
Chapter 11 

Modeling in Practice 

11.1. Modeling software 

11.1.1. Introduction 

The purpose of this chapter is to advise on a number of modeling precautions 
and to provide a few guidelines to users of modeling software packages. 

In an industrial context, the choice of a specific modeling package is most often 
not made by the engineer or technician who operates it. Whether in a research team 
or in a consulting company, the selection (or development policy) of the modeling 
tool proceeds from numerous considerations. The quality and accuracy of the 
modeling results is only one of the many criteria used in the selection process. This 
is because numerical modeling is increasingly integrated into multi-criteria decision-
making processes. Sophisticated algorithms and numerical techniques are nowadays 
“encapsulated” in user-friendly modules, served by efficient graphical interfaces 
with the purpose of facilitating modeling result interpretation and decision-making. 
To give but one example, commercial river flow modeling packages still use 
numerical schemes (for example, Preissmann’s scheme presented in Chapter 6) 
developed in the 1960s. For most of them, the development effort has concentrated 
on graphical interfaces or exchange modules with graphical or decision support tools 
such as database management systems, geographical information systems, etc.  

As indicated in Chapters 6 to 9, numerical techniques provide only 
approximations to the solutions of the governing equations. Some techniques are 
more accurate than others, some are more computationally efficient. Sometimes, 
accuracy and/or computational efficiency are optimal only for a specific type of 
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situation (e.g. rapid or slow transients, in the presence or absence of solution 
discontinuities, etc.). There is often little room for the modeling engineer to question 
the choice of a given software or numerical technique used in his team or company. 
The engineer’s task is rather to be as much aware as possible of the limitations (in 
terms of robustness, accuracy, validity of model assumptions) of the modeling 
package used, so as to minimize the risk of misuse and optimize the quality of the 
modeling results. 

The main two questions that must be answered by a modeler are (i) what are the 
key phenomena involved in the configuration to be modeled, and (ii) what are the 
basic requirements to be fulfilled by the numerical method so as to guarantee the 
quality of the numerical solution? Two basic examples of such modeling issues are 
given in the next sections. 

11.1.2. Conservation 

In many engineering applications related to environmental fluid mechanics, 
conservation is a key issue. As an example, mass conservation (both in terms of 
water and solute transport) may seem a natural requirement for a river flow 
modeling package. Mass conservation implies that the variation in the amount of 
water (or contaminant) stored within a reach is equal to the difference between the 
discharge across the upstream and downstream sections. If pollution or water 
resource allocation studies are to be carried out, conservation appears as an 
indispensable prerequisite in the model selection process. This simple condition, 
however, may not be satisfied if the modeling package solves the wrong form of the 
equations, as shown in the example hereafter. 

The continuity equation for transient flow in a channel has been presented in 
section 1.5.1. The conservation form is given by equation [1.84], recalled here: 

0=
∂
∂

+
∂
∂

x
Q

t
A

 

where A is the channel cross-sectional area and Q is the volume discharge. In some 
software packages, however, the dependent variables are not A and Q, but A and 
u = Q/A, where u is the flow velocity. Since Q = Au, equation [1.84] can be rewritten 
as: 
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In the case of smooth channel geometry, equations [11.1] and [1.84] can be 
approximated with a similar order of accuracy by a given numerical technique. If the 
geometry of the channel is locally discontinuous (see Figure 11.1), A and u are 
locally discontinuous (while Q is not) and thus locally non-differentiable. 
Approximating the terms xAu ∂∂ /  and xuA ∂∂ /  may lead to mass conservation 
problems. 
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Figure 11.1. Typical examples of discontinuous geometries in river modeling: sudden 
widening (a), bottom step (b). Side view (top), plan view (bottom) 

Similar conservation problems may appear if the term tA ∂∂ /  is rewritten as: 
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where b is the top width, h is the water depth and ζ is the free surface elevation (see 
section 2.5.2 and Figure 2.12 for the notation). If the channel width is a 
discontinuous function of z (Figure 11.2), b may become discontinuous and the 
estimate of thb ∂∂ /  (or tb ∂∂ /ζ ) may become incorrect. 

In the example of Figure 11.2, the section is piecewise rectangular. The free 
surface width switches discontinuously from b1 to b2 at z = z1. The derivative 

hAb ∂∂= /  is thus undefined for z = z1. Assume that the free surface elevation ζ  is 
lower than z1 (thus b = b1) at the beginning of the computational time step and 
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higher than z1 (thus b = b2) at the end of the computational time step. Any purely 
explicit or purely implicit estimate of b in the term thb ∂∂ /  yields an incorrect 
estimate for tA ∂∂ / . 
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Figure 11.2. Example of a channel geometry with a discontinuous top width. Left: cross-
sectional view of the geometry. Right: variations in A and b with the free surface elevation ζ 

Even if the geometry is smooth, not solving the conservation form of the 
equations may yield erroneous solutions in the presence of discontinuous solutions 
(shock waves in the field of gas dynamics; hydraulic jumps or moving bores in free 
surface hydraulics). This is due to the non-uniqueness of weak solutions (see 
Chapter 3 for more details). Indeed, the conservation, non-conservation and 
characteristic forms of the governing equations are not equivalent in the presence of 
discontinuous solutions because the partial derivatives are locally undefined. 

This is illustrated by the dambreak simulation shown in Figure 11.3.  
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Figure 11.3. Dambreak problem. Solution at t = 35 s 
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The problem and its analytical solution are presented in detail in section 4.3.3. 
Recall that the solution consists of a region of constant state separated from the 
upstream and downstream sides of the dam by a rarefaction wave and a shock 
respectively. The initial water levels on the left- and right-hand sides of the dam are 
respectively 10 m and 1 m. Two numerical techniques are used to solve this 
problem. Figure 11.3 (left) shows the results obtained at t = 35 seconds with the 
finite difference-based, first-order method of characteristics (see section 6.2). 
Figure 11.3 (right) shows the results obtained using the finite volume-based, 
Godunov scheme (section 7.2), with fluxes calculated by the HLL approximate 
Riemann solver (see section C.1 in Appendix C for a description of this solver). 

The first-order method of characteristics yields an overestimated water depth in 
the intermediate region of constant state, while the speed of the shock is 
underestimated. It is clearly visible from the figure that the total volume of water is 
not conserved with this method. A numerical integration indicates that the volume of 
water per unit width computed by the method of characteristics is 5,168 m2, for an 
initial volume per unit width of 5,520 m2. Approximately 6% of the total volume is 
lost artificially over the 35 simulated seconds. In contrast, the volume is preserved 
exactly in the Godunov simulation. 

11.1.3. Solution monotony 

The solutions of hyperbolic systems of conservation laws are essentially TVD. 
The practical consequence is that oscillations cannot develop spontaneously in the 
solutions of hyperbolic systems (unless specific combinations of boundary 
conditions and/or source terms are used). This is why TVD and upwind schemes are 
particularly praised by environmental modelers. 

As an example, centered schemes are not popular in the field of contaminant 
transport modeling because they induce artificial oscillations in the computed 
profiles. For instance, artificial oscillations around a small or zero background 
concentration may yield locally negative concentration values in the numerical 
solution of a contaminant transport model. Although such oscillations may be easily 
justified from a mathematical point of view on the basis of truncation error analyses 
or from scheme phase and amplitude portraits (see Appendix B), their physically 
unrealistic character makes them hardly acceptable to decision-makers. The modeler 
is left with two options: 

(1) Using a TVD scheme allows the monotone character of the solution to be 
preserved, thus eliminating physically unrealistic solutions. Moreover, the numerical 
diffusion applied by TVD schemes in the neighborhood of steep gradients 
contributes to make the solution more “realistic” than non-TVD schemes, because 
they imitate the diffusion and dissipation mechanisms that are present in natural 
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processes. It must be remembered however that numerical diffusion or dispersion 
proceed from truncation errors and that they should be seen as a sign that the 
numerical solution is not optimally accurate. 

(2) In contrast, non-TVD schemes such as centered schemes (see section 6.5) 
minimize numerical dissipation. For this reason, they are most appreciated in 
modeling fields where numerical diffusion and dissipation are seen as “parasitic” 
phenomena that jeopardize the quality of the solution. This is the case for instance in 
the field of turbulence modeling, where upwind schemes are considered too 
dissipative. 

In solving real-world modeling problems, the choice of a numerical technique 
most often results from a trade-off between the accuracy of the numerical solution 
and the monotony or positivity properties of the analytical solution that are deemed 
essential by the modeler. 

11.2. Mesh quality 

Meshing is an important step in the modeling process. Despite the availability of 
efficient mesh generation packages, meshing complex geometries still requires 
human supervision. Optimal result quality is achieved if the mesh is regular and 
isotropic. These issues are illustrated with the two-dimensional shallow water 
equations. 

Mesh regularity. Numerical methods usually need 3 to 5 grid points (or cells, or 
elements) to represent steep gradients or discontinuities, as shown by the numerical 
results presented in Chapters 6 to 8. Strongly diffusive numerical methods may 
induce front smearing over 10 to 20 cells (see the tests presented in Chapter 8). A 
strong size contrast between neighboring cells in a grid may amplify the artificial 
smearing. The consequence may be an artificial damping of transients in some parts 
of the model.  

An example of mesh generation is given in Figure 11.4. The purpose is to 
generate a mesh for a river main channel and floodplain simulations. The width of 
the river banks imposes the minimum size for the elements. The banks being narrow 
compared to the floodplain, the modeler may be tempted to generate a mesh with 
elements rapidly increasing in size in the direction of the floodplain. The ratio of the 
area of the smaller to the larger elements is approximately 250. The transition takes 
place within 4 to 5 elements, which implies an area ratio of 3 to 4 between two 
neighboring cells. A ratio of 1.5 to 2 is usually advised. 
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Figure 11.4. Example of a strongly irregular mesh.  
Top: perspective view. Bottom: plan view 

Mesh isotropy. Another issue in two-dimensional mesh generation is the meshing 
of long and narrow geometric features, such as dikes, roads, river embankments, etc. 
Using long and narrow elements may allow for a substantially reduced 
computational effort. The modeler is usually inclined to stretch the mesh in the 
direction of the flow in the main channel and along the river banks (Figure 11.5). 
The aspect ratio of the cells used to discretize the channel embankments in 
Figure 11.5 is between 7 and 10. 
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This meshing approach is traditionally justified with the argument that the 
Courant number, that is the key parameter to the quality of the numerical solution, 
should be the same in the longitudinal and transverse direction in order to maximize 
solution accuracy. If the purpose is to simulate passive scalar advection, the Courant 
number is determined by the flow velocity vector and stretching the mesh in the 
longitudinal direction is justified. 

 

Figure 11.5. Example of a strongly anisotropic mesh.  
Top: perspective view. Bottom: plan view 

If the purpose is to simulate floodplain dynamics and two-dimensional free 
surface transients, however, the Courant number is determined from the propagation 
speed of the waves. As shown in Chapter 5, the domain of dependence of the 
solution is made of two surfaces in the phase space (Figure 11.6). The first surface is 
the curved line with tangent vector (u, v, 1). The second surface is a conical surface, 
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expanding from the first surface at a speed c = (gh)1/2. Two situations may be 
considered: 

– Subcritical flow: the plan view shape of the dependence domain of the solution 
over a time step Δt is circular (Figure 11.6a). The domain of dependence of the point 
A in Figure 11.6a is a circle centered around B, that is shifted from A by a distance 
(u2 + v2)1/2 Δt.  The domain of dependence is isotropic. Stretching the computational 
cell in the direction of the flow artificially increases the weight of lateral elements in 
the estimate of the gradients.  

– Supercritical flow (Figure 11.6b): the point A is not included in the domain of 
dependence of the solution. The shape of the domain of dependence becomes 
narrower as the Froude number (the Mach number in the case of gas dynamics 
simulations) increases. Figure 11.6b shows the shape of the domain of dependence 
for a Froude number Fr = 2.5. In this case, the ratio of the longitudinal to transverse 
dimensions of the domain of dependence is (2.5 + 1)/2 = 1.75. Stretching the cells 
by a factor larger than 2 in the longitudinal direction is not justified. 
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Figure 11.6. Domain of dependence of a point A. Subsonic/subcritical case (a), 
supersonic/supercritical case (b). Top: perspective view. Bottom: plan view  
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The longitudinal and transverse dimensions of the domain of dependence of 
point A are given by: 
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the minimum operator, min( ) allows a single expression to be obtained for both 
subcritical/subsonic and supercritical/supersonic conditions. The aspect ratio of the 
domain of dependence is thus obtained as: 
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where cvu /)(Fr 2/122 +=  is the Froude number. In the field of gas dynamics, the 
Froude number is replaced with the Mach number M, thus yielding the following 
formula: 
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Equations [11.4] and [11.5] show that stretching the mesh in the longitudinal 
direction is not justified in the case of subcritical/subsonic flow configurations if the 
purpose is to solve the hydrodynamic equations. Strong mesh aspect ratios should be 
used only in the case of scalar transport. 

Mesh anisotropy does not have the same consequences on solution accuracy for 
explicit and implicit schemes: 

– if the numerical scheme used is explicit, numerical diffusion is higher when the 
Courant number is smaller (see the amplitude portraits shown in Appendix B). 
Consequently, gradient smearing is stronger in the direction the mesh is stretched; 

– if an implicit numerical scheme is used, numerical diffusion is usually stronger 
for larger Courant numbers. Gradient smearing occurs preferentially in the direction 
perpendicular to mesh stretching. A classical consequence of this is the artificial 
polarization of the velocity field along the wider dimension of the mesh. 
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11.3. Boundary conditions 

11.3.1. Number and nature of boundary conditions 

The number of conditions to be prescribed at a model boundary is the number of 
characteristics entering the computational domain (see Chapters 1 and 2, [CUN 80]). 
For a one-dimensional configuration, the following holds: 

– For all the scalar laws presented in this book, the propagation direction of the 
characteristics is that of the flow. Consequently, one boundary condition is needed at 
each inflowing boundary. Typically, the boundary condition is supplied in the form 
of a prescribed value (prescribed concentration in the case of contaminant transport, 
water saturation for the Buckley-Leverett model, flow velocity for the inviscid 
Burgers equation) or a prescribed flux F at the boundary. 

– The water hammer equations (section 2.4) are characterized by two constant, 
opposite wave speeds. There is one incoming characteristic at each domain 
boundary. One boundary condition is needed at each end of the model. The most 
classically used conditions are prescribed pressure, prescribed discharge, and 
pressure-discharge relationships (e.g. pumps). 

– In the Saint Venant equations (section 2.5), the number of boundary conditions 
is a function of the flow regime. Supercritical inflow requires two boundary 
conditions, supercritical outflow requires none. Both subcritical inflow and outflow 
require one boundary condition. Typical boundary conditions in free surface 
hydraulics are prescribed water level, prescribed discharge and stage-discharge 
relationships. 

– In the Euler equations (section 2.6), the number of boundary conditions is also 
a function of the flow regime. Supersonic inflow requires three boundary conditions, 
supersonic outflow requires none. Subsonic inflow requires two boundary 
conditions, subsonic outflow requires only one. Classical types of boundary 
condition are prescribed pressure, prescribed flow velocity, prescribed density. 

Almost all market-available simulation software packages are equipped to deal 
with all these types of boundary conditions, thus leaving the modeler with an 
unbounded number of possibilities to model a given situation. The modeler should 
be aware, however, that some combinations of boundary conditions must be used 
with extreme care, and that certain boundary condition types may not be used at all 
boundaries of the model. He should also be aware that the model may not be able to 
prescribe the desired boundary value in certain situations. These aspects are 
explored in the following sections. 
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11.3.2. Prescribed discharge/flow velocity 

Prescribed discharge conditions are classical in pipe transient and free surface 
flow simulations. Gas dynamics simulations rather use prescribed flow velocity 
conditions. Prescribing such conditions at the upstream boundary of a computational 
domain usually poses no problem. Prescribing an outflowing discharge or velocity at 
the downstream boundary of a model may jeopardize the simulation. The reasons for 
this are the following: 

(1) There exists a maximum possible value for the prescribed discharge or flow 
velocity at a downstream boundary. This is true for the water hammer equations, 
Saint Venant and Euler equations. This point is illustrated with the Saint Venant 
equations in a frictionless horizontal, rectangular channel. In this case, the 
characteristic form of the equations (see section 2.5) simplifies to: 
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Consider a channel with water depth and flow velocity h0 and u0 next to the 
right-hand boundary. Since the water is flowing out of the channel, the flow velocity 
u0 is assumed positive. The second characteristic equation [11.6] leads to: 
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where hb and ub the water depth and flow velocity at the downstream boundary. 
Equation [11.7] can be rewritten as:  

2/12/1
00 )(2)(2 bb ghghuu −+=  [11.8] 

The unit discharge qb = hb ub at the downstream boundary is therefore: 
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The function qb(hb) is zero for hb = 0 and for a depth hmax defined as: 
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Figure 11.7 illustrates the behavior of the function qb(hb).  
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Figure 11.7. Unit discharge qb at the downstream boundary of the domain  
as a function of the downstream water depth hb 

The function qb is maximum for hb = h1 such that dqb/dhb = 0, that is: 
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The maximum possible prescribed discharge qmax at the downstream boundary is 
given by: 
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(2) It is not possible to prescribe an outflowing velocity yielding a Froude 
number (Mach number for gas dynamics simulations) larger than unity at the 
downstream boundary of the domain. 

(3) Prescribing the discharge at both ends of a channel reach is not advised 
[CUN 80]. Indeed, this is an indirect way of prescribing the amount of fluid stored 
in the domain. This may lead to simulation problems if the outflowing discharge is 
larger than the inflowing discharge, because the net mass balance may exceed the 
quantity of water available in the model at some stage. 

11.3.3. Prescribed pressure/water level 

In free surface hydraulics, prescribed water level conditions are usually met at 
the downstream end of river models. An exception is the simulation of tidal flows, 
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where the water level may be prescribed at both ends of the modeled reach. In the 
field of water hammer and gas dynamics simulations, the pressure may be 
prescribed at any model boundary.  

It is not always possible to prescribe the desired value of the pressure or water 
level at a domain boundary.  This is because prescribing too low a pressure or level 
may trigger supercritical outflow, a situation where the flow variables at the 
boundary are entirely determined from the low conditions inside the domain. Since 
all the characteristics leave the domain, attempting to prescribe a pressure or water 
level in such situations is meaningless. 

The example of the Saint Venant equations in a rectangular, horizontal channel 
presented in section 11.3.2 is used again. The Froude number at the boundary is 
obtained from equation [11.8] as: 
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It is easy to check that Frb is a decreasing function of hb and that Frb = 1 for 
hb = h1 as defined in equation [11.11]. The behavior of the function Frb(hb) is 
illustrated in Figure 11.8: 

– For hb > h1, Frb is smaller than unity. The characteristic (u – c) enters the 
domain. A boundary condition may be prescribed. 

– For hb < h1, Frb is larger than unity. The characteristics (u – c) and (u + c) leave 
the domain and hb cannot be prescribed at the boundary. 
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Figure 11.8. Froude number Frb at the right-hand boundary as a function  
of the downstream water depth hb 
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The above reasoning remains valid for any hyperbolic system with wave speeds 
that may change sign, such as the Euler equations. 

11.3.4. Stage-discharge and pressure-discharge relationships 

In the field of pipe transient modeling, pressure-discharge relationships are used 
to represent head losses across a singularity, one side of which is connected to a 
node with a fixed pressure. They are also used to represent pumps taking water from 
a source with a known pressure. In the field of free surface flow modeling, stage-
discharge relationships are often used to provide a condition at a boundary of the 
model where no measurement is available for the water level or discharge. In such a 
case, the stage-discharge relationship is a function of the channel geometry and is 
derived from specific assumptions on the flow regime: the assumption of a uniform 
or critical flow allows the discharge to be inferred from the water level. Using the 
assumption of uniform flow leads to equation [1.83], recalled here: 
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where A is the cross-sectional area, nM is Manning’s friction coefficient, S0 is the bed 
slope and χ is the wetted perimeter. The assumption of critical flow leads to: 
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where b is the top width of the channel. 

Pressure-discharge and stage-discharge relationships must be used with care. In 
particular: 

(1) the inflowing discharge at an upstream boundary should always be a 
decreasing function of the pressure or water level, 

(2) the outflowing discharge at a downstream boundary should always be an 
increasing function of the pressure or water level. 

The computational solution may become unstable if these rules are not satisfied. 
The reason for this is the following: 

– Consider an inflowing (upstream) boundary for a water hammer model. 
Assume that the discharge is an increasing function of pressure. Any increase in the 
pressure at the boundary (such an increase may be triggered by a transient 
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propagating in the pipe) results in an increase in the discharge. From continuity, 
increasing the discharge at the upstream boundary triggers fluid compression, which 
triggers an increase in the pressure. This in turn generates an increase in the 
discharge. This cyclic behavior results in instability. Note that the reasoning also 
holds for a decrease in the discharge. Similar arguments may be used for the shallow 
water equations (with the difference that the pressure is replaced with the water 
level). 

– Consider an outflowing boundary. Assume that the discharge is a decreasing 
function of pressure. Any increase in the pressure resulting from transients generated 
within the domain yields a decrease in the discharge at the downstream boundary. 
From continuity, this triggers fluid compression, thus leading to a pressure increase. 
This triggers a new decrease in the pressure. Repeating the cycle may lead to 
instability in this case too. 

– In contrast, prescribing a decreasing pressure-discharge condition at the 
upstream boundary or an increasing pressure-discharge relationship at the 
downstream boundary contributes to stabilizing the solution. 

11.4. Numerical parameters 

11.4.1. Computational time step 

Most numerical methods presented in Chapters 6 to 10 achieve optimal accuracy 
when the absolute value of the Courant number of the waves is close to one. When 
the flow and geometry are highly variable in space, it is not possible to maintain the 
same value of the Courant number at all points for all waves. The computational 
time step often results from a trade-off between solution accuracy and computational 
efficiency. Recall that: 

– explicit schemes are subjected to a stability constraint. This constraint imposes 
that the absolute value of the Courant (also called CFL) number of the faster wave 
should not be larger than unity. Simulation packages using explicit methods may 
reduce the computational time step during the simulation so as to enforce the 
stability constraint. The computational time step actually used may not always be 
the computational time step requested by the user; 

– implicit schemes are not subjected to stability constraints. Commercially 
available simulation packages classically use the time step requested by the user, 
even when this yields very large values of the Courant number. It is advised that the 
modeler estimate roughly the typical wave speeds to be encountered during the 
simulation, so as to specify a computational time step that will ensure an average 
Courant number close to one. 
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11.4.2. Scheme centering parameters 

Implicit schemes such as the Preissmann scheme or the finite element schemes 
presented in Chapter 8 use a time-centering parameter θ. This parameter is used to 
weight the respective contributions of the time levels n and n + 1 in the calculation 
of the space derivatives. θ = 1/2 give the same weight to the known time level n and 
the unknown time level n + 1. The larger θ, the larger the contribution of the 
unknown time level n + 1. Centered schemes, such as the Crank-Nicholson or 
Galerkin technique with symmetrical shape functions, give unstable solutions for 
θ < 1/2. When θ is set to 1/2, oscillations usually appear in the computed solutions 
when Cr ≠ 1 because the numerical diffusion in the truncation error is set to zero, 
thus leaving room for numerical dispersion (see Appendix B for detailed 
considerations). Increasing θ allows numerical diffusion to be increased, thus 
leading to solution stabilization, profile smoothing and artificial wave damping. 

The Preissmann scheme uses an additional, space centering parameter ψ. Such a 
parameter is also used or wave speed interpolation by the semi-implicit finite 
element techniques presented in Chapter 8. When hyperbolic systems are dealt with, 
with waves traveling in opposite directions, using ψ = 1/2 is advised because this 
allows the waves with positive and negative speeds to be treated in a symmetrical 
way. 

11.4.3. Iteration control 

Implicit schemes for the solution of nonlinear systems involve iterative 
procedures. Iterations are also needed in the case of the Alternate Directions Implicit 
(ADI) technique for the solution of multidimensional systems (see section 6.9.2). 
The question arises of the criteria used to assess the degree of convergence of the 
iterative procedure. Four options are available: 

– the number of iterations is pre-defined by the user of the numerical technique. 
The same number of iterations is made at each computational time step, regardless 
of the degree of convergence of the solution at the end of the iterative loop; 

– the user defines iteration stop criteria. Convergence may be checked by 
computing the residual of the system to be solved, or the difference between two 
successive values of the solution from one iteration to the next. Iterations are 
stopped when the residual or the difference between two successive iterations falls 
below a predefined threshold. Some packages also allow a maximum permissible 
number of iterations to be defined. The iterative procedure is stopped when this 
maximum number of iterations is reached, regardless of the state of convergence of 
the solution; 
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– the number of iterations and/or the convergence criteria are determined 
automatically by the software. Although interesting at first sight because this does 
not require the supervision of an experienced user, this option is questionable 
because the user loses any control on the degree of accuracy of the solution; 

– some packages simply perform no iteration, which allows the computational 
cost of the solution procedure to be reduced dramatically. This, however, may result 
in strongly degraded solutions. 

If a convergence criterion is to be specified by the user, it may be worth 
documenting the formula used. In general, two options are available in 
computational hydraulics packages: 

– convergence is checked locally: the residual of the system to be solved (or the 
difference between two successive iterations) is computed at each point (or cell, or 
node) of the computational grid. Convergence is achieved if each of the 
computational points falls below the predefined iteration stop criteria. Convergence 
implies that the numerical solution is satisfied at all points with a satisfactory degree 
of accuracy. The drawback of this approach is the large number of iterations often 
required; 

– convergence may be checked on average over the computational domain. For 
instance, an average value is computed for the residual over the entire domain; or the 
average value of the difference between two successive iterations is used for 
comparison with the convergence criteria. This latter approach is faster than the 
former because there are always areas in the computational domain where 
convergence is achieved faster than in other areas. The solution may be considered 
“converged” in an average sense even though there are regions in the domain where 
convergence is far from being achieved. The resulting error may propagate into the 
rest of the computational domain at later times. For this reason, specifying strict 
convergence criteria may prove beneficial in the long term, even though the solution 
process may be slowed down at early simulation stages. 

11.5. Simplifications in the governing equations 

11.5.1. Rationale 

Some of the numerical techniques presented in Chapter 6 are not equipped to 
deal with transcritical flow configurations. This is the case with the Preissmann 
scheme presented in Chapter 6. Although transcritical versions of the scheme have 
been proposed in the literature [JOH 02], they do not seem to have been 
implemented in industrial packages. To overcome this problem, practical 
implementations of these schemes in engineering free surface flow modeling 
software often solve a simplified version of the equations. In these software 
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packages, the governing equations are simplified so as to guarantee that the waves 
(u – c) and (u + c) always propagate in opposite directions. Examples of such 
techniques are the Local Partial Inertia (LPI) and the Reduced Momentum Equation 
(RME) approaches. Practical consequences of these techniques are detailed in 
[NOV 10], only the broad lines of the techniques are given here. 

11.5.2. The Local Partial Inertia (LPI) technique 

The LPI approach [JIN 00] consists of multiplying the inertial terms tQ ∂∂ /  and 

xAQ ∂∂ /)/( 2  in the Saint Venant equations by a coefficient ε that decreases from 
one to zero as the absolute value of the Froude number approaches unity: 
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This amounts to dividing the other terms of the equation by ε: 
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The Jacobian matrix A is modified into: 
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The eigenvalues of A are: 
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These eigenvalues are identical to the exact eigenvalues u – c and u + c only 
when ε = 1. When the Froude number tends to one, ε tends to zero and the 
eigenvalues λ(1) and λ(2) as given by equation [11.16] tend to infinity. For Froude 
numbers larger than one, ε = 0 and the diffusive wave approximation is obtained. 
The diffusive wave model is not a hyperbolic model. Figure 11.9 shows the 
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variations of λ(1)/c and λ(2)/c with the Froude number with a weighting function ε 
given by: 

)Fr1,0max( 2−=ε  [11.19] 

The theoretical wave speeds are λ(1)/c = Fr – 1 and  λ(2)/c = Fr + 1. As illustrated 
in Figure 11.9, the wave speeds in the LPI approach depart from the theoretical 
values as the absolute value of the Froude number approaches unity. This should be 
expected because a large Froude number value means that the inertial terms play a 
significant role in the momentum equation. Neglecting these terms can only lead to 
incorrect wave speed estimates.  
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Figure 11.9. Wave speeds given by the LPI approach. Dashed lines: theoretical.  
Solid lines: equations [11.18–19] 

11.5.3. The Reduced Momentum Equation (RME) technique 

The RME approach [DHI 05] is similar in essence to the LPI approach, except 
that only the derivative xAQ ∂∂ /)/( 2  in the Saint Venant equations is multiplied by 
the weighting coefficient ε in the momentum equation: 
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The behavior of ε with the Froude number is the same as in the LPI approach: 
ε decreases from one to zero when the absolute value of the Froude number 
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increases from 0 to one. Neglecting the variations in ε with Q and A, the following 
Jacobian matrix is obtained: 
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The main difference with the LPI approach is that the system remains hyperbolic 
under supercritical conditions. The eigenvalues of A are: 
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Figure 11.10 shows the variations of λ(1)/c and λ(2)/c with the Froude number 
with ε defined as in equation [11.19]. Note that the modified wave speeds do not 
change sign with the Froude number. This makes it impossible to reproduce 
supercritical flow conditions. For large Froude numbers, the wave speeds are equal 
to the propagation speeds of the waves in still water. As in the LPI technique, the 
inertial terms are neglected in the range of Froude numbers where they are 
predominant.  
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Figure 11.10. Wave speeds given by the RME approach.  
Dashed lines: theoretical. Solid lines: equations [11.19–20] 

11.5.4. Application examples 

11.5.4.1. Steady flow over a bump 

The RME technique is applied to the steady state shallow water test case 
presented in Chapter 9. The description and parameters of the test case can be found 
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in section 9.6. The reference solution is the solution obtained using the Auxiliary 
Variable-based Balancing (AVB) technique presented in section 9.5, with equations 
[9.91] and [9.101] for the estimate of Δh. This solution is plotted on the left-hand 
side of Figure 11.11. 
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Figure 11.11. Steady flow over a bump computed using the Auxiliary Variable-based 
Balancing approach (AVB) and the AVB approach combined with the Reduced Momentum 

Equation approach (AVB-RME). Top: free surface elevation.  
Middle: unit discharge. Bottom: hydraulic head 
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The profiles on the right-hand side of Figure 11.11 are the water level, unit 
discharge and hydraulic head obtained by applying the RME approach and the AVB 
technique to the calculation of the fluxes. Note that the RME approach influences 
only the estimate of the momentum flux within the computational cells, by 
multiplying the term q2/h with the coefficient ε. 

The most striking feature is the impossibility for the RME approach to reproduce 
the hydraulic jump on the downstream side of the bump. This was to be expected 
because the RME approach does not allow supercritical conditions to be reproduced. 
The consequence is a local increase in the water level across the bump and a reduced 
head loss because friction is reduced due to the artificially increased water depth. 

The peak discharge observed across the hydraulic jump in the original AVB 
approach is replaced with small amplitude oscillations on both sides of the bump. 
Another striking feature is the artificial increase in the hydraulic head induced by the 
RME approach across the bump. While the original AVB approach classically 
computes a decreasing head profile from upstream to downstream, applying the 
RME approach yields an increase on both sides of the bump. The singular head loss 
at the location of the jump is correctly identified by the AVB solution. Since the 
hydraulic jump cannot be represented in the RME approach, this singular head loss 
is not represented in the RME solution.  

11.5.4.2. Dambreak problem 

The RME technique is applied to the dambreak problem presented in 
section 10.3.4, with the parameters given in Table 1. Remember that the dambreak 
problem is a Riemann problem, for which an analytical solution is available (see 
Chapter 4, and more specifically section 4.3.3).  

The numerical solution is obtained using a first-order finite volume scheme with 
a HLL Riemann solver, where the fluxes are computed using the RME approach. 
The cell size and time step are respectively Δx = 1 m and Δt = 2×10–2 s. Δt is 
approximately three times as small as the maximum permissible time step allowed 
by the stability constraint of the scheme. However, experience shows that using 
larger values for Δt yields sharp oscillations in the computed profiles in the 
transcritical region of the solution. 

The numerical solution at t = 30 s is compared to the analytical solution in 
Figure 11.12. The formula of the flux being modified via the coefficient ε, the speed 
of the shock is modified in the numerical solution compared to the analytical 
solution. The solution in the intermediate region of constant state thus differs from 
the analytical solution. 
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Figure 11.12. Dambreak problem. Analytical solution and numerical  
solution obtained using the RME approach 

11.6. Numerical solution assessment 

11.6.1. Software solution accuracy 

The modeler’s main concern is that the software package used should actually be 
able to solve the governing equations with a reasonable degree of accuracy. This 
leads to the key notion of numerical convergence: the numerical solution is said to 
converge to the analytical solution if it converges uniformly to it as the time step Δt 
and cell width Δx tend to zero. Solution convergence should be viewed as a 
necessary condition to model applicability in that it guarantees that the “actual” 
solution can be computed numerically with any arbitrary degree of accuracy 
provided that sufficient computational effort is spent in refining the discretization of 
space and time. 

Convergence is related to the notions of consistency and stability. The purpose of 
this section is to give an overview of consistency, stability and convergence issues. 
Consistency and stability analysis techniques are presented in Appendix B. 
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11.6.2. Assessing solution convergence 

A widespread way of assessing the convergence of the numerical solution 
consists of solving numerically a test case for which an analytical solution is 
available. In the case of a one-dimensional, scalar conservation law solved over a 
solution domain [0, L], a numerical solution n

iU  and an analytical solution 

),( n
i txU is assumed to be available at all points xi of the discretized domain [0, L] 

for a given time tn. The pointwise error, defined as the difference between the 
numerical and analytical solution, is computed as: 
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The Lp–norm of the error (where p is an integer) is given by the numerical 
integral: 
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The most widely used measure of error is the L2–norm. Sometimes, the L∞–norm 
is used. It is obtained as the limit expression of equation [11.24] when p tends to 
infinity as: 

n
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Solution convergence is achieved by computing the numerical solution at a given 
time for different values of Δx. Note that Δt must be decreased proportionally to Δx 
so as to preserve a constant value for the Courant number and to preserve the 
stability properties of the solution. The Lp–norm is computed for each of these 
values of Δx. If Lp tends to zero as Δx tends to zero, the numerical solution is 
convergent. 

 The order of convergence of the solution is said to be α if a power law can be 
fitted to the experimental pairs (Δx, Lp): 

αxKLp Δ=  [11.26] 

 where K is a constant. A very simple way of estimating α consists of plotting Lp and 
Δx along logarithmic axes. α is the slope of the straight line that can be fitted to the 
set of experimental points (log(Δx), log(Lp)). Figure 11.13 shows an example of such 
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a graph. The solution given by Scheme 1 (circular dots) can be approximated by a 
straight line with slope 1 in logarithmic coordinates (the L2–norm of the error is 
multiplied by 102 when Δx is multiplied by 102). The solution given by Scheme 2 
(cross-shaped dots) can be approximated with a line with slope 2 (the L2–norm of 
the error is multiplied by 104 when Δx is multiplied by 102). Therefore, the orders of 
convergence of the solutions obtained by Schemes 1 and 2 are respectively 1 and 2. 
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Figure 11.13. Examples of L2–norm of the error as a function of Δx for 
two different numerical schemes 

11.6.3. Consistency analysis – numerical diffusion and dispersion 

For the sake of simplicity, consider a scalar conservation law in the form [1.1], 
recalled here: 

S
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∂
∂  

As shown in Appendix B (see section B.1), discretizing equation [1.1] (or its 
non-conservation, or characteristic form) leads us to solve a different equation that 
can be written in the form: 
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where the difference TE between the discretized equation and the original equation 
is called the truncation error. While the purpose is to solve equation [1.1], 
equation [11.27] is solved instead. The truncation error is made of an infinite sum of 
elementary terms formed by powers of Δx and Δt. These terms also include the 
higher-order derivatives of U with respect to x and t: 
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where ap, bp, cp and dp are integer powers for the pth term in the truncation error and 
kp is a coefficient that usually depends on the Courant number Cr = λ Δt/Δx.  

Section B.1 in Appendix B shows how the expression for the truncation error is 
derived from the numerical scheme. When Δx and Δt tend to zero, the terms with 
smaller powers of Δx and Δt in equation [11.28] become predominant over the other 
terms. In the field of numerical methods for hyperbolic conservation laws, two main 
situations occur: 

(1) Numerical diffusion occurs when the truncation error [11.28] can be written 
in the form: 
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where HOT represents the sum of the higher-order terms in the sum [11.26]. D is a 
so-called numerical diffusion coefficient that usually depends on Δt, Δx and possibly 
the Courant number. 

(2) Numerical dispersion is encountered when the truncation error [11.28] can be 
written in the form: 
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where k1 and k2 are so-called dispersion coefficients. 

Numerical diffusion and numerical dispersion influence the behavior of the 
numerical solution in very different ways (Figure 11.14). Numerical diffusion tends 
to smooth out the computed profiles (Figure 11.14a), thus leading to the damping of 
transients via dissipation of the energy contained in the solution signal. Numerical 
dispersion, in contrast, modifies the speed at which the various components of the 
solution propagate. Shifting these components with respect to each other introduces 



476     Wave Propagation in Fluids 
 

oscillations in the computed profiles, especially in the neighborhood of steep 
gradients (Figure 11.14a).  
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Figure 11.14. Typical effects of numerical diffusion (a) and numerical dispersion  
(b) on the numerical solution 

Numerical dispersion destroys the TVD character of the numerical solution. In 
the field of linear PDEs or hyperbolic systems (passive scalar transport, see 
section 1.3; or water hammer problems, see section 2.4), numerical dispersion may 
simply result in non-physical results, such as negative concentrations or pressures. If 
the PDEs to be solved are nonlinear, numerical dispersion may result in nonlinear 
instability.  

11.6.4. Stability analysis – phase and amplitude portraits 

Linear (or harmonic) stability analysis provides valuable information on the 
performance of the numerical technique used. How amplitude and phase portraits 
should be derived for a given scheme is dealt with in section B.2.5 (Appendix B). 
The amplitude portrait of a scheme indicates how a harmonic component with wave 
length M in the solution is amplified from one time step to the next by the numerical 
scheme. The amplification factor |AN| is usually given as a function of the so-called 
wave number M: 

x
LM

Δ
=  [11.31] 

The minimum possible value for M is 2 (at least two points are needed to 
represent one period of a harmonic component). Applying the numerical scheme 
over k computational time steps to a harmonic component of wave length L with a 
cell width Δx yields an amplification by a factor |AN|k. A steep front or discontinuity 
in the solution is represented by half a wavelength that is L/2. 
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Assume for instance that the explicit upwind scheme is used to compute the 
solution of the linear advection equation over 100 time steps (k = 100) with a 
Courant number Cr = 0.5. The amplitude portrait of the scheme is shown in 
Figure B.2. The numerical values of |AN| and |AN|k (k = 100) are shown in Table 11.1 
for various values of M. 

M |AN| |AN|100  M |AN| |AN|100 

2 0.0 0.0  30 0.995 0.58 

10 0.951 6.6×10–3  50 0.990 0.82 

16 0.981 0.14  100 0.999 0.95 

20 0.988 0.29  200 0.9999 0.99 

Table 11.1. Amplification factor for Cr = 0.5 as a function of the wave number M 

As the table indicates, if 16 cells are used to describe one wavelength of the 
harmonic component (8 cells for half a wavelength), only 14% of the initial 
amplitude remains after 100 time steps at Cr = 0.5. If 30 cells are used for one 
period (15 cells for half a wavelength), the harmonic component is damped by more 
than 40% after 100 computational time steps. The practical consequence of this is 
that an initially discontinuous profile is spread artificially over 8 to 15 cells within 
100 computational time steps. Operating the explicit upwind scheme at Cr = 0.5 
requires that any steep front in the initial profile be represented by at least 8 cells for 
the numerical solution to be reasonably accurate after 100 computational time steps. 
This is why the first-order upwind scheme is classically admitted to require 
approximately 10 cells to represent a steep front or a discontinuity. 

11.7. Getting started with a simulation package 

Sections 11.1 to 11.5 only provide examples of problems that may occur when 
industrial computational hydraulics packages are used. The list of issues raised in 
these sections is not exhaustive. The modeler’s responsibility is to be aware of the 
limitations and weaknesses of the algorithms implemented in the software package 
he is using. Experience shows that the user of a modeling package quickly becomes 
used to this tool and very often makes the algorithms and solution techniques an 
integral part of his way of thinking and interpreting the modeled reality. 

For this reason, the “getting started” phase every modeling software user must go 
through when learning to use a specific package is extremely important because it 
largely conditions the future perception of (and way of using) the software by the 
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user. It is believed that the following recommendations will help any modeler when 
learning to use a new modeling package: 

(1) Always read the manuals. Very often, commercially available or public 
domain computational hydraulics/fluid dynamics packages are provided with a 
detailed documentation that includes a description of the governing equations, 
solution algorithms and user options available. Reading the documentation 
thoroughly most often allows the experienced user to identify the possible 
weaknesses and limitations of the modeling software package. 

(2) Always run the sample test cases provided with the package. A complete 
package documentation should include sample test files, with test cases for which 
analytical solutions are available (dambreak problem for the open channel equations, 
sudden valve failure for the water hammer equations, etc.) Solving these test cases 
often provides a fair idea of the degree of accuracy of the solution techniques. 

(3) Assess the sensitivity of the package to the numerical parameters. Complying 
with step (2) is not sufficient. Sample test cases are often chosen to demonstrate the 
ability of the software to reproduce theoretical solutions, hence proving its accuracy. 
It may happen, however, that modifying slightly some of the numerical parameters 
(time centering coefficient, computational time step, iteration convergence criteria, 
etc.) leads to a strong degradation in the quality of the numerical result. If the 
package is oversensitive to the numerical parameters used, it is always worth 
knowing. 

(4) Invent your own test cases. Since the purpose of a software vendor is to sell 
the software packages, situations where the package performs poorly are usually not 
documented, and no sample test cases are provided for them. For this reason, it is 
advised not to restrict the test phase to step (2) and (3). The user should invent 
his/her own test cases and test the physical plausibility of the solution, even when no 
analytical solution is available for comparison.  

The main prerequisite in modeling is that the modeler be critical about the 
numerical results provided by the software. Being critical is all the more difficult as 
user-friendly modeling tools increasingly put an emphasis on a realistic presentation 
of the simulation results, thus giving the impression that what is being displayed on 
the screen is reality. Modeling only provides an approximation of reality and 
numerical techniques are essentially inaccurate. For this reason, the modeler’s 
critical judgment remains an essential feature of the modeling process. If one piece 
of advice should be given to a newcomer in the world of modeling, it may be the 
following: the model is and must remain a tool. Use it, never let it use you. 

 


