Appendix A

Linear Algebra

A.1. Definitions

A vector v is an ordered set of m numbers $v_1, ..., v_m$, called the components of the vector. The components of the vector are arranged in a single column. The following notation is used:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_i \\ \vdots \\ v_m \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_i & \cdots & v_m \end{bmatrix} ^T = \begin{bmatrix} v_i \end{bmatrix}$$
[A.1]

where v_i is the *i*th component of v and T is the transposition operator.

An $m \times n$ matrix A is formed by a set of numbers $a_{i,j}$ arranged in m rows and n columns. i and j are respectively the indices for the row and the column of the matrix. The following notation is used:

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & & \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,j} & \cdots & a_{m,n} \end{bmatrix} = [a_{i,j}]$$
[A.2]

An $m \times n$ matrix may be viewed as a set of n vectors of size m arranged in a single line. The matrix A in equation [A.3] may be defined as:

$$\mathbf{A} = \left[\mathbf{a}^{(1)} \cdots \mathbf{a}^{(j)} \cdots \mathbf{a}^{(n)} \right]$$
 [A.3]

where the vectors $\mathbf{a}^{(j)}$, j = 1, ..., n, are defined as:

$$\mathbf{a}^{(j)} = [a_{1,j} \cdots a_{i,j} \cdots a_{m,j}]^T$$
 [A.4]

Note that a vector is a single-columned matrix.

Also note the following, particular cases:

- A square matrix has the same number of rows and columns, m = n.
- A symmetric matrix is a matrix that is left invariant by transposition (a symmetric matrix is necessarily a square matrix):

$$a_{i,j} = a_{j,i} \qquad \forall \begin{cases} i = 1, \dots, m \\ j = 1, \dots, m \end{cases}$$
[A.5]

- The identity matrix is a symmetric matrix, the elements of which are all zero, except the diagonal terms that are equal to one:

$$I = [\delta_{i,j}]$$

$$\delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
[A.6]

where $\delta_{i,j}$ is known as Kronecker's operator.

A.2. Operations on matrices and vectors

A.2.1. Addition

Let $A = [a_{i,j}]$ and $B = [b_{i,j}]$ be two $m \times n$ matrices. Adding A and B yields the matrix $C = [c_{i,j}]$ defined as follows:

$$C = A + B$$
 $c_{i,j} = a_{i,j} + b_{i,j}$
 $\forall (i = 1,...,m; j = 1,...,n)$
[A.7]

The sum of two vectors is defined exactly in the same way:

Note that matrices or vectors may be added only if they have the same size.

A.2.2. Multiplication by a scalar

Let $A = [a_{i,j}]$ and β be a matrix and a scalar respectively. Multiplying A by β yields the matrix $B = [b_{i,j}]$ defined as:

$$B = \beta A$$

$$b_{i,j} = \beta a_{i,j} \qquad \forall (i = 1,...,m; j = 1,...,n)$$
[A.9]

The product of a scalar and a vector is defined in the same way:

$$\begin{array}{ll}
\mathbf{v} = \boldsymbol{\beta}\mathbf{u} \\
v_i = \boldsymbol{\beta}u_i & \forall i = 1,...,m
\end{array}$$
[A.10]

A.2.3. Matrix product

Let $A = [a_{i,j}]$ be an $m \times l$ matrix and $B = [b_{i,j}]$ be an $l \times n$ matrix. The product of A and B is an $m \times n$ matrix C defined as:

$$C = AB$$

$$c_{i,j} = \sum_{k=1}^{l} a_{i,k} b_{k,j} \qquad \forall (i = 1,...,m; j = 1,...,n)$$
[A.11]

A vector being nothing else than a matrix with only one column, the product between the matrix A and the vector u is defined as:

$$\mathbf{v} = \mathbf{A}\mathbf{u}$$

$$\mathbf{v}_{i} = \sum_{k=1}^{n} a_{i,k} u_{k} \quad \forall i = 1,...,m$$
[A.12]

NOTE. – In contrast with scalar multiplication, the matrix product is not commutative. The product AB is not equal to the product BA in the general case.

A.2.4. Determinant of a matrix

Let A be a square matrix of size $m \times m$. The determinant of A, denoted by Det(A), or |A|, is defined using the following recurrence relationship:

$$|A| = \sum_{i=1}^{m} (-1)^{i+q} a_{i,q} |A_{i,q}| \qquad \forall q = 1, ..., m$$

$$= \sum_{j=1}^{m} (-1)^{j+p} a_{p,j} |A_{p,j}| \qquad \forall p = 1, ..., m$$
[A.13]

where the matrix $A_{i,q}$ is the $(m-1)\times(m-1)$ square matrix obtained from A by removing the row q and the column i. The final result is the same, regardless of the row q and the column i chosen in the sum [A.13].

The determinant verifies the following properties:

$$\begin{vmatrix} AB | = |BA| = |A||B| \\ |A^{T}| = |A| \\ |I| = 1 \end{vmatrix}$$
[A.14]

A.2.5. Inverse of a matrix

Let A be an $m \times m$ square matrix. The inverse A^{-1} of A is an $m \times m$ matrix defined as:

$$A^{-1}A = AA^{-1} = I$$
 [A.15]

The first relationship [A.14] indicates that a matrix has an inverse only if its determinant is non-zero. The third relationship implies that the determinant of the inverse of A is the inverse of the determinant of A.

A.3. Differential operations using matrices and vectors

A.3.1. Differentiation

Let $A = [a_{i,j}]$ be an $m \times n$ matrix. A is differentiated with respect to a given parameter or variable t by differentiating all its components individually:

$$\frac{\partial \mathbf{A}}{\partial t} = \left[\frac{\partial a_{i,j}}{\partial t} \right]$$
 [A.16]

This definition also applies to the particular case of a vector that can be seen as a single-columned matrix:

$$\frac{\partial \mathbf{u}}{\partial t} = \left[\frac{\partial u_i}{\partial t} \right] \tag{A.17}$$

A.3.2. Jacobian matrix

Let $u = [u_i]$ be a vector of size m and $v = [v_i]$ be a vector of size n. The Jacobian matrix A of u with respect to v is an $m \times n$ matrix defined as:

$$A = \frac{\partial \mathbf{u}}{\partial \mathbf{v}}$$

$$a_{i,j} = \frac{\partial u_i}{\partial v_j} \qquad \forall (i = 1, ..., m; j = 1, ..., n)$$
[A.18]

A.4. Eigenvalues, eigenvectors

A.4.1. Definitions

The scalar λ is an eigenvalue of the matrix A if there is a non-zero vector v, called and eigenvector, such that:

$$Av = \lambda v$$
 [A.19]

The characteristic polynomial of A is defined as:

$$P(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| \tag{A.20}$$

The eigenvalues of A are the roots of the characteristic polynomial:

$$P(\lambda) = 0 ag{A.21}$$

The eigenvector v associated with a given eigenvalue λ is obtained by substituting the (known) value of λ into equation [A.19]. A linear algebraic system is obtained. Since at least one of the components of u is non-zero, it can be set to any arbitrary value, e.g. one, that serves as a basis in the computation of the remaining components of v.

A.4.2. Example

Consider the matrix A obtained for the Saint Venant equations (see section 2.5.3.1):

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ c^2 - u^2 & 2u \end{bmatrix}$$

The eigenvalues of A verify equations [A.20–21]:

$$\begin{vmatrix} -\lambda & 1\\ c^2 - u^2 & 2u - \lambda \end{vmatrix} = 0$$
 [A.22]

which leads to:

$$-(2u - \lambda)\lambda - (c^2 - u^2) = 0$$
 [A.23]

Equation [A.23] can be rewritten as:

$$(\lambda - u)^2 = c^2 \tag{A.24}$$

which leads to the following two solutions:

$$\lambda^{(1)} = u - c$$

$$\lambda^{(2)} = u + c$$
[A.25]

The eigenvector $K^{(1)}$ associated with the first eigenvalue $\lambda^{(1)}$ verifies:

$$\begin{bmatrix} 0 & 1 \\ c^2 - u^2 & 2u \end{bmatrix} \begin{bmatrix} K_1^{(1)} \\ K_2^{(1)} \end{bmatrix} = (u - c) \begin{bmatrix} K_1^{(1)} \\ K_2^{(1)} \end{bmatrix}$$
 [A.26]

that is:

$$K_{2}^{(1)} = (u - c)K_{1}^{(1)}$$

$$(c^{2} - u^{2})K_{1}^{(1)} + 2uK_{2}^{(1)} = (u - c)K_{2}^{(1)}$$
[A.27]

These two conditions can easily be checked to be equivalent. The first eigenvector is therefore:

$$\mathbf{K}^{(1)} = \begin{bmatrix} K_1^{(1)} \\ (u - c)K_1^{(1)} \end{bmatrix}$$
 [A.28]

The vector $K^{(1)}$ verifies equation [A.19] for any non-zero value of $K_1^{(1)}$. Using the obvious choice $K_1^{(1)} = 1$ leads to:

$$\mathbf{K}^{(1)} = \begin{bmatrix} 1 \\ u - c \end{bmatrix}$$
 [A.29]

It is easy to check that the second eigenvector is given by:

$$\mathbf{K}^{(2)} = \begin{bmatrix} 1\\ u+c \end{bmatrix}$$
 [A.30]