F"); // Write F for the Fahrenheit scale
 delay(1000); // Wait for a second before reading the pin again
}

TROUBLESHOOTING
Q.	Nothing	is	displayed	on	the	LCD	screen.

•	Make	sure	you’ve	connected	power	to	the	breadboard	rails	and	that	the
connections	match	the	tables	given	earlier.

•	Turn	the	potentiometer	to	change	the	contrast	of	the	screen	until	you
see	text.

•	If	the	screen	has	garbled	messages	on	it,	you	probably	haven’t	wired	it	up
correctly;	recheck	your	wiring	against	Figure	14-2.

•	If	the	value	shown	seems	too	high,	make	sure	the	LM35	sensor	is	firmly
inserted	in	the	breadboard	and	allow	a	moment	for	the	reading	to
stabilize.

15
Bomb	Decoder	Game
In	this	project	we’ll	build	a	code-breaking	bomb-decoding	game.
We’ll	use	an	LCD	screen	and	a	keypad	to	give	the	players
instructions	and	take	input.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
HD44780	16×2	LCD	screen
10k-ohm	potentiometer
Piezo	sounder
3×4	membrane	keypad
3	220-ohm	resistors
Red	LED
Yellow	LED
Green	LED

LIBRARIES	REQUIRED
LiquidCrystal
Keypad
Tone

HOW	IT	WORKS
When	you	power	up	the	Arduino,	one	player	enters	a	four-digit	code	to	start
the	bomb	timer.	They	give	the	timer	to	another	player,	who	presses	the	*
button	to	begin	decoding	the	bomb—this	player	(the	“defuser”)	must	crack
the	code	entered	by	the	first	player	to	defuse	the	bomb	in	time.	If	the	defuser
presses	a	wrong	key,	they	can	press	#	to	delete	their	input	and	start	again.	If
they	enter	the	wrong	code	or	the	timer	reaches	zero,	the	bomb	detonates
and	they	lose.

During	the	game,	the	yellow	LED	flashes	and	the	piezo	sounder	beeps	in
time	to	the	countdown.	The	LCD	screen	displays	the	countdown	and	code
input.	When	the	bomb	detonates,	all	 the	LEDs	flash	and	the	piezo	sounds
an	explosion.

A	good	way	 to	 take	 this	game	 further	would	be	 to	ask	 the	defuser	 four
questions,	each	giving	the	defuser	one	digit	of	the	bomb	code.	The	defuser
has	a	set	time	to	answer	the	questions	and	input	the	four-digit	code.	Answer
incorrectly	or	too	late,	and	the	bomb	explodes!

THE	BUILD

1.	 If	required,	prepare	the	LCD	screen	by	soldering	the	header	pins	as
described	in	“Preparing	the	LCD	Screen”	on	page	109.

2.	 Place	your	LCD	screen	in	the	breadboard,	inserting	the	header	pins
into	the	breadboard	holes.	Also	place	the	potentiometer	in	the
breadboard,	and	use	the	breadboard	and	jumper	wires	to	connect	your
LCD	screen,	Arduino,	and	potentiometer	as	shown	in	the	following
table.	There	are	multiple	GND	connections,	so	use	the	breadboard	rail
to	make	those	connections	to	the	Arduino	GND	pin.

LCD	SCREEN ARDUINO

1	VSS GND

2	VDD +5V

3	VO	contrast Potentiometer	center	pin

4	RS Pin	7

5	R/W GND

6	Enable Pin	8

7	D0 No	connection

8	D1 No	connection

9	D2 No	connection

10	D3 No	connection

11	D4 Pin	10

12	D5 Pin	11

13	D6 Pin	12

14	D7 Pin	13

15	A	BcL+ +5V

16	K	BcL– GND

3.	 You	should	have	already	connected	the	center	pin	of	the	10k-ohm
potentiometer	to	LCD	pin	3	(VO).	Now	connect	one	of	the	outer	pins
to	GND	and	the	other	to	+5V,	as	shown	in	Figure	15-1.	This	controls
the	contrast	of	your	LCD	screen.

FIGURE	15-1:	The	potentiometer	controls	the	contrast	of	your	LCD	screen.

4.	 Looking	at	the	keypad	head-on,	as	in	Figure	15-2,	the	pins	are
numbered	1–7	from	left	to	right.	Connect	the	keypad	pins	as	shown	in
the	following	table.

FIGURE	15-2:	The	3×4	numeric	keypad	with	seven	pin	connections	

KEYPAD ARDUINO

Pin	1 Pin	5

Pin	2 Pin	A5

Pin	3 Pin	A4

Pin	4 Pin	A2

Pin	5 Pin	A1

Pin	6 Pin	A0

Pin	7 Pin	A3

Pin	7 Pin	A3

5.	 Connect	the	piezo	sounder’s	red	wire	directly	to	Arduino	pin	9	and	its
black	wire	to	Arduino	GND.

PIEZO	SOUNDER ARDUINO

Red	wire Pin	9

Black	wire GND

6.	 Place	the	green	LED	in	the	breadboard,	connecting	the	short,	negative
leg	to	the	negative	breadboard	rail	via	a	220-ohm	resistor.	Connect	the
green	LED’s	long,	positive	leg	to	pin	2.	Do	the	same	with	the	yellow
LED	to	pin	3	and	the	red	LED	to	pin	4,	as	shown	in	Figure	15-3	and
the	table	that	follows.

FIGURE	15-3:	Connect	the	LEDs	to	the	Arduino	via	a	220-ohm	resistor.

LEDS ARDUINO

Negative	legs GND

Green	positive	leg Pin	2	via	220-ohm	resistor

Yellow	positive	leg Pin	3	via	220-ohm	resistor

Red	positive	leg Pin	4	via	220-ohm	resistor

7.	 Connect	the	positive	and	negative	breadboard	power	rails	to	+5V	and
GND,	respectively.

8.	 Make	sure	your	completed	project	circuit	matches	Figure	15-4,
remember	to	add	the	required	libraries	to	your	Libraries	folder,	and
then	upload	the	code	in	“The	Sketch”	on	page	127.

FIGURE	15-4:	The	circuit	diagram	for	the	bomb	decoder	game	

PLAYING	THE	GAME
Figure	15-5	shows	the	different	stages	of	playing	the	game.

FIGURE	15-5:	Playing	the	game	

1.	 Enter	the	code	to	set	up	the	bomb.

2.	 The	bomb	confirms	the	code	entered.

3.	 The	timer	starts	the	countdown	sequence.

4.	 The	yellow	LED	flashes	in	time	to	the	countdown.

5.	 Pass	the	keypad	to	another	player	(the	defuser).	They	press	the	*	button
on	the	keypad,	then	enter	the	defuse	code.

6.	 The	screen	does	not	show	the	numbers	entered	to	defuse	the	bomb.

7.	 If	the	correct	code	is	entered,	the	bomb	is	defused	.	.	.

8.	 .	.	.	but	if	not	.	.	.	Boom!

NOTE

All	libraries	and	code	can	be	downloaded	from
https://www.nostarch.com/arduinohandbook2/.

THE	SKETCH
The	sketch	calls	on	the	Keypad,	LiquidCrystal,	and	Tone	libraries.
LiquidCrystal	is	included	in	your	IDE,	but	you’ll	have	to	download	Keypad
and	Tone	from	the	book’s	resources	at
https://www.nostarch.com/arduinohandbook2/	and	save	them	in	your	Libraries
folder	for	the	Arduino	(see	the	primer	for	details	on	how	to	do	that	if	you’re
unsure).

First	the	sketch	defines	the	timer	duration,	password	length,	LED	pins,
and	 keypad.	 It	 requests	 a	 code	 input	 from	 the	 first	 player	 by	 displaying
“Enter	Code:”	and	 then	stores	 that	value	as	 the	bomb	defusal	code.	When
the	second	player	(the	defuser)	presses	*,	the	timer	starts	and	waits	for	a	code
to	be	entered,	and	the	yellow	LED	flashes	in	time	to	the	countdown.	If	the
code	 the	 defuser	 enters	 does	 not	 match	 the	 defusal	 code,	 the	 text	 “The
Bomb	 Has	 Exploded!”	 displays	 on	 the	 screen	 and	 the	 LEDs	 and	 piezo
indicate	 an	 explosion.	 If	 the	defuser’s	 input	 is	 correct,	 the	 timer	 stops,	 the
green	LED	lights,	and	the	message	“Bomb	Defused”	displays	on	the	screen.
The	bomb	will	also	explode	if	the	timer	reaches	zero	with	no	input.	When
the	game	ends,	the	code	resets,	ready	for	another	game.

// Original code by Joey Meyer and Chase Cooley

https://www.nostarch.com/arduinohandbook2/
https://www.nostarch.com/arduinohandbook2/

// and used with kind permission

#include <Keypad.h>
#include <LiquidCrystal.h>
#include <Tone.h>

Tone tone1;

int Scount = 10; // Change this to the number of seconds to start from
int Mcount = 5; // Change this to the number of minutes to start from
int Hcount = 0; // Count hours
int DefuseTimer = 0; // Set timer to 0

long secMillis = 0; // Store last time for second add
long interval = 1000; // Interval for seconds

char password[4]; // Number of characters in password
int currentLength = 0; // Defines number currently writing
int i = 0;
char entered[4];

int ledPin = 4; // Red LED
int ledPin2 = 3; // Yellow LED
int ledPin3 = 2; // Green LED
// The pins we use on the LCD
LiquidCrystal lcd(7, 8, 10, 11, 12, 13);

const byte ROWS = 4; // Four rows
const byte COLS = 3; // Three columns
char keys[ROWS][COLS] = {
 {'1', '2', '3'},
 {'4', '5', '6'},
 {'7', '8', '9'},
 {'*', '0', '#'}
};
byte rowPins[ROWS] = {5, A5, A4, A2}; // Connect to the row pinouts
 // of the keypad
byte colPins[COLS] = {A1, A0, A3}; // Connect to the column pinouts
 // of the keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

void setup() {
 pinMode(ledPin, OUTPUT); // Sets the digital pin as output
 pinMode(ledPin2, OUTPUT); // Sets the digital pin as output
 pinMode(ledPin3, OUTPUT); // Sets the digital pin as output
 tone1.begin(9);
 lcd.begin(16, 2);
 Serial.begin(9600);
 lcd.clear();
 lcd.setCursor(0,0);
 lcd.print("Enter Code: ");
 while (currentLength < 4) {
 lcd.setCursor(currentLength + 6, 1);
 lcd.cursor();
 char key = keypad.getKey();

 key == NO_KEY;
 if (key != NO_KEY) {
 if ((key != '*')&&(key != '#')) {
 lcd.print(key);
 password[currentLength] = key;
 currentLength++;
 tone1.play(NOTE_C6, 200);
 }
 }
 }

 if (currentLength == 4) {
 delay(500);
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("You've Entered: ");
 lcd.setCursor(6, 1);
 lcd.print(password[0]);
 lcd.print(password[1]);
 lcd.print(password[2]);
 lcd.print(password[3]);
 tone1.play(NOTE_E6, 200);
 delay(3000);
 lcd.clear();
 currentLength = 0;
 }
}

void loop() {
 timer();
 char key2 = keypad.getKey(); // Get the key
 if (key2 == '*') {
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Code: ");
 while (currentLength < 4) {
 timer();
 char key2 = keypad.getKey();
 if (key2 == '#') {
 currentLength = 0;
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Code: ");
 }
 else if (key2 != NO_KEY) {
 lcd.setCursor(currentLength + 7, 0);
 lcd.cursor();
 lcd.print(key2);
 entered[currentLength] = key2;
 currentLength++;
 tone1.play(NOTE_C6, 200);
 delay(100);
 lcd.noCursor();
 lcd.setCursor(currentLength + 6, 0);
 lcd.print("*");

 lcd.setCursor(currentLength + 7, 0);
 lcd.cursor();
 }
 }
 if (currentLength == 4) {
 if (entered[0] == password[0] && entered[1] == password[1] && entered[2] ==
password[2] &&entered[3] == password[3]) {
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("Bomb Defused");
 currentLength = 0;
 digitalWrite(ledPin3, HIGH);
 delay(2500);
 lcd.setCursor(0, 1);
 lcd.print("Reset the Bomb");
 delay(1000000);
 }

 else {
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("Wrong Password!");
 if (Hcount > 0) {
 Hcount = Hcount - 1;
 }
 if (Mcount > 0) {
 Mcount = Mcount - 59;
 }
 if (Scount > 0) {
 Scount = Scount - 59;
 }
 delay(1500);
 currentLength = 0;
 }
 }
 }
}

void timer() {
 Serial.print(Scount);
 Serial.println();
 if (Hcount <= 0) { // If timer reaches 0, LCD displays explosion
 if (Mcount < 0) {
 lcd.noCursor();
 lcd.clear();
 lcd.home();
 lcd.print("The Bomb Has ");
 lcd.setCursor(0, 1);
 lcd.print("Exploded!");
 while (Mcount < 0) {
 digitalWrite(ledPin, HIGH); // Sets the LED on
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin, LOW); // Sets the LED off

 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin2, HIGH); // Sets the LED on
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin2, LOW); // Sets the LED off
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin3, HIGH); // Sets the LED on
 tone1.play(NOTE_A2, 90);
 delay(100);
 digitalWrite(ledPin3, LOW); // Sets the LED off
 tone1.play(NOTE_A2, 90);
 delay(100);
 }
 }
 }

 lcd.setCursor(0, 1); // Sets cursor to 2nd line
 lcd.print("Timer:");

 if (Hcount >= 10) {
 lcd.setCursor(7, 1);
 lcd.print(Hcount);
 }
 if (Hcount < 10) {
 lcd.setCursor(7, 1);
 lcd.write("0");
 lcd.setCursor(8, 1);
 lcd.print(Hcount);
 }

 lcd.print(":");

 if (Mcount >= 10) {
 lcd.setCursor(10, 1);
 lcd.print(Mcount);
 }
 if (Mcount < 10) {
 lcd.setCursor(10, 1);
 lcd.write("0");
 lcd.setCursor(11, 1);
 lcd.print(Mcount);
 }

 lcd.print (":");

 if (Scount >= 10) {
 lcd.setCursor(13, 1);
 lcd.print(Scount);
 }
 if (Scount < 10) {
 lcd.setCursor(13, 1);
 lcd.write("0");
 lcd.setCursor(14, 1);
 lcd.print(Scount);

 }

 if (Hcount < 0) {
 Hcount = 0;
 }

 if (Mcount < 0) {
 Hcount --;
 Mcount = 59;
 }

 if (Scount < 1) { // If 60 do this operation
 Mcount --; // Add 1 to Mcount
 Scount = 59; // Reset Scount
 }

 if (Scount > 0) { // Do this operation 59 times
 unsigned long currentMillis = millis();
 if (currentMillis - secMillis > interval) {
 tone1.play(NOTE_G5, 200);
 secMillis = currentMillis;
 Scount --; // Add 1 to Scount
 digitalWrite(ledPin2, HIGH); // Sets the LED on
 delay(10); // Waits for a second
 digitalWrite(ledPin2, LOW); // Sets the LED off
 delay(10); // Waits for a second
 }
 }
}

TROUBLESHOOTING
Q.	Nothing	is	displayed	on	the	LCD	screen.

•	Make	sure	you’ve	connected	power	to	the	breadboard	rails	and	the
connections	match	the	tables	in	this	chapter.

•	Turn	the	potentiometer	to	change	the	contrast	of	the	screen	until	you
see	text.

•	If	the	screen	has	garbled	messages	on	it,	you	haven’t	wired	it	up
correctly;	recheck	your	wiring	against	the	circuit	diagram	in	Figure	15-4.

Q.	The	LEDs	do	not	light	when	expected.

•	Check	your	wiring	against	the	circuit	diagram	in	Figure	15-4	and	ensure
that	the	short	leg	of	the	LED	is	connected	to	the	ground	rail	of	the
breadboard.

•	It’s	easy	to	forget	to	add	power	to	the	breadboard	rails,	so	make	sure	you
connect	the	ground	and	power	rails	on	either	side	of	the	breadboard	to
the	Arduino	with	a	jumper	wire.

the	Arduino	with	a	jumper	wire.

•	Check	that	your	LEDs	and	resistors	are	firmly	inserted	into	the
breadboard	and	they	line	up	with	one	another.

•	If	the	wrong	LED	lights	up,	you’ve	probably	connected	to	the	wrong	pin
numbers	by	mistake,	so	just	change	them	around.

Q.	The	piezo	sounder	does	not	make	a	noise.

•	The	positive	red	wire	of	the	sounder	should	be	connected	to	pin	9	and
the	black	ground	wire	to	GND.	If	the	sounder	does	still	not	make	a
noise,	try	replacing	it	with	another	one.

Q.	When	the	keypad	is	pressed,	the	numbers	are	incorrect	or	do	not	register.

•	Make	sure	the	connections	of	the	keypad	to	the	Arduino	match	the
circuit	diagram	in	Figure	15-4	exactly.

•	The	configuration	is	set	up	specifically	for	this	project’s	3×4	numeric
keypad,	so	if	your	keypad	is	different,	check	the	data	sheet	to	find	out
which	pins	you	need	to	connect.

16
Serial	LCD	Screen
In	this	project	we’ll	take	a	16×2	character	LCD	screen	and	a	serial
module	to	create	a	serial	LCD	that’s	controlled	by	only	two	wires.

PARTS	REQUIRED
Arduino	board
Female-to-male	jumper	wires
HD44780	16×2	LCD	screen
Serial	LCD	screen	module

LIBRARIES	REQUIRED
Wire
LiquidCrystal_I2C

HOW	IT	WORKS
LCD	screens	are	very	useful	in	projects,	but	they	use	up	a	lot	of	pins	on	the
Arduino.	This	means	that	if	you’re	incorporating	them	into	a	more	complex
project,	you	might	run	out	of	pins.	Thankfully	there	is	a	solution:	use	a	serial
LCD	screen.	Serial	LCDs	use	the	communication	protocol	I2C,	which
stands	for	Inter-Integrated	Circuit,	and	differ	from	normal	16×2	LCD	screens
in	that	they	can	be	controlled	by	your	Arduino	with	only	power	and	two
pins.

Serial	LCD	screens	usually	come	 in	kit	 form	and	require	you	 to	 solder
header	pins,	which	I’ll	cover	 later	 in	 the	chapter.	You’ll	usually	receive	 the
16×2	LCD	screen	and	the	serial	module	separately,	as	shown	in	Figure	16-1.

FIGURE	16-1:	16×2	LCD	screen	and	serial	module	

PREPARING	THE	SERIAL	LCD	SCREEN

1.	 The	serial	module	has	a	strip	of	16	header	pins	already	attached	to	one
side.	Turn	the	LCD	screen	over	and	you’ll	see	16	corresponding	holes,
as	shown	in	Figure	16-2.

FIGURE	16-2:	The	reverse	side	of	the	LCD	screen	

2.	 Place	the	serial	controller	header	pins	into	those	holes,	as	shown	in
Figure	16-3.

FIGURE	16-3:	Insert	the	serial	module	into	the	LCD	screen	holes.

3.	 Carefully	add	a	small	amount	of	solder	to	each	of	the	pins	to	make	a
connection	and	hold	the	serial	monitor	to	the	screen.	Turn	to	the
primer	for	a	quick	soldering	guide.

THE	BUILD
Your	serial	LCD	screen	has	an	assigned	address	that	your	Arduino	needs	in
order	to	communicate	with	it.	The	addresses	differ	depending	on	the	make,
so	you	need	to	check	the	address	of	your	specific	screen,	as	you’ll	need	it	for
the	sketch	later.	To	check	the	address,	connect	the	LCD	screen	to	your
Arduino	and	run	a	quick	sketch	to	scan	the	module—or	you	could	also	refer
to	the	data	sheet	for	your	screen.

1.	 Connect	your	female-to-male	jumper	wires	to	the	four	pins	on	the
controller	for	the	LCD	screen.

2.	 Wire	up	the	serial	LCD	screen	to	the	Arduino	with	GND	to	GND,
VCC	to	+5V,	SDA	to	Arduino	pin	A4,	and	SCL	to	Arduino	pin	A5,	as
shown	in	the	following	table	and	the	circuit	diagram	in	Figure	16-4.

SERIAL	LCD	SCREEN ARDUINO

GND GND

VCC +5V

SDA Pin	A4	(SDA)

SCL Pin	A5	(SCL)

SCL Pin	A5	(SCL)

FIGURE	16-4:	The	circuit	diagram	for	the	serial	LCD	screen	

3.	 Upload	the	following	sketch	to	the	Arduino.	We’ll	get	the	address	in
hexadecimal,	a	number	system	that	uses	letters	and	numbers	in	an
abbreviated	form	to	represent	a	much	larger	number.

#include <Wire.h>
void setup() {
 Wire.begin();
 Serial.begin(9600);
 Serial.println("I2C Scanner");
}
void loop() {
 byte error, address;
 int nDevices;
 Serial.println("Scanning...");
 nDevices = 0;
 for (address = 1; address < 127; address++) {
 Wire.beginTransmission(address);
 error = Wire.endTransmission();
 if (error == 0) {
 Serial.print("I2C device found at address 0x");
 if (address < 16)
 Serial.print("0");
 Serial.print(address, HEX);
 Serial.println(" !");
 nDevices++;
 }
 else if (error == 4) {
 Serial.print("Unknown error at address 0x");
 if (address < 16)
 Serial.print("0");
 Serial.println(address, HEX);
 }
 }
 if (nDevices == 0)
 Serial.println("No I2C devices found\n");
 else
 Serial.println("done\n");

 delay(5000); // Wait 5 seconds for next scan
}

The	sketch	scans	for	all	addresses	on	the	Arduino’s	I2C	bus	and	displays
the	output	in	the	Serial	Monitor,	as	shown	in	Figure	16-5.

FIGURE	16-5:	The	hexadecimal	number	of	your	module	will	be	shown	in	the	IDE	Serial	Monitor.

The	address	is	the	number	that	comes	after	the	0x.	In	my	case	that	is	27,
so	I	need	to	make	a	note	of	0x27.	You’ll	use	this	address	in	the	final	sketch.

THE	SKETCH
This	sketch	calls	on	the	Wire	and	LiquidCrystal_I2C	libraries.	The	Wire
library	is	included	in	the	Arduino	IDE,	but	you	will	need	to	install	the
LiquidCrystal_I2C	library	by	downloading	it	from
https://www.nostarch.com/arduinohandbook2/.	The	libraries	allow	the	Arduino
to	control	the	module	using	serial	communication	via	just	the	SDA	and	SCL
pins.

Change	 the	code	at	➊	 so	 that	 the	 0x27	 is	 replaced	with	 the	address	you
just	noted	from	your	scan	in	the	test	sketch.

#include <Wire.h> // Call the wire library

https://www.nostarch.com/arduinohandbook2/

#include <LiquidCrystal_I2C.h> // Call the I2C library

LiquidCrystal_I2C lcd(0x27➊,16,2); // Set LCD address to 0x27 for a
 // 16-character and 2-line display
void setup() {
 lcd.begin(); // Initialize the lcd
 lcd.backlight();
 lcd.print("Arduino Handbook"); // Print a message to the LCD
}

void loop() { // Loop around again
}

There	is	a	potentiometer	built	into	the	module	to	control	the	contrast	of
the	 LCD	 screen,	 shown	 in	 Figure	 16-6.	 Turn	 this	 carefully	 with	 a	 small
screwdriver	until	the	contrast	on	the	screen	looks	right.

FIGURE	16-6:	The	small	blue	box	on	the	back	of	the	module	is	a	potentiometer	to	control	the
contrast.

TROUBLESHOOTING
Q.	The	code	compiles,	but	nothing	shows	on	the	screen.

•	Double-check	that	the	SDA	and	SCL	pins	are	connected	to	the	correct
Arduino	pins.	If	the	LCD	screen	is	lit	but	shows	no	characters,	carefully
turn	the	small	potentiometer	at	the	back	of	the	module	until	the	letters

appear.

•	If	the	screen	still	shows	nothing	and	all	the	connections	are	correct,	it
may	be	that	the	solder	on	the	header	pins	is	not	making	a	clean
connection	or	you	have	soldered	more	than	one	pin	together.	Heat	the
area	again	with	your	soldering	iron	to	melt	the	solder,	and	then	use	a
solder	sucker	to	remove	any	excess	and	resolder	the	header	pins.

17
Ultrasonic	People	Counter
This	project	teaches	you	how	to	use	the	HC-SR04	ultrasonic
sensor	to	sense	when	people	pass	and	then	show	that	count	on	a
serial	LCD	screen.

PARTS	REQUIRED
Arduino	board
Mini-breadboard
Jumper	wires,	male-to-male	and	female-to-male
LED
Serial	LCD	screen	module
220-ohm	resistor
HC-SR04	ultrasonic	sensor

LIBRARIES	REQUIRED
NewPing
Wire
LiquidCrystal_I2C

HOW	IT	WORKS
People	counters	are	often	used	in	shops	or	tourist	attractions	to	count	the
number	of	visitors,	but	you	could	also	use	one	to	record	the	volume	of	traffic
on	a	highway	or	in	a	parking	lot,	or	to	count	how	many	times	someone
entered	your	room	while	you	were	out!

The	ultrasonic	sensor	we’ll	use	 is	the	HC-SR04,	shown	in	Figure	17-1,
which	 you	 first	 saw	 in	 Project	 13.	 It	 uses	 an	 ultrasonic	 signal,	 or	 ping,	 to
calculate	the	distance	between	the	sensor	and	an	object.	In	this	project	we’ll
use	this	function	to	count	every	time	someone	or	something	passes	in	front
of	 the	sensor.	An	LED	will	 flash	when	a	count	 is	 registered,	and	the	serial
LCD	screen	will	show	the	total	number	counted.

FIGURE	17-1:	The	HC-SR04	ultrasonic	sensor	uses	a	ping	to	calculate	distances.

THE	BUILD

1.	 Use	the	female-to-male	jumper	wires	to	connect	the	HC-SR04
ultrasonic	sensor	to	the	Arduino	with	the	VCC	pin	to	Arduino	+5V,
GND	to	GND,	and	Trig	and	Echo	to	pins	7	and	8	on	the	Arduino,
respectively,	as	shown	in	the	following	table	and	in	Figure	17-2.	Use	the
mini-breadboard	for	multiple	connections.

ULTRASONIC	SENSOR ARDUINO

VCC +5V

Trig Pin	7

Echo Pin	8

GND GND

FIGURE	17-2:	The	connections	from	the	ultrasonic	sensor	

2.	 Make	sure	to	download	the	LiquidCrystal	I2C	and	NewPing	libraries
and	add	them	to	the	relevant	folder	on	your	computer	(see	the	primer
for	guidance).	The	Wire	library	comes	with	the	Arduino	IDE,	so	you
do	not	need	to	add	it.

3.	 Connect	the	serial	LCD	screen	to	the	Arduino	as	follows,	using	the
mini-breadboard	to	connect	to	+5V.

SERIAL	LCD	SCREEN ARDUINO

GND GND

VCC +5V

SDA Pin	A4	(SDA)

SCL Pin	A5	(SCL)

4.	 Insert	the	LED	into	the	mini-breadboard	so	that	the	shorter,	negative
(GND)	leg	is	to	the	left	and	the	longer,	positive	(+5V)	leg	is	to	the
right,	as	shown	in	the	following	table	and	in	Figure	17-3.	Connect	the
220-ohm	resistor	to	the	positive	leg	of	the	LED,	making	sure	the	other
leg	of	the	resistor	straddles	the	break	in	the	breadboard.	Connect	this

other	resistor	leg	to	pin	13	on	the	Arduino.	Connect	the	shorter	leg	of
the	LED	to	GND	on	the	Arduino.

LED ARDUINO

GND GND

+5V Pin	13	via	220-ohm	resistor

FIGURE	17-3:	We	use	the	mini-breadboard	to	hold	the	LED	and	for	multiple	connections	to
the	Arduino	+5V.

5.	 Make	sure	your	final	circuit	looks	like	Figure	17-4,	and	then	upload	the
code	in	“The	Sketch”	on	page	146	to	the	Arduino.

FIGURE	17-4:	The	circuit	diagram	for	the	ultrasonic	people	counter	

THE	SKETCH
The	sketch	begins	by	calling	on	the	LiquidCrystal	I2C,	NewPing,	and	Wire
libraries	to	control	the	serial	LCD	screen	and	ultrasonic	sensor.	Next	it
defines	the	ultrasonic	sensor	Trig	and	Echo	pins	as	Arduino	pins	7	and	8,
respectively.	We	set	the	maximum	distance	for	the	sensor	to	read	to	200
centimeters	(any	reading	beyond	200	centimeters	is	ignored).	Then	we
define	pin	13	on	the	Arduino	as	the	LED,	which	will	be	our	counting

indicator,	and	create	variables	to	hold	the	distance	and	number	of	people.
We	create	a	count	state	so	the	Arduino	can	determine	a	valid	record,	and	then
we	define	the	type	of	LCD	screen.	We	initiate	the	LCD	screen	so	that
People:	is	printed	to	the	screen,	and	set	the	LED	pin	as	an	output.

The	 loop	 section	 sends	 a	 ping	 from	 the	 sensor	 and	 if	 the	 ping	 that’s
returned	is	from	a	distance	of	more	than	100	centimeters,	the	space	in	front
of	 the	sensor	 is	considered	empty	and	nothing	 is	registered.	If	 the	distance
recorded	is	less	than	100	centimeters,	it	means	something	is	within	range	in
front	of	 the	sensor.	In	order	for	the	people:	variable	to	 increment,	someone
has	to	move	in	front	of	the	sensor,	then	out	of	the	way.	The	sensor	will	keep
counting	every	time	a	valid	register	is	received,	and	the	latest	total	is	shown
on	the	LCD	screen.

The	sensor	could	be	placed	to	one	side	of	an	entrance,	facing	across	the
threshold,	so	as	someone	enters	the	sensor	picks	it	up	and	registers	a	count.
If	the	sensor	is	pointing	toward	a	wall	that’s	less	than	100	centimeters	away,
you’ll	need	to	change	the	 following	 line	of	code	to	a	distance	 less	 than	the
distance	to	the	wall;	otherwise,	the	sensor	will	record	a	count	every	time	the
wall	is	detected.

if (distance < 100 && distance != 0 && !count) Here is the full code:

#include <LiquidCrystal_I2C.h> // Call on the libraries
#include <NewPing.h>
#include <Wire.h>

#define TRIGGER_PIN 7 // Ultrasonic sensor trig to Arduino pin 7
#define ECHO_PIN 8 // Ultrasonic sensor echo to Arduino pin 8
#define MAX_DISTANCE 200
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);

int LEDPin = 13; // Set LED to pin 13
int distance; // Variable for distance
int people = 0; // Variable for number of people
boolean count = false; // State for counting
LiquidCrystal_I2C lcd(0x27, 16, 2);

void setup() { // Run once to set up the LCD screen and LED
 lcd.begin();
 lcd.backlight();
 pinMode(LEDPin, OUTPUT); // Set the LED as an output
 lcd.print("People:"); // Print People: to the LCD screen
}

void loop() { // This loops forever to check for number of people
 delay(50);

 distance = sonar.ping_cm(); // Ping every 50 milliseconds
 // If more than 100 cm away, don't count
 if (distance > 100 && count) {
 count = false;
 digitalWrite(LEDPin, LOW);
 }
 // If less than 100 cm away, count 1
 if (distance < 100 && distance != 0 && !count) {
 count = true;
 people ++; // Keep adding 1 per count
 digitalWrite(LEDPin, HIGH);
 lcd.setCursor(10, 0);
 lcd.print(people); // Print number of people to LCD screen
 }
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	nothing	shows	on	the	screen.

•	Double-check	that	the	SDA	and	SCL	pins	are	connected	to	the	correct
Arduino	pins.

•	If	the	LCD	screen	is	lit	up	but	nothing	shows,	carefully	turn	the	small
potentiometer	at	the	back	of	the	module	to	change	the	contrast	until	the
letters	appear.

Q.	The	sensor	does	not	register	a	count	or	the	LED	does	not	light	when	expected.

•	Make	sure	that	the	ultrasonic	sensor	trigger	pin	is	connected	to	Arduino
pin	7	and	the	Echo	pin	to	Arduino	pin	8,	and	that	power	is	connected	to
GND	and	+5V.

•	If	a	count	is	registered	and	the	LED	does	not	light,	recheck	that	the
short	leg	of	the	LED	is	connected	to	GND	and	the	long	leg	to	+5V.	The
resistor	should	straddle	the	break	in	the	breadboard	and	be	connected	to
the	LED’s	long	leg	on	one	side	and	Arduino	pin	13	on	the	other.

•	Remember	that	the	positioning	of	the	sensor	is	important.	If	the	distance
to	a	fixed	object	(like	a	wall)	is	less	than	the	distance	in	the	sketch,	the
count	will	be	incorrect.

•	Your	device	may	have	a	different	address	than	the	one	we’ve	used	here.
To	check	the	address	of	your	device,	use	the	I2C	scanner	sketch	available
on	the	Arduino	website	(http://playground.arduino.cc/Main/I2cScanner).
Run	the	sketch	with	your	device	attached	to	the	Arduino	and	open	the
IDE	Serial	Monitor,	and	you	should	see	the	address	of	your	device.

http://playground.arduino.cc/Main/I2cScanner

Update	the	following	line	in	this	sketch	with	the	address	shown:
LiquidCrystal_I2C	lcd(0x27,16,2);

18
Nokia	5110	LCD	Screen	Pong	Game
This	project	shows	you	how	to	connect	a	Nokia	5110	LCD	screen
to	your	Arduino	to	recreate	a	Pong-style	arcade	game.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
Nokia	5110	LCD	screen
4	10k-ohm	resistors
2	1k-ohm	resistors
2	50k-ohm	potentiometers

HOW	IT	WORKS
Nokia	5110	LCD	screens	were	used	for	all	Nokia	phones	a	few	years	back,
so	you	should	find	plenty	available	online.	We’ll	wire	one	up	to	the	Arduino
and	create	a	simple	Pong-style	game	by	adding	some	potentiometers	as
controllers.

NOTE

See	Project	13	for	instructions	on	soldering	header	pins,	and	see	the	primer	for
general	soldering	instructions	if	you	haven’t	soldered	before.

The	screen	is	84×48	pixels,	which,	with	spaces	between	the	characters	so
they	aren’t	touching,	gives	us	a	12×6-character	screen.	The	screen	works	in
the	same	way	as	the	LCD	screen	in	Project	13:	by	sending	current	through
the	liquid	crystal	from	the	Arduino	to	make	certain	pixels	opaque	and	form
letters	or	images.

Most	screens	come	with	the	header	pins	separate	for	ease	of	transport,	so
you	may	need	to	solder	them	in	place	if	you	want	to	plug	the	screen	into	a
breadboard.	You’ll	need	to	solder	a	strip	of	eight	header	pins	into	the	row	of
holes	on	one	side	of	the	screen,	as	you	can	see	in	Figure	18-1.

FIGURE	18-1:	The	reverse	of	the	Nokia	5110	LCD	screen	showing	the	pin	connections

This	project	connects	to	+3.3V	on	the	Arduino,	rather	than	+5V.

THE	BUILD

1.	 Insert	the	Nokia	5110	screen	into	the	breadboard.

2.	 The	Nokia	screen	has	eight	pins.	Insert	a	10k-ohm	resistor	for	Nokia
pins	1,	3,	4,	and	5,	making	sure	they	straddle	the	center	break.	Insert	a
1k-ohm	resistor	for	Nokia	pins	2	and	7,	as	shown	in	Figure	18-2.

FIGURE	18-2:	Insert	the	resistors	for	the	Nokia	LCD	screen	as	shown	here.

WARNING

It’s	really	important	to	use	the	+3.3V	power	from	the	Arduino	for	the
Nokia	5110	screen	and	not	+5V	for	this	project;	otherwise,	you	will
damage	the	screen.

3.	 Use	jumper	wires	to	make	the	connections	from	the	Nokia	screen	to
Arduino	pins	3–7	and	to	the	breadboard	power	rails.	Make	sure	to	add
the	right	value	resistor	to	the	correct	pin,	as	shown	in	the	following
table.	Some	breakout	boards	may	have	the	pins	in	different	locations,	so
match	the	pin	names	on	the	Nokia	screen	with	the	Arduino	pin.

NOKIA	5110	SCREEN RESISTOR ARDUINO

1	RESET 10k-ohm Pin	6

2	CE 1k-ohm Pin	7

3	DC 10k-ohm Pin	5

4	DIN 10k-ohm Pin	4

5	CLK 10k-ohm Pin	3

6	VCC None +3.3V

7	Light 1k-ohm GND

8	GND None GND

4.	 Insert	the	potentiometers	into	the	breadboard	as	shown	in	Figure	18-3.
Connect	the	center	pin	of	one	potentiometer	to	Arduino	A0	and	the
center	pin	of	the	other	potentiometer	to	Arduino	A1.	Connect	an	outer
pin	of	each	potentiometer	to	the	+5V	rail	of	the	breadboard	and	the
other	outer	pins	to	the	GND	rail.

5.	 Connect	the	power	rails	of	the	breadboard	to	+5V	and	GND	on	the
Arduino	(this	is	for	the	potentiometers	only).

6.	 Confirm	that	your	setup	matches	Figure	18-3,	and	upload	the	code	in
“The	Sketch”	below.

FIGURE	18-3:	The	circuit	diagram	for	the	Nokia	5110	LCD	Screen	Pong	Game

THE	SKETCH
The	game	starts	with	two	bars	on	opposite	sides	of	the	screen	and	a	ball

bouncing	between	them.	The	object	of	the	game	is	to	use	the
potentiometers	to	move	the	bars	like	paddles,	hitting	the	ball	back	and	forth
to	stop	it	from	going	out	of	the	play	(beyond	the	screen	perimeter).	The	ball
bounces	off	the	bars	and	gradually	gets	faster	and	faster.	The	game	is	over
when	the	ball	goes	beyond	the	screen	limit,	at	which	point	the	display	will
invert	and	the	game	will	start	over	again.	Note	that	the	ball	can	appear	quite
faint	the	faster	it	moves,	due	to	the	limitation	of	the	screen	graphics.

The	first	part	of	the	sketch	defines	the	pins	connected	to	the	Nokia	5110
LCD	screen.	It	then	defines	the	size	of	the	screen,	which	is	the	area	of	our
game	 that	counts	as	 in-play,	 and	 the	 size	and	 starting	positions	of	 the	bars
and	ball.	The	potentiometers	 read	 the	analog	signal	 from	Arduino	pins	A0
and	 A1	 and	 move	 their	 corresponding	 bars	 onscreen	 depending	 on	 how
they’re	twisted.	The	calculations	that	follow	determine	whether	the	ball	and
the	bar	have	met	at	certain	coordinates.	If	they	have,	the	ball	bounces	back;
if	they	haven’t,	it	means	the	bar	has	missed	the	ball,	so	the	screen	inverts	and
flashes	to	indicate	the	game	is	over.

// Arduino Pong by Onur Avun and reproduced with kind permission

#define PIN_SCE 7
#define PIN_RESET 6
#define PIN_DC 5
#define PIN_SDIN 4
#define PIN_SCLK 3
#define LCD_C LOW
#define LCD_D HIGH
#define LCD_X 84
#define LCD_Y 6

int barWidth = 16;
int barHeight = 4;
int ballPerimeter = 4;

unsigned int bar1X = 0;
unsigned int bar1Y = 0;
unsigned int bar2X = 0;
unsigned int bar2Y = LCD_Y * 8 - barHeight;

int ballX = 0;
int ballY = 0;

boolean isBallUp = false;
boolean isBallRight = true;
byte pixels[LCD_X][LCD_Y];
unsigned long lastRefreshTime;
const int refreshInterval = 150;

byte gameState = 1;
byte ballSpeed = 2;
byte player1WinCount = 0;
byte player2WinCount = 0;
byte hitCount = 0;
void setup() {
 LcdInitialise();
 restartGame();
}

void loop() {
 unsigned long now = millis();
 if (now - lastRefreshTime > refreshInterval) {
 update();
 refreshScreen();
 lastRefreshTime = now;
 }
}

void restartGame() {
 ballSpeed = 1;
 gameState = 1;
 ballX = random(0, 60);
 ballY = 20;
 isBallUp = false;
 isBallRight = true;
 hitCount = 0;
}

void refreshScreen() {
 if (gameState == 1) {
 for (int y = 0; y < LCD_Y; y++) {
 for (int x = 0; x < LCD_X; x++) {
 byte pixel = 0x00;
 int realY = y * 8;
 // Draw ball if in frame
 if (x >= ballX && x <= ballX + ballPerimeter -1 && ballY +
 ballPerimeter > realY && ballY < realY + 8) {
 byte ballMask = 0x00;
 for (int i = 0; i < realY + 8 - ballY; i++) {
 ballMask = ballMask >> 1;
 if (i < ballPerimeter)
 ballMask = 0x80 | ballMask;
 }
 pixel = pixel | ballMask;
 }

 // Draw bars if in frame
 if (x >= bar1X && x <= bar1X + barWidth -1 && bar1Y +
 barHeight > realY && bar1Y < realY + 8) {
 byte barMask = 0x00;
 for (int i = 0; i < realY + 8 - bar1Y; i++) {
 barMask = barMask >> 1;
 if (i < barHeight)
 barMask = 0x80 | barMask;
 }

 pixel = pixel | barMask;
 }

 if (x >= bar2X && x <= bar2X + barWidth -1 && bar2Y +
 barHeight > realY && bar2Y < realY + 8) {
 byte barMask = 0x00;
 for (int i = 0; i < realY + 8 - bar2Y; i++) {
 barMask = barMask >> 1;
 if (i < barHeight)
 barMask = 0x80 | barMask;
 }
 pixel = pixel | barMask;
 }
 LcdWrite(LCD_D, pixel);
 }
 }
 } else if (gameState == 2) {
 }
}

void update() {
 if (gameState == 1) {
 int barMargin = LCD_X - barWidth;
 int pot1 = analogRead(A0); // Read pots and set bar positions
 int pot2 = analogRead(A1);
 bar1X = pot1 / 2 * LCD_X / 512;
 bar2X = pot2 / 2 * LCD_X / 512;

 if (bar1X > barMargin) bar1X = barMargin;
 if (bar2X > barMargin) bar2X = barMargin;

 // Move the ball now
 if (isBallUp)
 ballY -= ballSpeed;
 else
 ballY += ballSpeed;
 if (isBallRight)
 ballX += ballSpeed;
 else
 ballX -= ballSpeed;
 // Check collisions
 if (ballX < 1) {
 isBallRight = true;
 ballX = 0;
 }
 else if (ballX > LCD_X - ballPerimeter - 1) {
 isBallRight = false;
 ballX = LCD_X - ballPerimeter;
 }
 if (ballY < barHeight) {
 if (ballX + ballPerimeter >= bar1X && ballX <= bar1X + barWidth) {
 // Ball bounces from bar1
 isBallUp = false;
 if (ballX + ballPerimeter 2 < bar1X + barWidth 2)
 isBallRight = false;
 else

 isBallRight = true;
 ballY = barHeight;
 if (++hitCount % 10 == 0 && ballSpeed < 5)
 ballSpeed++;
 } else { // Player 2 wins
 gameState = 2;
 player2WinCount++;
 }
 }
 if (ballY + ballPerimeter > LCD_Y * 8 - barHeight) {
 if (ballX + ballPerimeter >= bar2X && ballX <= bar2X + barWidth) {
 // Ball bounces from bar2
 isBallUp = true;
 if (ballX + ballPerimeter 2 < bar2X + barWidth 2)
 isBallRight = false;
 else
 isBallRight = true;
 ballY = LCD_Y * 8 - barHeight - ballPerimeter;
 if (++hitCount % 10 == 0 && ballSpeed < 5)
 ballSpeed++;
 } else { // Player 1 wins
 gameState = 2;
 player1WinCount++;
 }
 }
 } else if (gameState == 2) {
 for (int i =0; i < 4; i++) {
 LcdWrite(LCD_C, 0x0D); // LCD in inverse mode.
 delay(300);
 LcdWrite(LCD_C, 0x0C); // LCD in inverse mode.
 delay(300);
 }
 restartGame();
 }
}

void LcdInitialise(void) {
 pinMode(PIN_SCE, OUTPUT);
 pinMode(PIN_RESET, OUTPUT);
 pinMode(PIN_DC, OUTPUT);
 pinMode(PIN_SDIN, OUTPUT);
 pinMode(PIN_SCLK, OUTPUT);
 delay(200);
 digitalWrite(PIN_RESET, LOW);
 delay(500);
 digitalWrite(PIN_RESET, HIGH);
 LcdWrite(LCD_C, 0x21); // LCD Extended Commands
 LcdWrite(LCD_C, 0xB1); // Set LCD Vop (Contrast)
 LcdWrite(LCD_C, 0x04); // Set Temp coefficent. //0x04
 LcdWrite(LCD_C, 0x14); // LCD bias mode 1:48. //0x13
 LcdWrite(LCD_C, 0x0C); // LCD in normal mode.
 LcdWrite(LCD_C, 0x20);
 LcdWrite(LCD_C, 0x80); // Select X Address 0 of the LCD ram
 LcdWrite(LCD_C, 0x40); // Select Y Address 0 of the LCD ram
 LcdWrite(LCD_C, 0x0C);

}

void LcdWrite(byte dc, byte data) {
 digitalWrite(PIN_DC, dc);
 digitalWrite(PIN_SCE, LOW);
 shiftOut(PIN_SDIN, PIN_SCLK, MSBFIRST, data);
 digitalWrite(PIN_SCE, HIGH);
}

TROUBLESHOOTING
Q.	Nothing	is	displayed	on	the	LCD	screen.

•	Make	sure	you’ve	connected	power	to	the	LCD	screen	direct	to	the
Arduino	+3.3V	power	pin	and	the	connections	match	the	tables	in	this
chapter.

•	Make	sure	your	resistors	line	up	with	the	correct	LCD	pins,	as	well	as	the
wires	to	the	Arduino	pins.

•	If	the	backlight	of	the	LCD	screen	is	lit	but	there	is	no	image,	you	may
have	some	wires	mixed	up;	they	need	to	match	the	circuit	in	Figure	18-3
exactly.

Q.	When	the	player	turns	the	potentiometer,	one	or	both	of	the	bars	do	not	move.

•	Make	sure	the	potentiometers	are	connected	firmly	in	the	breadboard
and	that	the	wires	connecting	to	the	power	rails	and	Arduino	line	up	with
the	potentiometer	pins.

•	Remember	that	the	potentiometers	require	+5V	power	and	GND	from
the	Arduino.	These	pins	should	be	hooked	up	to	the	breadboard	power
rails	via	jumper	wires.

•	Make	sure	you	also	use	jumper	wires	to	connect	the	corresponding	power
rails	on	either	side	of	the	breadboard	to	each	other.

19
OLED	Breathalyzer
In	this	project	we’ll	use	the	MQ3	alcohol	sensor	and	an	OLED
LCD	screen	to	make	a	mini-breathalyzer.

PARTS	REQUIRED
Arduino	board
Female-to-male	jumper	wires
Keyes	MQ3	alcohol	sensor	module
OLED	monochrome	screen	(128×64)

LIBRARIES	REQUIRED
SPI
Wire
Adafruit_GFX
Adafruit_SSD1306

HOW	IT	WORKS
The	MQ3	is	part	of	a	family	of	gas	sensors	that	also	includes	the	MQ2,
sensitive	to	methane,	butane,	and	smoke;	the	MQ4,	sensitive	to	compressed
natural	gas;	the	MQ6,	sensitive	to	butane	and	LPG	gas;	and	the	MQ7,
sensitive	to	carbon	monoxide.	The	MQ3	is	sensitive	to	alcohol	and	ethanol,
so	it’s	the	one	we’ll	use	in	our	breathalyzer.

DISCLAIMER

This	project	is	for	amusement	only	and	should	not	be	used	to	accurately
determine	anyone’s	alcohol	intake.

The	Keyes	MQ3	module	 (Figure	19-1)	has	 the	wiring	we	need	 for	 this
project,	 including	 a	 built-in	 potentiometer	 and	 resistor.	 The	 three	 pin
connections	on	the	module	are	OUT,	VCC,	and	GND.

FIGURE	19-1:	The	Keyes	MQ3	alcohol	sensor	module.	As	with	most	MQ	sensors,	the	module	has	a
small	heater	inside	with	an	electrochemical	sensor	used	to	measure	the	gas	level.	The	value	of	the
reading	is	sent	to	the	OUT	pin,	which	is	then	read	by	an	analog	pin	on	our	Arduino.

To	display	the	sensor	readings,	we’ll	use	an	OLED	screen	(Figure	19-2).
OLED,	 which	 stands	 for	 organic	 light-emitting	 diode,	 is	 a	 light-emitting
technology	composed	of	a	thin,	multilayered	organic	film	placed	between	an
anode	 and	 cathode.	When	 voltage	 is	 applied,	 an	 image	 is	 created	 through
electroluminescence,	which	means	the	screen	does	not	require	a	backlight.	Our
OLED	 screen	 is	 an	 I2C	 128×64	 monochrome	 version,	 meaning	 we	 can
control	it	using	only	two	pins	to	the	Arduino	and	it	measures	128	pixels	by
64	pixels.	This	 screen	uses	 the	 same	 communication	protocol	 as	 our	 serial
LCD	in	Project	16	and	is	explained	further	there.

FIGURE	19-2:	128×64	OLED	monochrome	screen.	When	the	MQ3	reads	the	value,	the	Arduino
sends	a	message	to	the	OLED	screen	indicating	whether	or	not	alcohol	has	been	detected.

WARNING

As	mentioned	earlier,	the	MQ3	uses	an	internal	heater	as	part	of	the	sensor
process.	This	heater	can	reach	120–140	degrees	when	powered,	so	take	care
when	handling	it	when	it’s	in	use.

THE	BUILD

1.	 Before	you	use	the	sensor	for	the	first	time,	you	need	to	“burn	it	in.”
This	process,	which	simply	involves	powering	it	up	for	a	few	hours	to
heat	the	mechanism	inside,	improves	the	sensor’s	accuracy.	To	do	this,
connect	the	VCC	and	GND	pins	of	the	sensor	to	+5V	and	GND	on
your	Arduino,	respectively,	using	female-to-male	jumper	wires.	When
you	power	the	Arduino,	it	will	send	the	correct	voltage	to	the	MQ3.
Leave	it	powered	for	two	to	three	hours—you	may	notice	a	burning
smell	and	the	sensor	will	get	hot,	but	this	is	normal.

2.	 Once	the	sensor	is	burned	in,	disconnect	the	power	to	the	Arduino	and
connect	the	sensor	to	the	Arduino	using	the	female-to-male	jumper
wires,	with	the	MQ3’s	OUT	pin	connected	to	Arduino	pin	A0,	and	the
power	and	GND	still	connected	as	before	(see	the	following	table).

MQ3	ALCOHOL	SENSOR ARDUINO

OUT Pin	A0

VCC +5V

GND GND

3.	 Next,	connect	the	OLED	screen	to	the	Arduino	as	shown	in	the
following	table,	with	SCL	connected	to	pin	A5,	SDA	to	pin	A4,	VCC	to
+3.3V,	and	GND	to	GND.

OLED	SCREEN ARDUINO

SCL Pin	A5

SDA Pin	A4

VCC +3.3V

VCC +3.3V

GND GND

4.	 This	project	requires	a	number	of	libraries	to	work	correctly;	the	SPI
and	Wire	libraries	are	built	into	the	Arduino	IDE,	but	we	also	need	the
Adafruit_GFX	and	Adafruit_SSD1306	libraries	to	control	the	OLED
screen.	Both	are	available	from
https://www.nostarch.com/arduinohandbook2/.	Refer	to	the	primer	if	you
need	a	reminder	on	how	to	add	libraries	to	the	IDE.

5.	 Check	that	your	setup	matches	the	circuit	diagram	in	Figure	19-3,	and
upload	the	code	in	“The	Sketch”	below.

FIGURE	19-3:	The	circuit	diagram	for	the	OLED	breathalyzer	

6.	 The	heater	inside	the	MQ3	sensor	needs	to	heat	up	for	about	4	minutes

https://www.nostarch.com/arduinohandbook2/

before	it	can	operate	accurately.	The	sketch	has	a	timer	so	that	when
you	power	it	up	for	the	first	time,	the	values	won’t	appear	onscreen
until	the	required	time	has	passed.	The	“Warming	up”	text	will	display
with	a	small	countdown	bar	until	the	sensor	is	ready.

THE	SKETCH
The	sketch	starts	by	calling	on	the	SPI,	Wire,	Adafruit_GFX,	and
Adafruit_SSD1306	libraries	to	control	communication	and	the	OLED
screen.	We	assign	a	time	for	the	warm-up	session	(4	minutes)	and	set	the
analog	pin	as	Arduino	A0.

Next	we	set	up	the	OLED	screen.	The	Arduino	sends	different	messages
to	the	screen	depending	on	the	value	read	from	the	analog	pin.	For	instance,
if	the	sensor	reading	is	above	200,	the	Arduino	will	ask	you	if	you’ve	had	a
beer.	 If	 the	 reading	 is	 below	 this	 value,	 the	Arduino	will	 say	 you’re	 sober.
The	minimum	level	of	alcohol	the	MQ3	will	read	is	about	180.	For	anything
over	450,	the	breathalyzer	will	let	you	know	you’re	drunk!

The	 sketch	 loops	 every	 second	 to	 read	 the	 analog	 sensor.	 To	 use	 the
breathalyzer,	 wait	 for	 the	 sensor	 to	 heat	 up	 for	 4	 minutes,	 then	 gently
breathe	 onto	 the	 sensor.	 Try	 not	 to	 get	 the	 sensor	 wet	 or	 expose	 it	 to	 a
smoky	environment,	as	this	will	affect	the	reading.

// Re-created with kind permission from Nick Koumaris educ8s.tv

// Call the SPI, Wire, Adafruit_GFX, and Adafruit_SDD1306 libraries
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4 // Define the OLED screen
int TIME_UNTIL_WARMUP = 4; // Time for the warm-up delay in minutes
unsigned long time;
int analogPin = 0; // Set analog pin as A0
int val = 0; // Set a value to read from the analog pin
Adafruit_SSD1306 display(OLED_RESET);

void setup() { // Set up the OLED screen
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
 display.clearDisplay();
}

void loop() { // Take the reading and show it onscreen
 delay(100);
 val = readAlcohol();
 printTitle();

 printWarming();
 time = millis() / 1000;
 time /= 60;
 if (time <= TIME_UNTIL_WARMUP) { // If warm-up is less than 4 mins
 time = map(time, 0, TIME_UNTIL_WARMUP, 0, 100); // Show countdown
 display.drawRect(10, 50, 110, 10, WHITE); // Empty bar
 display.fillRect(10, 50, time, 10, WHITE);
 } else { // When warm-up time has passed
 // the value and message are printed on the screen
 printTitle();
 printAlcohol(val);
 printAlcoholLevel(val);
 }
 display.display();
}

void printTitle() { // Position and text of title on the screen
 display.clearDisplay();
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(22, 0);
 display.println("Breath Analyzer");
}
void printWarming() { // Warm-up message
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(30, 24);
 display.println("Warming up");
}

void printAlcohol(int value) { // Print alcohol value to screen
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(50, 10);
 display.println(val);
}

void printAlcoholLevel(int value) { // Print message to screen
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(20, 25);
 if (value < 200) { // If value read is less than 200, you are sober
 display.println("You are sober...");
 }
 if (value >= 200 && value < 280) {
 display.println("You had a beer?");
 }
 if (value >= 280 && value < 350) {
 display.println("Two or more beers.");
 }
 if (value >= 350 && value < 450) {
 display.println("I smell VODKA!");
 }
 if (value > 450) {
 display.println("You are drunk!");
 }

}

// Finds average by summing three readings and
// dividing by 3 for better accuracy
int readAlcohol() {
 int val = 0;
 int val1;
 int val2;
 int val3;
 display.clearDisplay();
 val1 = analogRead(analogPin);
 delay(10);
 val2 = analogRead(analogPin);
 delay(10);
 val3 = analogRead(analogPin);
 val = (val1 + val2 + val3) / 3;
 return val;
}

TROUBLESHOOTING
Q.	The	display	is	not	showing	readings	correctly.

•	Recheck	that	your	wiring	matches	the	diagram	in	Figure	19-3.

•	If	all	your	wiring	is	in	the	correct	place,	make	sure	you’ve	carried	out	the
earlier	step	to	burn	the	sensor	in	by	leaving	it	powered	for	a	few	hours.

•	To	check	whether	your	components	are	faulty,	temporarily	swap	a
potentiometer	in	for	the	sensor.	Connect	the	center	pin	of	the
potentiometer	to	A0	and	add	power	to	either	side.	If	the	potentiometer	is
working	okay,	it	means	your	sensor	is	probably	faulty,	so	replace	your
sensor—they	are	very	inexpensive.

Security

20
Ultrasonic	Soaker
In	this	project	we’ll	use	an	ultrasonic	sensor	to	trigger	a	toy	water
pistol.	You	could	set	this	up	to	soak	unsuspecting	victims	when
they	venture	into	forbidden	territory!

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
HC-SR04	ultrasonic	sensor
WLtoys	V959-18	Water	Jet	Pistol

LIBRARY	REQUIRED
NewPing

HOW	IT	WORKS
For	our	soaker,	we’ll	use	the	WLtoys	V959-18	Water	Jet	Pistol	(Figure	20-
1)	attachment	for	RC	helicopters,	which	is	inexpensive	and	widely	available
online.	The	pistol	has	a	small	reservoir	to	hold	water	and	a	mini-pump	that
shoots	the	water	through	a	nozzle	at	the	front.	The	pistol	has	only	two	wires:
red	is	positive	power	and	white	is	ground.	It	requires	only	a	little	current,
which	lets	us	trigger	the	pump	using	the	current	supplied	by	the	Arduino.

FIGURE	20-1:	The	WLtoys	V959-18	Water	Jet	Pistol	

NOTE

Remember	that	water	and	electricity	do	not	mix	well,	so	try	to	keep	your
Arduino	away	from	the	water	jet	to	minimize	the	chance	of	water	short-

circuiting	your	Arduino	board.

As	we	discussed	in	Project	13,	the	ultrasonic	sensor	sends	out	a	burst	of
ultrasound	and	listens	for	the	echo	that	bounces	off	an	object	to	determine
its	distance.	Here,	the	ultrasonic	sensor	looks	for	a	bounceback	that	indicates
an	object	is	less	than	15	centimeters	away,	in	which	case	the	Arduino	sends
power	to	the	soaker	to	squirt	water	on	our	victims.

THE	BUILD

1.	 Add	the	ultrasonic	sensor	module	(Figure	20-2)	to	your	breadboard	and
connect	VCC	to	+5V,	Trig	to	Arduino	pin	12,	Echo	to	Arduino	pin	13,
and	GND	to	GND,	as	shown	in	the	following	table.

ULTRASONIC	SENSOR ARDUINO

VCC +5V

Trig Pin	12

Echo Pin	13

GND GND

FIGURE	20-2:	The	ultrasonic	sensor	

2.	 Connect	the	pistol’s	red	power	wire	to	Arduino	pin	3	and	its	white	wire
to	Arduino	GND	via	the	breadboard	power	rail.	Connect	the	power
rails	of	the	breadboard	to	Arduino	power.	The	pistol	comes	with	a	small
pipette	to	help	you	fill	the	reservoir.	Figure	20-3	shows	where	to	fill	the
reservoir.

FIGURE	20-3:	Use	the	pipette	provided	to	fill	the	reservoir	shown	with	water	through	the
opening	at	the	top.

3.	 Once	you’ve	confirmed	that	your	setup	matches	the	circuit	diagram	in
Figure	20-4,	upload	the	code	in	“The	Sketch”	on	page	172	to	your
Arduino,	making	sure	to	add	the	NewPing	library	to	the	Arduino	IDE.

FIGURE	20-4:	The	circuit	diagram	for	the	ultrasonic	soaker	

THE	SKETCH
Before	entering	the	sketch,	download	the	NewPing	library	from
http://www.nostarch.com/arduinohandbook2/.	The	sketch	calls	on	the	NewPing
library	and	defines	the	Arduino	pin	connections.	Arduino	pin	12	is
connected	to	the	sensor’s	trigger	pin	and	sends	out	an	ultrasonic	signal,	and
Arduino	pin	13,	connected	to	the	sensor’s	Echo	pin,	receives	the	returning
signal.	The	Arduino	converts	the	time	between	sending	and	receiving	the
signal	into	distance.	The	soaker	is	attached	to	Arduino	pin	3,	and	a	loop
checks	the	distance	to	the	detected	object.	If	the	distance	is	less	than	15
centimeters,	power	is	sent	to	pin	3	and	the	soaker	shoots	water	at	your
unsuspecting	friends!

#include <NewPing.h> // This calls the NewPing library
#define trigPin 12 // Trig pin attached to Arduino 12
#define echoPin 13 // Echo pin attached to Arduino 13
#define soakerPin 3
#define MAX_DISTANCE 500

NewPing sonar(trigPin, echoPin, MAX_DISTANCE);

http://www.nostarch.com/arduinohandbook2/

void setup() {
 Serial.begin(9600);
 pinMode(soakerPin, OUTPUT);
}
void loop() {
 int distance;
 distance = sonar.ping_cm();
 Serial.print(distance);
 Serial.println(" cm");

 if (distance <= 15) { // If distance is less than 15
 digitalWrite(soakerPin, HIGH); // Soaker shoots water
 delay(250);
 digitalWrite(soakerPin, LOW); // Short pulse of water
 }
 else {
 digitalWrite(soakerPin, LOW); // Soaker will remain off
 }
 delay(500);
}

TROUBLESHOOTING
Q.	The	ultrasonic	soaker	does	not	shoot.

•	Make	sure	the	connections	match	the	setup	for	the	ultrasonic	sensor	by
rechecking	this	chapter’s	tables	and	the	circuit	diagram	in	Figure	20-4.

•	Remember	that	the	water	will	shoot	only	when	the	sensor	detects
someone	or	something	in	front	of	it.

•	Make	sure	you	have	added	power	to	the	breadboard	power	rails.

•	Check	that	the	water	jet	is	working	correctly	by	disconnecting	it	from	the
circuit	and	then	connecting	the	wires	to	+5V	and	GND	on	the	Arduino
directly.	You	should	hear	the	buzz	of	the	pump	motor;	if	you	don’t,	your
component	may	be	faulty.

21
Fingerprint	Scanner
In	this	project	we’ll	use	a	fingerprint	sensor,	a	servomotor,	and
some	LEDs	to	create	a	cool	biometric	entry	system.

PARTS	REQUIRED
Arduino	board

Breadboard
Jumper	wires
Red	LED
Green	LED
2	220-ohm	resistors
Tower	Pro	SG90	9g	servomotor
Optical	fingerprint	sensor	(ZFM-20	Series)

LIBRARIES	REQUIRED
Adafruit_Fingerprint
Servo
SoftwareSerial

NOTE

The	software	we’re	using	in	this	project	operates	only	on	Windows.

HOW	IT	WORKS
Biometric	identification	is	used	to	identify	a	person	from	a	specific	biological
characteristic	that	remains	the	same	even	over	a	long	period	of	time,	such	as
a	fingerprint	or	iris	pattern.	Since	fingerprints	are	unique	to	each	person,
they’re	often	used	to	help	identify	individuals	for	purposes	like	criminal
investigations	and	security	authentication.	In	this	project,	we’ll	use	a
fingerprint	sensor	to	read	a	fingerprint	and,	if	it	matches	a	print	on	record
with	the	right	security	clearance,	allow	access	by	moving	a	servomotor.

The	 sensor	 we’ll	 use	 is	 the	 ZFM-20	 Series	 Fingerprint	 Identification
Module	 (see	 Figure	 21-1)	 but	 will	 generally	 be	 referred	 to	 as	 an	 optical
fingerprint	sensor	module.	The	sensor	takes	a	photograph	of	a	fingerprint,	adds
it	 to	 the	module’s	 database,	 and	 then	 checks	 the	 scanned	 fingerprint	 for	 a
match.	It	can	hold	up	to	162	fingerprints.	The	sensor	is	available	online	and
from	 retailers	 such	 as	 Adafruit,	 which	 has	 also	 created	 a	 specific	 Arduino
library	for	the	module	that	we’ll	use	in	the	sketch.

FIGURE	21-1:	The	ZFM-20	Series	Fingerprint	Identification	Module	is	an	optical	fingerprint
sensor.

PREPARING	THE	FINGERPRINT	SENSOR
To	use	the	sensor,	we	must	first	get	the	SFG	Demo	software,	available	to
download	from	http://www.adafruit.com/datasheets/SFGDemoV2.0.rar.	The
SFG	Demo	software	is	a	simple,	free	program	that	connects	your	PC	to	the
Fingerprint	ID	module	via	an	Arduino	so	you	can	control	it,	add	or	delete
fingerprints,	and	assign	an	ID	for	each	one.

1.	 Download	the	SFGDemoV2.0.rar	file	and	unzip	to	a	destination	of	your
choice.

2.	 Once	you	have	unzipped	the	.rar	file,	double-click	the	SFGDemo.exe	file
to	run	the	program,	and	you’ll	see	the	screen	shown	in	Figure	21-2.

FIGURE	21-2:	The	SFGDemo	control	screen	

http://www.adafruit.com/datasheets/SFGDemoV2.0.rar

3.	 Now	you	need	to	connect	the	fingerprint	sensor	module	to	your	PC	via
the	Arduino.	The	connections	for	the	module	to	Arduino	are	shown	in
the	following	table.

FINGERPRINT	SENSOR ARDUINO

GND	(black	wire) +5V

RX	(white	wire) Pin	0	(RX)

TX	(green	wire) Pin	1	(TX)

+5V	(red	wire) +5V

4.	 You’ll	be	using	the	Arduino	as	a	bypass	to	connect	the	fingerprint
scanner	to	your	PC	via	the	USB	cable,	so	you	need	to	load	a	blank
sketch	to	get	the	Arduino	to	connect	to	the	PC	without	carrying	out	a
function.	The	easiest	way	to	do	this	is	to	open	the	latest	version	of	the
Arduino	IDE	and	upload	the	default	sketch,	shown	next.

void setup() {
 // put your setup code here, to run once:

}
void loop() {
 // put your main code here, to run repeatedly:

}

5.	 Next,	connect	the	Arduino	to	your	PC	and	in	the	SFGDemo	program,
select	the	Open	Device	button.	From	the	Com	Port	drop-down	menu
that	opens,	choose	the	port	your	Arduino	is	connected	to	and	click	OK.
You’ll	see	a	message	indicating	that	your	module	is	connected	and
recognized,	as	shown	in	Figure	21-3.	Here	my	module	is	connected	to
the	Arduino	through	com	port	4,	but	you	might	need	to	use	a	different
port.

FIGURE	21-3:	When	the	device	is	connected	correctly,	the	program	shows	the	message
“Open	Device	Success!”

6.	 Next,	you’ll	add	a	fingerprint	to	the	database.	Click	Enroll	on	the
SFGDemo	control	screen.	When	you	see	the	message	“Waiting	for
fingerprint,”	press	a	finger	firmly	against	the	fingerprint	sensor	module
window	and	wait	a	few	seconds.	When	the	print	is	registered,	you’ll	see
the	message	“Success!”	(as	shown	in	Figure	21-4).

FIGURE	21-4:	The	module	has	successfully	captured	a	fingerprint	and	shows	a	preview	of	the
print	in	the	top-left	window.

7.	 Now	you’ll	test	whether	the	module	recognizes	the	fingerprint	you	just
recorded.	Click	the	Match	button	on	the	SFGDemo	control	screen.
When	prompted,	press	your	finger	against	the	window	firmly	for	a	few
seconds.	If	the	demo	finds	a	match,	you’ll	see	the	“Pass!”	message
shown	in	Figure	21-5.

FIGURE	21-5:	The	fingerprint	matches	and	a	“Pass!”	message	displays	in	the	information
panel	of	the	SFGDemo	control	panel.

8.	 Now	you	need	to	check	that	the	module	recognizes	your	fingerprint
when	it’s	attached	to	the	Arduino	and	not	the	PC.	Close	the	SFGDemo
program	and,	from	the	resources	you	downloaded	from
https://www.nostarch.com/arduinohandbook2/,	add	the	Adafruit	Fingerprint
Sensor	library	to	your	IDE.	If	you	need	a	refresher	on	adding	libraries,
check	out	the	library	section	at	the	start	of	this	book.

9.	 Once	you’ve	added	the	Adafruit	Fingerprint	Sensor	library,	open	the
IDE	and	select	Files	▸	Examples	▸	Adafruit-fingerprint-sensor-
master	▸	Fingerprint	to	choose	the	library	fingerprint	sketch	shown	in
Figure	21-6.	Upload	this	sketch	to	your	Arduino.

FIGURE	21-6:	The	fingerprint	demo	sketch	from	the	Adafruit	Fingerprint	Sensor	library	

https://www.nostarch.com/arduinohandbook2/

NOTE

Your	sensor	may	come	with	six	wires,	two	of	which	aren’t	necessary	for	the
demo.

10.	 Once	you’ve	uploaded	the	fingerprint	sketch	to	your	Arduino,
disconnect	from	the	PC.	You	now	need	to	change	your	module/
Arduino	pin	setup.	Instead	of	connecting	the	module	to	the	TX	and	RX
pins,	change	these	connections	to	pins	2	and	3	on	the	Arduino,
respectively,	as	shown	in	the	following	table.	This	keeps	the	TX	and	RX
serial	communication	free	to	use	the	Arduino	IDE	Serial	Monitor	in	the

next	step.

FINGERPRINT	SENSOR ARDUINO

GND	(black	wire) +5V

TX	(green	wire) Pin	2

RX	(white	wire) Pin	3

+5V	(red	wire) +5V

11.	 Now,	reconnect	your	Arduino	to	the	PC	and	open	the	Arduino	IDE.
Open	the	Serial	Monitor	of	the	IDE.	When	you	press	your	finger	to	the
module	window,	you	should	see	something	like	Figure	21-7.

FIGURE	21-7:	The	module	processes	are	displayed	in	the	Arduino	IDE	serial	screen.

THE	BUILD
Now	that	you	know	the	module	is	working	as	expected,	you’ll	use	what
you’ve	learned	to	create	the	fingerprint	entry	system.

1.	 The	fingerprint	module	should	now	be	connected	to	the	Arduino,	but	if
you’re	starting	at	this	point,	follow	the	connections	given	in	step	10
before	proceeding.

2.	 Connect	the	servomotor	to	the	GND	and	+5V	power	rails	on	the

breadboard	and	connect	the	signal	pin	to	Arduino	pin	9,	as	shown	in	the
following	table.

SERVO ARDUINO

Signal	(yellow	wire) Pin	9

Positive	power	(red	wire) Breadboard	+5V	rail

Negative	power	(black	wire) Breadboard	GND	rail

3.	 Insert	the	LEDs	into	the	breadboard	so	that	the	shorter,	negative	leg	is
connected	to	the	GND	power	rail	of	the	breadboard	and	the	positive,
longer	leg	is	connected	to	Arduino	pins	7	and	8	via	a	220-ohm	resistor,
as	shown	in	the	following	table.	The	resistors	should	straddle	the	center
of	the	breadboard,	as	shown	in	Figure	21-8.

LEDS ARDUINO

Green	LED	(positive,	longer	leg) Pin	7	via	220-ohm
resistor

Red	LED	(positive,	longer	leg) Pin	8	via	220-ohm
resistor

Negative	power	of	both	LEDs
(shorter	leg)

Breadboard	GND	rail

FIGURE	21-8:	The	LEDs	are	connected	to	the	Arduino	pins	via	220-ohm	resistors.

4.	 Connect	the	power	rails	of	the	breadboard	to	+5V	and	GND	on	the
Arduino,	and	then	check	that	your	circuit	matches	Figure	21-9.

5.	 Upload	the	code	in	“The	Sketch”	on	page	183.

FIGURE	21-9:	The	circuit	diagram	for	the	fingerprint	scanner	

THE	SKETCH
The	sketch	first	calls	on	the	Servo,	SoftwareSerial,	and	Adafruit_	Fingerprint
libraries.	The	LED	and	servo	pins	are	defined	as	7,	8,	and	9,	respectively,
and	pins	2	and	3	are	defined	for	serial	connection	to	the	fingerprint	sensor
module.	The	fingerprint	library	handles	the	functionality	of	the	module,	and
the	sketch	has	a	series	of	steps	to	read	and	store	a	fingerprint.

The	sensor	automatically	scans	every	5	seconds	and	reads	the	fingerprint
when	 it	 is	 pressed	 to	 the	 window.	 If	 the	 fingerprint	 matches	 one	 in	 the
module	memory	(which	we	stored	earlier	 in	the	project),	 the	red	LED	will
turn	off,	the	green	LED	will	light,	and	the	servomotor	will	turn	180	degrees.
This	state	will	continue	for	5	seconds,	and	the	setup	will	reset	and	wait	for
another	valid	entry.

// Fingerprint Sensor Library reproduced with kind permission
// from Adafruit Industries
/***
 This is an example sketch for our optical Fingerprint sensor

 Designed specifically to work with the Adafruit BMP085 Breakout
 ----> http://www.adafruit.com/products/751

 These displays use TTL Serial to communicate, 2 pins are required to
 interface
 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 Written by Limor Fried/Ladyada for Adafruit Industries.
 BSD license, all text above must be included in any redistribution
 **/

#include <Servo.h>
#include <Adafruit_Fingerprint.h>
#if ARDUINO >= 100
#include <SoftwareSerial.h>
#else
#include <NewSoftSerial.h>
#endif

int getFingerprintIDez();
int ledaccess = 7; // Green LED pin
int leddeny = 8; // Red LED pin
int servoPin = 9; // Servo pin

Servo doorLock;

// Pin #2 is IN from sensor (GREEN wire)
// Pin #3 is OUT from arduino (WHITE wire)
#if ARDUINO >= 100
SoftwareSerial mySerial(2, 3); // Pins for the fingerprint sensor
#else
NewSoftSerial mySerial(2, 3);
#endif

Adafruit_Fingerprint finger = Adafruit_Fingerprint(&mySerial);

void setup() {
 doorLock.attach(servoPin); // We define the servo pin
 pinMode(ledaccess, OUTPUT); // Green LED pin set as an ouput
 pinMode(leddeny, OUTPUT); // Red LED pin set as an output
 pinMode(servoPin, OUTPUT); // Servo pin set as an output
 Serial.begin(9600); // Start sending messages to the Serial Monitor
 Serial.println("fingertest");
 finger.begin(57600); // Set data rate for the sensor serial port

// Start the module and checking for fingerprint
 if (finger.verifyPassword()) {
 Serial.println("Found fingerprint sensor!");

http://www.adafruit.com/products/751

 } else {
 Serial.println("Did not find fingerprint sensor :(");
 while (1);
 }
 Serial.println("Waiting for valid finger...");
}
void loop() {
 int ID = getFingerprintIDez(); // Get the fingerprint ID#
 // Reset the device to the test state
 digitalWrite(ledaccess, HIGH);
 digitalWrite(leddeny, HIGH);
 doorLock.write(0);
 if (ID >= 0) { // Valid ID. Unlocked state
 // Enable the access LED, turn off the deny LED
 digitalWrite(ledaccess, HIGH);
 digitalWrite(leddeny, LOW);
 // Unlock the servo
 doorLock.write(180);
 }
 else if (ID == -3) { // ID doesn't match any registed print
 // Locked state
 // Enable the deny LED, turn off the access LED
 digitalWrite(ledaccess, LOW);
 digitalWrite(leddeny, HIGH);
 }
 delay(5000);
}

uint8_t getFingerprintID() {
 uint8_t p = finger.getImage();
 switch (p) {
 case FINGERPRINT_OK: // Sensor takes a photo when a finger is
 // placed on the module window
 Serial.println("Image taken");
 break;
 case FINGERPRINT_NOFINGER:
 Serial.println("No finger detected");
 return p;
 case FINGERPRINT_PACKETRECIEVEERR:
 Serial.println("Communication error");
 return p;
 case FINGERPRINT_IMAGEFAIL:
 Serial.println("Imaging error");
 return p;
 default:
 Serial.println("Unknown error");
 return p;
 }

 p = finger.image2Tz(); // OK success! We have a fingerprint and
 // now check that it can be read
 switch (p) {
 case FINGERPRINT_OK:
 Serial.println("Image converted");
 break;
 case FINGERPRINT_IMAGEMESS:

 Serial.println("Image too messy");
 return p;

 case FINGERPRINT_PACKETRECIEVEERR:
 Serial.println("Communication error");
 return p;
 case FINGERPRINT_FEATUREFAIL:
 Serial.println("Could not find fingerprint features");
 return p;
 case FINGERPRINT_INVALIDIMAGE:
 Serial.println("Could not find fingerprint features");
 return p;
 default:
 Serial.println("Unknown error");
 return p;
 }

 p = finger.fingerFastSearch(); // OK converted! It's valid, so
 // check it against module memory
 if (p == FINGERPRINT_OK) {
 Serial.println("Found a print match!");
 } else if (p == FINGERPRINT_PACKETRECIEVEERR) {
 Serial.println("Communication error");
 return p;
 } else if (p == FINGERPRINT_NOTFOUND) {
 Serial.println("Did not find a match"); // No match found,
 // back to the start
 return p;
 } else {
 Serial.println("Unknown error");
 return p;
 }
 // We found a match! So the following will run:
 Serial.print("Found ID #"); Serial.print(finger.fingerID);
 Serial.print(" with confidence of "); Serial.println(finger.confidence);
 return finger.fingerID;
}
// Returns -1 if failed, otherwise returns ID #
int getFingerprintIDez() {
 int p = finger.getImage();
 if (p != FINGERPRINT_OK) return -1;

 p = finger.image2Tz();
 if (p != FINGERPRINT_OK) return -2;

 p = finger.fingerFastSearch();
 if (p != FINGERPRINT_OK) ; {
 Serial.println("No match found");
 return -3;
 }

 // Found a match!
 Serial.print("Found ID #"); Serial.print(finger.fingerID);
 Serial.print(" with confidence of "); Serial.println(finger.confidence);
 return finger.fingerID;
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	fingerprint	sensor	does	not	light	up	or	function.

•	Make	sure	that	your	wiring	matches	the	tables	on	page	181	and	page	182.
This	code	will	work	only	with	the	fingerprint	sensor	I’ve	used	in	this
project.

•	If	your	sensor	has	six	wires	instead	of	the	expected	four	and	the	wire
colors	don’t	match	as	described,	it	is	the	first	four	pins	you	need:	GND,
TX,	RX,	and	+5V.	The	other	two	connections	are	not	used	in	this
project,	so	you	can	remove	these	wires.

•	If	your	module	still	does	not	light	up,	check	the	data	sheet	for	the	actual
pin	configuration	and	reconnect	the	wires	according	to	that.

•	Remember	you	need	to	set	up	the	module	first	and	test	it	as	described	in
“Preparing	the	Fingerprint	Sensor”	on	page	176.

Q.	The	LEDs	do	not	light	up	as	expected.

•	Ensure	the	LEDs	are	firmly	inserted	into	the	breadboard	and	the
resistors	line	up	with	the	connections	to	the	Arduino.

•	Remember	to	connect	power	to	the	breadboard	rails.
Q.	The	servomotor	does	not	move	as	expected.

•	Double-check	that	the	wiring	matches	the	servo	connections	shown	in
Figure	21-9.

•	The	module,	servo,	and	LEDs	combined	draw	a	fair	amount	of	power
from	your	battery	pack,	and	while	the	Arduino	can	still	function	at	a
lower	voltage,	the	servomotor	cannot.	Change	to	fresh	batteries.

Smart	Machines

22
Ultrasonic	Robot
In	this	project	we’ll	combine	an	ultrasonic	sensor	with	two	DC
motors	and	a	servomotor	to	create	a	simple	object-avoiding	robot.

PARTS	REQUIRED
Arduino	board

Jumper	wires
L293d	motor	shield
2	DC	motors	and	wheels*
HC-SR04	ultrasonic	sensor
9V	AA	battery	pack
Robot	base	with	fittings*
Center	wheel*
Tower	Pro	SG90	9g	servomotor

LIBRARIES	REQUIRED
Servo
NewPing
Adafruit	Motor	Shield	V1

*	These	items	can	be	purchased	as	part	of	a	kit

HOW	IT	WORKS
The	key	parts	of	the	ultrasonic	robot	are	the	HC-SR04	ultrasonic	sensor,
L293d	motor	shield,	and	the	motors.	The	motors	I	used	were	purchased	as
part	of	a	kit;	if	you	search	online	for	“Arduino	robot	kit,”	you	too	should	be
able	to	find	a	kit	that	contains	the	motors	and	wheels,	base,	battery	pack,
center	wheel,	and	fittings	needed.	The	one	I	bought	is	called	the	“2WD
Smart	Motor	Robot	Car	Chassis	Kit	for	Arduino	1:48,”	so	try	a	few	of	those
keywords	until	you	find	something	similar	to	the	kit	in	Figure	22-1.	Also	try
the	suppliers	listed	in	the	“Retailer	List”	on	page	249.

FIGURE	22-1:	Robot	motor	kit	

The	 ultrasonic	 sensor	 sends	 and	 receives	 a	 signal	 to	 determine	 the
distance	of	an	object.	If	there	is	an	object	less	than	15	centimeters	away,	the
robot	 will	 stop,	 look	 around,	 turn	 toward	 a	 direction	 in	 which	 it	 doesn’t
sense	 anything,	 and	 move	 in	 that	 direction.	 The	 ultrasonic	 sensor	 is
mounted	on	a	servomotor	so	that	the	robot	can	move	and	search	for	a	clear
route.	For	more	on	how	the	HC-SR04	ultrasonic	sensor	works,	see	Project
13.	The	L293d	motor	shield	fits	on	top	of	the	Arduino	and	controls	the	DC
motors	using	the	Adafruit	Motor	Shield	library.

THE	BUILD

1.	 You	will	need	to	solder	wires	to	the	DC	motors	as	shown	in	Figure	22-
2.	See	the	“Quick	Soldering	Guide”	on	page	12	if	you	need	a	refresher
on	how	to	do	this.	Solder	the	red,	positive	power	wire	to	the	left	pin	of
one	DC	motor	and	the	black	ground	wire	to	the	right	pin;	reverse	this
order	for	the	other	motor.	DC	motors	do	not	have	polarity,	so	it
doesn’t	matter	which	way	you	hold	the	motors	to	determine	which	is
left	and	right,	but	power	and	GND	need	to	be	in	opposite	positions	on

the	motors	so	the	direction	of	the	revolution	will	be	the	same.

FIGURE	22-2:	Solder	the	red,	positive	power	wire	to	the	left	pin	of	one	DC	motor,	and	the
black	ground	wire	to	the	right	pin.	Reverse	this	order	for	the	other	motor.

2.	 Attach	the	single	wheel	to	the	front	of	the	robot	base	and	the	two	rear
wheels	to	the	back	using	the	screws	and	fittings	provided.	The
underside	of	the	robot	should	resemble	Figure	22-3.

FIGURE	22-3:	Assemble	the	base	of	the	Arduino	robot.

3.	 Now	you	need	the	L293d	motor	shield	(Figure	22-4);	we’ll	solder	some
wires	to	it	to	control	the	ultrasonic	sensor.

FIGURE	22-4:	The	L293d	motor	shield.	We’ll	solder	four	wires	to	the	pins	highlighted	in	the
image.

4.	 Take	four	female	jumper	wires	and	strip	about	5	millimeters	from	one
end	of	each,	as	shown	in	Figure	22-5.

FIGURE	22-5:	Strip	the	ends	of	four	female	jumper	wires	to	solder	onto	the	motor	shield.

5.	 Solder	the	stripped	ends	to	the	highlighted	pins	on	the	motor	shield,	as
shown	in	Figure	22-6.	This	can	be	tricky,	so	take	your	time	to	create
the	best	connection	you	can.

FIGURE	22-6:	Solder	the	jumper	wires	to	the	motor	shield	(shown	in	Figure	22-4).	The	two
pins	below	the	power	connections	should	connect	to	analog	A4	and	A5	to	control	the	sensor.

6.	 Once	you’ve	soldered	the	wires	to	the	motor	shield,	place	the	shield	on
top	of	the	Arduino	so	that	the	pins	of	the	shield	line	up	with	the	holders
in	the	Arduino	below.	The	shield	should	fit	exactly,	but	take	care	to
align	the	pins	to	the	holes	and	gently	lower	it	in	place.

7.	 Next,	connect	the	ultrasonic	sensor	to	the	female	ends	of	the	jumper
wires	you	soldered	to	the	motor	shield.	Connect	VCC	on	the	sensor	to
+5V	on	the	motor	shield,	Trig	to	A4,	Echo	to	A5,	and	GND	to	GND
(see	the	following	table).

ULTRASONIC	SENSOR MOTOR	SHIELD

VCC +5V

Trig Pin	A4

Echo Pin	A5

GND GND

8.	 Connect	the	wires	from	the	DC	motors	to	the	motor	shield	as	shown	in
the	following	tables	and	Figure	22-7.	You	connect	the	wires	by	feeding
them	through	the	pin	and	using	the	screws	to	grip	the	wires	in	place.

LEFT	MOTOR MOTOR	SHIELD ARDUINO

Red	wire M1 +5V

Black	wire M1 GND

RIGHT	MOTOR MOTOR	SHIELD ARDUINO

Red	wire M3 +5V

Black	wire M3 GND

FIGURE	22-7:	Connect	the	power	wires	of	the	DC	motors	as	shown.

9.	 Next	attach	the	servomotor	to	the	shield,	as	shown	in	the	following
table	and	Figure	22-8.

SERVOMOTOR MOTOR	SHIELD ARDUINO

Brown	wire Servo_2	- GND

Red	wire Servo_2	+ +5V

Yellow	wire Servo_2	s Signal

FIGURE	22-8:	Connect	the	servomotor	to	the	shield	as	shown.

10.	 Attach	the	servomotor	to	the	front	of	the	robot	using	glue	or	tape.
Then	attach	the	ultrasonic	sensor	to	the	horn	of	the	servomotor	so	it
moves	with	the	servo	arm	and	your	robot	can	look	around.	At	this	stage
the	robot	should	look	something	like	Figure	22-9.

FIGURE	22-9:	The	completed	robot	with	ultrasonic	sensor	attached	to	the	servomotor	

11.	 Make	sure	you’ve	downloaded	the	NewPing	and	Adafruit	Motor	Shield
libraries	and	added	them	to	your	IDE.	The	Servo	library	is	already
included	in	the	IDE,	so	you	don’t	need	to	install	it.

12.	 Once	you’ve	confirmed	that	your	setup	matches	the	circuit	diagram	in
Figure	22-10,	upload	the	code	in	“The	Sketch”	on	page	198	and
connect	the	9V	battery	pack	to	your	Arduino	to	see	your	robot	in
action!

FIGURE	22-10:	The	circuit	diagram	for	the	ultrasonic	robot	

THE	SKETCH
The	sketch	starts	by	calling	on	the	Adafruit	Motor	Shield,	NewPing,	and
Servo	libraries.	The	Trig	pin	of	the	ultrasonic	sensor	is	defined	as	Arduino
A4	and	the	Echo	pin	as	Arduino	A5.	The	maximum	distance	of	the
ultrasonic	sensor	is	set	at	200	centimeters	and	the	speed	of	the	DC	motors	is
set	at	a	medium	speed	of	190	(out	of	255).	The	DC	motors	are	defined	to
use	connections	M1	and	M3	of	the	motor	shield.

The	servo	is	given	a	name	and	attached	to	pin	9	on	the	Arduino	(via	the
connection	on	 the	motor	 shield).	The	 loops	 after	 that	 take	 a	 reading	 from
the	 ultrasonic	 sensor	 and,	 if	 it	 detects	 that	 an	 object	 is	 less	 than	 15
centimeters	away,	the	motors	stop	and	reverse	slightly,	the	servo	moves	left
and	right	once	to	look	around,	and	the	robot	turns	to	the	left	and	continues
to	move	forward	until	it	discovers	another	object.

// Reproduced with kind permission from Nick Koumaris
// http://www.educ8s.tv
#include <AFMotor.h>
#include <NewPing.h>
#include <Servo.h>
#define TRIG_PIN A4
#define ECHO_PIN A5
#define MAX_DISTANCE 200
#define MAX_SPEED 190 // Sets speed of DC motors
#define MAX_SPEED_OFFSET 20

NewPing sonar(TRIG_PIN, ECHO_PIN, MAX_DISTANCE);

http://www.educ8s.tv

AF_DCMotor motor1(1, MOTOR12_1KHZ); // First motor to connection 1
AF_DCMotor motor2(3, MOTOR12_1KHZ); // Second motor to connection 3
Servo myservo; // Give the servo a name
boolean goesForward = false;
int distance = 100; // Define an int for distance and speed
int speedSet = 0;

void setup() {
 myservo.attach(9); // Servo attached to pin 9
 myservo.write(115); // Set servo at 115 degrees
 delay(2000);
 distance = readPing(); // Read the distance from the sensor
 delay(100);
 distance = readPing();
 delay(100);
 distance = readPing();
 delay(100);
 distance = readPing();
 delay(100);
}
void loop() {
 int distanceR = 0;
 int distanceL = 0;
 delay(40);
 // If distance is less than 15 cm, carry out this function
 if (distance <= 15) {
 moveStop();
 delay(100);
 moveBackward();
 delay(300);
 moveStop();
 delay(200);
 distanceR = lookRight();
 delay(200);
 distanceL = lookLeft();
 delay(200);
 if (distanceR >= distanceL) {
 turnRight();
 moveStop();
 } else { // Or else carry on
 turnLeft();
 moveStop();
 }
 } else {
 moveForward();
 }
 distance = readPing();
}

int lookRight() { // The servo looks to the right
 myservo.write(50);
 delay(500);
 int distance = readPing();
 delay(100);
 myservo.write(115);
 return distance;

}

int lookLeft() { // The servo looks to the left
 myservo.write(170);
 delay(500);
 int distance = readPing();
 delay(100);
 myservo.write(115);
 return distance;
 delay(100);
}

int readPing() {
 delay(70);
 int cm = sonar.ping_cm();
 if (cm == 0) {
 cm = 250;
 }
 return cm;
}

void moveStop() {
 motor1.run(RELEASE);
 motor2.run(RELEASE);
}

void moveForward() {
 if (!goesForward) { // If area is clear, motors move forward
 goesForward = true;
 motor1.run(FORWARD);
 motor2.run(FORWARD);
 // Slowly bring up speed to avoid loading down
 // batteries too quickly
 for (speedSet = 0; speedSet < MAX_SPEED; speedSet += 2) {
 motor1.setSpeed(speedSet);
 motor2.setSpeed(speedSet + MAX_SPEED_OFFSET);
 delay(5);
 }
 }
}

void moveBackward() {
 goesForward = false;
 motor1.run(BACKWARD);
 motor2.run(BACKWARD);
 // Slowly bring up speed to avoid loading down
 // batteries too quickly
 for (speedSet = 0; speedSet < MAX_SPEED; speedSet += 2) {
 motor1.setSpeed(speedSet);
 motor2.setSpeed(speedSet + MAX_SPEED_OFFSET);
 delay(5);
 }
}

void turnRight() { // Movement for turning right
 motor1.run(FORWARD);

 motor2.run(BACKWARD);
 delay(300);
 motor1.run(FORWARD);
 motor2.run(FORWARD);
}

void turnLeft() { // Movement for turning left
 motor1.run(BACKWARD);
 motor2.run(FORWARD);
 delay(300);
 motor1.run(FORWARD);
 motor2.run(FORWARD);
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	Arduino	robot	does	not	function	as	expected.

•	Make	sure	that	your	wiring	matches	the	tables	in	steps	7,	8,	and	9	and	the
circuit	diagram	in	Figure	22-10.

•	If	your	robot	spins	around	rather	than	moving	forward,	reverse	the
wiring	on	one	of	the	DC	motors—as	mentioned	earlier,	they	don’t	have
polarity	but	changing	the	power	connections	will	reverse	the	motor’s
rotation.

•	Power	the	robot	with	a	pack	of	1.5V	AA	batteries	in	series	rather	than	a
9V	battery,	which	has	less	amperage	and	will	drain	quicker.

23
Internet-Controlled	LED
In	this	project	we’ll	use	an	ethernet	shield	to	connect	our	Arduino
to	the	internet	and	control	an	LED	from	a	web	browser.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
Ethernet	shield	W5100	LAN	expansion	board
Ethernet	cable
LED
220-ohm	resistor

LIBRARIES	REQUIRED
SPI
Ethernet

The	Internet	of	Things	(IoT)	is	revolutionizing	our	use	of	everyday	items.
The	 term	 refers	 to	objects	or	 smart	devices	 connected	 through	 a	network,
usually	 involving	 the	 internet.	This	 allows	 us	 to	 control	 devices	 remotely,
from	 inside	 or	 outside	 the	 house!	 Amazon	 Echo	 and	 Google	 Home	 are
taking	things	further	by	allowing	a	multitude	of	devices	to	be	connected	and
controlled	via	a	central	hub,	even	if	you	aren’t	at	home.	We’ll	create	our	own
IoT	project	in	its	most	basic	form	to	demonstrate	the	principles	involved.

HOW	IT	WORKS
The	Ethernet	shield	W5100	LAN	expansion	board,	shown	in	Figure	23-1,
fits	directly	on	top	of	the	Arduino	to	provide	additional	functionality	to	the
board.	We’ll	use	the	Ethernet	library	built	into	the	Arduino	IDE	to	connect
our	board	to	the	internet	via	an	Ethernet	cable,	as	shown	in	Figure	23-2.

FIGURE	23-1:	Ethernet	shield	

FIGURE	23-2:	Ethernet	cable	

The	 library	 allows	 the	 Arduino	 to	 act	 as	 a	 server	 to	 accept	 incoming
commands,	 a	 client	 to	 send	 them	 out,	 or	 both.	 The	 shield	 communicates
with	the	Arduino	using	the	Serial	Peripheral	Interface	(SPI)	connections.	On
the	Arduino	Uno	the	SPI	connections	are	on	digital	pins	10,	11,	12,	and	13.
In	our	project	the	Arduino	will	use	both	functions	to	send	information	to	the
internet	 in	 the	 form	of	a	 simple	web	page	and	accept	commands	 from	this
page	to	control	an	LED.	Buttons	on	the	web	page	will	allow	us	to	switch	the
LED	 on	 or	 off	 as	 long	 as	 the	 Arduino	 is	 powered	 and	 connected	 to	 the
internet.

SETTING	UP	YOUR	ETHERNET	CONNECTION
You	need	to	know	the	MAC	address	of	your	shield	for	this	project	to	work.
A	MAC	address	is	a	unique	number	assigned	to	devices	for	communication
and	is	used	as	a	network	address	for	Ethernet	and	Wi-Fi.	If	you	have	a	newer
shield,	the	MAC	address	will	be	printed	on	a	product	sticker.	If	you	have	an
older	generic	Ethernet	shield	like	the	one	we	are	using,	you	can	use	the
MAC	address	0xDE,	0xAD,	0xBE,	0xEF,	0xFE,	0xED	for	this	project.

For	communication,	we’ll	use	port	80,	the	default	for	HTTP.	Short	for
HyperText	Transfer	Protocol,	HTTP	is	the	set	of	rules	for	transferring	data
over	 the	 internet.	 In	 this	 instance	port	80	handles	 the	 transfer	of	data	 to	a
web	page.

Our	sketch	includes	some	HTML	(HyperText	Markup	Language)	code,
which	tells	a	web	browser	how	to	display	an	internet	page.	If	you	right-click
on	any	web	page	and	select	 Inspect,	you	can	see	some	of	 the	HTML	code
behind	that	page.

The	 section	 of	 our	 sketch	 that	 includes	HTML	 code	 is	 as	 follows	 and
produces	the	web	page	displayed	in	Figure	23-3.

client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println();
client.print("<center>
<h1>Internet Controlled LED</h1>

<FORM>");
client.print("<P> <INPUT type=\"submit\" name=\"status\"value=\"ON\">");
client.print("<P> <INPUT type=\"submit\" name=\"status\"value=\"OFF\">");
client.print("</FORM></center>"); FIGURE 23-3: Our simple web page to control the LED

THE	BUILD

1.	 Attach	the	Ethernet	shield	on	top	of	the	Arduino	board	as	shown	in
Figure	23-4.	The	board	fits	directly	on	top	of	the	Arduino,	so	gently
press	the	legs	of	the	shield	in	place	with	the	holes	of	the	Arduino
beneath.

FIGURE	23-4:	Attach	the	Ethernet	shield	on	top	of	the	Arduino	board.

2.	 Insert	the	LED	into	the	breadboard	with	the	legs	straddling	the	center
break	of	the	board.	Then,	as	shown	in	the	following	table,	connect	the
shorter,	negative	leg	of	the	LED	to	the	GND	rail	of	the	breadboard	via
a	220-ohm	resistor,	and	connect	the	longer,	positive	leg	of	the	LED	to
pin	7	on	the	Arduino/Ethernet	shield.	Connect	the	GND	rail	of	the
breadboard	to	Arduino	GND.

LED ARDUINO

Negative	leg GND	via	220-ohm	resistor

Positive	leg Pin	7

3.	 With	the	Ethernet	shield	attached	on	top	of	the	Arduino,	connect	the
shield	to	your	router	with	the	Ethernet	cable.

NOTE

Take	note	of	your	IP	address;	it	will	be	different	from	mine	shown	in
Figure	23-5.

4.	 Attach	the	Arduino	to	your	PC	and	upload	the	code	at	the	end	of	the
project	using	the	IDE.	Once	the	code	is	uploaded,	open	the	IDE	Serial
Monitor	in	order	to	ascertain	the	IP	address—a	unique	string	of
numbers	to	identify	a	device	attached	to	the	internet—of	the	Arduino,
which	is	acting	as	our	server.	You	should	see	something	similar	to
Figure	23-5.

FIGURE	23-5:	The	IP	address	of	the	Arduino	shield	will	be	shown	in	the	Serial	Monitor.

5.	 Open	any	web	browser	and	enter	your	IP	address.	You	should	see	a	web
page	with	an	On	and	an	Off	button,	as	shown	earlier	in	Figure	23-3.
Press	the	On	button	to	light	the	LED	and	press	the	Off	button	to
switch	it	off.

6.	 This	project	will	also	work	when	you	are	not	connected	to	your	local
network,	as	long	as	you	have	port	80	open	on	your	internet	router.
Many	internet	service	providers	(ISPs)	have	this	port	blocked	for
security	reasons,	so	follow	the	instructions	from	your	ISP	to	change	this
if	required.

WARNING

Carry	out	this	function	only	if	you	are	aware	of	the	security	risks	and	how
to	minimize	them.

7.	 Confirm	that	your	setup	matches	the	circuit	diagram	in	Figure	23-6,
and	then	upload	the	code	in	“The	Sketch”	on	page	208.

FIGURE	23-6:	The	circuit	diagram	for	the	internet-controlled	LED

THE	SKETCH
The	sketch	calls	on	the	SPI	and	Ethernet	libraries	to	control	communication
with	the	internet.	We	define	the	MAC	address	for	the	shield.	This	is	the	line

with	the	internet.	We	define	the	MAC	address	for	the	shield.	This	is	the	line
you	need	to	change	if	your	shield	came	with	its	own	MAC	address;	if	not,
the	address	given	earlier	in	this	project	and	shown	in	the	code	should	work
for	you.	We	then	set	the	server	to	use	port	80	and	define	pin	7	on	the
Arduino	as	the	LED	pin.

The	setup	defines	the	LED	pin	as	an	output,	begins	the	Ethernet	shield,
and	starts	serial	communication	so	we	can	see	the	IP	address	of	our	server.
The	loop	sets	up	our	web	page	to	the	browser	once	it	is	called	and	waits	for
an	input	on	the	browser	task	bar.	When	the	On	button	is	pressed,	the	server
tells	the	Arduino	to	set	the	LED	pin	as	HIGH	and	the	LED	will	light.	When
the	Off	button	is	pressed,	the	power	to	the	LED	is	LOW	and	the	LED	will	turn
off.

You	could	easily	change	the	LED	for	a	relay	switch	such	as	the	one	used
in	Project	12	to	control	a	larger-voltage	device.

#include <SPI.h>
#include <Ethernet.h>

// MAC address for shield
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
EthernetServer server(80); // Using port 80
int led = 7; // LED attached to pin 7

void setup() {
 pinMode(led, OUTPUT); // LED set as an output
 Ethernet.begin(mac); // Start the Ethernet shield
 server.begin();
 Serial.begin(9600); // Start serial communication
 Serial.println("Server address:"); // Print server address
 // (Arduino shield)
 Serial.println(Ethernet.localIP());
}

void loop() {
 EthernetClient client = server.available();
 if (client) {
 boolean currentLineIsBlank = true;
 String buffer = "";
 while (client.connected()) {
 if (client.available()) {
 char c = client.read(); // Read from the Ethernet shield
 buffer += c; // Add character to string buffer
 // Client sent request, now waiting for response
 if (c == '\n' && currentLineIsBlank) {
 client.println("HTTP/1.1 200 OK"); // HTTP response
 client.println("Content-Type: text/html");
 client.println(); // HTML code
 client.print("<center>
<h1>Internet Controlled LED</h1>

<FORM>");

 client.print("<P> <INPUT type=\"submit\" name=\"status\"value=\"ON\">");
 client.print("<P> <INPUT type=\"submit\" name=\"status\"value=\"OFF\">");
 client.print("</FORM></center>");
 break;
 }
 if (c == '\n') {
 currentLineIsBlank = true;
 buffer = "";
 }
 else if (c == '\r') { // Command from webpage
 // Did the on button get pressed
 if (buffer.indexOf("GET /?status=ON") >= 0)
 digitalWrite(led, HIGH);
 // Did the off button get pressed
 if (buffer.indexOf("GET /?status=OFF") >= 0)
 digitalWrite(led, LOW);
 }
 else {
 currentLineIsBlank = false;
 }

 }
 }
 client.stop(); // End server
 }
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	LED	does	not	light	as	expected.

•	First,	make	sure	you’ve	connected	the	GND	wire	from	the	Arduino	to
the	correct	breadboard	power	rail	and	that	the	Arduino	has	power
connected.

•	Check	that	the	resistor	is	inserted	fully	and	lines	up	with	the
corresponding	LED	leg.

•	Try	checking	that	the	project	is	working	by	connecting	to	your	local	area
network	and	using	that	PC	to	connect	to	the	Arduino.

Q.	You	receive	an	error	when	calling	the	web	page.

•	Make	sure	you	have	entered	the	IP	address	of	the	server	exactly	as	you
read	it	in	the	steps	given	earlier.

•	It	is	best	to	check	the	project	is	working	by	connecting	to	your	local	area
network	and	using	that	PC	to	connect	to	the	Arduino.

•	If	the	project	worked	when	you	connected	it	to	your	local	area	network,

but	you	receive	an	HTTP	403	error	when	connecting	to	the	internet
externally,	then	your	ISP	is	blocking	incoming	traffic.	You	could	add	port
forwarding	to	your	router	for	port	80.	This	will	differ	for	every	device,	so
check	with	your	ISP	for	detailed	instructions.	Do	a	quick	internet	search
with	your	ISP	and	“port	forwarding”	as	terms	and	follow	the
instructions,	but	be	aware:	this	can	compromise	the	security	of	your	PC
and	should	be	done	only	if	you	understand	the	risks	and	are	able	to
protect	your	network.

24
Voice-Controlled	LED
In	this	project	we’ll	use	a	bluetooth	module,	a	smartphone,	and	a
voice	recognition	app	to	control	an	LED	with	vocal	commands.

PARTS	REQUIRED
Arduino	board
Breadboard
Jumper	wires
HC-06	Bluetooth	module
LED
220-ohm	resistor
Android	smartphone

HOW	IT	WORKS
Bluetooth	wireless	technology	uses	radio	waves	to	transmit	and	exchange
data	over	short	distances.	Smartphones,	laptops,	and	multimedia	devices
such	as	speakers	use	Bluetooth	as	a	common	standard.	We’ll	use	the
inexpensive	HC-06	Bluetooth	module	(Figure	24-1)	to	pair	(connect)	our
Arduino	to	a	smartphone	so	we	can	turn	an	LED	on	and	off	remotely	using
a	voice	recognition	app.	This	module	has	six	pins,	but	we’ll	just	use	the
middle	four.	The	pins	should	be	labeled	on	the	front.

FIGURE	24-1:	The	HC-06	Bluetooth	module

The	 app	 we’ll	 use	 is	 Arduino	 Bluetooth	 Control	 from	 BroxCode,

available	to	download	for	free	on	the	Google	Play	store	for	Android	devices.
There	are	many	other	similar	free	apps	available	for	both	Android	and	Apple
devices	 and	 the	 principles	 of	 use	 should	 be	 the	 same	 for	 each,	 but	 the
BroxCode	app	has	some	additional	features	that	we’re	using	in	this	project,
such	as	voice	recognition	through	Google	Assistant.

THE	BUILD
Before	you	build	the	Bluetooth	controller,	you	need	to	upload	the	code	to
the	Arduino.	This	is	because	the	serial	communication	from	your	PC	to	the
Arduino	uses	the	same	pins	that	we’ll	be	connecting	to	the	Bluetooth
module.

1.	 Upload	the	code	in	“The	Sketch”	on	page	220,	and	then	insert	the
Bluetooth	module	into	the	breadboard	and	connect	VCC	to	the	positive
power	rail	of	the	breadboard,	GND	to	the	GND	power	rail,	TXD	to
Arduino	pin	0	(RX),	and	RXD	to	Arduino	pin	1	(TX),	as	shown	in	the
following	table.

HC-06	BLUETOOTH	MODULE ARDUINO

VCC +5V

GND GND

TXD Pin	0	(RX)

RXD Pin	1	(TX)

2.	 Insert	the	LED	into	the	breadboard	with	the	legs	straddling	the	center
break.	Use	a	220-ohm	resistor	to	connect	the	shorter,	negative	leg	of
the	LED	to	the	GND	rail	of	the	breadboard.	Connect	the	longer,
positive	leg	of	the	LED	to	pin	9	of	the	Arduino	using	a	jumper	wire,	as
outlined	in	the	following	table.

LED ARDUINO

Positive	leg Pin	9

Negative	leg GND

3.	 Connect	the	GND	rail	of	the	breadboard	to	Arduino	GND	and	the
positive	rail	to	Arduino	+5V.

4.	 Check	that	your	build	matches	the	diagram	in	Figure	24-2.

FIGURE	24-2:	The	circuit	diagram	for	the	Bluetooth	voice-controlled	LED

ARDUINO	BLUETOOTH	CONTROL
The	Arduino	Bluetooth	Control	app	offers	six	control	options,	all	of	which
send	data	to	the	Arduino	via	different	methods	(Figure	24-3).	You	can
customize	each	to	your	own	preferences.

FIGURE	24-3:	The	menu	screen	on	the	Arduino	Bluetooth	Control	app

•	Arrow	Keys:	Here	you’ll	find	customizable	arrow	buttons.

•	Terminal:	This	is	a	classic	terminal	for	sending	and	receiving	data,
displayed	with	a	timestamp	corresponding	to	each	action.

•	Accelerometer:	This	tool	reads	movement	using	the	gesture	sensor	of
your	phone.

•	Buttons	and	Slider:	Here	you’ll	find	six	fully	customizable	buttons	and	a
slider	view	that	shows	up	when	you	rotate	your	device.	You	can	set	the
range	of	the	data	for	this	slider.

•	Metrics:	This	tool	is	optimized	to	receive	data	via	the	println()	function
of	the	Arduino,	which	allows	your	paired	phone	to	receive	notifications
by	SMS	from	another	phone.	You	only	need	to	specify	the	number	in	the
Settings	section.	This	function	is	explained	further	shortly.

•	Voice	Control:	This	great	tool	uses	the	Google	voice	command	on	your
Android	device	to	let	you	customize	your	own	vocal	commands	and	use

them	to	control	the	Arduino.

Now	you	need	to	download	the	Arduino	Bluetooth	Control	app	from	the
Google	Play	app	store	and	set	it	up.

1.	 Go	to	https://play.google.com/store/	and	search	for	“Arduino	Bluetooth
Control.”	You’ll	probably	get	several	apps	in	your	results,	but	the	one
you	want	is	precisely	named	“Arduino	Bluetooth	Control,”	as	shown	in
Figure	24-4.	Click	Install	to	download	it	to	your	device.	The	app	is	free
but	does	include	some	ads.

FIGURE	24-4:	Arduino	Bluetooth	Control	from	BroxCode	on	Google	Play

2.	 Once	you’ve	downloaded	the	app,	power	your	Arduino	to	start	the
Bluetooth	module.	Go	to	your	Bluetooth	settings	on	your	smartphone,
turn	on	Bluetooth,	and	select	MORE	SETTINGS	to	view	visible
devices.	You	should	see	the	HC-06	module	as	an	available	device.	Select
it	to	pair	with	your	phone.	You’ll	be	asked	for	a	password	to	connect:
the	default	for	the	module	is	1234	or	in	some	instances	0000,	so	try
both	if	the	first	doesn’t	work.

https://play.google.com/store/

3.	 When	your	device	is	paired,	open	the	Arduino	Bluetooth	Control	app.
From	the	window	that	appears	showing	all	available	devices,	select	the
HC-06	module,	as	shown	in	Figure	24-5.	You	won’t	need	to	choose	the
device	every	time	you	power	up—the	app	will	remember	it.

FIGURE	24-5:	Pairing	your	device

4.	 You’re	going	to	use	the	Voice	Control	function	to	turn	the	LED	off
and	on	when	you	speak	certain	commands	into	the	smartphone.	Select
the	Voice	Control	function,	and	you’ll	be	taken	to	the	Settings	menu,
shown	in	Figure	24-6.	Choose	Vocal	commands	configuration.	We’ll
use	this	to	define	our	input	and	output	functions.

FIGURE	24-6:	Selecting	the	Vocal	commands	configuration	setting

5.	 Select	Vocal	command	n°1,	as	shown	in	Figure	24-7.

FIGURE	24-7:	Setting	your	first	voice	command

6.	 Here	you	give	the	input	that	will	trigger	the	first	function.	Enter	light
on	as	text,	as	shown	in	the	screen	on	the	left	in	Figure	24-8.	The	app	will
then	ask	for	the	output	data	to	send	to	the	Arduino	when	you	give	the
input	command.	On	this	screen,	enter	1	for	on	or	HIGH,	as	we’ve	seen	in
previous	LED	projects	(shown	in	the	screen	on	the	right	in	Figure	24-
8).	When	the	app	hears	the	vocal	command	“light	on”	through	the
phone,	the	number	1	will	be	sent	to	the	Arduino	as	an	input,	and	power
will	be	sent	to	the	LED	to	light	it	up.

7.	 Carry	out	the	same	steps	to	define	Vocal	command	n°2	with	the	input
light off	and	the	output	data	0,	as	shown	in	Figure	24-9.	This	command
will	switch	the	LED	off.

Now	you’ve	configured	your	commands	so	that	when	you	press	the	voice
command	 function	 and	 tap	 the	microphone	button	on	 the	 screen,	 the	 app
will	listen	for	your	command	and,	depending	on	the	input,	switch	the	LED

on	or	off.

FIGURE	24-8:	Configuring	our	LED	to	turn	on	with	the	voice	command	“light	on”

FIGURE	24-9:	Configuring	the	“light	off”	function

The	app	also	has	a	 function	to	 let	you	control	 the	Arduino	using	SMS.
Once	the	app	is	launched	and	connected	to	the	Arduino,	you	can	send	data
to	 the	 Arduino	 by	 sending	 an	 SMS	 text	 to	 the	 phone	 paired	 with	 the
Bluetooth	module,	 as	 long	 as	 the	 paired	 phone	 is	 in	 range	 of	 the	module.
Simply	text	Arduino 1	to	the	phone	connected	to	the	Arduino,	and	that	phone
will	send	1	to	the	module	to	light	your	LED.	Text	Arduino 0,	and	a	0	will	be
sent	 to	 switch	 your	 LED	 off.	 This	 way	 you	 can	 have	 control	 through
Bluetooth	from	anywhere	in	the	world!

THE	SKETCH
The	sketch	for	this	project	is	quite	simple.	It	starts	by	creating	a	variable	to
hold	the	data	from	the	Bluetooth	module.	It	sets	the	data	rate	for	serial
communication	to	9600	and	sets	pin	9	as	an	output	for	our	LED.	In	the	loop,
it	checks	for	data	to	be	sent	to	the	Arduino	from	the	Bluetooth	module.	The
loop	reads	the	data,	and	also	sends	it	to	the	Serial	Monitor	so	we	can	check

that	it’s	working	correctly.	If	the	Arduino	receives	a	1	from	the	app,	pin	9
will	be	set	to	HIGH,	which	will	turn	on	the	LED.	If	the	Arduino	receives	a	0,
pin	9	is	set	as	LOW	and	the	LED	is	turned	off.

Using	 these	 principles,	 you	 could	 add	 numerous	 relays	 in	 place	 of	 the
LED	and	begin	to	automate	your	home	from	anywhere.	You	could	set	it	up
to	 turn	 on	 your	 living	 room	 lights	 before	 you	 enter	 your	 house,	 set	 the
thermostat	 when	 you’re	 on	 your	 way	 home,	 or	 have	 your	 favorite	 music
already	playing	as	you	walk	in	the	door.

char data = 0; // Create a variable for data
void setup() {
 Serial.begin(9600); // Data rate for serial communication
 pinMode(9, OUTPUT); // Set pin 9 as an output
}
void loop() {
 if (Serial.available() > 0) { // Send data
 data = Serial.read(); // Read incoming data and
 // store it into variable data
 Serial.print(data); // Print data value to the Serial Monitor
 Serial.print("\n"); // Start a new line
 if (data == '1') // If value is 1, turn on LED
 digitalWrite(9, HIGH);
 else if (data == '0') // If value is 0, turn off LED
 digitalWrite(9, LOW);
 }
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	LED	does	not	light.

•	Make	sure	you’ve	connected	the	GND	and	power	pins	from	the	Arduino
to	the	correct	breadboard	power	rails	and	that	the	Arduino	has	power
connected.

•	Check	that	the	LED	is	inserted	the	correct	way,	with	the	longer	leg
connected	to	the	positive	power	and	the	shorter	leg	to	GND.	Check	that
the	resistors	are	inserted	fully	and	line	up	with	the	corresponding	LED
leg.

•	With	the	project	powered	and	connected	to	your	PC,	open	the	Arduino
IDE	Serial	Monitor	to	see	if	the	Arduino	is	receiving	data	from	the	app.
If	you	don’t	see	data	streaming	in	the	Serial	Monitor,	double-check	that
the	TXD	of	the	module	is	connected	to	RX	of	the	Arduino	and	the	RXD
of	the	module	to	Arduino	TX.

•	If	the	app	does	not	work	when	opened	on	your	smartphone,	check	the
compatibility	of	your	phone	with	the	app	on	the	developer’s	site.	You
may	need	to	use	an	alternative	app.

•	The	data	set	in	your	app	must	match	the	data	expected	in	the	sketch,	so
make	sure	you’ve	used	1	for	on	and	0	for	off.

25
GPS	Speedometer
In	this	project	we’ll	connect	an	OLED	screen	and	GPS	module	to
our	Arduino	to	create	a	simple	GPS	speedometer	that	can	track
your	speed	from	satellites.

PARTS	REQUIRED
Arduino	board
Female-to-male	jumper	wires
OLED	monochrome	screen	(128×64)
Ublox	NEO-6M	GPS	module	aircraft	flight	controller	and	antenna

LIBRARY	REQUIRED
U8glib

HOW	IT	WORKS
The	Ublox	NEO-6M	GPS	module	(Figure	25-1)	we’re	using	in	this	project
is	an	inexpensive	device	generally	used	to	track	the	position	of	model	aircraft
or	drones.	The	module	is	widely	available	from	the	suppliers	listed	in	the
“Retailer	List”	on	page	249,	or	you	can	search	online	for	“Ublox	NEO-6M
GPS	module.”	Make	sure	to	buy	a	module	that	also	comes	with	a	GPS
antenna,	as	shown	in	Figure	25-2.

FIGURE	25-1:	The	Ublox	NEO-6M	GPS	module	

FIGURE	25-2:	The	GPS	antenna	

The	 module	 uses	 GPS	 (Global	 Positioning	 System)	 technology	 to
determine	 the	 exact	 location	 of	 the	 Arduino	 and	 display	 its	 speed	 in
kilometers	 per	 hour	 on	 the	 OLED	 screen	 (see	 Project	 19	 for	 more	 on
OLED	screens).	GPS	consists	of	32	satellites	orbiting	the	earth,	and	it’s	used
across	 the	 globe	 in	 everyday	 technology	 such	 as	 car	 satellite	 navigation
systems,	smartphones,	and	trackers.

The	Navstar	Global	Positioning	System	was	created	in	the	1970s	by	the
United	States	government	initially	for	military	purposes,	but	it’s	now	freely
accessible	for	anyone	with	GPS	receiver	equipment,	which	probably	includes
you	 if	 you	 have	 a	 smartphone.	To	 pinpoint	 the	 location	 of	 a	 receiver,	 the
system	 uses	 the	 satellites,	 control	 stations	 on	 the	 ground,	 and	 your
equipment	 to	calculate	distance,	 speed,	 and	 time	 for	 signals	 to	be	 sent	 and
received—with	these,	it	can	determine	your	location.

The	Ublox	NEO-6M	GPS	module	receives	satellite	signals	continuously
and	 sends	 them	 to	 the	Arduino	 to	 pinpoint	 your	 location.	 As	 soon	 as	 you
move,	your	speed	is	sent	to	the	OLED	screen	in	kilometers	per	hour,	serving
as	our	speedometer.

While	the	functionality	of	this	project	is	quite	complex,	the	build	is	very
simple.	 The	 board	 comes	 with	 the	 header	 pins	 separate,	 so	 you	 need	 to
solder	these	in	place	before	beginning.	See	the	“Quick	Soldering	Guide”	on
page	12	if	you	need	soldering	guidance.	The	board	has	all	the	GPS	circuitry
built	in,	but	you’ll	need	to	clip	the	GPS	antenna	in	place;	I’ll	show	you	how
in	a	moment.

THE	BUILD

1.	 Take	the	OLED	monochrome	screen	shown	in	Figure	25-3	and,	using
female-to-male	jumper	wires,	make	the	connections	in	the	following

table.	The	OLED	screen	uses	3.3V,	so	make	sure	you	connect	it	to
Arduino	3.3V,	not	5V,	or	you	could	damage	the	screen.

FIGURE	25-3:	The	OLED	monochrome	screen	displays	the	speed	of	movement	in	kilometers
per	hour	(digit	on	the	right).

OLED	SCREEN ARDUINO

VCC +3.3V

GND GND

SCL Pin	A5

SCL Pin	A5

SDA Pin	A4

2.	 The	GPS	module	uses	the	RX	and	TX	pins	of	the	Arduino	for
communication,	but	you	also	need	these	pins	when	uploading	a	sketch
from	your	PC.	Upload	the	code	in	“The	Sketch”	on	page	227	now	so
those	pins	will	be	free.	Connect	the	Arduino	to	your	PC.	Remember	to
first	download	the	U8glib	library	and	add	it	to	the	relevant	folder	in	the
Arduino	IDE.

3.	 With	the	sketch	uploaded,	disconnect	the	Arduino	from	your	PC	and
attach	the	GPS	VCC	to	Arduino	+5V,	GND	to	GND,	GPS	TX	to
Arduino	pin	0	(RX),	and	GPS	RX	to	Arduino	pin	1	(TX),	as	indicated	in
the	following	table.

GPS	MODULE ARDUINO

VCC +5V

GND GND

TX Pin	0	(RX)

RX Pin	1	(TX)

4.	 Clip	the	end	of	the	antenna	onto	the	module,	as	shown	in	Figure	25-4.

FIGURE	25-4:	Clip	the	end	of	the	antenna	to	the	socket	on	the	GPS	module.

5.	 Confirm	your	setup	matches	the	circuit	diagram	in	Figure	25-5.

FIGURE	25-5:	The	circuit	diagram	for	the	GPS	speedometer	

6.	 Connect	power	to	your	Arduino,	and	the	GPS	speedometer	is	ready	to
use.	The	antenna	needs	to	be	facing	upward	to	work,	as	shown	in
Figure	25-4,	and	works	best	outdoors	because	the	GPS	module	requires
line	of	sight	with	the	orbiting	satellites	in	order	to	function	properly

(though	I’ve	also	had	success	when	close	to	a	window	indoors,	so
experiment	to	see	what	works	for	you).

7.	 The	GPS	module	will	take	about	30	seconds	or	so	to	connect	to	the
satellites.	When	the	connection	is	successful,	the	module	LED	will
blink	and	the	symbol	at	the	top	left	of	the	OLED	screen	will	spin.

THE	SKETCH
The	sketch	first	calls	on	the	U8glib	library	and	then	defines	the	OLED	so
we	can	control	our	screen.	We	define	the	GPS	module	as	a	serial
connection,	and	tell	it	what	information	we	want	to	receive	from	the
satellites.

NOTE

Remember	to	disconnect	the	Arduino	0	(RX)	pin	of	your	build	before	uploading
the	sketch	and	then	reconnect	when	running.

The	next	section	of	code	contains	a	long	list	of	data.	This	section	is	quite
complex,	 and	 the	 data	 sheet	 for	 the	 Ublox	 NEO-6M	 details	 all	 the
information	that	can	be	received	by	the	module	if	you’re	interested.	For	the
purposes	of	our	project,	the	code	at	➊	contains	the	relevant	data:	the	NAV-
PVT	data	that	includes	the	number	of	satellites	the	module	is	connecting	to
and	 the	 ground	 speed	 at	 which	 your	 GPS	 speedometer	 is	 moving.	 The
remaining	information	requests	are	not	used	and	are	set	as	off.

The	section	that	 follows	defines	the	NAV-PVT	settings	with	a	number
of	 calculations	 to	 check	 that	 the	 data	 being	 received	 from	 the	 satellites	 is
valid.

The	loop	at	the	end	of	the	sketch	checks	to	see	if	data	is	being	received,
and	 if	 so,	 animates	 the	 symbols	 at	 the	 top	 left	 of	 the	 OLED.	 The	 first
symbol	shows	that	 the	screen	 is	refreshing	correctly,	and	the	second	shows
that	 the	GPS	data	 packet	 is	 being	 received	 from	 the	 satellites.	The	 screen
also	displays	the	number	of	satellites	it’s	connected	to	at	the	top	left.

If	 all	 the	 data	 is	 being	 received	 as	 expected,	 the	 ground	 speed	 will	 be
shown	at	the	top	right	of	the	screen	in	kilometers	per	hour.

// Sketch reproduced with kind permission from Chris Campbell

/*
 Connections:
 GPS TX -> Arduino 0 // Disconnect Arduino 0 to upload this sketch
 GPS RX -> Arduino 1
 Screen SDA -> Arduino A4
 Screen SCL -> Arduino A5
*/

#include "U8glib.h" // Call U8glib library to control OLED screen

U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_DEV_0|U8G_I2C_OPT_NO_ACK|U8G_I2C_OPT_FAST); //
Fast I2C/TWI

#define GPS Serial // Define the serial connection as the GPS module

const unsigned char UBLOX_INIT[] PROGMEM = {
 // These lines of code request data from the satellites. Most are disabled and
turned off.
 // Disable NMEA
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x24, //
GxGGA off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x01,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x2B, //
GxGLL off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x02,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x32, //
GxGSA off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x03,0x00,0x00,0x00,0x00,0x00,0x01,0x03,0x39, //
GxGSV off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x04,0x00,0x00,0x00,0x00,0x00,0x01,0x04,0x40, //
GxRMC off
 0xB5,0x62,0x06,0x01,0x08,0x00,0xF0,0x05,0x00,0x00,0x00,0x00,0x00,0x01,0x05,0x47, //
GxVTG off

 // Disable UBX
 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x17,0xDC, //
NAV-PVT off
 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xB9, //
NAV-POSLLH off
 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x13,0xC0, //
NAV-STATUS off

 // Enable UBX—this is the key information we require

➊ 0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x07,0x00,0x01,0x00,0x00,0x00,0x00,0x18,0xE1,
//NAV-PVT on
 //0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x02,0x00,0x01,0x00,0x00,0x00,0x00,0x13,0xBE,
//NAV-POSLLH on
 //0xB5,0x62,0x06,0x01,0x08,0x00,0x01,0x03,0x00,0x01,0x00,0x00,0x00,0x00,0x14,0xC5,
//NAV-STATUS on

 // Rate
 0xB5,0x62,0x06,0x08,0x06,0x00,0x64,0x00,0x01,0x00,0x01,0x00,0x7A,0x12, // (10Hz)
 // 0xB5,0x62,0x06,0x08,0x06,0x00,0xC8,0x00,0x01,0x00,0x01,0x00,0xDE,0x6A, // (5Hz)
 // 0xB5,0x62,0x06,0x08,0x06,0x00,0xE8,0x03,0x01,0x00,0x01,0x00,0x01,0x39 // (1Hz)
};

const unsigned char UBX_HEADER[] = { 0xB5, 0x62 };

struct NAV_PVT { // This sets the GPS navigation data
 unsigned char cls;
 unsigned char id;
 unsigned short len;
 unsigned long iTOW; // GPS time of week of the navigation epoch (ms)

 unsigned short year; // Year (UTC)
 unsigned char month; // Month, range 1..12 (UTC)
 unsigned char day; // Day of month, range 1..31 (UTC)
 unsigned char hour; // Hour of day, range 0..23 (UTC)
 unsigned char minute; // Minute of hour, range 0..59 (UTC)
 unsigned char second; // Seconds of minute, range 0..60 (UTC)
 char valid; // Validity Flags (see graphic below)
 unsigned long tAcc; // Time accuracy estimate (UTC) (ns)
 long nano; // Fraction of second, range -1e9 .. 1e9 (UTC) (ns)
 unsigned char fixType; // GNSSfix Type, range 0..5
 char flags; // Fix Status Flags
 unsigned char reserved1; // Reserved
 unsigned char numSV; // Number of satellites used in Nav Solution

 long lon; // Longitude (deg)
 long lat; // Latitude (deg)
 long height; // Height above Ellipsoid (mm)
 long hMSL; // Height above mean sea level (mm)
 unsigned long hAcc; // Horizontal Accuracy Estimate (mm)
 unsigned long vAcc; // Vertical Accuracy Estimate (mm)

 long velN; // NED north velocity (mm/s)
 long velE; // NED east velocity (mm/s)
 long velD; // NED down velocity (mm/s)
 long gSpeed; // Ground Speed (2-D) (mm/s)
 long heading; // Heading of motion 2-D (deg)
 unsigned long sAcc; // Speed accuracy estimate
 unsigned long headingAcc; // Heading accuracy estimate
 unsigned short pDOP; // Position dilution of precision
 short reserved2; // Reserved
 unsigned long reserved3; // Reserved
};

NAV_PVT pvt;

void calcChecksum(unsigned char* CK) {
 memset(CK, 0, 2);
for (int i = 0; i < (int)sizeof(NAV_PVT); i++) {
 CK[0] += ((unsigned char*)(&pvt))[i];
 CK[1] += CK[0];
 }
}

long numGPSMessagesReceived = 0;

bool processGPS() {
 static int fpos = 0;
 static unsigned char checksum[2];
 const int payloadSize = sizeof(NAV_PVT);

 while (GPS.available()) {
 byte c = GPS.read();
 if (fpos < 2) {
 if (c == UBX_HEADER[fpos])
 fpos++;
 else
 fpos = 0;
 }
 else {
 if ((fpos-2) < payloadSize)
 ((unsigned char*)(&pvt))[fpos-2] = c;

 fpos++;

 if (fpos == (payloadSize+2)) {
 calcChecksum(checksum);
 }
 else if (fpos == (payloadSize+3)) {
 if (c != checksum[0])
 fpos = 0;
 }
 else if (fpos == (payloadSize+4)) {
 fpos = 0;
 if (c == checksum[1]) {
 return true;
 }
 }
 else if (fpos > (payloadSize+4)) {
 fpos = 0;
 }
 }
 }
 return false;
}

void setup() {
 GPS.begin(9600);

 u8g.setColorIndex(1);

 // Send configuration data in UBX protocol
 for (unsigned int i = 0; i < sizeof(UBLOX_INIT); i++) {
 GPS.write(pgm_read_byte(UBLOX_INIT+i));
 delay(5); // Simulate a 38400baud pace (or less),
 // or otherwise commands are not accepted by the device

 }
}

long gSpeed = 0;
int numSV = 0;
unsigned long lastScreenUpdate = 0;
char speedBuf[16];
char satsBuf[16];

char* spinner = "/-\\|"; // Symbol for the spinner on screen to
 // show communication
byte screenRefreshSpinnerPos = 0;
byte gpsUpdateSpinnerPos = 0;

void loop() {
 if (processGPS()) {
 numSV = pvt.numSV;
 gSpeed = pvt.gSpeed;
 gpsUpdateSpinnerPos = (gpsUpdateSpinnerPos + 1) % 4;
 }

 unsigned long now = millis();
 if (now - lastScreenUpdate > 100) {
 updateScreen();
 lastScreenUpdate = now;
 screenRefreshSpinnerPos = (screenRefreshSpinnerPos + 1) % 4;
 }
}

void draw() {
 u8g.setFont(u8g_font_courB24);
 u8g.drawStr(36, 45, speedBuf);
 u8g.setFont(u8g_font_fur11);
 u8g.drawStr(2, 12, satsBuf);
}

void updateScreen() {

 int kmh = gSpeed * 0.0036;
 sprintf(speedBuf, "%3d", kmh);
 sprintf(satsBuf, "%c %c %d", spinner[screenRefreshSpinnerPos],
spinner[gpsUpdateSpinnerPos], numSV);

 u8g.firstPage();
 do {
 draw();
 } while(u8g.nextPage());
}

TROUBLESHOOTING
Q.	The	code	compiles,	but	the	expected	information	is	not	shown	onscreen.

•	If	nothing	shows	on	the	OLED	screen,	recheck	that	your	wiring	matches
Figure	25-5;	it’s	quite	easy	to	reverse	the	TX	and	RX	wires	accidentally.

•	The	symbols	at	the	top	left	of	the	screen	will	rotate	to	show	the	screen	is
working	correctly	and	that	the	GPS	module	is	receiving	data.	If	the	far-
left	symbol	spins	but	not	the	GPS	symbol,	you	have	your	TX	and	RX
wires	crossed;	recheck	the	wiring	for	the	module.

•	The	GPS	module	works	best	outdoors	and	should	have	line	of	sight	to

•	The	GPS	module	works	best	outdoors	and	should	have	line	of	sight	to
the	satellites	orbiting	the	earth,	so	try	repositioning	the	module	until	you
get	a	reading.	It	can	take	30–60	seconds	to	get	a	stable	reading.

•	Remember	that	the	OLED	screen	should	be	connected	to	3.3V	and	not
5V.

Troubleshooting	Tips	for	Common
Errors
All	the	sketches	for	the	projects	in	this	book	can	be	downloaded
from	https://www.nostarch.com/arduinohandbook2/	and	have
been	verified	to	work	correctly.	However,	when	you	compile	a
sketch	in	the	Arduino	IDE,	there	are	a	number	of	problems	that
you	may	encounter.

This	section	will	go	through	three	of	the	most	common	types	of	errors,
explaining	why	they	occur	and	how	to	fix	them.	When	an	error	occurs,	the
monitor	box	at	the	bottom	of	the	IDE	will	helpfully	highlight	the	line	of
code	that	caused	the	error,	as	shown	in	Figure	A-1.	This	information	will	be
invaluable	to	you	in	fixing	your	code.

FIGURE	A-1:	The	IDE	will	highlight	the	line	where	the	error	has	occurred.

https://www.nostarch.com/arduinohandbook2/

UPLOAD	ERROR
When	you	upload	your	code,	you	get	a	message	like	the	one	in	Figure	A-2,
which	says:

avrdude: ser_open(): can't open device "COM1": No such file or
directory

FIGURE	A-2:	The	error	message	“Problem	uploading	to	board”

Solutions
This	error	generally	means	that	the	IDE	cannot	find	your	Arduino	board.
Try	one	of	these	solutions

•	Check	that	your	USB	connection	is	securely	inserted	into	your	PC’s
USB	port.

•	In	the	IDE,	open	the	Tools	tab	and	select	Port.	From	the	drop-down
menu,	you	should	see	that	one	of	the	COM	ports	is	highlighted.	If	this	is
not	the	port	your	Arduino	is	connected	to,	select	the	correct	one.

•	If	the	correct	port	is	already	highlighted,	verify	that	the	right	board	type
is	selected:	open	the	Tools	tab,	select	Board,	and	from	the	drop-down
menu	make	sure	the	type	of	Arduino	board	you	have	attached	is
highlighted.	This	is	set	to	Arduino	Uno	by	default.

•	You	can	also	check	the	Arduino	documentation	for	more	possible
solutions:	http://www.arduino.cc/en/Guide/Troubleshooting#upload.

CODE	VERIFICATION	ERROR	#1
When	you	verify	your	code,	you	receive	an	error	like	the	one	in	Figure	A-3,
which	says:

expected '}' at end of input

http://www.arduino.cc/en/Guide/Troubleshooting#upload

FIGURE	A-3:	The	error	message	“expected	'}'	at	end	of	input”

Solution
Check	that	each	opening	curly	bracket	({)	has	a	closing	curly	bracket	(})	and,
if	not,	add	the	closing	bracket.	Curly	brackets	define	the	start	and	end	of	a
block	of	code,	and	every	open	bracket	needs	a	closing	bracket	to	complete	a
function	or	loop.	In	this	instance,	you	would	add	a	closed	bracket	at	the	end
of	your	code.

CODE	VERIFICATION	ERROR	#2
When	verifying	your	code,	you	receive	the	error	shown	in	Figure	A-4,	which
says:

expected ';' before '}' token

FIGURE	A-4:	The	error	message	“expected	';'	before	'}'	token”

Solution
This	error,	one	of	the	most	common	you’ll	encounter,	indicates	that	you
missed	a	semicolon	(;)	at	the	end	of	a	line.	Add	a	semicolon	to	the	line	above
the	one	highlighted	in	the	IDE.

MISSING	LIBRARY	ERROR
When	verifying	your	code,	you	receive	an	error	like	this:

fatal error: #NewPing.h no such file or directory

The	 example	 shown	 in	 Figure	 A-5	 is	 from	 Project	 20,	 which	 uses	 the
NewPing	library.

FIGURE	A-5:	The	error	message	“Error	compiling	for	board	Arduino/Genuino	Uno”

Solution
This	error	is	also	quite	common	and	it	means	the	IDE	cannot	find	the
expected	library	in	the	library	folder.	Follow	the	instructions	in	“Installing
Libraries”	on	page	8	to	make	sure	you’ve	installed	any	libraries	required	by
your	code	that	are	not	included	by	default	in	the	IDE.	Remember	that	it	is
not	enough	to	just	download	these	libraries—you	have	to	install	them	too.

Each	 project	 in	 this	 book	 lists	 the	 required	 libraries	 at	 the	 start	 of	 the
chapter.	 You	 can	 download	 those	 not	 included	 in	 the	 IDE	 from
https://www.nostarch.com/arduinohandbook2/.

https://www.nostarch.com/arduinohandbook2/

Components
This	section	gives	you	some	more	information	on	the	components
used	in	this	book.	Each	component	is	accompanied	by	a	photo	and
a	few	details	for	quick	reference	and	identification.	At	the	end,	I’ve
also	included	a	handy	list	of	retailers	to	buy	the	parts	from	and	a
quick	lesson	on	reading	resistor	values.

COMPONENTS	GUIDE
The	components	are	listed	in	the	order	in	which	they	appear	in	the	book.
Many	of	the	items	can	be	found	with	a	simple	search	on	websites	like	eBay
and	Amazon,	but	a	list	of	specialist	suppliers	is	also	provided	in	the	“Retailer
List”	on	page	249.

Arduino	Uno	R3
The	Arduino	Uno	R3	microcontroller	board	is	the	main	component	for	the
book	and	the	brain	for	all	your	projects.

•	Quantity:	1

•	Connections:	14

•	Projects:	All

9V	Battery	Pack
The	9V	battery	pack	with	a	2.1	mm	jack	for	6	AA	batteries	plugs	into	the
power	port	on	the	Arduino	and	can	be	used	to	power	your	projects.	Note
that	the	Arduino	can	also	be	powered	through	the	USB	cable.

•	Quantity:	1

•	Connections:	1

•	Projects:	Optional	for	all

Breadboard
The	breadboard	is	a	prototyping	board	used	to	connect	components
together	to	create	your	projects.	See	the	primer	for	more	details.

•	Quantity:	1	full-size	board,	1	half-size	board,	1	mini	board

•	Connections:	940	on	a	full	board,	420	on	a	half	board,	170	on	a	mini
board	•	Projects:	All	except	Projects	4,	6,	7,	16,	19,	22,	and	25

LED
An	LED,	or	light-emitting	diode,	is	a	small	bulb	that	emits	light	when	a	low
current	is	passed	through	it.	It	has	two	legs,	the	longer	of	which	is	the
positive	connection.	LEDs	generally	require	a	resistor	or	they	may	burn	out.
LEDs	are	polarized,	meaning	current	flows	only	in	one	direction.

•	Quantity:	40	(10	red,	10	blue,	10	yellow,	10	green)

•	Quantity:	40	(10	red,	10	blue,	10	yellow,	10	green)

•	Connections:	2

•	Projects:	1,	2,	9,	15,	17,	21,	23,	24

Resistor
Resistors	restrict	the	amount	of	current	that	can	flow	through	a	circuit	to
prevent	components	from	overloading.	A	resistor	looks	like	a	cylinder	with
colored	bands	and	a	wire	extending	from	each	end.	The	resistance	value	is
indicated	by	a	color	code—see	“Decoding	Resistor	Values”	on	page	250	for
more	details.	Check	the	value	carefully,	as	it	can	be	easy	to	choose	the	wrong
one.	Resistors	come	in	four-,	five-,	and	six-band	varieties,	so	be	aware	that,
for	example,	a	four-band	220-ohm	resistor	can	look	slightly	different	from	a
five-band	resistor	of	the	same	value.

•	Quantity:	9	220-ohm,	4	10k-ohm,	8	1k-ohm

•	Connections:	2

•	Projects:	1–3,	5,	8–10,	15,	17,	18,	21,	23,	24

Seven-Segment	LED	Display
A	seven-segment	LED	display	forms	a	digit	or	character	using	LED
segments,	and	is	often	used	to	display	numbers	for	counters,	clocks,	or
timers.	You	can	get	single-digit	to	eight-digit	displays,	and	four-digit
displays	are	commonly	used	for	digital	clocks.

•	Quantity:	1

•	Connections:	10

•	Project:	3

8×8	LED	Maxim	7219	Matrix	Module
This	prebuilt	8×8	LED	matrix	module	needs	only	five	pins	connected	to
your	Arduino	to	work.

•	Quantity:	1

•	Connections:	5

•	Project:	4

RGB	LED
An	RGB	LED	combines	three	colors—red,	green,	and	blue—to	make	any
color	of	the	rainbow.	It	is	a	clear	LED	with	four	legs,	each	of	which	needs	a
resistor	to	limit	the	current	and	prevent	the	LED	from	burning	out.	The
longest	leg	is	either	the	common	cathode	or	anode.

•	Quantity:	1

•	Connections:	4

•	Project:	5

RGB	LED	Strip	(WS2812B	5V	32-LED	Strip)
LED	strips	come	in	single-color	or	multicolored	varieties,	and	can	differ	in
how	the	individual	LEDs	are	controlled.	Single-color,	or	multicolor
nonaddressable,	strips	can	light	only	one	color	at	a	time.	RGB	multicolored
strips	are	generally	addressable,	which	means	each	LED	has	its	own	chip	and
can	be	individually	controlled,	allowing	multiple	colors	to	light
simultaneously.

•	Quantity:	1

•	Connections:	3

•	Project:	6

Adafruit	NeoPixel	Ring	with	16	RGB	LEDs
The	Adafruit	NeoPixel	ring	has	16	RGB	surface-mounted	LEDs,	each	of
which	is	addressable,	allowing	you	to	control	each	LED	separately.

•	Quantity:	1

•	Connections:	3

•	Project:	7

HMC5883L	Three-Axis	Sensor
The	HMC5883L	three-axis	sensor	is	a	multichip	module	used	for	sensing
magnetic	fields—we	use	it	to	detect	magnetic	north	to	act	as	a	compass.	The
module	may	require	you	to	solder	header	pins.

•	Quantity:	1

•	Connections:	4

•	Project:	7

Pushbutton
A	pushbutton	is	a	simple	switch	that	makes	a	connection	when	pushed.	Also
known	as	a	momentary	switch,	a	pushbutton	connects	a	circuit	when	pushed
in,	and	spring	backs	to	break	the	connection	when	released.	Pushbuttons
vary	in	size,	but	most	have	four	pins.

•	Quantity:	8

•	Connections:	4

•	Project:	8

Piezo	Sounder
The	piezo	sounder	is	a	very	basic	speaker	often	used	in	inexpensive	toys.	A
pulse	of	current	causes	it	to	click	extremely	quickly,	and	a	stream	of	pulses

pulse	of	current	causes	it	to	click	extremely	quickly,	and	a	stream	of	pulses
emits	a	tone.	The	piezo	sounder	often	looks	like	a	small	black	box	with	two
wires.	Taken	out	of	the	case,	it	looks	like	a	small,	gold	disc.

•	Quantity:	1

•	Connections:	2

•	Projects:	8,	15

3.5	mm	Female	Headphone	Jack
The	3.5	mm	female	headphone	jack	is	a	simple	jack	that	allows	you	to
connect	audio	devices	to	your	Arduino.	It	can	be	purchased	on	its	own	or
reclaimed	from	a	dollar-store	radio.

•	Quantity:	1

•	Connections:	3

•	Project:	9

Servomotor
A	servomotor	is	a	motor	with	an	arm	attachment	that	you	can	position	to
specific	angles	by	sending	the	servo	a	coded	signal.	The	motor	is	in	a	small
box	with	three	wires	and	an	output	shaft	to	which	you	can	attach	the	arm,
known	as	a	horn.

This	 book	 uses	 the	Tower	 Pro	 SG90	 9g	 servomotor,	 which	 turns	 180
degrees;	others	are	continuous	and	turn	the	full	360	degrees.

•	Quantity:	1

•	Connections:	3

•	Projects:	10,	21,	22

Photoresistor
A	photoresistor,	also	referred	to	as	a	light-dependent	resistor	or	a	diode,	detects
light	levels	by	producing	a	variable	resistance	depending	on	the	amount	of
light	falling	on	it.	There	are	different	styles,	but	it	usually	looks	like	a	small,
clear	oval	with	wavy	lines	and	two	legs.	You	will	need	to	calibrate	your
photoresistor	to	determine	light	levels	before	using	it	in	a	program.

•	Quantity:	1

•	Connections:	2

•	Project:	10

28BYJ-48	Stepper	Motor	with	ULN2003	Driver	Module
A	stepper	motor	is	a	DC	electric	motor	that	divides	a	full	360-degree
rotation	of	the	arm	into	a	number	of	equal	steps	for	heightened	control.
We’re	using	the	28BYJ-48	stepper	motor,	which	comes	with	a	ULN2003
driver	module	to	control	it.

•	Quantity:	1

•	Connections:	5

•	Project:	11

LM35	Temperature	Sensor
The	LM35	temperature	sensor	detects	the	temperature	and	sends	the
reading	as	a	voltage	value	to	the	Arduino	so	we	can	measure	heat.

•	Quantity:	1

•	Connections:	3

•	Projects:	12,	14

12V	Mini	Computer	Cooling	Fan
A	12V	mini	computer	cooling	fan	is	the	cooling	fan	used	internally	in	a
computer.	We	are	using	a	4	cm	×	4	cm	fan,	but	you	could	use	a	larger	one	if
required.	You	could	also	reclaim	one	from	an	old	PC,	as	long	as	it	is	no
longer	used.

•	Quantity:	1

•	Connections:	2

•	Project:	12

5V	Single-Channel	Relay	Module
A	relay	is	an	electronically	operated	switch	that,	in	this	case,	uses	an
electromagnet	to	mechanically	open	or	close	a	circuit.

•	Quantity:	1

•	Connections:	6

•	Project:	12

Potentiometer
A	potentiometer	is	a	resistor	whose	value	you	can	vary	to	manipulate	the
voltage	flowing	through	it,	allowing	you	to	control	how	much	power	goes	to
a	component.	It	has	a	knob	that	you	can	turn	and	three	pins	at	the	bottom.
The	center	pin	is	the	control	pin,	with	power	to	either	side.	It’s	commonly
used	to	control	an	output	such	as	the	volume	on	a	radio.	You	connect	power
to	pins	1	and	3,	and	it	doesn’t	matter	which	way	they	are	connected.

•	Quantity:	2	50k-ohm,	1	10k-ohm

•	Connections:	3

•	Projects:	11,	13–15,	18

LCD	Screen
An	LCD	(liquid	crystal	display)	screen	is	a	display	screen	for	outputting
characters	or	images.	It	is	composed	of	two	sheets	of	polarizing	material	with
a	liquid	crystal	solution	between	them.	Passing	current	through	the	liquid
crystal	makes	it	opaque,	creating	an	image	against	a	backlight.

Screens	 come	 in	 various	 dimensions.	 The	 one	 shown	 here	 is	 an
HD44780	16×2	(16	characters	×	2	lines)	and	has	16	connections.

•	Quantity:	1

•	Connections:	16

•	Projects:	13–16

Ultrasonic	Sensor
An	ultrasonic	sensor	sends	out	a	signal	(often	referred	to	as	a	ping),	which
bounces	off	an	object	and	is	returned	to	the	sensor.	Distance	is	calculated
from	the	time	the	signal	takes	to	return	once	it	has	been	sent.	The	sensor
used	in	this	book	is	the	HC-SR04	ultrasonic	sensor,	a	module	board	with
two	round	sensors	and	four	pins.

•	Quantity:	1

•	Connections:	4

•	Projects:	13,	17,	20,	22

Keypad
A	3×4	membrane	keypad	is	basically	a	series	of	switches.	The	example	shown
here	has	12	pushbuttons	connected	in	series,	but	a	16-button	version	is	also
available.	Of	the	seven	connections,	four	control	the	rows	and	three	control
the	columns.	The	Arduino	will	replicate	the	number	of	the	button	pressed.

•	Quantity:	1

•	Connections:	7

•	Project:	15

Serial	LCD	Screen	Module
This	16×2	LCD	screen	has	a	serial	module	attached	and	thus	requires	only
power	and	two	pins	connected	to	the	Arduino.

•	Quantity:	1

•	Connections:	4

•	Project:	16

Nokia	5110	LCD	Screen
This	is	a	Nokia	84×48-pixel	screen	that,	accounting	for	spaces	between	the
characters,	gives	us	a	12×6-character	screen.	It	works	similarly	to	the	LCD
screen	in	Project	13,	by	sending	current	through	the	liquid	crystal	from	the
Arduino	at	certain	pixels	to	form	letters	or	images.

•	Quantity:	1

•	Connections:	8

•	Project:	18

OLED	Monochrome	Screen	(128×64)
The	OLED	(organic	light-emitting	diode)	screen	is	a	light-emitting
technology	composed	of	a	thin,	multilayered	organic	film	placed	between	an
anode	and	cathode.	The	one	we	use	in	this	book	has	a	128×64	screen	size.

•	Quantity:	1

•	Connections:	4

•	Projects:	19,	25

Keyes	MQ3	Alcohol	Sensor	Module
The	MQ3	is	a	gas	sensor	sensitive	to	alcohol	and	ethanol.	We	use	it	in	the
breathalyzer	in	Project	19.

•	Quantity:	1

•	Connections:	3

•	Project:	19

WLToys	V959-18	Water	Jet	Pistol
The	V959-18	water	jet	pistol	comprises	a	small	reservoir	to	hold	water	and	a
mini	pump	that	pushes	water	through	a	nozzle.

•	Quantity:	1

•	Quantity:	1

•	Connections:	2

•	Project:	20

Optical	Fingerprint	Sensor	(ZFM-20	Series)
The	ZFM-20	fingerprint	sensor	is	a	fingerprint	comparison	module	that
takes	a	photograph	of	a	fingerprint	and	adds	it	to	its	database,	allowing	you
to	check	if	a	new	fingerprint	matches	one	stored	there.	The	sensor	can	hold
up	to	162	fingerprints.

•	Quantity:	1

•	Connections:	4

•	Project:	21

L293d	Motor	Shield
The	L293d	motor	shield	is	a	module	for	controlling	motors	that	we	use	for
our	robot	in	Project	22.

•	Quantity:	1

•	Connections:	fits	on	top	of	the	Arduino

•	Project:	22

Robot	Chassis	Kit
If	you	search	online	for	“Arduino	robot	kit,”	you	should	be	able	to	find	a	kit

If	you	search	online	for	“Arduino	robot	kit,”	you	should	be	able	to	find	a	kit
that	contains	two	DC	motors	and	wheels,	a	base	plate,	a	battery	pack,	a
center	wheel,	and	the	fittings	needed	to	build	an	Arduino	robot.	The	kit	I
bought	was	specifically	named	the	“2WD	Smart	Motor	Robot	Car	Chassis
Kit	for	Arduino	1:48.”

•	Quantity:	1

•	Connections:	4	(2	for	each	motor)

•	Project:	22

Ethernet	Shield	W5100	LAN	Expansion	Board
The	Ethernet	shield	W5100	LAN	expansion	board	fits	directly	on	top	of	the
Arduino	to	provide	additional	functionality,	such	as	a	web	server	or	client
that	allows	the	Arduino	to	connect	to	a	network.

•	Quantity:	1

•	Connections:	multiple

•	Project:	23

Ethernet	Cable
An	Ethernet	cable	transmits	data	between	an	internet	connection	or	network
and	a	device.

•	Quantity:	1

•	Connections:	1

•	Project:	23

HC-06	Bluetooth	Module
The	HC-06	module	provides	Bluetooth	wireless	capabilities	so	the	Arduino
can	transmit	radio	waves	to	exchange	data	over	short	distances.
Smartphones,	laptops,	and	multimedia	devices	such	as	speakers	use
Bluetooth	technology	as	a	common	standard.

•	Quantity:	1

•	Connections:	4

•	Project:	24

Ublox	NEO-6M	GPS	Module	Aircraft	Flight	Controller
and	Antenna
The	Ublox	NEO-6M	GPS	module	is	a	tracking	device	that	connects	top
GPS	satellites,	generally	used	to	track	the	position	of	model	aircraft	or
drones.	The	module	is	widely	available	from	the	sources	listed	here,	or	you
can	simply	search	for	“Ublox	NEO-6M	GPS	module”	online.	Make	sure	to
get	a	module	that	also	comes	with	a	GPS	antenna.

•	Quantity:	1

•	Connections:	5,	including	antenna

•	Project:	25

RETAILER	LIST
As	mentioned	earlier,	most	electronic	components	can	be	found	on	generic
sites	like	Amazon	or	eBay,	but	if	you	have	trouble	finding	anything,	the
retailers	listed	here	should	be	able	to	help.

US	Retailers
Adafruit	https://www.adafruit.com/

DigiKey	http://www.digikey.com/

Jameco	Electronics	http://www.jameco.com/

MCM	http://www.mcmelectronics.com/

Newark	http://www.newark.com/

RS	Components	http://www.rs-components.com/

Seeed	Studio	https://www.seeedstudio.com/

SparkFun	https://www.sparkfun.com/

Australian	Retailers
Core	Electronics	https://core-electronics.com.au/arduino.html

Little	Bird	Electronics	http://www.littlebirdelectronics.com.au/

European	Retailers

https://www.adafruit.com/
http://www.digikey.com/
http://www.jameco.com/
http://www.mcmelectronics.com/
http://www.newark.com/
http://www.rs-components.com/
https://www.seeedstudio.com/
https://www.sparkfun.com/
https://core-electronics.com.au/arduino.html
http://www.littlebirdelectronics.com.au/

Electronic	Sweet	Pea’s	http://www.sweetpeas.se/

Element	14	http://www.element14.com/

Farnell	http://www.farnell.com/

UK	Retailers
4tronix	http://www.4tronix.co.uk/store/

Cool	Components	http://www.coolcomponents.co.uk/

CPC	http://cpc.farnell.com/

Hobby	Components	https://www.hobbycomponents.com/

Mallinson	Electrical	http://www.mallinson-electrical.com/shop/

Maplin	http://www.maplin.co.uk/

Oomlout	http://oomlout.co.uk/

The	Pi	Hut	http://thepihut.com/

Proto-pic	http://proto-pic.co.uk/

Rapid	Electronics	http://www.rapidonline.com/

RS	http://uk.rs-online.com/web/

Spiratronics	http://spiratronics.com/

DECODING	RESISTOR	VALUES
In	most	of	the	projects	in	this	book	we’ve	used	resistors.	Resistors	are
electrical	components	that	limit	the	amount	of	current	allowed	through	a
circuit	(measured	in	ohms).	They	are	used	to	protect	components,	like
LEDs,	from	overloading	and	burning	out.	The	value	of	a	resistor	is
identified	by	colored	bands	on	the	body.	Resistors	can	have	four,	five,	or	six
colored	bands.

It's	important	to	be	able	to	determine	the	value	of	a	resistor	so	that	you
know	you’re	using	the	correct	one	in	your	project.	Let’s	try	to	determine	the
value	of	the	four-band	resistor	shown	in	Figure	B-1.

http://www.sweetpeas.se/
http://www.element14.com/
http://www.farnell.com/
http://www.4tronix.co.uk/store/
http://www.coolcomponents.co.uk/
http://cpc.farnell.com/
https://www.hobbycomponents.com/
http://www.mallinson-electrical.com/shop/
http://www.maplin.co.uk/
http://oomlout.co.uk/
http://thepihut.com/
http://proto-pic.co.uk/
http://www.rapidonline.com/
http://uk.rs-online.com/web/
http://spiratronics.com/

FIGURE	B-1:	A	four-band	resistor	

Viewing	the	resistor	with	the	silver	or	gold	band	on	the	right,	note	the
order	 of	 the	 colors	 from	 left	 to	 right.	 If	 the	 resistor	 has	 no	 silver	 or	 gold
band,	make	sure	the	side	with	the	three	colored	bands	is	on	the	left.

Use	Table	B-1	to	determine	the	value	of	the	resistor.

TABLE	B-1:	Calculating	Resistor	Values

COLOR FIRST
BAND

SECOND
BAND

THIRD
BAND MULTIPLIER TOLERANCE

Black 0 0 0 1Ω 	

Brown 1 1 1 10Ω +/–1%

Red 2 2 2 100Ω +/–2%

Orange 3 3 3 1KΩ 	

Yellow 4 4 4 10KΩ 	

Green 5 5 5 100KΩ +/–0.5%

Blue 6 6 6 1MΩ +/–0.25%

Violet 7 7 7 10MΩ +/–0.10%

Gray 8 8 8 	 +/–0.05%

White 9 9 9 	 	

Gold 	 	 	 0.1Ω +/–5%

Silver 	 	 	 0.01Ω +/–10%

The	first	and	second	bands	give	you	the	numerical	value,	the	third	band
tells	you	how	many	zeros	 to	add	to	 that	number,	and	the	 fourth	band	tells
you	 the	 tolerance—that	 is,	 how	 much	 the	 actual	 value	 can	 vary	 from	 the
intended	value.

NOTE

While	the	band	that	denotes	the	tolerance	is	most	commonly	silver	or	gold,	it	can
be	any	of	the	other	colors	that	has	a	percentage	listed	in	the	tolerance	column.	If
you	have	a	resistor	with	a	tolerance	band	that	isn’t	silver	or	gold,	there	should	be
a	small	gap	between	the	value	bands	and	the	tolerance	band	so	you	can	tell	which
it	is.

So,	for	the	resistor	in	Figure	B-1:	•	First	band	is	brown	(1)	=	1.

•	Second	band	is	black	(0)	=	0.

•	Third	band	is	red	(2)	=	00	(2	is	the	number	of	zeros).

•	Fourth	band	is	gold,	so	the	tolerance	(accuracy)	is	+/–	5	percent.

So	this	resistor	is	1,000	ohms	or	1	kilohm,	with	a	tolerance	of	5	percent,
meaning	 that	 the	 actual	 value	 can	 be	 up	 to	 5	 percent	more	 or	 less	 than	 1
kilohm.	We	can	do	the	same	calculation	for	a	five-or	six-band	resistor.

If	you’re	ever	unsure	of	a	resistor’s	value,	you	can	look	it	up	by	doing	a
quick	online	 search	of	 the	 colored	bands	on	 the	 resistor’s	 body.	 Just	make
sure	to	list	the	colors	 in	the	correct	order,	reading	them	from	left	to	right,
with	the	tolerance	band	on	the	right.

Arduino	Pin	Reference
Without	going	into	too	much	detail,	this	section	gives	you	a
reference	to	the	pins	on	the	Arduino	Uno,	their	technical	names,
and	their	functions.	The	pins	are	explained	in	more	detail	in	the
projects	in	which	they’re	used,	so	the	information	here	will
probably	make	more	sense	once	you’ve	built	a	few	projects.

ARDUINO
PIN FUNCTION	AND	LABEL ADDITIONAL

FUNCTION

0 RX—Used	to	receive	TTL	serial
data

	

1 TX—Used	to	transmit	TTL
serial	data

	

2 External	interrupt 	

3 External	interrupt Pulse	width	modulation

4 XCK/TO—External	Clock
Input/Output	(Timer/Counter	0)

	

5 T1	(Timer/Counter	1) Pulse	width	modulation

6 AIN0—Analog	comparator
positive	input

Pulse	width	modulation

7 AIN1—Analog	comparator
negative	input

	

8 ICP1—Input	capture 	

9 OC1A—Timer	register Pulse	width	modulation

10 SS—Slave	Select	(serial	data)
used	in	SPI	communication

Pulse	width	modulation

11 MOSI—Master	Out	Slave	In Pulse	width	modulation

11 MOSI—Master	Out	Slave	In
(data	in)	used	in	SPI
communication

Pulse	width	modulation

12 MISO—Master	In	Slave	Out
(data	out)	used	in	SPI

communication

	

13 SCK—Serial	Clock	(output
from	master)	used	in	SPI

communication

	

AREF Reference	voltage	for	analog
inputs

	

A0 Analog	input	can	give	1,024
different	values.

	

A1 Analog	input	can	give	1,024
different	values.

	

A2 Analog	input	can	give	1,024
different	values.

	

A3 Analog	input	can	give	1,024
different	values.

	

A4 Analog	input	can	give	1,024
different	values.

SDA	(serial	data	line)	pin
supports	TWI	(two-wire
interface)	using	the	Wire

library	for	I2C	components.

A5 Analog	input	can	give	1,024
different	values.

SCL	(serial	clock	line)	pin
supports	TWI	using	the
Wire	library	for	I2C

components.

RESET Can	be	used	to	reset	the
microcontroller

	

3.3V 3.3	volt	output	used	for	low
voltage	components.	This	is	the
only	3.3V	source.	The	digital
and	analog	pins	operate	at	5V.

	

and	analog	pins	operate	at	5V.

5V Standard	+5V	output 	

GND Ground/negative	power 	

Vin 9V	power	can	be	input	here	or
accessed	if	using	power	jack.

	

Serial:	0	(RX)	and	1	(TX)	These	pins	are	used	to	receive	(RX)	and	transmit
(TX)	 transistor-transistor	 logic	 (TTL)	 serial	data.	We	use	 the	TX	and	RX
pins	in	Projects	21,	24,	and	25.

External	interrupts:	2	and	3	These	pins	can	be	configured	to	trigger	an
interrupt	on	a	low	value,	a	rising	or	falling	edge	(a	signal	going	from	low	to
high	or	high	to	low,	respectively),	or	a	change	in	value.	An	interrupt	is	a
signal	that	tells	the	Arduino	to	stop	and	carry	out	another	function	when	the
pins	have	detected	an	external	event,	such	a	pushbutton	being	pressed.

PWM:	3,	5,	6,	9,	10,	and	11	These	pins	can	be	used	with	pulse	width
modulation	through	the	analogWrite()	function.	There’s	more	information	on
this	in	Project	5.

SPI:	10	(SS),	11	(MOSI),	12	(MISO),	13	(SCK)	These	pins	support	SPI
communication	using	the	SPI	library	and	are	used	in	Project	4.

LED:	13	There	is	a	builtin	LED	connected	to	digital	pin	13.	When	the	pin
is	HIGH,	the	LED	is	on;	when	the	pin	is	LOW,	it’s	off.	The	builtin	LED	on	pin
13	is	used	to	show	when	the	onboard	ATmega328p	bootloader	is	running,
usually	when	the	Arduino	is	starting	up.

AREF	This	is	the	reference	voltage	for	the	analog	inputs;	it’s	used	with
analogReference().	We	can	input	from	0	to	5V,	so	if	your	sensor	requires	a
lower	voltage	than	5V,	you	can	use	this	pin	to	increase	the	resolution	for	a
more	accurate	reading.

Analog	inputs:	A0–A5	The	Uno	has	six	analog	inputs,	each	of	which
provides	1,024	different	values.

TWI:	A4	and	A5	These	pins	support	TWI	(two-wire	interface)
communication	using	the	Wire	library.	This	is	used	to	control	and
communicate	with	an	I2C	device,	such	as	a	serial	LCD	screen,	using	only

two	wires.

RESET	Set	this	to	LOW	to	reset	the	microcontroller.	This	is	typically	used	to
add	a	reset	button.

Don’t	 worry	 if	 this	 information	 doesn’t	mean	much	 to	 you	 right	 now.
You	 might	 find	 it	 useful	 in	 your	 future	 Arduino	 endeavors,	 and	 you	 can
reference	it	as	you	progress	through	the	projects	in	the	book.

Arduino	Project	Handbook,	Volume	2	is	set	in	Helvetica	Neue,	Montserrat,
True	North,	and	TheSansMono	Condensed.

UPDATES

Visit	https://www.nostarch.com/arduinohandbook2/	for	updates,	errata,	and
other	information.

More	no-nonsense	books	from	 	NO	STARCH	PRESS

ARDUINO	PROJECT	HANDBOOK,	VOL.	1

25	Practical	Projects	to	Get	You	Started

by	MARK	GEDDES	 JUNE	 2016,	 272	PP.,	 $24.95	 ISBN	 978-1-59327-690-4
full	color

https://www.nostarch.com/arduinohandbook2/

THE	ARDUINO	INVENTOR’S	GUIDE
Learn	 Electronics	 by	Making	 10	 Awesome	 Projects	 by	 BRIAN	 HUANG

and	DEREK	RUNBERG	JUNE	2017,	336	PP.,	$29.95	ISBN	978-1-59327-652-
2	full	color

ARDUINO	WORKSHOP
A	Hands-On	Introduction	with	65	Projects
by	JOHN	BOXALL	MAY	2013,	392	PP.,	$29.95	ISBN	978-1-59327-448-1

THE	 MAKER’S	 GUIDE	 TO	 THE	 ZOMBIE
APOCALYPSE
Defend	your	Base	with	Simple	Circuits,	Arduino,	and	Raspberry	Pi	by
SIMON	MONK	OCTOBER	2015,	296	PP.,	$24.95	ISBN	978-1-59327-667-6

ARDUINO	PLAYGROUND
Geeky	Projects	for	the	Experienced	Maker
by	WARREN	ANDREWS	MARCH	2017,	344	PP.,	$29.95	 ISBN	978-1-59327-
744-4

THE	MANGA	GUIDE	TO	ELECTRICITY
by	 KAZUHIRO	 FUJITAKI,	 MATSUDA,	 and	 TREND-PRO	 CO.,	 LTD.	 MARCH

2009,	224	PP.,	$19.95	ISBN	978-1-59327-197-8

PHONE:

1.800.420.7240	OR

1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM

	Title Page
	Copyright Page
	Dedication
	Contents
	Acknowledgments
	Introduction
	Primer: Getting Started
	LEDs
	Project 1: LED Light Bar
	Project 2: Light-Activated Night-Light
	Project 3: Seven-Segment LED Count Down Timer
	Project 4: LED Scrolling Marquee
	Project 5: Mood Light
	Project 6: Rainbow Strip Light
	Project 7: NeoPixel Compass

	Sound
	Project 8: Arduino Piano
	Project 9: Audio LED Visualizer

	Motors
	Project 10: Old-School Analog Dial
	Project 11: Stepper Motor
	Project 12: Temperature-Controlled Fan

	LCDs
	Project 13: Ultrasonic Range Finder
	Project 14: Digital Thermometer
	Project 15: Bomb Decoder Game
	Project 16: Serial LCD Screen
	Project 17: Ultrasonic People Counter
	Project 18: Nokia 5110 LCD Screen Pong Game
	Project 19: OLED Breathalyzer

	Security
	Project 20: Ultrasonic Soaker
	Project 21: Fingerprint Scanner

	Smart Machines
	Project 22: Ultrasonic Robot
	Project 23: Internet-Controlled LED
	Project 24: Voice-Controlled LED
	Project 25: GPS Speedometer

	Troubleshooting Tips for Common Errors
	Components
	Arduino Pin Reference

