
Appendix B  

Numerical Analysis 

B.1. Consistency 

B.1.1. Definitions 

The notion of consistency is applicable to the discretized version of a differential 
equation (see Chapters 6 and 7). It is defined in common language as follows. 

A discretized equation is consistent with a differential equation if it becomes 
equivalent to it as the discretization space and time steps tend to zero. The 
“difference” between the original equation and the discretization is called the 
truncation error. 

B.1.2. Principle of a consistency analysis 

The following section explains how to carry out a consistency analysis. The 
example of the linear advection equation is used. The non-conservation form [1.48] 
of the linear advection is recalled here: 
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Consider the first-order upwind discretization of equation [1.48] (see Chapter 6): 
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For the sake of clarity, let CC n
i = . The consistency of [B.1] to [1.48] is 

analyzed using a second-order Taylor series expansion: 
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Substituting equations [B.2] into equation [B.1] leads to: 
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Substituting definition [B.1] of the Courant number into equation [B.3] yields the 
following equation: 
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The truncation error TE is defined as the difference between the discretized 
equation and the original equation. Comparing equations [1.48] and [B.4] leads to: 
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TE (Δx, Δt) tends to zero when both Δt and Δx tend to zero. Discretization [B.1] 
is consistent with the advection equation [1.48]. 
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NOTE.− The truncation error contains powers of Δt and Δx. In contrast with a 
well-admitted (and incorrect) practice in engineering studies, decreasing only Δx or 
Δt is not sufficient for the discretization to be accurate. Both the time step and the 
cell size should be decreased in order to increase the accuracy of the discretization. 

B.1.3. Numerical diffusion, numerical dispersion 

Numerical diffusion and dispersion are purely numerical phenomena that arise 
from the discretization process. As seen in the previous section, the truncation error 
is made of an infinite sum of terms that contain powers of Δt and Δx multiplied by 
the derivatives of the solution with respect to time and/or space. TE (Δx, Δt) may be 
expressed in general form as: 
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where the indices p and q vary from zero to infinity. Comparing equations [B.5] and 
[B.6] yields the following expressions for the coefficients αp,q and the exponents βp,q 
and χp,q: 
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In general, βp,q and χp,q increase with p and q. The consequence is that the terms 
that contain higher-order derivatives decrease faster than those containing lower-
order derivatives when Δt and Δx decrease. The relative importance of the lower-
order terms in the truncation error increases when the cell size and the time step 
decrease.  

Numerical diffusion appears when: 
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Then the lowest-order derivative in the truncation error is a second-order 
derivative with respect to x. Such a term is classically attached to diffusion, hence 
the term “numerical diffusion”. 

Numerical dispersion arises when the truncation error contains third-order 
derivatives with respect to space:  
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Example: the truncation error [B.5] induces numerical diffusion. This can be 
shown by eliminating the second-order terms with respect to time. To do so, 
equation [B.4] is differentiated with respect to time and space: 
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Eliminating the derivative txC ∂∂∂ /2  leads to a relationship between 22 / tC ∂∂  
and 22 / xC ∂∂ : 
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Substituting equation [B.11] into equation [B.5] yields the following expression: 
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where the polynomials ε9 and ε10 contain third- and higher-order terms with respect 
to time and space. The first term on the right-hand side of the equal sign becomes 
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predominant over the second term when Δt and Δx tend to zero, leading to the 
following equivalence: 
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This is a diffusion term. The presence of this term in the truncation error 
indicates that the upwind scheme does not solve the linear advection [1.48] exactly, 
but an advection equation in the form: 
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where the numerical diffusion coefficient Dnum is given as: 
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NOTE.− As indicated by the ≈ sign in equation [B.14], the truncation error 
contains higher-order terms in the polynomials ε9 and ε10. Consequently, the right-
hand side of the equation is not strictly zero. 

B.2. Stability 

B.2.1. Definition 

The notion of stability applies to the solution of a differential equation. The 
solution may be analytical or numerical.  

A solution is said to be stable over the time-space domain [x1, x2]×[t1, t2] if it is 
bounded over the domain. In other words, there are two values Umin and Umax such 
that: 
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For a numerical solution solved over a computational domain with M 
computational points for N computational time steps, the condition becomes: 
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Stability is usually referred to under the implicit assumption that there is no limit 
to the time interval over which the solution is to be computed. In other words, t2 is 
assumed to be infinite. 

B.2.2. Principle of a stability analysis 

The simplest existing stability analysis technique is the harmonic stability 
analysis, also known as Von Neumann analysis. This method is applicable to linear 
equations with constant coefficients. The purpose is to investigate the stability of a 
solution that is to be computed from a known initial condition. Assume that the 
governing equation is an mth-order equation in the form: 
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where ap and bp are constant coefficients. The harmonic analysis consists of seeking 
solutions to equation [B.18] in the form of elementary harmonic solutions in the 
form: 
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where uk is a constant and the coefficients σk and ωk take the form: 
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where j is the pure imaginary number, j2 = – 1. The numbers σk,r, ωk,r and ωk,i are 
real numbers. Therefore σk is a pure imaginary number, while ωk is a complex 
number with real and imaginary parts. This is motivated by the following 
considerations. Substituting equation [B.20] into [B.19] leads to the following 
expression: 
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The elementary function Uk is a sinusoidal function of x (and is therefore 
periodic in space), the amplitude of which is a sinusoidal function of time multiplied 
by an exponential. The real part ωk,r conditions the variation of the amplitude of the 
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solution in time. If ωk,r is negative, the amplitude of the solution decreases with time 
and the solution is stable. If ωk,r is positive, the amplitude of the solution increases 
exponentially with time and the solution is unstable. The stability analysis thus 
amounts to studying the variations of ωk,r, more particularly its sign. Substituting 
equation [B.19] into equation [B.18] gives: 
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Swapping the sums and using the linearity property of the differentiation 
operator gives: 
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Since the exponential functions Uk form an orthogonal set, no exponential can be 
expressed as a linear combination of other exponentials. Consequently, 
equation [B.23] leads to the necessary condition: 
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In other words, equation [B.18] is applicable to each of the components Uk 
individually. Differentiating equation [B.19] with respect to time and space leads to: 
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Substituting equation [B.25] into equation [B.24] leads to the following 
condition: 
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where the subscript k has been dropped for the sake of clarity. Solving 
equation [B.26] for a given value of σ yields R roots ω(r) (r = 1, …, R). The solution 
Uk then takes the form: 
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The solution is stable if and only if each of the exponentials in equation [B.27] 
are stable for all possible values of σ. In other words, the real part of each of the 
roots ω(r) must be zero or negative. 

B.2.3. Harmonic analysis of analytical solutions 

B.2.3.1. The linear advection equation 

The harmonic analysis of the advection equation in non-conservation form is 
carried out hereafter. The non-conservation form [1.48] is recalled: 
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This equation can be written in the form [B.18] by letting: 
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The solution is sought in the form [B.19]. Differentiating expression [B.19] with 
respect to time and space gives: 
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Substituting equation [B.30] into equation [B.28] yields the following equation: 
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The solution takes the form: 
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Two remarks can be made: 

– The real part of the exponential is zero. The solution is stable, its amplitude is 
constant. 

– The solution is invariant for dx = u dt. This is precisely the invariance property 
derived in Chapter 1. Moreover, the speed at which the solution travels does not 
depend on the wavelength. 

These two remarks may be synthesized as follows: the solution is transported at 
the speed u. Neither its shape nor its amplitude are altered. 

B.2.3.2. The diffusion equation 

The diffusion equation can be written in the form:  
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where the diffusion coefficient D is a real positive number. Equation [B.33] is 
rewritten in the form [B.18] with: 
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The solution is sought in the form [B.19]. Differentiating equation [B.19] with 
respect to time and space gives: 
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Substituting equation [B.35] into equation [B.33] leads to: 
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Hence the expression of the solution: 
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Two remarks can be made: 

– The analytical solution of the diffusion equation is stable. This is because D is 
assumed to be positive. A negative coefficient D would lead to a positive ω, thus 
yielding an increasing exponential and an unstable solution. 

– Large values of σi correspond to short wavelengths. The shorter the 
wavelength, the steeper the exponential. In other words, the amplitude of short 
waves decreases faster with time than the amplitude of long waves. This explains 
why steep fronts and sharp gradients are smoothed out faster than long waves and 
mild profiles. 

B.2.3.3. The advection dispersion equation 

The advection dispersion equation is a third-order PDE in the form: 
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where the coefficient Ω is called the dispersion coefficient. Equation [B.38] can be 
written in the form [B.18] by letting: 
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The solution is sought in the form [B.19]. Differentiating equation [B.19] with 
respect to time and space leads to: 
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Substituting equations [B.40] into equation [B.38] leads to: 
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The solution Uk takes the form: 
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Note that: 

– the real part of the exponential is zero. The solution is stable, its amplitude is 
constant in time; 

– the solution [B.42] verifies the following invariance property: 
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The elementary solution Uk is invariant along the characteristic of speed 
2
iu σΩ− . In contrast with the advection equation, the travelling speed of the 

solution of the dispersion equation depends on the wavelength. Although the 
amplitude of the waves does not change, the various waves in the solution are 
shifted gradually with respect to each other, leading to oscillations in the solution. 
The oscillations are usually stronger in the neighborhood of steep fronts because 
shorter waves are characterized by larger values of σi, thus leading to stronger shifts. 

B.2.4. Harmonic analysis of numerical solutions 

This section deals with the harmonic analysis of numerical solutions. Consider 
the explicit upwind scheme presented in Chapter 6, defined as in equation [B.1], 
recalled hereafter: 
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The stability of a harmonic component Uk of the numerical solution is analyzed. 
Noting that n

iC  is the value of the numerical solution at the abscissa xi = i Δx at the 

time tn = n Δt, equation [B.19] leads to the following expression for 1)( +n
ikU : 
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while the following expression is obtained for n
ikU 1)( − : 
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with s = j σi. Substituting equations [B.44–45] into the numerical scheme [B.1], we 
obtain: 
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The quantity exp(ωΔt) is the factor by which the solution is multiplied from one 
time step to the next. It is referred to as the numerical amplification factor AN: 
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The solution is stable if the modulus of the amplification factor is equal to or 
smaller than unity. If this is the case, the modulus of the solution decreases from one 
time step to the next and the solution is indeed stable. Conversely, if the modulus of 
the amplification factor is larger than unity the numerical solution is unstable. The 
stability analysis amounts to studying the variations in the modulus of AN with σ. 
This is done using a graphical representation in the complex plane (Figure B.1).  
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Figure B.1. Definition sketch for the numerical amplification factor in the complex plane 
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The expression for AN is rewritten as: 
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The wave number M is introduced. M is the number of cells of width Δx needed 
to cover a period of the signal Uk: 
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The minimum possible value for M being 2 (at least two cells are needed to 
describe a sine wave), the quantity σi lies between 0 and π. AN is represented 
graphically in the complex plane as the circle of radius |Cr] that is tangent to the unit 
circle at the point z = 1 (Figure B.1). The center of the circle is located at z = 1 – Cr. 
Quite obviously, AN is located outside the unit circle for Cr < 0 and Cr > 1. The 
solution is unstable. AN is located inside the unit circle when Cr is between 0 and 1. 
In this case the numerical solution is stable. 

B.2.5. Amplitude and phase portraits 

Amplitude and phase portraits are graphical representations of the performance 
of numerical schemes. The amplitude and phase portrait display the modulus of the 
amplification factor and the numerical wave speed as functions of the wave number 
M respectively. The numerical wave speed is derived by noting that the solution 
component Uk is constant if: 
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In other words, Uk is an invariant along the characteristic line:  
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The speed dx/dt is usually referred to as the phase velocity (as opposed to the 
group velocity, see [VIC 82]). The ratio CN of the numerical wave speed to the 
analytical wave speed is given by: 
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The amplification factor and the ratio of the wave speeds for the numerical 
solution of the advection equation must tend to one when the wave number tends to 
infinity. This is an indication that the numerical solution tends to behave as the 
analytical one when an infinity of points (hence and very small time step and cell 
width) are used to compute the numerical solution.  

The amplitude portrait of the explicit upwind scheme [B.1] is obtained from 
equation [B.48] (see Figure B.2). 
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Figure B.2. Amplitude and phase portrait for the explicit upwind scheme 
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The phase portrait is obtained from equations [B.48] and [B.52] (see Figure B.2): 
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Note that: 

– short waves are characterized by small wave numbers. The amplification factor 
being an increasing function of M, short waves are damped more quickly than long 
waves. After a certain amount of time, the shorter waves are eliminated from the 
numerical solution, only the longer waves remain. The most unfavorable 
configuration is encountered for Cr = 1/2. In this case AN = 0 for M = 2 and the 
waves M = 2 are eliminated from the numerical solution after the first time step. A 
first-order expansion in 1/M indicates in contrast that the amplification factor tends 
to one as M tends to infinity, which illustrates the convergence of the numerical 
solution toward the analytical solution; 

– the numerical wave speed is larger than the analytical wave speed for Courant 
numbers larger than 1/2. It is smaller than the analytical wave speed for Courant 
numbers smaller than 1/2. CN tends to unity as M tends to infinity, which is another 
indication that the numerical solution tends to the analytical one. 

B.2.6. Extension to systems of equations 

Harmonic analysis can be extended to systems of equations. When systems of 
equations are to be solved the solution is a vector variable and the amplification 
factor becomes a matrix. The eigenvalues of the matrix are complex in the general 
case. The solution is stable when the absolute value of each of the eigenvalues of the 
amplification factor is larger than one. 

The stability analysis is carried out for the water hammer equations without 
source term. The non-conservation form [2.5] of the water hammer equations is 
recalled hereafter: 

0
U

A
U

=
∂
∂

+
∂
∂

xt
 

where A and U are defined as in equations [2.68–69]: 
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The solution U(x, t) is sought as the sum of elementary components Uk in the 
form: 

)exp(u),(U xttx kkkk σω +=  [B.55] 

where uk is a constant vector and the coefficients ωk, σk are given as in 
equation [B.20]: 
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Differentiating equation [B.55] with respect to time and space gives: 
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Substituting equations [B.56] into equation [2.5] leads to: 
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Equation [B.57] is rewritten as: 
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Equation [B.58] must hold for all possible values of U. This is true only if: 
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that is: 

kk cσω ±=  [B.60] 

The solution Uk is the sum of two exponential functions: 
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where )1(u k  and )2(u k  are constant vectors. Equation [B.61] allows the basic 
properties of the solution of the water hammer to be retrieved: 

– The solution is the sum of two signals propagating at the speeds – c and + c.  

– The arguments of the exponentials are pure imaginary numbers. Therefore the 
amplitude of the signals is constant. The solution is stable. 

– The speed at which each of the signals propagates is independent of the 
wavelength of the elementary solution. The signals propagate without deformation 
in the pipe. 

B.3. Convergence 

B.3.1. Definition 

The numerical solution of a differential equation is said to be convergent if it 
tends to the analytical solution as both the computational time step and the cell 
width tend to zero.  

Engineers and modelers implicitly assume that convergence is true when they 
use software packages to solve the partial differential equations of engineering. The 
purpose indeed is that the numerical solution be as close to the exact solution as 
deemed appropriate given the objectives of the engineering project. This is achieved 
by decreasing the computational time step and the cell width until the numerical 
solution is considered accurate enough. 

B.3.2. Lax’s theorem 

Convergence proofs are difficult to establish. They use notions in functional 
analysis that go beyond the usual mathematical apparatus accessible to engineers. 
Lax’s theorem for linear equations with constant coefficients allows convergence to 
be related to consistency and stability. The theorem may be formulated as follows. 

Consistency and stability are sufficient and necessary conditions to convergence. 

In other words, if the governing equations are discretized in a consistent way and 
if the numerical solution is stable, then the numerical solution converges to the exact 
solution. 

 
 




