Appendix A

Linear Algebra

A.1. Definitions

A vector v is an ordered set of m numbers vy, ..., v,, called the components of
the vector. The components of the vector are arranged in a single column. The
following notation is used:

V1

where v; is the ith component of v and 7 is the transposition operator.

An mxn matrix A is formed by a set of numbers g;; arranged in m rows and n
columns. i and j are respectively the indices for the row and the column of the
matrix. The following notation is used:

al,l e al,_f e al’n
A= a;| a; j Ain [ai ]] [A.2]
_am,l am,] Am,n ]
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An mxn matrix may be viewed as a set of n vectors of size m arranged in a single
line. The matrix A in equation [A.3] may be defined as:

A=l®D..0)... ;™ [A.3]
where the vectors a”, j=1, ..., n,are defined as:

a) =[ay;ay ;- apy ;1 [A.4]

Note that a vector is a single-columned matrix.

Also note the following, particular cases:
— A square matrix has the same number of rows and columns, m = n.

— A symmetric matrix is a matrix that is left invariant by transposition (a
symmetric matrix is necessarily a square matrix):

i=1....m
Ve [A.5]
j=L...,m

— The identity matrix is a symmetric matrix, the elements of which are all zero,
except the diagonal terms that are equal to one:

I=[5i,j]
N ifi=j [A.6]
“ o ifi#j

where J;; is known as Kronecker’s operator.

A.2. Operations on matrices and vectors
A.2.1. Addition
Let A=[a;;] and B =[b;;] be two mxn matrices. Adding A and B yields the

matrix C = [¢;;] defined as follows:

C=A+B A7
Ci,j :al',j+bl"j V(l=l,,m,]=l,,n) [ ’ ]
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The sum of two vectors is defined exactly in the same way:

w=u+v
. [A.8]
w; =u; v Vi=1l..m

Note that matrices or vectors may be added only if they have the same size.

A.2.2. Multiplication by a scalar

Let A =[a;;] and f be a matrix and a scalar respectively. Multiplying A by £
yields the matrix B = [b;;] defined as:

B =fA
. ; [A.9]
bi; = Paj Vi=1L...,mj=1..,n)
The product of a scalar and a vector is defined in the same way:
v = fu
A.10
vizﬁui Vi=1,...,m} [ ]
A.2.3. Matrix product

Let A =[a;;] be an mx/ matrix and B = [b,;] be an /xn matrix. The product of A
and B is an mxn matrix C defined as:

C=AB

! i . [A.11]
cij = 2 kb, Yi=1,..,mj=1,..,n)
k=1

A vector being nothing else than a matrix with only one column, the product
between the matrix A and the vector u is defined as:

v =Au

n A.12
v = 2aiguy Vi=l..,m [A-12]
k=1
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NOTE.— In contrast with scalar multiplication, the matrix product is not
commutative. The product AB is not equal to the product BA in the general case.
A.2.4. Determinant of a matrix

Let A be a square matrix of size mxm. The determinant of A, denoted by Det(A),
or |A|, is defined using the following recurrence relationship:

m .
|A| = Zl(_l)l+qai,q‘Ai,q‘ Vg=1,...,m
- A3
o i ) [A.13]
=2 (D apilApy| VP =lm
j:

where the matrix A;, is the (m —1)x(m — 1) square matrix obtained from A by
removing the row ¢ and the column i. The final result is the same, regardless of the
row ¢ and the column i chosen in the sum [A.13].

The determinant verifies the following properties:
[AB| = [BA| = [A[B]
[aT| =] [A.14]

|1|=1

A.2.5. Inverse of a matrix

Let A be an mxm square matrix. The inverse A~ of A is an mxm matrix defined
as:

ATA=AAT" =1 [A.15]

The first relationship [A.14] indicates that a matrix has an inverse only if its
determinant is non-zero. The third relationship implies that the determinant of the
inverse of A is the inverse of the determinant of A.
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A.3. Differential operations using matrices and vectors
A.3.1. Differentiation

Let A =[a;;] be an mxn matrix. A is differentiated with respect to a given
parameter or variable ¢ by differentiating all its components individually:

da:
oA _ | %y [A.16]
ot ot

This definition also applies to the particular case of a vector that can be seen as a
single-columned matrix:

a_u = [ai} [A.17]
ot ot
A.3.2. Jacobian matrix

Let u = [u;] be a vector of size m and v = [v;] be a vector of size n. The Jacobian
matrix A of u with respect to v is an mxn matrix defined as:

A=
ov [A.18]
ou; '
az,; :i V(l :1"' ,m; J :1’ ,l’l)
an

A 4. Eigenvalues, eigenvectors
A.4.1. Definitions

The scalar A is an eigenvalue of the matrix A if there is a non-zero vector v,
called and eigenvector, such that:

Av = Av [A.19]
The characteristic polynomial of A is defined as:

P(A) =|A- A [A.20]
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The eigenvalues of A are the roots of the characteristic polynomial:
PA)=0 [A.21]

The eigenvector v associated with a given eigenvalue A is obtained by
substituting the (known) value of A into equation [A.19]. A linear algebraic system
is obtained. Since at least one of the components of u is non-zero, it can be set to any
arbitrary value, e.g. one, that serves as a basis in the computation of the remaining
components of v.

A.4.2. Example

Consider the matrix A obtained for the Saint Venant equations (see
section 2.5.3.1):

) 1
22 =0 [A.22]
which leads to:
—Qu-)A-(c*-u*)=0 [A.23]

Equation [A.23] can be rewritten as:
(A-u)? =c? [A.24]

which leads to the following two solutions:

A0 =y —¢
D e [A.25]
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Y] [©)

The eigenvector K" associated with the first eigenvalue A'” verifies:

0 1] &® kO
Lz 2 2u} Kél) =w—-c) K;l) [A.26]

that is:

(1 )
K5 =@u-0okK
2 2y D il) 1(1) [A-27]
(¢ —u™)K;" +2uK,” = (u-o)K,

These two conditions can easily be checked to be equivalent. The first
eigenvector is therefore:

M

K

KO = ! o [A.28]
(u—-o)K,

The vector K" verifies equation [A.19] for any non-zero value of Kl(l) . Using

the obvious choice K 1(1) =1 leads to:

KO { ! } [A.29]
u

—-C

It is easy to check that the second eigenvector is given by:

u+c

K® { ! } [A.30]





