
3
Wavelet Neural Networks

In the literature, various versions of wavelet networks have been proposed. A wavelet

network usually has the form of a three-layer network. The lower layer represents

the input layer, the middle layer is the hidden layer, and the upper layer is the output

layer. The way that the three layers are connected and interact defines the structure

of the network. In the input layer, the explanatory variables are inserted in the model

and transformed to wavelets. The hidden layer consists of wavelons, or hidden units.

Finally, all the wavelons are combined to produce the output of the network, ŷp, at
the output layer, which is an approximation of the target value, yp.
In this chapter we present and discuss analytically the structure of the wavelet

network proposed. More precisely, in this book, a multidimensional WN with a

linear connection between the wavelons and the output is implemented. In addition,

there is a direct connection from the input layer to the output layer that will help the

network to perform well in linear applications. In other words, a wavelet network

with zero hidden units is reduced to a linear model.

Furthermore, the initialization phase, the training phase, and the stopping con-

ditions are discussed. A wavelet is a waveform of effectively limited duration that

has an average value of zero and localized properties. Hence, in wavelet networks,

selecting initial values of the dilation and translation parameters randomlymay not be

suitable, since random initialization may lead to wavelons with a value of zero. Four

methods for the initialization of the parameters of a wavelet network are presented

and evaluated. The simplest is the heuristic method. More sophisticated methods,

Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification,
First Edition. Antonios K. Alexandridis and Achilleas D. Zapranis.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

61



62 WAVELET NEURAL NETWORKS

such as residual-based selection, selection by orthogonalization, and backward elim-

ination, can be used for efficient initialization. The parameters of the wavelet network

are further optimized during the training phase. In the training phase the parameters

are changed to minimize an error function between the target values and the wavelet

output. This is done iteratively until the one of the stopping conditions is met.

WAVELET NEURAL NETWORKS FOR MULTIVARIATE
PROCESS MODELING

Structure of a Wavelet Neural Network

In this section the structure of awavelet network is presented and discussed. Awavelet

network usually has the form of a three-layer network. The lower layer represents the

input layer, the middle layer is the hidden layer, and the upper layer is the output layer.

In the input layer the explanatory variables are introduced to the wavelet network.

The hidden layer consists of hidden units (HUs). The hidden units, also referred to

as wavelons, are similar to neurons in the classical sigmoid neural networks. In the

hidden layer the input variables are transformed to a dilated and translated version

of the mother wavelet. Finally, in the output layer, the approximation of the target

values is estimated.

Various structures of a wavelet network have been proposed. The idea of a wavelet

network is to adapt the wavelet basis to the training data. Hence, the wavelet esti-

mator is expected to be more efficient than a sigmoid neural network (Zhang, 1993).

An adaptive wavelet network was used by Billings and Wei (2005), Kadambe and

Srinivasan (2006), Mellit et al. (2006), and Xu and Ho (1999). Chen et al. (2006)

proposed a local linear wavelet network. The difference is that the weights of the

connections between the hidden layer and the output layer are replaced by a local

linear model. Fang and Chow (2006) and Jiao et al. (2001) proposed a multiwavelet

neural network. In this structure, the activation function is a linear combination of

wavelet bases instead of the wavelet function. During the training phase, the weights

of all wavelets are updated. The multiwavelet neural network is also enhanced by the

discrete wavelet transform. Their results indicate that the model proposed increases

the approximation capability of the network. Khayamian et al. (2005) introduced a

principal component–wavelet neural network. In this context, first principal compo-

nent analysis has been applied to the training data to reduce the dimensionality. Then

a wavelet network was used for function approximation. Zhao et al. (1998) used a

multidimensional wavelet-basis function network. More precisely, Zhao et al. (1998)

used a multidimensional wavelet function as the activation function in the hidden

layer. Then the sigmoid function was used as an activation function in the output

layer. Becerikli (2004) proposes a network with unconstrained connectivity and with

dynamic elements (lag dynamics) in its wavelet-processing units, called a dynamic

wavelet network.

In this study we implement a multidimensional wavelet network with a linear

connection between the wavelons and the output. Moreover, for the model to perform



WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 63

Figure 3.1 Feedforward wavelet neural network.

well in the presence of linearity, we use direct connections from the input layer to the

output layer. Hence, a network with zero hidden units is reduced to a linear model.

The structure of a single-hidden-layer feedforward wavelet network is given in

Figure 3.1. The network output is given by the expression

g𝜆(x;w) = ŷ(x) = 𝑤[2]
𝜆+1 +

𝜆∑
j=1

𝑤
[2]
j ⋅Ψj(x) +

m∑
i=1

𝑤[0]i ⋅ xi (3.1)

where Ψj(x) is a multidimensional wavelet constructed by the product of m scalar
wavelets, x the input vector, m the number of network inputs, 𝜆 the number of hidden
units, and 𝑤 a network weight. The multidimensional wavelets are computed as

follows:

Ψj(x) =
m∏
i=1

𝜓(zij) (3.2)

where 𝜓 is the mother wavelet and

zij =
xi −𝑤

[1]
(𝜉)ij

𝑤
[1]
(𝜁 )ij

(3.3)



64 WAVELET NEURAL NETWORKS

In the expression above, i = 1,… ,m, j = 1,… , 𝜆 + 1, and the weights 𝑤 corre-
spond to the translation (𝑤[1]

(𝜉)ij) and the dilation (𝑤
[1]
(𝜁 )ij) factors. The complete vec-

tor of the network parameters comprises 𝑤 = (𝑤[0]i ,𝑤
[2]
j ,𝑤

[2]
𝜆+1,𝑤

[1]
(𝜉)ij,𝑤

[1]
(𝜁 )ij). These

parameters are adjusted during the training phase.

In the literature, threemother wavelets are usually suggested: theGaussian deriva-
tive, given by

𝜓(zij) = zije
(1∕2)z2ij (3.4)

the second derivative of the Gaussian, the Mexican hat,

𝜓(zij) =
(
1 − z2ij

)
e−(1∕2)z

2
ij (3.5)

and the Morlet wavelet, given by

𝜓(zij) = e−(1∕2)z
2
ij cos 5zij (3.6)

Selection of the mother wavelet depends on the application and is not limited to the

foregoing choices. The activation function can be a wave net (orthogonal wavelets) or

a wave frame (continuous wavelets). Following Becerikli et al. (2003), Billings and

Wei (2005), and Zhang (1994), we use as a mother wavelet the Mexican hat function,

which proved to be useful and to work satisfactorily in various applications.

Initialization of the Parameters of the Wavelet Network

In wavelet networks, in contrast to neural networks that use sigmoid functions,

selecting initial values of the dilation and translation parameters randomly may not

be suitable (Oussar et al., 1998). A wavelet is a waveform of effectively limited

duration that has an average value of zero and localized properties; hence, a random

initialization may lead to wavelons with a value of zero. Training algorithms such

as gradient descent with random initialization are inefficient (Zhang, 1993), since

random initialization affects the speed of training and may lead to a local minimum

of the loss function (Postalcioglu and Becerikli, 2007). Also, in sigmoid neural

networks, although a minimization of the loss function can be replicated with random

initialization, the values of the weights will vary each time (Anders and Korn, 1999).

Utilizing the information that can be extracted by wavelet analysis from the input

data set, the initial values of the parameters 𝑤 of the network can be selected in

an efficient way. Efficient initialization will result in fewer iterations in the training

phase of the network and training algorithms that will avoid local minimums of

the loss function in the training phase. Finally, efficient initialization methods will

approximate the same vector of weights that minimize the loss function each time.



WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 65

Various methods have been proposed for optimized initialization of the wavelet

parameters. In the rest of the chapter the following methods are discussed: the heuris-

tic, residual-based selection (RBS), selection by orthogonalization (SSO), and back-

ward elimination (BE).

The Heuristic InitializationMethod The following initialization for the translation

and dilation parameters was introduced by Zhang and Benveniste (1992):

𝑤
[1]
(𝜉)ij = 0.5(Ni +Mi) (3.7)

𝑤
[1]
(𝜁 )ij = 0.2(Mi − Ni) (3.8)

where Mi and Ni are defined as the maximum and minimum of input xj:

Mi = max
p=1,…,n

(xip) (3.9)

Ni = min
p=1,…,n

(xip) (3.10)

In the framework above, the initialization of the parameters is based on the input

domains defined by examples of the training sample (Oussar et al., 1998). In other

words, the center of the wavelet j is initialized at the center of the parallelepiped
defined by the input domain. These initializations guarantee that the wavelets extend

initially over the entire input domain (Oussar and Dreyfus, 2000). This procedure is

very simple and the computational burden is almost negligible. Initialization of the

direct connections𝑤[0]i and the weights𝑤[2]j is less important, and they are initialized

in small random values between 0 and 1.

Complex Initialization Methods The previous heuristic method is simple and its

computational cost is almost negligible. However, it is not efficient, as shown on

the next section. The heuristic method does not guarantee that the training will find

the global minimum. Moreover, this method does not use any information that the

wavelet decomposition can provide.

Recent studies proposed more complex methods that utilize the information

extracted by wavelet analysis (Kan and Wong, 1998; Oussar and Dreyfus, 2000;

Oussar et al., 1998; Wong and Leung, 1998; Xu and Ho, 2002; Zhang, 1997). These

methods are not optimal, simply a trade-off between optimality and efficiency (He

et al., 2002). Implementation of these methods can be summed up in the following

three steps:

1. Construct a libraryW of wavelets.

2. Remove the wavelets whose support does not contain any sample points of the

training data.

3. Rank the remaining wavelets and select the best wavelet regressors.



66 WAVELET NEURAL NETWORKS

In the first step, the wavelet library can be constructed by either an orthogonal

wavelet or a wavelet frame (He et al., 2002; Postalcioglu and Becerikli, 2007). By

determining an orthogonal wavelet basis, the wavelet network is constructed simulta-

neously. However, to generate an orthogonal wavelet basis, the wavelet function has

to satisfy strong restrictions (Daubechies, 1992; Mallat, 1999). In addition, the fact

that orthogonal wavelets cannot be expressed in closed form makes them inappro-

priate for applications of function approximation or process modeling (Oussar and

Dreyfus, 2000).

On the other hand, constructing wavelet frames is very easy and can be done by

translating and dilating the mother wavelet selected. Results from Gao and Tsoukalas

(2001) indicate that a family of compactly supported nonorthogonal wavelets is more

appropriate for function approximation. Due to the fact that a wavelet family can

contain a large number of wavelets, it is more convenient to use a truncated wavelet

family than an orthogonal wavelet basis (Zhang, 1993).

However, constructing a wavelet network using wavelet frames is not a straight-

forward process. The wavelet library may contain a large number of wavelets since

only the input data were considered in construction of the wavelet frame. To construct

a wavelet network, the “best” wavelets must be selected. To do so, first the number

of wavelet candidates must be decreased and the remaining wavelets must be ranked.

The reduction of the wavelet candidates must be done carefully since arbitrary trun-

cations may lead to large errors (Xu and Ho, 2005). In the second step, Zhang (1993)

proposes removing wavelets that have very few training patterns in their support.

Alternatively, magnitude-based methods were used by Cannon and Slotine (1995) to

eliminate wavelets with small coefficients. In the third step, the remaining wavelets

are ranked and the wavelets with the highest rank are used for construction of the

wavelet network.

In the next section, three alternative methods are presented to reduce and rank

the wavelets in the wavelet library: residual-based selection, stepwise selection by

orthogonalization, and backward elimination.

Residual-Based Selection Initialization Method In the framework of RBS, the

wavelet that best fits the output data is selected first. Then the wavelet that best

fits the residual of the fitting of the preceding stage is selected repeatedly. RBS is

considered to be a very simple method but not an effective one (Juditsky et al.,

1994). However, if the wavelet candidates reach a very large number, computa-

tional efficiency is essential and the RBS method may be used (Juditsky et al.,

1994). Kan and Wong (1998) and Wong and Leung (1998) used the RBS algo-

rithm for the synthesis of wavelet networks. Xu and Ho (2002) used a modified

version of the RBS algorithm. An orthogonalized residual-based selection (ORBS)

algorithm is proposed for more precise initialization of the wavelet network. The

ORBS method combines the RBS and orthogonalized least squares (OLS) method.

In this way, high efficiency is obtained while relatively low computational burden is

maintained.



WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 67

Selection by Orthogonalization Method The RBS method does not explicitly con-

sider the interaction or nonorthogonality of the wavelets in the wavelet basis (Zhang,

1997). The SSO method is an extension of the RBS first proposed by Chen et al.

(1989, 1991). The following procedure is followed to initialize the wavelet network:

First, the wavelet that best fits the output data is selected. Then the wavelet that best

fits the residual of the fitting of the previous stage together with the wavelet selected

previously is selected repeatedly. In other words, the SSO considers the interaction

or nonorthogonality of the wavelets. The selection of the wavelets is performed using

the modified Gram–Schmidt algorithm, which has better numerical properties and is

computationally less expensive than the ordinary Gram–Schmidt algorithm (Zhang,

1997). More precisely, the modified Gram–Schmidt algorithm is applied with a par-

ticular choice of the order in which the vectors are orthogonalized. SSO is considered

to have good efficiency while not being expensive computationally. An algorithm

similar to SSO was proposed by Oussar and Dreyfus (2000).

gram–schmidt algorithm The ranking method adopted here is the Gram–

Schmidt procedure. The algorithm has been presented in detail by Chen et al. (1989).

In this section the basic aspects of the algorithm are presented briefly. The basic

problem that we want to solve is the following: Suppose that {x1, x2,… , xk} ⊂ R
n

is a linear independent set of vectors. How do we find an orthonormal set of vectors

{q1, q2,… , qk} with the property span{q1, q2,… , qk} = span{x1, x2,… , xk}?
A set of vectors are called orthonormal if the following two conditions are met:

⟨qi, qj⟩ = qi ⋅ qj = 0 for each i ≠ j (3.11)

‖qi‖ = 1 for all i (3.12)

Equation (3.11) ensures that the vectors qi are orthogonal and (3.12) that they are
normalized. Consider a model, linear with respect to its parameters, with k inputs
and a training set of n training patterns. The inputs are ranked as follows. First, the
input vector that has the smallest angle with the vector output is selected. Then all

other input vectors, and the output vector, are projected onto the subspace orthogonal

to the input vector selected. In this subspace of dimension k − 1, the procedure is
iterated, and it is terminated when all inputs are ranked. That is, at step j the jth
column is made orthogonal to each of the j − 1 columns orthogonalized previously,
and the operations are repeated for j = 2,… , k.
Since the output of the wavelet network is linear with respect to the weights,

the procedure described above can easily be used where each input is actually the

output of a multidimensional wavelet. Therefore, at the end of the procedure, all the

wavelets of the library are ranked. The part of the process output not yet modeled and

the wavelets not yet selected are subsequently projected onto the subspace orthogonal

to the regressor selected. The procedure is repeated until all wavelets are ranked.

It is well known that the Gram–Schmidt procedure is very sensitive to round-

off errors (Chen et al., 1989). It has been proved that if the regression matrix is



68 WAVELET NEURAL NETWORKS

ill-conditioned, the orthogonality will be lost. On the other hand, the modified Gram–

Schmidt procedure is numerically stable. In this procedure, at the jth stage the columns
subscripted j + 1,… , k are made orthogonal to the jth column and the operations
repeated for j = 1,… , k − 1. Both methods perform basically the same operations,
only in a different sequence. However, the two algorithms have distinct differences

in computational behavior. The modified procedure is more accurate and more stable

than the classical algorithm. In all simulations presented below we have used the

modified Gram–Schmidt method.

The algorithm can be summarized in the following two steps. At step 1 we must

compute the orthogonal vectors {z1,… , zk}. Hence, we set

z1 = x1

z2 = x2 − projz1 (x2) = x2 −
⟨x2, z1⟩⟨z1, z1⟩ z1

zk = xk − projz1 (xk) −⋯ − projzk−1 (xk) = xk −
⟨xk, z1⟩⟨z1, z1⟩ z1 −⋯ −

⟨xk, zk−1⟩⟨zk−1, zk−1⟩ zk−1
At step 2 the vectors {z1,… , zk} are normalized:

q1 =
z1‖z1‖ , q2 =

z2‖z2‖ , … , qk =
zk‖zk‖

Backward Elimination Method In contrast to previous methods, the BE starts the

regression by selecting all available wavelets from the wavelet library. The wavelet

that contributes the least in the fitting of the training data is repeatedly eliminated. The

objective is to increase the residual at each stage as little as possible. The drawback of

BE is that it is computationally expensive, but it is considered to have good efficiency.

Zhang (1997) presented the exact number of arithmetic operations for each

algorithm. More precisely, for the RSO at each step i the computational cost is
2nL − 2in + 6n − 1, where n is the length of the training samples and L is the num-
ber of wavelets in the wavelet basis. Similarly, the computational cost of the SSO

algorithm at each step is 8nL − 6in + 9n + 5L. Roughly speaking, the SSO is four
times more computationally expensive than the RSO algorithm. Finally, the opera-

tions needed in the BE method is 2n(L − i) + 4(L2 + i2) − 8iL − (L − i). In addition,
at the beginning of the BE algorithm an L × L matrix must be inverted. If the num-
ber of hidden units, and as a result the number of wavelets that must be selected is

HUs > L∕2, fewer steps are performed by the BE algorithm, whereas forHUs < L∕2
the contrary is true (Zhang, 1997).

All methods described above are used only for the initialization of the dilation

and translation parameters. The network is trained further to obtain the vector of the

parameters 𝑤 = ŵn, which minimizes the cost function. It is clear that additional

computational burden is added to initialize the wavelet network efficiently. However,

the efficient initialization significantly reduces the training phase; hence, the total



WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 69

number of computations is significantly smaller than in a network with random

initialization.

Training a Wavelet Network with Backpropagation

After the initialization phase, the network is trained further to find the weights that

minimize the cost function. As wavelet networks have gained in popularity, more

complex training algorithms have been presented in the literature. Cristea et al. (2000)

used genetic algorithms to train a wavelet network; Li and Chen (2002) proposed

a learning algorithm that utilized least trimmed squares. He et al. (2002) suggest a

hierarchical evolutionary algorithm. Xu and Ho (2005) employed the Levenberg–

Marquardt algorithm. Chen et al. (2006) combine adaptive diversity learning particle

swarm optimization and gradient descent algorithms to train a wavelet network.

However, most evolutionary algorithms that include particle swarm optimization

are inefficient and cannot avoid completely certain degeneracy and local minimum

(Zhang, 2009). Also, evolutionary algorithms suffer from fine-tuning inefficiency

(Chen et al., 2006; Yao, 1999). On the other hand, the Levenberg–Marquardt is one

of the fastest algorithms for training classical sigmoid neural networks. The main

drawback of this algorithm is that it requires the storage and inversion of some

matrices that can be quite large.

The algorithms above originate from classical sigmoid neural networks, as they do

not take advantage of the properties of wavelets (Zhang, 2007, 2009). Since a wavelet

is a function whose energy is well localized in time frequency, Zhang (2007, 2009)

used sampling theory to train a wavelet network in both uniform and nonuniform

data. Their results indicate that the algorithm they proposed has global convergence.

In our implementation, ordinary backpropagation (BP)was used. Backpropagation

is probably the most popular algorithm used for training wavelet networks (Fang

and Chow, 2006; Jiao et al., 2001; Oussar and Dreyfus, 2000; Oussar et al., 1998;

Postalcioglu and Becerikli, 2007; Zhang, 1997, 2007; Zhang and Benveniste, 1992).

Ordinary BP is less fast but also less prone to sensitivity to initial conditions than are

higher-order alternatives (Zapranis and Refenes, 1999).

The basic idea of backpropagation is to find the percentage contribution of each

weight to the error. The error ep for pattern p is simply the difference between the

target (yp) and the network output (ŷp). By squaring and multiplying by
1

2
, we take

the pairwise error Ep, which is used in network training:

Ep =
1

2
(yp − ŷp)

2 = 1

2
e2p (3.13)

The weights of the network were trained to minimize the mean quadratic cost

function (or loss function):

Ln =
1

n

n∑
p=1

Ep =
1

2n

n∑
p=1

e2p =
1

2n

n∑
p=1
(yp − ŷp)

2 (3.14)



70 WAVELET NEURAL NETWORKS

Other functions can be used instead of (3.14); however, the mean quadratic cost

function is the most commonly used. The network is trained until a vector of weights

𝑤 = ŵn that minimizes the proposed cost function is found. The previous solution

corresponds to a training sample of size n. Computing the parameter vector ŵn is

always done by iterativemethods. At each iteration t the derivative of the loss function
with respect to the network weights is calculated. Then the parameters are updated

using the following (delta) learning rule:

𝑤t+1 = 𝑤t − 𝜂
𝜕Ln
𝜕𝑤t

+ 𝜅(𝑤t −𝑤t−1) (3.15)

where 𝜂 is the learning rate and it is constant. The complete vector of the network

parameters comprises 𝑤 = (𝑤[0]i ,𝑤
[1]
(𝜉)ij,𝑤

[1]
(𝜁 )ij,𝑤

[2]
j ,𝑤

[2]
𝜆+1).

A constant momentum term, defined by 𝜅, is induced which increases the training

speed and helps the algorithm to avoid oscillations. The learning rate and momentum

speed take values between 0 and 1. Choice of the learning rate and the momentum

depend on the application and the training sample. Usually, values between 0.1 and

0.4 are used.

The partial derivative of the cost function with respect to a weight 𝑤 is given by

𝜕L
𝜕𝑤

= 1

2n

n∑
p=1

𝜕Ep

𝜕𝑤
= 1

2n

n∑
p=1

𝜕Ep

𝜕ŷp

𝜕ŷp
𝜕𝑤

= 1

n

n∑
p=1

−(yp − ŷp)
𝜕ŷp
𝜕𝑤

= 1
n

n∑
p=1

−ep
𝜕ŷp
𝜕𝑤

(3.16)

The partial derivatives with respect to each parameter 𝜕ŷp∕𝜕𝑤, and with respect to
each input variable 𝜕ŷp∕𝜕xi, are presented below. The partial derivative with respect
to (w.r.t.) the bias term 𝑤

[2]
𝜆+1 is given by

𝜕ŷp

𝜕𝑤
[2]
𝜆+1

= 1 (3.17)

Similarly, the partial derivatives w.r.t. the direct connections from the input variables

𝑤
[0]
i to the output of the wavelet network ŷ are given by

𝜕ŷp

𝜕𝑤
[0]
i

= xi i = 1,… ,m (3.18)



WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 71

The partial derivatives w.r.t. the linear connections from the wavelons 𝑤[2]j to the

output of the wavelet network are given by

𝜕ŷp

𝜕𝑤
[2]
j

= Ψj(x) j = 1,… , 𝜆 (3.19)

The partial derivatives w.r.t. the translation 𝑤[1]
(𝜉)ij are given by

𝜕ŷp

𝜕𝑤
[1]
(𝜉)ij

=
𝜕ŷp
𝜕Ψj(x)

𝜕Ψj(x)

𝜕𝜓(zij)

𝜕𝜓(zij)

𝜕zij

𝜕zij

𝜕𝑤
[1]
(𝜉)ij

= 𝑤
[2]
j 𝜓(z1j)⋯𝜓 ′(zij)⋯𝜓(zmj)

−1
𝑤
[1]
(𝜁 )ij

= −
𝑤
[2]
j

𝑤
[1]
(𝜁 )ij

𝜓(z1j)⋯𝜓 ′(zij)⋯𝜓(zmj) (3.20)

The partial derivatives w.r.t. the dilation parameters 𝑤[1]
(𝜁 )ij are given by

𝜕ŷp

𝜕𝑤
[1]
(𝜁 )ij

=
ŷp

𝜕Ψj(x)

𝜕Ψj(x)

𝜕𝜓(zij)

𝜕𝜓(zij)

𝜕zij

𝜕zij

𝜕𝑤
[1]
(𝜁 )ij

= 𝑤
[2]
j 𝜓(z1j)⋯𝜓 ′(zij)⋯𝜓(zmj)

xi −𝑤
[1]
(𝜉)ij

𝑤
[1]
(𝜁 )ij

2

= −
𝑤
[2]
j

𝑤
[1]
(𝜁 )ij

xi −𝑤
[1]
(𝜉)ij

𝑤
[1]
(𝜁 )ij

2
𝜓(z1j)⋯𝜓 ′(zij)⋯𝜓(zmj)

= −
𝑤
[2]
j

𝑤
[1]
(𝜁 )ij

zij𝜓(z1j)⋯𝜓 ′(zij)⋯𝜓(zmj)

= zij
𝜕ŷp

𝜕𝑤
[1]
(𝜉)ij

(3.21)



72 WAVELET NEURAL NETWORKS

Finally, the partial derivatives w.r.t. the input variables 𝜕ŷp∕𝜕xi are presented:

𝜕ŷp
𝜕xi

= 𝑤[0]i +

𝜆∑
j=1
𝑤
[2]
j 𝜕Ψj(x)

𝜕𝜓(zij)

𝜕𝜓(zij)

𝜕zij

𝜕zij
𝜕xi

= 𝑤[0]i +
𝜆∑
j=1

𝑤
[2]
j 𝜓(z1j)⋯𝜓 ′(zij)⋯𝜓(zmj)

1

𝑤
[1]
(𝜁 )ij

= 𝑤[0]i +
𝜆∑
j=1

𝑤
[2]
j

𝑤
[1]
(𝜁 )ij

𝜓(z1j)⋯𝜓 ′(zij)⋯𝜓(zmj)

= 𝑤[0]i −
𝜆∑
j=1

𝜕ŷp

𝜕𝑤
[1]
(𝜉)ij

(3.22)

The partial derivatives 𝜕ŷp∕𝜕xi are needed for the variable selection algorithm that is
presented in the following chapters.

Online Training The training methodology described above falls into the category

of off-line training. This means that the weights of the networks are updated after

all training patterns are presented to the network. Alternatively, one can use online

training methods. In online methods the weights are changed after each presentation

of a training pattern. For some problems, this method may yield effective results,

especially for problems where data arrive in real time (Samarasinghe, 2006). Using

online training it is possible to reduce training times significantly. However, for

complex problems it is possible that online training will create a series of drawbacks.

First, there is the possibility that the training will stop before the presentation of

each training pattern to the network. Second, by changing the weights after each

pattern, they could bounce back and forth with each iteration, possibly resulting in

a substantial amount of wasted time (Samarasinghe, 2006). Hence, to ensure the

stability of the algorithms, off-line training is used in this book.

Stopping Conditions for Training

After the initialization phase of the network parameters 𝑤, the weights 𝑤
[0]
i and

𝑤
[2]
j and the parameters 𝑤[1]

(𝜉)ij and 𝑤
[1]
(𝜁 )ij are trained during the learning phase for

approximating the target function. A key decision related to the training of a wavelet

network involves when the weight adjustment should end. If the training phase stops

early, the wavelet network will not be able to learn the underlying function of the

training data and as a result will not perform well in predicting new, unseen data. On

the other hand, if the training phase continues beyond the appropriate iterations, the

network will begin to learn the noise part of the data and will become overfitted. As



WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 73

a result, the generalization ability of the network will be lost. Hence, it will not be

appropriate to use the wavelet network in predicting future data.

In the next section a procedure for selecting the correct topology of a wavelet

network is presented. Under the assumption that the wavelet network contains the

number of wavelets that minimizes the prediction risk, the training is stopped when

one of the following criteria is met: The cost function reaches a fixed lower bound or

the variations of the gradient, the variations of the parameters reach a lower bound,

or the number of iterations reaches a fixed maximum, whichever is satisfied first. In

our implementation the fixed lower bound of the cost function, of the variations of

the gradient, and of the variations of the parameters were set to 10−5.

Evaluating the Initialization Methods

As mentioned earlier, the initialization phase is very important to the construction

and training of a wavelet network. In this section we compare four different initial-

ization methods: the heuristic, SSO, RBS, and BE methods, which constitute the

bases for alternative algorithms and can be used with the BP training algorithm.

The four initialization methods will be compared in three stages. First, the distance

between the initialization and the underlying function as well as the training data

will be measured. Second, the number of iterations needed to train the wavelet net-

work will be compared. Finally, the difference between the final approximation of

the trained wavelet network and the underlying function and the training data will

be examined. The four initialization methods will be tested in two cases: on a sim-

ple underlying function and on a more complex function that incorporates large

outliers.

Case 1: Sinusoid and Noise with Decreasing Variance In the first case the under-

lying function f(x) is given by

f (x) = 0.5 + 0.4 sin 2𝜋x + 𝜀1(x) x ∈ [0, 1] (3.23)

where x is equally spaced in [0,1] and the noise 𝜀1(x) follows a normal distribution
with mean zero and decreasing variance:

𝜎2
𝜀
(x) = 0.052 + 0.1(1 − x2) (3.24)

The four initialization methods are examined using a wavelet network with 2

hidden units with learning rate 0.1 and momentum 0. The choice of the network

structure proposed will be justified in Chapter 4. The training sample consists of

1.000 patterns.

Figure 3.2 shows the initialization of the four algorithms for the first training

sample. It is clear that the heuristic algorithm produces the worst initialization.

However, even the heuristic approximation is still better than a random initialization.

On the other hand, initialization of the RBS algorithm gives a better approximation

of the data; however, the approximation of the target function f (x) is still not very



74 WAVELET NEURAL NETWORKS

2.5

2

1.5

1

0.5

0

–0.5

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

–0.2
0 0.25 0.5

Initialization using the heuristic method Initialization using the RBS method

Initialization using the SSO method Initialization using the BE method

0.75 1 0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Figure 3.2 Four different initialization methods in the first case.

good. Finally, both the SSO and BE algorithms start very close to the target function

f (x). For the construction of the wavelet basis, the input dimension was scanned in
four scale levels and 15 wavelet candidates were identified. To reduce the number of

wavelet candidates, wavelets that contain fewer than three patterns in their support

are removed from the basis. However, all wavelets contain at least three training

samples; hence, the wavelet basis was not truncated.

The mean squared error (MSE) between the initialization of the network and the

training data confirms the results cited above. More precisely, the MSE between the

initialization of the network and the training data is 0.630809, 0.040453, 0.031331,

and 0.031331 for the heuristic, RBS, SSO, and BE, respectively. Next we test how

close the initialization is to the underlying function. The MSE between the initial-

ization of the network and the underlying function is 0.59868, 0.302782, 0.000121,

and 0.000121 for the heuristic, RBS, SSO, and BE, respectively. The results above

indicate that the SSO and the BE produce the best initialization for the parameters of

the wavelet network.

Another way to compare the initialization methods is to compare the number of

iterations needed in the training phase until the solution ŵn is found. Also, whether

or not the initialization methods proposed allows the training procedure to find the

global minimum of the loss function will be examined.



WAVELET NEURAL NETWORKS FOR MULTIVARIATE PROCESS MODELING 75

The heuristic method was used to train 100 networks with different initial condi-

tions for the direct connections 𝑤[0]i and weights 𝑤[2]j . Training 100 networks with

perturbed initial conditions is expected to be sufficient to avoid any possible local

minimums of the loss function (3.14). It was found that the smallest MSE between

the target function f (x) and the final approximation of the network was 0.031331.
Using the RBS, the training phase stopped after 616 iterations. The overall fit

was very good and the MSE between the network output and the training data was

0.031401, indicating that the network was stopped before the minimum of the loss

function was achieved. Finally, the MSE between the network output and the target

function was 0.000676.

On the other hand, when initializing the wavelet network with the SSO algorithm,

only one iteration was needed in the training phase and the MSE was 0.031331,

whereas the MSE between the underlying function f (x) and the network approxi-
mation was only 0.000121. The same results were achieved using the BE method.

Finally, one implementation of the heuristic method needed 1501 iterations. The

results are presented in Table 3.1.

The results above indicate that the SSO and BE algorithms give the same results

and significantly outperform both the heuristic and RBS algorithms. Moreover, the

results above indicate that having a very good initialization not only significantly

reduces the needed training iterations and as a result the total needed training time,

but a vector of weights ŵn that minimizes the loss function can also be found.

Case 2: Sum of Sinusoids and Cauchy Noise Next, a more complex case is intro-

duced where the function g(x) is given by

g(x) = 0.5x sin x + cos2 x + 𝜀2(x) x ∈ [−6, 6] (3.25)

TABLE 3.1 Initialization of the Four Methodsa

Heuristic RBS SSO BE

Case 1

MSE 0.031522 0.031401 0.031331 0.031331

MSE+ 0.000791 0.000626 0.000121 0.000121

IMSE 0.630807 0.040453 0.031331 0.031331

IMSE+ 0.598680 0.302782 0.000121 0.000121

Iterations 1501 616 1 1

Case 2

MSE 0.106238 0.004730 0.004752 0.004364

MSE+ 0.102569 0.000558 0.000490 0.000074

IMSE 7.877472 0.041256 0.012813 0.008403

IMSE+ 7.872084 0.037844 0.008394 0.004015

Iterations 4433 3097 751 1107

aCase 1 refers to function f(x) and case 2 to function g(x). RBS, residual-based selection; SSO, stepwise selection by
orthogonalization; BE, backward elimination; MSE, MSE between the training data and the network approximation;

MSE+, MSE between the underlying function and the network approximation; IMSE, MSE between the training data

and the network initialization; IMSE+, MSE between the underlying function and the network initialization.



76 WAVELET NEURAL NETWORKS

and 𝜀2(x) follows a Cauchy distribution with location 0 and scale 0.05, and x is
equally spaced in [−6, 6]. The training sample consists of 1.000 training patterns.
Whereas the first function is very simple, the second one, proposed by Li and Chen

(2002), incorporates large outliers in the output space. The sensitivity to the presence

of outliers of the wavelet network proposed will be tested. To approximate function

g(x), a wavelet network with 8 hidden units with learning rate 0.1 and momentum 0
is used. The choice of the topology proposed for the wavelet network is justified in

Chapter 4.

The results obtained in the second case are similar. A closer inspection of Figure 3.3

reveals that the heuristic algorithm produces the worst initialization in approximating

the underlying function g(x). The RBS algorithm produces a significantly better

initialization than the heuristic method; however, the initial approximation still differs

from the training target values. Finally, both the BE and SSO algorithms produce a

very good initialization. It is clear that the first approximation of the wavelet network

is very close to the underlying function g(x).
For construction of the wavelet basis, the input dimension was scanned in depth at

five scale levels. The analysis revealed 31 wavelet candidates, and all of them were

used for construction of the wavelet basis since all of them had at least three training

samples in their support. The MSE between the initialization of the network and the

8

6

4

2

0

–2

–4

–6

–8

–10

2

1.5

1

0.5

5

–0.5

–1

–1.5

–2

–2.5

–3

2

1.5

1

0.5

5

–0.5

–1

–1.5

–2

–2.5

–3

2

1.5

1

0.5

5

–0.5

–1

–1.5

–2

–2.5

–3

–6 –4.8 –3.6 –2.4 –1.2 0 1.2 2.4 3.6 4.6 6 –6 –4.8 –3.6 –2.4 –1.2 0 1.2 2.4 3.6 4.6 6

–6 –4.8 –3.6 –2.4 –1.2 0 1.2 2.4 3.6 4.6 6–6 –4.8 –3.6 –2.4 –1.2 0 1.2

Initialization using the SSO method Initialization using the BE method

Initialization using the heuristic method Initialization using the RBS method

2.4 3.6 4.6 6

Figure 3.3 Four initialization methods for the second case.



CONCLUSIONS 77

training data was 7.87472, 0.041256, 0.012813, and 0.008403 for the heuristic, RBS,

SSO, and BE algorithms, respectively. Also, the MSE between the initialization of

the network and the underlying function g(x) was 7.872084, 0.037844, 0.008394,
and 0.004015 for the heuristic, RBS, SSO, and BE, respectively. The previous results

indicate that the training phase using the BE algorithm starts very close to the target

function g(x).
Next, the number of iterations needed in the training phase of each method was

compared. Also, whether or not the initialization methods proposed allow the training

procedure to find the global minimum of the loss function was examined. The RBS

algorithm stopped after 3097 iterations, and the MSE of the final approximation

of the wavelet network and the training patterns was 0.004730. The MSE between

the underlying function f (x) and the network approximation was 0.000558. When
initializing the wavelet network with the SSO algorithm only, 741 iterations were

needed in the training phase and the MSE was 0.004752, while the MSE between

the underlying function g(x) and the network approximation was 0.000490. The BE
needed 1107 iterations in the training phase and the MSE was 0.004364, while the

MSE between the underlying function g(x) and the network approximation was only
0.000074. Finally, one implementation of the heuristic method needed 4433 iterations

and theMSEwas 0.106238, while theMSE between the underlying function g(x) and
the network approximation was 0.102569. The results are presented in the second

part of Table 3.1. In the second case the BE was slower than the SSO; however,

the final approximation was significantly closer to the target function than with any

other method. Note that in all cases the training was stopped when the minimum

velocity, 10−5, was reached. If the minimum velocity is reduced further, the SSO
algorithmwill produce results similar to those of the BE, but extra computational time

will be needed.

The previous examples indicate that the SSO and BE perform similarly and out-

perform the other two methods, whereas BE outperforms the SSO in complex prob-

lems. Previous studies suggest that the BE is more efficient than the SSO algorithm;

however, it is more computationally expensive. On the other hand, in the BE algo-

rithm it is necessary to calculate the inverse of the wavelet matrix, whose columns

might be linearly dependent (Zhang, 1997). In that case the SSO must be used.

However, since the wavelets come from a wavelet frame, this happens very rarely

(Zhang, 1997).

CONCLUSIONS

In this chapter the structure of the wavelet network proposed was presented and dis-

cussed analytically. A wavelet network usually has the form of a three-layer network.

The lower layer represents the input layer, the middle layer is the hidden layer, and

the upper layer is the output layer. In our implementation, a multidimensional wavelet

network with a linear connection between the wavelons and the output is utilized. In

addition, there are direct connections from the input layer to the output layer that will

help the network to perform well in linear applications.



78 WAVELET NEURAL NETWORKS

Furthermore, the initialization phase, training phase, and stopping conditions are

discussed. The initialization of the parameters is very important in wavelet networks

since it can reduce the training time significantly. The initialization method devel-

oped extracts useful information from the wavelet analysis. The simplest method is

the heuristic method; more sophisticated methods, such as residual-based selection,

selection by orthogonalization, and backward elimination can be used for efficient

initialization.

The results from our analysis indicate that backward elimination significantly

outperforms other methods. The results from two simulated cases show that using

the backward elimination method, the wavelet network provides a fit very close to

the real underlying function. However, it is more computationally expensive than the

other methods.

The backpropagation method is used for network training. Iteratively, the weights

of the networks are updated based on the delta learning rule, where a learning rate

and a momentum are used. The weights of the network were trained to minimize

the mean quadratic cost function. The training continues until one of the stopping

conditions is met.

REFERENCES

Anders, U., and Korn, O. (1999). “Model selection in neural networks.” Neural Networks,
12(2), 309–323.

Becerikli, Y. (2004). “On three intelligent systems: dynamic neural, fuzzy andwavelet networks

for training trajectory.” Neural Computation and Applications, 13, 339–351.

Becerikli, Y., Oysal, Y., and Konar, A. F. (2003). “On a dynamic wavelet network and its

modeling application.” Lecture Notes in Computer Science, 2714, 710–718.

Billings, S. A., and Wei, H.-L. (2005). “A new class of wavelet networks for nonlinear system

identification.” IEEE Transactions on Neural Networks, 16(4), 862–874.

Cannon, M., and Slotine, J.-J. E. (1995). “Space–frequency localized basis function networks

for nonlinear system estimation and control.” Neurocomputing, 9, 293–342.

Chen, Y., Billings, S. A., and Luo, W. (1989). “Orthogonal least squares methods and their

application to non-linear system identifcation.” International Journal of Control, 50, 1873–
1896.

Chen, Y., Cowan, C., and Grant, P. (1991). “Orthogonal least squares learning algorithm for

radial basis function networks.” IEEE Transactions On Neural Networks, 2, 302–309.

Chen, Y., Yang, B., and Dong, J. (2006). “Time-series prediction using a local linear wavelet

neural wavelet.” Neurocomputing, 69, 449–465.

Cristea, P., Tuduce, R., and Cristea, A. (2000). “Time series prediction with wavelet neural

networks.” Proceedings of 5th Seminar on Neural Network Applications in Electrical
Engineering, Belgrade, Yugoslavia, 5–10.

Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia.

Fang, Y., and Chow, T. W. S. (2006). “Wavelets based neural network for function approxima-

tion.” Lecture Notes in Computer Science, 3971, 80–85.



REFERENCES 79

Gao, R., and Tsoukalas, H. I. (2001). “Neural-wavelet methodology for load forecasting.”

Journal of Intelligent and Robotic Systems, 31, 149–157.

He, Y., Chu, F., and Zhong, B. (2002). “A hierarchical evolutionary algorithm for constructing

and training wavelet networks.” Neural Computing and Applications, 10, 357–366.

Jiao, L., Pan, J., and Fang, Y. (2001). “Multiwavelet neural network and its approximation

properties.” IEEE Transactions on Neural Networks, 12(5), 1060–1066.

Juditsky, A., Zhang, Q., Delyon, B., Glorennec, P.-Y., and Benveniste, A. (1994). “Wavelets in

identification—wavelets, splines, neurons, fuzzies: how good for identification?” Techincal

Report, INRIA.

Kadambe, S., and Srinivasan, P. (2006). “Adaptive wavelets for signal classification and com-

pression.” International Journal of Electronics and Communications, 60, 45–55.

Kan, K.-C., and Wong, K. W. (1998). “Self-construction algorithm for synthesis of wavelet

networks.” Electronic Letters, 34, 1953–1955.

Khayamian, T., Ensafi, A. A., Tabaraki, R., and Esteki, M. (2005). “Principal component-

wavelet networks as a newmultivariate calibration model.” Analytical Letters, 38(9), 1447–
1489.

Li, S. T., and Chen, S.-C. (2002). “Function approximation using robust wavelet neural net-

works.” Proceedings of ICTAI ’02, Washington, DC, 483–488.

Mallat, S. G. (1999). A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA.

Mellit, A., Benghamen, M., and Kalogirou, S. A. (2006). “An adaptive wavelet-network model

for forecasting daily total solar-radiation.” Applied Energy, 83, 705–722.

Oussar, Y., and Dreyfus, G. (2000). “Initialization by selection for wavelet network training.”

Neurocomputing, 34, 131–143.

Oussar, Y., Rivals, I., Presonnaz, L., and Dreyfus, G. (1998). “Trainning wavelet networks for

nonlinear dynamic input output modelling.” Neurocomputing, 20, 173–188.

Postalcioglu, S., and Becerikli, Y. (2007). “Wavelet networks for nonlinear systemmodelling.”

Neural Computing and Applications, 16, 434–441.

Samarasinghe, S. (2006). Neural Networks for Applied Sciences and Engineering. Taylor &
Francis Group, New York.

Wong, K.-W., and Leung, A. C.-S. (1998). “On-line successive synthesis of wavelet networks.”

Neural Processing Letters, 7, 91–100.

Xu, J., and Ho, D. W. C. (1999). “Adaptive wavelet networks for nonlinear system identifica-

tion.” Proceedings of American Control Conference, San Diego, CA.

Xu, J., and Ho, D. W. C. (2002). “A basis selection algorithm for wavelet neural networks.”

Neurocomputing, 48, 681–689.

Xu, J., and Ho, D. W. C. (2005). “A constructive algorithm for wavelet neural networks.”

Lecture Notes in Computer Science, 3610, 730–739.

Yao, X. (1999). “Evolving artificial neural networks.” Proceedings IEEE, 87(9), 1423–1447.

Zapranis, A., and Refenes, A. P. (1999). Principles of Neural Model Indentification, Selection
and Adequacy: With Applications to Financial Econometrics. Springer-Verlag, New York.

Zhang, Q. (1993). “Regressor selection and wavelet network construction.” Technical Report,

INRIA.

Zhang, Q. (1994). “Using Wavelet Network in Nonparametric Estimation.” Technical Report,

2321, INRIA.



80 WAVELET NEURAL NETWORKS

Zhang, Q. (1997). “Using wavelet network in nonparametric estimation.” IEEE Transactions
on Neural Networks, 8(2), 227–236.

Zhang, Q., and Benveniste, A. (1992). “Wavelet networks.” IEEE Transactions on Neural
Networks, 3(6), 889–898.

Zhang, Z. (2007). “Learning algorithm of wavelet network based on sampling theory.” Neuro-
computing, 71(1), 224–269.

Zhang, Z. (2009). “Iterative algorithm of wavelet network learning from nonuniform data.”

Neurocomputing, 72, 2979–2999.

Zhao, J., Chen, B., and Shen, J. (1998). “Multidimensional non-orthogonal wavelet-sigmoid

basis function neural network for dynamic process fault diagnosis.” Computers and Chem-
ical Engineering, 23, 83–92.




