
Appendix 5 

Electric Dipole Formulas 

A5.1. Complete formulas of the electric dipole 

Let us consider a short wire of longitudinal dimension ΔL where a uniform and 
sine wave current I of ω angular frequency flows. An observer P is located at a 
distance r from the short wire in order to meet the r >> ΔL condition (Fresnel 
region).  

With the assumptions previously established and taking into account the fact that 
the distance r is attached to a spherical coordinate system, whose origin coincides 
with the center of the wire, it is an electric dipole, which is represented with the 
notation conventions from Figure A5.1. Solving the wave equation in order to 

determine the radiated electromagnetic fields from this electric dipole, leads to an E


 
electric field vector, including two projections according to the polar angle θ and the 

radial direction r respectively. A magnetic field vector H


 with symmetry of 
revolution including only one component is attached to the previous electric field 
vector. The magnetic field vector is directed according to the azimuth angle φ 
[DEM 05]: 

r rE E u E u H H u     
   

 [A5.1] 

We find, in this relation, unit vectors which were omitted in Figure A5.1. 
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Figure A5.1. The electric dipole in the spherical coordinate system  

Under the previous assumptions, we seek Eθ, Er and Hφ in the analytical 
expressions below: 
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We find in these formulas the wave number in free space k, whose expressions 
linked to the ω angular frequency or to the λ wavelength will be recalled below.  
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In this formula c, the speed of light in vacuum, appears. 
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A5.2. Near-field formulas of the electric dipole 

From the previous relationships, we take approximated formulas only valid for 
the distances r that are much lower than the λ wavelength. Under these conditions 
and taking into account equation [A5.5], the kr product being much lower than one, 
the use of the first term of the series expansion of equations [A5.2] to [A5.4] leads to 
the near-field formulae of Eθ, Er and Hφ, i.e.: 
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The p parameter is similar to the dipolar moment found in electrostatic theory: 

with
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In equation [A5.9], q then represents the electric charges of a displacement 
current with an amplitude strictly similar to that of the I flowing current on the short 
wire in Figure A5.1. 

A5.3. Far-field formulas of the electric dipole 

The far-field of the electric dipole is produced at a distance r that is much longer 
than the wavelength. Under these conditions, the kr product takes a value that is 
much higher than one, which suggests use of the asymptomatic forms of equations 
[A5.2] to [A5.4]. In that case, we can show that the radial component of the electric 
field vanishes.  

Consequently, only Eθ and Hφ remain: 

01
4

jk rI L ekr E j
r

 



    [A5.10] 



398     Electromagnetic Reverberation Chambers 

1
w

E
kr H

Z


    [A5.11] 

The remaining electric and magnetic field projections obey to the same law with 
the angular frequency ω and the distance r of the observer. The ratio of Eθ and Hφ 
corresponds to the impedance of the Zw plane wave, which is recalled below: 
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