
Chapter 9 

Treatment of Source Terms 

9.1. Introduction 

The numerical techniques presented in Chapters 6 to 8 mostly deal with 
hyperbolic conservation laws and hyperbolic systems without source terms. The 
equations or systems of equations found in practical engineering applications, 
however, contain source terms arising from variations in the geometry. Examples 
are the water hammer equations in pipes with variable cross-sections, the Saint 
Venant equations in non-prismatic channels and/or variable bottom slope, or the 
one-dimensional Euler equations in domains of variable cross-sectional areas. A 
careless discretization of the source terms may induce artificial perturbations in the 
computed profiles, if not solution instability. The need for source term discretization 
techniques that preserve equilibrium conditions without introducing spurious 
oscillations in the computed variables has led to the general notion of well-balanced 
schemes.  

Giving a complete and exhaustive description of numerical techniques for source 
term discretization is beyond the scope of this book. The subject would actually 
deserve a book in itself. The purpose of this chapter is to present the broad lines of 
the main families of numerical techniques introduced over the past two decades to 
deal with source terms in hyperbolic systems of conservation laws. The water 
hammer equations (the simplest possible hyperbolic system of conservation laws) 
and the shallow water equations (a subject of intensive research over the past two 
decades, see e.g. [HER 07, TOR 07]) are used as illustrative examples. 

Section 9.2 introduces the issue of geometric source terms discretization with 
two examples. The key notion of C–property is then introduced. Section 9.3 deals 
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with the upwind approach to source term discretization. Section 9.4 presents the 
quasi-steady wave algorithm, and section 9.5 is an introduction to well-balancing 
techniques. 

9.2. Problem position 

9.2.1. Example 1: the water hammer equations 

The issue of source term discretization is illustrated using the water hammer 
equations introduced in section 2.3. The water hammer equations form the simplest 
possible 2×2 hyperbolic system of conservation laws, with constant, opposite wave 
speeds. This system is linear. The conservation form [2.2] of the equations, recalled 
here: 
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is obtained by defining the conserved variable U, the flux F and the source term S as 
in equation [2.68], recalled hereafter: 
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where A is the cross-sectional area of the pipe, k is the friction coefficient, p is the 
pressure, Q is the liquid discharge, u is the flow velocity, θ is the angle between the 
axis of the pipe and the horizontal, and ρ is the density of the fluid. Recall that the 
variations in the mass per unit length ρA and the pressure force Ap obey relationship 
[2.44], that can be rewritten as: 

)(d)(d 2 AcAp ρ=  [9.1] 

where c is the (assumed uniform) sound speed. Equation [9.1] is to be understood 
for a fixed value of the abscissa x along the pipe. It is also recalled that c is constant 
in time, regardless of the value of the pressure p. 

Consider the simple configuration where the pipe is frictionless, horizontal, with 
a variable cross-sectional area A (see Figure 9.1). The source term S simplifies to 
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Assume that the initial and boundary conditions in the pipe are such that static 
equilibrium is verified, that is: 
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Figure 9.1. Definition sketch for the water hammer equations with variable pipe cross-
section. Left: geometry of the pipe. Right: resulting initial, steady-state profile for the 

conserved variable ρA and the pressure force Ap 

Substituting these conditions into equation [2.2] with definition [2.68] and 
simplification [9.2] leads to: 
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In other words, static equilibrium is preserved at later times at all points in the 
pipe. 

Assume now that the water hammer equations are to be solved using the finite 
volume discretization [7.3], recalled here: 
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Assume that a classical approximate Riemann solver, such as Roe’s, Lax-
Friedrichs’ or the HLL solver (see Appendix C for more details), is used to compute 
the flux at the interfaces between the computational cells. The water hammer 
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equations being linear and c being assumed uniform, all three solvers lead to the 
same formula: 
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If the initial state verifies static equilibrium at time level n, Q is zero and p is 
equal to p0 within all the cells. Equation [9.5] becomes: 
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 [9.6] 

The first component of the vector equation [9.6] indicates that, if Ai–1 ≠ Ai, an 
artificial, non-zero mass discharge is computed at the interface i – 1/2. This non-zero 
discharge triggers pressure waves that propagate into the computational domain, 
thus destroying the steady-state character of the numerical solution. 

This simple example shows that the source terms in hyperbolic systems should 
not be discretized independently of the conservation part, otherwise violating simple 
equilibrium requirements. Moreover, the presence of the source term in the 
momentum equation may lead us to revise the discretization of the continuity 
equation. 

9.2.2. Example 2: the shallow water equations 

The one-dimensional shallow water equations are obtained by restricting the 
two-dimensional shallow water equations (see section 5.4) to their one-dimensional 
projection. The one-dimensional shallow water equations can be written in the form 
[2.2] by defining U, F and S as in equation [7.83], recalled here: 
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where g is the gravitational acceleration, h is the water depth, u is the flow velocity, 
S0,x and Sf,x are respectively the bottom and friction slope in the x-direction. q and M 
are respectively the unit discharge and specific force. 

Assume as in the previous section that the shallow water equations are 
discretized using the finite volume technique [7.3], and that the HLL Riemann 
solver is used in the calculation of the fluxes (see Appendix C for more details). 
Consider the situation, shown in Figure 9.2, where the water is initially at rest 
(ζ = h + zb = Const, u = 0 everywhere).  
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Figure 9.2. Definition sketch for the one-dimensional shallow water equations with variable 
bottom level: left: bottom geometry and steady-state equilibrium conditions; 

right: resulting discretized, initial state 

The formula for the HLL Riemann solver is given by the second equation [C.3], 
recalled here: 
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Applying this formula at the interface between the cells i – 1 and i with u = 0 
yields the following expression for the unit discharge q: 
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where λ– and λ+ are respectively estimates of the minimum wave speed u – c and the 
maximum wave speed u + c. Since the water is at rest, applying e.g. Davis’ formula 
[C.5] for λ– and λ+ leads to: 
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Substituting equation [9.8] into the flux formula [9.7] gives: 
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If the bottom is horizontal, n
i

n
i hh =−1  and the unit discharge remains equal to 

zero. But if the bottom is not horizontal, n
i

n
i hh ≠−1 . As a consequence, a non-zero 

discharge is computed even though the initial conditions correspond to water at rest 
under static equilibrium conditions. This generates artificial waves that propagate 
throughout the computational domain, eventually destroying the static character of 
the solution. 

9.2.3. Stationary solution and C–property 

In the above two examples, the artificial fluxes are diffusive fluxes stemming 
from second-order truncation errors (see Appendix B for detailed considerations on 
truncation errors and consistency aspects). As shown in [VAZ 99, CHA 03], these 
artificial fluxes can be eliminated if the discretization of the source terms can be 
made second-order accurate with respect to space.  

In what follows, the source term is assumed to take the form: 

x∂
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where f is a known vector function of U and ϕ is a parameter. For instance, in the 
case of the water hammer equations, ϕ = A and f = [0, p]T. In the case of the one-
dimensional shallow water equations, ϕ = zb and f = [0, gh]T.  

First-order consistency condition imposes that if ϕ and U are identical in the 
cells i and i + 1, the discretized source term must be zero: 
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However, the first-order consistency condition is not sufficient to guarantee a 
satisfactory discretization of the source term. As an example, in sections 9.2.1 and 
9.2.2, condition [9.11] is satisfied. Nevertheless, steady-state conditions are not 
preserved for arbitrary geometries. It is thus necessary to define so-called “enhanced 
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consistency” conditions [CHA 03], that allow the so-called C–property to be 
verified. 

A flow field that verifies steady-state (or stationary) conditions at time level n 
should satisfy static equilibrium conditions at time level n + 1. This is true only if 
the difference between the fluxes is balanced exactly by the source term. For a finite 
volume scheme, this condition may be written as: 
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In [VAZ 99], the so-called C–property is defined as follows: 

– the discretization is said to satisfy the exact C–property if the steady-state 
condition [9.12] is satisfied exactly; 

– the discretization is said to satisfy the approximate C–property if the steady-
state condition [9.12] is satisfied with at least second-order accuracy. 

As in [VAZ 99], source terms involving sums of functions in the form [9.10] can 
be broken into several elementary source terms to be discretized independently from 
each other. The C–property was originally written for static conditions, that is, for a 
fluid at rest [VAZ 99]. However, more general steady-state preserving 
discretizations have been proposed by a number of authors, see for 
instance [HUB 00], [BUR 04]. 

9.3. Source term upwinding techniques 

9.3.1. Principle 

Source term upwinding has been applied to the calculation of the one-
dimensional shallow water equations [BER 94] in channels of constant width, to the 
solution of the two-dimensional shallow water equations [BER 98, BRU 02] and to 
the solution of the Saint Venant equations in channels with variable width [VAZ 99, 
GAR 00]. Applications of the technique to higher-order TVD schemes can be found 
in [BUR 01]. Extensions of the method to various numerical techniques are provided 
in [CHA 03], where the source term is split into centered and upwind parts, which 
are discretized so as to preserve stationary solutions. 

The technique is particularly adapted to discretizations where wave speeds and 
their propagation directions are well-identified and used explicitly in the 
discretization of the fluxes. This is the case in particular with finite volume methods 
(see Chapter 7) that use approximate Riemann solvers based on approximations of 
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the wave speeds (see Appendix C for examples). Consider a hyperbolic system 
discretized as in equation [7.3] (a slightly different writing is used hereafter): 
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where the source term can be written as in equation [9.10]. 

It is first recalled that in finite volume techniques using Riemann solvers, the 
solution at the interface between two adjacent cells is classically approximated as a 
succession of discontinuities separating regions of constant state (Figure 9.3).  
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Figure 9.3. Source term upwinding across the waves in the solution of the Riemann problem. 
Definition sketch in the physical space (top) and in the phase space (bottom) 

Denoting by U*, p–1 and U*, p the solution on the left- and right-hand sides of the 
pth wave, the jumps in U and F across the pth wave may be written as: 
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where the coefficients α(p) are the wave strengths and the vectors K(p) are the 
eigenvectors of the Jacobian matrix A of F with respect to U. Note that summing the 
jumps across all the waves leads to: 
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where K and a are respectively the matrix of eigenvectors of A and the vector 
formed by the wave strengths. Inverting the first equation [9.15] yields directly the 
expression of the wave strength vector α: 
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Source term upwinding consists of discretizing the source term in the same way 
as the space derivative of the flux in upwind schemes: 
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where β is a vector formed by the components β 
(p) of the wave strengths of the 

source term. The total source term [9.17] is split into two parts: 

– the part that corresponds to negative wave speeds, λ(p) < 0, is assigned to the 
cell on the left-hand side of the initial discontinuity, 

– the part that corresponds to positive wave speeds, λ(p) > 0, is assigned to the 
cell on the right-hand side of the initial discontinuity. 

The discretization [9.13] is rewritten in the form: 
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where +
− 2/1Si  is the contribution to the cell i of the source term between the cells  

i – 1 and i, and −
+ 2/1Si  is the contribution to the cell i of the source term between the 

cells i and i + 1. The source term +
− 2/1Si  arises from the contribution of positive 

wave speeds, while the term −
+ 2/1Si  arises from the contribution of the negative 

wave speeds: 
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The contributions +
− 2/1Si  and −

+ 2/1Si  are known if the wave strengths β(p) can be 
determined and if an estimate can be provided for the total source term. The wave 
strengths are obtained from the second equation [9.17]. The estimate of the source 
term is obtained by integrating equation [9.10] across each interface: 
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where 2/1
2/1f +

−
n
i  is an “average” value of f between the cells i – 1 and i. Its expression 

for fLR must be devised in such a way that the exact or approximate C–property 
defined in section 9.2.3 is satisfied. 

9.3.2. Application example 1: the water hammer equations 

The source term upwinding technique is applied to the water hammer equations. 
The discretization is assumed to be given by equation [7.3], with formula [9.5] for 
the calculation of the fluxes. Equation [9.5] is recalled: 
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The eigenvalues and eigenvectors of the water hammer equations (see 
section 2.3) are also recalled: 
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The source term is discretized as (here at interface i – 1/2): 
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where the estimate pi–1/2 must be determined so as to satisfy the C–property (this 
point is examined at the end of the section). The vector β of wave strengths is given 
by: 
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The waves with speeds – c and + c are respectively directed to the cells i – 1 and 
i. This leads to the following contributions for the source term at the interface  
i – 1/2: 
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The cell i receives on the left-hand interface i – 1/2 a total contribution formed 
by the sum of the flux 2/1

2/1F +
−
n
i  and the contribution +

− 2/1Si  of the source term: 
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The expression for pi–1/2 is now examined. For an initial, steady-state 
configuration, with a uniform pressure p0, discharge Q0 and density ρ0, 
equation [9.25] simplifies to: 
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Any estimate for pi–1/2 that satisfies the consistency condition: 
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satisfies the C–property exactly. This is the case with the following two estimates: 
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In both cases, pi–1/2 = p0 and equation [9.26] becomes: 
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It is easy to check that: 
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The mass discharge is equal to the uniform-steady-state value ρ0Q0 at all cell 
interfaces and the equilibrium condition [9.12] is satisfied. 

9.3.3. Application example 2: the shallow water equations with HLL solver 

Applications of the source term upwinding technique to the shallow water 
equations in conjunction with Roe’s solver, Van Leer’s Q-scheme and flux splitting 
techniques can be found in [BER 94, BER 98, GAR 00, VAZ 99]. In this section, 
the HLL solver is applied. 

For the sake of simplicity, the frictionless restriction of the one-dimensional 
shallow water equations is considered: 
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where M and q are respectively the specific force and unit discharge. The 
eigenvalues and eigenvectors are obtained as particular cases of the Saint Venant 
equations in prismatic, rectangular channels: 
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The HLL solver is used for the estimate of the flux: 
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where λ– and λ+ are estimated as in equation [C.5]: 
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The wave strengths of the source term are obtained from equation [9.20]: 
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The source term at the interface i – 1/2 is split into two terms according to 
equation [9.19]: 
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with: 
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The terms −
− 2/1Si  and +

− 2/1Si  are used in equation [9.18]. They contribute 
respectively to the cell i – 1 and i. The second components of β (1)K(1) and β (2)K(2) in 
equation [9.37] indicate that the source term arising from the topography is split 
proportionally into the wave speeds λ(1) and λ(2). 

A straightforward estimate for the wave speeds is: 
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where λ– and λ+ are given by equation [9.34]. The expression for n
ih 2/1−  is obtained 

by writing the requirements imposed by the C–property. Consider the case where the 
water is initially at rest. Then, ),max( 1

n
i

n
i cc −

−+ =−= λλ and the following estimates 
are obtained: 
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Noting that n
i

n
iibib hhzz 1,1, −− −=−  under equilibrium conditions leads to: 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
−=

+−+

+
−

+−+

+
−

λλ
β

λλ
β

1
)(

2
K

1
)(

2
K

1

2/1
1)2()2(

1

2/1
1)1()1(

n
i

n
i

n
i

n
i

n
i

n
i

hh
gh

hh
gh

 [9.40] 

The contribution of the interface i – 1/2 to the cell i is thus given by (a similar 
reasoning may be made for the contribution of the interface to the cell i – 1): 
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The C–property is satisfied if the vector )2()2(2/1
2/1 KF β++

−
n
i  is zero. It is worth 

noting that two different estimates are introduced for 2/1
2/1

+
−
n
ih  in equation [9.41]: 

C
ih 2/1−  is used in the continuity equation, while M

ih 2/1−  is used in the momentum 

equation. The reason is that it is not possible to find a single expression for 2/1
2/1

+
−
n
ih  

that satisfies the C–property in both the continuity and momentum equations. It is 
easy to check that the following estimates allow the C–property to be verified: 
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The expression for M
ih 2/1−  coincides with the formula given in [BER 98] for Van 

Leer’s Q–scheme. [BER 98] also give the C–preserving formula for Roe’s solver 
(see Appendix C for a brief description of the solver): 
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9.4. The quasi-steady wave algorithm 

9.4.1. Principle 

The quasi-steady wave algorithm [LEV 98] was introduced for finite volume 
discretizations. In this method, the parameter ϕ in the source term [9.10] is assumed 
piecewise constant, with a discontinuity located in the middle of the computational 
cells (Figure 9.4).  

x

ϕ 

xi–1/2 xi+1/2 x 

ϕ 

xi–1/2 xi+1/2  

Figure 9.4. Quasi-steady wave algorithm. Left: variations in ϕ.  
Right: discretized parameter in the cell i 

The discontinuity in ϕ in the middle of the cell generates an additional Riemann 
problem, but the additional waves triggered by this Riemann problem do not reach 
the interfaces of the cell if the computational time step is kept small enough. Under 
these conditions, the additional Riemann problem does not influence the balance at 
the cell interfaces and the classical balance equation [7.3] can be used. The source 
term is assigned to the cell i: 
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In equation [9.44], an explicit estimate is proposed for the source term, but other 
estimates may be proposed. For definition [9.10] of the source term S, we have:  
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where 2/1f +n
i  is an average value of the vector function f over the cell i. If an 

explicit scheme is retained, f is defined from the known values at time level n. It 
must satisfy the consistency condition and the C–property presented in section 9.2.3: 

(1) consistency condition: 

 0)U,,(S 2/12/12/12/1 =⇒= +−+− iiiii ϕϕϕϕ  [9.46] 

(2) steady-state condition: an initial-steady state must yield the following 
equality: 
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9.4.2. Application to the water hammer equations 

Consider the water hammer equations in a frictionless, horizontal pipe with a 
variable cross-sectional area A. The fluxes are computed as in equation [9.26], with 
the difference that A is constant across a given interface but may vary from one 
interface to the next. For interface i – 1/2, the formula for the flux becomes: 
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while the source term is computed as: 

n
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n
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It is easy to check that equations [9.48–49] verify the consistency condition 
[9.46] and the C–property [9.47]. 

9.4.3. Application to the one-dimensional shallow water equations 

The definition [9.33] of U, F and S for the one-dimensional shallow water 
equations is recalled: 
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In the present application example, the bottom level zb is reconstructed using a 
piecewise constant function. The discontinuity in the bed level is assumed to be 
located at the center of the cell i. The average bottom level over the cell is thus: 

2
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The water depths hi–1/2,L and hi–1/2,R on the left- and right-hand sides of the 
interface i – 1/2 are given by: 
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Moreover, steady state is assumed over the cells. This means that: 
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The flux 2/1
2/1F +

+
n
i  is computed by solving a Riemann problem with left and right 

states T
ii qh ],[ L,2/1L,2/1 −−  and T

ii qh ],[ L,2/1L,2/1 −− . For instance, if the HLL solver is 
used, we have: 
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 [9.53] 

The source term for the continuity equation is zero. The expression of the source 
term in the momentum equation is derived from the force exerted by the bottom 
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discontinuity on the volume of water contained in the cell i. To do so, a control 
volume containing the discontinuity is defined (Figure 9.5). Remember that the 
pressure below the free surface obeys the following equation (see section 2.5.2.3): 

gz
zp

)(
)(

−= ζ
ρ

 [9.54] 
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Figure 9.5. Quasi-steady wave algorithm for the shallow water equations. Balancing the 
forces exerted on a control volume that contains the bottom step 

Integrating equation [9.54] between zb,i−1/2 and n
iζ  yields the expression for the 

pressure force per unit width P1 on the left-hand side of the control volume: 
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Remember that in the Saint Venant and shallow water equations, the momentum 
equations are divided by the (constant) water density ρ. Conversely, the pressure 
force per unit width P2 verifies: 
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The reaction R exerted by the bottom step is obtained by integrating 
equation [9.53] between zb,i+1/2 and zb,i–1/2 (the reaction is in the direction of positive 
x if zb,i–1/2 > zb,i+1/2): 
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By definition, R/ρ is the integral of the momentum source term over the cell i. 
Consequently, the source term is given by: 
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It is easy to check that expressions [9.53] and [9.58] verify the consistency 
condition and the C–property. 

9.5. Balancing techniques 

9.5.1. Well-balancing 

9.5.1.1. Principle 

In the traditional well-balanced approach, the parameter ϕ in the source term is 
discontinuous across the cell interfaces (Figure 9.6). This generates a Riemann 
problem with a discontinuity in the flux function. The solution of such a Riemann 
problem is not trivial. In [GRE 96], a solution is proposed for a scalar conservation 
law: the discontinuity in ϕ is taken as the limit case of a piecewise linear function. 

x 

ϕ ϕi–1 

ϕi 

ϕi+1 

xi–1/2 xi+1/2 

Cell i

 

Figure 9.6. Discretization of the parameter ϕ 

When hyperbolic systems of conservation laws are dealt with, the discontinuity 
in the flux function may induce extra waves in the solution of the Riemann problem 
compared to a Riemann problem with continuous fluxes. This means that extra, 
unknown intermediate regions of constant state may appear in the solution, thus 
requiring additional relationships to close the problem. As an example, exact 
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solutions to the Riemann problem for the shallow water equations with a bottom 
step are presented in [ALC 01]. At least 20 different possible wave patterns are 
identified, against 4 possible patterns for the shallow water equations on a flat 
bottom. Entropy considerations are used to connect the states on the left- and right-
hand sides of the step. 

The flux function being discontinuous, the classical finite volume formula [7.3] 
cannot be used. It must be modified into (here for an explicit formula): 
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where 2/1
L,2/1F +

−
n
i  and 2/1

R,2/1F +
−
n
i  are respectively the fluxes computed on the left- and 

right-hand side of the interface i – 1/2. These fluxes are computed by solving the 
Riemann problem with left and right states: 
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Solving this problem generates a flux FL and FR on the left- and right-hand sides 
of the interface.  

In [CHA 03], the discretization [9.59] is applied to the shallow water equations 
for a number of flux splitting-based numerical techniques such as Roe’s, Van Leer’s, 
Lax-Friedrichs and Lax-Wendroff’s schemes. 

9.5.1.2. Application example: the water hammer equations 

In the case of the water hammer equations, an analytical solution can be found to 
the Riemann problem [9.60]. The parameter ϕ of concern is the cross-sectional area 
A of the pipe, that is equal respectively to AL and AR on the left- and right-hand sides 
of the discontinuity: 
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where U and F are given by [2.68]: 
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and d(Ap) = c2 d(ρA). 

When the cross-sectional area of the pipe is constant, the solution of the 
Riemann problem for the water hammer equations (see Chapter 4) is made of two 
contact discontinuities separating the left and right states from an intermediate 
region of constant state (Figure 9.7a). In the case of a piecewise constant cross-
sectional area, there are two intermediate regions of constant state (Figure 9.7b).  
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Figure 9.7. Solution of the Riemann problem for the water hammer equations: (a) constant 
cross-sectional area; (b) piecewise constant cross-sectional area 

Applying the characteristic form [2.82] leads to: 
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where subscripts *,1 and *,2 indicate respectively the intermediate regions of 
constant state on the left- and right-hand sides of the discontinuity. Moreover, mass 
and momentum conservation impose the extra conditions: 
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with Q*,1 = ALu*,1 and Q*,2 = ARu*,2. System [9.63−64] can be solved uniquely for p 
and Q: 
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The flux and source terms at the interface are given by: 
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With this discretization, the C–property is satisfied exactly. 

9.5.2. Hydrostatic pressure reconstruction for free surface flow 

The hydrostatic reconstruction method is presented in [AUD 05] for shallow 
water flows. The bottom is assumed constant over each cell, therefore bottom level 
discontinuities occur only at the interfaces between the cells (Figure 9.8). The 
method is described for a first-order finite volume scheme hereafter, but a second-
order extension can be found in [AUD 05]. 
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Figure 9.8. Definition sketch for the hydrostatic reconstruction method 
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In contrast with the approach presented in the previous section, the flux function 
is continuous across the interfaces, and the source term is exerted at each interface. 
The equations are discretized in the form: 
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where the source terms  2/1
L,2/1S +

−
n
i and  2/1

R,2/1S +
−

n
i  are respectively the reaction of the 

bottom step onto the cell located on the left-hand side of the interface i – 1/2 (that is, 
cell i – 1) and the cell located on the right-hand side of interface i – 1/2 (that is, cell 
i). The reaction is assigned to the cell with the lower bottom level.  

The flux at the interface i – 1/2 is computed by solving an equivalent Riemann 
problem with modified left and right states Ui–1/2,L and Ui–1/2,R defined as: 
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where u is the flow velocity and the reconstructed water depths hi–1/2,L and hi–1/2,R on 
the left- and right-hand sides of the interface are given by: 
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where zb,i–1/2 is the higher of the two bottom levels: 

),max( ,1,2/1, ibibib zzz −− =  [9.70] 

The source term at the interface is given by the integral of the pressure force on 
the bottom step: 
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The C–property is satisfied exactly. 
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9.5.3. Auxiliary variable-based balancing 

9.5.3.1. Introduction 

As shown by the introductory examples in Section 9.2, flux and source term 
balancing problems arise from the fact that upwind numerical methods such as flux 
splitting and Riemann solver-based techniques use a flux function, part of which is 
proportional to the gradient in the conserved variable. As observed in [BUR 04], 
when geometry-induced source terms are present in the equations, the gradient in the 
conserved variable incorporates a geometric term that does not vanish under steady-
state conditions. Source term upwinding allows the geometric term to be balanced 
with the flux gradient at least under static conditions (the C–property). The quasi-
steady wave algorithm eliminates this drawback because the geometric parameter 
does not vary at the interface where the source term is computed. Hydrostatic 
reconstruction-based schemes also eliminate the problem by using the same value of 
the geometric parameter on both sides of the interface between the computational 
cells (the maximum of the two bottom levels in the case of the shallow water 
equations). Alternative balancing techniques have been explored in the literature: 

(1) A first possible option proposed in the literature consists of modifying the 
system of equations to be solved. In [GAL 03], the shallow water equations on 
irregular topography are augmented by a third equation involving the bottom level 
and various alternative variables, such as the hydraulic head, are considered in the 
discretization of the equations.  

(2) A second option consists of reconstructing the variations in the geometric 
parameter in such a way that steady-state conditions are preserved in the balancing 
of flux gradients and source terms. This is the case in [KES 10] for example, where 
the topographic source terms are discretized in Discontinuous Galerkin (DG) 
techniques (see Chapter 8) by projecting the topographic data onto the space of 
reconstruction functions. 

(3) A third approach consists of estimating the fluxes and source terms in a 
coupled way. The influence of the source terms is accounted for in the calculation of 
the fluxes, thereby ensuring the balance between the gradient of the fluxes and the 
source terms. This is the approach followed by [LHO 07] and [FIN 10] in their 
derivation of approximate-state solvers for the water hammer equations, the shallow 
water equations and the shallow water equations with porosity. 

(4) A fourth path, that is well-suited to finite volume techniques, consists of 
defining “auxiliary” variables to be used in the estimates of the gradients for the 
calculation of the fluxes. Such auxiliary variables do not need to be conserved 
variables. They must be defined so as to allow the C–property and/or steady-state 
conditions to be preserved. As an example, [NUJ 95] proposes that the free surface 
elevation ζ be used instead of the water depth h in the calculation of the mass flux 
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for the shallow water equations. The authors of [ZHO 01] note that reconstructing 
the free surface elevation instead of the water depth enhances the stable character of 
higher-order schemes and allows spurious oscillations to be eliminated from the 
numerical solutions of the shallow water equations. [LIA 09] proposes a free surface 
elevation-based discretization of the pressure terms. Although not justified 
theoretically in Nujic’s original publication in 1995, the use of the free surface 
elevation instead of the water depth for the shallow water equations can be justified 
as follows: since zb is constant, the free surface elevation ζ = h + zb verifies 

tht ∂∂=∂∂ //ζ . Therefore, ζ may be used as the first component of the conserved 
variable U instead of h. The free surface elevation is also used instead of the 
conserved variable φh in the solution of the two-dimensional shallow water 
equations with a variable porosity φ [GUI 06]. In [BUR 04], the open channel 
equations are solved by expressing the variation in the cross-sectional area as a 
function of momentum balance. A similar formula is proposed in [LEE 10] for the 
HLL and Roe’s Riemann solver (see Appendix C). This formula coincides with 
those of an approximate-state Riemann solver for the shallow water equation 
[LHO 07, FIN 10]. This leads us to wonder whether a general methodology can be 
used to define auxiliary flow variables that preserve the C–property and steady-state 
flow conditions more efficiently than the conserved variables do. This option is 
explored in the following sections. The approach is called “auxiliary variable-based 
balancing” for the sake of convenience. 

9.5.3.2. Principle of Auxiliary Variable-based (AV) balancing 

As mentioned in Appendix C and underlined by a number of authors, flux 
estimates based on classical Riemann solvers such as the HLL/HLLC, Roe’s, the 
Lax-Friedrichs solver, etc. can be expressed as the sum of a centered flux (that is 
unconditionally unstable when used with first- or second-order time stepping 
[VIC 82]) and a diffusive flux (that contributes to stabilize the numerical solution): 

)UU(DF)1(F)U,U(F RLRLRL −+−+= aa  [9.72] 

where a is a coefficient between 0 and 1, and D is a diffusion matrix that depends on 
the flux formula used. For instance, in the discretization [9.5] provided for the water 
hammer equations (section 9.2.1), a = 1/2 and D is a diagonal matrix equal to c/2 
times the identity matrix: 

I
210

01
2

D cc =⎥
⎦

⎤
⎢
⎣

⎡
=  [9.73] 



Treatment of Source Terms     397 
 

In the HLL Riemann solver used for the shallow water equations example of 
section 9.2.2: 
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Although playing a crucial role to solution stability in the absence of source 
terms, the diffusive flux fails to preserve the C–property, as shown in the examples 
of section 9.2. The question then arises whether the diffusive flux may be 
formulated in a slightly different way, such that the C–property is preserved: 

)VV(DF)1(F)U,U(F RLVRLRL −+−+= aa  [9.75] 

where DV is a diffusion matrix, not necessarily equal to D, and VL and VR are 
appropriately defined auxiliary variables, functions of U and ϕ: 
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V may also be defined in differential form as: 
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The term Ud)U/V( Const=∂∂ x accounts for the variations in the conserved 
variable U due to the gradients in the flow conditions, while the term 

ϕϕ d/)/V( ConstU xx ∂∂∂∂ =  accounts for the influence of the geometric source terms. 
The differential definition [9.77] is more convenient than the definition [9.76] when 
the definition of V contains terms that cannot be recast in the form of the differential 
of a variable (as it is the case with source terms). Assuming that the variable V is 
defined appropriately, the diffusion matrix DV must be determined. A desirable 
property for this matrix is that it does not change the stability constraints of the 
original discretization. This means that the strength of the diffusion term DV (VL –
 VR) should be identical to that of the original diffusion term D (UL – UR). The 
diffusive term in equation [9.72] is rewritten as (subscripts x = Const and U = Const 
are omitted for the sake of clarity): 
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The stability properties of the scheme are related to the first-order derivative. In 
the absence of source terms, equation [9.78] reduces to: 
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The diffusion terms in equation [9.79] are equivalent provided that: 
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9.5.3.3. Discretization of the momentum source term 

Estimate [9.75] satisfies steady-state conditions in the continuity equation. 
Indeed, under steady-state conditions, the first components F1,L and F1,R of FL and FR 
are identical, F1,L = F1,R = q. If V is chosen appropriately, VL = VR for steady flow 
configurations, and the first component of equation [9.75] becomes: 

qFaaFF =−+= R1,L1,1 )1(  [9.81] 

In contrast with the source term upwinding technique, no extra source term needs 
to be added to the continuity equation. The issue remains, however, of the 
discretization of the momentum source term. Numerical experiments (see 
section 9.6) show that using the source term upwinding technique only for the 
momentum source term provides good results. 

9.5.3.4. Application to the water hammer equations 

Consider the water hammer equations in a non-horizontal pipe with variable 
cross-sectional area. The angle of the pipe with the horizontal is denoted by θ and 
the friction coefficient is denoted by k. The discretization [9.5] is used, with D given 
by equation [9.75]. The conserved variable is U = [ρA, ρQ]T. A possible choice for 
the auxiliary variable V is: 
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This choice is motivated by the fact that under steady-state conditions, the vector 
dV is zero. Indeed, the first component expresses steady-state energy conservation 
(the slope of the energy line is equal to the head loss per unit length) while the 
second component accounts for mass conservation. Therefore, definition [9.82] not 
only verifies the C-property exactly, but it also verifies steady-state conditions. The 
following estimate is obtained at the interface i – 1/2: 
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where zi is the elevation of the cell i and Δxi–1/2 is the distance between the centers of 
the cells i – 1 and i. The Jacobian matrix of V with respect to U is given by (the 
second equation [2.74] is used): 
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Substituting equations [9.73] and [9.84] into equation [9.80] leads to the 
following expression for the matrix DV: 
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and the final discretization becomes: 
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where Ai–1/2 is an average value of A between the cells i–1 and i, and the variation Δp 
is estimated as: 
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 Examples of possible estimates for Ai–1/2 are: 
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These are not the only possible estimates. Any estimate satisfying the 
consistency condition [9.46] may be used. 

9.5.3.5. Application to the shallow water equations 

Consider discretization [9.35] presented in section 9.3.3 for the shallow water 
equations discretized with the HLL Riemann solver. The components of the flux are 
given by: 
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where Δhi–1/2 is an approximation of the difference in h that satisfies the C–property. 
The source term contributions are changed to: 
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The only remaining problem is to define a suitable estimate for Δhi–1/2 in the first 
equation [9.90]. Note that the classical estimate: 

n
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does not satisfy the C–property. 

 (1) A first option is Nujic’s variable transformation [NUJ 95], ζ = h + zb: 

DD,I
U
V,V V ==

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡ +
=

q
zh b  [9.92] 

This leads to the following estimate for Δh in equation [9.89]: 
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The C–property is verified. However, arbitrary steady-state configurations are 
not preserved. Consider for instance uniform flow conditions over a non-zero 
bottom slope. Then both the water depth h and the unit discharge q are constant. 
Since the slope is non-zero, ζ is not constant and the first equation [9.88] yields a 
flux that is different from the average cell value.  

(2) A second possible choice for V is proposed in [BUR 04] and [LEE 10]: 
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Note that the first row of the Jacobian matrix U/V ∂∂ is obtained using the 
relationship dM = (c2 – u2) dh + 2u dq and by excluding the integral in the 
differentiation of V. This can be justified by the fact that the integral is a function of 
x and that its derivative with respect to x is non-zero even if V is constant. 
Equation [9.94] leads to the following estimate for Δh: 
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 [9.95] 

This formula coincides with that of the approximate-state Riemann solver 
presented in [LHO 07]. [BUR 04] and [LHO 07] acknowledge the need for a 
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specific treatment of critical points, that correspond to λ– = 0 or λ+ = 0. This yields a 
division by zero in formula [9.95]. [BUR 04] proposed that the final estimate for Δh 
be the minmod of the estimates given by equations [9.90] and [9.95]. [LHO 07] and 
[FIN 10] proposed that the estimate of the flux be based on a characteristics-based 
estimate of the flow variables under critical conditions. 

When combined with the HLL or Roe’s solver, formula [9.95] is seen to 
introduce a downwinding effect on the unit discharge in the neighborhood of critical 
points [FIN 10]. This can be avoided by defining dV as: 
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thus eliminating the difference n
i

n
i qq −−1  from the numerator in equation [9.95]. The 

following estimate is obtained: 
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(3) A third possibility is to use the hydraulic head H = ζ + u2/(2g) instead of M in 
the first component of V: 
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The first row in the Jacobian matrix is obtained using the relationship dH = (1 –
 u2/c2) dh + u dq + dzb. The following estimate is obtained for Δh: 

+−

−

+−

−−

−−

Δ+−+++−−
−=Δ

λλ

λλ
f

n
i

n
iibib

n
i

n
i

ii

SxqqzzHH
ch

)(
2 1,1,1

2
2/1

)4(
2/1   

 [9.99] 

For the same reason as in option (2), the following simplification is proposed for 
transcritical flow: 
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thus leading to: 
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9.6. Computational example 

The performance of the various source term discretization techniques presented 
in the previous sections is illustrated by an application to the one-dimensional 
shallow water equations. The following steady-state configuration is considered: 
water flows with a constant unit discharge in a channel with a non-horizontal bottom 
(Figure 9.9). The bottom level forms a bump. It is obtained from the following 
equation: 
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The water is initially at rest, with a constant free surface elevation and a zero 
discharge at all points of the computational domain. A constant unit discharge and 
water level are prescribed at the upstream and downstream end of the channel 
respectively.  

The numerical solution is examined after a sufficiently long simulated time, so 
that the transient regime vanishes and steady state is reached. The constant unit 
discharge and downstream water level are chosen such that the flow regime is 
subcritical upstream of the bump, supercritical on the top part of the bump and a 
hydraulic jump appears on the downstream side of the bump. 

x

z 

Z 

x0 L 

zds 

 

Figure 9.9. Steady-state flow configuration. Bold line: bottom level.  
Thin line: free surface flow elevation 
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The parameters of the test case are given in Table 9.1. The numerical solution is 
computed using the first-order Godunov scheme, with left and right states of the 
Riemann problems at the cell interfaces taken equal to the average values of the 
variables over the computational cells. The HLL solver presented in Appendix C is 
used in the computation of the fluxes at the interfaces between the computational 
cells. 

Figure 9.10 shows the longitudinal profiles for the water level and unit discharge 
computed at t = 104 seconds using the source term upwinding approach. Under 
steady-state conditions, the unit discharge should be expected to be uniform over the 
entire domain. This is not the case with the numerical solution: the transition from 
subcritical to supercritical conditions is observed to induce strong variations in the 
cell average of the unit discharge.  

Note that this should not be attributed to continuity issues, because the finite 
volume technique is intrinsically conservative. The unit discharge profile plotted in 
Figure 9.10 is the cell average of the quantity q = hu, that is, the momentum in the 
computational cells, and not the value of the mass flux at the interfaces between the 
cells. Under steady-state conditions, the unit discharge at the interfaces between the 
computational cells is uniform all over the computational domain. 

Symbol Meaning Value 

g Gravitational acceleration 9.81 m/s2 

L Length of the computational domain 400 m 

nM Manning’s friction coefficient 0.01 

qus Upstream discharge 1 m2/s 

X Characteristic size of the bump (equation [9.102]) 50 m 

x0 Abscissa of the center of the bump 200 m 

Z Height of the bump 1 m 

zds Water level at the downstream boundary 1 m 

Δx Computational cell size 2 m 

ζ Initial water level 1.01 m 

Table 9.1. Parameters of the test case 
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Figure 9.10. Steady-state water level and unit discharge profiles computed  
by the source term upwinding method. Bold line (left): bottom level 

Also note that the computed discharge profile exhibits a peak at the location of 
the jump. This is because the water depth varies abruptly across the jump. Since the 
unit discharge at the cell interfaces is given by an equation in the form [9.72], qL and 
qR cannot be identical to the unit discharge at the interface if hL ≠ hR. A higher-order 
reconstruction technique would be needed to reconstruct the left and right states at 
each interface more accurately and obtain a constant discharge. 

Figure 9.11 shows the water level and unit discharge profiles computed using the 
quasi steady wave propagation algorithm. Both the extent and amplitude of the zone 
of non-uniform unit discharge are reduced compared to the source term upwinding 
method, except for the peak that corresponds to the hydraulic jump.  
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Figure 9.11. Steady-state water level and unit discharge profiles computed by the  
quasi-steady wave propagation method. Bold line (left): bottom level 

Figure 9.12 shows the free surface and unit discharge profiles obtained using the 
hydrostatic reconstruction method. The amplitude of the discharge peak at the 
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location of the hydraulic jump is similar to that in Figure 9.11, but the amplitude of 
the non-uniform discharge zone upstream of the jump is smaller in Figure 9.12. 
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Figure 9.12. Steady-state water level and unit discharge profiles computed  
by the hydrostatic reconstruction method 

Figures 9.13 and 9.14 show the profiles obtained using the auxiliary variable 
method.  

Figure 9.13a shows the result given by Nujic’s method [NUJ 95], 
equation [9.93]. The quality of the numerical solution is similar to that of the 
hydrostatic reconstruction method, but the discharge peak is smaller.   

Figure 9.13b shows the results obtained from the momentum-based method 
proposed in [BUR 04]. As in [BUR 04], Δhi–1/2 is computed as the minmod of the 
estimates [9.91] and [9.95]. The amplitude of the peak is reduced compared to that 
in Figure 9.13a, but a small variation in the unit discharge is still visible upstream of 
the bump.  

This variation is eliminated when Δhi–1/2 is computed as the minmod of [9.91] 
and [9.97] (see Figure 9.13c). This, however, is achieved at the expense of a sharper 
oscillation at the location of the hydraulic jump. An optimally accurate method 
should therefore use estimate [9.95] at the shock and [9.97] at other points. 

Figure 9.14a shows the profiles obtained using the minmod of [9.91] and the 
hydraulic head-based estimate [9.99]. Figure 9.14b shows the profiles obtained from 
the minmod of [9.91] and the hydraulic head-based estimate [9.101]. Both methods 
give similar results in the neighborhood of the shock. However, estimate [9.101] is 
better upstream of the bump. 
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Figure 9.13. Steady-state water level and unit discharge profiles computed by the auxiliary 

variable-based method. (a) )1(
2/12/1 −− Δ=Δ ii hh ,(b) 0 2

1 2 1 2 1 2
( ) ( )

i / i / i /h min mod[ h , h ]− − −Δ = Δ Δ , 

(c) 0 3
1 2 1 2 1 2

( ) ( )
i / i / i /h min mod[ h , h ]− − −Δ = Δ Δ  
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Figure 9.14. Steady-state water level and unit discharge profiles computed by the auxiliary 
variable-based method. (a) 0 4

1 2 1 2 1 2
( ) ( )

i / i / i /h min mod[ h , h ]− − −Δ = Δ Δ , 

(b) 0 5
1 2 1 2 1 2

( ) ( )
i / i / i /h min mod[ h , h ]− − −Δ = Δ Δ  

9.7. Summary 

Real-world applications of computational hydraulics or computational fluid 
dynamics involve the discretization of geometry-induced source terms. Discretizing 
such source terms independently from the fluxes may induce stability problems. 
This is due to a lack of balance between the second-order (diffusion-like) terms in 
the discretization of both fluxes and source terms.  

The notion of C–property plays an essential role in the definition of well-
balanced schemes. The C–property states that any initial condition verifying static 
equilibrium conditions should yield a static solution at later times for arbitrary 
geometries. A discretization of the flow equations may satisfy the C–property 
exactly or approximately. The C–property may be extended to steady-state flow 
conditions (of which static equilibrium is only a particular case). 
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A number of methods are presented in this chapter for geometric source term 
discretization in finite volume techniques: 

– Source term upwinding (section 9.3) uses a decomposition of the source term 
in the base of eigenvectors of the Jacobian matrix A. The source term is thus broken 
into as many components as there are waves. Each component is assigned to the 
computational cell into which the wave originating from the cell interface travels. 
Some of the flow variables must be estimated at the interfaces between the 
computational cells. The estimates must be derived in such a way that the C–
property be verified. 

– The quasi-steady wave algorithm (section 9.4) uses a particular reconstruction 
of the geometry. The variations in the geometric parameter are lumped in the middle 
of the computational cell. The parameter is continuous at the cell interfaces, which 
allows a standard Riemann problem (that is, with a continuous flux function and no 
source term) to be defined and solved. 

– In well-balancing techniques (section 9.5.1), a solution is sought for the 
Riemann problem with a discontinuous flux function and source term. In the original 
publication of the method, the discontinuity is achieved as the limit case of a 
continuous, ramp-shaped function. 

– Balancing techniques such as the hydrostatic reconstruction (section 9.5.2) 
consist of modifying the states of the Riemann problem at the interface between two 
cells. The cross-sectional areas (or water depth) on both sides of the interface are 
modified using the water level and the higher of the bottom levels on both sides of 
the interface. The unit discharge is re-computed as the product of the flow velocity 
in the cell and the modified water depth. 

– The auxiliary variable-based balancing technique (section 9.5.3) consists of 
redefining the flow variables used in the diffusive part of the flux estimate. These 
so-called auxiliary variables are defined so as to achieve a zero gradient under 
steady-state conditions, which allows the C– and extended C–property to be 
satisfied. 




