
Chapter 7 

Finite Volume Methods for  
Hyperbolic Systems 

7.1. Principle  

7.1.1. One-dimensional conservation laws 

Finite volume methods solve the conservation form of conservation laws. Scalar 
hyperbolic laws are expressed in conservation form as in equation [1.1], recalled 
here: 
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As shown in section 1.1.2, equation [1.1] is derived from a balance over a 
control volume [x0, x0 + δx]× [t0, t0 + δt], the size of which is made infinitesimal. 
The balance equation [1.12] is recalled: 
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As shown in section 1.1.2, equation [1.1] is a particular case of equation [1.12]. 
In contrast with equation [1.1], equation [1.12] is not based on the assumption that 
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the solution is continuous and differentiable with respect to time and space. In finite 
volume methods, space is discretized into volumes, also called computational cells, 
over which balance equation [1.12] is solved (Figure 7.1). 
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Figure 7.1. Discretization of space and time for a  
one-dimensional finite volume method 

Applying balance equation [1.12] over the control volume sketched in Figure 7.1 
leads to the following equation: 
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where Δxi is the width of the cell i, Δt is the computational time step, n
iU  is the 

average value of U over the cell i at the time level n, 2/1
2/1

+
+
n

iF  is the average value of 
the flux F at the interface i + 1/2 between the cells i and i + 1 between the time 
levels n and n + 1 and 2/1+n

iS  is the average value of the source term over the cell i 
between the time levels n and n + 1. Dividing by Δxi yields: 
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The average value of U over the cell i at the next time level can be determined 
provided that the fluxes at the interfaces between the cells and the source term can 
be estimated between the time levels n and n + 1. How to estimate the fluxes is dealt 
with in the next sections. If F and S are estimated using only the known solution at 
the time level n, the method is said to be explicit. If the estimates of F and S are 
functions of the unknown solution at the time level n + 1, the method is said to be 
implicit.  
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Hyperbolic systems of conservation laws are written in conservation form as in 
equation [2.2], recalled here (see Chapter 2): 
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Equation [2.2] is discretized by applying the scalar discretization [7.2] to each of 
the components of U, F and S. The vector form of equation [7.2] is obtained: 
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 [7.3] 

7.1.2. Multidimensional conservation laws 

Only two-dimensional problems are considered in what follows. The extension 
to three-dimensional problems will not be detailed hereafter. Two-dimensional 
systems can be written in the conservation form [5.12], recalled here: 
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where F and G are the fluxes in the x- and y-direction respectively. Space is 
discretized into polygonal cells, usually triangles or quadrangles. The edges of the 
cells are straight lines (Figure 7.2).  
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Figure 7.2. Discretization of space for the finite volume solution of a two-dimensional 
hyperbolic conservation law. Notation for a scalar law 
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The balance over the cell i can be written as: 
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where Ai is the area of the cell, V(i) is the set of the neighbor cells of the cell i, 
2/1

,F +n
ji  and 2/1

,G +n
ji  are respectively the average values of the fluxes F and G at the 

interface (i, j) between the cells i and j between the time levels n and n + 1, )(
,
x
jin  and 

)(
,
y
jin  are the x- and y-components of the normal unit vector attached to the interface 

(i, j), positive from i to j, and wi,j is the width of the interface (i, j). Note that )(
,
x
jin  

and )(
,
y
jin  are respectively the cosine and sine of the angle between the normal unit 

vector of the interface and the x-axis. Equation [7.4] can be rewritten as: 
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The fluxes F and G must be estimated at each interface (i, j) in the computational 
domain. The apparent complexity of equation [7.5] can be reduced to some extent 
by noting that the quantity between brackets in equation [7.5] is nothing other than 
the flux in the direction normal to the interface (i, j). Consequently, the method is 
greatly simplified by solving the projection of the equations onto the normal unit 
vector. The following algorithm is used in practice: 

1) For each interface (i, j), the variables n
iU  and n

jU  are expressed in the local 

coordinate system (ξ, ψ) attached to the interface. The directions ξ and ψ are normal 
and tangent to the interface respectively. Scalar variables such as the pressure, water 
depth, entropy, internal energy, etc. are left unchanged by the transformation, while 
vector variables such as the velocity or unit discharge vector are transformed using a 
classical rotation formula: 
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where uξ and uψ are respectively the components of the velocity in the ξ- and ψ-
direction. Given the orientation of the ξ-axis, the quantities Ui and Uj are often 
denoted by UL and UR respectively. Transformation [7.6] can be written in vector 
form as: 
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where P is the conversion matrix from the global coordinate system (x, y) into the 
local coordinate system (ξ, ψ). 

2) For each interface (i, j), compute the flux Fξ in the direction normal to the 
interface using the values UL and UR. The various existing techniques for flux 
computation are detailed in the next sections and in Appendix C on Riemann 
solvers. 

3) Convert the flux Fξ to the global coordinate system (x, y) and apply the 
balance equation [7.5] that can be rewritten as: 
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Note that a number of discretization techniques, such as the “source term 
upwinding technique” also use the expression of the source term in the local 
coordinate system attached to the interface. In this case, steps 1) to 3) must also be 
applied to the source term S.  

7.1.3. Application to the two-dimensional shallow water equations 

The present section deals with the application of the technique described in 
section 7.1.2 to the two-dimensional shallow water equations dealt with in 
section 5.4. The two-dimensional shallow water equations can be written in the 
conservation form [5.12], recalled here: 
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by defining U, F, G and S as in equation [5.64], recalled hereafter:  
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For the sake of clarity, the discretization of the source term is not dealt with 
hereafter. Steps 1) to 3) of the algorithm in section 7.1.2 are applied. 

1) Expression of U in the local coordinate system. h is left unchanged, while u 
and v are transformed into uξ and uψ as in equation [7.6]. UL and UR are given by: 
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 [7.9] 

The matrix P–1 is derived from equation [7.9]: 
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hence the expression of P: 
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2) Solution of the equations in the local coordinate system. Since the interface is 
a straight line, the problem is locally one-dimensional and the governing equation 
becomes (remember that the source term is assumed to be zero): 
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The flux at the interface is usually computed by solving a Riemann problem. 
Examples of exact or approximate Riemann solvers can be found in Appendix C. 

3) Conversion of the flux Fξ to the global coordinate system (x, y) and balance as 
in equation [7.8]: 
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7.2. Godunov’s scheme 

7.2.1. Principle 

At the time of the publication of Godunov’s scheme [GOD 59, GOD 99], the 
concept of finite volumes had not yet been formalized and Godunov presented his 
scheme as a finite difference scheme. Twenty years elapsed before the finite volume 
formalism was introduced by Van Leer in the development of the MUSCL scheme 
(see section 7.3). 
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Godunov originally saw his own scheme as a conservative generalization of the 
CIR scheme (see section 6.2.2). The CIR scheme is based on the characteristic form 
of the equations. As seen in section 6.2.2, the CIR scheme fails to preserve 
conservation in the presence of shocks. This is why Godunov tried to solve the 
conservation form of the equation by estimating the fluxes at the interface between 
the computational points. In Godunov’s scheme, the flux 2/1

,
+n
jiFξ  is computed from 

the solution of a Riemann problem in the local coordinate system attached to the 
interface (i, j). The Riemann problem is defined as: 
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where the interface is located at ξ = 0. In Godunov’s scheme, the left- and right-
states of the Riemann problem are taken from the average values of the variable over 
the cell on the left- and right-hand side of the interface respectively. The Riemann 
problem may be solved exactly (see Chapter 4) or approximately (see Appendix C). 
In the case where the Riemann problem is solved exactly, the value of U and F is 
known for all ξ and t. However, only the value of the flux at ξ = 0 is of practical 
interest. Approximate Riemann solvers focus on the determination of the flux at the 
interface. Note that the self-similarity property of the solution of the Riemann 
problem is of direct interest to the calculation of F because the variable and the flux 
are independent of time at the location of the initial discontinuity. 

Also note that: 

– in the one-dimensional case, the cells i and j are aligned along the x-axis, 
therefore j = i + 1 and: 
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in this case the solution of the Riemann problem yields the flux 2/1
2/1F +

+
n
i ; 

– in multidimensional problems, UL and UR must be determined as in 
equation [7.7]. 
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7.2.2. Application to the scalar advection equation 

7.2.2.1. Discretization 

This section deals with the application of Godunov’s scheme to the linear 
advection equation [1.39], recalled here: 
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where A is the cross-sectional area of the channel, C is the concentration of the 
dissolved substance and Q is the liquid discharge. A and Q are assumed known a 
priori. They satisfy the continuity equation [1.46], recalled hereafter: 
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As shown in Chapter 1, combining equations [1.39] and [1.46] leads to the non-
conservation form [1.48]: 
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where u = Q/A. The characteristic form [1.50] follows: 
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Applying equation [7.2] to equation [1.39] gives: 
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Equation [7.17] can be rewritten as: 
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where A and Q are assumed known everywhere in the computational domain at all 
times. 1+n

iC  can be computed provided that the values 2/1
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−
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iC  at the 
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interfaces i – 1/2 and i + 1/2 can be computed. Only the calculation of 2/1
2/1

+
+
n
iC  is 

detailed hereafter, the procedure being identical for the remaining interfaces. 

7.2.2.2. Flux calculation at internal interfaces 

The concentration 2/1
2/1

+
+
n
iC  at the interface i + 1/2 is computed from the solution 

of the following Riemann problem: 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪⎩

⎪
⎨
⎧

>=

<=
=

=
∂
∂+

∂
∂

++

+

2/11R

2/1L

for 

for 
),(

0)()(

i
n
i

i
n
in

xxCC

xxCC
txC

QC
t

AC
t

 [7.19] 

The solution of problem [7.19] is described in detail in section 4.2.1. The 
concentration being invariant along the characteristic lines (see equation [1.50]), the 
concentration profile is given by: 
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where u is the average velocity at the interface i + 1/2 between the time levels n and 
n +1 (see section 7.2.2.4 for suggested estimates of u). 2/1

2/1
+

+
n
iC  is given by: 
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Note that when u = 0, the profile does not move. Equation [7.21] leads to 
indeterminacy. This however is not a problem in practice because the flux is zero 
when u = 0. The final estimate for the flux becomes: 
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Equation [7.22] can be condensed into the following expression: 
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7.2.2.3. Boundary conditions 

Boundary conditions are needed at every boundary where the characteristics 
enter the domain. If the discharge 2/1

2/1
+nQ  at the left-hand boundary of the domain is 

positive (Figure 7.3a), a boundary condition must be prescribed at the interface 1/2. 
Conversely, if the discharge 2/1
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+
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n
MQ  at the right-hand boundary of the domain is 

negative (Figure 7.3b), a boundary condition must be prescribed at the interface 
M + 1/2. A negative discharge 2/1
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+nQ  (Figure 7.3c) and a positive discharge 
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MQ  (Figure 7.3d) do not require any boundary condition.  
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Figure 7.3. Boundary conditions to be prescribed for the  
various possible flow configurations 

Two types of boundary conditions are used in practical solute transport 
applications: 

1) Prescribed concentration Cb at the boundary. For a left-hand boundary the flux 
is computed as: 
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2) Prescribed flux Fb at the boundary. The flux at the left-hand boundary 
becomes: 
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Note that the fluxes at outflowing boundaries are given by: 
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7.2.2.4. Calculation of the liquid discharge at the cell interfaces 

Various options are available for the calculation of the discharge 2/1
2/1

+
+
n
iQ . The 

following approaches are proposed: 

1) If A and Q are computed using a finite volume method, A is computed over 
the computational cells and Q is computed at the cell interfaces, which makes its use 
in equation [7.23] straightforward. 

2) If A and Q are available from other techniques such as finite difference 
methods, they are not available at the interfaces between the cells but at 
computational points. The point value of A and Q at a given point i may be viewed 
as their average value over the control volume centered around i. The average 
discharge 2/1

2/1
+

+
n
iQ  over the computational time step may be obtained from an 

average of the point values in time and space: 
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3) When coupling occurs between hydrodynamics and transport, the variations in 
A and Q are influenced by those in C. This is the case in sediment transport models, 
where the suspended sediment concentration influences the erosion or deposition 
rate, therefore acting on the cross-sectional area. The coupling between the flow and 
transport processes usually requires an iterative process, whereby A and Q serve as a 
starting point for the calculation of C over the time step. The result of the transport 
calculation is used to update the hydrodynamic equation that is solved again over the 
time step. The result of the updated hydrodynamic equation is used to carry out a 
new transport calculation. This iterative process is repeated until convergence is 
achieved. Such a procedure being time-consuming, an explicit coupling is often 
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preferred. The discharge Q at the interface is computed using only the point values 
at the beginning of the time step: 

2
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i
QQ
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=  [7.28] 

7.2.2.5. Algorithm 

The algorithm is the following: 

1) Compute the liquid discharge at each interface between the computational 
cells. If the discharge was computed using a finite volume method, it may be used 
directly. If the discharge was computed using a finite difference method, 
equations [7.27] or [7.28] may be used. 

2) Compute the flux QC at each interface using equation [7.23] at internal 
interfaces and equations [7.24], [7.25] or [7.26] depending on the type of the 
boundary condition. 

3) Carry out the mass balance using equation [7.17] or [7.18]. 

7.2.3. Application to the inviscid Burgers equation 

7.2.3.1. Discretization 

The inviscid Burgers equation is derived in section 1.4. Its conservation form is 
given by equation [1.69], recalled hereafter: 
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The equation may be written in non-conservation form as in equation [1.66]: 
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The characteristic form of the equation is given by equation [1.68]: 

u
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Applying the general discretization [7.2] to the conservation form [1.69] leads to: 
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7.2.3.2. Flux computation at internal interfaces 

The value 2/1
2/1

+
+
n
iu  at the interface i + 1/2 is obtained from the solution of the 

following Riemann problem: 
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The solution of the Riemann problem for the inviscid Burgers equation is studied 
in section 4.2.2. The solution may be a shock or a rarefaction wave depending on uL 
and uR (see Table 4.1). Recall that: 

– if uL < uR, a rarefaction wave appears. If uL > 0 the wave travels to the right 
and u takes the value uL at xi+1/2. If uR < 0 the wave travels to the left and u takes the 
value uR at xi–1/2. If uL and uR do not have the same sign, u is zero at xi+1/2; 

– if uL > uR, a shock appears. The speed of the shock is the average of the speeds 
uL and uR (see equations [3.28] and [4.16]). The direction in which the shock 
propagates depends on the sum uL + uR. Note that the configuration uL + uR = 0 leads 
to indeterminacy because u(x, tn) is undefined in equation [7.30]. However, 
determining the solution completely is not needed in this case because the shock is 
stationary. Using the Rankin-Hugoniot condition [3.28] necessarily leads to a zero 
flux, which corresponds to u = 0 at the interface. 

The various possible configurations are summarized in Table 7.1. The value of u 
at the interface may be computed using the following formula that accounts for the 
various possible wave configurations:  
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where εi+1/2 is given by: 
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Configuration Wave pattern Value of u at xi+1/2 

uL < uR < 0 Rarefaction wave heading to the left uL 

uL < 0, uR > 0 Rarefaction wave centered around x0 0 

0 < uL < uR Rarefaction wave heading to the right uR 

uL > uR, uL + uR < 0 Shock heading to the left uL 

uL > uR, uL + uR = 0 Stationary shock Undefined, 0 acceptable 

uL > uR, uL + uR < 0 Shock heading to the right uR 

Table 7.1. Solution of the Riemann problem for the inviscid Burgers equation.  
Solution at the interface for the various possible configurations 

7.2.3.3. Boundary conditions 

Boundary conditions must be prescribed when the characteristics enter the 
computational domain. No boundary conditions are needed when the characteristics 
leave the computational domain. Consequently, only positive velocities may be 
prescribed at the left-hand boundary, while only negative velocities may be 
prescribed at the right-hand boundary. These conditions are necessary but not 
sufficient in that an inflowing boundary condition may be overridden by an outgoing 
wave, as shown in the following example. Assume that the boundary condition 
ub > 0 is to be prescribed at the left-hand boundary of the domain. If nu1  is such that 

0<+ n
ib uu , a shock appears. The propagation speed of the shock is negative and 

the condition ub cannot be prescribed at the boundary. 

The following, general procedure allows the problem to be handled. 

1) Define the following Riemann problem at the left-hand boundary: 

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪⎩

⎪
⎨
⎧

>=

<=
=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂+

∂
∂

2/11R

2/1L

2

for 

for 
),(

0
2

xxuu

xxuu
txu

u
xt

u

n
bn

 [7.33] 
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The solution of equation [7.33] is: 
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2) Define the following Riemann problem at the right-hand boundary: 
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The solution of problem [7.35] is: 
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7.2.3.4. Algorithm 

The algorithm of Godunov’s scheme as applied to the inviscid Burgers equation 
can be summarized as follows: 

1) Compute the value of u at the internal interfaces using equations [7.31–32]. 

2) Compute the value of u at the left- and right-hand boundary using 
equation [7.34] and [7.36] respectively. 

3) Apply balance equation [7.29] to all the computational cells. 

7.2.4. Application to the water hammer equations 

7.2.4.1. Discretization 

The water hammer equations studied in section 2.4 may be written in 
conservation form as in equation [2.2], recalled hereafter: 
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For the sake of clarity, the cross-sectional area A and the speed of sound are 
assumed to be constant. The pipe is assumed to be horizontal and friction is 
neglected. Then, U, F and S are given by (see equation [2.68]):  
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The equation may also be written in the non-conservation form [2.5]:  
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where the Jacobian matrix A of F with respect to U is given by equation [2.69]:  
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The speed of sound c is constant. The characteristic form [2.82] of the equation 
is recalled under the assumption of a zero source term: 
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Noting that c and ρ are constant, equation [7.39] is simplified into: 
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where C1 and C2 are constants to be determined from the initial conditions. The 
conservation form is discretized as in equation [7.3] under the assumption of a zero 
source term: 

)FF(UU 2/1
2/1

2/1
2/1

1 +
+

+
−

+ −
Δ
Δ

+= n
i

n
i

i

n
i

n
i x

t
 [7.41] 



310     Wave Propagation in Fluids 
 

Equation [7.41] can be rewritten as: 
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Noting that d(Ap) = c2 d(ρA), dividing the first and second equations [7.42] by A 
and Q respectively leads to: 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

−
Δ
Δ

+=

−
Δ
Δ

+=

+
+

+
−

+

+
+

+
−

+

)(

)(

2/1
2/1

2/1
2/1

1

2/1
2/1

2/1
2/1

2
1

n
i

n
i

i

n
i

n
i

n
i

n
i

i

n
i

n
i

pp
x
tA

QQ

QQ
x
t

A
c

pp

ρ

ρ

 [7.43] 

7.2.4.2. Flux calculation at internal interfaces 

The flux at the interface i + 1/2 is computed from the solution of the following 
the Riemann problem: 
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The solution of the Riemann problem for the water hammer equations is 
examined in detail in section 4.3.2. An intermediate region of constant state is 
separated from the left and right states by two contact discontinuities propagating in 
opposite directions at speeds – c and + c. The interface i + 1/2 belongs to the 
intermediate region of constant state. The value of U and F at xi+1/2 is determined 
using the first Riemann invariant [7.40] between UR and the intermediate region and 
the second Riemann invariant [7.40] between UL and the intermediate region of 
constant state. The following system is obtained: 
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Solving the system for p and u at the interface leads to: 
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Consequently: 
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Substituting equation [7.47] into equation [7.43] leads to the final expression: 
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where the Courant number is defined as: 
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7.2.4.3. Treatment of boundary conditions 

The following types of boundary conditions are dealt with hereafter: prescribed 
pressure and prescribed discharge. The calculation of the flux is detailed only for the 
left-hand boundary, the transposition to the right-hand boundary being 
straightforward. 

– Prescribed pressure pb. The pressure at the interface 1/2 is defined as: 

b
n pp =+ 2/1

2/1  [7.49] 

The discharge is obtained using the first Riemann invariant between the cell 1 
and the interface 1/2. The first relationship [7.40] is rewritten as: 
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Substituting equation [7.49] into equation [7.50] yields: 
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Multiplying by the cross-sectional area A gives: 
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Reasoning by symmetry, the following formulae are obtained for the right-hand 
boundary: 
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– Prescribed discharge Qb at the boundary. The discharge is known directly from 
the boundary condition: 

b
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and the pressure is obtained from the first relationship [7.40]: 
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Equation [7.55] leads to: 
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Using the second relationship [7.40] at the right-hand boundary leads to:  
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7.2.4.4. Algorithm 

The algorithm for the solution of the water hammer equation by Godunov’s 
scheme can be summarized as follows: 
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1) Compute the values of p and Q at the internal interfaces using 
equations [7.47]. 

2) Compute the values of p and Q at the boundaries of the domain using 
equation [7.52] or [7.54] at the left-hand boundary and using equation [7.53] or 
[7.57] at the right-hand boundary. 

3) Apply balance equation [7.43] to all the computational cells in the domain. 

7.3. Higher-order Godunov-type schemes 

7.3.1. Rationale and principle 

7.3.1.1. Historical perspective 

Godunov’s scheme [GOD 59] is first-order. First-order schemes are 
characterized by a strong numerical diffusion, the effect of which is to smooth out 
the numerical solutions, in particular in the neighborhood of shocks, contact 
discontinuities or sharp gradient transitions. The quality of the numerical solution 
can be increased only by increasing the number of computational cells, with 
consequences on the computational effort required. At the end of the 1970s Van 
Leer [VAN 77, VAN 79] introduced a new formalism for the development of 
higher-order conservative schemes. The purpose was twofold. Firstly, the numerical 
method had to be conservative, a necessary condition for the treatment of weak 
solutions. Secondly, the scheme had to be monotone in order to eliminate spurious 
oscillations in the vicinity of sharp gradients. Van Leer introduced the concepts of 
reconstruction and slope limiting, the principle of which is outlined in the next 
sections. These concepts were used by Van Leer to develop the now widely used 
MUSCL scheme. At the beginning of the 1980s, Colella and Woodward proposed 
the more complex but much more accurate PPM [COL 84]. Considerable research 
effort has been devoted to the development of higher-order schemes since then, 
leading to numerous higher-order Godunov-type schemes (see e.g. [TOR 97], 
[LEV 02], [GUI 03a]). 

Today’s formalism of Godunov-type schemes uses the following steps: 
(i) reconstruction, (ii) profile limiting, (iii) solution of a generalized Riemann 
problem, (iv) flux computation and (v) balance over the computational cells. These 
steps are detailed in sections 7.3.1.2 to 7.3.1.5. 

7.3.1.2. Reconstruction of the flow variable 

Higher-order Godunov-type schemes are derived from the following remark: the 
accuracy of the numerical solution is conditioned by that of the method used for the 
computation of the fluxes. The accuracy of the flux computation can be increased 



314     Wave Propagation in Fluids 
 

only by more accurately locating the gradients in the variable than the original 
Godunov scheme does. The lack of accuracy of Godunov’s scheme mainly stems 
from the fact that the Riemann problem is defined using the average value of the 
variable over the computational cells, that is, assuming a zero gradient in the 
computational cells. Van Leer proposed that the accuracy of the scheme should be 
increased by reconstructing the variations of U within a given cell using the average 
values of U over the neighboring cells. 

The values n
iU  of U over the cells being known at the time level n, a 

reconstructed profile, denoted by )(U~ xn
i , is defined over each cell (Figure 7.4). The 

reconstruction must satisfy conservation, that is, its average value over the cell i 
should be equal to n

iU : 
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Figure 7.4. Reconstruction of the flow variable within the computational cell i.  
The area below the reconstructed profile (gray-shaded region) is equal to the area  

below the horizontal line that indicates the average value 

7.3.1.3. Slope limiting 

The reconstructed profile )(U~ xn
i  must be corrected prior to the computation of 

the fluxes at the interfaces between the computational cells. As shown in [VAN 77] 
and [COL 84] the following necessary conditions should be fulfilled for the TVD 
character of the scheme to be guaranteed: 

– The reconstructed profile )(U~ xn
i  must be monotone over the cell i. 

– The value )(U~ 2/1−i
n
i x  at the interface i - 1/2 must lie between n

i 1U −  and n
iU . 



Finite Volume Methods     315 
 

– The value )(U~ 2/1+i
n
i x  at the interface i + 1/2 must lie between n

iU  and n
i 1U + . 

These conditions are summarized as follows: 
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In the notation [7.59], the min, max and ≤ operators are applied to each of the 
components of U separately. 

The reconstructed profile is corrected if necessary. Applying the monotony 
conditions amounts to minimizing, or limiting, the average gradient of the variable 
over the computational cell, hence the term “slope limiting” often used to refer to 
the correction. The effect of slope limiting on the reconstructed profile is illustrated 
in Figure 7.5. Note that the corrected profile should also satisfy the conservation 
constraint [7.58]. 
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Figure 7.5. Effect of slope limiting on a profile to meet the monotony conditions [7.59]. 
Reconstructed profile before the correction (dashed line), after the correction (solid line) 

7.3.1.4. Solution of the Riemann problem at the interfaces between the cells 

The limited profiles are used to define generalized Riemann problems at the 
interfaces between the computational cells (Figure 7.6). Such problems take the 
form: 
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Figure 7.6. Generalized Riemann problem at the interface i+1/2 

Such problems can in general not be solved analytically. They must be converted 
into equivalent Riemann problems [GUI 03a] that can be solved exactly or 
approximately, or they can be solved using so-called predictor-corrector 
methods [TOR 97]. Appendix C gives an overview of a number of approximate 
Riemann solvers available in the literature. 

7.3.1.5. Flux computation and balance 

Solving the Riemann problem at the interfaces between the computational cells 
allows the fluxes to be computed. The fluxes are used in balance equation [7.3], 
recalled hereafter: 
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7.3.2. Example: the MUSCL scheme 

7.3.2.1. Reconstruction 

The Monotonic Upwind Scheme for Conservation Laws (MUSCL) was 
developed by Van Leer [VAN 77]. Several options for the reconstruction of the 
conserved variable were proposed in the original publication. Only the most 
commonly used approach is presented here. The procedure is detailed for a scalar 
variable. It is generalized to vector variables by applying the reconstruction and 
limiting steps to each of the components of the vector variable. 

The MUSCL scheme uses a linear reconstruction in the form (see Figure 7.7): 

n
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where n
ia  is the slope of the profile over the cell i and xi = (xi–1/2 + xi+1/2)/2 is the 

abscissa of the centre of the cell i. It is easy to check that equation [7.61] satisfies 
the conservation property [7.58] regardless of the value of n

ia . The slope is 
computed as the average slope between the cells i – 1 and i + 1 (Figure 7.7): 
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Figure 7.7. The MUSCL reconstruction 

7.3.2.2. Slope limiting 

The slope must be limited if at least one of the following situations occurs: 

1) The cell i is a local extremum. This is true if: 
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n
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n
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n
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n
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In such a case the slope n
ia  is set to zero. Tests 2) and 3) hereafter do not need to 

be carried out. 

2) The first condition [7.59] is not satisfied because the value at the interface i –
1/2 does not lie between the average values in the cells i – 1 and i. The slope n

ia  is 
adjusted to the largest possible value that allows the first condition [7.59] to be 
satisfied: 
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n
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Δ
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3) The second condition [7.59] is not satisfied because the value at the interface 
i + 1/2 does not lie between the average values in the cells i and i + 1. The slope n

ia  
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is adjusted to the largest possible value that allows the second condition [7.59] to be 
satisfied: 
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n
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UU

a
Δ

−
= +12  [7.65] 

7.3.2.3. Solution of the generalized Riemann problem 

Several approaches are available for the solution of the generalized Riemann 
problem. The most widely used approach, referred to as the MUSCL-Hancock 
approach [TOR 97], is presented hereafter. Another approach, proposed by Savic 
and Holly [SAV 93], uses the average value of the Riemann invariants over the 
domain of dependence. A third approach, referred to as the EigenVector-based 
Reconstruction (EVR), allows for faster computations while leading to more stable 
solutions than the MUSCL-Hancock scheme [GUI 03a, SOA 07]. This latter 
approach is detailed in section 7.4. 

In the MUSCL-Hancock approach, a first approximation is obtained for the 
fluxes by solving the following Riemann problem: 
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Solving the Riemann problem [7.66] yields fluxes that are used to compute the 
solution using equation [7.3] over half a time step: 
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 [7.67] 

The values 2/1
L,2/1

+
+
n
iU  and 2/1

R,2/1
+

+
n
iU  are taken as the left and right states of a 

Riemann problem, the solution of which is used as a final estimate for the fluxes in 
equation [7.3]. 
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7.4. EVR approach 

7.4.1. Principle of the approach 

The EVR method allows the generalized Riemann problem to be solved by 
converting it into an Equivalent Riemann Problem (ERP). The method was first 
introduced for the simulation of two-phase flows in pipes [GUI 01b]. It was then 
generalized to hyperbolic systems of conservation laws [GUI 03a] but no name was 
given to the method. The name EVR appeared when an application of the method to 
two-dimensional free surface flow simulations with dry beds was published 
[SOA 07].  

The advantage of the EVR is a less computationally demanding algorithm than 
the MUSCL-Hancock method, with a similar precision. The method is also more 
robust than the classical MUSCL-Hancock approach in the presence of dry beds, 
with no oscillations or instabilities near wetting and drying fronts [SOA 07]. The 
method is presented in a one-dimensional context hereafter. However, its 
generalization to multiple dimensions does not introduce any particular difficulty.  

Assume that the vector variable U has been reconstructed in each cell of the 
computational domain at time step n. The reconstructed profile in cell i at time level 
n is denoted by )(~ xU n

i . At interface i + 1/2 between the cells i and i + 1, the 
generalized Riemann problem is given by equation [7.60], recalled here: 
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The purpose is to determine the left and right states for an ERP that yields the 
same average value of the flux F at interface i + 1/2 over the time step Δt. In other 
words, UL and UR are sought such that the Riemann problem: 
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leads to the same flux 2/1
2/1F +

+
n
i  as the original Riemann problem [7.60]. 
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The average flux 2/1
2/1F +

+
n
i  between time levels n and n + 1 is estimated from a 

linearization of the flux function F(U): 
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where 2/1
2/1U +

+
n
i  is an estimate of the average of U at interface i + 1/2 between time 

levels n and n + 1. The two Riemann problems [7.60] and [7.67] are equivalent if 
they lead to the same average 2/1

2/1U +
+

n
i . This allows necessary conditions to be 

written for the left and right states of the equivalent Riemann problem. This is done 
by writing the hyperbolic system in non-conservation form, equation [7.38]: 
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The underlying idea of the EVR approach is that the reconstructed profiles in the 
cells i and i + 1 can be expressed in the base K of eigenvectors K(p) of the Jacobian 
matrix A: 
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where coefficients )( p
iα  and )(

1
p

i+α  are called the wave strengths by analogy with 
Roe’s approximate solver (see Appendix C). In reconstruction [7.70], the two 

eigenvectors 
)(

K
pn

i and 
)(

1K
pn

i+  are constant over each cell, while the wave strengths 
are functions of x. The solution U(x, t) is sought in the form: 
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Substituting equation [7.71] into equation [7.38] leads to: 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

=
∂

∂+
∂

∂

=
∂

∂+
∂

∂

∑∑

∑∑

=
++

=
+

==

0KAK

0KAK

1

)()(
11

1

)()(
1

1

)()(

1

)()(

m

p

ppn
i

n
i

m

p

ppn
i

m

p

ppn
i

n
i

m

p

ppn
i

xt

xt

αα

αα

 [7.72] 



Finite Volume Methods     321 
 

left-multiplying the first and second equations [7.72] by the inverse of matrices n
iK  

and n
i 1K +  respectively, we obtain: 
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that is: 
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Consequently, the wave strength α(p) is a constant along the pth characteristic.  

Equations [7.74] are used to express U at the interface as a combination of the 
wave strengths: 
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The sum is broken down into: 
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The waves with positive wave speeds originate from cell i, while those with 
negative wave speeds come from cell i + 1. Equation [7.76] becomes: 

∑ ∫

∑ ∫

>
+

<
++

+
+

+

+

Δ
+

Δ
=

m

p

t

t
i

ppn
i

m

p

t

t
i

ppn
i

n
i

p

n

n

p

n

n

ttx
t

ttx
t

0,
2/1

)()(

0,
2/1

)()(
1

2/1
2/1

)(

1

)(

1

d),(1K

d),(1KU

λ

λ

α

α

 [7.77] 

The average value of the wave strength α(p) at interface i + 1/2 between tn and 
tn+1 is equal to its average value over the domain of dependence of the pth wave: 
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Substituting equation [7.78] into equation [7.77], we have: 
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Moreover, the left and right states UL and UR of the equivalent Riemann problem 
are sought in the form: 
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A necessary condition for equations [7.68] and [7.60] to yield the same average 
value at interface i + 1/2 over the time step is: 
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In cell i, the wave strengths with negative wave speeds may be chosen 
arbitrarily. Conversely, in cell i + 1, the wave strengths with positive wave speeds 
may be chosen arbitrarily. In practice, the average value of the wave strength over 
the computational cell is shown to give satisfactory results [GUI 01b, GUI 03a, 
SOA 07]. The final formulae of the wave strengths are: 
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7.4.2. Application to the one-dimensional shallow water equations 

The one-dimensional shallow water equations arise as a particular case of the 
Saint Venant equations [2.2], [2.118] under the assumption of a wide, prismatic 
rectangular channel. In such a case, the definition of U, F and S is modified into: 
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These equations can also be seen as the one-dimensional restriction of equations 
[5.64]. The Jacobian matrix A is given by equation [2.119]: 
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and the eigenvectors are given by equation [2.125]: 
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The wave strengths are defined as: 
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where α is the vector formed by the wave strengths. Substituting equations [7.83] 
and [2.125] into equation [7.84] leads to: 
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Solving the system for α(1) and α(2) gives: 

2
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Consequently, reconstructing h suffices to reconstruct U completely. 
Reconstructing the unit discharge q is not necessary. Assume now that h has been 
reconstructed using the MUSCL approach. The reconstructed profile can be 
expressed as: 
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where xi is the abscissa of the center of cell i. The left state of the equivalent 
Riemann problem at interface i + 1/2  is: 
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where h(1) and h(2) are respectively the average values of h over the dependence 
domains of the waves λ(1) = u – c and λ(2) = u + c. They are given by equation 
[7.82] as: 
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Substituting equation [7.87] into equation [7.89] and noting that xi+1/2 = xi + Δx/2, 
we have: 
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Applying a similar reasoning to cell i + 1, the right state of the equivalent 
Riemann problem is found to be: 
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where the wave strengths are given by: 
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As a conclusion, the EVR approach requires only one variable reconstruction 
(the water depth h), against two reconstructions for the MUSCL-Hancock approach. 
Moreover, the EVR approach uses a first-order, explicit time marching approach, 
against two steps for the second-order in time MUSCL-Hancock. 

7.5. Summary 

7.5.1. What you should remember 

Finite volume schemes solve the conservation form of conservation laws. The 
discretized quantity is the average value of the conserved variable over the 
computational cells. 

The change in the conserved variable from one time level to the next is 
computed using a balance equation over the computational cells. This requires that 
the fluxes be estimated at the interfaces between the cells. 

Godunov-type schemes use Riemann problems to estimate the fluxes at the 
interfaces between the cells. The Riemann problem may be solved exactly or 
approximately. 

Higher-order Godunov-type schemes use a reconstruction procedure to estimate 
the variations of the conserved variable in the computational cells. The variable in a 
given cell is reconstructed using the average values in the neighboring cells. This 
allows the gradients to be located more accurately, thus leading to more accurate 
estimates of the fluxes. 

The second-order MUSCL scheme presented in section 7.3 uses a linear 
reconstruction of the conserved variable. The slope of the profile within the cell i is 
computed as the average slope between the cells i – 1 and i + 1. Spurious 
oscillations are eliminated from the solution by limiting the slope of the 
reconstructed profile, as indicated in section 7.3.2.2. 

The reconstructed variables lead to generalized Riemann problems at the cell 
interfaces. Such generalized Riemann problems can be solved using the two-step 
MUSCL-Hancock approach (valid only for a linear reconstruction) presented in 
section 7.3.2.3 or using the EVR approach presented in section  7.4, with a particular 
application to the Saint Venant equations in section 7.4.2. When applied to the 
shallow water equations, the EVR approach has the advantage that only the water 
depth needs to be reconstructed and the Riemann problem needs to be solved only 
once (compared to two reconstructed variables and two solutions of the Riemann 
problem for the MUSCL-Hancock approach). The EVR approach allows the 
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computational effort to be reduced substantially, with an increased robustness of the 
numerical solution in the presence of dry beds. 

7.5.2. Application exercises 

Apply Godunov’s scheme to the water hammer equations, the Saint Venant 
equations and the Euler equations. Use simplifying assumptions on the geometry 
(e.g. horizontal pipe/channel, negligible friction, etc.) so that the source term is 
assumed to be zero. Solve the Riemann problems dealt with in Chapter 4 and 
comment on the accuracy of the numerical solution. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 24Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

 
 




