
Chapter 3 

Weak Solutions and their Properties 

3.1. Appearance of discontinuous solutions 

3.1.1. Governing mechanisms 

As shown in section 1.4.3 with the example of the inviscid Burgers equation, 
initially continuous solutions may evolve into discontinuous solutions. This section 
focuses on the mechanisms that lead to the formation of discontinuities. 
Discontinuous solutions are an inevitable consequence of the nonlinearity of a 
hyperbolic conservation law, as shown hereafter. 

Consider a scalar hyperbolic conservation law expressed in conservation form 
as: 
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This is the general form [1.1], where the source term is assumed to be zero. For 
the sake of simplicity, F is assumed to be a function of U only. As shown in 
Chapter 1, equation [3.1] can be written in the non-conservation form [1.28], 
recalled here: 
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where λ = dF/dU. As shown in Chapter 1, equation [1.28] can be rewritten in the 
characteristic form [1.30], recalled here: 

λ==
t
xU

d
dfor Const  

U is constant along the characteristic lines dx/dt = λ. If F is a nonlinear function 
of U, the wave speed λ depends on the value of U. U being constant along a given 
characteristic, λ is also a constant along the characteristic and the characteristics are 
straight lines in the phase space (Figure 3.1). 
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Figure 3.1. Continuous solution evolving into a discontinuous solution in the case of a convex 
flux function. Sketch in the physical space (top) and in the phase space (bottom) 

Consider the case where the initial profile (ABC) at time t0 is not monotonic. The 
maximum of U is reached at the point B. 

If the flux function is convex, the characteristic issued from B moves faster than 
those issued from A and C because λ is an increasing function of U. The 
characteristic issued from B ‘catches up’ the characteristic issued from C at a time 
t1 > t0. At t = t1, the points A, B and C move to A', B' and C'. U being constant along 
the characteristics, the values of U at A, B and C are identical to those at A', B' and 
C' respectively. Since B' and C' have the same abscissa, the profile of U is 
necessarily discontinuous because U simultaneously takes the value UB and UC at 
the same point. 



Weak Solutions and their Properties     133 
 

If the flux function is concave, the characteristic issued from B is slower than 
those issued from A and C. Reasoning as in the paragraph above leads to the 
conclusion that a discontinuity appears at the point A' = B'. 

A general formula can be derived for the time at which a discontinuity appears 
for the first time. This is achieved by deriving an expression for the space derivative 

xU ∂∂ /  from equation [1.28] and finding the date at which xU ∂∂ /  becomes 
infinite. Differentiating equation [1.28] with respect to x leads to: 
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Expanding the space derivative and swapping the time and space differentials 
leads to: 
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As shown in Chapter 1, equation [3.3] can be expressed in characteristic form as: 
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Equation [3.4] is a first-order Ordinary Differential Equation (ODE) in xU ∂∂ / . 
Noting that xUUx ∂∂∂∂=∂∂ /// λλ , equation [3.4] is rewritten as: 

λλ =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

t
x

x
U

Ux
U

t d
dfor 

d
d 2

 [3.5] 

Since U∂∂ /λ  is a function of U only, U is constant along a characteristic line 
and U∂∂ /λ  is also a constant along a characteristic line. ODE [3.5] has the 
following analytical solution: 
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Equation [3.6] describes the variations of xU ∂∂ /  as seen by an observer 
moving at a speed λ. xU ∂∂ / becomes infinite if the quantity between the brackets in 
equation [3.6] becomes zero, which occurs at a time t = t1 such that:  
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The time td at which the first discontinuity appears in the profile is given by the 
minimum of all the times t1 associated with all the possible values of x:  
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Note that the profile can become discontinuous only if td is larger than t0, that is, 
if there exists at least one value of x for which the following condition is satisfied: 
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3.1.2. Local invalidity of the characteristic formulation – graphical approach 

The conservation form and the characteristic formulation presented in Chapters 1 
and 2 for scalar hyperbolic laws and hyperbolic systems of conservation laws were 
derived under the assumption that the derivatives of the variables and the fluxes are 
defined at all points of time and space. This assumption is not valid at 
discontinuities. The characteristic approach cannot be used in its classical form 
across discontinuities and a specific treatment must be applied. Such a treatment is 
detailed in section 3.4. 

In the case of scalar hyperbolic conservation laws, the method of characteristics 
may be applied even to discontinuous solutions, provided that the method is 
modified using the so-called “equal area rule”. The equal area rule combines the 
properties of invariance and conservation with the necessary condition of solution 
uniqueness. It consists of the following two steps. 

The first step consists of applying the original method of characteristics to the 
initial profile. The solution becomes discontinuous at the time t1 when the 
characteristics issued from B and C intersect at B' = C'. Applying the method of 
characteristics at a time t2 > t1 leads to a multi-valued solution profile (A"B"C") as 
sketched in Figure 3.2 because the point B' passes the point C'. Such a profile is not 
physically permissible in that U may take two or three different values at the 
abscissa x lying within the interval [xB", xC"].  
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The second step consists of correcting the profile [A"B"C"] so as to restore the 
uniqueness of the solution. The correction is made as follows: 

– the corrected profile is discontinuous because the discontinuity appeared at 
t1 < t2; 

– the correction should guarantee conservation. Consequently, the area under the 
corrected profile should be the same as the area under the profile before the 
correction. 
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Figure 3.2. Using the method of characteristics beyond the time at which a discontinuity 
appears. Sketch in the physical space (top) and in the phase space (bottom) 

The application of the correction to the profile [A"B"C"] in Figure 3.2 is 
illustrated by Figure 3.3. The gray-shaded areas on both sides of the discontinuity D 
are strictly equal, hence the term “equal area rule”. The correction is also reflected in 
the phase space (Figure 3.3, bottom), where the initial characteristics [B'C'] and 
[B'C"] are replaced with a bold line that represents the trajectory of the 
discontinuity. 
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Figure 3.3. Application of the equal area rule to a multiple-valued solution.  
Representation in the physical space (top) and in the phase space (bottom) 

3.1.3. Practical examples of discontinuous flows 

3.1.3.1. Free surface flow: the breaking of a wave 

The dependence of the wave speed on the flow variable is the main reason for 
the breaking of sea or ocean waves traveling to the shore. Figure 3.4 illustrates the 
behavior of a sea wave along a line drawn in the direction perpendicular to the 
shore. This direction may be seen as the longitudinal axis of a canal of infinite 
width, the bottom of which rises in the direction of positive x. Consider a wave 
traveling to the shore. The initial profile [ABC] of the free surface is continuous. 
The water depth hB of the crest of the wave is larger than the depth hC of the front. 
For a wave traveling over a mild beach slope, the depth hA of the tail of the wave is 
larger than hC and smaller than hB. The average flow velocity u is small compared to 
the speed c of the waves in still water, with the consequence that the wave speed 
u + c can be approximated reasonably with the speed c = (gh)1/2. The wave speed 
being smaller in the regions where the flow is shallower, the characteristic lines 
dx/dt = u + c are convex in the phase space (Figure 3.4, bottom).  
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The characteristic that passes at C is slower than the characteristic that passes at 
B, where the depth is larger. Consequently, the front side [BC] becomes steeper as 
the wave travels to the shore. Conversely, the characteristic issued from A is slower 
than that issued from B and the rear side [AB] of the wave becomes milder as time 
goes. After a certain time the point B' catches up the point C', the free surface 
becomes vertical and the wave breaks. 
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Figure 3.4. Breaking of a wave traveling to the shoreline.  
Sketch in the physical space (top) and in the phase space (bottom) 

NOTE.− Although the profile [A"B"C"] in Figure 3.2 is very similar to that of a 
breaking wave, the resemblance is purely coincidental. The profile [A"B"C"] is 
derived from a purely mathematical construction that does not account for the 
phenomena that govern the breaking of a wave. The breaking of the wave is a two-
dimensional process in the vertical plane, while the construction in Figure 3.2 
involves only one dimension of space. 

3.1.3.2. Aerodynamics: supersonic flight 

By definition, the speed of an airplane (or any other flying object) in supersonic 
flight is larger than the speed of sound. The gas molecules immediately in front of 
the airplane cannot move away fast enough and are “pushed” ahead and aside. The 
local accumulation of the gas molecules induces a rise in the pressure and in the 
density. The molecules travel to the zones of lower pressure and the thickness of the 
high pressure zone stabilizes to an equilibrium thickness (typically, millimeters to 
centimeters), adopting the shape of a V as does the wake of a ship. The gas ahead of 
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this V-shaped zone is undisturbed. The transition between the two zones is very thin 
(typically, millimeters). The thickness of the transition zone is negligible compared 
to the dimensions of the flying object and the pressure appears as discontinuous 
(Figure 3.5). 
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Figure 3.5. Shock wave created by a supersonic flying object.  
Geometry of the wave in side view (top), pressure profile (bottom) 

In practice, thermal diffusion and turbulence phenomena induce a widening of 
the transition zone. The pressure profile is not strictly discontinuous but may appear 
so at the metric scale. The pressure decreases gradually to the rear side of the plane 
and the initial pressure is recovered after a sufficiently long distance. 

The well-known “supersonic bang” that can be heard when an airplane flies 
above the speed of sound is nothing but the consequence of the sudden pressure rise 
across the transition zone. 

3.2. Classification of waves 

3.2.1. Shock wave 

A shock wave is characterized by a discontinuity in both the conserved variable 
and wave speed. It obeys the following criteria (Figure 3.6): 

– Criterion (S1). The solution is discontinuous across the shock. The values UL 
and UR on the left- and right-hand sides of the shock are different. 

– Criterion (S2). There is at least one wave (the pth wave), the speed of which is 
discontinuous across the shock, such that the wave speed on the left-hand side of the 
shock is larger than on the right-hand side and such that the propagation speed of the 
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discontinuity lies between these two wave speeds. The discontinuity is said to be a 
shock for the pth wave, or a p–shock. 
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Figure 3.6. Definition sketch of a shock in the physical space (top)  
and in the phase space (bottom). Sketch for a scalar variable 

When the law is scalar, there is only one wave. The criteria (S1–2) can be 
summarized as follows: 
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where cS is the speed of the shock and the subscripts L and R denote the values taken 
by U and λ on the left- and right-hand sides of the discontinuity respectively. When 
a hyperbolic system of conservation laws is dealt with, the wave speeds are 
numbered in ascending order. The discontinuity is a shock for the pth wave, or a p-
shock, if the following conditions are satisfied: 
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Note that the last two conditions [3.11] actually imply the inequality 
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L
pp λλ > . They also guarantee that the discontinuity is a shock neither for the 

wave p – 1 nor for the wave p + 1. 
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3.2.2. Rarefaction wave 

A p–rarefaction wave (that is, a rarefaction for the pth wave) satisfies the 
following criteria (Figure 3.7): 

t 

x 

U 

x 

t 

x 

U

x 

t 

x

U

x

 

Figure 3.7. A rarefaction wave in the physical space (top) and in the phase space (bottom). 
Definition sketch for a scalar variable. Initial profile (dashed line), final profile (solid line) 

– Criterion (R1). The variable U and the wave speeds vary continuously across 
the wave. 

– Criterion (R2). The wave speed λ(p) increases from left to right across the wave 
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Rarefaction waves cause front smearing and profile smoothing. 

3.2.3. Contact discontinuity 

The pth wave is a contact discontinuity if it satisfies the following criteria: 

– Criterion (C1). The variable is discontinuous across the wave; 

– Criterion (C2). The wave speed λ(p) is continuous across the wave; 
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Figure 3.8 illustrates the behavior of a contact discontinuity in the physical space 
and in the phase space. 
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Figure 3.8. Definition sketch for a contact discontinuity in the physical space (top)  
and in the phase space (bottom)  

3.2.4. Mixed/compound wave 

Mixed waves, also known as compound waves, appear in very specific cases, 
such as non-convex flux functions. In such cases, a profile composed of a 
rarefaction wave and a shock may appear under certain combinations of initial and 
boundary conditions (see Chapter 4 for an example). A left-compound wave obeys 
the following criteria: 

– Criterion (ML1). The celery λ(p) increases from left to right up to the abscissa 
xs of the shock. 

– Criterion (ML2). The conserved variable is discontinuous at x = xs. 

– Criterion (ML3). The wave speed on the right-hand side of the discontinuity is 
smaller than the wave speed on the left-hand side. 

The criteria above can be summarized as: 
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Conversely, a right-compound wave obeys the following definitions: 

– Criterion (MR1). The wave speed decreases from right to left down to the 
abscissa xs of the shock.  

– Criterion (MR2). The conserved variable is discontinuous across the shock. 

– Criterion (MR3). The wave speed on the left-hand side of the discontinuity is 
larger than the wave speed on the right-hand side. 

The criteria above can be summarized as: 
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3.3. Simple waves 

3.3.1. Definition and properties 

Consider an m×m hyperbolic system of conservation laws. By definition, its m 
wave speeds are all different. The pth wave is a simple wave if the conserved 
variable U is constant along the characteristics dx/dt = λ(p). By definition, the 
characteristic curve for a simple wave is a straight line in the phase space (see 
Figure 3.9) because the wave speed, that is a function of U, is also constant. 
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Figure 3.9. Definition sketch for a simple wave in the physical space (top)  
and in the phase space (bottom) 
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3.3.2. Generalized Riemann invariants 

Generalized Riemann invariants are differential relationships that apply across 
simple waves. In contrast with Riemann invariants that may be used across any type 
of wave, generalized Riemann invariants can be used only across simple waves. 

Assume that the pth wave is a simple wave (Figure 3.10). Then the 
characteristics dx/dt = λ(p) are straight lines in the phase space. Consider two such 
characteristics close to each other in the phase space. The leftmost characteristic is 
denoted by (A), the rightmost characteristic is denoted by B. In the general case, (A) 
and (B) are not parallel because the values of U along (A) and (B) are not identical. 
Since the system is hyperbolic, the wave speeds of all the remaining characteristics 
are different from λ(p). Consequently, the characteristics (A) and (B) can be 
connected using any of the remaining m – 1 characteristics. 
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Figure 3.10. Two neighbor characteristics in the simple wave p.  
Definition sketch in the phase space 

The variation dU in U between the characteristics (A) and (B) is given by (see 
equation [2.27]: 
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By definition, all the Riemann invariants Wq, q ≠ p, are constant between (A) and 
(B): 

pqWq ≠∀= 0d  [3.17] 

Consequently, the only non-constant invariant between (A) and (B) is the pth 
Riemann invariant. Substituting equation [3.17] into equation [3.16] leads to: 
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In other words, the vector dU is collinear to the pth eigenvector K(p) across the 
pth wave. 
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The relationships in equation [3.19] are called generalized Riemann invariants. 
They form a system of m – 1 equations that may be used across the pth wave to 
characterize the properties of the solution. They may be applied to specific problems 
such as the Riemann problem (see Chapter 4), the solution of which is made of 
simple waves. 

Note however that the generalized Riemann invariants are meaningful only if the 
solution is continuous across the wave. The generalized Riemann invariants cannot 
be applied across shock waves. Jump relationships that are detailed in section 3.4.3 
should be used instead. 

3.4. Weak solutions and their properties 

3.4.1. Definitions 

Equation [1.1] can be rewritten as: 
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The weak form of equation [3.20] over a domain [x1, x2]×[t1, t2] is obtained by 
multiplying equation [3.20] by a function w(x, t), also known as a weighting 
function, and by integrating the equation over the domain: 
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A solution of the weak form [3.21] is called a weak solution of [3.20]. The weak 
form of a vector equation in the form [2.2] is defined exactly in the same way as that 
of a scalar equation. 

In the particular case where w(x, t) is a constant, equation [3.21] can be 
simplified into: 
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Integrating tU ∂∂ /  with respect to time and xF ∂∂ /  with respect to x leads to: 
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Note that equation [3.23] is strictly equivalent to the balance [1.11–12] over the 
control volume [t0, t0 + δt] × [x0, x0 + δx] if x1 = x0, x2 = x0 + δx, t1 = t0, t2 = t0 + δt. 

3.4.2. Non-equivalence between the formulations 

Although closely connected together, the forms [3.20] and [3.23] are not strictly 
equivalent. They differ by two important points: 

– As shown in section 1.1.2, equation [3.20] is derived from equation [3.23] by 
assuming that the size of the integration domain tends to zero. This allows the 
derivatives tU ∂∂ /  and xF ∂∂ /  to be introduced. This implies that U (and therefore 
F) is continuous and differentiable with respect to time and space. The form [3.20] 
does not account for discontinuous solutions such as shocks and compound waves. 

– The assumption of continuous and differentiable solutions is not needed in the 
form [3.23] because the integrals in equation [3.23] can be calculated even if the 
solution is discontinuous in time and/or space. 

In other words, a “strong solution” of equation [3.20] (that is, a solution that 
verifies [3.20] for all x and t) is a particular case of a weak solution, while the 
reciprocal is not true. The “strong form” [3.20] and the weak form [3.23] are 
equivalent as long as the solution is continuous in time and space. If the solution is 
discontinuous, equations [3.20] and [3.23] cease to be equivalent. This is of primary 
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importance in the solution of hyperbolic PDEs with discontinuous solutions (see 
section 3.4.4). 

3.4.3. Jump relationships 

As shown in section 3.1.2, the characteristic form of the equation is based on the 
implicit assumption that the solution is continuous. It cannot be applied across 
discontinuities. An alternative technique is needed for the treatment of discontinuous 
solutions. Jump relationships, also known as “Rankin-Hugoniot relationships”, are 
derived from a balance over a control volume that contains the discontinuity 
(Figure 3.11). Equation [3.23] is applied to the control volume in the limit of an 
infinitesimal volume width and time interval. 

Consider first that the conservation law is scalar. Denoting by cs the speed of the 
discontinuity, the variation between the times t1 and t2 in the total amount of U 
contained in the control volume is given by: 
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where U1 and U2 are respectively the values of U on the left- and right-hand side of 
the discontinuity. 
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Figure 3.11. Definition sketch for the Rankin-Hugoniot relationships 

The amount of U that crosses the boundaries of the control volume between t1 
and t2 is given by:  
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where F1 and F2 denote F(U1) and F(U2) respectively. The integral of the source 
term is: 
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where S  is the average of S over the space-time domain [x1, x2]×[t1, t2]. Substituting 
equations [3.24–26] into equation [3.23] and dividing by (t2 – t1) yields: 

0)()( 121221 =−+−+− SxxFFcUU s  [3.27] 

When the width of the control volume tends to zero, the quantity Sxx )( 12 −  
tends to zero and equation [3.27] becomes: 

2121 )( FFcUU s −=−  [3.28] 

Equation [3.28] is generalized to hyperbolic systems of conservation laws by 
noticing that it is applicable to each of the components of the vectors U and F 
individually. The vector form of equation [3.28] is therefore: 

2121 FF)UU( −=− sc  [3.29] 

where F1 and F2 denote F(U1) and F(U2) respectively. Equations [3.28–29] may be 
used to determine the speed of the discontinuity. Note that a stationary shock (i.e. a 
shock that does not move) satisfies the following conditions: 
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Also note that when the amplitude of the shock tends to zero, the shock speed cs 
tends to the wave speed λ. Indeed, equation [3.28] leads to the following 
equivalence: 
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3.4.4. Non-uniqueness of weak solutions 

3.4.4.1. Example 1. The inviscid Burgers equation 

The weak and strong forms of hyperbolic equations not being equivalent, a 
nonlinear PDE may have several weak solutions, each of which is mathematically 
permissible. Only physical considerations allow the “correct” solution to be 
identified from the many possible ones. This is illustrated by the inviscid Burgers 
equation. 

The inviscid Burgers equation derived in section 1.4.2 can be written in non-
conservation form as in equation [1.66], recalled here: 
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A possible conservation form of this equation is equation [1.69], recalled here: 
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In this form the conserved variable is U = u and the flux function is F = U2/2. 
Applying the jump relationship [3.28] leads to the following formula for cS: 
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However, equation [3.32] stems directly from the choice of the conserved 
variable. Other choices could be made, such as: 

2Vu =  [3.33] 

Substituting definition [3.33] into the non-conservation form [1.66] leads to: 
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Simplifying yields the following non-conservation form in V: 
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Equation [3.35] is equivalent to equation [1.66] because the speed λ of the wave 
in V is equal to V2, that is to u, exactly as in the original equation. A continuous 
solution of equation [3.35] behaves exactly as a continuous solution of 
equation [1.66]. Differences arise when discontinuous solutions are considered. The 
conservation form of equation [3.35] is: 
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where the conserved variable is V and the flux function is F = V3/3. Using the 
relationship [3.28] leads to the following expression for the shock speed: 
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When u1 and u2 tend identically to a fixed value u, equations [3.32] and [3.37] 
tend to the same wave speed λ = u. When the solution is discontinuous however, 
equations [3.32] and [3.37] give different results. 

There are two reasons for this: 

– Equations [1.66] and [3.32] are transformed into equations [1.69] and [3.37] 
respectively under the assumption that the derivatives of u are defined everywhere. 
This is not true when the solution is discontinuous. 

– The conserved variable is not the same in equation [1.69] as in equation [3.37]. 
Equation [1.69] is based on the implicit assumption that u is the conserved variable. 
Equation [3.37] is based on the implicit assumption that V = u1/2 is the conserved 
variable. 

The example of equations [3.32] and [3.37] shows that the solutions of 
equation [1.66] are not unique. Only a proper choice of the conserved variable 
allows the uniqueness of the solution to be ensured. It is the modeler’s responsibility 
to define the conserved variable on the basis of physical considerations. This can be 
done only based on the analysis of the physical process involved, including in the 
case where the solutions become discontinuous.  

3.4.4.2. Example 2. The hydraulic jump 

Hydraulics specialists usually derive the steady-state, open channel flow 
equations using the concept of energy, also known as the hydraulic head. Such 
equations, however, may be obtained directly from the momentum equations, with 
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the advantage that they remain valid even when the flow becomes discontinuous, 
which is not the case with the equation of energy. The equations for steady-state, 
open channel flow in a rectangular prismatic channel can be written as: 
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Substituting the continuity equation into the momentum equation leads to: 
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By definition, xAcxP ∂∂=∂∂ //)/( 2ρ  and xhbxA ∂∂=∂∂ // . Equation [3.39] 
can be rewritten as: 
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Noting that c2 = gA/b and using the Froude number Fr = u/c, equation [3.40] 
becomes: 
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A more classical approach, used in most textbooks, consists of defining the 
hydraulic head H as the ratio of the total energy of the fluid to the product ρg: 
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and stating that the head loss is due to the work carried out by the friction forces: 
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Substituting equation [3.42] into equation [3.43] leads to the following 
expression: 
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Noting that u = Q/A and that Q is constant, equation [3.44] can be rewritten as: 
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Using the differential dA = b dh again, equation [3.45] leads to: 
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Noting that u = Q/A and introducing the Froude number, equation [3.46] is easily 
shown to be equivalent to equation [3.41]. Consequently, stating the conservation of 
momentum is equivalent to stating the conservation of energy in the continuous 
case. 

Consider now a hydraulic jump in a rectangular channel of width b (Figure 3.12).  
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dx/dt = u2 − c2

 

Figure 3.12. Stationary hydraulic jump. Definition sketch in the physical space (top)  
and in the phase space for the characteristic u – c (bottom) 
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A hydraulic jump is a stationary shock, the flow upstream of which is 
supercritical and subcritical downstream. Note that the depth h1 upstream of the 
jump is necessarily smaller than the depth h2 downstream of the jump because the 
jump is a shock for the characteristic dx/dt = u – c. For a stationary jump, 
equation [3.30] leads to: 
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These two equations state the conservation of mass and momentum across the 
shock. Note that this is not equivalent to stating the conservation of energy. If this 
was the case, the head would be identical on both sides of the jump and the 
following relationship would hold: 
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Equation [3.48] is not equivalent to the second relation [3.47]. Using 
equation [3.47], the head loss ΔH across the shock can be shown to be: 
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ΔH is always positive because h1 < h2 by definition. The head loss expresses the 
fact that part of the mechanical energy of the fluid is dissipated across the jump. The 
dissipation takes the form of a heat transfer to the fluid.  

As in the example of the inviscid Burgers equation, the principle of conservation 
of momentum and energy are equivalent as long as the flow variables remain 
continuous. As soon as the solution becomes discontinuous, the conservation of 
momentum and the conservation of mechanical energy cease to be equivalent. 

3.4.5. The entropy condition 

The entropy condition allows mathematically permissible solutions that are not 
satisfactory from a physical point of view to be eliminated. It is also used to ensure 
the uniqueness of solutions of initial value problems such as the Riemann problem 
(see Chapter 4) [LIU 75, LIU 76]. The entropy condition is based on the following 
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consideration. The jump relationship [3.28] allows for the existence of “rarefaction 
shocks”, that is, solutions that satisfy the criterion (S1) in section 3.2.1 and do not 
satisfy the criterion (S2). Such “rarefaction shocks” would verify the following 
conditions: 
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As illustrated by Figure 3.13, the characteristics converge to a shock in the phase 
space (Figure 3.13a), while they diverge from a “rarefaction shock” (Figure 3.13b).  
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x

(a) 
t 

x
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Figure 3.13. Two mathematically permissible, discontinuous solutions:  
shock (a), “rarefaction shock” (b) 

The entropy principle states that “rarefaction shocks” are not physically 
permissible, because a discontinuous solution with wave speeds on the left-hand side 
of the discontinuity smaller than those on the right-hand side is not permissible. The 
term “entropy principle” was introduced by Courant and Friedrichs [COU 48] in 
their study of the Euler equations (see section 2.6). The entropy may be seen as an 
analog for aerodynamics of the mechanical energy, or hydraulic head, used in open 
channel hydraulics (the hydraulic head may be used as an entropy function for the 
Saint Venant or shallow water equations). As shown in section 3.4.4.2, the hydraulic 
head is not conserved across a shock. In a similar fashion, entropy always increases 
when a shock is passed in the direction of the flow.  

The entropy principle may be justified as follows. A discontinuous solution may 
be viewed as the limit case of a continuous profile, where both sides of the 
discontinuity are connected to each other within a very short distance ε (see 
Figure 3.14). If the wave speed on the left-hand side of the discontinuity is larger 
than the wave speed on the right-hand side of the discontinuity, the profile becomes 
steeper and a discontinuity appears (Figure 3.14a). Conversely, if the wave speed on 
the left-hand side of the discontinuity is smaller than the wave speed on the right-
hand side, a rarefaction wave appears and the profile becomes smoother 
(Figure 3.14b). 
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A shock may be seen as a self-stabilizing wave pattern in that any local 
smoothing of the profile (due for example to the presence of an additional source 
term, etc.) is automatically eliminated because the wave speed on the left-hand side 
of the shock is larger than on the right-hand side and the solution remains 
discontinuous. In contrast, a “rarefaction shock” is not a self-stabilizing wave 
pattern because if the profile becomes locally smooth for some reason, the difference 
between the wave speed on both sides of the discontinuity leads to a smoothing of 
the profile, thus destroying the discontinuous character of the solution. 
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Figure 3.14. Discontinuous profile seen as a limit of a continuous profile. 
 Initial profile (dashed line), final profile (solid line) for a physically permissible shock (left) 

and for a physically non-permissible shock (right) 

3.4.6. Irreversibility 

A salient feature of weak solutions is that their behavior is not reversible in time. 
In fact, two different initial conditions may lead to the same discontinuous solution, 
as shown in the example hereafter. 

Consider the conservation form [1.69] of the inviscid Burgers equation. The 
initial condition is given by (see Figure 3.15a): 
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where x1 < x2 and u1 > u2 > 0. The initial condition takes the form of a ramp that 
connects the constant states u1 and u2 linearly between the abscissas x1 and x2. Since 
u1 > u2 the left-hand part of the profile travels faster than the right-hand part.  
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Figure 3.15. Two different initial conditions (dashed lines)  
leading to identical solutions at t > td (solid lines) 

The profile becomes steeper and becomes discontinuous at a time td: 
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At t = td the discontinuity is located at x = xd: 
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At further times the discontinuity propagates at a speed given by the average 
between u1 and u2 (see equation [3.31]). Note however that another initial condition 
may be defined (Figure 3.15b): 
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It is easy to check that the initial conditions [3.51] and [3.54] yield exactly the 
same solution for t > td.  

In other words, different initial conditions may lead to the same final 
discontinuous solution. Consequently, a discontinuous solution may not be used as a 
starting point to “travel backwards in time” and calculate the solution at earlier 
times. The irreversible behavior of the solutions stems directly from the nonlinear 
character of the equations that makes discontinuous solutions possible. 

3.4.7. Approximations for the jump relationships 

This section gives two approximations for the jump relationships. Such 
approximations have been used by a number of authors in the development of 
numerical methods for the calculation of discontinuous solutions. Any reader 
interested in the details of the proof may find it useful to refer to [COU 48] and 
[LAX 57]. 

Theorem 1. The speed of a shock for the pth wave in a convex conservation law 
can be approximated with the arithmetic mean of the wave speeds λ(p) on both sides 
of the shock. The approximation is second-order with respect to the variation ΔU 
across the shock. 

Theorem 2. The variation in the pth generalized Riemann invariant across a p-
shock is of third order with respect to the variation ΔU across the shock. 

Theorem 1 is best illustrated by the application to the inviscid Burgers equation 
(see equations [3.31] and [3.37]). Equation [3.31] is applicable if u is defined as the 
conserved variable. Equation [3.37] applies if u1/2 is defined as the conserved 
variable. It is easy to check that equation [3.37] is a second-order approximation of 
equation [3.31].  

Theorem 2 is useful when discontinuous solutions are to be calculated. In fact, its 
direct implication is that the Riemann invariants provide reasonably accurate 
approximations of the Rankin-Hugoniot relationships. Such a property has been 
used to derive approximate solvers for the Riemann problem covered in Chapter 4. 
The Riemann problem serves as a basis for a number of numerical techniques for the 
solution of hyperbolic systems of conservation laws with discontinuous solutions. 
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3.5. Summary 

3.5.1. What you should remember 

Three main types of wave may be distinguished: shock waves (see section 3.2.1), 
rarefaction waves (see section 3.2.2) and contact discontinuities (see section 3.2.3). 
Compound waves may appear when the flux function is non-convex. A compound 
wave is formed by the conjunction of a shock and a rarefaction wave. 

A simple wave is a wave along the characteristics of which the conserved 
variable is a constant. In an m×m hyperbolic system, the generalized Riemann 
invariants provide m – 1 differential relationships across simple waves. 

When the flux function is nonlinear, discontinuous solutions may arise from 
initially continuous profiles. This is because the dependence of the wave speed on 
the value of the conserved variable induces a deformation in the solution profile. 

A discontinuous solution of a hyperbolic conservation law is called a weak 
solution because it is the solution of the weak form [3.32] of the original equation 
[3.1]. Both formulations are non-equivalent. The “strong form” is a particular case 
of the weak form under the assumption of continuous and differentiable solutions. 

Weak solutions may be discontinuous. They are not unique. The “correct” weak 
solution of a conservation law must be chosen on the basis of physical 
considerations, in the light of the physical processes involved that allow the 
conserved variable to be identified. 

The behavior of weak solutions is irreversible in time. Several initial conditions 
may lead to the same discontinuous solution. Consequently, inverse modeling (that 
is, retrieving the initial condition from the solution at a later time) cannot be carried 
out in a straightforward manner in the presence of weak solutions. 

The characteristic form of the equations, that is based on the assumption of 
continuous and differentiable variables, is not applicable across discontinuities. The 
equal area rule allows weak solutions to be calculated using the method of 
characteristics in the scalar case. In the general case, the jump relationships [3.28–
29], also called the Rankin-Hugoniot relationships, must be used.  

The main two types of discontinuity in a solution are shocks and contact 
discontinuities. The wave speed on the left-hand side of the shock is always larger 
than on the right-hand side, while they are identical in the case of a contact 
discontinuity. 
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The entropy principle states that “rarefaction shocks”, the wave speed on the left-
hand side of which would be smaller than on the right-hand side, are not physically 
permissible, even though they satisfy the jump relationship, thus being 
mathematically permissible. 

The Riemann invariants may be viewed as an approximation of the jump 
relationships across shocks of small amplitude. 

3.5.2. Application exercises 

3.5.2.1. Exercise 3.1: the kinematic wave equation 

Consider the rectangular channel used in Exercise 2.5 (see section 2.7.2.5). The 
flow is assumed to obey Strickler’s friction law [1.81]. Steady state is assumed. 

1) The initial water depth is uniformly equal to h0 = 1 m. Assuming that the wide 
channel approximation is applicable, compute the initial discharge into the channel 
under the assumption of a uniform, steady flow (S0 = Sf). Provide the expression of 
the wave speed for the kinematic wave. Carry out the numerical application for the 
parameters in Table 2.1. 

2) A perturbation Δh = 0.5 m appears instantaneously at the upstream end of the 
channel. Show that a shock wave appears. Provide the expression of the propagation 
speed of the shock wave. Carry out the numerical application for the parameters in 
Table 2.1. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 12Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

3.5.2.2. Exercise 3.2: the kinematic wave equation 

Consider the channel of Exercise 3.1, with the same geometry and initial 
conditions. The water depth at the upstream end of the channel is now assumed to 
increase linearly from 1 m to 1.25 m between t = 0 and t = 100 s, and to decrease 
linearly from 1.25 m to 1 m between t = 100 s and t = 200 s. 

1) Assuming that the kinematic wave approximation is applicable, provide the 
expression of the time td at which the solution becomes discontinuous. Compute td 
and the location of the shock at t = td from the parameters in Table 2.1. 

2) Plot the water level profile at t = 150 s, 300 s, 450 s and 600 s. N.B.: it is 
advised to express both h and x as functions of the time tL at which the characteristic 
leaves the left-hand end of the channel. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 13Hhttp://vincentguinot.free.fr/waves/exercises.htm. 
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3.5.2.3. Exercise 3.3: the Buckley-Leverett equation 

Consider an aquifer, the characteristics of which are given in Table 1.5 in 
Exercise 1.4 (see section 1.8.2.4). The aquifer is now assumed to be uniformly 
contaminated with an initial hydrocarbon saturation of 90% (i.e. the initial water 
saturation is assumed to be 10% everywhere). As in Exercise 1.4, the aquifer is 
decontaminated by injecting pure water with a Darcy velocity V at the left-hand end 
of the domain. 

1) Show that the saturation profile at t > 0 is a compound wave. 

2) Compute the propagation speed of the shock. 

3) Compute the time at which the average contamination (i.e. the average 
hydrocarbon saturation) in the aquifer is 5%, 1% and 0.5%. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 14Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

3.5.2.4. Exercise 3.4: the Saint Venant equations 

Consider the channel of Exercise 3.1, where the Saint Venant equations are to be 
applied instead of the kinematic wave approximation. 

1) The initial water depth is assumed to be uniformly equal to 1 m. Compute the 
speeds of the waves for the hydraulic parameters given in Table 2.1. Show that the 
flow regime depends on the slope. Provide the expression of the slope Sc for which 
the flow is critical. 

2) A perturbation Δh = 1 m in the water level appears instantaneously at the 
upstream end of the channel. This triggers a moving bore that propagates to the 
right. Assuming that the flow regime is subcritical, provide the expression satisfied 
by the variation ΔQ in the discharge. Carry out the numerical approximation 
for S0 = 10–3. 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 15Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

3.5.2.5. Exercise 3.5: the Euler equations 

An airplane moves at Mach 1 in immobile air. For the sake of simplicity, the 
coordinate system is attached to the airplane.  

1) Write the continuity equation and the momentum equation under the 
assumption of steady state. The flow velocity is assumed to be zero on the hull of 
the airplane. Show that the assumption of a steady state flow necessarily induces a 



160     Wave Propagation in Fluids 
 

multidimensional flow pattern and that the air must be “evacuated” in the lateral 
direction. 

2) Determine the lateral flow, the pressure rise and the air density next to the 
hull. Carry out the numerical application for the parameters in Table 3.1. 

3) Check that the entropy principle is verified across the shock.  

Symbol Meaning Value 

M0 Far field Mach number upstream of the airplane 1 

p0 Far field pressure upstream of the airplane 105 Pa 

γ Polytropic constant for a perfect gas 1.4 

ρ0 Far field air density upstream of the airplane 1.2 kg/m3 

Table 3.1. Parameters for Exercise 3.5 

Indications and searching tips for the solution of this exercise can be found at the 
following URL: 16Hhttp://vincentguinot.free.fr/waves/exercises.htm. 

 

 
 


