
this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(1.25 INCH BULK -- 640 pages -- 50# Thor)

The EXPERT’s VOIce® in .NET

Don Syme, Adam Granicz,
and Antonio Cisternino
Foreword by Erik Meijer

Expert

F#
Take functional programming to the next level
while enjoying the benefits of a language based
on the .NET Framework

Books for professionals by professionals®

Expert F#
Dear Reader,

Functional programming is about concise, beautiful, and powerful code; and
as you master the functional way of thinking you will get a boost in productivity
and great personal enjoyment out of the clarity, compositionality, and brevity
of your programs.

In this book, you’ll learn about F#, an exciting new language that brings
functional programming to .NET. F# offers a unique combination of functional
and object-oriented styles, has complete and seamless interoperability with
.NET, and has many features and characteristics of dynamic languages but with
the performance of a compiled language. This book is the single most complete
and comprehensive guide to the language, including all of its advanced fea-
tures such as active patterns, sequence and computation expressions, quota-
tions, and lazy evaluation. Whether you’re using standard functional features
such as pattern matching and recursive functions or some unique F# features
such as asynchronous workflows, it becomes natural to write programs that
spawn threads, model probabilistic events, perform lightning-fast symbolic or
numerical computations, translate and manipulate language representations,
describe server and client code for web pages in a single entity, manipulate
data using typed queries, draw custom UI controls, and interoperate with com-
ponents built on unmanaged code, to name only a few. All of these and more
are demonstrated by example in this book. Many of the examples are only a few
lines long, and all are crafted with care, ready for use in your applications.

For functional programmers, this book is full of treasures and a whole host
of practical guidance. If this is your first time with a functional language, look
no further—you are in for a treat and a great journey! We wish you bon voyage
and lots of fun on your exploration of this language.

Don Syme, Adam Granicz, and Antonio Cisternino

F#
Sym

e, Granicz,
Cisternino

 CYAN
  MAGENTA

 YELL OW
  BLACK
  PANTONE 123 C

ISBN-13: 978-1-59059-850-4
ISBN-10: 1-59059-850-4

9 781590 598504

90000

Shelve in
.NET

User level:
Advanced

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Companion
eBook Available

SOURCE CODE ALSO AVAILABLE
ONLINE AT www.expert-fsharp.com

Related Title

Expert

Expert F#

■ ■ ■

Don Syme, Adam Granicz, and
Antonio Cisternino

Syme_850-4FRONT.fm Page i Monday, October 29, 2007 10:07 AM

Expert F#

Copyright © 2007 by Don Syme, Adam Granicz, and Antonio Cisternino

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-850-4

ISBN-10: 1-59059-850-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jim Huddleston, Jonathan Hassell
Technical Reviewer: Tomáš Petrícek
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Susan Glinert
Proofreader: April Eddy
Indexer: Present Day Indexing
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.expert-fsharp.com.

Syme_850-4FRONT.fm Page ii Monday, October 29, 2007 10:07 AM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.expert-fsharp.com

This book is dedicated to the memory of James Huddleston,

the editor at Apress who initiated this book project and encouraged

the authors with his insights, loyalty, enthusiasm, and humor.

Jim passed away in February 2007, an enormous loss

to his family, Apress, and the authors.

Syme_850-4FRONT.fm Page iii Monday, October 29, 2007 10:07 AM

Syme_850-4FRONT.fm Page iv Monday, October 29, 2007 10:07 AM

v

Contents at a Glance

Foreword . xxi

About the Authors . xxiii

About the Technical Reviewer . xxv

Acknowledgments . xxvii

■CHAPTER 1 Introduction . 1

■CHAPTER 2 Getting Started with F# and .NET . 7

■CHAPTER 3 Introducing Functional Programming . 27

■CHAPTER 4 Introducing Imperative Programming . 69

■CHAPTER 5 Mastering Types and Generics . 101

■CHAPTER 6 Working with Objects and Modules . 125

■CHAPTER 7 Encapsulating and Packaging Your Code . 155

■CHAPTER 8 Mastering F#: Common Techniques . 181

■CHAPTER 9 Introducing Language-Oriented Programming 211

■CHAPTER 10 Using the F# and .NET Libraries . 255

■CHAPTER 11 Working with Windows Forms and Controls 275

■CHAPTER 12 Working with Symbolic Representations . 317

■CHAPTER 13 Reactive, Asynchronous, and Concurrent Programming 355

■CHAPTER 14 Building Web Applications . 393

■CHAPTER 15 Working with Data . 431

■CHAPTER 16 Lexing and Parsing . 461

■CHAPTER 17 Interoperating with C and COM . 491

■CHAPTER 18 Debugging and Testing F# Programs . 523

■CHAPTER 19 Designing F# Libraries . 545

■APPENDIX F# Brief Language Guide . 563

■INDEX . 571

Syme_850-4FRONT.fm Page v Monday, October 29, 2007 10:07 AM

Syme_850-4FRONT.fm Page vi Monday, October 29, 2007 10:07 AM

vii

Contents

Foreword . xxi

About the Authors . xxiii

About the Technical Reviewer . xxv

Acknowledgments . xxvii

■CHAPTER 1 Introduction . 1

The Genesis of F# . 1

About This Book . 2

Who This Book Is For . 5

■CHAPTER 2 Getting Started with F# and .NET . 7

Creating Your First F# Program . 7
Turning On the Lightweight Syntax Option . 9

Documenting Code Using XMLDocs . 10

Understanding Scope and Using “let” . 10

Understanding Types . 13

Calling Functions . 14

Using Data Structures . 15

Using Properties and the Dot-Notation . 16

Using Tuples . 17

Using Imperative Code . 19

Using .NET Libraries from F# . 20

Using open to Access Namespaces and Modules. 21

Using new and Setting Properties. 22

Fetching a Web Page . 23

Summary . 25

Syme_850-4FRONT.fm Page vii Monday, October 29, 2007 10:07 AM

viii ■CO N T E N T S

■CHAPTER 3 Introducing Functional Programming . 27

Getting Started with F# Arithmetic . 27

Basic Literals . 27

Arithmetic Operators . 28

Bitwise Operations . 29

Arithmetic Conversions . 30

Arithmetic Comparisons . 31

Overloaded Math Functions . 31

Introducing Simple Strings . 31

Working with String Literals and Primitives . 32

Building Strings . 33

Working with Lists and Options . 34

Using F# Lists . 34

Using F# Option Values . 37

Using Option Values for Control. 39

Working with Conditionals: && and || . 39

Defining Recursive Functions . 40

Introducing Function Values . 42

Using Anonymous Function Values . 43

Computing with Aggregate Operators . 44

Composing Functions with >> . 45

Building Functions with Partial Application . 46

Using Local Functions . 47

Using Functions As Abstract Values . 48

Iterating with Aggregate Operators . 49

Abstracting Control with Functions . 49

Using .NET Methods As First-Class Functions. 50

Getting Started with Pattern Matching . 51

Matching on Structured Values . 53

Guarding Rules and Combining Patterns . 54

Getting Started with Sequences . 55

Using Range Expressions. 55

Iterating a Sequence . 56

Transforming Sequences with Aggregate Operators 56

Which Types Can Be Used As Sequences? . 57

Using Lazy Sequences from External Sources 58

Syme_850-4FRONT.fm Page viii Monday, October 29, 2007 10:07 AM

■C ON TE N TS ix

Using Sequence Expressions . 59

Creating Sequence Expressions Using for . 60

Enriching Sequence Expressions with Additional Clauses 60

Enriching Sequence Expressions to Specify Lists and Arrays 61

Exploring Some Simple Type Definitions . 62

Defining Type Abbreviations . 62

Defining Records. 63

Handling Non-unique Record Field Names . 64

Cloning Records . 64

Defining Discriminated Unions . 65

Using Discriminated Unions As Records . 67

Defining Multiple Types Simultaneously . 67

Summary . 68

■CHAPTER 4 Introducing Imperative Programming . 69

Imperative Looping and Iterating . 70

Simple for loops . 70

Simple while loops . 71

More Iteration Loops Over Sequences . 71

Using Mutable Records . 72

Mutable Reference Cells . 73

Avoiding Aliasing. 74

Hiding Mutable Data . 75

Using Mutable Locals . 76

Working with Arrays . 77

Generating and Slicing Arrays . 79

Two-Dimensional Arrays . 80

Introducing the Imperative .NET Collections . 80

Using Resizeable Arrays. 80

Using Dictionaries . 81

Using Dictionary’s TryGetValue . 82

Using Dictionaries with Compound Keys . 83

Some Other Mutable Data Structures. 84

Exceptions and Controlling Them . 84

Catching Exceptions . 86

Using try . . . finally. 86

Defining New Exception Types . 87

Syme_850-4FRONT.fm Page ix Monday, October 29, 2007 10:07 AM

x ■CO N T E N T S

Having an Effect: Basic I/O . 88

Very Simple I/O: Reading and Writing Files . 88

.NET I/O via Streams . 89

Some Other I/O-Related Types . 91

Using System.Console . 91

Using printf and Friends . 91

Generic Structural Formatting . 93

Cleaning Up with IDisposable, use, and using. 93

Working with null Values . 94

Some Advice: Functional Programming with Side Effects 95

Consider Replacing Mutable Locals and Loops
with Recursion . 96

Separate Pure Computation from Side-Effecting
Computations . 96

Separating Mutable Data Structures . 97

Not All Side Effects Are Equal . 98

Avoid Combining Imperative Programming and Laziness 98

Summary . 100

■CHAPTER 5 Mastering Types and Generics . 101

Understanding Generic Type Variables . 101

Writing Generic Functions . 102

Understanding Some Important Generic Functions 103

Generic Comparison . 103

Generic Hashing . 105

Generic Pretty-Printing . 105

Generic Boxing and Unboxing . 106

Generic Binary Serialization via the .NET Libraries 107

Making Things Generic . 108

Generic Algorithms Through Explicit Arguments. 108

Generic Algorithms Through Abstract Object Types 110

Understanding .NET Types . 112

Reference Types and Value Types . 112

Other Flavors of .NET Types . 113

Understanding Subtyping . 113

Casting Up Statically. 114

Casting Down Dynamically . 114

Performing Type Tests via Pattern Matching. 115

Using Flexible # Types . 116

Knowing When Upcasts Are Applied Automatically 117

Syme_850-4FRONT.fm Page x Monday, October 29, 2007 10:07 AM

■C ON TE N TS xi

Troubleshooting Type Inference Problems . 118

Using a Visual Editing Environment . 118

Using Type Annotations . 118

Understanding the Value Restriction . 119

Working Around the Value Restriction . 120

Understanding Generic Overloaded Operators 123

Summary . 123

■CHAPTER 6 Working with Objects and Modules . 125

Getting Started with Objects and Members . 125

Using Constructed Classes . 128

Adding Further Object Notation to Your Types . 131

Working with Indexer Properties . 131

Adding Overloaded Operators . 132

Using Named and Optional Arguments . 133

Using Optional Property Settings . 134

Adding Method Overloading . 135

Defining Object Types with Mutable State . 137

Getting Started with Object Interface Types . 139

Defining New Object Interface Types . 140

Implementing Object Interface Types Using
Object Expressions . 140

Implementing Object Interface Types Using Concrete Types 142

Using Common Object Interface Types from the
.NET Libraries. 142

Understanding Hierarchies of Object Interface Types 143

More Techniques to Implement Objects . 144

Combining Object Expressions and Function Parameters 144

Defining Partially Implemented Class Types 146

Using Partially Implemented Types via Delegation 146

Using Partially Implemented Types via
Implementation Inheritance . 147

Using Modules and Static Members . 148

Extending Existing Types and Modules . 150

Working with F# Objects and .NET Types . 151

Structs . 152

Delegates . 152

Enums . 153

Summary . 153

Syme_850-4FRONT.fm Page xi Monday, October 29, 2007 10:07 AM

xii ■CO N T E N T S

■CHAPTER 7 Encapsulating and Packaging Your Code 155

Hiding Things Away . 156

Hiding Things with Local Definitions . 156

Hiding Things with Accessibility Annotations 158

Using Namespaces and Modules . 161

Putting Your Code in a Namespace . 162

Using Files As Modules . 163

Using Signature Types and Files . 164

Using Explicit Signature Types and Signature Files 164

When Are Signature Types Checked? . 166

Creating Assemblies, DLLs, and EXEs . 166

Compiling EXEs . 166

Compiling DLLs . 167

Mixing Scripting and Compiled Code . 168

Choosing Optimization Settings . 169

Generating Documentation . 170

Building Shared Libraries and the Using Global
Assembly Cache . 171

Using Static Linking . 172

Packaging Applications . 173

Packaging Different Kinds of Code . 173

Using Data and Configuration Settings. 174

Building Installers . 177

Deploying Web Applications . 178

Summary . 179

■CHAPTER 8 Mastering F#: Common Techniques . 181

Equality, Hashing, and Comparison . 181

Efficient Precomputation and Caching . 184

Precomputation and Partial Application . 184

Precomputation and Objects . 185

Memoizing Computations . 187

Lazy Values . 189

Other Variations on Caching and Memoization 190

Cleaning Up Resources . 190

Cleaning Up with use . 191

Managing Resources with More Complex Lifetimes. 193

Cleaning Up Internal Objects . 194

Cleaning Up Unmanaged Objects . 196

Syme_850-4FRONT.fm Page xii Monday, October 29, 2007 10:07 AM

■C ON TE N TS xiii

Cleaning Up in Sequence Expressions . 197

Using using . 198

Stack As a Resource: Tail Calls and Recursion . 198

Tail Recursion and List Processing . 200

Tail Recursion and Object-Oriented Programming 202

Tail Recursion and Processing Unbalanced Trees 203

Using Continuations to Avoid Stack Overflows 204

Another Example: Processing Syntax Trees 206

Events and Wiring . 207

Events As First-Class Values . 208

Creating and Publishing Events. 209

Summary . 210

■CHAPTER 9 Introducing Language-Oriented Programming 211

Using XML As a Concrete Language Format . 212

Using the System.Xml Namespace . 212

From Concrete XML to Abstract Syntax . 214

Working with Abstract Syntax Representations 217

Abstract Syntax Representations: “Less Is More” 217

Processing Abstract Syntax Representations 218

Transformational Traversals of Abstract
Syntax Representations . 219

Using On-Demand Computation with Abstract Syntax Trees 220

Caching Properties in Abstract Syntax Trees. 221

Memoizing Construction of Syntax Tree Nodes. 222

Introducing Active Patterns . 224

Converting the Same Data to Many Views . 225

Matching on .NET Object Types . 227

Defining Partial and Parameterized Active Patterns 228

Hiding Abstract Syntax Implementations with Active Patterns . . . 228

Embedded Computational Languages with Workflows 230

An Example: Success/Failure Workflows . 232

Defining a Workflow Builder . 235

Workflows and “Untamed” Side Effects. 238

Example: Probabilistic Workflows . 239

Combining Workflows and Resources . 244

Recursive Workflow Expressions . 244

Using F# Reflection . 245

Reflecting on Types . 245

Schema Compilation by Reflecting on Types 245

Syme_850-4FRONT.fm Page xiii Monday, October 29, 2007 10:07 AM

xiv ■CO N T E N T S

Using F# Quotations . 249

Example: Using F# Quotations for Error Estimation 251

Resolving Top Definitions . 253

Summary . 254

■CHAPTER 10 Using the F# and .NET Libraries . 255

A High-Level Overview . 255

Namespaces from the .NET Framework . 256

Namespaces from the F# Libraries. 258

Using the System Types . 259

Using Regular Expressions and Formatting . 261

Matching with System.Text.RegularExpressions 261

Formatting Strings Using .NET Formatting 265

Encoding and Decoding Unicode Strings . 266

Encoding and Decoding Binary Data . 266

Using Further F# and .NET Data Structures . 266

System.Collections.Generic and Other .NET Collections 267

Introducing Microsoft.FSharp.Math . 268

Using Matrices and Vectors . 268

Using Operator Overloads on Matrices and Vectors 269

Supervising and Isolating Execution . 270

Further Libraries for Reflective Techniques . 270

Using General Types. 270

Using Microsoft.FSharp.Reflection . 271

Some Other .NET Types You May Encounter . 272

Some Other .NET Libraries . 273

Summary . 274

■CHAPTER 11 Working with Windows Forms and Controls 275

Writing “Hello, World!” in a Click . 275

Understanding the Anatomy of a Graphical Application 276

Composing User Interfaces . 277

Drawing Applications . 282

Writing Your Own Controls . 287

Developing a Custom Control . 287

Anatomy of a Control . 290

Syme_850-4FRONT.fm Page xiv Monday, October 29, 2007 10:07 AM

■C ON TE N TS xv

Displaying Samples from Sensors . 291

Building the GraphControl: The Model . 292

Building the GraphControl: Style Properties and Controller 294

Building the GraphControl: The View . 298

Putting It Together . 302

Creating a Mandelbrot Viewer . 303

Computing Mandelbrot. 304

Setting Colors . 305

Creating the Visualization Application . 308

Creating the Application Plumbing . 310

Summary . 315

■CHAPTER 12 Working with Symbolic Representations 317

Symbolic Differentiation and Expression Rendering 318

Modeling Simple Algebraic Expressions . 318

Implementing Local Simplifications . 320

A Richer Language of Algebraic Expressions 321

Parsing Algebraic Expressions . 323

Simplifying Algebraic Expressions . 325

Symbolic Differentiation of Algebraic Expressions 328

Rendering Expressions. 329

Building the User Interface . 335

Verifying Circuits with Propositional Logic . 338

Representing Propositional Logic . 339

Evaluating Propositional Logic Naively . 340

From Circuits to Propositional Logic . 343

Checking Simple Properties of Circuits . 346

Representing Propositional Formulae Efficiently Using BDDs 347

Circuit Verification with BDDs . 350

Summary . 353

■CHAPTER 13 Reactive, Asynchronous, and
Concurrent Programming . 355

Introducing Some Terminology . 356

Using and Designing Background Workers . 357

Building a Simpler Iterative Worker . 359

Raising Additional Events from Background Workers 362

Connecting a Background Worker to a GUI 363

Syme_850-4FRONT.fm Page xv Monday, October 29, 2007 10:07 AM

xvi ■CO N T E N T S

Introducing Asynchronous Computations . 365

Fetching Multiple Web Pages Asynchronously 365

Understanding Thread Hopping. 367

Under the Hood: What Are Asynchronous Computations? 369

File Processing Using Asynchronous Workflows 371

Running Asynchronous Computations . 374

Common I/O Operations in Asynchronous Workflows 375

Under the Hood: Implementing a Primitive
Asynchronous Step . 376

Under the Hood: Implementing Async.Parallel 377

Understanding Exceptions and Cancellation 378

Passing and Processing Messages . 379

Introducing Message Processing . 379

Creating Objects That React to Messages . 381

Scanning Mailboxes for Relevant Messages 384

Example: Asynchronous Web Crawling . 385

Using Shared-Memory Concurrency . 388

Creating Threads Explicitly . 388

Shared Memory, Race Conditions, and the .NET
Memory Model . 389

Using Locks to Avoid Race Conditions . 390

Using ReaderWriterLock . 391

Some Other Concurrency Primitives . 392

Summary . 392

■CHAPTER 14 Building Web Applications . 393

Serving Static Web Content . 393

Serving Dynamic Web Content with ASP.NET . 396

Understanding the Languages Used in ASP.NET. 397

A Simple ASP.NET Web Application . 399

Deploying and Running the Application . 402

Using Code-Behind Files . 404

Using ASP.NET Input Controls . 406

Displaying Data from Databases . 409

Going Further with ASP.NET . 412

ASP.NET Directives . 412

Server Controls . 413

Debugging, Profiling, and Tracing . 415

Syme_850-4FRONT.fm Page xvi Monday, October 29, 2007 10:07 AM

■C ON TE N TS xvii

Understanding the ASP.NET Event Model . 416

Maintaining the View State . 418

Understanding the Provider Model . 419

Creating Custom ASP.NET Server Controls 421

Building Ajax Rich Client Applications . 422

More on F# Web Tools . 423

Using Web Services . 424

Consuming Web Services . 425

Calling Web Services Asynchronously . 427

Summary . 429

■CHAPTER 15 Working with Data . 431

Querying In-Memory Data Structures . 431

Select/Where/From Queries Using Aggregate Operators 432

Using Aggregate Operators in Queries . 433

Accumulating Using “Folding” Operators . 434

Expressing Some Queries Using Sequence Expressions 435

Using Databases to Manage Data . 436

Choosing Your Database Engine . 438

Understanding ADO.NET . 438

Establishing Connections to a Database Engine 439

Creating a Database . 440

Creating Tables, Inserting, and Fetching Records 442

Using Untyped Datasets . 444

Generating Typed Datasets Using xsd.exe. 446

Using Stored Procedures . 448

Using Data Grids . 449

Working with Databases in Visual Studio . 450

Creating a Database . 450

Visual Data Modeling: Adding Relationships 450

Accessing Relational Data with F# LinqToSql . 452

Generating the Object/Relational Mapping 453

Building the DataContext Instance . 453

Using LinqToSql from F# . 454

Working with XML As a Generic Data Format . 455

Constructing XML via LINQ . 457

Storing, Loading, and Traversing LinqToXml Documents 458

Querying XML . 459

Summary . 459

Syme_850-4FRONT.fm Page xvii Monday, October 29, 2007 10:07 AM

xviii ■CO N T E N T S

■CHAPTER 16 Lexing and Parsing . 461

Processing Line-Based Input . 462

On-Demand Reading of Files. 463

Using Regular Expressions . 463

Tokenizing with FsLex . 464

The fslex Input in More Detail . 467

Generating a Simple Token Stream . 468

Tracking Position Information Correctly . 470

Handling Comments and Strings . 471

Recursive-Descent Parsing . 473

Limitations of Recursive-Descent Parsers . 477

Parsing with FsYacc . 477

The Lexer for Kitty . 478

The Parser for Kitty . 480

Parsing Lists . 482

Resolving Conflicts, Operator Precedence, and Associativity 483

Putting It Together . 484

Binary Parsing and Pickling Using Combinators 486

Summary . 489

■CHAPTER 17 Interoperating with C and COM . 491

Common Language Runtime . 491

Memory Management at Run Time . 494

COM Interoperability . 496

Platform Invoke . 507

Getting Started with PInvoke . 508

Data Structures . 510

Marshalling Strings. 513

Function Pointers . 516

PInvoke Memory Mapping . 517

Wrapper Generation and Limits of PInvoke 520

Summary . 522

■CHAPTER 18 Debugging and Testing F# Programs 523

Debugging F# Programs . 524

Using Advanced Features of the Visual Studio Debugger 526

Instrumenting Your Program with the System.Diagnostics
Namespace . 528

Debugging Concurrent and Graphical Applications 531

Syme_850-4FRONT.fm Page xviii Monday, October 29, 2007 10:07 AM

■C ON TE N TS xix

Debugging and Testing with F# Interactive . 533

Controlling F# Interactive . 534

Some Common F# Interactive Directives . 535

Understanding How F# Interactive Compiles Code 535

Unit Testing . 537

Summary . 543

■CHAPTER 19 Designing F# Libraries . 545

Designing Vanilla .NET Libraries . 546

Understanding Functional Design Methodology 551

Understanding Where Functional Programming Comes From. . . . 551

Understanding Functional Design Methodology 552

Applying the .NET Design Guidelines to F# . 554

Some Recommended Coding Idioms . 560

Summary . 562

■APPENDIX F# Brief Language Guide . 563

Comments and Attributes . 563

Basic Types and Literals . 563

Types . 564

Patterns and Matching . 564

Functions, Composition, and Pipelining . 564

Binding and Control Flow . 565

Exceptions . 565

Tuples, Arrays, Lists, and Collections. 566

Operators . 567

Type Definitions and Objects . 568

Namespaces and Modules. 569

Sequence Expressions and Workflows. 569

■INDEX . 571

Syme_850-4FRONT.fm Page xix Monday, October 29, 2007 10:07 AM

Syme_850-4FRONT.fm Page xx Monday, October 29, 2007 10:07 AM

xxi

Foreword

According to Wikipedia, “Scientists include theoreticians who mainly develop new models to
explain existing data and experimentalists who mainly test models by making measurements—
though in practice the division between these activities is not clear-cut, and many scientists
perform both.” The domain-specific language that many scientists use to define their models is
mathematics, and since the early days of computing science, the holy grail has been to close the
semantic gap between scientific models and executable code as much as possible. It is becoming
increasingly clear that all scientists are practicing applied mathematics, and some scientists,
such as theoretical physicists, are behaviorally indistinguishable from pure mathematicians.
The more we can make programming look like mathematics, the more helpful we make it to
scientists and engineers.

John Backus wrote the design for the “IBM Mathematical Formula Translating System,”
which later became the language FORTAN, in the early 1950s. Still today, FORTRAN is popular
within the scientific community for writing efficient numeric computations. The second oldest
programming language, Lisp, was invented by John McCarthy in 1958. Like FORTRAN, Lisp was
also inspired by mathematics, in this case by Alonzo Church’s lambda calculus. Today, Lisp is
still popular in the scientific community for writing high-level symbolic computations.

Interestingly, despite their common roots in mathematics, one can consider FORTRAN
as the mother of all imperative and object-oriented languages and Lisp as the mother of all
declarative languages. Their differences can be accounted to point of view: FORTRAN starts
close to the machine with numbers and moves upward toward the mathematics, adding layers
of abstraction where possible. Lisp starts with the mathematics with symbols and grows down-
ward to the machine, peeling off layers of abstraction when necessary. But just as the previous
quote remarks that the division between theoretical and experimental scientists is not clear-
cut, in practice many programming problems require both imperative and declarative aspects.

Functional programming today is a close-kept secret amongst researchers, hackers, and
elite programmers at banks and financial institutions, chip designers, graphic artists, and
architects. As the grandchildren of Lisp, functional programming languages allow developers
to write concise programs that are extremely close to the mathematical models they develop to
understand the universe, the human genome, the pricing of options, the location of oil, the serving
of advertisements on web pages, or the writing of fault-tolerant distributed systems. However,
to the uninformed developer, functional programming seems a cruel and unnatural act, effete
mumbo jumbo. The academic and mathematical origins of functional programming plays
up in scary big words such as type inference, structural types, closures, currying, continuations,
principal types, monads, inference, impredicative higher-ranked types, and so on. Even worse,
most pure functional languages today are not well integrated with mainstream professional
tools and IDEs, libraries, and frameworks.

Syme_850-4FRONT.fm Page xxi Monday, October 29, 2007 10:07 AM

xxii ■FO R E W O R D

Imperative programming today is the tool of choice for scientific programmers who simulate
fluid dynamics, chemical reactions, mechanical models, and commercial software developers
who write operating systems, enterprise applications, and shrink-wrapped software such as
word processors, spreadsheets, games, media players, and so on. Imperative languages typically
have great tool support, debuggers, profilers, refactoring editors, unit test frameworks, and so
on, and large standard numeric libraries that have been perfected over decades by domain experts.
As grandchildren of FORTRAN, they focus on machine operations first and build abstractions
upward. Compared to functional languages, their syntax is unnecessarily verbose, and they lack
modern features emerging from the mathematics of computing itself, such as closures, type
inference, anonymous and structural types, and pattern matching. These features are essential
for the kind of compositional development that makes functional programming so powerful.

F# is unique amongst both imperative and declarative languages in that it is the golden
middle road where these two extremes converge. F# takes the best features of both paradigms
and tastefully combines them in a highly productive and elegant language that both scientists and
developers identify with. F# makes programmers better mathematicians and mathematicians
better programmers.

Eric Meijer

Syme_850-4FRONT.fm Page xxii Monday, October 29, 2007 10:07 AM

xxiii

About the Authors

■DON SYME is the main designer of F# and has been a functional programmer since 1989. Since
joining Microsoft Research in 1998, he has been a seminal contributor to a wide variety of leading-
edge projects, including generics in C# and the .NET Common Language Runtime. He received
a Ph.D. from the University of Cambridge Computer Laboratory in 1999.

■ADAM GRANICZ is the founder of IntelliFactory, a consultancy firm providing F# expertise. He
has done research on extensible functional compilers, formal environments, and domain-specific
languages. Adam has consulted for EPAM Systems, the leading software outsourcing company
in CE Europe, and he is an industry domain expert in gambling, airline and travel package
distribution, reverse logistics, and insurance/health care. He has a M.Sc. from the California
Institute of Technology.

■ANTONIO CISTERNINO is assistant professor in the Computer Science Department of the University
of Pisa. His primary research is on meta-programming and domain-specific languages on virtual-
machine-based execution environments. He has been active in the .NET community since 2001,
and he recently developed annotated C#, an extension of C#, and Robotics4.NET, a framework
for programming robots with .NET. Antonio has a Ph.D. in computer science from the University
of Pisa.

Syme_850-4FRONT.fm Page xxiii Monday, October 29, 2007 10:07 AM

Syme_850-4FRONT.fm Page xxiv Monday, October 29, 2007 10:07 AM

xxv

About the Technical Reviewer

■TOMÁŠ PETRÍCEK is a graduate student of Charles University in Prague. Tomas is active in the
.NET community, and he has been Microsoft MVP since 2004, awarded for his technical articles
and presentations. Recently, he spent three months as an intern at Microsoft Research working
with the F# team, and he also developed the F# WebTools project. His articles about F# and
various other topics can be found at his website at http://tomasp.net.

Syme_850-4FRONT.fm Page xxv Monday, October 29, 2007 10:07 AM

http://tomasp.net

Syme_850-4FRONT.fm Page xxvi Monday, October 29, 2007 10:07 AM

xxvii

Acknowledgments

We would like to thank Jonathan Hassell, our editor, and Sofia Marchant, our project manager,
for their guidance and flexible schedules to keep us on track for publication. Likewise, we thank
Tomáš Petrícek, the primary technical reviewer, whose comments were invaluable in ensuring
that the book is a comprehensive and reliable source of information. We also thank Chris Barwick,
our original technical reviewer, and Dominic Cooney and Joel Pobar, who both helped with plan-
ning the early structure of the book. Any remaining mistakes are of course our own responsibility.

The various drafts of the chapters were read and commented on by many people, and the
book has benefited greatly from their input. In particular, we would like to thank Ashley Feniello
whose meticulous reviews have proved invaluable and uncovered numerous errors and incon-
sistencies, as well as John Bates, Nikolaj Bjorner, Laurent Le Brun, Richard Black, Chris Brumme,
Jason Bock, Dominic Cooney, Can Erten, Thore Graepel, György Gyurica, Jon Hagen, Jon Harrop,
Andrew Herbert, Ralf Herbrich, Jason Hogg, Anders Janmyr, Paulo Janotti, Pouya Larjani,
Julien Laugel, James Margetson, Richard Mortier, Enrique Nell, Gregory Neverov, Ravi Pandya,
Robert Pickering, Darren Platt, Joel Pobar, Andy Ray, Mark Shields, Guido Scatena, Mark Staples,
Phil Trelford, Dave Waterworth, Dave Wecker, and Onno Zoeter, to name but a few.

We also thank Microsoft Research, without which neither F# nor this book would have
been possible, and we are very grateful for the help and support given to F# by other language
designers, including Anders Hejlsberg, Xavier Leroy, Simon Marlow, Erik Meijer, Malcom Newey,
Martin Odersky, Simon Peyton Jones, Mads Torgersen, and Phil Wadler.

Finally, we thank our families and loved ones for their long-suffering patience. It would
have been impossible to complete this book without their unceasing support.

Syme_850-4FRONT.fm Page xxvii Monday, October 29, 2007 10:07 AM

Syme_850-4FRONT.fm Page xxviii Monday, October 29, 2007 10:07 AM

1

■ ■ ■

C H A P T E R 1

Introduction

F# is a typed functional programming language for the .NET Framework. It combines the
succinctness, expressivity, and compositionality of typed functional programming with the
runtime support, libraries, interoperability, tools, and object model of .NET. Our aim in this
book is to help you become an expert in using F# and the .NET Framework.

Functional programming has long inspired researchers, students, and programmers alike
with its simplicity and expressive power. Applied functional programming is booming: a new
generation of typed functional languages is reaching maturity; some functional language
constructs have been integrated into languages such as C#, Python, and Visual Basic; and there
is now a substantial pool of expertise in the pragmatic application of functional programming
techniques. There is also strong evidence that functional programming offers significant produc-
tivity gains in important application areas such as data access, financial modeling, statistical
analysis, machine learning, software verification, and bio-informatics. More recently, functional
programming is part of the rise of declarative programming models, especially in the data
query, concurrent, reactive, and parallel programming domains.

F# differs from many functional languages in that it embraces imperative and object-
oriented (OO) programming. It also provides a missing link between compiled and dynamic
languages, combining the idioms and programming styles typical of dynamic languages with
the performance and robustness of a compiled language. The F# designers have adopted a
design philosophy that allows you to take the best and most productive aspects of these paradigms
and combine them while still placing primary emphasis on functional programming techniques.
This book will help you understand the power that F# offers through this combination.

F# and .NET offer an approach to computing that will continue to surprise and delight,
and mastering functional programming techniques will help you become a better programmer
regardless of the language you use. There has been no better time to learn functional program-
ming, and F# offers the best route to learn and apply functional programming on the .NET
platform.

The lead designer of the F# language, Don Syme, is one of the authors of this book. This
book benefits from his authority on F# and .NET and from all the authors’ years of experience
with F# and other programming languages.

The Genesis of F#
F# began in 2002 when Don Syme and others at Microsoft Research decided to ensure that the
“ML” approach to pragmatic but theoretically-based language design found a high-quality

Syme_850-4C01.fm Page 1 Tuesday, October 23, 2007 11:57 AM

2 CH AP T E R 1 ■ I N TR O D U CT I ON

expression for the .NET platform. The project was closely associated with the design and
implementation of Generics for the .NET Common Language Runtime. The first major pre-
release of F# was in 2005.

F# shares a core language with the programming language OCaml, and in some ways it can
be considered an “OCaml for .NET.” F# would not exist without OCaml, which in turn comes from
the ML family of programming languages, which dates back to 1974. F# also draws from Haskell,
particularly with regard to two advanced language features called sequence expressions and
workflows. There are still strong connections between the designers of these languages and
overlap in their user communities. The rationale for the design decisions taken during the devel-
opment of F# is documented on the F# project website.

Despite the similarities to OCaml and Haskell, programming with F# is really quite different.
In particular, the F# approach to type inference, OO programming, and dynamic language
techniques is substantially different from all other mainstream functional languages. Program-
ming in F# tends to be more object-oriented than in other functional languages. Programming
also tends to be more flexible. F# embraces .NET techniques such as dynamic loading, dynamic
typing, and reflection, and it adds techniques such as expression quotation and active patterns. We
cover these topics in this book and use them in many application areas.

F# also owes a lot to the designers of .NET, whose vision of language interoperability
between C++, Visual Basic, and “the language that eventually became C#” is still rocking the
computer industry today. Today F# draws much from the broader community around the
Common Language Infrastructure (CLI). This standard is implemented by the Microsoft .NET
Framework, Mono, and Microsoft’s client-side execution environment Silverlight. F# is able to
leverage libraries and techniques developed by Microsoft, the broader .NET community, and
the highly active open source community centered around Mono. These include hundreds of
important libraries and major implementation stacks such as language-integrated queries
using Microsoft’s LINQ.

About This Book
This book is structured in two halves: Chapters 2 to 10 deal with the F# language and basic
techniques and libraries associated with the .NET Framework. Chapters 11 to 19 deal with
applied techniques ranging from building applications through to software engineering and
design issues.

Throughout this book we address both programming constructs and programming techniques.
Our approach is driven by examples: we show code, and then we explain it. Frequently we give
reference material describing the constructs used in the code and related constructs you might
use in similar programming tasks. We’ve found that an example-driven approach helps bring
out the essence of a language and how the language constructs work together. You can find a
complete syntax guide in the appendix, and we encourage you to reference this while reading
the book.

Chapter 2, Getting Started with F# and .NET, begins by introducing F# Interactive, a tool
you can use to interactively evaluate F# expressions and declarations and that we encourage
you to use while reading this book. In this chapter you will use F# Interactive to explore
some basic F# and .NET constructs, and we introduce many concepts that are described in
more detail in later chapters.

Syme_850-4C01.fm Page 2 Tuesday, October 23, 2007 11:57 AM

CH A PT E R 1 ■ I N T R OD U C T I ON 3

Chapter 3, Introducing Functional Programming, focuses on the basic constructs of typed
functional programming, including arithmetic and string primitives, type inference, tuples,
lists, options, function values, aggregate operators, recursive functions, function pipelines,
function compositions, pattern matching, sequences, and some simple examples of type
definitions.

Chapter 4, Introducing Imperative Programming, introduces the basic constructs used for
imperative programming in F#. Although the use of imperative programming is often mini-
mized with F#, it is used heavily in some programming tasks such as scripting. You will
learn about loops, arrays, mutability mutable records, locals and reference cells, the impera-
tive .NET collections, exceptions, and the basics of .NET I/O.

Chapter 5, Mastering Types and Generics, covers types in more depth, especially the more
advanced topics of generic type variables and subtyping. You will learn techniques you
can use to make your code generic and how to understand and clarify type error messages
reported by the F# compiler.

Chapter 6, Working with Objects and Modules, introduces object-oriented programming
in F#. You will learn how to define concrete object types to implement data structures,
how to use object-oriented notational devices such as method overloading with your F#
types, and how to create objects with mutable state. You will then learn how to define
object interface types and a range of techniques to implement objects, including object
expressions, constructor functions, delegation, and implementation inheritance.

Chapter 7, Encapsulating and Packaging Your Code, shows the techniques you can use to
hide implementation details and package code fragments together into .NET assemblies.
You will also learn how to use the F# command-line compiler tools and how to build
libraries that can be shared across multiple projects. Finally, we cover some of the tech-
niques you can use to build installers and deploy F# applications.

Chapter 8, Mastering F#: Common Techniques, looks at a number of important coding
patterns in F#, including how to customize the hashing and comparison semantics of new
type definitions, how to precompute and cache intermediary results, and how to create
lazy values. You’ll also learn how to clean up resources using the .NET idioms for disposing
of objects, how to avoid stack overflows through the use of tail calls, and how to subscribe
to .NET events and publish new .NET-compatible events from F# code.

Chapter 9, Introducing Language-Oriented Programming, looks at what is effectively a
fourth programming paradigm supported by F#: the manipulation of structured data and
language fragments using a variety of concrete and abstract representations. In this chapter
you’ll learn how to use XML as a concrete language format, how to convert XML to typed
abstract syntax representations, how to design and work with abstract syntax representa-
tions, and how to use F# active patterns to hide representations. You will also learn three
advanced features of F# programming: F# computation expressions (also called workflows),
F# reflection, and F# quotations. These are used in later chapters, particularly Chapters 13
and 15.

Chapter 10, Using the F# and .NET Libraries, gives an overview of the libraries most frequently
used with F#, including the .NET Framework and the extra libraries added by F#.

Syme_850-4C01.fm Page 3 Tuesday, October 23, 2007 11:57 AM

888bba9cf12226c8bc6011165b8042d4

4 CH AP T E R 1 ■ I N TR O D U CT I ON

Chapters 11 to 19 deal with applied topics in F# programming. Chapter 11, Working with
Windows Forms and Controls, shows how to design and build graphical user interface
applications using F# and the .NET Windows Forms library. We also show how to design
new controls using standard object-oriented design patterns and how to script applica-
tions using the controls offered by the .NET libraries directly.

Chapter 12, Working with Symbolic Representations, applies some of the techniques from
Chapter 9 and Chapter 11 in two case studies. The first is symbolic expression differentiation
and rendering, an extended version of a commonly used case study in symbolic programming.
The second is verifying circuits with propositional logic, where you will learn how to use
symbolic techniques to represent digital circuits, specify properties of these circuits, and
verify these properties using binary decision diagrams (BDDs).

Chapter 13, Reactive, Asynchronous, and Concurrent Programming, shows how you can
use F# for programs that have multiple logical threads of execution and that react to inputs
and messages. You will first learn how to construct basic background tasks that support
progress reporting and cancellation. You will then learn how to use F# asynchronous
workflows to build scalable, massively concurrent reactive programs that make good use
of the .NET thread pool and other .NET concurrency-related resources. This chapter concen-
trates on message-passing techniques that avoid or minimize the use of shared memory.
However, you will also learn the fundamentals of concurrent programming with shared
memory using .NET.

Chapter 14, Building Web Applications, shows how to use F# with ASP.NET to write server-
side scripts that respond to web requests. You will learn how to serve web page content
using ASP.NET controls. We also describe how open source projects such as the F# Web
Toolkit let you write both parts of Ajax-style client/server applications in F#.

Chapter 15, Working with Data, looks at several dimensions of querying and accessing data
from F#. You’ll first learn how functional programming relates to querying in-memory data
structures, especially via the LINQ paradigm supported by .NET and F#. You’ll then look at
how to use F# in conjunction with relational databases, particularly through the use of the
ADO.NET and LINQ-to-SQL technologies that are part of the .NET Framework.

Chapter 16, Lexing and Parsing, shows how to deal with additional concrete language
formats beyond those already discussed in Chapter 9. In particular, you will learn how to
use the F# tools for generating lexers and parsers from declarative specifications and how
to use combinator techniques to build declarative specifications of binary format readers.

Chapter 17, Interoperating with C and COM, shows how to use F# and .NET to interoperate
with software that exports a native API. You will learn more about the .NET Common
Language Runtime itself, how memory management works, and how to use the .NET Plat-
form Invoke mechanisms from F#.

Chapter 18, Debugging and Testing F# Programs, shows the primary tools and techniques
you can use to eliminate bugs from your F# programs. You will learn how to use the .NET
and Visual Studio debugging tools with F#, how to use F# Interactive for exploratory devel-
opment and testing, and how to use the NUnit testing framework with F# code.

Syme_850-4C01.fm Page 4 Tuesday, October 23, 2007 11:57 AM

CH A PT E R 1 ■ I N T R OD U C T I ON 5

Chapter 19, Designing F# Libraries, gives our advice on methodology and design issues for
writing libraries in F#. You will learn how to write “vanilla” .NET libraries that make rela-
tively little use of F# constructs at their boundaries in order to appear as natural as possible
to other .NET programmers. We will then cover functional programming design method-
ology and how to combine it with the object-oriented design techniques specified by the
standard .NET Framework design guidelines.

The appendix, F# Brief Language Guide, gives a compact guide to all key F# language
constructs and the key operators used in F# programming.

Because of space limitations, we have only partially addressed some important aspects of
programming with F#. It is easy to access hundreds of other libraries with F# that are not covered in
this book, including Managed DirectX, Windows Presentation Foundation (WPF), Windows
Communication Foundation (WCF), Windows Workflow Foundation (WWF), Irrlicht, the Mono
Unix bindings, the Firebird.NET database bindings, several advanced SQL Server APIs, and
mathematical libraries such as Extreme Optimization and NMath. There are also hundreds of
open-source projects related to .NET programming, some with a specific focus on F#. F# can
also be used with alternative implementations of the CLI such as Mono and Silverlight, topics
we address only tangentially in this book. Quotation meta-programming is described only briefly
in Chapter 9, and some topics in functional programming such as the design and implementa-
tion of applicative data structures are not covered at all. Also, some software engineering issues
such as performance tuning are largely omitted. Many of these topics are addressed in more
detail in Foundations of F# by Robert Pickering, also published by Apress.

Who This Book Is For
We assume you have some programming knowledge and experience. If you don’t have exper-
ience with F# already, you’ll still be familiar with many of the ideas it uses. However, you
may also encounter some new and challenging ideas. For example, if you’ve been taught that
object-oriented (OO) design and programming are the only ways to think about software, then
programming in F# may be a reeducation. F# fully supports OO development, but F# programming
combines elements of both functional and OO design. OO patterns such as implementation inher-
itance play a less prominent role than you may have previously experienced. Chapter 6 covers
many of these topics in depth.

The following notes will help you set a path through this book depending on your background:

C++, C#, Java, and Visual Basic: If you’ve programmed in a typed OO language, you may
find functional programming, type inference, and F# type parameters take a while to get used
to. However, you’ll soon see how to use these to make you a more productive programmer. Be
sure to read Chapters 2, 3, 5, and 6 carefully.

Python, Scheme, Ruby, and dynamically typed languages: F# is statically typed and type-safe.
As a result, F# development environments can discover many errors while you program, and
the F# compiler can more aggressively optimize your code. If you’ve primarily programmed in
an untyped language such as Python, Scheme, or Ruby, you may think that static types are
inflexible and wordy. However, F# static types are relatively nonintrusive, and you’ll find
the language strikes a balance between expressivity and type safety. You’ll also see how
type inference lets you recover succinctness despite working in a statically typed language.

Syme_850-4C01.fm Page 5 Tuesday, October 23, 2007 11:57 AM

6 CH AP T E R 1 ■ I N TR O D U CT I ON

Be sure to read Chapters 2 to 6 carefully, paying particular attention to the ways in which
types are used and defined.

Typed functional languages: If you are familiar with Haskell, OCaml, or Standard ML, you
will find the core of F# readily familiar, with some syntactic differences. However, F# embraces
.NET, including the .NET object model, and it may take you a while to learn how to use
objects effectively and how to use the .NET libraries themselves. This is best done by learning
how F# approaches OO programming in Chapters 6 to 8 and then exploring the applied
.NET programming material in Chapters 10 to 19, referring to earlier chapters where neces-
sary. Haskell programmers will also need to learn the F# approach to imperative program-
ming, described in Chapter 4, since many .NET libraries require a degree of imperative
coding to create, configure, connect, and dispose of objects.

We strongly encourage you to use this book in conjunction with a development environ-
ment that supports F# directly, such as Visual Studio 2005 or Visual Studio 2008. In particular,
the interactive type inference in the F# Visual Studio environment is exceptionally helpful for
understanding F# code: with a simple mouse movement you can examine the inferred types of
the sample programs. These types play a key role in understanding the behavior of the code.

■Note You can download and install F# from http://research.microsoft.com/fsharp. Your primary
source for information on the aspects of F# explored in this book is http://www.expert-fsharp.com,
and you can download all the code samples used in this book from http://www.expert-fsharp.com/
CodeSamples. As with all books, it is inevitable that minor errors may have crept into the text. Adjustments
may also be needed to make the best use of versions of F# beyond version 1.9.2, which was used for this book.
An active errata and list of updates will be published at http://www.expert-fsharp.com/Updates.

Syme_850-4C01.fm Page 6 Tuesday, October 23, 2007 11:57 AM

http://research.microsoft.com/fsharp
http://www.expert-fsharp.com
http://www.expert-fsharp.com
http://www.expert-fsharp.com/Updates

7

■ ■ ■

C H A P T E R 2

Getting Started with F#
and .NET

In this chapter, we cover some simple interactive programming with F# and .NET. By now you
should have downloaded and installed a version of the F# distribution as described in Chapter 1. In
the sections that follow, we use F# Interactive, a tool you can use to execute fragments of F#
code interactively and a convenient way to explore the language. Along the way, you’ll see
examples of the most important F# language constructs and many important libraries.

Creating Your First F# Program
Listing 2-1 shows your first complete F# program. You may not follow it all at first glance, but
we explain it piece by piece after the listing.

Listing 2-1. Analyzing a String for Duplicate Words

#light
/// Analyze a string for duplicate words
let wordCount text =
 let words = String.split [' '] text
 let wordSet = Set.of_list words
 let nWords = words.Length
 let nDups = words.Length - wordSet.Count
 (nWords,nDups)

let showWordCount text =
 let nWords,nDups = wordCount text
 printfn "--> %d words in the text" nWords
 printfn "--> %d duplicate words" nDups

You can paste this program into F# Interactive, which you can start either by using the
command line, by running fsi.exe from the F# distribution, or by using an interactive envi-
ronment such as Visual Studio. If running from the command line, remember to enter ;; to
terminate the interactive entry:

Syme_850-4C02.fm Page 7 Tuesday, September 18, 2007 7:44 PM

8 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

C:\Users\dsyme\Desktop> fsi.exe
MSR F# Interactive, (c) Microsoft Corporation, All Rights Reserved

NOTE: See 'fsi --help' for flags
NOTE:
NOTE: Commands: #r <string>;; reference (dynamically load) the given DLL.
NOTE: #I <string>;; add the given search path for referenced DLLs.

NOTE: #use <string>;; accept input from the given file.
NOTE: #load <string> ...<string>;;
NOTE: load the given file(s) as a single unit.
NOTE: #quit;; exit.
NOTE:
NOTE: Visit the F# website at http://research.microsoft.com/fsharp.
NOTE: Bug reports to fsbugs@microsoft.com. Enjoy!

> <paste in the earlier program here> ;;
val wordCount : string -> int * int
val showWordCount : string -> unit

Here F# Interactive has reported the type of the functions wordCount and showWordCount
(you’ll learn more about types in a moment). The keyword val stands for value; in F# program-
ming, functions are just values, a topic we return to in Chapter 3. Also, sometimes F# Interactive
will show a little more information than we show in this book (such as some internal details of
the generated values); if you’re trying out these code snippets, then you can just ignore that
additional information. For now let’s just use the wordCount function interactively:

> let (nWords,nDups) = wordCount "All the king's horses and all the king's men";;
val nWords : int
val nDups : int

> nWords;;
val it : int = 9

> nDups;;
val it : int = 2

> nWords - nDups;;
val it : int = 7

This code shows the results of executing the function wordCount and binding its two results
to the names nWords and nDups, respectively. You can examine the values by just entering each
as a single expression, which assigns the result to a value called it and displays the value.

Syme_850-4C02.fm Page 8 Tuesday, September 18, 2007 7:44 PM

AshleyF
Sticky Note
Unmarked set by AshleyF

http://research.microsoft.com/fsharp
mailto:fsbugs@microsoft.com

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 9

Examining the values shows that the given text contains nine words: two duplicates and seven
words that occur only once. showWordCount prints the results instead of returning them as a
value:

> showWordCount "Couldn't put Humpty together again";;
--> 5 words in the text
--> 0 duplicate words

From the output you can more or less see what the code does. Now that you’ve done that,
we’ll go through the program in detail.

■Tip You can start F# Interactive in Visual Studio by selecting Tools ➤ Add-in Manager and then selecting
F# Interactive for Visual Studio in the Add-in Manager dialog box. A tool window will then appear, and you can
send text to F# Interactive by selecting the text and pressing Alt+Return.

Turning On the Lightweight Syntax Option
The first line of the file simply turns on the F# lightweight syntax option. This option is assumed
throughout this book; in other words, you should have #light at the head of all your source files:

#light

This option allows you to write code that looks and feels simpler by omitting recurring F#
tokens such as in, done, ; (semicolon), ;; (double semicolon), begin, and end. The option instructs
the F# compiler and F# Interactive to use the indentation of F# code to determine where constructs
start and finish. The indentation rules are very intuitive, and we discuss them in the Appendix,
which is a guide to the F# syntax. Listing 2-2 shows a fully qualified version of the first function.

Listing 2-2. A Version of the wordCount Function That Doesn’t Use the #light Syntax Option

/// Analyze a string for duplicate words
let wordCount text =
 let words = String.split [' '] text in
 let wordSet = Set.of_list words in
 let nWords = words.Length in
 let nDups = words.Length - wordSet.Count in
 (nWords,nDups)

Double semicolons (;;) are still required to terminate entries to F# Interactive even when
using the #light syntax option. However, if you’re using an interactive development environ-
ment such as Visual Studio, then the environment typically adds this automatically when code
is selected and executed. We show the double semicolons in the interactive code snippets used
this book, though not in the larger samples.

Syme_850-4C02.fm Page 9 Tuesday, September 18, 2007 7:44 PM

10 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

■Tip We recommend that you use four-space indentation for F# code. Tab characters cannot be used in
#light code, and the F# tools will give an error if they are encountered. In Visual Studio, selecting Tools ➤
Options reveals an Options tab for controlling the options used by F# Interactive at start-up; for example, you
can use --light to turn on the lightweight syntax option automatically on start-up.

Documenting Code Using XMLDocs
The first real line of the program in Listing 2-1 is not code but a comment:

/// Analyze a string for duplicate words

Comments are either lines starting with // or blocks enclosed by (* and *). Comment lines
beginning with three slashes (///) are XMLDoc comments and can, if necessary, include extra
XML tags and markup. The comments from a program can be collected into a single .xml file
and processed with additional tools or can be converted immediately to HTML by the F#
command-line compiler (fsc.exe). We cover using the F# command-line compiler in more
detail in Chapter 7.

■Tip The F# command-line compiler (fsc.exe) options for generating HTML documentation are
--generate-html and --html-output-directory. To generate an XMLDoc file, use -doc.

Understanding Scope and Using “let”
The next two lines of the program in Listing 2-1 introduce the start of the definition of the function
wordCount and define the local value words, both using the keyword let:

let wordCount text =
 let words = ...

let is the single most important keyword you’ll use in F# programming: it is used to define
data, computed values, functions, and procedures. The left of a let binding is often a simple
identifier but can also be a pattern. (See the “Using Tuples” section for some simple examples.)
It can also be a function name followed by a list of argument names, as in the case of wordCount,
which takes one argument: text. The right of a let binding (after the =) is an expression.

Local values such as words and wordCount can’t be accessed outside their scope. In the case
of variables defined using let, the scope of the value is the entire expression that follows the
definition, though not the definition itself. Here are two examples of invalid definitions that try to
access variables outside their scope. As you can see, let definitions follow a sequential, top-down
order, which helps ensure that programs are well-formed and free from many bugs related to
uninitialized values:

Syme_850-4C02.fm Page 10 Tuesday, September 18, 2007 7:44 PM

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 11

let badDefinition1 =
 let words = String.split text
 ^^^^ error: text is not defined
 let text = "We three kings"
 words.Length

let badDefinition2 = badDefinition2+1
 ^^^^^^^^^^^^^^ error: badDefinition2 is not defined

Sometimes it is convenient to write let definitions on a single line, even when using the
#light syntax option. You can do this by separating the expression that follows a definition
from the definition itself using in. For example:

let powerOfFour n =
 let nSquared = n * n in nSquared * nSquared

Here’s an example use of the function:

> powerOfFour 3;;
val it : int = 81

Indeed, let pat = expr1 in expr2 is the true primitive construct in the language, where
pat stands for pattern and expr1 and expr2 stand for expressions. The #light syntax option
simply provides a veneer that lets you optionally omit the in if expr2 is column-aligned with the
let keyword on a subsequent line, and a preprocessing stage inserts the in token for you.

Within function definitions, values can be outscoped by declaring another value of the
same name. For example, the following function computes (n*n*n*n)+2:

let powerOfFourPlusTwo n =
 let n = n * n
 let n = n * n
 let n = n + 2
 n

This code is equivalent to the following:

let powerOfFourPlusTwo n =
 let n1 = n * n
 let n2 = n1 * n1
 let n3 = n2 + 2
 n3

Outscoping a value doesn’t change the original value; it just means the name of the value
is no longer accessible from the current scope.

Syme_850-4C02.fm Page 11 Tuesday, September 18, 2007 7:44 PM

12 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

Because let bindings are just one kind of expression, you can use them in a nested fashion.
For example:

let powerOfFourPlusTwoTimesSix n =
 let n3 =
 let n1 = n * n
 let n2 = n1 * n1
 n2 + 2
 let n4 = n3 * 6
 n4

In the previous example, n1 and n2 are values defined locally by let bindings within the
expression that defines n3. These local values are not available for use outside their scope. For
example, the following code gives an error:

let invalidFunction n =
 let n3 =
 let n1 = n + n
 let n2 = n1 * n1
 n1 * n2
 let n4 = n1 + n2 + n3 // Error! n3 is in scope, but n1 and n2 are not!
 n4

Local scoping is used for many purposes in F# programming, especially to hide implemen-
tation details that you don’t want revealed outside your functions or other objects. We cover
this topic in more detail in Chapter 7.

VALUES AND IMMUTABILITY

In other languages, a local value is called a local variable. However, in F# you can’t change the immediate
value of locals after they’ve been initialized, unless the local is explicitly marked as mutable, a topic we return
to in Chapter 4. For this reason, F# programmers and the language specification tend to prefer the term value
to variable.

As you’ll see in Chapter 4, data indirectly referenced by a local value can still be mutable even if the local
value is not; for example, a local value that is a handle to a hash table cannot be changed to refer to a different
table, but the contents of the table itself can be changed by invoking operations that add and remove elements
from the table. However, many values and data structures in F# programming are completely immutable; in
other words, neither the local value nor its contents can be changed through external mutation. These are
usually just called immutable values. For example, all basic .NET types such as integers, strings, and
System.DateTime values are immutable, and the F# library defines a range of immutable data structures
such as Set and Map, based on binary trees.

Immutable values bring many advantages. At first it might seem strange to define values you can’t change.
However, knowing a value is immutable means you rarely need to think about the object identity of these
values—you can pass them to routines and know they won’t be mutated. You can also pass them between
multiple threads without worrying about unsafe concurrent access to the values, discussed in Chapter 14. You can
find out more about programming with immutable data structures at http://www.expert-fsharp.com/
Topics/FunctionalDataStructures.

Syme_850-4C02.fm Page 12 Tuesday, September 18, 2007 7:44 PM

http://www.expert-fsharp.com

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 13

Understanding Types
F# is a typed language, so it’s reasonable to ask what the type of wordCount is, and indeed F#
Interactive has shown it already:

val wordCount : string -> int * int

This indicates that wordCount takes one argument of type string and returns int * int,
which is F#’s way of saying “a pair of integers.” The keyword val stands for value, and the
symbol -> represents a function. No explicit type has been given in the program for wordCount
or its argument text, because the full type for wordCount has been “inferred” from its definition.
We discuss type inference further in the “What Is Type Inference?” sidebar and in more detail
in later chapters.

Types are significant in both F# and .NET programming more generally for reasons that
range from performance to coding productivity and interoperability. Types are used to help
structure libraries, to guide the programmer through the complexity of an API and to place
constraints on code to ensure it can be implemented efficiently. However, unlike many other
typed languages, the type system of F# is both simple and powerful because it uses orthogonal,
composable constructs such as tuples and functions to form succinct and descriptive types.
Furthermore, type inference means you almost never have to write types in your program,
though doing so can be useful. Table 2-1 shows some of the most important type constructors.
We discuss all these types in more detail in Chapter 3 and Chapter 4.

Table 2-1. Some Important Types, Type Constructors, and Their Corresponding Values

Family of Types Examples Description

int int 32-bit integers. For example: -3, 0, 127.

type option int option, option<int> A value of the given type or the special value
None. For example: Some 3, Some "3", None.

type list int list, list<int> An immutable linked list of values of the
given type. All elements of the list must
have the same type. For example: [],
[3;2;1].

type1 -> type2 int -> string A function type, representing a value that
will accept values of the first type and
compute results of the second type. For
example: (fun x -> x+1).

type1 * ... * typeN int * string A tuple type, such as a pair, triple, or larger
combination of types. For example:
(1,"3"), (3,2,1).

type [] int[] An array type, indicating a flat, fixed-size
mutable collection of values of type type.

unit unit A type containing a single value (), akin to
void in many imperative languages.

'a, 'b 'a, 'b, 'Key, 'Value A variable type, used in generic code.

Syme_850-4C02.fm Page 13 Tuesday, September 18, 2007 7:44 PM

14 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

Some type constructors such as list and option are generic, which means they can be
used to form a range of types by instantiating the generic variables, such as int list, string
list, int list list, and so on. Instantiations of generic types can be written using either
prefix notation (such as int list) or postfix notation (such as list<int>). Variable types such
as 'a are placeholders for any type. We discuss generics and variable types in more detail in
Chapter 3 and Chapter 5.

WHAT IS TYPE INFERENCE?

Type inference works by analyzing your code to collect constraints. These are collected over the scope of
particular parts of your program, such as each file for the F# command-line compiler and each chunk entered
in F# Interactive. These constraints must be consistent, thus ensuring your program is well-typed, and you’ll
get a type error if not. Constraints are collected from top to bottom, left to right, and outside in, which is important
because long identifier lookups, method overloading, and some other elements of the language are resolved
using the normalized form of the constraint information available at the place where each construct is used.

Type inference also automatically generalizes your code, which means that when your code is reusable
and generic in certain obvious ways, then it will be given a suitable generic type without you needing to write
the generic type down. Automatic generalization is the key to succinct but reusable typed programming. We
discuss automatic generalization in Chapter 5.

Calling Functions
Functions are at the heart of most F# programming, and it’s not surprising that the first thing
you do is call a library function, in this case, String.split:

let wordCount text =
 let words = String.split [' '] text

The function String.split takes two arguments. F# Interactive reveals the type of
String.split as follows:

> String.split;;
val it: char list -> string -> string list

To understand this type, let’s first investigate String.split by running F# Interactive:

> String.split [' '] "hello world";;
val it : string list = ["hello"; "world"]

> String.split ['a';'e';'i';'o';'u'] "hello world";;
val it : string list = ["h"; "ll"; " w"; "rld"]

You can see that String.split breaks the given text into words using the given characters
as delimiters. The first argument is the list of delimiters, and the second is the string to split.

Syme_850-4C02.fm Page 14 Tuesday, September 18, 2007 7:44 PM

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 15

String.split takes two arguments, but the arguments are given in a style where the argu-
ments come sequentially after the function name, separated by spaces. This is quite common
in F# coding and is mostly a stylistic choice, but it also means functions can be partially applied
to fewer arguments, leaving a residue function, which is a useful technique you’ll look at more
closely in Chapter 3.

In the earlier code, you can also see examples of the following:

• Literal characters such as ' 'and 'a'

• Literal strings such as "hello world"

• Literal lists of characters such as ['a';'e';'i';'o';'u']

• Literal lists of strings such as the returned value ["hello"; "world"]

We cover literals and lists in detail in Chapter 3. Lists are an important data structure in F#,
and you’ll see many examples of their use in this book.

WHAT IS “STRING” IN “STRING.SPLIT”?

The name String references the F# module Microsoft.FSharp.Core.String in the F# library. This contains
a set of simple operations associated with values of the string type. It is common for types to have
a separate module that contains associated operations. All modules under the Microsoft.FSharp
namespaces Core, Collections, Text, and Control can be referenced by simple one-word prefixes,
such as String.split and open String. Other modules under these namespaces include List, Option,
and Array.

Since String is a standard .NET type, you can also use functions provided by the .NET Framework
runtime located under System.String and other important namespaces such as System.Text.
RegularExpresions. Throughout this book, we use both the .NET Framework library and the F# additions
extensively. We give an overview of the most commonly used .NET and F# libraries in Chapter 10.

Using Data Structures
The next portion of the code is as follows:

let wordCount text =
 let words = String.split [' '] text
 let wordSet = Set.of_list words

This gives you your first taste of using data structures from F# code, and the last of these lines
lies at the heart of the computation performed by wordCount. It uses the function Set.of_list
from the F# library to convert the given words to a concrete data structure that is, in effect,
much like the mathematical notion of a set, though internally it is implemented using a data
structure based on trees. You can see the results of converting data to a set by using F# Interactive:

Syme_850-4C02.fm Page 15 Tuesday, September 18, 2007 7:44 PM

16 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

> Set.of_list ["b";"a";"b";"b";"c"];;
val it : Set<string> = set ["a"; "b"; "c"]

> Set.to_list (Set.of_list ["abc"; "ABC"]);;
val it : string list = ["ABC"; "abc"]

Here you can see several things:

• F# Interactive prints the contents of structured values such as lists and sets.

• Duplicate elements are removed by the conversion.

• The elements in the set are ordered.

• The default ordering on strings used by sets is case sensitive.

Using Properties and the Dot-Notation
The next two lines of the wordCount function compute the result we’re after—the number of
duplicate words. This is done by using two properties, Length and Count, of the values you’ve
computed:

 let nWords = words.Length
 let nDups = words.Length - wordSet.Count

F# performs resolution on property names at compile time (or interactively when using F#
Interactive, where there is no distinction between compile time and run time). This is done
using compile-time knowledge of the type of the expression on the left of the dot—in this case,
words and wordSet. Sometimes a type annotation is required in your code in order to resolve the
potential ambiguity among possible property names. For example, the following code uses a
type annotation to note that inp refers to a list. This allows the F# type system to infer that Length
refers to a property associated with values of the list type:

let length (inp : 'a list) = inp.Length

Here the 'a indicates that the length function is generic; that is, it can be used with any
type of list. We cover generic code in more detail in Chapter 3 and Chapter 5. Type annotations
can be useful documentation and, when needed, should generally be added at the point where
a variable is declared.

As you can see from the use of the dot-notation, F# is both a functional language and an
object-oriented language. In particular, properties are a kind of member, a general term used
for any functionality associated with a type or value. Members referenced by prefixing a type
name are called static members, and members associated with a particular value of a type are
called instance members; in other words, instance members are accessed through an object on
the left of the dot. We discuss the distinction between values, properties, and methods later in
this chapter, and we discuss members in full in Chapter 6.

Sometimes explicitly named functions play the role of members. For example, we could
have written the earlier code as follows:

Syme_850-4C02.fm Page 16 Tuesday, September 18, 2007 7:44 PM

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 17

let nWords = List.length words
let nDups = List.length words - Set.size wordSet

You will see both styles in F# code. Some F# libraries don’t use members at all or use them
only sparingly. However, judiciously using members and properties can greatly reduce the
need for trivial get/set functions in libraries, can make client code much more readable, and
can allow programmers who use environments such as Visual Studio to easily and intuitively
explore the primary features of libraries they write.

If your code does not contain enough type annotations to resolve the dot-notation, you
will see an error such as the following:

> let length inp = inp.Length;;

 let length inp = inp.Length;;
 ----------------^^^^

stdin(1,17): error: Lookup on object of indeterminate type. A type annotation may
be needed prior to this program point to constrain the type of the object. This
may allow the lookup to be resolved.

You can resolve this simply by adding a type annotation as shown earlier.

Using Tuples
The final part of the wordCount function returns the results nWords and nDups as a tuple.

let nWords = words.Length
let nDups = words.Length - wordSet.Size
(nWords,nDups)

Tuples are the simplest but perhaps most useful of all F# data structures. A tuple expression is
simply a number of expressions grouped together to form a new expression:

let site1 = ("www.cnn.com",10)
let site2 = ("news.bbc.com",5)
let site3 = ("www.msnbc.com",4)
let sites = (site1,site2,site3)

Here the inferred types of site1 and sites are as follows:

val site1 : string * int
val sites : (string * int) * (string * int) * (string * int)

Tuples can be decomposed into their constituent components in two ways. For pairs—
that is, tuples with two elements—you can explicitly call the functions fst and snd, which, as
their abbreviated names imply, extract the first and second parts of the pair:

Syme_850-4C02.fm Page 17 Tuesday, September 18, 2007 7:44 PM

http://www.cnn.com
http://www.msnbc.com

18 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

> fst site1
val it : string = "www.cnn.com"

> let relevance = snd site1
val relevance : int

> relevance;;
val it : int = 10

The functions fst and snd are defined in the F# library and are always available for use by
F# programs—here are their simple definitions:

let fst (a,b) = a
let snd (a,b) = b

More commonly tuples are decomposed using patterns, as in the following code:

let url,relevance = site1
let site1,site2,site3 = sites

In this case, the names in the tuples on the left of the definitions are bound to the respec-
tive elements of the tuple value on the right, so again url gets the value "www.cnn.com" and
relevance gets the value 10.

Tuple values are typed, and strictly speaking there are an arbitrary number of families of
tuple types, one for pairs holding two values, one for triples holding three values, and so on.
This means if you try to use a triple where a pair is expected, then you’ll get a type-checking
error before your code is run:

> let a,b = (1,2,3);;
error: this pattern matches values of type 'int * int' but is here used
with values of type 'int * int * int'. The tuples have different lengths.

Tuples are often used to return multiple values from functions, as in the wordCount example
earlier. They are also often used for multiple arguments to functions, and frequently the tupled
output of one function becomes the tupled input of another function. Here is an example that
shows a different way of writing the showWordCount function defined and used earlier:

let showResults (nWords,nDups) =
 printfn "--> %d words in the text" nWords
 printfn "--> %d duplicate words" nDups
let showWordCount text = showResults (wordCount text)

The function showResults accepts a pair as input, decomposed into nWords and nDups,
matching the results of wordCount.

Syme_850-4C02.fm Page 18 Tuesday, September 18, 2007 7:44 PM

http://www.cnn.com
http://www.cnn.com

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 19

VALUES AND OBJECTS

In F# everything is a value. In some other languages everything is an object. In practice, you can use the words
largely interchangeably, though F# programmers tend to reserve object for special kinds of values:

• Values whose observable properties change as the program executes, usually through the explicit mutation
of underlying in-memory data or through external state changes

• Values that refer to data or state that reveal an identity, such as a unique integer stamp or the underlying
.NET object identity, where that identity may differ from otherwise identical values

• Values that can be queried to reveal additional functionality, through the use of casts, conversions, and
interfaces

F# thus supports objects, but not all values are referred to as objects. We discuss identity and mutation
further in Chapter 4.

Using Imperative Code
The showWordCount and showResults functions defined in the previous section output the
results using a library function called printfn:

printfn "--> %d words in the text" nWords
printfn "--> %d duplicate words" nDups

For those familiar with OCaml, C and C++ printfn will look familiar as a variant of printf—
printfn also adds a newline character at the end of printing. Here the pattern %d is a place-
holder for an integer, and the rest of the text is output verbatim to the console. F# also supports
related functions such as printf, sprintf, and fprintf, which are discussed further in Chapter 4.
Unlike C/C++, printf is a type-safe text formatter, where the F# compiler checks that the subse-
quent arguments match the requirements of the placeholders. There are also other ways to
format text with F#. For example, you could have used the .NET libraries directly:

System.Console.WriteLine("--> {0} words in the text", box(nWords))
System.Console.WriteLine("--> {0} duplicate words", box(nDups))

Here {0} acts as the placeholder, though no checks are made that the arguments match
the placeholder before the code is run. The use of printfn also shows how you can use sequen-
tial expressions to cause effects in the outside world.

As with let ... in ... expressions, it is sometimes convenient to write sequential code
on a single line. You can do this by separating two expressions by a semicolon (;), and again
this is the primitive construct of the language. The first expression is evaluated (usually for its
side effects), its result is discarded, and the overall expression evaluates to the result of the
second. Here is a simpler example of this construct:

let two = (printfn "Hello World"; 1+1)
let four = two + two

Syme_850-4C02.fm Page 19 Tuesday, September 18, 2007 7:44 PM

20 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

When executed, this code will print Hello World precisely once, when the right side of
the definition of two is executed. F# does not have statements as such: the fragment (printfn
"Hello World"; 1+1) is an expression, but when evaluated, the first part of the expression causes a
side effect, and its result is discarded. It is also often convenient to use parentheses to delimit
sequential code. The code from the script could in theory be parenthesized with a semicolon
added to make the primitive constructs involved more apparent:

(printfn "--> %d words in the text" nWords;
 printfn "--> %d duplicate words" nDups)

■Note The token ; is used to write sequential code within expressions, and ;; is used to terminate interactions
with the F# Interactive session. Semicolons are optional when the #light syntax option is used and the indi-
vidual fragments of your sequential code are placed on separate lines beginning at the same column position.

Using .NET Libraries from F#
The true value of F# lies not just in what you can do inside the language but in what you can
connect to outside the language. For example, F# does not come with a GUI library. Instead, F#
is connected to .NET and via .NET to most of the significant programming technologies avail-
able on major computing platforms. To emphasize this, our second sample uses two of the
powerful libraries that come with the .NET Framework: System.Net and System.Windows.Forms.
The full sample is in Listing 2-3 and is a script for use with F# Interactive.

Listing 2-3. Using the .NET Framework Windows Forms and Networking Libraries from F#

open System.Windows.Forms

let form = new Form(Visible=true,TopMost=true,Text="Welcome to F#")

let textB = new RichTextBox(Dock=DockStyle.Fill, Text="Here is some initial text")
form.Controls.Add(textB)

open System.IO
open System.Net

/// Get the contents of the URL via a web request
let http(url: string) =
 let req = System.Net.WebRequest.Create(url)
 let resp = req.GetResponse()
 let stream = resp.GetResponseStream()
 let reader = new StreamReader(stream)
 let html = reader.ReadToEnd()
 resp.Close()
 html

Syme_850-4C02.fm Page 20 Tuesday, September 18, 2007 7:44 PM

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 21

let google = http("http://www.google.com")
textB.Text <- http("http://news.bbc.co.uk")

This example uses several important .NET libraries and will help you to explore some
interesting F# language constructs. We walk you through this listing in the following sections.

Using open to Access Namespaces and Modules
The first thing you see in the sample is the use of open to access functionality from the namespace
System.Windows.Forms:

open System.Windows.Forms

We discuss namespaces in more detail in Chapter 7. The earlier declaration simply means
you can access any content under this path without quoting the long path. If it had not used
open, you would have to write the following, which is obviously a little verbose:

let form = new System.Windows.Forms.Form(Visible=true,TopMost=true,
 Text="Welcome to F#")

You can also use open to access the contents of an F# module such as Microsoft.FSharp.
Core.String without using long paths. We discuss modules in more detail in Chapter 7.

MORE ABOUT OPEN

Using open is an easy way to access the contents of namespaces and modules. However, there are some
subtleties. For example, open doesn’t actually load or reference a library—instead, it reveals functionality
from already-loaded libraries. Libraries themselves are loaded by referring to a particular DLL using #r in a
script or -r as a command-line option. Libraries and namespaces are orthogonal concepts: multiple libraries
can contribute functionality to the same namespace, and each library can contribute functionality to multiple
namespaces. Often one particular library contributes most of the functionality in a particular namespace. For
example, most of the functionality in the System.Windows.Forms namespace comes from a library called
System.Windows.Forms.dll. As it happens, this library is automatically referenced by F#, which is why
you haven’t needed an explicit reference to the library so far. You can place your code in a namespace by using
a namespace declaration at the top of your file, discussed further in Chapter 7.

In an earlier example, you saw that String in String.split referenced a value in the module
Microsoft.FSharp.Core.String. By default, all F# code is interpreted with an implicit open of the
following namespaces and modules:

• Microsoft.FSharp.Core: Contains modules such as String, Int32, Int64, and Option and
contains types such as 'a option and 'a ref

• Microsoft.FSharp.Core.Operators: Contains values such as +, -, *, box, unbox, using,
and lock

• Microsoft.FSharp.Collections: Contains modules such as List, Seq, HashSet, Map, and Set
and contains types such as 'a list

Syme_850-4C02.fm Page 21 Tuesday, September 18, 2007 7:44 PM

http://www.google.com
http://news.bbc.co.uk

22 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

• Microsoft.FSharp.Control: Contains modules such as Lazy, Async, and IEvent and contains
types such as 'a lazy and IEvent<'a>

• Microsoft.FSharp.Text: Contains modules such as Printf

If two namespaces have types, subnamespaces, and/or modules with identical names, then when you open
these, you can access the contents of both using the same shortened paths. For example, the namespace System
contains a type String, and the namespace Microsoft.FSharp.Core contains a module String. In this
case, long identifier lookups such as String.split search the values and members under both of these,
preferring the most recently opened if there is an ambiguity.

Finally, if you ever have name collisions, you can define your own short aliases for modules and types,
such as by using module MyString = My.Modules.String and type SysString = System.String.

Using new and Setting Properties
The next lines of the sample script use the keyword new to create a top-level window (called
a form) and set it to be visible. If you run this code in F# Interactive, you will see a top-level
window appear with the title text Welcome to F#.

let form = new Form(Visible=true,TopMost=true,Text="Welcome to F#")

Here, new is shorthand for calling a function associated with the type System.Windows.
Forms.Form that constructs a value of the given type—these functions are called constructors.
Not all F# and .NET types use constructors; you will also see values being constructed using
names such as Create or via one or more functions in a related module such as String.create
or Array.init. You’ll see examples of each throughout this book.

A form is an object; that is, its properties change during the course of execution, and it is a
handle that mediates access to external resources (the display device, mouse, and so on).
Sophisticated objects such as forms often need to be configured, either by passing in configu-
ration parameters at construction or by adjusting properties from their default values after
construction. The arguments Visible=true, TopMost=true, and Text="Welcome to F#" set the
initial values for three properties of the form. The labels Visible, TopMost, and Text must corre-
spond to either named arguments of the constructor being called or properties on the return
result of the operation. In this case, all three are object properties, and the arguments indicate
initial values for the object properties.

Most properties on graphical objects can be adjusted dynamically. You set the value of a
property dynamically using the notation obj.Property <- value. For example, you could also
have constructed the form object as follows:

open System.Windows.Forms
let form = new Form()
form.Visible <- true
form.TopMost <- true
form.Text <- "Welcome to F#"

Syme_850-4C02.fm Page 22 Tuesday, September 18, 2007 7:44 PM

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 23

Likewise, you can watch the title of the form change by running the following code in F#
Interactive:

form.Text <- "Programming is Fun!"

Setting properties dynamically is frequently to configure objects, such as forms, that
support many potential configuration parameters that evolve over time.

The object created here was bound to the name form. Binding this value to a new name
doesn’t create a new form; rather, two different handles now refer to the same object (they are
said to alias the same object). For example, the following code sets the title of the same form,
despite it being accessed via a different name:

let form2 = form
form2.Text <- "F# Forms are Fun"

VALUES, METHODS, AND PROPERTIES

Here are the differences between values, methods, and properties:

• Simple values: Functions, parameters, and top-level items defined using let or pattern matching.
Examples: form, text, wordCount.

• Methods: Function values associated with types. Interfaces, classes, and record and union types can all
have associated methods. Methods can be overloaded (see Chapter 6) and must be applied immediately
to their arguments. Examples: System.Net.WebRequest.Create and resp.GetResponseStream.

• Properties: A shorthand for invoking method members that read or write underlying data. Interfaces, classes,
and record and union types can all have associated properties. Examples: System.DateTime.Now and
form.TopMost.

• Indexer properties: A property can take arguments, in which case it is an indexer property. Indexer properties
named Item can be accessed using the .[_] syntax. Examples: vector.[3] and matrix.[3,4].

The next part of the sample creates a new RichTextBox control and stores it in a variable
called textB. A control is typically an object with a visible representation, or more generally, an
object that reacts to operating system events related to the windowing system. A form is one
such control, but there are many others. A RichTextBox control is one that can contain formatted
text, much like a word processor.

let textB = new RichTextBox(Dock= DockStyle.Fill)
form.Controls.Add(textB)

Fetching a Web Page
The second half of Listing 2-3 uses the System.Net library to define a function http to read
HTML web pages. You can investigate the operation of the implementation of the function by
entering the following lines into F# Interactive:

Syme_850-4C02.fm Page 23 Tuesday, September 18, 2007 7:44 PM

24 CH AP T E R 2 ■ G E T T I N G S T AR T E D W IT H F# A N D . N E T

> open System;;
> open System.IO;;
> open System.Net;;

> let req = WebRequest.Create("http://www.microsoft.com");;
val req : WebRequest

> let resp = req.GetResponse();;
val resp : WebResponse

> let stream = resp.GetResponseStream();;
val stream : Stream

> let reader = new StreamReader(stream);;
val reader : StreamReader

> let html = reader.ReadToEnd();;
val html : string

> textB.Text <- html;;

The final line will set the contents of the text box form to the HTML contents of the Microsoft
home page. Let’s take a look at this code line by line.

The first line of the code creates a WebRequest object using the static method Create, a
member of the type System.Net.WebRequest. The result of this operation is an object that acts
as a handle to a running request to fetch a web page—you could, for example, abandon the
request or check to see whether the request has completed. The second line calls the instance
method GetResponse. The remaining lines of the sample get a stream of data from the response
to the request using resp.GetResponseStream(), make an object to read this stream using new
StreamReader(stream), and read the full text from this stream. We cover .NET I/O in more detail in
Chapter 4, but for now you can test by experimentation in F# Interactive that these actions do
indeed fetch the HTML contents of a web page. The inferred type for http that wraps up this
sequence as a function is as follows:

val http : string -> string

■Note Static members are items qualified by a concrete type or module. Examples include System.
String.Compare, System.DateTime.Now, List.map, and String.split. Instance members are
methods, properties, and values qualified by an expression. Examples include form.Visible, resp.
GetResponseStream(), and cell.contents.

Syme_850-4C02.fm Page 24 Tuesday, September 18, 2007 7:44 PM

http://www.microsoft.com

C HA P TE R 2 ■ G E TT IN G ST AR T E D W IT H F# AN D . N E T 25

XML HELP IN VISUAL STUDIO

In a rich editor such as Visual Studio 2005, you can easily find out more about the functionality of .NET libraries
by hovering your mouse over the identifiers in your source code. For example, if you hover over Dock in
textB.Dock, you’ll see the XML help shown here:

Summary
In this chapter, you took a look at some simple interactive programming with F# and .NET.
Along the way, you met many of the constructs you’ll use in your day-to-day F# programming.
In the next chapter, you’ll take a closer look at these and other constructs that are used to perform
compositional and succinct functional programming in F#.

■Note In Chapter 3 you’ll use some of the functions you defined in this chapter, so if you’re using F#
Interactive, you might want to leave your session open as you proceed.

Syme_850-4C02.fm Page 25 Tuesday, September 18, 2007 7:44 PM

Syme_850-4C02.fm Page 26 Tuesday, September 18, 2007 7:44 PM

27

■ ■ ■

C H A P T E R 3

Introducing Functional
Programming

F# is effective and productive primarily because it is built on the tried and tested constructs
of functional programming. In this chapter, we cover the core building blocks of functional
programming with F#, including simple types and function values, pattern matching, lists, options,
and sequences, as well as how to declare some of your own simple types. We cover imperative
programming, generics, and object-oriented programming in Chapters 4 through 6.

Getting Started with F# Arithmetic
We first cover the most common base types of data manipulated in F# code, beginning with the
basics of F# arithmetic.

Basic Literals
Table 3-1 lists the basic numeric types used in F# code and their corresponding literal forms.
We’ve also listed the non-numeric types bool and unit.

Table 3-1. Basic Types and Literals

Type Description Sample Literals .NET Name

bool True/false values true, false System.Boolean

byte 8-bit unsigned integers 0uy, 19uy, 0xFFuy System.Byte

sbyte 8-bit signed integers 0y, 19y, 0xFFy System.SByte

int16 16-bit signed integers 0s, 19s, 0x0800s System.Int16

uint16 16-bit unsigned integers 0us, 19us, 0x0800us System.UInt16

int, int32 32-bit signed integers 0, 19, 0x0800, 0b0001 System.Int32

uint32 32-bit unsigned integers 0u, 19u, 0x0800u System.UInt32

int64 64-bit signed integers 0L, 19L, 0x0800L System.Int64

Syme_850-4C03.fm Page 27 Tuesday, September 25, 2007 6:43 AM

28 CH AP T E R 3 ■ I N TR O D U C I N G F U N C T I O N AL PR O G R A M M I N G

Arithmetic Operators
Table 3-2 lists the most commonly used arithmetic operators. These are overloaded to work
with all the numeric types listed in Table 3-1.

The behavior of these and other operators can be extended for user-defined types, a topic
we cover in Chapter 6. In F#, addition, subtraction, and multiplication over integers are unchecked;
that is, if overflow or underflow occurs beyond the representable range, then wraparound occurs.
For example, 2147483647 is the largest representable 32-bit integer of the int type:

> 2147483647+1;;
val it : int = -2147483648

Checked versions of arithmetic operators that raise System.OverflowException exceptions
can be accessed by opening the Microsoft.FSharp.Core.Operators.Checked module. If avoiding

uint64 64-bit unsigned integers 0UL, 19UL, 0x0800UL System.UInt64

nativeint Machine-sized signed integers 0n, 19n, 0x0800n System.IntPtr

unativeint Machine-sized unsigned integers 0un, 19un, 0x0800un System.UIntPtr

single, float32 32-bit IEEE floating-point 0.0f, 19.7f, 1.3e4f System.Single

double, float 64-bit IEEE floating-point 0.0, 19.7, 1.3e4 System.Double

decimal High-precision decimal values 0M, 19M, 19.03M System.Decimal

bigint Arbitrarily large integers 0I, 19I Math.BigInt

bignum Arbitrary-precision rationals 0N, 19N Math.BigNum

unit The type with only one value () Core.Unit

Table 3-1. Basic Types and Literals (Continued)

Type Description Sample Literals .NET Name

Table 3-2. Arithmetic Operators and Examples

Operator Description Sample Use on int Sample Use on float

+ Unchecked addition 1 + 2 1.0 + 2.0

- Unchecked subtraction 12 - 5 12.3 - 5.4

* Unchecked multiplication 2 * 3 2.4 * 3.9

/ Division 5 / 2 5.0 / 2.0

% Modulus 5 % 2 5.4 % 2.0

- Unary negation -(5+2) -(5.4+2.4)

Syme_850-4C03.fm Page 28 Tuesday, September 25, 2007 6:43 AM

C H AP TE R 3 ■ IN T R O DU C I N G F U N CT I ON AL P R O G R AM M IN G 29

overflow is a priority, then using the decimal, bigint, and bignum types is recommended. Division
by zero raises a System.DivideByZeroException exception, except in the case of floating-point
numbers where it returns one of the special floating point numbers Infinity or -Infinity.
Operator overloading interacts with type inference—if a use of an overloaded operator is not
otherwise constrained to work on a particular type, then F# will assume it works on 32-bit integers.
To constrain a use of an operator to a particular type, you must give a type annotation that has
the effect of telling the compiler the type on the left of the two arguments to the binary operator. For
example, in the absence of additional type information, the following function is assumed to
work with integers:

> let doubleAndAdd a b = a * a + b;;
val doubleAndAdd: int -> int -> int

A single type annotation on a is sufficient to indicate that a * a is an operation on float
values, and thus returns a float value, and that a * a + b is also an operation on float:

> let doubleAndAdd (a:float) b = a * a + b;;
val doubleAndAdd: float -> float -> float

If you want, you can also give full type annotations for the arguments and return type of a
function:

> let doubleAndAdd (a:float) (b:float) : float = a * a + b;;
val doubleAndAdd: float -> float -> float

Bitwise Operations
All the integer types listed in Table 3-1 support bitwise manipulations on their underlying
representations. Table 3-3 shows the bitwise manipulation operators.

Table 3-3. Bitwise Arithmetic Operators and Examples

Operator Description Sample Use Result

&&& Bitwise “and” 0x65 &&& 0x0F 0x05

||| Bitwise “or” 0x65 ||| 0x18 0x7D

ˆˆˆ Bitwise “exclusive or” 0x65 ˆˆˆ 0x0F 0x6A

~~~ Bitwise negation ~~~0x65 0xFFFFFF9a

<<< Left shift 0x01 <<< 3 0x08

>>> Right shift (arithmetic if signed) 0x65 >>> 3 0x0C

Syme_850-4C03.fm  Page 29  Tuesday, September 25, 2007  6:43 AM



30 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

The following sample shows how to use these operators to encode 32-bit integers into 1, 2, 
or 5 bytes, represented by returning a list of integers. Integers in the range 0 to 127 return a list 
of length 1:

let encode (n: int32) =
    if   (n >= 0    && n <= 0x7F)   then [ n ]
    elif (n >= 0x80 && n <= 0x3FFF) then [ (0x80 ||| (n >>> 8)) &&& 0xFF;
                                           (n &&& 0xFF) ]
    else  [ 0xC0; ((n >>> 24) &&& 0xFF);
                  ((n >>> 16) &&& 0xFF);
                  ((n >>> 8)  &&& 0xFF);
                   (n         &&& 0xFF) ]

Here’s an example of the function in action:

> encode 32;;
val it : int32 list = [32]

> encode 320;;
val it : int32 list = [129; 64]

> encode 32000;;
val it : int32 list = [192; 0; 0; 125; 0]

Arithmetic Conversions
Numeric types are not implicitly converted—conversions between different numeric types 
must be made explicitly. You do this by using overloaded conversion operators. These work 
in the same way as overloaded infix operators such as + and *. Table 3-4 shows the primary 
conversion operators.

Table 3-4. Overloaded Arithmetic Conversions and Examples

Operator Description Sample Use Result

sbyte Convert/truncate to sbyte sbyte (-17) -17y

byte Convert/truncate to byte byte 255 255uy

int16 Convert/truncate to int16 int16 0 0s

uint16 Convert/truncate to uint16 uint16 65535 65535us

int/int32 Convert/truncate to int32 int 17.8 17

uint32 Convert/truncate to uint32 uint32 12 12u

int64 Convert/truncate to int64 int64 (-100.4) -100L

uint64 Convert/truncate to uint64 uint64 1 1UL

float32 Convert to float32/single float32 65 65.0f

float Convert to float/double float 65 65.0

Syme_850-4C03.fm  Page 30  Tuesday, September 25, 2007  6:43 AM



C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 31

These conversions are all unchecked in the sense that they will not raise exceptions. Again, 
the Microsoft.FSharp.Core.Operators.Checked module has corresponding definitions of these 
operators. An alternative is to use the .NET static methods contained in the type System.Convert, 
such as System.Convert.ToDouble( ). These do perform checking, which means they raise an 
exception if the source number can’t be represented within the numeric range of the target 
type. As with many .NET constructs, uses of System.Convert methods may require type anno-
tations to resolve overloading, discussed further in Chapter 5 and Chapter 6.

Arithmetic Comparisons
When used with numeric values, the binary comparison operators =, <>, <, <=, >, >=, min, and max 
perform comparisons according to the natural ordering for each particular numeric type. You can 
also use these operators on other data types, such as to compare lists of integers, and you can 
customize their behavior for new types you define. We discuss generic comparison in detail in 
Chapter 5, and we discuss customizing generic comparison in Chapter 8.

When used with floating-point values, these operators implement the IEEE semantics for 
NaN (Not a Number) values. For example, (NaN = NaN) is false, as is (NaN <= NaN) and (NaN < NaN).

Overloaded Math Functions
The module Microsoft.FSharp.Core.Operators includes the definition of a number of useful 
overloaded math operators. These are shown in Table 3-5 and are overloaded either on a suit-
able range of integer types or on the basic floating-point types.

Introducing Simple Strings
The F# type string is an abbreviation for .NET type System.String and represents a sequence 
of Unicode UTF-16 characters. In the following sections, we briefly introduce strings and the 
most useful functions for formatting them.

Table 3-5. Overloaded Math Functions and Examples

Function Description Sample Use Result

abs Absolute value of signed 
numeric types

abs (-10.0f) 10.0f

cos, sin, tan Trigonometric functions cos 0.0 1.0

cosh, sinh, tanh Hyperbolic trigonometric 
functions

cos 1.0 1.543080635

acos, asin, atan, atan2 Inverse trigonometric 
functions

acos 1.0 0.0

ceil, floor Round up, round down ceil 1.001 2.0

truncate Round toward zero truncate 8.9 8.0

exp, log, log10 Exponent, logarithm, 
base-10 logarithm

exp 1.0 2.718281828

( ** ) Power 2.0 ** 4.0 16.0

Syme_850-4C03.fm  Page 31  Tuesday, September 25, 2007  6:43 AM



32 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

Working with String Literals and Primitives
Table 3-6 shows the different forms for writing string literals. 

Table 3-7 shows the escape characters that you can use in strings and characters.

As shown in Table 3-6, a literal form is also available for arrays of bytes: the characters are 
interpreted as ASCII characters, and non-ASCII characters can be embedded by escape codes. 
This can be useful when working with binary protocols:

> "MAGIC"B;;
val it : byte [] = [|77uy; 65uy; 71uy; 73uy; 67uy|]

Verbatim string literals are particularly useful for file and path names that contain the 
backslash character (\):

> let dir  = @"c:\Program Files";;
val dir : string

Table 3-6. String and Character Literals

Example Kind Type

"Humpty Dumpty" String string

"c:\\Program Files" String string

@"c:\Program Files" Verbatim string string

"xyZy3d2"B Literal byte array byte[]

'c' Character char

Table 3-7. Escape Characters in Nonverbatim Strings

Escape Character ASCII/Unicode Value Examples

\n New line 10 "\n"

\r Carriage return 13 "\r"

\t Tab 9 "\t"

\b Backspace 8

\NNN Trigraph NNN "\032" (space)

\uNNNN Unicode character NNNN "\u00a9" (©)

\UNNNNNNNN Long Unicode character NNNN NNNN "\U00002260" (≠)

Syme_850-4C03.fm  Page 32  Tuesday, September 25, 2007  6:43 AM



C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 33

You can also use multiline string literals:

> let s = "All the kings horses
- and all the kings men";;
val s : string

The operator .[] is used to access the elements of a string, and the property .Length 
retrieves its length:

> let s = "Couldn't put Humpty";;
val s : string

> s.Length;;
val it : int = 19

> s.[13];;
val it : char = 'H'

Strings are immutable; that is, a string value cannot be modified once built. For example, 
the Substring method on the string type doesn’t modify the original string but returns a new 
string representing the result. As mentioned in Chapter 2, immutability is a key concept for 
many F# values, and you’ll encounter it at many places in this book. If you attempt to mutate 
a string, you will get an error like the one shown here:

> let s = "Couldn't put Humpty";;
val s : string = "Couldn't put Humpty"

> s.[13] <- 'h';;

  s.[13] <- 'h';;
  ^^
stdin(75,0): error: FS0001: Type error in the use of the overloaded operator
'set_Item'. The type 'string' does not support any operators named 'set_Item'

Building Strings
The simplest way to build strings is via concatenation using the + operator:

> "Couldn't put Humpty" + " " + "together again";;
val it : string = "Couldn't put Humpty together again"

Syme_850-4C03.fm  Page 33  Tuesday, September 25, 2007  6:43 AM



34 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

You can also build strings using objects of the .NET type System.Text.StringBuilder. These 
objects are mutable buffers that you can use to accumulate and modify text, and they are more 
efficient than repeated uses of the + operator. Here’s an example:

> let buf = new System.Text.StringBuilder();;
val buf : System.Text.StringBuilder

> buf.Append("Humpty Dumpty");;

> buf.Append(" sat on the wall");;

> buf.ToString();;
val it : string = "Humpty Dumpty sat on the wall"

■Note  For compatibility with OCaml, the ̂  operator can also be used for string concatenation, though it is 
generally used only when cross-compiling code with OCaml.

Working with Lists and Options
Some of the foundational data structures of F# coding are tuples, lists, and options. In the 
following sections, we discuss these and some related topics by example.

Using F# Lists
F# lists are a common data structure used in functional programming. You saw some examples 
of concrete lists when using the results of the String.split function in Chapter 2. Table 3-8 
shows the primitive constructs for building lists.

Table 3-8. Some List-Related Language Constructs and Operators

Operator/Expression Description Examples

[] The empty list []

expr :: expr “Cons” an element with a list 1 :: [2; 3]

[expr; ...; expr] A list value [1; 2; 3]

[expr .. expr] A range of integers [1 .. 99]

[ for x in list -> expr ] A generated list (see end 
of chapter)

[ for x in 1..99 -> x * x ]

expr @ expr Concatenates two lists [1; 2] @ [3]

Syme_850-4C03.fm  Page 34  Tuesday, September 25, 2007  6:43 AM



C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 35

Here are some basic list values:

let oddPrimes = [3; 5; 7; 11]
let morePrimes = [13; 17]
let primes = 2 :: (oddPrimes @ morePrimes)

The value and type of primes are as follows:

val primes : int list = [2; 3; 5; 7; 11; 13; 17]

It is important to note that lists are immutable: the “cons” :: and “append” @ operations 
do not modify the original lists; instead, they create new lists. You can see this in the following 
interactive session:

> let people = [ "Adam"; "Dominic"; "James" ];;
val people : string list

> people;;
val it : string list = [ "Adam"; "Dominic"; "James" ]

> "Chris" :: people;;
val it : string list = [ "Chris"; "Adam"; "Dominic"; "James" ]

> people;;
val it : string list = [ "Adam"; "Dominic"; "James" ]

Note that people has not been changed by the construction of a new list using the “cons” 
operator. That is, lists and tuples are unchangeable, immutable values. F# lists are represented 
in memory as linked lists, and each F# list value is a “cons” cell containing a value plus a pointer to 
the next chain in the list, or else it is a special “nil” object. When you create a new list using the 
:: operator, then the tail of the new list will point to the old list, which ensures that the inner 
memory associated with lists is often reused as part of multiple list values. You can decompose 
lists from the head downward by using pattern matching. You saw some simple examples of 
pattern matching on tuples in Chapter 2, and we’ll look at pattern matching in more detail in 
“Getting Started with Pattern Matching” later in this chapter. Here is an example of using 
pattern matching with lists:

let printFirst primes =
    match primes with
    | h :: t -> printfn "The first prime in the list is %d" h
    | [] -> printfn "No primes found in the list"

> printFirst oddPrimes;;
The first prime in the list is 3
val it : unit = ()

Syme_850-4C03.fm  Page 35  Tuesday, September 25, 2007  6:43 AM



36 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

The first line after the match is a pattern-matching rule that matches the input primes against 
the pattern h :: t. If primes is a nonempty list, then the match will be successful, and the first 
printfn will be executed with h bound to the head of the list and t to its tail. The second line 
considers the case where primes is an empty list. Note that the :: and [] symbols can be used 
both to build up lists in expressions and to decompose them in pattern matching. The F# library 
also includes a module List that contains some useful functions related to programming with 
lists. You’ll be seeing many of these functions in the next section and throughout this book. 
Table 3-9 shows some of these.

F# lists are not appropriate for all circumstances; for example, very large data structures 
should probably be represented using arrays or other data structures or even managed by an 
external tool such as a relational database. We discuss a number of immutable data structures 
in the “Some Common Immutable Data Structures” sidebar.

Table 3-9. Some Sample Functions in the List Module

Function Type Description

List.length : 'a list -> int Returns the length of the list.

List.hd : 'a list -> 'a Returns the first element of a 
nonempty list.

List.tl : 'a list -> 'a list Returns all the elements of a 
nonempty list except the first.

List.init : int -> (int -> 'a) -> 'a list Returns a new list of length given by 
the first parameter and elements 
generated by the second function 
parameter.

List.append : 'a list -> 'a list -> 'a list Returns a new list containing the 
elements of the first list followed by 
the elements of the second list.

List.filter : ('a -> bool) -> 'a list -> 'a list Returns a new list containing only 
those elements of the original list 
where the function returns true.

List.map : ('a -> 'b )  -> 'a list -> 'b list Returns a new list where the function 
has been applied to each element of 
the list.

List.iter : ('a -> unit) -> 'a list -> unit Executes the given function for each 
element of the list.

List.unzip : ('a * 'b) list -> 'a list * 'b list Returns two new lists containing the 
first and second elements of the 
pairs in the input list.

List.zip : 'a list -> 'b list -> ('a * 'b) list Returns a new list containing the 
elements of the two input lists 
combined pairwise. The input lists 
must be the same length; otherwise, 
an exception is raised.

List.to_array : 'a list -> 'a[] Converts the list to an array.

List.of_array : 'a[]    -> 'a list Converts the array to a list.

Syme_850-4C03.fm  Page 36  Tuesday, September 25, 2007  6:43 AM



C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 37

Here are examples of how to use some of the functions from Table 3-9. The last two exam-
ples use function values, which we cover in more detail in “Introducing Function Values” later 
in this chapter.

> List.hd [5; 4; 3];;
val it : int = 5

> List.tl [5; 4; 3];;
val it : int list = [ 4; 3 ]

> List.map (fun x -> x*x) [1; 2; 3];;
val it : int list = [ 1; 4; 9 ]

> List.filter (fun x -> x % 3 = 0) [2; 3; 5; 7; 9];;
val it : int list = [ 3; 9 ]

SOME COMMON IMMUTABLE DATA STRUCTURES

Data structures are generally divided between mutable and immutable, a distinction touched upon in Chapter 2 and 
covered in more detail in Chapter 4. Immutable data structures are sometimes called persistent or simply 
functional. Here are some of the immutable data structures commonly used with F#:

• Tuple values and option values: These are immutable and are basic workhorses of F# programming.

• Immutable linked lists of type 'a list: These are cheap to access from the left end. They are ineffi-
cient for random access lookup because the list must be traversed from the left for each lookup, that is, 
random access lookup is O(n) where n is the number of elements in the collection. The full name of this 
type is Microsoft.FSharp.Collections.List<'a>.

• Immutable sets based on balanced trees: We show some example uses of immutable sets in Chapter 2, 
and an implementation is provided via the type Set<'a> in the F# library namespace Microsoft.
FSharp.Collections. These are cheap to add, access, and union, with O(log(n)) access times, where n is 
the number of elements in the collection. Because the type is immutable, internal nodes can be shared 
between different sets.

• Immutable maps based on balanced trees: These are similar to immutable sets but associate keys with 
values (that is, they are immutable dictionaries). One implementation of these is provided via the F# 
library type Map<'key,'value> in Microsoft.FSharp.Collections. As with sets, these have 
O(log(n)) access times.

We cover imperative programming and mutable data structures in Chapter 4.

Using F# Option Values
Like lists and tuples, option values are simple constructs frequently used as the workhorses in 
F# coding. An option is simply either a value Some(v) or the absence of a value None. For example, 

Syme_850-4C03.fm  Page 37  Tuesday, September 25, 2007  6:43 AM



38 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

options are useful for returning the value of a search where you might or might not have a 
result. You shall see in “Defining Discriminated Unions” that the option type is defined in the 
F# library as follows:

type 'a option =
    | None
    | Some of 'a

The following is a data structure that uses options to represent the (optional) parents of 
some well-known characters:

> let people = [ ("Adam", None);
                 ("Eve" , None);
                 ("Cain", Some("Adam","Eve"));
                 ("Abel", Some("Adam","Eve")) ];;
val people : (string * (string *string) option) list

Pattern matching is frequently used to examine option values:

> let showParents (name,parents) =
      match parents with
      | Some(dad,mum) -> printfn "%s has father %s, mother %s" name dad mum
      | None          -> printfn "%s has no parents!" name;;
val showParents : (string * (string * string) option) -> unit

> showParents ("Adam",None);;
Adam has no parents
val it : unit = ()

The F# library also includes a module Option that contains some useful functions for program-
ming with options. Table 3-10 shows some of these. Although it is easy to code these by hand 
using pattern matching, it can also be useful to learn and rely on the standard definitions.

Table 3-10. Some Sample Functions in the Option Module

Function Type Description

Option.get : 'a option -> 'a Returns the value of a Some option.

Option.is_some : 'a option -> bool Returns true for a Some option.

Option.map : ('a -> 'b ) -> 'a option -> 'b option Given None, returns None. Given 
Some(x), returns Some(f x), where f 
is the given function.

Option.iter : ('a -> unit) -> 'a option -> unit Applies the given function to the 
value of a Some option; otherwise, 
does nothing.

Syme_850-4C03.fm  Page 38  Tuesday, September 25, 2007  6:43 AM



C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 39

Using Option Values for Control
You can use option values for both data and control; they’re often used to represent the success 
or failure of a computation. This can be useful when catching an exception, as shown in the 
following sample (this sample uses the function http from Chapter 2):

let fetch url =
    try Some(http(url))
    with :? System.Net.WebException -> None

We describe exceptions in more detail in Chapter 4—what matters here is that if a network 
error occurs during the HTTP request, then the exception will be caught, and the result of the 
fetch function will be the value None. Successful web page requests will return a Some value. 
Option values can then be discriminated and decomposed using pattern matching, as shown here:

> match (fetch "http://www.nature.com") with
  | Some(text) -> printfn "text = %s" text
  | None -> printfn "**** no web page found";;
text = <HTML> ... </HTML>  (note: the HTML is shown here if connected to the web)
val it : unit = ()

Working with Conditionals: && and ||
A basic control construct in F# programming is if/then/elif/else. Here’s an example:

let round x =
    if x >= 100 then 100
    elif x < 0 then 0
    else x

Conditionals are really shorthand for pattern matching; for example, the previous code 
could have been written like this:

let round x =
    match x with
    | _ when x >= 100 -> 100
    | _ when x < 0    -> 0
    | _               -> x

Conditionals are always guarded by a Boolean-valued expression. You can build them 
using && and || (the “and” and “or” operators) as well as any library functions that return 
Boolean values:

let round2 (x,y) =
    if x >= 100 || y >= 100 then 100,100
    elif x < 0 || y < 0 then 0,0
    else x,y

Syme_850-4C03.fm  Page 39  Tuesday, September 25, 2007  6:43 AM

http://www.nature.com


40 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

The operators && and || have the usual “shortcut” behavior in that the second argument of 
&& is evaluated only if the first evaluates to true, and likewise, the second argument of || is eval-
uated only if the first evaluates to false. 

■Note  If you don’t use the #light lightweight syntax option, then when you combine conditionals with 
imperative code, you will sometimes need to use parentheses, as in (...), or begin/end to delimit the 
regions covered by each branch of the conditional, for example, if x > 100 then (...). If you use the 
#light syntax option, then these are optional, as long as the branches are correctly indented from the if, 
elif, and else tokens of the construct.

Defining Recursive Functions
One of the fundamental building blocks of computation in F# is recursion. The following code 
shows a simple well-known recursive function:

> let rec factorial n = if n <= 1 then 1 else n * factorial (n-1);;
val factorial : int -> int

> factorial 5;;
val it : int = 120

This example shows that a recursive function is simply one that can call itself as part of 
its own definition. Recursive functions are introduced by let rec. Functions are not recursive 
by default, since it is wise to isolate recursive functions to help you control the complexity of 
your algorithms and keep your code maintainable. It may help to visualize the execution of 
factorial 5 in the following way (though note that in reality F# executes the function using 
efficient native code):

factorial 5
= 5 * factorial 4
= 5 * (4 * factorial 3)
= 5 * (4 * (3 * factorial 2))
= 5 * (4 * (3 * (2 * factorial 1 )))
= 5 * (4 * (3 * (2 * 1)))
= 5 * (4 * (3 * 2))
= 5 * (4 * 6)
= 5 * 24
= 120

As with all calls, the execution of the currently executing instance of the function is suspended 
while a recursive call is made.

Syme_850-4C03.fm  Page 40  Tuesday, September 25, 2007  6:43 AM



C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 41

Many of the operators you have encountered so far can be coded as recursive functions. 
For example, the following is one possible implementation of List.length:

let rec length l =
    match l with
    | [] -> 0
    | h :: t -> 1 + length t

Likewise, many functions such as List.map are implemented using recursive functions.
Recursion is sometimes used as a means of programming particular patterns of control. 

This is usually used in contexts where functions have deliberate side effects. For example, the 
following code repeatedly fetches the HTML for a particular web page, printing each time it 
is fetched:

let rec repeatFetch url n =
    if n > 0 then
        let html = http url
        printfn "fetched <<< %s >>> on iteration %d" html n
        repeatFetch url (n-1)

Recursion is powerful but not always the ideal way to encode either data manipulations or 
control constructs, at least if other techniques are readily available. For example, the previous 
program could be implemented using a for loop, as explained in Chapter 4, which would be 
clearer. Likewise, explicit recursion should typically be avoided if an operator is available that 
captures the pattern of recursion being used. For example, many explicit loops and recursive 
functions can be replaced by uses of functions such as List.map and Array.map.

A typical error with recursion is to forget to decrement a variable at the recursive call. For 
example, the author incorrectly entered the following nonterminating function when writing 
this chapter:

let rec badFactorial n = if n <= 0 then 1 else n * badFactorial n

You should always check your recursive calls to ensure that the function is tending toward 
termination, that is, that the arguments are approaching the base case. This is called well-
founded recursion.

You can define multiple recursive functions simultaneously by separating the definitions 
with and. These are called mutually recursive functions. For example:

let rec even n = (n = 0u) || odd(n-1u)
and     odd n = (n <> 0u) && even(n-1u)

This gives the following types:

val even : uint32 -> bool
val odd : uint32 -> bool

Of course, a more efficient, nonrecursive implementation of these is available!

let even (n:uint32) = (n % 2u) = 0u
let odd  (n:uint32) = (n % 2u) = 1u

Syme_850-4C03.fm  Page 41  Tuesday, September 25, 2007  6:43 AM



42 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

You must sometimes take care with recursive functions to ensure that they are tail recursive, or 
else the computation stack of your program may be exhausted by large inputs. This is particu-
larly important for library functions or functions that operate over large data structures with 
very large numbers of recursive calls. Indeed, the implementation of length shown previously 
is not tail recursive. We discuss tail recursion in depth in Chapter 8.

Introducing Function Values
In this section, we cover the foundational building block of F# functional programming: func-
tion values. We begin with a simple and well-known example: using function values to transform 
one list into another.

One of the primary uses of F# lists is as a general-purpose concrete data structure for storing 
ordered lists input and ordered results. Input lists are often transformed to output lists using 
“aggregate” operations that transform, select, filter, and categorize elements of the list according to 
a range of criteria. These aggregate operations provide an excellent introduction to how to use 
function values. Let’s take a closer look at this in the following code sample, which continues 
from the definition of http in Listing 2-2 in Chapter 2:

> let sites = [ "http://www.live.com";
                "http://www.google.com" ];;
val sites : string list

> let fetch url = (url, http url);;
val fetch : string -> string * string

> List.map fetch sites;;
val it : (string * string) list
= [ ("http://www.live.com", "<html>...</html>");
    ("http://www.google.com", "<html>...</html>"); ]

The first interaction defines sites as a literal list of URLs, and the second defines the function 
fetch. The third calls the aggregate operation List.map. This accepts the function value fetch 
as the first argument and the list sites as the second argument. The function applies fetch to 
each element of the list and collects the results in a new list.

Types are one useful way to help learn what a function does. Here’s the type of List.map:

> List.map;;
val it: ('a -> 'b) -> 'a list -> 'b list

This says List.map accepts a function value as the first argument and a list as the second 
argument, and it returns a list as the result. The function argument can have any type 'a -> 'b, 
and the elements of the input list must have a corresponding type 'a. The symbols 'a and 'b 
are called type parameters, and functions that accept type parameters are called generic. We 
discuss type parameters in detail in Chapter 5.

Syme_850-4C03.fm  Page 42  Tuesday, September 25, 2007  6:43 AM

http://www.live.com
http://www.google.com
http://www.live.com
http://www.google.com


C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 43

■Tip  You can often deduce the behavior of a function from its type, especially if its type involves type 
parameters. For example, look at the type of List.map. Using type parameters, you can observe that the type 
'a list of the input list is related to the type 'a accepted by the function passed as the first parameter. 
Similarly, the type 'b returned by this function is related to the type 'b list of the value returned by 
List.map. From this it is reasonable to conclude that List.map will call the function parameter for items in 
the list and construct its result using the values returned.

Using Anonymous Function Values
Function values are so common in F# programming that it is convenient to define them without 
giving them names. Here is a simple example:

> let primes = [2; 3; 5; 7];;
val primes : int list

> let primeCubes = List.map (fun n -> n * n * n) primes;;
val primeCubes: int list

> primeCubes;;
val it : int list = [8; 27; 125; 343]

The definition of primeCubes uses the anonymous function value (fun n -> n * n * n). 
These are similar to function definitions but are unnamed and appear as an expression rather 
than as a let declaration. fun is a keyword meaning “function,” n represents the argument to 
the function, and n * n * n is the result of the function. The overall type of the anonymous 
function expression is int -> int. You could use this technique to avoid defining the interme-
diary function fetch in the earlier sample:

let resultsOfFetch = List.map (fun url -> (url, http url)) sites

You will see anonymous functions throughout this book. Here is another example:

> List.map (fun (_,p) -> String.length p) resultsOfFetch;;
val it : int list = [3932; 2827 ]

Here you see two things:

• The argument of the anonymous function is a tuple pattern. Using a tuple pattern auto-
matically extracts the second element from each tuple and gives it the name p within the 
body of the anonymous function.

• Part of the tuple pattern is a wildcard pattern, indicated by an underscore. This indicates 
you don’t care what the first part of the tuple is; you’re interested only in extracting the 
length from the second part of the pair.

Syme_850-4C03.fm  Page 43  Tuesday, September 25, 2007  6:43 AM



44 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

Computing with Aggregate Operators
Functions such as List.map are called aggregate operators, and they are powerful constructs, 
especially when combined with the other features of F#. Here is a longer example that uses the 
aggregate operators List.filter and List.map to count the number of URL links in an HTML 
page and then collects stats on a group of pages (this sample uses the function http defined in 
Chapter 2):

let delimiters = [ ' '; '\n'; '\t'; '<'; '>'; '=' ]
let getWords s = String.split delimiters s
let getStats site =
    let url = "http://" + site
    let html = http url
    let hwords = html |> getWords
    let hrefs = html |> getWords |> List.filter (fun s -> s = "href")
    (site,html.Length, hwords.Length, hrefs.Length)

Here we use the function getStats with three web pages:

> let sites = [ "www.live.com";"www.google.com";"search.yahoo.com" ];;
val sites : string list

> sites |> List.map getStats;;
val it : (string * int * int * int) list
  = [("www.live.com", 7728, 1156, 10);
     ("www.google.com", 2685, 496, 14);
     ("search.yahoo.com", 10715, 1771, 38)]

The function getStats computes the length of the HTML for the given website, the number 
of words in the text of that HTML, and the approximate number of links on that page.

The previous code sample extensively uses the |> operator to pipeline operations, discussed in 
the “Pipelining with |>” sidebar. The F# library design ensures that a common, consistent set 
of aggregate operations is defined for each structured type. Table 3-11 shows how the same 
design patterns occur for the map abstraction.

Table 3-11. A Recurring Aggregate Operator Design Pattern from the F# Library

Operator Type

List.map : ('a -> 'b) -> 'a list   -> 'b list

Array.map : ('a -> 'b) -> 'a[]      -> 'b[]

Option.map : ('a -> 'b) -> 'a option -> 'b option

Seq.map : ('a -> 'b) -> #seq<'a>  -> seq<'b>

Syme_850-4C03.fm  Page 44  Tuesday, September 25, 2007  6:43 AM

http://www.live.com
http://www.google.com
http://www.live.com
http://www.google.com


C H AP TE R  3  ■  IN T R O DU C I N G  F U N CT I ON AL  P R O G R AM M IN G 45

Frequently, types will also define methods such as Map that provide a slightly more succinct 
way of transforming data. For example, we could have written sites |> List.map getStats 
like so:

sites.Map(getStats)

Both styles are used in F# programming, depending on the methods and properties that 
are available for a particular data type.

PIPELINING WITH |>

The |> “forward pipe” operator is perhaps the most important operator in F# programming. Its definition is 
deceptively simple:

let (|>) x f = f x

Here is how to use the operator to compute the cubes of three numbers:

[1;2;3] |> List.map (fun x -> x * x * x)

This produces [1;8;27], just as if you had written this:

List.map (fun x -> x * x * x) [1;2;3]

In a sense, |> is just “function application in reverse.” However, using |> has distinct advantages:

• Clarity: When used in conjunction with operators such as List.map, the |> operator allows you to 
perform the data transformations and iterations in a forward-chaining, pipelined style.

• Type inference: Using the |> operator allows type information to be flowed from input objects to the 
functions manipulating those objects. F# uses information collected from type inference to resolve some 
language constructs such as property accesses and method overloading. This relies on information 
being propagated left to right through the text of a program. In particular, typing information to the right 
of a position is not taken into account when resolving property access and overloads.

For completeness, here is the type of the operator:

val (|>) : 'a -> ('a -> 'b) -> 'b

Composing Functions with >>
You saw earlier how to use the |> “forward pipe” operator to pipe values through a number of 
functions. This was a small example of the process of computing with functions, an essential 
and powerful programming technique in F#. In this section, we cover ways to compute new 
function values from existing ones using compositional techniques. First let’s take a look at 
function composition. For example, consider the following code:

let google = http "http://www.google.com"
google |> getWords |> List.filter (fun s -> s = "href") |> List.length

Syme_850-4C03.fm  Page 45  Tuesday, September 25, 2007  6:43 AM

http://www.google.com


46 CH AP T E R  3  ■  I N TR O D U C I N G  F U N C T I O N AL  PR O G R A M M I N G

You can rewrite this code using function composition as follows:

let countLinks = getWords >> List.filter (fun s -> s = "href") >> List.length
google |> countLinks

Let’s take a look at this more closely. We have defined countLinks as the composition of 
three function values using the >> “forward composition” operator. This operator is defined in 
the F# library as follows:

let (>>) f g x = g(f(x))

You can see from the definition that f >> g gives a function value that first applies f to the 
x and then applies g. Here is the type of >>:

val (>>) : ('a -> 'b) -> ('b -> 'c) -> ('a -> 'c)

Note that >> is typically applied to only two arguments—those on either side of the binary 
operator, here named f and g. The final argument x is typically supplied at a later point. F# is 
good at optimizing basic constructions of pipelines and composition sequences from functions—
for example, the function countLinks shown earlier will become a single function calling the 
three functions in the pipeline in sequence. This means sequences of compositions can be 
used with relatively low overhead.

Building Functions with Partial Application
Composing functions is just one way to compute interesting new functions. Another useful 
way is by using partial application. Here’s an example:

let shift (dx,dy) (px,py) = (px + dx, py + dy)
let shiftRight = shift (1,0)
let shiftUp    = shift (0,1)
let shiftLeft  = shift (-1,0)
let shiftDown  = shift (0,-1)

The last four functions have been defined by calling shift with only one argument, in each 
case leaving a residue function that expects an additional argument. F# Interactive will report 
the types as follows:

val shift : int * int -> int * int -> int * int
val shiftRight : int * int -> int * int
val shiftLeft  : int * int -> int * int
val shiftUp    : int * int -> int * int
val shiftDown  : int * int -> int * int

Here is an example of how to use shiftRight and how to apply shift to new arguments (2,2):

Syme_850-4C03.fm  Page 46  Tuesday, September 25, 2007  6:43 AM











































































































































































































































































































































































































































































































































































CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 323

    member self.IsNegative =
        match self with
        | Num num | Prod (Num num, _) -> Math.BigNum.negative num
        | Neg e -> true | _ -> false

    member self.Negate =
        match self with
        | Num num -> Num (-num)
        | Neg e -> e
        | exp -> Neg exp

Listing 12-3 also shows the definition of some miscellaneous augmentations on the expression 
type, mostly related to visual layout and presentation. The StarNeeded member is used inter-
nally for determining whether the multiplication operator (the star symbol) is needed in the 
product of two expressions, e1 and e2. Our rule is simple, which you may want to extend: any 
product where the right side is a number requires the explicit operator, and all other cases 
don’t. Thus, expressions such as 2(x+1) or 2x are rendered without the asterisk.

The IsNumber member returns true if the expression at hand is numeric and is used in 
conjunction with NumOf, which returns this numeric component. Similarly, the IsNegative and 
Negate members determine whether you have an expression that starts with a negative sign, 
and they negate it on demand.

Parsing Algebraic Expressions
This sample uses a lexer and a parser generated by the F# tools fsyacc.exe and fslex.exe. We 
describe these tools in more detail in Chapter 16, and in this chapter we skip over the details 
of how these tools work. Listing 12-4 and Listing 12-5 show the code for the lexer and parser. 
You will need to manually build the lexer (generating ExprLexer.fs) and parser (generating 
ExprParser.fs) from the command line as follows:

C:\samples> fsyacc ExprParser.fsy
C:\samples> fslex ExprLexer.fsl

Listing 12-4. ExprLexer.fsl: Tokenizing the Concrete Syntax for Algebraic Expressions

{
open Lexing
open ExprParser

let special lexbuf = function
    | "+" -> PLUS    | "-" -> MINUS
    | "*" -> TIMES   | "/" -> DIV
    | "(" -> LPAREN  | ")" -> RPAREN  | "^" -> HAT
    | _   -> failwith "Invalid operator"

Syme_850-4C12.fm  Page 323  Tuesday, October 23, 2007  1:29 PM



324 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

let id lexbuf = function
    | "sin" -> SIN   | "cos" -> COS
    | "e"   -> E     | id    -> ID id
}

let digit     = ['0'-'9']
let int       = digit+
let float     = int ('.' int)? (['e' 'E'] int)?
let alpha     = ['a'-'z' 'A'-'Z']
let id        = alpha+ (alpha | digit | ['_' '$'])*
let ws        = ' ' | '\t'
let nl        = '\n' | '\r' '\n'
let special   = '+' | '-' | '*' | '/' | '(' | ')' | '^'

rule main = parse
    | int        { INT     (Int32.of_string (lexeme lexbuf)) }
    | float      { FLOAT   (Float.of_string (lexeme lexbuf)) }
    | id         { id      lexbuf (lexeme lexbuf) }
    | special    { special lexbuf (lexeme lexbuf) }
    | ws | nl    { main    lexbuf }
    | eof        { EOF }
    | _          { failwith (lexeme lexbuf) }

The parser has some syntax sugar for polynomial terms, so it can parse 2x, 2x^3, or x^4 
without requiring you to add an explicit multiplication after the coefficient.

Listing 12-5. ExprParser.fsy: Parsing the Concrete Syntax for Algebraic Expressions

%{
open Symbolic.Expressions
open Math
%}

%token <int> INT
%token <float> FLOAT
%token <string> ID

%token EOF LPAREN RPAREN PLUS MINUS TIMES DIV HAT SIN COS E

%left ID
%left prec_negate
%left LPAREN
%left PLUS MINUS
%left TIMES DIV
%left LPAREN
%left HAT

Syme_850-4C12.fm  Page 324  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 325

%start expr
%type <Expr> expr
%%

expr:
    | exp EOF { $1 }

number:
    | INT                           { BigNum.of_int $1 }
    | FLOAT                         { BigNum.of_string (Float.to_string $1) }
    | MINUS INT %prec prec_negate   { BigNum.of_int (-$2) }
    | MINUS FLOAT %prec prec_negate { BigNum.of_string (Float.to_string (-$2)) }

exp:
    | number                  { Num $1 }
    | ID                      { Var $1 }
    | exp PLUS exp            { Add [$1; $3] }
    | exp MINUS exp           { Sub ($1, [$3]) }
    | exp TIMES exp           { Prod ($1, $3) }
    | exp DIV exp             { Frac ($1, $3) }
    | SIN LPAREN exp RPAREN   { Sin $3 }
    | COS LPAREN exp RPAREN   { Cos $3 }
    | E HAT exp               { Exp $3 }
    | term                    { $1 }
    | exp HAT number          { Pow ($1, $3) }
    | LPAREN exp RPAREN       { $2 }
    | MINUS LPAREN exp RPAREN { Neg $3 }

term:
    | number ID               { Prod (Num $1, Var $2) }
    | number ID HAT number    { Prod (Num $1, Pow (Var $2, $4)) }
    | ID HAT number           { Prod (Num 1N, Pow (Var $1, $3)) }

Simplifying Algebraic Expressions
At the start of this chapter, you simplified expressions using local techniques, but you also saw 
the limitations of this approach. Listing 12-6 shows a more complete implementation of a 
separate function (Simplify) that performs some nonlocal simplifications as well. Both this 
function and the one for derivation shown in the subsequent section are placed in a separate 
file (ExprUtil.fs).

Simplify uses two helper functions (collect and negate). The former collects constants 
from products using a bottom-up strategy that reduces constant subproducts and factors out 
constants by bringing them outward (to the left). Recall that product terms are binary.

Syme_850-4C12.fm  Page 325  Tuesday, October 23, 2007  1:29 PM



326 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

Listing 12-6. Simplifying Algebraic Expressions

#light
module Symbolic.Expressions.Utils

open Symbolic.Expressions

/// A helper function to map/select across a list while threading state
/// through the computation
let select_fold f l s =
    let l,s' = List.fold_left
                  (fun (l',s') x ->
                       let x',s'' = f x s'
                       (List.rev x') @ l',s'')
                  ([],s) l
    List.rev l,s'

/// Collect constants
let rec collect = function
    | Prod (e1, e2) ->
        match collect e1, collect e2 with
        | Num num1, Num num2       -> Num (num1 * num2)
        | Num n1, Prod (Num n2, e)
        | Prod (Num n2, e), Num n1 -> Prod (Num (n1 * n2), e)
        | Num n, e | e, Num n      -> Prod (Num n, e)
        | Prod (Num n1, e1), Prod (Num n2, e2) ->
            Prod (Num (n1 * n2), Prod (e1, e2))
        | e1', e2'                 -> Prod (e1', e2')
    | Num _ | Var _ as e   -> e
    | Neg e                -> Neg (collect e)
    | Add exprs            -> Add (List.map collect exprs)
    | Sub (e1, exprs)      -> Sub (collect e1, List.map collect exprs)
    | Frac (e1, e2)        -> Frac (collect e1, collect e2)
    | Pow (e1, num)        -> Pow (collect e1, num)
    | Sin e                -> Sin (collect e)
    | Cos e                -> Cos (collect e)
    | Exp _ as e           -> e

/// Push negations through an expression
let rec negate = function
    | Num num           -> Num (-num)
    | Var v as exp      -> Neg exp
    | Neg e             -> e
    | Add exprs         -> Add (List.map negate exprs)
    | Sub _             -> failwith "unexpected Sub"
    | Prod (e1, e2)     -> Prod (negate e1, e2)
    | Frac (e1, e2)     -> Frac (negate e1, e2)
    | exp               -> Neg exp

Syme_850-4C12.fm  Page 326  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 327

/// Simplify an expression
let rec simp = function
    | Num num           -> Num num
    | Var v             -> Var v
    | Neg e             -> negate (simp e)
    | Add exprs ->
        let filterNums (e:Expr) n =
           if e.IsNumber
           then [], n + e.NumOf
           else [e], n
        let summands = function | Add es -> es | e -> [e]
        let exprs', num =
            select_fold (simp >> summands >> select_fold filterNums) exprs 0N
        match exprs' with
        | [Num _ as n] when num = 0N -> n
        | []                         -> Num num
        | [e] when num = 0N          -> e
        | _ when num = 0N            -> Add exprs'
        | _                          -> Add (exprs' @ [Num num])
    | Sub (e1, exprs) ->
         simp (Add (e1 :: List.map Neg exprs))
    | Prod (e1, e2) ->
        match simp e1, simp e2 with
        | Num num, _ | _, Num num when num = 0N -> Num 0N
        | Num num, e | e, Num num when num = 1N -> e
        | Num num1, Num num2                    -> Num (num1 * num2)
        | e1, e2                                -> Prod (e1, e2)
    | Frac (e1, e2) ->
        match simp e1, simp e2 with
        | Num num, _ when num = 0N  -> Num num
        | e1, Num num when num = 1N -> e1
        | Num (_  as num), Frac (Num (_ as num2), e) ->
             Prod (Frac (Num num, Num num2), e)
        | Num (_  as num), Frac (e, Num (_ as num2)) ->
             Frac (Prod (Num num, Num num2), e)
        | e1, e2                    -> Frac (e1, e2)
    | Pow (e, n) when n=1N -> simp e
    | Pow (e, n)           -> Pow (simp e, n)
    | Sin e                -> Sin (simp e)
    | Cos e                -> Cos (simp e)
    | Exp e                -> Exp (simp e)

let Simplify e = e |> simp |> simp |> collect

Syme_850-4C12.fm  Page 327  Tuesday, October 23, 2007  1:29 PM



328 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

The main simplification algorithm works as follows:

• Constants and variables are passed through verbatim. negate is utilized when simplifying 
a negation, which assumes that the expression at hand no longer contains differences 
and that sums were “flattened” (see the next item in this list).

• Sums are traversed and nested sums are flattened, at the same time as collecting and 
adding up all constants. This reduces the complexity of further simplification considerably.

• Differences are converted to sums; for instance, A-B-C is converted to A+(-B)+(-C). Thus, 
the first element is preserved without negation.

• When simplifying a product, you first simplify its factors, and then you remove identity 
operations (multiplying by zero or one) and reduce products of constants.

• Fractions are handled similarly. Zero divided by anything is 0, anything divided by 1 
is itself, and multiline fractions can be collapsed if you find numeric denominators or 
numerators.

• The rest of the match cases deal with simplifying subexpressions.

Symbolic Differentiation of Algebraic Expressions
Applying symbolic differentiation is a straightforward translation of the mathematical rules 
of differentiation into code. We could have used local functions that act as constructors and 
perform local simplifications, but with the simplification function described earlier this is no 
longer needed. Listing 12-7 shows the implementation of symbolic differentiation for the Expr 
type. Note how beautifully and succinctly the code follows the math behind it, and the essence 
of the symbolic processing is merely 20 lines of code!

Listing 12-7. Symbolic Differentiation for Algebraic Expressions

let Differentiate v e =
    let rec diff v = function
        | Num num               -> Num 0N
        | Var v' when v'=v      -> Num 1N
        | Var v'                -> Num 0N
        | Neg e                 -> diff v (Prod ((Num -1N), e))
        | Add exprs             -> Add (List.map (diff v) exprs)
        | Sub (e1, exprs)       -> Sub (diff v e1, List.map (diff v) exprs)
        | Prod (e1, e2)         -> Add [Prod (diff v e1, e2); Prod (e1, diff v e2)]
        | Frac (e1, e2) ->
            Frac (Sub (Prod (diff v e1, e2), [Prod (e1, diff v e2)]), Pow (e2, 2N))
        | Pow (e1, num) ->
            Prod (Prod(Num num, Pow (e1, num - 1N)), diff v e1)
        | Sin e                 -> Prod (Cos e, diff v e)
        | Cos e                 -> Neg (Prod (Sin e, diff v e))
        | Exp (Var v') as e when v'=v  -> e
        | Exp (Var v') as e when v'<>v -> Num 0N
        | Exp e                 -> Prod (Exp e, diff v e)
    diff v e

Syme_850-4C12.fm  Page 328  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 329

Rendering Expressions
Now that you have the basic machinery to easily parse, simplify, and differentiate expressions, 
you need to be looking at how to visualize them to really enjoy the benefits of the application. 
The rendering engine (placed in VisualExpr.fs) has two main parts: converting expressions to 
VisualExpr values and then rendering them directly. Ideally, you should hide the representa-
tion of the VisualExpr (and its related VisualElement) type by a signature (not shown here) so 
that it is not possible to construct these values directly.

Before we get to the conversion and rendering functions, there is a bit of setup to do. For 
controlling how the different parts of an expression are rendered on the screen, we introduce 
the RenderOptions type containing the fonts and pen (which determines the color used to draw) 
that will be applied during rendering. Listing 12-8 shows the code that defines the rendering 
options used in the remainder of this sample.

Listing 12-8. Rendering Options for the Visual Symbolic Differentiation Application

#light
namespace Symbolic.Expressions.Visual

open Symbolic.Expressions
open System.Drawing
open System.Drawing.Imaging
open Math

type RenderOptions =
    {  NormalFont: Font;  SmallFont: Font;  IsSuper: bool;  Pen: Pen; }

    static member Default =
        { NormalFont = new Font("Courier New",18.0f,FontStyle.Regular);
          SmallFont = new Font("Courier New", 12.0f, FontStyle.Regular);
          IsSuper = false;
          Pen = new Pen(Color.Black, 1.0f); }

    member self.Brush =
        (new SolidBrush(Color.FromArgb(255, self.Pen.Color)) :> Brush)

Each algebraic expression is converted to a VisualExpr value as part of the rendering process. 
This ensures you don’t have to deal with the variety of expression forms but only with a small 
set of simple shapes that can be rendered according to a few simple rules. These more simple 
building blocks are defined in the VisualElement type and shown in Listing 12-9. For instance, 
there are no sums or products; these and similar expressions are broken down to a sequence of 
symbols (such as 1, x, or +). The two other visual elements are exponentiation and fractions, 
which are used to guide the display logic later during the rendering phase. Each visual element 
carries a size value that is calculated using a given set of rendering options.

Syme_850-4C12.fm  Page 329  Tuesday, October 23, 2007  1:29 PM



330 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

Listing 12-9. Visual Elements and Sizes for the Visual Symbolic Differentiation Application

type VisualElement =
    | Symbol   of string * ExprSize
    | Power    of VisualElement * VisualElement * ExprSize
    | Sequence of VisualElement list * ExprSize
    | Fraction of VisualElement * VisualElement * ExprSize
    member self.Size =
        match self with
        | Symbol (_, size)   | Power (_, _, size)
        | Sequence (_, size) | Fraction (_, _, size) -> size

    member self.Height = self.Size.height
    member self.Width = self.Size.width
    member self.Midline = self.Size.midline

and ExprSize =
    {  width: int;  height: int;  midline: int; }

    member self.CenterOnMidline size x y =
        x + (size.width-self.width)/2, y + (size.midline-self.midline)

    member self.Frac size opt =
        { width = max self.width size.width;
          height = self.height + size.height + self.FracSepHeight opt;
          midline = self.height + (self.FracSepHeight opt)/2; }

    member self.FracSepHeight (opt: RenderOptions) =
        max (int (opt.Pen.Width*5.0f)) 4

    member self.AddPower (e: VisualElement) =
        {  width = self.width + e.Width;
           height = self.height + e.Height;
           midline = self.midline + e.Height; }

    static member ExpandOne (size: ExprSize) (e: VisualElement) =
        { width   = size.width + e.Width;
          height  = max size.height e.Height;
          midline = max size.midline e.Midline; }

    member self.Expand (exprs: VisualElement list) =
        List.fold_left ExprSize.ExpandOne self exprs

    static member Seq (exprs: VisualElement list) =
        List.fold_left ExprSize.ExpandOne ExprSize.Zero exprs

    static member Zero =
        { width=0; height=0; midline=0; }

Syme_850-4C12.fm  Page 330  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 331

This size value encodes the dimensions (width and height in pixels) of the related visual 
expression and is managed through the ExprSize type, which provides various members to 
compute precise dimensions. Basically, this is the type that handles the gory details of putting 
small visuals together to compose a large expression and manages how and where these small 
visuals should be placed. The main guideline is to align these visuals on a line (measured from 
the top of the expression in pixels and stored in the midline field), as depicted in Figure 12-3.

2

Figure 12-3. Expressions and their sizes

The darker rectangles in this figure denote arbitrary expressions, whereas the lighter rectangle 
marks the dimensions of the parent expression aligned on the midline.

Converting to VisualExpr

Listing 12-10 shows the type VisualExpr that carries the main visual element and the rendering 
options that were used to produce it. This type also provides the method OfExpr to build a 
VisualExpr from an Expr.

Syme_850-4C12.fm  Page 331  Tuesday, October 23, 2007  1:29 PM



332 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

Listing 12-10. Visual Expressions for the Visual Symbolic Differentiation Application

type VisualExpr =
    {  Expression : VisualElement;  RenderOptions: RenderOptions; }

    static member OfExpr (opt: RenderOptions) e =
        use bmp = new Bitmap(100, 100, PixelFormat.Format32bppArgb)
        use gra = Graphics.FromImage(bmp)
        let sizeOf (opt: RenderOptions) s =
            use sFormat = new StringFormat(StringFormat.GenericTypographic)
            let font = if opt.IsSuper then opt.SmallFont else opt.NormalFont
            let size = gra.MeasureString(s, font, PointF(0.0f, 0.0f), sFormat)
            let height = int size.Height
            { width = int size.Width + 2;
              height = height;
              midline = height/2; }
        let precPow = 70
        let precProd1, precProd2 = 30, 40
        let precAdd1, precAdd2 = 10, 11
        let precStart = 5
        let precNeg1, precNeg2 = 1, 20
        let sym opt s = Symbol (s, sizeOf opt s)

        let applyPrec opt pprec prec exprs (size: ExprSize) =
            if pprec > prec then
                sym opt "(" :: exprs @ [sym opt ")"],
                size.Expand [sym opt "("; sym opt ")"]
            else
                exprs, size

        let mkSequence opt pprec prec exprs =
            let size = ExprSize.Seq exprs
            let exprs, size = applyPrec opt pprec prec exprs size
            Sequence (exprs, size)

        let rec expFunc opt f par =
            let f' = sym opt f
            let exprs' = [sym opt "("; exp opt precStart par; sym opt ")"]
            Sequence (f' :: exprs', f'.Size.Expand exprs')

        and exp (opt: RenderOptions) prec = function
            | Num n ->
                let s = BigNum.to_string n in Symbol (s, sizeOf opt s)
            | Var v ->
                Symbol (v, sizeOf opt v)

Syme_850-4C12.fm  Page 332  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 333

            | Neg e ->
                 let e' = exp opt precNeg1 e
                 let exprs, size = applyPrec opt prec precNeg1 [e'] e'.Size
                 let exprs' = [sym opt "-"] @ exprs
                 mkSequence opt prec precNeg2 exprs'
            | Add exprs ->
                 let exprs' =
                     [ for i,e in Seq.mapi (fun i x -> (i,x)) exprs do
                           let first = (i=0)
                           let e' = exp opt (if first then precAdd1 else precAdd2) e
                           if first or e.IsNegative
                           then yield! [e']
                           else yield! [sym opt "+"; e'] ]
                 mkSequence opt prec precAdd1 exprs'
            | Sub (e1, exprs) ->
                 let e1' = exp opt prec e1
                 let exprs' =
                     [ for e in exprs do
                           if e.IsNegative then
                              let e' = exp opt precAdd2 e.Negate
                              yield! [sym opt "+"; e']
                           else
                              let e' = exp opt precAdd2 e
                              yield! [sym opt "-"; e'] ]

                 mkSequence opt prec precAdd1 (e1'::exprs')
            | Prod (e1, e2) ->
                 let e1' = exp opt precProd1 e1
                 let e2' = exp opt precProd2 e2
                 let exprs' =
                     if Expr.StarNeeded e1 e2
                     then [e1'; sym opt "*"; e2']
                     else [e1'; e2']
                 mkSequence opt prec precProd1 exprs'
            | Pow (e1, e2) ->
                 let e1' = exp opt precPow e1
                 let e2' = exp { opt with IsSuper=true } precPow (Num e2)
                 Power (e1', e2', e1'.Size.AddPower e2')
            | Sin e ->
                 expFunc opt "sin" e
            | Cos e ->
                 expFunc opt "cos" e
            | Exp expo ->
                 let e' = sym opt "e"
                 let expo' = exp { opt with IsSuper=true } precPow expo
                 Power (e', expo', e'.Size.AddPower expo')

Syme_850-4C12.fm  Page 333  Tuesday, October 23, 2007  1:29 PM



334 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

            | Frac (e1, e2) ->
                 let e1' = exp opt precStart e1
                 let e2' = exp opt precStart e2
                 Fraction (e1', e2', e1'.Size.Frac e2'.Size opt)
        let exp = exp opt precStart e
        { Expression=exp; RenderOptions=opt; }

The conversion implemented in Listing 12-10 is relatively straightforward. It uses various 
local helper functions to break each expression into smaller visual elements, carefully keeping 
track of the bounding box calculation. Furthermore, there are a number of things to consider; 
for instance, precedence is enforced, and expressions are parenthesized as necessary. For 
example, consider how you convert a product:

| Prod (e1, e2) ->
     let e1' = exp opt precProd1 e1
     let e2' = exp opt precProd2 e2
     let exprs' =
         if Expr.StarNeeded e1 e2
         then [e1'; sym opt "*"; e2']
         else [e1'; e2']
     mkSequence opt prec precProd1 exprs'

This code converts the two interior expressions and decides on a list of display symbols by 
first checking whether a multiplication symbol is required. The function mkSequence then calculates 
the size of this new list of expressions, applies precedence rules to determine whether paren-
theses are required, and produces a final visual element as a result.

Other cases are handled similarly; for sums, you iterate through the elements exprs in the 
sum using sequence expression notation. If you find a negative term, you omit the plus sign (so 
1+(-2) is rendered as 1-2). Differences are treated similarly, but here you change negative terms to 
positive, so 3-2-(-1) becomes 3-2+1. When converting products, you omit the multiplication 
operator if you can.

Rendering

Listing 12-11 shows the code for rendering visual expressions. You may have noticed in the 
definition of the VisualElement type that the only directly “drawable” visual element is Symbol. 
The other constructors carry one or more visual elements that must be drawn recursively and 
according to a well-defined logic. The key observation in the rendering function in Listing 12-11 is 
that, when drawing each element, you pass in the x and y coordinates of the bounding box in 
which it is to be drawn. You also pass in the size of the parent box in which the element is to be 
aligned (as guided by the midline property).

Listing 12-11. Rendering Visual Expressions

type VisualExpr =
    ...
    member self.Render =
        let pt x y = PointF(float32 x, float32 y)
        let rec draw (gra: Graphics) opt x y psize = function

Syme_850-4C12.fm  Page 334  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 335

            | Symbol (s, size) ->
                let font = if opt.IsSuper then opt.SmallFont else opt.NormalFont
                let x', y' = size.CenterOnMidline psize x y
                gra.DrawString(s, font, opt.Brush, pt x' y')
            | Power (e1, e2, size) ->
                let x', y' = size.CenterOnMidline psize x y
                draw gra opt x' (y'+e2.Height) e1.Size e1
                draw gra { opt with IsSuper=true } (x'+e1.Width) y' e2.Size e2
            | Sequence (exps, size) ->
                let x', y' = size.CenterOnMidline psize x y
                List.fold_left (fun (x, y) (e: VisualElement) ->
                     let psize' = { width = e.Width; height = psize.height;
                                    midline=size.midline; }
                     draw gra opt x y psize' e
                     x+e.Width, y) (x', y') exps |> ignore
            | Fraction (e1, e2, size) as e ->
                let psize1 = { psize with height=e1.Height; midline=e1.Midline }
                let psize2 = { psize with height=e2.Height; midline=e2.Midline }
                draw gra opt x y psize1 e1
                gra.DrawLine(self.RenderOptions.Pen, x, y+size.midline,
                             x+psize.width, y+size.midline);
                draw gra opt x (y+e1.Height+size.FracSepHeight opt) psize2 e2
        let bmp = new Bitmap(self.Expression.Width, self.Expression.Height,
                             PixelFormat.Format32bppArgb)
        let gra = Graphics.FromImage(bmp)
        gra.FillRectangle(new SolidBrush(Color.White), 0, 0,
                          self.Expression.Width+1, self.Expression.Height+1)
        draw gra self.RenderOptions 0 0 self.Expression.Size self.Expression
        bmp

Building the User Interface
Listing 12-12 is the final piece: the UI client (Main.fs). It is simple yet powerful. The main form 
contains an input field and a preview panel where the expressions are rendered on the fly as 
typed in. When the user presses the Enter key, a new MDI child window is created, and the 
original, simplified, derived, and final expressions are rendered on it. There is a bit of extra 
work involved in creating the child windows to make them scrollable.

Listing 12-12. The User Interface Client for the Visual Symbolic Differentiation Application

#light
open Symbolic.Expressions
open Symbolic.Expressions.Visual
open System.Windows.Forms
open System.Drawing

Syme_850-4C12.fm  Page 335  Tuesday, October 23, 2007  1:29 PM



336 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

let createScrollableChildWindow parent =
    let scroll = new ScrollableControl(Dock=DockStyle.Fill, AutoScroll=true)
    let form2 = new Form(MdiParent=parent, BackColor=Color.White)
    form2.Controls.Add scroll
    form2, scroll

let newExpression parent s es =
    let form, scroll = createScrollableChildWindow parent
    let AddLabel (top, maxw) (parent: #Control) s =
        let l = new Label(Text=s, AutoSize=true, Top=top)
        parent.Controls.Add l
        (top+l.Height), max maxw l.Width
    let AddPic (top, maxw) (parent: #Control) (e: Expr) =
        let e' = VisualExpr.OfExpr RenderOptions.Default e
        let bmp = e'.Render
        let pic = new PictureBox(Image=bmp, Height=bmp.Height,
                                 Width=bmp.Width, Top=top)
        parent.Controls.Add pic
        (top+bmp.Height), max maxw bmp.Width
    let height, width = List.fold_left (fun top (lab, e) ->
        AddPic (AddLabel top scroll lab) scroll e) (0, 0) es
    form.Text <- s
    form.Height <- min 640 (height+40)
    form.Width <- min 480 (width+40)
    form.Show()

let updatePreview (scroll :> Control) e =
    let e' = VisualExpr.OfExpr RenderOptions.Default e
    let bmp = e'.Render
    let pic = new PictureBox(Image=bmp, Height=bmp.Height, Width=bmp.Width)
    scroll.Controls.Clear()
    scroll.Controls.Add pic

let newExpressionError form s =
    let cform, scroll = createScrollableChildWindow form
    let label = new Label(Text=s, Font=new Font("Courier New", 10.f), AutoSize=true)
    scroll.Controls.Add label
    cform.Show()

exception SyntaxError

let Parse s =
    let lex = Lexing.from_string s
    try ExprParser.expr ExprLexer.main lex
    with _ -> raise SyntaxError

Syme_850-4C12.fm  Page 336  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 337

let newStringExpression form s =
    try
        let e1 = Parse s
        let e2 = Utils.Simplify e1
        let e3 = Utils.Differentiate "x" e2
        let e4 = Utils.Simplify e3
        newExpression form s ["Original:", e1; "Simplified:", e2;
                              "Derivative:", e3; "Simplified:", e4]
    with
      | SyntaxError ->
          let msg = Printf.sprintf "Syntax error in:\n%s" s
          newExpressionError form msg
      | Failure msg ->
          newExpressionError form msg

let constructMainForm () =
    let form   = new Form(Text="Symbolic Differentiation Example",
                          IsMdiContainer=true,
                          Visible=true, Height=600, Width=700)
    let label   = new Label(Text="Enter function=", Width=100, Height=20)
    let tb      = new TextBox(Width=150, Left=100)
    let panel   = new Panel(Dock=DockStyle.Top, Height=tb.Height+50)
    let preview = new Panel(Dock=DockStyle.Bottom, BackColor=Color.White,
                            Height=50, BorderStyle=BorderStyle.FixedSingle)
    let control c = (c :> Control)
    panel.Controls.AddRange([|control label; control preview; control tb |])
    form.Controls.Add(panel)
    tb.KeyUp.Add (fun arg ->
       if arg.KeyCode = Keys.Enter then
           newStringExpression form tb.Text
           tb.Text <- ""
           tb.Focus() |> ignore
       else
           try
               let e = Parse tb.Text
               updatePreview preview e
           with
           | _ -> ())
    form

let form = constructMainForm ()
newStringExpression form "cos(sin(1/(x^2+1)))"
Application.Run(form)

Syme_850-4C12.fm  Page 337  Tuesday, October 23, 2007  1:29 PM



338 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

To recap, in this sample you’ve seen the following:

• Two abstract syntax representations for different classes of algebraic expressions: one 
simple, and one much more realistic

• How to implement simplification and symbolic differentiation routines on these repre-
sentations of algebraic expressions

• How to implement parsing and lexing for concrete representations of algebraic expressions

• How to perform size estimation and visual layout for abstract syntax representations of 
algebraic expressions, here using Windows Forms

• How to put this together into a final application

Verifying Circuits with Propositional Logic
For the next example, we turn to a traditional application area for functional programming: 
describing digital hardware circuits and symbolically verifying their properties. We assume a 
passing familiarity with hardware design, but if you haven’t looked inside a microprocessor 
chip for some time, a brief recap is included in the “About Hardware Design” sidebar.

In this example, you will model circuits by propositional logic, a simple and familiar symbolic 
language made up of constructs such as AND, OR, NOT, and TRUE/FALSE values. You then 
implement an analysis that converts propositional logic formulae into a canonical form called 
binary decision diagrams (BDDs). Converting to a canonical form allows you to check condi-
tions and properties associated with the digital circuits.

ABOUT HARDWARE DESIGN

Digital hardware circuits such as microprocessors almost universally manipulate bits, that is, signals that are 
either low or high, represented by 0/1 or false/true values, respectively. The building blocks of interesting 
hardware circuits are primitives such as gates and registers. Gates are “logical” components that relate their 
inputs to their outputs; for example, an AND gate will take two input signals, and if both are “high,” it will give 
a “high” signal on its output. Registers are stateful components associated with a clock. We don’t consider 
registers and stateful circuits in this chapter, though they can be tackled by similar techniques to those 
described here.

Hardware design is largely about building interesting behavior out of these primitives. For example, you 
can build arithmetic circuits that compute the sum or product of integers by using logical gates alone. These 
“combinatorial” circuits can be massive, and a key concern is to both verify their correctness and minimize 
the overall electrical delay through the circuit.

Syme_850-4C12.fm  Page 338  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 339

■Note  The examples in this section are inspired by the tutorials for the HOL88 system, a symbolic theorem 
prover implemented using an F#-like language that has been used for many purposes, including hardware 
verification. The carry/select adder and the BDD implementation follow those given by John Harrison in his 
HOL Light version of the same system. You can find out more about these and other systems, as well as 
delve into theorem proving, in Introduction to Logic and Automated Theorem Proving by John Harrison 
(Cambridge University Press, to appear in 2008) and also at http://www.expert-fsharp.com/
Topics/TheoremProving.

Representing Propositional Logic
We begin by using language-oriented programming techniques to implement a little logic of 
Boolean expressions, of the kind that might be used to describe part of a hardware circuit or a 
constraint. Let’s assume these have forms like the following:

P1 AND P2
P1 OR P2
P1 IMPLIES P2
NOT(P1)
v                    -- variable, ranging over true/false
TRUE
FALSE
Exists v. P[v]       -- v ranges over true/false, P may use v
Forall v. P[v]       -- v ranges over true/false, P may use v

This is known as quantified Boolean formulae (QBF) and is an expressive way of modeling 
many interesting problems and artifacts that work over finite data domains. Listing 12-13 shows 
how you model this language in F#.

Listing 12-13. A Minimalistic Representation of Propositional Logic

type Var = string
type Prop =
    | And of Prop * Prop
    | Var of Var
    | Not of Prop
    | Exists of Var * Prop
    | False

let True = Not(False)
let Or(p,q)      = Not(And(Not(p),Not(q)))
let Iff(p,q)     = Or(And(p,q),And(Not(p),Not(q)))
let Implies(p,q) = Or(Not(p),q)
let Forall(v,p)  = Not(Exists(v,Not(p)))

Syme_850-4C12.fm  Page 339  Tuesday, October 23, 2007  1:29 PM

http://www.expert-fsharp.com


340 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

let (&&&) p q = And(p,q)
let (|||) p q = Or(p,q)
let (~~~) p   = Not (p)
let (<=>) p q = Iff(p,q)
let (===) p q = (p <=> q)
let (==>) p q = Implies(p,q)
let (^^^) p q = Not (p <=> q)

let var (nm:Var) = Var(nm)
let fresh =
    let count = ref 0
    fun nm -> incr count; (sprintf "_%s%d" nm !count : Var)

Listing 12-13 uses a minimalistic encoding of propositional logic terms, where True, Or, 
Iff, Implies, and Forall are derived constructs, defined using their standard classical defini-
tions in terms of the primitives Var, And, Not, Exists, and False. This is adequate for our purposes 
since we aren’t so interested in preserving the original structure of formulae, or if we did need 
to display a symbolic propositional formula, we are happy to display a form different to the 
original input.

Variables in formulae of type Prop are primitive propositions. A primitive proposition is 
often used to model some real-world possibility. For example, “it is raining,” “it is cold,” and “it 
is snowing” can be represented by Var("raining"), Var("cold"), and Var("snowing"). A Prop 
formula may be a tautology, that is, something that is always true regardless of the interpreta-
tion of these primitives. A formula is satisfiable if there is at least one interpretation for which 
it is true. A formula can also be an axiom; for example, “if it’s snowing, then it’s cold” can be 
represented as the assumption Implies(Var("snowing"), Var("cold")). In our example, vari-
ables will be used to represent a wire in a digital circuit that may be low or high.

When dealing directly with the abstract syntax for Prop, it can be convenient to define infix 
operators to help you build abstract syntax values. Listing 12-13 shows the definition of seven 
operators (&&&, |||, ~~~, <=>, ===, ==>, and ^^^) that look a little like the notation we expect for 
propositional logic. We also define the function var for building primitive propositions and 
fresh for generating fresh variables. The types of these functions are as follows:

val var : Var -> Prop
val fresh : (string -> Var)

■Note  The operators in Listing 12-13 are not overloaded and indeed outscope the default overloaded 
bitwise operations on integers discussed in Chapter 3. However, that doesn’t matter for the purposes of this 
chapter. If necessary, you could use alternative operator names.

Evaluating Propositional Logic Naively
Before we tackle the problem of representing hardware using propositional logic, we first show 
you some naive approaches for working with propositional logic formulae. Listing 12-14 shows 

Syme_850-4C12.fm  Page 340  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 341

routines that evaluate formulae given an assignment of variables and that generate the rows of 
a truth table for a Prop formula.

Listing 12-14. Evaluating Propositional Logic Formulae

let rec eval (env : Map<Var,bool>) inp =
    match inp with
    | Exists(v,p) -> eval (env.Add(v,false)) p || eval (env.Add(v,true)) p
    | And(p1,p2)  -> eval env p1 && eval env p2
    | Var(v)      -> if env.ContainsKey(v) then env.[v]
                     else failwithf "env didn't contain a value for %A" v
    | Not(p)      -> not (eval env p)
    | False       -> false

let rec support f =
    match f with
    | And(x,y)    -> Set.union (support x) (support y)
    | Exists(v,p) -> (support p).Remove(v)
    | Var(p)      -> Set.singleton p
    | Not(x)      -> support x
    | False       -> Set.empty

let rec cases supp =
    seq { match supp with
          | [] ->  yield Map.empty
          | v::rest ->
              yield! rest |> cases |> Seq.map (Map.add v false)
              yield! rest |> cases |> Seq.map (Map.add v true) }

let truthTable  x =
    x |> support |> Set.to_list |> cases |> Seq.map (fun env -> env,eval env x)

let satisfiable x =
    x |> truthTable |> Seq.exists(fun (env,res) -> res)

let tautology x =
    x |> truthTable |> Seq.for_all (fun (env,res) -> res)

let tautologyWithCounterExample x =
    x |> truthTable |> Seq.tryfind (fun (env,res) -> not res) |> Option.map fst

let printCounterExample =
    (function None -> printfn "tautology verified OK"
            | Some env -> printfn "tautology failed on %A" (Seq.to_list env))

The types of these functions are as follows:

Syme_850-4C12.fm  Page 341  Tuesday, October 23, 2007  1:29 PM



342 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

val eval : Map<Var,bool> -> Prop -> bool
val support : Prop -> Set<Var>
val cases : 'a list -> seq<Map<'a,bool>>
val truthTable : Prop -> seq<Map<Var,bool> * bool>
val satisfiable : Prop -> bool
val tautology : Prop -> bool
val tautologyWithCounterExample : Prop -> Map<Var,bool> option
val printCounterExample : #seq<'a> option -> unit

The function eval computes the value of a formula given assignments for each of the vari-
ables that occurs in the formula. support simply computes the set of variables that occurs in the 
formula. You can now use these functions to examine truth tables for some simple formulae, 
though first you may want to define the following functions to display truth tables neatly in F# 
Interactive:

let stringOfBit b = (if b then "T" else "F")
let stringOfEnv env =
    Map.fold(fun k v acc -> sprintf "%s=%s;" k (stringOfBit v)+acc) env ""
let stringOfLine (env,res) = sprintf "%20s %s" (stringOfEnv env) (stringOfBit res)
let stringOfTruthTable tt =
    "\n" + (tt |> Seq.to_list |> List.map stringOfLine |> String.concat "\n")

Here are the truth tables for “x,” “x AND y,” and “x OR NOT(x)”:

> fsi.AddPrinter(fun tt -> tt |> Seq.truncate 20 |> stringOfTruthTable);;

> truthTable (var "x");;
> val it : seq<Map<Var,bool> * bool>
=
                x=F; F
                x=T; T

> truthTable (var "x" &&&  var "y");;
> val it : seq<Map<Var,bool> * bool>
=
            x=F;y=F; F
            x=F;y=T; F
            x=T;y=F; F
            x=T;y=T; T

> truthTable (var "x" ||| ~~~(var "x"));;
> val it : seq<Map<Var,bool> * bool>
=
                x=F; T
                x=T; T

Syme_850-4C12.fm  Page 342  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 343

From this you can see that “x OR NOT(x)” is a tautology, since it always evaluates to TRUE 
regardless of the value of the variable x.

From Circuits to Propositional Logic
Figure 12-4 shows a diagrammatic representation of three hardware circuits: a half adder, a full 
adder, and a 2-bit carry ripple adder. The first of these has two input wires, x and y, and sets the 
sum wire “high” if exactly one of these is “high.” If both x and y are “high,” then the sum is “low,” 
and the carry wire is “high” instead. Thus, the circuit computes the 2-bit sum of the inputs. 
Likewise, a full adder computes the sum of three Boolean inputs, which, since it is at most 
three, can still be represented by 2 bits. A 2-bit carry ripple adder is formed by composing a half 
adder and a full adder together, wiring the carry from the first adder to one of the inputs of the 
second adder. The overall circuit has four inputs and three outputs.

Figure 12-4. Three simple hardware circuits

The following code models these circuit components. This uses relational modeling, 
where each circuit is modeled not as a function but as a propositional logic predicate that 
relates its input wires to its output wires:

let sumBit x y = (x ^^^ y)
let carryBit x y = (x &&& y)
let halfAdder x y sum carry =
    (sum === sumBit x y)  &&&
    (carry === carryBit x y)

let fullAdder x y z sum carry =
    let xy = (sumBit x y)
    (sum === sumBit xy z) &&&
    (carry === (carryBit x y ||| carryBit xy z))

Syme_850-4C12.fm  Page 343  Tuesday, October 23, 2007  1:29 PM



344 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

let twoBitAdder (x1,x2) (y1,y2) (sum1,sum2) carryInner carry =
    halfAdder x1 y1 sum1 carryInner &&&
    fullAdder x2 y2 carryInner sum2 carry

Note the close relation between the diagram for the 2-bit adder and its representation as 
code. You can read the implementation as a specification of the diagram, and vice versa. The 
types of these functions are, however, a little less informative:

val sumBit : Prop -> Prop -> Prop
val carryBit : Prop -> Prop -> Prop
val halfAdder : Prop -> Prop -> Prop -> Prop -> Prop
val fullAdder : Prop -> Prop -> Prop -> Prop -> Prop -> Prop
val twoBitAdder : Prop * Prop -> Prop * Prop -> Prop * Prop
                  -> Prop -> Prop -> Prop

In practice, circuits are defined largely with respect to vectors of wires, not just individual 
wires. You can model these using arrays of propositions, and since it’s now clear we’re modeling 
bits via propositions, we make an appropriate type abbreviation for them as well:

type bit = Prop
type bitvec = bit[]
let Lo : bit = False
let Hi : bit = True
let vec n nm : bitvec = Array.init n (fun i -> var (sprintf "%s%d" nm i))
let bitEq (b1:bit) (b2:bit) = (b1 <=> b2)
let AndL l = Seq.fold1 (fun x y-> And(x,y)) l
let vecEq (v1:bitvec) (v2:bitvec) = AndL (Array.map2 bitEq v1 v2)

These functions have types as follows:

type bit = Prop
type bitvec = bit []
val Lo : bit
val Hi : bit
val vec : int -> string -> bitvec
val bitEq : bit -> bit -> Prop
val AndL : #seq<Prop> -> Prop
val vecEq : bitvec -> bitvec -> Prop

You can now proceed to define larger circuits. For example:

let fourBitAdder  (x:bitvec) (y:bitvec) (sum:bitvec) (carry:bitvec) =
    halfAdder  x.[0] y.[0]           sum.[0] carry.[0] &&&
    fullAdder  x.[1] y.[1] carry.[0] sum.[1] carry.[1] &&&
    fullAdder  x.[2] y.[2] carry.[1] sum.[2] carry.[2] &&&
    fullAdder  x.[3] y.[3] carry.[2] sum.[3] carry.[3]

Syme_850-4C12.fm  Page 344  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 345

Or, more generally, you can chain an arbitrary series of adders to form an N-bit adder. First 
you define an abbreviation for the AndL function to represent the composition of multiple 
circuit blocks:

let Blocks l = AndL l

And here is the definition of an N-bit adder with a halfAdder at one end:

let nBitCarryRippleAdder (n:int) (x:bitvec) (y:bitvec) (sum:bitvec) (carry:bitvec) =
    Blocks [ for i in 0 .. n-1 ->
                if i = 0
                then halfAdder x.[i] y.[i] sum.[i] carry.[i]
                else fullAdder x.[i] y.[i] carry.[i-1] sum.[i] carry.[i]  ]

Using a similar approach, you get the following satisfying specification of a symmetric 
N-bit adder that accepts a carry as input and also gives a carry as output:

let rippleAdder (n:int) (x:bitvec) (y:bitvec) (sum:bitvec) (carry:bitvec)  =
    Blocks [ for i in 0 .. n-1 ->
                fullAdder x.[i] y.[i] carry.[i] sum.[i] carry.[i+1] ]

Let’s now take a look at the propositional formula for a halfAdder with variable inputs 
and outputs:

> halfAdder (var "x") (var "y") (var "sum") (var "carry");;
> val it : Prop
= And(Not
     And
      (Not
        And
         (Var "sum",
          Not
           Not
            And (Not And (Var "x",Var "y"),Not And (Not Var "x",Not Var "y"))),
       Not
        And
         (Not Var "sum",
          Not
           Not
            Not
             And (Not And (Var "x",Var "y"),Not And (Not Var "x",Not Var "y")))),
    Not
     And
      (Not And (Var "carry",And (Var "x",Var "y")),
       Not And (Not Var "carry",Not And (Var "x",Var "y"))))

Clearly, you don’t want to be doing too much of that! You will see better ways of inspecting 
circuits and the symbolic values of bit vectors in the section “Representing Propositional 
Formulae Efficiently Using BDDs.”

Syme_850-4C12.fm  Page 345  Tuesday, October 23, 2007  1:29 PM



346 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

In passing, we note that the twoBitAdder uses an “internal” wire. You could model this 
using an existential formula:

let twoBitAdderWithHiding (x1,x2) (y1,y2) (sum1,sum2) carry =
    let carryInnerVar = fresh "carry"
    let carryInner = var(carryInnerVar)
    Exists(carryInnerVar, halfAdder x1 y1 sum1 carryInner &&&
                          fullAdder x2 y2 carryInner sum2 carry)

However, this brings up issues beyond the scope of this chapter, and instead we take an 
approach to modeling where there are no boundaries to the circuits and where all internal 
wires are exposed.

Checking Simple Properties of Circuits
Now that you have modeled the initial hardware circuits, you can check simple properties of 
these circuits. For example, you can check that if you give a fullAdder all “low” (that is, false) 
inputs, then the output wires may be “low” as well and, conversely, that you have a contradic-
tion if one of the output wires is high:

> tautology (fullAdder Lo Lo Lo Lo Lo);;
val it : bool = true

> satisfiable (fullAdder Lo Lo Lo Hi Lo);;
val it : bool = false

It is of course much better to check these results symbolically by giving symbolic inputs. 
For example, you can check that if the same value is given to the two inputs of a halfAdder, then 
the sum output is low and the carry output is the same as the input:

> tautology (halfAdder (var "x") (var "x") Lo (var "x"));;
val it : bool = true

Likewise, you can check that a 2-bit adder is commutative, in other words, that it doesn’t 
matter if you swap the x and y inputs.

> tautology
    (nBitCarryRippleAdder 2 (vec 2 "x") (vec 2 "y") (vec 2 "sum") (vec 3 "carry")
 === nBitCarryRippleAdder 2 (vec 2 "y") (vec 2 "x") (vec 2 "sum") (vec 3 "carry"));;
val it : bool = true

However, if you repeat the same for sizes of 5 or bigger, things start to slow down a little, 
and the naive implementation of propositional logic tautology checking based on truth tables 
begins to break down. Hence, you have to turn to more efficient techniques for processing 
propositional formulae.

Syme_850-4C12.fm  Page 346  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 347

Representing Propositional Formulae Efficiently Using BDDs
In practice, propositional formulae to describe hardware can be enormous, involving hundreds 
of thousands of nodes. As a result, hardware companies have an interest in smart algorithms to 
process these formulae and check them for correctness. The circuits in the computers you use 
from day to day have almost certainly been verified using advanced propositional logic tech-
niques, often using a functional language as the means to drive and control the analysis of the 
circuits.

A major advance in the application of symbolic techniques to hardware design occurred in 
the late 1980s with the discovery of binary decision diagrams, a representation for propositional 
logic formulae that is compact for many common circuit designs. BDDs represent a proposi-
tional formula via the use of if ... then ... else conditionals alone, which you write as 
(variable => true-branch | false-branch). Special nodes are used for true and false at the 
leaves: we’ll write these as T and F. Every BDD is constructed with respect to a global variable 
ordering, so “x AND NOT y” can be represented as (x => (y => F | T) | F) if x comes before 
y in this ordering and as (y => F | (x => T | F)) if y comes before x. The variable ordering can 
be critical for performance of the representation.

BDDs are efficient because they use some of the language representation techniques you 
saw in Chapter 9. In particular, they work by uniquely memoizing all BDD nodes that are iden-
tical, which works by representing a BDD as an integer index into a lookup table that stores the 
real information about the node. Furthermore, negative indexes are used to represent the negation 
of a particular BDD node without creating a separate entry for the negated node. Listing 12-15 
shows our implementation of BDDs. Fully polished BDD packages are often implemented in C. 
It is easy to access those packages from F# using the techniques described in Chapter 19. Here 
we are content with a clear and simple implementation entirely in F# code.

Listing 12-15. Implementing Binary Decision Diagrams

open System.Collections.Generic

let memoize f =
    let tab = new Dictionary<_,_>()
    fun x -> if tab.ContainsKey(x) then tab.[x]
             else let res = f x in tab.[x] <- res; res

type BddIndex = int
type Bdd = Bdd of BddIndex
type BddNode = Node of Var * BddIndex * BddIndex
type BddBuilder(order : Var -> Var -> int) =

    // The core data structures that preserve uniqueness
    let uniqueTab = new Dictionary<BddNode,BddIndex>()
    let nodeTab   = new Dictionary<BddIndex,BddNode>()

    // Keep track of the next index
    let mutable nextIdx = 2
    let trueIdx = 1
    let falseIdx = -1

Syme_850-4C12.fm  Page 347  Tuesday, October 23, 2007  1:29 PM



348 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

    let trueNode = Node("",trueIdx,trueIdx)
    let falseNode = Node("",falseIdx,falseIdx)

    // Map indexes to nodes. Negative indexes go to their negation. The special
    // indexes -1 and 1 go to special true/false nodes.
    let idxToNode(idx) =
        if idx = trueIdx then trueNode
        elif idx = falseIdx then falseNode
        elif idx > 0 then nodeTab.[idx]
        else let (Node(v,l,r)) = nodeTab.[-idx]
             Node(v,-l,-r)

    // Map nodes to indexes. Add an entry to the table if needed.
    let nodeToUniqueIdx(node) =
        if uniqueTab.ContainsKey(node) then uniqueTab.[node]
        else
            let idx = nextIdx
            uniqueTab.[node] <- idx
            nodeTab.[idx] <- node
            nextIdx <- nextIdx + 1
            idx

    // Get the canonical index for a node. Preserve the invariant that the
    // left-hand node of a conditional is always a positive node
    let mkNode(v:Var,l:BddIndex,r:BddIndex) =
        if l = r then l
        elif l >= 0 then nodeToUniqueIdx(Node(v,l,r) )
        else -nodeToUniqueIdx(Node(v,-l,-r))

    // Construct the BDD for a conjunction "m1 AND m2"
    let rec mkAnd(m1,m2) =
        if m1 = falseIdx or m2 = falseIdx then falseIdx
        elif m1 = trueIdx then m2 elif m2 = trueIdx then m1
        else
            let Node(x,l1,r1) = idxToNode(m1)
            let Node(y,l2,r2) = idxToNode(m2)
            let v,(la,lb),(ra,rb) =
                match order x y with
                | c when c = 0 -> x,(l1,l2),(r1,r2)
                | c when c < 0 -> x,(l1,m2),(r1,m2)
                | c            -> y,(m1,l2),(m1,r2)
            mkNode(v,mkAnd(la,lb), mkAnd(ra,rb))

    // Memoize this function
    let mkAnd = memoize mkAnd

Syme_850-4C12.fm  Page 348  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 349

    // Publish the construction functions that make BDDs from existing BDDs
    member g.False = Bdd falseIdx
    member g.And(Bdd m1,Bdd m2) = Bdd(mkAnd(m1,m2))
    member g.Not(Bdd m) = Bdd(-m)
    member g.Var(nm) = Bdd(mkNode(nm,trueIdx,falseIdx))
    member g.NodeCount = nextIdx

The types of these functions are as follows:

val memoize : ('a -> 'b) -> ('a -> 'b)
type BddIndex = int
type Bdd = Bdd of BddIndex
type BddNode = Node of Var * BddIndex * BddIndex
type BddBuilder = class
                  end
                  with
                    new : order:(Var -> Var -> int) -> BddBuilder
                    member And : _arg1:Bdd * _arg2:Bdd -> Bdd
                    member Not : _arg3:Bdd -> Bdd
                    member Var : nm:Var -> Bdd
                    member False : Bdd
                    member NodeCount : int
                  end

Besides the functions that ensure that nodes are unique, the only substantial function in 
the implementation is mkAnd. This relies on the following logical rules for constructing BDD 
nodes formed by taking the conjunction of existing nodes. Note how the second rule is used to 
interleave variables.

• (x => P | Q) AND (x => R | S) is identical to (x => P AND R | Q AND S).

• (x => P | Q) AND (y => R | S) is identical to (x => P AND T | Q AND T) where T is simply 
(y => R | S).

One final important optimization in the implementation is to memoize the application of 
the mkAnd operation.

Given the previous implementation of BDDs, you can now add the members ToString to 
convert BDDs to strings, Build to convert a Prop representation of a formula into a BDD, and 
Equiv to check for equivalence between two BDDs:

member g.ToString(Bdd idx) =
    let rec fmt depth idx =
        if depth > 3 then "..." else
        let (Node(p,l,r)) = idxToNode(idx)
        if p = "" then if l = trueIdx then "T" else "F"
        else sprintf "(%s => %s | %s)" p (fmt (depth+1) l) (fmt (depth+1) r)
    fmt 1 idx

Syme_850-4C12.fm  Page 349  Tuesday, October 23, 2007  1:29 PM



350 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

member g.Build(f) =
    match f with
    | And(x,y) -> g.And(g.Build x, g.Build y)
    | Var(p) -> g.Var(p)
    | Not(x) -> g.Not(g.Build x)
    | False -> g.False
    | Exists(v,p) -> failwith "Exists node"

member g.Equiv p1 p2 = (g.Build(p1) = g.Build(p2))

You can now install a pretty-printer and inspect the BDDs for some simple formulae:

> let bddBuilder = BddBuilder(compare);;
val bddBuilder: BddBuilder

> fsi.AddPrinter(fun bdd -> bddBuilder.ToString(bdd));;
val it: unit = ()

> bddBuilder.Build(var "x");;
val it : Bdd = (x => T | F)

> bddBuilder.Build(var "x" &&& var "x");;
val it : Bdd = (x => T | F)

> bddBuilder.Build(var "x") = bddBuilder.Build(var "x" &&& var "x");;
val it : bool = true

> (var "x") = (var "x" &&& var "x");;
val it : bool = false

> bddBuilder.Build(var "x" &&& var "y");;
val it : Bdd = (x => (y => T | F) | F)

> bddBuilder.Equiv (var "x") (var "x" &&& var "x");;
val it : bool = true

Note that the BDD representations of “x” and “x AND x” are identical, while the Prop repre-
sentations are not. The Prop representation is an abstract syntax representation, while the BDD 
representation is more of a semantic or computational representation. The BDD representa-
tion incorporates all the logic necessary to prove propositional formula equivalent; in other 
words, this logic is built into the representation itself.

Circuit Verification with BDDs
You can now use BDDs to perform circuit verification. For example, the following verifies that 
you can swap the x and y inputs to an 8-bit adder:

Syme_850-4C12.fm  Page 350  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 351

> bddBuilder.Equiv
    (nBitCarryRippleAdder 8 (vec 8 "x") (vec 8 "y") (vec 8 "sum") (vec 9 "carry"))
    (nBitCarryRippleAdder 8 (vec 8 "y") (vec 8 "x") (vec 8 "sum") (vec 9 "carry"));;
val it : bool = true

Thirty-three variables are involved in this circuit. A naive exploration of this space would 
involve searching a truth table of more than eight billion entries. The BDD implementation 
takes moments on any modern computer. Efficient symbolic representations pay off!

A more substantial verification problem involves checking the equivalence of circuits that 
have substantial structural differences. To explore this, let’s take a different implementation of 
addition called a carry select adder. This avoids a major problem with ripple adders caused by 
the fact that the “carry” signal must propagate along the entire length of the chain of internal 
adders, causing longer delays in the electrical signals and thus reducing the clock rates of a 
circuit or possibly increasing power consumption. A carry select adder gets around this through 
a common hardware trick of speculative execution. It divides the inputs into blocks and adds 
each block twice, once assuming the carry is low and once assuming it is high. The result is 
then selected after the circuit, when the carry for the block has been computed. Listing 12-16 
shows the specification of the essence of the hardware layout of a carry select adder using the 
techniques we’ve developed so far. The specification uses the slicing syntax for arrays described 
in Chapter 4.

Listing 12-16. A Carry Select Adder Modeled Using Propositional Logic

let mux a b c = ((~~~a ==> b) &&& (a ==> c))

let carrySelectAdder
       totalSize maxBlockSize
       (x:bitvec) (y:bitvec)
       (sumLo:bitvec) (sumHi:bitvec)
       (carryLo:bitvec) (carryHi:bitvec)
       (sum:bitvec) (carry:bitvec) =
  Blocks
    [ for i in 0..maxBlockSize..totalSize-1 ->
        let sz = min (totalSize-i) maxBlockSize
        let j = i+sz-1
        let carryLo = Array.append [| False |] carryLo.[i+1..j+1]
        let adderLo = rippleAdder sz x.[i..j] y.[i..j] sumLo.[i..j] carryLo
        let carryHi = Array.append [| True  |] carryHi.[i+1..j+1]
        let adderHi = rippleAdder sz x.[i..j] y.[i..j]  sumHi.[i..j] carryHi
        let carrySelect = (carry.[j+1] === mux carry.[i] carryLo.[sz] carryHi.[sz])
        let sumSelect =
            Blocks [for k in i..j ->
                         sum.[k] === mux carry.[i] sumLo.[k] sumHi.[k]]
        adderLo &&& adderHi &&& carrySelect &&& sumSelect ]

Syme_850-4C12.fm  Page 351  Tuesday, October 23, 2007  1:29 PM



352 CH AP T E R  1 2  ■  W O R K I N G  W I TH  S Y M B O L IC  R E P R E S E N T AT IO N S

You can now check that a carrySelectAdder is equivalent to a rippleAdder. Here’s the 
overall verification condition:

let checkAdders n k =
    let x = (vec n "x")
    let y = (vec n "y")
    let sumA    = (vec n "sumA")
    let sumB    = (vec n "sumB")
    let sumLo   = (vec n "sumLo")
    let sumHi   = (vec n "sumHi")
    let carryA  = (vec (n+1) "carryA")
    let carryB  = (vec (n+1) "carryB")
    let carryLo = (vec (n+1) "carryLo")
    let carryHi = (vec (n+1) "carryHi")
    let adder1 = carrySelectAdder n k x y sumLo sumHi carryLo  carryHi  sumA carryA
    let adder2 = rippleAdder n x y sumB carryB
    (adder1 &&& adder2 &&& (carryA.[0] === carryB.[0]) ==>
         (vecEq sumA sumB &&& bitEq carryA.[n] carryB.[n]))

Ignoring the construction of the inputs, the verification condition specifies the following:

• Assume you have the two adder circuits, with the same inputs.

• Assume the input carry bits are the same.

• Then, the output sum vectors are identical, and the final output carry bits are identical.

Here is the verification condition being checked interactively, for 5-bit inputs, in chunks of 
2 for the carrySelectAdder:

> bddBuilder.Equiv (checkAdders 5 2) True;;
val it : bool = true

In practice, BDDs require a good variable ordering, and the default alphabetic ordering is 
unlikely to be the best. Here is a larger verification using a more random ordering induced by 
first comparing on the hash codes of the names of the variables:

let approxCompareOn f x y =
    let c = compare (f x) (f y)
    if c <> 0 then c else compare x y
let bddBuilder2 = BddBuilder(approxCompareOn hash)

> bddBuilder2.Equiv (checkAdders 7 2) True;;
val it : bool = true

Seventy-four Boolean variables are involved in this last verification problem. You would 
have to generate up to 274 test cases to explore this systematically via testing; that’s 22 thousand 

Syme_850-4C12.fm  Page 352  Tuesday, October 23, 2007  1:29 PM



CH AP T E R  1 2  ■  W O R K I N G  W I TH  SY M B O L IC  R E P R E S E N T AT IO N S 353

billion billion test cases. By using symbolic techniques, you have explored this entire space in 
a matter of seconds and in only a few hundred lines of code.

■Note  Hardware and software verification are highly active areas of research and one of the most impor-
tant applications of symbolic programming techniques in the industrial arena. The verifications performed 
here aim to give you a taste of how symbolic techniques can prove nontrivial results about circuits in a matter 
of seconds. We’ve omitted some simple techniques that can make these verifications scale to very large 
circuits; for example, we expand “equivalence” nodes in propositional formulae. Preserving them can lead to 
smaller symbolic descriptions and more efficient processing with BDDs. You can find out more about the 
applications of F# and functional programming to verification problems at http://www.expert-fsharp.com/
Topics/Verification.

Summary
In this chapter, you looked at two applications of language-oriented symbolic programming. 
The first was algebraic symbolic differentiation and visualization, where you learned how to 
differentiate, simplify, and display algebraic expressions. The second was hardware modeling 
and verification using propositional logic and binary decision diagrams, where you saw how to 
use symbolic techniques to describe circuits as propositional logic formulae and then used 
brute-force and/or “binary decision diagram” techniques to analyze these for correctness.

Syme_850-4C12.fm  Page 353  Tuesday, October 23, 2007  1:29 PM

http://www.expert-fsharp.com


Syme_850-4C12.fm  Page 354  Tuesday, October 23, 2007  1:29 PM



355

■ ■ ■

C H A P T E R  1 3

Reactive, Asynchronous, and 
Concurrent Programming

So far in this book you’ve seen functions and objects that process their inputs immediately 
using a single “thread” of execution where the code runs to completion and produces useful 
results or state changes. In this chapter, you’ll turn your attention to concurrent, parallel, asyn-
chronous, and reactive programs. These each represent substantially different approaches to 
programming from those you’ve seen so far. Some of the reasons for turning to these techniques 
are as follows:

• To achieve better responsiveness in a graphical user interface (GUI)

• To report progress results during a long-running computation and to support cancella-
tion of these computations

• To achieve greater throughput in a reactive application or service

• To achieve faster processing rates on a multiprocessor machine or cluster

• To take advantage of the I/O parallelism available in modern disk drives or network 
connections

• To sustain processing while network and disk I/O operations are in process

In this chapter, we cover some of the techniques that can help achieve these outcomes:

• Using .NET threads and the BackgroundWorker class for background computations

• Using events and messages to report results back to a GUI

• Using F# asynchronous workflows and the .NET thread pool to handle network requests 
and other asynchronous I/O operations

• Using F# pattern matching to process message queues

• Using low-level .NET shared-memory primitives to implement new concurrency tech-
niques and control access to mutable data structures

In Chapter 11 we looked at the most common type of reactive program: GUI programs that 
respond to events raised on the GUI thread. The inner loop of such an application (contained 

Syme_850-4C13.fm  Page 355  Saturday, October 6, 2007  9:47 AM



356 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

in the Windows Forms library) spends most of its time blocked waiting for the underlying oper-
ating system to notify it of a relevant event, such as a click from the user or a timer event from 
the operating system. This notification is received as an event in a message queue. Many GUI 
programs have only a single thread of execution, so all computation happens on the GUI thread. 
This can lead to problems such as nonresponsive user interfaces. This is one of many reasons 
it is important to master some of the techniques of concurrent and asynchronous programming.

Introducing Some Terminology
Before we begin, let’s look more closely at some terminology:

• Processes are, in the context of this chapter, standard operating system (OS) processes. 
Each instance of the .NET CLR runs in its own process, and multiple instances of the 
.NET CLR will often be running on the same machine.

• Threads are, in the context of this chapter, standard .NET threads. On most implemen-
tations of .NET these correspond to operating system threads. Each .NET process has 
many threads running within the one process.

• Concurrent programs are ones with multiple threads of execution, each typically executing 
different code, or are at different execution points within the same code. Simultaneous 
execution may be simulated by scheduling and descheduling the threads, which is done 
by the OS. For example, most operating system services and GUI applications are 
concurrent.

• Parallel programs are one or more processes or threads executing simultaneously. For 
example, many modern microprocessors have two or more physical CPUs capable of 
executing processes and threads in parallel. Parallel programs can also be data parallel. 
For example, a massively parallel device such as a graphics processor unit (GPU) can 
process arrays and images in parallel. Parallel programs can also be a cluster of computers 
on a network, communicating via message passing. Historically, some parallel scientific 
programs have even used e-mail for communication!

• Asynchronous programs perform requests that do not complete immediately but are 
fulfilled at a later time and where the program issuing the request has to do meaningful 
work in the meantime. For example, most network I/O is inherently asynchronous. A web 
crawler is also a highly asynchronous program, managing hundreds or thousands of 
simultaneous network requests.

• Reactive programs are ones whose normal mode of operation is to be in a state waiting 
for some kind of input, such as waiting for user input or for input from a message queue 
via a network socket. For example, GUI applications and web servers are reactive programs.

Parallel, asynchronous, concurrent, and reactive programs bring many interesting challenges. 
For example, these programs are nearly always nondeterministic. This makes debugging more 
challenging since it is difficult to “step” through a program, and even pausing a running program 
with outstanding asynchronous requests may cause timeouts. Most dramatically, incorrect 
concurrent programs may deadlock, which means all threads are waiting on results from some 
other thread and no thread can make progress. Programs may also livelock, where processing 
is occurring and messages are being sent between threads but no useful work is being performed.

Syme_850-4C13.fm  Page 356  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 357

Using and Designing Background Workers
One of the easiest ways to get going with concurrency and parallelism is to use the System.
ComponentModel.BackgroundWorker class of the .NET Framework. A BackgroundWorker class runs 
on its own dedicated operating system thread. These objects can be used in many situations 
but are especially useful for “coarse-grained” concurrency and parallelism such as checking 
the spelling of a document in the background. In this section we show some simple uses of 
BackgroundWorker and how to build similar objects that use a BackgroundWorker internally.

Listing 13-1 shows a simple use of BackgroundWorker that computes the Fibonacci numbers on 
the worker thread.

Listing 13-1. A Simple BackgroundWorker

open System.ComponentModel
open System.Windows.Forms

let worker = new BackgroundWorker()
let numIterations = 1000

worker.DoWork.Add(fun args ->

    let rec computeFibonacci resPrevPrev resPrev i =
        // Compute the next result
        let res = resPrevPrev + resPrev

        // At the end of the computation and write the result into the mutable state
        if i = numIterations then
            args.Result <- box res
        else
            // Compute the next result
            computeFibonacci resPrev res (i+1)

    computeFibonacci 1 1 2)

worker.RunWorkerCompleted.Add(fun args ->
    MessageBox.Show(sprintf "Result = %A" args.Result) |> ignore)

// Execute the worker
worker.RunWorkerAsync()

Table 13-1 shows the primary members of a BackgroundWorker object. The execution 
sequence of the code in Listing 13-1 is as follows:

1. The main application thread creates and configures a BackgroundWorker object.

2. Once configuration is complete, the main application thread calls the RunWorkerAsync 
method on the BackgroundWorker object. This causes the DoWork event to be raised on 
the worker thread.

Syme_850-4C13.fm  Page 357  Saturday, October 6, 2007  9:47 AM



358 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

3. The DoWork event handler is executed in the worker thread and computes the 1000th 
Fibonacci number. At the end of the computation, the result is written into args.Result, a 
mutable storage location in the event arguments for the DoWork event. The DoWork event 
handler then completes.

4. At some point after the DoWork event handler completes, the RunWorkerCompleted event 
is automatically raised on the main application thread. This displays a message box 
with the result of the computation, retrieved from the args field of the event arguments.

■Note  Objects such as a BackgroundWorker are “two-faced”: they have some methods and events that 
are for use from the main thread and some that are for use on the worker thread. This is common in concurrent 
programming. In particular, be careful to understand which thread an event is raised on. For BackgroundWorker, 
the RunWorkerAsync and CancelAsync methods are for use from the GUI thread, and the ProgressChanged 
and RunWorkerCompleted events are raised on the GUI thread. The DoWork event is raised on the worker 
thread, and the ReportProgress method and the CancellationPending property are for use from the 
worker thread when handling this event.

Table 13-1. Primary Members of the BackgroundWorker Class

Member and Type Description

RunWorkerAsync: unit -> unit Starts the process on a separate thread asynchro-
nously. Called from the main thread.

CancelAsync: unit -> unit Set the CancellationPending flag of the back-
ground task. Called from the main thread.

CancellationPending: bool Set to true by raising CancelAsync. Used by the 
worker thread.

WorkerReportsProgress: bool Set to true if the worker can support progress 
updates. Used by the main thread.

WorkerSupportsCancellation: bool Set to true if the worker can support cancellation 
of the current task in progress. Used by the main 
thread.

ReportProgress: int -> unit Indicate the progress of the operation. Used by 
the worker thread.

DoWork: IEvent<DoWorkEventArgs> Fires in response to a call to RunWorkerAsync. 
Invoked on the worker thread.

RunWorkerCompleted: 
IEvent<RunWorkerCompletedEventArgs>

Fires when the background operation is canceled, 
when the operation is completed, or when an 
exception is thrown. Invoked on the main thread.

ProgressChanged: 
IEvent<ProgressChangedEventArgs>

Fires whenever the ReportProgress property is 
set. Invoked on the main thread.

Syme_850-4C13.fm  Page 358  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 359

The members in Table 13-1 show two additional facets of BackgroundWorker objects: they 
can optionally support protocols for cancellation and reporting progress. To report progress 
percentages, a worker must simply call the ReportProgress method, which raises the 
ProgressChanged event in the GUI thread. For cancellation, a worker computation need only 
check the CancellationPending property at regular intervals, exiting the computation as a result.

Building a Simpler Iterative Worker
Capturing common control patterns such as cancellation and progress reporting is an abso-
lutely essential part of mastering concurrent programming. However, one of the problems 
with .NET classes such as BackgroundWorker is that they are often more imperative than an F# 
programmer may want, and they force other common patterns to be captured by using mutable 
data structures shared between threads. This leads to the more difficult topic of shared-memory 
concurrency, which we discuss later in the chapter. Furthermore, the way BackgroundWorker 
handles cancellation means that flag-checks and early-exit paths have to be inserted in the 
executing background process. Finally, BackgroundWorker is not useful for background threads 
that perform asynchronous operations, since the background thread will exit “too early,” before 
the callbacks for the asynchronous operations have executed.

For this reason, it can often be useful to build abstractions that are similar to BackgroundWorker 
but that capture richer or different control patterns, preferably in a way that does not rely on 
the use of mutable state and that interferes less with the structure of the overall computation. 
Much of the rest of this chapter will look at various techniques to build these control structures.

We start with a case study where we build a type IterativeBackgroundWorker that repre-
sents a variation on the BackgroundWorker design pattern. Listing 13-2 shows the code.

Listing 13-2. A Variation on the BackgroundWorker Design Pattern for Iterative Computations

open System.ComponentModel
open System.Windows.Forms

/// An IterativeBackgroudWorker follows the BackgroundWorker design pattern
/// but instead of running an arbitrary computation it iterates a function
/// a fixed number of times and reports intermediate and final results.
/// The worker is paramaterized by its internal state type.
///
/// Percentage progress is based on the iteration number. Cancellation checks
/// are made at each iteration. Implemented via an internal BackgroundWorker.
type IterativeBackgroundWorker<'a>(oneStep:('a -> 'a),
                                   initialState:'a,
                                   numIterations:int) =

    let worker =
        new BackgroundWorker(WorkerReportsProgress=true,
                             WorkerSupportsCancellation=true)

Syme_850-4C13.fm  Page 359  Saturday, October 6, 2007  9:47 AM



360 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

    // Create the events that we will later trigger
    let triggerCompleted,completed = IEvent.create()
    let triggerError    ,error     = IEvent.create()
    let triggerCancelled,cancelled = IEvent.create()
    let triggerProgress ,progress  = IEvent.create()

    do worker.DoWork.Add(fun args ->
        // This recursive function represents the computation loop.
        // It runs at "maximum speed", i.e. is an active rather than
        // a reactive process, and can only be controlled by a
        // cancellation signal.
        let rec iterate state i =
            // At the end of the computation terminate the recursive loop
            if worker.CancellationPending then
               args.Cancel <- true
            elif i < numIterations then
                // Compute the next result
                let state' = oneStep state

                // Report the percentage computation and the internal state
                let percent = int ((float (i+1)/float numIterations) * 100.0)
                do worker.ReportProgress(percent, box state);

                // Compute the next result
                iterate state' (i+1)
            else
                args.Result <- box state

        iterate initialState 0)

    do worker.RunWorkerCompleted.Add(fun args ->
        if args.Cancelled       then triggerCancelled()
        elif args.Error <> null then triggerError args.Error
        else triggerCompleted (args.Result :?> 'a))

    do worker.ProgressChanged.Add(fun args ->
        triggerProgress (args.ProgressPercentage,(args.UserState :?> 'a)))

    member x.WorkerCompleted  = completed
    member x.WorkerCancelled  = cancelled
    member x.WorkerError      = error
    member x.ProgressChanged  = progress

    // Delegate the remaining members to the underlying worker
    member x.RunWorkerAsync()    = worker.RunWorkerAsync()
    member x.CancelAsync()       = worker.CancelAsync()

Syme_850-4C13.fm  Page 360  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 361

The types inferred for the code in Listing 13-2 are as follows:

type IterativeBackgroundWorker<'state> =
    new : ('state -> 'state) * 'state * int -> IterativeBackgroundWorker<'state>
    member RunWorkerAsync : unit -> unit
    member CancelAsync : unit -> unit

    member ProgressChanged : IEvent<int * 'state>
    member WorkerCompleted : IEvent<'state>
    member WorkerCancelled : IEvent<unit>
    member WorkerError     : IEvent<exn>

Let’s take a look at this signature first, because it represents the design of the type. The 
worker constructor is given a function of type 'state -> 'state to compute successive itera-
tions of the computation, plus an initial state and the number of iterations to compute. For 
example, you can compute the Fibonacci numbers using the following iteration function:

let fibOneStep (fibPrevPrev:bigint,fibPrev) = (fibPrev, fibPrevPrev+fibPrev);;

The type of this function is as follows:

val fibOneStep : bigint * bigint -> bigint * bigint

The RunWorkerAsync and CancelAsync members follow the BackgroundWorker design pattern, as 
do the events, except that we have expanded the RunWorkerCompleted event into three events to 
correspond to the three termination conditions and modified the ProgressChanged to include 
the state. You can instantiate the type as follows:

> let worker = new IterativeBackgroundWorker<_>( fibOneStep,(1I,1I),100);;
val worker : IterativeBackgroundWorker<bigint * bigint>

> worker.WorkerCompleted.Add(fun result ->
      MessageBox.Show(sprintf "Result = %A" result) |> ignore);;
val it : unit = ()

> worker.ProgressChanged.Add(fun (percentage, state) ->
    printfn "%d%% complete, state = %A" percentage state);;
val it : unit = ()

> worker.RunWorkerAsync();;
1% complete, state = (1I, 1I)
2% complete, state = (1I, 2I)
3% complete, state = (2I, 3I)
4% complete, state = (3I, 5I)
...

Syme_850-4C13.fm  Page 361  Saturday, October 6, 2007  9:47 AM



362 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

98% complete, state = (135301852344706746049I, 218922995834555169026I)
99% complete, state = (218922995834555169026I, 354224848179261915075I)
100% complete, state = (354224848179261915075I, 573147844013817084101I)
val it : unit = ()

One difference here is that cancellation and percentage progress reporting are handled 
automatically based on the iterations of the computation. This is assuming each iteration takes 
roughly the same amount of time. Other variations on the BackgroundWorker design pattern are 
possible. For example, reporting percentage completion of fixed tasks such as installation is 
often performed by timing sample executions of the tasks and adjusting the percentage reports 
appropriately.

■Note  We implemented IterativeBackgroundWorker via delegation rather than inheritance. This is 
because its external members are different from those of BackgroundWorker. The .NET documentation 
recommends you use implementation inheritance for this, but we disagree. Implementation inheritance 
can only add complexity to the signature of an abstraction and never makes things simpler, whereas an 
IterativeBackgroundWorker is in many ways simpler than using a BackgroundWorker, despite that it 
uses an instance of the latter internally. Powerful, compositional, simple abstractions are the primary building 
blocks of functional programming.

Raising Additional Events from Background Workers
Often you will need to raise additional events from objects that follow the BackgroundWorker 
design pattern. For example, let’s say you want to augment IterativeBackgroundWorker to raise 
an event when the worker starts its work and for this event to pass the exact time that the worker 
thread started as an event argument. Listing 13-3 shows the extra code you need to add to the 
IterativeBackgroundWorker type to make this happen. We use this extra code in the next section.

Listing 13-3. Code to Raise GUI-Thread Events from an IterativeBackgroundWorker Object

open System
open System.Threading

type IterativeBackgroundWorker<'a>(...) =

    let worker = ...

    // The constructor captures the synchronization context. This allows us to post
    // messages back to the GUI thread where the BackgroundWorker was created.
    let syncContext = SynchronizationContext.Current
    do if syncContext = null then failwith "no synchronization context found"

    let triggerStarted,started = IEvent.create()

Syme_850-4C13.fm  Page 362  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 363

    // Raise the event when the worker starts. This is done by posting a message
    // to the captured synchronization context.
    do worker.DoWork.Add(fun args ->
        syncContext.Post(SendOrPostCallback(fun _ -> triggerStarted(DateTime.Now)),
                         state=null)
        ...

    /// The Started event gets raised when the worker starts. It is
    /// raised on the GUI thread (i.e. in the synchronization context of
    /// the thread where the worker object was created).
    // It has type IEvent<DateTime>
    member x.Started             = started

The simple way to raise additional events is often wrong. For example, it is tempting to 
simply create an event, arrange for it to be triggered, and publish it, as you would do for a GUI 
control. However, if you do that, you will end up triggering the event on the background worker 
thread, and its event handlers will run on that thread. This is dangerous, because most GUI 
objects (and many other objects) can be accessed only from the thread they were created on; 
this is a restriction enforced by most GUI systems.

One of the nice features of the BackgroundWorker class is that it automatically arranges to 
raise the RunWorkerCompleted and ProgressChanged events on the GUI thread. We have shown how 
to achieve this in Listing 13-3. Technically speaking, the extended IterativeBackgroundWorker 
object has captured the synchronization context of the thread where it was created and posts an 
operation back to that synchronization context. A synchronization context is just an object that 
lets you post operations back to another thread. For threads such as a GUI thread, this means 
posting an operation will post a message through the GUI event loop.

Connecting a Background Worker to a GUI
To round off this section on the BackgroundWorker design pattern, we show the full code required to 
build a small application with a background worker task that supports cancellation and reports 
progress. Listing 13-4 shows the full code.

Listing 13-4. Connecting an IterativeBackgroundWorker to a GUI

open System.Drawing
open System.Windows.Forms

let form = new Form(Visible=true,TopMost=true)

let panel = new FlowLayoutPanel(Visible=true,
                                Height = 20,
                                Dock=DockStyle.Bottom,
                                BorderStyle=BorderStyle.FixedSingle)

let progress = new ProgressBar(Visible=false,
                               Anchor=(AnchorStyles.Bottom ||| AnchorStyles.Top),
                               Value=0)

Syme_850-4C13.fm  Page 363  Saturday, October 6, 2007  9:47 AM



364 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

let text = new Label(Text="Paused",
                     Anchor=AnchorStyles.Left,
                     Height=20,
                     TextAlign= ContentAlignment.MiddleLeft)

panel.Controls.Add(progress)
panel.Controls.Add(text)
form.Controls.Add(panel)

let fibOneStep (fibPrevPrev:bigint,fibPrev) = (fibPrev, fibPrevPrev+fibPrev)

// Run the iterative algorithm 500 times before reporting intermediate results
// Burn some additional cycles to make sure it runs slowly enough
let rec RepeatN n f s = if n <= 0 then s else RepeatN (n-1) f (f s)
let rec BurnN n f s = if n <= 0 then f s else ignore (f s); BurnN (n-1) f s
let step = (RepeatN 500 (BurnN 1000 fibOneStep))

// Create the iterative worker.
let worker = new IterativeBackgroundWorker<_>(step,(1I,1I),100)

worker.ProgressChanged.Add(fun (progressPercentage,state)->
    progress.Value <- progressPercentage)

worker.WorkerCompleted.Add(fun (_,result) ->
    progress.Visible <- false;
    text.Text <- "Paused";
    MessageBox.Show(sprintf "Result = %A" result) |> ignore)

worker.WorkerCancelled.Add(fun () ->
    progress.Visible <- false;
    text.Text <- "Paused";
    MessageBox.Show(sprintf "Cancelled OK!") |> ignore)

worker.WorkerError.Add(fun exn ->
    text.Text <- "Paused";
    MessageBox.Show(sprintf "Error: %A" exn) |> ignore)

form.Menu <- new MainMenu()
let workerMenu = form.Menu.MenuItems.Add("&Worker")

workerMenu.MenuItems.Add(new MenuItem("Run",onClick=(fun _ args ->
    text.Text <- "Running";
    progress.Visible <- true;
    worker.RunWorkerAsync())))

Syme_850-4C13.fm  Page 364  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 365

workerMenu.MenuItems.Add(new MenuItem("Cancel",onClick=(fun _ args ->
    text.Text <- "Cancelling";
    worker.CancelAsync())))

form.Closed.Add(fun _ -> worker.CancelAsync())

When run in F# Interactive, a window appears as in Figure 13-1.

Figure 13-1. A GUI window with a BackgroundWorker reporting progress percentage

■Note  Forcibly aborting computations uncooperatively is not recommended in .NET programming. You can 
attempt to do this using System.Threading.Thread.Abort(), but the use of this method may have 
many unintended consequences, discussed later in this chapter.

Introducing Asynchronous Computations
The two background worker samples we’ve shown so far run at “full throttle.” In other words, 
the computations run on the background threads as active loops, and their reactive behavior 
is limited to flags that check for cancellation. In reality, background threads often have to do 
different kinds of work, either by responding to completing asynchronous I/O requests, by 
processing messages, by sleeping, or by waiting to acquire shared resources. Fortunately, F# 
comes with a powerful set of techniques for structuring asynchronous programs in a natural 
way. These are called asynchronous workflows. In the next three sections, we cover how to use 
asynchronous workflows to structure asynchronous and message-processing tasks in ways 
that preserve the essential logical structure of your code.

Fetching Multiple Web Pages Asynchronously
One of the most intuitive asynchronous tasks is fetching a web page; we all use web browsers 
that can fetch multiple pages simultaneously. In the samples in Chapter 2 we showed how to 

Syme_850-4C13.fm  Page 365  Saturday, October 6, 2007  9:47 AM



366 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

fetch pages synchronously. This is useful for many purposes, but browsers and high-perfor-
mance web crawlers will have tens or thousands of connections “in flight” at once.

The type Microsoft.FSharp.Control.Async<'a> lies at the heart of F# asynchronous work-
flows. A value of type Async<'a> represents a program fragment that will generate a value of 
type 'a “at some point in the future.” Listing 13-5 shows how to use asynchronous workflows 
to fetch several web pages simultaneously.

Listing 13-5. Fetching Three Web Pages Simultaneously

open System.Net
open System.IO
open Microsoft.FSharp.Control.CommonExtensions

let museums = ["MOMA",           "http://moma.org/";
               "British Museum", "http://www.thebritishmuseum.ac.uk/";
               "Prado",          "http://museoprado.mcu.es"]

let fetchAsync(nm,url:string) =
    async { do printfn "Creating request for %s..." nm
            let req  = WebRequest.Create(url)

            let! resp  = req.GetResponseAsync()

            do printfn "Getting response stream for %s..." nm
            let stream = resp.GetResponseStream()

            do printfn "Reading response for %s..." nm
            let reader = new StreamReader(stream)
            let! html = reader.ReadToEndAsync()

            do printfn "Read %d characters for %s..." html.Length nm }
for nm,url in museums do
    Async.Spawn (fetchAsync(nm,url))

The types of these functions and values are as follows:

val museums : (string * string) list
val fetchAsync : string * string -> Async<unit>

When run on one of our machines via F# Interactive, the output of the code from Listing 13-5 
is as follows:

Creating request for MOMA...
Creating request for British Museum...
Creating request for Prado...
Getting response for MOMA...
Reading response for MOMA...

Syme_850-4C13.fm  Page 366  Saturday, October 6, 2007  9:47 AM

http://moma.org
http://www.thebritishmuseum.ac.uk
http://museoprado.mcu.es


CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 367

Getting response for Prado...
Reading response for Prado...
Read 188 characters for Prado...
Read 41635 characters for MOMA...
Getting response for British Museum...
Reading response for British Museum...
Read 24341 characters for British Museum...

The heart of the code in Listing 13-5 is the construct introduced by async { ... }. This is 
an application of the workflow syntax introduced in Chapter 9. Now let’s take a closer look at 
Listing 13-5. The key operations are the two let! operations within the workflow expression:

    async { do ...
            let! resp  = req.GetResponseAsync()
            do ...
            ...
            let! html = reader.ReadToEndAsync()
            do ... }

Within asynchronous workflow expressions, the language construct let! var = expr in 
body simply means “perform the asynchronous operation expr and bind the result to var when 
the operation completes. Then continue by executing the rest of the computation body.”

With this in mind, you can now see what fetchAsync does:

• It synchronously requests a web page.

• It asynchronously awaits a response to the request.

• It gets the response Stream and StreamReader synchronously after the asynchronous 
request completes.

• It reads to the end of the stream asynchronously.

• After the read completes, it prints the total number of characters read synchronously.

Finally, the method Async.Spawn is used to initiate the execution of a number of asynchro-
nous computations. This works by queuing the computations in the .NET thread pool. The 
.NET thread pool is explained in more detail in the following section.

Understanding Thread Hopping
Asynchronous computations are different from normal, synchronous computations: an asyn-
chronous computation tends to “hop” between different underlying .NET threads. To see this, 
let’s augment the asynchronous computation with diagnostics that show the ID of the under-
lying .NET thread at each point of active execution. You can do this by replacing uses of printfn 
in the function fetchAsync with uses of the following function:

let tprintfn fmt =
    printf "[.NET Thread %d]" System.Threading.Thread.CurrentThread.ManagedThreadId;
    printfn fmt

After doing this, the output changes to the following:

Syme_850-4C13.fm  Page 367  Saturday, October 6, 2007  9:47 AM



368 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

[.NET Thread 12]Creating request for MOMA...
[.NET Thread 13]Creating request for British Museum...
[.NET Thread 12]Creating request for Prado...
[.NET Thread 8]Getting response for MOMA...
[.NET Thread 8]Reading response for MOMA...
[.NET Thread 9]Getting response for Prado...
[.NET Thread 9]Reading response for Prado...
[.NET Thread 9]Read 188 characters for Prado...
[.NET Thread 8]Read 41635 characters for MOMA...
[.NET Thread 8]Getting response for British Museum...
[.NET Thread 8]Reading response for British Museum...
[.NET Thread 8]Read 24341 characters for British Museum...

Note how each individual Async program “hops” between threads; the MOMA request 
started on .NET thread 12 and finished life on .NET thread 8. Each asynchronous computation 
in Listing 13-5 executes in the following way:

• Each asynchronous computation starts life as a work item in the .NET thread pool. (The 
.NET thread pool is explained in the “What Is the .NET Thread Pool?” sidebar.) These are 
processed by a number of .NET threads.

• When the asynchronous computations reach the GetResponseAsync and ReadToEndAsync 
calls, the requests are made and the continuations are registered as “I/O completion 
actions” in the .NET thread pool. No thread is used while the request is in progress.

• When the requests complete, they trigger a callback in the .NET thread pool. These may 
be serviced by different threads than those that originated the calls.

WHAT IS THE .NET THREAD POOL?

.NET objects such as BackgroundWorker use a single .NET background thread, which corresponds to a 
single Windows or other OS thread. OS threads have supporting resources such as an execution stack that 
consume memory and are relatively expensive resources to create and run.

However, many concurrent processing tasks require only the ability to schedule short-lived tasks that 
then suspend, waiting for further input. To simplify the process of creating and managing these tasks, the .NET 
Framework provides the System.Threading.ThreadPool class. The thread pool consists of two main sets 
of suspended tasks: a queue containing user work items and a pool of “I/O completion” callbacks, each waiting 
for a signal from the operating system. The number of threads in the thread pool is automatically tuned, and 
items can be either queued asynchronously or registered against a .NET WaitHandle synchronization object 
(for example, a lock, a semaphore, or an I/O request). This is how to queue a work item in the .NET thread pool:

    open System.Threading

    ThreadPool.QueueUserWorkItem(fun _ -> printf "Hello!") |> ignore

Syme_850-4C13.fm  Page 368  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 369

Under the Hood: What Are Asynchronous Computations?
Async<'a> values are essentially a way of writing “continuation-passing” or “callback” programs 
explicitly. Continuations themselves were described in Chapter 8 along with techniques to pass 
them explicitly. Async<'a> are computations that call a success continuation when the asynchro-
nous computation completes and an exception continuation if it fails. They provide a form 
of managed asynchronous computation, where “managed” means that several aspects of 
asynchronous programming are handled automatically:

• Exception propagation is added “for free”: If an exception is raised during an asynchronous 
step, then the exception terminates the entire asynchronous computation and cleans up 
any resources declared using use, and the exception value is then handed to a continua-
tion. Exceptions may also be caught and managed within the asynchronous workflow by 
using try/with/finally.

• Cancellation checking is added “for free”: The execution of an Async<'a> workflow 
automatically checks a cancellation flag at each asynchronous operation. Cancellation 
is controlled through the use of asynchronous groups, a topic covered at http://www.
expert-fsharp.com/Topics/Cancellation.

• Resource lifetime management is fairly simple: You can protect resources across parts of 
an asynchronous computation by using use inside the workflow syntax.

If we put aside the question of cancellation, values of type Async<'a> are effectively iden-
tical to the following type:

type Async<'a> = Async of ('a -> unit) * (exn -> unit) -> unit

Here the functions are the success continuation and exception continuations, respectively. 
Each value of type Async<'a> should eventually call one of these two continuations. The async 
object is of type AsyncBuilder and supports the following methods, among others:

type AsyncBuilder with
    member Return : 'a -> Async<'a>
    member Delay : (unit -> Async<'a>) -> Async<'a>
    member Using: 'a * ('a -> Async<'b>) -> Async<'b> when 'a :> System.IDisposable
    member Let: 'a * ('a -> Async<'b>) -> Async<'b>
    member Bind: Async<'a> * ('a -> Async<'b>) -> Async<'b>

The full definition of Async<'a> values and the implementations of these methods for the 
async object are given in the F# library source code. As you saw in Chapter 9, builder objects such 
as async containing methods like those shown previously mean that the syntax async { ... } 
can be used as a way of building Async<'a> values.

Table 13-2 shows the common constructs used in asynchronous workflow expressions. 
For example, the following asynchronous workflow:

Syme_850-4C13.fm  Page 369  Saturday, October 6, 2007  9:47 AM

http://www


370 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

async { let req  = WebRequest.Create("http://moma.org/")
        let! resp  = req.GetResponseAsync()
        let stream = resp.GetResponseStream()
        let reader = new StreamReader(stream)
        let! html = reader.ReadToEndAsync()
        html }

is shorthand for the following code:

async.Delay(fun () ->
   async.Let(WebRequest.Async("http://moma.org/"), (fun req ->
      async.Bind(req.GetResponseAsync(), (fun resp ->
         async.Let(resp.GetResponseStream(), (fun stream ->
            async.Let(new StreamReader(stream), (fun reader ->
               async.Bind(reader.ReadToEndAsync(), (fun html ->
                  async.Return(html))))))))))

As you saw in Chapter 9, the key to understanding the F# workflow syntax is always to 
understand the meaning of let!. In the case of async workflows, let! executes one asynchro-
nous computation and schedules the next computation for execution once the first 
asynchronous computation completes. This is syntactic sugar for the Bind operation on the 
async object.

Table 13-2. Common Constructs Used in async { ... } Workflow Expressions

Construct Description

let! pat = expr Execute the asynchronous computation expr and bind its result to pat 
when it completes. 
If expr has type Async<'a>, then pat has type 'a. Equivalent to 
async.Bind(expr,(fun pat -> ...)).

let pat = expr Execute an expression synchronously and bind its result to pat 
immediately. If expr has type 'a, then pat has type 'a. Equivalent to 
async.Let(expr,(fun pat -> ...)).

do! expr Equivalent to let! () = expr.

do expr Equivalent to let () = expr.

return expr Evaluate the expression, and return its value as the result of the 
containing asynchronous workflow. Equivalent to async.Return(expr).

return! expr Execute the expression as an asynchronous computation, and return its 
result as the overall result of the containing asynchronous workflow. 
Equivalent to expr.

use pat = expr Execute the expression immediately, and bind its result immediately. 
Call the Dispose method on each variable bound in the pattern when
the subsequent asynchronous workflow terminates, regardless of 
whether it terminates normally or by an exception. Equivalent to 
async.Using(expr,(fun pat -> ...)).

Syme_850-4C13.fm  Page 370  Saturday, October 6, 2007  9:47 AM

http://moma.org
http://moma.org


CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 371

File Processing Using Asynchronous Workflows
We now show a slightly longer sample of asynchronous I/O processing. Our running sample is 
an application that must read a large number of image files and perform some processing on 
them. This kind of application may be compute bound (if the processing takes a long time and 
the file system is fast) or I/O bound (if the processing is quick and the file system is slow). Using 
asynchronous techniques tends to give good overall performance gains when an application is 
I/O bound and can also give performance improvements for compute-bound applications if 
asynchronous operations are executed in parallel on multicore machines.

Listing 13-6 shows a synchronous implementation of our image transformation program.

Listing 13-6. A Synchronous Image Processor

open System.IO
let numImages = 200
let size = 512
let numPixels = size * size

let MakeImageFiles() =
    printfn "making %d %dx%d images... " numImages size size
    let pixels = Array.init numPixels (fun i -> byte i)
    for i = 1 to numImages  do
        System.IO.File.WriteAllBytes(sprintf "Image%d.tmp" i, pixels)
    printfn "done."

let processImageRepeats = 20

let TransformImage(pixels, imageNum) =
    printfn "TransformImage %d" imageNum;
    // Perform a CPU-intensive operation on the image.
    pixels |> Func.repeatN processImageRepeats (Array.map (fun b -> b + 1uy))

let ProcessImageSync(i) =
    use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
    let pixels = Array.zero_create numPixels
    let nPixels = inStream.Read(pixels,0,numPixels);
    let pixels' = TransformImage(pixels,i)
    use outStream =  File.OpenWrite(sprintf "Image%d.done" i)
    outStream.Write(pixels',0,numPixels)

let ProcessImagesSync() =
    printfn "ProcessImagesSync...";
    for i in 1 .. numImages do
        ProcessImageSync(i)

We assume the image files are already created using the following code:

Syme_850-4C13.fm  Page 371  Saturday, October 6, 2007  9:47 AM



372 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

> System.Environment.CurrentDirectory <- __SOURCE_DIRECTORY__;;
val it : unit = ()

> MakeImageFiles();;
val it : unit = ()

We have left the transformation on the image largely unspecified, such as the function 
TransformImage. By changing the value of processImageRepeats, you can adjust the computa-
tion from compute bound to I/O bound.

The problem with this implementation is that each image is read and processed sequen-
tially, when in practice multiple images can be read and transformed simultaneously, giving 
much greater throughput. Listing 13-7 shows the implementation of the image processor using 
an asynchronous workflow.

Listing 13-7. The Asynchronous Image Processor

open Microsoft.FSharp.Control
open Microsoft.FSharp.Control.CommonExtensions

let ProcessImageAsync(i) =
    async { use inStream = File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.ReadAsync(numPixels)
            let  pixels' = TransformImage(pixels,i)
            use outStream = File.OpenWrite(sprintf "Image%d.done" i)
            do! outStream.WriteAsync(pixels')  }

let ProcessImagesAsync() =
    printfn "ProcessImagesAsync...";
    let tasks = [ for i in 1 .. numImages -> ProcessImageAsync(i) ]
    Async.Run (Async.Parallel tasks)  |> ignore
    printfn "ProcessImagesAsync finished!";

On the one of our machines, the asynchronous version of the code ran up to three times as 
fast as the synchronous version (in total elapsed time), when processImageRepeats is 20 and 
numImages is 200. A factor of 2 was achieved consistently for any number of processImageRepeats 
since this machine had two CPUs.

Let’s take a closer look at this code. The call Async.Run (Async.Parallel ...) executes a 
set of asynchronous operations in the thread pool, collects their results (or their exceptions), 
and returns the overall array of results to the original code. The core asynchronous workflow is 
introduced by the async { ... } construct. Let’s look at the inner workflow line by line:

    async { use inStream = File.OpenRead(sprintf "Image%d.tmp" i)
            ... }

This line opened the input stream synchronously using File.OpenRead. Although this is a 
synchronous operation, the use of use indicates that the lifetime of the stream is managed over 
the remainder of the workflow. The stream will be closed when the variable is no longer in scope, 

Syme_850-4C13.fm  Page 372  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 373

that is, at the end of the workflow, even if asynchronous activations occur in between. If any 
step in the workflow raises an uncaught exception, then the stream will also be closed while 
handling the exception.

The next line reads the input stream asynchronously using inStream.ReadAsync:

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.ReadAsync(numPixels)
            ... }

Stream.ReadAsync is an extension method added to the .NET System.IO.Stream class by 
opening the F# namespace Microsoft.FSharp.Control.CommonExtensions, and it generates a 
value of type Async<byte[]>. The use of let! executes this operation asynchronously and registers 
a callback. When the callback is invoked, the value pixels is bound to the result of the operation, 
and the remainder of the asynchronous workflow is executed. The next line transforms the 
image synchronously using TransformImage:

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.ReadAsync(numPixels)
            let  pixels' = TransformImage(pixels,i)
            ... }

Like the first line, the next line opens the output stream. Using use guarantees that the 
stream is closed by the end of the workflow regardless of whether exceptions are thrown in the 
remainder of the workflow.

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.ReadAsync(numPixels)
            let  pixels' = TransformImage(pixels,i)
            use outStream =  File.OpenWrite(sprintf "Image%d.done" i)
            ... }

The final line of the workflow performs an asynchronous write of the image. Once again, 
WriteAsync is an extension method added to the .NET System.IO.Stream class by opening the 
F# namespace Microsoft.FSharp.Control.CommonExtensions.

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.ReadAsync(numPixels)
            let  pixels' = TransformImage(pixels,i)
            use outStream =  File.OpenWrite(sprintf "Image%d.done" i)
            do! outStream.WriteAsync(pixels')  }

If you now return to the first part of the function, you can see that the overall operation of 
the function is to create numImages individual asynchronous operations, using a sequence 
expression that generates a list:

    let tasks = [ for i in 1 .. numImages -> ProcessImageAsync(i) ]

You can then compose these tasks in parallel using Async.Parallel and then run the 
resulting process using Async.Run. This waits for the overall operation to complete and returns 
the result.

    Async.Run (Async.Parallel tasks)

Syme_850-4C13.fm  Page 373  Saturday, October 6, 2007  9:47 AM



374 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

Table 13-3 shows some of the primitives and combinators commonly used to build asyn-
chronous workflows. Take the time to compare Listings 13-7 and 13-6. Notice the following:

• The overall structure and flow of the core of Listing 13-7 is quite similar to Listing 13-6, 
that is, the synchronous algorithm, even though it includes steps executed 
asynchronously.

• The performance characteristics of Listing 13-7 are the same as those of Listing 13-6. Any 
overhead involved in executing the asynchronous workflow is easily dominated by the 
overall cost of I/O and image processing. It is also much easier to experiment with modi-
fications such as making the write operation synchronous.

Running Asynchronous Computations
Values of type Async<'a> are usually run using the functions listed in Table 13-4. Async<'a> 
values can be built by using functions and members in the F# libraries.

Table 13-3. Some Common Primitives Used to Build Async<'a> Values

Member/Type Description

Async.Catch: Async<'a> -> 
Async<Choice<'a,exn>>

Catches any errors from an asynchronous 
computation and returns a Choice result 
indicating success or failure.

Async.Primitive: ('a -> unit) * (exn -> 
unit) -> Async<'a>

Builds a single primitive asynchronous step of an 
asynchronous computation. The function that 
implements the step is passed continuations to 
call once the step is complete or if the step fails.

Async.Parallel: Async<#seq<'a>> -> 
Async<'a[]>

Builds a single asynchronous computation that 
runs the given asynchronous computations in 
parallel and waits for results from all to be returned. 
Each may either terminate with a value or return 
an exception. If any raise an exception, then the 
others are cancelled, and the overall asynchronous 
computation also raises the same exception.

Table 13-4. Common Methods in the Async Type Used to Run Async<'a> Values

Member/Type Description

Async.Run: Async<'a> -> 'a Runs an operation in the thread pool and 
waits for its result.

Async.Spawn: Async<unit> -> unit Queues the asynchronous computation as 
an operation in the thread pool.

Async.SpawnChild: Async<unit> -> Async<unit> Queues the asynchronous computation, 
initially as a work item in the thread pool, 
but inherits the cancellation handle from 
the current asynchronous computation.

Syme_850-4C13.fm  Page 374  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 375

Common I/O Operations in Asynchronous Workflows
Asynchronous programming is becoming more widespread because of the use of multicore 
machines and networks in applications, and many .NET APIs now come with both synchronous 
and asynchronous versions of their functionality. For example, all web service.APIs generated by 
.NET tools have asynchronous versions of their requests. A quick scan of the .NET API docu-
mentation on the Microsoft website reveals the asynchronous operations listed in Table 13-5. 
These all have equivalent Async<'a> operations defined in the F# libraries as extensions to the 
corresponding .NET types.

Async.SpawnThenPostBack: Async<'a> * ('a -> 
unit) -> unit

Queues the asynchronous computation, 
initially as a work item in the thread pool. 
When its result is available, executes the 
given callback by posting a message to the 
synchronization context of the thread that 
called SpawnThenPostBack. Useful for returning 
the results of asynchronous computations 
to a GUI application.

Async.Future: Async<'a> -> Future<'a> Queues the asynchronous computation as 
an operation in the thread pool and returns 
an object that can be used to later rendez-
vous with its result.

Table 13-4. Common Methods in the Async Type Used to Run Async<'a> Values

Member/Type Description

Table 13-5. Some Asynchronous Operations in the .NET Libraries and 
Corresponding F# Extensions

.NET Asynchronous Operation F# Extension Description

Stream.Begin/EndRead ReadAsync Read a stream of bytes asynchro-
nously. See also FileStream, 
NetworkStream, DeflateStream, 
IsolatedStorageFileStream, and 
SslStream.

Stream.Begin/EndWrite WriteAsync Write a stream of bytes asynchro-
nously. See also FileStream.

Socket.BeginAccept/EndAccept AcceptAsync Accept an incoming network socket 
request asynchronously.

Socket.BeginReceive/EndRecevie ReceiveAsync Receive data on a network socket 
asynchronously.

Socket.BeginSend/EndSend SendAsync Send data on a network socket 
asynchronously.

WebRequest.Begin/EndGetResponse GetResponseAsync Make an asynchronous web 
request. See also FtpWebRequest, 
SoapWebRequest, and HttpWebRequest.

Syme_850-4C13.fm  Page 375  Saturday, October 6, 2007  9:47 AM



376 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

Sometimes you may need to write a few primitives to map .NET asynchronous operations 
into the F# asynchronous framework. We give some examples later in this section and in 
Chapter 14.

Under the Hood: Implementing a Primitive Asynchronous Step
Let’s take a moment to look at how to implement one of the primitive Async<'a> actions we’ve 
been using earlier in the chapter. Listing 13-8 shows the essence of the implementation of 
Stream.ReadAsync, which is a primitive asynchronous action that wraps a pair of Stream.BeginRead 
and Stream.EndRead calls using Async.Primitive. We implement this as an extension to the 
System.IO.Stream type to ensure it is easy to find the asynchronous version of this functionality 
alongside existing functions (extension members were described in Chapter 6).

Listing 13-8. An Implementation of an  Async.Primitive

open System

let trylet f x = (try Choice2_1 (f x) with exn -> Choice2_2(exn))

let protect cont econt f x =
    match trylet f x with
    | Choice2_1 v -> cont v
    | Choice2_2 exn -> econt exn

type System.IO.Stream with
    member stream.ReadAsync (buffer,offset,count) =
       Async.Primitive (fun (cont,econt) ->
          stream.BeginRead
              (buffer=buffer,
               offset=offset,
               count=count,
               state=null,
               callback=AsyncCallback(protect cont econt stream.EndRead))
            |> ignore)

The type of Async.Primitive is as follows:

SqlCommand.Begin/EndExecuteReader ExecuteReaderAsync Execute an SqlCommand 
asynchronously.

SqlCommand.Begin/EndExecuteXmlReader ExecuteXmlReaderAsync Execute a read of XML 
asynchronously.

SqlCommand.Begin/EndExecuteNonQuery ExecuteNonQueryAsync Execute a nonreading SqlCommand 
asynchronously.

Table 13-5. Some Asynchronous Operations in the .NET Libraries and 
Corresponding F# Extensions

.NET Asynchronous Operation F# Extension Description

Syme_850-4C13.fm  Page 376  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 377

val Async.Primitive : (('a -> unit) * (exn -> unit) -> unit) -> Async<'a>

The inferred type of the extension to the System.IO.Stream type in Listing 13-8 is as follows:

type System.IO.Stream with
    member ReadAsync: buffer:byte[] * offset:int * count:int -> Async<int>

In Listing 13-8, Async.Primitive builds an Async<int> value, where the integer result indi-
cates the number of bytes read from the stream. But what are all these function values? As you 
saw earlier, asynchronous computations work via continuations. This means a primitive step is 
given two continuation functions, cont and econt, which must be called upon success and/or 
exceptional failure of the operation. The previous implementation calls BeginRead and passes 
it a callback that will be invoked when the asynchronous operation returns. Note that the call 
to BeginRead uses named arguments, covered in Chapter 6. The callback calls EndRead to retrieve 
the result and passes this result to the success continuation cont; the call to EndRead is protected by 
an exception handler that calls the exception continuation econt should something go wrong.

The simple wrapper shown in Listing 13-8 now allows us to use ReadAsync in workflows, 
such as in the following line of our asynchronous image processor:

    async { use inStream =  File.OpenRead(sprintf "Image%d.tmp" i)
            let! pixels = inStream.ReadAsync(numPixels)
            ... }

Note that the econt continuation of a primitive step should be called if an exception occurs. 
The example includes the try/catch handlers required to catch exceptions from EndRead. For 
more details, see the full implementation of ReadAsync and other similar wrappers in the F# 
library source code.

Under the Hood: Implementing Async.Parallel
Async.Parallel can appear magical. Computation tasks are created, executed, and resynchro-
nized almost without effort. However, Listing 13-9 shows that a basic implementation of this 
operator is simple and again helps you see how Async<'a> values work “under the hood.”

Listing 13-9. A Basic Implementation of Async.Parallel

let Parallel(taskSeq) =
    Async.Primitive (fun (cont,econt) ->
        let tasks = Seq.to_array taskSeq
        let count = ref tasks.Length
        let results = Array.zero_create tasks.Length
        tasks |> Array.iteri (fun i p ->
            Async.Spawn
               (async { let! res = p
                        do results.[i] <- res;
                        let n = System.Threading.Interlocked.Decrement(count)
                        do if n=0 then cont results })))

Syme_850-4C13.fm  Page 377  Saturday, October 6, 2007  9:47 AM



378 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

This basic implementation Parallel first converts the input task sequence to an array and 
then creates mutable state count and results to record the progress of the parallel computa-
tions. It then iterates through the tasks and queues each for execution in the .NET thread pool. 
Upon completion, each writes its result and decrements the counter using an atomic Interlocked.
Decrement operator, discussed further in the section “Understanding Shared-Memory 
Concurrency” at the end of this chapter. The last process to finish calls the continuation with 
the collected results.

In practice, Parallel is implemented slightly differently to take into account exceptions 
and cancellation; once again, see the F# library code for full details.

Understanding Exceptions and Cancellation
Two recurring topics in asynchronous programming are exceptions and cancellation. Let’s 
first explore some of the behavior of asynchronous programs with regard to exceptions.

> let failingTask = async { do failwith "fail" };;
val failingTask: Async<unit>

> Async.Run failingTask;;
Microsoft.FSharp.Core.FailureException: fail
stopped due to error

> let failingTasks = [ async { do failwith "fail A" };
                       async { do failwith "fail B" }; ];;
val failingTasks: Async<unit>

> Async.Run (Async.Parallel failingTasks);;
Microsoft.FSharp.Core.FailureException: fail A
stopped due to error

> Async.Run (Async.Parallel failingTasks);;
Microsoft.FSharp.Core.FailureException: fail B
stopped due to error

From this you can see the following:

• Tasks fail only when they are actually executed. The construction of a task using the 
async { ... } syntax will never fail.

• Tasks run using Async.Run report any failure back to the controlling thread as an exception.

• It is nondeterministic which task will fail first.

• Tasks composed using Async.Parallel report the first failure from amongst the collected set 
of tasks. An attempt is made to cancel other tasks by setting the cancellation flag for the 
group of tasks, and any further failures are ignored.

You can wrap a task using the Async.Catch combinator. This has the following type:

Syme_850-4C13.fm  Page 378  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 379

static member Catch : Async<'a> -> Async<Choice<'a,exn>>

For example:

> Async.Run (Async.Catch failingTask);;
val it : Choice<unit,exn> = Choice2_2 (FailureException ())

You can also handle errors by using try/finally in an async { ... } workflow.

■Note  You can find further information and examples of asynchronous workflows at http://www.
expert-fsharp.net/topics/AsyncWorkflows.

Passing and Processing Messages
A distinction is often made between shared-memory concurrency and message passing 
concurrency. The former is often more efficient on local machines and is covered in the section 
“Using Shared-Memory Concurrency” later in this chapter. The latter scales to systems where 
there is no shared memory, for example, distributed systems, and can also be used to avoid 
performance problems associated with shared memory. Asynchronous message passing and 
processing is a common foundation for concurrent programming, and in this section we look 
at some simple examples of message-passing programs.

Introducing Message Processing
In a sense you have already seen a good deal of message passing in this chapter. For example:

• In the BackgroundWorker design pattern, the CancelAsync method is a simple kind of 
message.

• Whenever you raise events on a GUI thread from a background thread, you are, under 
the hood, posting a message to the GUI’s event queue. On Windows this event queue is 
managed by the operating system, and the processing of the events on the GUI thread is 
called the Windows Event Loop.

In this section we cover a simple kind of message processing called mailbox processing. 
This is popular in languages such as Erlang. A mailbox is a message queue that you can scan for 
a message particularly relevant to the message-processing agent you are defining. Listing 13-10 
shows a concurrent agent that implements a simple counter by processing a mailbox as messages 
arrive. The type MailboxProcessor is defined in the F# library module Microsoft.FSharp.
Control.Mailboxes.

Syme_850-4C13.fm  Page 379  Saturday, October 6, 2007  9:47 AM

http://www


380 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

Listing 13-10. Implementing a Counter Using a MailboxProcessor

open Microsoft.FSharp.Control.Mailboxes

let counter =
    MailboxProcessor.Create(fun inbox ->
        let rec loop(n) =
            async { do printfn "n = %d, waiting..." n
                    let! msg = inbox.Receive()
                    return! loop(n+msg) }
        loop(0))

The type of counter is MailboxProcessor<int>, where the type argument indicates that this 
object expects to be sent messages of type int.

val counter : MailboxProcessor<int>

The “The Message Processing and State Machines” sidebar describes the general pattern 
of Listing 13-10 and the other MailboxProcessor examples in this chapter, all of which can be 
thought of as state machines. With this in mind, let’s take a closer look at Listing 13-10. First 
let’s use counter on some simple inputs:

> counter.Start();;
n = 0, waiting...

> counter.Post(1);;
n = 1, waiting...

> counter.Post(2);;
n = 3, waiting...

> counter.Post(1);;
n = 4, waiting...

Looking at Listing 13-10, note calling the MailboxProcessor.Start method causes the 
processing agent to enter loop with n = 0. The agent then performs an asynchronous Receive 
request on the inbox for the MailboxProcessor; that is, the agent waits asynchronously until a 
message has been received. When the message msg is received, the program calls loop(n+msg). 
As additional messages are received, the internal “counter” (actually an argument) is incre-
mented further.

We post messages to the agent using mailbox.Post. The type of mailbox.Receive is as follows:

Syme_850-4C13.fm  Page 380  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 381

member Mailbox<'msg>.Receive: unit -> Async<'msg>

Using an asynchronous receive ensures no “real” threads are blocked for the duration of 
the wait. This means the previous techniques scale to many thousands of concurrent agents.

MESSAGE PROCESSING AND STATE MACHINES

Listing 13-10 shares a common structure with many of the other message-processing components you’ll be 
looking at in this chapter, all of which are state machines. This general structure is as follows:

let agent =
    MailboxProcessor.Start(fun inbox ->

        // The states of the state machine
        let rec state1(args) =  async { ... }
        and     state2(args) =  async { ... }
        ...
        and     stateN(args) =  async { ... }

        // Enter the initial state
        state1(initialArgs))

That is, message-processing components typically use sets of recursive functions, each defining an 
asynchronous computation. Each of these functions can be thought of as a state, and one of these states is 
identified as the initial state. Arguments may be passed between these states just as you pass them between 
any other set of recursive functions.

Creating Objects That React to Messages
Often it is wise to hide the internals of an asynchronous computation behind an object, since 
the use of message passing can be seen as an implementation detail. Furthermore, Listing 13-10 
hasn’t shown you how to retrieve information from the counter, except by printing it to the 
standard output. Furthermore, it hasn’t shown how to ask the processing agent to exit. 
Listing 13-11 shows how to implement an object wrapping an agent that supports Increment, 
Stop, and Fetch messages.

Listing 13-11. Hiding a Mailbox and Supporting a Fetch Method

open Microsoft.FSharp.Control.Mailboxes

/// The internal type of messages for the agent
type internal msg = Increment of int | Fetch of IChannel<int> | Stop

Syme_850-4C13.fm  Page 381  Saturday, October 6, 2007  9:47 AM



382 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

type CountingAgent() =
    let counter = MailboxProcessor.Start(fun inbox ->
             // The states of the message-processing state machine...
             let rec loop(n) =
                async { let! msg = inbox.Receive()
                        match msg with
                        | Increment m ->
                            // increment and continue...
                            return! loop(n+m)
                        | Stop ->
                            // exit
                            return ()
                        | Fetch  replyChannel  ->
                            // post response to reply channel and continue
                            do replyChannel.Post(n)
                            return! loop(n) }

             // The initial state of the message-processing state machine...
             loop(0))

    member a.Increment(n) = counter.Post(Increment(n))
    member a.Stop() = counter.Post(Stop)
    member a.Fetch() = counter.PostSync(fun replyChannel -> Fetch(replyChannel))

The inferred public types indicate how the presence of a concurrent agent is successfully 
hidden by the use of an object:

type CountingAgent =
     new : unit -> CountingAgent
     member Fetch : unit -> int
     member Increment : n:int -> unit
     member Stop : unit -> unit

Here you can see an instance of this object in action:

> let counter = new CountingAgent();;
val counter : CountingAgent

> counter.Increment(1);;
val it : unit = ()

> counter.Fetch();;
val it : int = 1

Syme_850-4C13.fm  Page 382  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 383

> counter.Increment(2);;
val it : unit = ()

> counter.Fetch();;
val it : int = 3

> counter.Stop();;
val it : unit = ()

Listing 13-11 shows several important aspects of message passing and processing using 
the mailbox-processing model:

• Internal messages protocols are often represented using discriminated unions. Here the 
type msg has cases Increment, Fetch, and Stop corresponding to the three methods accepted 
by the object that wraps the overall agent implementation.

• Pattern matching over discriminated unions gives a succinct way to process messages. A 
common pattern is a call to inbox.Receive() or inbox.TryReceive() followed by a match 
on the message contents.

• The PostSync on the MailboxProcessor type gives a way to post a message and wait for a 
reply. A temporary reply channel is created and should form part of the message. A reply 
channel is simply an object of type Microsoft.FSharp.Control.IChannel<'reply>, which 
in turn simply supports a Post method. This can be used by the MailboxProcessor to post 
a reply to the waiting caller. In Listing 13-11 the channel is sent to the underlying message-
processing agent counter as part of the Fetch message.

Table 13-6 summarizes the most important members available on the MailboxProcessor type.

Table 13-6. Some Members of the MailboxProcessor<'msg> Type

Member/Type Description

Post: 'msg -> unit Posts a message to a mailbox queue.

Receive: ?timeout:int -> Async<'msg> Returns the next message in the mailbox 
queue. If no messages are present, performs 
an asynchronous wait until the message 
arrives. If a timeout occurs, then raises a 
TimeoutException.

Scan: ('msg -> Async<'a> option) * ?timeout:int -> 
Async<'a>

Scans the mailbox for a message where the 
function returns a Some(_) value. Returns 
the chosen result. If no messages are 
present, performs an asynchronous wait 
until more messages arrive. If a timeout 
occurs, then raises a TimeoutException.

TryReceive : ?timeout:int -> Async<'msg option> Like Receive, but if a timeout occurs, then 
returns None.

TryScan : ('msg -> Async<'a> option) * ?timeout:int -> 
Async<'a option>

Like Scan, but if a timeout occurs, then 
returns None.

Syme_850-4C13.fm  Page 383  Saturday, October 6, 2007  9:47 AM



384 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

Scanning Mailboxes for Relevant Messages
It is common for a message-processing agent to end up in a state where it’s not interested in all 
messages that might appear in a mailbox but only a subset of them. For example, you may be 
awaiting a reply from another agent and aren’t interested in serving new requests. In this case, 
it is essential you use MailboxProcessor.Scan rather than MailboxProcessor.Receive. Table 13-6 
shows the signatures of both of these. The former lets you choose between available messages 
by processing them in order, while the latter forces you to process every message. Listing 13-12 
shows an example of using Mailbox.Scan.

Listing 13-12. Scanning a Mailbox for Relevant Messages

open Microsoft.FSharp.Control.Mailboxes

type msg =
    | Message1
    | Message2 of int
    | Message3 of string

let agent =
    MailboxProcessor.Start(fun inbox ->
        let rec loop() =
            inbox.Scan(function
                | Message1 ->
                   Some (async { do printfn "message 1!"
                                 return! loop() })
                | Message2 n ->
                   Some (async { do printfn "message 2!"
                                 return! loop() })
                | Message3 _ ->
                   None)
        loop())

We can now post these agent messages, including messages of the ignored kind Message3:

> agent.Post(Message1) ;;
message 1!
val it : unit = ()

> agent.Post(Message2(100));;
message 2!
val it : unit = ()

> agent.Post(Message3("abc"));;
val it : unit = ()

Syme_850-4C13.fm  Page 384  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 385

> agent.Post(Message2(100));;
message 2!
val it : unit = ()

> agent.UnsafeMessageQueueContents;;
val it : seq<msg> = seq [Message3("abc")]

When we sent Message3 to the message processor, the message was ignored. However, the 
last line shows that the unprocessed Message3 is still in the message queue, which we have 
examined by using the “backdoor” property UnsafeMessageQueueContents.

■Note  You can find further examples of asynchronous message processing with F# at http://
www.expert-fsharp.net/topics/MessageProcessing.

Example: Asynchronous Web Crawling
At the start of this chapter we mentioned that the rise of the Web and other forms of networks 
is a major reason for the increasing importance of concurrent and asynchronous programming. 
Listing 13-13 shows an implementation of a web crawler using asynchronous programming 
and mailbox-processing techniques.

Listing 13-13. A Scalable, Controlled Asynchronous Web Crawler

open System.Collections.Generic
open System.Net
open System.IO
open System.Threading
open System.Text.RegularExpressions
open Microsoft.FSharp.Control
open Microsoft.FSharp.Control.Mailboxes
open Microsoft.FSharp.Control.CommonExtensions

let limit = 50
let linkPat = "href=\s*\"[^\"h]*(http://[^&\"]*)\""
let getLinks (txt:string) =
    [ for m in Regex.Matches(txt,linkPat)  -> m.Groups.Item(1).Value ]

let (<--) (mp: #IChannel<_>) x = mp.Post(x)

// A type that helps limit the number of active web requests
type RequestGate(n:int) =
    let semaphore = new Semaphore(initialCount=n,maximumCount=n)
    member x.AcquireAsync(?timeout) =
        async { let! ok = semaphore.WaitOneAsync(?millisecondsTimeout=timeout)

Syme_850-4C13.fm  Page 385  Saturday, October 6, 2007  9:47 AM

http://www.expert-fsharp.net/topics/MessageProcessing
http://www.expert-fsharp.net/topics/MessageProcessing


386 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

                if ok then
                   return
                     { new System.IDisposable with
                         member x.Dispose() =
                             semaphore.Release() |> ignore }
                else
                   return! failwith "couldn't acquire a semaphore" }

// Gate the number of active web requests
let webRequestGate = RequestGate(5)

// Fetch the URL, and post the results to the urlCollector.
let collectLinks (url:string) =
    async { // An Async web request with a global gate
            let! html =
                async { // Acquire an entry in the webRequestGate. Release
                        // it when 'holder' goes out of scope
                        use! holder = webRequestGate.AcquireAsync()

                        let req = WebRequest.Create(url,Timeout=5)

                        // Wait for the WebResponse
                        use! response = req.GetResponseAsync()

                        // Get the response stream
                        use reader = new StreamReader(response.GetResponseStream())

                        // Read the response stream
                        return! reader.ReadToEndAsync()  }

            // Compute the links, synchronously
            let links = getLinks html

            // Report, synchronously
            do printfn "finished reading %s, got %d links" url (List.length links)

            // We're done
            return links }

/// 'urlCollector' is a single agent that receives URLs as messages. It creates new
/// asynchronous tasks that post messages back to this object.
let urlCollector =
    MailboxProcessor.Start(fun self ->

        // This is the main state of the urlCollector
        let rec waitForUrl (visited : Set<string>) =

Syme_850-4C13.fm  Page 386  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 387

           async { // Check the limit
                   if visited.Count < limit then

                       // Wait for a URL...
                       let! url = self.Receive()
                       if not (visited.Contains(url)) then
                           // Spawn off a new task for the new url. Each collects
                           // links and posts them back to the urlCollector.
                           do! Async.SpawnChild
                                   (async { let! links = collectLinks url
                                            for link in links do
                                            do self <-- link })

                       // Recurse into the waiting state
                       return! waitForUrl(visited.Add(url)) }

        // This is the initial state.
        waitForUrl(Set.empty))

We can initiate a web crawl from a particular URL as follows:

> urlCollector <-- "http://news.google.com";;
finished reading http://news.google.com, got 191 links
finished reading http://news.google.com/?output=rss, got 0 links
finished reading http://www.ktvu.com/politics/13732578/detail.html, got 14 links
finished reading http://www.washingtonpost.com/wp-dyn/content/art..., got 218 links
finished reading http://www.newsobserver.com/politics/story/646..., got 56 links
finished reading http://www.foxnews.com/story/0,2933,290307,0...l, got 22 links
...

The key techniques shown in Listing 13-13 are as follows:

• The type RequestGate encapsulates the logic needed to ensure that we place a global 
limit on the number of active web requests occurring at any one point in time. This is 
instantiated to the particular instance webRequestGate with limit 5. This uses a System.
Threading.Semaphore object to coordinate access to this “shared resource.” Semaphores 
are discussed in more detail in the section “Using Shared-Memory Concurrency.”

• The RequestGate type ensures that web requests sitting in the request queue do not block 
threads but rather wait asynchronously as callback items in the thread pool until a slot 
in the webRequestGate becomes available.

• The collectLinks function is a regular asynchronous computation. It first enters the 
RequestGate (that is, acquires one of the available entries in the Semaphore). Once a response 
has been received, it reads off the HTML from the resulting reader, scrapes the HTML for 
links using regular expressions, and returns the generated set of links.

Syme_850-4C13.fm  Page 387  Saturday, October 6, 2007  9:47 AM

http://news.google.com
http://news.google.com
http://news.google.com/?output=rss
http://www.ktvu.com/politics/13732578/detail.html
http://www.washingtonpost.com/wp-dyn/content/art
http://www.newsobserver.com/politics/story/646
http://www.foxnews.com/story/0,2933,290307,0...l


388 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

• The urlCollector is the only message-processing program. It is written using a 
MailboxProcessor. In its main state it waits for a fresh URL and spawns a new asynchro-
nous computation to call collectLinks once one is received. For each collected link a 
new message is sent back to the urlCollector’s mailbox. Finally, we recurse to the waiting 
state, having added the fresh URL to the overall set of URLs we have traversed so far.

• The operator <-- is used as shorthand for posting a message to an agent. This is a recom-
mended abbreviation in F# asynchronous programming.

• The AcquireAsync method of the RequestGate type uses a design pattern called a holder. 
The object returned by this method is an IDisposable object that represents the acquisi-
tion of a resource. This “holder” object is bound using use, and this ensures the resource 
is released when the computation completes or when the computation ends with an 
exception.

Listing 13-13 shows that it is relatively easy to create sophisticated, scalable asynchronous 
programs using a mix of message passing and asynchronous I/O techniques. Modern web 
crawlers have thousands of outstanding open connections, indicating the importance of using 
asynchronous techniques in modern scalable web-based programming.

Using Shared-Memory Concurrency
The final topics we cover in this chapter are the various “primitive” mechanisms used for 
threads, shared-memory concurrency, and signaling. In many ways, these are the “assembly 
language” of concurrency.

In this chapter we’ve concentrated mostly on techniques that work well with immutable 
data structures. That is not to say you should always use immutable data structures. It is, for 
example, perfectly valid to use mutable data structures as long as they are accessed from only 
one particular thread. Furthermore, private mutable data structures can often be safely passed 
through an asynchronous workflow, because at each point the mutable data structure will be 
accessed by only one thread, even if different parts of the asynchronous workflow are executed by 
different threads. This does not apply to workflows that use operators such as Async.Parallel or 
Async.SpawnChild that start additional threads of computation.

This means that we’ve largely avoided covering shared-memory primitives so far, because 
F# provides powerful declarative constructs such as asynchronous workflows and message 
passing that often subsume the need to resort to shared-memory concurrency. However, a 
working knowledge of thread primitives and shared-memory concurrency is still very useful, 
especially if you want to implement your own basic constructs or highly efficient concurrent 
algorithms on shared-memory hardware.

Creating Threads Explicitly
In this chapter we’ve avoided showing how to work with threads directly, instead relying on 
abstractions such as BackgroundWorker and the .NET thread pool. If you do want to create 
threads directly, here is a short sample:

Syme_850-4C13.fm  Page 388  Saturday, October 6, 2007  9:47 AM



CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 389

open System.Threading
let t = new Thread(ThreadStart(fun _ ->
                printfn "Thread %d: Hello" Thread.CurrentThread.ManagedThreadId));
t.Start();
printfn "Thread %d: Waiting!" Thread.CurrentThread.ManagedThreadId
t.Join();
printfn "Done!"

When run, this gives the following:

val t : Thread

Thread 1: Waiting!
Thread 10: Hello
Done!

■Caution  Always avoid using Thread.Suspend, Thread.Resume, and Thread.Abort. These are a 
guaranteed way to put obscure concurrency bugs in your program! The MSDN website has a good description 
of why Thread.Abort may not even succeed. One of the only compelling uses for Thread.Abort is to 
implement Ctrl+C in an interactive development environment for a general-purpose language such as F# 
Interactive.

Shared Memory, Race Conditions, and the .NET Memory Model
Many multithreaded applications use mutable data structures shared between multiple threads. 
Without synchronization, these data structures will almost certainly become corrupt, because 
threads may read data that has been only partially updated (because not all mutations are 
atomic), or two threads may write to the same data simultaneously (a race condition). Mutable 
data structures are usually protected by locks, though lock-free mutable data structures are 
also possible.

Shared-memory concurrency is a difficult and complicated topic, and a considerable 
amount of good material on .NET shared-memory concurrency is available on the Web. All this 
material applies to F# when programming with mutable data structures such as reference cells, 
arrays, and hash tables when the data structures can be accessed from multiple threads simul-
taneously. F# mutable data structures map to .NET memory in fairly predictable ways; for example, 
mutable references become mutable fields in a .NET class, and mutable fields of word size can 
be assigned atomically.

On modern microprocessors multiple threads can see views of memory that are not consis-
tent; that is, not all writes are propagated to all threads immediately. The guarantees given are 
called a memory model and are usually expressed in terms of the ordering dependencies between 
instructions that read/write memory locations. This is, of course, deeply troubling, because 
you have to think about a huge number of possible reorderings of your code, and it is one of 

Syme_850-4C13.fm  Page 389  Saturday, October 6, 2007  9:47 AM



390 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

the main reasons why shared mutable data structures are difficult to work with. You can find 
further details on the .NET memory model at http://www.expert-fsharp.net/topics/MemoryModel.

Using Locks to Avoid Race Conditions
Locks are the simplest way to enforce mutual exclusion between two threads attempting to 
read or write the same mutable memory location. Listing 13-14 shows an example of code with 
a race condition.

Listing 13-14. Shared-Memory Code with a Race Condition

type MutablePair<'a,'b>(x:'a,y:'b) =
    let mutable currentX = x
    let mutable currentY = y
    member p.Value = (currentX,currentY)
    member p.Update(x,y) =
        // Race condition: This pair of updates is not atomic
        currentX <- x;
        currentY <- y

let p = new MutablePair<_,_>(1,2)
do Async.Spawn (async { do (while true do p.Update(10,10)) })
do Async.Spawn (async { do (while true do p.Update(20,20)) })

Here is the definition of the F# lock function:

open System.Threading
let lock (lockobj :> obj) f  =
    Monitor.Enter(lockobj);
    try
        f()
    finally
        Monitor.Exit(lockobj)

The pair of mutations in the Update method is not atomic; that is, one thread may have 
written to currentX, another then writes to both currentX and currentY, and the final thread 
then writes to currentY, leaving the pair holding the value (10,20) or (20,10). Mutable data 
structures are inherently prone to this kind of problem if shared between multiple threads. 
Luckily, of course, F# code tends to have fewer mutations than imperative languages, because 
functions normally take immutable values and return a calculated value. However, when you 
do use mutable data structures, they should not be shared between threads, or you should 
design them carefully and document their properties with respect to multithreaded access.

Here is one way to use the F# lock function to ensure that updates to the data structure are 
atomic. Locks would also be required on uses of the property p.Value.

do Async.Spawn (async { do (while true do lock p (fun () -> p.Update(10,10))) })
do Async.Spawn (async { do (while true do lock p (fun () -> p.Update(20,20))) })

Syme_850-4C13.fm  Page 390  Saturday, October 6, 2007  9:47 AM

http://www.expert-fsharp.net/topics/MemoryModel


CH AP T E R  1 3  ■  R E A CT IV E ,  A SY N CH R ON OU S ,  A N D  CO N C U R R E N T  P R O G R AM M IN G 391

■Caution  If you use locks inside data structures, then do so only in a simple way that uses them to enforce 
just the concurrency properties you have documented. Don’t lock “just for the sake of it,” and don’t hold locks 
longer than necessary. In particular, beware of making indirect calls to externally supplied function values, 
interfaces, or abstract members while a lock is held. The code providing the implementation may not be 
expecting to be called when a lock is held and may attempt to acquire further locks in an inconsistent fashion.

Using ReaderWriterLock
It is common that mutable data structures get read more than they are written. Indeed, muta-
tion is often used only to initialize a mutable data structure. In this case, you can use a .NET 
ReaderWriterLock to protect access to a resource. The following two functions are provided in 
the F# library module Microsoft.FSharp.Control.SharedMemory.Helpers:

open System.Threading

let readLock (rwlock : ReaderWriterLock) f  =
  rwlock.AcquireReaderLock(Timeout.Infinite)
  try
      f()
  finally
      rwlock.ReleaseReaderLock()

let writeLock (rwlock : ReaderWriterLock) f  =
  rwlock.AcquireWriterLock(Timeout.Infinite)
  try
      f();
      Thread.MemoryBarrier()
  finally
      rwlock.ReleaseWriterLock()

Listing 13-15 shows how to use these functions to protect the MutablePair class.

Listing 13-15. Shared-Memory Code with a Race Condition

type MutablePair<'a,'b>(x:'a,y:'b) =
    let mutable currentX = x
    let mutable currentY = y
    let rwlock = new ReaderWriterLock()
    member p.Value =
        readLock rwlock (fun () ->
            (currentX,currentY))
    member p.Update(x,y) =
        writeLock rwlock (fun () ->
            currentX <- x;
            currentY <- y)

Syme_850-4C13.fm  Page 391  Saturday, October 6, 2007  9:47 AM



392 CH A PT E R  1 3  ■  R E ACT I V E ,  A SY N CH R O N O U S ,  A N D  C ON C U R R E N T  P R O G R A M M I N G

Some Other Concurrency Primitives
Table 13-7 shows some of the other shared-memory concurrency primitives available in the 
.NET Framework.

Summary
In this chapter, we covered concurrent, reactive, and asynchronous programming, which is a 
set of topics of growing importance in modern programming because of the widespread adop-
tion of multicore microprocessors, network-aware applications, and asynchronous I/O channels. 
We’ve covered in depth background processing and a powerful F# construct called asynchro-
nous workflows. Finally, we covered applications of asynchronous workflows to message-
processing agents and web crawling, and we covered some of the shared-memory primitives 
for concurrent programming on the .NET platform. In the next chapter, we’ll look at web 
programming, from serving web pages to delivering applications via web browsers.

Table 13-7. .NET Shared-Memory Concurrency Primitives

Type Description

System.Threading.WaitHandle A synchronization object for signaling the control 
of threads.

System.Threading.AutoResetEvent A two-state (on/off) WaitHandle that resets itself to 
“off” automatically after the signal is read. Similar to 
a two-state traffic light.

System.Threading.ManualResetEvent A two-state (on/off) WaitHandle that requires a call 
to ManualResetEvent.Reset() to set it “off.”

System.Threading.Mutex A lock-like object that can be shared between oper-
ating system processes.

System.Threading.Semaphore Used to limit the number of threads simultaneously 
accessing a resource. However, use a mutex or lock 
if at most one thread can access a resource at a time.

System.Threading.Interlocked Atomic operations on memory locations. Especially 
useful for atomic operations on F# reference cells.

Syme_850-4C13.fm  Page 392  Saturday, October 6, 2007  9:47 AM



393

■ ■ ■

C H A P T E R  1 4

Building Web Applications

Delivering content and applications via web browsers is one of the most important aspects of 
modern software development. In this chapter, we examine how you can build web applications 
using F#. The topics we cover are as follows:

• Serving static files and dynamic content by directly responding to HTTP requests

• Using the ASP.NET framework to develop page-based, server-side web applications that 
use input controls and read data from a database using F# Linq

• A walk-through of the ASP.NET essentials: web forms and site organization, a discussion 
of the various types of server controls (web and HTML), user control creation, and web 
application configuration and debugging

• The fundamentals of the ASP.NET event model: page and control events, page life cycle, 
posting information from a page (postback and cross-page posting), and maintaining state

• A look at techniques to build client-side web applications, including the use of the F# 
Web Tools open source project

• Consuming web services to deliver programmatic services via web connections

Serving Static Web Content
When you point your browser at a web page or call a web service from your application, you are 
effectively issuing one or more requests (commands) to a web (HTTP) server. HTTP commands 
are simple text-based instructions that are automatically generated by your web browser. For 
instance, when your browser goes to a particular URL, it does the following:

1. Requests the page from the web server and waits for the response

2. Analyzes it for further content to be fetched (images, for example) and issues the appro-
priate requests if necessary

3. Displays the results and executes any dynamic scripts and content contained in the page

Syme_850-4C14.fm  Page 393  Wednesday, October 17, 2007  12:50 PM



394 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

Responses can be a verbatim copy of a resource found on the web server (most often a 
static file such as an image, a style sheet, or a media file) or can be generated on the fly. In this 
section, we show how you can use F# to serve content directly.

Listing 14-1 shows a simple web server written directly in F#.

Listing 14-1. A Simple Web Server

#light

open System.Net
open System.Net.Sockets
open System.IO
open System.Text.RegularExpressions
open Microsoft.FSharp.Text.Printf
open System.Text

/// A table of MIME content types
let mimeTypes =
    dict [".html", "text/html";
          ".htm",  "text/html";
          ".txt",  "text/plain";
          ".gif",  "image/gif";
          ".jpg",  "image/jpeg";
          ".png",  "image/png"]

/// Compute a MIME type from a file extension
let getMimeType(ext) =
    if mimeTypes.ContainsKey(ext) then mimeTypes.[ext]
    else "binary/octet"

/// The pattern Regex1 uses a regular expression to match
/// one element
let (|Regex1|_|) (patt: string) (inp: string) =
    try Some(Regex.Match(inp, patt).Groups.Item(1).Captures.Item(0).Value)
    with _ -> None

/// The root for the data we serve
let root = @"c:\inetpub\wwwroot"

/// Handle a TCP connection for an HTTP GET
let handleClient(client: TcpClient) =
    use stream = client.GetStream()
    let out = new StreamWriter(stream)
    let inp = new StreamReader(stream)
    match inp.ReadLine() with

Syme_850-4C14.fm  Page 394  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 395

    | Regex1 "GET (.*?) HTTP/1\\.[01]$" fileName ->
        let fname = root + @"\" + fileName.Replace("/", @"\")
        let mimeType = getMimeType(Path.GetExtension(fname))
        let content = File.ReadAllBytes(fname)
        twprintfn out "HTTP/1.0 200 OK"
        twprintfn out "Content-Length: %d" content.Length
        twprintfn out "Content-Type: %s" mimeType
        twprintfn out ""
        out.Flush()
        stream.Write(content, 0, content.Length)
    | line ->
        ()

/// The server as an asynchronous process. We handle requests
/// sequentially.
let server =
    async { let socket = new TcpListener(IPAddress.Parse("127.0.0.1"), 8090)
            do socket.Start()
            while true do
                use client = socket.AcceptTcpClient()
                do try handleClient(client) with _ -> ()
          }

You can use this code as follows, where http is the function defined in Chapter 2 for 
requesting web pages and where we assume the directory c:\inetpub\wwwroot contains the 
file iisstart.htm:

> Async.Spawn server;;
val it : unit = ()

> http "http://127.0.0.1:8090/iisstart.htm";;
val it : string = "..."   // the text of the iisstart.htm file will be shown here

This HTTP request (or you can also open the previous URL in a browser) ultimately sends 
the following text down the TCP socket connection:

GET iisstart.htm HTTP/1.1

When started, the server in Listing 14-1 attaches itself to a given port (8090) on the local 
machine (which has IP 127.0.0.1) and listens for incoming requests. These requests are line-based, 
so when one comes in, we read the full input line and attempt to parse a valid GET request 
using regular expression matching. Other commands and error recovery are not dealt with.

The server’s actions in response are simple: it locates the requested file relative to a “root” 
web directory, determines the MIME type from a fixed table, and sends the necessary response 
header and the content of the file through the client TCP connection. When all this is done, the 
connection is disposed, and the session ends. The main “loop” of the server task is a busy waiting 
loop—we simply wait for requests indefinitely and handle them one by one.

Syme_850-4C14.fm  Page 395  Wednesday, October 17, 2007  12:50 PM

http://127.0.0.1:8090/iisstart.htm


396 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

Listing 14-1 uses two techniques not directly related to web programming:

• Regex1 as a very simple and common active pattern for regular expression pattern 
matching. You learned about active patterns in Chapter 9. Our example is particularly 
interesting because it also shows how to use a parameterized active pattern.

• The value server as an asynchronous task. You learned about asynchronous tasks in 
Chapter 13. Many web servers handle multiple requests simultaneously, and high-
performance web servers use asynchronous techniques extensively. In our example, the 
server task serves requests sequentially using a single thread, but we could just as well 
have started a dedicated thread for the server using more explicit threading techniques 
from System.Threading.

Serving Dynamic Web Content with ASP.NET
In practice, it is rare to develop and implement a web server manually as we did in the previous 
section. Instead, most web development adds an extension to an existing web server via a web 
development framework such as ASP.NET, PHP, or JavaServer Pages (JSP). In this section, we 
cover how F# can be used to write server-side applications using ASP.NET.

ASP.NET is a fully compiled dynamic server technology that allows developers to write 
web applications as a set of dynamic pages and to describe how the pages should interact via a 
rich object model and an abundance of server-side controls. The resulting web applications 
are easy to deploy—they are independent of the hosting environment and the system registry—
and can be configured through an integrated web application configuration tool or via XML-
based configuration files. ASP.NET was originally designed by Microsoft and is often used with 
Microsoft’s Internet Information Services (IIS) web server but can also be used with Apache 
and others via the Mono implementation of ASP.NET and the CLI.

■Note  Modern web development frameworks allow you to put together sophisticated websites with many 
useful features with almost no coding at all. Code is often used as “glue” between the incoming requests and 
back-end databases. For this reason, web programmers often need a variety of design, security, database, 
and system skills in addition to mastery of one or more programming languages. Some resources for these 
additional topics are discussed at http://www.expert-fsharp.com/Topics/WebDevelopment.

ABOUT DYNAMIC PAGE-BASED WEB DEVELOPMENT FRAMEWORKS

You may already be familiar with various web scripting languages and technologies that allow you to embed 
bits of code (usually in certain meta-tags or inside special markers) in your pages. When a request is made to 
such pages (which typically have a different file extension, such as .asp, .aspx, .php, .jsp, and so on), the 
web server invokes a preprocessor that consumes the page script and outputs the resulting HTML after “eval-
uating” each dynamic block. Depending on your web server architecture, such processors can be plugged in 
on demand (as with Apache’s modules) or tied directly to the server technology (as with the Java-based web 
server Tomcat or as with ASP.NET).

Syme_850-4C14.fm  Page 396  Wednesday, October 17, 2007  12:50 PM

http://www.expert-fsharp.com/Topics/WebDevelopment


C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 397

Roughly speaking, there are two main types of dynamic content generation. In the first, the “scripting” 
type, requests for the same scripted resource produce the same actions: the source page is pumped through 
the preprocessor every time, and each dynamic construct is distilled to HTML. Typically, this type of content 
generation is limited to using special tags and local code expressions that may refer only to a set of built-in 
features and occasionally a set of global “state” variables such as the server response. The problem with this 
approach is inherent: the dynamic functionality is often too limited, although it is simple to use. Most impor-
tant, no caching or compilation is done, and as such it is much slower than the compiled alternatives. Further-
more, as dynamic functionality is added to a page, it becomes progressively more complex and more difficult 
to maintain, often leading to “spaghetti” code. Tying the dynamic content to the presentation layer in this way 
is well recognized as a significant drawback.

The second approach is the one taken by ASP.NET and JSP. Here a page scripting model is combined 
with an underlying compiled language (Java for JSP, and any .NET language for ASP.NET) and the speed of serving 
static content. In this model, pages are composed of objects with complex life cycles and are generated/maintained 
by compiled programs, so a scripted page is translated to a program that generates the final HTML page and 
as a result can contain arbitrary logic expressed in the source language. These programs are produced on the 
fly and maintained by the web container. A change to a web page results in updating the server-side resource 
responsible for creating that web page. This compilation causes a one-time penalty, but subsequent requests 
will be served without any processing by simply sending the result of the new “page-behind” code.

Understanding the Languages Used in ASP.NET
Web development frameworks such as ASP.NET can be a little bewildering at first. One reason 
for this is the number of languages involved in even simple websites. For example, developing 
a minimal website using ASP.NET involves using at least five different languages to represent 
the necessary information:

• ASP.NET page markup (ASPX), used for the declarative construction and configuration 
of server controls that form the page

• HTML, used for the basic presentation content embedded in the ASP.NET markup

• Cascading Style Sheets (CSS), used for declarative control over visual characteristics of 
the presentation content

• XML, used for the configuration files of the website

• F# and/or another .NET language, used for expressing the website logic

In contrast, the programs you’ve seen so far in this book have used only one language (F#) 
with only one kind of file (source code files with the suffix .fs). Furthermore, a fully fledged website 
can involve further additional languages and schemas:

• SQL, for the queries and commands used for database access and management

• JavaScript, for dynamic client-side behavior, a topic we discuss later in this chapter

• Further XML schemas, for files specifying additional website data or security and config-
uration information

• Database connection strings, for configuring access to underlying databases

Syme_850-4C14.fm  Page 397  Wednesday, October 17, 2007  12:50 PM



398 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

This has the effect of making simple website projects seem quite complex. To help you 
through this, Table 14-1 shows the most common file types used when writing web applications 
using F# and ASP.NET. Table 14-2 shows some additional file types that are useful to be aware of.  

Table 14-1. The Most Common File Types for F# and ASP.NET

Extension Type Language Characteristics

.aspx Web form 
(web page)

ASPX The presentation layer, often authored 
using visual editing tools. These files 
include ASP.NET control declarations 
and embedded HTML tags. They may also 
include fragments of other languages such 
as CSS and scripts written in F#.

.ascx User control ASPX Similar to the .aspx file but is used for writing 
elementary building blocks that can be 
reused on multiple pages in the application.

.fs Server-side code F# The programmatic portion of the website 
logic. Typically makes extensive use of the 
System.Data and System.Web namespaces.

.dll Precompiled 
server-side code

Binary Compiled DLLs referenced by your 
server-side code.

web.config Configuration XML Configuration files that may be located 
in every application directory and are 
used to specify aspects such as security 
or compilation options.

Table 14-2. Additional File Types Used with ASP.NET

Extension Type Language Characteristics

.resx Resource XML Resources such as bitmaps and error 
strings, often used for localizing websites 
to multiple languages. Resources were 
described in passing in Chapter 7. These 
files use the .NET resource schema.

.sql Database scripts and 
stored procedures

T-SQL Many websites use relational databases 
heavily. Operations on these databases 
are typically described using scripts 
written in database scripting languages 
such as T-SQL.

.css Style CSS Cascading Style Sheets, a W3C standard 
for declarative configuration of the HTML 
presentation layer. CSS fragments can also 
appear in HTML and ASPX documents.

.master Master page ASPX Similar to the .aspx file but used as a 
template for other pages in the website. 
When used with a page, the content page 
must fill the placeholders declared in the 
master page.

Syme_850-4C14.fm  Page 398  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 399

■Caution  Although this book is primarily about programming in F#, be aware that typically only a small 
portion of a website’s content is ultimately represented in F# itself. Indeed, one valid model for using F# on 
the server side is to simply use it to author custom controls and static DLLs that are referenced by server-side 
components authored using more standard web programming languages such as C# or Visual Basic. This is 
easy to do since C# and Visual Basic code can access compiled F# code directly, as discussed in Chapter 19. 
You can find out more about this option at http://www.expert-fsharp.com/Topics/WebDevelopment.

UNDERSTANDING THE STRUCTURE OF AN ASP.NET WEBSITE

ASP.NET files of the types shown in Tables 14-1 and 14-2 are located in the web application’s web root directory 
and the various subfolders within. The standard ASP.NET folders are as follows:

• App_Code: Utility, application, and data access layer code—basically, all source files that are not code-
behind files

• App_Data: Database and XML files

• App_GlobalResources: Global resource files, such as those related to localization

• App_LocalResources: Resource files associated with specific controls or pages

• App_WebReferences: Web reference discovery files and service descriptions (wsdl)

• Bin: Third-party binaries, libraries—these are automatically referenced in the web application

A Simple ASP.NET Web Application
The simplest websites use only HTML static content. We do not consider these in this book, 
though we assume you are familiar with authoring HTML. Beyond this, the building blocks of 
the dynamic content on ASP.NET websites are .aspx web forms (web pages). These are essentially 
HTML files that contain ASPX markup for server-side controls, although they are not processed 
as embedded scripts; instead, the page should be viewed as an object type that produces the 

.sitemap Site map XML Defines the structure of the website and 
can be used with ASP.NET navigation 
controls to generate content like a menu 
bar, a breadcrumb, or a site map.

.mdf Database file Binary Many websites use databases accessed 
via SQL Server Express 2005. The .mdf 
format is a detached, file-based database 
used by SQL Server Express.

Table 14-2. Additional File Types Used with ASP.NET

Extension Type Language Characteristics

Syme_850-4C14.fm  Page 399  Wednesday, October 17, 2007  12:50 PM

http://www.expert-fsharp.com/Topics/WebDevelopment


400 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

final HTML based on the declarative markup and the behavior expressed as code inside stan-
dard HTML <script> blocks or in code-behind files. Listing 14-2 shows a simple web form that 
uses the server to compute the current time and allows the user to refresh the page. Listing 14-3 
(later in this chapter) shows an ASP.NET web.config website configuration file suitable for use 
with all the examples in this chapter.

Listing 14-2. Time.aspx: A Simple ASP.NET Web Form with an Embedded F# Server-Side Script

<%@ Page Language="F#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script language="F#" runat="server">
     /// F# scripts embedded in ASPX pages must be a set of 'member' declarations.
     /// ASP.NET inserts these into the code generated for the page object type.

     /// This member is invoked on the server when the page is loaded. It tests
     /// whether the page was loaded for the first time and updates the content of
     /// this.Time control.
     member this.Form1_Load(sender: obj, e: EventArgs) =
         if not this.Page.IsPostBack then
             this.Time.Text <- DateTime.Now.ToString()

     /// This member is invoked on the server when the Reload button is clicked.
     member this.Reload_Click(sender: obj, e: EventArgs) =
         this.Time.Text <- "(R) " + DateTime.Now.ToString()
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
   <title>Current time</title>
   <style type="text/css">
      body { font-family:calibri,verdana,sans-serif; }
   </style>
</head>
<body>
   <form id="Form1" runat="server" OnLoad="Form1_Load">
      The current time is:
      <asp:Label  runat="server" id="Time" />
      <asp:Button runat="server" id="Reload" text="Reload" OnClick="Reload_Click" />
   </form>
</body>
</html>

Syme_850-4C14.fm  Page 400  Wednesday, October 17, 2007  12:50 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml


C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 401

■Note  You will need to make sure that the F# compiler is referenced in web.config, as shown in 
Listing 14-3. You should check that the version number (we used 1.9.2.9 in the listing) matches the one 
reported by F# Interactive and that the other information matches what is used in the ASP.NET samples in 
your F# distribution.

Let’s take a closer look at Listing 14-2. ASP.NET files can initially look like a sea of strange 
symbols. Table 14-3 shows the meanings of some of the symbolic forms you’ll see in ASP.NET files.

Beyond the HTML and ASP.NET controls, the key code in Listing 14-2 is the embedded F# 
script beginning with <script language="F#" runat="server">. F# scripts embedded in .aspx 
pages must be a set of “member” declarations, in other words, fragments of an F# type defini-
tion. ASP.NET inserts these into the code generated for the page object.

The embedded F# script contains two members. The first is as follows:

    member this.Form1_Load(sender: obj, e: EventArgs) =
       if not this.Page.IsPostBack then
           this.Time.Text <- DateTime.Now.ToString()

This member is associated with the Form1 control and is invoked on the server when the 
page is loaded, in other words, as part of the process of generating the final HTML for the page. 
We can see this because the event callback for the control mentions this event handler:

Table 14-3. The Primary Symbolic and HTML Directives in ASP.NET .aspx Files

Example Directive What It Means

<%@ ... %> ASP.NET directives. See Table 14-4 for a list of 
commonly used ASP.NET directives.

<!-- ... --> HTML comment.

<!DOCTYPE ... > HTML meta-information. Usually generated when 
the file is first created and can be ignored.

<script language="F#" 
runat="server">...</script>

Inserts F# or other scripting code as part of the 
generated code for the page. The F# code should 
be a portion of an object type definition.

<form id="Form1" runat="server"> Indicates that the given HTML element is treated as 
an ASP.NET control and generated dynamically on 
the server as part of the page object (with the ID as 
its name).

<%= ... %> Inserts F# or other scripting code into a rendering 
of the page as an expression. For example, 
<%= let a = 40+2 in a.ToString() %>.

<%# ... %> Data-binding expression: inserts F# code as the current 
item of an ASP.NET data control. A convenient short-
cut for referring to a given data field is via the Eval 
method. For example, <%# this.Eval("Rgb") %>.

Syme_850-4C14.fm  Page 401  Wednesday, October 17, 2007  12:50 PM



402 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

   <form id="Form1" runat="server" onload="Form1_Load">

The implementation of Form1_Load uses the IsPostBack property of the page object to detect 
whether the page is loaded for the first time or whether it is loaded in reaction to some event 
invoked by a control. The reaction to an event that involves executing server-side code is called 
a postback, and it is triggered by sending data from the client back to the current page. When 
the page is loaded for the first time, this event handler sets the content of this.Time. This is the 
label element of the page being presented to the user (note the close correspondence between 
ASP.NET elements and HTML elements).

The second part of the script is the following member:

    member this.Reload_Click(sender: obj, e: EventArgs) =
       this.Time.Text <- "(R) " + DateTime.Now.ToString()

This member is associated with the Reload button control and is invoked when the button 
is clicked. Because the event handler associated with the button has to be executed on the server, 
the page will be reloaded, and the event will be triggered. Note that the entire page is reloaded, 
so the Form1_Load handler will be called as well, but for this and subsequent reloads, the IsPostBack 
property is set to true and the label will not be updated by that event handler.

■Note  When ASP.NET serves the page, it generates F# code using the F# CodeDom dynamic code generator. 
The text of embedded script fragments are added verbatim to the generated code, indented to an appropriate 
position. The generated code may appear in error messages including syntax errors, so you may occasionally 
need to look at the details of the generated ASP.NET code.

Deploying and Running the Application
Figure 14-1 shows the simple web application from Listing 14-2 accessed via a web browser on 
the local machine. You can deploy and run simple web application like this in three ways.

• You can simply create an ASP.NET project inside Visual Studio, add the Time.aspx file to 
the project, and adjust the web.config file in the project to contain the given compiler 
entry. Visual Studio comes with its own built-in web server so that when you run the web 
application using F5 from inside Visual Studio, a browser is automatically opened with a 
reference to this web server.

• You can also deploy the application to your local web server. For example, simply copy 
Time.aspx and web.config to an application directory in an ASP.NET-enabled web server. 
When using IIS, you can copy them to a directory c:\inetpub\wwwroot\Time and reference 
the website via http://localhost/Time/Time.aspx. Ensure your web server is ASP.NET-
enabled as described later in the sidebar “Serving ASP.NET Pages Locally.”

• Finally, you can deploy the files to a live web server. Again, copy Time.aspx and 
web.config to an application directory in an ASP.NET-enabled web server. Ensure the F# 
compiler has been installed on the web server, or deploy the F# compiler as part of the 
bin directory of your web application.

Syme_850-4C14.fm  Page 402  Wednesday, October 17, 2007  12:50 PM

http://localhost/Time/Time.aspx


C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 403

Figure 14-1 shows the results of launching the application via the second technique.

Figure 14-1. The simple web application from Listing 14-1

SERVING ASP.NET PAGES LOCALLY

You need to enable a number of configuration settings in order to ensure you can use your local machine as 
an experimental development web server.

When using Visual Studio, by far the easiest way to get going with developing web applications is to use 
the local web server built into Visual Studio itself, which is invoked when you “run” ASP.NET projects using F5. 
This starts the built-in web server using a random port and opens the default page by constructing a URL such 
as http://localhost:59120/Time/time.aspx.

Another option is using Microsoft’s IIS web server; here you can deploy web applications under separate 
folders in the main web root folder, for instance, c:\inetpub\wwwroot\Time, and these can then be 
accessed via URLs such as http://localhost/Time/time.aspx. Here are some tips for doing this:

• Ensure that ASP.NET support is enabled in IIS. On Windows Vista this is done using Control Panel ➤ 
Programs ➤ Programs and Features ➤ Turn Windows features on or off. Ensure the checkbox at Internet 
Information Services ➤ World Wide Web Services ➤ Application Development Features ➤ ASP.NET 
is checked.

• Ensure that the default web root folder c:\inetpub\wwwroot exists and that you have copied your 
.aspx and web.config files to that directory.

• Ensure the web.config file contains an entry for the F# compiler. If not, ASP.NET will not be able to 
invoke the compiler dynamically. This is automatically done if you have used the F# Website project type.

• Check that you can access other local URLs such as http://localhost/iisstart.htm, the default 
starting page for IIS. If not, check the settings for IIS under Control Panel ➤ Administrative Tools ➤ 
Internet Information Services (IIS) Manager.

• Add a debug entry to your web.config file as shown in Listing 14-3 to ensure that verbose debugging 
information is generated for your F# code. Otherwise, errors reported by ASP.NET will be difficult to diagnose.

Syme_850-4C14.fm  Page 403  Wednesday, October 17, 2007  12:50 PM

http://localhost:59120/Time/time.aspx
http://localhost/Time/time.aspx
http://localhost/iisstart.htm


404 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

A number of application settings are relevant to web applications, but most of these are beyond the scope 
of this book. The easiest way to get some guidance is by looking at the web.config.comments file. For 
Microsoft .NET, you can find this file in your Windows directory and the Microsoft.Net\Framework\
{your .NET version}\CONFIG folder within. This same directory also contains another configuration file 
called machine.config, which has settings that apply to all web applications on the host machine. Many of 
the common, default settings are stored in this file.

Listing 14-3. web.config: An ASP.NET Website Configuration File for Listing 14-2

<?xml version="1.0"?>
<configuration>
  <system.web>
    <compilation debug="true" />
  </system.web>

  <system.codedom>
    <compilers>
      <compiler language="F#;f#;fs;fsharp"
                extension=".fs"
                type="Microsoft.FSharp.Compiler.CodeDom.FSharpAspNetCodeProvider,
                      FSharp.Compiler.CodeDom,
                      Version=1.9.2.9,
                      Culture=neutral,
                      PublicKeyToken=a19089b1c74d0809"/>
    </compilers>
  </system.codedom>
</configuration>

Using Code-Behind Files
Embedded scripts in web applications tend to create spaghetti code that confuses details of the 
presentation layer with the underlying logic of the application. However, embedding scripts is 
a useful way of trying new features.

The normal practice for ASP.NET website development is for each Page.aspx file to have 
backing code in a particular language, such as Page.aspx.fs for F# code. Listing 14-4 shows the 
code from Listing 14-2 but without the embedded script and with ASP.NET directives at the top 
of the file indicating that a code-behind file is being used.

Listing 14-4. Time2.aspx: A Simple ASP.NET Web Form with F# Code-Behind

<%@ Page Language="F#"
         AutoEventWireup="true"
         CodeFile="Time2.aspx.fs"
         Inherits="FSharpWeb.Time2" %>

Syme_850-4C14.fm  Page 404  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 405

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
    <title>Current time</title>
    <style type="text/css">
        body { font-family:calibri,verdana,sans-serif; }
    </style>
</head>
<body>
    <form runat="server">
      The current time is:
      <asp:Label  runat="server" id="Time" />
      <asp:Button runat="server" id="Reload" text="Reload" OnClick="Reload_Click" />
    </form>
</body>
</html>

In turn, Listing 14-5 shows the accompanying F# code placed in a code-behind file. To 
place F# code in the code-behind file, we have done the following:

• Placed the code in a namespace.

• Defined a page type with the same base name as the .aspx page. The code generated 
from the .aspx file will use implementation inheritance to merge with the type defined 
here (see Chapter 6 for a description of implementation inheritance). This is standard 
practice for ASP.NET and matches the Inherits directive in Listing 14-4.

• Placed the implementation of the callback members into the page.

Listing 14-5. Time2.aspx.fs: The F# Code-Behind for Time2.aspx

#light
namespace FSharpWeb

open System
open System.Web
open System.Web.UI
open System.Web.UI.WebControls

type Time2() =
    inherit Page()

    [<DefaultValue>]
    val mutable Time : Label
    [<DefaultValue>]
    val mutable Reload : Button

Syme_850-4C14.fm  Page 405  Wednesday, October 17, 2007  12:50 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml


406 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

    member this.Page_Load(sender: obj, e: EventArgs) =
        if not this.Page.IsPostBack then
            this.Time.Text <- DateTime.Now.ToString()

    member this.Reload_Click(sender: obj, e: EventArgs) =
        this.Time.Text <- "(R) " + DateTime.Now.ToString()

Using ASP.NET Input Controls
The minimalist application shown in Listing 14-2 and Figure 14-1 does nothing but use the 
server to compute the time, something easily done on the local machine. Listing 14-6 shows the 
.aspx code for a web application shown in Figure 14-2 that computes a list of prime numbers for a 
selected range. The web.config file for this application remains the same.

Listing 14-6. Computing and Displaying a Range of Prime Numbers Using the Web Server

<%@ Page Language="F#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script language="F#" runat="server">
    member page.GenerateData_Click(sender: obj, e: EventArgs) =
        let isPrime(i: bigint) =
            let lim = Math.BigInt.FromInt64(int64(sqrt(float(i))))
            let rec check j =
                j > lim or (i % j <> 0I && check (j+1I))
            check 2I

        let lowerLimit = Math.BigInt.Parse(page.LowerLimit.Text)
        let upperLimit = Math.BigInt.Parse(page.UpperLimit.Text)
        let data =
            [ let previousTime = ref System.DateTime.Now
              for i in lowerLimit..upperLimit do
                  if isPrime(i) then
                      let time = System.DateTime.Now
                      yield (i, time-previousTime.Value)
                      do previousTime := time ]
        page.Repeater.DataSource <- data
        page.Repeater.DataBind()
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
    <title>Current time</title>
    <style type="text/css">
        body { font-family:calibri,verdana,sans-serif; }
    </style>

Syme_850-4C14.fm  Page 406  Wednesday, October 17, 2007  12:50 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml


C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 407

</head>
<body>
    <form id="Form1" runat="server">
        <h2>Displaying data</h2>
        <p>
            Compute primes
            from <asp:TextBox runat="server" id="LowerLimit" />
            to   <asp:TextBox runat="server" id="UpperLimit" />.
        </p>
        <asp:Button runat="server"
                    id="GenerateData"
                    text="Generate" OnClick="GenerateData_Click" />
        <p>
        Results:

        <ul>
        <asp:Repeater id="Repeater" runat="server">
            <ItemTemplate>
                <li style="color:blue">
                    n = <%# this.Eval("Item1") %>,
                    time since previous: <%# this.Eval("Item2") %></li>
            </ItemTemplate>
            <AlternatingItemTemplate>
                <li style="color:green">
                    n = <%# this.Eval("Item1") %>,
                    time since previous: <%# this.Eval("Item2") %></li>
            </AlternatingItemTemplate>
        </asp:Repeater>
        </ul>

        </p>
    </form>
</body>
</html>

The application in Listing 14-6 consists of two input controls with the ASP.NET names 
LowerLimit and UpperLimit and an ASP.NET data-listing control called Repeater. The rest of the 
code is HTML markup and the F# embedded script to naively compute a sequence of prime 
numbers in the given range using the F# bigint type.

• The function isPrime implements the basic naive primality test.

• The computed value data is a list of tuples containing the prime numbers found in the 
given range. The type of each entry of this data list is (bigint * System.TimeSpan).

This code demonstrates how to acquire input data from forms filled in by the client 
and how to display data grids back to the client. The input data is acquired simply by using 
page.LowerLimit.Text and page.UpperLimit.Text in the server-side event handlers.

Syme_850-4C14.fm  Page 407  Wednesday, October 17, 2007  12:50 PM



408 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

The data grid is generated by using the Repeater control to iteratively generate HTML; 
conceptually this is somewhat like a for loop that prints HTML at each step. Here is the 
relevant snippet:

        <asp:Repeater id="Repeater" runat="server">
            <ItemTemplate>
                <li style="color:blue">
                    n = <%# this.Eval("Item1") %>,
                    time since previous: <%# this.Eval("Item2") %></li>
            </ItemTemplate>
            <AlternatingItemTemplate> ... </AlternatingItemTemplate>
        </asp:Repeater>

The repeater control contains two templates that define the HTML code that is generated 
during the iteration. It is common that subsequent lines use different formatting, and Repeater 
automatically switches between ItemTemplate and AlternatingItemTemplate. The body of the 
template uses somewhat cryptic ASP.NET constructs such as <%# this.Eval("Item1") %>. These 
are instances of one of the ASP.NET-embedded F# expression forms from Table 14-3. ASP.NET 
textually evaluates this element at each step of the repeated iteration.

The repeater iterates over a data source. The data source can be specified either declara-
tively as we will see later or programmatically as in this example using the following lines:

        page.Repeater.DataSource <- data
        page.Repeater.DataBind()

Figure 14-2. Computing a data table using Listing 14-4

Syme_850-4C14.fm  Page 408  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 409

Displaying Data from Databases
After introducing the ASP.NET framework and the usual organization of the code in ASP.NET 
web applications, we’re ready for a more complicated example. On the next few pages we will 
present a web application that displays data from the sample Northwind database.

As a first step, we will implement an F# module, DataSource.fs, as shown in Listing 14-7, 
that contains functions for accessing the database. To do this we use F# Linq, which will be 
described in more detail in Chapter 15. In short, F# Linq makes it possible to use F# sequence 
expressions for writing database queries and thus reduces the number of languages you need 
to master when writing data-aware web applications.

Listing 14-7. App_Code/DataSource.fs: The F# Module for Accessing the Northwind Database

#light
namespace FSharpWeb

open System.Web.Configuration
open Microsoft.FSharp.Quotations.Typed
open Microsoft.FSharp.Data.Linq
open nwind

type CategoryInfo = { CategoryID: int;  Name: string; }
type ProductInfo  = { ProductName: string;  Price: System.Decimal; }

module DataSource =
    let db = new Northwind(WebConfigurationManager.ConnectionStrings.
                               Item("NorthwindData").ConnectionString)
    let GetCategories () =
        SQL <@ seq { for c in §db.Categories
                        -> { CategoryID = c.CategoryID
                             Name       = c.CategoryName } } @>

    let GetProducts (categoryId) =
        SQL <@ seq { for p in §db.Products
                         when p.CategoryID = §categoryId
                         -> { ProductName = p.ProductName
                              Price       = p.UnitPrice.Value } } @>

The code in Listing 14-7 first declares two simple record types that are used in the database 
queries for returning results. You could use tuples for these results, but record types are easier 
to work with when accessing the information stored using ASP.NET markup. The code in the 
DataSource module first creates a value of the Northwind type, which is a class representing the 
Northwind database and was generated by the LINQ tool SqlMetal, described in Chapter 15. 
The constructor of the generated type takes the connection string as an argument, so we use 
WebConfigurationManager provided by ASP.NET to read it from the web.config file, which we 
will look at shortly. Finally, the module contains two functions, both implemented using F# 
Linq. As you can see, the database query is written as a sequence expression and is wrapped in 
F# quotations that were discussed in Chapter 9. The query is executed using the SQL function, 

Syme_850-4C14.fm  Page 409  Wednesday, October 17, 2007  12:50 PM



410 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

which is discussed in more detail in Chapter 15. The first function for querying the database is 
called GetCategories and simply returns the IDs and names of all the categories in the data-
base; the second one is called GetProducts and it returns information about products in a specified 
category passed as a parameter. Note that when referring to a concrete variable in the F# Linq 
query, you must use the paragraph symbol (§) to splice it as such into the query representation.

Now, let’s look at the Category.aspx file, shown in Listing 14-8, which contains the 
ASP.NET markup for viewing products in a specified category. You can specify the category 
that will be displayed as an argument in the URL, for example, Category.aspx?id=3.

Listing 14-8. Category.aspx: The ASP.NET Page for Displaying Products in a Category

<%@ Page Language="F#" %>
<html>
<head runat="server">
    <title>Category Listing</title>
</head>
<body>
    <form runat="server">
        <!-- Unordered list of products using ASP.NET Repeater -->
        <ul>
        <asp:Repeater runat="server" id="rptProducts"
                      DataSourceID="nwindProducts">
            <ItemTemplate>
                <li><%# this.Eval("ProductName") %>
                     (price: <%# this.Eval("Price") %>)</li>
            </ItemTemplate>
        </asp:Repeater>
        </ul>

        <!-- ASP.NET DataSource control for loading the data -->
        <asp:ObjectDataSource id="nwindProducts" runat="server"
            TypeName="FSharpWeb.DataSource" SelectMethod="GetProducts">
            <SelectParameters>
                <asp:QueryStringParameter Name="categoryId" Type="Int32"
                     QueryStringField="id" DefaultValue="0"/>
            </SelectParameters>
        </asp:ObjectDataSource>
    </form>
</body>
</html>

The ASP.NET markup in Listing 14-8 is not using any code-behind code, because all we 
need for accessing the data is already available in the module we wrote in Listing 14-7. The first 
part of the markup declares the ASP.NET Repeater control including an ItemTemplate that will 
be used for rendering a single product. Similarly to the earlier examples, we use the Eval construct 
for accessing the data, but in this example the product is represented using the ProductInfo 
record declared earlier, so we can use the appropriate labels as an argument to the Eval function.

Syme_850-4C14.fm  Page 410  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 411

The second part of the markup is far more interesting; it declares an ASP.NET 
ObjectDataSource control, which is a nonvisual control, meaning it will not generate any HTML 
code. It serves simply as a source of data for the Repeater control in the first part, and as you 
can see, these two are linked together using the DataSourceID attribute of the Repeater control, 
which is set to the ID of the data source control. The ObjectDataSource is configured using the 
TypeName attribute, which specifies the .NET type that implements the functionality (in our 
case we’re using an F# module instead of an object type). The attribute SelectMethod sets a 
name of the method (or a function in our case) that should be called when the data is required. 
Since the method has one argument, we also need to use SelectParameters to specify what 
value should be passed as an argument to our function. We want to take the argument from the 
URL query string so we can use QueryStringParameter provided by ASP.NET. It has several 
attributes; the most important are QueryStringField, which sets the name of the argument in 
the URL address (id in our example), and Name, which has to match the parameter name of the 
GetProducts function in our F# module.

We looked only at the ASP.NET page for displaying the products in a specified category, 
but to make the application complete, we also need a page that will list all the categories using 
the GetCategories function. To do this, you simply need to create a page similar to Category.aspx 
and modify a few details, so we do not show it here. As the last step, Listing 14-9 shows the web 
configuration file.

Listing 14-9. web.config: Configuration of the Sample Database Viewing Application

<?xml version="1.0"?>
<configuration>
  <connectionStrings>
    <!-- Connection string for the Northwind database -->
    <add name="NorthwindData" providerName="System.Data.SqlClient"
         connectionString=".. database connection string .." />
  </connectionStrings>

  <system.web>
  <compilation><assemblies>
    <!-- Referenced .NET 3.5 assemblies required by F# Linq -->
    <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
                   PublicKeyToken=b77a5c561934e089" />
    <add assembly="System.Data.Linq, Version=3.5.0.0, Culture=neutral,
                   PublicKeyToken=b77a5c561934e089" />
    <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral,
                   PublicKeyToken=b77a5c561934e089" />
  </assemblies></compilation>
  </system.web>

  <system.codedom>
    <compilers>
      <compiler language="F#;f#;fs;fsharp"
                extension=".fs"
                type="Microsoft.FSharp.Compiler.CodeDom.FSharpAspNetCodeProvider,

Syme_850-4C14.fm  Page 411  Wednesday, October 17, 2007  12:50 PM



412 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

                      FSharp.Compiler.CodeDom,
                      Version=1.9.2.9,
                      Culture=neutral,
                      PublicKeyToken=a19089b1c74d0809"/>
    </compilers>
  </system.codedom>
</configuration>

In the configuration file, you first configure the connection string referenced by name as 
NorthwindData, which you used earlier in the module that contains the data-access function-
ality. Connection strings describe the connection details to the database and are discussed 
in Chapter 15. In the second section, you need to reference the additional .NET and F# Linq 
assemblies that we are using in the project. These assemblies are installed in the GAC, so you 
can just add a reference to them. The additional assemblies, namely, the FSharp.Linq.dll file, 
which includes the F# Linq implementation, and northwind.dll, which includes the generated 
Northwind type, can simply be copied to the Bin directory of the application, and ASP.NET will 
discover them automatically. Finally, the web.config file also has to include a configuration of 
the F# CodeDom provider.

Going Further with ASP.NET
So far you’ve seen some very simple kinds of web applications with ASP.NET and F#. In practice, 
ASP.NET offers an enormously powerful framework for all aspects of server-side web develop-
ment. In the following sections we’ll explore some additional aspects, though for full details we 
recommend you consult some of the excellent books dedicated to the topic of ASP.NET. Some 
of these books are listed at http://www.expert-fsharp.com/Topics/WebProgramming.

ASP.NET Directives
The first line of an .aspx file usually contains special markup embedded inside <%@ ... %> ... 
%> containing a number of ASP.NET directives, which are instructions given to the processing 
environment, indicating, among other things, which scripting language is used. Table 14-4 
explains the most important directives and some of their attributes.

Table 14-4. Some ASP.NET Directives and Their Attributes

Directive/Attribute Description

Page or Control

    AutoEventWireup Wires page events that follow the Page_ naming convention automati-
cally if true (default). If false, event handlers need to be wired explicitly.

    CodeFile Specifies the path to the code-behind file.

    Inherits Specifies the name of the class that goes together with the page.

    Language Specifies the language used for writing inline code in the page.

Import Opens a namespace specified by the Namespace attribute and makes it 
available to all code in the page.

Syme_850-4C14.fm  Page 412  Wednesday, October 17, 2007  12:50 PM

http://www.expert-fsharp.com/Topics/WebProgramming


C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 413

Server Controls
Ordinary HTML markup in web forms such as <strong>, <ul>, and <h2> is treated as text and is 
passed to the browser verbatim (via the LiteralControl server control class). On the other hand, 
explicit server controls (those with the runat="server" attribute) are processed on the server and 
translated to HTML markup (just to illustrate, there are server controls that equate to hundreds 
of HTML tags, and many can be mapped nearly one to one). All server controls can be program-
matically managed, which typically means you customize the way they respond to various 
events or how they appear or behave visually. Categorically speaking, there are two main types 
of server controls: HTML server controls that directly correspond to an HTML element and web 
server controls. The second type can be divided into several groups depending on the use of 
the control. There are, for example, validation controls that ensure that entered values fulfill 
some criteria, data source controls similar to the ObjectDataSource mentioned earlier, member-
ship controls for handling user login and registration, and many others.

In Listing 14-2 you saw server controls such as labels and buttons, both of which are web 
server controls. It is beyond the scope of this book to discuss the great number of web server 
controls available in ASP.NET 2.0 and above. As a reference, Table 14-5 shows some of the ones 
most commonly used.

Register Registers a user control for use with the page. See the section 
“Creating Custom ASP.NET Server Controls” later in this chapter.

OutputCache Declaratively controls caching; if present, ASP.NET keeps the 
rendered output of a page or a control in a cache for a specified 
amount of time.

Assembly References an external assembly. The Name attribute can be used to 
specify the name of the assembly (without the extension).

Implements Specifies that the page implements the interface specified in the 
Interface attribute.

Reference Associates another page or user control with the current one. The 
Control, Page, or VirtualPath attribute can be used to identify the 
component to be referenced, causing it to be compiled together.

Table 14-5. Common ASP.NET Server Controls

Type Controls

Basic Button, TextBox, Label, Panel, CheckBox, ListBox, RadioButton, 
PlaceHolder, DropDownList

Data viewing/editing Repeater, DataList, GridView, DetailsView

Data sources ObjectDataSource, SqlDataSource

Membership Login, LoginView

Validation RequiredFieldValidator, CompareValidator, RegularExpressionValidator

Table 14-4. Some ASP.NET Directives and Their Attributes

Directive/Attribute Description

Syme_850-4C14.fm  Page 413  Wednesday, October 17, 2007  12:50 PM



414 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

HTML server controls correspond to a given HTML tag and are simply applied by adding 
the runat="server" attribute. This turns the standard HTML tag into a server control, allowing 
you to change its appearance or behavior programmatically. Since web server controls offer a 
more robust object model, they are almost always preferable to HTML server controls.

Validation controls are a special type of web controls that perform typical validation patterns 
on your web form input fields and display error messages where appropriate. The Validation 
section of your Visual Studio Toolbox contains the available validation controls, as summa-
rized in Table 14-6.

Each validator has an ErrorMessage and a Text property that you can set in conjunction 
with displaying an error message. When the validator fails, it displays the content of the Text 
property at the place where it is inserted in your page markup. A typical scenario is ensuring 
that a given user input control has a value entered. Here, all you need to do is add your input 
control and a RequiredFieldValidator next to it, set its ControlToValidate property to the ID of 
the associated input control, and set the Text property to say *. This will show an asterisk when 
no value is entered in the input control at the time of submitting the page. Using another vali-
dator is just as easy, except you need to customize different properties. Table 14-7 summarizes 
these main properties for each validator.

Table 14-6. Common ASP.NET Validation Controls

Control Name Description

RequiredFieldValidator Ensures that the associated input control is not empty.

RangeValidator Validates that the user input is in a given range.

RegularExpressionValidator Checks whether the user input matches a regular expression 
pattern. See Chapter 10 for a description of using .NET regular 
expressions.

CompareValidator Compares the user input against a given value or another 
control.

CustomValidator Validates the user input based on a custom, user-specified 
logic.

ValidationSummary Lists all validation error messages.

Table 14-7. The Main Customizable Validator Properties

Control Name Main Properties

RequiredFieldValidator InitialValue

RangeValidator MinimumValue, MaximumValue, Type

RegularExpressionValidator ValidationExpression

CompareValidator ControlToCompare, Operator, ValueToCompare, Type

CustomValidator ClientValidationFunction, ServerValidate (event)

ValidationSummary DisplayMode, HeaderText, ValidationGroup

Syme_850-4C14.fm  Page 414  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 415

You may end up working with complex web pages that have many, even dozens, of input 
controls that belong to different forms on the page (for instance, a web page with a search 
form, a user registration form, and a contact form). By default, all validators defined on the 
page would be run and most likely prohibit your end user from moving onto the next page 
because of validation errors that are seemingly unrelated to the chosen action of the user. 
To solve this problem, you can turn to using validation groups, which specify a set of related 
controls and their validators. A validation group is formed by specifying a common group 
name (as a string) for the ValidationGroup property of each validator and the input control that 
triggers a page submission. This will ensure that only the validators that are related to the control 
initiating the page submission will be run. Finally, you can disable any validation by setting the 
CausesValidation property of a postback control to false.

Debugging, Profiling, and Tracing
Debugging ASP.NET applications is easy when using a tool such as Visual Studio. You can set 
breakpoints in your F# code, and these will allow you to break into the middle of code executing 
when server requests are performed. We discuss debugging techniques for regular F# code in 
Chapter 18.

During development, it is often necessary to trace what happens on a page, as well as during 
the process of serving that page. You can enable page tracing by adding the Trace="true" page 
attribute to your web form. This will append information shown in Table 14-8 to the page 
displayed. Figure 14-3 shows an example of this information for the application from Listing 14-4.

Table 14-8. Information Generated by Tracing an ASP.NET Page

Section Information Collected

Request Details Shows the session ID, request type, time of request, status code, 
and request/response encoding for the request

Trace Information Shows the various page life cycle events and the time spent on 
processing each

Control Tree Shows each server control, its type, render size, view state size, 
and control state size in a parent-children tree

Session State Shows the various keys, their associated values, and their types 
defined in the page’s session state

Application State Shows the various keys, their associated values, and their types 
defined in the server’s application state

Request/Response 
Cookies Collection

Shows the name/value/size of each cookie

Headers Collection Shows the name and value of each page header

Response Headers Collection Shows the name and value for the server response

Server Variables Shows the various server variables and their values at the time 
of processing

Syme_850-4C14.fm  Page 415  Wednesday, October 17, 2007  12:50 PM



416 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

Figure 14-3. Debugging and tracing an ASP.NET web page

Understanding the ASP.NET Event Model
In the previous sections, you saw various server controls triggering events, submitting pages 
with form data, validating input controls, and so on. These all involve events. ASP.NET has an 
event-driven architecture: each web form and server control supports a number of events that 
it can respond to, and these events can be attached to various event handlers. As you would expect, 
these events fall in two different categories: page and control events, respectively. Consider 
what happens as we interact with a simple SayHello.aspx page that has a text box for a name, 
an empty label, and a submit button:

1. First, an HTTP GET request is made for SayHello.aspx to the server.

2. On receiving this request, the server processes the page (doing compilation if necessary), 
calls the appropriate page event handlers (Page_Load, and so on), and ultimately returns an 
HTML response.

3. This HTML response, along with the state/content of the HTML controls (the view state: 
an empty text box and label), is sent back to the browser, and the page is displayed.

4. We now fill in our name and click the submit button. This causes the form containing 
the text box and button controls to post back to the server, passing the view state with it.

Syme_850-4C14.fm  Page 416  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 417

5. The server executes the appropriate page handlers and the control event handler(s) for 
the button click, and an HTML response is generated (the same page with the label now 
greeting you by name).

6. This HTML response is sent back to the browser and displayed.

As this simple but representative example shows, the server controls on a given page are in 
constant contact with the server: they catch events and pass them onto the server where they 
are handled and responded to accordingly.

Page events occur when a page is requested from the server, either via the GET (the first 
time) or POST (when data is posted to the page) HTTP methods. For instance, there are events 
for page initialization (PreInit, Init), page loading (Load), rendering (Render), and so on. These 
page events are always handled in a given order as defined by the ASP.NET page life cycle (see 
“The ASP.NET Page Life Cycle” sidebar). Although you can programmatically bind a delegate 
to a given page event, ASP.NET makes it even easier. As you saw it in Listing 14-5, you can add 
page event handlers by simply declaring members of the form Page_XXX, where XXX is the name 
of the page event. This works because by default, the AutoEventWireup page attribute is true, and 
this causes wiring the intended event handler (using this naming convention) to the appro-
priate event automatically.

Control events are triggered by the end user: clicking a button, selecting an item in a list 
box, and so on. Contrary to page events, control events cannot be automatically wired, and 
thus you need to establish the link between the handler and the event manually. This is quite 
easy to do: simply set the OnXXX attribute of the server control to the event handler, as we did 
with the Reload button in the first example.

Not all control events are immediately posted back to the server; in fact, only a few are, 
such as button clicks. All other control events are so-called change events (because they are 
triggered as a control undergoes some changes: the selected item in a drop-down list has changed 
or a check box or radio button has been selected) and as such are not posted to the server auto-
matically for efficiency reasons. You can, on the other hand, enable postback in such situations 
by overriding the control’s AutoPostBack property to true. This can be quite useful; for instance, 
a page can respond directly to a change in a drop-down list without the end user having to click 
a submit button, thus saving valuable clicks and time in the appropriate situations.

THE ASP.NET PAGE LIFE CYCLE

The ASP.NET page life cycle consists of a few dozen steps and as such is beyond the scope of this book to 
discuss in detail. However, it is important to understand the main steps involved in this life cycle. For a complete 
reference, you can refer to books devoted to ASP.NET. Here we give a brief and simplified description, suffi-
cient enough for most situations.

Given a request for a page and assuming that the appropriate page class exists in a compiled form on the 
server (if not, the ASP.NET runtime kicks in and performs a number of code compilation steps), a page instance 
is created with all server controls declared but not yet initialized. At this point there are three main life cycle 
phases (initialization, loading, and rendering). Initialization starts with determining whether the page requested 
is in postback mode (in which case the view state is encoded in the page request) or for the first time. At this 
point, the PreInit handler is executed, and the page theme and master page are applied. Next, the Init 
handler is called, initializing all server controls and the page itself, and then the InitCompleted event is triggered.

Syme_850-4C14.fm  Page 417  Wednesday, October 17, 2007  12:50 PM



418 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

The loading phase involves loading any view state (in case of a postback request) from the page request 
and loading it in into the server controls. When the view state is restored, the PreLoad event is triggered, 
followed by the Load event. This is where you normally put your page processing logic that runs on every page 
request. Following this event, loading the view state is executed again to catch any dynamically added controls 
(for instance, those created in the Load event handler). Then any control change events and postback events 
are handled, and finally the LoadComplete event is raised.

The rendering phase starts with performing all data binding (which involves the DataBinding and 
DataBound events for each data-bound control), and then the PreRender event is triggered. Next, any 
asynchronous tasks (registered via RegisterAsyncTask) are fired off, and the PreRenderComplete 
event is called. Before the actual rendering takes place, the view state is saved back to the page (by default to 
the default hidden input field). Finally, the page’s Render method is called that produces HTML by recursively 
invoking the same method on each server control. Before this HTML is passed to the client, the Unload event 
is triggered and every object involved in the page creation is disposed.

Both page and control events are executed on the server, so when they are triggered, the 
parent page along with its view state is posted to the server, where the event is handled and a 
response (the same or another page) is sent back to the client. A so-called postback occurs if a 
page posts information to the server requesting the same page back. This round-trip scenario 
is quite common: the Reload button in Listing 14-2 or the Generate button from Listing 14-4 
are both examples of triggering a postback.

In both of these cases, we have a postback because we “remain” on the same page; for 
example, the originating page handles the data submission by updating the content of a label 
(an HTML <span> element) in the button click handler. More often, though, data is posted to 
another page, in which case it is referred to as cross-page posting. You can easily enable cross-
page posting by setting the PostBackUrl property of the submitting control. For instance, a 
SayHello button could be declared as follows:

<asp:Button ID="btnSayHello" runat="server" Text="Greet" PostBackUrl="SayIt.aspx" />

There is a significant difference between how data submissions are handled via postback 
and cross-page posting: whereas the former is done in the submitting control’s click event 
handler (for example, Reload_Click in the timer example), with cross-page posting the submis-
sion event is handled in the Load event handler of the page to which the postback URL points. 
What slightly complicates matters is that the form data submitted is not available directly on 
the receiving page, but instead you have to reference it through the PreviousPage property of 
the page.

Because oftentimes you place initialization or cross-page posting code in a page event 
(typically for the Load event), you need to make sure that this code is executed only for initial-
ization or when data is being posted to the page. You can do so by checking the IsPostBack 
property of the Page object, which returns false if the page is requested the first time.

Maintaining the View State
HTTP is a stateless protocol, so special care must be taken to preserve the state of a given page. 
For instance, your visitor may have just filled out a long form and, as it sometimes happens, he 
or she made an error. After posting the page, this visitor expects to see all entered data preserved 

Syme_850-4C14.fm  Page 418  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 419

with an indication of where the missing or incorrect entry is. Recovering form values after a 
postback is possible because ASP.NET maintains the so-called view state, that is, the state of all 
server controls on the page. These values are passed as HTTP form variables on a post and 
returned as hard-wired HTML.

View state is automatically encoded as a hidden <input> element in your pages, and no 
special handling is needed to enable it. You can, on the other hand, disable it altogether by 
adding EnableViewState="false" to your Page directive or partially on the control level by 
setting the same control property for any control for which no view state is to be maintained. 
This may be necessary if your page displays large amounts of data but with no possibility of a 
postback or the data on the page cannot be modified, thus making the page source consider-
ably smaller and quicker to download to your clients.

Understanding the Provider Model
ASP.NET comes with a number of built-in application services that you can use and customize 
as you build your web applications. These encapsulate much of the core functionality common 
to most websites, such as membership and role management, profiles and personalization, 
and site navigation, and you can easily plug them into your website logic right out of the box.

These services interact with service-specific data (the users registered, the different user 
roles your site is programmed for, various data associated with the authenticated users, and so 
on) via providers, which are classes that implement the appropriate interfaces to fulfill contracts for 
various services. ASP.NET comes with a number of built-in providers; for instance, it has a SQL 
and an Active Directory membership provider. The provider model allows you to plug in your 
own providers (simply by specifying them in the appropriate section of your web.config), so 
you may write an Oracle or a custom membership provider to your existing user/membership 
database or a role service provider based on simple XML files.

Table 14-9 shows some common provider-based services in ASP.NET.

Table 14-9. ASP.NET Provider-Based Services

Service Description

Encryption Handles the encryption and decryption of ASP.NET configuration 
files and sections within

Membership Manages users and their accounts

Profile Adds user information (for instance, user preferences) that is to be 
collected and stored for each user

Role Management Manages roles and their associated access rights

Session Management Manages session state for a user visit

Site Map Stores information about each page and its place in the site’s structure

Web Events Allows the monitoring of an application for control purposes

Web Parts Manages a set of controls and their content and appearance that make 
up a portal

Syme_850-4C14.fm  Page 419  Wednesday, October 17, 2007  12:50 PM



420 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

Configuring the Provider Database

By default (as guided by the server’s machine.config file), the data-aware services use SQL providers 
that work against a SQL Express database (by default aspnetdb.mdf in the App_Data folder). The 
relevant part of the machine.config containing the default connection strings is as follows:

    <connectionStrings>
        <clear />
        <add name="LocalSqlServer"
             connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;
AttachDBFilename=|DataDirectory|aspnetdb.mdf;User Instance=true"
             providerName="System.Data.SqlClient" />
    </connectionStrings>

This defines a LocalSqlServer connection string that all data-centric providers use by default, 
which points to the aspnetdb.mdf SQL Express database in the web data directory. (Note how 
the database server is set to be running as a SQL Express named instance.) This database file is 
automatically created upon first use or by triggering the website administration console. It is 
important to remember that these default settings will work only with SQL Express, but on a 
typical development machine with a standard SQL Express installation, everything works like 
a charm out of the box.

Even if you are using SQL Express and all the default providers, you should (re)define your 
connection string settings in your site web.config file, mostly because it is more portable that 
way and because this simply becomes necessary if you use a different database server, say SQL 
Server. At the time of writing, SQL Server does not allow attaching database files to the server 
using the AttachDBFilename property, so you will need to use a regular database and refer to it 
using the Initial Catalog or the Database keywords in your connection string.

If for some reason you cannot automatically generate the default database when using 
SQL Server, you can simply build it by hand by first creating an empty database (for instance, 
by right-clicking Server Explorer/Data Connections and selecting Create New SQL Server Data-
base) and running aspnet_regsql.exe (found in your .NET installation folder) in wizard mode 
with the information on your newly created database. This tool generates all the data tables 
and stored procedures needed by the default providers. You can then change your web.config 
file to include a reference to this new database:

   <connectionStrings>
      <remove name="LocalSqlServer" />
      <add name="LocalSqlServer"
            connectionString="Data Source=localhost;Integrated Security=SSPI;
Initial Catalog=YourDatabase"
            providerName="System.Data.SqlClient" />
   </connectionStrings>

Here we used localhost for SQL Server and the YourDatabase database within. You may 
need to change the host when you deploy your application to point to the right database server. 
Furthermore, you should be aware that SQL Server does not support detached databases (.mdf 
files); therefore, if you are migrating from a SQL Express instance (for example when your 
hosting provider supports only SQL Server), you will need to “manually” import the contents 
of the detached database file into a SQL Server database (either by attaching it from the hosting 

Syme_850-4C14.fm  Page 420  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 421

provider’s administrative console or creating a backup from the Express database and importing 
it); in other words, there is no way to use the .mdf database with SQL Server directly.

Creating Custom ASP.NET Server Controls
You can create new server controls for ASP.NET on two conceptual levels: user controls and 
custom (web) server controls. User controls are similar to web forms: they are a collection of 
server control and/or HTML markup, which is named (declared) and then used via reference. 
They can also expose public properties that can be set to control various aspects of the user 
control. In this chapter we consider only user controls.

User controls are contained in .ascx files. You can create a new user control in Visual 
Studio by selecting the Web User Control template from the New/File menu option. The new 
user control is empty except for a Control directive that acts similarly to the Page directive of a 
web form. You can add any additional markup as needed. As an example, consider a user 
control that repeats a given text fragment a specified number of times.

Our user control (RepeatText.ascx in Listing 14-10) contains a single control, a placeholder 
label. The code-behind file is located in RepeatText.ascx.fs, shown in Listing 14-11.

Listing 14-10. RepeatText.ascx: A Simple User Control Implemented in F#

<%@ Control Language="F#"
            AutoEventWireup="true"
            CodeFile="RepeatText.ascx.fs"
            Inherits="MyUserControl.RepeatText" %>

<asp:Label ID="Place" runat="server"/>

Listing 14-11. RepeatText.ascx.fs: The Implementation of an ASP.NET User Control

#light
namespace MyUserControl

open System
open System.Web.UI.WebControls

type RepeatText() =
    inherit System.Web.UI.UserControl()

    /// This is the internal state and parameters of the control
    let mutable text = ""
    let mutable count = 0

    /// This internal control is initialized by ASP.NET
    [<DefaultValue>]
    val mutable Place : Label

Syme_850-4C14.fm  Page 421  Wednesday, October 17, 2007  12:50 PM



422 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

    /// These properties allow the state to be used from the page
    member self.Text        with get() = text  and set(v) = text <- v
    member self.RepeatCount with get() = count and set(v) = count <- v

    /// This event is automatically wired up through the use of the
    /// AutoEventWireup ASP.NET directive (true by default)
    member self.Page_Load (sender: obj, e: EventArgs) =
        let acc = new Text.StringBuilder()
        for i in 1..count do
            acc.Append(self.Text) |> ignore
        self.Place.Text <- acc.ToString()

The state and parameters of the control are ultimately held in the variables text and count. 
Note how we defined public properties (Text and RepeatCount) that will be available when we 
use the control from a page. All we need to use this user control from a page is to register it 
using the Register directive, giving a tag prefix and a tag name by which we can refer to it. For 
example, the code in Listing 14-12 results in an HTML label element containing the text “Monkey!” 
10 times.

Listing 14-12. TestRepeat.aspx: Using the Control from Listing 14-4

<%@ Page AutoEventWireup="true" %>
<%@ Register Src="RepeatText.ascx" TagName="Repeater" TagPrefix="text" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
                      "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
    <title>My User Control Test</title>
</head>
<body>
    <form runat="server">
        <text:Repeater id="chart" runat="server" RepeatCount="10" Text="Monkey!" />
    </form>
</body>
</html>

You can find more details on implementing user controls in the books on ASP.NET refer-
enced at http://www.expert-fsharp.com/Topics/WebProgramming.

Building Ajax Rich Client Applications
So far in this chapter we have looked at server-side web applications. In recent years a new 
class of rich-client web applications has emerged, leading to what is commonly called the Ajax 
development paradigm. This is a general term for any web application that incorporates substan-
tial amounts of code executed on the client side of the application by running JavaScript in the 
web browser.

Syme_850-4C14.fm  Page 422  Wednesday, October 17, 2007  12:50 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.expert-fsharp.com/Topics/WebProgramming


C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 423

Developing Ajax applications can be done in two ways when using F#:

• You can manually write and serve additional JavaScript files as part of your web application.

• You can use the F# Web Tools to write both client and server code purely in F#.

Developing Ajax applications by the first technique follows a fairly standard path mostly 
independent of F#. You can find more details on this technique at http://www.expert-fsharp.com/
Topics/WebProgramming.

More on F# Web Tools
F# Web Tools is an open source project at http://www.codeplex.com/fsharpwebtools. These 
tools represent an extremely powerful way of writing robust, efficient, integrated client/server 
applications in a single, type-checked framework. In particular, they draw on several advanced 
features of F#, the combination of which offers a unique programming experience for web 
applications:

• Client-side and server-side code is authored in one project, and code to handle client-
side events can be written in the same way as server-side event handlers that we used in 
many places in this chapter.

• The program runs initially as a server-side application.

• The client-side code is written as an F# workflow and is automatically translated to 
JavaScript using F# quotations and reflection and is served to the client. (See Chapter 9 
for details on F# quotations and workflows.)

• The client side can also use some .NET and F# libraries. The calls are mapped to a corre-
sponding JavaScript functionality through fairly straightforward techniques.

• The client side may make asynchronous calls to the server using variations on the tech-
niques described in Chapter 13. Some type safety is guaranteed by making modal 
distinctions using F# workflows.

These tools were under development at the time the book was written, and some details of 
their use are likely to change. For this reason we don’t give detailed code using these tools in 
this book, though this chapter gives a good grounding in the ASP.NET techniques on which the 
tools are based.

Figure 14-4 shows part of one sample web application written using F# Web Tools. In this 
sample, which is authored entirely in F#, all symbolic computation is executed as JavaScript on 
the client side. The image displaying the curve is generated on the server side, since JavaScript 
has relatively weak abilities for image generation in a portable fashion.

Syme_850-4C14.fm  Page 423  Wednesday, October 17, 2007  12:50 PM

http://www.expert-fsharp.com
http://www.codeplex.com/fsharpwebtools


424 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

Figure 14-4. An example rich client web application written using F# Web Tools

Using Web Services
Web services can be used to implement service-oriented architectures, a popular application 
integration strategy where the interacting software components and services are loosely coupled in 
a distributed environment. The benefits of such integration include allowing offering services 
as independent entities that can be used and reused from different systems within an organi-
zation or even the entire world. Consuming web services thus is a great way to expand the 
functionality of your application.

A web service is a set of functionality that is offered through a platform-independent inter-
face. Applications can explore the pieces of functionality offered by a web service by examining 
its Web Services Description Language (WSDL) signature. This WSDL definition uses XML to 
describe the signature of each operation by declaring the data types of the parameters and 
optional return values. Communicating with a web service occurs via the Simple Object Access 
Protocol (SOAP), which encodes service invocations and return values in an XML envelope 
over HTTP. Because web services are invoked over HTTP, they can be used by any application 
with Internet connectivity.

Communicating with web services is usually performed via so-called proxy classes. A proxy 
performs all the grunge work involved in calling the service and deciphering the results, freeing 
you from a lot work. A typical workflow when calling a web service is the following:

Syme_850-4C14.fm  Page 424  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 425

1. The client instantiates the proxy and calls the desired operation on it.

2. The proxy creates a SOAP XML request and sends it to the web service via HTTP.

3. The web service receives the request and performs the requested operation.

4. The web service packages the return value from the operation (or any exception that 
occurred within) into a SOAP XML response and returns it to the proxy via HTTP.

5. The proxy deserializes the response into a .NET data type and returns it to the calling class.

Consuming Web Services
Many great web services are available on the Internet. For instance, Microsoft’s TerraService is 
a free web service at http://terraservice.net that enables you to integrate USGS images and 
data into your applications. Also, http://webservicex.net is another great source for web 
services; for instance, its WeatherForecast web service can supply weather information for any 
given U.S. location. Calling these and other web services in your .NET applications is quite 
painless using F# web references.

All web services are called via generated proxy code. The easiest way to generate this code 
is by adding a web reference to Visual Studio, which automatically generates a .NET proxy class 
for the given web service. Figure 14-5 shows the available operations for the web service from 
http://webservicex.net/WeatherForecast.asmx.

Figure 14-5. Adding a web service reference

Syme_850-4C14.fm  Page 425  Wednesday, October 17, 2007  12:50 PM

http://terraservice.net
http://webservicex.net
http://webservicex.net/WeatherForecast.asmx


426 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

You can also generate code using the .NET command-line tool wsdl.exe. Here is an example 
where you generate C# code for TerraService and WeatherForecast and compile it explicitly:

C:\fsharp> wsdl /namespace:WebReferences http://webservicex.net/WeatherForecast.asmx
Microsoft (R) Web Services Description Language Utility
Writing file 'C:\fsharp\WeatherForecast.cs'.

C:\fsharp> csc /target:library WeatherForecast.cs

C:\fsharp> wsdl /namespace:WebReferences http://terraservice.net/terraservice.asmx
Microsoft (R) Web Services Description Language Utility
Writing file 'C:\fsharp\TerraService.cs'.

C:\fsharp> csc /target:library TerraService.cs

C:\fsharp> dir *.dll
...
04/09/2007  00:18            10,752 WeatherForecast.dll
04/09/2007  00:18            57,344 TerraService.dll

■Note  You can also use wsdl.exe to generate F# code by adding a command-line option that gives an 
explicit reference to the F# CodeDom dynamic code generator. For example, an option such as /language:
"Microsoft.FSharp.Compiler.CodeDom.FSharpCodeProvider, Microsoft.FSharp.Compiler.
CodeDom, Version=1.9.2.9, Culture=neutral, PublicKeyToken=a19089b1c74d0809" can be 
used. Note the similarity with the CodeDom reference used in the web.config file in Listing 14-2. The 
generated file can then be compiled as normal, though the authors have found that small adjustments some-
times need to be made to the generated code.

You can reference these two generated DLLs from F# Interactive using the following 
references:

> #r @"C:\fsharp\WeatherForecast.dll";;
> #r @"C:\fsharp\TerraService.dll";;

You can now use these web services directly from F# Interactive:

> open System;;
> open WebReferences;;

> let ws = new WeatherForecast();;
val ws : WeatherForecast

Syme_850-4C14.fm  Page 426  Wednesday, October 17, 2007  12:50 PM

http://webservicex.net/WeatherForecast.asmx
http://terraservice.net/terraservice.asmx


C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 427

> let weather = ws.GetWeatherByPlaceName("Los Angeles");;
val weather : WeatherForecasts

> let today = weather.Details.[0];;
val today : WeatherData

> printf "Temperature: %sF/%sC\n" today.MaxTemperatureF today.MaxTemperatureC;;
Temperature: 100F/38C
val it : unit = ()

> let ts = new TerraService();;
val ts : TerraService

> let place = new Place(City="Los Angeles", State="CA", Country="USA");;
val place : Place

> let facts = ts.GetPlaceFacts(place);;
val facts : PlaceFacts

> printfn "Lat/Lon: %f/%f" facts.Center.Lat facts.Center.Lon;;
Lat/Lon: 33.833000/-118.217003

Calling Web Services Asynchronously
If you put a timer on these web service calls, you would see that they take significant time to 
execute, even seconds depending on your network connection, and this can be a serious idle 
time for your application. To remedy this problem, you can either minimize the number of web 
service calls through some sort of caching (for instance, in a web application you can store web 
service data in the session or even the application state and reuse it instead of making new 
calls) or make these calls in parallel, asynchronously. For example, it makes sense to connect to 
two webs services simultaneously and wait for both responses to come back before proceeding 
with the rest of an operation.

The easiest and most compositional way to access a web service asynchronously is to use 
the asynchronous workflows discussed in Chapter 13. The proxy code generated for the web 
service includes methods such as BeginGetWeatherByPlaceName and EndGetWeatherByPlaceName 
that follow the style for .NET library asynchronous invocations described in Chapter 13. We 
first map these pairs of operations into methods that construct asynchronous tasks. As in 
Chapter 13, we do this by defining extension members to the types in the generated code.

type WebReferences.WeatherForecast with
    member ws.GetWeatherByPlaceNameAsyncr(placeName) =
        Async.BuildPrimitive(placeName,
                             ws.BeginGetWeatherByPlaceName,
                             ws.EndGetWeatherByPlaceName)

Syme_850-4C14.fm  Page 427  Wednesday, October 17, 2007  12:50 PM



428 CH AP T E R  1 4  ■  B U I L D I N G  WE B  AP P L IC AT I ON S

type WebReferences.TerraService with
    member ws.GetPlaceFactsAsyncr(place) =
        Async.BuildPrimitive(place,
                             ws.BeginGetPlaceFacts,
                             ws.EndGetPlaceFacts)

These have the following types:

member ws.GetWeatherByPlaceNameAsyncr : placeName:string -> Async<WeatherForecast>
member ws.GetPlaceFactsAsyncr: place:string -> Async<PlaceFacts>

We can now define various asynchronous tasks using these primitives. For example, we 
can define a function getWeather that collects both the weather and position data for a given 
location but executes the two calls simultaneously.

let getWeather(city,state,country) =
    async { let ws = new WeatherForecast()
            let ts = new TerraService()
            let place = new Place(City=city, State=state, Country=country)
            let! weather,facts =
                Async.Parallel2
                    (ws.GetWeatherByPlaceNameAsyncr(city),
                     ts.GetPlaceFactsAsyncr(place))
            let today = weather.Details.[0]
            return (today.MinTemperatureF,today.MaxTemperatureC,
                    facts.Center.Lat,facts.Center.Lon) }

The type of this function is as follows:

val getWeather : string * string * string -> Async<string * string * float * float>

One simple use of this task is to run it and print the results when the operation completes:

Async.Run (async { let! (maxF,maxC,lat,lon) = getWeather("Los Angeles","CA","USA")
                   do printfn "Temperature: %sF/%sC" maxF maxC
                   do printfn "Lat/Lon: %f/%f" lat lon })

With an active web connection, this results in output such as the following (after a short 
delay while the connections are resolved):

Temperature: 100F/38C
Lat/Lon: 33.833000/-118.217003

Syme_850-4C14.fm  Page 428  Wednesday, October 17, 2007  12:50 PM



C H AP T E R  1 4  ■  B U I LD I N G  W E B  AP P L IC AT IO N S 429

Summary
In this chapter, you saw how you can use F# to perform a range of web programming tasks. You 
started by using sockets and TCP/IP to implement a web server directly, an example of a system 
network programming task. We then described how ASP.NET can be used to implement web 
applications involving HTML and input server controls and how to use embedded scripts and 
code-behind files. We also showed how you can access a database using F# Linq and display 
data coming from this database. You then looked briefly at web applications that incorporate 
significant client-side scripting using F# Web Tools and finally took a quick look at how to use 
web services from F#, including making compositional asynchronous invocations of web services.

Data access is a topic that complements web programming and often forms a major part 
of server-based web applications. In the next chapter, you will look at how to access relational 
databases from F# programs and also at other aspects of working with data from F#.

Syme_850-4C14.fm  Page 429  Wednesday, October 17, 2007  12:50 PM



Syme_850-4C14.fm  Page 430  Wednesday, October 17, 2007  12:50 PM



431

■ ■ ■

C H A P T E R  1 5

Working with Data

Software applications deal with data in a wide array of forms: single values such as integers 
or strings; composite values paired together as tuples, records, or objects; collections of smaller 
pieces of data represented as lists, sets, arrays, or sequences; XML strings with tags describing 
the shape and kind of data; or data coming from relational or object-oriented databases, just to 
name a few.

In this chapter, we look at ways of working with some common data sources:

• In Chapter 3 you saw that sequences, similar to other enumerable data types such as 
lists, arrays, maps, and sets, have various aggregate iteration, query, and transform 
operators. We first look at how these operators can be used in a straightforward manner 
to form SQL-like operations over in-memory collections. This mechanism can be further 
tuned and applied to other data sources where the original data source is mapped to 
a sequence.

• We cover how you can work with relational databases from F# programs using the ADO.NET 
libraries. We discuss how you can connect to a database; create, update, and delete tables 
and records using simple SQL statements; access database data sequentially; and work 
with parts of tables using disconnected in-memory representations. You will also learn 
how to manage database connections and data sources; create databases; add new tables; 
and work with relationships, constraints, and stored procedures using Visual Studio.

• We cover how the Language Integrated Query (LINQ) infrastructure can be used in 
combination with F# meta-programming to bring relational data query logic into reach 
without explicit use of SQL. The essential goal here is to write database queries in F# 
itself using the same techniques you use to query in-memory data structures.

• Finally, we look at the use of XML as a generic data format. You already saw in Chapter 9 
how to work with the XML Document Object Model (DOM), and we briefly survey how 
to desugar XML into sequences using LinqToXml.

Querying In-Memory Data Structures
Query languages are often made up of building blocks that transform and filter data. Functional 
programming gives you the basic tools that allow you to apply standard query logic on all F# 
types that are compatible with the F# sequence type, such as F# lists, arrays, sequences, and 
anything else that implements the IEnumerable<'a>/seq<'a> interface.

Syme_850-4C15.fm  Page 431  Tuesday, October 23, 2007  8:35 AM



432 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

Select/Where/From Queries Using Aggregate Operators
Consider the following aggregate operators described in Chapter 3:

let select = Seq.map
let where  = Seq.filter

Here we have renamed the operations in the F# Seq module to correspond to more standard 
database query terminology: the select operator is defined as a transform operation, since 
in a selection we are taking sequence elements and mapping (often narrowing) them to new 
values. Similarly, the where operator is defined as a filter applied on a sequence that takes an 
'a -> bool predicate to filter out the desired elements. You can use these aggregate operators 
in a straightforward manner to query and transform in-memory data. The only other piece you 
need is the glue that will make the query and transform operators work together: the standard pipe 
operator (|>). Recall that this operator simply “flips” the order of its arguments; being an infix 
operator, it feeds the left-side argument into the function on the right. This is useful, because the 
argument to the function is seen before the function itself, propagating important typing infor-
mation into the function.

For instance, given a string * int * string array, representing the name, age, and depart-
ment of various employees, you can select those names that start with letter R as follows:

let people = [| ("Joe", 27, "Sales");  ("Rick", 35, "Marketing");
                ("Mark", 40, "Sales"); ("Rob", 31, "Administration");
                ("Bob", 34, "Marketing") |]

let namesR =
    people |> select (fun (name, age, dept) -> name)
           |> where  (fun name -> name.StartsWith "R")

Note that the types of name, age, and dept have been inferred from people, and no type 
annotation is necessary. Finding those people who work in sales and are older than 30 years old 
is also straightforward:

> let namesSalesOver30 =
    people |> where  (fun (_, age, _)  -> age >= 30)
           |> where  (fun (_, _, dept) -> dept = "Sales")
           |> select (fun (name, _, _) -> name);;
val namesSalesOver30 : seq<string>

> namesSalesOver30;;
val it : seq<string> = seq ["Mark"]

Syme_850-4C15.fm  Page 432  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 433

Using Aggregate Operators in Queries
In the previous section, we used alternative names such as select and where for some standard 
F# operations such as Seq.map and Seq.filter. This is for illustrative purposes to show the 
connection between these operators and SQL-like querying. In most F# code, you should just 
continue to use the standard F# operators from the Seq module.

Besides the restriction (filter/where) and projection (map/select) operators, the Seq module 
contains many other useful functions, many of which were described in Chapter 3, and you can 
easily define further operators. For instance, you can define sorting over sequences by using 
sorting over a more concrete data structure:

let sortBy comp seq = seq |> Seq.to_list |> List.sort comp |> Seq.of_list
let revOrder i j = -(compare i j)

Here the inferred types are as follows:

val sortBy : ('a -> 'a -> int) -> #seq<'a> -> seq<'a>
val revOrder : 'a -> 'a -> int

The function sortBy takes a comparison function comp as an argument and converts its 
enumerable argument to a list and back as it performs the sorting. revOrder provides a comparison 
function that reverses the default ordering for a type by negating the result of the generic compar-
ison function compare discussed in Chapter 5 and Chapter 8. Note that sortBy will evaluate all 
elements in the sequence as it converts it to a list, so you should use it with care when the source 
sequence is large or potentially infinite.

Another useful query-like function is Seq.truncate, which takes the first n elements and 
truncates the rest. Using these new operators—given, for example, an unbounded stream of 
random numbers—you can extract the first three even numbers and return a pair of those 
numbers and their square in reverse order, as the following example shows:

let rand = System.Random()
let numbers = seq { while true do yield rand.Next(1000) }

numbers |> Seq.filter (fun i -> i % 2 = 0)  // "where"
        |> Seq.truncate 3
        |> sortBy revOrder
        |> Seq.map (fun i -> i, i*i)        // "select"

// random – results will vary!
val it : seq<int * int> = seq [(814, 662596); (686, 470596); (242, 58564)]

Syme_850-4C15.fm  Page 433  Tuesday, October 23, 2007  8:35 AM



434 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

Accumulating Using “Folding” Operators
Some of the most general operators supported by most F# data structures are the fold, fold_left, 
and fold_right operators. These apply a function to each element of a collection and accumu-
late a result. For fold_left and fold_right, the function is applied in left-to-right or right-to-
left order, respectively. If the name fold is used, then typically the ordering is left to right. Both 
functions also take an initial value for the accumulator. For example:

> List.fold_left (fun acc x -> acc + x) 0 [4; 5; 6];;
val it : int = 15

> Seq.fold (fun acc x -> acc + x) 0.0 [4.0; 5.0; 6.0];;
val it : float = 15.0

> List.fold_right (fun x acc -> min x acc) [4; 5; 6; 3; 5] System.Int32.MaxValue;;
val it : int = 3

The following are equivalent, but no explicit anonymous function values have been used:

> List.fold_left (+) 0 [4; 5; 6];;
val it : int = 15

> Seq.fold (+) 0.0 [4.0; 5.0; 6.0];;
val it : float = 15.0

> List.fold_right min [4; 5; 6; 3; 5] System.Int32.MaxValue;;
val it : int = 3

If used carefully, the various fold_right operators are pleasantly compositional, because 
they let you apply a selection function as part of the accumulating function:

> List.fold_right (fst >> min) [(3, "three"); (5, "five")] System.Int32.MaxValue;;
val it : int = 3

At the time of writing, the F# library also includes more direct accumulation functions 
such as Seq.sumByFloat and Seq.sumByInt. These use a fixed accumulation function (addition) 
with a fixed initial value (zero).

■Caution  Folding operators are very powerful and can help you avoid many explicit uses of recursion or 
loops in your code. However, they are sometimes overused in functional programming and can be hard for 
novice users to read and understand. Take the time to document uses of these operators, or consider using 
them to build simpler operators that apply a particular accumulation function.

Syme_850-4C15.fm  Page 434  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 435

Expressing Some Queries Using Sequence Expressions
Using aggregate operators to form queries is closely related to the sequence expression nota-
tion described in Chapter 3 and is used frequently in this book. For example, namesSalesOver30 
defined previously can also be defined as follows:

seq { for (name, age, dept) in people do
         if (age >= 30 && dept = "Sales") then
             yield name }

This is simply a different notation for the same computation. For very simple queries, F# 
sequence expressions also support an even more compact form where if/then clauses are 
replaced by when, the final do is dropped from the for statement, and yield is replaced by ->:

seq { for (name, age, dept) in people
      when (age >= 30 && dept = "Sales")
      -> name }

There is no difference between these two sequence expressions—it’s just a matter of syntax.
You can use sequence expressions in conjunction with the |> operator. For example:

seq { for i in numbers do
          if i % 2 = 0 then
              yield (i, i*i) }
|> Seq.truncate 3
|> sortBy revOrder

There are pros and cons to using sequence expression syntax for some parts of queries:

• Sequence expressions are very good for the subset of queries expressed using iteration 
(for), mapping (select/yield), and filtering (if/then/when/where). They are particularly 
good for queries containing multiple nested for statements.

• Other query constructs such as ordering, truncating, grouping, and aggregating must be 
expressed directly using aggregate operators such as Seq.orderBy and Seq.groupBy.

• Some queries depend on the index position of an item within a stream. These are best 
expressed directly using aggregate operators such as Seq.mapi.

• Many queries are often part of a longer series of transformations chained by |> operators. 
Often the type of the data being transformed at each step varies substantially through 
the chain of operators. These queries are best expressed using aggregate operator chains.

■Note  It is likely that in the future the F# sequence expression syntax will include support for specifying 
grouping and aggregation operations within the expression syntax. However, at the time of writing, it was 
necessary to explicitly use operators such as Seq.orderBy and Seq.groupBy for these operations.

Syme_850-4C15.fm  Page 435  Tuesday, October 23, 2007  8:35 AM



436 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

IN-MEMORY QUERIES AND LINQ

In this section you saw how you can use aggregate sequence operators and sequence expressions to query 
and manipulate in-memory data structures using a SQL-like syntax. This is essentially the idea behind 
Microsoft’s LINQ technology. We apply the same techniques to queries over relational data (LINQ to SQL) later 
in this chapter.

In Chapter 3 you saw that sequences can be used to wrap collections and that a number of collection 
data types implement the sequence interface. It is possible to provide parallel implementations for the iteration, 
aggregation, and transformation operations of these data types—for instance, a parallel list implementation 
that uses worker threads—and assume independence between the transformation steps. This idea forms the 
basis of PLINQ, a parallel version of LINQ. PLINQ also covers LINQ to SQL where parallelism is introduced in 
the SQL code that is generated behind the scenes.

Using Databases to Manage Data
Storing data in various files, reading them into memory, and querying and manipulating the 
resulting in-memory data collection is a sufficient approach for many applications working 
with data, but there comes a point where a more persistent data handling is required.

For example, consider a business that has two applications that need to access the same 
set of data about employees. One way to do this is to store data in a text file and work with this 
data file from both applications. But this approach is quite vulnerable; you would quickly realize 
how redundant text files can get when adding new pieces of data (say you wanted to add an 
address next to the name, department, and age of each employee) or if you wanted to group 
your employee data by introducing various relationships (say, multiple addresses per employee). 
Even if you did manage to find a good storage alternative, you would still have to modify both 
applications to read and write this new data format. Databases make scenarios like these much 
easier to cope with by enforcing centralized control of persistent data (data that is more persis-
tent than what appears in a single application) and by giving you the freedom to define, 
manipulate, and query this data in an application-neutral way.

Databases give you many benefits; some of the more important ones are listed here:

• Data security: Having a centralized control of data, it becomes possible to erect a full 
security system around your data, giving specific access rules for each type of access or 
parts of the database.

• Sharing of data: Any number of applications with the appropriate access rights can 
“connect” to your database and read the data stored within—all without the need to 
worry about containing the logic to extract this data. As you will see shortly, applications 
use various query languages (most notably SQL) to communicate with databases.

Syme_850-4C15.fm  Page 436  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 437

• A logical organization of data: You can write new applications that work with the same 
data without having to worry about how the data is physically represented and stored. 
On the basic level, this logical structure is given by a set of entities (data tables) and their 
relationships.

• Avoiding data redundancy: Having all requirements from each consuming application 
up front helps to identify a logical organization for your data that minimizes possible 
redundancy. For instance, you can use foreign keys instead of duplicating pieces of data. 
Data normalization is the process of systematically eliminating data redundancy, a large 
but essential topic that we don’t consider in this book.

• Transactions: Reading from and writing to databases occurs atomically, and as a result 
two concurrent transactions can never leave data in an inconsistent, inaccurate state. 
Isolation levels refer to the specific measures taken to ensure transaction isolation by 
locking various parts of the database (fields, records, tables). Higher isolation levels 
increase locking overhead and can lead to a loss of parallelism by rendering concurrent 
transactions sequential; on the other hand, no isolation can lead to inconsistent data.

• Maintaining data integrity: In other words, databases make sure that the data stored 
within is accurate. Having no redundancy is one way to maintain data integrity (if a piece 
of data is changed, it is changed in the only place it occurs; thus, it remains accurate); on 
the other hand, data security and transaction isolation are needed to ensure that the data 
stored is modified in a controlled manner.

THE RELATIONAL MODEL: DATA RELATIONS

A relational database table is essentially a two-dimensional matrix with rows (records) and columns (fields). A 
primary key is a column that uniquely identifies each row, and that means you cannot store the same value in 
a primary key column of any two records (so it is also a unique key). The primary key is usually a single numeric 
column, but it can also be composed as a set of columns, in which case it is called a composite primary key.

Tables can be linked or related to one another using relationships. To set up a relationship, you need 
foreign keys, which are columns that store primary key values in a “host” table. For instance, in a one-to-one 
relationship, a record in table A can be associated with a record in table B by A containing a foreign key to B’s 
primary key column, or vice versa, or both, depending on the navigability of the relationship. A one-to-one 
relationship is rare because it makes more sense to merge the two tables, unless the foreign key is allowed to 
be null. On the other hand, one-to-many (1..*) relationships are ubiquitous, allowing records in table A to be 
associated with multiple records in table B. For instance, a Customers table is likely to be associated with an 
Orders table this way, allowing each customer to have multiple orders. This can be modeled by storing a 
foreign key in Orders that refers to a Customers primary key. By moving two (or more) foreign keys in a 
separate so-called association table, we obtain a many-to-many relationship between those tables.

Referential integrity refers to the fact that only valid primary key values are allowed in a foreign key column.

Syme_850-4C15.fm  Page 437  Tuesday, October 23, 2007  8:35 AM



438 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

Choosing Your Database Engine
Table 16-1 shows some of the most common database engines, all of which can be used from 
F# and .NET.

Applications communicate with relational databases using Structured Query Language 
(SQL). Each time you create tables, create relationships, insert new records, or update or delete 
existing ones, you are explicitly or implicitly issuing SQL statements to the database. The examples 
in this chapter use a dialect of Standard SQL, called Transact-SQL (T-SQL), used by SQL Server 
and SQL Server Express. SQL has syntax to define the structure of a database schema (loosely 
speaking, a collection of data tables and their relations) and also syntax to manage the data 
within. These subsets of SQL are called Data Definition Language (DDL) and Data Manipulation 
Language (DML), respectively. The most important DDL statements are the following:

CREATE/ALTER/DROP TABLE
CREATE/DROP VIEW

Understanding ADO.NET
ADO.NET is the central database access machinery in the .NET Framework, and it provides full 
XML support, disconnected and typed datasets, scalability, and high performance. In this 
section, we give a brief overview of the ADO.NET fundamentals.

Table 16-1. Common Databases

Name Type Description Available from

PostgreSQL Open source Open source 
database engine

http://postgresql.org/

SQLite Open source Small, embeddable, 
zero-configuration SQL 
database engine

http://www.sqlite.org/

Firebird Open source Based on Borland Interbase http://www.firebirdsql.org/

MySQL Open source Reliable and popular 
database

http://www.mysql.com/

Mimer SQL Commercial Reliable database engine http://www.mimer.com/

Oracle Commercial One of the most popular 
enterprise database engines

http://www.oracle.com/

SQL Server Commercial Microsoft’s main 
database engine

http://www.microsoft.com/sql/
default.mspx

SQL Server Express Commercial Free and easy-to-use 
version of SQL Server

http://www.microsoft.com/sql/
editions/express/default.mspx

Sybase iAnywhere Commercial Mobile database engine http://www.ianywhere.com/

Syme_850-4C15.fm  Page 438  Tuesday, October 23, 2007  8:35 AM

http://postgresql.org
http://www.sqlite.org
http://www.firebirdsql.org
http://www.mysql.com
http://www.mimer.com
http://www.oracle.com
http://www.microsoft.com/sql
http://www.microsoft.com/sql
http://www.ianywhere.com


C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 439

With ADO.NET, data is acquired through a connection to the database via a provider. This 
connection serves as a medium to execute a command against; this can be used to fetch, update, 
insert, or delete data from the data store. Statements and queries are articulated as SQL text 
(CREATE, SELECT, UPDATE, INSERT, and DELETE statements) and are passed to the command object’s 
constructor. When you execute these statements, you obtain data (in the case of queries) or the 
number of affected rows (in the case of UPDATE, INSERT, or DELETE statements). The data returned 
can be processed via two main mechanisms: sequentially in a read-only fashion using a 
DataReader object or by loading it into an in-memory representation (a DataSet object) for 
further disconnected processing. DataSet objects store data in a set of table objects and along 
with them metadata that describes their relationships and constraints in a fully contained 
model.

ADO.NET 2.0 comes with four data providers: SQLClient, OleDb, Oracle, and Odbc. Table 16-2 
describes them and a couple of more commonly used providers. These providers act as the 
main gateway to the database.

The OleDb and ODBC data providers are provided for compatibility with earlier database 
access technologies. All ADO.NET connection and command classes have the data provider name 
as the prefix to their class name, as in OdbcConnection and OdbcCommand or OleDbConnection and 
OleDbCommand.

Establishing Connections to a Database Engine
Before you can do any work with a database, you need to establish a connection to it. For 
instance, you can connect to a locally running instance of SQL Server 2005 Express using the 
following code:

open System.Data
open System.Data.SqlClient

let connString = @"Server='.\SQLEXPRESS';Integrated Security=SSPI"
let conn = new SqlConnection(connString)

The value connString is a connection string. Regardless of how you created your connec-
tion object, to execute any updates or queries on it you need to open it first:

Table 16-2. Common Data Providers

Name Namespace Available From

SQLClient System.Data.SqlClient .NET 2.0

OleDb System.Data.OleDb .NET 2.0

Oracle System.Data.OracleClient .NET 2.0

ODBC System.Data.Odbc .NET 2.0

PostgreSQL Npgsql http://
npgsql.projects.postgresql.org/

MySql MySql.Data.MySqlClient http://dev.mysql.com/downloads/

Syme_850-4C15.fm  Page 439  Tuesday, October 23, 2007  8:35 AM

http://npgsql.projects.postgresql.org
http://npgsql.projects.postgresql.org
http://dev.mysql.com/downloads


440 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

> conn.Open();;
val it : unit = ()

If this command fails, then you may need to do one of the following:

• Install SQL Server 2005 Express or a newer version of the same.

• Consult the latest SQL Server Express samples for alternative connection strings.

• Add UserInstance='true' to the connection string. This starts the database engine as a 
user-level process.

• Change the connection string if you have a different database engine installed and running 
(for instance, if you are using SQL Server instead of SQL Server Express).

Connections established using the same connection string are pooled and reused depending 
on your database engine. Connections are often a limited resource and should generally be 
closed as soon as possible within your application.

■Tip  The “More on Connection Strings” sidebar contains more details on creating and managing connection 
strings. A useful website for complete connection strings is http://www.connectionstrings.com.

Creating a Database
Now that we have established a connection to the database engine, we can explicitly create 
a database from F# code by executing a SQL statement directly. For example, you can create a 
database called company as follows:

open System.Data
open System.Data.SqlClient

let execNonQuery conn s =
    let comm = new SqlCommand(s, conn, CommandTimeout = 10)
    comm.ExecuteNonQuery() |> ignore

execNonQuery conn "CREATE DATABASE company"

You will be using execNonQuery in the subsequent sections. This method takes a connection 
object and a SQL string and executes it as a SQL command, ignoring its result.

■Note  If you try to create the same database twice, you will receive a runtime exception. However, if you 
do intend to drop an existing database, you can do so by issuing a DROP DATABASE company SQL command. The 
DROP command can also be used for other database artifacts, including tables, views, and stored procedures.

Syme_850-4C15.fm  Page 440  Tuesday, October 23, 2007  8:35 AM

http://www.connectionstrings.com


C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 441

MORE ON CONNECTION STRINGS

Before a connection can be opened, its ConnectionString property has to be initialized, typically by passing 
it to the connection constructor. Although you can assemble this connection string by hand, it is error prone 
because it is subject to various insertion traps, and the exact keys that various providers accept are many and 
hard to remember.

For these reasons, it is common to either externalize entire connection strings in configuration files (discussed 
next) or use a ConnectionStringBuilder object from the appropriate provider namespace. This object 
contains all the known connection keys as properties that can be safely set, avoiding passing values of incor-
rect type or misspelling the key names. Consider the following example (this time, using SQL Server running 
on localhost and referencing the company database; initially, before that database is created, you should 
remove the InitialCatalog reference from your connection string):

open System.Data
open System.Data.SqlClient

let connStr = new SqlConnectionStringBuilder(DataSource="localhost",
                                             IntegratedSecurity=true,
                                             InitialCatalog="company")

On the other hand, not all keys accepted by the various providers are contained in these builder objects, 
and it is sometimes necessary to add custom key/value pairs. You can do this by using the Add method. For 
instance, for an OleDb provider, user credentials can be given as follows:

connStr.Add("User Id",  "your_user_id")
connStr.Add("Password", "your_password")

This naturally requires extra care to ensure that the proper keys are assigned. You can now access the 
resulting connection string by reading the ConnectionString property and use it to create a connection object:

let conn = new SqlConnection(connStr.ConnectionString)

You can also store your connection strings in configuration files (web.config for web applications or 
YourProgram.exe.config for regular applications). The main advantage here is that connection details 
can be configured without affecting the application. Consider the following configuration file:

<?xml version='1.0' encoding='utf-8'?>
<configuration>
  <connectionStrings>
    <add name="MyCS"
         connectionString="Data Source='localhost';Initial Catalog='company'" />
  </connectionStrings>
</configuration>

This defines a new connection string called MyCS. From within your application, you can read the value 
of this connection string using the ConfigurationManager class:

Syme_850-4C15.fm  Page 441  Tuesday, October 23, 2007  8:35 AM



442 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

#r "System.Configuration.dll"
open System.Configuration
open System.Data.SqlClient

let cs = ConfigurationManager.ConnectionStrings.Item("MyCS")
let conn = new SqlConnection(cs.ConnectionString)

For this to work, make sure you reference System.Configuration.dll in your project properties 
using the -r option, or use the #r directive in your code as above, because this DLL is not automatically 
included at compile time.

Creating Tables, Inserting, and Fetching Records
You can execute a simple SQL command to create a table; all you need is to specify its data 
fields and their types and whether null values are allowed. In the following example, we create 
an Employees table with a primary key EmpID and FirstName, LastName, and Birthday fields.

execNonQuery conn "CREATE TABLE Employees (
   EmpID int NOT NULL,
   FirstName varchar(50) NOT NULL,
   LastName varchar(50) NOT NULL,
   Birthday datetime,
   PRIMARY KEY (EmpID))"

We can now insert two new records as follows:

execNonQuery conn "INSERT INTO Employees (EmpId, FirstName, LastName, Birthday)
   VALUES (1001, 'Joe', 'Smith', '02/14/1965')"

execNonQuery conn "INSERT INTO Employees (EmpId, FirstName, LastName, Birthday)
   VALUES (1002, 'Mary', 'Jones', '09/15/1985')"

and retrieve two columns of what was inserted using a fresh connection and a data reader:

let query() =
    seq { use conn = new SqlConnection(connString)
          do conn.Open()
          use comm = new SqlCommand("SELECT FirstName, Birthday FROM Employees",
                                     conn)
          use reader = comm.ExecuteReader()
          while reader.Read() do
              yield (reader.GetString 0, reader.GetDateTime 1)  }

When we evaluate the query expression in F# Interactive, a connection to the database is 
created and opened, the command is built, and the reader is used to read successive elements:

Syme_850-4C15.fm  Page 442  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 443

> fsi.AddPrinter(fun (d: System.DateTime) -> d.ToString());;
val it : unit = ()

> query();;
val it : seq<string * System.DateTime> =
    seq [("Joe", 14/02/1965 00:00:00); ("Mary", 15/09/1985 00:00:00)]

The definition of query uses sequence expressions that locally define new IDisposable 
objects such as conn, comm, and reader using declarations of the form use var = expr. These 
ensure that the locally defined connection, command, and reader objects are disposed after 
exhausting the entire sequence. See Chapters 4, 8, and 9 for more details on sequence expres-
sions of this kind.

F# sequences are on-demand (that is, lazy), and the definition of query does not itself open 
a connection to the database. This is done when the sequence is first iterated, and indeed a 
connection is maintained until the sequence is exhausted.

Note that the command object’s ExecuteReader method returns a DataReader instance that 
is used to extract the typed data returned from the query. You can read from the resulting sequence 
in a straightforward manner using a sequence iterator. For instance, we can use a simple anon-
ymous function to print data on the screen:

> query() |> Seq.iter (fun (fn, bday) -> printfn "%s has birthday %O" fn bday);;
Joe has birthday 14/02/1965 00:00:00
Mary has birthday 15/09/1985 00:00:00
val it : unit = ()

The query brings the data from the database “in-memory,” though still as a lazy sequence. 
You can then use standard F# in-memory data transformations on the result:

> query()
  |> Seq.filter (fun (nm, bday) -> bday < System.DateTime.Parse("01/01/1985"))
  |> Seq.length;;
val it : int = 1

However, be aware that these additional transformations are happening in-memory and 
not on the database.

The command object has different methods for executing different queries. For instance, 
if you have a nonselect query, you need to use the ExecuteNonQuery method (for UPDATE, INSERT, 
or DELETE statements, like previously in execNonQuery), which returns the number of rows affected 
(updated, inserted, or deleted), or the ExecuteScalar method, which returns the first column of 
the first row of the result providing a fast and efficient way to extract a single value, such as the 
number of rows in a table or a result set.

Syme_850-4C15.fm  Page 443  Tuesday, October 23, 2007  8:35 AM



444 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

In the previous command, we extracted fields from the result rows using GetXXX methods 
on the reader object. The particular methods have to match the types of the fields selected in 
the SQL query, and a mismatch will result in a runtime InvalidCastException. For these and 
other reasons, DataReader tends to be suitable only in situations when the following items are 
true:

• You need to read data only in a sequential order (as returned from the database). DataReader 
provides forward-only data access.

• The field types of the result are known, and the query is not configurable.

• You are reading only and not writing data. DataReader provides read-only access.

• Your use of the DataReader is localized. The data connection is open throughout the 
reader loop.

COMMAND BEHAVIORS

Database connections are precious resources, and you should always release them as soon as possible. In the 
previous case, we did this by using a locally defined connection. It is also sufficient to implicitly close the reader 
by constructing it with the CloseConnection option that causes it to release and close the data connection 
upon closing the reader instance.

Further, common options include SchemaOnly that you can use to extract field information only (without 
any data returned), SingleResult to extract a single value only (the same as using the ExecuteScalar 
method discussed earlier), SingleRow to extract a single row, and KeyInfo to extract additional columns 
(appended to the end of the selected ones) automatically that uniquely identify the rows returned.

Using Untyped Datasets
Datasets allow applications to work in a so-called disconnected mode, which means the appli-
cation connects to the database, loads relevant data to an in-memory representation, and 
processes the data locally. When the processing is completed, the data in the in-memory 
dataset can be synchronized with the database.

ADO.NET datasets are compact in-memory databases and provide similar functionality to 
real databases; however, they are designed to work with a limited amount of data. A DataSet 
contains a collection of tables, the relationships between those tables, and various constraints. 
Tables are represented by the DataTable type. And like in a SQL server, tables are defined by 
their columns (DataColumn objects), and the data is stored in rows (DataRow objects).

In ADO.NET, the loading of data to the dataset and the synchronization to the database are 
coordinated by data adapters, for instance, SqlDataAdapter objects. Consider the following 
example in which we define a buildDataSet function that takes a connection and a SQL SELECT 
query and returns the resulting DataSet object:

Syme_850-4C15.fm  Page 444  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 445

let dataAdapter = new SqlDataAdapter()

let buildDataSet conn queryString =
    dataAdapter.SelectCommand <- new SqlCommand(queryString, conn)
    let dataSet = new DataSet()
    // This line is needed to configure the command
    let _ = new SqlCommandBuilder(dataAdapter)
    dataAdapter.Fill(dataSet) |> ignore  // ignore the number of records returned
    dataSet

The inferred types are as follows:

val dataAdapter : SqlDataAdapter
val buildDataSet : SqlConnection -> string -> DataSet

When setting up the data adapter, we initialize its SelectCommand property to the query string 
that was passed as an argument. This SQL query will be used to populate the DataSet when the Fill 
method is called. The somewhat mysterious line let _ = new SqlCommandBuilder(dataAdapter) 
creates a command builder object, which has the side effect of building the INSERT, UPDATE, and 
DELETE commands automatically from the query in SelectCommand, making the dataset capable 
of persisting changes. Also, note that we do not have to worry about opening or closing 
connections, because this is all taken care of with the data adapter; all we need is the connection 
object itself.

let dataSet =
    buildDataSet conn "SELECT EmpID, FirstName, LastName, Birthday from Employees"

The resulting DataSet will contain a single table that we obtain by index and print its content. 
This table is assembled based on the query and contains the columns that were part of the 
SELECT statement.

let table = dataSet.Tables.Item(0)
for row in table.Rows do
    printfn "%O, %O - %O"
        (row.Item "LastName")
        (row.Item "FirstName")
        (row.Item "Birthday")

When run in F# Interactive, this produces the following output:

Smith, Joe - 14/02/1965 00:00:00
Jones, Mary - 15/09/1985 00:00:00

Syme_850-4C15.fm  Page 445  Tuesday, October 23, 2007  8:35 AM



446 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

You can refer to each column of a row by the same field name that was used in the SELECT 
query. Adding a new row to table is treated similarly:

let row = table.NewRow()
row.Item("EmpID") <- 1003
row.Item("FirstName") <- "Eve"
row.Item("LastName") <- "Smith"
row.Item("Birthday") <- System.DateTime.Today
table.Rows.Add row
dataAdapter.Update(dataSet) |> ignore  // ignore the number of affected rows

Repeating the SQL query from the previous section reveals the addition of the new entry to 
the database table:

> query();;
val it : seq<string * System.DateTime> =
    seq [("Joe", 14/02/1965 00:00:00);
         ("Mary", 15/09/1985 00:00:00);
         ("Eve", 27/09/2007 00:00:00)]

Note that we utilize the INSERT statement that was built by the command builder object 
based on the selection query. Using untyped datasets is a great way to execute dynamic queries 
and to provide ad hoc access to your data. On the other hand, the lack of strong typing means 
that it suffers from possible type mismatches or incorrect field names.

Generating Typed Datasets Using xsd.exe
Typed datasets are derived from ordinary datasets and allow you to work with data in a type-
safe manner. This means that instead of (row.Item "FirstName" :?> string), you can simply 
write row.FirstName. Typed datasets can be created using the xsd.exe command-line tool included 
in the .NET SDK. This tool generates source code from XML schema documents, so to use it you 
must obtain an XSD document for the tables you want data objects for. (You can quickly generate 
an XML schema document using Visual Studio; select File ➤ New ➤ File ➤ XML Schema, and 
drag the needed data tables onto the design canvas.)

Alternatively, we can extract this schema definition using code:

open System.IO

let dataSet2 = buildDataSet conn "SELECT * FROM Employees"
let file name = Path.Combine(@"c:\fsharp", name)

do File.WriteAllText(file "employees.xsd", dataSet2.GetXmlSchema())

Using this extracted XSD document, we can now fire up xsd.exe from the command-line 
shell:

Syme_850-4C15.fm  Page 446  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 447

C:\fsharp> xsd.exe employees.xsd /d /l:CS /n:Employees.Data
Writing file 'C:\fsharp\Employees.cs'.
C:\fsharp> csc /target:library Employees.cs

This generates a C# file Employees.cs in the Employees.Data namespace containing a typed 
dataset for the Employees table, which we then compile to Employees.dll. We can now refer-
ence this DLL and create an instance of a typed dataset:

> #r @"employees.dll";;
Binding session to 'C:\fsharp\Employees.dll'...

> let employeesTable = new Employees.Data.NewDataSet();;
val employeesTable : Employees.Data.NewDataSet

> dataAdapter.Fill(employeesTable) |> ignore;;  // ignore the number of records
val it : unit = ()

> for emp in employeesTable._Table do
    printfn "%s, %s - %O" emp.LastName emp.FirstName emp.Birthday;;
Smith, Joe - 14/02/1965 00:00:00
Jones, Mary - 15/09/1985 00:00:00
Smith, Eve - 27/09/2007 00:00:00

Note that in the iteration emp is known to have a strong type that allows us to access fields 
LastName, FirstName, and Birthday.

Finally, it is very easy to dump out XML for our data:

> printf "%s" (employeesTable.GetXml());;
<NewDataSet>
  <Table>
    <EmpID>1001</EmpID>
    <FirstName>Joe</FirstName>
    <LastName>Smith</LastName>
    <Birthday>1965-02-14T00:00:00+00:00</Birthday>
  </Table>
  <Table>
    <EmpID>1002</EmpID>
    <FirstName>Mary</FirstName>
    <LastName>Jones</LastName>
    <Birthday>1985-09-15T00:00:00+01:00</Birthday>
  </Table>

Syme_850-4C15.fm  Page 447  Tuesday, October 23, 2007  8:35 AM



448 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

  <Table>
    <EmpID>1003</EmpID>
    <FirstName>Eve</FirstName>
    <LastName>Smith</LastName>
    <Birthday>2007-09-27T00:00:00+01:00</Birthday>
  </Table>
</NewDataSet>

or to write it to a file:

> System.IO.File.WriteAllText(file "employees.xml", employeesTable.GetXml());;
val it : unit = ()

Using Stored Procedures
Stored procedures are defined and stored in your relational database and provide a number of 
benefits over literal SQL. First, they are external to the application and thus provide a clear division 
of the data logic from the rest of the application. This enables you to make data-related modi-
fications without having to change application code or having to redeploy the application. 
Second, they are stored in the database in a prepared or compiled form and thus are executed 
more efficiently than literal SQL statements (although those can be “prepared” as well at a one-
time cost, but they are still contained in application space, which is undesirable). Supplying 
arguments to stored procedures simply instantiates the compiled formula.

In Visual Studio, you can add stored procedures just like any other database artifacts using 
the Server Explorer window by right-clicking the Stored Procedures item in the appropriate 
database and selecting Add New Stored Procedure. This creates a stored procedure template 
that can be easily customized. Alternatively, you can add stored procedures programmatically 
using the CREATE PROCEDURE SQL command. Consider the following stored procedure that 
returns the first and last names of all employees whose last name matches the given pattern:

execNonQuery conn "
CREATE PROCEDURE dbo.GetEmployeesByLastName
        (
        @Name nvarchar(50)
        )
AS
    SELECT
        Employees.FirstName, Employees.LastName
    FROM Employees
    WHERE Employees.LastName LIKE @Name"

We can wrap this stored procedure in a function as follows:

let GetEmployeesByLastName (name: string) =
    use comm = new SqlCommand("GetEmployeesByLastName", conn,
                              CommandType=CommandType.StoredProcedure)

Syme_850-4C15.fm  Page 448  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 449

    comm.Parameters.AddWithValue("@Name", name) |> ignore
    use adapter = new SqlDataAdapter(comm)
    let table = new DataTable()
    adapter.Fill(table) |> ignore
    table

We can execute the stored procedure as follows to find the employees with the last 
name Smith:

> for row in (GetEmployeesByLastName "Smith").Rows do
     printfn "row = %O, %O" (row.Item("FirstName")) (row.Item("LastName"));;
row = Joe, Smith
row = Eve, Smith
val it : unit = ()

Using Data Grids
You saw in Chapter 14 how data tables can be visualized in web applications. The return value 
of GetEmployeesByLastName from the previous section is a DataTable. These objects can also be 
directly bound to a Windows Forms data grid, a visual data control that supports the DataSource 
property and that can display data in a tabular format. Windows Forms controls were discussed 
in Chapter 11.

open System.Windows.Forms

let emps = GetEmployeesByLastName "Smith"
let grid = new DataGrid(Width=300, Height=200, DataSource=emps)
let form = new Form(Visible=true, TopMost=true)
form.Controls.Add(grid)

Figure 15-1 shows what you will see when you run this code.

Figure 15-1. Calling the GetEmployeesByLastName stored procedure

Syme_850-4C15.fm  Page 449  Tuesday, October 23, 2007  8:35 AM



450 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

Stored procedures can also perform deletions or updates (executed via the ExecuteNonQuery() 
method of the command object) or return data through “out” parameters. These can be 
defined using the OUTPUT keyword after a single parameter definition in the stored procedure. 
When calling the stored procedure, the out parameter has to have its direction set to 
ParameterDirection.Output, and after executing the stored procedure, its return value can be 
read using the Value property of the given parameter.

Working with Databases in Visual Studio
Many of the database tasks you saw earlier in this chapter can be easily performed using the 
built-in capabilities of Visual Studio. It also gives you good tools for working with stored proce-
dures and views, building SQL queries, or designing entity models.

Creating a Database
Assuming you have a version of SQL Server installed, you can create a new SQL Server database 
in Visual Studio’s Server Explorer (Ctrl+Alt+S, or View ➤ Server Explorer) by right-clicking Data 
Connections and selecting the Create New SQL Server Database menu item. In the screen 
shown in Figure 15-2, you can configure your connection details and specify the name of the 
new SQL Server database.

Figure 15-2. Creating a new Microsoft SQL Server database

Besides creating a new database, this also creates a Server Explorer connection to the new 
database, which you can use in Visual Studio to browse, create, manipulate, or delete tables, 
triggers, views, stored procedures, functions, and other database artifacts.

Visual Data Modeling: Adding Relationships
Various tools exist to assist application architects in designing their data layer. On a logical 
level, entity-relationship (ER) models provide a visual representation of data tables and their 
relationships, showing table fields, primary and foreign keys, and various constraints. Visual 

Syme_850-4C15.fm  Page 450  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 451

Studio simplifies the design process and supports visual modeling, so let’s take a brief look at 
how you can exploit its capabilities.

In the previous section, you used Visual Studio to create an SQL Server database called 
company, and earlier you saw how to create a table to store data about employees. We now want 
to extend this database with a new table that stores addresses and link the existing Employees 
table to it to enable us to store an optional address record for each employee. This means we 
allow multiple employees to live at the same address, but not multiple addresses for a given 
employee.

You can start by creating the Addresses table by right-clicking Add New Table from the 
Tables list item in Server Explorer ➤ Data Connections under the company database. You should 
add the columns shown in Figure 15-3.

Figure 15-3. The Addresses table in the designer mode

Note that we designated AddID as a non-null primary key (right-click, select Set Primary 
Key, and clear the Allow Nulls flag). Also, under the Column Properties you should set the Is 
Identity property to Yes; this will take care of automatically incrementing the primary key 
value when inserting new records. Next, create a new database diagram and add/drag your 
existing two tables, Employees and Addresses, onto it. Before you can add a relationship between 
these two tables, you must create a new nullable field in the Employees table to store the address 
foreign key; you should call it AddressID.

Now you are ready to link the two tables. First, right-click the Employees table, and select 
Relationships. Next, click Add to add a new foreign key relationship, name it FK_Employee_Address 
under Identity, and then click the ellipsis icon next to Tables and Columns Specification under 
General to configure the relationship. The foreign key table (the table that stores references to 
rows in another table) is Employees, and this is grayed out since you started by adding a rela-
tionship to the Employees table, but you can select the foreign key field to be AddressID. Then 
select the primary key table to be Addresses, with the field AddID. This will link the two tables by 
storing unique address IDs in the AddressID field of the Employees table records, giving you a 
one-to-many relationship between addresses and employees. Figure 15-4 shows our table 
design canvas after we are done. Similarly, linking two primary keys will yield a one-to-one 
relationship.

■Note  Linking tables via explicit relationships and controlling the nullability of the foreign key columns 
gives you fine control of referential integrity. For instance, you will run into a foreign key violation if you try to 
remove a record that is linked to another by a foreign key constraint. On the other hand, storing raw primary 
key values without an explicit constraint in related tables will lose these benefits.

Syme_850-4C15.fm  Page 451  Tuesday, October 23, 2007  8:35 AM



452 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

Figure 15-4. Adding a one-to-many relationship between Employees and Addresses

In the previous example, you had made the AddressID field nullable, meaning that it is 
possible that not every employee will have an address. You can also control what happens if 
employees or addresses are removed or updated. (However, as a design decision you need to 
carefully consider one-to-many relationships such as those shown earlier: should the change 
in the address of one employee cause the same change in the addresses of all other employees 
with the same address? Probably, if indeed it is the same address; otherwise, a particular 
employee should be updated with a different address record.) Placing a cascade on deletes will 
remove all records that are linked to a record that is deleted; naturally you should treat this 
option with care.

Accessing Relational Data with F# LinqToSql
In the following sections, we show how to perform relational database queries using F# LinqToSql. 
F# LinqToSql uses F# quotation meta-programming to represent SQL queries. These are then 
translated across to SQL and executed using the Microsoft LINQ libraries that are part of the 
.NET Framework 3.5. At the time of writing, you can work with F# LinqToSql as part of the Beta 
2 release of this framework, but check the latest samples in the F# distribution for full details 
and updates. In the following sections, we will assume we are working with the Northwnd.mdf 
database, a common database used in many LINQ samples. You can find instructions on 
downloading this sample database at http://www.expert-fsharp.com/Topics/Linq.

Syme_850-4C15.fm  Page 452  Tuesday, October 23, 2007  8:35 AM

http://www.expert-fsharp.com/Topics/Linq


C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 453

Generating the Object/Relational Mapping
The first step in using LINQ with F# is to generate the code that implements the object/relational 
(O/R) mapping for the database tables to which you are connecting. Let’s first look at why you 
want to do this. You learned previously how you can create simple tables and store and retrieve 
data using SQL code. However, this approach doesn’t work well for large data schemas with 
multiple related tables and constraints. For instance, creating a hierarchy of records in a number of 
related tables connected by foreign keys involves issuing multiple SQL statements to create the 
base data and to connect them in ways that obey the foreign key and other constraints that may 
be in place. Instead, it can often be much better to view records in tables as if they were objects. 
This is part of what an O/R mapping provides.

You already saw that datasets can be used to fetch and manipulate data in a disconnected 
way. These datasets are managed by data adapters that handle the gory details of producing 
and issuing the appropriate SQL statements to the underlying database when fetching records 
or synchronizing the changes made to the dataset back to the database. The main goal of a 
separate Data Access Layer (DAL) is to bridge the gap between two disparate domains: the 
database and your application logic. Practically speaking, this means freeing you from having 
to write SQL code and mingling it with your application code.

O/R mappings use “smart” data objects that can load and persist record-level data, and 
underneath they use objects such as ADO.NET datasets that are filled and flushed on demand.

The tool we focus on in this section is SqlMetal, which computes the O/R mapping for 
LINQ, part of the .NET Framework 3.5. For example, to use SqlMetal to generate bindings for 
the Northwnd.mdf database, you can use this:

sqlmetal /code:northwind.cs /namespace:Nwind /server:.\SQLExpress Northwnd.mdf

This assumes you are running SQL Server Express on your machine as a named instance. 
Further options are available when you run SqlMetal without parameters. You may want to use 
the /code and /xml flags to specify a different output file of the object bindings and to create a 
schema definition, respectively. The resulting code by default uses C#, which can be changed 
using the /language option. You can easily add the generated mappings under a separate DLL 
project in your F# solution and reference it from your F# project.

For the remainder of this section, we will be using the generated data object layer for the 
classic Northwind database, as used by the F# LINQ samples in the F# distribution. This C# 
source file contains classes for each data table in the Northwind database, and the relation-
ships between those tables are strongly typed.

■Tip  Regardless of your choice to work with SQL explicitly or implicitly, in applied database scenarios you 
will frequently want to separate data definitions entirely from application code. DDL scripts that create schemas, 
tables, triggers, and views and scripts that create seed data should be managed as separate artifacts that are 
executed prior to application deployment.

Building the DataContext Instance
One of the classes (with the same name as your database) generated by SqlMetal represents the 
entire database. This class inherits from the DataContext class and carries with it all the connection 

Syme_850-4C15.fm  Page 453  Tuesday, October 23, 2007  8:35 AM



454 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

details that are used when accessing the data contained in the database through the mapped 
objects. You can supply a connection string when you instantiate this main database object, as 
the following code snippet shows (to run this, you will need the Northwnd.mdf file in your source 
directory):

#light
#I @"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5"
#r "System.Core.dll"
#r "System.Data.Linq.dll"
#r "FSharp.Linq.dll"
#r "Northwind.dll"

open System
open System.Data.SqlClient
open Nwind

let db =
    let connB = new SqlConnectionStringBuilder()
    connB.AttachDBFilename <- __YOUR_SOURCE_DIRECTORY__ + @"\Northwnd.mdf"
    connB.IntegratedSecurity <- true
    connB.Enlist <- false
    connB.DataSource <- @".\SQLExpress"
    new Northwind(connB.ConnectionString)

Using LinqToSql from F#
So far you have seen how you can perform LINQ-style queries using a set of aggregate operators 
that work on enumerable objects, and you will see these very same operators query and manip-
ulate XML data in the coming section. Performing querying and manipulation on relational 
data is done almost the same way, except that these are implemented under the hood by calling 
LINQ. Assuming that you have mapped your employees database with SqlMetal and created the 
main database object as db, here is an example similar to those in earlier sections using F# 
LinqToSql syntax:

open Microsoft.FSharp.Quotations.Typed
open Microsoft.FSharp.Data.Linq
open Microsoft.FSharp.Linq.SequenceOps

let res =
    SQL <@ { for emp in (§db.Employees)
                 when emp.BirthDate.Value.Year > 1960
                      && emp.LastName.StartsWith "S"
                 -> (emp.FirstName, emp.LastName) }
           |> take 5 @>

for (first, last) in res do
  printfn "%s %s" first last

Syme_850-4C15.fm  Page 454  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 455

One notable difference between this and previous queries is the use of F# quotations inside <@ 
and @>. As shown in Chapter 9, quotations are reified syntax trees that can be read and manipulated 
by F# programs. Quoted expressions (provided by the Microsoft.FSharp.Quotations.Typed 
namespace) are of type Expr<'a>, where 'a is the type of the unquoted expression. You can 
read more on meta-programming via F# quotations in depth in Chapter 9.

Note that in F# quotation literals, the § “splice” symbol indicates that a value is being 
inserted into the quotation expression tree. This allows quotations to reference defined objects 
and values such as those representing the database.

The type of the previous SQL function is as follows:

val SQL: Expr<'a> -> 'a

This function works on F# quotations. These are converted to LINQ Expression objects 
and passed to the underlying LINQ mechanism to produce SQL that is then executed on demand.

■Note  When writing embedded queries using F# LinqToSql, you can use only a limited subset of operators 
to express your queries, in particular those defined in the F# LinqToSql library. Check the latest F# LINQ docu-
mentation for more details.

HOW LINQ APPEARS FROM F#

You can make LINQ-style queries on two types of objects: those implementing the IEnumerable<'a> / 
seq<'a>" and IQueryable<'a> interfaces. The former is used for in-memory objects or those that can be 
iterated one by one to provide a uniform way to query and transform, while the latter provides more customi-
zation in terms of the deriving object’s identity and enables you to control how those operations are actually 
carried out.

Much of the LINQ architecture relies on representing query expressions using reified expression trees 
through the System.Expressions.Expression type. This type is used to encode lambda expressions in 
C#, thus giving a straightforward syntax embedding for LINQ-style queries. In F#, meta-programming is built 
around a similar mechanism—F# quotations, discussed in Chapter 9. A bridge is used to convert between F# 
quotations and LINQ expression trees. LINQ queries on queryable objects are encoded as expression trees 
and translated to the underlying LINQ machinery at run time.

Working with XML As a Generic Data Format
XML provides a platform-, operating system–, and application-independent way to represent 
data in a plain-text format. In fact, nowadays XML is ubiquitous; it is widely used to describe 
application configuration data, as output format for applications such as Microsoft Word and 
Excel, to wrap data that is sent across networks or as a way to interact with the new generation 
of database servers, including Oracle 8i and newer or Microsoft SQL Server 2000 and 2005. 
These database servers can work with XML data directly, allowing you to update the database 

Syme_850-4C15.fm  Page 455  Tuesday, October 23, 2007  8:35 AM



456 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

from XML documents or extract data in XML. Data represented as XML carries various tags and 
meta-information that helps to identify what sort of data is contained within. This also amounts 
to a larger size, but typically this can be compensated for by applying compression on the 
XML text.

As an example, consider the following classic XML example (contacts.xml):

<contacts>
  <contact>
    <name>John Smith</name>
    <phone type="home">+1 626-123-4321</phone>
  </contact>
</contacts>

One way to represent and work with XML documents is via the XML Document Object 
Model (DOM) contained in the System.Xml namespace, and you saw how to work with this 
model in Chapter 9. Using the XML DOM constructors and methods, you can create the previous 
XML as follows:

open System.Xml

let doc = new XmlDocument()
let rootNode = doc.CreateElement "contacts"
doc.AppendChild rootNode |> ignore
let contactNode = doc.CreateElement "contact"
let nameNode = doc.CreateElement "name"
let nameText = doc.CreateTextNode "John Smith"
let phoneNode = doc.CreateElement "phone"
phoneNode.SetAttribute("type", "home")
let phoneText = doc.CreateTextNode "+1 626-123-4321"
nameNode.AppendChild nameText |> ignore
contactNode.AppendChild nameNode |> ignore
contactNode.AppendChild phoneNode |> ignore
phoneNode.AppendChild phoneText |> ignore
rootNode.AppendChild contactNode |> ignore

Here you are building up an XML document in a bottom-up fashion via a series of method 
calls that mutate the main XML document object. This means various XML elements cannot be 
constructed without this document container object and also construction by mutation makes 
the shape of the XML hard to read. Using XmlWriter is a bit more readable:

let doc = new XmlDocument()
let writer = doc.CreateNavigator().AppendChild()
writer.WriteStartElement "contacts"
writer.WriteStartElement "contact"
writer.WriteElementString ("name", "John Smith")
writer.WriteStartElement "phone"
writer.WriteAttributeString ("type", "home")
writer.WriteString "+1 626-123-4321"
writer.WriteEndElement()
writer.Close()

Syme_850-4C15.fm  Page 456  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 457

Here you don’t have to worry about creating the structure of the document; instead, you 
simply output each element in a sequence. XmlWriter will also take care of the closing tags, 
even if you forget them before closing the writer.

Constructing XML via LINQ
LINQ to XML (LinqToXml) offers a new and easier way to work with XML than using the tradi-
tional XML DOM. The System.Xml.Linq namespace contains everything you need to construct, 
load and save, manipulate, and query over XML documents. You can reference the DLL containing 
this namespace using this:

#I @"c:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5"
#r "System.Xml.Linq.dll"

Being a data format for tree-like structures, the XML trees are made up by a collection of 
XNode objects. Structurally, there are two XNode descendants that can contain other nodes (and 
thus inherit from XContainer, a subclass of XNode): XDocument and XElement. Therefore, all XML 
documents are represented either as an XDocument with nested XElement objects or simply as a 
collection of nested XElements.

A fully qualified XML document (an instance of XDocument) contains meta-information such as 
declarations (added as a child XDeclaration object) and a DTD (added as a XDocumentType) and may 
contain various XML processing instructions (instances of XProcessingInstruction). Typically, 
you need an XDocument only if the XML you produce is exchanged with the external world (such 
as information passed through a web service, for instance); in any other case, you will be working 
with a collection of nested XElement objects. These can have other XNode objects such as XText 
for storing text, which often represents binary data encoded using Base64 encoding mentioned 
in Chapter 10, or XComment for embedding comments. On the other hand, XElements typically 
have attributes (XAttribute)—key/value pairs, which are non-XNode objects. Both the XElement 
names (the tag itself) and the XAttribute keys are XName objects.

The easiest way to construct an XML document is to simply call the Parse method of the 
XDocument or XElement class on a string:

open System.Xml.Linq

let xml =
   "<contacts>
      <contact>
         <name>John Smith</name>
         <phone type=\"home\">+1 626-123-4321</phone>
      </contact>
   </contacts>"
let doc = XDocument.Parse xml

LinqToXml makes functional construction of XML possible. This is done by making all 
XML constituents first-class values that can be created and embedded in each other. The func-
tional construction also requires that we treat these values uniformly. Let’s assume we create a 
few shorthand functions for various XML constructors:

Syme_850-4C15.fm  Page 457  Tuesday, October 23, 2007  8:35 AM



458 CH AP T E R  1 5  ■  W O R K I N G  W I TH  D AT A

open System.Xml.Linq

let xname n                    = XName.op_Implicit(n)
let xdoc (el : #seq<XElement>) = new XDocument(Array.map box (Array.of_seq el))
let xelem s el                 = new XElement(xname s, box el)
let xatt  a b                  = new XAttribute(xname a, b) |> box
let xstr  s                    = box s

Using these functions, we can construct the XML from the beginning of this section as follows:

let doc =
    xdoc
        [ xelem "contacts"
            [ xelem "contact"
                [ (xelem "name" (xstr "John Smith"))
                  (xelem "phone"
                       [ xatt "type" "home"
                         xstr "+1 626-123-4321" ])
                ]
            ]
        ]

This also includes the default document header (<?xml version="1.0" encoding="utf-8"?>). 
If this header is not needed, you can simply omit the top-level call to xdoc.

Storing, Loading, and Traversing LinqToXml Documents
Loading an existing XML document is straightforward; you can call the Load static method on 
either an XDocument or an XElement:

let file name = Path.Combine(__YOUR_SOURCE_DIRECTORY__, name)

XElement.Load (file "contacts.xml")

Saving is just as easy, reusing doc from earlier:

doc.Save (file "contacts2.xml")

LinqToXML considers an XML document as a collection of XElement objects, each in a 
parent/child relationship. The root XElement’s Parent property is null, even if it is embedded in 
an XDocument, which can simply be ignored as far as the data in the XML is concerned. XElement 
children can be obtained using the Elements() method, or its override, which expects an XName 
argument and returns all elements with a given name.

let contacts = doc.Element(xname "contacts")  // Get the first contact
for elem in contacts.Elements() do
    printfn "Tag=%s, Value=%A" elem.Name.LocalName elem.Value

Syme_850-4C15.fm  Page 458  Tuesday, October 23, 2007  8:35 AM



C HA P TE R  1 5  ■  W O R K IN G  WI T H  D A TA 459

Querying XML
Queries on XML are often expressed using the XPath query language, which we don’t cover in 
detail in this book but which is supported by the types in the System.Xml namespace. As a good 
alternative to XPath, you can use the standard sequence operators to perform queries over 
XML data. The following example uses the helper functions and the file contacts2.xml created 
in the previous section:

open System
open System.Xml.Linq

let elem (e: XElement) s       = e.Element(xname s)
let elemv e s                  = (elem e s).Value

let contactsXml = XElement.Load(file "contacts2.xml")
let contacts = contactsXml.Elements ()

> contacts |> Seq.filter (fun e -> (elemv e "name").StartsWith "J")
           |> Seq.map (fun e -> (elemv e "name"), (elemv e "phone"));;
val it : seq<string * string> = seq [("John Smith", "+1 626-123-4321")]

In this example, we also defined some helper functions: elem to extract from an XElement 
object the first child element with a given name and elemv to convert that to a string value.

You can also use the query operators in building new XML:

xelem "results"
   [ contacts |> Seq.filter  (fun e -> (elemv e "name").StartsWith "J")  ]

This creates a <results> tag and inserts all employees whose last name starts with the 
letter J. You can also use sequence expressions to achieve the same:

xelem "results"
   [ for e in contacts do
         if (elemv e "name").StartsWith "J" then
             yield e ]

Summary
In this chapter, you saw how the functional programming techniques from Chapter 3 are often 
used to implement in-memory queries similar to those used to access databases. You also saw 
how to use sequence expressions as an alternative notation for these query expressions. We 
then turned to databases themselves and covered how to use ADO.NET to access relational 
databases. You also saw how to perform a variety of database-related tasks from Visual Studio. 
You next saw how to perform simple, typed queries using F# LinqToSql, taking particular advan-
tage of the object/relational data objects generated by the LINQ tool SqlMetal.exe. Finally, you 
saw how to use XML as a generic data format, partly by using functionality from the LINQ libraries.

In the next chapter, we’ll cover parsing techniques, including using the lexer and parser 
generator tools that come with the F# distribution.

Syme_850-4C15.fm  Page 459  Tuesday, October 23, 2007  8:35 AM



Syme_850-4C15.fm  Page 460  Tuesday, October 23, 2007  8:35 AM



461

■ ■ ■

C H A P T E R  1 6

Lexing and Parsing

In this chapter, you’ll take a closer look at lexing and parsing, topics introduced briefly in 
Chapters 9 and 11. In particular we introduce the lexer and parser generators, fslex and 
fsyacc, that come with the F# distribution. A typical scenario when these techniques and tools 
can come in handy is the following:

• You want to read “user-readable” input that has a well-defined syntax.

• You have a type (often an abstract syntax tree [AST] type) to represent this input.

The typical task is to parse the user input into your internal representation by breaking 
down the input string into a sequence of tokens (a process called lexical analysis) and then 
constructing an instance of your internal representation based on a grammar (via syntactic 
analysis). Lexing and parsing do not have to be separated, and there are often convenient .NET 
methods for extracting information from text in particular formats, as we show in this chapter. 
Nevertheless, it is often best to treat the two processes separately.

Our goal in this chapter is to give the background needed to use the built-in lexing and 
parsing facilities of .NET and F# effectively and to understand the options for lexing and parsing 
other input formats.

• For lexing, we cover simple line-based techniques to “crack” data formats using the 
.NET libraries directly. We then show how to use fslex to break text into simple tokens, 
strings with escape characters, and nested comments, and we show table-based token 
generation and stateful lexing (passing state as a parameter as opposed to using mutable 
state).

• For parsing, we cover the core parsing topics of languages, grammar formalisms, and 
various parser types. We then explain the typical problems for recursive-descent parsing 
and introduce fsyacc by giving a parser for Kitty, a small BASIC-like language. This high-
lights how to parse lists of symbols, how to assign precedence and associativity to your 
tokens and production rules, and how you can recover from parsing errors. We also look 
at conflicts that can arise in the fsyacc specifications and how to resolve them.

Finally, we cover combinator-based techniques, which are particularly useful for writing 
parsers for binary formats, without relying on fslex and fsyacc.

Syme_850-4C16.fm  Page 461  Wednesday, October 24, 2007  2:13 PM



462 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

SYNTAX VS. SEMANTIC ANALYSIS

Lexical analysis is concerned with identifying those tokens that make up a given input. A token is simply a 
piece of the input text that constitutes a word from the lexer’s perspective. This can be a number, an identifier, 
a special word, or any sequence of characters deemed to make a unit.

During syntax analysis you check whether the input (a series of tokens) is structured according to a set 
of grammar rules that makes up your language. For instance, the F# construct let a = b*2 in .. is 
syntactically correct, but it is a semantically valid expression only if the variable b is bound in the preceding 
scope. The notion of scope and binding depends on the semantics of your language, and these are the topics 
of interest for semantic analysis. In a typical compiler, for instance, source programs go through the following stages:

Lexing ➤ Parsing ➤ Semantic Analysis ➤ Optimization(s)/Transformations ➤ Code Generation
We cover examples of semantic analysis and optimization/transformation in Chapters 9 and 11.

Processing Line-Based Input
A common simple case of parsing and lexing is when you are working with an existing line-
based text-file format. In this case, parsing is often as easy as splitting each line of input at a 
particular separator character and trimming whitespace off the resulting partial strings:

> let line = "Smith, John, 20 January 1986, Software Developer";;
val line : string

> line.Split [| ',' |];;
val it : string [] = [|"Smith"; " John"; " 20 January 1986"; " Software Developer"|]

> line.Split [| ',' |] |> Array.map (fun s -> s.Trim());;
val it : string [] = [|"Smith"; "John"; "20 January 1986"; "Software Developer"|]

You can then process each column in the data format:

let splitLine (line: string) =
    line.Split [| ',' |] |> Array.map (fun s -> s.Trim())

let parseEmployee (line: string) =
    match splitLine line with
    | [| last; first; startDate; title |] ->
        last, first, System.DateTime.Parse(startDate), title
    | _ ->
        failwithf "invalid employee format: '%s'" line

The type of this function is as follows:

val parseEmployee : string -> string * string * System.DateTime * string

Syme_850-4C16.fm  Page 462  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 463

Here is an example use:

> parseEmployee line;;
val it : string * string * System.DateTime * string
       = ("Smith", "John", 20/01/1986 00:00:00, "Software Developer")

On-Demand Reading of Files
You can turn a file into an on-demand sequence of results using Seq.generate_using:

open System.IO

let readEmployees (fileName : string) =
    Seq.generate_using
       (fun () -> File.OpenText(fileName))
       (fun reader ->
             if reader.EndOfStream then None
             else Some(parseEmployee(reader.ReadLine())) )

The following example takes the first three entries from an artificially generated file 
containing 10,000 copies of the same employee:

> File.WriteAllLines("employees.txt", Array.create 10000 line);;
val it : unit

> let firstThree = readEmployees("employees.txt") |> Seq.take 3;;
val firstThree : (string * string * System.DateTime * string) list

> for (last,first,startDate,title) in firstThree do
      printfn "%s %s started on %A" first last startDate;;
John Smith started on 20/01/1986 00:00:00
John Smith started on 20/01/1986 00:00:00
John Smith started on 20/01/1986 00:00:00

This technique is often used to do exploratory analysis of large data files. Once the algo-
rithm is refined using a prefix of the data, the analysis can then easily be run directly over the 
full data file.

Using Regular Expressions
Another technique frequently used to extract information from strings is to use regular expres-
sions. The System.Text.RegularExpressions namespace provides convenient string matching 
and replacement functions. For example, let’s say you have a log file containing a record of 
HTML GET requests. Here is a sample request:

GET /favicon.ico HTTP/1.1

Syme_850-4C16.fm  Page 463  Wednesday, October 24, 2007  2:13 PM



464 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

The following code captures the name of the requested resource (favicon.ico) and the 
lower version number of the HTML protocol (1) used:

open System.Text.RegularExpressions

let parseHttpRequest line =
    let result = Regex.Match(line, @"GET (.*?) HTTP/1\.([01])$")
    let file = result.Groups.Item(1).Value
    let version = result.Groups.Item(2).Value
    file, version

The relevant fields are extracted by using the Groups attribute of the regular expression 
match to access the matched strings for each parenthesized group in the regular expression.

Tokenizing with FsLex
Although it is possible to hand-code lexers by using a range of ad hoc techniques such as those 
discussed in the previous section or by writing functions that explicitly manipulate lists of 
characters, doing so can be boring and time consuming. Instead, it is often easier to rely on a 
lexer generator to do this job for you. In this section, you will look at how to use the fslex tool 
that comes with the F# distribution to perform lexical analysis.

We’ll start with a simple example. Listing 16-1 shows a lexer that replaces all < and > char-
acters in an input stream with their HTML equivalents, &lt; and &gt;. Listing 16-2 shows a 
small program that uses this generated lexer.

Listing 16-1. Replacing Characters with Their HTML Equivalents: text2htmllex.fsl

{ (* You can add your helper functions here *) }

rule convertHtml chan = parse
 | '<'    { fprintf chan "&lt;";
            convertHtml chan lexbuf }
 | '>'    { fprintf chan "&gt;";
            convertHtml chan lexbuf }
 | eof    { () }
 | _      { fprintf chan "%s" (Lexing.lexeme lexbuf);
            convertHtml chan lexbuf }

Listing 16-2. Replacing Characters with Their HTML Equivalents: text2html.fs

#light
open System.IO
open System.Text

let main() =
  let args = System.Environment.GetCommandLineArgs()
   if args.Length <= 2 then
         let base = Path.GetFileName(args[0])
         eprintfn "Usage: %s dir pattern" base

Syme_850-4C16.fm  Page 464  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 465

         exit 1
   let directory = args[1]
   let pattern = args[2]

   for fileName in Directory.GetFiles(directory, pattern) do

      // Open a file stream for the file name
      use inputReader = File.OpenText(fileName)

      // Create a lex buffer for use with the generated lexer. The lex buffer
      // reads the inputReader stream.
      let lexBuffer = Lexing.from_text_reader Encoding.ASCII inputReader

      // Open an output channel
      let outputFile = Path.ChangeExtension(fileName,"html")
      use outputWriter = (new StreamWriter(outputFile) :> TextWriter)

      // Write the header
      fprintfn outputWriter "<html>\n<head></head>\n<pre>"

      // Run the generated lexer
      Text2htmllex.convertHtml outputWriter lexBuffer

      // Write the footer
      fprintfn outputWriter "</pre>\n</html>\n"

do main()

You can produce an F# source file from the previous lexer definition by running this:

fslex text2htmllex.fsl

This produces text2htmllex.fs, which contains the implementation of the lexer convertHtml. 
This lexer is imperative, in that it prints to an output stream instead of returning tokens. The 
signature of the entry point to the generated lexer is as follows:

val Text2htmllex.convertHtml: System.IO.TextWriter -> Lexing.lexbuf -> unit

You can now compile the driver and the lexer together:

fsc text2htmllex.fs text2html.fs

You can run the resulting program as follows, giving a source directory and a file pattern 
and producing an .html version of each file that matches by applying the HTML conversion:

text2html . *.txt

Syme_850-4C16.fm  Page 465  Wednesday, October 24, 2007  2:13 PM



466 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

Let’s take a look at the previous example more closely. The rule section of text2htmllex.fsl 
defines the lexer, which takes the output channel as an argument before the lexing buffer. It 
says that if you encounter the < or > character, you should output its HTML equivalent and 
recursively call your lexer to process the remaining input. If you find the end of the file, you 
simply stop, and for any other character you print it to the output channel. In each rule, you 
can refer to a predefined variable (visible only inside the rule) named lexbuf that has the type 
Lexing.lexbuf, an instantiation of the Microsoft.FSharp.Tools.FsLex.LexBuffer type. You can 
access various bits of information through this variable about the lexing state; some of these 
are collected in Table 16-1.

The driver is all F# code. You check the input arguments and then iterate through files in 
the directory given by the first argument whose name matches the pattern given by the second 
argument. You then open each file and instantiate your generated lexer with the following lines:

      use inputReader = File.OpenText(fileName)
      let lexBuffer = Lexing.from_text_reader Encoding.ASCII inputReader
      ...
      Text2htmllex.convertHtml outputWriter lexBuffer

This code uses some important functions from the Lexing module. Table 16-1 shows 
the important functions in this module, along with some of the properties of the LexBuffer 
(lexbuf) type.

Table 16-1. Some Functions from the Lexing Module and Properties of the LexBuffer Type

Function Type Description

Lexing.from_string string -> lexbuf Makes a lexbuf for the 
given string

Lexing.from_text_reader #Encoding -> #TextReader -> lexbuf Makes a lexbuf for the given 
text reader

Lexing.from_binary_reader #BinaryReader -> lexbuf Makes a lexbuf for the given 
binary reader

Lexing.lexeme Lexing.lexbuf -> string Returns the matched string

LexBuffer.EndPos Lexing.position Gets/sets the current posi-
tion associated with the end 
of the matched token

LexBuffer.IsPastEndOfStream bool True if the lex buffer has 
exhausted the available 
input

LexBuffer.StartPos Lexing.position Gets/sets the current posi-
tion associated with the start 
of the matched token

Syme_850-4C16.fm  Page 466  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 467

■Note  FsLex works by constructing a table-driven finite automaton that is executed to consume the input 
character sequence one by one until a full token can be returned. The automaton blocks until further input is 
received. The states of this machine are derived from the regular expressions defined by each rule. Single-character 
literals advance the machine to a new state, and repetitions cause it to remain in the same state. These states 
form a graph, and the edges between the states are those symbols that advance between the states.

The fslex Input in More Detail
You saw the basic structure of lexer files in the preceding example, which contained a handful 
of rules only. In general, fslex input files have the following simple structure:

// Preamble – any user code you need for the lexer, such as opening modules, etc.
{ [Code] }

// Definitions – named patterns that you can use in the rules or other definitions
let [Ident_1] = [Pattern]
let ...

// Rules – text patterns that trigger certain actions
rule [Rule_1] [arg1... argn] = parse
   | [Pattern] { [Action] }
   | ...
   | [Pattern] { [Action] }
and [Rule_2] [arg1... argn] = parse
    ...
rule [Rule_3] ...

// Epilogue – code that can call the lexer rules defined above
{ [Code] }

Each rule defined in the lexer will become an F# function that can be accessed from other 
modules and the lexer itself. Comments can be placed between (* and *), and you can also use 
// comments in the actions just like in any other F# code. Patterns can be any of the forms 
listed in Table 16-2.

Lexical actions are pieces of F# code enclosed in braces that are executed when a lexer 
match is made. You can put any logic here that you like; typically you construct a token. Tokens 
are specified in the parser definition using the %token directive (you will see this later in this 
chapter), or if you do not have a parser, any user-defined type will do. If your lexer rules do not 
construct tokens or if your lexer is simple enough, often you may simply want to put all driver 
code in the epilogue section to create a stand-alone lexer.

Syme_850-4C16.fm  Page 467  Wednesday, October 24, 2007  2:13 PM



468 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

Generating a Simple Token Stream
Listing 16-3 shows a lexer that constructs a list of tokens that then is printed. It can recognize 
integers, floats, identifiers, and the symbols ^, *, -, and +. Any other character will cause a 
runtime exception.

Listing 16-3. simpleTokensLex.fsl: Lexing Simple Tokens: Integers, Floats, and Identifiers

{
type token =
    | INT    of int
    | FLOAT  of float
    | ID     of string
    | STRING of string
    | PLUS | MINUS | TIMES | HAT
    | EOF
}

let num        = ['0'-'9']+
let intNum     = '-'? num
let floatNum   = '-'? num ('.' num)? (['e' 'E'] num)?
let ident      = ['a'-'z']+
let whitespace = ' ' | '\t'

Table 16-2. Patterns in Lexer Rules

Pattern Form Description

'c' Character constants; in single quotes such as '+' and '.'

['a' 'b' 'c'] Character sets; matches any character in the given set

['a'-'z'] Character ranges; matches any character in the given range, in 
ASCII ordering

[^'a' 'b' 'c'] Complementary character sets; matches any character except those 
in the given character set

"abc" Matches the given string of characters

_ Matches any character

eof Matches the end of the stream

identifier A predefined named regular expression (named earlier in the file 
using a let binding)

pattern? Zero or one occurrences of pattern

pattern+ One of more occurrences of pattern

pattern* Zero or more occurrences of pattern

pattern1 | pattern2 Either pattern1 or pattern

pattern1 pattern2 Concatenation; pattern1 followed by pattern2

Syme_850-4C16.fm  Page 468  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 469

let newline    = '\n' | '\r' '\n'

rule token = parse
    | intNum     { INT (Int32.of_string (Lexing.lexeme lexbuf)) }
    | floatNum   { FLOAT (Float.of_string (Lexing.lexeme lexbuf))  }
    | ident      { ID (Lexing.lexeme lexbuf)  }
    | '+'        { PLUS }
    | '-'        { MINUS }
    | '*'        { TIMES }
    | '^'        { HAT }
    | whitespace { token lexbuf }
    | newline    { token lexbuf }
    | eof        { EOF }
    | _          { failwithf "unrecognized input: '%s'" (Lexing.lexeme lexbuf) }

You can generate the lexer using this:

fslex simpleTokensLex.fsl

The generated lexer contains a single module SimpleTokensLex (named after the input file) 
with one entry-point function for each rule. In this case, the type of this function will be as 
follows:

val token: Lexing.lexbuf -> SimpleTokensLex.token

The following indicates how you can imperatively generate a simple token stream from a 
string and print the results in F# Interactive:

> #load "simpleTokensLex.fs";;
...
> let lexbuf = Lexing.from_string "3.4 x 34 xyx";;
val lexbuf : Lexing.lexbuf

> SimpleTokensLex.token lexbuf;;
val it : SimpleTokensLex.token = FLOAT 3.4

> SimpleTokensLex.token lexbuf;;
val it : SimpleTokensLex.token = ID "x"

> SimpleTokensLex.token lexbuf;;
val it : SimpleTokensLex.token = INT 34

> SimpleTokensLex.token lexbuf;;
val it : SimpleTokensLex.token = ID "xyx"

Syme_850-4C16.fm  Page 469  Wednesday, October 24, 2007  2:13 PM



470 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

> SimpleTokensLex.token lexbuf;;
val it : SimpleTokensLex.token = EOF

> SimpleTokensLex.token lexbuf;;
Microsoft.FSharp.Core.FailureException: End of file on lexing stream

Tracking Position Information Correctly
Lexers generated by fslex keep track of partial information about the position of the most 
recently accepted token within the source stream of characters. In particular, the StartPos and 
EndPos properties on the LexBuffer type return Lexing.Position values. A partial signature of 
this position type is as follows:

type Position with
     // The file name associated with the input stream.
     member FileName : string

     // The line number in the input stream, assuming fresh
     // positions have been updated by modifying the EndPos
     // property of the LexBuffer as each newline is lexed.
     member Line : int

     // The character number in the input stream
     member AbsoluteOffset : int

     // The column number marked by the position.
     member Column : int

     // Convert a position just beyond the end of a line to a
     // position at the start of the next line.
     member NextLine : position
     ...
end

In some cases, certain lexer actions must perform extra bookkeeping. In particular, the lexer 
should update the EndPos property of the LexBuffer each time a newline marker is processed 
(this is left up to the lexer since the interpretation of newline characters can differ between 
various lexers). In particular, you can change the endOfLine rule in the lexer in Listing 16-3 to 
make this update:

    | newline    { lexbuf.EndPos <- lexbuf.EndPos.NextLine;
                   token lexbuf }

You can now experiment with this updated lexer in F# Interactive and examine the StartPos 
and EndPos properties after fetching each token:

Syme_850-4C16.fm  Page 470  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 471

> let lexbuf = Lexing.from_string "3.4 \n 34 xyx";;
val lexbuf : Lexing.lexbuf

> SimpleTokensLex.token lexbuf;;
val it : SimpleTokensLex.token = FLOAT 3.4

> (lexbuf.StartPos.Line, lexbuf.StartPos.Column);;
val it : int * int = (0,0)

> (lexbuf.EndPos.Line, lexbuf.EndPos.Column);;
val it : int * int = (0,3)

> SimpleTokensLex.token lexbuf;;
val it : SimpleTokensLex.token = INT 34

> (lexbuf.StartPos.Line, lexbuf.StartPos.Column);;
val it : int * int = (1,1)

Often you may need to attach position information to each lexer token. However, when 
using lexers in conjunction with fsyacc parser generators, the position information is auto-
matically read after each token is processed and then stored in the parser’s state. We return to 
this topic later in this chapter.

Handling Comments and Strings
So far you have seen examples with one lexing rule only. This is because the main lexer rule was 
sufficient for all tokens and you have not yet come across the need to lex input that cannot be 
described by a regular expression. To illustrate this point, for instance, say you want to lex 
comments enclosed by (* and *). Formally, you have an opening delimiter, followed by the 
body of the comment, and finally enclosed by the closing delimiter. The first attempt, shown 
here:

"(*" _* "*)"

fails because the middle pattern matches everything and you will never reach the closing *). 
So, the best compromise could be follows:

"(*" [^ '*']* "*)"

where you match the inside of the comment as long as you do not see a star symbol and then 
you try to match the closing *). This of course will fail on any comment that contains a star 
symbol inside. You can play with this regular expression a little more. The inside of the comment is 
either anything but a star or all those stars that are not followed by another star or right parenthesis:

"(*" ([^ '*'] | ('*'+ ([^ '*' ')'])))* '*'+ ')'

Syme_850-4C16.fm  Page 471  Wednesday, October 24, 2007  2:13 PM



472 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

This is about as close as you can get, and yet even this pattern has a problem: it cannot 
match nested comments; it will always stop at the first closing delimiter, ignoring all nested 
comment openers.

You can handle this problem by using a multirule lexer. The following rules show the addi-
tions you can make to the simpleTokensLex.fsl lexer from Listing 16-3 in order to properly 
handle comments and strings:

rule token =
    ...
    | "(*"        { comment lexbuf; token lexbuf }
    | "\""        { STRING (string lexbuf.StartPos "" lexbuf) }

and comment = parse
    | "(*"       { comment lexbuf; comment lexbuf  }
    | "*)"       { () }
    | "\n"       { lexbuf.EndPos <- lexbuf.EndPos.NextLine;
                   comment lexbuf }
    | eof        { failwith "Unterminated comment" }
    | _          { comment lexbuf }

and string pos s = parse
    | "\\" ('"' | 'n' | 'r' | 't')
                  { let s' = s + (match Lexing.lexeme lexbuf with
                         | "\\\"" -> "\""
                         | "\\n" ->  "\n"
                         | "\\r" ->  "\r"
                         | "\\t" ->  "\t"
                         | "\\\\" -> "\\"
                         | _ ->      "") in
                    string pos s' lexbuf }
    | "\""         { s }
    | "\n"         { lexbuf.EndPos <- lexbuf.EndPos.NextLine;
                     string pos (s + "\n") lexbuf }
    | eof          { failwithf "end of file in string started at or near %A" pos }
    | _            { string pos (s + (Lexing.lexeme lexbuf)) lexbuf }

Comment processing begins when you encounter (* in the token rule. When the closing *) 
is encountered, you exit one invocation of the comment rule. The idea is that you deal with nested 
comments by recursively applying the lexer when a nested comment is reached. Note the double 
invocation of comment lexbuf for nested comment delimiters: once to tokenize the comment 
that belongs to the opener and again to tokenize the rest of the enclosing comment. There are 
also two further matches within the comment rule. If you hit the end of the source stream, you 
have an unterminated comment and you raise an exception, and in every other case you move 
forward inside the comment.

In the example, strings are also handled by a separate lexer rule string that is invoked by 
the token lexer when you encounter the double-quote character. This rule takes two param-
eters: the string consumed so far and the start position of the string. The latter is used to report 
a nicer error for an unterminated string (note you could also use this technique for the matching 
case for comments). You can also check whether you have an escaped character in the input. 

Syme_850-4C16.fm  Page 472  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 473

If so, you append the appropriate escape sequence to the string already accumulated and advance 
the current position. Upon encountering the closing character, you return the overall string. An 
imperative System.Text.StringBuffer object could also have been used to accumulate the 
string, which is more efficient if strings get very long.

■Note  Because lexer rules can pass arguments, there is little need to use mutable state in a lexer—simply 
pass additional arguments.

Recursive-Descent Parsing
You can now turn your attention to parsing. Let’s assume for the moment you are writing an 
application that performs simple symbolic differentiation, say on polynomials only. Let’s say 
you want to read polynomials such as x^5-2x^3+20 as input from your users, which in turn will 
be converted to your internal polynomial representation so that you can perform symbolic 
differentiation and pretty-print the result to the screen. One way to represent polynomials is as 
a list of terms that are added or subtracted to form the polynomial:

type term =
    | Term  of int * string * int
    | Const of int

type polynomial = term list

For instance, the polynomial in this example is as follows:

[Term (1,"x",5); Term (-2,"x",3); Const 20]

In Listing 16-3 we built a lexer and a token type suitable for generating a token stream for 
the input text (shown as a list of tokens here):

[ID "x"; HAT; INT 5; MINUS; INT 2; ID "x"; HAT; INT 3; PLUS; INT 20]

Listing 16-4 shows a recursive-decent parser that consumes this token stream and converts 
it into the internal representation of polynomials. The parser works by generating a lazy list for 
the token stream. Lazy lists are a data structure in the F# library module Microsoft.FSharp.
Collections.LazyList, and they are a lot like sequences with one major addition—lazy lists 
effectively allow you to pattern match on a sequence and return a residue lazy list for the tail of 
the sequence.

Listing 16-4. Recursive-Descent Parser for Polynomials

#light
open SimpleTokensLex
open Lexing

Syme_850-4C16.fm  Page 473  Wednesday, October 24, 2007  2:13 PM



474 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

type term =
    | Term  of int * string * int
    | Const of int

type polynomial = term list
type tokenStream = LazyList<token * position * position>

let tryToken (src: tokenStream) =
    match src with
    | LazyList.Cons ((tok, startPos, endPos), rest) -> Some(tok, rest)
    | _ -> None

let parseIndex src =
    match tryToken src with
    | Some (HAT, src) ->
        match tryToken src with
        | Some (INT num2, src) ->
            num2, src
        | _ -> failwith "expected an integer after '^'"
    | _ -> 1, src

let parseTerm src =
    match tryToken src with
    | Some (INT num, src) ->
        match tryToken src with
        | Some (ID id, src) ->
           let idx, src = parseIndex src
           Term (num, id, idx), src
        | _ -> Const num, src
    | Some (ID id, src) ->
         let idx, src = parseIndex src
         Term(1, id, idx), src
    | _ -> failwith "end of token stream in term"

let rec parsePolynomial src =
    let t1, src = parseTerm src
    match tryToken src with
    | Some (PLUS, src) ->
        let p2, src = parsePolynomial src
        (t1 :: p2), src
    | _ -> [t1], src

The functions here have the following types:

Syme_850-4C16.fm  Page 474  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 475

val tryToken        : tokenStream -> (token * tokenStream) option
val parseIndex      : tokenStream -> int * tokenStream
val parseTerm       : tokenStream -> term * tokenStream
val parsePolynomial : tokenStream -> polynomial * tokenStream

You can turn the fslex-generated lexer for the lexer specification in Listing 16-3 into a 
tokenStream using the following code:

let tokenStream inp : tokenStream =
    // Generate the token stream as a seq<token>
    seq { let lexbuf = Lexing.from_string inp
          while not lexbuf.IsPastEndOfStream do
              match SimpleTokensLex.token lexbuf with
              | EOF -> yield! []
              | token -> yield (token, lexbuf.StartPos, lexbuf.EndPos) }

    // Convert to a lazy list
    |> LazyList.of_seq

let parse input =
    let src = tokenStream input
    let result, src = parsePolynomial src
    match tryToken src with
    | Some _ -> failwith "unexpected input at end of token stream!"
    | None -> result

These functions have the following types:

val tokenStream: string -> tokenStream
val parse: string -> polynomial

Note in the previous examples that you can successfully parse either constants or complete 
terms, but once you locate a HAT symbol you insist on having a number following. This sort 
of parsing, when you look only at the next token to guide the parsing process is referred to as 
LL(1), which stands for Left-to-right, Leftmost derivation parsing, where 1 means that only one 
look-ahead symbol is used. The parser approach we used earlier is called recursive-descent. 
This has various advantages and disadvantages, and we will be discussing those in a bit. To 
conclude here, you can look at the parse function in action:

> parse "1+3";;
val it : polynomial = [Const 1; Const 3]

> parse "2x^2+3x+5";;
val it : polynomial = [Term (2,"x",2); Term (3,"x",1); Const 5]

Syme_850-4C16.fm  Page 475  Wednesday, October 24, 2007  2:13 PM



476 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

MORE ON GRAMMARS AND THEIR NOTATIONS

LL parsers such as the recursive-descent parser in the previous example are based on a subset of the so-
called context-free grammars (CFGs). These can be defined by giving their corresponding grammar as a set of 
production rules. For context-free languages each rule has a single nonterminal symbol (the head) on the left 
side, defining a substitution of the nonterminal and/or terminal symbols on the right side. A terminal symbol is 
simply part of the concrete string that is parsed. A convenient notation for describing context-free languages 
is the Backus-Naur Form (BNF). Here, nonterminals are inside brackets (<>), and terminal symbols are either 
named (such as ID) or quoted. The Extended BNF (EBNF) notation provides further convenient operators to 
express optionality (inside brackets) and repetition (using the +, ?, and * symbols with the same meaning as 
in regular expressions), thus providing a more succinct and readable description.

The recursive-descent parser from this section parses each nonterminal in the following simple grammar 
expressed in EBNF:

<polynomial> ::= <term> ['+' <polynomial>]
<idxterm> ::=  ID '^' NUM | ID
<term> ::=  NUM [ <idxterm> ] | <idxterm>

Grammars give rise to corresponding derivations; for instance, consider how 2x^3+1 is derived:

<polynomial> ➤ <term> '+' <polynomial>
             ➤ NUM <idxterm> '+' <polynomial>
             ➤ NUM ID '^' NUM '+' <polynomial>
             ➤ NUM ID '^' NUM '+' <term>
             ➤ NUM ID '^' NUM '+' NUM
             ➤ 2x^3 + 1

You could produce different derivations depending on what nonterminal you expand at each step. In the 
previous derivation, we chose to always expand the leftmost nonterminals, but you could just as easily expand 
from the right or even mix the two strategies. Usually, we stick to either left or rightmost derivation using LL 
or LR parsers, respectively, and if your grammar is written in a well-defined way, you will get the same parse 
tree. On the other hand, if given a particular derivation strategy you get more than one parse tree for a given 
input, the grammar is said to be ambiguous.

As we mentioned in the example, recursive-descent parsers are LL(n) parsers; in other words, they perform 
leftmost derivation. Typically only a single look-ahead symbol is used to drive parsing—these are LL(1) parsers—
but our example can be extended to LL(n) for some n>1, since inside a given parsing function you can retrieve 
several look-ahead symbols and make the appropriate parsing decisions. This is possible because our look-
ahead calculation is nondestructive; in other words, there is no global parsing state. Instead, we pass around 
the particular input string (the remaining token stream) instance on which we want to base our parsing.

LR parsers are a special subset of bottom-up parsers; they read their input from left to right and produce 
a rightmost derivation (that is, always the rightmost nonterminal is expanded during parsing). Special subsets 
include Simple LR (SLR) and Look-Ahead LR (LALR; as generated by the yacc family of parser generators, 
including fsyacc, as you will see in the coming sections), and extensions include LR(1) (where the parse tables 
are typically larger because of the one symbol look-ahead), and Generalized LR (GLR), which can handle 
nondeterminism and ambiguous grammars.

Syme_850-4C16.fm  Page 476  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 477

Limitations of Recursive-Descent Parsers
There are various limitations you cannot handle with recursive-descent parsers. For instance, 
if you translate a left-recursive production into code, you get an infinite recursion, like so:

<polynomial> ::= <polynomial> '+' <term> | <term>

which would correspond to the following:

let rec parsePolynomial src =
    let poly, src = parsePolynomial src
    ...

Another common problem with LL(k) parsing for some k>=1 is that the grammar rules for 
a given nonterminal cannot start with the same symbols, or else there is no easy way to decide 
which rule to apply (because each is decided to be applicable upon checking k number of 
symbols). In such cases, left-factoring can be applied. For example, moving the symbols after 
the common part into another production, as shown here:

<polynomial> ::= <term> | <term> '+' <polynomial>

can be refactored as

<polynomial> ::= <term> <polymomialTail>
<polynomialTail> ::= EPSILON  | '+' <polynomial>

Here EPSILON is the empty symbol, so the function that parses polynomialTail would both 
check for a plus symbol and then issue a call to parse a polynomial or exit in the absence of an 
initial plus symbol leaving the input unchanged. Although this case is relatively simple (you 
can parse terms until they are followed by a plus sign iteratively), coding such grammar rules 
in the general case is quite cumbersome.

Problems such as these arise because you have to make parsing decisions early on (such as 
deciding which grammar rule you are pursuing if there are multiple for a given nonterminal), 
because they aim to construct the parse tree from the top and proceed downward. LR parsers, 
on the other hand, aim to postpone these decisions as much as possible and construct the 
parse tree bottom-up, resulting in much more flexibility both in terms of how naturally grammar 
rules can be expressed and how they can be mapped into code.

Parsing with FsYacc
The tool fsyacc generates LALR(1) parsers, which are a special subset of LR(1) parsers where 
the state table is compressed by merging similar states. This in practice does not limit the 
languages that can be parsed, but it does result in significant savings over the parse table 
size. The generated parser automaton performs one of four distinct operations in any state 
based on the look-ahead token, and these are important to understand if you have various 
grammar conflicts to fix. It can shift the look-ahead (always a terminal symbol) to its stack, 
reduce a number of stack entries by a grammar rule leaving the head symbol in their place, 
accept the input as syntactically correct, or reject in the opposite case. Parsing proceeds until an 
accept or a reject state is reached.

Syme_850-4C16.fm  Page 477  Wednesday, October 24, 2007  2:13 PM



478 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

We’ll first show how to develop a parser for a simple programming language. A sample 
fragment of the BASIC-like language we want to parse is shown here:

a := 1;
b := 0;
if a then d := 20 + 20;
if b then d := 40 * 20 + 20;
print d;
while d do
    begin
        d := d + 1;
        print d
    end;
print d

For simplicity we will call this language Kitty. As the previous example shows, Kitty supports 
naming values, printing values, basic arithmetic operators, and a while and conditional construct. 
The Ast module (shown in Listing 16-5) defines the internal representation for Kitty programs.

Listing 16-5. kittyAst.fs: Defining the AST for Kitty Programs

type expr =
    | Val   of string
    | Int   of int
    | Plus  of expr * expr
    | Minus of expr * expr
    | Times of expr * expr

type stmt =
    | Assign     of string * expr
    | While      of expr * stmt
    | Seq        of stmt list
    | IfThen     of expr * stmt
    | IfThenElse of expr * stmt * stmt
    | Print      of expr

type prog = Prog of stmt list

The Lexer for Kitty
Listing 16-6 shows a lexer for the language in the file kittyLexer.fsl. It is similar to lexers 
developed earlier in this chapter. The one exception is that we use a keyword table. Matching 
against lexemes to identify tokens is a sensible solution only if there are relatively few cases. 
Tokenizing a large set of keywords and operators using explicit rules can lead to large lexers. 
This situation is often handled using tables that contain the possible lexeme matches and the 
tokens to be returned. Listing 16-6 uses simple dictionaries (maps).

Syme_850-4C16.fm  Page 478  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 479

Listing 16-6. kittyLexer.fsl: Lexer for Kitty

{
open System
open KittyParser
open Lexing
let ids = [ ("while",   WHILE);
            ("begin",   BEGIN);
            ("end",     END);
            ("do",      DO);
            ("if",      IF);
            ("then",    THEN);
            ("else",    ELSE);
            ("print",   PRINT);]

let idsMap = Map.of_list ids

let ident lexbuf tokenText =
   if Map.mem tokenText idsMap then Map.find tokenText idsMap
   else ID tokenText
}

let num        = ['0'-'9']+
let alpha      = ['a'-'z' 'A'-'Z']
let ident      = alpha+ (alpha | ['_' '$'])*
let integer    = '-'? num
let whitespace = ' ' | '\t'
let newline    = '\n' | '\r' '\n'

rule token = parse
    | whitespace { token lexbuf }
    | newline    { (lexbuf: lexbuf).EndPos <- lexbuf.EndPos.NextLine; token lexbuf }
    | "("        { LPAREN }
    | ")"        { RPAREN }
    | "+"        { PLUS }
    | "-"        { MINUS }
    | "*"        { TIMES }
    | ";"        { SEMI }
    | ":="       { ASSIGN }
    | ident      { ident lexbuf (lexeme lexbuf) }
    | integer    { INT (Int32.Parse(lexeme lexbuf)) }
    | eof        { EOF }

Note that at compilation time the lexer depends on the parser we define later in Listing 16-7. 
This is because the lexer must return the type of tokens required by the parser.

Syme_850-4C16.fm  Page 479  Wednesday, October 24, 2007  2:13 PM



480 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

You can generate the lexer by calling fslex:

  fslex kittyLexer.fsl

This produces kittyLexer.fs, which contains the implementation of the lexer.

The Parser for Kitty
Listing 16-7 shows the parser specification for the Kitty language in the file kittyParser.fsy.

Listing 16-7. kittyParser.fsy: Parser for Kitty

%{
open KittyAst
%}

// The start token becomes a parser function in the compiled code.
%start start

// These are the terminal tokens of the grammar along with the types of
// the data carried by each token:
%token <string> ID
%token <int> INT
%token PLUS MINUS TIMES LPAREN RPAREN IF THEN ELSE
%token WHILE DO BEGIN END PRINT SEMI ASSIGN EOF

// Associativity and Precedences - Lowest precedence comes first
%left PLUS MINUS
%left TIMES

// This is the type of the data produced by a successful reduction
// of the 'start' symbol:
%type <prog> start

%%

start: Prog                   { $1 }

Prog: StmtList                { Prog (List.rev $1) }

Expr: ID                      { Val $1 }
    | INT                     { Int $1 }
    | Expr PLUS Expr          { Plus ($1, $3) }
    | Expr MINUS Expr         { Minus ($1, $3) }
    | Expr TIMES Expr         { Times ($1, $3) }
    | LPAREN Expr RPAREN      { $2 }

Syme_850-4C16.fm  Page 480  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 481

Stmt: ID ASSIGN Expr              { Assign ($1, $3) }
    | WHILE Expr DO Stmt          { While ($2, $4) }
    | BEGIN StmtList END          { Seq (List.rev $2) }
    | IF Expr THEN Stmt           { IfThen ($2, $4) }
    | IF Expr THEN Stmt ELSE Stmt { IfThenElse ($2, $4, $6) }
    | PRINT Expr                  { Print $2 }

StmtList:
    | Stmt               { [$1] }
    | StmtList SEMI Stmt { $3 :: $1  }

You can generate the parser by calling fsyacc:

  fsyacc kittyParser.fsy

This produces kittyParser.fs, which contains the implementations of the parser, along 
with a signature file kittyParser.fsi. The generated parser has one entry point for each %start 
symbol (here there is only one). The type of this entry point is as follows:

val start : (LexBuffer<'pos,'c> -> token) -> LexBuffer<'pos,'c> -> KittyAst.prog

You’ll see how to use this function a little later in this chapter. In a roundabout way the 
type says, “If you give me a lexing function that generates tokens and give me a LexBuffer to 
supply to that lexing function, then I’ll generate you a KittyAst.prog.” The generic type vari-
ables indicate that the parser is independent of the kind of position marks or characters (ASCII 
or Unicode) manipulated by the LexBuffer.

We now cover in more detail the different aspects of fsyacc parsing illustrated by this example.

THE FSYACC INPUT IN MORE DETAIL

The general structure of fsyacc input files is as follows:

// Preamble – any code you need for the parser, such as opening modules, etc.
%{ [Code] %}

// Tokens and their types – each line may contain several tokens
%token <[Type]> [TokenName] ... [TokenName]
...
// Associativity and precedences – where tokens associate (left, right,
// nonassoc) and how strongly they bind (in the order of their declaration)
%left     [TokenName]
%right    [TokenName]
%nonassoc [TokenName]
...

Syme_850-4C16.fm  Page 481  Wednesday, October 24, 2007  2:13 PM



482 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

// Start symbols and their types
%start [StartSymbol]
%type <[Type]> [StartSymbol]
%%

// Productions – defining how non-terminals are derived
[Symbol] : [Symbols_1] { [Code_1] }
         | [Symbols_2] { [Code_2] }
...

The preamble can contain F# code, typically opening various modules and defining helper functions. The 
tokens (terminal symbols) of the grammar are defined with the %token directive, giving the name of the token(s) 
preceded by its type enclosed in <>. The type can be omitted if a token carries no data. There must be at least 
one start symbol defined using the %start and its type given with the %type directive. The resulting parser 
will expose only those parsing functions that were designated as start symbols. The productions for the same 
nonterminal can be merged into the same rule separated by an | character.

Parsing Lists
In Kitty, statements can be separated by semicolons. This is handled in the StmtList grammar 
production whose semantic extract is a list of statements. Note that you could have written this 
rule in a head-recursive way:

StmtList:
    | Stmt               { [$1] }
    | Stmt SEMI StmtList { $1 @ [ $3 ] }

Unlike in recursive-descent or any other LL parsing technique, the previous rule does not 
pose a problem for fsyacc, and thus no left-factoring is needed. However, it does create a copy 
of the statement list each time a new expression is appended to it. We have eliminated this by 
using the following productions:

StmtList:
    | Stmt               { [$1] }
    | StmtList SEMI Stmt { $3 :: $1 }

combined with a List.rev where the rule is used. This rule consumes all statements and inserts 
each one by one to the singleton list that contains the first statement. As a result, the return list 
will be in reverse order, which is why you need to apply List.rev. You may want to define a 
separate rule to perform this operation. Another feature that is often needed is the ability to 
parse empty or optional lists. This can be easily accomplished using an empty (epsilon) symbol 
as in the following example:

StmtListOpt:
               { [] }
    | StmtList { $1 }

This rule matches an optional list of statements and returns an empty list if no statements 
can be parsed.

Syme_850-4C16.fm  Page 482  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 483

Resolving Conflicts, Operator Precedence, and Associativity
As usual with arithmetic operators, division and multiplication should take precedence over 
addition and subtraction, so 1+2*3 should be parsed as 1+(2*3). With fsyacc this can be expressed 
easily using the associativity directives or, to be more precise, their ordering:

// Associativity and Precedences - Lowest precedence comes first
%left PLUS MINUS
%left TIMES

By specifying what tokens associate and where (how strongly they bind), you can control 
how parse derivations are performed. For instance, giving left-associativity to the addition 
operator (PLUS), given an input 1+2+3, the parser will automatically generate a nonambiguous 
derivation in the form of (1+2)+3. The basic arithmetic operators are left-associative and should 
be listed from the lowest precedence to the highest; in our example, the addition and subtraction 
operators have lower precedence than multiplication—the way it should be. Other associativity 
specifications include %nonassoc and %right, which are used to denote that a given symbol 
does not associate or associates to the right, respectively. The former is useful for relational and 
equality operators such as <, >, or !=, where the operator is not applicable if applied multiple 
times, so 1 > 2 > 3 would yield a syntax error.

You can also give precedence to a rule by using %prec at the end of the rule and giving a 
token whose precedence is to be applied. You can list arbitrary tokens in the associativity and 
precedence declarations, even if they have not been declared as tokens, and use them in such situ-
ations. You can find more details on specifying precedence at http://www.expert-fsharp.com/
Topics/FsYacc.

■Tip  One useful option for fsyacc.exe is -v, which causes fsyacc to produce a readable extract of the 
parser’s states. This is useful when there are various conflicts to resolve.

Each state in this extract corresponds to one or more items, which are productions that 
indicate what has been seen while parsing them. This “current” position with respect to a rule 
is marked with a period (.). Furthermore, to each state belongs various actions that are triggered by 
certain look-ahead symbols. For instance, the action in some state as follows:

action 'ID' (noprec):   shift 7

indicates that if the ID token, which has no defined precedence, is encountered as look-ahead, 
the parser will push this token to the parsing stack and shift to state 7. For reduce actions, the 
rule that is reduced is shown. An error (reject) and accept action is shown for tokens that trigger 
a syntax error or acceptance, respectively.

The parser state extract also provides useful information on conflicts in your grammar. 
Conflicts arise when your grammar is ambiguous (which translates to having more than one 
choice for a parser action at any time), ultimately meaning there can be more than one deriva-
tion that accepts a given input. You can do a number of things to disambiguate your grammar. 
You can apply precedence to various tokens or rules or rewrite your rules to be consistent and 
unambiguous. There are two main sources of grammar conflicts: reduce-reduce and shift-reduce 

Syme_850-4C16.fm  Page 483  Wednesday, October 24, 2007  2:13 PM

http://www.expert-fsharp.com


484 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

conflicts. Reduce-reduce conflicts are considered really bad because there are multiple rules to 
reduce by at a given situation. Although fsyacc applies a disambiguation strategy (reducing by 
the grammar rule that was defined earlier), you should really avoid reduce-reduce conflicts as 
much as possible.

Shift-reduce conflicts arise when the parser has the choice to shift a token or reduce by a 
rule. Unless you fix this conflict, fsyacc favors the shift action and defers the reduction to a later 
point, which in some situations (for instance, the dangling-else problem) yields the expected 
behavior, but in general any such conflict is also considered a serious problem.

Putting It Together
You can generate the parsers and lexers by calling fslex and fsyacc:

fslex kittyLexer.fsl
fsyacc kittyParser.fsy

This produces kittyLexer.fs and kittyParser.fs, which contain the implementations 
of the parser and lexer. You can test these using F# Interactive by loading the files directly using 
the #load directive. The following code creates a LexBuffer called lexbuf. It then calls the 
KittyParser.start entry point for the parser, passing KittyLexer.token as the lexical analysis 
engine and lexbuf as the LexBuffer. This connects the parser and the lexer.

open KittyAst
open KittyParser
open KittyLexer

let parseText text =
    let lexbuf = Lexing.from_string text
    try
        KittyParser.start KittyLexer.token lexbuf
    with e ->
        let pos = lexbuf.EndPos
        failwithf "Error near line %d, character %d\n" pos.Line pos.Column

You can now test this function interactively:

> let sample = "counter := 100; accum := 0; \n\
                while counter do \n\
                begin \n\
                    counter := counter - 1; \n\
                    accum := accum + counter \n\
                end; \n\
                print accum";;
val sample : string

> parseText sample;;
val it : KittyAst.prog
= Prog

Syme_850-4C16.fm  Page 484  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 485

   [Assign ("counter",Int 100); Assign ("accum",Int 0);
    While
     (Val "counter",
      Seq
       [Assign ("counter",Minus (Val "counter",Int 1));
        Assign ("accum",Plus (Val "accum",Val "counter"))]); Print Val "accum"]

Writing an evaluator for Kitty is straightforward. Here we utilize an environment that maps 
variable names to the integer values they “store.” As you expect, assignments in the source 
language add a binding for a given variable, and evaluating variables reads a value from this 
environment. Because of the lack of other types in Kitty, we use a nonzero value for the Boolean 
true and zero for false and wire the logic of the conditional and looping construct accordingly:

let rec evalE (env: Map<string, int>) = function
    | Val v          -> if env.ContainsKey v then env.[v]
                        else failwith ("unbound variable: " + v)
    | Int i          -> i
    | Plus  (e1, e2) -> evalE env e1 + evalE env e2
    | Minus (e1, e2) -> evalE env e1 - evalE env e2
    | Times (e1, e2) -> evalE env e1 * evalE env e2

and eval (env: Map<string, int>) = function
    | Assign (v, e) ->
         env.Add(v, evalE env e)
    | While (e, body) ->
         let rec loop env e body =
             if evalE env e <> 0 then
                 loop (eval env body) e body
             else env
         loop env e body
    | Seq stmts ->
         List.fold_left eval env stmts
    | IfThen (e, stmt) ->
         if evalE env e <> 0 then eval env stmt else env
    | IfThenElse (e, stmt1, stmt2) ->
         if evalE env e <> 0 then eval env stmt1 else eval env stmt2
    | Print e ->
         print_int (evalE env e); env

With these at hand, continuing the same interactive session, you can now evaluate the 
sample Kitty program:

> match parseText sample with
    | Prog stmts ->
        eval Map.empty (Seq stmts) |> ignore;;
4950
val it : unit = ()

Syme_850-4C16.fm  Page 485  Wednesday, October 24, 2007  2:13 PM



486 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

If necessary, you can also compile the AST, the lexer, and the parser together into a DLL or 
as part of an EXE:

fsc –a –o KittySyntax.dll  kittyAst.fs kittyParser.fs kittyLexer.fs

Binary Parsing and Pickling Using Combinators
There is one final case of parsing that is common when working with binary data. That is, say 
you want to work with a format that is conceptually relatively easy to parse and generate (such 
as a binary format) but where the process of actually writing the code to “crack” and “encode” 
the format is somewhat tedious. In this section, we cover a useful set of techniques to write 
readers and writers for binary data quickly and reliably.

As the running example, we will show a set of pickling (also called marshalling) and 
unpickling combinators to generate and read a binary format of our own design. The combi-
nators can easily be adapted to work with existing binary formats such as those used for network 
packets. Picklers and unpicklers for different data types will be function values that have signa-
tures as follows:

type outstate = System.IO.BinaryWriter
type instate  = System.IO.BinaryReader

type pickler<'a> = 'a -> outstate -> unit
type unpickler<'a> = instate -> 'a

Here instate and outstate are types that will record information during the pickling or 
parsing process. In this section, these are just binary readers and writers, but more generally 
they can be any type that can collect information and help compact the data during the writing 
process, such as by ensuring that repeated strings are given unique identifiers during the pick-
ling process.

At the heart of every such library lies a set of primitive leaf functions for the “base” cases of 
aggregate data structures. For example, when working with binary streams, this is the usual set 
of primitive read/write functions:

let byteP (b: byte) (st: outstate) = st.Write(b)
let byteU (st: instate) = st.ReadByte()

You can now begin to define additional pickler/unpickler pairs:

let boolP b st = byteP (if b then 1uy else 0uy) st
let boolU st = let b = byteU st in (b = 1uy)

let int32P i st =
    byteP (byte (i &&& 0xFF)) st
    byteP (byte ((i >>> 8) &&& 0xFF)) st
    byteP (byte ((i >>> 16) &&& 0xFF)) st
    byteP (byte ((i >>> 24) &&& 0xFF)) st

Syme_850-4C16.fm  Page 486  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 487

let int32U st =
    let b0 = int (byteU st)
    let b1 = int (byteU st)
    let b2 = int (byteU st)
    let b3 = int (byteU st)
    b0 ||| (b1 <<< 8) ||| (b2 <<< 16) ||| (b3 <<< 24)

These functions have the following types:

val byteP  : byte pickler
val byteU  : byte unpickler
val boolP  : bool pickler
val boolU  : bool unpickler
val int32P : int pickler
val int32U : int unpickler

So far, so simple. One real advantage of this approach comes as you write combinators 
that put these together in useful ways. For example for tuples:

let tup2P p1 p2 (a, b) (st: outstate) =
    (p1 a st : unit)
    (p2 b st : unit)

let tup3P p1 p2 p3 (a, b, c) (st: outstate) =
    (p1 a st : unit)
    (p2 b st : unit)
    (p3 c st : unit)

let tup2U p1 p2 (st: instate) =
    let a = p1 st
    let b = p2 st
    (a, b)

let tup3U p1 p2 p3 (st: instate) =
    let a = p1 st
    let b = p2 st
    let c = p3 st
    (a, b, c)

and for lists:

// Outputs a list into the given output stream by pickling each element via f.
let rec listP f lst st =
    match lst with
    | [] ->     byteP 0uy st
    | h :: t -> byteP 1uy st; f h st; listP f t st

Syme_850-4C16.fm  Page 487  Wednesday, October 24, 2007  2:13 PM



488 CH AP T E R  1 6  ■  L E X I N G  A N D  P AR S IN G

// Reads a list from a given input stream by unpickling each element via f.
let listU f st =
    let rec ulist_aux acc =
        let tag = byteU st
        match tag with
        | 0uy -> List.rev acc
        | 1uy -> let a = f st in ulist_aux (a::acc)
        | n ->   failwithf "listU: found number %d" n
    ulist_aux []

These functions conform to the types:

val tup2P  : 'a pickler -> 'b pickler -> ('a * 'b) pickler
val tup3P  : 'a pickler -> 'b pickler -> 'c pickler -> ('a * 'b * 'c) pickler
val listP  : 'a pickler -> 'a list pickler
val tup2U  : 'a unpickler -> 'b unpickler -> ('a * 'b) unpickler
val tup3U  : 'a unpickler -> 'b unpickler -> 'c unpickler -> ('a* 'b* 'c) unpickler
val listU  : 'a unpickler -> 'a list unpickler

It is now beginning to be easy to pickle and unpickle aggregate data structures using a 
consistent format. For example, imagine the internal data structure is a list of integers and 
Booleans:

type format = list<int32 * bool>
let formatP = listP (tup2P int32P boolP)
let formatU = listU (tup2U int32U boolU)

open System.IO

let writeData file data =
    use outStream = new BinaryWriter(File.OpenWrite(file))
    formatP data outStream

let readData file  =
    use inStream = new BinaryReader(File.OpenRead(file))
    formatU inStream

You can now invoke the pickle/unpickle process as follows:

> writeData "out.bin" [(102, true); (108, false)] ;;
val it : unit

> readData "out.bin";;
val it : (int * bool) list = [(102, true); (108, false)]

Syme_850-4C16.fm  Page 488  Wednesday, October 24, 2007  2:13 PM



CH A PT E R  1 6  ■  L E X I N G  A N D  P AR S IN G 489

Combinator-based pickling is a powerful technique and can be taken well beyond what 
has been shown here. For example, it is possible to do the following:

• Ensure data is compressed and shared during the pickling process by keeping tables in 
the input and output states. Sometimes this requires two or more phases in the pickling 
and unpickling process.

• Build in extra-efficient primitives that compress leaf nodes, such as writing out all inte-
gers using BinaryWriter.Write7BitEncodedInt and BinaryReader.Read7BitEncodedInt.

• Build extra combinators for arrays, sequences, and lazy values and for lists stored in 
other binary formats than the 0/1 tag scheme used here.

• Build combinators that allow “dangling references” to be written to the pickled data, 
usually written as a symbolic identifier. When the data is read, the identifiers must be 
resolved and relinked, usually by providing a function parameter that performs the reso-
lution. This can be a useful technique when processing independent compilation units.

Combinator-based pickling is used mainly because it allows data formats to be created 
and read in a relatively bug-free manner. It is not always possible to build a “single” pickling 
library suitable for all purposes, and you should be willing to customize and extend code 
samples such as those listed previously in order to build a set of pickling functions suitable for 
your needs.

■Note  Combinator-based parsing borders on a set of techniques that we don’t cover in this book called 
parser combinators. The idea is very much the same as the combinators presented here; parsing is described 
using a compositional set of functions. You also can write parser combinators using the workflow notation 
described in Chapter 9.

Summary
In this chapter, we covered lexing and parsing, which are tasks that can be tiresome if you don’t 
use the right tools and techniques for the job. You learned about working with simple line-
oriented formats, including on-demand reading of large data files, and then with the fslex and 
fsyacc tools, which are particularly suited for parsing programming languages and other languages 
with structured, rather than line-oriented, formats. Finally, we covered some combinator-based 
approaches for generating and reading binary data, which is also a form of parsing. In the next 
chapter, we’ll switch to a different area of programming and look at how to write F# code that 
interoperates with native code.

Syme_850-4C16.fm  Page 489  Wednesday, October 24, 2007  2:13 PM



Syme_850-4C16.fm  Page 490  Wednesday, October 24, 2007  2:13 PM



491

■ ■ ■

C H A P T E R  1 7

Interoperating with C and COM

Software integration and reuse is becoming one of the most relevant activities of software 
development nowadays. In this chapter, we discuss how F# programs can interoperate with 
the outside world, accessing code available in the form of DLLs and COM components.

Common Language Runtime
Libraries and binary components provide a common way to reuse software; even the simplest 
C program is linked to the standard C runtime to benefit from core functions such as memory 
management and I/O. Modern programs depend on a large number of libraries that are shipped in 
binary form, and only some of them are written in the same language of the program. Libraries 
can be linked statically during compilation into the executable or can be loaded dynamically 
during program execution. Dynamic linking has become significantly common to help share 
code (dynamic libraries can be linked by different programs and shared among them) and 
adapt program behavior while executing.

Interoperability among binaries compiled by different compilers, even of the same language, 
can be a nightmare. One of the goals of the .NET initiative was to ease this issue by introducing 
the Common Language Runtime (CLR), which is targeted by different compilers and different 
languages to help interoperability among software developed in those languages.

The CLR is a runtime designed to run programs compiled for the .NET platform. The binary 
format of these programs differs from the traditional one adopted by executables; according to 
the Microsoft terminology, we will use the term managed for the first class of programs and 
unmanaged otherwise (see Figure 17-1).

Syme_850-4C17.fm  Page 491  Tuesday, October 23, 2007  1:31 PM



492 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

Figure 17-1. Compilation scheme for managed and unmanaged code

A DEEPER LOOK INSIDE .NET EXECUTABLES

Programs for the .NET platform are distributed in a form that is executed by the CLR. Binaries are expressed 
in an intermediate language that is compiled incrementally by the Just-In-Time (JIT) compiler during program 
execution. A .NET assembly, in the form of a .dll or an .exe file, contains the definition of a set of types and 
the definition of the method bodies, and the additional data describing the structure of the code in the inter-
mediate language form is known as metadata. The intermediate language is used to define method bodies 
based on a stack-based machine, where operations are performed by loading values on a stack of operands 
and then invoking methods or operators.

Consider the following simple F# program:

open System
let i = 2
Console.WriteLine("Input a number:")
let v = Int32.Parse(Console.ReadLine())
Console.WriteLine(i * v)

The F# compiler generates an executable that can be disassembled using the ildasm.exe tool distrib-
uted with the .NET Framework. The following screenshot shows the structure of the generated assembly. Since 
everything in the CLR is defined in terms of types, the F# compiler must introduce the class Hw (named after 
the file name Hw.fs) in the <StartupCode> namespace. In this class, there is the definition of the _main 
static method that is the entry point for the execution of the program. This is the method that will contain 
the intermediate language corresponding to the example F# program. The F# compiler generates several 
elements that are not defined in the program, whose goal is to preserve the semantics of the F# program in 
the intermediate language.

Syme_850-4C17.fm  Page 492  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 493

If you open the _main method, you’ll find the following code that we have annotated with the corresponding 
F# statements:

.method public static void  _main() cil managed
{
  .entrypoint
  // Code size       56 (0x38)
  .maxstack  4

  // let i = 2;;
  IL_0000:  ldc.i4.2
  IL_0001:  stsfld     int32 '<StartupCode>'.Hw::i@3

  // do Console.WriteLine("Input a number:");;
  IL_0006:  ldstr      "Input a number:"
  IL_000b:  call       void [mscorlib]System.Console::WriteLine(string)
  IL_0010:  ldnull

  // let v = Int32.Parse(Console.ReadLine());;
  IL_0011:  stsfld
       class [fslib]Microsoft.FSharp.Core.Unit '<StartupCode>'.Hw::_doval@6@6
  IL_0016:  call       string [mscorlib]System.Console::ReadLine()
  IL_001b:  call       int32 [mscorlib]System.Int32::Parse(string)
  IL_0020:  stsfld     int32 '<StartupCode>'.Hw::v@8

  // do Console.WriteLine(i * v);;
  IL_0025:  ldc.i4.2
  IL_0026:  call       int32 Hw::get_v()
  IL_002b:  mul
  IL_002c:  call       void [mscorlib]System.Console::WriteLine(int32)

Syme_850-4C17.fm  Page 493  Tuesday, October 23, 2007  1:31 PM



494 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

  IL_0031:  ldnull
  IL_0032:  stsfld
        class [fslib]Microsoft.FSharp.Core.Unit '<StartupCode>'.Hw::_doval@11@11
  IL_0037:  ret
} // end of method Hw::_main

The ldxxx instructions are used to load values onto the operand’s stack of the abstract machine, and 
the stxxx instructions store values from that stack in locations (locals, arguments, or class fields). In this 
example, variables are declared as top level, and the compiler introduces static fields into the Hw class. The 
first assignment requires the value 2 to be loaded onto the stack using the ldc instruction, and the stfld 
instruction stores the value in the static variable that represents i in the compiled program. For method invo-
cations, arguments are loaded on the stack, and a call operation is used to invoke the method.

The JIT compiler is responsible for generating the binary code that will run on the actual processor. The 
code generated by the JIT interacts with all the elements of the runtime, including external code loaded dynamically 
in the form of DLLs or COM components.

Since the F# compiler targets the CLR, its output will be managed code, allowing compiled 
programs to interact directly with other programming languages targeting the .NET platform. 
We already showed how to exploit this form of interoperability in Chapter 10, when we showed 
how to develop a graphic control in F# and use it in a C# application.

Memory Management at Run Time
Interoperability of F# programs with unmanaged code requires an understanding of the structure 
of the most important elements of a programming language’s runtime. In particular, you must 
consider how program memory is organized at run time. Memory used by a program is generally 
classified in three classes depending on the way it is handled:

• Static memory, allocated for the entire lifetime of the program

• Automatic memory, allocated and freed automatically when functions or methods 
are executed

• Dynamic memory, explicitly allocated by the program and freed explicitly or by an auto-
matic program called the garbage collector

As a rule of thumb, top-level variables and static fields belong to the first class, function 
arguments and local variables belong to the second class, and memory explicitly allocated 
using the new operator belongs to the last class. The code generated by the JIT compiler uses 
different data structures to manage memory and automatically interacts with the operating 
system to request and release memory during program execution.

Each execution thread has a stack where local variables and arguments are allocated when 
a function or method is invoked (see Figure 17-2). A stack is used because it naturally follows 
the execution flow of method and function calls. The topmost record contains data about the 
currently executing function; below that is the record of the caller of the function, which sits on 
top of another record of its caller, and so on. These activation records are memory blocks used 
to hold the memory required during the execution of the function and are naturally freed at the 

Syme_850-4C17.fm  Page 494  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 495

end of its execution by popping the record out of the stack. The stack data structure is used to 
implement the automatic memory of the program, and since different threads execute different 
functions at the same time, a separate stack is assigned to each of them.

Figure 17-2. Memory organization of a running CLR program

Dynamic memory is allocated in the heap, which is a data structure where data resides for 
an amount of time not directly related to the events of program execution. The memory is explicitly 
allocated by the program, and it is deallocated either explicitly or automatically depending on 
the strategy adopted by the run time to manage the heap. In the CLR, the heap is managed by 
a garbage collector, which is a program that tracks memory usage and reclaims memory that is 
no longer used by the program. Data in the heap is always referenced from the stack—or other 
known areas such as static memory—either directly or indirectly. The garbage collector can 
deduce the memory potentially reachable by program execution in the future, and the remaining 
memory can be collected. During garbage collection, the running program may be suspended 
since the collector may need to manipulate objects needed by its execution. In particular, a 
garbage collector may adopt a strategy named copy collection that can move objects in memory, 
and during this process, the references may be inconsistent. To avoid dangling references, the 
memory model adopted by the CLR requires that methods access the heap through object 
references stored on the stack, and objects in the heap are forbidden to reference data on the stack.

Data structures are the essential tool provided by programming languages to group values. A 
data structure is rendered as a contiguous area of memory in which the constituents are available 
at a given offset from the beginning of the memory. The actual layout of an object is determined by 
the compiler (or by the interpreter for interpreted languages) and is usually irrelevant to the 
program since the programming language provides operators to access fields without having 
to explicitly access the memory. System programming, however, often requires explicit manip-
ulation of memory, and programming languages such as C allow controlling the in-memory 

Syme_850-4C17.fm  Page 495  Tuesday, October 23, 2007  1:31 PM



496 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

layout of data structures. The C specification, for instance, defines that fields of a structure are 
laid out sequentially, though the compiler is allowed to insert extra space between them. Padding 
is used to align fields at word boundaries of the particular architecture in order to optimize the 
access to the fields of the structure. Thus, the same data structure in a program may lead to 
different memory layout depending on the strategy of the compiler or the runtime, even in a 
language such as C where field ordering is well-defined. By default, the CLR lays out structures 
in memory without any constraint, which gives the freedom of optimizing memory usage on a 
particular architecture, though it may introduce interoperability issues if a portion of memory 
must be shared among the runtimes of different languages.1

Interoperability among different programming languages revolves mostly around memory 
layouts, since the execution of a compiled routine is a jump to a memory address. But routines 
access memory explicitly, expecting that data is organized in a certain way. In the rest of this 
chapter, we discuss the mechanisms used by the CLR to interoperate with external code in the 
form of DLLs or COM components.

COM Interoperability
Component Object Model (COM) is a technology that Microsoft introduced in the 1990s to 
support interoperability among different programs possibly developed by different vendors. 
The Object Linking and Embedding (OLE) technology that allows embedding arbitrary content 
in a Microsoft Word document, for instance, relies on this infrastructure. COM is a binary standard 
that allows code written in different languages to interoperate, assuming that the programming 
language supports this infrastructure. Most of the Windows operating system and its applica-
tions are based on COM components.

The CLR was initially conceived as an essential tool to develop COM components, being 
that COM was the key technology at the end of 1990s. It is no surprise that the Microsoft imple-
mentation of CLR interoperates easily and efficiently with the COM infrastructure.

In this section, we briefly review the main concepts of the COM infrastructure and its goals 
in order to show you how COM components can be consumed from F# (and vice versa) and 
how F# components can be exposed as COM components.

A COM component is a binary module with a well-defined interface that can be dynami-
cally loaded at run time by a running program. The COM design was influenced by CORBA and 
the Interface Definition Language (IDL) to describe a component as a set of interfaces. In the 
case of COM, however, components are always loaded inside the process using the dynamic 
loading of DLLs. Even when a component runs in a different process, a stub is loaded as a DLL, 
and it is responsible for interprocess communication.

When you create an instance of a COM component, you obtain a pointer to an IUnknown 
interface that acts as the entry point to all interfaces implemented by the component. The 
QueryInterface method of this interface allows you to get pointers to additional interfaces.

Interface pointers in COM are pointers to tables of pointers defining the method’s loca-
tion. The program must know the layout of the table in order to read the desired pointer and 
invoke the corresponding method. This knowledge can be compiled into the program (interfaces 

1. Languages targeting .NET are not affected by these interoperability issues since they share the same 
CLR runtime.

Syme_850-4C17.fm  Page 496  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 497

must be known at compile time) or acquired at run time by accessing component metadata in 
the form of an interface named IDispatch or a database called type library.

Since COM components can be compiled by any compiler supporting the generation of 
memory layouts compatible with the standard, it is necessary that the client shares the same 
layout for data structures that must be passed or returned by the component methods. The 
standard type system for COM, defined in ole.dll, defines a simple and restricted set of types. 
COM types correspond to the Variant type of Visual Basic and provide only basic types and 
arrays. For structured types, COM requires a custom marshaller to be developed, but this has 
been rarely used in components that are widely available.

The COM infrastructure provides a memory manager that uses reference counting to auto-
matically free components when they are not used anymore. Whenever a copy of a pointer to 
an interface is copied, the programmer is required to invoke the AddRef method of the IUnknown 
interface (every interface inherits from IUnknown), and when the pointer is no longer required, 
the Release method should be called to decrement the counter inside the component. When the 
counter reaches zero, the component is automatically freed. This strategy of memory manage-
ment, though more automatic than the traditional malloc/free handling of the heap, has proven to 
be error prone, because programmers often forget to increment the counter when pointers are 
copied (risk of dangling pointers) or decrement when a pointer is no longer needed (risk of 
memory wasted in garbage).

When Microsoft started developing the runtime that has become the CLR, which was doomed 
to replace the COM infrastructure, several design goals addressed common issues of COM 
development:

Memory management: Reference counting has proven to be error prone; so a fully auto-
mated memory manager was needed to address this issue.

Pervasive metadata: The COM type system was incomplete, and the custom marshaller 
was too restrictive. A more complete and general type system whose description was avail-
able at run time would have eased interoperability.

Data and metadata separation: The separation between data and metadata has proven to 
be fragile because components without their description are useless, and vice versa. A 
binary format containing both components and their descriptions avoids these issues.

Distributed components: DCOM, the distributed COM infrastructure, has proven to be 
inefficient. The CLR has been designed with a distributed memory management approach 
to reduce the network overhead required to keep remote components alive.

The need for better component infrastructure led Microsoft to create the CLR, but the 
following concepts from COM proved so successful that they motivated several aspects of the CLR:

Binary interoperability: The ability to interoperate at the binary level gives you the freedom to 
develop components from any language supporting the component infrastructure, allowing, 
for instance, Visual Basic developers to benefit from C++ components, and vice versa.

Dynamic loading: The interactive dynamic loading of components is an essential element to 
allow scripting engines such as Visual Basic for Applications to access the component model.

Reflection: The component description available at run time allows programs to deal with 
unknown components; this is especially important for programs featuring scripting envi-
ronments as witnessed by the widespread use of IDispatch and type libraries in COM.

Syme_850-4C17.fm  Page 497  Tuesday, October 23, 2007  1:31 PM



498 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

COM METADATA AND WINDOWS REGISTRY

COM components are compiled modules that conform to well-defined protocols designed to allow binary interoper-
ability among different languages. An essential trait of component architectures is the ability to dynamically 
create components at run time. It is necessary for an infrastructure to locate and inspect components in order 
to find and load them. The Windows registry holds this information, which is why it is such an important struc-
ture in the operating system.

 The HKEY_CLASSES_ROOT registry key holds the definition of all the components installed on the local 
computer. It is helpful to understand the basic layout of the registry in this respect when dealing with COM 
components. The following is a simple script in Jscript executed by the Windows Scripting Host, which is an 
interpreter used to execute Visual Basic and Jscript scripts on Windows:

w = WScript.CreateObject("Word.Application");
w.Visible = true;
WScript.Echo("Press OK to close Word");
w.Quit();

This simple script creates an instance of a Microsoft Word application and shows programmatically its 
window by setting the Visible property to true. Assuming that the script is executed using the wscript 
command (the default), its execution is stopped until the message box displayed by the Echo method is 
closed, and then Word is closed.

How can the COM infrastructure dynamically locate the Word component and load without prior knowledge 
about it? The COM infrastructure is accessed through the ubiquitous CreateObject method that accepts a 
string as input that contains the program ID of the COM component to be loaded. This is the human-readable 
name of the component, but the COM infrastructure was conceived as a foundation of a potentially large number of 
components and therefore adopted the global unique identifier (GUID) strings to define components. GUIDs are 
often displayed during software installation and are familiar for their mysterious syntax of a sequence of hexa-
decimal digits enclosed in curly braces. These GUIDs are also used to identify COM classes; these IDs are known as 
CLSIDs and are stored in the Windows registry as subkeys containing further metadata about the COM object. 
When CreateObject is invoked, the code infrastructure looks for the key:

HKEY_CLASSES_ROOT\Word.Application\CLSID

The default value for the key in this example (on one of our computers) is as follows:

{000209FF-0000-0000-C000-000000000046}

Now you can access the registry key defining the COM component and find all the information relative to 
the component. The following screenshot shows the content of the LocalServer32 subkey, where it says 
that winword.exe is the container of the Word.Application component. If a COM component should be 
executed in a process different from that of the creator, LocalServer32 contains the location of the execut-
able. Components are often loaded in-process in the form of a DLL, and in this case it is the InprocServer32 
key that indicates the location of the library.

Syme_850-4C17.fm  Page 498  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 499

To get a feel for the number of COM components installed on a Windows system, you can use a few lines 
of F# using fsi.exe as a shell:

> open Microsoft.Win32;;
> let k = Registry.ClassesRoot.OpenSubKey("CLSID");;
val k : RegistryKey
> k.GetSubKeyNames().Length;;
val it : int = 9237
> k.Close();;
val it : unit = ()

The registry is also responsible for storing information (that is, the metadata associated with COM components 
that describes their interfaces) about type libraries. Type libraries are also described using registry entries and 
identified by GUIDs available under the registry key:

HKEY_CLASSES_ROOT\TypeLib

COM components can be easily consumed from F# programs, and the opposite is also 
possible by exposing .NET objects as COM components. The following example is similar to 
the one discussed in the “COM Metadata and Windows Registry” sidebar; it is based on the 
Windows Scripting Host but uses F# and fsi.exe:

Syme_850-4C17.fm  Page 499  Tuesday, October 23, 2007  1:31 PM



500 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

> open System;;
> let o = Activator.CreateInstance(Type.GetTypeFromProgID("Word.Application"));;
val o : obj
> let t = o.GetType();;
val t : Type
> t.GetProperty("Visible").SetValue(o, (true :> Object), null);;
val it : unit  = ()
> let m = t.GetMethod("Quit");;
val m : Reflection.MethodInfo
> m.GetParameters().Length;;
val it : int = 3
> m.GetParameters();;
val it : ParameterInfo []
       = [|System.Object& SaveChanges
             {Attributes = In, Optional, HasFieldMarshal;
              DefaultValue = System.Reflection.Missing;
              IsIn = true;
              IsLcid = false;
              IsOptional = true;
              IsOut = false;
              IsRetval = false;
              Member =
                Void Quit(System.Object ByRef,
                            System.Object ByRef, System.Object ByRef);
              MetadataToken = 134223449;
              Name = "SaveChanges";
              ParameterType = System.Object&;
              Position = 0;
              RawDefaultValue = System.Reflection.Missing;};
           ... more ... |]
> m.Invoke(o, [| null; null; null |]);;
val it : obj = null

Since F# imposes type inference, you cannot use the simple syntax provided by an inter-
preter. The compiler should know in advance the number and type of arguments of a method 
and the methods exposed by an object. You must remember that even if fsi.exe allows you to 
interactively execute F# statements, it still is subjected to the constraints of a compiled language. 
Since you are creating an instance of a COM component dynamically in this example, the compiler 
does not know anything about this component. Thus, it can be typed as just System.Object. To 
obtain the same behavior of an interpreted language, you must resort to the reflection support 
of the .NET runtime. Using the GetType method, you can obtain an object describing the type 
of the object o. Then you can obtain a PropertyInfo object describing the Visible property, 
and you can invoke the SetValue method on it to show the Word main window. The SetValue 
method is generic; therefore, you have to cast the Boolean value to System.Object to comply 
with the method signature.

Syme_850-4C17.fm  Page 500  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 501

In a similar way, you can obtain an instance of the MethodInfo class describing the Quit 
method. Since a method has a signature, you ask for the parameters; there are three of them, 
and they are optional. Therefore, you can invoke the Quit method by calling the Invoke method 
and passing the object target of the invocation and an array of arguments that you set to null 
because arguments are optional.

How can the runtime interact with COM components? The basic approach is based on the 
so-called COM callable wrapper (CCW) and the runtime callable wrapper (RCW), as shown in 
Figure 17-3. The former is a chunk of memory dynamically generated with a layout compatible 
with the one expected from COM components so that external programs, even legacy Visual 
Basic 6 applications, can access services implemented as managed components. The latter is 
more common and creates a .NET type dealing with the COM component, taking care of all 
the interoperability issues. It is worth noting that although the CCW can always be generated 
because the .NET runtime has full knowledge about assemblies, the opposite is not always 
possible. Without IDispatch or type libraries, there is no description of a COM component 
at run time. Moreover, if a component uses custom marshalling, it cannot be wrapped by an 
RCW. Fortunately, for the majority of COM components, it is possible to generate the RCW.

Figure 17-3. The wrappers generated by the CLR to interact with COM components

Programming patterns based on event-driven programming are widely adopted, and COM 
components have a programming pattern to implement callbacks based on the notion of sink. 
The programming pattern is based on the delegate event model, and the sink is where a listener 
can register a COM interface that should be invoked by a component to notify an event. The 
Internet Explorer Web Browser COM component (implemented by shdocvw.dll), for instance, 
provides a number of events to notify its host about the various events such as loading a page 
or clicking a hyperlink. The RCW generated by the runtime exposes these events in the form of 
delegates and takes care of handling all the details required to perform the communication 
between managed and unmanaged code.

Although COM components can be accessed dynamically using .NET reflection, explicitly 
relying on the ability of the CLR to generate CCW and RCW, it is desirable to use a less verbose 

Syme_850-4C17.fm  Page 501  Tuesday, October 23, 2007  1:31 PM



502 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

approach to COM interoperability. The .NET runtime ships with tools that allow you to generate 
RCW and CCW wrappers offline, which allows you to use COM components as .NET classes, 
and vice versa. These tools are as follows:

tlbimp.exe: This is a tool for generating an RCW of a COM component given its type library.

aximp.exe: This is similar to tlbimp.exe and supports the generation of ActiveX components2 
that have graphical interfaces (and that need to be integrated with Windows Forms).

tlbexp.exe: This generates a COM type library describing a .NET assembly. The CLR will 
be loaded as a COM component and will generate the appropriate CCW to make .NET 
types accessible as COM components.

regasm.exe: This is similar to tlbexp.exe. It also performs the registration of the assembly 
as a COM component.

To better understand how COM components can be accessed from your F# programs, and 
vice versa, consider two examples: in the first one, you will wrap the widely used Flash Player 
into a form interactively, and in the second one, you will see how an F# object type can be 
consumed as if it were a COM component.

The Flash Player that you are accustomed to using in your everyday browsing is an ActiveX 
control that is loaded by Internet Explorer using an OBJECT element in the HTML page (it is also 
a plug-in for other browsers, but here we are interested in the COM component). By using a 
search engine, you can easily find that an HTML element similar to the following is used to 
embed the player in Internet Explorer:

<OBJECT
      classid ="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
      codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab"
      width   ="640" height="480"
      title   ="My movie">
   <param name="movie"   value="MyMovie.swf" />
   <param name="quality" value="high" />
</OBJECT>

From this tag, you know that the CLSID of the Flash Player ActiveX component is the one 
specified with the classid parameter of the OBJECT element. You can now look in the Windows 
registry under HKEY_CLASSES_ROOT\CLSID for the subkey corresponding to the CLSID of the Flash 
ActiveX control. If you look at the subkeys, you notice that the ProgID of the component is 
ShockwaveFlash.ShockwaveFlash, and InprocServer32 indicates that its location is C:\Windows\
system32\Macromed\Flash\Flash9b.ocx. You can also find the GUID relative to the component 
type library that, when investigated, shows that the type library is contained in the same OCX file.

Since Flash Player is an ActiveX control with a GUI, you can rely on aximp.exe rather than 
just tlbimp.exe to generate the RCW for the COM component:

2. ActiveX components are COM components implementing a well-defined set of interfaces, and they 
have a graphical interface. Internet Explorer is well known for loading these components, but ActiveX 
can be loaded by any application using the COM infrastructure.

Syme_850-4C17.fm  Page 502  Tuesday, October 23, 2007  1:31 PM

http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab


C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 503

C:\> aximp c:\Windows\System32\Macromed\Flash\Flash9b.ocx
Generated Assembly: C:\ShockwaveFlashObjects.dll
Generated Assembly: C:\AxShockwaveFlashObjects.dll

If you use ildasm.exe to analyze the structure of the generated assemblies, you’ll notice 
that the wrapper of the COM component is contained in ShockwaveFlashObjects.dll and is 
generated by the tlbimp.exe tool; the second assembly simply contains a Windows Forms host 
for ActiveX components and is configured to host the COM component, exposing the GUI features 
in terms of the elements of the Windows Forms framework.

You can test the Flash Player embedded in an interactive F# session:

> #I "c:\\"
--> Added 'c:\ ' to library include path
> #r "AxShockwaveFlashObjects.dll";;
--> Referenced 'c:\AxShockwaveFlashObjects.dll'
> open AxShockwaveFlashObjects;;
> open System.Windows.Forms;;
> let f = new Form();;
val f : Form
> let flash = new AxShockwaveFlash();;
val flash : AxShockwaveFlash
Binding session to 'c:\AxShockwaveFlashObjects.dll'...
> f.Show();;
val it : unit = ()
> flash.Dock <- DockStyle.Fill;;
val it : unit = ()
> f.Controls.Add(flash);;
val it : unit = ()
> flash.LoadMovie(0, "http://laptop.org/img/meshDemo18.swf");;
val it : unit = ()

Here you first add to the include path of the fsi.exe directory containing the assemblies 
generated by aximp.exe using the #I directive, and then you reference the 
AxShockwaveFlashObjects.dll assembly using the #r directive. The namespace 
AxShockwaveFlashObjects containing the AxShockwaveFlash class is opened; this is the 
managed class wrapping the ActiveX control. You create an instance of the Flash Player that is 
now exposed as a Windows Forms control; then you set the Dock property to DockStyle.Fill to 
let the control occupy the entire area of the form, and finally you add the control to the form. 
When typing the commands into F# Interactive, it is possible to test the content of the form. 
When it first appears, a right-click on the client area is ignored. After the ActiveX control is 
added to the form, the right-click displays the context menu of the Flash Player. You can now 
programmatically control the player by setting the properties and invoking its methods; the 
generated wrapper will take care of all the communications with the ActiveX component.

Now we’ll show an example of exposing an F# object type as a COM component. There are 
several reasons it can be useful to expose a managed class as a COM component, but perhaps 

Syme_850-4C17.fm  Page 503  Tuesday, October 23, 2007  1:31 PM

http://laptop.org/img/meshDemo18.swf


504 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

the most important is interoperability with legacy systems. COM has been around for a decade 
and has permeated every aspect of Windows development. Systems have largely used COM 
infrastructures, and they can also be extended using this technology. COM components are 
heavily used by applications based on the Active Scripting architecture such as ASP or VBA in 
Microsoft Office. The ability of exposing F# code to existing applications is useful because it 
allows you to immediately start using this new language and integrating it seamlessly into 
existing systems.

In this example, suppose you are exposing a simple F# object type as a COM component 
and invoke a method of this object type from a JScript script. You define the following type in 
the hwfs.fs file:

open System

type FSCOMComponent =
    new() as x = {}
    member x.HelloWorld() = "Hello world from F#!"

The assembly that must be exposed as a COM component should be added to the global 
assembly cache (GAC), which is where shared .NET assemblies are stored. Assemblies present 
in the GAC must be strongly named, which means a public key cryptographic signature must 
be used to certify the assembly. To perform the test, you generate a key pair to be used to sign 
the assembly using the sn.exe command available with the .NET SDK:

C:> sn –k testkey.snk

Microsoft (R) .NET Framework Strong Name Utility  Version 2.0.50727.42
Copyright (c) Microsoft Corporation.  All rights reserved.

Key pair written to testkey.snk

Now you can compile the program in a DLL called hwfs.dll:

C:\> fsc -a –keyfile testkey.snk hwfs.fs

Note that you use the –keyfile switch to indicate to the compiler that the output should 
be signed using the specified key pair. Now you can add the assembly to the GAC (note that 
under Windows Vista the shell used should run with administrator privileges):

C:\ > gacutil /i hwfs.dll
Microsoft (R) .NET Global Assembly Cache Utility.  Version 2.0.50727.42
Copyright (c) Microsoft Corporation.  All rights reserved.

Assembly successfully added to the cache

Syme_850-4C17.fm  Page 504  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 505

Now you can use the regasm.exe tool to register the hwfs.dll assembly as a COM component:

C:\ > regasm hwfs.dll
Microsoft (R) .NET Framework Assembly Registration Utility 2.0.50727.312
Copyright (C) Microsoft Corporation 1998-2004.  All rights reserved.

Types registered successfully

Now you have to write the script using the Jscript language to test the component; the 
script will use the CreateObject method to create an instance of the F# object type, with the 
CCW generated by the CLR taking care of all the interoperability issues. But what is the ProgID 
of the COM component? You use regasm.exe with the /regfile switch to generate a registry 
file containing the keys corresponding to the registration of the COM component instead of 
performing it. The generated registry file contains the following component registration (we’ve 
included only the most relevant entries):

[HKEY_CLASSES_ROOT\Hwfs+FSCOMComponent]
@="Hwfs+FSCOMComponent"

[HKEY_CLASSES_ROOT\Hwfs+FSCOMComponent\CLSID]
@="{41BFA014-8389-3855-BD34-81D8933045BF}"

[HKEY_CLASSES_ROOT\CLSID\{41BFA014-8389-3855-BD34-81D8933045BF}]
@="Hwfs+FSCOMComponent"

[HKEY_CLASSES_ROOT\CLSID\{41BFA014-8389-3855-BD34-81D8933045BF}\InprocServer32]
@="mscoree.dll"
"ThreadingModel"="Both"
"Class"="Hwfs+FSCOMComponent"
"Assembly"="hwfs, Version=0.0.0.0, Culture=neutral, PublicKeyToken=97db6c0b1207bed4"
"RuntimeVersion"="v2.0.50727"

The InprocServer32 subkey indicates that the COM component is implemented by 
mscoree.dll, which is the CLR, and the additional attributes indicate the assembly that should 
be run by the runtime.

Note that the ProgID and the class name of the component is Hwfs+FSCOMComponent, which 
is partly derived from the namespace Hwfs generated by the F# compiler. You can now try to 
write the following script in the hwfs.js file:

o = WScript.CreateObject("Hwfs+FSCOMComponent");
WScript.Echo(o.HelloWorld());

If you execute the script (here using the command-based host cscript), you obtain the 
expected output:

Syme_850-4C17.fm  Page 505  Tuesday, October 23, 2007  1:31 PM



506 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

C:\ > cscript foo.js
Microsoft (R) Windows Script Host Version 5.7
Copyright (C) Microsoft Corporation. All rights reserved.

Hello world from F#!

But how can you obtain a ProgID with dot-notation instead of the ugly plus sign? So far, 
you have used only the basic features of the COM interoperability, but a number of custom 
attributes can give you finer control over the CCW generation. These attributes are defined in 
the System.Runtime.InteropServices namespace; and among these classes you’ll find the 
ProgIdAttribute class whose name hints that it is somewhat related to the ProgID. In fact, you 
can annotate your F# object type using this attribute:

open System
open System.Runtime.InteropServices

[<ProgId("Hwfs.FSComponent")>]
type FSCOMComponent =
    new() as x = {}
    member x.HelloWorld() = "Hello world from F#!"

First unregister the previous component:

C:\> regasm hwfs.dll /unregister
Microsoft (R) .NET Framework Assembly Registration Utility 2.0.50727.312
Copyright (C) Microsoft Corporation 1998-2004.  All rights reserved.

Types un-registered successfully
C:\> gacutil /u hwfs
Microsoft (R) .NET Global Assembly Cache Utility.  Version 2.0.50727.42
Copyright (c) Microsoft Corporation.  All rights reserved.

Assembly: hwfs, Version=0.0.0.0, Culture=neutral,
    PublicKeyToken=8c1f06f522fc70f8, processorArchitecture=MSIL
Uninstalled: hwfs, Version=0.0.0.0, Culture=neutral,
    PublicKeyToken=8c1f06f522fc70f8, processorArchitecture=MSIL
Number of assemblies uninstalled = 1
Number of failures = 0

Now you can update the script as follows and register everything again after recompiling 
the F# file:

o = WScript.CreateObject("Hwfs.FSComponent");
WScript.Echo(o.HelloWorld());

Using other attributes, it is possible to specify the GUIDs to be used and several other aspects 
that are important in some situations. When a system expects a component implementing a 

Syme_850-4C17.fm  Page 506  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 507

given COM interface, it is expected that the COM component returns the pointer to the inter-
face with the appropriate GUID; in this case, the ability to explicitly indicate a GUID is essential 
to defining a .NET interface that should be marshalled as the intended COM interface.

Complex COM components can be tricky to wrap using these tools, and official wrappers 
are maintained by component developers. Microsoft provides the managed version of the Office 
components, the managed DirectX library, and the Web Browser control to spare programmers 
from having to build their own wrappers.

In conclusion, it is possible to use COM components from F#, and vice versa. You can 
expose F# libraries as COM components, which allows you to extend existing systems using F#, 
or use legacy code in F# programs

Platform Invoke
COM interoperability is an important area of interoperability in F#, but it is limited to Windows 
and to the Microsoft implementation of the ECMA and ISO standards of the Common Language 
Infrastructure (CLI). The CLI standard, however, devises a standard mechanism for interoper-
ability that is called Platform Invoke (PInvoke to friends), and it is a core feature of the standard 
available on all CLI implementations, including Mono.

The basic model underlying PInvoke is based on loading dynamic linking libraries into the 
program, which allows managed code to invoke exported functions. Dynamic linking libraries 
do not provide information other than the entry point location of a function; this is not enough 
to perform the invocation unless additional information is made available to the runtime.

The invocation of a function requires the following:

• The address of the code in memory

• The calling convention, which is how parameters, return values, and other information 
is passed through the stack to the function

• Marshalling of values and pointers so that the different runtime support can operate 
consistently on the same values

The address of the entry point is obtained using a system call that returns the pointer to 
the function given a string. The remaining information must be provided by the programmer 
to instruct the CLR about how the function pointer should be used.

CALLING CONVENTIONS

Function and method calls (a method call is similar to a function call but with an additional pointer referring to 
the object passed to the method) are performed by using a shared stack between the caller and the callee. An 
activation record is pushed onto the stack when the function is called, and memory is allocated for arguments, 
the return value, and local variables. Additional information is also stored in the activation record, such as 
information about exception handling and the return address when the execution of the function terminates.

The physical structure of the activation record is established by the compiler (or by the JIT in the case of 
the CLR), and this knowledge must be shared between the caller and the called function. When the binary code 
is generated by a compiler, this is not an issue, but when code generated by different compilers must interact, 
it may become a significant issue. Although each compiler may adopt a different convention, the need to perform

Syme_850-4C17.fm  Page 507  Tuesday, October 23, 2007  1:31 PM



508 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

system calls requires that the calling convention adopted by the operating system is implemented, and it is 
often used to interact with different runtimes. Another popular approach is to support the calling convention 
adopted by C compilers because it is widely used and has become a fairly universal language for interopera-
bility. Note that although many operating systems are implemented in C, the libraries providing system calls 
may adopt different calling conventions. This is the case of Microsoft Windows where the operating system 
adopts the so-called stdcall calling convention rather than the C calling convention.

A significant dimension in the arena of possible calling conventions is the responsibility for removing the 
activation record from the thread stack. At first glance, it may seem obvious that it is the called function that 
before returning resets the stack pointer to the previous state. This is not the case for programming languages 
such as C that allow functions with a variable number of arguments such as printf. When variable argu-
ments are allowed, it is the caller that knows exactly the size of the activation record; therefore, it is its respon-
sibility to free the stack at the end of the function call. Apart from being consistent with the chosen convention, 
it may seem that there is little difference between the two choices, but if the caller is responsible for cleaning 
the stack, each function invocation requires more instructions, which leads to larger executables; for this reason, 
Windows uses the stdcall calling convention instead of the C calling convention. It is important to notice that 
the CLR uses an array of objects to pass a variable number of arguments, which is very different from the vari-
able arguments of C because the method receives a single pointer to the array that resides in the heap.

It is important to note that if the memory layout of the activation record is compatible, as it is in Windows, 
the use of the cdecl convention instead of the stdcall convention leads to a subtle memory leak. If the runtime 
assumes the stdcall convention (that is the default) and the callee assumes the cdecl convention, the argu-
ments pushed on the stack are not freed, and at each invocation the height of the stack grows until a stack 
overflow happens.

The CLR supports a number of calling conventions. The two most important are stdcall, which is the 
convention used by Windows APIs (and many others DLLs), and cdecl, which is the convention used by the C 
language. Other implementations of the runtime may provide additional conventions to the user. In the PInvoke 
design, there is nothing restricting the supported conventions to these two (and in fact the runtime uses the 
fcall convention for invoking services provided by the runtime from managed code).

The additional information required to perform the function call is provided by custom 
attributes that are used to decorate a function prototype and inform the runtime about the 
signature of the exported function.

Getting Started with PInvoke
This section starts with a simple example of a DLL developed using C++ to which you will add 
code during your experiments using PInvoke. The CInteropDLL.h header file declares a macro 
defining the decorations associated with each exported function:

#define CINTEROPDLL_API __declspec(dllexport)
extern "C" {
void CINTEROPDLL_API HelloWorld();
}

The __declspec directive is specific to the Microsoft Visual C++ compiler, and other compilers 
may provide different ways to indicate the functions that must be exported when compiling 
a DLL.

Syme_850-4C17.fm  Page 508  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 509

The first function is the HelloWorld function; its definition is as expected:

void CINTEROPDLL_API HelloWorld()
{
    printf("Hello C world invoked by F#!\n");
}

Say you now want to invoke the HelloWorld function from an F# program. You simply have 
to define the prototype of the function and inform the runtime how to access the DLL and the 
other information needed to perform the invocation. The program performing the invocation 
is the following:

open System.Runtime.InteropServices

module CInterop =
    [<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>]
    extern void HelloWorld()

CInterop.HelloWorld()

The extern keyword informs the compiler that the function definition is external to the 
program and must be accessed through the PInvoke interface. A C-style prototype definition 
follows the keyword, and the whole declaration is annotated with a custom attribute defined in 
the System.Runtime.InteropServices namespace. The F# compiler adopts C-style syntax for 
extern prototypes, including argument types (as you’ll see later), because C headers and proto-
types are widely used, and this choice helps in the PInvoke definition. The DllImport custom 
attribute provides the information needed to perform the invocation. The first argument is the 
name of the DLL containing the function; the remaining option specifies the calling conven-
tion chosen to make the call. Since not specified otherwise, the runtime assumes that the name 
of the F# function is the same as the name of the entry point in the DLL. It is possible to over-
ride this behavior using the EntryPoint parameter in the DllImport attribute.

It is important to note the declarative approach of the PInvoke interface. There is no code 
involved in accessing external functions. The runtime interprets metadata in order to automat-
ically interoperate with native code contained in a DLL. This is a different approach from the 
one adopted by different virtual machines such as, for example, the Java virtual machine. The 
Java Native Interface (JNI) requires that the programmer defines a layer of code using types of 
the virtual machine and invokes the native code.

Platform Invoke requires high privileges in order to execute native code, because the acti-
vation record of the native function is allocated on the same stack containing the activation 
records of managed functions and methods. Moreover, as we will discuss shortly, it is also 
possible to have the native code invoking a delegate marshalled as a function pointer, allowing 
stacks with native and managed activation records to be interleaved.

The HelloWorld function is a simple case since the function does not have input arguments 
and does not return any value. Consider this function with input arguments and a return value:

int CINTEROPDLL_API Sum(int i, int j)
{
    return i + j;
}

Syme_850-4C17.fm  Page 509  Tuesday, October 23, 2007  1:31 PM



510 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

Invoking the Sum function requires integer values to be marshalled to the native code and 
the value returned to managed code. Simple types such as integers are easy to marshal since 
they usually are passed by value and use types of the underlying architecture. The F# program 
using the Sum function is as follows:

module CInterop =
    [<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>]
    extern int Sum(int i, int j)

printf "Sum(1, 1) = %d\n" (CInterop.Sum(1, 1));

Parameter passing assumes the same semantics of the CLR, and parameters are passed by 
value for value types and by the value of the reference for reference types. Again, you use the 
custom attribute to specify the calling convention for the invocation.

Data Structures
We first cover what happens when structured data gets marshalled by the CLR in the case of 
nontrivial argument types. Here we show the SumC function responsible for adding two complex 
numbers defined by the Complex C data structure:

typedef struct _Complex {
    double re;
    double im;
} Complex;

Complex CINTEROPDLL_API SumC(Complex c1, Complex c2)
{
    Complex ret;
    ret.re = c1.re + c2.re;
    ret.im = c1.im + c2.im;
    return ret;
}

To invoke this function from F#, you must define a data structure in F# corresponding to 
the Complex C structure. If the memory layout of an instance of the F# structure is the same as 
that of the corresponding C structure, then values can be shared between the two languages. 
But how can you control the memory layout of a managed data structure? Fortunately, the PInvoke 
specification helps with custom attributes that allow specifying memory layout of data structures. 
The StructLayout custom attribute consents to indicate the strategy adopted by the runtime to 
lay out fields of the data structure. By default, the runtime adopts its own strategy in the attempt to 
optimize the size of the structure, keeping fields aligned to the machine world in order to ensure 
fast access to the fields of the structure. The C standard ensures that fields are laid out in memory 
sequentially in the order they appear in the structure definition; other languages may use 
different strategies. Using an appropriate argument, you can indicate that a C-like sequential 
layout strategy should be adopted. Moreover, it is also possible to provide an explicit layout for 
the structure indicating the offset in memory for each field of the structure. For this example, 
here we use the sequential layout for the Complex value type:

Syme_850-4C17.fm  Page 510  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 511

module CInterop =
    [<Struct; StructLayout(LayoutKind.Sequential)>]
    type Complex =
        val mutable re:double
        val mutable im:double

        new(r,i) = { re = r; im = i; }

    [<DllImport("CInteropDLL")>]
    extern Complex SumC(Complex c1, Complex c2)

let c1 = CInterop.Complex(1.0, 0.0)
let c2 = CInterop.Complex(0.0, 1.0)

let mutable c3 = CInterop.SumC(c1, c2)
printf "c3 = SumC(c1, c2) = %f + %fi\n" c3.re c3.im;

The SumC prototype refers to the F# Complex value type, but since the layout in memory of 
the structure is the same as the corresponding C structure, the runtime passes the bits that are 
consistent with those expected by the C code.

MARSHALLING PARAMETERS

A critical aspect in dealing with PInvoke is to ensure that values are marshalled correctly between managed 
and native code, and vice versa. The memory layout of a structure does not depend on the order of the fields 
only. Compilers often introduce padding to align fields to memory addresses so that access to fields requires 
fewer memory operations since CPUs load data into registers with the same strategy. Padding may speed up 
access to the data structure, though it introduces inefficiencies in memory usage since there may be gaps in 
the structures leading to allocated but unused memory.

Consider, for instance, the following C structure:

struct Foo {
    int i;
    char c;
    short s;
};

Depending on compiler decision, it may occupy from 8 up to 12 bytes on a 32-bit architecture. The most 
compact version of the structure uses the first four bytes for i, a single byte for c, and two more bytes for s. 
If the compiler aligns fields to addresses that are multiples of four, then the integer i occupies the first slot, 
four more bytes are allocated for c (though only one is used), and the same happens for s.

Padding is a common practice in C programs, and since it may affect performance and memory usage, 
compilers provide directives to instruct the compiler about padding. It is possible to have data structures with 
different padding strategies running within the same program.

The first step to be faced when using PInvoke to access native code is to find the definition of data struc-
tures, including information about padding. Then it is possible to annotate F# structures to have the same 
layout as the native ones, and the CLR can automate the marshalling of data. It is important to note that it is

Syme_850-4C17.fm  Page 511  Tuesday, October 23, 2007  1:31 PM



512 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

possible to pass parameters by reference; thus, the C code may access the memory managed by the runtime, 
and errors in memory layout may result in corrupted memory. For this reason, PInvoke code should be kept to 
the minimum and verified accurately to ensure that the execution state of the virtual machine is preserved. The 
declarative nature of the interface is of great help in this respect since the programmer has to check simply 
declarations and not interop code.

Not all the values are marshalled as-is to native code; some values may require additional work from the 
runtime. Strings, for instance, have different memory representations between native and managed code. C 
strings are arrays of bytes that are null terminated, while runtime strings are .NET objects with a different 
layout. Also, function pointers are mediated by the runtime: the calling convention adopted by the CLR is not 
compatible with external conventions, so code stubs are generated that can be called by native code from 
managed code, and vice versa.

In the SumC example, arguments are passed by value, but native code often requires data 
structures to be passed by reference to avoid the cost of copying the entire structure and passing 
only a pointer to the native data. The ZeroC function resets a complex number whose pointer is 
passed as an argument:

void CINTEROPDLL_API ZeroC(Complex* c)
{
    c->re = 0;
    c->im = 0;
}

The F# declaration for the function is the same as the C prototype:

[<DllImport("CInteropDLL")>]
extern void ZeroC(Complex* c)

Now you need a way to obtain a pointer given a value of type Complex in F#. You can use the 
&& operator that is used to indicate a pass by reference and that results in passing the pointer to 
the structure expected by the C function:

let mutable c4 = CInterop.SumC(c1, c2)
printf "c4 = SumC(c1, c2) = %f + %fi\n" c4.re c4.im

CInterop.ZeroC(&&c4)
printf "c4 = %f + %fi\n" c4.re c4.im

In C and C++, the notion of objects (or struct instances) and the classes of memory are 
orthogonal: an object can be allocated on the stack or on the heap and share the same declara-
tion. In .NET, this is not the case; objects are instances of classes and are allocated on the heap, 
and value types are stored in the stack or wrapped into objects in the heap.

Is it possible to pass objects to native functions through PInvoke? The main issue with objects 
is that the heap is managed by the garbage collector, and one possible strategy for garbage collec-
tion is copy collection, which is a technique that moves objects in the heap when a collection 

Syme_850-4C17.fm  Page 512  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 513

occurs. Thus, the base address in memory of an object may change over time, which can be a 
serious problem if the pointer to the object has been marshalled to a native function through 
a PInvoke invocation. The CLR provides an operation called pinning that allows pinning an 
object and preventing it from moving during a garbage collection. Pinned pointers are assigned to 
local variables, and pinning is released when the function performing the pinning exits. It is 
important to understand the scope of pinning, since if the native code stores the pointer some-
where before returning, the pointer may become invalid but still usable from native code.

Now let’s define an object type for Complex and marshal F# objects to a C function. The 
goal is to marshal the F# object to the ZeroC function. In this case, you cannot use the pass-by-
reference operator, and you must define everything so that the type checker is happy with it. 
You can define another function that refers to ZeroC but with a different signature involving 
ObjComplex, which is an object type similar to the Complex value type. The EntryPoint parameter 
maps the F# function onto the same ZeroC C function, though in this case the argument is of 
type ObjComplex rather than Complex:

module CInterop =
    [<StructLayout(LayoutKind.Sequential)>]
    type ObjComplex =
        val mutable re:double
        val mutable im:double

        new() as x = { re = 0.0; im = 0.0 }
        new(r:double, i:double) as x = { re = r; im = i }

     [<DllImport("CInteropDLL", EntryPoint="ZeroC")>]
    extern void ObjZeroC(ObjComplex c)

let oc = CInterop.ObjComplex(2.0, 1.0)
printf "oc = %f + %fi\n" oc.re oc.im
CInterop.ObjZeroC(oc)
printf "oc = %f + %fi\n" oc.re oc.im

In this case, the object reference is marshalled as a pointer to the C code, and you don’t 
need the && operator in order to call the function; the object is pinned to ensure that it does not 
move during the function call.

Marshalling Strings
Platform Invoke defines default behavior for mapping common types used by the Win32 API; 
Table 17-1 shows the default conversions. Most of the mappings are natural, but it is important 
to note that there are several entries for strings. This is because strings are represented in different 
ways in programming language runtimes.

To show how strings are marshalled, we start with a simple C function that echoes a string 
on the console:

void CINTEROPDLL_API echo(char* str)
{
    puts(str);
}

Syme_850-4C17.fm  Page 513  Tuesday, October 23, 2007  1:31 PM



514 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

The corresponding F# PInvoke prototype is as follows:

[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>]
extern void echo(string s);

What happens when the F# function echo is invoked? The managed string is represented 
by an array of Unicode characters described by an object in the heap; the C function expects a 
pointer to an array of single-byte ANSI characters that are null terminated. The runtime is respon-
sible for performing the conversion between the two formats, and it is performed by default 
when mapping a .NET string to an ANSI C string.

It is common to pass strings that are modified by C functions, yet .NET strings are immu-
table. For this reason, it is also possible to use a System.Text.StringBuilder object instead of a 
string. Instances of this class represent mutable strings and have an associated buffer containing 

Table 17-1. Default Mapping for Types of Win32 API and Listed in Wtypes.h

Unmanaged Types 
in Wtypes.h

Unmanaged C Type Managed Class Description

HANDLE void* System.IntPtr 32 bits on 32-bit Windows 
operating systems, 64 bits 
on 64-bit Windows operating 
systems

BYTE unsigned char System.Byte 8 bits

SHORT short System.Int16 16 bits

WORD unsigned short System.UInt16 16 bits

INT int System.Int32 32 bits

UINT unsigned int System.UInt32 32 bits

LONG long System.Int32 32 bits

BOOL long System.Int32 32 bits

DWORD unsigned long System.UInt32 32 bits

ULONG unsigned long System.UInt32 32 bits

CHAR char System.Char Decorate with ANSI

LPSTR char* System.String or 
System.Text.StringBuilder

Decorate with ANSI

LPCSTR const char* System.String or 
System.Text.StringBuilder

Decorate with ANSI

LPWSTR wchar_t* System.String or 
System.Text.StringBuilder

Decorate with Unicode

LPCWSTR const wchar_t* System.String or 
System.Text.StringBuilder

Decorate with Unicode

FLOAT Float System.Single 32 bits

DOUBLE Double System.Double 64 bits

Syme_850-4C17.fm  Page 514  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 515

the characters of the string. You can write a C function in the DLL that fills a string buffer given 
the size of the buffer:

void CINTEROPDLL_API sayhello(char* str, int sz)
{
    static char* data = "Hello from C code!";
    int len = min(sz, strlen(data));
    strncpy(str, data, len);
    str[len] = 0;
}

Since the function writes into the string buffer passed as an argument, you must take care 
and use a StringBuilder rather than a string to ensure that the buffer has the appropriate room 
for the function to write. You can use the following F# PInvoke prototype:

[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>]
extern void sayhello(StringBuilder sb, int sz);

Since you have to indicate the size of the buffer, you can use a constructor of the 
StringBuilder class that allows you to specify the initial size of the buffer:

let sb = new StringBuilder(50)

CInterop.sayhello(sb, 50)
printf "%s\n" (sb.ToString())

You have used ANSI C strings so far, but this is not the only type of string. Wide-character 
strings are becoming widely adopted and use two bytes to represent a single character; and 
following the C tradition, the string is terminated by a null character. Consider a wide-character 
version of the sayhello function:

void CINTEROPDLL_API sayhellow(wchar_t* str, int sz)
{
    static wchar_t* data = L"Hello from C code Wide!";
    int len = min(sz, wcslen(data));
    wcsncpy(str, data, len);
    str[len] = 0;
}

How can you instruct the runtime that the StringBuilder should be marshalled as a wide-
character string rather than an ANSI string? The declarative nature of PInvoke helps by providing a 
custom attribute to annotate function parameters of the prototype and to inform the CLR about 
the marshalling strategy to be adopted. The sayhellow function is declared in F# as follows:

[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>]
extern void sayhellow([<MarshalAs(UnmanagedType.LPWStr)>]StringBuilder sb, int sz);

In this case, the MarshalAs attribute indicates that the string should be marshalled as 
LPWSTR rather than LPSTR.

Syme_850-4C17.fm  Page 515  Tuesday, October 23, 2007  1:31 PM



516 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

Function Pointers
Another important data type that often should be passed to native code is a function pointer. 
Function pointers are widely used to implement callbacks and provide a simple form of func-
tional programming; think for instance of a sort function that receives as input the pointer to 
the comparison function. Graphical toolkits have widely used this data type to implement 
event-driven programming, and they often have to pass a function that will be invoked by 
another one.

PInvoke is able to marshal delegates as function pointers, and again the runtime is respon-
sible for generating a suitable function pointer callable from native code. When the marshalled 
function pointer is invoked, a stub is called, and the activation record on the stack is rearranged 
to be compatible with the calling convention of the runtime. Then the delegate function is invoked.

Although in principle the generated stub is responsible for implementing the calling 
convention adopted by the native code receiving the function pointer, the CLR supports only 
the stdcall calling convention for marshalling function pointers. Thus, the native code should 
adopt this calling convention when invoking the pointer; this is a restriction that may cause 
problems, but in general on the Windows platform the stdcall calling convention is widely used.

The following C function uses a function pointer to apply a function to an array of integers:

typedef int (CALLBACK *TRANSFORM_CALLBACK)(int);

void CINTEROPDLL_API transformArray(int* data, int count, TRANSFORM_CALLBACK fn)
{
    int i;
    for (i = 0; i < count; i++)
        data[i] = fn(data[i]);
}

The TRANSFORM_CALLBACK type definition defines the prototype of the function pointer we 
are interested in here: a function taking an integer as the input argument and returning an 
integer as a result. The CALLBACK macro is specific to the Microsoft Visual C++ compiler and 
expands to __stdcall in order to indicate that the function pointer, when invoked, should 
adopt the stdcall calling convention instead of the cdecl calling convention.

The transformArray function simply takes as input an array of integers with its length and 
the function to apply to its elements. You now have to define the F# prototype for this function 
by introducing a delegate type with the same signature as TRANSFORM_CALLBACK:

type Callback = delegate of int -> int

[<DllImport("CInteropDLL", CallingConvention=CallingConvention.Cdecl)>]
extern void transformArray(int[] data, int count, Callback transform);

Now you can increment all the elements of an array by one using the C function:

let data = [| 1; 2; 3 |]
printf "%s\n" (string.Join("; ", (Array.map any_to_string data)))

CInterop.transformArray(data, data.Length, new CInterop.Callback(fun x -> x + 1))
printf "%s\n" (string.Join("; ", (Array.map any_to_string data)))

Syme_850-4C17.fm  Page 516  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 517

PInvoke declarations are concise, but you must pay attention that for data types such as 
function pointers, parameter passing can be expensive. In general, libraries assume that crossing 
the language boundary causes a loss of efficiency and callbacks are invoked at a price different 
from ordinary functions. In this respect, the example represents a situation where the over-
head of PInvoke is significant since a single call to transformArray causes a number of callbacks 
without performing any real computation into the native code.

PInvoke Memory Mapping
As a more complicated example of PInvoke usage, in this section we show how to benefit from 
memory mapping into F# programs. Memory mapping is a popular technique that allows a 
program to see a file (or a portion of a file) as if it was in memory, providing an efficient way to 
access files because the operating system uses the machinery of virtual memory for accessing 
files and significantly speeding up data access on files. After proper initialization, which we will 
cover in a moment, the program obtains a pointer into the memory, and access to that portion 
of memory appears the same as accessing data stored in or into the file. Memory mapping can 
be used both for reading and writing files, and every access performed into the memory is reflected 
into the corresponding position into the file.

This is a typical sequence of system calls in order to map a file in memory:

1. A call to the CreateFile system call to open the file and obtain a handle to the file.

2. A call to the CreateFileMapping system call to create a mapped file object.

3. One or more calls to MapViewOfFile and UnmapViewOfFile to map and release portions of 
a file into memory. In a typical usage, the whole file is mapped at once in memory.

4. A call to CloseHandle to release the file.

The PInvoke interface to the required functions involves simple type mappings as is usual 
for Win32 API functions. All the functions are in kernel32.dll, and the signature can be found 
in the Windows SDK. Listing 17-1 contains the definition of the F# wrapper for memory mapping.

The SetLastError parameter informs the runtime that the called function uses the Windows 
mechanism for error reporting and that the GetLastError function can be read in case of error; 
otherwise, the CLR ignores such a value. The CharSet parameter indicates the character set 
assumed, and it is used to distinguish between ANSI and Unicode characters; with Auto, you 
delegate the runtime to decide the appropriate version.

You can define the generic class MemMap that uses the functions to map a given file into 
memory. The goal of the class is to provide access to memory mapping in a system where memory 
is not directly accessible because the runtime is responsible for its management. A natural 
programming abstraction to expose the memory to F# code is to provide an array-like interface 
where the memory is seen as a homogeneous array of values.

Listing 17-1. Exposing Memory Mapping in F#

#light

module MMap =

Syme_850-4C17.fm  Page 517  Tuesday, October 23, 2007  1:31 PM



518 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

    open System
    open System.IO
    open System.Runtime.InteropServices
    open Microsoft.FSharp.NativeInterop
    open Printf

    type HANDLE = nativeint
    type ADDR   = nativeint

    [<DllImport("kernel32", SetLastError=true)>]
    extern bool CloseHandle(HANDLE handler)

    [<DllImport("kernel32", SetLastError=true, CharSet=CharSet.Auto)>]
    extern HANDLE CreateFile(string lpFileName,
                             int dwDesiredAccess,
                             int dwShareMode,
                             HANDLE lpSecurityAttributes,
                             int dwCreationDisposition,
                             int dwFlagsAndAttributes,
                             HANDLE hTemplateFile)

    [<DllImport("kernel32", SetLastError=true, CharSet=CharSet.Auto)>]
    extern HANDLE CreateFileMapping(HANDLE hFile,
                                    HANDLE lpAttributes,
                                    int flProtect,
                                    int dwMaximumSizeLow,
                                    int dwMaximumSizeHigh,
                                    string lpName)

    [<DllImport("kernel32", SetLastError=true)>]
    extern ADDR MapViewOfFile(HANDLE hFileMappingObject,
                              int dwDesiredAccess,
                              int dwFileOffsetHigh,
                              int dwFileOffsetLow,
                              int dwNumBytesToMap)

    [<DllImport("kernel32", SetLastError=true, CharSet=CharSet.Auto)>]
    extern HANDLE OpenFileMapping(int dwDesiredAccess,
                                  bool bInheritHandle,
                                  string lpName)

    [<DllImport("kernel32", SetLastError=true)>]
    extern bool UnmapViewOfFile(ADDR lpBaseAddress)

    let INVALID_HANDLE = new IntPtr(-1)
    let MAP_READ    = 0x0004
    let GENERIC_READ = 0x80000000

Syme_850-4C17.fm  Page 518  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 519

    let NULL_HANDLE = IntPtr.Zero
    let FILE_SHARE_NONE = 0x0000
    let FILE_SHARE_READ = 0x0001
    let FILE_SHARE_WRITE = 0x0002
    let FILE_SHARE_READ_WRITE = 0x0003
    let CREATE_ALWAYS  = 0x0002
    let OPEN_EXISTING   = 0x0003
    let OPEN_ALWAYS  = 0x0004
    let READONLY = 0x00000002

    type MemMap<'a> (fileName) =

        let ok =
            match (type 'a) with
            | ty when ty = (type int)     -> true
            | ty when ty = (type int32)   -> true
            | ty when ty = (type byte)    -> true
            | ty when ty = (type sbyte)   -> true
            | ty when ty = (type int16)   -> true
            | ty when ty = (type uint16)  -> true
            | ty when ty = (type int64)   -> true
            | ty when ty = (type uint64)  -> true
            | _ -> false

        do if not ok then failwithf 
           "the type %s is not a basic blittable type" ((type 'a).ToString())
        let hFile =
           CreateFile (fileName,
                         GENERIC_READ,
                         FILE_SHARE_READ_WRITE,
                         IntPtr.Zero, OPEN_EXISTING, 0, IntPtr.Zero  )
        do if ( hFile.Equals(INVALID_HANDLE) ) then
            Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error());
        let hMap = CreateFileMapping (hFile, IntPtr.Zero, READONLY, 0,0, null )
        do CloseHandle(hFile) |> ignore
        do if hMap.Equals(NULL_HANDLE) then
            Marshal.ThrowExceptionForHR(Marshal.GetHRForLastWin32Error());

        let start = MapViewOfFile (hMap, MAP_READ,0,0,0)

        do  if ( start.Equals(IntPtr.Zero) ) then
             Marshal.ThrowExceptionForHR(
                  Marshal.GetHRForLastWin32Error())

        member m.AddressOf(i: int) : 'a nativeptr  =
             NativePtr.of_nativeint(start + Int32.to_nativeint i)

Syme_850-4C17.fm  Page 519  Tuesday, October 23, 2007  1:31 PM



520 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

        member m.GetBaseAddress (i:int) : int -> 'a =
            NativePtr.get (m.AddressOf(i))

        member m.Item
            with get(i : int) : 'a = m.GetBaseAddress 0 i

        member m.Close() =
           UnmapViewOfFile(start) |> ignore;
           CloseHandle(hMap) |> ignore

        interface IDisposable with
          member m.Dispose() =
             m.Close()

The class exposes two properties, Item and Element. The former returns a function that 
allows access to data in the mapped file at a given offset using a function; the latter allows 
access to the mapped file at a given offset from the origin.

The following example uses the MemMap class to read the first byte of a file:

let mm = new MMap.MemMap<byte>("somefile.txt")

printf "%A\n" (mm.[0])

mm.Close()

Memory mapping provides good examples of how easy it can be to expose native function-
alities into the .NET runtime and how F# can be effective in this task. It is also a good example 
of the right way to use PInvoke to avoid calling PInvoked functions directly and build wrappers 
that encapsulate them. Verifiable code is one of the greatest benefits provided by virtual machines, 
and PInvoke signatures often lead to nonverifiable code that requires high execution privileges 
and are under the risk of corrupting the whole memory of the runtime.

A good approach to reduce the amount of potentially unsafe code is to define assemblies 
that are responsible for accessing native code with PInvoke and that expose functionalities in a 
.NET verifiable approach. In this way, the code that should be trusted by the user is smaller, 
and programs can have all the benefits provided by verified code.

Wrapper Generation and Limits of PInvoke
Platform Invoke is a flexible and customizable interface, and it is expressive enough to define 
prototypes for most libraries available. There are, however, pathological situations where it 
can be difficult to map directly the native interface into the corresponding signature. A significant 
example is given by function pointers embedded into structures, which are typical C programming 
patterns that approximate object-oriented programming. Here the structure contains a number of 
pointers to functions that can be used as methods, having care to pass the pointer to the struc-
ture as the first argument to simulate the this parameter. Sleepycat’s Berkeley Database (BDB) 
is a popular database library that adopts this programming pattern. The core structure 
describing an open database has the following structure:

Syme_850-4C17.fm  Page 520  Tuesday, October 23, 2007  1:31 PM



C HA P TE R  1 7  ■  IN T E R O P E R A T I N G  W I TH  C  AN D  C OM 521

struct __db {
        /* ... */
        DB_ENV *dbenv;              /* Backing environment. */
        DBTYPE type;               /* DB access method type. */
        /* ... */
        int  (*close) __P((DB *, u_int32_t));
        int  (*cursor) __P((DB *, DB_TXN *, DBC **, u_int32_t));
        int  (*del) __P((DB *, DB_TXN *, DBT *, u_int32_t));
        // ...
}

It was impossible to access directly from the PInvoke interface until .NET 2.0 because 
function pointers in managed structures were impossible to describe. With version 2 of the 
runtime, the System.Runtime.InteropServices.Marshal class features the 
GetFunctionPointerForDelegate for obtaining a pointer to a function that invokes a given delegate. 
The caller of the function has to guarantee that the delegate object will remain alive for the life-
time of the structure, since stubs generated by the runtime are not moved by the garbage collector 
but can still be collected. Furthermore, there is the problem that callbacks must adopt the 
stdcall calling convention in order, and if this is not the case, the PInvoke interface cannot 
interact with the library.

When the expressivity of PInvoke is not enough for wrapping a function call, it is still 
possible to write an adapter library in a native language such as C. This was the approach followed 
by the BDB# library where an intermediate layer of code has been developed to make the inter-
face to the library compatible with PInvoke. The trick has been, in this case, to define a function 
for each database function, taking as input the pointer to the structure and performing the 
appropriate call:

DB *db;
// BDB call
db->close(db, 0);
// Wrapper call
db_close(db, 0);

The problem with wrappers is that they have to be maintained manually, when the signatures 
of the original library change. The intermediate adapter makes it more difficult to maintain the 
overall interoperability of code.

Many libraries have a linear interface that can be easily wrapped using PInvoke, and of 
course wrapper generators have been developed. At the moment there are no wrapper gener-
ators for F#, but the C-like syntax for PInvoke declarations makes it easy enough to translate C# 
wrappers into F# code. An example of such a tool is SWIG, which is a multilanguage wrapper 
generator that reads C header files and generates interop code for a large number of program-
ming languages such as C#.

Syme_850-4C17.fm  Page 521  Tuesday, October 23, 2007  1:31 PM



522 CH AP T E R  1 7  ■  I N T E R O PE R AT IN G  W IT H  C  A N D  CO M

Summary
In this chapter, you saw how F# can interoperate with native code in the form of COM compo-
nents and the standard Platform Invoke interface defined by the ECMA and ISO standards. 
Neither mechanism is dependent on F#, but the language exposes the appropriate abstractions 
built into the runtime. You studied how to consume COM components from F# programs, and 
vice versa, and how DLLs can be accessed through PInvoke.

Syme_850-4C17.fm  Page 522  Tuesday, October 23, 2007  1:31 PM



523

■ ■ ■

C H A P T E R  1 8

Debugging and Testing 
F# Programs

Anecdotal evidence indicates that functional programming frequently leads to a substantially 
reduced bug rate for good programmers. This is primarily because programs built using func-
tional techniques tend to be highly compositional, building correct programs out of correct 
building blocks. Functional programming style, moreover, avoids or substantially reduces the 
use of side effects in the program, one property that makes programs more compositional. 
However, debugging and testing are still essential activities to ensure that a program is as close 
as possible to its specifications. Bugs and misbehaviors are facts of life, and F# programmers 
must learn techniques to find and remove them.

As a result, software testing is an important activity when developing large systems. Tests 
are initially carried out by simply writing small programs and interactively running them, but 
then a larger infrastructure quickly becomes necessary as a system grows and as new function-
alities must preserve the existing ones. In this chapter, we will discuss how you can perform 
testing with F# using F# Interactive, using the debugging facilities provided by Visual Studio 
and the .NET infrastructure, and using the NUnit framework for unit testing.

A widely adopted debugging technique is the “do-it-yourself-by-augmenting-your-program-
with-printf” approach. However, this is a technique that suffers from several problems 
and, although still useful, should not be the only technique you are prepared to apply to the 
complexities associated with program testing and debugging.

For testing, there are several strategies to test programs and ensure that they behave as 
expected, and the testing theory developed by software engineering has introduced several 
techniques used every day in software development. In this chapter, we focus on three aspects 
of program debugging and testing with F#:

• Using the Visual Studio debugger and the .NET debugging framework

• Using F# Interactive for testing and debugging

• Doing unit testing using NUnit, a freely available framework for unit testing

Alternative tools for debugging and unit testing are available, such as the .NET debugger 
that ships with the .NET Framework and the testing framework included in the Team Edition 
of Visual Studio. The concepts behind these tools are similar to those presented here, and the 
techniques discussed in this chapter can be easily adapted when using them. All these techniques 

Syme_850-4C18.fm  Page 523  Tuesday, October 16, 2007  12:43 PM



524 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

and tools are very helpful, but it is important to remember that these are just tools and you 
must use them in the appropriate way.

Debugging F# Programs
Programming systems such as .NET support debugging as a primary activity through tools to 
help programmers inspect the program for possible errors. The debugger is one of the most 
important of these tools, and it allows you to inspect the program state during the execution. It 
is possible to execute the program stepwise and analyze its state during execution.

DEBUGGABLE PROGRAMS

The debugger requires support from debugged programs in order to work properly; for interpreted languages, 
it is the interpreter that supervises the program execution, and the debugger must interact with it. Compiled 
languages, on the other hand, must include this support during compilation so that the debugger can properly 
interact with the running program.

The CLR provides support for program debugging, and compiled programs provide information to the 
debugger via a file with a .pdb file extension, which is the program debugging database. Since the compila-
tion process maps high-level programming constructs into equivalent ones in a less expressive language (in 
this case the intermediate language), some information gets lost during this process even if the semantics of 
the program are preserved. An example is the name of local variables that in the intermediate language are 
referred to use indexes into an array rather than names. A database is used to preserve the information on the 
correspondence between the program instructions and the intermediate language instructions, and it is used 
by the debugging infrastructure to create the illusion that the program is interpreted at the language level 
showing the current line of execution in the source code rather than the one in the compiled and actually 
running program. The database retains correspondence among intermediate language instructions (and those 
that have been used to generate them) and other important information, such as local variable names, that is 
lost during compilation. The program database is language independent so that the debugger tool can be shared 
among different programming languages and the programmer can analyze the program execution even when 
a program has been developed with different languages. It is also possible to step through unmanaged code 
from managed code, and vice versa.

Debugging without the .pdb file is still possible, though the debugger is incapable of showing the source 
code, and the intermediate code or the machine code is shown to the user.

We’ll start with the following simple function that is, in principle, meant to return true if 
the input string is a palindrome and false otherwise:

let isPalindrome (str:string) =
    let rec check(s:int, e:int) =
        if s = e then true
        elif str.[s] <> str.[e] then false
        else check(s + 1, e - 1)

    check(0, str.Length - 1)

Syme_850-4C18.fm  Page 524  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 525

The function appears correct at first sight. However, it works only for strings with an odd 
number of characters and strings with an even length that are not palindromes. In particular, 
the program raises an exception with the "abba" string as input.

We’ll show how to use the Visual Studio debugger to figure out the problem with this simple 
function. The algorithm recursively tests the characters of the string pair-wise at the beginning 
and at the end of the string because a string is a palindrome if the first and last characters are 
equal and the substring obtained by removing them is a palindrome too. The s and e variables 
define the boundaries of the string to be tested and initially refer to the first and last characters 
of the input string. Recursion terminates when the outermost characters of the string to be 
tested differ or when you have tested the whole string and the indexes collide.

Figure 18-1 shows the debugging session of the simple program. You set a breakpoint at 
the instruction that prints the result of the isPalindrome function for the "abba" string by clicking 
where the red circle is shown, which indicates the location of the breakpoint. When the program 
is started in debug mode, its execution stops at the breakpoint, and you can step through the 
statements. The current instruction is indicated by the yellow arrow, and the current statement 
is highlighted, as shown in Figure 18-1.

Figure 18-1. The Visual Studio debugger

The state of the program is accessible through a number of windows showing different 
aspects of the running program, usually docked at the bottom of the debugging window. It is 
possible, for instance, to inspect the state of the local variables of the current method (the Locals 
window showing the local variables and arguments, e and s in this example) or the state of the 
call stack to see the sequence of method calls (the Call Stack window). An important window is 
the Watch view, which can be used to write variable names and simple expressions and watch 
them change during the execution. It is also possible to evaluate expressions in the Immediate 

Syme_850-4C18.fm  Page 525  Tuesday, October 16, 2007  12:43 PM



526 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

window and invoke methods, as shown in Figure 18-1, where the simple expressions e and s 
are used. More views are available through the Debug menu, including the state of executing 
threads and the memory.

In this simple example, you are examining why isPalindrome misbehaves for an input 
string of even length. As shown in Figure 18-1, the Watch window has been used to monitor the 
s and e variables intended to define the bounds of the substring that has still to be checked; 
in this case, the two indexes cross without ever becoming equal, which is the criteria used 
to successfully stop the recursion. This happens when s has value 2 and e has value 1 in the 
example. The symptom of the misbehavior of the function is that an exception is thrown; this 
is frequently where debugging starts. In this example, the exception would have been thrown a 
few steps forward when e gets value -1, which is an invalid index for accessing a character in a 
string. If we used str[e] as the watch expression or in the Immediate window, the problem 
would appear rather evident. Now that we have found the bug, we can fix it by extending the 
test from s = e to s >= e to ensure that even if the end index becomes smaller than the starting 
one, we deal the situation appropriately.

■Note  In Visual Studio and other Microsoft .NET debugging tools, the debugger expressions follow the C# 
syntax, and arrays do not require the dot before the square braces. The most noticeable differences between 
C# and F# expression syntax are that access to arrays uses [] rather than .[] and the equality operator is 
== rather than =.

Using Advanced Features of the Visual Studio Debugger
We’ll now focus on relevant aspects of the debugging facilities that the CLR provides to managed 
applications and via tools such as the Visual Studio debugger.

Consider the notion of breakpoint, an essential tool to mark a statement in the program 
where you want to suspend its execution and inspect the program state. Often a bug appears 
only under very specific conditions. Trivial bugs such as the one we have discussed are the 
easiest to track and the first to be fixed in a program. It can be difficult or even impossible to 
suspend program execution not at the first execution of a statement but only when certain 
conditions are satisfied. Many programmers introduce an if statement with a dummy state-
ment for the body and set the breakpoint to the statement to suspend the program under the 
defined condition; this requires a recompilation of the program and a change to the source 
code, which may lead to further problems, particularly when several points of the program 
must be kept under control. A more effective strategy is to use conditional breakpoints, a 
powerful tool offered by the debugger. With a right-click on a breakpoint in the editor window 
or in the Breakpoints window (accessible through the Debug menu), a number of additional 
options become available.

For each breakpoint it is possible to indicate the following:

• A condition: An expression indicates a condition that must be satisfied by the program 
state in order to suspend the program execution.

• A hit count: The number of times that the breakpoint should be hit before suspending 
the execution.

Syme_850-4C18.fm  Page 526  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 527

• A filter: A mechanism to filter the machine, process, and thread to select the set of threads 
that will be suspended when the breakpoint is hit.

• An action: This is to be executed when the breakpoint is hit, causing the execution of a 
given action.

Breakpoint conditions and hit counts are the most frequently used options. Hit count is 
useful when a bug appears only after a significant period of execution; for instance, when debug-
ging a search engine, a bug may occur only after indexing gigabytes of data and the number of 
hits of the breakpoint can be determined. Conditional expressions are more useful when it is 
difficult to reproduce exactly the execution and when the number of times that the breakpoint 
is hit is variable. As for expressions typed in the Immediate window, conditional expressions 
are expressed as in C#, and this is for all languages, since the debugger infrastructure within the 
CLR is designed to deal with compiled programs and ignores the source language.

Sometimes it is necessary to debug a running program that has been started without the 
debugger; a typical situation is when debugging a service started through the Service snap-in 
of the Management Console or when debugging a Web application live that is executed by IIS 
rather than by the web server used for development by Visual Studio 2005. In these situations, 
it is possible to attach the debugger to a running process by selecting the Attach to Process item 
of the Debug menu and selecting the process to debug. There are standard processes that are 
generally known to programmers, such as w3p.exe, which is used by IIS to run application pools 
where ASP.NET applications run, or the svchost.exe process, which generally hosts Windows 
services. However, sometimes it can be difficult to find out which process is running the code 
to debug, since there are several of these generic process hosts for running applications.

Debugging a program slows down significantly its speed since the debugger infrastructure 
injects code to monitor program execution. Conditional breakpoints tend to make the situation 
worse because every time the breakpoint is hit, the condition must be tested before resuming 
the standard execution.

The CLR debugging infrastructure operates at the level of compiled assemblies; this has 
several implications. The objects and types that are visible to the debugger are those generated 
by the compiler and not always explicitly defined by the programmer in the source code; the 
program database information tends to preserve the mapping between the source and the 
compiled program, but sometimes the underlying structure surfaces to the user. On the other 
hand, it is possible to debug programs written in different programming languages, even when 
managed and unmanaged code must interoperate.

■Note  One tricky problem with F# programs can be debugging tail calls. We described tail calls in Chapter 8. 
In particular, when a tail call is executed, the calling stack frame will be removed prior to the call. This means 
the calls shown in the Visual Studio call stack window may not be complete. It may be missing entries that 
should, logically speaking, be present, according to the strict call sequence that caused a program to arrive 
at a particular point. Likewise, the debugger commands step-into and step-out can behave a little unusually 
when stepping into a tail call.

Figure 18-2 shows a debugging session of the program discussed in Chapter 17; we have 
stepped into the HelloWorld method, which is a C function accessed through the PInvoke interface 

Syme_850-4C18.fm  Page 527  Tuesday, October 16, 2007  12:43 PM

BNCVR6
Note
Marked set by BNCVR6



528 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

as witnessed by the Call Stack window. To enable the cross-language debugging, we indicated 
in the project options, specifically in the Debug section, that the debugging scope is the whole 
program rather than the current project.

Figure 18-2. Cross-language debugging with Visual Studio 2005 debugger

Instrumenting Your Program with the System.Diagnostics 
Namespace
A managed application can programmatically access the debugging services of the CLR through 
the types contained in the System.Diagnostics namespace. There are several types in the 
namespace encompassing several aspects of the runtime, including stack tracing, communi-
cations with the debugger, performance counter access for reading statistics about the computer 
state (memory and CPU usage are typically available using them), and operating system processes 
handling.

We’ll focus on the classes related to debugging and the debugger. There are mainly three 
ways to interact with the debugging infrastructure:

• The Debug class is used to programmatically assert conditions in the program and output 
debugging and tracing information to debuggers and other listeners.

• The Debugger class is used to interact with the debugger, check whether it is attached, 
and trigger breaks explicitly from the program.

• The debugging attributes are a set of custom attributes that can be used to annotate 
the program to control its behavior (see Chapters 9 and 10 for more information about 
custom attributes).

Syme_850-4C18.fm  Page 528  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 529

The Debug class provides a mean to output diagnostics messages without assuming that 
the program has been compiled as a console application, and all the debug output is collected 
by one or more listeners that receive the output notifications and do something with them. Each 
listener is an instance of a class inherited from the TraceListener class and typically sends the 
output to the console, or to a file, or notifies the user with a dialog box (you can find more infor-
mation about how to write a listener in the class library documentation). In the following example, 
we have instrumented the isPalindrome function with tracing statements:

let isPalindrome (str:string) =
    let rec check(s:int, e:int) =
        Debug.WriteLine("check call")
        Debug.WriteLineIf((s = 0), "check: First call")
        Debug.Assert((s >= 0 || s < str.Length), sprintf "s is out of bounds: %d" s)
        Debug.Assert((e >= 0 || e < str.Length), sprintf "e is out of bounds: %d" e)
        if s = e || s = e + 1 then true
        else if str.[s] <> str.[e] then false
        else check(s + 1, e - 1)

The WriteXXX methods of the Debug class are used to output data of a running program and 
are a sophisticated version of the printf debugging approach, where the program is enriched 
with print statements that output useful information about its current state. In this case, however, 
it is possible to redirect all the messages to different media rather than just print them to the 
console. It is also possible to conditionally output messages to reduce the number of messages 
sent to the debug output. In the example, we output a message each time the check method is 
invoked and use the conditional output to mark the first invocation.

Assertions are a well-known mechanism to assert conditions about the state of a running 
program, ensuring that at a given point in the program certain preconditions must hold; for 
instance, assertions are often used to ensure that the content of an option-valued variable is 
not None at some point in the program. During testing we want to ensure that if this precondition is 
not satisfied, the program execution will be suspended as soon as possible. This avoids a tracing 
back from the point where the undefined value of the variable would lead to an exception. The 
Assert method allows specifying a Boolean condition that must hold; otherwise, the given 
message is displayed, prompting the user with the failed assertion.

Both debug output and assertions are statements that typically are useful during the program 
development, though when a release is made, these calls introduce unnecessary overhead. 
Often the program compiled with these extra checks is indicated as the checked version of the 
program. The .NET Framework designers devised a general mechanism to strip out the calls to 
methods under a particular condition with the help of the compiler. The ConditionalAttribute 
custom attribute is used to label methods whose calls are included in the program only if a 
given compilation symbol is defined; for the methods in the Debug type, it is the DEBUG symbol. 
The F# compiler supports this mechanism, making it is possible to leverage these tools to 
instrument the F# program in a way that is supported by the .NET infrastructure.

The Debugger type lets you check whether the program is attached to a debugger and to 
trigger a break if required. It is also possible to programmatically launch the debugger using 
this type and send log messages to it. This type is used less often than the Debug type, but it may 
be useful if a bug arises only without an attached debugger. In this case, it is possible to program-
matically start the debugging process when needed.

Syme_850-4C18.fm  Page 529  Tuesday, October 16, 2007  12:43 PM



530 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

Another mechanism that allows controlling the interaction between a program and the 
debugger is based on a set of custom attributes in the System.Diagnostics namespace. Table 18-1 
shows the attributes that control in part the behavior of the debugger.

These attributes allow you to control essentially two aspects of the debugging: how data is 
visualized by the debugger and how the debugger should behave with respect to the visibility 
of members.

The ability to control how types are displayed by the debugger can be helpful to produce 
customized views of data that may significantly help inspect the program state into an aggre-
gate view. The easiest way is to use the DebuggerDisplayAttribute attribute, which supports 
the customization of the text associated with a value in the debugger window; an object of that 
type can still be inspected in every field. Consider the following simple example:

[<DebuggerDisplay("{re}+{im}i")>]
type MyComplex=
    { re : double
      im : double }
let c = { re = 0.0; im = 0.0 }
Console.WriteLine("{0}+{1}i", c.re, c.im)

Here we’re introducing a record named MyComplex with the classic definition of a complex 
number. The DebuggerDisplayAttribute attribute is used to annotate the type so that the debugger 

Table 18-1. Attributes Controlling Program Behavior Under Debug

Attribute Description

DebuggerBrowsableAttribute Determines whether and how a member is displayed 
in the debug window.

DebuggerDisplayAttribute Indicates how a type or field should be displayed in 
the debug window.

DebuggerHiddenAttribute The debugger may interpret this attribute and forbid 
interaction with the member annotated with it.

DebuggerNonUserCodeAttribute Marks code that is not user written (for instance, 
designer-generated code) and that can be skipped 
to not complicate the debugging experience.

DebuggerStepperBoundaryAttribute Used to locally override the usage of 
DebuggerNonUserCodeAttribute.

DebuggerStepThroughAttribute The debugger may interpret this attribute and 
disallow stepping into the target method.

DebuggerTypeProxyAttribute Indicates a type that is responsible for defining how 
a type is displayed in the debug window; it may 
affect debugging performance and should be used 
only when it is really necessary to radically change 
how a type is displayed.

DebuggerVisualizerAttribute Indicates for a type the type that defines how to 
render it while debugging.

Syme_850-4C18.fm  Page 530  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 531

will display its instances using the mathematical notation rather than just displaying the type 
name. The syntax allowed assumes that curly braces are used to indicate the name of a property 
whose value should be inserted in the format string. Figure 18-3 shows the result in the Visual 
Studio 2005 debugger: on the left side is how the debugger window appears when MyComplex is 
without the DebuggerDisplay annotation; on the right side the custom string appears, and the 
properties in the string appear in curly braces. As you can see, the difference is in the value 
field, and the structure can still be inspected. You can use a custom visualizer to fully customize the 
appearance of the data within the debugger, but it may affect debugging performance.

Figure 18-3. The MyComplex type shown by the debugger without and with DebuggerDisplay

Figure 18-3 is also interesting because it shows how the debugger displays information 
from the compiled program. In this case, the association between the name c and the runtime 
local variable has been lost, and the record appears because it has been compiled by the compiler 
as a pair of fields and public properties.

The rest of the namespace contains classes to interact with the runtime: the event logging 
infrastructure, processes and threads management, and the representation of the stack of a 
thread. Stack manipulation can be useful if it is necessary to know the call sequence that leads 
to executing a particular method. The StackTrace type exposes a list of StackFrame objects that 
provide information about each method call on the stack.

Debugging Concurrent and Graphical Applications
Although a debugger is a fundamental tool for inspecting applications, it is not the Holy Grail, 
and it must be used carefully, being aware of the fact that the process will interfere with the 
normal execution of the application. The most relevant impact that the debugging process has 
over a running program is the influence over the execution timing, which is a critical aspect of 
concurrent and graphical applications, which are becoming common nowadays. Sometimes a 
bug even disappears while using the debugger because of these changes to execution timings.

Debugging and testing concurrent applications can be particularly difficult because the 
use of a debugger is guaranteed to alter execution timings. There is no general rule for debugging 
concurrent applications, but here we briefly discuss how the debugger can be used in these 
cases. Consider this simple example of a multithreaded application:

#light
open System
open System.Threading

Syme_850-4C18.fm  Page 531  Tuesday, October 16, 2007  12:43 PM



532 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

let t1 = Thread(fun () ->
    while true do
      printf "Thread 1\n"
)
let t2 = Thread(fun () ->
    while true do
      printf "Thread 2\n"
)
t1.Start()
t2.Start()

Threads t1 and t2 access the console, which is a shared resource; when we run the program 
without a debugger attached, the string printed by the two threads appears interleaved on the 
console. If you set a breakpoint on the two printf statements and you start a debugging session, 
you see that stepping automatically moves from one thread to the other and the output of the 
program is completely different from the one obtained without debugging; this is true also if 
you disable the breakpoints. The output is even more unbalanced if you set the breakpoint in 
only one of the two threads.

We discussed shared memory multithreaded applications in Chapter 13. In these applica-
tions, shared objects accessed by different threads are critical resources that may be viewed in 
the debugger. If the debug of a single thread fails, setting breakpoints in different threads may 
help to study the dynamic of the application, even if the full interaction of the threads cannot 
be fully simulated. If this approach fails, it may be useful to introduce tests inside the applica-
tion and use the Debugger type only when a given condition occurs. Channel-based message-
passing applications are generally easier to debug than those that rely on shared memory, 
because it is possible to monitor the communication end points using breakpoints or logging 
messages. Although the careful use of the debugger may help in debugging concurrent appli-
cations, sometimes external observation is enough to influence a running program. In these 
cases, tracing through debug output becomes a viable alternative, and in fact, large systems 
have different levels of traces to monitor program execution while running.

Graphical applications also present issues when debugging. As discussed in Chapter 11, 
the event loop of a GUI application is handled by a single thread, and if this is blocked, the 
GUI of the application will cease working until it is suspended in the debugger. Consider the 
following simple application:

open System
open System.Windows.Forms

let f = new Form(Text="Hello world")
let b = new Button(Text="Click me!", Dock=DockStyle.Fill)
b.Click.Add(fun _ ->
    b.Text <- "Click me again"
    MessageBox.Show("Hello world") |> ignore
)
f.Controls.Add(b)

f.Show()

Application.Run(f)

Syme_850-4C18.fm  Page 532  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 533

If you set a breakpoint at the MessageBox statement and debug the application, then when 
the button is clicked, the debugger suspends execution, and the form stops responding. Moreover, 
the text of the button does not change until the execution is resumed. This effect is because the 
thread suspended by the debugger is responsible for handling GUI events, including the paint 
event that will refresh the content of the button updating the button label.

More specifically, event handlers can affect the appearance of a form in two ways: by setting 
properties of graphical controls and by explicitly drawing using a Graphics object. In the first 
case, the change will not be noticed until the execution is resumed; this is because the property 
change usually asks for a refresh of the control appearance, which will eventually result in a 
paint event that must be processed by the thread that is suspended in the debugger. In the 
second case, updates are immediately visible when a statement involving drawing primitives is 
executed (unless double buffering has been enabled on the particular window).

For example, consider the following program displaying a window with a number of 
vertical lines:

open System
open System.Windows.Forms
open System.Drawing

let f = new Form(Text="Hello world")
f.Paint.Add(fun args ->
    let g = args.Graphics

    for i = 0 to f.Width / 10 do
        g.DrawLine(Pens.Black, i*10, 0, i*10, f.Height)

)
f.Show()
Application.Run(f)

You can set the breakpoint at the DrawLine statement and start debugging the application, 
paying attention to move the debugger window in order to make the application form visible. 
If you continue the execution one statement at a time, you can see the lines appearing in the 
form. In this case, the interaction with the graphical system does not trigger an event but inter-
acts directly with the Graphics object by emitting graphic primitives that are rendered immediately.

We have discussed the issues of debugging graphical applications by showing examples 
based on Windows Forms. The same considerations apply to all event systems where a thread 
is responsible for event notification. For graphical systems such as WPF based on the retention 
of graphic primitives, things work slightly differently, though analogous considerations can be 
made.

Debugging and Testing with F# Interactive
Functional programming languages have traditionally addressed many debugging and testing 
issues through the ability to interactively evaluate statements of the program and print the 
value of variables, inspecting the program state interactively. F# Interactive allows you to execute 
code fragments and quickly test them; moreover, the state of the FSI script can be inspected by 
querying values from the top level.

Syme_850-4C18.fm  Page 533  Tuesday, October 16, 2007  12:43 PM



534 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

Development and testing using F# Interactive can effectively reduce development time, 
because code fragments can be evaluated more than once without having to recompile the 
entire system. The Visual Studio add-in makes this process even more productive because 
code is edited in the development environment with type checking and IntelliSense, and code 
can be sent to F# Interactive simply by selecting and pressing the Alt+Enter shortcut. In this 
scenario, the isPalindrome function from the previous section could have been developed 
incrementally and tested by simply invoking it with a test input argument. Once found and 
fixed, the function definition could have been evaluated again and tested for further bugs.

During software development it is common practice to write simple programs to test 
specific features of software (we will discuss this topic more extensively in the “Unit Testing” 
section). With F# Interactive, tests can be defined as functions stored into a file and selectively 
evaluated in Visual Studio. This approach can be useful in developing and defining new tests, 
but more specific tools can be used to run tests in a more organic way.

Controlling F# Interactive
As you saw in Chapter 9, programs run within F# Interactive have access to an object called fsi 
that lets you control some aspects of the interactive execution. This is contained in the assembly 
FSharp.Interactive.Settings.dll, which is automatically referenced in files ending .fsx and 
within F# Interactive sessions.

Table 18-2 shows some of the methods supported by this object.

Table 18-2. Members on the fsi Object

Member Type Description

fsi.FloatingPointFormat string Gets or sets the format used for 
floating-point numbers, based on 
.NET Formatting specifications

fsi.FormatProvider System.IFormatProvider Gets or sets the cultural format 
used for numbers, based on .NET 
Formatting specifications

fsi.PrintWidth int Gets or sets the print width used 
for formatted text output

fsi.PrintDepth int Gets or sets the depth of output for 
tree-structured data

fsi.PrintLength int Gets or sets the length of output 
for lists and other linear data 
structures

fsi.ShowProperties bool Gets or sets a flag indicating if 
properties should be printed for 
displayed values

fsi.AddPrinter ('a -> string) -> unit Adds a printer for values compat-
ible with the specific type 'a

Syme_850-4C18.fm  Page 534  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 535

Some Common F# Interactive Directives
Table 18-3 shows some common directives accepted by F# Interactive, some of which corre-
spond to options for the F# command-line compiler.

Understanding How F# Interactive Compiles Code
Although the F# Interactive is reminiscent of the read-eval-print loops of interpreted languages, 
it is substantially different because it compiles code rather than interprets it. Whenever a code 
fragment is typed on the top level, it gets compiled on the fly as part of a dynamic assembly, 
and it gets evaluated for side effects. This is particularly important for types because it is possible to 
create new ones at the top level and their dependencies may be tricky to fully understand. We 
start with an example of nontrivial use of F# Interactive that shows these intricacies, and we 
define the class APoint representing points using an angle and a radius:

type APoint(angle,radius) =
    member x.Angle = angle
    member x.Radius = radius
    new() = APoint(angle=0.0, radius=0.0)

fsi.AddPrintTransformer ('a -> obj) -> unit Adds a printer that shows any values 
compatible with the specific type 
'a as if they were values returned 
by the given function

fsi.CommandLineArgs string[] Gets the command-line arguments 
after ignoring the arguments rele-
vant to the interactive environment 
and replacing the first argument 
with the name of the last script file

Table 18-3. Some Commonly Used F# Interactive Directives

Directive Description

#r path References a DLL. The DLL will be loaded dynamically when 
first required.

#I path Adds the given search path to that used to resolve referenced DLLs.

#use file Accepts input from the given file.

#load file ... file Loads the given file(s) as if it had been compiled by the F# command-
line compiler.

#time Toggles timing information on/off.

#quit Exits F# Interactive.

Table 18-2. Members on the fsi Object

Member Type Description

Syme_850-4C18.fm  Page 535  Tuesday, October 16, 2007  12:43 PM



536 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

If you create an instance of the class using F# Interactive, you can inspect the actual type 
by using the GetType method, and you get the following output:

> let p = APoint();;
val p : APoint

> p.GetType();;
val it : System.Type
= FSI_0002+APoint
    {Assembly = FSI-ASSEMBLY, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null;
     AssemblyQualifiedName = "FSI_0002+APoint, FSI-ASSEMBLY, Version=0.0.0.0, ... }

Now suppose you want to extend the APoint class with an additional member that stretches 
the point radius of a given amount; it is natural to type the new definition of the class into the 
top level and evaluate it. And in fact F# Interactive does not complain about the redefinition of 
the type with the following:

type APoint(angle,radius) =
    member x.Angle = angle
    member x.Radius = radius
    member x.Stretch (k:double) = APoint(angle=x.Angle, radius=x.Radius + k)
    new() = APoint(angle=0.0, radius=0.0)

Since we have redefined the structure of APoint, we may be tempted to invoke the stretch 
method on it, but we get an error:

> p.Stretch(22.0);;
  p.Stretch(22.0);;
  --^^^^^^^^

stdin(2,2): error: FS0039: The field, constructor or member 'Stretch' is not defined.

To really understand what is happening, we create a new instance p2 of the class APoint 
and ask for the type:

> let p2 = APoint();;
val p2 : APoint

> p2.GetType();;
val it : System.Type
= FSI_0005+APoint
    {Assembly = FSI-ASSEMBLY, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null;
     AssemblyQualifiedName = "FSI_0005+APoint, FSI-ASSEMBLY, Version=0.0.0.0, ... }

Syme_850-4C18.fm  Page 536  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 537

As you can see, the name of the type of p2 is FSI_0005+APoint, whereas the type of p is 
FSI_0002+APoint and is different. Under the hood, F# Interactive compiles types into different 
modules to ensure that types can be redefined and ensures that the most recent definition of a 
type is used. Besides, the older definitions are still available, and their instances are not affected by 
the type redefinition.

Understanding the inner mechanisms of F# Interactive is useful when using it to test F# 
programs because interactive evaluation is not always equivalent to running code compiled 
using the command-line compiler. On the other hand, the compiled nature of the system guar-
antees that the code executed by F# Interactive performs as well as compiled code.

Unit Testing
Software testing is an important task in software development; its goal is to ensure that a program 
or a library behaves according to the system specifications. It is a relevant area of software 
engineering research, and tools have been developed to support the increasing effort of soft-
ware verification. Among a large number of testing strategies, unit testing has become rapidly 
popular because of software tools used to support this strategy. The core idea behind this approach 
is that programmers often write small programs to test single features of a system during devel-
opment. When bugs are found, new unit tests are added to ensure that a particular bug does 
not occur again. Recently it has been proposed that testing should drive software development, 
because tests can be used while developing programs to check new code and later to conduct 
regression tests, ensuring that new features do not affect existing ones.

In this section, we will discuss how test units can be developed in F# using the NUnit tool 
from http://www.nunit.org, a freely available tool supporting this testing strategy. The tool 
was inspired from JUnit, a unit testing suite for the Java programming language, but the inter-
face has been redesigned to take advantage of the extensible metadata provided by the CLR by 
means of custom attributes.

To make the experience more concrete, we’ll start with an example and develop a very 
simple test suite for the isPalindrome function. The first choice you have to face is whether 
tests should be embedded into the application. If tests are created as a separated application, 
you can invoke only the public interface of your software, and features internal to the software 
cannot be tested directly; on the other hand, if you embed unit tests within the program, you 
introduce a dependency from the nunit.framework.dll assembly, and unit tests are available 
at runtime even where unneeded. Because the NUnit approach is based on custom attributes, 
performance is not affected in both cases. If tests are used during program development, it is 
more convenient to define them inside the program; in this case, conditional compilation may 
help to include them only in checked builds.

Listing 18-1 shows a test fixture for the isPalindrome function, which is a set of unit tests. 
Test fixtures are represented by a class annotated with the TestFixture custom attribute, and 
tests are instance methods with the signature unit -> unit and annotated with the Test custom 
attribute. Inside a test case, methods of the Assert class are used for testing conditions that 
have to be satisfied during the test. If one of these fails, the test is considered failed, and it is 
reported to the user by the tool that coordinates test execution.

Syme_850-4C18.fm  Page 537  Tuesday, October 16, 2007  12:43 PM

http://www.nunit.org


538 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

Listing 18-1. A Test Fixture for the isPalindrome Function

#light

open System
open NUnit.Framework
open IsPalindrome

[<TestFixture>]
type Test() =

    let posTests(strings) =
        for s in strings do
            Assert.IsTrue(isPalindrome s,
                          sprintf "isPalindrome(\"%s\") must return true" s)

    let negTests(strings) =
        for s in strings do
            Assert.IsFalse(isPalindrome s,
                           sprintf "isPalindrome(\"%s\") must return false" s)

    [<Test>]
    member x.EmptyString () =
        Assert.IsTrue(isPalindrome(""),
                      "isPalindrome must return true on an empty string")

    [<Test>]
    member x.SingleChar () = posTests ["a"]

    [<Test>]
    member x.EvenPalindrome () = posTests [ "aa"; "abba"; "abaaba" ]

    [<Test>]
    member x.OddPalindrome () = posTests [ "aba"; "abbba"; "abababa" ]

    [<Test>]
    member x.WrongString () = negTests [ "as"; "F# is wonderful"; "Nice" ]

Test units are simply methods that invoke objects of the program and test return values to 
check that its behavior conforms to the specification. As you can see, we also introduced the 
posTests and negTests functions used in several tests. Developing unit tests is simply a matter 
of defining types containing the tests. Although it is possible to write a single test for a program, 
it is a good idea to have many small tests checking various features and different inputs. In this 
case, we have been able to introduce five tests for a simple function; of course, we did it to show 
the main idea, but nevertheless we have developed a test for each significant input to the func-
tion. We could have developed a single test with all the code used for the single tests together, 
but as you will see shortly, this would have reduced the ability of the test suite to spot problems 
in the program. In general, the choice of the granularity of a test suite for a program is up to the 

Syme_850-4C18.fm  Page 538  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 539

developer, and it is a matter of finding a reasonable trade-off between having a large number 
of unit tests checking very specific conditions and having a small number of unit tests checking 
broader areas of the program.

To compile the project, you must reference the nunit.framework.dll assembly; usually the 
-R compiler switch is used to ensure that the assembly is copied in the output directory of the 
program. Once the program has been compiled, you can start NUnit and open the executable.

As shown in Figure 18-4, the assembly containing the unit tests has been inspected using 
the reflection capabilities of the CLR, the classes annotated with the TestFixture attribute are 
identified by NUnit, and searched-for methods are annotated with the Test attribute. Initially, 
all the fixtures and the tests are marked with gray dots. When tests are run, the dot is colored 
green or red depending on the outcome of the particular test.

Figure 18-4. Test unit of isPalindrome executed in NUnit

If we reintroduce the original bug in the isPalindrome function and run NUnit again, 
EmptyString and EvenPalindrome will fail, the corresponding dots will be marked as red, and the 
Errors and Failures tab will contain details about the test failure. This is the main benefit of 
having a large number of small unit tests: tools may run them automatically and help identify 
problems in a program as well as the area potentially involved in the problem. Even in this 
simple example, a single test for the whole function would have indicated the problem with the 
function but failed to spot the kind of input responsible for the problem.

As every other piece of software, unit tests have to be maintained, documented, and updated 
to follow the evolution of the software for which they are designed. The number of test cases, 
organized in fixtures, tends to grow with the system during development, and in a large system 
it is possible to have thousands of these tests. Tools such as NUnit have features to control tests 
and allow you to run subsets of the whole set of test cases for a system. The notion of test fixtures 

Syme_850-4C18.fm  Page 539  Tuesday, October 16, 2007  12:43 PM



540 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

that you have already encountered is a form of grouping: a test suite may contain different test 
fixtures that may group test cases for different aspects to be tested.

NUnit features a number of additional attributes to support the documentation and classifica-
tion of test cases and test fixtures. The Description attribute allows associating a description with 
annotated test fixtures and test cases. Category and Culture attributes can be used to associate 
a category and a culture string with test fixtures and test cases; in addition, to provide more 
information about tests, NUnit allows filtering tests to be run using the content of the attributes. 
The ability to select the tests that must be run is important because running all tests for a system 
may require a significant amount of time. Other mechanisms to control the execution of tests 
are offered by the Ignore and Explicit attributes; the former can be used to disable a test fixture for 
a period without having to remove all the annotations, and the latter indicates that a test case 
or a fixture should be run only explicitly.

Another important area for testing nontrivial software is the life cycle of a test fixture. Test 
cases are instance methods of a class, and with a simple experiment, you can easily find that 
NUnit creates an instance of the class and runs all the tests it contains. To verify this, it is enough to 
define a counter field in the class annotated as a fixture and update its value every time a test is 
run; the value of the counter is consistently incremented for each test in the suite. Although 
you may relay on the standard life cycle of the class, NUnit provides additional annotations to 
indicate the code that must be run to set up a fixture and the corresponding code to free the 
resources at the end of the test; it is also possible to define a pair of methods that are run before 
and after each test case. The attributes controlling these aspects are TestFixtureSetUp and 
TestFixtureTearDown for annotating methods to set up and free a fixture and SetUp and TearDown for 
the corresponding test cases.

Listing 18-2. A Refined Test Fixture for the isPalindrome Function

#light

open System
open NUnit.Framework
open Debug

[<TestFixture;
  Description("Test fixture for the isPalindrome function")>]
type Test() =
    [<TestFixtureSetUp>]
    member x.InitTestFixture () =
        printfn "Before running Fixture"

    [<TestFixtureTearDown>]
    member x.DoneTestFixture () =
        printfn "After running Fixture"

    [<SetUp>]
    member x.InitTest () =
        printfn "Before running test"

Syme_850-4C18.fm  Page 540  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 541

    [<TearDown>]
    member x.DoneTest () =
        Console.WriteLine("After running test")

    [<Test;
      Category("Special case");
      Description("An empty string is palindrome")>]
    member x.EmptyString () =
        Assert.IsTrue(isPalindrome(""),
                      "isPalindrome must return true on an empty string")

Listing 18-2 shows a test fixture for the isPalindrome function that includes most of the 
attributes we have discussed and one test case. We mark the category of this test case as a 
“Special case.” We also include a description for each test case and the methods invoked before 
and after the fixture and single test cases are run. The graphical interface of NUnit provides a 
tab reporting the output sent to the console, and when tests run, the output shows the invoca-
tion sequence of the setup and teardown methods.

The ability to set up resources for test cases may introduce problems in the unit testing; in 
particular, the setup and teardown methods of test fixtures must be treated carefully because 
the state shared by different test cases may affect the way they execute. Suppose, for instance, 
that a file is open during the setup of a fixture. This may save time because the file is opened 
only once and not for each test case. If a test case fails and the file is closed, the subsequent 
tests may fail because they assume that the file has been opened during the setup of the fixture. 
Nevertheless, there may be situations where the ability of preloading resources only once for a 
fixture can save a significant amount of time.

NUnit comes with two versions of the tool: one displaying the graphical interface shown in 
Figure 18-4 and a console version of the tool printing the results to the console. Both versions 
are useful; the windowed application is handy to produce reports about tests and interactively 
control the test processing, and the console version can be used to include the test process into 
a chain of commands invoked via scripts. Also, the output of the tool can be read by other 
programs to automate tasks after unit tests. A large number of command-line arguments are 
available in the console version to specify all the options available, including test filtering based 
on categories.

When a unit test fails, there is the problem of setting up a debugging session to check the 
application state and the reason of the failure. It is possible to debug tests using the Visual 
Studio debugger by simply configuring the Debug tab in the project properties in a similar way, 
as shown in Figure 18-5. Once configured, it is possible to set breakpoints in the code and start 
the debugging session as usual. This is important when code development is driven by tests, 
since new features can be implemented alongside test cases. This is a good way to capitalize on 
the small test programs that developers frequently write. These small programs become the 
test cases and can be collected without having to develop a new test program each time.

In the example shown in Figure 18-5, we pass a single argument to nunit-console.exe, the 
assembly containing the tests to be executed. It is also possible to specify an additional argument 
to filter the tests that must be run. In this example, if you set a breakpoint in one of the test 
cases annotated explicitly, the debugger will not stop, because by default these tests are skipped.

Syme_850-4C18.fm  Page 541  Tuesday, October 16, 2007  12:43 PM



542 CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F#  P R OG R A M S

Figure 18-5. Configuring an F# project for debugging NUnit test fixtures

■Note  In this section we have shown how you can use NUnit to define test cases using F#. NUnit is not the 
only tool for unit testing available for .NET. For example, Visual Studio 2005 includes powerful unit testing 
tools. NUnit also integrates with other software development tools such as NCover, a coverage testing tool 
capable of conducting coverage tests driven by test fixtures and test cases.

Syme_850-4C18.fm  Page 542  Tuesday, October 16, 2007  12:43 PM



CH AP T E R  1 8  ■  D E B U G G I N G  A N D  T E ST IN G  F #  P R OG R AM S 543

Summary
In this chapter, we introduced techniques and tools that you can employ to debug F# programs 
and automate the execution of unit tests. Since testing and debugging activities relate to the 
execution of programs, these tools tend to work on the compiled version of the program, relying on 
additional information such as metadata exposed through the reflection API or program debug 
database information files generated by compilers. Programming languages such as F# featuring 
programming abstractions don’t map directly to the CLR intermediate language and type system, 
and as a result, the details of the compilation may surface when using these tools that operate 
on compiled assemblies. Nevertheless, these are valuable tools for developing large systems.

In the next chapter, we’ll cover another set of software engineering issues for F# code: 
library design in the context of F# and .NET.

Syme_850-4C18.fm  Page 543  Tuesday, October 16, 2007  12:43 PM



Syme_850-4C18.fm  Page 544  Tuesday, October 16, 2007  12:43 PM



545

■ ■ ■

C H A P T E R  1 9

Designing F# Libraries

This book deals with F#, a language situated in the context of .NET-based software construc-
tion and engineering. As an expert F# programmer, you will need more than a knowledge of the 
F# language; you will also need to use a range of software engineering tools and methodologies 
wisely to let you build software that is truly valuable for the situation where it is deployed. We 
touched on some important tools in the previous chapter. In this final chapter, we look at some 
of the methodological issues related to F# library design. In particular:

• We take a look at designing “vanilla” .NET libraries according to existing .NET design 
conventions and that minimize the use of F#-specific constructs.

• We briefly consider some of the elements of “functional programming design method-
ology,” which offers important and deep insights into programming but doesn’t address 
several important aspects of the library or component design problems.

• We give some specific suggestions on designing .NET and F# libraries, including naming 
conventions, how to design types and modules, and guidelines for using exceptions. 

F# is often seen as a functional language, but, as we have emphasized in this book, it is in 
reality a multiparadigm language; the OO, functional, imperative, and language-manipulation 
paradigms are all well supported. That is, F# is a function-oriented language—many of the defaults 
are set up to encourage functional programming, but programming in the other paradigms is 
effective and efficient, and a combination is often best of all. A multiparadigm language brings 
challenges for library designs and coding conventions. 

It is a common misconception that the functional and object-oriented programming 
methodologies are competing; it fact, they are largely orthogonal. However, it is important to 
note that functional programming does not directly solve many of the practical and prosaic 
issues associated with practical library design—for solutions to these problems, we must turn 
elsewhere. In the context of .NET programming, this means turning first to the .NET Library 
Design Guidelines, published online by Microsoft and as a book by Addison-Wesley. 

In the official documents, the .NET library design is described in terms of conventions and 
guidelines for the use of the following constructs in public framework libraries:

• Assemblies, namespaces, and types (see Chapters 6 and 7 in this book)

• Classes and objects, containing properties, methods, and events (see Chapter 6)

• Interfaces (in other words, object interface types; see Chapter 6)

Syme_850-4C19.fm  Page 545  Tuesday, October 16, 2007  2:53 PM



546 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

• .NET delegate types (mentioned briefly in Chapters 5 and 6)

• Enumerations (that is, enums from languages such as C#; mentioned briefly in Chapter 6)

• Constants (that is, constant literals from languages such as C#)

• Type parameters (that is, generic parameters; see Chapter 5)

From the perspective of F# programming, you must also consider the following constructs:

• Discriminated union types and their tags (Chapters 3 and 9)

• Record types and their fields (Chapter 3)

• Type abbreviations (Chapter 3)

• Values and functions declared using let and let rec (Chapter 3)

• Modules (Chapter 6)

• Named arguments (Chapter 6)

• Optional arguments (Chapter 6)

Framework library design is always nontrivial and often underestimated. F# framework and 
library design methodology is inevitably strongly rooted in the context of .NET object-oriented 
programming. In this chapter, we give our opinions on how you can go about approaching library 
design in the context of F# programming. The opinions are neither proscriptive nor “official.” 
More official guidelines may be developed by the F# team and community at some future 
point, though ultimately the final choices lie with F# programmers and software architects.

■Note  Some F# programmers choose to use library and coding conventions much more closely associated 
with OCaml, with Python, or with a particular application domain such as hardware verification. For example, 
OCaml coding uses underscores in names extensively, a practice avoided by the .NET Framework guidelines 
but used in places by the F# library itself. Some also choose to adjust coding conventions to their personal or 
team tastes.

Designing Vanilla .NET Libraries
One way to approach library design with F# is to simply design libraries according to the .NET 
Library Design Guidelines. This implicitly can mean avoiding or minimizing the use of F#-specific 
or F#-related constructs in the public API. We will call these libraries vanilla .NET libraries, as 
opposed to libraries that use F# constructs without restriction and are mostly intended for use 
by F# applications. 

Designing vanilla .NET libraries means adopting the following rules:

Syme_850-4C19.fm  Page 546  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 547

• Apply the .NET Library Design Guidelines to the public API of your code. Your internal 
implementation can use any techniques you want.

• Restrict the constructs you use in your public APIs to those that are most easily used and 
recognized by .NET programmers. This means avoiding the use of some F# idioms in the 
public API.

• Use the .NET quality assurance tool FxCop to check the public interface of your assembly 
for compliance. Use FxCop exemptions where you deem necessary.

At the time of writing, here are some specific recommendations from the authors of this book:

• Avoid using F# list types 'a list in vanilla .NET APIs. Use seq<'a> or arrays instead of lists.

• Avoid using F# function types in vanilla .NET APIs. F# function values tend to be a little 
difficult to create from other .NET languages. Instead consider using .NET delegate 
types such as the overloaded System.Func<...> types available from .NET 3.5 onward.

• Avoid using F#-specific language constructs such as discriminated unions and optional 
arguments in vanilla .NET APIs.

For example, consider the code in Listing 19-1, which shows some F# code that we intend 
to adjust to be suitable for use as part of a .NET API.

Listing 19-1. An F# Type Prior to Adjustment for Use as Part of a Vanilla .NET API

open System
type APoint(angle,radius) = 
    member x.Angle = angle
    member x.Radius = radius
    member x.Stretch(l) = APoint(angle=x.Angle, radius=x.Radius * l)
    member x.Warp(f) = APoint(angle=f(x.Angle), radius=x.Radius)
    static member Circle(n) = 
        [ for i in 1..n -> APoint(angle=2.0*Math.PI/float(n), radius=1.0) ]
    new() = APoint(angle=0.0, radius=0.0)

The inferred F# type of this class is as follows:

type APoint = 
     new : unit -> APoint
     new : angle:double * radius:double -> APoint
     static member Circle : n:int -> APoint list
     member Stretch : l:double -> APoint
     member Warp : f:(double -> double) -> APoint
     member Angle : double
     member Radius : double

Syme_850-4C19.fm  Page 547  Tuesday, October 16, 2007  2:53 PM



548 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

Let’s take a look at how this F# type will appear to a programmer using C# or another .NET 
library. The approximate C# “signature” is as follows:

// C# signature for the unadjusted APoint class of Listing 19-1

public class APoint {
     public APoint();
     public APoint(double angle, double radius);
     public static Microsoft.FSharp.Collections.List<APoint> Circle(int count);
     public APoint Stretch(double factor);
     public APoint Warp(Microsoft.FSharp.Core.FastFunc<double,double> transform);
     public double Angle { get; }
     public double Radius  { get; }
}

There are some important points to notice about how F# has chosen to represent constructs 
here. For example:

• Metadata such as argument names has been preserved.

• F# methods that take two arguments become C# methods that take two arguments. 

• Functions and lists become references to corresponding types in the F# library.

The full rules for how F# types, modules, and members are represented in the .NET Common 
Intermediary Language are explained in the F# language reference on the F# website.

To make a .NET component, we place it in a file component.fs and compile this code into 
a strong-name signed DLL using the techniques from Chapter 7:

C:\fsharp> sn -k component.snk
C:\fsharp> fsc –a component.fs --version 1.0.0.0 --keyfile component.snk 

Figure 19-1 shows the results of applying the Microsoft FxCop tool to check this assembly 
for compliance with the .NET Framework Design Guidelines. 

Figure 19-1 reveals a number of problems with the assembly. For example, the .NET 
Framework Design Guidelines require the following:

• Types must be placed in namespaces.

• Public identifiers must be spelled correctly.

• Additional attributes must be added to assemblies related to .NET Security and 
Common Language Specification (CLS) compliance.

Syme_850-4C19.fm  Page 548  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 549

Figure 19-1. Running FxCop on the code from Listing 19-1

Listing 19-2 shows how to adjust this code to take these things into account.

Listing 19-2. An F# Type After Adjustment for Use As Part of a Vanilla .NET API

#light

namespace ExpertFSharp.Types

open System
open System.Security.Permissions

[<assembly: SecurityPermission(SecurityAction.RequestMinimum, Execution = true);
  assembly: System.Runtime.InteropServices.ComVisible(false);
  assembly: System.CLSCompliant(true);
  assembly: PermissionSet(SecurityAction.RequestOptional, Name = "Nothing")>]
type RadialPoint(angle,radius) = 
    member x.Angle = angle
    member x.Radius = radius
    member x.Stretch(factor) = RadialPoint(angle=x.Angle, radius=x.Radius * factor)
    member x.Warp(transform:Converter<_,_>) = 
        RadialPoint(angle=transform.Invoke(x.Angle), radius=x.Radius)
    static member Circle(count) = 
        seq { for i in 1..count ->
                  RadialPoint(angle=2.0*Math.PI/float(count), radius=1.0) }
    new() = RadialPoint(angle=0.0, radius=0.0)

Syme_850-4C19.fm  Page 549  Tuesday, October 16, 2007  2:53 PM



550 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

The inferred F# type of the code in Listing 19-2 is as follows:

type RadialPoint = 
     new : unit -> RadialPoint
     new : angle:double * radius:double -> RadialPoint
     static member Circle : count:int -> seq<RadialPoint>
     member Stretch : factor:double -> RadialPoint
     member Warp : transform:System.Converter<double,double> -> RadialPoint
     member Angle : double
     member Radius : double

The C# signature is now as follows:

// C# signature for the unadjusted APoint class of Listing 19-2

public class RadialPoint {
   public RadialPoint();
   public RadialPoint(double angle, double radius);
   public static System.Collections.Generic.IEnumerable<RadialPoint> Circle(int count);
   public RadialPoint Stretch(double factor);
   public RadialPoint Warp(System.Converter<double,double> transform);
   public double Angle { get; }
   public double Radius  { get; }
}

The fixes we have made to prepare this type for use as part of a vanilla .NET library are 
as follows:

• We added several attributes as directed by the FxCop tool. You can find the meaning of 
these attributes in the MSDN documentation referenced by the FxCop warning messages.

• We adjusted several names; APoint , n, l, and f became RadialPoint, count, factor, and 
transform, respectively.

• We used a return type of seq<RadialPoint> instead of RadialPoint list by changing a 
list construction using [ ... ] to a sequence construction using seq { ... }. An alter-
native option would be to use an explicit upcast ([ ... ] :> seq<_>).

• We used the .NET delegate type System.Converter instead of an F# function type. 

After applying these, the last remaining FxCop warning is simply telling us that namespaces 
with two to three types are not recommended.

The last two previous points are not essential, but, as mentioned, delegate types and sequence 
types tend to be easier for C# programmers to use than F# function and list types (F# function 
types are not compiled to .NET delegate types, partly for performance reasons). Note you can 
use FxCop exemptions to opt out of any of the FxCop rules, either by adding an exemption 
entry to FxCop itself or by attaching attributes to your source code. 

Syme_850-4C19.fm  Page 550  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 551

■Tip  If you’re designing libraries for use from any .NET language, then there’s no substitute for actually 
doing some experimental C# and Visual Basic programming to ensure that uses of your libraries look good 
from these languages. You can also use tools such as .NET Reflector and the Visual Studio Object Browser to 
ensure that libraries and their documentation appear as expected to developers. If necessary, enroll the help 
of a C# programmer and ask them what they think. 

Understanding Functional Design Methodology
So far in this chapter you have looked at how to do “vanilla” .NET library design with F#. However, 
frequently F# programmers are designing libraries that are free to make more sophisticated 
use of F# and more or less assume that client users are using F# as well. To make the best use of 
F# in this situation, it is helpful to use functional programming design techniques as part of the 
library design process. For this reason, we’ll next cover what functional programming brings to 
the table with regard to design methodology. 

Understanding Where Functional Programming Comes From
Let’s recap the origins of the major programming paradigms from a design perspective:

• Procedural programming arises from the fundamentally imperative nature of processing 
devices: microprocessors are state machines that manipulate data using side effects. 

• Object-oriented programming arises from the need to encapsulate and reuse large 
objects such as those used for GUI applications. 

• Functional programming differs in that it arises from one view of the mathematics of 
computation. That is, functional programming, in its purest form, is a way of describing 
computations using constructs that have useful mathematical properties, independent 
of their implementations. 

For example, functional programming design methodology places great importance on 
constructs that are compositional. Let’s take a simple example: in F#, we can map a function 
over a list of lists as follows:

open List

let map2 f inp = map (map f) inp

This is a simple example of the inherent compositionality of generic functions: the expression 
map f has produced a new function that can in turn be used as the argument to map. Understanding 
compositionality is the key to understanding much of what goes by the name of functional 
programming. For example, functional programmers aren’t interested in a lack of side effects 
“just for the sake of it”—instead, they like programs that don’t use side effects simply because 
they tend to be more compositional than those that do. 

Functional programming often goes further by emphasizing transformations that preserve 
behavior. For example, we expect to be able to make the following refactorings to our code 
regardless of the function f or of the values inp, x, or rest:

Syme_850-4C19.fm  Page 551  Tuesday, October 16, 2007  2:53 PM



552 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

open List

hd (x :: rest) replaced by x 

concat (map (filter f) inp) replaced by filter f (concat inp) 

Equations like these can be a source of useful documentation and test cases, and in some 
situations they can even be used to specify whole programs. Furthermore, good programmers 
routinely manipulate and optimize programs in ways that effectively assume these transfor-
mations are valid. Indeed, if these transformations are not valid, then it is easy to accidentally 
insert bugs when working with code. That said, many important transformation equations 
aren’t guaranteed to always be valid—they typically hold only if additional assumptions are 
made—for example, in the first example the expression rest should not have side effects. 

Transformational reasoning works well for some kinds of code and badly for others. 
Table 19-1 lists some of the F# and .NET constructs that are highly compositional and for 
which transformational reasoning tends to work well in practice.

Understanding Functional Design Methodology
Functional design methodology itself is thus rooted in compositionality and reasoning. In 
practice, it is largely about the following steps:

Table 19-1. Some Compositional F# Library Constructs Amenable to Equational Reasoning

Constructs Examples Explanation

Base types int, float Code using immutable basic types is often 
relatively easy to reason about. There are some 
exceptions to the rule: the presence of NaN values 
and approximations in floating-point operations 
can make it difficult to reason about floating-
point code.

Collections Set<'a>, Map<'k,'v> Immutable collection types are highly amenable 
to equational reasoning. For example, we expect 
equations such as Set.union Set.empty x = x 
to hold.

Control types Lazy<'a>, Async<'a> Control constructs are often highly composi-
tional and have operators that allow you to 
combine them in interesting ways. For example, 
we expect equations such as (lazy x).Force() = 
x to hold.

Data abstractions seq<'a> F# sequences are not “pure” values, because they 
may access data stores using major side effects 
such as network I/O. However, in practice, uses 
of sequences tend to be very amenable to equa-
tional reasoning. This assumes that the side effects 
for each iteration of the sequence are isolated 
and independent.

Syme_850-4C19.fm  Page 552  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 553

1. Deciding what values you’re interested in representing. These values may range from 
simple integers to more sophisticated objects such expression trees from Chapter 9 or 
the asynchronous tasks from Chapter 13.

2. Deciding what operations are required to build these values, extracting information 
from them, and combining them and transforming them.

3. Deciding what equations and other algebraic properties should hold between these 
values and assessing whether these properties hold the implementation.

Steps 1 and 2 explain why functional programmers often prefer to define operations sepa-
rately from types. As a result, functional programmers often find object-oriented programming 
strange because it emphasizes operations on single values, while functional programming 
emphasizes operations that combine values. This carries over to library implementation in 
functional programming, where you will often see types defined first and then modules containing 
operations on those types. 

Because of this, one pattern that is quite common in the F# library is the following:

• The type is defined first.

• Then there is a module that defines the functions to work over the type.

• Finally, there is a with augmentation that adds the most common functions as members. 
We described augmentations in Chapter 6.

One simple example of functional programming methodology in this book is in Chapter 12, 
where you saw how a representation for propositional logic is defined using a type:

type Var =  string
type Prop = 
    | And of Prop * Prop
    | Var of Var
    | Not of Prop
    | Exists of Var * Prop
    | False 

Operations were then defined to combine and analyze values of type Prop. It would not 
make sense to define all of these operations as intrinsic to the Prop type, an approach often 
taken in OO design. In that same chapter, you saw another representation of propositional 
logic formulae where two logically identical formulae were normalized to the same represen-
tations. This is an example of step 3 of functional design methodology: the process of designing 
a type involves specifying the equations that should hold for values of that type.

You’ve seen many examples in this book of how object-oriented programming and func-
tional programming can work very well together. For example, F# objects are often immutable 
but use OO features to group together some functionality working on the same data. Also, F# 
object interface types are often used as a convenient notation for collections of functions.

However, there are some tensions between functional programming and object-oriented 
design methodology. For example, when you define operations independently of data (that is, 
the functional style), it is simple to add a new operation, but modifying the type is more difficult. 

Syme_850-4C19.fm  Page 553  Tuesday, October 16, 2007  2:53 PM



554 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

In object-oriented programming using abstract and virtual methods, it is easy to add a new 
inherited type, but adding new operations (that is, new virtual methods) is difficult. 

Similarly, functional programming emphasizes simple but compositional types, for 
example, functions and tuples. Object-oriented programming tends to involve creating many 
(often large and complex) types with considerable amounts of additional metadata. These are 
often less compositional but sometimes more self-documenting.

Finally, we mention that although functional programming does not provide a complete 
software design methodology, it is beautiful and powerful when it works, creating constructs 
that can be wielded with amazing expressivity and a very low bug rate. However, not all constructs 
in software design are amenable to compositional descriptions and implementations, and an 
over-reliance on “pure” programming can leave the programmer bewildered and abandoned 
when the paradigm doesn’t offer useful solutions that scale in practice. This is the primary reason 
why F# is a multiparadigm language: to ensure that functional techniques can be combined 
with other techniques where appropriate. 

■Note  Some functional languages such as Haskell place strong emphasis on the equational reasoning 
principles. In F#, equational reasoning is slightly less important; however, it still forms an essential part of 
understanding what functional programming brings to the arena of design methodology. 

Applying the .NET Design Guidelines to F#
In this section, we will present some additional recommendations for applying the .NET Library 
Design Guidelines to F# programming. We do this by making a series of recommendations that 
can be read as extensions to these guidelines.

Recommendation: Use the .NET naming and capitalization conventions where possible. 

Table 19-2 summarizes the .NET guidelines for naming and capitalization in code. We have 
added our own recommendations for how these should be adjusted for some F# constructs. 
This table refers to the following categories of names:

• PascalCase: LeftButton and TopRight, for example

• camelCase: leftButton and topRight, for example

• Verb: A verb or verb phrase; performAction or SetValue, for example

• Noun: A noun or noun phrase; cost or ValueAfterDepreciation, for example

• Adjective: An adjective or adjectival phrase; Comparable or Disposable, for example

In general, the .NET guidelines strongly discourage the use of abbreviations (for example, 
“use OnButtonClick rather than OnBtnClick”). Common abbreviations such as Async for 
Asynchronous are tolerated. This guideline has historically been broken by functional 
programming; for example, List.iter uses an abbreviation for iterate. For this reason, using 
abbreviations tends to be tolerated to a greater degree in F# programming, though we discourage 
using additional abbreviations beyond those already found in existing F# libraries. 

Syme_850-4C19.fm  Page 554  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 555

Acronyms such as XML are not abbreviations and are widely used in .NET libraries, though 
in uncapitalized form (Xml). Only well-known, widely recognized acronyms should be used.

The .NET guidelines say that casing cannot be used to avoid name collisions and that 
you must assume that some client languages are case insensitive. For example, Visual Basic 
is case insensitive.

Table 19-2. Conventions Associated with Public Constructs in .NET Frameworks and 
Author-Recommended Extensions for F# Constructs

Construct Case Part Examples Notes

Concrete 
types

PascalCase Noun/
adjective

List, DoubleComplex Concrete types are structs, 
classes, enumerations, 
delegates, records, and 
unions.
Type names are tradition-
ally lowercase in OCaml, 
and F# code has generally 
followed this pattern. 
However, as F# matures 
as a language, it is moving 
much more to follow 
standardized .NET idioms.

DLLs PascalCase Microsoft.FSharp.Core.dll
<Company>.<Component>.dll

Union 
tags

PascalCase Noun Some, Add, Success Do not use a prefix in public 
APIs. Optionally use a 
prefix when internal, such 
as type Teams = TAlpha | 
TBeta | TDelta. 

Event PascalCase Verb ValueChanged

Exceptions PascalCase WebException

Field PascalCase Noun CurrentName

Interface 
types

PascalCase Noun/
adjective

IDisposable

Method PascalCase Verb ToString

Namespace PascalCase Microsoft.FSharp.Core Generally use 
<Organization>.
<Technology>[.
<Subnamespace>], though 
drop the organization if 
the technology is indepen-
dent of organization.

Parameters camelCase Noun typeName, transform, range

 let values 
(internal)

camelCase Noun/verb getValue, myTable

Syme_850-4C19.fm  Page 555  Tuesday, October 16, 2007  2:53 PM



556 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

We generally recommend using lowercase for variable names, unless you’re designing 
a library:

✓ let x = 1
✓ let now = System.DateTime.Now

We recommend using lowercase for all variable names bound in pattern matches, functions 
definitions, and anonymous inner functions. Functions may also use uppercase:

✗ let add I J = I+J
✓ let add i j = i + j

Use uppercase when the natural convention is to do so, as in the case of matrices, proper 
nouns, and common abbreviations such as I for the “identity” function:

✓ let f (A:matrix) (B:matrix) = A+B
✓ let Monday = 1
✓ let I x = x

We recommend using camelCase for other values, including the following:

• Ad hoc functions in scripts 

• Values making up the internal implementation of a module

• Locally bound values in functions

✓ let emailMyBossTheLatestResults = ...
✓ let doSomething () = 
       let firstResult = ... 
       let secondResult = ... 

 let values 
(external)

camelCase or 
PascalCase

Noun List.map, Dates.Today let-bound values are often 
public when following 
traditional functional 
design patterns. However, 
generally use PascalCase 
when the identifier can 
be used from other .NET 
languages.

Property PascalCase Noun/
adjective

IsEndOfFile, BackColor Boolean properties 
generally use Is and Can 
and should be affirmative, 
as in IsEndOfFile, not 
IsNotEndOfFile.

Type 
parameters

Any Noun/
adjective

'a, 't, 'Key, 'Value

Table 19-2. Conventions Associated with Public Constructs in .NET Frameworks and 
Author-Recommended Extensions for F# Constructs (Continued)

Construct Case Part Examples Notes

Syme_850-4C19.fm  Page 556  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 557

Recommendation: Avoid using underscores in names. 

The F# library uses underscore naming conventions to qualify some names. For example:

• Suffixes such as _left and _right

• Prefix verbs such as add_, remove_, try_, and is_, do_

• Prefix connectives such as to_, of_, from_, and for_

This is to ensure compatibility with OCaml. However, we recommend limiting the use of 
this style to the previous situations or avoiding it altogether, partly because it clashes with .NET 
naming conventions. Over time we expect the use of this style will be minimized in the F# libraries. 
We recommend you avoid using two underscores in a value name and always avoid three or 
more underscores. 

■Note  No rules are “hard and fast,” and some F# programmers ignore this advice and use underscores 
heavily, partly because functional programmers often dislike extensive capitalization. Furthermore, OCaml 
code uses underscores everywhere. However, beware that the style is often disliked by others who have a 
choice about whether to use it. It has the advantage that abbreviations can be used in identifiers without them 
being run together.

Recommendation: Follow the .NET guidelines for exceptions.
The .NET Framework Design Guidelines give good advice on the use of exceptions in the 

context of all .NET programming. Some of these guidelines are as follows:

• Do not return error codes. Exceptions are the main way of reporting errors in frameworks.

• Do not use exceptions for normal flow of control. Although this technique is often used 
in languages such as OCaml, it is bug-prone and furthermore slow on .NET. Instead 
consider returning a None option value to indicate failure.

• Do document all exceptions thrown by your code when a function is used incorrectly.

• Where possible throw existing exceptions in the System namespaces.

• Do not throw System.Exception or System.SystemException. 

• Use failwith, failwithf, raise System.ArgumentException, and raise System.
InvalidOperationException as your main techniques to throw exceptions.

■Note  Other exception-related topics covered by the .NET guidelines include advice on designing custom 
exceptions, wrapping exceptions, choosing exception messages, and special exceptions to avoid throwing 
(that is, OutOfMemoryException, ExecutionEngineException, COMException, SEHException, 
StackOverflowException, NullReferenceException, AccessViolationException, or 
InvalidCastException).

Syme_850-4C19.fm  Page 557  Tuesday, October 16, 2007  2:53 PM



558 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

Recommendation: Consider using option values for return types instead of raising exceptions.

The .NET approach to exceptions is that they should be “exceptional”; that is, they should 
occur relatively infrequently. However, some operations (for example, searching a table) may fail 
frequently. F# option values are an excellent way to represent the return types of these operations.

Recommendation: Follow the .NET guidelines for value types.

The .NET guidelines give good guidance about when to use .NET value types (that is, structs, 
which you saw introduced in Chapter 6). In particular, they recommend using a struct only 
when the following are all true:

• A type logically represents a single value similar to a primitive type.

• It has an instance size smaller than 16 bytes.

• It is immutable.

• It will not have to be boxed frequently (that is, converted to/from the type System.Object).

Recommendation: Consider using explicit signature files for your framework.

Explicit signature files were described in Chapter 7. Using explicit signatures files for frame-
work code ensures that you know the full public surface of your API and can cleanly separate 
public documentation from internal implementation details.

Recommendation: Consider avoiding the use of implementation inheritance for extensibility.

Implementation inheritance is described in Chapter 6. In general, the .NET guidelines are 
quite agnostic with regard to the use of implementation inheritance. In F#, implementation 
inheritance is used more rarely than in other .NET languages. The main rationale for this has 
been given in Chapter 6, where you also saw many alternative techniques for designing and 
implementing object-oriented types using F#. However, implementation inheritance is used 
heavily in GUI frameworks.

■Note  Other object-oriented extensibility topics discussed in the .NET guidelines include events and call-
backs, virtual members, abstract types and inheritance, and limiting extensibility by sealing classes.

Recommendation: Use properties and methods for attributes and operations essential to a type. 

For example:

✓ type HardwareDevice with 
      ...
      member ID: string
      member SupportedProtocols: seq<Protocol>

Consider supporting using methods for the intrinsic operations essential to a type:

✓ type HashTable<'k,'v> with
      ...
      member Add           : 'k * 'v -> unit
      member ContainsKey   : 'k -> bool
      member ContainsValue : 'v -> bool

Syme_850-4C19.fm  Page 558  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 559

Consider using static methods to hold a Create function instead of revealing object 
constructors: 

✓ type HashTable<'k,'v> with
       static member Create : IHashProvider<'k> -> HashTable<'k,'v> 

Recommendation: Avoid revealing concrete data representations such as records. 

Where possible, avoid revealing concrete representations such as records, fields, and 
implementation inheritance hierarchies in framework APIs. 

The rationale for this is that one of the overriding aims of library design is to avoid revealing 
concrete representations of objects. For example, the concrete representation of System.
DateTime values is not revealed by the external, public API of the .NET library design. At runtime the 
Common Language Runtime knows the committed implementation that will be used throughout 
execution. However, compiled code does not itself pick up dependencies on the concrete 
representation. 

Recommendation: Use active patterns to hide the implementations of discriminated unions.

Where possible, avoid using large discriminated unions in framework APIs, especially if 
you expect there is a chance that the representation of information in the discriminated union 
will undergo revision and change. For frameworks, you should typically hide the type altogether or 
use active patterns to reveal the ability to pattern match over language constructs. We described 
active patterns in Chapter 9.

This does not apply to the use of discriminated unions internal to an assembly or to an 
application. Likewise, it doesn’t apply if the only likely future change is the addition of further 
cases and you are willing to require that client code be revised for these cases. Finally, active 
patterns can incur a performance overhead, and this should be measured and tested, though 
their benefits will frequently outweigh this cost.

■Note  The rationale for this is that using large, volatile discriminated unions freely in APIs will encourage 
people to use pattern matching against these discriminated union values. This is appropriate for unions that 
do not change. However, if you reveal discriminated unions indiscriminately, you may find it very hard to 
version your library without breaking user code.

Recommendation: Use object interface types instead of tuples or records of functions.

In Chapter 5 you saw various ways to represent a dictionary of operations explicitly, such 
as using tuples of functions or records of functions. In general, we recommend you use object 
interface types for this purpose, because the syntax associated with implementing them is 
generally more convenient.

Recommendation: Understand when currying is useful in functional programming APIs.

Currying is the name used when functions take arguments in the “iterated” form, that is, 
when the functions can be partially applied. For example, the following function is curried:

let f x y z = x + y + z

Syme_850-4C19.fm  Page 559  Tuesday, October 16, 2007  2:53 PM



560 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

This is not:

let f (x,y,z) = x + y + z

Here are some of our guidelines for when to use currying and when not to use it:

• Use currying freely for rapid prototyping and scripting. Saving keystrokes can be very 
useful in these situations.

• Use currying when partial application of the function is highly likely to give a useful 
residual function (see Chapter 3).

• Use currying when partial application of the function is necessary to permit useful 
precomputation (see Chapter 8). 

• Avoid using currying in vanilla .NET APIs or APIs to be used from other .NET languages.

When using currying, place arguments in order from the least varying to the most varying. 
This will make partial application of the function more useful and lead to more compact code. 
For example, List.map is curried with the function argument first because a typical program 
usually applies List.map to a handful of known function values but many different concrete list 
values. Likewise, you saw in Chapters 8 and 9 how recursive functions can be used to traverse 
tree structures. These traversals often carry an environment. The environment changes rela-
tively rarely—only when you traverse the subtrees of structures that bind variables. For this 
reason, the environment is the first argument. 

When using currying, consider the importance of the pipelining operator; for example, 
place function arguments first and object arguments last.

F# also uses currying for let-bound binary operators and combinators:

✓ let divmod n m = ...
✓ let map f x = ...
✓ let fold f z x = ...

However, see Chapters 6 and 8 for how to define operators as static members in types, 
which are not curried.

Recommendation: Use tuples for return values, arguments, and intermediate values. 

Here is an example of using a tuple in a return type:

✓ val divmod : int -> int -> int * int

Some Recommended Coding Idioms
In this section, we look at a small number of recommendations when writing implementation 
code, as opposed to library designs. 

We don’t give many recommendations on formatting, because formatting code is relatively 
simple for #light indentation-aware code. We do give a couple of formatting recommendations 
that early readers of this book asked about.

Syme_850-4C19.fm  Page 560  Tuesday, October 16, 2007  2:53 PM



CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR I E S 561

Recommendation: Use the standard operators.

The following operators are defined in the F# standard library and should be used wher-
ever possible instead of defining equivalents. Using these operators tends to make code much 
easier to read, so we strongly recommend it. This is spelled out explicitly because OCaml doesn’t 
support all of these operators, and thus F# users who have first learned OCaml are often not 
aware of this. 

 f >> g   -- forward composition
 g << f   -- reverse composition
 x |> f   -- forward pipeline 
 f <| x   -- reverse pipeline 

 x |> ignore   -- throwing away a value

 x + y    -- overloaded addition (including string concatenation) 
 x - y    -- overloaded subtraction 
 x * y    -- overloaded multiplication 
 x / y    -- overloaded division 
 x % y    -- overloaded modulus 

 x <<< y  -- bitwise left shift 
 x >>> y  -- bitwise right shift 
 x ||| y  -- bitwise left shift, also for working with enumeration flags 
 x &&& y  -- bitwise right shift, also for working with enumeration flags
 x ^^^ y  -- bitwise left shift, also for working with enumeration flags

 x && y   -- lazy/short-cut "and" 
 x || y   -- lazy/short-cut "or" 

Recommendation: Place pipeline operator |> at the start of a line.

People often ask how to format pipelines. We recommend this style:

let methods = 
    System.AppDomain.CurrentDomain.GetAssemblies
    |> List.of_array 
    |> List.map (fun assem -> assem.GetTypes()) 
    |> Array.concat

Recommendation: Format object expressions using the member syntax.

People often ask how to format object expressions. We recommend this style:

let thePlayers = 
       { new Organization() with
             member x.Chief = "Peter Quince" 
             member x.Underlings = 
                 [ "Francis Flute"; "Robin Starveling"; 
                   "Tom Snout"; "Snug"; "Nick Bottom"] 
         interface IDisposable with
             member x.Dispose() = ()  }

Syme_850-4C19.fm  Page 561  Tuesday, October 16, 2007  2:53 PM



562 CH AP T E R  1 9  ■  D E S I G N I N G  F #  L I B R AR IE S

■Note  The discussion of F# design and engineering issues in Chapters 18 and 19 has necessarily been 
limited. In particular, we haven’t covered topics such as aspect-oriented programming, design and modeling 
methodologies, software quality assurance, or software metrics, all of which are outside the scope of this book. 

Summary
In this chapter, we covered some of the rules you might apply to library design in F#, particularly 
taking into account the idioms and traditions of .NET. We also considered some of the elements of 
“functional programming” design methodology, which offers many important and deep insights. 
Finally, we gave some specific suggestions on designing .NET and F# libraries. That concludes 
our tour of F#, and we hope you enjoy a long and productive career coding in the language.

Syme_850-4C19.fm  Page 562  Tuesday, October 16, 2007  2:53 PM



563

■ ■ ■

A P P E N D I X

F# Brief Language Guide 

This appendix describes the essential constructs of the F# language in a compact form. You 
can find a full guide to the F# language in the F# Language Specification on the F# website.

Comments and Attributes

Basic Types and Literals      

Syme_850-4App.fm  Page 563  Thursday, October 25, 2007  2:29 PM



564 AP P E N D I X  ■  F #  B R I E F  L AN G U A G E  G U I D E  

Types

Patterns and Matching

Functions, Composition, and Pipelining

Syme_850-4App.fm  Page 564  Thursday, October 25, 2007  2:29 PM



A P P E N D IX  ■  F#  B R IE F  L A N G U A G E  G U I DE  565

Binding and Control Flow

Exceptions

Syme_850-4App.fm  Page 565  Thursday, October 25, 2007  2:29 PM



566 AP P E N D I X  ■  F #  B R I E F  L AN G U A G E  G U I D E  

Tuples, Arrays, Lists, and Collections

Syme_850-4App.fm  Page 566  Thursday, October 25, 2007  2:29 PM



A P P E N D IX  ■  F#  B R IE F  L A N G U A G E  G U I DE  567

Operators

Syme_850-4App.fm  Page 567  Thursday, October 25, 2007  2:29 PM



568 AP P E N D I X  ■  F #  B R I E F  L AN G U A G E  G U I D E  

Type Definitions and Objects

Syme_850-4App.fm  Page 568  Thursday, October 25, 2007  2:29 PM



A P P E N D IX  ■  F#  B R IE F  L A N G U A G E  G U I DE  569

Namespaces and Modules

Sequence Expressions and Workflows

Syme_850-4App.fm  Page 569  Thursday, October 25, 2007  2:29 PM



Syme_850-4App.fm  Page 570  Thursday, October 25, 2007  2:29 PM



571

Index

■Symbols
\ (backslash character), verbatim string 

literals, 32

;; (double semicolons), 7, 9, 20

; (semicolons), 19–20

_ (underscores)

naming conventions, 546, 557

type variables, 120

/ overloaded operator, 123

/// (three slashes), XMLDoc comments, 10

# (#type annotations), 116

#light, 9–10

#type annotations, 116

&& operator, 39–40

&&& operator, 340

* overloaded operator, 123

+ overloaded operator, 123

- overloaded operator, 123

.. operator, 56

.. .. operator, 56

<@ … @>, 249–253

>> (forward composition) operator, 45–46

:> coercion (upcast) operator, 114

:?> downcast operator, 114–115

^ operator, string concatenation, 34

^^^ operator, 340

|> forward pipe operator, 45, 561

|| operator, 39–40

||| operator, 340

~~~ operator, 340

■Numerics
2-bit carry ripple adder circuits, 343–346

■A
aborting

aborting computations
 uncooperatively, 365

uses for Thread.Abort, 389

abstract syntax trees (ASTs), 214–218, 478

caching properties, 221–222

concrete XML, 214–216

converting XML, 215–217

hiding abstract syntax implementations
with active patterns, 228

memoizing construction of tree nodes,
222–224

processing abstract syntax
representations, 218–219

quotations, 249–254

error estimation, 251–253

purpose of, 250

resolving top definitions, 253

traversing abstract syntax, 219–220

using on-demand computation with,
220–221

abstract values, using functions as, 48–49

abstracting control using functions, 49–50

accessibility annotations, 158–161

accumulating using folding operators,
in-memory data structure
queries, 434

accumulators, combining with explicit
continuations, 205

Syme_850-4INDEX.fm Page 571 Thursday, October 25, 2007 2:02 PM

572 ■IN D E X

activation records, 494

active patterns, 224–230

converting data to many views, 225–227

hiding abstract syntax implementations,
228–230

hiding discriminated unions, 559

matching on .NET object types, 227–228

partial and parameterized, 228

Regex1, 396

AddIn Manager, starting F# Interactive, 9

ADO.NET, 438–439

typed datasets, 446–448

untyped datasets, 444–446

aggregate operators, 44–45

iterating with, 49

transforming sequences, 56–57

using in queries, 432–433

Ajax rich-client applications, 422–424

algebraic expressions

implementing local simplifications,
320–321

modeling simple expressions, 318–320

parsing, 323–325

rendering, 329–335

converting to VisualExpr, 331–334

developing UI application for rendering
graphically, 321–323

rendering visual expressions, 334

simplifying, 325, 328

symbolic differentiation, 328

user interface for symbolic differentiation
application, 335, 338

algorithms

function parameters, 111–112

through abstract object types, 110–111

through explicit arguments, 108–110

aliasing, avoiding, 74–75

analyzing strings for duplicate words, 7–9

anchoring controls, 281

and keyword, defining multiple types
simultaneously, 67–68

annotating types

flexible types (#type), 116

troubleshooting type inference problems,
118–119

anonymous functions,

combining with let bindings and object
expressions, 157

values, 43

applications

asynchronous. See asynchronous
programming

concurrent. See concurrent programming

graphical. See graphical applications

packaging

building installers, 177–178

data and configuration settings, 174–176

deploying web applications, 178–179

kinds of software implemented
with F#, 173

parallel. See parallel programming

reactive. See reactive programming

System types related to run time
supervision of applications, 270

web. See web applications

arguments

dummy, adding to generic functions, 122

using named and optional arguments,
133–134

arithmetic, 27–31

bitwise operators, 29

error estimation using quotations,
251–253

Microsoft.FSharp.Math namespace,
268–269

operators, 28–29

arrays, 77–80

generating and slicing, 79–80

resizable, 80–81

Syme_850-4INDEX.fm Page 572 Thursday, October 25, 2007 2:02 PM

573■I N D E X

Find it faster at http://superindex.apress.com

two-dimensional, 80

using sequence expressions to specify
arrays, 61–62

ascx files, 398, 421–422

ASP.NET

event model, 416–418

serving dynamic web content, 396–397

ASP.NET languages, 397–399

code-behind files, 404–406

deploying/running applications,
402–403

development frameworks, 396–397

HTML directives, 401

serving locally, 403–404

simple application, 399–402

website structure, 399

web applications, 412

ASP.NET page life cycle, 417–418

debugging and tracing, 415–416

directives, 412–413

displaying database data, 409–412

event model, 416–418

input controls, 406–408

maintaining view state, 418–419

provider model, 419–421

server controls, 413–415, 421–422

user controls, 421–422

aspx files, 398. See also web applications

ASP.NET directives, 412–413

embedded F# scripts, 401

HTML directives, 401

input controls, 406–407

simple web application, 400

Time.aspx sample application, 400

Time2.aspx sample application, 404–405

assemblies, 166

DLLs, 167–168

EXEs, 166–167

generating documentation, 170–171

mixing scripting and compiled code,
168–169

optimization settings, 169

shared libraries and the .NET global
assembly cache (GAC), 171–172

static linking, 172

association tables, 437

associativity, FsYacc, 483–484

ASTs. See abstract syntax trees

asynchronous programming, 355–356, 365

asynchronous computations, 369–370,
374–375

asynchronous workflows web site URLs, 379

cancellation, 378–379

common I/O operations, 375

constructs used in async { . . . } workflow
expressions, 370

exceptions, 378–379

fetching multiple web pages
simultaneously, 365–367

file processing, 371–374

implementing Async.Parallel, 377–378

implementing Async.Primitive, 376–377

message passing/processing, 379–388

asynchronous web crawling, 385,
387–388

creating objects that react to messages,
381–383

mailbox processing, 379–381

mailbox-processing model, 383

scanning mailboxes for relevant
messages, 384–385

state machines, 381

servers as an asynchronous task (web
servers), 396

thread hopping, 367–368

asynchronous web service calling, 427–428

Attempt workflows. See workflows
(computation expressions)

Find it faster at http://superindex.apress.com

Syme_850-4INDEX.fm Page 573 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

574 ■IN D E X

attributes

debugging attributes, 528–531

types, 113

automatic generalization, 50, 102–103

automatic memory, 494

■B
backgrounds, painting application

backgrounds, 285

background workers, 357–359

building iterative workers, 359–362

connecting to GUIs, 363–365

primary members of the
BackgroundWorker class, 358

raising additional events, 362–363

backslash character (\), verbatim string
literals, 32

BDDs. See binary decision diagrams

Berkeley Database (BDB), 520–521

binary data

encoding/decoding, 266

parsing, 486–489

binary decision diagrams (BDDs), 338

representing propositional formulae,
347–350

verifying circuits, 350–353

binary interoperability, COM development
issues, 497

binary serialization via .NET libraries,
107–108

boxing

.NET types, 112

generic boxing and unboxing, 106–107

browser application example, 277–281

brushes, 284

building strings, 33–34

buttons. See also controls

F# button control, 287–289

Hello, World! button application, 275–276

■C
C, interoperability with F#. See

interoperability

C5 collection library, 267

caching

lazy values, 189–190

memoization, 187–190

caching properties in abstract syntax trees,
221–222

CALLBACK macro, 516

callbacks, 48

calling

conventions, 507–508

functions, 14–15

cancellation, asynchronous programming,
378–379

capitalization conventions, 554–556

carry select adders, 351–353

casting down dynamically, 114–115

casting up

automatically applied upcasts, 117

casting up statically, 114

catching exceptions, 86. See also exceptions

CCWs (COM callable wrappers), 501–507

CFGs (context-free grammars), 476

change events, web applications, 417

characters

escape characters, strings, 32

literals, 32

circuit verification with propositional logic,
338–339

checking simple circuit properties, 346

circuit types, 343

evaluating propositional logic naively,
340–343

relational modeling of circuits as
propositional logic, 343–346

representing propositional formulae with
BDDs, 347–350

Syme_850-4INDEX.fm Page 574 Thursday, October 25, 2007 2:02 PM

575■I N D E X

Find it faster at http://superindex.apress.com

representing propositional logic, 339–340

verifying circuits with BDDs, 350–353

classes. See objects, types.

constructed classes, 128–131, 151

cleaning up resources, 190–198

automatic run time cleanup, 193

internal objects, 194–195

resources with complex lifetimes, 193–194

sequence expressions, 197–198

unmanaged objects, 196–197

use keyword, 191–193

using function, 198

CLI (Common Language Infrastructure), 507

clients, Ajax rich-client web applications,
422–424

cloning records, 64–65

closure, 48

CLR (Common Language Runtime)

COM interaction, 501–507

exposing F# object types as COM
components, 503–507

debugging support, 524. See also
debugging

interoperability, 491, 494

memory management, 494–496

system types related to run time
supervision of applications, 270

code

compiling

--define command-line option, 169

DLLs, 167–168

-doc command-line option, 170

--exec command-line option, 169

EXEs, 166–167

--generate-html command-line
option, 170

generating documentation, 170–171

--help command-line option, 169

mixing scripting and compiled code,
168–169

optimization settings, 169

shared libraries and the .NET global
assembly cache (GAC), 171–172

static linking, 172

documenting, 10

double semicolons (;;), 7, 9, 20

F# Interactive code compiling process,
535–537

imperative code, 19–20

indentation, 10

making existing code more generic

generic algorithms through abstract
object types, 110–111

generic algorithms through explicit
arguments, 108–110

managed and unmanaged code, 491–492

organizing

modules vs. types, 149–150

packaging. See packaging code

writing implementation code, 560–561

code-behind files, web applications, 404–406

coercion (upcast) operator (>), 114

collections

C5 collection library, 267

imperative .NET collections, 80–84

dictionaries, 81–82

dictionaries with compound keys, 83–84

mutable data structures, 84

resizable arrays, 80–81

TryGetValue (Dictionary method),
82–83

Microsoft.FSharp.Collections, 267

PowerCollections library, 267

System.Collections.Generic, 267

color, Mandelbrot viewer application,
305–308

Syme_850-4INDEX.fm Page 575 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

576 ■IN D E X

COM callable wrappers (CCWs), 501–507

COM interoperability, 496–507

CLR-COM interaction, 502–507

common issues of COM development, 497

consuming COM components, 499–500

exposing F# object types as COM
components, 503–507

interaction with CLR, 501

metadata and Windows Registry, 498–499

pointers, 496–497

programming patterns, 501

combinator-based parsing, 486–489

combinator-based picking, 486–489

command-line compiler, generating HTML
documentation and XMLDoc
files, 10

comments, FsLex, 467, 471–473

comments, code, 10

Common Language Infrastructure (CLI), 507

Common Language Runtime (CLR)

COM interaction, 501–507

exposing F# object types as COM
components, 503–507

debugging support, 524. See also
debugging

interoperability, 491, 494

memory management, 494–496

System types related to run time
supervision of applications, 270

comparison, 103–105, 181–183

compiling

--define command-line compiler
option, 169

DLLs, 167–168

-doc command-line option, 170

--exec command-line option, 169

EXEs, 166–167

F# Interactive code compiling process,
535–537

F# types as .NET types, 151–153

--generate-html command-line
option, 170

generating documentation, 170–171

--help command-line option, 169

mixing scripting and compiled code,
168–169

optimization settings, 169

shared libraries and the .NET global
assembly cache (GAC), 171–172

static linking, 172

Component Object Model (COM)
interoperability. See COM
interoperability

component unregistering, 506

composite formatting, 265–266

compound keys, dictionaries, 83, 84

computation expressions (workflows),
230–231

combining workflows and resources, 244

defining workflow builders, 235–238

Haskell monads, 231–232

probabilistic workflows, 239–243

recursive workflow expressions, 244

side effects, 238–239

success/failure workflows, 232–235

computations

asynchronous, 369–370, 374–375

delayed computations, 99–100

separating pure computation from
side-effecting computation, 96

using on-demand computation with
abstract syntax trees, 220–221

concrete language formats, XML, 212–217

abstract syntax, 214–217

System.Xml namespace, 212–214

concrete representations, avoiding
revealing, 559

concrete type definitions, 162

Syme_850-4INDEX.fm Page 576 Thursday, October 25, 2007 2:02 PM

577■I N D E X

Find it faster at http://superindex.apress.com

concrete types, 125–127

defining with mutable state, 137

implementing object interface types, 142

concurrent programming, 355–356

background workers, 357–359

building iterative workers, 359–362

connecting to GUIs, 363–365

raising additional events, 362–363

message passing/processing, 379–388

asynchronous web crawling, 385–388

creating objects that react to messages,
381–383

mailbox processing, 379–381

mailbox-processing model, 383

scanning mailboxes for relevant
messages, 384–385

state machines, 381

shared-memory concurrency, 388–392

creating threads explicitly, 388–389

.NET memory model, 389–390

primitives, 392

race conditions, 389–391

ReaderWriterLock, 391

conditionals (&& and ||), 39–40

connection strings, databases, 440–442

constraints

constraining values to be nongeneric, 121

flexible (#type annotations), 116

floating, 123

constructors, 65

consuming COM components, 499–500

consuming web service, 425–427

context-free grammars (CFGs), 476

continuation passing, 203, 207

processing syntax trees, 206–207

using continuations to avoid stack
overflows, 204–206

control

abstracting control using functions, 49–50

GraphControl sample application,
297–298

option values, 39

control events, web applications, 417

controls, 275

anchoring, 281

composing user interfaces, 277–282

layout of controls, 280–281

Visual Studio form designer, 281–282

watching applications grow
interactively, 280

custom controls, 287–290

docking, 280

drawing applications, 282–287

background painting, 285

brushes and pens, 284

windows, 282–283

GraphControl sample application,
291–292

model, 292–294

style properties and controller, 294–298

using the control, 302–303

views, 298–302

Mandelbrot viewer sample application,
303–304

creating application plumbing, 310, 314

creating visual application, 308–310

generating the Mandelbrot set, 304–305

setting color, 305–308

Model-View-Controller design
pattern, 290

PropertyGrid, 303

SplitContainer, 303

web applications

custom server controls, 421–422

input controls, 406–408

Syme_850-4INDEX.fm Page 577 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

578 ■IN D E X

server controls, 413–415

user controls, 421–422

validation controls, 414–415

conversions, arithmetic, 30–31

copy collection, 495

counters, mailbox processing, 379–381

cross-language debugging, 528

cross-page posting, web applications, 418

CSS files, 398

currying, 559–560

Curves example application, 283–287

custom attributes, debugging attributes,
528–531

custom controls, 287–290

■D
data. See also databases

querying in-memory data structures,
431–436

accumulating using folding
operators, 434

aggregate operators, 432–433

LINQ, 436

Select/Where/From queries, 432

sequence expressions, 435

Data Definition Language (DDL), 438

data grids, 449–450

Data Manipulation Language (DML), 438

data parallel programs, 356

data structures, 15–16, 266–267

immutable, 37

Microsoft.FSharp.Collections, 267

Platform Invoke (PInvoke), 510–513

System.Collections.Generic, 267

databases, 436–437. See also data

ADO.NET, 438–439

advantages, 436–437

closing connections, 444

connection strings, 440–442

creating, 440

adding relationships, 450–452

Visual Studio, 450

creating tables, 442–444

data grids, 449–450

database engines, 438

datasets

typed, 446–448

untyped, 444–446

displaying data via web application,
409–412

establishing connections to database
engines, 439–440

inserting records, 442–444

queries, 442–444

relational database queries using F#
LinqToSql, 452–455

building DataContext instances,
453–454

object/relational (O/R) mapping, 453

using LinqToSql from F#, 454–455

relational databases, data relations, 437

stored procedures, 448–450

web applications, configuring provider
database, 420–421

XML, 455–457

LinqToXml, 457–458

queries, 459

XML Document Object Model (DOM),
456–457

DataContext class, 453–454

DateTime.Now, 49–50

DDL (Data Definition Language), 438

deadlock, 356

Debug class, 528–531

Debugger class, 528

Syme_850-4INDEX.fm Page 578 Thursday, October 25, 2007 2:02 PM

579■I N D E X

Find it faster at http://superindex.apress.com

debugging, 523–526

attributes, 528–531

concurrent applications, 531–532

cross-language, 528

F# Interactive, 533–537

code compiling process, 535–537

common directives, 535

controlling F# Interactive, 534–535

graphical applications, 532–533

System.Diagnostics namespace, 528–531

type inference. See type inference,
debugging

Visual Studio debugger, 525–528

web applications, 415–416

decoding/encoding

binary data, 266

Unicode strings, 266

--define command-line compiler option, 169

defining

indexer properties, 131

new exception types, 87–88

object interface types, 140

object types with mutable state, 137–138

probabilistic workflows, 239–243

records, 63–64

top definitions, resolving, 253

type abbreviations, 62

workflow builders, 235–238

definitions

hiding, 156–158

local, 156–158

delayed computations, 48, 99–100

delegate types, 113, 272–273

delegates, 152–153

overriding vs. delegation, 297

using partially implemented types,
146–147

delimiting

constructed class types, 151

object interface types, 151–152

deploying web applications, 178–179,
402–403

designing F# libraries, 545–546

applying .NET Framework Design
Guidelines to F#, 554–560

checking for compliance with .NET
Framework Design Guidelines using
FxCop, 548

functional programming design, 551–554

vanilla libraries, 546–550

dictionaries, 81–82

compound keys, 83–84

TryGetValue (Dictionary method), 82–83

directives

ASP.NET, 412–413

common F# Interactive directives, 535

HTML, 401

discriminated unions, 65–67, 127

constructors, 65

discriminators, 65

hiding, 559

using as records, 67

discriminators, 65

DLLs (Dynamic Link Libraries), 166. See also
assemblies

compiling, 167–168

F# library, 255–256

namespaces, 258

interoperability. See interoperability

.NET executables, 492–494

.NET library, 255–256

namespaces, 256–258

web applications, 398

DML (Data Manipulation Language), 438

-doc command-line option, 170

Syme_850-4INDEX.fm Page 579 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

580 ■IN D E X

docking controls, 280

documentation

assemblies, 170–171

code, 10

dot-notation, 16–17

double semicolons (;;), 7, 9, 20

downcasting dynamically, 114–115

DoWork event, 357–358

drawing applications, 282–287

background painting, 285

brushes and pens, 284

windows, 282–283

dummy arguments, adding to generic
functions, 122

Dynamic Link Libraries. See DLLs

dynamic loading, COM development
issues, 497

dynamic memory, 494–495

dynamic web content, 396–397

ASP.NET website structure, 399

ASP.NET languages, 397–399

code-behind files, 404–406

deploying/running applications, 402–403

development frameworks, 396–397

HTML directives, 401

serving locally, 403–404

simple web application, 399–402

dynamically typed language programmers, 5

■E
encapsulation, 156. See also packaging code

accessibility annotations, 158–161

explicit signatures, 164–165

local definitions, 156–158

encapsulation boundaries, 156

encoding/decoding binary data and Unicode
strings, 266

enriching sequence expressions

to specify lists and arrays, 61–62

with additional clauses, 60–61

enum types, 113

enums, 153

equality, 181–183

equational reasoning, 552

error estimation using quotations, 251–253

escape characters, strings, 32–33

evaluators, writing, 485–486

events, 207–208

ASP.NET event model, 416–418

creating and publishing, 209–210

event handling

explicit event loops, 277

Mandelbrot viewer sample application,
310, 314

mouse events, 289, 297

subscribing delegates vs. overriding
methods, 297

first-class values, 208–209

loops, graphical applications, 276–277

mouse move events and wheel
scrolling, 297

multithreaded programming, 210

raising from background workers, 362–363

exceptions, 84–88

asynchronous programming, 378–379

catching, 86

common categories of exceptions, 85

defining new kinds of exception objects,
87–88

exception types, 113

.NET guidelines, 557

try . . . finally, 86–87

--exec command-line option, 169

executables (.NET), 492–494

Syme_850-4INDEX.fm Page 580 Thursday, October 25, 2007 2:02 PM

581■I N D E X

Find it faster at http://superindex.apress.com

EXEs, 166, 492–494. See also assemblies

compiling, 166–167

exhaustive patterns, 53

explicit event loops, graphical
applications, 277

explicit signature files, .NET guidelines, 558

explicit signature types, 164–165

explicit signatures, 164–165

explicit type arguments

adding, 122

generic functions, 121

exposing F# object types as COM
components, 503–507

expression rendering, 318, 329–335

converting to VisualExpr, 331–334

developing UI application for rendering
expressions graphically, 321–323

implementing local simplifications,
320–321

modeling simple algebraic expressions,
318–320

parsing algebraic expressions, 323–325

rendering expressions, 329–335

converting to VisualExpr, 331–334

rendering visual expressions, 334

simplifying algebraic expressions, 325, 328

symbolic differentiation of algebraic
expressions, 328

user interface, 335, 338

visual symbolic differentiation
application, 318–321

building user interface, 335–338

core expression type, 322–323

rendering expressions, 334–335

rendering options, 329

visual elements and sizes, 330

visual expressions, 331, 334

expressions

lists, 34

object expressions

combining with function parameters,
144–146

implementing object interface types,
140–141

range expressions, 55–56

rendering. See expression rendering

sequence expressions, 59–62

cleaning up sequence expressions,
197–198

creating, using for, 60

enriching to specify lists and arrays,
61–62

enriching with additional clauses, 60–61

visual expressions, 332–334

converting to VisualExpr, 331–334

rendering, 334–335

extending types, 150–151

extern keyword, 509

Extreme Optimization, 274

■F
F#, 1

genesis of, 2

Web site URL, 6

F# arithmetic, 27–31

arithmetic conversions, 30–31

bitwise operators, 29

literals, 27–28

operators, 28–29

overloaded math functions, 31

F# Interactive

debugging and testing, 533–537

code compiling process, 535–537

common directives, 535

controlling F# Interactive, 534–535

Syme_850-4INDEX.fm Page 581 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

582 ■IN D E X

fsi object, 534–535

starting, 7–9

terminating entries, 7–9

F# library, 255–256

data structures, 266–267

delegate types, 272–273

designing. See F# library design

encoding/decoding

binary data, 266

Unicode strings, 266

formatting strings using .NET formatting,
265–266

Microsoft.FSharp.Math, 268–69

namespaces, 258

reflection, 270–272

general types, 270–271

Microsoft.FSharp.Reflection
namespace, 271–272

regular expressions, 261–264

F# library design, 545–546

applying .NET Framework Design
Guidelines to F#, 554–560

checking for compliance with .NET
Framework Design Guidelines using
FxCop, 548

functional programming design, 551–554

functional design methodology,
552–554

origin of functional programming,
551–552

vanilla libraries, 546–550

F# Web Tools, 423–424

fetching web pages

multiple pages simultaneously, 365–367

with .NET libraries, 23–24

Fibonacci numbers, computing with
background workers, 357–358, 361

fields, avoiding revealing concrete data
representations, 559

File System Editor, 177

files

on-demand reading, 463

processing using asynchronous
workflows, 371–374

reading and writing, 88–89. See also
input/output (I/O)

TextReader, TextWriter, and Stream, 91

web applications, 398–399

Firebird database engine, 438

first-class functions, 50–51

first-class values, 208–209

Flash Player, wrapping into forms
interactively, 502–503

flexible type constraints (#type
annotations), 116

flexible types (#type annotations), 116

floating constraints, 123

folding operators, using in queries, 434

for keyword, creating sequence
expressions, 60

for loops, 70–71

formatting

composite formatting, 265–266

formatting strings using .NET formatting,
265–266

forms

System.Windows.Forms, 20–21

new keyword, 22–23

open keyword, 21–22

Windows Forms. See Windows Forms

formulae, Prop, 340. See also propositional
logic, verifying circuits

binary decision diagrams (BDDs), 347–350

half adder circuits, 345

truth tables, 341–343

forward composition (>>) operator, 45–46

forward pipe (|>) operator, 45, 561

Syme_850-4INDEX.fm Page 582 Thursday, October 25, 2007 2:02 PM

583■I N D E X

Find it faster at http://superindex.apress.com

fractal viewer application, 303–304

creating application plumbing, 310, 314

creating visual application, 308–310

generating the Mandelbrot set, 304–305

setting color, 305–308

framework extensions, 173

frameworks, 173

Extreme Optimization, 274

GTK#, 273

Microsoft Robotics Studio, 273

Microsoft XNA, 273

Windows Communication Foundation
(WCF), 274

Windows Presentation Foundation
(WPF), 274

fsc.exe, 166

command-line flags, 168

--define command-line compiler
option, 169

-doc command-line option, 170

--exec command-line option, 169

-g, 168

--generate-html, 170

--help, 169

-O3, 168–169

compiling. See also compiling

DLLs, 167–168

EXEs, 166–167

flags

--standalone compiler option, 172

--static-link compiler option, 172

optimization settings, 169

FSharp.Compiler.dll, 118

fsi Object, 534–535

fsi.exe, watching applications grow
interactively, 280

FsLex, tokenizing with, 464–467

comments, 467, 471–473

fslex input files, 467–468

generating lexers, 484

lexing simple tokens, 468–470

strings, 471–473

tracking position information, 470–471

fst, 17–18

fsx file extension, 168

FsYacc, 477–486

associativity, 483–484

connecting parsers and lexers, 484–485

developing lexers, 478–480

developing parsers, 478–481

generating parsers, 484

input file structure, 481–482

operator precedence, 483–484

parsing lists, 482

resolving conflicts, 483–484

writing evaluators, 485–486

full adder circuits, 343–346

function calls, calling conventions, 507–508

function pointers, Platform Invoke
(PInvoke), 516–517

function values, 42–51

abstracting control using functions, 49–50

aggregate operators, 44–45

anonymous, 43

anonymous function values, 43

building functions with partial
applications, 46–48

composing functions with >>, 45–46

iterating with aggregate operators, 49

using .NET methods as first-class
functions, 50–51

using functions as abstract values, 48–49

Syme_850-4INDEX.fm Page 583 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

584 ■IN D E X

functional construction of XML, 457

functional programming, 27

conditionals (&& and ||), 39–40

currying, 559–560

F# arithmetic, 27–31. See also F#
arithmetic

function values, 42–51

library design, 551–554

functional design methodology,
552–554

origin of functional programming,
551–552

lists and options

lists, 34–37

option values, 37–39

pattern matching, 51–55

recursive functions, 40–42

reducing side effects, 95–100

avoiding combining imperative
programming and laziness, 98–100

replacing mutable locals and loops with
recursion, 96

separating mutable data structures,
97–98

separating pure computation from
side-effecting computation, 96

using weak vs. strong side effects, 98

sequence expressions, 59–62

sequences, 55–59

strings, 31–34

type definitions, 62–67

functions

abstracting control, 49–50

building with partial application, 46–48

calling, 14–15

composing with >>, 45–46

currying, 559–560

error estimation, 252–253

generic, 253

binary serialization via .NET libraries,
107–108

boxing/unboxing, 106–107

comparison, 103–105

dummy arguments, 122

explicit arguments, 121

hashing, 105

pretty-printing, 105–106

writing functions, 102–103

generic algorithms. See generic algorithms

IEvent module, 209

list module, 36–37

making tail recursive via explicit
continuations, 204

memoizing, 187–190

option module, 38

overloaded math functions, 31

parameters, combining with object
expressions, 144–146

recursive functions, 40–42

resolving top definitions, 253

tail recursion. See tail recursion

transformers, 49

type functions, 122

use, 191–193

using, 198

using .NET methods as first-class
functions, 50–51

using as abstract values, 48–49

values. See function values

vs. members, 128

visitor accumulating functions, 49

FxCop, 548–549

■G
-g command-line flag, 168

GAC (global assembly cache), 171–172

Syme_850-4INDEX.fm Page 584 Thursday, October 25, 2007 2:02 PM

585■I N D E X

Find it faster at http://superindex.apress.com

garbage collector, 494–495, 512–513

general types, 270–271

--generate-html command-line option, 170

generating

arrays, 79–80

HTML documentation, 10

XMLDoc files, 10

generative sequences, recursive workflow
expressions, 244

generic algorithms

function parameters, 111–112

through abstract object types, 110–111

through explicit arguments, 108–110

generic code

ungeneralized type variables, 120

value restriction, 119–120

working around the value restriction,
120–122

generic functions, 253

binary serialization via .NET libraries,
107–108

boxing/unboxing, 106–107

comparison, 103–105

dummy arguments, 122

explicit arguments, 121

generic hashing, 105

hashing, 105

pretty-printing, 105–106

writing functions, 102–103

generic overloaded operators, 123

generic type variables, 101–102

genesis of F#, 2

global assembly cache (GAC), 171–172

global unique identifiers (GUIDs), COM, 498

grammars, 476

GraphControl sample application, 291–292

model, 292–294

style properties and controller, 294–298

using the control, 302–303

views, 298–299, 302

graphical applications

anatomy of, 276–277

composing user interfaces, 277–282

layout of controls, 280–281

Visual Studio form designer, 281–282

watching applications grow
interactively, 280

custom controls, 287–290

debugging, 532–533

drawing applications, 282–287

background painting, 285

brushes and pens, 284

windows, 282–283

event loops, 276–277

GraphControl sample application,
291–292

model, 292–294

style properties and controller, 294–298

using the control, 302–303

views, 298–299, 302

Mandelbrot viewer sample application,
303–304

creating application plumbing, 310, 314

creating visual application, 308–310

generating the Mandelbrot set, 304–305

setting color, 305–308

Model-View-Controller design
pattern, 290

threads, 276

GTK#, 273

GUI applications. See graphical applications

GUIDs (global unique identifiers), COM, 498

GUIs, connecting background workers to,
363–365

Syme_850-4INDEX.fm Page 585 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

586 ■IN D E X

■H
half adder circuits, 343–346

handling events

explicit event loops, 277

Mandelbrot viewer sample application,
310, 314

mouse events, 289, 297

subscribing delegates vs. overriding
methods, 297

hardware design, 338

hashing, 181–183

generic, 105

Haskell

genesis of F#, 2

monads, 231–232

recommended chapters for Haskell
programmers, 6

heap, 495

Hello World

Platform Invoke (PInvoke), 508–510

writing with Windows Forms, 275–276

help, Visual Studio, 25

--help command-line option, 169

hiding

abstract syntax implementations with
active patterns, 228–230

accessibility annotations, 158–161

concrete data representations, 559

definitions, 156–158

discriminated unions, 559

mutable data, 75

hopping threads, 367–368

HSV (Hue Saturation Value), 305–308

HTML directives in ASP.NET .aspx files, 401

HTML documentation, 170

■I
I/O. See input/output

IDisposable, 93–94, 192

cleaning up internal objects, 194–195

defining, 191

implementing, 192–194

reclaiming unmanaged objects, 196–197

resource lifetimes, 192

image processing, asynchronous, 372–374

immutability of values, 12

immutable data structures, 37

immutable vs. mutable, 74

imperative code, 19–20

imperative programming, 69–70

arrays, 77–80

generating and slicing, 79–80

two-dimensional, 80

exceptions, 84–88

catching, 86

common categories of exceptions, 85

defining new kinds of exception objects,
87–88

try . . . finally, 86–87

imperative .NET collections, 80–84

dictionaries, 81–82

dictionaries with compound keys, 83–84

mutable data structures, 84

resizable arrays, 80–81

TryGetValue (Dictionary method),
82–83

input/output, 88–94

IDisposable, use, and using, 93–94

.NET I/O via streams, 89–90

printfn functions, 91–93

reading and writing files, 88–89

Syme_850-4INDEX.fm Page 586 Thursday, October 25, 2007 2:02 PM

587■I N D E X

Find it faster at http://superindex.apress.com

structural formatting, 93

System.Console class, 91

TextReader, TextWriter, and Stream, 91

looping and iterating, 70–71

mutable locals, 76–77

mutable records, 72–73

avoiding aliasing, 74–75

hiding mutable data, 75

mutable reference cells, 73–74

null values, 94–95

reducing side effects with functional
programming, 95–100

avoiding combining imperative
programming and laziness, 98–100

replacing mutable locals and loops with
recursion, 96

separating mutable data structures,
97–98

separating pure computation from
side-effecting computation, 96

using weak vs. strong side effects, 98

implementation code, 560–561

implementation inheritance

avoiding revealing concrete data
representations, 559

.NET guidelines, 558

using partially implemented types,
147–148

implementing objects, 144–148

combining object expressions and
function parameters, 144–146

IDisposable, 192–194

cleaning up internal objects, 194–195

reclaiming unmanaged objects, 196–197

object interface types

using concrete types, 142

using object expressions, 140–141

objects with encapsulated state, 157

partially implemented class types

defining, 146

using via delegation, 146–147

using via implementation inheritance,
147–148

implicit type arguments, 121

indexer properties, 23, 131

infix operators, testing for matches, 261

inheritance

avoiding revealing concrete data
representations, 559

.NET guidelines, 558

in-memory data structure queries, 431–436

accumulating using folding operators, 434

aggregate operators, 432–433

LINQ, 436

Select/Where/From queries, 432

sequence expressions, 435

input/output (I/O), 88–94

asynchronous workflows, 375

generic pretty-printing, 105–106

IDisposable, use, and using, 93–94

.NET I/O via streams, 89–90

printfn functions, 91–93

reading and writing files, 88–89

structural formatting, 93

System.Console class, 91

TextReader, TextWriter, and Stream, 91

installers, building, 177–178

instance members, 16

interface inheritance, 143–144

interface types, 139–144

defining, 140

delimiting, 151–152

implementing

using concrete types, 142

using object expressions, 140–141

Syme_850-4INDEX.fm Page 587 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

588 ■IN D E X

type heirarchy, 143–144

using common types from .NET libraries,
142–143

internal accessibility annotation, 158–161

internal object clean up, 194–195

interoperability

COM, 496–507

common issues of COM
development, 497

interaction with CLR, 501

metadata and Windows Registry,
498–499

pointers, 496–497

programming patterns, 501

Common Language Runtime (CLR),
491, 494

memory management at run time,
494–496

Platform Invoke (PInvoke), 507–510

data structures, 510–513

function pointers, 516–517

limits of PInvoke, 520–521

mapping types, 513–515

marshalling, 511–515

memory mapping, 517–520

wrapper generation, 520–521

IsPostBack property, 402, 418

iteration, 70–71

aggregate operators, 49

for loops, 70–71

sequence loops, 71

sequences, 56

while loops, 71

IterativeBackgroundWorker, 359–362

connecting to GUIs, 363–365

raising events from, 362–363

IUnknown interface, 497

■J
Java programmers, 5

recommended chapters for Java
programmers, 5

■K
keywords

and, 67–68

extern, 509

for, 60

lazy, 221

let, 10–12

match, 52

new, 22–23

null, 94–95

open, 21–22

use, 93–94

using, 93–94

val, 8, 13

■L
language-oriented programming, 211–212

abstract syntax representations, 217–218

caching properties in abstract syntax
trees, 221–222

memoizing construction of tree nodes,
222–224

processing, 218–219

traversing abstract syntax, 219–220

using on-demand computation with
abstract syntax trees, 220–221

active patterns, 224–230

converting data to many views, 225–227

hiding abstract syntax
implementations, 228–230

matching on .NET object types, 227–228

partial and parameterized active
patterns, 228

Syme_850-4INDEX.fm Page 588 Thursday, October 25, 2007 2:02 PM

589■I N D E X

Find it faster at http://superindex.apress.com

computation expressions (workflows),
230–231

combining workflows and
resources, 244

defining workflow builders, 235–238

Haskell monads, 231–232

probabilistic workflows, 239–243

recursive workflow expressions, 244

side effects, 238–239

success/failure workflows, 232–235

quotations, 249–254

error estimation, 251–253

purpose of, 250

resolving top definitions, 253

reflection, 244–249

schema compilation, 245–249

types, 245

XML, 212–217

abstract syntax, 214–217

System.Xml namespace, 212–214

launching web applications, 402–403

lazy sequences, 55

using from external sources, 58–59

lazy types, using on-demand computation
with abstract syntax trees, 220–221

lazy values, 189–190

left-factoring, 477

let bindings

accessibility annotations, 161

combining with anonymous functions
and object expressions, 157

using in constructed class types, 157

let keyword, 10–12

lexical actions, 467

lexical analysis, 462

lexing, 461–462

developing lexers with FsYacc, 478–480

generating lexers with FsLex, 484

on-demand reading of files, 463

processing line-based input, 462–463

on-demand reading of files, 463

using regular expressions, 463–464

tokenizing with FsLex, 464–467

comments, 467, 471–473

fslex input files, 467–468

lexing simple tokens, 468–470

strings, 471–473

tracking position information, 470–471

libraries

collections, 267

DLLs. See DLLs

Extreme Optimization, 274

F# library design, 545–546. See also F#
library

applying .NET Framework Design
Guidelines to F#, 554–560

checking for compliance with .NET
Framework Design Guidelines using
FxCop, 548

functional programming design,
551–554

vanilla libraries, 546–550

GTK#, 273

Microsoft Robotics Studio, 273

Microsoft XNA, 273

.NET, 20–24. See also .NET library

asynchronous operations, 375–376

binary serialization, 107–108

events, 208

help, 25

.NET Library Design Guidelines, 545

shared, 171–172

using common object interface types from
.NET libraries, 142–143

Windows Presentation Foundation
(WPF), 274

Syme_850-4INDEX.fm Page 589 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

590 ■IN D E X

lifetimes, resources, 192

--light, 10

lightweight syntax option, 9–10

line-based input processing, 462–463

on-demand reading of files, 463

regular expressions, 463–464

linking database tables, 451–452

LINQ, in-memory queries, 436

LinqToSql, relational database queries,
452–455

building DataContext instances, 453–454

object/relational (O/R) mapping, 453

using LinqToSql from F#, 454–455

LinqToXml

constructing, 457–458

storing,loading, and traversing
documents, 458

lists, 34–37

enriching sequence expressions to specify
lists, 61–62

parsing, 482

processing, tail recursion, 200–203

literals, F# arithmetic, 27–28

livelock, 356

local definitions, 156–158

local simplification of expressions, 320–321

local variables, mutable locals, 76–77

locks

ReaderWriterLock, 391

rules for using, 391

looping, 70–71

event loops, graphical applications, 276–277

for loops, 70–71

replacing with recursion, 96

sequence loops, 71

while loops, 71

■M
mailboxes

asynchronous web crawling, 385–388

hiding, 381–382

processing, 379–381, 383

scanning for relevant messages, 384–385

managed code, compilation scheme, 491–492

Mandelbrot viewer sample application,
303–304

creating application plumbing, 310, 314

creating visual application, 308–310

generating the Mandelbrot set, 304–305

setting color, 305–308

many-to-many relationships, 437

mapping

memory, Platform Invoke (PInvoke),
517–520

types, Platform Invoke (PInvoke), 513–515

marshalling (pickling) combinators, 486–489

marshalling, Platform Invoke (PInvoke),
511–515

parameters, 511–512

strings, 513–515

master files, 398

matching

patterns. See pattern matching

System.Text.RegularExpressions, 261–264

math

bitwise operators, 29

error estimation using quotations,
251–253

expressions. See expression rendering

F#, 27–31. See also F# arithmetic

Microsoft.FSharp.Math namespace,
268–269

operators, 28–29

matrices, 268–269

mdf files, 399–420

Syme_850-4INDEX.fm Page 590 Thursday, October 25, 2007 2:02 PM

591■I N D E X

Find it faster at http://superindex.apress.com

members, 16, 125–128

static, 148–149

syntax, formatting object expressions, 561

vs. functions, 128

memoization, 187–190

memoizing construction of abstract tree
nodes, 222–224

memory

dynamic memory, 494–495

leaks, 193

management at run time, 494–496

memory mapping, Platform Invoke
(PInvoke), 517–520

.NET memory model, 389–390

shared-memory concurrency, 388–392

creating threads explicitly, 388–389

.NET memory model, 389–390

primitives, 392

race conditions, 389–391

ReaderWriterLock, 391

messages

passing/processing messages, 379–388

asynchronous web crawling, 385–388

creating objects that react to messages,
381–383

mailbox processing, 379–381

mailbox-processing model, 383

scanning mailboxes for relevant
messages, 384–385

state machines, 380–381

queues, 276

metadata

COM

COM development issues, 497

Windows Registry, 498–499

.NET executables, 492

methods

calling conventions, 507–508

.NET guidelines, 558–559

overloading, 135–137

overriding vs. delegation, 297

using .NET methods as first-class
functions, 50–51

vs. values and properties, 23

Microsoft FxCop, 548–549

Microsoft Robotics Studio, 273

Microsoft XNA, 273

Microsoft.FSharp.Collections, 267

Microsoft.FSharp.Math namespace, 268–269

Microsoft.FSharp.Reflection namespace,
271–272

Mimer SQL database engine, 438

Models, GraphControl sample application,
292–294

Model-View-Controller design pattern, 290

modules

accessing via open keyword, 21–22

extending existing types and modules,
150–151

organizing code, 149–150

packaging code, 161–164

static members, 148–149

monads, and workflows (computation
expressions), 231–232

mouse events

handling, 289, 297

wheel scrolling, 297

multithreaded programming, 210

mutable, vs. immutable, 74

mutable data structures

imperative .NET collections, 84

mutable vs. immutable, 74

separating, 97–98

Syme_850-4INDEX.fm Page 591 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

592 ■IN D E X

mutable locals, 76–77

replacing with recursion, 96

mutable records, 72–73

avoiding aliasing, 74–75

hiding mutable data, 75

mutable reference cells, 73–74

mutation and identity, 76

mutable state

defining object types with, 137–138

hiding mutable state behind
encapsulation boundaries. See
encapsulation

MyComplex type, 531

MySQL, 438

■N
named arguments, 133–134

namespaces

accessing via open keyword, 21–22

F# library, 258

Microsoft.FSharp.Math, 268–269

Microsoft.FSharp.Reflection, 271–272

.NET framework, 256–258

packaging code, 161–163

System

core types, 259–260

types related to run time supervision of
applications, 270

System.Diagnostics, 528–531

System.IO. See input/output (I/O)

System.Runtime.InteropServices, 506

System.Xml, 212–214

converting XML into typed format,
215–216

naming conventions, 554–557

negation normal forms (NNFs), 229–230

.NET

collections, 267

executables, 492–494

I/O via streams, 89–90

imperative .NET collections, 80–84

dictionaries, 81–82

dictionaries with compound keys, 83–84

mutable data structures, 84

resizable arrays, 80–81

TryGetValue (Dictionary method),
82–83

types, 112–113

.NET Common Intermediary Language
rules, 548

.NET Framework, Windows Forms, 20

.NET Framework Design Guidelines

applying guidelines to F#, 554–560

checking for compliance with FxCop,
548–549

types, 548–550

.NET global assembly cache (GAC), 171–172

.NET libraries, 20–24, 255–256

applying .NET Framework Design
Guidelines to F#, 554–560

asynchronous operations, 375–376

binary serialization via .NET libraries,
107–108

checking for .NET Framework Design
Guidelines compliance using
FxCop, 548

data structures, 266–267

delegate types, 272–273

encoding/decoding

binary data, 266

Unicode strings, 266

events, 208

fetching web pages, 23–24

Syme_850-4INDEX.fm Page 592 Thursday, October 25, 2007 2:02 PM

593■I N D E X

Find it faster at http://superindex.apress.com

formatting strings using .NET formatting,
265–266

functional programming design, 551–554

functional design methodology,
552–554

origin of functional programming,
551–552

help, 25

libraries web site, 256

namespaces, 256–258

new keyword, 22–23

open keyword, 21–22

reflection, 270–272

general types, 270–271

Microsoft.FSharp.Reflection
namespace, 271–272

regular expressions, 261–264

setting properties, 22–23

supervising and isolating application
execution, 270

System types, 259

core types, 259–260

types related to run time supervision of
applications, 270

vanilla libraries, 546–550

.NET Library Design Guidelines, 545

.NET memory model, 389–390

.NET methods, using as first-class functions,
50–51

.NET thread pool, 368

new keyword, .NET libraries, 22–23

NNF (negation normal form), 229–230

nondeterministic programs, 356

Northwind database, displaying data via web
application, 409–412

null values, 94–95

NUnit, 537–542

■O
-O3 command-line flag, 168–169

object expressions

combining with let bindings and
anonymous functions, 157

formatting, 561

object interface types, .NET Framework
Design Guidelines, 559

object/relational (O/R) mapping, 453

object-oriented (OO) programming, 125

concrete types, 125–127

encapsulation. See encapsulation

members, 125–128

vs. functions, 128

objects. See objects

object-oriented (OO) programming. See OO
(object-oriented) programming

objects, 125–128

adding object notation to types, 131–137

indexer properties, 131

method overloading, 135–137

named and optional arguments,
133–134

optional property settings, 134–135

overloaded operators, 132–133

cleaning up internal objects, 194–195

cleaning up unmanaged objects, 196–197

creating objects that react to messages,
381–383

delegates, 152–153

enums, 153

expressions

combining with function parameters,
144–146

implementing object interface types,
140–141

Syme_850-4INDEX.fm Page 593 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

594 ■IN D E X

implementing, 144–148

combining object expressions and
function parameters, 144–146

defining partially implemented class
types, 146

using partially implemented types via
delegation, 146–147

using partially implemented types via
implementation inheritance,
147–148

implementing IDisposable, 194

making object members tail recursive, 202

modules

extending existing modules, 150–151

organizing code, 149–150

static members, 148–149

object interface types, 139–144

defining, 140

delimiting, 151–152

implementing, using concrete types, 142

implementing, using object expressions,
140–141

type heirarchy, 143–144

using common types from .NET
libraries, 142–143

pinning, 513

precomputation, 185–187

properties, 22–23

structs, 152

two-faced, 358

types, defining with mutable state,
137–138

vs. values, 19

OCaml

^ operator, string concatenation, 34

genesis of F#, 2

recommended chapters for OCaml
programmers, 6

on-demand computation, using with
abstract syntax trees, 220–221

on-demand reading of files, 463

one-to-many relationships, databases,
437, 452

OnPaint method, 298

OnPaintBackground method, 285

OO (object-oriented) programming, 125

adding object notation to types, 131–137

indexer properties, 131

method overloading, 135–137

named and optional arguments,
133–134

optional property settings, 134–135

overloaded operators, 132–133

concrete types, 125–127

constructed classes, 128–131

delimiting constructed class types, 151

defining object types with mutable state,
137–138

delegates, 152–153

enums, 153

extending existing types and modules,
150–151

implementing objects, 144–148

combining object expressions and
function parameters, 144–146

defining partially implemented class
types, 146

using partially implemented types via
delegation, 146–147

using partially implemented types via
implementation inheritance, 147–148

members, 125–128

modules

organizing code, 149–150

static members, 148–149

Syme_850-4INDEX.fm Page 594 Thursday, October 25, 2007 2:02 PM

595■I N D E X

Find it faster at http://superindex.apress.com

object interface types, 139–144

defining, 140

delimiting, 151–152

implementing, using concrete
types, 142

implementing, using object expressions,
140–141

type heirarchy, 143–144

using common types from .NET
libraries, 142–143

polymorphism, 141

structs, 152

tail recursion, 202

open keyword, accessing .NET namespaces
and modules, 21–22

operators. See symbols

accessing string elements, 33

aggregate, 44–45

transforming sequences, 56–57

aggregate operators

using in queries, 432–433

aggregate operators, iterating with, 49

arithmetic, 28–29

bitwise, 29

folding operators, using in queries, 434

infix operators, testing for matches, 261

lists, 34

matching. See matching

overloaded operators, 123, 132–133, 269

precedence, expressing with FsYacc,
483–484

typeof, 245

using in comparisons, 183

using standard operators, 561

optimization settings, compiler, 169

option values, 558

optional arguments, 133–134

optional property settings, 134–135

options

option values, 37–39

start-up options, accessing, 10

Oracle database engine, 438

organizing code, modules vs. types, 149–150

output. See input/output (I/O)

overloaded conversion functions, 123

overloaded math functions, 31

overloaded operators

overloading

methods, 135–137

operators, 123, 132–133, 269

overriding methods, vs. delegation, 297

■P
packaging applications, 173–179

building installers, 177–178

data and configuration settings, 174–176

deploying web applications, 178–179

kinds of software implemented with F#, 173

packaging code, 155. See also packaging
applications

assemblies, 166

DLLs, 167–168

EXEs, 166–167

generating documentation, 170–171

mixing scripting and compiled code,
168–169

optimization settings, 169

shared libraries and the .NET global
assembly cache (GAC), 171–172

static linking, 172

encapsulation, 156

accessibility annotations, 158–161

explicit signatures, 164–165

local definitions, 156–158

modules, 161–164

Syme_850-4INDEX.fm Page 595 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

596 ■IN D E X

namespaces, 161–163

signature types and signature files,
164–166

page events, web applications, 417

parallel programming, 355–356

background workers, 357–363

building iterative workers, 359–362

connecting to GUIs, 363–365

raising additional events, 362–363

parameterized active patterns, 228

parser combinators, 489

parsing, 461–462

algebraic expressions, 323–325

binary data, 486–489

FsYacc, 477–486

associativity, 483–484

connecting parsers and lexers, 484–485

developing lexers, 478–480

developing parsers, 478–481

generating parsers, 484

input file structure, 481–482

operator precedence, 483–484

parsing lists, 482

resolving conflicts, 483–484

writing evaluators, 485–486

pickling, 486–489

recursive-descent parsing, 473–475

grammars, 476

limitations of recursive-descent
parsers, 477

partial active patterns, 228

partial application, 46–48, 184–185

passing messages, 379–388

asynchronous web crawling, 385–388

creating objects that react to messages,
381–383

mailbox processing, 379–381

mailbox-processing model, 383

scanning mailboxes for relevant messages,
384–385

pattern matching, 51–55

active patterns, 224–230

converting data to many views, 225–227

hiding abstract syntax
implementations, 228–230

matching on .NET object types, 227–228

partial and parameterized active
patterns, 228

combining patterns, 54–55

discriminators, 65

guarding rules, 54–55

matching on structured values, 53–54

option values, 38

type-test patterns, 115

using wildcards, 54

patterns

active, hiding discriminated unions, 559

lexer rules, 468

matching. See pattern matching

programming, COM components, 501

pens, 284

pickling combinators, 486–489

pinning, 513

PInvoke. See Platform Invoke

pipeline formatting, 45, 561

Platform Invoke (PInvoke), 507–510

data structures, 510–513

function pointers, 516–517

limits of PInvoke, 520–521

mapping types, 513–515

marshalling, 511–515

memory mapping, 517–520

wrapper generation, 520–521

Syme_850-4INDEX.fm Page 596 Thursday, October 25, 2007 2:02 PM

597■I N D E X

Find it faster at http://superindex.apress.com

pointers

COM, 496–497

PInvoke, 512–513

function pointers, 516

pinning, 513

polymorphism, 141

postbacks, 402, 417–418

PostgreSQL, 438

PowerCollections library, 267

precomputation, 184

memoization, 187–190

objects, 185–187

partial application, 184–185

PreviousPage property, 418

primary keys, 437

prime numbers, displaying via web
application, 406–408

primitive propositions, 340

primitives, shared-memory
concurrency, 392

printing. See also input/output (I/O)

generic pretty-printing, 105–106

printfn functions, 91–93

private accessibility annotation, 158–160

prmitives, 32–33

probabilistic workflows, 239–243

processes, 356

processing

line-based input, 462–463

messages, 379–388

asynchronous web crawling, 385–388

creating objects that react to messages,
381–383

mailbox processing, 379–381, 383

scanning mailboxes for relevant
messages, 384–385

state machines, 380–381

profiling web applications, 415–416

programming patterns, COM
components, 501

programs

creating. See programs, creating

debugging. See debugging

testing. See testing programs

programs, creating, 7–9

calling functions, 14–15

data structures, 15–16

documenting code, 10

dot-notation, 16–17

imperative code, 19–20

let keyword, 10–12

properties, 16–17

scope, 10–12

tuples, 17–18

turning on lightweight syntax option, 9–10

types, 13–14

Prop formulae, 340. See also propositional
logic, verifying circuits

binary decision diagrams (BDDs), 347–350

half adder circuits, 345

truth tables, 341–343

propagation, 118

properties, 16–17

caching in abstract syntax trees, 221–222

indexer properties, 23, 131

.NET guidelines, 558–559

optional property settings, 134–135

setting, .NET libraries, 22–23

vs. values and methods, 23

PropertyGrid control, 303

propositional logic, verifying circuits, 338–339

checking simple circuit properties, 346

circuit types, 343

Syme_850-4INDEX.fm Page 597 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

598 ■IN D E X

evaluating propositional logic naively,
340–343

relational modeling of circuits as
propositional logic, 343–346

representing propositional formulae with
BDDs, 347–350

representing propositional logic, 339–340

verifying circuits with BDDs, 350–353

protecting

internal state using accessibility
annotations, 159–160

providers, 419–421

proxy classes, 424–425

public accessibility annotation, 158–161

publishing events, 209–210

Python programmers, 5

recommended chapters for Python
programmers, 5

■Q
QBF (quantified Boolean formulae), 339

queries, 442–444

datasets

typed, 446–448

untyped, 444–446

in-memory data structures, 431–436

accumulating using folding
operators, 434

aggregate operators, 432–433

LINQ, 436

Select/Where/From queries, 432

sequence expressions, 435

relational database queries using F#
LinqToSql, 452–455

building DataContext instances, 453–454

object/relational (O/R) mapping, 453

using LinqToSql from F#, 454–455

XML, 459

quotations, 249–254

error estimation, 251–253

purpose of, 250

resolving top definitions, 253

■R
race conditions, 389–391

range expressions, 55–56

RCWs (run time callable wrappers), 501–507

reactive programming, 355–356

GUI programs. See graphical applications

ReaderWriterLock, 391

reading and writing files, 88–91. See also
input/output (I/O)

on-demand reading of files, 463

TextReader, TextWriter, and Stream, 91

records

avoiding revealing concrete data
representations, 559

cloning, 64–65

defining, 63–64

discriminated unions, 67

handling non-unique record field
names, 64

mutable, 72–73

avoiding aliasing, 74–75

hiding mutable data, 75

mutable reference cells, 73–74

mutation and identity, 76

recursion

recursive functions, 40–42

recursive workflow expressions, 244

recursive-descent parsing, 473–475

grammars, 476

limitations of recursive-descent
parsers, 477

replacing mutable locals and loops with
recursion, 96

tail recursion, 198

list processing, 200–203

object-oriented programming, 202

Syme_850-4INDEX.fm Page 598 Thursday, October 25, 2007 2:02 PM

599■I N D E X

Find it faster at http://superindex.apress.com

processing syntax trees, 206

processing unbalanced trees, 203–204

using continuations to avoid stack
overflows, 204–206

reference (ref) cells

avoiding aliasing, 74–75

mutable, 73–74

mutation and identity, 76

reference types, 112–113

reflection, 244–249

COM development issues, 497

schema compilation, 245–249

types, 245

reflective programming

general types, 270–271

Microsoft.FSharp.Reflection namespace,
271–272

regasm.exe, 502

Regex1, 396

Registry, COM metadata, 498–499

Registry Editor, 178

regular expressions

extracting information from strings,
463–464

matching with
System.Text.RegularExpressions,
261–264

relational database queries using F#
LinqToSql, 452–455

building DataContext instances, 453–454

object/relational (O/R) mapping, 453

using LinqToSql from F#, 454–455

relational databases, 437

relational modeling of circuits as
propositional logic, 343–346

relationships, databases, 450–452

Release method, 497

Reload button control, 402

rendering expressions, 318, 329–335

converting to VisualExpr, 331–334

developing UI application for rendering
expressions graphically, 321–323

implementing local simplifications,
320–321

modeling simple algebraic expressions,
318–320

parsing algebraic expressions, 323–325

rendering expressions, 329–335

converting to VisualExpr, 331–334

rendering visual expressions, 334

simplifying algebraic expressions, 325, 328

symbolic differentiation of algebraic
expressions, 328

user interface, 335, 338

visual symbolic differentiation
application, 318–321

building user interface, 335–338

core expression type, 322–323

rendering expressions, 334–335

rendering options, 329

visual elements and sizes, 330

visual expressions, 331, 334

resizable arrays, 80–81

resources, 190–198

cleaning up, 190–191

automatic run time cleanup, 193

internal objects, 194–195

resources with complex lifetimes,
193–194

sequence expressions, 197–198

unmanaged objects, 196–197

use, 191–193

using, 198

combining with workflows, 244

lifetimes, 192

Syme_850-4INDEX.fm Page 599 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

600 ■IN D E X

stack

tail recursion, 198

tail recursion and list processing,
200–203

tail recursion and object-oriented
programming, 202

tail recursion and processing syntax
trees, 206

tail recursion and processing
unbalanced trees, 203–204

using continuations to avoid stack
overflows, 204–206

resx files, 398

RGB (Red Green Blue), 305–308

rich client web applications, 422–424

Robotics Studio, 273

Ruby programmers, 5

recommended chapters for Ruby
programmers, 5

rules, guarding match, 54

running web applications, 402–403

run time

interaction with COM components, 501

memory management, 494–496

resource cleanup, 193

run time callable wrappers (RCWs), 501–507

run time types, 114

■S
samples

AddSample method, 297, 303

DataSamples class, 292–294

GraphControl sample application,
291–292

model, 292–294

style properties and controller, 294–298

using the control, 302–303

views, 298–302

scanning mailboxes for relevant
messages, 384

schema compilation by reflecting on types,
245–249

Scheme programmers, 5

scope, 10–12

scripts/scripting

embedded F# scripts in .aspx files, 401

mixing scripting and compiled code,
168–169

Select/Where/From queries, 432

semantic analysis, 462

semicolons, 19–20

double semicolons (;;), 7, 9, 20

sequence expressions, 59–62, 230

cleaning up, 197–198

creating, 60

enriching

with additional clauses, 60–61

queries, 435

to specify lists and arrays, 61–62

sequence loops, 71

sequences, 55–59

iterating, 56

range expressions, 55–56

transforming with aggregate operators,
56–57

using lazy sequences from external
sources, 58–59

using types as sequences, 57–58

serialization, generic binary via .NET
libraries, 107–108

server controls, web applications, 413–415

custom controls, 421–422

servers, as an asynchronous task, 396

service-oriented architectures, 424

Syme_850-4INDEX.fm Page 600 Thursday, October 25, 2007 2:02 PM

601■I N D E X

Find it faster at http://superindex.apress.com

serving web content

code-behind files, 404–406

dynamic, with ASP.NET, 396–397

ASP.NET languages, 397–399

deploying/running applications,
402–403

development frameworks, 396–397

HTML directives, 401

simple application, 399–402

website structure, 399

serving locally, 403–404

static, 393–396

shared libraries, 171–172

shared-memory concurrency, 388–392

creating threads explicitly, 388–389

.NET memory model, 389–390

primitives, 392

race conditions, 389–391

ReaderWriterLock, 391

side effects, 95–96

avoiding combining imperative
programming and laziness, 98–100

replacing mutable locals and loops with
recursion, 96

separating mutable data structures, 97–98

separating pure computation from
side-effecting computation, 96

using weak vs. strong side effects, 98

signature files, 164–166

signature types, 164

checking of, 166

explicit, 164–165

simple but compositional types, 554

simplifying algebraic expressions, 325–328

single thread apartment model, 278

sinks, 49

sitemap files, 399

slashes (/), comments, 10

slicing arrays, 79–80

snd, 17–18

software packages

building installers, 177–178

data and configuration settings, 174–176

deploying web applications, 178–179

kinds of software implemented
with F#, 173

Solution Explorer, 177–178

SplitContainer control, 303

sprintf function, 91–93

SQL (Structured Query Language), 438

sql files, 398

SQL Server, 438

SQL Server databases. See databases

SQL Server Express, 438

SQLite, 438

SqlMetal, 453

stack, tail recursion, 198

list processing, 200–203

object-oriented programming, 202

processing syntax trees, 206

processing unbalanced trees, 203–204

using continuations to avoid stack
overflows, 204–206

--standalone compiler option, 172

Standard ML programmers, 6

start-up options, accessing, 10

state machines, 380–381

static linking, 172

static members, 16, 148–149

static memory, 494

static web content, 393–396

--static-link compiler option, 172

stored procedures, 448–450

Stream, 91

streams, I/O via streams, 89–90

Syme_850-4INDEX.fm Page 601 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

602 ■IN D E X

String.split, 14–15

strings, 31–34

building, 33–34

encoding/decoding

binary data, 266

Unicode strings, 266

formatting strings using .NET formatting,
265–266

lexing, 471–473

lexing. See lexing

marshalling, 513–515

parsing. See parsing

string literals and primitives, 32–33

structs, 152

structural (generic) comparison, 103

structural formatting, 93

Structured Query Language (SQL), 438

subscribing delegates, overriding vs.
delegation, 297

subtyping, 113–117

casting down dynamically, 114–115

casting up

automatically applied upcasts, 117

casting up statically, 114

type-test patterns, 115

success/failure workflows, 232–235

Sum function, 510

supervising applications, 270

Sybase iAnywhere, 438

symbolic differentiation, 317–318

developing UI application for rendering
expressions graphically, 321–323

implementing local simplifications,
320–321

modeling simple algebraic expressions,
318–320

parsing algebraic expressions, 323–325

rendering expressions, 329–335

converting to VisualExpr, 331–334

rendering visual expressions, 334

simplifying algebraic expressions, 325–328

symbolic differentiation of algebraic
expressions, 328

user interface, 335–338

visual symbolic differentiation
application, 318–321

building user interface, 335–338

core expression type, 322–323

rendering expressions, 334–335

rendering options, 329

visual elements and sizes, 330

visual expressions, 331, 334

syntax

accessing indexer properties, 23

analysis, 462

syntax trees

abstract syntax trees (ASTs). See abstract
syntax trees (ASTs)

processing with tail recursion, 206

System namespace

matching with System.Text.
RegularExpressions, 261–264

types, 259–260

core types, 259–260

types related to run time supervision of
applications, 270

System.Collections.Generic, 267

System.Console class, 91

System.Diagnostics namespace, 528–531

System.IO namespace. See input/output
(I/O)

System.Net, 20

fetching Web pages, 23–24

System.Runtime.InteropServices
namespace, 506

Syme_850-4INDEX.fm Page 602 Thursday, October 25, 2007 2:02 PM

603■I N D E X

Find it faster at http://superindex.apress.com

System.Windows.Forms, 20–21

System.Xml namespace, 212–214

converting XML into typed format,
215–216

■T
tail calls, 198–200, 205. See also tail recursion

tail recursion, 198

list processing, 200–203

object-oriented programming, 202

processing syntax trees, 206

processing unbalanced trees, 203–204

using continuations to avoid stack
overflows, 204–206

testing

F# Interactive, 533–537

code compiling process, 535–537

common directives, 535

controlling F# Interactive, 534–535

type-test patterns, 115

unit testing, 537–542

TextReader, 91

TextWriter, 91

threads, 356

aborting

aborting computations
uncooperatively, 365

uses for Thread.Abort, 389

creating threads explicitly, 388–389

graphical applications, 276

hopping, 367–368

.NET thread pool, 368

race conditions, 389–391

shared-memory concurrency,
primitives, 392

single thread apartment model, 278

time, DateTime.Now, 49–50

Time.aspx sample application, 400

Time2.aspx sample application, 404–406

tlbexp.exe, 502

tlbimp.exe, 502

tokenizing

concrete syntax for algebraic expressions,
323–324

FsLex, 464–467

comments, 467, 471–473

fslex input files, 467–468

lexing simple tokens, 468–470

strings, 471–473

tracking position information, 470–471

tokens, 462

tools

FxCop, 548–549

generating RCW and CCW wrappers
offline, 502

NUnit, 537–542

top definitions, resolving, 253

tracing web applications, 415–416

Transact-SQL (T-SQL), 438

TRANSFORM_CALLBACK, 516

transformArray function, 516

transformations that preserve behavior, 551

transformers, 49

transforming sequences with aggregate
operators, 56–57

traversing abstract syntax, 219–220

trees

syntax

abstract syntax trees (ASTs). See abstract
syntax trees (ASTs)

processing with tail recursion, 206

unbalanced, processing with tail
recursion, 203–206

troubleshooting type inference. See type
inference, debugging

truth tables, Prop formulae, 340–343

try . . . finally, 86–87

TryGetValue (Dictionary method), 82–83

Syme_850-4INDEX.fm Page 603 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

604 ■IN D E X

T-SQL (Transact-SQL), 438

tuples, 17–18

two-dimensional arrays, 80

two-faced objects, 358

type abbreviations, 62, 162

type constructors, 13–14

type definitions, 62–67

cloning records, 64–65

concrete, 162

defining

multiple types simultaneously, 67–68

records, 63–64

type abbreviations, 62

discriminated unions, 65–67

handling non-unique record field
names, 64

making property setters internal to type
definitions, 161

namespaces, 162

type functions, 122

type inference, debugging, 118–123

generic overloaded operators, 123

type annotations, 118–119

value restriction, 119–120

visual editing environments, 118

working around the value restriction,
120–122

type interference, 14

type variables, 50, 101–102

typed datasets, 446–448

typed functional languages programmers, 6

typeof operator, 245

types, 13–14

adding object notation, 131–137

indexer properties, 131

method overloading, 135–137

named and optional arguments, 133–134

optional property settings, 134–135

overloaded operators, 132–133

annotations

flexible types (#type), 116

troubleshooting type inference
problems, 118–119

Async, 366–370

common methods, 374–375

attribute types, 113

automatic generalization, 50

basic types and literals, 27–28

BackgroundWorker. See background
workers

compiling of F# types as .NET types,
151–153

concrete, 125–127

defining with mutable state, 137

constructed classes, 128–131

delimiting, 151

DataContext, 453–454

Debug, 528–531

Debugger, 528

definitions

defining with mutable state, 137–138

namespaces, 162–163

delegate types, 113, 272–273

delegates, 152–153

enum types, 113, 153

exception types, 113

exceptions, defining new kinds of
exception objects, 87–88

exposing F# object types as COM
components, 503–507

extending, existing types and modules,
150–151

general, 270–271

generic algorithms through abstract
object types, 110–111

Syme_850-4INDEX.fm Page 604 Thursday, October 25, 2007 2:02 PM

605■I N D E X

Find it faster at http://superindex.apress.com

GraphControl, 294–298

I/O-related, 91

implementing IDisposable, 192–194

lazy, using on-demand computation with
ASTs, 220–221

LexBuffer, 466

mapping, Platform Invoke (PInvoke),
513–515

matching on .NET object types, 227–228

Matrix, 268–269

MemMap, 517, 520

Microsoft.FSharp.Reflection namespace,
271–272

.NET Framework Design Guidelines,
548–550

.NET types, 112–113

object interface types, 139–144

defining, 140

delimiting, 151–152

implementing, using concrete types, 142

implementing, using object expressions,
140–141

.NET Framework Design Guidelines, 559

type heirarchy, 143–144

using common types from .NET
libraries, 142–143

objects with encapsulated state, 157

organizing code, 149–150

partially implemented class types

defining, 146

using via delegation, 146–147

using via implementation inheritance,
147–148

properties and methods, .NET guidelines,
558–559

reference types, 112–113

reflection, 245–249

run time, 114

sequences. See sequences

simple but compositional types, 554

structs, 152

subtyping, 113–117

automatically applied upcasts, 117

casting down dynamically, 114–115

casting up statically, 114

flexible type constraints (#type
annotations), 116

flexible types (#type annotations), 116

type-test patterns, 115

System.Console, 91

System namespace, 259

core types, 259–260

types related to run time supervision of
applications, 270

System.Xml, 214

type constraint propagation, 118

value types, 112–113

.NET guidelines, 558

Vector, 268–269

type-test patterns, 115

■U
UIs. See user interfaces

unbalanced trees, processing with tail
recursion, 203–206

unboxing, 106–107

underscore (_)

naming conventions, 546, 557

ungeneralized type variables, 120

ungeneralized type variables, 120

Unicode strings, encoding/decoding, 266

unique keys, 437

unit testing, 537–542

unmanaged code, compilation scheme,
491–492

unmanaged object clean up, 196–197

unpickling combinators, 486–489

Syme_850-4INDEX.fm Page 605 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

606 ■IN D E X

unregistering components, 506

untyped datasets, 444–446

upcast (coercion) operator (>), 114

upcasts

automatically applied upcasts, 117

casting up statically, 114

use keyword, 93–94

cleaning up resources, 191–193

user controls, web applications, 421–422

user interfaces

composing, 277–282. See also graphical
applications

visual symbolic differentiation
application, 335, 338

using function, cleaning up resources, 198

using keyword, 93–94

■V
val keyword, 8, 13

validation controls, web applications, 414–415

value restriction, 119–120

working around the value restriction,
120–122

value types, 112–113

.NET guidelines, 558

values, 12

abstract values, using functions as, 48–49

constraining values to be nongeneric, 121

delayed computations, 48

functions, 42–51

abstracting control using functions,
49–50

aggregate operators, 44–45

anonymous, 43

anonymous function values, 43

building with partial application, 46–48

composing functions with >>, 45–46

iterating with aggregate operators, 49

using .NET methods as first-class
functions, 50–51

using as abstract values, 48–49

immutability, 12

lazy values, 189–190

lists, 35

vs. methods and properties, 23

null, 94–95

vs. objects, 19

options, 37–39

pattern matching on structured values,
53–54

sinks, 49

types and type constructors, 13

structs, 152

vanilla .NET libraries, 546–550

var function, primitive propositions, 340

variables

closure, 48

mutable locals, 76–77

type variables, 50, 101–102

vs. values, 12

vectors, 268–269

verifying circuits with propositional logic,
338–339

checking simple circuit properties, 346

circuit types, 343

evaluating propositional logic naively,
340–343

relational modeling of circuits as
propositional logic, 343–346

representing propositional formulae with
BDDs, 347–350

representing propositional logic, 339–340

verifying circuits with BDDs, 350–353

view state, web applications, 418–419

views, GraphControl sample application,
298–302

Syme_850-4INDEX.fm Page 606 Thursday, October 25, 2007 2:02 PM

607■I N D E X

Find it faster at http://superindex.apress.com

visitor accumulating functions, 49

Visual Basic programmers, 5

visual data modeling, Visual Studio, 450–452

visual expressions, 332–334

converting to VisualExpr, 331–334

rendering, 334

rendering expressions, 334–335

Visual Studio

databases, 450

creating, 450

visual modeling, 450–452

debugger, 525–528. See also debugging

form designer, 281–282

help, 25

starting F# Interactive, 9

Toolbox validation controls, 414–415

Web User Controls, 421

VisualExpr, 331–334

■W
WCF (Windows Communication

Foundation), 274

web applications, 393

Ajax rich-client applications, 422–424

ASP.NET

directives, 412–413

input controls, 406–408

page life cycle, 417–418

change events, 417

control events, 417

cross-page posting, 418

debugging and tracing, 415–416

deploying, 178–179

displaying database data, 409–412

events, 416–418

F# Web Tools, 423–424

maintaining view state, 418–419

page events, 417

postbacks, 402, 417–418

providers, 419–421

server controls, 413–415

custom controls, 421–422

serving

dynamic content, with ASP.NET,
396–397

static content, 393–396

user controls, 421–422

validation controls, 414–415

web services, 424–428

calling asynchronously, 427–428

consuming, 425–427

web browser application example, 277–281

web crawling, asynchronous, 385–388

Web Deployment Project Visual Studio
add-in, 179

web pages

fetching multiple pages simultaneously,
365–367

fetching with .NET libraries, 23–24

web servers, 394–395

web services, 424–428

calling asynchronously, 427–428

consuming, 425–427

Web Services Description Language
(WSDL), 424

web site URLs

active patterns, 225

asynchronous message processing, 385

asynchronous workflows, 379

code samples used in book, 6

connection strings, 440

F#, 6

Firebird database engine, 438

libraries, 267

math, 270

Mimer SQL database engine, 438

Syme_850-4INDEX.fm Page 607 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

608 ■IN D E X

MySQL, 438

.NET composite formatting, 266

.NET libraries, 256

.NET memory model, 390

.NET Reflection, 245

operator precedence, 483

Oracle, 438

packaging and deploying code, 178

PostgreSQL, 438

quotations, 254

regular expressions, 264

SQL Server, 438

SQL Server Express, 438

SQLite, 438

Sybase iAnywhere, 438

web development, 399

web programming, 412–423

Windows Forms controls, 297

WiX (Windows Installer XML), 178

workflow builders, 238

XML techniques, 214

Web Tools, 423–424

web.config files, 398

database viewing application, 411

deploying/running applications, 402

provider database configuration, 420

referencing F# compiler, 401

serving pages locally, 403–404

while loops, 71

wildcards, pattern matching, 52–54

windows, 282–283

Windows Communication Foundation
(WCF), 274

Windows Forms, 20–21, 275

anatomy of a graphical application,
276–277

composing user interfaces, 277–282

layout of controls, 280–281

Visual Studio form designer, 281–282

watching forms grow interactively, 280

custom controls, 287–290

drawing applications, 282–287

background painting, 285

brushes and pens, 284

windows, 282–283

event loops, 276–277

GraphControl sample application,
291–292

model, 292–294

style properties and controller, 294–298

using the control, 302–303

views, 298–299, 302

Hello, World! button, 275–276

Mandelbrot viewer sample application,
303–304

creating application plumbing, 310, 314

creating visual application, 308–310

generating the Mandelbrot set, 304–305

setting color, 305–308

Model-View-Controller design
pattern, 290

new keyword, 22–23

open keyword, 21–22

Windows Presentation Foundation
(WPF), 274

Windows Registry, COM metadata, 498–499

Windows.Forms. See Windows Forms

WiX (Windows Installer XML), 178

workflows (computation expressions),
230–231

combining with resources, 244

defining workflow builders, 235–238

Haskell monads, 231–232

probabilistic workflows, 239–243

Syme_850-4INDEX.fm Page 608 Thursday, October 25, 2007 2:02 PM

609■I N D E X

Find it faster at http://superindex.apress.com

recursive workflow expressions, 244

side effects, 238–239

success/failure workflows, 232–235

WPF (Windows Presentation
Foundation), 274

wrappers

CLR-COM interaction, 501–503

PInvoke wrapper generation, 520–521

writing and reading files, 88–89. See also
input/output (I/O)

TextReader, TextWriter, and Stream, 91

writing

controls, 287–290

generic functions, 102–103

WSDL (Web Services Description
Language), 424

wsdl.exe, 426

■X
XML

as a concrete language format, 212–217

abstract syntax, 214–217

System.Xml namespace, 212–214

databases, 455–457

LinqToXml, 457–458

queries, 459

XML Document Object Model (DOM),
456–457

documentation, 170–171

functional construction, 457

help, Visual Studio, 25

WiX (Windows Installer XML), 178

XML Document Object Model (DOM),
456–457

XMLDocs, 10

XNA, 273

xsd.exe, 446–448

Syme_850-4INDEX.fm Page 609 Thursday, October 25, 2007 2:02 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

	Expert F#
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	The Genesis of F#
	About This Book
	Who This Book Is For

	Getting Started with F# and .NET
	Creating Your First F# Program
	Turning On the Lightweight Syntax Option
	Documenting Code Using XMLDocs
	Understanding Scope and Using fietf
	Understanding Types
	Calling Functions
	Using Data Structures
	Using Properties and the Dot-Notation
	Using Tuples
	Using Imperative Code

	Using .NET Libraries from F#
	Using open to Access Namespaces and Modules
	Using new and Setting Properties
	Fetching a Web Page

	Summary

	Introducing Functional Programming
	Getting Started with F# Arithmetic
	Basic Literals
	Arithmetic Operators
	Bitwise Operations
	Arithmetic Conversions
	Arithmetic Comparisons
	Overloaded Math Functions

	Introducing Simple Strings
	Working with String Literals and Primitives
	Building Strings

	Working with Lists and Options
	Using F# Lists
	Using F# Option Values
	Using Option Values for Control

	Working with Conditionals: && and ||
	Defining Recursive Functions
	Introducing Function Values
	Using Anonymous Function Values
	Computing with Aggregate Operators
	Composing Functions with >>
	Building Functions with Partial Application
	Using Local Functions
	Using Functions As Abstract Values
	Iterating with Aggregate Operators
	Abstracting Control with Functions
	Using .NET Methods As First-Class Functions

	Getting Started with Pattern Matching
	Matching on Structured Values
	Guarding Rules and Combining Patterns

	Getting Started with Sequences
	Using Range Expressions
	Iterating a Sequence
	Transforming Sequences with Aggregate Operators
	Which Types Can Be Used As Sequences?
	Using Lazy Sequences from External Sources

	Using Sequence Expressions
	Creating Sequence Expressions Using for
	Enriching Sequence Expressions with Additional Clauses
	Enriching Sequence Expressions to Specify Lists and Arrays

	Exploring Some Simple Type Definitions
	Defining Type Abbreviations
	Defining Records
	Handling Non-unique Record Field Names
	Cloning Records
	Defining Discriminated Unions
	Using Discriminated Unions As Records
	Defining Multiple Types Simultaneously

	Summary

	Introducing Imperative Programming
	Imperative Looping and Iterating
	Simple for loops
	Simple while loops
	More Iteration Loops Over Sequences

	Using Mutable Records
	Mutable Reference Cells
	Avoiding Aliasing
	Hiding Mutable Data

	Using Mutable Locals
	Working with Arrays
	Generating and Slicing Arrays
	Two-Dimensional Arrays

	Introducing the Imperative .NET Collections
	Using Resizeable Arrays
	Using Dictionaries
	Using Dictionary’s TryGetValue
	Using Dictionaries with Compound Keys
	Some Other Mutable Data Structures

	Exceptions and Controlling Them
	Catching Exceptions
	Using try . . . finally
	Defining New Exception Types

	Having an Effect: Basic I/O
	Very Simple I/O: Reading and Writing Files
	.NET I/O via Streams
	Some Other I/O-Related Types
	Using System.Console
	Using printf and Friends
	Generic Structural Formatting
	Cleaning Up with IDisposable, use, and using

	Working with null Values
	Some Advice: Functional Programming with Side Effects
	Consider Replacing Mutable Locals and Loops with Recursion
	Separate Pure Computation from Side-Effecting Computations
	Separating Mutable Data Structures
	Not All Side Effects Are Equal
	Avoid Combining Imperative Programming and Laziness

	Summary

	Mastering Types and Generics
	Understanding Generic Type Variables
	Writing Generic Functions
	Understanding Some Important Generic Functions
	Generic Comparison
	Generic Hashing
	Generic Pretty-Printing
	Generic Boxing and Unboxing
	Generic Binary Serialization via the .NET Libraries

	Making Things Generic
	Generic Algorithms Through Explicit Arguments
	Generic Algorithms Through Abstract Object Types

	Understanding .NET Types
	Reference Types and Value Types
	Other Flavors of .NET Types

	Understanding Subtyping
	Casting Up Statically
	Casting Down Dynamically
	Performing Type Tests via Pattern Matching
	Using Flexible # Types
	Knowing When Upcasts Are Applied Automatically

	Troubleshooting Type Inference Problems
	Using a Visual Editing Environment
	Using Type Annotations
	Understanding the Value Restriction
	Working Around the Value Restriction
	Technique 1: Constrain Values to be Nongeneric
	Technique 2: Ensure Generic Functions Have Explicit Arguments
	Technique 3: Add Dummy Arguments to Generic Functions When Necessary
	Technique 4: Add Explicit Type Arguments When Necessary

	Understanding Generic Overloaded Operators

	Summary

	Working with Objects and Modules
	Getting Started with Objects and Members
	Using Constructed Classes
	Adding Further Object Notation to Your Types
	Working with Indexer Properties
	Adding Overloaded Operators
	Using Named and Optional Arguments
	Using Optional Property Settings
	Adding Method Overloading

	Defining Object Types with Mutable State
	Getting Started with Object Interface Types
	Defining New Object Interface Types
	Implementing Object Interface Types Using Object Expressions
	Implementing Object Interface Types Using Concrete Types
	Using Common Object Interface Types from the .NET Libraries
	Understanding Hierarchies of Object Interface Types

	More Techniques to Implement Objects
	Combining Object Expressions and Function Parameters
	Defining Partially Implemented Class Types
	Using Partially Implemented Types via Delegation
	Using Partially Implemented Types via Implementation Inheritance

	Using Modules and Static Members
	Extending Existing Types and Modules
	Working with F# Objects and .NET Types
	Structs
	Delegates
	Enums

	Summary

	Encapsulating and Packaging Your Code
	Hiding Things Away
	Hiding Things with Local Definitions
	Hiding Things with Accessibility Annotations

	Using Namespaces and Modules
	Putting Your Code in a Namespace
	Using Files As Modules

	Using Signature Types and Files
	Using Explicit Signature Types and Signature Files
	When Are Signature Types Checked?

	Creating Assemblies, DLLs, and EXEs
	Compiling EXEs
	Compiling DLLs
	Mixing Scripting and Compiled Code
	Choosing Optimization Settings
	Generating Documentation
	Building Shared Libraries and the Using Global Assembly Cache
	Using Static Linking

	Packaging Applications
	Packaging Different Kinds of Code
	Using Data and Configuration Settings
	Building Installers
	Deploying Web Applications

	Summary

	Mastering F#: Common Techniques
	Equality, Hashing, and Comparison
	Efficient Precomputation and Caching
	Precomputation and Partial Application
	Precomputation and Objects
	Memoizing Computations
	Lazy Values
	Other Variations on Caching and Memoization

	Cleaning Up Resources
	Cleaning Up with use
	Managing Resources with More Complex Lifetimes
	Cleaning Up Internal Objects
	Cleaning Up Unmanaged Objects
	Cleaning Up in Sequence Expressions
	Using using

	Stack As a Resource: Tail Calls and Recursion
	Tail Recursion and List Processing
	Tail Recursion and Object-Oriented Programming
	Tail Recursion and Processing Unbalanced Trees
	Using Continuations to Avoid Stack Overflows
	Another Example: Processing Syntax Trees

	Events and Wiring
	Events As First-Class Values
	Creating and Publishing Events

	Summary

	Introducing Language-Oriented Programming
	Using XML As a Concrete Language Format
	Using the System.Xml Namespace
	From Concrete XML to Abstract Syntax

	Working with Abstract Syntax Representations
	Abstract Syntax Representations: fLess Is Moref
	Processing Abstract Syntax Representations
	Transformational Traversals of Abstract Syntax Representations
	Using On-Demand Computation with Abstract Syntax Trees
	Caching Properties in Abstract Syntax Trees
	Memoizing Construction of Syntax Tree Nodes

	Introducing Active Patterns
	Converting the Same Data to Many Views
	Matching on .NET Object Types
	Defining Partial and Parameterized Active Patterns
	Hiding Abstract Syntax Implementations with Active Patterns

	Embedded Computational Languages with Workflows
	An Example: Success/Failure Workflows
	Defining a Workflow Builder
	Workflows and fintamedfl ide Effects
	Example: Probabilistic Workflows
	Combining Workflows and Resources
	Recursive Workflow Expressions

	Using F# Reflection
	Reflecting on Types
	Schema Compilation by Reflecting on Types

	Using F# Quotations
	Example: Using F# Quotations for Error Estimation
	Resolving Top Definitions

	Summary

	Using the F# and .NET Libraries
	A High-Level Overview
	Namespaces from the .NET Framework
	Namespaces from the F# Libraries

	Using the System Types
	Using Regular Expressions and Formatting
	Matching with System.Text.RegularExpressions
	Formatting Strings Using .NET Formatting
	Encoding and Decoding Unicode Strings
	Encoding and Decoding Binary Data

	Using Further F# and .NET Data Structures
	System.Collections.Generic and Other .NET Collections

	Introducing Microsoft.FSharp.Math
	Using Matrices and Vectors
	Using Operator Overloads on Matrices and Vectors

	Supervising and Isolating Execution
	Further Libraries for Reflective Techniques
	Using General Types
	Using Microsoft.FSharp.Reflection

	Some Other .NET Types You May Encounter
	Some Other .NET Libraries
	Summary

	Working with Windows Forms and Controls
	Writing fHello, World!f in a Click
	Understanding the Anatomy of a Graphical Application
	Composing User Interfaces
	Drawing Applications
	Writing Your Own Controls
	Developing a Custom Control
	Anatomy of a Control

	Displaying Samples from Sensors
	Building the GraphControl: The Model
	Building the GraphControl: Style Properties and Controller
	Building the GraphControl: The View
	Putting It Together

	Creating a Mandelbrot Viewer
	Computing Mandelbrot
	Setting Colors
	Creating the Visualization Application
	Creating the Application Plumbing

	Summary

	Working with Symbolic Representations
	Symbolic Differentiation and Expression Rendering
	Modeling Simple Algebraic Expressions
	Implementing Local Simplifications
	A Richer Language of Algebraic Expressions
	Parsing Algebraic Expressions
	Simplifying Algebraic Expressions
	Symbolic Differentiation of Algebraic Expressions
	Rendering Expressions
	Converting to VisualExpr
	Rendering

	Building the User Interface

	Verifying Circuits with Propositional Logic
	Representing Propositional Logic
	Evaluating Propositional Logic Naively
	From Circuits to Propositional Logic
	Checking Simple Properties of Circuits
	Representing Propositional Formulae Efficiently Using BDDs
	Circuit Verification with BDDs

	Summary

	Reactive, Asynchronous, and Concurrent Programming
	Introducing Some Terminology
	Using and Designing Background Workers
	Building a Simpler Iterative Worker
	Raising Additional Events from Background Workers
	Connecting a Background Worker to a GUI

	Introducing Asynchronous Computations
	Fetching Multiple Web Pages Asynchronously
	Understanding Thread Hopping
	Under the Hood: What Are Asynchronous Computations?
	File Processing Using Asynchronous Workflows
	Running Asynchronous Computations
	Common I/O Operations in Asynchronous Workflows
	Under the Hood: Implementing a Primitive Asynchronous Step
	Under the Hood: Implementing Async.Parallel
	Understanding Exceptions and Cancellation

	Passing and Processing Messages
	Introducing Message Processing
	Creating Objects That React to Messages
	Scanning Mailboxes for Relevant Messages
	Example: Asynchronous Web Crawling

	Using Shared-Memory Concurrency
	Creating Threads Explicitly
	Shared Memory, Race Conditions, and the .NET Memory Model
	Using Locks to Avoid Race Conditions
	Using ReaderWriterLock
	Some Other Concurrency Primitives

	Summary

	Building Web Applications
	Serving Static Web Content
	Serving Dynamic Web Content with ASP.NET
	Understanding the Languages Used in ASP.NET
	A Simple ASP.NET Web Application
	Deploying and Running the Application
	Using Code-Behind Files

	Using ASP.NET Input Controls
	Displaying Data from Databases
	Going Further with ASP.NET
	ASP.NET Directives
	Server Controls
	Debugging, Profiling, and Tracing
	Understanding the ASP.NET Event Model
	Maintaining the View State
	Understanding the Provider Model
	Configuring the Provider Database

	Creating Custom ASP.NET Server Controls

	Building Ajax Rich Client Applications
	More on F# Web Tools

	Using Web Services
	Consuming Web Services
	Calling Web Services Asynchronously

	Summary

	Working with Data
	Querying In-Memory Data Structures
	Select/Where/From Queries Using Aggregate Operators
	Using Aggregate Operators in Queries
	Accumulating Using fioldingf Operators
	Expressing Some Queries Using Sequence Expressions

	Using Databases to Manage Data
	Choosing Your Database Engine
	Understanding ADO.NET
	Establishing Connections to a Database Engine
	Creating a Database
	Creating Tables, Inserting, and Fetching Records
	Using Untyped Datasets
	Generating Typed Datasets Using xsd.exe
	Using Stored Procedures
	Using Data Grids

	Working with Databases in Visual Studio
	Creating a Database
	Visual Data Modeling: Adding Relationships

	Accessing Relational Data with F# LinqToSql
	Generating the Object/Relational Mapping
	Building the DataContext Instance
	Using LinqToSql from F#

	Working with XML As a Generic Data Format
	Constructing XML via LINQ
	Storing, Loading, and Traversing LinqToXml Documents
	Querying XML

	Summary

	Lexing and Parsing
	Processing Line-Based Input
	On-Demand Reading of Files
	Using Regular Expressions

	Tokenizing with FsLex
	The fslex Input in More Detail
	Generating a Simple Token Stream
	Tracking Position Information Correctly
	Handling Comments and Strings

	Recursive-Descent Parsing
	Limitations of Recursive-Descent Parsers

	Parsing with FsYacc
	The Lexer for Kitty
	The Parser for Kitty
	Parsing Lists
	Resolving Conflicts, Operator Precedence, and Associativity
	Putting It Together

	Binary Parsing and Pickling Using Combinators
	Summary

	Interoperating with C and COM
	Common Language Runtime
	Memory Management at Run Time
	COM Interoperability
	Platform Invoke
	Getting Started with PInvoke
	Data Structures
	Marshalling Strings
	Function Pointers
	PInvoke Memory Mapping
	Wrapper Generation and Limits of PInvoke

	Summary

	Debugging and Testing F# Programs
	Debugging F# Programs
	Using Advanced Features of the Visual Studio Debugger
	Instrumenting Your Program with the System.Diagnostics Namespace
	Debugging Concurrent and Graphical Applications

	Debugging and Testing with F# Interactive
	Controlling F# Interactive
	Some Common F# Interactive Directives
	Understanding How F# Interactive Compiles Code

	Unit Testing
	Summary

	Designing F# Libraries
	Designing Vanilla .NET Libraries
	Understanding Functional Design Methodology
	Understanding Where Functional Programming Comes From
	Understanding Functional Design Methodology

	Applying the .NET Design Guidelines to F#
	Some Recommended Coding Idioms
	Summary

	F# Brief Language Guide
	Unknown
	Comments and Attributes Basic Types and Literals
	Types Patterns and Matching Functions, Composition, and Pipelining
	Binding and Control Flow Exceptions
	Tuples, Arrays, Lists, and Collections
	Operators
	Type Definitions and Objects
	Namespaces and Modules Sequence Expressions and Workflows

	Index

