
Chapter 3 

Real-Time Estimation of the Induction 
Machine Parameters  

3.1. Introduction 

The identification of processes is a huge field grouping very different approaches. 
This diversity is linked, on the one hand, on the model diversity: parametric 
knowledge models (transfer functions, state models) or behavior model (neuron 
networks, vague logic, transfer functions, state models, etc.), non-parametric models 
(unit responses, frequency responses, etc.), deterministic or stochastic models, and 
on the other hand, at the various operating contexts: online or offline, in open or 
closed-loop, with or without the control of input signals, etc. The objective of this 
chapter is to report on the major approaches adapted for the real-time parametric 
identification of dynamic processes, and especially, induction motors. 

But, before considering the solutions, we must present the outline of the 
problem. The implementation of real-time identification techniques is a complex 
problem because of the large number of issues that need to be addressed 
simultaneously and coherently. First, there are problems linked to the definition of 
the model structure (characterization phase) requiring good expertise of the process, 
notably in the case of a knowledge model: 

– is the model appropriate in relation to the process and the identification 
technique? 

– would a simpler model not be as satisfactory? 
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– are the inevitable simplifying hypotheses that it presumes realistic and relevant 
for the application involved? 

– can the model be uniquely identified? 

We must also consider all that involves the data (its acquisition, information 
content, and formatting): 

– is the data processed relevant: does it contain the information necessary to the 
estimation of all parameters? 

– when we do not control the process input signals, how can we detect that the 
data does not satisfy the identification? 

– are the measurements sufficiently accurate: is the instrumentation retained 
adapted in quantity and quality? 

– must we introduce analog or digital pretreatments to improve the signal quality 
(isolating a specific part of the spectrum of measurements or compensate an 
instrumental error)? 

Finally, there are also implementation problems. This implementation is digital 
with few exceptions: 

– is the optimization algorithm well adapted to real-time: does it not risk 
diverging; is its calculation cost reasonable; does it suffers initialization or restart 
problems? 

– how do we efficiently adjust the parameters of the identification algorithm? 
– does the discretization of the model and the data sampling cause specific 

problems (stability of the model, aliasing, etc.)? 

This all means that the implementation of real-time identification techniques is 
often trickier than the implementation of its natural complementary controls. We 
should keep in mind two major points. The first one involves the consistency of the 
trio made up of the model, data, and algorithm of identification. In this chapter, we 
will often come back to this point, notably through applications. The second point 
involves the expertise of identification algorithms. What ensures the success and 
efficiency of basic approaches, such as least squares, is their implementation 
simplicity and the low level of knowledge required. For most applications, it is not 
the ideal method, but it is certainly preferable to a more powerful, but  
not mastered, method. 

Before addressing the presentation of real-time identification methods, we will 
recall the major objectives of the real-time parametric identification. We will then 
discuss the fundamental problems that it raises in general and, in particular, with 
regard to electrical machines. 
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3.2. Objectives of parameter estimation 

The increasing power of calculators used for the control of systems enables the 
integration of complementary functions such as the adaptation of this control in real-
time or the online diagnosis of the system. These two functions can be achieved with 
the help of real-time estimation of system parameters. 

3.2.1. On control 

The most frequent application of real-time parametric identification today is the 
implementation of adaptive controls. There are multiple variations of the adaptive 
control, from the automatic parameter adjustment of a simple PID controller (the 
most widely used solution in industrial applications) to predictive control, with the 
methods of pole placement or stochastic approaches. Scientific literature in this field 
is extremely abundant. The interested reader can consult [AST 93, GOO 84, 
LAN 86, MOS 93]. These approaches mainly use behavior models, explicitly or 
implicitly. These models are mainly adapted to the algorithm of identification 
associated with them, and are generally only representative of the real system’s 
behavior close to an operation point. 

The approaches based on a knowledge model are not as common. In general, 
they require a specific methodology, adapted to the characteristics of the model, and 
notably to its non-linearities or its internal couplings when the system is 
multivariate. The advantage (or the disadvantage, depending on the scientific culture 
of the user) of an approach by a knowledge model is that it is based on the use of 
prior information. In this way, in the case of electrical machines, we can easily 
define reasonable variation ranges of its electrical parameters. We also evaluate the 
influence of the temperature on resistances and the influence of the magnetic 
saturation on inductances. 

Take the case of an induction machine driven by vector control. The estimation 
of its electrical and mechanical parameters will make the adjustment of loops 
constituting this control possible: 

– if current loops are present, the gain of their controller is directly dependent on 
the global leakage inductance brought back to the stator because it determines the 
impedance module of the machine with frequencies close to the critical point; 

– rotor parameters (inductance and resistance) are necessary for the accurate 
adjustment of the vector control because the rotor time constant conditions the 
direction of the reference; 
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– the knowledge of the stator resistance makes it possible to extend the 
sensorless mechanical controls toward low speeds; and 

– mechanical parameters (and mainly the global inertia driven by the machine) 
are necessary to adjust the speed loop controller. 

In this field, scientific literature is abundant, because the imagination of 
researchers was very productive and several approaches were explored, notably to 
achieve adaptive vector controls [LOR 98]. Among the traditional approaches, we 
can cite least squares [ELT 90, GAR 94, STE 94, TOU 94, VEL 89], the adaptive 
reference model [HAB 93, JEM 94, SNG 95, SUM 93, TUN 94], the extended 
Kalman filter [ATK 89, ATK 91, CAV 89, IWA 89, KAT 91, LIN 96, ORL 96, 
PET 95, SAT 87, WES 92, ZAI 92], and the extended Luenberger observer [DU 93, 
DU 95, ORL 89, RIB 95]. We also find more original or specific approaches: 
methods based on the vector control decoupling [BAU 96, LEO 85], on real-time 
FFT [ACA 91], on a gradient method [HOL 91], on the analysis of active and 
reactive power [IRI 86], or set-membership approach [DUR 99]. These studies often 
consider the estimation of a single parameter, but sometimes it is the identification 
of the complete electrical model, or a combination of electrical and mechanical 
parameters. 

Modern industrial variable speed drives, which can equally operate synchronous 
or induction machines (with sensor or sensorless), more often integrate self-
adjustment (with prior identification, off-line) and real-time adaptation functions. 
The latter makes it possible to take into account the parametric variations and 
notably thermal variations of resistances or the evolution of mechanical load. 
Nevertheless, it is sometimes more a question of commercial argument than a real 
necessity. In fact, reality shows that, in most applications, it is not necessary to have 
rigorous adjustment of the parameters of vector control for it to work properly, 
especially if it is part of a speed loop providing the user with the control he expects 
and hiding load-control imperfections. In high-power applications, the main 
advantage of accurately adjusted vector control is the guarantee of maximum 
performance: an inaccurately adjusted control leads to flux variations and non-
optimal operation, which can lead to increased saturation and thus additional losses 
[KRI 87, NOR 85]. 

As we can see, control adjustment relies on certain parameters of the model. 
Nevertheless, it may also be necessary to estimate other parameters, because their 
influence may disturb the estimation of the desired parameters. In this way, even if 
we are only interested in thermal resistance variations of an electrical machine, it is 
vital to understand the value of inductances that will have a determining effect at 
high speed [LOR 93, PEN 93, RIB 97]. 
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Even though the PID controller has a predominant place in the control of 
industrial processes and notably in the field of electrical engineering, more powerful 
and more sophisticated controls seem to be developing. In order to minimize the 
number of sensors, these controls, often based on the knowledge of the state of the 
system, rely on observers. Since these observers also rely on a system model, it is 
important to either guarantee their robustness in terms of uncertainties or parametric 
variations or to make the model evolve in real-time. Some structures, such as the 
extended Kalman filter or the extended Luenberger observer, are adaptive observers 
simultaneously integrating the functions of parametric identification and state 
reconstruction. 

3.2.2. Diagnosis 

Real-time parameter identification and estimation also play an important role in 
online diagnosis methods [SIM 03]. 

This type of diagnosis can be based on two categories of approach. The first is 
based on the estimation and analysis of the evolution of a parameter characteristic of 
the state of the system. A default is detected when this parameter reaches a critical 
threshold. Depending on applications, we either use a “healthy” system model 
(before the default) in which the parameter represents the evolution of its state, or a 
specific model dedicated to the detection of a particular default. In this way, the 
stator resistance estimation of a three-phase machine makes it possible to evaluate 
its temperature and to intervene in case of overheating. The approaches of the 
second category are based on analysis of the error (the residuals) between real 
system outputs and the outputs of a model or observer. The main problem is then to 
generate residuals that are characteristic of a specific default and not affected by 
sensor or  modeling errors. For this technique to be robust in terms of the system 
evolution or normal variations, we can consider achieving a generator of adaptive 
residuals relying on a parametric identification of the model. 

In terms of electrical machines, an online diagnosis has an advantage in two 
types of situations: it is a high-power and costly machine, always in operation, 
which excludes any off-line diagnosis, or a low-power machine without strong 
intrinsic value, but fulfilling a critical function. Real-time observation also enables 
the implementation of predictive maintenance guaranteeing optimal availability of 
the system and a reduction of maintenance costs by the reduction of parts inventory 
and the programming of interventions at the appropriate moment. 

Although robust, electrical machines can present mechanical or electrical 
failures, maybe caused by manufacturing default, harsh operating conditions, or 
simply natural aging. Reliability studies [ALL 86, BON 92, SIN 03] show that the 
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main causes of failures are mechanical and mostly involve bearings (approximately 
50% of failures). Diagnosis techniques based on frequency approaches showed their 
efficiency in detecting this type of failure where the main characteristic is to be 
synchronized with the rotor movement. In this context, two categories of approaches 
can be considered. The first, which is used in manufacturing to monitor high-power 
machines, is based on the synchronous analysis of a vibratory measure obtained with 
the help of accelerometers. The second is based on the spectrum analysis of the 
power currents avoiding the use of additional sensors. 

The diagnosis methods based on parametric models are more pertinent with 
electrical default especially stator ones, that constitute the second cause of machine 
failures. Scientific literature is also very rich in this field [BEN 99]. These studies 
can be classified according to the desired failure and the approach used for 
detection, or less frequently, localization [SIN 03]. They often use the identification 
of a parametric model to detect the abnormal variation of a parameter characteristic 
of the state of the machine. Most of these studies aim to notifying that an incident 
has occurred. Nevertheless, others consider a predictive approach of maintenance 
through thermal monitoring of the machine. In order to avoid using a temperature 
probe, notably at machine rotor, several studies consider this monitoring through the 
online estimation of winding resistance [BEG 99, FOU 05, LEE 03]. 

3.3. Fundamental problems 

When we consider the identification of a relatively complex system, the first 
problem is the choice of the model structure (characterization). We must watch out 
for habits and not naively use models that were developed for other uses. A control 
model may not be identifiable. The search for identification, and specifically for 
diagnosis, models turns out to be a very rich scientific field. Between the “white 
box” approach (pure knowledge model) and the “black box” approach (behavior 
model), there is a wide range of models to explore. The best compromise between 
complexity and accuracy is often achieved with an intermediate approach 
associating a macroscopic analysis of the major physical phenomena involved in the 
context concerned and a behavioral representation of secondary phenomena, the 
main problem being making the correct simplifying hypotheses. We must also keep 
in mind that the model will have to be discretized for a digital implementation. We 
will clarify a few aspects of characterization in the first part of this section. 

The second fundamental problem is the informational content of data. For an off-
line application, the idea is generally to choose the test(s) that will guarantee the 
estimation of desired parameters with sufficient precision. In the case of an online 
application, it is quite rare to introduce excitation only dedicated to the identification  
of the process. In general, we must only use the available signals generated by the 
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control itself. This creates two problems. On one hand, the closed-loop control 
introduces a strong correlation between input and output noises resulting in the 
faulty algorithm of identification. On the other hand, during steady-state mode 
phases, data can be too sparse to enable identification of the process. It is, therefore, 
necessary to monitor the identification for it not to diverge. We will see later how to 
analyze the data in order to detect this risk. 

3.3.1. Identifiability, parameterization, and validation of the model 

3.3.1.1. Identifiability and parameterization of the model 

In general, the model must be structurally identifiable, i.e., through a suitable 
choice of input, all the parameters can be uniquely estimated. If that is not the case, 
there is an unlimited number of possible solutions and the estimated parameters lose 
their physical sense. Nevertheless, this does not mean that the model obtained is 
completely unusable. In some applications, it can be suitable as an input-output 
behavioral model. 

There are different techniques to test the structural identifiability of a model 
[WAL 94]. When we consider a linear state model, a simple methodology consists 
in showing that the matrix of input-output transfer is uniquely defined by the same 
number of parameters as the original model. We will apply this approach to the 
induction motor model. We will see that for the machine, identifiability of the model 
goes through a re-parameterization, leading to a reduction in the number of 
parameters, which is beneficial for a real-time implementation. 

The choice of parameterization is clearly linked to the nature of the models 
available, but also depends on how the parameters will be used. For a given model, 
it is often possible to choose between several parameterizations. Take the example 
of a circuit R-L. We can choose to estimate R and L, or the time constant L/R and 
one of the two parameters. In theory, these choices are equivalent, but in practice, 
the digital aspects can lead to very different precisions. Generally, it is better to 
choose parameters with similar orders of magnitude in order to limit the digital 
problems caused by badly conditioned calculations. This can be obtained in relative 
dimensions, on the basis of reference values correctly chosen. 

3.3.1.2. Validation of the model 

It is impossible to prove that a model is valid. We can only verify that it is 
adapted to the reproduction of the behavior of the real system in certain conditions. 
Verifying that the model obtained actually reproduces the test with which it has been 
identified only shows that the optimization algorithm worked well; it extracted the 
relevant data from this test. But the model may only be suitable for this specific test. 
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We must therefore test it in other conditions and with different inputs. In this way, 
the richer and more varied the tests, the more we will be able to trust the model. In 
addition, it is very important to analyze modeling errors. For an optimal model, this 
error must be random and decorrelated from the system state variables [WAL 94]. 

The identification of a model is the result of a complex process involving several 
elements liable to fail or be inaccurate. In certain cases, it is possible that these 
problems are compensated by the model itself, making them invisible. Consider  
the basic example of the measurement of a resistance with the help of a current 
probe and a voltage probe. If one of the probes has a gain error, this error will lead 
to an estimation error. However, this false estimation will perfectly reproduce the 
measurements. 

3.3.1.3. Identifiability and parameterization of the induction motor model 

Consider the case of the induction machine constituting an excellent example of 
an application. A simple representation of the machine is obtained under the 
following conditions: 

– the three-phase winding is symmetrical and its neutral is insulated; 
– the distribution of the electromotive force in the air gap is sinusoidal; 
– the machine is not saturated; and 
– the skin effect, iron losses, and slot effects are insignificant. 

The equations of the induction motor, expressed in complex form, in a reference  
frame turning at arbitrary angular frequency ωx, are then written as: 
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Variables Us, Is, Ir, Φs, Φr, ωm and Cem represent the stator voltage, stator and 
rotor currents, stator and rotor fluxes, mechanical speed (multiplied by the number 
of pole pairs), and the electromagnetic torque, respectively. Parameters Rs, Rr, Ls, Lr 
and Lm indicate stator and rotor resistances, stator, rotor, and magnetizing cyclic 
inductances. The three-phase to two-phase transformation retained preserves the 
amplitude of signals, explaining the 1.5 factor involved in the torque expression. 
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In order to be able to identify the machine, it must be uniquely defined by a set 
of parameters. Traditionally, the induction machine is characterized by  
the previous parameters that show two leakage inductances: Lfs = Ls – Lm and  
Lfr = Lr – Lm. This model is characterized by five parameters and cannot be 
identified only from electrical signals at the stator. This is verified from the complex 
dynamic impedance of the machine: 
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This expression shows that the induction motor is uniquely defined only by four 
parameters: Rs, Ls, the rotor time constant r r rT = L R  (or its inverse) and 2

m rL L  (or 
equivalently with the Blondel dispersion factor 2

m r s1 ).L L Lσ = −  There are 
unlimited number of solutions {Rs, Ls, Lm, Rr, Lr} to define the same machine. This 
offers a degree of freedom that we can use depending on how we use the model. The 
arbitrary grouping of stator leakages (Lfr = 0 and Lr = Lm) simplifies the model used 
for the identification of parameters, without modifying the impedance, or the 
machine torque, because this torque does not depend on the distribution of the 
leakage inductances. 

In order to improve the model precision, we can consider iron losses (by 
Foucault current and by hysteresis) and magnetic saturation in the case of variable 
flux operation. The number of electrical parameters to be estimated will then slightly 
increases. In the equivalent single-phase diagram, we can introduce, in parallel with 
the magnetization inductance, a resistance, Rf, representing iron losses. In theory, 
the presence of this resistance makes stator and rotor leakage inductances 
identifiable, leading to the estimation of six parameters. In reality, [LAR 05] showed 
that this problem is badly conditioned and leakages cannot easily be separated. 
Magnetic saturation can be modeled by introducing a function Lm (Φr) and 
[LAR 05] established that a simple expression like 1

m r 0( ) (1 )n
m rL L A −Φ = + Φ , where 

n is an integer, is well adapted. 

3.3.2. Choice of the sampling period and digital problems 

3.3.2.1. General case 

Knowledge models and gray box type models are continuous time models. It is 
therefore necessary to discretize them in the context of a digital implementation. 
Conversely, a behavior model can directly be defined in discrete time. 
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There are different techniques to discretize a continuous model. Some are 
approximate (Euler method, W transform, etc.) and others are exact, as long as we 
know in advance the evolution of input signals during the discretization period. In 
the case of a control model, there is no problem since, by principle, input signals are 
hold (constant) over a control period. For the identification, that is not necessarily 
true, it is sometimes preferable to consider different periods of discretization for 
control and identification. This can be necessary to enable the execution of a real-
time complex identification algorithm. In this case, the usual discretization approach 
cannot be used. We will see how to solve this problem simply by interpolation or 
over-sampling in the induction machine application. 

When the problem created by the input dynamic is resolved, we still need to 
reproduce the internal dynamic (poles and zeros) of the continuous model. We could 
assume, as in control, that the best performances will be obtained with a short 
sampling period. In reality, even though this would actually make discretization of 
the model easier, on the one hand, by authorizing, for example, the use of an 
approximation by a first order development of the matrix exponential (Euler 
method), we would, on the other hand, risk desensitizing the parameters for 
estimation. In fact, the smaller the discretization step, the smaller will be the volume 
of information to be used in a step, thus amplifying the uncertainty and variation of 
estimations, as well as the digital problems and risks of divergence (through loss of 
identifiability). 

In addition, as with the control, in the case of a real-time estimation also, step 
reduction implies the increase of the calculation power, which can be very critical if 
we use a complex algorithm. The choice of the sampling period is therefore 
complex. When possible, the best case would be to be able to choose a period 
adapted to the dynamic of the parameters to be estimated, in order to correctly 
follow their variations. 

3.3.2.2. Discretization of the IM dynamic model 

We will now consider two opposite approaches of state model discretization of 
the induction motor. The first one uses a traditional methodology, resulting in a full 
order model requiring a short period of discretization. The second one is based on 
the reversal of input and output, and it provides a reduced order model authorizing 
large sampling periods that will reveal themselves to be better adapted to the 
estimation of the machine parameters. 

3.3.2.2.1. Fourth-order state model 

If we only consider a leakage inductance on the stator side and we choose the 
components of the stator current and rotor flux as state variables, from [3.1], we 
deduct the following complex state equations: 
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By separating the real part (axis α) and imaginary part (axis β) from equations 
and by supposing that the speed slowly varies, we obtain the following usual state 
model: 
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This model is perfectly well adapted to the simulation of the machine, but it has 
several drawbacks for its real-time identification. Its first problem is being of the full 
order, leading to a significant calculation volume if we want a simultaneous 
estimation of the state and the four electrical parameters of the model. The major 
disadvantage is that it requires a very short discretization step, often lower than a 
millisecond. This is imposed by the pole associated with leakage inductance Lfs and 
by the high dynamic of inputs (stator voltage). Finally, the exact discretization of 
this model is intensive. We generally use first order approximations (Euler) or, less 
frequently, second order of the development of the matrix exponential. Even though 
it is more intensive to manage, notably for the calculation of the tangent linearized 
model that the Kalman filter and the extended Luenberger observer require, second 
order offers a better compromise between precision and discretization step. We will 
then use: 
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When the sampling period of control and identification data are equal, we can 
consider that the input is hold (U(t) = Uk), otherwise, it is preferable to use an 
interpolated input over two steps ( 4, ' 4, 4, 1( )/2k k kU U U += + ). Or: 
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3.3.2.2.2. Reverse second order model 

If we switch input and output, quick dynamic poles disappear and we have the 
following second order model: 
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This model is not a true state model because it involves the input derivative in 
the output equation, but that is not a problem for identification algorithms. In 
addition, it is the derivative of currents that are usually correctly measured. In 
practice, this derivative will be obtained with a state variable filter (producing a 
filtered derivative). The inverse model enables a significant reduction in calculation 
power necessary for a real-time implementation because of its reduced order, but it 
also authorizes very long discretization steps while remaining precise, because of the 
low dynamic of inputs and poles. Finally, it is very easy to discretize it exactly, 
especially if we choose to work in the rotor reference frame (ωx = ωm): 

( ) ( )
2 e r r e

1 r r e

( )
d2

( )
d2 2 2 2 r

e e

1 e

A T R L T

R L T

A I

B A A I B L I−

−

−

= =

= − = −
 [3.8] 



Real-Time Estimation of the Induction Machine Parameters     131 

In reality, writing an exact discrete model is only possible if we know the 
evolution of input signals in the period of discretization Te. We cannot presume that 
the inputs are hold because we want to use a much longer discretization step than the 
control step. If we want greater precision, we can oversample the input and use a 
higher polynomial approximation [LOR 00], but in practice, a linear interpolation 
( 2, ' 2, 2, 1( )/2)k k kU U U += +  is sufficient, which results in: 
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In the section dedicated to the extended Kalman filter, we will see that this 
model authorizes discretization steps of several dozen milliseconds, while requiring 
much smaller calculation volume than the full order model. 

3.3.3. Monitoring and information analysis 

Any real-time process control or management must be monitored in order to 
guarantee reliable operation without any risks, whether for the process instruments 
or its environment. Even a simple industrial PID controller is monitored: it 
necessarily integrates anti-windup devices, and transition procedures smoothly from 
the manual to the automatic mode. This monitoring is even more vital in the case of 
adaptive control where the increased complexity adds new risks of malfunction. The 
idea mainly is to monitor the online identification procedure. Unfortunately, even 
though the adaptive control was the subject of several studies and abundant 
scientific literature, the problem caused by its real-time monitoring was not 
addressed in detail [HAG 00]. In manufacturing, adaptive control has a bad 
reputation. It is considered unreliable and the companies proposing this type of 
function closely guard their know-how. In scientific and manufacturing terms, 
adaptive control monitoring and, more specifically, parametric identification is 
therefore a field that still has to be explored. The first part of this section clarifies the 
major facets of the problems linked to this monitoring. The second one succinctly 
introduces informational analysis, which is an efficient tool in resolving some of 
these problems. 

3.3.3.1. Monitoring problem 

When an appropriate model is chosen and an optimization algorithm is correctly 
set, the result of the estimation is not guaranteed; the information that we are 
extracting from data has to be present, and it must not be corrupted by noise that 
does not respect the working hypotheses like, for instance, being correlated with the 
estimated quantities. This point is often tricky, especially because we are attempting 
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to achieve a versatile system that can  operate with very different processes. But, 
even if we aim for a specific application, such as the identification of a particular 
type of electrical machine, guaranteeing the efficiency of the estimator in any 
circumstance is not obvious. 

In practice, it is usually not possible to make an algorithm of identification work 
continuously. This would mean that the data permanently contains enough 
information to ensure the convergence of the algorithm, or at least avoid its 
divergence. We could then imagine injecting extra-signals to sensitize desired 
parameters. Unfortunately, in order for these signals to be efficient, their level must 
be sufficient, often with unfortunate consequences that the user is not ready to 
accept: disruption of normal operation, additional losses, etc. Permanently injecting 
extra-signals is usually excluded. In certain applications, it is possible to do it 
temporarily, or periodically, or during specific sequences. In this case, the 
monitoring system knows when it must restart and stop the identification algorithm. 
Conversely, if we only use the natural process signals, the major problem is 
detecting the presence or absence of necessary information. For this, two types of 
approaches can be considered: 

– expert system type approaches using a series of rules based on the process’ 
point of operation. In this way, in the case of induction motor adaptive control, it 
would be careless to attempt to estimate its rotor resistance when the torque set point 
is zero. Hägglung [HAG 00] proposes a generic approach to transient state detection, 
based on the monitoring of output signals filtered by a high-pass filter; 

– digital approaches based on an informational data analysis. The idea is to 
detect that a matrix characteristic of the operation of the optimization algorithm 
becomes singular. In the second part of this section, we will introduce this type of 
analysis. 

The first category of approach depends on the process involved, whereas the 
second one is more linked to the algorithm of identification. For more security, we 
may consider the combination of both approaches whenever possible. In fact, 
regardless of the approach chosen, the decision will be all the more tricky, as the 
measuring noises are significant. 

Monitoring must also manage the initialization of the identification, as well as 
the transitions during its reactivation. Depending on the type of user targeted, the 
initialization can be manual (experienced operator) or automatic (novice operator). 
An automatic initialization will only require from the operator the information that is 
easily accessible (e.g. the rating plate of the machine) or that is qualitative. 
Sometimes, a sequence of tests is done beforehand, without apparent operation of 
the process. One of the major points in the initialization phase is the choice of data 
sampling period, as well as the definition of low-pass filters for optimizing their 
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signal-noise ratio. Finally, since the algorithms used in real-time are necessarily 
recursive, it is important to manage their startup well. The idea is obviously to 
guarantee smooth transitions, as well as preserving prior information, which is still 
relevant, as best as possible. In this way, when we want to estimate several 
parameters simultaneously and one of them is no longer accessible, the best would 
be to be able to continue to estimate the others. 

3.3.3.2. Information analysis and global identification 

The goal of global identification proposed by Richalet is not to find an optimal 
model, but all suitable models in relation to characterization errors and instrumental 
errors [RIC 91]. This approach has several advantages. We can notably evaluate 
uncertainties on estimated parameters and see if parametric errors are coupled. We 
can then detect identifiability losses resulting in parametric compensation. 

3.3.3.2.1. Distance of structure and distance of state 

Each model is represented by a point M with coordinates forming the vector of 
parameters Θ = [θ1, θ2…, θp]T. If we assume that the structure chosen perfectly 
represents the process, there is a vector Θo = [θo1, θo2, . . . θop]T corresponding 
exactly to the process. 

In ideal identification conditions, the optimum point is in O; the model then 
behaves exactly as the real system for all input (for identical initial states). In 
practice, because of characterization errors and measuring noises, this will not be the 
case. We define a structure distance from the gap between the parameters of the 
model and the parameters of the object to identify. In general, the distance used is 
the Euclidian standard in parametric space, which is: 

2
o(O,M)D = Θ − Θ  [3.10] 

But, we can also use a more general quadratic form, such as 
o o(O,M) ( ) ( )TD P= Θ − Θ Θ − Θ , in order to introduce a weighing factor for each 

parameter. 

The objective of any identification algorithm is to cancel distance D(O, M). 
Since point O is by definition unknown, the cancellation is not possible and the 
algorithm attempts to minimize another distance, called distance of state, 
characterizing the gap between model and object outputs: 

( ) ( )o o( ) ( , ) ( ) ( , ) ( ) dT

T
D Y t Y t Y t Y t tΘ = Θ − Θ −∫  [3.11] 
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where Y(t,Θ) and Yo(t) are model outputs (depending on parameters θi) and object 
outputs, respectively. The horizon of observation is represented by T, the time of the 
observation. 

For a sampled test containing N samples, the distance of state is defined as 
follows: 

( ) ( )o o
1

( ) ( , ) ( ) ( , ) ( )
N

T

k
D Y k Y k Y k Y k

=

Θ = Θ − Θ −∑  [3.12] 

An isodistance (Iso-D) is the surface of the parametric space in which the 
distance of state has a set constant value. According to [RIC 91], the real goal of the 
identification must be the search for the minimum D* level of the distance we can 
reach instead of the search for the minimum of D. This minimum level considers 
noise and characterization errors. When characterization and estimation of 
parameters are perfect, model outputs and the process output are only different 
because of the measuring noise W: 

o o( )Y Y WΘ = +  [3.13] 

The minimum distance of state that can be reached is then valued at: 

o* ( ) dT

T
D D W W t= Θ = ∫  [3.14] 

Distance D* represents the noise energy in the horizon of identification. The role 
of the estimator is to adjust estimation Θ̂  to minimize ˆ( ).D Θ  Nevertheless, ˆ( )D Θ  
must not be lower than D*, otherwise, that means that the estimator is attempting to 
also explain the error of the model. In addition, uncertainties linked to noise result in 
distorting the iso-D surface. The progression of iterative algorithms can then be 
false. Depending on the position of the initial point, these algorithms will converge 
to different local minima of the parametric space. The structure of iso-Ds in the 
parametric space reports the sensitivity of the parameters for the test protocol. A 
parameter is sensitized by a test depending on the size of the uncertainty interval 
(corresponding to minimal D* iso-D). The tighter the iso-Ds in the direction of a 
parameter, the more that parameter is sensitized. The form of iso-Ds can provide us 
with a criterion to detect loss of identifiability. 

3.3.3.2.2. Connection between distance of structure and distance of state 

Sensitizing a parameter means giving it an important role during the test. A small 
variation of this parameter leads to a slight effect in the output signal. The influence 
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of parameters can be evaluated with the help of sensitivity functions connecting the 
variations of parameters to variations of model output signals. The sensitivity 
function of output yi, at step k, in relation to parameter θj is defined by: 

( , )
( ) i

ij
j

y k
kσ

θ
∂ Θ

=
∂

 [3.15] 

When the model parameters have very different orders of magnitude, it becomes 
more interesting to know the functions of sensitivity in relation to relative parameter 
variations: , ( ) ( )r ij j ijk kσ θ σ= . 

First, we will consider the parameters of a linear model such a least square 
model. We note the matrix made up of input signals (explanatory variable) as X and 
the output vector (explained variable) as Y. We have: 

( ) ( )( ) ( )T
i ij jY k X k y k x k θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Θ ⇔ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 [3.16] 

The function of sensitivity σij of output i in relation to parameter j is then written 
as: 

( , )
( ) ( )i

ij ij
j

y k
k x kσ

θ
∂ Θ

= =
∂

 [3.17] 

The functions of sensitivity are simply equal to components xij of explanatory 
variable X. Distance of state, from [3.12], is written as: 

( ) ( )

( ) ( )

o o
1

o o
1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N TT T T T

k

N N
T T T T

k k

D X k X k X k X k

X k X k X k X k

=

= =

Θ = Θ − Θ Θ − Θ

⎛ ⎞= Θ − Θ Θ − Θ = Θ Θ⎜ ⎟
⎝ ⎠

∑

∑ ∑
 [3.18] 

with oΘ = Θ − Θ . We can also write the distance of state with relative functions of 
sensitivity: 

r r r r
1

( ) ( ) ( )
N

T T

k
D X k X k

=

⎛ ⎞Θ = Θ Θ⎜ ⎟
⎝ ⎠
∑  [3.19] 
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with r o o( )j j j jθ θ θ θ= −  as the components of relative errors and r,ij j ijx xθ= as those 
of relative explanatory variable Xr. For a linear model in relation to parameters, there 
is therefore equivalence between distance of state and distance of structure. 

We will now consider the case of a non-linear model. Suppose that the distance 
of state accepts a Taylor development surrounding point O: 

1
o o o o2( ) ( ) ( ) ( ) ...TD D G HΘ + Θ = Θ + Θ Θ + Θ Θ Θ +  [3.20] 

where G(Θo) and H(Θo) are the gradient and Hessian of distance of state at point Θo, 
respectively. Vector Θ  represents the gap between current point M and point O. By 
definition, Θo is the vector of the surface minimum coordinates. Distance and 
gradient are therefore zero in this point: o o( ) 0 and ( ) 0.D GΘ = Θ =  Or: 

1
o o2( ) ( )TD HΘ + Θ ≈ Θ Θ Θ  [3.21] 

The Hessian represents the second derivative of the distance in relation to 
parameters. After a few calculations [RIC 91], we show that it is expressed with help 
from sensitivity functions: 

o

12

o 12
1 1Q Q

( )
( )( ) 2 ( ) ( )

( )

s
in N

i ip
i k

ip

k
H k k

k

σ
σ σ

σ= ==

⎡ ⎤
∂ Θ ⎢ ⎥ ⎡ ⎤Θ = = ⎢ ⎥ ⎣ ⎦∂ Θ ⎢ ⎥⎣ ⎦

∑∑  [3.22] 

where ns designates the number of outputs and p the number of estimated 
parameters. In the linear case, we find the result [3.20] because the sensitivity 
functions are equal to the components of explanatory variable X. The Hessian is 
therefore the sum of the sensitivity contributions of each output in relation to each 
parameter. In conclusion, for a non-linear model, the distance of state surrounding 
point O is also a parametric distance. 

3.3.3.2.3. Hessian conditioning and parametric uncertainty 

Traditional estimators, such as least squares search for a minimum, that is, a set 
of parameters, minimizing the distance of state for a specific criterion. In practice 
since the measurements are noisy, in the assumption that these noises are 
independent from sensitivity functions, the solution to find is actually the minimum 
obtained. On the other hand, if there is correlation between these quantities, the 
minimum does not represent the set of solution parameters. In fact, this comes down 
to using noise as information on the model, thus producing a bias [RIC 91]. In these 
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conditions, the best identification does not correspond to the minimum distance. 
Global identification does not look for a unique value of parameters, but a volume 
defined by the isodistance containing all “acceptable” values and notably the desired 
value. If we consider that the energy of noise is low enough for the minimal D* 
isodistance to authorize the second-order approximation of equation [3.21], we have: 

o( )
Q 1

*2
T H

D
Θ

Θ =  [3.23] 

Since matrix H is symmetrical and semi-defined positive by design, its 
eigenvalues λk are positive or zero. Expression [3.23] defines a hyperellipsoid with 
axes half-lengths valued at *2 .kD λ  In the case of estimation with a dimension 
that is greater than two, we can visualize this hypervolume by plane projections 
resulting in ellipses (Figure 3.1). We can also determine the maximum uncertainty in 
each parameter for a set distance. We show that uncertainty in parameter θi is given 
by: 

,max , *2i i if Dθ =  [3.24] 

where fi,i is diagonal element i, of the inverse of Hessian H. 

When one of the inherent values is zero, the ellipsoid degenerates into a tube. 
Errors in parameters are then infinite. This also happens when the Hessian is 
singular. This means that the model cannot be identified: we cannot estimate each 
parameter, but only a function linking them (and corresponding to the direction of 
the eigenvector associated with the null eigenvalue). Except in specific cases, it is 
preferable that the errors be evenly distributed throughout all parameters: the ideal 
hyperellipsoid is thus a hypersphere. 

 

Figure 3.1. Projection of plane (θ1, θ2) of an iso-D 
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3.4. Least square methods 

The least square method was imagined by Gauss in 1795 to reduce his calcu-
lation errors on the position of the planets. This affiliation could have predestined it 
to applications involving electrical machines, all the more so as it offers great ease 
of implementation including low calculation cost and adjustment simplicity. 

As long as we have a linear model in relation to parameters, the recursive varia-
tions of least square methods enable a real-time tracking of variable parameters. In 
fact, compared to other approaches, the least square method and its derivatives were 
not widely applied to the parametric identification of electrical machines. 

In the second part of this section, we will see the problems with the identification 
of the induction motor. 

3.4.1. Principle of least squares and instrumental variables 

The least square method assumes that the identified system can be represented 
by a linear model: 

T

k k kY X V= Θ +  [3.25] 

where Y, X, Θ,  and V designate the output vector, the regressor, the vector of p 
parameters to estimate and an additive noise vector, respectively. V is an additive 
noise vector. In order for the estimation given by least squares not to be biased, 
these noises must have zero mean and they must not be correlated with the regressor 
components. Index k represents the sampling time: ekt kT= . 

3.4.1.1. Least squares and recursive least squares 

For a horizon of N samples, the least squares estimation is provided by Mendel 
[MEN 95]: 

1

1 1

ˆ T
N N

N k k k k
k k

X X X Y
−

= =

⎛ ⎞
Θ = ⎜ ⎟

⎝ ⎠
∑ ∑  [3.26] 

This estimation minimizes the norm of the error of prediction ˆ .T

k k k kY Xε = − Θ  
We can also consider minimizing a weighted error, according to temporal k index 
(e.g. to favor more recent data), or according to the output (favoring the most precise 
measurements). Information matrix 

1
TN

N k kk
R X X

=
= ∑  plays a very important role in 
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this calculation. For it to be full order and therefore invertible, data must be 
sufficiently rich. 

There are several variations of the recursive least square algorithm. In theory, 
they all provide estimations that are identical to those obtained by expression [3.26]. 
In practice, depending on the characteristics of the model, some variations offer 
better numerical precision. When the dimension of the output vector is lower than 
the parameter vector, the following “covariance” form is preferable because it leads 
to the reversal of a reduced dimension matrix [MEN 95]: 

( )
( )

( )

1

1

1 1

1 1

1

ˆ ˆ ˆT

T

T

k k k k k k

k k k k k k

k k k k

K Y X

K P X I X P X

P I K X P

λ

λ

−

−

− −

− −

−

Θ = Θ + − Θ

= +

= −

 [3.27] 

This algorithm reveals the forgetting factor λ ≤ 1, which is generally set 
empirically [WAL 94]. The estimation of the parameters is updated according to the 
error of prediction 1

ˆT

k k k kY Xε −= − Θ  and gain Kk, sometimes called Kalman gain 
because of its similarity with that of the Kalman filter (see section 3.5). This 
variation is called covariance form, because Pk is equivalent to a variance-
covariance matrix. 

3.4.1.2. Instrumental variables 

If some components of noise V and regressor X are correlated, the estimation of 
least squares is biased. This bias is valued at: 

1

o
1 1

ˆ T
N N

N N k k k k
k k

X X X V
−

= =

⎛ ⎞
Θ = Θ − Θ = ⎜ ⎟

⎝ ⎠
∑ ∑  [3.28] 

When the bias is a problem (it is not always the case), we can try to eliminate it 
using the instrumental variable method. This method consists of replacing the 
components of regressor X by signals highly correlated with its components, but 
decorrelated from noise V. If we note as Z the vector of instrumental variables thus 
obtained, the estimation is written as: 

1

1 1

ˆ T
N N

N k k k k
k k

Z X Z Y
−

= =

⎛ ⎞
Θ = ⎜ ⎟

⎝ ⎠
∑ ∑  [3.29] 
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This expression corresponds to the following recursive form, by introducing the 
forgetting factor λ: 

( )
( )

( )

1

1

1 1

1 1

1

ˆ ˆ ˆT

T

T

k k k k k k

k k k k k k

k k k k

K Y X

K P Z I X P Z

P I K X P

λ

λ

−

−

− −

− −

−

Θ = Θ + − Θ

= +

= −

 [3.30] 

The problem with this method is in the definition of instrumental variables, 
which must be decorrelated from the noise while remaining correlated enough with 
the components of the regressor so that the new information matrix 

1
TN

N k kk
R Z X

=
= ∑  is invertible and, if possible, well conditioned [LAN 93]. Several 

instrumental variable generation techniques were proposed. When the noises are 
high frequency compared to the dynamic of the identified system, we can replace the 
components of the regressor by their delayed value in order to decorrelate them from 
the noise. Another technique consists in generating instrumental variables from 
filtered input signals; the ideal filter would be the desired model. We then proceed 
iteratively by using a model deduced from the estimation obtained in the previous 
step as a filter. This model is initialized by traditional least squares. When we work 
off-line with a short data length or online with a low forgetting factor, we must be 
careful with the choice of instrumental variables in order to guarantee information 
matrix invertibility. The main advantage with instrumental variables is that there is 
no requirement for a specific hypothesis for the process generating noise V, contrary 
to other methods, such as generalized or extended least squares [WAL 94]. 

3.4.1.3. Monitoring and parametric uncertainty 

We come back to the information analysis presented in section 3.3.3.2. We have 
seen that for a linear model in relation to parameters, distances of state and structure 
are equivalent (equation [3.19]), that sensitivity functions are given by the regressor 
components (equation [3.17]), and that the Hessian of the distance of state is in fact 
the information matrix (with a factor two): ( ) .T

ND RΘ = Θ Θ  The condition number 
of information matrix RN therefore plays a very important role in the operation and 
precision of the estimator. 

Despite its simplicity, the least squares algorithm requires a few precautions, 
especially for an online application [WAL 94]. Because of the forgetting factor, 
matrix Pk may explode if X = 0, because we then obtain 1k kP P λ−= . If λ < 1, gain 
Kk no longer leans toward zero and, because of the unavoidable characterization 
errors, estimations no longer converge. It is therefore preferable to lock the 
estimations when the prediction error is low. To keep matrix Pk from becoming 
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singular for numeric reasons, we can increase its diagonal terms by adding small 
term α, or use a U-D factoring algorithm, because Pk is symmetrical. In some cases, 
and notably when parameters vary by step, it is better to eliminate the forgetting 
factor (by using λ = 1) and to monitor prediction error εk. When it takes an 
improbable value, we simply have to increase matrix Pk which was leaning toward 
zero (as well as gain Kk) to reactivate the adaptation of the parameters [WAL 94]. 

Finally, matrix Pk can provide precious indications on the precision of 
estimations. When the components of V noise vector are Gaussian, decorrelated 
between each other and all with variance σ 2, the matrix of variance-covariance of 
the estimation error o

ˆΘ = Θ − Θ  equals [MEN 95]: 

{ } 2T

kE PσΘΘ =  [3.31] 

As long as we know the standard deviation σ of measuring noises, we can 
determine that of estimations. The equiprobability hyperellipsoid containing 95% of  
possible developments (corresponding to three standard deviations) is defined by: 

1 2(3 )T

kP σ−Θ Θ =  [3.32] 

Eigenvalue monitoring, or more simply put, diagonal terms of matrix Pk makes it 
possible to detect the risks of divergence of the estimator. 

3.4.2. Application to the induction motor 

Because of the complexity of methods such as the Kalman filter or the extended 
Luenberger observer, it is tempting to want to use an algorithm that is simpler to 
implement and adjust. For a relatively simple industrial application, least squares 
seems to be an interesting alternative. And yet, we do not find many studies 
applying least squares to the identification of electrical machines and most often, 
these studies involve the estimation of a single parameter. In the case of the 
induction motor, the idea is generally to achieve an adaptive vector control by 
estimating the rotor time constant or resistance. To our knowledge, the first article to 
propose an online estimation of all (or almost all) electrical parameters of the 
machine is by [STE 94]. On the basis of this article, G. Dehay started his research 
for his thesis [DEH 96] and the major results are discussed in this section. This 
thesis clearly establishes that the least squares method is not adapted to the 
identification of the complete electrical model of the induction motor because this 
model is not suitable to a format that is compatible with least squares. This goes 
back to the comments in section 3.3 on the importance of the coherence of the data, 
the estimation algorithm and the model. 
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3.4.2.1. Linear model in relation to parameters 

The idea is to obtain, from electrical equations of the induction motor, a linear 
model in relation to parameters, while eliminating the unmeasurable internal 
quantities that the fluxes are. If we want to simultaneously estimate the four 
electrical parameters of the machine, it is not possible to write an ideal model. We 
will use the approximate solution, which seems to be the best and was proposed by 
[STE 94]. After a few basic manipulations of equations [3.3], we arrive at the 
following model presented in complex notations to simplify writing: 

Ty X= Θ  [3.33] 

with 
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This model raises several major criticisms. This first one is that, despite all our 
efforts, the flux is still present in the model: it appears in the Y output, multiplied by 
the angular acceleration. Unless we have a measure of the flux, we will only be able 
to use this model at a quasi-constant speed (otherwise the term linked to the flux is 
generally significant [DEH 96]). The second criticism involves the five-dimension 
parameter vector, while we are searching for four electrical parameters. In addition, 
the relation between the least squares parameters is non-linear: 2 3 4 5.θ θ θ θ=  
[STE 94] proposes the estimation of the stator resistance independently and the 
replacement of stator us voltage by s s s s.v u R i= −  We then obtain a new 
parameterization and a new regressor X, since the output is unchanged: 

r r r

f r f f r

1T R R R
L L L L L

⎡ ⎤⎛ ⎞
Θ = − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 and s s

m s s
d d
d d

T i v
X j v v

t t
ω⎡ ⎤= −⎢ ⎥⎣ ⎦

 [3.34] 

There remains a last problem linked on one hand to the presence of derivatives 
of electrical signals in y and X, and on the other hand, to the expression of the 
second component of X: 2 s m s.x v j vω= −  In fact, at average or high speed, each of 
the terms of this difference is great, but since they are close, their difference is small. 
In practice, a small error on one of the two terms is sufficient for the model to be 
significantly disturbed (for more detail, see [DEH 96]). 
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3.4.2.2. Implementation of least squares 

In order to apply the least squares algorithm to the previous model, we simply 
have to rewrite the latter by separating the real from the imaginary parts. In fact, the 
problem resides in the numerous precautions to be taken while trying to obtain a 
correct result from experimental data. First, as indicated previously, we must limit 
the acceleration of the machine during the test. Then, we must use a very careful 
instrumentation to collect the stator voltage and currents (we must not use voltage 
references). As Figure 3.2 shows, we used four Hall effect sensors (to measure two 
line currents and two interphase voltages) followed by anti-aliasing filters (fifth 
order Bessel filter). Finally, to obtain a precise calculation of voltage and current 
derivatives, the measures were oversampled at 5 kHz. Data is then filtered by forth 
order filter with a cut-off frequency of 100 Hz. Finally, the derivative is obtained by 
a polynomial method over five points and resampled at 1 kHz before being injected 
in the least squares algorithm. All these operations are vital in limiting the large 
amplitude transient errors to which least squares are very sensitive. 
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Figure 3.2. Benchmark structure 

3.4.2.3. Experimental results 

The following results [DEH 96] were obtained with a 750 W squirrel-cage 
induction motor whose characteristics are presented in Table 3.3 (see section 3.8). 
This machine is controlled by a vector law implemented in a DS1102 card and 
powered by a PWM inverter with a modulation frequency of 18 kHz. Figure 3.3 
presents the test used. The problem is finding the right compromise between a test 
that is sufficiently rich so that its information content can offer a good sensitization 
of all estimated parameters, without the machine acceleration being too great. 
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Figure 3.3. Raw measures: two-phase voltage and current (in the fixed reference), 
mechanical speed, and rotor angular frequency 

On the left, Figure 3.4 presents the estimations delivered by the least squares and 
on the right, the corresponding rotor parameters (Lr, Rr, and Tr). We can note that, 
for t < 0.1 s, the estimations are very far from their final value. In fact, during this 
first phase, the machine is almost in electric steady-state making the estimation of 
three electrical parameters not possible: we then only have two independent pieces 
of information and as Figure 3.5 shows, normalized information matrix Pn is almost 
of rank two. At t = 0.1 s, there is a change in torque set point modifying the rotor 
frequency and the amplitude of currents simultaneously. The result is additional 
information improving the informational richness of the data considerably; the 
condition number of Pn goes from 105 to 102 with the help of the evolution of one of 
the three eigenvalues (Figure 3.5). There is then a quick convergence of parameters. 
The dash-dot lines represent the final result of identification by an extended Kalman 
filter from the same test. We can observe that, even though for the least square 
parameters, both identifications are very close; it is not the same for electrical 
parameters which are the real objective of this identification. This comes from the 
fact that the conversion of LS parameters into electric parameters is not well 
conditioned. 

Since we have two sets of rotor parameters (one provided by the least squares 
and the other by a Kalman filter), how do we know which one is best? A pragmatic 
solution simply consists of testing them in real-life situation. Considering that our 
online identification is destined to achieve adaptive vector control, we have injected  
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each set of parameters in a field-oriented control where the performances were 
observed. Figure 3.6 shows that the parameters provided by the Kalman filter 
provide better control of the machine torque. The torque was determined from 
mechanical speed, and the machine has a known load. 
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Figure 3.4. Estimation of LS parameters (dash-dot line: Kalman filter) 
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Figure 3.6. Use of estimated parameters: (a) least squares; (b) Kalman filter 

3.5. Extended Kalman filter 

The Kalman filter is a state observer for a linear system represented by a state 
model disturbed by different sources of noise. Under certain hypotheses that we will 
clarify later, its estimation is optimal in the sense of minimal variation estimation. 
Contrary to the other approaches presented in this chapter, the Kalman filter fits in a 
stochastic context requiring minimal knowledge of noises affecting the model and 
data. For some, it is an advantage to be able to use complementary and available 
information and for others, it is a drawback hindering its implementation (see 
section 3.6.2.3). This clearly shows the importance of the prerequisites in the 
efficient use of a method of identification. 

Several variations of the Kalman filter were proposed, notably to avoid numeric 
problems linked to the evaluation of ill-conditioned covariance matrices. 
Nevertheless, the most commonly used form in studies involving electrical machines 
remains the one initially proposed by Kalman [KAL 60] or possibly the Joseph form 
[GRE 93], which is less sensitive to numerical errors. In general, the latter preserves 
the symmetry of covariance matrices better. 

The Kalman filter is based on a stochastic state model involving a vector of state 
noises W and a vector of output noises V. For the filter to be optimal, the noises must 
be white, centered, Gaussian, and decorrelated from estimated variables. It is 
preferable that state and output noises also be decorrelated between each other; 
otherwise, we must use a more complex form of the filter [GRE 93]. When the 
noises do not have a Gaussian probability density, the Kalman filter is no longer the 

Time (s) 

Time (s) 

Set point and estimation of torque (Nm)

Set point and estimation of torque (Nm)
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optimal filter, but it remains the best linear estimator in the sense of trace 
minimization of covariance matrix for estimation errors. 

In order to estimate the parameters of the model, we must consider them as 
additional state variables. This state extension generally leads to a non-linear model 
requiring the use of an extended version of the Kalman filter. The simplest extended 
form, discussed in more detail in the following section, is based on a model 
linearization by simple first order approximation. This linearization that must be 
done at each iteration makes the calculation filter slightly more complex. 

Even though this approach is very popular, because it is simple to implement, it 
sometimes presents divergence problems that are difficult to control. Ljung 
proposed the modification of the Kalman filter by introducing a corrective term 
involving the sensitivity of the Kalman gain for estimated parameters [LJU 79]. 
Recent studies [JUL 97] propose the replacement of the first order approximation 
(tangent model) by a finite difference based on a Stirling development, for a rigorous 
evaluation of the covariance matrix of estimations. This new approach was notably 
applied to the speed estimation of the induction motor [SAH 02]. 

3.5.1. Principle 

Consider the following non-linear state model in which vectors Φ and Θ 
designate the state and parameters to estimate, respectively: 
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 [3.35] 

As previously indicated, to simultaneously estimate the state and parameters of 
the previous system, we must write the following extended state model: 
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 [3.36] 

W and V are white, centered, and possible Gaussian noises  whose covariance 
matrices are: { } { } .T T

k k k k k kE W W Q and E V V R= =  We can note that these covariance 

matrices may vary over time. To apply the Kalman filter, model [3.36] must be 
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linearized around the current point. Since the goal of this model is to characterize 
the incidence of state and output noises, it omits deterministic input U: 

1k k k d k k
k

k k k k
k

FX X W A X W
X
GY X V CX V
X

+

∂
= + = +

∂

∂
= + = +

∂

 [3.37] 

The previous model involves a general parameter evolution equation. In practice, 
unless we have a specific evolution equation (e.g. linked to thermal drifts), we 
assume completely random variations of parameters by writing 1 Q, .k k kW+Θ = Θ +  In 
addition, if function FΦ corresponds to a linear state model, we have: 
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In this case, the calculation of the tangent linearized model is written: 
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The algorithm of the extended Kalman filter is made up of a prediction step 
(subscripted variables k+1|k) and a correction step (subscripted variables k+1|k+1). 
The prediction step is based on the non-linear state equation and its linearization for 
the calculation of the variance-covariance matrix of the prediction error: 
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The correction step is based on the output prediction error and on the Kalman K 
gain deducted from the linearization of the output equation: 

( ) ( ) ( )( )1 1 1 1 11 1 1 1 1, , ,
T

k k k k kk k k k k k k k k kX U X U X UK P C C P C R+ + + + ++ + + + += +  

( )1 11 1 1 1k kk k k k k kX X K Y Y+ ++ + + += + −  [3.41] 

1 1 11 1 1
T

k k kk k k kP P K K+ + ++ + += − Σ  

In theory, gain K achieves the optimal weighing between prediction Xk+1|k based 
on the state equation and the correction linked to the output error. The trace of 
matrix Pk+1|k+1 is then minimal. 

3.5.2. Tuning of Q and R matrices 

Even though it is a vital point in the implementation of a Kalman filter, the 
tuning of matrices of state and observation noise covariance is rarely presented. This 
is undoubtedly linked to the robustness of the filter, and several authors admit to use 
a trial and error approach, to arrive at a satisfying empirical adjustment. In fact, the 
tuning of the Kalman filter can be considered based on two completely opposite 
approaches. The first one consists in adopting a deterministic point of view and 
using covariance Q and R matrices as simple adjustment parameters. Some studies 
propose finding an adjustment from the optimization of a deterministic criterion 
[HIL 00, LAR 93]. Conversely, the second approach uses the stochastic point of 
view at the origin of the Kalman filter. It is obviously much trickier to implement, 
because it requires a fine analysis of modeling and measuring errors. In addition, 
strictly speaking, it presumes that these errors must be represented by white, 
centered additive noises decorrelated from estimated states. It is obvious that these 
hypotheses are rarely verified. Nevertheless, when we can obtain an appropriate 
characterization of these errors, leading to a correct filter adjustment, this filter then 
provides an optimal estimation as well as an evaluation of the variation of this esti-
mation. This information is vital because an estimation only has value if we know 
how precise it is. In addition, the analysis of experimental noises and modeling 
errors highlights the relative importance of the different sources of error and 
optimize the definition of the model and instrumentation. Even if at first it appears 
very difficult, the stochastic approach is sufficiently promising to be attempted. 

In practice, if we accept that the correlation between state noises WΦ and WΘ is 
zero, we have three variance-covariance matrices to define: QΦ, QΘ, R. Except in 
specific cases, these matrices are chosen diagonally, making it possible to only 
specify the noise variances. 



150     Electrical Actuators 

Adjusting matrix QΦ is the trickiest because noise W represents the influence of 
multiple sources or modeling errors during a sampling period. [LOR 00] presents an 
approach based on the simulation of the main error terms. In order to account for 
their non-whiteness, we can use the notion of upper-bound model [LAR 81], 
maximizing the spectral density of noise. 

Matrix QΘ makes it possible to characterize the variations of estimated 
parameters. Diagonal terms set their dynamics; a large variance authorizes the 
tracking of quick variations of a parameter. On the other hand, this estimation will 
get a large variance. Conversely, a low variance will filter parametric variations. The 
non-diagonal terms explain couplings. We can then inform the Kalman filter of  
the coupling of some parameters (thermal or magnetic couplings). Nevertheless, the 
connection between QΘ and the dynamic of parameters is complex, because it also 
depends on the informational content of data. In general, we proceed empirically by 
consecutive tests. It is better to work in relative dimensions, so that we can go 
beyond the disparity of orders of magnitude of the different parameters. 

In principle, adjusting matrix R can be addressed as matrix QΦ. In general, the 
output equation is much more simple, facilitating the determination of R. 

To be complete, we will also consider initialization P(0) of the covariance matrix 
of estimation errors. In the case of a non-extended Kalman filter, matrix P(0) mainly 
determines the initial dynamic of the filter, which is not really important for an 
online application. On the other hand, a bad P(0) adjustment can compromise the 
stability of an extended Kalman filter. We will come back to this point in the 
application of the induction motor. 

3.5.3. Application to the induction motor 

Several research studies proposed the extended Kalman filter for the estimation 
of fluxes and parameters of the induction machine. The first studies [ATK 89, 
ATK 91, CAV 89, ZAI 87] focused on indirect vector control and were often limited 
to the estimation of a single parameter: rotor time constant or rotor resistance. 
Subsequently, most of the studies proposed a simultaneous estimation of several 
machine parameters; Iwasaki and Kataoka [IWA 89] were the first to our knowledge 
to propose the identification of the complete electrical model of the machine (the 
four estimated parameters were 1/Tr, 1/Lfs, Lm and Rs). It has been shown that it was  
illusory to only identify a part of the model [LOR 93]. Nevertheless, the complete 
identification of the electric machine model is rather difficult notably with a full 
order model because we then have an extended model of order eight. 
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3.5.3.1. Complete order direct model of the induction motor 

In section 3.3.2.2.1, we have seen that the full order state model is expressed in a 
complex way according to the electrical parameters that we want to estimate. This is 
even truer when the discrete model is obtained by an second order development of 
the matrix exponential, making it possible to use a discretization step of 
approximately 1 ms. In this case, instead of searching for an analytical expression of 
the tangent linearized model [3.39], it is more efficient to calculate it by finite 
differences. In addition to the nominal evaluation of the model (necessary for the 
prediction phase), we will have to make an additional evaluation for each estimated 
parameter: 
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3.5.3.2. Reduced order model of the induction motor 

Conversely, from the full order model, the reduced order discrete model of the 
machine is expressed simply according to its electrical parameters, notably if it is 
written in the mechanical reference. By noting Nr = 1/Lr, we obtain: 
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The vector of parameters to be estimated is [ ]s fs r r
TR L R NΘ = . One of the 

advantages of the reduced order model is to easily enable the analytical calculation 
of the tangent linearized model: 
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By writing r r eR N Ta e−= , we obtain: 
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3.5.3.3. Covariance matrix adjustment 

Here we will only present the tuning of the Kalman filter, using the reduced 
order model. For a detailed presentation of the tuning of the fourth order filter, we 
can refer to [LOR 98] and to [LOR 00]. We will compare different estimations 
obtained with discretization periods Te from 1 ms to 20 ms. In order to obtain 
comparable results, we will define variance-covariance matrices (Qc and Rc) of 
continuous time noises before transposing them in discrete time according to 
[GRE 93]: 

1

e c e ck kQ T Q R T R−= =  [3.47] 

The first two components of noise W are linked to the rotor flux and according to 
state equation [3.7], they come from parametric errors or from measuring noises on 
stator currents. Since parametric errors are evaluated by the Kalman filter itself, we 
will only take into account current measuring noises. To simplify, we will suppose 
decorrelated noises on axes as α and β (which is not true because of the 
transformation of Concordia). From the spectral density of measuring noises 

s

4G = 8 10I
−×  A2/Hz, we have deduced by simulation the variance of state noises 

[LOR 00]. The variance-covariance matrix of state noises in continuous time then 
equals 5

,c 2 10 .Q I−
Φ = ×  
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The four last components of the state noise define the dynamics of  
parameters. We will define a diagonal variance relative matrix: 

( )2 2 2 2 2

,c r s fs r rdiagQ R L R NσΘ =  with σr = 10–2. 

The observation equation of the inverse model is relatively complex, but the 
main source of error (non-parametric) is the voltage measurements of variance 

s

2= 2U VΓ , we simply take 
sc .UR I= Γ  

3.5.3.4. Filter initialization and restart 

We must still consider the initialization of state variables and their covariance 
matrix. For an extended Kalman filter, some precautions must be taken, notably in 
the case of the induction motor. In fact, as it often happens, if we choose a zero 
initial state, the Kalman filter diverges immediately. This is completely normal 
because when the machine is not magnetized, rotor resistance is not sensitized. 
Before triggering the estimation of parameters, it is therefore necessary to correctly 
initialize the rotor flux. The simplest way is to use the same Kalman filter, by 
suspending the estimation of the parameters and their covariance matrix. We thus 
obtain a non-extended filter that takes into consideration the initial parametric errors 
and evaluates their incidence on the variation of estimated fluxes. Experience shows 
that the convergence of this filter is very quick: we simply have to apply it during a 
few dozen milliseconds, before activating the estimation of the parameters. We then 
obtain a smooth transition as shown in the next section. 

For an online application, the previous problem occurs at each restart of the 
parametric identification. In fact, we cannot continue to attempt to estimate the 
parameters if they are no longer sensitized. We can then use a similar strategy as that 
described previously. When we detect a loss of identifiability, we lock the 
parameter(s) involved with their covariance matrix and we continue to estimate the 
state and possibly the remaining identifiable parameters. We come back to the com-
lete extended Kalman filter, by ensuring the continuity of estimated variables and 
variance-covariance matrices. The ideal would be to have a modular Kalman filter in 
order to be able to selectively activate the estimation of each parameter. 

3.5.3.5. Results 

In order to compare the performances obtained with each model, we will use 
experimental data and simulations based on a 3 kW squirrel-cage machine powered 
by a PWM inverter with a modulation frequency of 3 kHz. The results of this section 
were obtained in the context of a doctoral degree by I. Zein [ZEI 00]. The 
measurement signals are represented in Figure 3.7. 
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Figure 3.7. Measured signals 

Line currents and interphase voltages were measured by Hall sensors. The 
angular velocity of the machine was deducted from a position measurement by 
incremental encoder (2,000 points/rev). Electrical signals were filtered by an  
anti-aliasing filter with a cut-off frequency of 500 Hz. The period of acquisition of 
signals is Tacq = 0.2 ms. 

3.5.3.5.1. Simulation results 

To evaluate the intrinsic precision of estimated parameters with each model, we 
will first use a simulation that reproduces the test in Figure 3.7. In order to do this, 
we recalculate stator currents by integrating the order four model by the order four 
Runge-Kutta method (algorithm RK45 from Simulink), with a fixed step equaling 
Tacq = 0.2 ms. This simulation uses the parameters that we presume are those of the 
machine (Rs = 2.6 Ω, Lfs = 10 mH, Rr = 1.7 Ω, Lr = 170 mH) and white and 
Gaussian noises are added to voltages (

s
3G 25 10 HzU

−= × ) and currents 
(

s

48 10I
−Γ = × A2/Hz). The Kalman filters will be initialized with a significant error 

(50%) to reveal their initial behavior. 
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Figure 3.8. Estimation of parameters with fourth order model Te = 1 ms (thin line) and  

2.8 ms (thick line) 

Figure 3.8 shows the estimation provided by a Kalman filter using the fourth 
order model for two steps of discretization: 1 ms and 2.8 ms. The dotted line 
indicates the exact value of the parameter. The results are good for 1 ms, but not at 
2.8 ms, notably involving inductances (the model becomes unstable for a sampling 
period exceeding 3 ms). 

By comparison, Figure 3.9 shows that the second order model enables the use of 
much greater periods: with this model and a 20 ms period, we obtain better precision 
than with the fourth order model at 1 ms. We can also observe the speed of 
convergence of estimations and the quality of the initial transient. Remember that the 
beginning of the data is used to initialize the rotor flux and its covariance matrix. The 
estimation of parameters only starts at 0.1 s. 

Table 3.1 recaps estimation errors obtained for each configuration (average 
errors calculated at the end of the test). The values obtained show that the precision 
has very little deterioration at Te = 20 ms for the reduced order model. 
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Figure 3.9. Estimation of parameters with second order model Te = 1 ms (thin line) and  

20 ms (thick line) 

Model Rs(%) Lfs(%) Rr(%) Lr(%) 

Order 4 – Te = 1 ms   0.5 –4.2   0.9 0.2 

Order 4 – Te = 2.8 ms –4.5 34.7 –4.2 9.7 

Order 2 – Te = 1 ms –0.8 –0.5     0.06 0.8 

Order 2 – Te = 20 ms –0.6   1.7 –0.3 0.2 

Table 3.1. Relative estimation error (by simulation) 

3.5.3.5.2. Experimental results 

We will now compare the performances of the two filters against the original 
experimental data. We find very similar behaviors to what was observed during 
simulations. 

Figure 3.10 confirms that the fourth order model is very sensitive to the sampling 
period when it exceeds 1 ms whereas the second order model provides estimations 
almost identical to 1 and 20 ms (see Figure 3.11). Table 3.2 lists the different 



Real-Time Estimation of the Induction Machine Parameters     157 

estimations obtained. Even in a real situation, that is, with modeling noises and 
errors that do not totally respect the hypotheses of the Kalman filter, the precision of 
the second order model remains excellent at 20 ms. 

The reduced order model therefore combines all the advantages: it is simple and 
precise while allowing for long sampling periods. In addition, it is perfectly adapted 
to the implementation of an extended Kalman filter. In the following section, we 
will see that it can also be used in an extended Luenberger observer. 
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Figure 3.10. Estimation of parameters with fourth order model Te = 1 ms (thin line)  

and 2.8 ms (thick line) 

Model Rs (Ω) Lfs (mH) Rr (Ω) Lr (mH) 

Order 4 – Te = 1 ms 2.6 10.5 1.70 170 

Order 4 – Te = 2.8 ms 2.5 14 1.60 190 

Order 2 – Te = 1 ms   2.59 10.5 1.69 170 

Order 2 – Te = 20 ms   2.57 10.6 1.66 171 

Table 3.2. Final value of estimations (experimental data) 
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Figure 3.11. Estimation of parameters with second order model Te = 1 ms (thin line)  

and 20 ms (thick line) 

3.6. Extended Luenberger observer 

The extended Luenberger observer is a deterministic alternative to the extended 
Kalman filter. Its main characteristic is that it does not use a stochastic system 
model but a pole placement strategy. We can observe in practice that this strategy is 
not simple to define and to implement, notably in the case of a multivariate system. 
Following the structure and adjustment of the extended Luenberger observer, we will 
compare its performances with that of an extended Kalman filter, with an induction 
motor application. 

3.6.1. Principle 

3.6.1.1. Discrete time observer 

There are different possible implementations of a discrete observer, depending 
on the way we sequence calculations and how we use output signals [BOR 90]. We 
will use the observer-corrector form which is the closest to the Kalman filter. 
Consider the discrete system traditionally defined by: 
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1 d dk k k

k k k

X A X B U
Y CX DU
+ = +⎧

⎨ = +⎩
 [3.48] 

We then build a two-step observer. The first one is a prediction step (that we will 
note as k+1|k, by analogy with the Kalman filter): 

d d1
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ˆ ˆ

ˆ ˆ
kk k k k

kk k k k
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 [3.49] 

The second one is an correction step (noted k+1|k+1) based on the output 
measurement and on gain L which determination will be clarified later: 
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The dynamic of this observer is therefore defined by the matrix (Ad −.LCAd). 

3.6.1.2. Extended observer 

We use the extended non-linear state [3.36] used for the Kalman filter without 
taking into consideration state and output noises: 
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 [3.51] 

where, as before, vectors Φ and Θ express the state and parameters to estimate. 

This model must also be linearized around the current point before building the 
observer. We then define a tangent linearized model similar to the one used for the 
extended Kalman filter: 

d ,k k

k k k k

k k
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F FX X

Φ Φ
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 [3.52] 
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If we apply the previously seen observer-equalizer, we obtain an algorithm with 
similarities to the Kalman filter: 

( )
( )

( )

1 1

1 1

1 1 1 1

ˆ ˆ ,
Prediction: 

ˆ ˆ ,

ˆ ˆ ˆCorrection:  
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 [3.53] 

The only difference is in the determination of gain L obtained by choosing the 
eigenvalues of: 

d d
k k k

F G FA LCA L
X X X

⎛ ⎞∂ ∂ ∂
− = −⎜ ⎟∂ ∂ ∂⎝ ⎠

 [3.54] 

3.6.1.3. Tuning (pole placement) 

The tuning of a deterministic observer, such as the Luenberger observer,  
is based on the choice of its poles, that is, on the eigenvalues of its dynamic matrix 
defined by [3.54]. When it is an observer applied to a linear and stationary model, 
this choice only affects the dynamic of the initial error. In this case, the introduction 
of an observer has no incidence on performance in reference tracking, but only on 
that of its disturbance rejection if it is variable, whereas it was assumed to be 
constant (a step variation of this disturbance equals a change in its initial condition). 
This result also applies to an extended observer assuming constant or slowly 
variable parameters, as the dynamic of poles directly conditions that of estimated 
parameters. 

For an Nth order system, there are N poles to define. When this system can be 
completely observed, this choice is totally free. Even for the simple case of a 
stationary single output system, the placement of poles is not simple because a 
clumsy adjustment can compromise the robustness of the closed-loop system 
[LAR 93]. In order to resolve this problem, robust strategies of pole placement  
were proposed. These are mainly based on the results of the optimal control and 
consist of connecting the choice of closed loop poles (control and observer) to  
those of the process and to dynamic objectives (response time or bandwidth) 
[LAR 93]. When the system is non-stationary, as is the case for the linearized 
model, we no longer define N poles, but N trajectories. In addition, in many cases, 
and notably in electrical engineering applications involving static converters, we 
must take into account the influence of measurement noises in the setup of 
observers. In general, when we increase the speed of its poles, we increase the 
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components of gain L, which tends to increase the sensitivity of the observer to 
output measuring noises. 

Moreover in the multi-output case (ns > 1), the choice of observer poles is not 
sufficient to determine gain L: we arrive at an under-determined problem containing 
N equations (one per pole) for nsN unknowns (L components). We can then consider 
a generic approach, which is often complex such as the placement of an inherent 
structure [RAC 97], or a specific approach adapted to a specific system, such as the 
Verghese observer for the induction machine [VER 88]. In fact, to define the control 
of a multivariable system, it is often more efficient and intuitive to use an optimal 
control approach (Gaussian quadratic linear control). In this case, we no longer 
speak of observer, but of optimal filtering, as the latter is simply a Kalman filter 
used in a deterministic context. Covariance Q and R matrices are then considered as 
setup parameters for adjusting the compromise between the dynamic of the observer 
and its sensitivity to output noises. 

3.6.2. Estimation of induction machine velocity 

We now consider the estimation of a specific parameter, the mechanical velocity, 
of the induction motor model. Nevertheless, insofar as it intervenes as a factor of  
the machine state model, an approach similar to the estimation of an electrical 
parameter can be used. In addition, velocity has a very interesting characteristic 
because it can no longer be observed when it is constant and the frequency of stator 
currents is zero. Figure 3.12 illustrates a test that will enable testing of the extended 
Luenberger observer in different situations and notably during loss of speed 
observability: for t ≥ 6.2 s, we notice that all signals are constant. We then apply this 
test to an extended Kalman filter in order to compare the behaviors of both 
estimators. 

3.6.2.1. Machine model 

Since we do not have a mechanical position measurement we will work in a 
reference point based on the stator current. The choice of a synchronous reference 
(ωx = ωs) guarantees an exact discrete model in steady-state since the signals are 
constant. We also modify the output equation by grouping the terms independent 
from the velocity to the left: 
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2 2 m 2 2 2

2 2 2 2 2 2 m 2
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ω

ω
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 [3.55] 
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Figure 3.12. Test with velocity observability loss at t = 0.62 s 
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Even though it is possible to exactly discretize this model, we will use a second 
order approximation, which will be simpler to use: 
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 [3.56] 

3.6.2.2. Extended Luenberger observer 

The discrete extended model is obtained by combining the discrete machine 
model and the speed model that we will presume is slowly variable with respect to 
the electric variables: 
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The discrete observer estimating the rotor flux and mechanical velocity is then as 
given below. In accordance to [3.53], the first step consists of the prediction of the 
flux, speed and output: 
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where matrices Ad2, Bd2 and C2 are calculated according to [3.56]. The second step 
executes a correction of the flux and speed: 
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Correction gain Lk+1 = [LΦ,k+1, Lω,k+1]T is evaluated from the eigenvalues of the 
transition matrix of the linearized observer d, 1 1 d,k k k kA L C A+ +− . 
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Thus: 
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The following results were obtained from simulations in the Matlab 
environment. In order to accomplish pole placement, we used function “place” from 
the “Control” toolbox. This function is based on the Kautsky-Nichols-Van Dooren 
algorithm [KAU 85], which uses the degrees of freedom offered by the multiple 
outputs to optimize the robustness of the observer adjustment and minimize 
numerical problems. We chose constant and relatively fast poles: –25 ρr, –25 ρr, and 
–40 ρr (since the output vector is of dimension two, the “place” command does not 
allow us to place three identical poles). 

In Figure 3.13, we can compare the estimated rotor flux and its true value, as 
well as calculated and real electromagnetic torque (the calculated torque is evaluated 
from the estimated rotor flux and the measured stator current). The components of 
the rotor flux are initialized at 50% of their true value. We must initialize the flux to 
a non-zero value or otherwise the observer diverges. The speed cannot be observed 
if the machine is not magnetized. Whereas, the speed can be initialized at zero. In 
Figure 3.13, we first notice the strong influence of noises on the estimation when the 
machine runs on slow speed. The estimations are correct only when the speed is 
constant and fast. During the acceleration and deceleration phases, the transient 
error is approximately 11 rad/s. It would be possible to decrease this error by 
increasing pole speed. Unfortunately, this would amplify noises at slow speed. The 
curves in Figure 3.13 stop at t = 0.62 s at the beginning of the loss of observability. 
When the stator frequency leans toward zero, some components of the observer gain 
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become very large because the observability matrix becomes singular. We then 
observe an abrupt divergence of the observer. 

 

Figure 3.13. Estimation of rotor flux and velocity 

3.6.2.3. Extended Kalman filter 

For comparison’s sake, we will apply the extended Kalman filter defined in the 
previous section (equations [3.40] and [3.41]) to the extended model at velocity 
level [3.57]. As already mentioned, the only difference with the extended observer is 
in the calculation of the correction gain. In the case of the Kalman filter, this gain 
depends on the adjustment of covariance matrices of state Q and output  noises R.  
 

For this application, we adopted a deterministic approach by choosing an identity 
R matrix and defining Q by: 
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with σΦ  = 10–4 Wb. As with the Luenberger observer, we initialized the speed 
estimated at zero and flux components at half their true value. 

Figure 3.14 illustrates the estimation of the rotor flux and velocity. We have set 
the standard deviation σω of velocity noise at 2 rad/s. This value makes it possible to 
correctly follow the speed during acceleration-deceleration phases: the average 
transient error then approximately equals 2 rad/s, which is much lower than the 11 
rad/s obtained with the Luenberger observer. In addition, we can observe that the 
estimation remains correct when the model can no longer be observed. We will  
analyze this surprising result. We can already note that contrary to the Luenberger 
observer, the Kalman filter does not necessarily diverge when the model can no 
longer be observed. 

 

Figure 3.14. Estimation of flux and velocity –σω = 2 rad/s 

In fact, as we will see, when the model can no longer be observed, the Kalman 
filter no longer has information to refresh its estimations during the correction phase 
and it freezes the estimated state (or parameter). Figure 3.15 shows the influence of 
σω on velocity estimation. For low values (10–3 and 10–2 rad/s), the velocity error is  
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significant and the estimated speed is greatly biased when the model can no longer 
be observed. When σω increases, the transient error and bias decrease. For σω  = 0.1 
rad/s, we obtain a bias of 1.2 rad/s, almost invisible in Figure 3.15, and for σω ≥ 1 
rad/s, this bias is insignificant. 

 

Figure 3.15. Velocity estimations for different σω settings 

3.6.2.4. Comparison between Kalman filter and Luenberger observer 

During the 1990s, many authors considered sensorless control of the induction 
machine by applying different methods, notably the Kalman filters or extended  
observers. Among these studies, some compared several approaches by highlighting 
the advantages and disadvantages of each one. We can cite studies by Du and 
collaborators [DU 94, DU 95] who emphasized the advantages of the deterministic 
approach over the stochastic approach, which they considered unfounded and too 
tricky to implement. This opinion is obviously not shared by all. While reading the 
first articles by Luenberger and the way he describes the Kalman studies, we can 
feel the antagonism between the two approaches [LUE 66, LUE 71]. 

Unfortunately, in the studies comparing several approaches, it is often difficult to 
put the intrinsic qualities of the methods and the expertise of the authors into 
perspective. When a researcher has spent many years experimenting with an 
identification technique and he wants to compare this tool that he knows with 
another one that he is just discovering, the comparison will probably not be 
objective. This chapter is not intended to establish the superiority of the extended 
Kalman filter over the Luenberger observer, even in the context of the estimation of 
the induction machine velocity. It is simply aimed at demonstrating that we can 
obtain good results with a properly used Kalman filter and that there is nothing 
trivial about adjusting a Luenberger observer to do just as well. With a non-
stationary system, such as the induction machine, a fixed adjustment of poles is not 
efficient. If we want to decrease the transient error, we must accelerate the observer  
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poles, but in this case, its sensitivity to noise is amplified which is very cumbersome 
at slow speed. In addition, and in principle, the Luenberger observer abruptly 
diverges in the case of loss of observability. The Kalman filter presents a behavior 
that is much better adapted to this situation since it freezes the estimation by 
interrupting the correction. 

3.7. Conclusion 

In this chapter, we addressed the online estimation of the parameters of a 
dynamic process specifically for an induction machine. 

We first recalled the most common objectives and the major problems with this 
type of identification. These objectives can be divided into two categories mainly 
involving adaptive control and diagnosis of processes, both interesting for electrical 
machines. The implementation problems are linked to the diversity of the problems 
that must be treated simultaneously and coherently if we want to be able to obtain 
reliable and precise identification. We first have to understand clearly the 
interactions linking the model, optimization algorithm, and informational content of 
data. The use of an identification algorithm requires the implementation of a 
monitoring mechanism. It can be identified with the help of an informational 
analysis integrated to some identification techniques such as least squares or the 
extended Kalman filter. 

We then presented three approaches of the online parametric identification.  
The first one is based on least squares or its variations (instrumental variables). 
These techniques offer several advantages in terms of ease of implementation but 
they are not compatible with all systems and they are not suitable for the 
identification of the complete electrical model of the induction motor. The second 
approach is based on the extended Kalman filter for non-linear systems. Its field of 
application is much wider, but also leads to greater algorithmic complexity and 
trickier tuning. Nevertheless, we noticed that because of the use of a specific 
reduced order model, this technique was perfectly well adapted for the induction 
machine. Finally, the last approach uses an extended Luenberger observer with an 
tuning that is based on a pole placement strategy. Unfortunately, it is not simple to 
define in the case of a non-stationary process such as the induction machine. In 
addition, in the case of loss of observability, the observer can abruptly diverge, 
whereas in this situation, the Kalman filter adopts a behavior that is more 
appropriate by freezing its estimations. 
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3.8. Appendix: machine characteristics 

 Motor 1 Motor 2 

Rated output PN = 750 W PN = 3 kW 

Power factor cos(φ) = 0.75 cos(φ) = 0.83 

Neutral-nominal phase voltage UsN = 220 V UsN = 230 V 

Rated current (star) IsN = 2.2 A IsN = 5.8 A 

Rated speed NN = 1,420 rev/min NN = 1,440 rev/min 

Table 3.3. Rating plates of machines 
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