
Chapter 2 

Main Physical Features of  
Electromagnetic Cavities 

2.1. Introduction 

We will recall in this chapter the physical principles of reverberation chambers, 
partly based on the features of electromagnetic cavities. We will not recall the 
mathematical formulation details of the fields and of the couplings within cavities. 
There are many excellent books on this topic that we recommend readers consult 
beforehand. Instead we will take a more specific look at the behavior of the 
oversized cavities, cavities excited via continuous sinusoidal sources; these sources 
release a wavelength much smaller than their dimensions. With this purpose, the 
theory developed in section 2.2 will merely consist of a one-dimensional (1D) cavity 
made up for that reason of a coaxial line, closed at both ends by perfect short-
circuits. This very simplified vision offers the advantage of analyzing the physical 
behavior of a common cavity, thanks to the currents and voltages coming from the 
transmission line theory. Thanks to this device, admittedly far from a real chamber, 
we reach the calculation of the eigenmodes and the assimilation of the cavity to an 
assembly of electric resonators made up of inductances, capacitances and 
conductances. This additional simplification will facilitate the rise of the quality 
factor concept. Its use will be essential to the physical understanding of mode 
stirring and other features of reverberation chambers.  

Section 2.3 is the natural continuity of the previous section, being fully devoted 
to the study of rectangular cavities. This section, subdivided into nine parts, 
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progressively tackles the analysis of TE and TM modes, and then considers the 
impact of oversizing, illustrated by the modal cells concept. This presentation also 
has the advantage of introducing the physical understanding of mode stirring and of 
modal interferences depending on the quality factor of the chamber. Coming back to 
the 1D model, this time a Fabry-Perot cavity, will allow us to introduce the coupling 
of the electromagnetic energy on an eigenmode and consecutively to find the 
intensity of the standing wave in a cavity. The plane wave spectrum concept will 
then be defined, in order to prepare the reader for the simulation of ideal random 
fields, developed in the next chapter.  

Section 2.4, concluding this chapter, will be devoted to the brief analysis of the 
mode stirring processes. From this intuitive approach of the phenomena, we will be 
able to see that a properly carried out stirring must produce electromagnetic fields, 
whose amplitude distribution obeys the perfect random model. Later on, research 
into this criterion will enable us to determine the uncertainty margins and 
consequently to ensure the reproducibility of the measurements carried out in the 
MSRC.  

2.2. Reduction of the modes in a 1D cavity 

2.2.1. Description of the 1D cavity 

Understanding the physical behavior of an electromagnetic cavity can be 
significantly simplified by the use of a 1D model, made up of a coaxial cable 
sample, short-circuited at both ends. Indeed, this device constitutes a transmission 
line that is much simpler to form in equations than a three-dimensional cavity. 
Figure 2.1 specifies the geometrical parameters useful for calculations.  

 

 

 

 

 

 

 

Figure 2.1. 1D cavity 
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The inside part has a tube terminated at both ends by high-conductivity disks 
carrying out two perfect short-circuits. The device forms a transmission line. The 
propagation of the TEM mode assumes, however, that the wavelength remains much 
higher than the diameter of the outer cylindrical tube. We associate with this set a 
single graph oz, in parallel with the common axes of the two cylinders. The origin o 
coincides with one of the ends of the coaxial. Its longitudinal dimension will be 
designated by the symbol L0. We thus have at our disposal a cavity with an 
extremely simple constitution, for which it will be easy to transpose the transmission 
line theory, recalled in the next section.  

2.2.2. Solutions of the 1D waves equation 

2.2.2.1. General waves equation 

With the use of the notations in Figure 2.2, the currents and voltages attached to 
the cavity will successively be represented by the functions i(z,t) and v(z,t) of the 
space variable z and of the time variable t. 

   

  

  

 

 

 

 

Figure 2.2. Conventions of the currents and voltages on the line  

The set of the two telegrapher equations leads to a waves equation containing the 
unknown functions i(z,t) or v(z,t). For the current, we find waves equation [2.1], 
which is similar to the equation established in [1.2] of Chapter 1 for the plane wave: 
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 

 [2.1] 

In this second-order partial differential equation, v0 corresponds to the 
propagation speed of the currents and voltages. Knowing that the cavity in Figure 
2.1 is empty, v0 is the speed of light in vacuum, so-called celerity c, for which we 
will adopt the approximate numerical value shown in [2.2].This is justified in 
section 1.2.1.1 of the previous chapter. 
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8
0 310 /v c m s   [2.2] 

2.2.2.2. Waves equation for the harmonic steady state  

If we assume the cavity is excited by a harmonic source of angular frequency ω, 
after extinction of the transient state, we can show that the functions i(z,t) or v(z,t) 
take the steady state established by complex notations of [2.3]: 

( , ) ( ) ( , ) ( )j t j ti z t I z e v z t V z e    [2.3] 

Complex notations are adopted by convenience. In fact, the signal corresponds to 
the real component of one of these two expressions. Under this representation, I(z) 
and V(z) are complex functions of the space variable z. After the introduction into 
the initial wave equation [2.1], we reach the waves equation of the harmonic steady 
state: 
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d I k I k

vdz
    [2.4] 

The k parameter is called the wave number. This is the ratio of the excitation 
angular frequency and of the v0 propagation speed of the wave. Moreover, we can 
demonstrate that the propagation speed is directly related to the inductance per unit 
length L and to the capacitance per unit length C of the line, thanks to expression 
[2.5] recalled below: 

0
1v k LC
LC

    [2.5] 

2.2.2.3. Waves equation solutions 

Solutions to waves equation [2.4] are exponential functions with an imaginary 
exponent, presented in the usual equation [2.6] [DEM 03, GRI 69]: 

( ) j kz jkzI z Ae B e   [2.6] 

It is then easy to deduce the voltage solution represented by the function V(z) in 
which we can find the characteristic impedance Zc of the line; this is the square root 
of the ratio of the inductance per unit L and of the capacitance per unit length C: 
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( ) ( ) wherej kz jkz
c c

LV z Z Ae B e Z
C

    [2.7] 

 Sometimes, solutions [2.6] and [2.7] are shown with the operand of the 
exponential function as exponenting the product of variable z and propagation 
constant γ that we simply contract to wave number k by the product of imaginary 
number j: 

j k   [2.8] 

 The propagation constant γ appears when we take into account the power losses 
in the line. In that case, γ takes the form of a complex number, with α being the real 
part and t β being the imaginary part. The latter will generally be similar to the wave 
number k.  

The main interesting fact of the comparison to a 1D cavity is first the 
computation for resonances of the cavity, more succinctly called eigenmodes.  

2.2.3. Eigenmodes computation 

The short-circuits placed at both ends of the line vanish the voltages on the two 
terminations. 

Carrying forward on the notation conventions in Figure 2.2 and on the function 
developed in [2.7] leads to [2.9]: 
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0j kL jkL
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 

 
 [2.9] 

This is an undetermined system and its constants A and B are the solutions. To 
fill the cavity with electromagnetic energy, these constants must take finite values 
and the trivial solution is ignored. This condition thus implies cancelling the 
determinant of the system. 

Thus, we manage to solve the equation with eigenvalues [2.10], whose 
immediate solutions are found on the right side of the equation with the symbol kn: 

0
0

sin ( ) 0 nkL k n
L
    [2.10] 
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The calculation reaches an infinite spectrum of eigenvalues kn, called eigenwave 
numbers. Their value is inversely proportional to the dimension L0 of the 1D cavity. 
These specific wave numbers, still called eigenmodes, are dependent on the integer 
number n that determines their position of appearance.  

As shown in Figure 2.3, if we feed the cavity with a current source of amplitude 
I0 located at the point of coordinate z0, the voltage variation as a function of the 
space variable z will be determined by two functions V1(z) and V2(z), depending on 
whether the observer is located above or below z0.  

I0 

o zL0 
z0 

A 

A’ 

B

B’ 

V1(z) V2(z) 

 

Figure 2.3. Excitation of the 1D cavity by a current source  

The functions then take the analytical expressions [2.11] and [2.12]: 
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Knowing that the wave number depends on the angular frequency of the source, 
as well as on the frequency by [2.13], a look at the previous equations shows that the 
excitation of the cavity on a frequency rigorously equal to the frequency fn attached 
to the eigenmode of index n, produces a voltage with an infinite amplitude. 
Resonance of the cavity occurs in a similar way to a circuit made up of an 
inductance or a capacitance connected in parallel: 

 
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        [2.13] 
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Contrary to the usual theory of the LC circuits where only one resonance 
specified by the circuit components is involved, the 1D cavity has an infinity of 
resonances, periodically spaced out from the value Δf. 

The aforementioned is made up of a ratio in which the dimension L0 and the 
propagation speed of the waves v0, here reduced to the celerity c, are introduced: 

0
Δf

2

c
L

  [2.14] 

The analogy with the circuits can be used in order to demonstrate that a cavity 
excited on any frequency is the series of a very large number of resonators, made up 
of inductance and capacitance cells connected in parallel.  

2.2.4. Comparison of a cavity to a network of LC resonators 

According to Foster’s theorem, the reactance X(ω) at any point of every 
electromagnetic cavity takes the form of a series expressed under configuration 
[2.15] [ELF 10, LEM 09, RAG 48]: 
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
  [2.15] 

This relation is established with the assumption of perfectly electrically 
conducting walls of the cavity. The cavity impedance is then determined by the ratio 
of the electric field and of the magnetic field either deduced from computations or 
measurements. Concerning the particular case of the coaxial cavity in Figure 2.3, 
X(ω) will result from the ratio of the voltage calculated at the point z0 and of the 
current I0 injected by the source.  

The Cn capacitances found in equation [2.15] are related to endless number of 
resonators, made up of inductances and capacitances connected in parallel, whose 
resonance angular frequencies are adjusted on the angular frequency ωn of the 
eigenmode of index n, i.e.: 

1
2n n

n n
f

L C
    [2.16] 
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For the 1D cavity, the resonance frequency fn appearing in this equation is the 
modal frequency fn calculated in [2.13]. The Cn capacitances are expressed in terms 
of an admittance which is the product of the imaginary number j and a function B(ω) 
so called susceptance, at the considered point and by application of relation [2.17]: 

n

n
dBC
d   

   
 

 [2.17] 

Then, back to the 1D cavity in Figure 2.3, the B(ω) susceptance is found from 
the sum of the admittances found in the AA’ and BB’ planes, i.e.:  

' '( ) ( )AA BBB j Y Y    [2.18] 

From the transmission line theory, we easily deduce YAA’ and YBB’: 

 ' '
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c c
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 [2.19] 

The inductances are then obtained from expression [2.16]. With regard to the c0 
coefficient, the calculation comes from relation [2.17], extended to the vanishing 
angular frequency, i.e.: 
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d  

   
 

  [2.20] 

Regarding c0 and l0, their contribution is only justified for the study of the 3D 
cavity. Indeed, these parameters characterize the electromagnetic coupling from the 
source to the cavity.  

Applied to the 1D cavity, this expression leads to an infinite capacity. We easily 
find the value of the coefficient l0 by the calculation of the first derivative of relation 
[2.15] with respect to the angular frequency ω, that we will also make strive towards 
zero, i.e.: 
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For the 1D cavity, this calculation leads to the inductance l0 vanishing. 
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The series appearing in [2.15] is similar to an assembly of resonators as given in 
Figure 2.4. This assembly is located between the AA’ and BB’ planes of the line in 
Figure 2.3 where current source is placed. 

l0 c0 L1 
C1 Ln 

Cn LN 
CN 

A 

A’ 

B 

B’ 

I0 

 

Figure 2.4. Comparison of the 1D cavity to an assembly of resonators:  
in that case l0 = 0 and c0 = 0 

Transposed to the 1D cavity, the coupling inductance l0 and the coupling 
capacitance c0 a may be omitted.  

Contrary to the complete series expansion in equation [2.15], the diagram in 
Figure 2.4 is bounded to N resonators, i.e. the calculation is limited to the Nth order. 
This convenience is essential when we have to carry out numerical simulations. 
Note that the empty squares correspond to the N-3 resonators absent from the figure.  

 The use of this assembly of resonators simplifies the understanding of some 
physical phenomena encountered in the cavities, such as in the case of the quality 
factor. Indeed, the diagram in Figure 2.4 shows that, when fed by a sine wave 
current source I0 f with angular frequency ω, the reactance X(ω) tends to infinity as 
soon as ω tunes with one of the angular frequencies of resonance ωn of the 
resonators. Now, if we imagine that the line is supplied by a similar source whose 
angular frequency tunes exactly with ωn, the cavity reaches the eigenmode “n”. We 
can show that the maximum and minimum amplitudes of the voltage observed on 
the resonator “n” continuously increase and this is proportional to the time variable. 
This phenomenon may be related to the addition of the multiple reflections of the 
currents and voltages occurring at both ends of the cavity. Let us consider the 
contribution of the losses due to the conductors of the line or coming from the 
internal conductance of the current source. As soon as these various losses get 
involved, the use of the circuit theory shows that the transient state eventually 
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evolves towards a steady state. And the resulting sine wave reaches finite amplitude. 
For durations longer than the damping time constant, calculations of the response 
can be carried out using the usual concepts of impedances and admittances. 

2.2.5. Contribution of the quality factor to the cavity  

First, we make the assumption that the current source presented in Figure 2.3 has 
no internal conductance. Consequently, the amplitude of the currents and of the 
voltages during resonances is dependent on the only thermal losses in the conductors 
constituting the cavity.  

The transmission lines theory involves that the losses in the conductors can be 
gathered in a complex propagation constant γ: including as an imaginary part, the 
wave number k recalled in [2.19]; and as a real part, the coefficient α, called the (per 
unit length) attenuation of the line.  

If it is a line with low losses (which is generally the case when we carry out 
cavities), a good approximation of α can be given by the formula on the right side of 
equation [2.22]: 

with and
2 c

Rj k k
c Z
       [2.22] 

The characteristic impedance of the line Zc and its resistance per unit length R 
appear in this formula. With frequencies higher than 10 MHz the skin depth of the 
currents in high conductive materials is so low that we can use for the per unit length 
resistance of the coaxial line in Figure 2.1 the approximation related below: 
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with ,

2 2
R D d

D d


       
 

    
 

 [2.23] 

In these formulas, we have the electric conductivity σ of the material, the skin 
depth δ, as well as the outer diameter D and inner diameter d. 

Inserting the contribution of thermal losses in equations [2.19], the admittances 
formulas in the AA’ and BB’ planes will be modified to the new expressions [2.24], 
containing the hyperbolic tangent functions: 
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With the assumption of high-conductivity materials, such as copper or steel, the 
product αL0 appears to be much lower than unity. The expressions in [2.24] then 
take as approximate forms: 
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When we start the calculation of these expressions on an eigenmode n, we can 
show – after using some additional simplifications not mentioned here – that the 
equivalent admittance Yeq found at the location of the current source takes the form:  

   ( )
nn

eq nY G j B   
 

   [2.27] 

This formula, only valid for the angular frequencies ω not too far from the 
angular eigenfrequency ωn, has the B(ω) susceptance established for the line without 
losses in [2.18]. Then, there is a conductance term Gn that we can link to the pul (per 
unit length) attenuation α, to the characteristic impedance Zc, as well as to the 
geometrical data z0 and L0.  

If we take a look at the diagram in Figure 2.4, this conductance must be placed 
on the resonator of index n, to be related with the usual definition of the quality 
factor Qn, of the circuit theory, i.e.: 

n n
n

n

C
Q

G


  [2.28] 

The contribution of losses thus bounds the voltage amplitude during resonance. 
The latter takes the value Vn determined by the ratio of I0 and of the conductance 
Gn: 

    0
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n n
n

n

I
V V z V z

G        [2.29] 
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If we designate the symbol WE n to the electric energy stored in the cavity during 
a Tn period of the sine wave voltage established under the resonance angular 
frequency ωn, and if we call Pd n the thermal power dissipated in the cavity, we 
manage to express WE n and Pd n with the help of relation [2.30], where appear the 
rms amplitudes of I0 and Vn: (rms stands for root mean square) 

2
2 0andE n n n d n

n

I
W C V P

G
   [2.30] 

The combination of [2.28] and [2.30] leads to the energetic relationship of the 
quality factor, i.e.: 

n E n
n

d n

W
Q

P


  [2.31] 

Knowing that the electric energy is balanced by an exchange of magnetic energy 
WM n, relation [2.31] is rigorously similar when we substitute WM n for WE n. 

The definition of Qn requiring the energy will find its use during the analysis of 
3D cavities, examined in the next section.  

The power dissipated into the conductive materials of the 1D cavity previously 
studied does not constitute the only losses affecting the value of the quality factor.  

If the I0 current source has internal conductance G0, the power at the 
denominator in relation [2.30] takes expression [2.32]: 

2
0

0
d n

n

I
P

G G



 [2.32] 

In addition to the condition required by putting the cavity excited on an 
eigenmode into resonance, we will show in the next section that the level of the 
electromagnetic energy stored in the cavity will also depend strongly on the z0 
position of the current source.  
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2.2.6. Optimal coupling of the energy on an eigenmode 

Let us return to relation [2.7], expressing the voltage on the line, as we have 
taken it from the resolution of the wave equation. When the cavity is excited on the 
eigenmode n, it is necessary to add the index n on the parameters of equation [2.7] 
i.e.: 

( ) ( )n nj k z jk z
n c n nV z Z A e B e   [2.33] 

 Since the voltage vanishes at both ends of the cavity, the use of Euler formulas 
for Vn(z) leads to sinusoidal function [2.34]: 

0 0( ) sin( ) with 0n n nV z V k z z L    [2.34] 

We will show that the V0n amplitude assigned to this particular mode will 
depend on the position of the current source. The intuition inspired from the 
examination of Figure 2.3, very clearly shows that the current source positioned in a 
z0 point, where the function Vn(z) is cancelled, is unable to introduce energy into the 
cavity, even if it is excited on one of its eigenmodes. This reasoning means that at 
this particular position, the B(ωn) susceptance in expression [2.18] must be infinite. 
The current injected in z0 implies the voltage strictly vanishes as well as, 
consecutively, the electric energy WE n. However, if we take into account the 
contribution of the losses due to high-conductivity materials, values of the voltage 
and storage electric or magnetic energies will be only close to zero. When the cavity 
is no longer tuned on an eigenmode, V(z) goes far from the purely sinusoidal 
function described above. The analytical formulation of V(z) can then be built thanks 
to a series expansion, in which the solutions of [2.34] are the basic functions of 
index n. The V(z) voltage distributed on the cavity thus takes the form of a series, 
where the V0n amplitude terms play the similar role of Fourier coefficients: 

0
1

( ) sin( )n n
n

V z V k z



  [2.35] 

It is interesting here to introduce the wavelength λ, related to the propagation 
speed v0 and frequency as given in formulas [2.36]: 

0 2v
k

f



    [2.36] 
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From equation [2.13] which express the fn frequency of the eigenmode of index 
n, we find that tuning the cavity on the n mode amounts to feed the line with a 
sinusoidal (sine wave) signal, whose λn/2 half wavelength rigorously matches one 
sub-multiple of the L0 dimension of the cavity, i.e.: 

0

2
n L

n


  [2.37] 

From this point of view, a cavity exactly tuned as formulated in [2.37] produces 
in series [2.36] coefficients that are all zero, except for V0n. Otherwise, we go to an 
infinite spectrum of coefficients.  

When the λ wavelength is very small compared to L0, the cavity is said to be 
oversized. Under these conditions and without a rigorous tune on a mode, we can 
show that the amplitude of the coefficients goes through a maximum at the 
neighborhood of the L0/n which is the closest to λ/2. 

2.2.7. Deviation of the modal frequencies produced by an obstacle  

An obstacle may be a piece of high-conductivity material inserted in the gap 
between the inner and outer conductor of the line. Let us take a look at an obstacle 
installed at the point of coordinate zk shown in Figure 2.5. With the prior assumption 
that the obstacle remains with small dimensions compared to the wavelength λ, its 
physical contribution may be accounted (taken into account) by an equivalent 
circuit, comprising the combination of the Lk inductance and the Ck capacitance, 
linked in Figure 2.5. The presence of the obstacle thus forces us to distinguish two 
pairs of solutions, depending on whether the z variable is higher or lower than zk. In 
the first case, the unknown amplitude parameters in expressions [2.6] and [2.7] take 
as symbols A1 and B1. In the second case, we use the symbols A2 and B2. 

o zL0 zk 

Lk 

Ck 

I1(zk) 

V1(zk) 

I2(zk) 

V2(zk) 

  

Figure 2.5. Circuit equivalent to an obstacle introduced in the cavity 
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The algebraic system thus has for instance four unknown values that we manage 
to connect using the boundary conditions at both ends of the line and on the drawn 
circuit at the point of coordinate zk. The calculation leads to the combination of four 
equations, leading themselves to a linear system with A1, B1, A2 and B2 as solutions: 

1 2 0(0) 0 ( ) 0V V L   [2.38] 

1 1 2( ) ( ) ( )k k k kV z j L I z V z    [2.39] 

1 2 2( ) ( ) ( )k k k kI z I z j C V z   [2.40] 

We find again a configuration quite similar to the empty cavity, since the 
combination of equations [2.38] to [2.40] leads to an indeterminate fourth order 
system. The search for non-singular solutions leads us to impose a strictly zero value 
on the system determinant. This condition leads to the resolution of a transcendental 
equation, whose ωn roots form a spectrum of eigenvalues necessarily different from 
those found for an empty cavity. However, the physical good sense suggests that, in 
the presence of a tiny obstacle, the angular eigenfrequencies found on this little 
disturbed cavity will be almost in agreement with the values predicted by initial 
formula [2.13]. 

Conversely, as soon as the impact of the obstacle becomes significant, we 
observe a more significant shift of the eigenmodes. According to this new context 
the analogy of the cavity with an association of resonators made up of capacitances 
and inductances remains valid. However, the determination of the values of the 
inductances Ln and capacitances Cn making up each element of the circuit in Figure 
2.5 must be revised, by using a numerical calculation. 

A similar comment can be applied to series expansion [2.35] describing the V(z) 
function. Indeed, we have pointed out that the description of the Vn(z) voltage 
attached to the n mode, differs from a sinusoidal function as previously used. 
Consequently, the extension of this reasoning encourages us to change the nature of 
the functions involved in the series expansion, taking this time the general form 
[2.41]: 

0
1

( ) ( )n n
n

V z V V z



  [2.41] 
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When it is possible, the new Vn(z) functions will be evaluated thanks to solutions 
[2.6] and [2.7] attached to the n mode, extracted from the resolution of the equations 
with the eigenvalues previously described. 

2.2.8. Implementation of mode stirring 

If we add to the diagram of Figure 2.5, a current source at the point of coordinate 
z0 and an observer taking the voltage at the point zp, we go straight to the circuit in 
Figure 2.6. 

o zL0 zk 

I0 
V(zp) 

z0  

Figure 2.6. Illustration of mode stirring 

Under these conditions, a displacement of the obstacle parallel to the oz axis has 
the effect of modifying the eigenmodes frequency, as well as the amplitude of the 
voltage seen by the observer. If we sufficiently increase the frequency so that the 
wavelength becomes comparable to the longitudinal dimension of the obstacle, the 
organization of the modes is so disturbed that it becomes hardly predictable. In other 
words, we can say that the voltage variation as a function of the zk position of the 
object adopts the behavior of a random variable. This phenomenon is increasingly 
amplified, if we introduce into the cavity other obstacles that move independently 
from the displacement of the previous obstacles. This device carries out a mode 
stirring, whose properties will be fully exploited in the use of the reverberation 
chambers discussed in the following sections of this chapter.  

2.3. Physical features of an empty rectangular cavity 

2.3.1. Geometrical description of the reverberation chamber 

The reverberation chamber that we will compare to a rectangular cavity has the 
dimensions a, b and d, shown in Figure 2.7. To designate the height of the chamber, 
the letter d is preferred to the letter c, in order to avoid confusion with the common 
symbol for the electromagnetic waves speed in a vacuum (celerity). 
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Currently, the chamber is devoid of any object diffracting or absorbing the 
waves. We can add to this hypothesis the contribution of the walls made up of a 
material with a very high electric conductivity, such as copper or steel.  

On the left lower angle of the front face shown in Figure 2.7, we set the 
orthonormal coordinate system oxyz.  

  

 

 

 

 

 

 

Figure 2.7. Geometrical parameters of the rectangular chamber  

2.3.2. Calculation of the eigenmodes’ frequencies 

We install in the chamber an antenna radiating an electromagnetic field releasing 
sinusoidal signals. The ω angular frequency of the signals is linked to the f 
frequency by the well-known expression recalled below: 

2 f   [2.42] 

As previously practiced for the 1D cavity, the preliminary analysis will be 
carried out with the chamber empty. We assume that the transmitting antenna does 
not alter the distribution of the field amplitude in the whole internal volume of the 
cavity.  

Under these circumstances, wave equation [2.43] adapted to the 3D context must 
correspond to wave equation [2.4] established for 1D: 
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2Δ 0 whereE k E k
c
  

 
 [2.43] 

There is in this expression the E


electric field vector distributed inside the empty 
chamber. Developments available in most electromagnetism books enable us to go 
from Maxwell’s system of equations, recalled below, to waves equation [2.43]: 

 [2.44] 

By using the Laplacian formula in Cartesian coordinates, the solutions to the 
eigenvalues of wave equation [2.30] reach the wave numbers expressed in formula 
[2.45]. The wave numbers then constitutes a spectrum of numerical values attached 
to the three integer numbers m, n and p. The indices of the symbol k specify the 
sequencing of the modes. However, we need to mention further that for the planned 
use of the cavity, at least two integer numbers must be non-zero: 

2 2 2

m n p
m n pk
a b d

             
     

 [2.45] 

By making an analogy with a waveguide of the rectangular surface a x b, which 
is short-circuited at both ends in z = 0 and z = d, the analytical solutions of the wave 
equation dissociate themselves in the TM and TE modes. For the first solutions 

designated by the symbol TMm n p, the magnetic field vector H


 has two 

components Hx and Hy, whereas the vector E


for the electric field has three 
components Ex, Ey and Ez. The resolution of the wave equation leads to the 
following expressions [BLA 85, COL 61, HAR 60, LIU 83, ROU 65]: 

sin cos cosx x
n x y zH A m n p
b a b d
              

     
 [2.46] 

cos sin cosy y
m x y zH A m n p
a a b d
              

     
 [2.47] 

EjH 0

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HjE 0


rot
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cos sin sinx

x
B m p x y zE m n p

j a d a b d
    


           
     

 [2.48] 
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sin cos sin
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y

B n p x y zE m n p
j b d a b d

    


           
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 [2.49] 
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B p x y zE k m n p
j a b dd

   


                       
 [2.50] 

Let us specify that among the set of coefficients A and B, only one is unknown. 
The others are deduced thanks to the properties of Maxwell’s equations. The k 
parameter is the wave number calculated for the propagation in free space and is at 
the right of equation [2.43]. 

The electric transverse modes identified by the symbol TEm n p constitute the 

dual form of the TM modes, for which the electric field vector E


 only has two 

components depending on the ox and oy axes. The magnetic field vector H


 has 
three components. 

The formulas associated with the TEm n p modes are developed below: 

cos sin sinx x
n x y zE C m n p
b a b d
              

     
 [2.51] 

sin cos siny y
m x y zE C m n p
a a b d
              

     
 [2.52] 
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 [2.53] 
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 [2.54] 
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 [2.55] 

The C and D coefficients also obey the properties mentioned for the TM modes. 
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2.3.3. The first eigenmode  

We can link the wave numbers coming from relation [2.45] to eigenfrequencies 
designated by the symbol fn m p and directly converted in expression [2.56] below: 

2 2 2

2 2m n p m n p
c c m n pf k

a b d
             
     

 [2.56] 

To explore the analogy with the 1D cavity studied in the previous section, an 
empty chamber excited on an eigenfrequency should thus produce an 
electromagnetic field of infinite amplitude. Indeed, the installation of an antenna in 
the chamber leads to a radiation. The successive reflections of this radiation on the 
metal walls enter simultaneously, as soon as the frequency of the sine wave source 
connected to the antenna rigorously tunes with an eigenmode. Without energy 
dissipation, the reflected fields are added without any amplitude reduction other than 
the dispersion. This is thus not surprising after an infinitely long time to find a field 
of infinite amplitude! 

The first eigenmode, also called fundamental mode, is determined by the 
allocation of indices giving the eigenmode the lowest frequency and giving itself a 
non-zero field. Thus, for a chamber whose dimensions take the numerical data 
a = 1.9 m, b = 2.5 m and d = 2.8 m, this condition is carried out for m = 0, n = 1 and 
p = 1, i.e. a first eigenmode located on the 80.4 MHz frequency. 

The ten formulas [2.46] to [2.55] recounting the projections of the vectors E


 

and H


 respectively attached to the TE and TM modes, indicate that the zero value 
allocated to the m index vanishes TM modes. Thus, the first eigenmode can only 
receive the TE011 configuration. From the previous relations, we find a single 
component of the electric field directed according to the ox axis and two magnetic 
components projected on the oy and oz axes.  

Knowing that the frequencies involved in the use of the reverberation chambers 
are generally located above 100 MHz, it is easier to carry out the electric field 
measurements. We will thus pay more attention to the expression of Ex specified 
below: 

011TE sin sinx x
y zE C

b b d
          

   
 [2.57a] 



Main Physical Features     49 

We must mention that this expression is dependent on the implicit condition set 
by the dimensional ratios a, b, d for these chamber dimensions i.e.: 

a b d   [2.57b] 

The examination of this formula shows that the electric field is invariant 
according to the ox direction and that it has a maximum amplitude at the center on 
the lines of coordinates y = b/2 and z = d/2. Figure 2.8 shows the amplitude 
distribution of the component Ex in a plane parallel to the oxz graph and located at 
the y = b/2 coordinate. On the right side of the figure, the field distribution is found 
in a plane parallel to the oxy graph and going through the coordinate z = d/2. 

  

  

 

 

 

 

  

 

 

 

  

  

Figure 2.8. Distribution of the electric field in the fundamental mode 

Even if the functioning in the fundamental mode turns out to be unusable for the 
applications mentioned in this book, the examination in Figure 2.8 will facilitate the 
understanding of mode stirring discussed in section 2.4.2 of this chapter. 

2.3.4. Higher order modes 

As soon as we allocate three non-zero values to the m, n, and p indices, relations 
[2.46] to [2.55] indicate the simultaneous presence of the TE and TM modes, exactly 
matching on fm n p. These configurations cover three electric field components and 
three magnetic field components. 

From the practical point of view, this means that an object immersed in the 
chamber should be impacted by fields under an almost isotropic polarization and 
with the assumption that the TE and TM modes have identical amplitudes. To 
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illustrate this feature, the analysis will be eased by taking a look at the particular 
case of the symmetrical modes with three identical non-zero indices. 

For the unit indices and for the previously chosen dimensions of the rectangular 
cavity, the frequency of the first symmetrical mode takes the value f111 = 112 MHz.  

Relations [2.51] and [2.55] show that the TE111 mode are associated with the 
loci of maximum and minimum amplitudes of the Ex component located at the 
center of two opposite walls of the chamber. Thus, the maximum amplitude appears 
on the wall containing the oyz graph, whereas the minimum amplitude concerns the 
opposite wall. Conversely, the Ey component will produce these properties at the 
center of the wall merged with the oxz graph and on the opposite face. Concerning 
the TM111 mode, equation [2.50] confirms the rotation of the symmetry, since the 
extreme values of Ez will be referenced on the oxy graph. Figure 2.9 gives a 
graphical representation of the phase opposition of the maximum and minimum 
electric field components, which are normal at the concerned walls. The dark stains 
represent the amplitude extremes. The diagram on the right of the figure gives the 
amplitude scale adopted in the AA’B’B plane parallel to the oxz graph and going 
through the coordinate y = b/2. 

 

  

 

 

 

 

 

 
 

  

 

 
  

  

 

  

  
 

 

  

Figure 2.9. Amplitude variations of the Ez component attached to the TM111 mode 

If we increase the order of the modes with the condition that the indices m, n and 
p remain identical, we go to a periodical distribution of the field. Thus, for indices 
all taking 3 as a value, the frequency of the mode goes to f333 = 336 MHz. Figure 
2.10 gives, with the conventions previously adopted, the periodical distribution of 
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the amplitude of Ez found in the AA’B’B plane and in the plane orthogonal to the 
previous plane located on the right side of the figure.  

In this rectangular cavity excited at a frequency of 336 MHz, the field will thus 
be made up of the juxtaposition of 27 modal cells. The shape of each cell field 
pattern is strictly similar to the cell observed at the 112 MHz frequency. 

 

 

  

 
  

  

 

 

 

 

 
 

 

   

Figure 2.10. Distribution of the modal cells of the TM333 

The xp, yp and zp repetition period in the space of the TM333 modal cells is 
strictly equal to 1/3 of the dimension of the chamber projected on each axis of the 
oxyz graph. On the other hand, it is interesting to compare this period to the 
wavelength calculated at the 336 MHz frequency, i.e. λ = 0.89 m. Indeed, a return on 
the chamber dimensions defined above shows that in the order indicated in 
expression [2.58], the respective components of the period take as numerical values 
0.63 m, 0.83 m and then 0.93 m, i.e. orders of magnitude similar to λ: 

/ 3 / 3 / 3p p px a y b z d    [2.58] 

By relying on this example, we will say that a cavity which is oversized 
compared to the wavelength must function under model periods of values much 
lower than the dimensions a, b and d. At the 336 MHz frequency and for the 
chamber considered in this text, this condition is thus not quite satisfying. However, 
to excite the cavity on the TM999 mode, the frequency must go to f999, i.e. 
practically 1 GHz. This corresponds to a wavelength of 30 cm, i.e. almost 9 times 
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lower than the dimensions of the chamber. At the frequency of 1 GHz and above, 
the chamber in question will be fully oversized. 

2.3.5. Mode spacing and mode density 

The mode spacing is related with their distribution as a function of the 
frequency. Let us come back to expression [2.56] containing the eigenfrequency of 
the mode of any index m, n, p. To simplify the analysis, let us take a look at the 
particular case of a symmetric mode with three identical indices, i.e. m = n = p = q. 
With the help of this relation, we can determine the eigenfrequency of one of the 
three modes immediately higher than fq q q, i.e. for the considered example fq q q+1. 
Equation [2.59] gives the corresponding analytical expression: 

2 2 2

1
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2q q q
c q q qf

a b d
            
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 [2.59] 

By making the hypothesis that the q index is much higher than one, formula 
[2.59] can be simplified to the advantage of its second-order series expansion [2.60]: 

11 Δfq q q q q qq f f     [2.60] 

The Δf parameter then represents the spacing of these two consecutive modes. 
We then realize that the analytical formula [2.61] deduced from this transformation 
leads to a result proving that Δf is independent of the q index, i.e.: 
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1 1 1
1 Δf
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cq
d a b d


      
 

 [2.61] 

This fact does not contradict the study of the 1D cavity described in the previous 
section. Indeed, we reach expression [2.14] where the spacing of two consecutive 
modes of the 1D cavity is indeed a quantity inversely proportional to the L0 

dimension and independent of the n order of the modes. For a 3D cavity, things are 
however more complex. Let us not forget that relations [2.60] and [2.61] have been 
established with the hypothesis of a q index much higher than one. That necessarily 
supposes that the cavity is highly oversized compared to the wavelength. Moreover, 
in the Δf gap, other modes come to insert themselves. They come from other 
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combinations of indices m, n and p that are presently omitted. To illustrate mode 
insertion, we carried out the calculation of expression [2.56], determining the 
position of the modes contained between the 900 MHz and 920 MHz frequencies 
and for the reference chamber whose dimensions are recalled in a block in Figure 
2.11. The position of each mode is marked by a vertical line. 

 
 
 
 
 

a = 1.9 m   b =2.5 m   d = 2.8m 

Δf = 25 MHz

 

Figure 2.11. Positions of the modes between 900 MHz and 920 MHz according to [2.56] 

We can see that the approximate calculation carried out by expression [2.61] 
leads to a Δf spacing close to 25 MHz, whereas between 900 MHz and 920 MHz, 
we can note about 60 modes on the exact calculation projected in Figure 2.11. 

In the Δf frequency gap, we can thus talk about a density of modes whose value 
will only increase with the oversizing criterion. The symmetry conditions also affect 
the mode density. Thus, for a chamber with a rigorously cubic shape and a volume 
similar to the one previously described, we would count only 8 modes between 
900 MHz and 920 MHz. Increasing the modes density with the frequency is a major 
difference with the behavior of the 1D cavity studied in the first section of this 
chapter. The demonstration leading to the drawing of Figure 2.11 proves that the 
numerical calculation alone of the modal frequencies helps to rigorously set the 
density for a frequency f0 of a previously determined excitation.  

However, following the works of the German mathematician Hermann Weyl, 
one was able to carry out the asymptotic calculation of the eigenvalues distribution 
of some differential operators. From the Laplacian analysis of the rectangular cavity, 
we then reach an analytical formula linking the number of modes N to the excitation 
frequency f0 of the cavity. The obtained expression, called Weyl’s formula is 
recalled below [LIU 83]:  
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  [2.62] 

Let us specify that we reach the same formula by assuming the analogy with the 
filling of the cavity by a photon gas with a very small wavelength [LAN 67]. 

It is thus easy to extract from this formula the modes density function, 
designated by the symbol D(f0). This function is related to the ΔN modes entering a 
narrow frequency band Δf0, centered on f0, i.e. the ratio ΔN/Δf0,  

Consequently, when Δf0 tends towards zero, D(f0) converges on the first 
derivative of Weyl’s formula: 
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Examination of the formula recounting D(f0) shows that the physical unit of the 

modes density is expressed in Hz-1. This function follows a law proportional to the 
square of the frequency.  

2.3.6. Quality factor of the 3D cavity 

As mentioned in section.3.3, an empty cavity excited under an eigenmode, but 
made up of perfectly electrically conducting walls, enters in resonance, in order to 
produce a field of infinite amplitude. We then find a rigorous analogy with the 1D 
model described in section 2.2.3. Indeed, as with any perfect resonant cavity 
submitted to a sinusoidal wave at t = 0, the peak-to-peak amplitude of the field or 
collected voltage on a sensor designated by the Amaxi(t) function, will indefinitely 
increase with a law proportional to the time. If we now take into account the thermal 
losses in the walls, the field or voltage mentioned above behave according to 
expression [2.64]: 

max 0( ) 1 ( )
t

iA t A e t 
 

  
 
 

 [2.64] 

 where the parameter τ represents the time constant of the resonant cavity and γ(t) 
represents the step function, meaning that for times prior to zero, the field or voltage 
are necessarily zero. For an infinitly long time, expression [2.64] tends to the steady 
state amplitude A0. Strictly speaking, expression [2.64] only represents the resulting 



Main Physical Features     55 

field, including the multiple reflection cycles of the waves on metal walls of the 
chamber. Knowing that every reflection is damped by the losses, we witness a step 
by step reduction of the resulting amplitude which leads to a standing wave. 
Function [2.64] then illustrates this process in a simple way exploring the analogy 
with the theory of resonant electric circuits. Consequently, this formula is only valid 
if the τ time constant is much higher than the period of successive reflections. 

In other words, the steady state of the cavity amounts to saying that the power 
produced by the transmitting antenna exactly balances the thermal energy losses in 
conductive walls. Moreover, we will store in the volume of the cavity balanced 
magnetic energy WM and electric energy WE. The electromagnetic energy thus 
stored will be independently calculated by the integrals of the square amplitudes of 

the magnetic field H


 and the electric field E


 vectors, extended to the volume V of 

the cavity. The expressions in [2.65] reproduce these integrals, where the vectors E


 

and H


 are related to the peak amplitudes of the fields under harmonic variations 
[STR 69]: 

 [2.65] 

If Pd represents the power losses in the cavity walls, we propose extending 
formula [2.31] of the Q factor for a1D cavity to the case of a 3D cavity. We reach 
expression [2.66], in which the use of the notation Qm n p is aimed at the quality 
factor of the rectangular cavity, operating at the eigenmode with angular frequency 
ωm n p: 
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   [2.66] 

Analytical calculation of the quality factor of the rectangular cavity leads to two 
formulas, depending on whether the field comes from the TE or TM modes. We will 
give the rigorous expression found by B.H. Liu et al. for the TEm n p mode [LIU 83]: 
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 [2.67] 

In this formula, Zw represents the impedance of the plane wave in the vacuum 
and Rs is the surface resistance of the walls of an electric conductivity σ. These 
parameters take as expressions: 
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Let us note that in the presence of walls made up of a ferromagnetic material 
(such as the steel of relative magnetic permeability μr), the δ skin depth, located at 
the denominator of [2.68], takes the value: 
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mn p r


   
  [2.69] 

The kx, ky, kz and kxy coefficients, present in the expression of Qm n p, are 
connected to the components of the eigenwave number vector [2.56] by putting the 
conventions [2.70]: 

2 2
x y z x y x yk m k n k p k k k

a b d
        [2.70] 

The formula of the quality factor of the TMm n p modes can be found in 
Appendix 2. 

Although rigorous, expressions [2.67] and [A2.1] are not very easy to use. 
Moreover, when the cavity becomes oversized compared to the wavelength, it is 
better to use an average quality factor. This factor is the result of the calculation of Q 
in a narrow frequency band Δf0, centered on the excitation frequency f0 of the 
cavity. As previously mentioned, Liu et al. have managed to reach the simplified 
relation [2.71], in which there is only the skin depth δ, the volume of the cavity V 
and the surface S of the walls: 
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2

VQ
S 

  [2.71] 

This formula is based on the hypothesis of the modal density, which is itself 
based on Weyl’s law. It is however only valid for a really oversized chamber. The 
use of the approximate formula [A2.14], established in Appendix 2, allows us to link 
a corrective term to the simplified expression [2.71].  

Let us take a more particular look at formula [2.64], expressing the end of the 
transient state. This relation can be found again by forming the analogy between the 
cavity and a set of resonators. We thus extend to the 3D cavity, the reasoning used in 
section 2.2.4. However, compared to the 1D cavity excited by a current source, we 
will see later on that the energy sent in the chamber, is obtained thanks to a 
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transmitting antenna. The electromagnetic coupling of this antenna occurs in the 
series combination of the c0 capacitance and the l0 inductance. Let us recall that 
these two parameters are mentioned in the dotted rectangle in Figure 2.4. The 
comparison to electric circuits has the advantage of more directly establishing the 
connection between the τ time constant present in [2.64], and the Qm n p quality 
factor of the excited mode, i.e.: 

02
mn p

m n p
Q

f



  [2.72] 

Let us recall that the use of this relation is however subjected to the fact that the 
period of the numerous reflections of the waves in the chamber remains much 
shorter than τm n p. If these conditions are met, relation [2.72] can be extended to an 
oversized cavity and consecutively to the average quality factor set out in expression 
[2.71]. We will see in section 4.4.4 that the measurement of τ is possible, in order to 
obtain from expression [2.72] a value of the quality factor of the chamber. 

In this context, the confined radiation of an antenna installed in a reverberation 
chamber is carried out by a process of power transmission. Chapter 3, section 3.5 
and Chapter 6 bring more details about this process. With this physical analysis, a 
radiated power Ptr results from the transmission antenna. All of this power will be 
dissipated under the thermal form in the metal walls of the chamber empty of any 
other object but the transmission antenna. The balance between the incoming power 
and losses in the cavity is related in equation [2.73], where Pd corresponds to the 
power losses in the walls: 

tr dP P  [2.73] 

According to the definition of the quality factor stated by equation [2.66] it 
appears that the knowledge of the Q factor, combined with the power radiated by the 
antenna, helps to reach the electric energy WE. This energy is stored in the chamber 
under this operating mode. From [2.65], we know that WE is determined by the 
integral in the chamber volume of the square amplitude of the electric field vector. 
For an empty and perfect rectangular chamber, the electric field answers to 
analytical expressions [2.46] to [2.55]. Determination of the integral of the relations 
is immediate. It is thus easy to calculate the maximum amplitude of the electric field 
generated in the chamber. This parameter will be essential later on, since it will 
enable us to estimate the constraint undergone by the objects submitted to 
electromagnetic immunity tests.  



58     Electromagnetic Reverberation Chambers 

Let us apply the reasoning to the case of a chamber excited in the first 
eigenmode. Depending on the geometrical parameters used in section 2.3.3, we 
obtain for the TE011 first eigenmode, the component of the electric field Ex with 
respect to the oxyz coordinate system in Figure 2.8. Ex is expressed by relation 
[2.57] recalled below: 

0 011 sin sinx m
y zf f E E
b d

          
   

 [2.74] 

In this formula, the Em parameter indicates the maximum amplitude of the 
continuous sinusoidal waveform at the frequency f0. From the integral [2.65], we 
easily find the WE electric energy stored in the cavity, i.e.: 

2
08E m

ab dW E  [2.75] 

The combination of relations [2.66] and [2.75] leads to the maximum amplitude 
of the electric field produced on the first eigenmode. This expression then contains 
the Ptr power sent by the transmitting antenna: 
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  [2.76] 

The fundamental mode of the chamber is located at 80.4 MHz and has a volume 
close to 14 m3. If we suppose at this frequency that the quality factor due to the 
walls is close to 105, a transmitted power in the room of 100 mW produces, 
according to [2.76], an electric field Em with an amplitude close to 1 kV/m. We will 
see in Chapter 4 that the objects immerged in the chamber lead to the reduction of 
the Q factor, in a ratio that can reach a factor of 10. However, the method remains 
very attractive for generating high amplitude fields with a low level of transmitting 
power in the room.  

As seen in section 2.2.6 during the analysis of the 1D cavity made up of a 
coaxial line, the ability to couple the energy in an eigenmode was dependent on the 
position of the current source. This context can be transposed to the case of an 
antenna located in a 1D cavity, made up of two parallel reflective planes.  
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2.3.7. Regarding the excitation conditions of the cavity  

For the requirements of the analysis, the considered 1D model will be a Fabry-
Perot cavity, made up of two planes, whose ideally reflecting surfaces are distant 
from and parallel to L0, as specified by Figure 2.12. On the oz axis, normally 
arranged at the two planes, we can see a plane wave propagating. Its electric field 

vector ( )E z


, parallel to the mirrors is directed according to the choice defined in 

Figure 2.12. The magnetic field vector, marked by the arrow, is normal to the 
electric field vector. The reflector, merged with the origin of the oz axis has the 
index 1, whereas the opposite reflector, receives the index 2. 

o z L0 

1 2 
)(zE


 

 

Figure 2.12. Wave maintained in a Fabry-Perot cavity 

The analogy with the 1D coaxial cavity of the previous section leads to the 
allocation to the electric field vector of the E(z) function, expressed in relation 
[2.77]. A and B are two unknown constants associated with the forward and 
backward travelling waves, both maintained between the two planes. For now, we 
do not formulate hypotheses on the excitation conditions of this standing wave: 

( ) j k z j k zE z Ae B e   [2.77] 

If they are high conductivity metal walls, the E


electric field vector vanishes on 
the surface of each reflector, i.e. in z = 0 and z = L0. From this assessment, we can 
see that the A and B constants entering function [2.77] will be the solutions of an 
undetermined linear system. The way to handle this situation is then strictly similar 
to the developments used in section 2.2.3. It results from the calculation, the 
installation of the eigenmodes, with which kn the wave numbers specified in relation 
[2.78] are associated: 

0
0

(0) 0 and ( ) 0 nE E L k n
L
     [2.78] 
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To more accurately analyze the source coupling at the standing wave maintained 
in the Fabry-Perot cavity, we will first forget reflector 2. We place an electric dipole 
of ΔL dimension at the point of coordinate d positioned on the oz axis in Figure 2.13. 
In Appendix 5 the reader can find a detailed description of the formulas of the 
electric dipole. 

o z L0 

1

d 
P 

ΔL 
r 

Dipôle électrique Electric dipole 

 

Figure 2.13. Coupling of an electric dipole with reflector 1 

The dipole is directed in parallel to the electric field carried by the standing wave 
generated in the cavity. An observer P, positioned on the oz axis is located between 
the dipole and the L0 coordinate, showing (by a dotted line) the mark of reflector 2. 
The distance between the dipole and the observer is represented by the symbol r. 
With the assumption that r is comparable to or higher than the wavelength λ, the 
field produced by the dipole at point P will be expressed thanks to the far fields 
formulas. According to the theory of electric images, we show that the Er resulting 
field at point P is the algebraic sum of the two complex quantities of equation 
[2.79]. This equation contains an amplitude constant C, as well as the wave number 
k in free space. The use of the far-field electric dipole formulas is not incompatible 
with the 1D cavity model, currently used. Indeed, the 1D model of the Fabry-Perot 
cavity comes from the infinite flat shape of the mirrors. Therefore, the use of the 
electric images theory helps to adapt the dipole formulas with the simplified 
representation of the cavity: 

( 2 )

2

j k r j k r d

r
e eE C C

r r d

  
 


 [2.79] 

The first term of this expression represents the direct dipole field, and the second 
term is the field produced by its electric image. Depending on the position d of the 
dipole, brought back to the reflective plane, the observer is thus submitted to 
constructive or destructive interferences that significantly contribute to the amount 
of energy that fills in the cavity. For the needs of the demonstration, the resulting 
field will be presented in the form [2.80], which is more appropriate to this context:  
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This relation clearly shows that the interference will be constructive if we locate 
the dipole at such a distance from the reflector, that at the considered frequency, the 
exponential function in brackets takes the value -1.  

This leads to writing the condition mentioned in equation [2.81]: 

2 (2 1)pk d p    [2.81] 

It now remains to interpret this result in the presence of the second reflector. We 
know that to make the cavity enter resonance, the wave number must be quantified 
depending on relation [2.78]. 

Consequently, it is sufficient to insert kn into equation [2.81], in order to show 
that the maximum amplitude of the eigenmode of index n, excited in the cavity, will 
be reached when dp takes the values satisfying equation [2.82]: 
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   [2.82] 

Knowing that the backward wave contained in [2.77] has an amplitude that is in 
strict opposition to the forward wave, the electric field on an eigenmode of 
resonance is described by the sinusoidal standing wave of E0 amplitude, formulated 
in [2.83]: 

0( ) sin( )nE z E k z  [2.83] 

This expression indicates very well that, by positioning the dipole at the points of 
coordinates dp defined in [2.82], there is a rigorous coincidence with the extreme 
values of the sine function. This condition means that the Fabry-Perot cavity is 
excited in an optimal way. The alternative approach, established by taking the dipole 
image brought back to reflector 2, leads to a similar conclusion.  

Conversely, if we seek the positions allocating a destructive composition to the 
dipole-image interference, it comes down to choosing, for the distance d from the 
reflector, the condition mentioned in equation [2.84] is achieved by a line of 
reasoning parallel to that which was previously used: 
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2 2mk d m  [2.84] 

Tuned on an eigenmode, this position just coincides with the zeros of the 
previous sine function. Then this result proves that these positions can only produce 
interferences generating opposite couplings.  

Another approach consists of looking at the impedance properties of the standing 
wave generated in the Fabry-Perot cavity. In order to do this, we determine the 
magnetic field whose solution taken from [2.77] takes the form [2.85], in which 
appears the impedance of the plane wave Zw: 

 1
( ) j k z j k z

w
H z Ae B e

Z
   [2.85] 

By taking into account the boundary conditions at the mirror planes, considered 
as perfectly electrically conducting materials, we reach the impedance expression of 
the standing wave Zst(z), i.e.:  

( )
( ) tg ( )

( )st w
E zZ z Z k z
H z

   [2.86] 

This formula shows that for the z positions occupying the extreme amplitudes of 
the electric field, the impedance of the standing wave is infinite. This is strictly 
equivalent for the transmitting antenna to an optimal power injection in the space. 
When we place ourselves on a zero field, the standing wave impedance predicted by 
[2.86] is strictly zero. This is similar to placing a short-circuit on the transmitting 
antenna.  

For the 3D cavity, the examination of relationships [2.46] to [2.55] describing 
the electric fields distribution in an empty rectangular cavity, leads us to quote 
similar conclusions. To found the conditions leading the maximum level of energy 
on the first eigenmode, it is sufficient to analyze the standing wave field pattern 
shown in Figure 2.8. Excited by an electric dipole type, the latter must be directed 
according to the polarization of the electric field Ex supported by this specific mode. 
On the other hand, the layout of functions [2.57] or [2.74] shows that the electric 
field records extreme amplitudes and consecutively an infinite impedance of the 
standing wave on a line passing through the centers of the walls perpendicular to the 
horizontal ox axis. Let us specify that a displacement of the dipole depending on the 
ox direction does not alter the coupling intensity.  

However, to inject the optimal energy on the TM333 mode, whose electric field 
pattern of component Ez is illustrated in Figure 2.10, the dipole can be directed 
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perpendicularly to the upper and lower walls of the cavity and in a coordinate point 
distant from the origin of the coordinate system, located at a half period of the modal 
cell, i.e. xp/2 and yp/2. Any other point far from the previous by a multiple of the 
modal periods xp or yp, also satisfies the optimal coupling criterion. This condition is 
maintained during a translation of the antenna, carried out following the vertical oz 
axis and on points coinciding with a multiple of the zp modal period. 

Strictly speaking, a dipole directed in accordance with the previous instructions 
can only generate a standing wave, whose electric field is polarized according to the 
oz direction. To simultaneously excite the other components, it is necessary to have 
two other polarized dipoles according to oy and ox. This can only be carried out 
thanks to a transmission antenna giving an isotropic polarization. We will see further 
on that any metallic and passive object diffracting the waves, leads to the distortion 
of the shape and of the distribution of the modal cells. Knowing that an antenna is 
necessarily made up of a more or less amount of high conductivity material, its 
presence imperatively acts on the local distribution of the field. This is the case in a 
proportion that a numerical calculation can rigorously predict. Intuitively, we can 
conclude that the optimal energy transfer in the chamber will be more or less 
influenced by the presence of the transmitting antenna.  

If we carry out the analogy with the Fabry-Perot cavity, this comes to say that 
the presence of the dipole acts as an obstacle. And this with the effect of modifying 
the harmonic solutions of the field described by equations [2.77] and [2.85]. The 
distribution of the fields in the cavity will thus no longer be described by a single 
sinusoidal function, but by a series similar to expression [2.41], proposed during the 
study done on the coaxial cavity. The distortion, as small as it is, of the longitudinal 
field distribution will be accompanied by a deviation of the modal frequencies. 

Moreover, and as mentioned above, the field amplitude maintained in the cavity 
excited on an eigenmode is strongly dependent on the extent of the thermal energy 
losses into the walls of the cavity. We can add to this phenomenon an additional loss 
of energy due to the ambient field that also couples to the transmitting antenna. 

In other words, the presence of a transmitting antenna is a necessary piece of 
equipment for the chamber excitation. But this is also an absorbing element of the 
stored energy that inevitably leads to the reduction of the chamber quality factor. 
Any other object contained in the chamber will have a similar impact. It is necessary 
to study it carefully, in order to predict the waves’ amplitude, for the analysis of the 
mode stirring efficiency. Before crossing this essential step in the understanding of 
the behavior of mode-stirred cavities, we turn now to the concept of the plane wave 
spectrum. 
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2.3.8. Plane wave spectrum 

We will see the usefulness of the plane wave spectrum during mode stirring 
simulation. The spectrum concerns the projection of the electromagnetic fields in the 
space related to the wave numbers. Contrary to the concepts introduced in Chapter 
1, the plane waves examined in this section are mathematical functions resulting 
from a space transformation. The properties of the Fourier integrals help us to carry 
out this transformation. As a preliminary illustration, let us come back to the 
standing wave maintained in the Fabry-Perot cavity, described by relation [2.83]. 

If we indefinitely extend the computation domain of this function, the plane 
wave spectrum consists of determining the Fourier transformation, present on the 
right of equation [2.87]: 
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The spectral function, designated by the E symbol, naturally associated with this 
1D model, will thus only depend on the kz variable which is similar to a wave 
number. The z index below the symbol k recalls that the calculation of the Fourier 
transformation concerns the z space variable, i.e.: 
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  E  [2.88] 

According to the mathematical concept of distributions, we know that the 
sinusoidal function [2.87] has, as a spectrum, two shifted Dirac functions expressed 
under the notations of equation [2.89]: 

0 0( ) ( ) ( )
2 2z n z n z

E E
k j k k j k k    E  [2.89] 

From the phenomenological point of view, the sinusoidal function written in 
[2.87] amounts to the interference of a forward plane wave, which propagates in the 
direction of the oz axis, and of a backward wave, whose description is strictly the 
opposite of that previously described. Following this description, the first term of the 
right member of equation [2.89] represents the spectrum of the backward wave and 
the second is the spectrum of the forward wave. 

The calculation can evidently be extended without any difficulty to a cavity with 
a rectangular form. For example, examination of formula [2.50] set out in 
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section 2.3.2 relates to the Ez electric field component attached to the TM333 mode, 
taking as an expression: 
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 [2.90] 

We then go to the plane wave spectrum of this function, by applying the Fourier 
3D transformation, whose general formulation is stated below [HIL 98]: 
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The integration domain D will be extended to the infinite set of possible values 
of the three space variables x, y, z. 

Applied to expression [2.90], the Fourier 3D transformation comes down to 
produce three simple integrals that we will write under the following conventions: 
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The Fx y z functions found in this relation specifies the spectra associated with 
each of the three space variables x, y or z: 
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Index 3 at the bottom of the wave numbers identifies the sequencing of the 
mode. For the TM333 considered here, the symmetry leads to: n = 3, m = 3 and 
p = 3, i.e.: 
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3 3 33 , 3 , 3x y zk k k
a b d
      [2.95] 

Projected in the space of the wave numbers, the particular values of the kx y z 
variable making the spectrum of the Ez component of TM333 different from zero, 
will be located on the eight summits of the parallelepiped in Figure 2.14. 

  

 

 

 

 

 

 

 

 

 

 

  

Figure 2.14. Set of wave numbers that makes the E(kx, ky, kz) function non-zero 

This representation immediately suggests adding the properties of a k


 vector to 
the wave number. The components of this vector appear at each corner of the 
diagram in Figure 2.14, i.e.: 

x x y y z zk k u k u k u  
   

 [2.96] 

To describe the k


vector, we use three unit vectors xu , yu  and zu , which are 

common to both the spatial coordinates and the wave number spaces. 

By using the same convention, the position of the observer will be expressed by 
the x, y, z coordinates, merged with the projections of the r vector developed below: 

x y zr xu y u z u     
 [2.97] 

With the use of the vectors, the formulation of Fourier integral [2.91] can be 

radically simplified in order to only put in exponent the scalar product of k


 and r : 
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In the spirit of these new notations, the k


vector determines the propagation 
direction of the plane wave associated with it. According to the examination of the 

diagram in Figure 2.14, we can deduce that each corner of the diagram is a 3k


 

vector, whose direction will depend on the sign exchange of the three components of 
the vector. Eight vectors thus result from it. They are supported by lines that have a 
common intersection point at the origin of the natural oxyz coordinate system. 

We can associate with this mathematical representation the analogy with the 
interference of eight plane waves, carried by these lines, whose virtual generative 
sources would endlessly be rejected. This amounts to saying that the standing wave 
produced by the TM333 mode results from the interference of these eight virtual 
waves.  

We will see that the reduction of the resulting field at this interference 
mechanism facilitates the simulation of some physical phenomena observed in a 
reverberation chamber.  

2.3.9. Influence of the energy losses on the plane wave spectrum  

It was shown in section 2.2.4 of this chapter that a 1D cavity excited on a mode 
was similar to an infinite number of resonators, made up of an inductance, a 
capacitance and a conductance, all connected in parallel. Such a simplified point of 
view suggests that the excited mode has a transfer function similar to a circuit with a 
very narrow bandwidth. Consequently, we may allow for the resonator attached to 
the mode of index n, the bandwidth Δfn., This bandwidth range depends on the 
quality factor Qn of the circuit and on the frequency fn of the considered mode n, 
i.e.: 

nΔf n

n

f
Q

  [2.99] 

The resonator construction can be extended to a rectangular cavity, which 
behaves however differently from the 1D cavity. If we refer to the graph in Figure 
2.11 and to the simplified expression [2.63] describing the modal density, we can 
say that an oversized cavity excited on a modal frequency includes a significant 
number of modes. These modes are inserted in the Δfn frequency band deduced from 
expression [2.99]. The analogy with the electric circuit involves that the contribution 
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to the energy losses leads to the excitation of the resonators neighboring element n. 
Of course, if the excitation frequency f0 is rigorously tuned on fn, this mode has a 
predominant intensity when facing adjacent modes.  

Converted in the writing conventions used for the 3D cavity, relation [2.99] takes 
the expression: 

Δf
mn p

nm p
f

Q
   [2.100] 

We find again in this formula the average quality factor Q  defined in [2.71]. The 

cavity excited on the fmnp frequency attached to the mode m, n, p, will thus produce 
other modes entering in the Δfmnp band. The level in the contribution of the adjacent 
modes will thus depend on their location with regards to the excitation frequency, 
but also on the coupling condition given by the transmitting antenna. Under such 
operating conditions, the field distribution in the 3D cavity will be the result of the 
interference of many standing sinusoidal waves, whose periods are not necessarily in 
harmonic ratios. This means that if the amplitude of the m, n, p, mode is 
predominant, the field pattern in the cavity will be organized by the composition of 
the modal cells, whose periods come from formulas [2.46] to [2.55] of the purely 
rectangular cavity. The periods are not in harmonic ratio and thus the resulting field 
will move away from the rigorously periodical model, shown in Figure 2.10; this 
means that some cells will be hotter than others. Moreover, if we move the 
transmitting antenna by maintaining an unchanged source frequency, it sometimes 
occurs that the antenna is located in such a way that the field of the m, n, p mode 
locally vanishes. In this case, the coupling of the energy on this mode will be 
reduced to the advantage of the adjacent modes. This phenomenon will be 
accompanied by a modification of the field distribution in the cavity, whose specific 
evaluation starts to avoid deterministic predictions. Thus, we have just described the 
embryonic stage of mode stirring [HOE 01]. 

Before crossing this decisive step of the functioning of the MSRC, let us come 
back to the plane wave spectrum and more specifically to the graph in Figure 2.14. 
If we now take into account the population of the modes excited in the Δfmnp band, 
the impact in the space of the wave numbers will result in the addition of N0 sets of 

eight plane waves, whose incidence angles will depend on the projections of the k


 
vector, associated with the N0 modes entering Δfmnp. We will allocate to each of 
these waves, an amplitude coming from the spectrum evaluated from the Fourier 
transformation applied to the resulting field distribution in the cavity. This 
transformation thus assumes that the distribution will be known beforehand. We will 
see in the next section that adding hypotheses borrowed from the probability theory 
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helps us to simulate the field distribution, without exactly knowing the amplitude 
allocated to the plane wave spectrum.  

2.4. The 3D cavity operating in stirred modes 

2.4.1. Role given to mode stirring 

There was shown in the previous section a 3D cavity empty of all objects, but 
excited on the first eigenmode produces standing wave with a sinusoidal distribution 
of the electromagnetic field. When we increase the frequency to reach the oversized 
behavior, the contribution of the energy losses, involves the excitation of mode 
packets. This results from two phenomena: the growth of their population and the 
bandwidth imposed by the average quality factor of the chamber. Furthermore, we 
know that the electromagnetic field is located in periodically spaced out modal cells. 

Under such conditions, effects of the interference mechanisms produced by the 
mode packets lead the distribution of the field magnitude in various cells to no 
longer become rigorously periodic. This seems to move the field distribution away 
from the perfect sinusoidal model found in a non-lossy cavity. If we make a short 
frequency excursion, the field dislocation will be accentuated. The same observation 
can be made after insertion of a metal object in the chamber or with a modification, 
as small as it is, of one of the dimensions. Identical phenomena are also noticed 
when we move the position of the transmitting antenna. Mode stirring consists of 
intervening in several ways on these parameters, in order to accentuate the field 
dislocation, so that the field pattern avoids any deterministic description. Under 
these conditions, the field amplitude in the cavity or the power collected on a 
receiving antenna installed in the chamber seems to obey to continuous random 
variables, to which we try to attach known probability distributions.  

It will thus be possible to associate the field amplitude or the power captured in 
one point of the chamber with an average amplitude matched with a standard 
deviation, or in some cases a maximum amplitude. The installation of a mode stirred 
reverberation chamber, able to carry out reproducible tests, thus consists of 
determining a frequency range and a space within the room where the properties of 
these random variables remain stationary. This amounts to saying that their random 
properties appear independent of the geometrical parameters of the chamber, as well 
as of the contribution of the electronic equipment under test.  

Four methods of mode stirring are currently used.  

Mechanical stirring consists of installing in the chamber a device fitted with 
metal blades rotating by a motor external to the shielded enclosure. As a function of 



70     Electromagnetic Reverberation Chambers 

the stirred volume, the field distribution in the chamber will be more or less 
disturbed. As soon as the frequency is sufficient to admit that the wavelength 
becomes comparable or smaller than the dimensions of the metal blades, the field 
data captured in the chamber will almost certainly adopt the properties of a random 
variable.  

Electronic mode stirring, also called frequency agitation, acts on the frequency 
of the source, connected on the transmitting antenna installed in the chamber. If f0 
designates this frequency, the process consists of selecting packets of N other 
frequencies, located close to f0. Under the condition of the oversized cavity, we can 
show that the N data of the electric field thus collected behave as random variables.  

It is important to specify that electronic and mechanical stirring can be 
judiciously combined, in order to increase the population of random variables 
collected during a test.  

To conclude this section, let us note that some systems use alternatives to 
mechanical stirring.  

Stirring by dimensional modulation of the chamber consists of triggering mode 
agitation by a small variation of the chamber dimensions. The dimensional 
excursion will be carried out thanks to walls made up of a wire mesh distorted by 
actuators controlled by the measurement protocol.  

Stirring by commutation or mobility of transmitting antennas plays on the 
variability of the modal excitation level. The performances of the process depend on 
the relative position of the antenna compared to the extremes or to the zeros of field 
carried by the standing wave generated in the cavity.  

The next section, devoted to the general description of mode stirring, will be 
more specifically focused on the mechanical stirring. This stirring nowadays seems 
to be the most frequently used in the test centers equipped with MSRC. The other 
mode stirring devices will be detailed in section 4.3 of Chapter 4. 

2.4.2. Mechanical mode stirring 

To illustrate the impact of mode stirring, let us imagine a metal blade stirrer 
installed under the ceiling of the chamber, initially presented in Figure 2.7. Figure 
2.15 below gives a cutaway parallel to the system of the oxz axis and going through 
the median plane of coordinate y = b/2.  
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Figure 2.15. Localization of the mechanical mode stirrer  

The a, b and d dimensions of the chamber are listed to the left of the figure. We 
will assume that the rotation of the stirrer covers a cylindrical volume with a 
diameter of 60 cm and height of 40 cm. This volume will later be referred to as the 
stirred volume. 

In a first stage of the reasoning, we practice the analogy between the mode stirrer 
and the insertion of the obstacle at the point of coordinate zk of the coaxial cavity 
shown in Figure 2.5. Thinking again of this representation encourages us to simplify 
the problem even more by merging the obstacle with the localized capacitance, 
designated with the symbol Ck. We can easily show that the system described by 
equations [2.38] to [2.40] leads to the resolution of the transcendent equation below: 

 0 00 sin ( ) sin( ) 0k k c kL C Z L z k k L      [2.101] 

If the presence of the obstacle does not excessively disturb the eigenmodes of the 
empty cavity, the solutions of equation [2.101] will be designated by the kn’ 
coefficient made up of the algebraic sum of the initial kn wave number and of the 
unknown Δk term, to which the following model corresponds: 

0
' withn n nk k k k n

L
    [2.102] 
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This fitting enables us to rewrite equation [2.101] in a form that is more tractable 
for the resolution and the physical interpretation, i.e.: 

 0 0( ) sin ( ) ( ) ( 1) sin( ) 0n
k n c k nC Z L z k k k L          [2.103] 

Angular frequencies and wave numbers entering this equation are linked to the 
propagation speed c of the TEM wave by [2.104]: 

n nc k c k     [2.104] 

Assuming a little disturbance of this obstacle, the frequency shift of the 
eigenmode will be weak, then Δω and Δk remain absolute quantities much lower 
than ωn and kn, i.e.: 

andn nk k     [2.105] 

We can thus use the first terms of the series expansion of the sine function 
contained in equation [2.103] which takes the simplified form [2.106], where the 
computation of Δω and Δk becomes easy. 

 
 

0

0 0 0

( ) sin ( )

cos ( ) ( ) ( 1) 0

k n c k n
n

k n c k n k

C Z L z k

C Z L z k L z k k L

 

  

  

    




 [2.106] 

The insertion of the obstacle comparable to the Ck capacitance thus generates a 
deviation of the modal frequencies. Their excursion will depend on the n order of 
the mode and the zk coordinate. The example of the coaxial cavity indeed shows that 
the action on zk generates a basic mode stirring. 

The analogy with the 1D cavity can be extended to the mode stirrer installed in 
the rectangular chamber in Figure 2.15. Indeed, the presence of the object made up 
of metal blades dramatically disturbs the electric field distribution. Under this 
geometric configuration, the solutions of the waves equation developed in section 
2.3.2 for the empty cavity, must be revised, in order to exactly determine the km n p 
eigenmodes. Only the use of numerical calculation methods or experimentation can 
lead to the evaluation of the frequency deviation generated by the presence of the 
metal obstacle. The position of the mode stirrer will thus play a decisive role in the 
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control of the mode shifting. If we examine first electric field distribution found on 
the first eigenmode, the illustration in Figure 2.8 shows that the mode stirrer located 
under the chamber ceiling will be in an electric field zone of low amplitude 
[ORJ 05]. 

The analogy with the 1D cavity and more especially the examination of equation 
[2.106] indicates that the argument contained in the sine and cosine functions will be 
a multiple of π, when zk coincides with a zero voltage. We immediately find that Δω 
will be zero. This confirms the intuitive reasoning. 

We can thus conclude that an optimal mode excursion can only be carried out by 
installing the stirrer where the field given by the first eigenmode takes the maximum 
amplitude, i.e. at the center of the chamber. Such an arrangement has, however, the 
major drawback of occupying the working space! 

We will see later on that for other reasons, the first eigenmode l is practically 
unusable. It is thus necessary to turn to modes of higher indices, such as the TM333 
configuration in Figure 2.10. We realize that in such a case, the stirrer occupies the 
entire volume of the modal cell located at the summit of the chamber. The metal 
blades rotation thus has the effect of deeply modifying the local field distribution. 
The continuity conditions imposed on the boundaries of the modal cell make the 
field dislocation contaminate all the other cells. The very important disturbance of 
the field distribution is accompanied by a very significant shift of the 
eigenfrequency of the cavity.  

Indeed, going back to the 1D model indicates that such a scenario introduces into 
the coaxial line in Figure 2.5 an obstacle whose longitudinal dimension is close to 
half a wavelength. Such a large scale alteration of the local geometry of the cavity 
will thus produce a very important deviation of the natural oscillations frequency, as 
well as a deep alteration of the longitudinal distribution of the currents and voltages.  

Knowing that a 3D cavity leads to the theoretical modal distribution shown in 
Figure 2.11, the positions of these N modes will be modified by the rotation of the 
metal blades and materialized by distinct frequency deviations.  

Moreover, we know that the energy losses produced in the walls of the chamber 
introduce modal interferences. These interferences contribute to the mixing of the 
standing waves. The composition of the waves is far from a perfect sinusoidal law.  

These factors, added to the presence of the stirrer and to the many deviations of 
the eigenmodes frequencies, generate a field distribution avoiding rigorous 
deterministic predictions. The more the chamber becomes oversized compared to the 
wavelength, the more we increase the deviation of the modal frequencies.  
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2.4.3. Experimental proof of the modal excursion  

Some results of experiments practiced on a reverberation chamber highlight the 
physical reality of the eigenmodes excursion, generated by the stirrer rotation.  

The chamber corresponds to the geometrical parameters and to the mode stirrer 
shown in Figure 2.15. The transmission antenna is made up of a wire, located at 
about 15 cm from two metal walls adjoining the chamber. The reception antenna of 
identical constitution is located close to the walls opposite to the previous ones. 

The advantage given by the concept of the transmission line mainly comes from 
the ability of such type of antennas to be matched on a very wide range of 
frequencies. Figure 2.16 brings some details on the arrangement of the antennas. 

Knowing that the fundamental mode of the chamber is located at 80 MHz, 
measurements have been taken to cover the first eigenmodes located between 
70 MHz and 130 MHz. The measurements have then been extended on two 
frequency bands of 20 MHz, respectively centered on 310 MHz and 910 MHz. This 
choice put the experiment in conditions of under and oversizing of the chamber. 

RF source 

Load

Load 

Towards the receiver

Transmitting 
antenna 

Receiving 
antenna 

Chamber 

 

Figure 2.16. Installation of the lines operating as transmitting and reception antennas 

The layout in Figure 2.17 practiced at 70 MHz and 130 MHz show the variation 
of the power collected on the receiving antenna when we maintain the power 
invariant at the transmitting antenna. The vertical dotted lines give the location of 
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the modes. These modes are calculated by formula [2.56] established on the 
assumption of the empty rectangular cavity.  

We realize that the first maximum of the experimental curve exactly coincides 
with the empty chamber first eigenmode, located at 80.4 MHz. 

However, as soon as we move away from the first eigenmode, we observe a 
more or less important gap with the modal frequencies predicted by the formula 
[2.56]. These conflicts bring concrete proof of the mode shifting generated by the 
electromagnetic coupling inside the room. This phenomenon is produced by the 
metal objects contained in the chamber, notably the presence of the mode stirrer. 
Indeed, each maximum indicates a resonance frequency that corresponds to its own 
excursion. We will notice that the amplitude of the maximums is different as a 
function of their position versus the frequency. This phenomenon is related to the 
level of modal excitation. A simplified explanation for this excitation level has been 
made in section 2.3.5.  

       

 

 

 

 

 

 

 

 
 

 

 

Figure 2.17. Comparison of mode positions between 70 MHz and 130 MHz 

In the second experiment practiced between 300 MHz and 320 MHz, the layout 
(continuous line in Figure 2.18) gives the power collected on the receiving antenna 
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when we keep the mode stirrer motionless. The comparison of this curve with the 
position of the empty cavity modes shows that it is practically impossible to 
indentify the resonances stimulated during the experiment. The combination of three 
physical phenomena contributes to this behavior. With the increase of the frequency, 
we witness a growth of the mode density; the energy losses only widen the narrow 
frequency band and their coverings make them indistinguishable. To these primary 
mechanisms, we need to add the growing impact of the mode stirrer, whose size is 
getting close to the size of the modal cells. 

These phenomena are even more amplified in Figure 2.19, devoted to the 
experiment carried out in oversized condition. The curve at the bottom of the graph 
has been recorded with the motionless mode stirrer. In order to amplify the 
disturbance generated by the modal excursions, we add on the first layout the 
maximum powers noted during a revolution of the mode stirrer. The obtained curve 
now has almost no connection with the previous curve. This experiment thus brings 
the proof of the random variations of the power received on the antenna. Let us point 
out that at a fixed frequency, the power received during a revolution of the mode 
stirrer generates a behavior just as unpredictable. 

           

  

 

 

 

 

 

  

 

 

 

Figure 2.18. Comparison of mode positions between 300 MHz and 320 MHz 
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Figure 2.19. Comparison of the fixed and mobile stirrer layout positions 

With the impossibility of describing these curves with the simple combination of 
analytical functions, we prefer to compare the power collected on the receiving 
antenna to a random variable. Knowing that the induced power comes from the 
standing waves, the concept of random variable can be extended to the electric and 
magnetic field variables. It is certain that at this complexity level, the analysis of the 
mode distribution is still the object of research studies [COZ 09].  

2.5. Discussion  

2.5.1. On the geometry of reverberation chambers 

If the use of rectangular form chambers seems more rational with the prospect of 
easier insertion into the buildings, other geometrical structures are also possible. 

Let us imagine a chamber with a circular ground floor, used in a similar way to 
the rectangular shaped room. The calculation would then highlight eigenmodes 
attached to indices organized in triplets of integers. The distribution of the 
eigenmodes versus frequency would then evidently be dependent on the analytical 
nature of the functions constituting every mode. In addition to the sine functions 
encountered for the parallelepiped we would find, for the cylindrical cavity, Bessel 
functions of the first kind. Their contribution should indeed have an impact on the 
mode distribution. 
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Considering the contrast of the dimensions, the impact will manifest itself with 
the appearance of mode packets. Let us consider the case of a skyscraper 
transformed in the reverberation chamber with a rectangular ground floor. The 1D 
model discussed in the first section of this chapter is indeed transposable to this 
case. Indeed, we are in the presence of a waveguide with short-circuited ends. With 
this analogy, as soon as we have gone through the cut-off frequency of the first 
guided mode, the cavity will behave strictly in the same way as the coaxial cavity by 
producing resonance frequencies periodically spaced out from the c/2L0 quantity, 
where c represents the celerity and L0 the height of the skyscraper. As soon as the 
cut of the second mode is made, a new resonance spectrum will appear and so on. 
Finally, the resonance distribution will be controlled by a series of periodical 
processes regulated by the emergence of the modes of the waveguide. A skyscraper 
with a cylindrical ground floor would not deeply change this behavior. 

In the configuration of any other cavity made up of non-parallel walls breaking, 
as much as possible, the initial symmetry of the parallelepiped, the empty cavity 
would have resonances whose amplitude distribution would be far from the sine 
functions attached to the parallelepiped. It is plausible that such a geometry would 
anticipate the random behavior of the field distribution activated by mode stirring.  

2.5.2. On the use of the RLC resonators 

The comparison of a reverberation chamber to a network of RLC oscillators 
described in section 2.2.4 must take into account several conditions. To carry out 
this analogy, the Gn conductance brought back on each resonator must be low 
enough in order to preserve the assessment of the power losses in the cavity. The 
very subjective evaluation of this criterion can only be correctly established with the 
help of a preliminary estimate of the quality factor of the cavity excited on the 
resonance of n order. Moreover, it is necessary to know that the errors introduced by 
this simplified point of view are increased as soon as the modal interferences are 
involved. This is currently the case for cavities that are oversized compared to the 
wavelength.  

The use of RLC resonators is particularly helpful to simulate the cavity in 
transient state. Knowing that this particular functioning results from the composition 
of successive reflections of the waves on the chamber walls, we should check if the 
approximate response of the resonators corresponds to the envelope of the effective 
transient response. With this purpose, we can find an advantage in investigating the 
first reflection episodes. The use of a model borrowed from the electric images 
theory can give interesting results. We know that the progress of the energy in the 
cavity is coordinated by the increase of clusters of images generating interferences. 
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We can easily evaluate their resulting amplitude in preparation for such a 
confrontation [BAR 02]. 

2.5.3. On the contribution of the modal interferences 

We know that for a cavity operating close to the first eigenmode the selection of 
a mode produces the analogy with the transfer function of a resonant circuit. If we 
modify the characteristics of the cavity by rotation of the mode stirrer, the tuning 
frequency of the mode involved will be altered in a proportion that only a theoretical 
simulation can predict with accuracy. Under these conditions, the field distribution 
carried out in the cavity can be expressed by a series constituted of terms composed 
of orthogonal functions. Except for cavities of simple geometrical forms (such as 
parallelepipeds or cylinders), the analytical description of the functions is almost 
impossible. If it is a parallelepiped containing a mode stirrer, we prefer to keep the 
sine and cosine functions coming from the calculation carried out with the empty 
cavity. Under this hypothesis and in the presence of a mode excited in the 
neighborhood of the first resonance frequency, the amplitude of the coefficients 
allocated to the functions will give a clearly marked maximum on the terms, whose 
indices are getting the closest to the excited mode resonance. Except for the tuning, 
the coefficients no longer respect this selection rule. Let us take a look at the 
functioning of a cavity that is oversized compared to the wavelength. The field 
description established on the sine functions always remains valid. The tuning of the 
cavity becomes highly plausible whatever the excitation frequency. Thus the 
amplitude allocated to the coefficients contained in the series has maximums for the 
indices giving eigenfrequencies close to the excitation frequency. The dispersion 
law of the coefficients is then controlled by modal interferences generated in the Δf0 
bandwidth of the mainly excited mode. 

Indeed, we have mentioned above that a mode excited on the f0 frequency 
amounts to a resonant circuit of Δf0 bandwidth. In this short frequency gap, much 
lower than f0, many other modes insert themselves, this phenomenon becomes more 
amplified as the cavity becomes oversized compared to the wavelength. The 
excitation level of the modes is evidently functions of the configuration of the 
transmitting antenna. Transported in the representation adopting the sine functions, 
the modal interferences will be similar to a group of sinusoidal standing waves, 
whose own periods are not in harmonic ratio. The amplitude allocated to the sine 
functions can only be determined after having knowledge of the field distribution 
thus excited. Thus, the theoretical simulation of the field remains possible at the cost 
of a very high requirement in numerical computation. It is mainly this difficulty that 
encourages us to choose random field distribution model. We will notice that the 
hypothesis does not contradict the composition of the interferences, whose resulting 
effect tends to behave as a random variable. Knowing that the mode stirrer rotation 
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deeply renews the interferences, we can select NB positions of the stirrer restoring 
NB independent combinations of interferences.  

From this qualitative description, it is practically admitted that the field 
distribution in an electromagnetic cavity, which is oversized compared to the 
wavelength, gets close to a stochastic process. The amplitude of voltages or of 
power collected on sensors or antennas installed in the chamber will thus be for 
these reasons comparable to a random variable.  
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