Chapter 10

Sensitivity Equations for
Hyperbolic Systems

10.1. Introduction

Most conservation laws presented in the previous chapters involve flux functions
or source terms that are functions of the conserved variable U and a number of
parameters that are known a priori. For instance, the flux F in linear advection
equations (section 1.3) is equal to the product of the conserved variable 4C by the
flow velocity u. The knowledge of u is required to solve the equation. In the
kinematic wave equations (section 1.5), the friction coefficient, channel slope and
channel geometry are parameters on which the discharge O depends. In the Buckley-
Leverett equation (section 1.6), the flux F is a function of the conserved variable s,
the shape parameter bg; and the Darcy velocity V. In the advection-adsorption
equation (section 1.7), the parameters are the flow velocity and the adsorption
constants (kj;, for a linear law, &z and b in a Freundlich model, 4 and Cy in a
Langmuir-based model). The initial conditions may also be considered as a
parameter in the problem that consists of solving the equations over time.

In practical engineering applications, the parameters are known with a given
imprecision or uncertainty. It is sometimes impossible to measure these parameters
directly, hence the need for a “calibration” of the model. Calibration consists of
adjusting or constraining the parameters so that the model output reproduces
measurements or observations as faithfully as possible. In some other cases, such as
scenario analysis, the modeler is interested in knowing the consequences of
imprecision or uncertainty in the knowledge of the parameters on the model output.
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In optimization and control problems, we are interested in the parameter values that
allow a certain objective (or cost) function to be minimized.

In all these problems, the sensitivity of the solution to the model parameters (that
is, how the output variables change with the parameters) plays an essential role. For
instance, trying to “calibrate” a model parameter to which the model output is not
sensitive would be meaningless. In contrast, oversensitivity of a model to a given
parameter may indicate the hidden influence of additional parameters that have not
been identified. Model sensitivity is used in optimization problems for optimum
search. In uncertainty analysis, it can be used in the framework of efficient, first-
order second moment techniques. In the field of flow control, it is often used in the
framework of adjoint modeling.

Sensitivity is classically defined as the partial derivative of a model variable with
respect to a parameter. Cacuci [CAC 03] defines the sensitivity as a Gateaux (also
called directional) derivative. Several techniques may be used to compute the
sensitivity of a model variable to a parameter:

— The empirical, or finite difference approach, consists of carrying out a
simulation using two slightly different values of the parameter of interest. The
sensitivity is defined as the limit of the ratio of the variation in the variable to the
variation in the parameter. This approach is very efficient in estimating the
sensitivity of a model, the governing equations of which are unknown. It may also
be used in the local sensitivity analysis of models with known governing equations,
such as hyperbolic systems of conservation laws.

— The complex differentiation technique [LYN 67] consists of introducing a pure
imaginary perturbation in the parameter of interest (see [LU 07] for an application).
The solution of the governing equations is a complex number, the imaginary part of
which is used to compute the sensitivity. This technique is second-order accurate
with respect to the perturbation in the parameter. It has the advantage that only one
run of the model is needed. The drawback is that all the mathematical operations in
the model must be carried out on complex numbers, which is computationally
expensive.

— Code differentiation consists of differentiating the programmed instructions
instead of the governing equations in the informatic implementation of the model.
Code differentiation may be manual or automatic [ELI 07].

— Analytical differentiation consists of differentiating the analytical solution of
the governing equations with respect to the parameter. This implies that (i) an
analytical solution is available, which is not often the case in real-world problems,
and (ii) the parameter is assumed to be perturbed uniformly over the entire solution
domain. This is another constraining assumption.
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— Direct sensitivity calculation consists of differentiating the governing equations
of the model with respect to the parameter of interest, thus yielding a set of
governing sensitivity equations. The sensitivity equations are solved in a coupled
way with the original model equations. This approach is examined in the present
chapter. Two types of sensitivity equations are considered hereafter: forward (or
direct) sensitivity equations, and adjoint (or backward) sensitivity equations.

A particular aspect of sensitivity equations for hyperbolic systems is that the
solutions of the hyperbolic system may become locally discontinuous. In this case,
the derivatives of the solution with respect to time, space and the parameter of
interest become locally undefined and the sensitivity equations must be modified
because sensitivity becomes a locally non-conserved variable (see section 10.2.2).
Classical numerical techniques yield unstable sensitivity solutions [GUN 99]. The
governing sensitivity equations must be modified to account for this (see [BAR 02],
where the governing sensitivity equations are reformulated in the framework of the
theory of distributions).

10.2. Forward sensitivity equations for scalar laws
10.2.1. Derivation for continuous solutions

Consider a one-dimensional scalar hyperbolic equation written in the
conservation form [1.1], recalled here:

U OoF

—t—=9

ot Ox
where U, F and S are respectively the conserved variable, the flux and the source
term. In what follows, F and S are functions in the form:

F=FU,
v.9) [10.1]
§=5U,9)

where @ is a parameter with respect to which the sensitivity analysis is to be carried

out. @ may be a parameter in the conservation law, in the initial or boundary

conditions.

The purpose is to study the influence of variations in ¢ on the solution U over
the solution domain. This is done via a perturbation analysis. The parameter ¢ is
expressed in the form:

P(x,1) = @y (x,8) + E(x, 1) [10.2]
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where @ and ¢ are respectively the “nominal” value of the parameter and ¢ is an

infinitesimal perturbation. &(x, ¢) is called the support, or characteristic function of
the perturbation. It expresses the fact that the parameter may not be perturbed with
the same magnitude at all points and all times of the solution domain. The solution
of equation [1.1] with F, S and ¢ as defined in equations [10.1-2] is written in the
form:

Ux,t) =Uy(x,t) +U' (x,1) [10.3]

where U, is the solution of equation [1.1] for ¢ = ¢, and U' is the perturbation in U
caused by the perturbation in @. The sensitivity of U with respect to ¢ is defined as
the limit:

U'(x,t)

\J

s(x,t) = lim [10.4]
9

'—0 [

The governing equation for s is obtained by writing two equations [1.1] with two
different values of ¢":

U, 0
a—to“‘a—F(Uo’%) =SWUy,9y)
* [10.5]

0 0
E(UO +U')+$F(UO +U', ¢y +e9")=SU,+U", @, +£¢")

A first-order Taylor series expansion yields:

F oF . OF
U, +U', +&9') = U, R U+ o'
Uy @0 +€9') = FUo,9) a0 Y ap @
S(UO+U"(00+£¢’):S(UO,¢)+_S(7'+8_S€¢v

; [10.6]
U~ 0¢

Substituting equations [10.6] into equations [10.5] and subtracting yields:

—_— U'+t—e¢eg' 10.7
o ox|oU  op 207 L1071

oU' 0| oJF ., OF oS oS
+— Ut—ep'|=—
oU 0

Dividing equation [10.7] by the perturbation ¢' and introducing definition [10.4]
gives:
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ds B{BF BFE}_BS as [108]

—t—|—S5t+t—E|=—st+tEe—
d ox|oU g | U og

Noting from Chapter 1 that 0F /0U is defined as the wave speed A,
equation [10.8] becomes:

s 0G _9s . 9S a( aF} G s [10.9]

a ax ou T9p ax ap

10.2.2. Conservation, non-conservation and characteristic forms
Equations [1.1] and [10.9] can be written in vector conservation form as:

8V+8H:T

Y 10.10
ot ox [ ]

where V, H and T are defined as:
U F F
9 H = = b

g S
T={ }: aS oS d( oF
ol |55+t~
oU dp ox\ do

v

[10.11]

The non-conservation form of [10.10] is obtained by differentiating H with
respect to V:

a—V-i—Ba—V=T' [10.12]
ot ox
with:
A0
B= 5 T'ZT—(a—Hj [10.13]
j’US A ox V=Const

where Ay is the derivative of A4 with respect to U. The matrix B has a double

eigenvalue, AV =A® = 1. System [10.12] is not strictly hyperbolic because a
necessary condition for hyperbolicity is that all the eigenvalues of the Jacobian
matrix be distinct. System [10.10—11] is said to be linearly degenerate.
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The characteristic form of sensitivity equations is derived directly from
equations [1.17] and [10.12]:

U1 (%)
U=Const

k3 0x ox
s . as_as s d( oF) oA (an [10.14]
—t A= ste———|e— |- =5 —| —
o ox JU dp ox\ d¢) ox ox U=Const

This system can be written in vector form as:
N e [10.15]
dt dt

Both the conserved variable U and its sensitivity s are Riemann invariants for
system [10.10]. In the absence of source term Q", U and s are constant along the
characteristics.

10.2.3. Extension to discontinuous solutions

Chapter 3 deals with the properties of discontinuous solutions U for the original
hyperbolic conservation law [1.1] (see section 3.4). Discontinuous solutions verify
the jump relationship [3.28], recalled here:

U, -Uy)e, =F - F,

where subscripts 1 and 2 denote the values of U on the left- and right-hand sides of
the discontinuity, and c; is the speed of the discontinuity. This relationship cannot be
transposed as such to the sensitivity. As shown in [BAR 02], extra terms appear in
the jump relationship for the sensitivity equations. Several derivation methods are
available for the sensitivity jump relationships:

— A first approach consists of carrying out two balances over an infinitesimal
control volume [x;, x,] containing the discontinuity. The first is written for the
“nominal” value ¢, of the parameter, the second is carried out for the perturbed
value ¢+ £¢'. This approach is presented in [GUI 09c] and will not be detailed
here.

— Another possible approach consists of representing the propagation of the
discontinuity in the (x, ¢) plane for a given time ¢ and linking both sides of the
discontinuity using two different paths (Figure 10.1). This approach is used
hereafter.
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Figure 10.1. Representation of a discontinuity in the (x, )
plane for a given time t

The jump relationships are written for two different values of the parameter: the
nominal value ¢, and a slightly different value ¢, = @ + d@. The points on the left-
and right-hand sides of the discontinuity for ¢ = ¢, are denoted by A and B
respectively. The points on the left- and right-hand sides of the discontinuity for
@ = ¢, are denoted by C and D respectively. The jump relationships hold:

Fy—Fy=(U, -Ug) cs(%)} [10.16]

Fo —Fp =(Uc —-Up) ¢s(9y)

Connecting the points A and C along Path 1 and points B and D along Path 2
yields:

2 ax. (9
Fe=Fy=(e=x)5+(0) %%:Li;%] +GL}d¢
L

o 2] e
) (2 o3
ax ), ap Lax ), |

Xs aU _ axs a_U
Up-Ug 8(/7 (g)R+( j } (o—{aqo[axl{hv]{}d(p

[10.17]
UC _UA
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where x; is the abscissa of the shock. Subtracting equations [10.16] from one another
leads to:

Fe—Fpy—(Fp—Fg)=Uc-Up)cy(9)— (U, —Ug) ¢, (9)

C[(Ue ~Up)-WUp ~U)les(90) [10.18]
+Ue~Up)2dy
@

Substituting relationships [10.17] into [10.18] and simplifying by d¢ leads to:

(sp —sp)ey =G —Gr +R

10.19
R = (a_F_CSa_Uj —(a—F—CSa—U\J aXS _(UL_UR) acs [ ]
ox ox ) \ox ox Jp | 09 o

where subscripts L and R denote the values on the left- and right-hand sides of the
discontinuity. Compared to the original Rankin-Hugoniot condition [3.28], the first
equation [10.19] contains an extra source term R that takes effect only at
discontinuities. The expression of the source term Q in equation [10.11] is modified
into:

S
T=08 (95 _90[.9F) ps. [10.20]
oU dp ox\ Jdo

where &, is Dirac’s function centered at x =x, and R is the extra source term as
defined in [10.19].

10.2.4. Solution of the Riemann problem

10.2.4.1. Definition

The Riemann problem is defined for the hyperbolic part (that is, without source
term) of equation [10.10]:

oV oH
+ =

—+—=0
ot 0Ox 1021
\'3 for x < x, [10.21]
V(x,0)=
Vi for x < x,
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The properties of the solution of the Riemann problem are detailed in Chapter 4.
The properties of the solutions of the Riemann problem for the sensitivity equations
of scalar hyperbolic conservation laws are given in [GUI 07]. The reader is referred
to the original publication for the details of the proofs, only the broad lines being
recalled hereafter.

Recall from Chapter 4 that the solution of the Riemann problem for a convex or
concave scalar hyperbolic law is made of a simple wave connecting the left and right
states of the Riemann problem. If the flux function is non-convex, the wave may be
a compound wave, that is, the combination of a rarefaction wave and a shock. The
solution of the Riemann problem is self-similar regardless of the nature of the wave.
In other words, the solution U is a function of the ratio (x — x)/z alone.

10.2.4.2. Solution for a convex or concave law
The following configurations are considered for a convex or concave law.

(1) Rarefaction wave (Figure 10.2a). This is the case if AL = A(UL) < Az = AUR).
Then the solution U is given by:

U, forx<x, +Apt
Ux,0) =1 A (x = x0) /1] forxy + At Sx<xy + Agt [10.22]
Ug for x > x, + Agt

where the function 47'(&) is the inverse function of A(U). The rarefaction wave can
be shown to be a void sensitivity region [GUI 07], that is, the sensitivity is zero
within a rarefaction wave:

SL forx<x, + At
s(x,)=140 forxy + At <x<xy + Agt [10.23]
SR for x > x, + Agt

(2) Contact discontinuity (Figure 10.2b). This type of wave verifies
AL = Az = Arr. In such a case, the solution U of the Riemann problem is:

U forx<x, + At
Ule,)=1_ - Y0 TR [10.24]
Ug for x> xy + A pt

The sensitivity s is given by:

forx<x, + A pt
s(x,1) = {SL TS Yo TR [10.25]
S

R for x> xy + A gt



420 Wave Propagation in Fluids

Note that A, =Ax by definition of the contact discontinuity. This is not
necessarily an indication that R=0 in equation [10.19], because JdA/d¢ (to

mention but one of the terms in [10.19]) may be non-zero.

(a) (b) (c)
U U
Ur Ur
UL UL
| |
Xo : X X0 : X
| |
| |
Syl s |
| |
| |
SL | S !
s s
| |
Xo : X X0 : X
| |
| |
Ly t |
X0 X Xo X

Figure 10.2. Solution of the Riemann problem for a convex/concave law.
(a) rarefaction wave, (b) contact discontinuity, (c) shock wave

(3) Shock wave (Figure 10.2¢). For a convex law, this is the case if AL > Ag. U is
given by:
forx <xy +c,t

U
Ux,t)y=1 " [10.26]
R for x> x, +c,t

The sensitivity is discontinuous across the shock. Since s is a Riemann invariant,
it verifies:

SL forx<xy +c,t
s(x,t) = ’ [10.27]
SR for x> x, +c,t
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10.2.4.3. Non-convex conservation laws

In addition to the three configurations presented in section 10.2.4.2 non-convex
flux functions give rise to a fourth possible configuration.

(4) Compound (mixed) wave: a rarefaction wave bounded by a shock. This
configuration appears when the left and right state of the Riemann problem located
on both sides of the value U,,, for which the wave speed A is maximum (see
Chapter 4):

U; <U,x <Ur

max

Up <Upae <Uy [10.28]

a g,

dU max)=0

Then U is given by:

U, forx<x, + At
Ux,0) =147 [(x = x0) /1] forx, + At <x<xy + At [10.29]
Ug for x > x, + Agt

for a mixed wave with a shock facing to the right (Figure 10.3a), and by:

U, forx<x, + At
Ux,0) =1 A7 (x = x0) /1] forxy + At <x<xy + Agt [10.30]
Ug forx > x, + Agt

for a mixed wave with a shock facing to the left (Figure 10.3b).

In both cases the sensitivity is zero within the rarefaction wave. It verifies
equation [10.22].
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(a) (b)

U U v, U

Figure 10.3. Solution of the Riemann problem for a non-convex law:
compound (mixed) wave: (a) shock on the right-hand side of the wave;
(b) shock on the lefi-hand side of the wave

10.3. Forward sensitivity equations for hyperbolic systems
10.3.1. Governing equations

The governing sensitivity equations for hyperbolic systems are derived as
explained in section 10.2. Consider the conservation form [2.2] of a hyperbolic
system:

a_U + a_F =S
ot ox

where F and S are functions of the conserved variable U and the parameter ¢:

F=FU.9) [10.31]
S=S(U,p) .
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As in section 10.2, the parameter ¢ is subjected to an infinitesimal perturbation
(equation [10.2]). Since both the “nominal” solution U and the perturbed solution
U + U' verify equation [2.2], we have:

ou d
—+—F(U,p) =S(U,
o T T (U0 =5(U.9)

3 3 [10.32]
5(U+U‘)+8—F(U+U’,(o+£¢’) =S(U+U",¢p+ep")
X

Subtracting equations [10.32] from each other, dividing by ¢' and using the
definition of the sensitivity vector s=0dF/d@p=U'/¢" leads to the following

sensitivity equations (see [GUI 09c¢] for the details of the derivation):

ds dG
EAFT
G =As
3 9S o[ oF 10.33]
=——st+e———|e— [+RS [10.
Q=501 ax(gagoj-l- s
R = (ﬁ_csa_U) _(ﬁ_csa_Uj axs _(UL_UR) acs
ox ox ) \ox ox Jp | 0 0

where A =0F/0dU and ¢ is Dirac’s function that takes effect only at shocks. The
subscripts L and R in the definition of the point source term R indicate the values of
the variables on the left- and right-hand side of the shock respectively. Equation
[10.33] is valid for both continuous and discontinuous solutions. Note that the jump
relationships for the sensitivity are obtained as the vector version of equations
[10.19]:

(sp —sr)es =G -G +R
10.34
R = [a_F_csa_Uj _(a_F_csa_Uj axS _(UL_UR) aCS [ ]
ox ox ) \ox ox Ji | do o

Equations [2.2] and [10.33] are rewritten in the form of a single system defining
a variable V as the union of U and s:

8V+8H=T

—_—+— 10.35
ot ox [ ]
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where V, H and T are defined as:

v=[U,...U,.s..U,[
H=[F,....F,.G,....G, |’
r=[s....8,,0 ....0, '

10.3.2. Non-conservation and characteristic forms
The non-conservation form [10.12] is recalled:

OV LV _

9V g%y 7
ot ox

where T' is defined as in equation [10.13] by the union of two vectors:

T=T- [a_Hj = 5 = 5" (aF/ax)U:COnst
) ox V=Const - Qv - Q - (aG/ax)UZConst

s=Const

and B is the square matrix defined as the union of four square matrices:

s-[e 4]

where A and C are the square Jacobian matrices:

_9F _9JG

JdU 0s
c=9%
ou

[10.36]

[10.37]

[10.38]

[10.39]

The first row in matrix B is related to the non-conservation form for the variable
U, the second row expresses the non-conservation form for the sensitivity s. Note
that dG/ds=A because G=As. A particular consequence is that all the
eigenvalues of system [10.35] with B defined as in equation [10.38] are double
because an eigenvalue for the conserved variable U is also an eigenvalue for the

sensitivity s. The system is said to be linearly degenerate.
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The characteristic form for U is derived in Chapter 2 and will not be recalled
here. The characteristic form for s is obtained as follows. The vector equation
[10.12] is written for the sensitivity only:

Js Js ou
9,0 _ U 10.40
o AT Cn TR [10.40]

and the system is diagonalized by left-multiplying equation [10.40] with the inverse
of the matrix K of eigenvectors of A:

TSNSV S Q’—Ca—U [10.41]
ot ox ox

Introducing the diagonal matrix A formed by the eigenvalues of A, equation
[10.41] is rewritten as:

K154 K‘1§=K‘1(Q'—ca—U] [10.42]
ot ox ox

The vectors Y and Q" are introduced as:
dY =K 'ds

Qn= K—l (Q'—Ca—U

[10.43]
8xj

Substituting definitions [10.43] into equation [10.42] leads to:

Y . oY
A =g 10.44
o e [10.44]

which is equivalent to:

dy .
d—tp =0, for% =P [10.45]

The vector Y is the vector of sensitivity Riemann invariants. Note that Y can also
be defined as:

_aw

Y =——
a9

[10.46]
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10.3.3. The Riemann problem

10.3.3.1. Structure of the solution

Consider the Riemann problem [10.21] defined for the hyperbolic part the
governing equations. Recall that the solution of the Riemann problem is self-similar
and that it verifies the following property (see Chapter 4):

(B—x_xo Ija—V:O [10.47]
t ox

As shown in Chapter 4, equation [10.47] leads to Property (P4.3): the solution is
made of m simple waves (rarefaction waves, shocks or contact discontinuities)
separating regions of constant state. These waves originate from the location x, of
the initial discontinuity.

The solution of the Riemann problem is determined uniquely from the left and
right states provided that m independent relationships in s can be written across each
wave. The next two sections focus on the derivation of such relationships for
rarefaction waves and discontinuities.

10.3.3.2. Rarefaction waves

Assume that the pth wave is a rarefaction wave. Within this wave, (x — x,)/¢ is an
eigenvalue for B, as indicated by equation [10.47]. Consequently, it is also an
eigenvalue for A (p =1, ..., m):

o x_txo [10.48]

Differentiating equation [10.48] with respect to the parameter ¢ leads to:

(p)
A" 4 [10.49]
a9

Moreover, the Riemann invariants Y, (¢ # p) provide m — 1 relationships:

ow,
Y, = 4 = Const forﬂi/l(p),q £p [10.50]
0 de

Consequently, m independent relationships are available across a rarefaction
wave.
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10.3.3.3. Discontinuities

If the pth wave is a shock or a contact discontinuity, the jump relationships
[10.34] are applicable. However, both U and s being constant on each side of the
wave in the solution of the Riemann problem, the space derivatives vanish in the
expression of the source term R and the jump relationships are simplified into:

s _seh e =G g [y _yen] gcs [10.51]
2

where ¢, is the speed of the discontinuity and superscripts (p, —) and (p, +) indicate
respectively the values of the variables on the left- and right-hand side of the
discontinuity. The expression for the derivative of ¢, with respect to @ can be
derived from the jump relationships for the variable U. Indeed, the Rankin-Hugoniot
conditions yield:

R 10.52
Cpeagem TaThen [10.52]
Consequently:
(p-) _ p(pst) (Ps=) _ o(pst)
oc, G;p’f) - G;P’Jr) [Fq F, }[Sq S }
aqg _U(P,*)_U(pﬁr) - (o) Y7 Vg=1...,m
q q Uq ’ —Uq ’
[10.53]

Since dc, /9@ is entirely determined from the values of s and U on both sides

of the discontinuity, m independent equations [10.51] can be written across a
discontinuity.

10.3.4. Application example: the one-dimensional shallow water sensitivity
equations

10.3.4.1. Governing equations

The purpose is to derive the analytical sensitivity solution for the dambreak
problem presented in section 4.3.3. Recall that the dambreak problem is a Riemann
problem under the assumption of zero bottom slope and frictionless motion.
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If the channel is rectangular, the Saint Venant equations (see section 2.5) are
equivalent to the one-dimensional version of the shallow water equations (see
sections 5.4 and 7.4.2). U and F are defined as:

=" F=l? |2 ul 10.54
_M’ _[M}_ q* I h+gh? /2 [10.34]

where g is the gravitational acceleration, % is the water depth, M is the specific force,
q is the unit discharge and u is the flow velocity.

The complete description of the solution of the dambreak problem is given in
Chapter 4. Recall that the solution is made of an intermediate region of constant
state separated from the let state by a rarefaction wave and from the right state by a
shock. The Riemann invariant W, = u + ¢ is applicable across the rarefaction wave,
while the jump relationships apply across the shock.

The Jacobian matrix A is recalled:

0 1
A= [10.55]
A -u® 2u

where ¢ = (gh)"? is the propagation speed of the waves in still water and u = g/h.
The sensitivity vector s and the sensitivity flux G are defined as:

" G=As= o 10.56
S_M’ T @ w4 2u0 [10:56]

where 77 and @ are respectively the sensitivity of # and ¢ to the parameter ¢ (that
may be any parameter). The matrix B is given by:

0 1 0 0
c?—u? 2u 0 0

B= [10.57]
0 0 0 1

(g=2u’ /Wy -2u6/h (O@-un)/h c*—u* 2u

It is easy to check that B has the following double eigenvalues:

[10.58]

=4 =y ¢
A=Y =u+e
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10.3.4.2. Riemann problem definition

The purpose is to solve the Riemann problem with left and right states in U:

UL={%}, UR={%} [10.59]

with hL > hR.

The left and right states for the sensitivity depend on the parameter ¢ examined
in the sensitivity analysis. In what follows, it is chosen to examine the sensitivity of
the solution of the dambreak problem to the initial water level 4, on the left-hand
side of the dam, while /5 is assumed fixed. Then ¢ = A; and we have:

SL=rh}={wh/m%}={qs SR:rk}z{mm/W%}zrﬂ 10.60]
0, 0 0 Ox 0 0

Also note that if the sensitivity analysis focuses on the influence of initial or
boundary conditions, the value of the parameter (the initial or boundary conditions)
does not influence the expression of the flux F and source term S at times ¢>0
within the domain. Therefore, dF /0@ =0S/d@ =0 in the expression of the source

term Q.

10.3.4.3. Sensitivity solution

In the rarefaction wave AV = u — ¢, equation [10.49] is applicable:

v-x=0 [10.61]

where v and y are respectively the sensitivity of u and c¢ to the left state /. The

speed ¢ of the waves in still water is defined as ¢ = (gh)"*.

Moreover, the Riemann invariant W, = u + 2¢ may be used across the wave:

u+2c=u +2c; [10.62]

Differentiating equation [10.62] with respect to ¢ yields:

V+2y =0y +2x [10.63]
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System [10.61-62] can be solved uniquely for v and y in the rarefaction wave:

v, +2x 2 X=X
=——C==—y, for-¢; <
3 3ZL L p

v=y <u*-—c* [10.64]

where the * superscript indicates the variables in the intermediate region of constant
state. The sensitivities 7 and & are derived from equation [10.64] by noting that
h = c*/h and g = hu. Consequently:

H—EZ
g [10.65]
O=nu+hv

Applying the first equation [10.65] yields the expression for the left state ¢ in
equation [10.64]:

= i77L [10.66]
2¢y,

Moreover, the profile for ¢ is given by equation [4.48], recalled here:

1 -
c(x,t) = —[2CL -2 XO)
3 t

Substituting equations [10.64] and [4.48] into equation [10.65] leads to:

—%o jnL for—c, <> tx° <u*—c* [10.67]

n(x1) =i(2cL o
9c

A similar reasoning yields the following expression for the sensitivity of the unit
discharge:

2 _ - -
H(x,t)=i(cL X txo J(2CL+X tonfor—cL < txo <u*—c*

[10.68]
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It is visible from equation [10.67] that the sensitivity of the water depth varies
linearly with x in the rarefaction wave. In addition, using (x — x¢)/t = — ¢ in equation
[10.67] yields a limit value 7 =2n7/3. Consequently, the sensitivity /4 is
discontinuous at the left-hand boundary of the rarefaction wave. Equation [10.67]
gives 17= 0 for (x — x¢)/t =2 ¢, (Figure 10.4).

yas X
|
|
|
i i
Eq.[10.63
— ——
L L L
—cL u* —c* ¢ 2cp (x — xo)/t
yis n
|
|
|
|
Eq. [10.66] l \.\,_‘\\\\
| R
—cL u* —c* ¢ 2cp (x —xo)/t
o
Eq. [10.67]
\ Egs. [10.68]
|
|
—a—
. Lo
I | I
I | I
| l |
—cL u* —c* ¢ 2cp (x —x)/t

Figure 10.4. Dambreak problem. Definition sketch for the sensitivity solution
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The sensitivities 7* and #* in the intermediate region of constant state are
obtained by applying the jump relationships [10.51] and [10.53] and noting that
ur = 1R =6 =0:

n* e =00y s
: ahL
; [10.69]
0% . =(c2 —ud)*n*H2u*0* -0 % —=

The shock speed ¢, is known from the solution of the Riemann problem for the
flow equations:

*__ %
C=C] qRr q

= 10.70
Y h¥—hy  h*—hy [ ]
Differentiating with respect to ¢ = A leads to:
0 * * 99 %
¢ __0% __4'n [10.71]

ohy, - h*—hg  (h*—hg)*

System [10.69-71] is nonlinear. It can be solved using iterative techniques such
as Newton-Raphson’s method. Note that in the general case, equations [10.69] and
[10.67-68] do not yield a continuous sensitivity profile at the right-hand boundary
of the rarefaction wave (Figure 10.4).

Figure 10.5 illustrates the solution obtained for the parameters in Table 10.1.

Symbol Meaning Value
g Gravitational acceleration 9.81 ms?
hy Initial upstream water depth 10 m
hyr Initial downstream water depth Im
L Sensitivity to the initial water depth on the upstream side 1
R Sensitivity to the initial water depth on the downstream side 0

Table 10.1. Dambreak problem parameters
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Figure 10.5. Dambreak problem. Analytical solution for the parameter set in Table 10.1

Figure 10.6 shows the empirical sensitivity profiles obtained from the numerical
solution of the dambreak problem using a finite volume technique. The first-order
Godunov scheme described in Chapter 7 is used with the HLL approximate
Riemann solver described in Appendix C. The empirical sensitivity solution is
computed by solving the shallow water equations twice. In the first simulation, the
initial water depth on the left-hand side of the dam is set to /; + &2. In the second
simulation, it is set to p — &2. The sensitivities 77, ¥ and 6§ are obtained by dividing
the difference in %, ¢ and g between the two simulations by &
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Figure 10.6. Dambreak problem. Analytical solution (solid line) and
empirical solution (dashed, dotted line) for the sensitivity

The profiles are plotted as functions of the ratio £= (x —x,)/t. The empirical
sensitivity profiles clearly exhibit artificial peaks in the neighborhood of the shock.
Rescaling the graph on the right-hand side of Figure 10.6 indicates that the
amplitude of the artificial peak is up to 60 times that of the theoretical value of the
sensitivity next to the shock. This example illustrates the need for numerical
methods that do not exhibit such undesirable behaviors. Examples of such

techniques are presented in section 10.5.
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10.4. Adjoint sensitivity equations
10.4.1. Introduction

The forward sensitivity equations presented in the previous sections are most
useful when the purpose of the sensitivity analysis is to study the influence of a
single parameter on many model outputs (or variables). Examples of such situations
are the sensitivity analysis of the dambreak problem presented in section 10.3.4. The
influence of the upstream water level (a single simulation parameter) is studied for
all the flow variables at all points and at all times.

In a number of inverse problems, however, the objective of the sensitivity
analysis is to investigate the influence of numerous model parameters on a reduced
set of flow variables. This is the case for instance when time-varying boundary
conditions or spatially-varying initial conditions in a flow model are to be adjusted
so as to reproduce flow measurements at a limited number of locations as accurately
as possible. In this case, the number of points and time steps at which the initial and
boundary conditions are to be adjusted may be much larger than the number of
measurement points. The forward sensitivity approach is extremely time-consuming
because it requires that one forward sensitivity calculation be carried out for each
point (and each time) where the initial and/or boundary conditions are to be
adjusted. In such situations, that are typical of inverse problems, the adjoint
sensitivity analysis approach is more appropriate [CAC 03].

Adjoint sensitivity analysis is used in many fields of engineering such as model
inversion (data assimilation [LED 86], model calibration, [PAN 89]), optimization
problems, flow control and uncertainty analysis. Its earliest applications can be
found in the field of meteorology and atmospheric sciences [HAL 82, HAL 83]. The
reader interested in a formal, general definition of adjoint operators and an
introduction to the underlying theory may refer to [CAC 03]. The theory of adjoint
models can be found in [MAR 95]. The purpose of this section is to introduce the
broad principles of adjoint sensitivity equations for one-dimensional hyperbolic
conservation laws. The same derivation principle may be applied to systems of
conservation laws. The reader interested in application examples of the adjoint
sensitivity analysis technique to systems of conservation laws may refer to [SAN 00,
SAN 99], which describe applications to free surface flow.

10.4.2. Adjoint models for scalar laws

10.4.2.1. Derivation

Consider a one-dimensional flow model obeying a scalar hyperbolic
conservation law in the form [1.1], with a forward sensitivity equation in the
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form [10.9]. For the sake of conciseness, the support function £ of the perturbation
is considered to be uniformly zero and the solution is assumed to be continuous,
therefore R = 0. It is also assumed that the wave speed A is positive. The purpose is
to optimize the value of the parameter ¢ so as to minimize a so-called objective
function J(¢) defined in general form as:

TL
J@=[[rw.para [10.72]
00

where L and T are respectively the length of the domain and the time interval over
which the objective function is defined. The parameter ¢ may be an initial or
boundary condition, or a model parameter such as a friction coefficient, bottom
slope (for an open channel model), sound speed or pipe diameter (for a water
hammer model), etc. The function f depends on the nature of the optimization
problem to be solved. Assume for instance that a measurement device provides an
experimental value for U for a given time 7 at a given abscissa X. No other
measurement is available. If the purpose is to minimize the difference between the
computed and measured value at [X, 7], the function f may be defined as a least
square-based distance:

TL
S =X, U = [ [V U POy pdx e [10.73]
00

where Jy, 5 is the Dirac function that takes effect at the abscissa X and time 7. The
objective function J is zero (that is, minimum) when the distance between the
simulated and measured variable U is zero.

Classically, gradient-based methods (sometimes called quasi-Newton methods)
are used to find the minimum or zero of the objective function J(¢). The gradient of
J in the parameter space is given by:

TL TL
a_J=Uai+aLa_dedt=”al+‘lsdxdt [10.74]
Jdp 008¢) oU do Ooaqo U

The expression of /' being known, df /d@ and df /U can be computed and the
gradient of the objective function can be computed provided that the sensitivity s is
known. However, as mentioned in the previous section, computing s for a large set
of parameters ¢ is computationally expensive. The adjoint formulation is obtained
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by modifying equation [10.74] as follows. The first equation [10.9] is rewritten as
(note the simplification £= 0, R = 0):

8_s+8_G_8_SS=O [10.75]
ot dx JU

Equation [10.75] is multiplied by an arbitrary function u(x, ) called the
Lagrange multiplier. The resulting product, which is zero, is added to the integrand
in equation [10.74], thus leading us to redefine the gradient of the objective function
as:

|:a‘—f+als+(§+%—c—§—isj,u}dxdt [10.76]
X

The adjoint equation is obtained by deriving a governing equation for the
Lagrange multiplier 4. This is done via integration by parts:

T L L T L

[[2 wacar=[lsuly ar-[ [%sacar

00 % 0 00 [10.77]
TL T TL ’
”a—fﬂdxdzzj[ﬂG]g dz—”a—i‘cdxdt

00 0 00

Substituting equations [10.77] into equation [10.76] and noting that G = As
leads to:

% T TL o
—=+I[ﬂg]§ dx+j[/4c]g dr+”—dxdt
9o 0 0 00°?
. [10.78]
—II (’)—'qu/I(’)—'qua—Sy—ai s dx dr
ot ox dU oU
00
Assume that u verifies the following equation:
a—’u+/1a—'u+a—S,u—ai—O [10.79]

o ox oU" U

Equation [10.79] is similar to equation [10.75], with the difference that (i) an
additional term df /dU is introduced and (ii) the sign of the source term 9S/dU is
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changed. This has consequences on the stability of x The solution s of equation
[10.75] is stable when computed for increasing times. Changing the sign of the term
0S/0U in equation [10.79] may result in instability if g is also computed for
increasing times. The initial sign for the source term can be recovered by
introducing the reverse time and space coordinates #=7-¢ and x'=L—ux.
Equation [10.79] becomes:

ou ,ou adS of
Ou 94 _05 L o 10.80
o o vt ou [10.80]

This is the final form of the adjoint sensitivity equation. The solution u is stable
if computed in the direction of positive 7, that is, for negative z. Assuming that A is
positive, a boundary condition is needed at x'=0 (that is, at x=L). The initial
condition is needed for ¢ =0 (which corresponds to = T). The simplest possible
conditions are:
u(x,T)=0 Vxe [O,L]} [0.81]
M(L,H)=0 Vte[0,T]

Assuming that the adjoint equation [10.80] with initial and boundary conditions
[10.81] is satisfied, substituting equations [10.79] and [10.81] into equation [10.78]
leads to the following expression for the gradient of the objective function:

o f T IE!
So=fuen e fucronas [[Laa
O J 39 [10.82]

L T TL
- —j (s0)(x,0) dx —j (As)(0,7) dt + I I Y e
0 0 00 a¢

10.4.2.2. Physical interpretation — algorithmic aspects

The adjoint equation [10.80] may be interpreted as follows: the origin of a
perturbation in the variable U at a given location (x, £) in the solution domain is to be
sought at earlier times, at the points the perturbation is likely to come from. Solving
equation [10.80] is equivalent to traveling backward along the characteristic lines in
the (x, ) plane (Figure 10.7). The smaller the value of x« at t=0 and/or x = 0, the
smaller the value of the integrals in equation [10.82], thus the smaller the magnitude
of dJ/d¢. The Lagrange multiplier may be seen as an indicator of the influence of

the flow solution at a given time and abscissa on the final value of the objective
function.
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From an algorithmic point of view, the adjoint formalism associated with a
quasi-Newton procedure implies the following steps:

(1) Forward step: solve the flow and forward sensitivity equation in the direction
of positive time over the interval [0, 7] for a given value of the parameter ¢. This
provides the value of U and s. The objective function J is computed from
equation [10.72]. In the general case, J is not minimum for the selected value of ¢.

(2) Backward step: solve the adjoint sensitivity equation [10.80] with initial and
boundary conditions [10.81] in the direction of negative times. This yields the
Lagrange multiplier u at all points (x, #) of the solution domain [0, L]x[0, T].

(3) Compute the gradient dJ/d¢ using equation [10.82]. Update the parameter

@ using a classical Newton procedure:

J ()
LA £ 10.83
P 37 190 [ ]

Steps (1) — (3) are repeated sequentially.

In practical computer implementations, the sequence (1) — (2) involves that the
results of the forward flow and sensitivity calculation being stored and available for
the backward solution of the adjoint problem. In contrast with the classical forward
computation procedure, the previously computed time levels cannot be erased from
the memory of the computer because the flow variables must be available over the
entire time interval [0, 7]. This may imply considerable memory and storage
requirements.

[ Egs. [10.81]
T ________ —_
Eq.[lO.SO]/ .
/ Egs. [1.1], [10.9]
[
dx/dt= 1 :
|
L X

Figure 10.7. Forward and adjoint sensitivity equations. Definition sketch in the (x, t) plane

10.4.2.3. Extension to hyperbolic systems

The adjoint sensitivity system is derived as follows. Each component of the
vector sensitivity equation is multiplied by a Lagrange multiplier z4,:
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ds, dG,
?4_ m _Qp Iup:O, p:l’,__,m [1084]

where subscript p denotes the component of the vector equation. Adding this system
to the objective function as in section 10.4.2.1 leads to:

N 3G , of
—M+—=M- M—M=0 10.85
ot ox Qa ouU [ ]

where M is the vector of Lagrange multipliers and s), G, and Q, are diagonal
matrices constructed from the components of the vectors s, G and Q:

. 0 0 0
sa=| s, b Ga=| G, L Q= o [10.86]

As in section 10.4.2.1, the differential operators are swapped via integration by
parts, leading to the following equation:

oM oM of
SAg—FGAg:QAM—F%M [1087]

Multiplying equation [10.87] by the inverse of s, leads to the adjoint system:

™
ot'

_ aM — af

1 1 1

+s, G, —=s Q M+s, —M 10.88
ANYA o' A XA A U [ ]

Riemann invariants can be derived for the Lagrange multipliers. Left-multiplying
equation [10.88] by K" leads to:

d d af - _ of
a_j{+Aa_;'{:K;(sAIQAM+s; %Mj [10.89]

where K, is the matrix of eigenvectors of s3'G, and v is the vector of adjoint
Riemann invariants:

dy =K;' dM [10.90]
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A more convenient way of deriving the characteristic form of the adjoint
equation consists of starting from the characteristic form [10.44] of the sensitivity
equation:

Y of

Y, A \
—=M+A M= M+—M 10.91
ot Ox Qs ouU [ ]

Applying integration by parts yields the adjoint equation:

oM oM of
Yy —+AY, —=Q%P +—M 10.92
Ao A ox' Q oU [ ]

where Q© =QLM. Multiplying by the inverse of Y, and noting that
Y. AY, = Aleads to:

oM oM - of

The vector equation [10.93] forms a system of m characteristic equations. The
Lagrange multipliers 4, (p = 1, ..., m) are the adjoint Riemann invariants.

10.5. Finite volume solution of the forward sensitivity equations
10.5.1. Introduction

As shown in section 10.3.4, the empirical solution of sensitivity equations yields
numerical artifacts such as abnormally large (if not locally infinite) values of the
computed sensitivity. Other artifacts have been observed in two-dimensional free
surface flow simulations, such as artificial sensitivity swirls in regions where they
should not be present [GUI 09c]. Such artifacts can be eliminated to a large extent if
the sensitivity equations are solved directly.

Most methods for direct sensitivity calculation presented in the literature deal
with continuous solutions (see e.g. [GUN 99, LU 07]). The purpose of this section is
to provide the broad lines for a finite volume-based solution technique of sensitivity
equations with discontinuous flow solutions. The principle of the method is
presented in [GUI 07] for scalar laws, with an application to the kinematic wave
model seen in Chapter 1.

The technique is extended to the shallow water equations in [DEL 08, GUI 09c].
A more accurate version of the Riemann solver with an extension to 3%3 systems
including a passive scalar transport equation is given in [GUI 09a, GUI 09b].
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Practical implementation aspects, including boundary conditions, can be found in
[GUI 09b].

10.5.2. Discretization

The purpose is to solve the 2mx2m hyperbolic system [10.35] formed by the
governing equations for the flow variable U and the sensitivity s. For the sake of
clarity, only the case m =2 is considered and the source terms S and Q are assumed
to be zero. Consequently, the vector source term T as defined in equation [10.36]
only incorporates the sensitivity Dirac source term at discontinuities. A finite
volume discretization is proposed in [DEL 08, GUI 09a, GUI 09b, GUI 09c]
(Figure 10.8):

¢ U;r+l’ S;1+1 ¢
H ! . | .
+1 | | —
£ R I S r- Celli-1 ! Cell i
|
| g2 n1/2 | i
P20 F !
| n+l/2 | n+l/2
1 Giiyo GHUZ A Rifiin\ | /2
| — _
: - —+I | i-1/2,
: U;,s; : |
t” __:_ ________ 1 ____ :__ t” __________ /o __
T T L
Xi_ X;. Xi_
lll/2 AX,' l+|l/2 i-1/2

Figure 10.8. Direct solution of the sensitivity equations. Definition sketch for the finite
volume solution technique. Left: principle of the finite volume discretization. Right: splitting
the sensitivity source term into two parts at each interface

ntl _pn o D a2 onsl)2
U =U;/ +— (L), —Fi
Ax;
o [10.94]
n+l _ n n+l/2 n+l/2 n+l/2 n+l/2
S =58; +_Ax (GZis =G TR 5+ R 5
i

where subscripts 7, i — 1/2 and i + 1/2 indicate respectively the average value in the
cell 7 , the value at the interfaces i — 1/2 and i + 1/2, and superscripts n and n + 1/2
denote respectively the value at the time level n and the average value between the
time levels n and n + 1. Subscript (i — 1/2, +) denotes the contribution of the source
term R arising from interface i — 1/2 to the cell located in the direction of positive x
(that is, cell 7). Conversely, subscript (i + 1/2,—) denotes the contribution of the
source term arising from interface i + 1/2 to the cell located on the left-hand side
(that is, cell 7).
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F, G and R are estimated from the solution of Riemann problems at the interfaces
between the computational cells. The contributions Rf’_ﬁl/zz’_ and R;’_*ll/zz’ + shown in

Figure 10.8 are computed from the solution of the Riemann problem. R !/ 22’_ arises

from the waves with negative propagation speeds, while R 22’ + 1s associated with

waves that have a positive propagation speeds. The proposed approach being
explicit, the estimates of F, G and R in equations [10.94] are based on the values of
U, s, F and G at the known time level 7.

10.5.3. A modified HLL Riemann solver for sensitivity solutions

10.5.3.1. Principle of the solver

The fluxes F{})* and G/} at the interface i — 1/2 are computed by solving a

Riemann problem with left and right states Vi and Vy. If the first-order Godunov
scheme is used, Vi and Vy are respectively equal to the average values in the cells
i—1 and i. If higher-order schemes are used, Vi and Vy are inferred from the
reconstructed profiles in the cells i — 1 and i. The states V| and Vy are assumed
known hereafter.

The Riemann solver proposed in [GUI 09a, GUI 09b] is an extension of the
approximate HLL Riemann solver described in Appendix C (see section C.1). Recall
that the HLL Riemann solver uses the assumption of an intermediate region of
constant state (U*, s*) separated from the left and right states of the Riemann
problem by two discontinuities. The jump relationships hold across these
discontinuities:

F, —F*=(U, —U*) 1Y

F*—Fp =(U*-Ug)A?
a;t(l)

G, —G*=(s, —s%) A0 4 (U, —U¥) % [10.95]

oA

dg

G*-Gg =(s*=sg) AP +(U*-Uy)

where A" and A? are the speeds of the left- and right-hand discontinuities. These
speeds are assumed known a priori from the left and right states. Various estimates
for them are provided in Appendix C. Note that the jump relationships for the
sensitivity in [10.95] are obtained as particular cases of the more general jump
relationships [10.34] because the x-derivatives of the HLL-solution are zero.
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10.5.3.2. Flux formulae
System [10.94] can be solved uniquely for U*, s*, F* and G*:

AU +A%U0, | F -F

U*
/1(2) _4(1) 4(2) _/1(1)
ADF — OF 1) 4(2)
ATl A (U - Uy
/1(2) iy /1(2) -0

=A0s +2%s, G -Gy
@0 22 _ ;0
1 0a® 1o
+—/1(2) 0 _8¢ (U *—UR)+—/1(2) 0 _a(p (U, -U%
AVG, -AVG, A0 @
T o0 0,0
A0 IA® 22 A0

i — k o _ E
+2(2) 0 9 ( UR)+,1(2> — 0 3¢ (Up =U"

%

[10.96]

*

(s —sgr)

The second equation [10.96] provides the expression for the flux F* in the
intermediate region of constant state. The flux at the interface i — 1/2 is equal to Fy if
AV>0, to F*if AV<0<A1?, and to Fg if A® <0. These three formulae can be
gathered into a single expression as:

prap AR AR A
e N Y s

(UL -Ugr) [10.97]

where A" and A" are bounded expressions for A" and A®:

A~ =min(A",0)
[10.98]
A~ =max(A?,0)
A similar expression can be proposed for Gf’ff/ 22 :
+ _ - -+
A_ —4 ) A=A . ~ [10.99]
i ai(U*—UR)-I' j’ aL(UL _U*)

+
-1 dp At =1 dp
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In contrast with equation [10.97], equation [10.99] requires that the intermediate
state U* in the intermediate region of constant state be computed. This is done using
the first equation [10.96]. Note that in this equation, A and A must not be
replaced with A~ and A", the role of which is only to provide a unified formula to
handle the subcritical/supercritical transition at the interface.

A pending question is the expression of the derivatives 0A™/d¢ in

equation [10.99]. As proposed in [GUI 09a, GUI09b], these derivatives are
computed by noting that 2~ and A" are known functions of the left and right states U
and Ug:

04 _ A" AUy oA AUy oA ok

= = +
dp 09U, dp 09Uy dp dU_ - U,

Sp [10.100]

The derivatives 04" /0U; and 01" /0Uy are row vectors. Their product with
the column vectors sy and sy gives a scalar quantity.

10.5.3.3. Dirac source term

The discretization of the Dirac source term R is examined. The source term

1/2 . .
m1/2 s given by:

P (0] 9 (2) ,
By 5 (sp —s*)+ B, (s*=sp) if A% <0
7 &Ly
O]
R =18 a;q) (s; —s%) it AV <0< A®  [10.101]
0 if AV >0

where f, and B are indicators, §,=1 if the wave p is a shock or contact

discontinuity, £, = 0 otherwise. Conversely, the source term Rf_ﬁl/zz’ + 1s given by:

0 if A% <0
n+l1/2 0A® e (1) (2
s =16, 30 (s*-sg) it A% <0< A [10.102]
) @)
b a;(o (s —s%)+ 0, a§¢ (s*—sg) if AV >0
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The following criterion is used for shock detection [GUI 09a, GUI 09b]:

g1 if AV U )> AV (U
b @ @ (U
A7 (Uyp)>A7(U%)

[10.103]
'3 i 4(1) (U*) > /1(1) (UR )
’ A2 (U%)> A2 (Uy)

10.5.4. Application example: the one-dimensional shallow water equations

The sensitivity Riemann solver is applied to the dambreak problem presented in
section 10.3.4, with the parameters given in Table 10.1. More details can be found
on the analytical solution of this problem and extensions to constant bottom slopes
in [GUI 09a-c].

The numerical solution is computed over a domain discretized into 1,000 cells of
width 1 m. The computational time step is set to the maximum permissible value
given by the stability constraint (u + ¢) Aty.x = Ax. Figure 10.9 shows the analytical
and numerical solution for the sensitivity variables 77, ¥, v and 6. In contrast with the
empirical solution shown in Figure 10.6, there is no artificial peak in the solution
computed by the sensitivity solver.

Tne) —‘ 0579, 6™
—— Analytical —— Analytical

Numerical o Numerical

-15 0 15 15 0 15

& (mis) & (mis)
1 v (5'1) 5 &(m/s)
—— Analytical
Numerical
—— Analytical
Numerical
i
et 0 ; prm— 0 .
-15 0 15 -15 0 15
£ (mfs) £ (mls)

Figure 10.9. Dambreak problem. Analytical solution and numerical solution
obtained using the modified HLL solver
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10.6. Summary

Sensitivity equations for hyperbolic conservation laws or hyperbolic systems are
obtained by differentiating the flow governing equations with respect to the
parameter of interest. This parameter may be an initial condition, a boundary
condition, or a parameter in the flux and/or in the source term. The sensitivity
equations can be formulated in forward form (see sections 10.2 and 10.3) and in
adjoint form (see section 10.4).

The wave speed of the sensitivity system are identical to the wave speeds of the
flow system (sections 10.2 and 10.3). Consequently, the system formed by the flow
equations and their sensitivity equations is not strictly hyperbolic but linearly
degenerate because all the eigenvalues in the system are double eigenvalues. In the
adjoint formulation, invariants can be defined for the Lagrange multipliers. The
wave propagation speeds of these adjoint Riemann invariants are identical to those
of the flow system. The adjoint invariants are calculated by following the
characteristics in the backward time direction.

Discontinuous flow solutions generate Dirac sensitivity source terms that take
effect at the flow discontinuities (sections 10.2.3 and 10.3.3). The jump relationships
for the sensitivity are given by equation [10.19]. In the solution of the Riemann
problem (sections 10.2.4 and 10.3.3), the sensitivity is discontinuous at the edges of
rarefaction waves. In the solution of the Riemann problem for scalar conservation
laws, rarefaction waves are zero sensitivity regions. The analytical sensitivity
solution of the dambreak problem for the Saint Venant equations is derived in
section 10.3.4.

Numerical methods are available for the discretization of the forward sensitivity
equations in the presence of discontinuous solutions. A modified HLL Riemann
solver is presented in section 10.5, with an application to the dambreak problem
derived in section 10.3.4.





