
Chapter 10 

Sensitivity Equations for  
Hyperbolic Systems 

10.1. Introduction 

Most conservation laws presented in the previous chapters involve flux functions 
or source terms that are functions of the conserved variable U and a number of 
parameters that are known a priori. For instance, the flux F in linear advection 
equations (section 1.3) is equal to the product of the conserved variable AC by the 
flow velocity u. The knowledge of u is required to solve the equation. In the 
kinematic wave equations (section 1.5), the friction coefficient, channel slope and 
channel geometry are parameters on which the discharge Q depends. In the Buckley-
Leverett equation (section 1.6), the flux F is a function of the conserved variable s, 
the shape parameter bBL and the Darcy velocity Vd. In the advection-adsorption 
equation (section 1.7), the parameters are the flow velocity and the adsorption 
constants (klin for a linear law, kF and b in a Freundlich model, kL and CL in a 
Langmuir-based model). The initial conditions may also be considered as a 
parameter in the problem that consists of solving the equations over time. 

In practical engineering applications, the parameters are known with a given 
imprecision or uncertainty. It is sometimes impossible to measure these parameters 
directly, hence the need for a “calibration” of the model. Calibration consists of 
adjusting or constraining the parameters so that the model output reproduces 
measurements or observations as faithfully as possible. In some other cases, such as 
scenario analysis, the modeler is interested in knowing the consequences of 
imprecision or uncertainty in the knowledge of the parameters on the model output. 
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In optimization and control problems, we are interested in the parameter values that 
allow a certain objective (or cost) function to be minimized. 

In all these problems, the sensitivity of the solution to the model parameters (that 
is, how the output variables change with the parameters) plays an essential role. For 
instance, trying to “calibrate” a model parameter to which the model output is not 
sensitive would be meaningless. In contrast, oversensitivity of a model to a given 
parameter may indicate the hidden influence of additional parameters that have not 
been identified. Model sensitivity is used in optimization problems for optimum 
search. In uncertainty analysis, it can be used in the framework of efficient, first-
order second moment techniques. In the field of flow control, it is often used in the 
framework of adjoint modeling. 

Sensitivity is classically defined as the partial derivative of a model variable with 
respect to a parameter. Cacuci [CAC 03] defines the sensitivity as a Gateaux (also 
called directional) derivative. Several techniques may be used to compute the 
sensitivity of a model variable to a parameter: 

– The empirical, or finite difference approach, consists of carrying out a 
simulation using two slightly different values of the parameter of interest. The 
sensitivity is defined as the limit of the ratio of the variation in the variable to the 
variation in the parameter. This approach is very efficient in estimating the 
sensitivity of a model, the governing equations of which are unknown. It may also 
be used in the local sensitivity analysis of models with known governing equations, 
such as hyperbolic systems of conservation laws.  

– The complex differentiation technique [LYN 67] consists of introducing a pure 
imaginary perturbation in the parameter of interest (see [LU 07] for an application). 
The solution of the governing equations is a complex number, the imaginary part of 
which is used to compute the sensitivity. This technique is second-order accurate 
with respect to the perturbation in the parameter. It has the advantage that only one 
run of the model is needed. The drawback is that all the mathematical operations in 
the model must be carried out on complex numbers, which is computationally 
expensive. 

– Code differentiation consists of differentiating the programmed instructions 
instead of the governing equations in the informatic implementation of the model. 
Code differentiation may be manual or automatic [ELI 07]. 

– Analytical differentiation consists of differentiating the analytical solution of 
the governing equations with respect to the parameter. This implies that (i) an 
analytical solution is available, which is not often the case in real-world problems, 
and (ii) the parameter is assumed to be perturbed uniformly over the entire solution 
domain. This is another constraining assumption. 
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– Direct sensitivity calculation consists of differentiating the governing equations 
of the model with respect to the parameter of interest, thus yielding a set of 
governing sensitivity equations. The sensitivity equations are solved in a coupled 
way with the original model equations. This approach is examined in the present 
chapter. Two types of sensitivity equations are considered hereafter: forward (or 
direct) sensitivity equations, and adjoint (or backward) sensitivity equations.  

A particular aspect of sensitivity equations for hyperbolic systems is that the 
solutions of the hyperbolic system may become locally discontinuous. In this case, 
the derivatives of the solution with respect to time, space and the parameter of 
interest become locally undefined and the sensitivity equations must be modified 
because sensitivity becomes a locally non-conserved variable (see section 10.2.2). 
Classical numerical techniques yield unstable sensitivity solutions [GUN 99]. The 
governing sensitivity equations must be modified to account for this (see [BAR 02], 
where the governing sensitivity equations are reformulated in the framework of the 
theory of distributions). 

10.2. Forward sensitivity equations for scalar laws 

10.2.1. Derivation for continuous solutions 

Consider a one-dimensional scalar hyperbolic equation written in the 
conservation form [1.1], recalled here: 

S
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where U, F and S are respectively the conserved variable, the flux and the source 
term. In what follows, F and S are functions in the form: 
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where ϕ is a parameter with respect to which the sensitivity analysis is to be carried 
out. ϕ may be a parameter in the conservation law, in the initial or boundary 
conditions. 

The purpose is to study the influence of variations in ϕ on the solution U over 
the solution domain. This is done via a perturbation analysis. The parameter ϕ is 
expressed in the form: 

'),(),(),( 0 ϕεϕϕ txtxtx +=  [10.2] 
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where ϕ0 and ′ϕ  are respectively the “nominal” value of the parameter and ′ϕ  is an 
infinitesimal perturbation. ε(x, t) is called the support, or characteristic function of 
the perturbation. It expresses the fact that the parameter may not be perturbed with 
the same magnitude at all points and all times of the solution domain. The solution 
of equation [1.1] with F, S and ϕ as defined in equations [10.1–2] is written in the 
form: 

),('),(),( 0 txUtxUtxU +=  [10.3] 

where U0 is the solution of equation [1.1] for ϕ = ϕ0 and U ' is the perturbation in U 
caused by the perturbation in ϕ. The sensitivity of U with respect to ϕ is defined as 
the limit: 

'
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The governing equation for s is obtained by writing two equations [1.1] with two 
different values of ϕ ': 
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A first-order Taylor series expansion yields: 
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Substituting equations [10.6] into equations [10.5] and subtracting yields: 
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Dividing equation [10.7] by the perturbation ϕ ' and introducing definition [10.4] 
gives: 
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Noting from Chapter 1 that UF ∂∂ /  is defined as the wave speed λ, 
equation [10.8] becomes: 
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10.2.2. Conservation, non-conservation and characteristic forms 

Equations [1.1] and [10.9] can be written in vector conservation form as: 
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where V, H and T are defined as: 
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The non-conservation form of [10.10] is obtained by differentiating H with 
respect to V: 
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with: 
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where λU is the derivative of λ with respect to U. The matrix B has a double 
eigenvalue, λλλ == )2()1( . System [10.12] is not strictly hyperbolic because a 
necessary condition for hyperbolicity is that all the eigenvalues of the Jacobian 
matrix be distinct. System [10.10–11] is said to be linearly degenerate. 
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The characteristic form of sensitivity equations is derived directly from 
equations [1.17] and [10.12]: 
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This system can be written in vector form as: 
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Both the conserved variable U and its sensitivity s are Riemann invariants for 
system  [10.10]. In the absence of source term Q", U and s are constant along the 
characteristics. 

10.2.3. Extension to discontinuous solutions 

Chapter 3 deals with the properties of discontinuous solutions U for the original 
hyperbolic conservation law [1.1] (see section 3.4). Discontinuous solutions verify 
the jump relationship [3.28], recalled here: 

2121 )( FFcUU s −=−  

where subscripts 1 and 2 denote the values of U on the left- and right-hand sides of 
the discontinuity, and cs is the speed of the discontinuity. This relationship cannot be 
transposed as such to the sensitivity. As shown in [BAR 02], extra terms appear in 
the jump relationship for the sensitivity equations. Several derivation methods are 
available for the sensitivity jump relationships: 

– A first approach consists of carrying out two balances over an infinitesimal 
control volume [x1, x2] containing the discontinuity. The first is written for the 
“nominal” value ϕ0 of the parameter, the second is carried out for the perturbed 
value ϕ0 + εϕ '. This approach is presented in [GUI 09c] and will not be detailed 
here. 

– Another possible approach consists of representing the propagation of the 
discontinuity in the (x, ϕ) plane for a given time t and linking both sides of the 
discontinuity using two different paths (Figure 10.1). This approach is used 
hereafter. 
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Figure 10.1. Representation of a discontinuity in the (x,ϕ) 
 plane for a given time t 

The jump relationships are written for two different values of the parameter: the 
nominal value ϕ0 and a slightly different value ϕ1 = ϕ0 + dϕ. The points on the left- 
and right-hand sides of the discontinuity for ϕ = ϕ0 are denoted by A and B 
respectively. The points on the left- and right-hand sides of the discontinuity for 
ϕ = ϕ1 are denoted by C and D respectively. The jump relationships hold: 
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Connecting the points A and C along Path 1 and points B and D along Path 2 
yields: 
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where xs is the abscissa of the shock. Subtracting equations [10.16] from one another 
leads to: 
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Substituting relationships [10.17] into [10.18] and simplifying by dϕ leads to: 
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where subscripts L and R denote the values on the left- and right-hand sides of the 
discontinuity. Compared to the original Rankin-Hugoniot condition [3.28], the first 
equation [10.19] contains an extra source term R that takes effect only at 
discontinuities. The expression of the source term Q in equation [10.11] is modified 
into: 
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where 
sxδ is Dirac’s function centered at x = xs and R is the extra source term as 

defined in [10.19]. 

10.2.4. Solution of the Riemann problem 

10.2.4.1. Definition 

The Riemann problem is defined for the hyperbolic part (that is, without source 
term) of equation [10.10]: 
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The properties of the solution of the Riemann problem are detailed in Chapter 4. 
The properties of the solutions of the Riemann problem for the sensitivity equations 
of scalar hyperbolic conservation laws are given in [GUI 07]. The reader is referred 
to the original publication for the details of the proofs, only the broad lines being 
recalled hereafter. 

Recall from Chapter 4 that the solution of the Riemann problem for a convex or 
concave scalar hyperbolic law is made of a simple wave connecting the left and right 
states of the Riemann problem. If the flux function is non-convex, the wave may be 
a compound wave, that is, the combination of a rarefaction wave and a shock. The 
solution of the Riemann problem is self-similar regardless of the nature of the wave. 
In other words, the solution U is a function of the ratio (x – x0)/t alone. 

10.2.4.2. Solution for a convex or concave law 

The following configurations are considered for a convex or concave law. 

(1) Rarefaction wave (Figure 10.2a). This is the case if λL = λ(UL) < λR = λ(UR). 
Then the solution U is given by: 
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where the function λ–1(ξ) is the inverse function of λ(U). The rarefaction wave can 
be shown to be a void sensitivity region [GUI 07], that is, the sensitivity is zero 
within a rarefaction wave: 
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(2) Contact discontinuity (Figure 10.2b). This type of wave verifies 
λL = λR = λLR. In such a case, the solution U of the Riemann problem is: 
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The sensitivity s is given by: 
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Note that λL = λR by definition of the contact discontinuity. This is not 
necessarily an indication that R = 0 in equation [10.19], because ϕλ ∂∂ /  (to 
mention but one of the terms in [10.19]) may be non-zero. 
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Figure 10.2. Solution of the Riemann problem for a convex/concave law. 
 (a) rarefaction wave; (b) contact discontinuity; (c) shock wave 

 (3) Shock wave (Figure 10.2c). For a convex law, this is the case if λL > λR. U is 
given by: 
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The sensitivity is discontinuous across the shock. Since s is a Riemann invariant, 
it verifies: 
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10.2.4.3. Non-convex conservation laws 

In addition to the three configurations presented in section 10.2.4.2 non-convex 
flux functions give rise to a fourth possible configuration. 

(4) Compound (mixed) wave: a rarefaction wave bounded by a shock. This 
configuration appears when the left and right state of the Riemann problem located 
on both sides of the value Umax for which the wave speed λ is maximum (see 
Chapter 4): 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

=

<<

<<

0)(
d
d

max

LmaxR

RmaxL

U
U

UUU

UUU

λ
 [10.28] 

Then U is given by: 
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for a mixed wave with a shock facing to the right (Figure 10.3a), and by: 
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for a mixed wave with a shock facing to the left (Figure 10.3b). 

In both cases the sensitivity is zero within the rarefaction wave. It verifies 
equation [10.22].  



422     Wave Propagation in Fluids 
 

x x0 

t 

x x0 

U 

x x0 

s 

UL 

UR 

sL 

sR 

(a) 

x x0 

t 

x x0 

U 

x x0 

s 

UL 

UR 

sL 

sR 

(b) 

 

Figure 10.3. Solution of the Riemann problem for a non-convex law:  
compound (mixed) wave: (a) shock on the right-hand side of the wave;  

(b) shock on the left-hand side of the wave 

10.3. Forward sensitivity equations for hyperbolic systems 

10.3.1. Governing equations 

The governing sensitivity equations for hyperbolic systems are derived as 
explained in section 10.2. Consider the conservation form [2.2] of a hyperbolic 
system: 
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where F and S are functions of the conserved variable U and the parameter ϕ: 
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As in section 10.2, the parameter ϕ is subjected to an infinitesimal perturbation 
(equation [10.2]). Since both the “nominal” solution U and the perturbed solution 
U + U' verify equation [2.2], we have: 
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Subtracting equations [10.32] from each other, dividing by ϕ ' and using the 
definition of the sensitivity vector '/'U/Fs ϕϕ =∂∂=  leads to the following 
sensitivity equations (see [GUI 09c] for the details of the derivation): 
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 [10.33] 

where U/FA ∂∂=  and δs is Dirac’s function that takes effect only at shocks. The 
subscripts L and R in the definition of the point source term R indicate the values of 
the variables on the left- and right-hand side of the shock respectively. Equation 
[10.33] is valid for both continuous and discontinuous solutions. Note that the jump 
relationships for the sensitivity are obtained as the vector version of equations 
[10.19]: 
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Equations [2.2] and [10.33] are rewritten in the form of a single system defining 
a variable V as the union of U and s: 

THV =
∂
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∂
∂

xt
 [10.35] 



424     Wave Propagation in Fluids 
 

where V, H and T are defined as: 
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10.3.2. Non-conservation and characteristic forms 

The non-conservation form [10.12] is recalled: 

'TVBV =
∂
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∂
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where T' is defined as in equation [10.13] by the union of two vectors: 
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and B is the square matrix defined as the union of four square matrices: 
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where A and C are the square Jacobian matrices: 

⎪
⎪
⎭

⎪⎪
⎬

⎫

∂
∂=

∂
∂=

∂
∂=

U
GC

s
G

U
FA

 [10.39] 

The first row in matrix B is related to the non-conservation form for the variable 
U, the second row expresses the non-conservation form for the sensitivity s. Note 
that G / s A∂ ∂ =  because G = As. A particular consequence is that all the 
eigenvalues of system [10.35] with B defined as in equation [10.38] are double 
because an eigenvalue for the conserved variable U is also an eigenvalue for the 
sensitivity s. The system is said to be linearly degenerate. 
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The characteristic form for U is derived in Chapter 2 and will not be recalled 
here. The characteristic form for s is obtained as follows. The vector equation 
[10.12] is written for the sensitivity only: 
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and the system is diagonalized by left-multiplying equation [10.40] with the inverse 
of the matrix K of eigenvectors of A: 
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Introducing the diagonal matrix Λ formed by the eigenvalues of A, equation 
[10.41] is rewritten as: 
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The vectors Y and Q" are introduced as: 
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Substituting definitions [10.43] into equation [10.42] leads to:  
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which is equivalent to: 
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The vector Y is the vector of sensitivity Riemann invariants. Note that Y can also 
be defined as:  

ϕ∂
∂= WY  [10.46] 
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10.3.3. The Riemann problem 

10.3.3.1. Structure of the solution 

Consider the Riemann problem [10.21] defined for the hyperbolic part the 
governing equations. Recall that the solution of the Riemann problem is self-similar 
and that it verifies the following property (see Chapter 4): 
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As shown in Chapter 4, equation [10.47] leads to Property (P4.3): the solution is 
made of m simple waves (rarefaction waves, shocks or contact discontinuities) 
separating regions of constant state. These waves originate from the location x0 of 
the initial discontinuity.  

The solution of the Riemann problem is determined uniquely from the left and 
right states provided that m independent relationships in s can be written across each 
wave. The next two sections focus on the derivation of such relationships for 
rarefaction waves and discontinuities.  

10.3.3.2. Rarefaction waves 

Assume that the pth wave is a rarefaction wave. Within this wave, (x – x0)/t is an 
eigenvalue for B, as indicated by equation [10.47]. Consequently, it is also an 
eigenvalue for A (p = 1, …, m): 

t
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Differentiating equation [10.48] with respect to the parameter ϕ leads to: 
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Moreover, the Riemann invariants Yq (q ≠ p) provide m – 1 relationships: 
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Consequently, m independent relationships are available across a rarefaction 
wave. 
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10.3.3.3. Discontinuities 

If the pth wave is a shock or a contact discontinuity, the jump relationships 
[10.34] are applicable. However, both U and s being constant on each side of the 
wave in the solution of the Riemann problem, the space derivatives vanish in the 
expression of the source term R and the jump relationships are simplified into: 
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 where cs is the speed of the discontinuity and superscripts (p, –) and (p, +) indicate 
respectively the values of the variables on the left- and right-hand side of the 
discontinuity. The expression for the derivative of cs with respect to ϕ can be 
derived from the jump relationships for the variable U. Indeed, the Rankin-Hugoniot 
conditions yield: 
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Consequently: 
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Since ϕ∂∂ /sc  is entirely determined from the values of s and U on both sides 
of the discontinuity, m independent equations [10.51] can be written across a 
discontinuity. 

10.3.4. Application example: the one-dimensional shallow water sensitivity 
equations 

10.3.4.1. Governing equations 

The purpose is to derive the analytical sensitivity solution for the dambreak 
problem presented in section 4.3.3. Recall that the dambreak problem is a Riemann 
problem under the assumption of zero bottom slope and frictionless motion.  
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If the channel is rectangular, the Saint Venant equations (see section 2.5) are 
equivalent to the one-dimensional version of the shallow water equations (see 
sections 5.4 and 7.4.2). U and F are defined as:  
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where g is the gravitational acceleration, h is the water depth, M is the specific force, 
q is the unit discharge and u is the flow velocity.  

The complete description of the solution of the dambreak problem is given in 
Chapter 4. Recall that the solution is made of an intermediate region of constant 
state separated from the let state by a rarefaction wave and from the right state by a 
shock. The Riemann invariant W2 = u + c is applicable across the rarefaction wave, 
while the jump relationships apply across the shock. 

The Jacobian matrix A is recalled: 
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where c = (gh)1/2 is the propagation speed of the waves in still water and u = q/h. 
The sensitivity vector s and the sensitivity flux G are defined as: 
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where η and θ are respectively the sensitivity of h and q to the parameter ϕ (that 
may be any parameter). The matrix B is given by: 
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It is easy to check that B has the following double eigenvalues: 
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10.3.4.2. Riemann problem definition 

The purpose is to solve the Riemann problem with left and right states in U: 
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with hL > hR.  

The left and right states for the sensitivity depend on the parameter ϕ examined 
in the sensitivity analysis. In what follows, it is chosen to examine the sensitivity of 
the solution of the dambreak problem to the initial water level hL on the left-hand 
side of the dam, while hR is assumed fixed. Then ϕ = hL and we have: 
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Also note that if the sensitivity analysis focuses on the influence of initial or 
boundary conditions, the value of the parameter (the initial or boundary conditions) 
does not influence the expression of the flux F and source term S at times t > 0 
within the domain. Therefore, 0/S/F =∂∂=∂∂ ϕϕ  in the expression of the source 
term Q. 

10.3.4.3. Sensitivity solution 

In the rarefaction wave λ(1) = u – c, equation [10.49] is applicable: 

0=− χυ  [10.61] 

where υ and χ are respectively the sensitivity of u and c to the left state hL. The 
speed c of the waves in still water is defined as c = (gh)1/2. 

Moreover, the Riemann invariant W2 = u + 2c may be used across the wave: 

LL 22 cucu +=+  [10.62] 

Differentiating equation [10.62] with respect to ϕ yields: 

LL 22 χυχυ +=+  [10.63] 
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System [10.61–62] can be solved uniquely for υ and χ in the rarefaction wave: 
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where the * superscript indicates the variables in the intermediate region of constant 
state. The sensitivities η and θ are derived from equation [10.64] by noting that 
h = c2/h and q = hu. Consequently: 
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Applying the first equation [10.65] yields the expression for the left state cL in 
equation [10.64]: 
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Moreover, the profile for c is given by equation [4.48], recalled here: 
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Substituting equations [10.64] and [4.48] into equation [10.65] leads to: 
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A similar reasoning yields the following expression for the sensitivity of the unit 
discharge: 
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It is visible from equation [10.67] that the sensitivity of the water depth varies 
linearly with x in the rarefaction wave. In addition, using (x – x0)/t = – cL in equation 
[10.67] yields a limit value η  = 2ηL/3. Consequently, the sensitivity h is 
discontinuous at the left-hand boundary of the rarefaction wave. Equation [10.67] 
gives η = 0 for (x – x0)/t = 2 cL (Figure 10.4). 

(x – x0)/t 

η 

– cL 2 cLcs u* – c*

ηL 

2ηL/3 

Eq. [10.66] 

Eqs. [10.68]

(x – x0)/t 

θ 

– cL 2 cLcs u* – c*

Eq. [10.67] 
Eqs. [10.68]

(x – x0)/t 

χ 

– cL 2 cLcs u* – c*

χL 

2χL /3 

Eq. [10.63] 

Eqs. [10.68]

 

Figure 10.4. Dambreak problem. Definition sketch for the sensitivity solution 
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The sensitivities η* and θ * in the intermediate region of constant state are 
obtained by applying the jump relationships [10.51] and [10.53] and noting that 
uR = ηR = θR = 0: 
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The shock speed cs is known from the solution of the Riemann problem for the 
flow equations: 
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Differentiating with respect to ϕ = hL leads to: 
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System [10.69–71] is nonlinear. It can be solved using iterative techniques such 
as Newton-Raphson’s method. Note that in the general case, equations [10.69] and 
[10.67–68] do not yield a continuous sensitivity profile at the right-hand boundary 
of the rarefaction wave (Figure 10.4). 

Figure 10.5 illustrates the solution obtained for the parameters in Table 10.1. 

Symbol Meaning Value 

g Gravitational acceleration 9.81 m s–2 

hL Initial upstream water depth 10 m 

hR Initial downstream water depth 1 m 

ηL Sensitivity to the initial water depth on the upstream side 1  

ηR Sensitivity to the initial water depth on the downstream side 0 

Table 10.1. Dambreak problem parameters 
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Figure 10.5. Dambreak problem. Analytical solution for the parameter set in Table 10.1  

Figure 10.6 shows the empirical sensitivity profiles obtained from the numerical 
solution of the dambreak problem using a finite volume technique. The first-order 
Godunov scheme described in Chapter 7 is used with the HLL approximate 
Riemann solver described in Appendix C. The empirical sensitivity solution is 
computed by solving the shallow water equations twice. In the first simulation, the 
initial water depth on the left-hand side of the dam is set to hL + ε/2. In the second 
simulation, it is set to hL – ε/2. The sensitivities η, χ and θ are obtained by dividing 
the difference in h, c and q between the two simulations by ε. 



434     Wave Propagation in Fluids 
 

0

1

-15 0 15

ξ (m/s)

η (-)

 

0

30

9 10

ξ (m/s)

η (-)

 

0

1

-15 0 15

ξ (m/s)

υ (s-1)

 

0

60

9 10

ξ (m/s)

υ (s-1)

 

0

5

-15 0 15

ξ (m/s)

θ
(m/s)

 

0

100

200

300

9 10

ξ (m/s)

θ
(m/s)

 

Figure 10.6. Dambreak problem. Analytical solution (solid line) and  
empirical solution (dashed, dotted line) for the sensitivity 

The profiles are plotted as functions of the ratio ξ = (x – x0)/t. The empirical 
sensitivity profiles clearly exhibit artificial peaks in the neighborhood of the shock. 
Rescaling the graph on the right-hand side of Figure 10.6 indicates that the 
amplitude of the artificial peak is up to 60 times that of the theoretical value of the 
sensitivity next to the shock. This example illustrates the need for numerical 
methods that do not exhibit such undesirable behaviors. Examples of such 
techniques are presented in section 10.5. 
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10.4. Adjoint sensitivity equations 

10.4.1. Introduction 

The forward sensitivity equations presented in the previous sections are most 
useful when the purpose of the sensitivity analysis is to study the influence of a 
single parameter on many model outputs (or variables). Examples of such situations 
are the sensitivity analysis of the dambreak problem presented in section 10.3.4. The 
influence of the upstream water level (a single simulation parameter) is studied for 
all the flow variables at all points and at all times.  

In a number of inverse problems, however, the objective of the sensitivity 
analysis is to investigate the influence of numerous model parameters on a reduced 
set of flow variables. This is the case for instance when time-varying boundary 
conditions or spatially-varying initial conditions in a flow model are to be adjusted 
so as to reproduce flow measurements at a limited number of locations as accurately 
as possible. In this case, the number of points and time steps at which the initial and 
boundary conditions are to be adjusted may be much larger than the number of 
measurement points. The forward sensitivity approach is extremely time-consuming 
because it requires that one forward sensitivity calculation be carried out for each 
point (and each time) where the initial and/or boundary conditions are to be 
adjusted. In such situations, that are typical of inverse problems, the adjoint 
sensitivity analysis approach is more appropriate [CAC 03]. 

Adjoint sensitivity analysis is used in many fields of engineering such as model 
inversion (data assimilation [LED 86], model calibration, [PAN 89]), optimization 
problems, flow control and uncertainty analysis. Its earliest applications can be 
found in the field of meteorology and atmospheric sciences [HAL 82, HAL 83]. The 
reader interested in a formal, general definition of adjoint operators and an 
introduction to the underlying theory may refer to [CAC 03]. The theory of adjoint 
models can be found in [MAR 95]. The purpose of this section is to introduce the 
broad principles of adjoint sensitivity equations for one-dimensional hyperbolic 
conservation laws. The same derivation principle may be applied to systems of 
conservation laws. The reader interested in application examples of the adjoint 
sensitivity analysis technique to systems of conservation laws may refer to [SAN 00, 
SAN 99], which describe applications to free surface flow. 

10.4.2. Adjoint models for scalar laws 

10.4.2.1. Derivation 

Consider a one-dimensional flow model obeying a scalar hyperbolic 
conservation law in the form [1.1], with a forward sensitivity equation in the 
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form [10.9]. For the sake of conciseness, the support function ε  of the perturbation 
is considered to be uniformly zero and the solution is assumed to be continuous, 
therefore R = 0. It is also assumed that the wave speed λ is positive. The purpose is 
to optimize the value of the parameter ϕ so as to minimize a so-called objective 
function J(ϕ) defined in general form as: 

∫ ∫=
T L

txUfJ
0 0

dd),()( ϕϕ  [10.72] 

where L and T are respectively the length of the domain and the time interval over 
which the objective function is defined. The parameter ϕ may be an initial or 
boundary condition, or a model parameter such as a friction coefficient, bottom 
slope (for an open channel model), sound speed or pipe diameter (for a water 
hammer model), etc. The function f depends on the nature of the optimization 
problem to be solved. Assume for instance that a measurement device provides an 
experimental value for U for a given time τ at a given abscissa X. No other 
measurement is available. If the purpose is to minimize the difference between the 
computed and measured value at [X, τ], the function f may be defined as a least 
square-based distance: 
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where δ(X, τ) is the Dirac function that takes effect at the abscissa X and time τ. The 
objective function J is zero (that is, minimum) when the distance between the 
simulated and measured variable U is zero.  

Classically, gradient-based methods (sometimes called quasi-Newton methods) 
are used to find the minimum or zero of the objective function J(ϕ). The gradient of 
J in the parameter space is given by: 
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The expression of f being known, ϕ∂∂ /f  and Uf ∂∂ /  can be computed and the 
gradient of the objective function can be computed provided that the sensitivity s is 
known. However, as mentioned in the previous section, computing s for a large set 
of parameters ϕ is computationally expensive. The adjoint formulation is obtained 
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by modifying equation [10.74] as follows. The first equation [10.9] is rewritten as 
(note the simplification ε = 0, R = 0): 
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t
s  [10.75] 

Equation [10.75] is multiplied by an arbitrary function μ (x, t) called the 
Lagrange multiplier. The resulting product, which is zero, is added to the integrand 
in equation [10.74], thus leading us to redefine the gradient of the objective function 
as: 
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The adjoint equation is obtained by deriving a governing equation for the 
Lagrange multiplier μ. This is done via integration by parts: 
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Substituting equations [10.77] into equation [10.76] and noting that G = λs 
leads to: 
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Assume that μ verifies the following equation: 
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μμλμ  [10.79] 

Equation [10.79] is similar to equation [10.75], with the difference that (i) an 
additional term Uf ∂∂ / is introduced and (ii) the sign of the source term US ∂∂ /  is 
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changed. This has consequences on the stability of μ. The solution s of equation 
[10.75] is stable when computed for increasing times. Changing the sign of the term 

US ∂∂ / in equation [10.79] may result in instability if μ is also computed for 
increasing times. The initial sign for the source term can be recovered by 
introducing the reverse time and space coordinates t' = T – t and x' = L – x. 
Equation [10.79] becomes: 

U
f

U
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xt ∂
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∂
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∂
∂ μμλμ

''
 [10.80] 

This is the final form of the adjoint sensitivity equation. The solution μ is stable 
if computed in the direction of positive t', that is, for negative t. Assuming that λ is 
positive, a boundary condition is needed at x' = 0 (that is, at x = L). The initial 
condition is needed for t' = 0 (which corresponds to t = T). The simplest possible 
conditions are: 
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Assuming that the adjoint equation [10.80] with initial and boundary conditions 
[10.81] is satisfied, substituting equations [10.79] and [10.81] into equation [10.78] 
leads to the following expression for the gradient of the objective function: 
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10.4.2.2. Physical interpretation – algorithmic aspects 

The adjoint equation [10.80] may be interpreted as follows: the origin of a 
perturbation in the variable U at a given location (x, t) in the solution domain is to be 
sought at earlier times, at the points the perturbation is likely to come from. Solving 
equation [10.80] is equivalent to traveling backward along the characteristic lines in 
the (x, t) plane (Figure 10.7). The smaller the value of μ at t = 0 and/or x = 0, the 
smaller the value of the integrals in equation [10.82], thus the smaller the magnitude 
of ϕ∂∂ /J . The Lagrange multiplier may be seen as an indicator of the influence of 
the flow solution at a given time and abscissa on the final value of the objective 
function.  
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From an algorithmic point of view, the adjoint formalism associated with a 
quasi-Newton procedure implies the following steps: 

(1) Forward step: solve the flow and forward sensitivity equation in the direction 
of positive time over the interval [0, T] for a given value of the parameter ϕ. This 
provides the value of U and s. The objective function J is computed from 
equation [10.72]. In the general case, J is not minimum for the selected value of ϕ. 

(2) Backward step: solve the adjoint sensitivity equation [10.80] with initial and 
boundary conditions [10.81] in the direction of negative times. This yields the 
Lagrange multiplier μ at all points (x, t) of the solution domain [0, L]×[0, T]. 

(3) Compute the gradient ϕ∂∂ /J  using equation [10.82]. Update the parameter 
ϕ using a classical Newton procedure: 

ϕ
ϕϕϕ
∂∂

−
/

)(
J
J6  [10.83] 

Steps (1) – (3) are repeated sequentially.  

In practical computer implementations, the sequence (1) – (2) involves that the 
results of the forward flow and sensitivity calculation being stored and available for 
the backward solution of the adjoint problem. In contrast with the classical forward 
computation procedure, the previously computed time levels cannot be erased from 
the memory of the computer because the flow variables must be available over the 
entire time interval [0, T]. This may imply considerable memory and storage 
requirements. 

Eqs. [10.81]

Eq. [10.80]

x 

t 
T 

dx/dt = λ 

L 

Eqs. [1.1], [10.9] 

 

Figure 10.7. Forward and adjoint sensitivity equations. Definition sketch in the (x, t) plane 

10.4.2.3. Extension to hyperbolic systems 

The adjoint sensitivity system is derived as follows. Each component of the 
vector sensitivity equation is multiplied by a Lagrange multiplier μp: 
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where subscript p denotes the component of the vector equation. Adding this system 
to the objective function as in section 10.4.2.1 leads to: 
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where M is the vector of Lagrange multipliers and sΔ, GΔ and QΔ are diagonal 
matrices constructed from the components of the vectors s, G and Q: 
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As in section 10.4.2.1, the differential operators are swapped via integration by 
parts, leading to the following equation: 
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Multiplying equation [10.87] by the inverse of sΔ leads to the adjoint system: 
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Riemann invariants can be derived for the Lagrange multipliers. Left-multiplying 
equation [10.88] by K–1 leads to: 
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where KΔ is the matrix of eigenvectors of Δ
−
Δ Gs 1  and ψ is the vector of adjoint 

Riemann invariants: 

MdKψd 1−
Δ=  [10.90] 
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A more convenient way of deriving the characteristic form of the adjoint 
equation consists of starting from the characteristic form [10.44] of the sensitivity 
equation:  
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Applying integration by parts yields the adjoint equation: 
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where MQQ ")3(
Δ= . Multiplying by the inverse of YΔ and noting that 

Λ=Λ Δ
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Δ YY 1 leads to: 
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The vector equation [10.93] forms a system of m characteristic equations. The 
Lagrange multipliers μp (p = 1, …, m) are the adjoint Riemann invariants. 

10.5. Finite volume solution of the forward sensitivity equations  

10.5.1. Introduction 

As shown in section 10.3.4, the empirical solution of sensitivity equations yields 
numerical artifacts such as abnormally large (if not locally infinite) values of the 
computed sensitivity. Other artifacts have been observed in two-dimensional free 
surface flow simulations, such as artificial sensitivity swirls in regions where they 
should not be present [GUI 09c]. Such artifacts can be eliminated to a large extent if 
the sensitivity equations are solved directly.  

Most methods for direct sensitivity calculation presented in the literature deal 
with continuous solutions (see e.g. [GUN 99, LU 07]). The purpose of this section is 
to provide the broad lines for a finite volume-based solution technique of sensitivity 
equations with discontinuous flow solutions. The principle of the method is 
presented in [GUI 07] for scalar laws, with an application to the kinematic wave 
model seen in Chapter 1.  

The technique is extended to the shallow water equations in [DEL 08, GUI 09c]. 
A more accurate version of the  Riemann solver with an extension to 3×3 systems 
including a passive scalar transport equation is given in [GUI 09a, GUI 09b]. 
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Practical implementation aspects, including boundary conditions, can be found in 
[GUI 09b]. 

10.5.2. Discretization 

The purpose is to solve the 2m×2m hyperbolic system [10.35] formed by the 
governing equations for the flow variable U and the sensitivity s. For the sake of 
clarity, only the case m = 2 is considered and the source terms S and Q are assumed 
to be zero. Consequently, the vector source term T as defined in equation [10.36] 
only incorporates the sensitivity Dirac source term at discontinuities. A finite 
volume discretization is proposed in [DEL 08, GUI 09a, GUI 09b, GUI 09c] 
(Figure 10.8): 
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Figure 10.8. Direct solution of the sensitivity equations. Definition sketch for the finite 
volume solution technique. Left: principle of the finite volume discretization. Right: splitting 

the sensitivity source term into two parts at each interface 

⎪
⎪
⎭

⎪⎪
⎬

⎫

++−
Δ
Δ+=

−
Δ
Δ+=

+
−+

+
+−

+
+

+
−

+

+
+

+
−

+

)RRGG(ss

)FF(UU

2/1
,2/1

2/1
,2/1

2/1
2/1

2/1
2/1

1

2/1
2/1

2/1
2/1

1

n
i

n
i

n
i

n
i

i

n
i

n
i

n
i

n
i

i

n
i

n
i

x
t
x
t

 [10.94] 

where subscripts i, i – 1/2 and i + 1/2 indicate respectively the average value in the 
cell i , the value at the interfaces i – 1/2 and i + 1/2, and superscripts n and n + 1/2 
denote respectively the value at the time level n and the average value between the 
time levels n and n + 1. Subscript (i – 1/2, +) denotes the contribution of the source 
term R arising from interface i – 1/2 to the cell located in the direction of positive x 
(that is, cell i). Conversely, subscript (i + 1/2, –) denotes the contribution of the 
source term arising from interface i + 1/2 to the cell located on the left-hand side 
(that is, cell i).  
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F, G and R are estimated from the solution of Riemann problems at the interfaces 
between the computational cells. The contributions 2/1

,2/1R +
−−

n
i  and 2/1

,2/1R +
+−

n
i  shown in 

Figure 10.8 are computed from the solution of the Riemann problem. 2/1
,2/1R +
−−

n
i  arises 

from the waves with negative propagation speeds, while 2/1
,2/1R +
+−

n
i  is associated with 

waves that have a positive propagation speeds. The proposed approach being 
explicit, the estimates of F, G and R in equations [10.94] are based on the values of 
U, s, F and G at the known time level n. 

10.5.3. A modified HLL Riemann solver for sensitivity solutions 

10.5.3.1. Principle of the solver 

The fluxes 2/1
2/1F +

−
n
i  and 2/1

2/1G +
−

n
i  at the interface i – 1/2 are computed by solving a 

Riemann problem with left and right states VL and VR. If the first-order Godunov 
scheme is used, VL and VR are respectively equal to the average values in the cells 
i – 1 and i. If higher-order schemes are used, VL and VR are inferred from the 
reconstructed profiles in the cells i – 1 and i. The states VL and VR are assumed 
known hereafter. 

The Riemann solver proposed in [GUI 09a, GUI 09b] is an extension of the 
approximate HLL Riemann solver described in Appendix C (see section C.1). Recall 
that the HLL Riemann solver uses the assumption of an intermediate region of 
constant state (U*, s*) separated from the left and right states of the Riemann 
problem by two discontinuities. The jump relationships hold across these 
discontinuities: 
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where λ(1) and λ(2) are the speeds of the left- and right-hand discontinuities. These 
speeds are assumed known a priori from the left and right states. Various estimates 
for them are provided in Appendix C. Note that the jump relationships for the 
sensitivity in [10.95] are obtained as particular cases of the more general jump 
relationships [10.34] because the x-derivatives of the HLL-solution are zero.  
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10.5.3.2. Flux formulae 

System [10.94] can be solved uniquely for U*, s*, F* and G*: 
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The second equation [10.96] provides the expression for the flux F* in the 
intermediate region of constant state. The flux at the interface i – 1/2 is equal to FL if 
λ(1) > 0, to F* if λ (1) ≤ 0 ≤ λ (2), and to FR if λ (2) < 0. These three formulae can be 
gathered into a single expression as: 
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where λ– and λ+ are bounded expressions for λ(1) and λ(2): 
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A similar expression can be proposed for 2/1
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In contrast with equation [10.97], equation [10.99] requires that the intermediate 
state U* in the intermediate region of constant state be computed. This is done using 
the first equation [10.96]. Note that in this equation, λ(1) and λ(2) must not be 
replaced with λ– and λ+, the role of which is only to provide a unified formula to 
handle the subcritical/supercritical transition at the interface. 

A pending question is the expression of the derivatives ϕλ ∂∂ ± /  in 
equation [10.99]. As proposed in [GUI 09a, GUI 09b], these derivatives are 
computed by noting that λ– and λ+ are known functions of the left and right states UL 
and UR: 
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The derivatives LU/ ∂∂ ±λ  and RU/ ∂∂ ±λ  are row vectors. Their product with 
the column vectors sL and sR gives a scalar quantity. 

10.5.3.3. Dirac source term 

The discretization of the Dirac source term R is examined. The source term 
2/1
,2/1R +
−−

n
i  is given by: 
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where β1 and β2 are indicators, βp = 1 if the wave p is a shock or contact 
discontinuity, βp = 0 otherwise. Conversely, the source term 2/1

,2/1R +
+−

n
i  is given by: 
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The following criterion is used for shock detection [GUI 09a, GUI 09b]: 
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10.5.4. Application example: the one-dimensional shallow water equations 

The sensitivity Riemann solver is applied to the dambreak problem presented in 
section 10.3.4, with the parameters given in Table 10.1. More details can be found 
on the analytical solution of this problem and extensions to constant bottom slopes 
in [GUI 09a-c]. 

The numerical solution is computed over a domain discretized into 1,000 cells of 
width 1 m. The computational time step is set to the maximum permissible value 
given by the stability constraint (u + c) Δtmax = Δx. Figure 10.9 shows the analytical 
and numerical solution for the sensitivity variables η, χ, υ and θ. In contrast with the 
empirical solution shown in Figure 10.6, there is no artificial peak in the solution 
computed by the sensitivity solver. 
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Figure 10.9. Dambreak problem. Analytical solution and numerical solution  
obtained using the modified HLL solver 
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10.6. Summary 

Sensitivity equations for hyperbolic conservation laws or hyperbolic systems are 
obtained by differentiating the flow governing equations with respect to the 
parameter of interest. This parameter may be an initial condition, a boundary 
condition, or a parameter in the flux and/or in the source term. The sensitivity 
equations can be formulated in forward form (see sections 10.2 and 10.3) and in 
adjoint form (see section 10.4). 

The wave speed of the sensitivity system are identical to the wave speeds of the 
flow system (sections 10.2 and 10.3). Consequently, the system formed by the flow 
equations and their sensitivity equations is not strictly hyperbolic but linearly 
degenerate because all the eigenvalues in the system are double eigenvalues. In the 
adjoint formulation, invariants can be defined for the Lagrange multipliers. The 
wave propagation speeds of these adjoint Riemann invariants are identical to those 
of the flow system. The adjoint invariants are calculated by following the 
characteristics in the backward time direction. 

Discontinuous flow solutions generate Dirac sensitivity source terms that take 
effect at the flow discontinuities (sections 10.2.3 and 10.3.3). The jump relationships 
for the sensitivity are given by equation [10.19]. In the solution of the Riemann 
problem (sections 10.2.4 and 10.3.3), the sensitivity is discontinuous at the edges of 
rarefaction waves. In the solution of the Riemann problem for scalar conservation 
laws, rarefaction waves are zero sensitivity regions. The analytical sensitivity 
solution of the dambreak problem for the Saint Venant equations is derived in 
section 10.3.4. 

Numerical methods are available for the discretization of the forward sensitivity 
equations in the presence of discontinuous solutions. A modified HLL Riemann 
solver is presented in section 10.5, with an application to the dambreak problem 
derived in section 10.3.4. 

 
 




