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Introduction

Electric actuators, at least the most traditional ones (direct-current machine and
alternating-current machines working under Park’s assumptions), have been the subject
of a very large number of scientific studies and industrial realizations, and we can
consider that they are currently well understood. The control structures use the
machine’s decoupling properties in both axes (direct axis for the flux and quadrature
axis for the torque), and the performance and robustness of the regulators are well
adapted to the system specifications.

The implementation of overlapped regulations makes it possible to control the
dynamics of the main variables, magnetic flux and rotation speed (via the torque), and
to create “active safety features” (instant limitations of power amplitudes for example).
These controls are even more efficient as long as the designer has precise models
with known parameters. In fact, controllers most often use the innermost properties of
actuators. The “direct model” is derived from the physical equations of the machine.
From this model a reverse model is then obtained enabling direct access to the control
architecture and allowing the selection of the control algorithms, the regulators or the
controller best adapted to the original specifications. Knowledge of the physical laws
and parameter values is therefore a requirement.

In addition, these controls involve variables whose direct measurements cannot
always be achieved such as the magnetic flux and the electromagnetic torque of the
induction machine; even if flux and torque sensors exist, they are very expensive
and not often used. That is also the case with the rotation speed since controls
without mechanical sensors are increasingly widespread. High performance controls
require a very good knowledge of these variables.

Introduction written by Bernard DE FORNEL and Jean-Paul Louis.
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This work is based on the expertise of the authors which have a threefold
experience of research, teaching and industrial applications. This book is intended to
provide the reader with a reference work on parameter identification, both “off-line”
(in the background) and “on-line” (in real time, during the control operation) and of
estimation or observation of the variables of alternating-current electric machines that
cannot be directly measured.

The reader will observe that all chapters in this book devote an important part to
modeling. From the one which identifies the speed of a machine without mechanical
sensor to the one that enables the estimation of the parameters of a saturated
induction machine, the variety of models is large. The goal of this book is to provide
the user with the methods necessary to acquire the expertise that will enable him to
choose the most appropriate model, and not necessarily the ideal model (since the
perfect model that solves all problems does not exist).

In this book, many different approaches are explained in order to find the best
compromise between two opposite constraints:

— the physical validity of models often quite complex to account for the large
number of phenomena;

— the mathematical model that must be handled by real time computers and
therefore must be simple enough. In fact, the calculation period is linked to the
fastest time constants of the physical system. Some are very short and the electric
machine control is very demanding in terms of execution time of the algorithms.

The measured variables, either online or offline, can also be submitted to a
physical filtering or a numerical process treatment.

The chapters of the first part of the book (1, 2 and 3) are dedicated to
measurement and parameter identification of the synchronous and induction
machines. The authors have tried to give an overview of different aspects: steady
state measurements of physical parameters, including some non-linearities
(saturation, for example), and dynamic parameter estimation in order to gain a better
understanding of the machine’s physics, as well as enabling the creation of the
dynamic models necessary to develop the controllers. We had to find compromises
between the “white box” and “black box” approaches. In order to do this, we had
to use:

— off line measurement or identification of physical parameters required by the
simulation models and necessary for controller implementation;

— the real-time identification of parameters for adaptive control that takes into
account the parameter variations linked to conditions of operation, magnetic state,
temperature, etc. This online identification uses filtering techniques, mainly the
Kalman Bucy technique.
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The chapter “Identification of Induction Motor in Sinusoidal Mode” by E.
Laroche and J.-P. Louis is an extension of the classical methods for measuring
induction machine parameters. These usually rely on an equivalent circuit where
leakage fluxes are first divided between the rotor and the stator, then, for
convenience, referred traditionally to the rotor. The steady-state model gives access
to several parameters, which can be rightly used for transient state analysis or for
control, such as for vector control. An equivalent circuit can be exact, but its
parameters may not be measurable physically, or without unacceptable errors.
Moreover, the well-known no-load and short circuit tests are not sufficient to obtain
the required precision. In the end, the magnetic saturation must be taken into
account by the high performance controllers, and introduced into the models.
Optimized parameter identification methods are thus developed: which models
should we use? Can we identify them? What measurements should we make?
Modern methods go beyond the simple optimization method to estimate the best
parameter values: there is a need to “optimize the optimization”.

In the chapter “Modeling and Parameters Determination of the Saturated
Synchronous Machine” by E. Matagne and E. de Jaeger, the authors present a Park
model but without considering the usual linearity hypothesis. This enables the
authors to not only present the classical tests which make it possible to determine the
numerical values of accessible parameters, but also to introduce the “cross
saturation” phenomenon caused by the intrinsic non-linearity of magnetic materials.
This is an appropriate model to harmonize the traditional and modern points of view.
In particular, the “magnetic quadrature” condition requires the use of the “magnetic
co-energy” concept (at the expense of the magnetic energy which is a state function
of essential physical signification). In this chapter, the authors show that
measurements must be performed with great precaution, and that the experimenter
must know and understand the physical properties of the models (for which he is
looking to identify the parameters) well: non-linearity effects, iron losses, etc. A
good knowledge of the order of magnitude of the parameters is useful if not
mandatory to carry out fine measurements and carefully make the necessary
approximations. Clearly, the authors have sought to pass on their own experience in
the domain.

In the chapter “Real-Time Estimation of the Induction Machine Parameters”,
Luc Loron considers “on-line” or “real-time” processing for the determination of
variable parameters (temperature dependent winding resistance, inductance, which
depend with the magnetic state of the cores) and non-measurable variables (flow and
velocity for controllers without mechanical sensors). In the preceding chapters, the
models were close to the machine physics and the parameter identification tools
were quite cumbersome necessitating an “off-line” process of the recorded data. On
the other hand, on-line processing imposes real-time algorithms, which have short
calculation times and robustness. They cannot destabilize the system, and they must
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provide trustworthy data at every moment. The reader will find in this chapter not
only reliable information on the least square method, on the extended Kalman filter
theory and the Luenberger observer theory, but also advice on their implantation and
concerning the relevance of models (reparametrization), the validity of algorithms,
the problem of monitoring (still very open to discussion), the influence of the
sampling period, the analog filtering of measurements, the adaptation of algorithms
when parameters or variables are no longer identifiable, etc. Again, the concrete
experience of an expert is put at the disposition of future practitioners.

The second part of the book (Chapters 4, 5, 6, 7 and 8) focuses on several
specific studies involving the control of these electric machines:

— study and implementation of reduced order observers and methods to
determine the robustness of observers for the induction machine;

— estimation and observation approaches of the load torque and the rotor angular
position of the synchronous machine.

The chapter “Linear Estimators and Observers for the Induction Machine (IM)”
by Maria Pietrzak-David, Bernard de Fornel and Alain Bouscayrol concerns the
estimation and observation of non-measurable variables. In an induction the
magnetic flow, an essential value for the control of this machine, is not accessible
through direct measurements. In fact, flux sensors in the air-gap greatly increase the
cost of the machine; they constitute intrinsically fragile elements, and they often
produce very noisy signals. They are only used for prototypes. A large part of this
chapter is dedicated to the estimation or observation of the flux state. The estimation
of the rotation speed and of the load torque is also studied. In this chapter, the
modeling is critical since the “natural model” (referred to as the real windings) given
by the physics of the system must be rewritten to meet the objectives. The numerous
works carried out by the community of specialists have shown that the choice of
four electric state variables (stator and rotor fluxes or currents) on the one hand, and
the choice of the reference frame (link to the stator, rotor or to the rotating flux) on
the other hand, play a very important role in the control structures of the speed
controller (vector control or direct couple control). These particular choices for the
state variables and the reference frame also influence the performances of the
estimators and the observers. The authors present the estimation and observation of
the flux of the induction machine with the help of automatic and signal processing
tools: the complete order deterministic observer (synthesized with the help of pole
locations) and the linear stochastic observer (Kalman-Bucy filters synthesized using
optimization methods). These observers are then associated with structures
dedicated to speed observation. Various non-linear observation methods (adaptable,
of variable structure) are also presented. The authors of this chapter present several
solutions based on their expertise and illustrated by examples. Researchers and
engineers, facing these questions, now have access to a variety of solutions, which
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should help them not to waste their time with solutions badly adapted to their
problem.

The chapter “Decomposition of a Determinist Flux Observer for the Induction
Machine: Cartesian and Reduced Order Structures”, by Alain Bouscayrol, Maria
Pietrzak-David and Bernard de Fornel focuses on very specific problems and
solutions. The goal of this chapter is the study and creation of reduced order
observers leading to smaller models and algorithms than those given by general
theories (based on extended models). The authors also consider extended observers,
but with a very interesting, even if but not very traditional, original solution of
“Cartesian structures”. In this solution, the extended observer is broken down into
(coupled) sub-observers, each one corresponding to the variables relating to an axis.
We must clarify that this breakdown corresponds to an approximation justified by
the time scale difference between speed of rotation and electric variables. In this
way, the fourth order observer is replaced by the combination of two reduced order
coupled observers for a simpler synthesis. It is well adapted for certain specific
problems:

—robust estimation of the stator flux for “DTC” commands (Direct Torque
Control);

— robust estimation of the rotor flux for traditional vector controls.

The authors use a Cartesian observer for stator and rotor flux to highlight the
inability of observing the zero speed flux and provide a complete synthesis of this
observer. The discretization of the Cartesian observer is simpler than the one
resulting from an extended observer. The authors present several variations of
reduced order observers and a number of synthesis examples. Since numerous
studies on these subjects have been already published on this topic, the readers will
appreciate suggestions for well adapted solutions given by experienced authors.

The chapter “Observer Gain Determination Based on Parameter Sensitivity
Analysis” by Benoit Robyns proposes original tools for the resolution of a
traditional but tricky problem. The rotor flux observer, for the vector control, is a
real-time simulation algorithm of electric equations (either extended or reduced
order) with matrix of undetermined gains. These gains are normally chosen by pole
location techniques. However, since they depend on speed, they should be
continuously recalculated at each sampling, which greatly increases calculation time.
In practice, we often define speed ranges where chosen gains are constant. But this
is in contradiction to the selection of “good poles” and to the robustness of this
observer in terms of the various parameters. In order to resolve this contradiction,
the author uses a very powerful, and not sufficiently known, tool called parametric
sensitivity which provides access to observer errors made in the determination of the
flux. With the sensitivity study, the observer’s gains are chosen to greatly reduce its
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parametric sensitivity, and maintain a satisfying dynamic. In this chapter, the author
clarifies his models, algorithms and choice criteria. His theoretical results are
supplemented by representative, precise and well explained examples. He shows the
advantage of an extended observer, optimized through a sensitivity study, compared
to a reduced order observer. The latter seems more sensitive to rotor resistance error,
the most critical parameter in the vector control.

In the “Observation of the Load Torque of an Electrical Machine” chapter, the
authors, Maurice Fadel and Bernard de Fornel, develop different load torque
observation structures based on the mechanical quantities that can be measured. For
electro-mechanical actuators, the requirements on speed and position control have a
strong impact on the drive control loops. The electromagnetic torque must be
perfectly mastered to obtain the most satisfying speed or position evolutions.

In addition, the mechanical loads often show ill-defined characteristics at low
speed or in the vicinity of zero or quasi-zero speeds. The variable speed drive’s
control in these specific operation zones can turn out to be problematic and the
traditional control laws are often inadequate. The proposed study develops a detailed
model aimed to improve the global behavior of the actuator.

The major contribution involves the load torque observer which, due to its
structure and operation, can monitor the perturbations inherent to the internal
structure of the electrical machine (cogging torque, electromotive force distortion,
etc.) resulting from load parameters variations. This quantity, the torque that should
be compensated, is then injected in the control law in order to smooth the machine’s
effective torque. The system thus functions in disturbance rejection.

The solutions presented in this chapter are based on studies conducted at LEEI
(Laboratoire d’Electrotechnique et d’Electronique Industrielle in Toulouse and now
a team of LAPLACE laboratory) and resulting in experimental prototypes with
digital controllers and extensive measurements sytems. The chapter details the
problem associated with:

— noise and filtering of speed and/or position measurements;

— an erroneous identification of parameters;

— excessive dynamic response of the controller or of the observer.

Several results, most of them experimental, confirm the relevant character of the
approach and the robust performances obtained in presence of load and/or machine
parameter variations. One of the main objectives of this work is the search for the
necessary compromise between control stability and the observer dynamic based on
the disturbance rejection effectiveness and drive parameters variations. These
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questions result in a specific look at the choice of the observer dynamic in relation to
controller settings and to the number of sensors used.

In the last chapter of the book, entitled “Observation of the Rotor Position to
Control the Synchronous Machine without Mechanical Sensor”, the authors,
Stéphane Caux and Maurice Fadel, review several position estimation approaches to
get rid of this measure and thus suppress a mechanical sensor. For some
applications, a “low resolution” reconstitution of the position is sufficient, mainly in
the case of a synchronous trapezoid electromotive force machine. Two more precise
methods are then presented by the authors using either the Kalman filter or an
analytical redundancy approach called Matsui’s observer. Kalman’s method is very
systematic and corresponds to a calculation intensive algorithm, with the usual
problems of Kalman gains definition, initial covariances and statistic properties of
noise. Moreover, the Kalman filter is sensitive to position initialization errors. The
analytical redundancy algorithm is simpler than the Kalman filter and provides
better estimation at low rotation speeds than the latter. Performances of both
estimators were compared over different speed ranges and for parameter sensitivity
and initialization errors. The studies found in this chapter offer practical suggestions
for their implementation (filtering) and adjustment (choice of gains, observers
selection, identification of noise sources, initialization and calibration). They show
the feasibility of the rotor position estimation and provide fundamental information
on the choice between the different approaches.

This second part of this book completes the first one dedicated to the definition
of measures, to the key models and to the estimation and state observation tools. It
presents the application of these methods and tools to control several actuators based
on synchronous and induction machines. In particular, it describes:

— the study and implementation of reduced order observers and methods to
determine the observers’ robustness for the induction machine;

— the estimation and observation approaches of the load torque and angular
position of the rotor for the synchronous machine.





