

http://www.allitebooks.org

F# for Quantitative Finance

An introductory guide to utilizing F# for quantitative
finance leveraging the .NET platform

Johan Astborg

BIRMINGHAM - MUMBAI

http://www.allitebooks.org

F# for Quantitative Finance

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1191213

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-462-3

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

http://www.allitebooks.org

Credits

Author
Johan Astborg

Reviewers
Yan Cui

Arthur Pham

Isaac Abraham

Acquisition Editors
Sam Birch

Aarthi Kumaraswamy

Kunal Parikh

Lead Technical Editor
Athira Laji

Copy Editors
Roshni Banerjee

Janbal Dharmaraj

Mradula Hegde

Gladson Monteiro

Deepa Nambiar

Karuna Narayanan

Shambhavi Pai

Alfida Paiva

Adithi Shetty

Shambhavi Pai

Technical Editors
Gauri Dasgupta

Shiny Poojary

Siddhi Rane

Sonali S. Vernekar

Project Coordinator
Mary Alex

Proofreader
Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

http://www.allitebooks.org

About the Author

Johan Astborg is the developer and architect of various kinds of software
systems and applications, financial software systems, trading systems, as well as
mobile and web applications. He is interested in computer science, mathematics,
and quantitative finance, with a special focus on functional programming. Johan is
passionate about languages such as F#, Clojure, and Haskell, and operating systems
such as Linux, Mac OS X, and Windows for his work. Most of Johan's quantitative
background comes from Lund University, where he studied courses in computer
science, mathematics, and physics. Currently Johan is studying pure mathematics
at Lund University, Sweden, and is aiming for a PhD in the future, combining
mathematics and functional programming. Professionally, Johan has worked as a
part-time developer for Sony Ericsson and various smaller firms in Sweden. He also
works as a part-time consultant focusing on web technologies and cloud solutions.
You can easily contact him by sending an e-mail to joastbg@gmail.com or visit his
GitHub page at https://github.com/joastbg.

http://www.allitebooks.org

About the Reviewers

Yan Cui (@theburningmonk) is a lead server-side developer at the London-based,
award winning gaming company GameSys. He focuses on building highly distributed
and scalable server-side solutions for GameSys's social and mobile games. Yan is
a regular speaker on topics such as F#, AOP, and NoSQL at local user groups and
conferences in the UK and keeps an active blog at http://theburningmonk.com.
He is also a co-author of the upcoming book, F# Deep Dives, Manning Publications.

Arthur Pham is working for for Thomson Reuters as a Lead Quantitative Engineer
since 2006. He has spent many years designing and implementing derivatives pricing
models and still loves learning new programming languages like F#, C++, Python,
Flex/Actionscript, C#, Ruby, and JavaScript.

He currently lives in New York, USA, and can be contacted on Twitter @arthurpham.

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introducing F# Using Visual Studio 5

Introduction 5
Getting started with Visual Studio 6

Creating a new F# project 6
Creating a new project in Visual Studio 6
Understanding the program template 8
Adding an F# script file 9

Understanding F# Interactive 10
Language overview 12
Explaining mutability and immutability 12
Primitive types 13
Explaining type inference 15
Explaining functions 15

Learning about anonymous functions 16
Explaining higher-order functions 17
Currying 17
Investigating lists 18

Concatenating lists 20
Tuples 21
The pipe operator 22

Documenting your code 22
Your first application 22
The whole program 24

Understanding the program 24
Extending the example program 25
The entire program 26

The power of prototyping 27
Functional languages in quantitative finance 27

http://www.allitebooks.org

Table of Contents

[ii]

Understanding the imperative code and interoperability 27
Summary 28

Chapter 2: Learning More About F# 29
Structuring your F# program 30

Looking into modules 30
Using functions and values in modules 31

Namespaces 32
Looking deeper inside data structures 33

Record types 34
Discriminated unions 36
Enumerations 38
Arrays 38

Interesting functions in an array module 40
Lists 41

Pattern matching and lists 44
Interesting functions in a list module 44

Sequences 45
Interesting functions in the sequence module 48

Sets 48
Maps 51
Interesting functions in the map module 52
Options 52
Strings 53

Interesting functions in the string module 54
Choosing data structures 54

Arrays 54
Lists 54
Sets 55
Maps 55

More on functional programming 55
Recursive functions 55
Tail recursion 56
Pattern matching 57

Incomplete pattern matching 58
Using guards 58
Pattern matching in assignment and input parameters 59
Active patterns 59

Introducing generics 62
Lazy evaluation 63
Units of measure 63

Asynchronous and parallel programming 65
Events 65

http://www.allitebooks.org

Table of Contents

[iii]

Background workers 66
Threads 68
Thread pools 69
Asynchronous programming 70

The F# asynchronous workflows 71
Asynchronous binding 71
Examples of using an async workflow 71

Parallel programming using TPL 74
MailboxProcessor 74

A brief look at imperative programming 77
Object-oriented programming 77

Classes 77
Objects and members 78
Methods and properties 79
Overloaded operators 80

Using XML documentation 81
Useful XML tags 82
Typical XML documentation 82

Summary 83
Chapter 3: Financial Mathematics and Numerical Analysis 85

Understanding the number representation 86
Integers 86

Two's complement 86
Floating-point numbers 87

The IEEE 754 floating-point standard 87
Learning about numerical types in F# 88
Arithmetic operators 90
Learning about arithmetic comparisons 90
Math operators 91
Conversion functions 92
Introducing statistics 93

Aggregate statistics 93
Calculating the sum of a sequence 93
Calculating the average of a sequence 94
Calculating the minimum of a sequence 94
Calculating the maximum of a sequence 95
Calculating the variance and standard deviation of a sequence 95
Looking at an example application 97

Using the Math.NET library 98
Installing the Math.NET library 98
Introduction to random number generation 99

Pseudo-random numbers 99
Mersenne Twister 100

Probability distributions 100

http://www.allitebooks.org

Table of Contents

[iv]

Normal distribution 100
Statistics 102
Linear regression 103

Using the least squares method 103
Using polynomial regression 104

Learning about root-finding algorithms 106
The bisection method 107

Looking at an example 107
Finding roots using the Newton–Raphson method 109

Looking at an example 109
Finding roots using the secant method 110

Looking at an example 110
Summary 111

Chapter 4: Getting Started with Data Visualization 113
Making your first GUI in F# 113
Composing interfaces 114

More about agents 116
The user interface 117
The main application 118
Learning about event handling 119

Displaying data 119
Extending the form to use a table 122
Displaying financial data from Yahoo! Finance 124
Understanding the application code 125

Extending the application to use Bollinger bands 127
Using FSharp.Charting 130

Creating a candlestick chart from stock prices 130
Creating a bar chart 132
Summary 134

Chapter 5: Learning Option Pricing 135
Introduction to options 135

Looking into contract specifications 136
European options 136
American options 136
Exotic options 136
Learning about Wiener processes 136

Learning the Black-Scholes formula 139
Implementing Black-Scholes in F# 141
Using Black-Scholes together with charts 142
Introducing the greeks 145

First-order greeks 145
Second-order greeks 145

Table of Contents

[v]

Implementing the greeks in F# 146
Delta 146
Gamma 147
Vega 147
Theta 148
Rho 148
Investigating the sensitivity of the greeks 149
Code listing for visualizing the four greeks 152

The Monte Carlo method 153
Summary 155

Chapter 6: Exploring Volatility 157
Introduction to volatility 157

Actual volatility 158
Implied volatility 158
Exploring volatility in F# 159

The complete application 162
Learning about implied volatility 164

Solving for implied volatility 165
Delta hedging using Black-Scholes 168
Exploring the volatility smile 169
Summary 174

Chapter 7: Getting Started with Order Types and Market Data 175
Introducing orders 175

Order types 175
Market orders 176
Limit orders 176
Conditional and stop-orders 176

Order properties 176
Understanding order execution 182
Introducing market data 183
Implementing simple pretrade risk analysis 185

Validating orders 185
Introducing FIX and QuickFIX/N 187

Using FIX 4.2 187
Configuring QuickFIX to use the simulator 187

Summary 202
Chapter 8: Setting Up the Trading System Project 203

Explaining automated trading 203
Understanding software testing and test-driven development 204
Understanding NUnit and FsUnit 205

Requirements for the system 205
Setting up the project 206

Table of Contents

[vi]

Installing the NUnit and FsUnit frameworks 208
Connecting to Microsoft SQL Server 210
Introducing type providers 212

Using LINQ and F# 212
Explaining sample code using type providers and LINQ 213

Creating the remaining table for our project 215
Writing test cases 216

Details about the setup 221
Summary 221

Chapter 9: Trading Volatility for Profit 223
Trading the volatility 223
Plotting payoff diagrams with FSharpCharts 224
Learning directional trading strategies 226

Trading volatility using options 226
Trading the straddle 226

Trading the butterfly spread 228
The long butterfly spread 229
The short butterfly spread 230

Trading the VIX 231
Trading the delta neutral portfolio 231

Deriving the mathematics 232
Hedging with implied volatility 233
Implementing the mathematics 233

Learning relative value trading strategies 234
Trading the slope of the smile 234

Defining the trading strategy 239
Case 1 – increasing the slope 240
Case 2 – decreasing the slope 240
Defining the entry rules 240
Defining the exit rules 241

Summary 241
Chapter 10: Putting the Pieces Together 243

Understanding the requirements 243
Revisiting the structure of the system 244
Understanding the Model-View-Controller pattern 246

The model 246
The view 246
The controller 246

Executing the trading strategy using a framework 247
Building the GUI 252
Presenting information in the GUI 254

Table of Contents

[vii]

Adding support for downloading the data 258
Looking at possible additions to the system 258

Improving the data feed 259
Support for backtesting 259
Extending the GUI 259
Converting to the client-server architecture 260

Summary 260
Index 261

Preface
F# is a functional programming language that allows you to write simple code
for complex problems. Currently, it is most commonly used in the financial sector.
Quantitative finance makes heavy use of mathematics to model the real world.
If you are interested in using F# for your day-to-day work or research in quantitative
finance, this book is for you.

This book covers everything you need to know about using functional programming
for quantitative finance. Using a functional programming language for quantitative
finance will enable you to concentrate more on the model itself rather than the
implementation details. Tutorials and snippets are summarized into a trading
system throughout this book.

F#, together with .NET, provides a wide range of tools needed to produce high
quality and efficient code, from prototyping to production. The example code
snippets in this book can be extended into larger blocks of code, and reused and
tested easily in a functional language. F# is considered one of the default functional
languages of choice for financial and trading-related applications.

What this book covers
Chapter 1, Introducing F# Using Visual Studio, introduces you to F# and its roots in
functional languages. You will learn how to use F# in Visual Studio and write your
first application.

Chapter 2, Learning More About F#, teaches you more about F# as a language and
illustrates the many sides of this paradigm language.

Chapter 3, Financial Mathematics and Numerical Analysis, introduces the toolset we'll
need throughout the book to implement financial models and algorithms.

Preface

[2]

Chapter 4, Getting Started with Data Visualization, introduces some of the most
common ways to use F# to visualize data and display information in a GUI.

Chapter 5, Learning Option Pricing, teaches you about options, the Black-Scholes
formula and ways of exploring options using the tools at hand.

Chapter 6, Exploring Volatility, digs deeper into the world of Black-Scholes and teaches
you about implied volatility.

Chapter 7, Getting Started with Order Types and Market Data, takes a rather pragmatic
approach towards finance and implements a basic order management system.

Chapter 8, Setting Up the Trading System Project, builds the foundation for the project
and shows how to connect to SQL Server and use LINQ for queries.

Chapter 9, Trading Volatility for Profit, studies various ways of monetizing through
movements in volatility and the arbitrage opportunity defining the trading strategy
for the project.

Chapter 10, Putting the Pieces Together, shows the final steps towards the complete
trading system using a volatility arbitrage strategy and FIX 4.2.

What you need for this book
Apart from an interest in F# and finance, you need a computer with Visual Studio
2012 installed. Visual Studio 2012 is the recommended IDE, supporting F# 3.0.

Who this book is for
This book is for anyone interested in writing F# code in the financial domain, with a
quantitative approach. The book is mainly intended to be a source of inspiration and
uses a lot of working code examples to illustrate both the concepts of finance and F#
as a functional language.

At the end of the book we develop a simple trading system for volatility arbitrage.
Details about orders and the FIX protocol are explained, as well as the theory
behind the strategy itself. This may work as a foundation for anyone interested
in developing their own trading system based on options and volatility.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input are shown as follows: "First we set a flag in
the constructor, WorkerSupportsCancellation = true, then we check a flag every
time we iterate the calculation."

A block of code is set as follows:

let rec getSecondLastElement = function
 | head :: tail :: [] -> head
 | head :: tail -> getSecondLastElement tail

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

SocketConnectPort=9878
SocketConnectHost=192.168.0.25
FileStorePath=temp

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If you run
this code, you will see a form with the title Displaying data in F#, like the one in the
following screenshot."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing F# Using
Visual Studio

In this chapter, you will learn about the history of F# and its roots in other
programming languages. We will also be introducing Visual Studio and the
fundamental language constructs of F#. You will be comfortable using the interactive
mode for prototyping the code step-by-step. You will get a better understanding
of how to build programs in F# by putting pieces together. Also, the basics of the
language are covered by using and evaluating the code in the Read Eval Print
Loop (REPL).

In this chapter you will learn:

• How to use F# with Visual Studio 2012
• How to use F# Interactive to write the code in a new exploratory way
• The basics of F# and how to write your first non-toy application
• How functional programming will make you more productive

Introduction
Before we dive in to the language itself, we should discuss why we need it in the
first place. F# is a powerful language, which may sound like a cliché, but it combines
multiple paradigms into real-life productivity and supports the .NET components
and libraries natively as well as the Common Language Infrastructure (CLI).
Functional programming has long been associated with academics and experts.
F# is one of the few languages offering a complete environment that is mature
enough to comfortably be integrated into an organization.

http://www.allitebooks.org

Introducing F# Using Visual Studio

[6]

Also, F# has extensive support for parallel programming, where advanced features
such as asynchronous and multi-threaded concepts are implemented as language
constructs. It hides a lot of implementation details from the programmer. In F#, the
functional programming paradigm is the main philosophy used to solve problems.
The other paradigms, object-oriented and imperative programming, are prioritized to
be used as subsidiaries and complements for this main paradigm. Reasons for them to
coexist, involves compatibility and pragmatic, real-world productivity concerns.

Getting started with Visual Studio
We will start by introducing Visual Studio as the main tool of choice for this book.
Although it's possible to use the standalone F# compiler and your favorite editor,
you will most likely be more productive using Visual Studio 2012, as we will do
throughout this book.

F# has been a part of Visual Studio since 2010. We will use the latest version of
Visual Studio and F# throughout this book. This will enable us to use the latest
functionality and enhancements available in Visual Studio 2012 and F# 3.0.

F# is open source, which means you can use it on any supported platform; it's not
bound to Microsoft or Visual Studio. There is good support in other IDEs, such as
MonoDevelop, which will run on Linux and Mac OS X.

For more information about F# and the F# Software Foundation,
visit http://fsharp.org.

Creating a new F# project
Create a new project in Visual Studio for F#, which is to be used in this guide
to explore the basics, as shown in the following sections.

Creating a new project in Visual Studio
Using the following steps, we can create a new project in Visual Studio:

1. To create your first F# project, open Visual Studio 12 and navigate
to File | New | Project, then, from the menu select New Project.

Chapter 1

[7]

2. Now you will see the New Project window appear. Select F# in the left panel
and then select F# Application. You can name it anything you like. Finally,
click on OK.

Introducing F# Using Visual Studio

[8]

3. Now you have created your first F# application, which will just print the
arguments passed to it.

Understanding the program template
Let's have a brief look at the program template generated by Visual Studio.

If you run this program, which will just print out the arguments passed to it, you will
see a terminal window appear.

Chapter 1

[9]

The [<EntryPoint>] function in the preceding screenshot is the main function,
which tells Visual Studio to use that particular function as the entry point for the
program executable. We will not dig any deeper into this program template for now,
but we will come back to this in the last three chapters when we'll build the trading
system.

Adding an F# script file
We will use an F# script file after having looked at the standard program template
instead of exploring the basics of the language in a more interactive fashion. You can
think of F# script files as notebooks, where you have executable code that you can
explore in pieces in an incremental style:

1. Add the F# script file by right-clicking on the Solution Explorer to the right
of the code editor.

2. Then navigate to Add | New Item…, as shown in the following screenshot:

Introducing F# Using Visual Studio

[10]

3. You can name the script file anything you like, such as GettingStarted.fsx.

Now that we have set up the basic project structure in Visual Studio, let's continue
and explore F# Interactive.

Understanding F# Interactive
F# Interactive is a way of executing parts of a program interactively. Doing this
enables you as a programmer to explore parts of the code and how it behaves. You
will have a more dynamic feel for writing code. It's also more fun. F# Interactive is
a REPL for F#. This means, it will read the code, evaluate it, and then print out the
result. It will then do this over and over again. It's much like a command line, where
the code is executed and the result is displayed to the user.

To execute a code in F# Interactive, have a look at the following steps:

1. Select the source code you are interested in and press Alt + Enter.
2. You can write a simple line of code that will just print a string to the REPL's

output window:

printfn "Hello World, from F"

Chapter 1

[11]

3. It's also possible to right-click on the selected code and choose Execute
In Interactive.

When executing the code using the Interactive mode, the result is shown
in the F# Interactive Evaluation window below the code editor. It is also
possible, and sometimes preferable to enter snippets into the Interactive
window like the following example illustrates.

4. Enter the following line in the F# Interactive window and press Enter:
printfn "Hello World, from F#";;

5. This will be evaluated to the following in the REPL:
> printfn "Hello World, from F#";;
Hello World, from F#
val it : unit = ()

Using double semicolons (;;) after the line will terminate the input and
enable you to just hit the Enter key, they are required if you type directly
into the terminal window.

Introducing F# Using Visual Studio

[12]

6. If you want to cancel the evaluation, it's possible to right-click on and then
select Cancel Interactive Evaluation, or simply press Ctrl + Break.

Language overview
We will now start our journey into functional programming using F#, and explore its
capabilities in quantitative finance applications.

Let's start by looking at how values are declared, that is, how to bind values to
names, mutability, and immutability.

To initialize and create a value, use the let keyword. let will bind the value on
the right-hand side to the variable name on the left-hand side of the equals sign.
This is a bind operator, a lot like math.

let sum = 4 + 5
let newsum = sum + 3

The let binding is also used in the same way for binding functions to a name,
as we will see in the following sections.

Explaining mutability and immutability
Once a variable is defined to have a particular value, it keeps that value indefinitely.
There are exceptions to this, and shadowing can be used to override a previous
assignment made within the same scope. Thus, variables in mathematics are
immutable. Similarly, variables in F# are immutable with some exceptions.

Chapter 1

[13]

Immutable variables are default in F#. They are useful because they are thread-safe
and easier to reason about. This is one of the reasons you may have heard a lot about
immutability recently. The concept is to solve the biggest issues and design flaws of
concurrent programming, including shared mutable state. If the values do not change,
there is no need to protect them either, which is one of the reasons for promoting
immutability in concurrent programming.

If you try to alter the value of an immutable variable, you will encounter a message
similar to the following:

let immutable = "I am immutable!"
immutable <- "Try to change it..."
… error FS0027: This value is not mutable

Sometimes, however, it's desirable to have variables that are mutable. Often the need
arises in real-life applications when some global state is shared like a counter. Also,
object-oriented programming and interoperability with other .NET languages makes
the use of mutability unavoidable.

To create a mutable variable, you simply put the keyword mutable in front of the
name as shown in the following line of code:

let mutable name = firstname + lastname

To change the variable, after it is created, use the arrow operator (←) as shown in the
following line of code:

name ← "John Johnson"

This is a little bit different from other languages. But once you have wrapped your
head around the concept, it makes more sense. In fact, it will most likely be one of
the main ways to reason about variables in the future as well.

Primitive types
It may look like F# is a dynamic typed language like JavaScript, Ruby, or Python.
In fact, F# is statically typed like C#, C++, and Java. It uses type inference to figure
out the correct types. Type inference is a technique which is used to automatically
deduce the type used by analyzing the code. This approach works remarkably
well in nearly all situations. However, there are circumstances in which you as a
programmer need to make clarifications to the compiler. This is done using type
annotations, a concept we will look into in the following sections.

Introducing F# Using Visual Studio

[14]

Let's explore some of the built-in types in F# using the REPL.

> let anInt = 124;;

val anInt : int = 124

This means that F# figured out the type of anInt to be of type int. It simply inferred
the type on the left-hand side to be of the same type as the right-hand side of the
assignment. Logically, the type must be the same on both sides of the assignment
operator, right?

We can extend our analysis into floating point numbers as shown in the following
lines of code:

> let anFloat = 124.00;;

val anFloat : float = 124.0

Because of the decimal sign, the type is determined to be of type float. The same
holds true for double as shown in the following lines of code:

> let anDouble : double = 1.23e10;;

val anDouble : double = 1.23e+10

For other types, it works in the same way as expected as shown in the following:

> let myString = "This is a string";;

val myString : string = "This is a string"

All the primitive built-in types, except for unit, have a corresponding type in .NET.

The following table shows the most common primitive types in F#:

Type .NET type Description
bool Boolean true or false
byte Byte 0 to 255
int Int32 -128 to 127
int64 Int64 -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
char Char 0 to 18,446,744,073,709,551,615
string String Unicode text
decimal Decimal Floating data type
unit - Absence of an actual value

Chapter 1

[15]

Type .NET type Description
void Void No type or value
float Single 64-bit floating point value
double Double Same as above

For more information and all type you can visit http://msdn.
microsoft.com/en-us/library/dd233210.aspx.

There are also other types that are built into the language which will be covered
in more detail in the next chapter, such as lists, arrays, sequences, records, and
discriminated unions.

Explaining type inference
Type inference means that the compiler will automatically deduce the type of
an expression used in the code, based on the information provided from the
programmer about the context of the expression. Type inference analyses the code,
as you have seen in the preceding section, to determine types that are often obvious
to the programmer. This spares the programmer from having to explicitly define the
types of every single variable. It's not always needed to have the types defined to be
able to understand the code, as seen in the preceding section for simple assignments
of integers and floats. Type inference will make the code easier to write, and as a
consequence, easier to read, leaving a lot of ceremony where it belongs.

Explaining functions
It's now time to look at functions, the most basic and powerful building block in
F#, and any other functional programming language for that matter. Functional
programming languages use functions as first class constructs, in contrast to object-
oriented programming, where objects and data are first class constructs. This means
that in functional programming, functions will produce data based on the input and
not based on state. In object-oriented programming, the state is encapsulated into
objects and passed around. Functions are declared in the same way as variables were
declared previously in the preceding snippets, with let bindings. Have a look at
the following code snippet:

let sum (x,y) =
 x + y
> sum (7, 7)

http://www.allitebooks.org

Introducing F# Using Visual Studio

[16]

If you try to evaluate the first sum function using Alt + Enter, F# Interactive will
respond with a function like the following line of code:

val sum : x:int -> y:int -> int

This means that sum is a function that takes two values of type int and returns a
value of type int. The compiler simply knows that it's just the last type that is the
return type.

let sum (x:float, y:float) =
 x + y

> sum(7.0, 7.0);;
val it : float = 14.0

Let's look at the following case where parameters of wrong types are passed
to the function:

> sum(7, 7);;
...
error FS0001: This expression was expected to have type float
but here has type int

As seen in the modified version of the sum function, the types are explicitly declared
as float. This is a way of telling the compiler beforehand that float is the value to be
used in the function. The first version of sum used type inference to calculate the
types for x and y respectively and found it to be of type int.

Learning about anonymous functions
Since it is common to create small helper functions in F# programming, F# also
provides a special syntax for creating anonymous functions. These functions are
sometimes called lambdas, or lambda functions. To define an anonymous function,
the keyword fun is used. Have a look at the following code snippet:

let square = (fun x → x * x)
> square 2
val it : int = 4

Chapter 1

[17]

Explaining higher-order functions
Now the square function can be used by itself or as an argument to other functions
or higher-order functions. Have a look at the following square function:

let squareByFour f
 f 4
> squareByFour square

Here, the square function is passed as an argument to the function squareByFour.
The function squareByFour is a higher-order function; it takes another function as
an argument. Higher-order functions can take a function as an argument or return a
function, or do both. This is an often used technique in functional programming to be
able to construct new functions from existing functions and reuse them.

Currying
Though, currying is sometimes considered to be an advanced feature of
programming languages, it makes the most sense on connection to functions
and higher-order functions. The idea is not complicated at all, and once you
have seen a couple of examples, the concept should be clear.

Let's look at the following sum function:

let sum x y =
 x + y

Let's assume we want to reuse the function, but we may often call it for some fixed
value of x. That means we have a fixed x, let's say 2, and we vary the y parameter.
Have a look at the following:

sum 2 3
sum 2 4
sum 2 5

Instead of having to write out the x parameter every time, we can make use of the
concept of currying. That means we create a new function with the first parameter
fixed in this case. Take a look at the following function:

let sumBy2 y =
 sum 2 y

> sumBy2 3;;
val it : int = 5

> sumBy2 4;;

Introducing F# Using Visual Studio

[18]

val it : int = 5

> sumBy2 5;;
val it : int = 5

We have now saved ourselves from rewriting some arguments, but this is not the
main reason. It's the ability to control the parameters and reuse functionality. More
about currying will be covered in later chapters, but the basics were covered here in
connection to higher-order functions.

Investigating lists
Lists in F# are very useful, they are some of the most frequently used building
blocks. They are the basic building blocks in functional languages and often replace
the need of other types or classes. This is because the support for manipulating and
creating lists and also being able to nest lists can be enough to replace custom types.
You can think of lists as a sequence of values of the same type.

Lists in F# are the following:

• A powerful way to store data
• Immutable linked lists of values of any type
• Often used as building blocks
• One of the best ways to store data

This illustrates a list in F#, with a head and a tail, where each element is linked to
the next.

Let's consider the following simple list of price information which are represented
as floating points:

let prices = [45.0; 45.1; 44.9; 46.0]
> val prices : float list = [45.0; 45.1; 44.9; 46.0]

Chapter 1

[19]

Suppose you want a list with values between 0 and 100, instead of writing them
yourself, F# can do it for you. Take a look at the following lines of code:

let range = [0 .. 100]
val range : int list =
 [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17;
 18; 19; 20;21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32;
 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47;
 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60; 61; 62;
 63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77;
 78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89; 90; 91; 92;
 93; 94; 95; 96; 97; 98; 99; ...]

This is fine if we just want a simple range with fixed size increments. Sometimes
however, you may want to have a smaller increment, let's say 0.1, which is between
1.0 and 10.0. The following code shows how it is done:

let fineRange = [1.0 .. 0.1 .. 10.0]
val fineRange : float list =
[1.0; 1.1; 1.2; 1.3; 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; 2.0; 2.1; 2.2;
2.3; 2.4; 2.5; 2.6; 2.7; 2.8; 2.9; 3.0; 3.1; 3.2; 3.3; 3.4; 3.5;
3.6; 3.7; 3.8; 3.9; 4.0; 4.1; 4.2; 4.3; 4.4; 4.5; 4.6; 4.7; 4.8;
4.9; 5.0; 5.1; 5.2; 5.3; 5.4; 5.5; 5.6; 5.7; 5.8; 5.9; 6.0; 6.1;
6.2; 6.3; 6.4; 6.5; 6.6; 6.7; 6.8; 6.9; 7.0; 7.1; 7.2; 7.3; 7.4;
7.5; 7.6; 7.7; 7.8; 7.9; 8.0; 8.1; 8.2; 8.3; 8.4; 8.5; 8.6; 8.7;
8.8; 8.9; 9.0; 9.1; 9.2; 9.3; 9.4; 9.5; 9.6; 9.7; 9.8; 9.9; 10.0]

Lists can be of any type, and type inference works here as well. Have a look at the
following code:

> let myList = ["One"; "Two"; "Three"];;
val myList : string list = ["One"; "Two"; "Three"]

However, if you mix the types in a list, the compiler will get confused about the
actual type used:

let myList = ["One"; "Two"; 3.0];;
...
This expression was expected to have type
string but here has type float

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Introducing F# Using Visual Studio

[20]

Concatenating lists
Concatenating lists is useful when you want to add lists together. This is done using
the @ operator. Have a look at the following code where the @ operator is used:

> let myNewList = [1;2;3] @ [4;5;6];;

val myNewList : int list = [1; 2; 3; 4; 5; 6]

> myNewList;;
val it : int list = [1; 2; 3; 4; 5; 6]

Let's have a look at some of the most commonly used functions in the List Module:
Length, Head, Tail, map, and filter respectively.

The function Length will simply return the length of the list:

> myNewList.Length;;
val it : int = 6

If you want the first element of a list, use Head:

> myNewList.Head;;
val it : int = 1

The rest of the list, meaning all other elements except the Head, is defined as
the Tail:

> myNewList.Tail;;
val it : int list = [2; 3; 4; 5; 6]

You can also do some more interesting things with lists, such as calculating the
square of all the elements one by one. Note that it's an entirely new list returned from
the map function, since lists are immutable. This is done using higher-order functions,
where List.map takes a lambda function defined to return the value of x*x as seen
in the following code:

> List.map (fun x -> x * x) myNewList;;
val it : int list = [1; 4; 9; 16; 25; 36]

Another interesting function is the filter function of lists, which will return a new
list matching the filter criteria:

> List.filter (fun x -> x < 4) myNewList;;
val it : int list = [1; 2; 3]

Chapter 1

[21]

Tuples
Tuples are a group of unnamed but ordered values. The values can be of different
types, if needed. You can think of them as more flexible versions of the Tuple class
in C#.

// Tuple of two floats
(1.0, 2.0)

// Tuple of mixed representations of numbers
(1, 2.0, 3, '4', "four")

// Tuple of expressions
(1.0 + 2.0, 3, 4 + 5)

Let's analyze the type information from the tuples in the REPL. The first tuple has the
type information:

> (1.0, 2.0);;
val it : float * float = (1.0, 2.0)

The * symbol is used to separate the type elements for a tuple. It's simply a tuple of
two floats. The next one is a bit more complex:

> (1, 2.0, 3, '4', "four");;
val it : int * float * int * char * string = (1, 2.0, 3, '4', "four")

But the type inference figured it out without any doubts. The last one consists
of expressions:

> (1.0 + 2.0, 3, 4 + 5);;
val it : float * int * int = (3.0, 3, 9)

As you can see, the expressions are evaluated before the type data is analyzed. It may
be useful to extract the values from a tuple, this can be done using simple patterns:

let (a, b) = (1.0, 2.0)
printfn "%f %f" a b

If you are not interested in the first value, use the wildcard character (the underscore)
to simply ignore it. The wildcard is used throughout F#, for example, in pattern
matching, which will be introduced in the next chapter.

let (_, b) = (1.0, 2.0)
printfn "only b %2.2f" b

Introducing F# Using Visual Studio

[22]

The pipe operator
The pipe operator is used a lot and it's defined as a function which takes the
values on the left-hand side of the operator and applies them to the function on the
right-hand side. There is another version of the pipe operator with various numbers
of arguments, and more about them will be covered later.

The pipe-forward operator (|>) is the most common pipe operator:

[0..100]
|> List.filter (fun x -> x % 2 = 0)
|> List.map (fun x -> x * 2)
|> List.sum

This snippet first creates a list from 0 to 100, as illustrated in the section about lists
previously. Then, the list is piped to the filter function with a conditional lambda
function. Every even value in the list gets passed on to the next function. The
map function will execute the lambda function to square every number. Finally,
all numbers are summed, with the result of:

val it : int = 5100

Documenting your code
Documenting your code is a good practice to get used to. Do you remember details
about code you worked on some weeks ago? Then imagine yourself looking at the
code you worked on several years ago. This is where documentation comes in. Just
some hints about the logic will be sufficient for you and your colleges to grasp the
main concepts behind the logic.

(*
This is a comment on multiple lines
*)

/// Single line comment, supporting XML-tags

// This is also a single line comment

Your first application
The first application for doing something useful will be this Hello World of finance,
which will illustrate some powerful yet simple concepts and strengths of F# and
functional languages in general.

Chapter 1

[23]

Let's start our journey into quantitative finance by looking at a simple yet illustrative
example using Yahoo finance data. First, we will just put the data into the code to get
used to the basic concepts.

First, we put some data in. In F# you can declare a list of strings on multiple lines
like the following code:

/// Sample stock data, from Yahoo Finance
let stockData = [
 "2013-06-06,51.15,51.66,50.83,51.52,9848400,51.52";
 "2013-06-05,52.57,52.68,50.91,51.36,14462900,51.36";
 "2013-06-04,53.74,53.75,52.22,52.59,10614700,52.59";
 "2013-06-03,53.86,53.89,52.40,53.41,13127900,53.41";
 "2013-05-31,54.70,54.91,53.99,54.10,12809700,54.10";
 "2013-05-30,55.01,55.69,54.96,55.10,8751200,55.10";
 "2013-05-29,55.15,55.40,54.53,55.05,8693700,55.05"
]

We introduce a function for splitting strings on commas; this will create an array
of strings. Don't forget to evaluate the parts of the program in F# Interactive using
Alt + Enter. Doing this as a practice will make the number of errors less, and you will
also be getting more comfortable and understand the types involved.

The type of the stockData value is not explicitly declared, but if you evaluate it,
you should see it is of type string list:

val stockData : string list =
 ["2013-06-06,51.15,51.66,50.83,51.52,9848400,51.52";
 ...
 "2013-05-29,55.15,55.40,54.53,55.05,8693700,55.05"]

// Split row on commas
let splitCommas (l:string) =
 l.Split(',')

// Get the row with lowest trading volume
let lowestVolume =
 stockData
 |> List.map splitCommas
 |> List.minBy (fun x -> (int x.[5]))

Evaluating the expression lowestVolume will parse the strings in stockData and
extract the row with the lowest trading volume, column six. Hopefully, the result
will be the row with date 2013-05-29, as in the following:

val lowestVolume : string [] =
 [|"2013-05-29"; "55.15"; "55.40"; "54.53"; "55.05"; "8693700";
 "55.05"|]

Introducing F# Using Visual Studio

[24]

The whole program
The following is the code listing for the program we developed in the previous
section, the Hello World program of finance. Try it out for yourself and make
changes to it if you like:

/// Open the System.IO namespace
open System.IO

/// Sample stock data, from Yahoo Finance
let stockData = [
 "2013-06-06,51.15,51.66,50.83,51.52,9848400,51.52";
 "2013-06-05,52.57,52.68,50.91,51.36,14462900,51.36";
 "2013-06-04,53.74,53.75,52.22,52.59,10614700,52.59";
 "2013-06-03,53.86,53.89,52.40,53.41,13127900,53.41";
 "2013-05-31,54.70,54.91,53.99,54.10,12809700,54.10";
 "2013-05-30,55.01,55.69,54.96,55.10,8751200,55.10";
 "2013-05-29,55.15,55.40,54.53,55.05,8693700,55.05"
]

/// Split row on commas
let splitCommas (l:string) =
 l.Split(',')

/// Get the row with lowest trading volume
let lowestVolume =
 stockData
 |> List.map splitCommas
 |> List.minBy (fun x -> (int x.[5]))

Understanding the program
The pipe operator makes the logic of the program very straightforward. The program
takes the list stockData, splits for commas, then selects specific columns and applies
a mathematical operator. Then, it selects the maximum value of these calculations
and finally returns the first column of the row fulfilling the minBy criteria. You
can think of it as building blocks, where each piece is a standalone function on its
own. Combining many functions into powerful programs is the philosophy behind
functional programming.

Chapter 1

[25]

Extending the example program
Let's extend the preceding program to read data from a file instead. Since having
it explicitly declared in the code is not that useful in the long run, as data tends to
change. During this extension, we will also introduce exceptions and how they are
used in .NET.

We start by writing a simple function to read all the contents from a file, where its
path is passed as an argument. The argument is of type string, as you can see in the
function header using the type annotation. Annotations are used either when the
compiler can't figure out the type on its own, or when you as a programmer want to
clarify the type used or enforce a certain type.

/// Read a file into a string array
let openFile (name : string) =
 try
 let content = File.ReadAllLines(name)
 content |> Array.toList
 with
 | :? System.IO.FileNotFoundException as e -> printfn
 "Exception! %s " e.Message; ["empty"]

The function will catch FileNotFoundException if the file is not found. There is
also a new operator (:?) before the exception type. This is a type test operator, which
returns true if the value matches the specified type, otherwise, returns false.

Let's change the preceding code to use the content loaded from the file instead of the
pre-coded stock prices.

/// Get the row with lowest trading volume, from file
let lowestVolume =
 openFile filePath
 |> List.map splitCommas
 |> Seq.skip 1
 |> Seq.minBy (fun x -> (int x.[5]))

There are some minor changes needed to the code to make it able to handle the input
from the Comma-Separated Values (CSV) file. As with the input to the pipes, we
use the result from the call to the openFile function. Then, we split for commas as
before. It was necessary to have a way to skip the first line; this is easy to do in F#,
and you just insert a Seq.skip n, where n is the number of elements in the sequence
to skip.

printfn "Lowest volume, found in row: %A" lowestVolume

http://www.allitebooks.org

Introducing F# Using Visual Studio

[26]

Here, we simply use printfn formatted with %A, which will just take anything
and format for output (very convenient).

Let's look at one more example of this useful string formatter:

> printfn "This works for lists too: %A" [1..5];;
This works for lists too: [1; 2; 3; 4; 5]
val it : unit = ()

The entire program
Let's look at the code for the entire program, which we looked at in the
previous section.

/// Open the System.IO namespace
open System.IO

let filePath = @" table.csv"

/// Split row on commas
let splitCommas (l:string) =
 l.Split(',')

/// Read a file into a string array
let openFile (name : string) =
 try
 let content = File.ReadAllLines(name)
 content |> Array.toList
 with
 | :? System.IO.FileNotFoundException as e -> printfn
 "Exception! %s " e.Message; ["empty"]

/// Get the row with lowest trading volume, from file
let lowestVolume =
 openFile filePath
 |> List.map splitCommas
 |> Seq.skip 1
 |> Seq.minBy (fun x -> (int x.[5]))

/// Use printfn with generic formatter, %A
printfn "Lowest volume, found in row: %A" lowestVolume

Chapter 1

[27]

The power of prototyping
Using the interactive mode in Visual Studio and being able to write the program in
smaller building blocks using prototyping is a great way of writing software. You have
already used this exploratory way of writing programs with the first application.

The workflow is to build up programs incrementally instead of running all code at
once. The REPL is a perfect place to try out snippets and experiment with different
aspects of F#.

Functional languages in quantitative
finance
In the preceding example code, we saw that parsing data from a file and extracting
various information is straightforward, and results in code that is both easy to read
and understand. That's one of the highlights of F#, not less important in quantitative
finance where code can be complex and hard to follow and comprehend in
many languages.

Let's illustrate the preceding statements with another example. The data in the CSV
file in the previous sample application was sorted with the most recent date first. If
we want the data to be ordered in a more natural way, lowest date first and so on,
we can simply reverse the entire list in the following way:

/// Reverses the price data from the CSV-file
let reversePrices =
 openFile filePath
 |> List.map splitCommas
 |> List.rev

Understanding the imperative code and
interoperability
Suppose we are interested in parsing the date column in the example with the stock
prices. The entire row looks something like the following:

 [|"2013-02-22"; "54.96"; "55.13"; "54.57"; "55.02"; "5087300";
 "55.02"|]

We are interested in the first column, with index 0:

lowestVolume.[0];;
val it : string = "2013-02-22"

Introducing F# Using Visual Studio

[28]

We can make use of the .NET classes for date and time in the System.DateTime
namespace:

> let dateTime = System.DateTime.ParseExact(lowestVolume.[0], "yyyy-
mm-dd", null);;

val dateTime : System.DateTime = 2013-01-22 00:02:00

Now we have a System.DateTime object, which is compatible with C# and the other
.NET languages, to work with!

Summary
In this chapter, we had a look into the basics of programming in F# using Visual
Studio. We covered a wide variety of the language and scratched the surface of
functional programming, where immutability plays a key role. Throughout the
chapter we started out illustrating some of F#'s language features and how to make
use of the .NET framework. At the end of the chapter, we put together a simple
application which shows the power and elegant syntax of F#. Functions are the main
building block in any functional programming language. Building new functions
from existing ones is a way of abstracting away the complexity and allows for reuse.

In the next chapter, we'll dive into more details about the F# language. You'll learn
more about data structures, such as Lists, Sequences, and Arrays. You'll also learn how
to structure your program using modules and namespaces, things that will become
useful in larger programs. The next chapter will also introduce you to threads, thread
pools, asynchronous programming using .NET, and language-specific constructs for
the F# language.

Learning More About F#
This chapter is a more detailed one about the F# language itself. The tutorial
approach will continue with demonstrations using Visual Studio, together with
detailed aspects of the language relevant to building the final trading system
throughout the later part of the book. Most of the language building blocks will
be covered with explanations and examples. This chapter is quite large, but it
is essential to understand the content provided here to be able to follow along
throughout the book.

In this chapter, you will learn:

• Structuring a program into modules and namespaces
• More about data structures and types
• Recursive functions and their role in functional programming
• Pattern matching
• Combining functional and object-oriented ideas
• The imperative part of F#
• The parallel and asynchronous programming model in F#

Download the F# 3.0 Language Specification from Microsoft Research
and use it side-by-side as you go along this chapter and the rest of the
book. The specification provides a lot of useful details and answers
potential questions from you as a reader.

Learning More About F#

[30]

Structuring your F# program
When you write larger programs, it becomes essential to be able to structure the code
into hierarchical abstraction levels. This makes it possible to build larger programs,
reuse existing code, and let others understand the code as well. In F# there are
namespaces, modules, and object orientation together with types and data structures
to do this. In object orientation, there are possibilities to make functions and variables
private and to disable outside access. Object orientation will be covered in a section
by itself later on.

As you may have seen in Visual Studio, when you have created your F# projects,
there exist various types of source code files. They have different extensions
depending on their use. In this book we use .fs and .fsx files. The former is an F#
source code file to be compiled and used in an executable program. The latter, .fsx,
is used for F# scripts and interactive mode for prototyping. Scripts are excellent for
prototyping and exploratory development, but not suitable for larger programs.

Next, we will cover the most common and useful techniques used in F# to structure
the code into elegant, maintainable, and logical structures.

Looking into modules
Modules help in organizing and structuring the related code. They are a simple and
elegant way of organizing your code into higher abstractions. They can be thought
of as named collections of declarations, such as values, types, and function values.
You have been using modules already without noticing. All files will automatically
be declared as modules with the same name as the file. The same holds true for F#
Interactive, where every execution will be wrapped into a module of its own.

For example, consider a file named application.fs with the following content:

let myval = 100

This file will be compiled in the same way as if it was explicitly declared as a module:

module application

let myval = 100

That means you don't have to explicitly declare modules in every file to
accomplish this.

Chapter 2

[31]

Using functions and values in modules
Modules may look a lot like classes in object orientation. They even have access
annotations to specify the rules for accessing their declared members. The main
difference between modules and classes is that classes can be thought of as defining
new types, where as modules are grouped functionalities and may be used before
knowing the exact details needed to write the class.

The following example illustrates how to declare modules and nested modules with
values and functions, and how to access these members:

module MainModule =
 let x = 2
 let y = 3
 module NestedModule =
 let f =
 x + y

printfn "%A" MainModule.NestedModule.f

As you can see, modules can be nested, and this enables you as a programmer to
structure your code in an elegant way. The f function in the module NestedModule
can access the values x and y in the parent module, without explicitly writing out
its name.

The order in which you declare and use your modules is essential because they are
processed in a sequential order from top to bottom. The following snippet will not be
able to find Module2 in the first let statement:

module Module1 =
 let x = Module2.Version() // Error: Not yet declared!

module Module2 =
 let Version() =
 ""Version 1.0"

Reverse the order and the error is solved:

module Module2 =
 let Version() =
 ""Version 1.0"

module Module1 =
 let x = Module2.Version() // Now Module2 is found

Learning More About F#

[32]

Each member value of a module is made public by default. This means that each
member has a default accessibility set by the compiler. Let's go back to the following
example and change the accessibility of the function Version to private:

module Module2 =
 let private Version() =
 "Version 1.0"

module Module1 =
 let x = Module2.Version() // Error: Version is private!

As you can see, if you type it into the editor, there is an error because of the private
annotation. This is quite neat. In this case, it may be more appropriate to use the
annotation internally, which means the member is only accessible from within the
same assembly.

module Module2 =
 let internal Version() =
 "Version 1.0"

module Module1 =
 let x = Module2.Version() // Now it works again, Version is set to
 be internal

The available modifiers are public, internal, and private. The public modifier
indicates that the annotated function or value can be accessed by all code,
whereas private indicates that the function or value can only be accessed from
the enclosing module.

Namespaces
A namespace is a hierarchical categorization of modules, classes, and other
namespaces. First we take a look at how we declare namespaces. Namespaces
have to be the first declaration in the code file. They are useful when you want to
distinguish functionality without having to put long names in front of, for example,
modules or classes. They also minimize naming collisions between your code and the
existing code. Here is the code discussed previously added into a namespace:

namespace Namespace1.Library1

 module Module2 =
 let internal Version() =
 "Version 1.0"

 module Module1 =
 let x = Module2.Version()

Chapter 2

[33]

This will tell the compiler that we are in the namespace called Namespace1.
Library1. Namespaces also force programmers to use patterns known to F#, C#,
and other .NET language programmers. Namespaces are open, which means many
source files can contribute to the same namespace. It's also possible to have multiple
namespaces in the same file:

namespace Namespace1.Library1

 module Module2 =
 let internal Version() =
 "Version 1.0"

namespace Namespace1.Library2

 module Module1 =
 let x = Namespace1.Library1.Module2.Version()

The preceding example shows how to use namespaces and how to access modules
within namespaces, which requires fully qualified names to be used. If you use the
open keyword in F#, you don't need the fully qualified names and is equivalent
to using in C#. Fully qualified names mean the full name, as used to access the
function Version in the last let statement.

For namespaces, the private and public modifiers also exist and work in the same
way as for modules, except that they work on the namespace level in the code.
There also exists more granular control mechanisms for your code, such as
[<AutoOpen>], which will automatically open a module inside of a namespace.
This is handy when let statements are needed to be defined inside namespaces to
define values.

Looking deeper inside data structures
In the previous chapter we introduced some data structures of F# and scratched the
surface of their functionality. In this section we will take a deeper look at several data
structures and expressions used in many programs.

The following is a list of what will be covered together with a short description to
summarize their main characteristics:

• Record types: Record types are used to represent data and group pieces of
data together by combining named values and types.

• Discriminated unions: Discriminated unions are useful to represent
heterogeneous data and support data that can be a set of named cases.

Learning More About F#

[34]

• Enumerations: Enumerations in F# are almost identical to enumerations in
other languages and are used to map labels to constant values.

• Arrays: Arrays are collections of a fixed size and must contain values of the
same type. Large arrays of constant values can be compiled to efficient
binary representations.

• Lists: Lists are ordered collections with elements of the same type,
implemented as linked lists.

• Sequences: In F#, sequences are lazy and are represented as a logical series
of elements where the elements have to be of the same type. They are
especially suited to represent a large ordered collection of data where all
elements are not expected to be used.

• Sets: Sets are unordered containers for unique data elements. Sets do
not preserve the order of elements as they are inserted, nor do they
permit duplicates.

• Maps: Maps are associative containers for key/value pairs.
• Options: Options are an elegant way of enclosing a value that may or may

not exist. It's implemented using a discriminated union. Instead of checking
for null values, options are preferred.

• Strings: Strings are sequences of characters and are the same as the
.NET string.

Record types
Record types are used to represent data and group pieces of data together by
combining named values and types.

Suppose we are interested in modeling an open-high-low-close (OHLC) bar using
record types, it may look something like this:

type OHLC =
 {
 o: float
 h: float
 l: float
 c: float
 }

Then, we can use the previously defined record to declare a variable:

let ohclBar : OHLC = {o = 1.0; h = 2.0; l = 3.0; c = 4.0}

Chapter 2

[35]

Let's consider another example, where we model a quote with bid, ask, and
midpoint. The midpoint() function will be calculated from the bid and ask values,
that is, the average of both. This can be done using record types and a member
function like this:

type Quote =
 {
 bid : float
 ask : float
 }
 member this.midpoint() = (this.bid + this.ask) / 2.0

let q : Quote = {bid = 100.0; ask = 200.0}
q.midpoint()

As you can see, it looks a lot like the first example except for the member function
midpoint. The member functions are able to access fields of the record type.

Suppose we are interested in modifying the fields after the initialization, it's simply
a matter of adding the keyword mutable to the particular field of interest:

type Quote =
 {
 mutable bid : float
 mutable ask : float
 }
 member this.midpoint() = (this.bid + this.ask) / 2.0

let q : Quote = {bid = 100.0; ask = 200.0} q.midpoint()
q.bid <- 150.0
q.midpoint()

This example is a lot like the one discussed previously, but here we are able to
change the value of the bid field to 150.0.

Let's look at how to use record types in pattern matching, because this is one of the
biggest reasons for using record types:

let matchQuote (quote : Quote) =
match quote with
 | { bid = 0.0; ask = 0.0 } -> printfn "Both bid and ask is zero"
 | { bid = b; ask = a } -> printfn "bid: %f, ask: %f" b a

let q1 : Quote = {bid = 100.0; ask = 200.0}
let q2 : Quote = {bid = 0.0; ask = 0.0}

matchQuote q1
matchQuote q2

http://www.allitebooks.org

Learning More About F#

[36]

In short, record types are:

• Used to represent data
• Useful in pattern matching
• Used to group pieces of data together
• A lot like objects in object orientation
• Powerful and useful features of F#
• A combination of named values of types
• Different from classes because they are exposed as properties and

without constructors

Discriminated unions
Discriminated unions are useful to represent heterogeneous data and support data that
can be a set of named cases. Discriminated unions represent a finite, well-defined set
of choices. Discriminated unions are often the tool of choice to build more complicated
data structures including linked lists and a wide range of trees.

Let's investigate some properties of discriminated unions and how they may be used
by looking at an example. Here we define a type, OrderSide, which can either be
buy-side or sell-side.

type OrderSide =
 | Buy
 | Sell

let buy = Buy
let sell = Sell

let testOrderSide() =
 printfn "Buy: %A" buy
 printfn "Sell: %A" sell

testOrderSide()

This is handy and enables us to write elegant and clean code, doing what we want
without any boilerplate coding at all. What about if we desired to have a function to
be able to toggle the side of the order? In that case, buys becomes sells and vice versa.

type OrderSide =
 | Buy
 | Sell

Chapter 2

[37]

let toggle1 =
 match x with
 | Buy -> Sell
 | Sell -> Buy

let toggle2 = function
 | Buy -> Sell
 | Sell -> Buy

let buy = Buy
let sell = Sell

let testOrderSide() =
 printfn "Buy: %A" buy
 printfn "Sell: %A" sell
 printfn "Toggle Buy: %A" (toggle1 buy)
 printfn "Toggle Sell: %A" (toggle2 sell)

testOrderSide()

Here, there are two versions of the toggle function, toggle1 and toggle2. The first
version uses the match-with style, whereas the latter uses the shorthand version.
The shorthand version is sometimes useful because it's shorter and easier to read.

Let's extend our analysis of discriminated unions by introducing recursive fields.
They are used to refer to the type itself and will enable you as a programmer to
define more complex types. Here is an example where we define an option which
can be either Put or Call, or a combination.

type OptionT =
 | Put of float
 | Call of float
 | Combine of OptionT * OptionT

Another example of a recursive discriminated union is tree structures.
Tree structures are useful to represent hierarchical structures.

type Tree =
 | Leaf of int
 | Node of tree * tree

let SimpleTree =
 Node (
 Leaf 1,
 Leaf 2
)

Learning More About F#

[38]

// Iterate tree
let countLeaves tree =
 let rec loop sum = function
 | Leaf(_) -> sum + 1
 | Node(tree1, tree2) ->
 sum + (loop 0 tree1) + (loop 0 tree2)
 loop 0 tree

Enumerations
Enumerations in F# are almost identical to enumerations in other languages,
and are used to map labels to constant values. Enumerations are used to associate
a label with a number or predefined values.

Here we define a type, RGB, to map labels to values:

// Enumeration
type RGB =
 | Red = 0
 | Green = 1
 | Blue = 2

And we use the enumeration to bind a value to the first color, Red:

let col1 : Color = Color.Red

To summarize enumerations:

• It looks like discriminated unions, but they accept that the values can be
specified as constants

• They are used to represent constants with labels
• They only hold one piece of data
• They are as safe as discriminated unions, because they can be created with

unmapped values

Arrays
Arrays are mutable collections of a fixed size and must contain values of
the same type. Large arrays of constant types can be compiled to efficient
binary representations.

In F#, arrays are created in the following way:

let array1 = [| 1; 2; 3 |]

Chapter 2

[39]

Because arrays are mutable, one can change a value in an array like this:

array1.[0] <- 10

All elements in an array have to be of the same type. Otherwise, the compiler will
complain. Suppose you create an array with one floating point number and
two integers:

let array2 = [| 1.0; 2; 3 |]

The compiler will tell you that the types are inconsistent. Sometimes there is a need
to initialize a data structure with values following a logical expression, called array
comprehension in this case. For arrays, you can use the following expression to
create one:

let array3 = [| for i in 1 .. 10 -> i * i |]

Accessing elements is straightforward and follows the same pattern for every data
structure. It looks a lot like in other programming languages except for the dot in
front of the indexing bracket:

array1.[0]

One convenient feature is the slice notation, used to access a range of elements:

array1.[0..2]

This can be shortened further, for example, if you select the elements
from the beginning to the element with index 2: array1.[..2]

And the same holds true for the reverse, selecting from the element with index 2 to
the end of the array:

array1.[2..]

Let's look at two examples of initialization of arrays. It can be useful to initialize an
array with zeroes. The array module has a function to do this. Have a look at the
following code snippet:

let arrayOfTenZeroes : int array = Array.zeroCreate 10

To create a totally empty array, have a look at the following code snippet:

let myEmptyArray = Array.empty

Learning More About F#

[40]

There are many useful functions in an array module and we will just look at a few of
them here. For example, appending two arrays can be done as follows:

printfn "%A" (Array.append [| 1; 2; 3|] [| 4; 5; 6|])

The filter function is a recurrent candidate, which is useful in many ways. The
following will show you how it is applicable on arrays:

printfn "%A" (Array.filter (fun elem -> elem % 2 = 0) [| 1 .. 10|])

Check out the MSDN page for more details and examples on how to use
the F# array at http://msdn.microsoft.com/en-us/library/
dd233214.aspx.

Interesting functions in an array module
In the following table, the most useful functions in an array module are presented.
This table can be used as a short reference too:

Function Description
Array.length a Returns the length of array a
Array.average a Calculates the average of array a elements. It has to be of float or double

data type
Array.min a Finds the minimum value of elements in array a
Array.max a Finds the maximum value of elements in array a
Array.filter f a Filters out the elements in array a matching the predicate in function f
Array.find f a Returns the first element in list a to match the predicate in function f
Array.empty Returns an empty array
Array.isEmpty a Indicates whether the array a is empty
Array.exists f a Checks whether an element exists in array a which matches the

predicate f
Array.sort a Sorts the elements in array a in increasing order, see sortBy to

use predicate
Array.zip a b Sorts the elements in array a in increasing order, see sortBy to

use predicate
Array.map f a Calls the function f for every element in the array a and forms a new array

Chapter 2

[41]

Lists
In this section we will investigate lists in more detail and show how to use most
of the module functions. Lists in F# are implemented as linked lists and are
immutable. They work on lists, and may also be used to convert between lists
and other collections.

Lists are ordered collections with elements of the same type; you cannot mix
different types in the same list. First we look at how to create and initialize a list
and then we investigate the module functions one by one. At the end of this section
is a table summarizing all of them.

Let's make use of F# Interactive:

> let list1 = [1 .. 10];;

val list1 : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

Here we use a range to initialize a list. Expressions for lists are useful when you want
a certain pattern or sequence described by a function.

> let list2 = [for i in 1 .. 10 -> i * i];;

val list2 : int list = [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]

We'll now investigate two useful operators in lists. We do that using the two
previously defined lists: list1 and list2.

> 10 :: [10];;
val it : int list = [10; 10]

> 10 :: list1;;
val it : int list = [10; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

The previously used operator (::) is called the concatenation operator or cons
operator. Concatenation is an efficient O(1) operator, which prepends elements to the
start of a list. This builds a new list from an element and a list. It's possible to append
two lists using an operator:

> [10] @ list1;;
val it : int list = [10; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

> list1 @ list2;;
val it : int list =
[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 1; 4; 9; 16; 25; 36; 49; 64; 81; 100]

Learning More About F#

[42]

The concat operator (@) has a performance penalty because lists are immutable and
the first list has to be copied, and should be avoided when performance is concerned.
This will find the nth value of the list:

> List.nth list1 3;;
val it : int = 4

To calculate the average value of a list, use the function List.average:

> let list3 = [10.0 .. 20.0];;

val list3 : float list =
 [10.0; 11.0; 12.0; 13.0; 14.0; 15.0; 16.0; 17.0; 18.0; 19.0; 20.0]

> List.average list3;;
val it : float = 15.0

We have to use floats here, otherwise the compiler will complain:

List.average list1;;

List.average list1;;
-------------^^^^^

... error FS0001: The type 'int' does not support the operator
'DivideByInt'

Minimum and maximum values of a list are found by List.min and List.max,
respectively:

> List.min list1;;
val it : int = 1

> List.max list1;;
val it : int = 10

There is a function, List.append, in the list module, equivalent to the operator @,
which appends two lists together:

> List.append list1 list2;;
val it : int list =
 [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 1; 4; 9; 16; 25; 36; 49; 64; 81;
 100]

Chapter 2

[43]

Let's investigate three functions now: filter, find, and exists. They take
a predicate function f and a list. The predicate function describes a condition:

> List.filter (fun elem -> elem > 10) list1;;
val it : int list = []

> List.filter (fun elem -> elem > 3) list1;;
val it : int list = [4; 5; 6; 7; 8; 9; 10]

> List.find (fun elem -> elem > 3) list1;;
val it : int = 4

> List.exists (fun elem -> elem > 3) list1;;
val it : bool = true

> List.exists (fun elem -> elem > 10) list1;;
val it : bool = false

The zip function will create a new list using a pair-wise combination of the elements
found in lists provided as arguments:

> List.zip list1 list2;;
val it : (int * int) list =
 [(1, 1); (2, 4); (3, 9); (4, 16); (5, 25); (6, 36); (7, 49); (8,
 64); (9, 81); (10, 100)]

Suppose we want to summarize elements of a list. The function List.fold comes
in handy:

> List.fold (+) 0 list1;;
val it : int = 55

This is equal to 55, as expected. We can also find the geometrical sum using
List.fold:

> List.fold (*) 1 list1;;
val it : int = 3628800

Note that we use 1 as the initial value to fold, because it is a multiplication operation.

Learning More About F#

[44]

Pattern matching and lists
Let's look at pattern matching and lists, which is a common way to work with lists.
Pattern matching provides for a powerful way to create recursive functions on lists.
If we want to write a recursive function to get the length of a list, we can use
pattern matching.

 // Get the length of a list
 let rec getLengthOfList l = function
 | [] -> printfn "Length of list: %d" l
 | head :: tail -> getLengthOfList (l+1) tail

 let myList = [1..10]
 getLengthOfList 0 myList

As you can see in the preceding short example, pattern matching will make the
code easy to read. The first match is for an empty list and the second uses the cons
operator to match a list with a head and a tail. The tail is then used in the recursive
function all, where the length l is increased by one for each iteration. Let's look
at one more example. If we want to get the second last element of a list, we can use
pattern matching.

 // Get the second last element of a list
 let rec getSecondLastElement = function
 | head :: tail :: [] -> head
 | head :: tail -> getSecondLastElement tail

 getSecondLastElement myList

In the previous example, we can see how pattern matching can be used to express
ideas in a clear manner. Because a list is constructed using the cons operator (::),
we can match arbitrary patterns on lists using it. The first pattern will match head ::
tail :: [], where head is the second last element in the list.

Interesting functions in a list module
In the following table, the most usable functions in the list module are presented.
This table can be used as a short reference too:

Function Description
List.nth a Returns the nth element of the list a
List.average a Calculates the average of the list a; elements have to be of float or

double data type
List.max a Finds the maximum value of elements in list a

Chapter 2

[45]

Function Description
List.min a Finds the minimum value of elements in list a
List.append a b Appends the two lists a and b
List.filter f a Filters out the elements in list a, matching the predicate in function f
List.empty Returns an empty list
List.length a Returns the length of list a
List.find f a Returns the first element in list a to match the predicate in function f
List.sort a Sorts the elements in list a in increasing order, see sortBy to use

predicate
List.zip a b Combines list a and b element wise and forms a new list
List.exists f a Checks whether an element exists in list a that matches the predicate

f

List.fold f s a Folds list a from left to right, using the function f with start value s
List.head a Returns the head of list a
List.tail a Returns the tail of list a
List.map f a Calls the function f for every element in list a and forms a new list

Sequences
Sequences are logical series' of elements where the elements have to be of the same
type. They are especially suited to represent large ordered collections of data
where not all elements are expected to be used. Sequences are lazily evaluated and
are suitable for large collections of data since not all elements need to be held in
memory. Sequence expressions represent sequences of data computed on demand.
We will investigate sequences in the same fashion as in the previous sections,
using F# Interactive to get a better feel for them, and we will also see how their
module functions work.

Let's start by looking at how to initialize and create sequences in various ways using
F# Interactive:

> seq {1 .. 2}
val it : seq<int> = [1; 2]

> seq {1 .. 10}
val it : seq<int> = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

> seq {1 .. 10 .. 100}
val it : seq<int> = [1; 11; 21; 31; 41; 51; 61; 71; 81; 91]

http://www.allitebooks.org

Learning More About F#

[46]

> seq {for i in 1 .. 10 do yield i * i}
val it : seq<int> = [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]

> seq {for i in 1 .. 10 -> i * i}
val it : seq<int> = [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]

First we create a sequence defining the elements explicitly. Then, we use ranges.
They work in the same way as for arrays and lists. The range expressions are also
similar to other collections.

This will find the nth value of the sequence:

> Seq.nth 3 { 1 .. 10};;
val it : int = 4

Notice that the arguments are swapped in Seq.nth compared to, for example, the
same function in the list module:

> Seq.average {0.0 .. 100.0};;
val it : float = 50.0

Minimum and maximum values of a sequence are found by Seq.min and Seq.max,
respectively:

> Seq.min seq1;;
val it : int = 1

> Seq.max seq1;;
val it : int = 10

You can also append two sequences using the Seq.append function:

> Seq.append seq1 seq1;;
val it : seq<int> = seq [1; 2; 3; 4; …]

Chapter 2

[47]

This will create an empty sequence:

> Seq.empty;;
val it : seq<'a> = seq []

Let's investigate three functions now: filter, find, and exists. They take a
predicate function, f, and a list. The predicate function describes a condition.
They are identical to the list functions:

> Seq.filter (fun elem -> elem > 3) seq1;;
val it : seq<int> = seq [4; 5; 6; 7; ...]

> Seq.filter (fun elem -> elem > 3) seq1;;
val it : seq<int> = seq [4; 5; 6; 7; ...]

> Seq.find (fun elem -> elem > 3) seq1;;
val it : int = 4

> Seq.exists (fun elem -> elem > 3) seq1;;
val it : bool = true

> Seq.exists (fun elem -> elem > 10) seq1;;
val it : bool = false

The first element of a sequence, the head, is obtained by calling Seq.head:

> Seq.head seq1;;
val it : int = 1

Notice that there is no Seq.tail, that's because of how sequences are represented
(they are lazy constructs).

Learning More About F#

[48]

Interesting functions in the sequence module
In the following table, the most useful functions in the sequence module are
presented. This table can be used as a short reference too:

Function Description
Seq.nth a Returns the nth element of sequence a
Seq.average a Calculates the average of sequence a. Elements have to be of float or

double data type
Seq.min a Finds the maximum value of elements in sequence a
Seq.max a Finds the minimum value of elements in sequence a
Seq.append a b Appends the two sequences a and b
Seq.filter f a Filters out the elements in sequence a, matching the predicate in

function f
Seq.empty Returns an empty sequence
Seq.find f a Returns the first element in sequence a to match the predicate in

function f
Seq.sort a Sorts the elements in sequence a in an increasing order. See sortBy

to use predicate
Seq.zip a b Combines list a and b element-wise and forms a new list
Seq.length a Returns the length of sequence a
Seq.exists f a Checks whether an element exists in sequence a which matches the

predicate f
Seq.fold f s a Folds sequence a from left to right, using the function f with start

value s
Seq.head Returns the head of sequence a
Seq.map f a Calls the function f for every element in sequence a and forms

a new sequence

Sets
Sets are unordered containers for data elements. Sets do not preserve the order
of elements as they are inserted, nor do they permit duplicates.

Let's create a set with three integer elements:

> let s1 = set [1; 2; 7];;

The preceding set will be of the following type:

val s1 : Set<int> = set [1; 2; 7]

Chapter 2

[49]

The type inference works here as expected. Now let's consider adding and inspecting
elements in s1:

> s1.Add(9);;
val it : Set<int> = set [1; 2; 7; 9]

Note that s1 will not be modified due to its immutable characteristics. We can check
whether s1 contains 9:

> Set.contains 1 s1;;
val it : bool = true

Sometimes it's helpful to create sequences from other data structures. In this case,
from a sequence:

> let s2 = Set.ofSeq [1..10];;
val s2 : Set<int> = set [1; 2; 3; 4; 5; 6; 7; 8; 9; ...]

It works the same way as creating it from an array:

> let s3 = Set.ofArray([| for i in 1 .. 5 -> i * i |]);;
val s3 : Set<int> = set [1; 4; 9; 16; 25]

To get the length of a set, or in other words, to count the number of elements used,
run the following code:

> Set.count s1;;
val it : int = 3

The fold function is also present in the module for sets and is used in the same way
as for other collections:

> Set.fold (fun a b -> a + b) 0 s1;;
val it : int = 10

> Set.fold (fun a b -> a * b) 1 s1;;
val it : int = 14

This can also be written using the shorthand version (+) for addition and (*)
for multiplication:

> Set.fold (+) 0 s1;;
val it : int = 10

> Set.fold (*) 1 s1;;
val it : int = 14

Learning More About F#

[50]

The same holds true for Set.exists. The function takes a predicate and a set and
returns true if there is any element matching the function:

> Set.exists (fun elem -> elem = 2) s1;;
val it : bool = true

> Set.exists ((=) 4) s1;;val it : bool = false

Filter is a variant of exists, which returns a new set of elements matching
the function:

> Set.filter (fun elem -> elem > 1) s1;;
val it : Set<int> = set [2; 7]

> Set.filter (fun elem -> elem < 2) s1;;
val it : Set<int> = set [1]

An interesting function is the partition function. It will split the set, in this case,
into two new sets: a set of elements which passes the predicate and one that doesn't:

> Set.partition (fun elem -> elem < 2) s1;;
val it : Set<int> * Set<int> = (set [1], set [2; 7])

Think for a moment about how to write this partition function in an ordinary
imperative language. Not as elegant if you ask me. Last but not least, we cover the
map function. This function should be familiar to you at this stage. We use the old
value of s1 and simply add 2 to every element:

> Set.map (fun elem -> elem + 2) s1;;
val it : Set<int> = set [3; 4; 9]

Some of the interesting functions in the Set module are as follows:

Function Description
Set.count a Returns the number of elements in set a
Set.empty Returns an empty set
Set.fold f s a Folds set a from left to right, using the function f with start

value s
Set.exists f a Checks whether an element exists in set a which matches

the predicate f
Set.filter f a Filters out the elements in sequence a matching the predicate in

function f
Set.partition
f a

Creates a partition, two new sets, from set a using the predicate
function f

Set.map Calls the function f for every element in set a and forms a new set

Chapter 2

[51]

Maps
Maps are a special kind of set with associative key/value pairs. They are immutable,
unordered data structures. They do not preserve the order of elements as they are
inserted, nor do they permit duplicates.

Maps are created in much the same way as sets, except we need a key as well:

> let m1 = Map.empty.Add("Age", 27);;
val m1 : Map<string,int> = map [("Age", 27)]

Now, we can access the value using the key, Age:

> m1.["Age"];;
val it : int = 27

It's possible to create maps from lists of values:

> let m2 = ["Year", 2009; "Month", 21; "Day", 3] |> Map.ofList;;
val m2 : Map<string,int> = map [("Day", 3); ("Month", 21); ("Year",
2009)]

Because maps are a little different from the collections we covered so far, we will
look at some of the more interesting functions in the map module.

To filter a map using a predicate, you may notice the small variation here compared
to other collections. To ignore either the key or the value, one can replace it with an
underscore (_), in the same way as in pattern matching:

> Map.filter (fun _ v -> v = 27) m1;;
val it : Map<string,int> = map [("Age", 27)]

Maps.exists works almost in the same way as filters:

> Map.exists (fun _ v -> v = 27) m1;;
val it : bool = true

Partitioning a map using a predicate can be useful. Here we do that using
a fixed value:

> Map.partition (fun _ v -> v = 27) m1;;
val it : Map<string,int> * Map<string,int> = (map [("Age", 27)], map
[])

Learning More About F#

[52]

Another useful module function for maps is Map.containsKey. This function checks
whether the map contains a specific key or not:

> Map.containsKey "Age" m1;;
val it : bool = true

> Map.containsKey "Ages" m1;;
val it : bool = false

Interesting functions in the map module
In the following table, the most useful functions in the map module are presented.
This table can be used as a short reference too:

Function Description
Map.add(k,v) Will create a new map with contents from the map together

with the new entry k, v
Map.empty Creates an empty map
Map.filter f a Filters out elements in map a matching the predicate in

function f
Map.exists f a Checks whether an element exists in set a which matches the

predicate f
Map.partition f a Creates a partition, two new maps, from map a using the

predicate function f
Map.containsKey k a Checks whether map a contains the key k
Map.fold f s a Folds map a from left to right, using the function f with start

value s
Map.find f a Returns the first element in map a to match the predicate in

function f

Options
Options are an elegant way of enclosing a value that may or may not exist. They
are implemented using a discriminated union. Instead of checking for null values,
options are preferred.

Here is an example where we use an integer option and pattern matching to
investigate them further:

let evalOption (o : int option) =
 match o with

Chapter 2

[53]

 | Some(a) -> printfn "Found value: %d" a
 | None -> printfn "None"
let some : int option = Some(1)
let none : int option = None

We can use F# Interactive to investigate the types of options:

> evalOption some;;
Found value: 1
val it : unit = ()

> evalOption none;;
None
val it : unit = ()

The first option, some, contains an integer value as expected. And the other, none,
is empty. This way, we don't need to use null values and check for them using
conditions. We simply pass around option values instead. Along with options,
Nullable is also available in F#, which explicitly represents the absence of a value.

Strings
Strings should be familiar to you already, and they work in the same way in F#.
To use a more formal description of strings, we can say that strings are sequences
of characters and are compatible with the .NET string:

let str1 = "This is a string"
let str2 = @"This is a string with \ \ //"
let str3 = """ this is "another" string"""

printfn "%s" (str1.[0..2])

let str4 = "Hello, " + "world"
let str5 = str1 + str3

String.length str4
String.Compare (str1, "This is a string")
String.Compare (str1, "This is another string")

String.map (fun s -> Char.ToUpper s) str1

Learning More About F#

[54]

Interesting functions in the string module
In the following table, the most useful functions in the string module are presented.
This table can be used as a short reference too.

Function Description
String.length s Returns the length of the string s
String.Empty Creates an empty string
String.map f s Maps function f to every character in the string s
String.IsNullOrEmpty Indicates whether the string s is null or empty
String.
IsNullOrWhiteSpace

Indicates whether the string s is null or consists only of
white space characters

String.Copy s Creates a new string with the same character sequence as
the string s

String.Concat s1 s2 Concatenates the two strings s1 and s2 into a new string
String.exists f s Checks whether any character in s matches the predicate

function f
String.Compare s1 s1 Compares the two strings s1 and s2. If they match, 0 is

returned, otherwise, -1 or 1 is returned depending on the
comparison.

Choosing data structures
With this many data structures to choose from, it can be hard to know which one to
choose during a specific problem. There are some rules to follow, and here is a short
summary of the main characteristics of the individual data structures.

Arrays
Arrays are efficient if you have to know the size of the collection beforehand. That
means the size is fixed, and if you want to change the size, you have to create a new
array and copy the elements over. On the other hand, random access is very fast; it
can be done in constant time.

Lists
Lists are implemented using linked lists, which are items linked together using
pointers. This means that traversing a linked list is not super-efficient, because a
lot of pointers have to be followed. On the other hand, insertion is very fast at any
position in the list. Also worth mentioning is that the lookup of the head element is a
constant time operation.

Chapter 2

[55]

Sets
Sets are implemented as binary trees, where you can't have multiple values
defined in the same set. Sets are useful when you don't care about the order
and don't allow duplicates.

Maps
Maps are like sets, except that they are extended to use key-value pairs instead
of raw values. Maps are very efficient to lookup a value if you know the key.

More on functional programming
Here we will continue and build on the foundation from the previous chapter on
functional programming basics. We will examine some of the more advanced and
at the same time useful constructs of the F# language.

Recursive functions
Recursion is a fundamental building block in functional programming. Many
problems can be solved in a recursive fashion, and together with pattern matching,
it makes up a powerful toolkit.

To define a recursive expression, you use the keyword rec.

Let's start by looking at the famous Fibonacci sequence, which is defined as the sum
of the two previous numbers in a recursive sequence. The first two values are set to 0
and 1, respectively, as seed values:

let rec fib n =
 if n <= 2 then 1
 else fib (n - 1) + fib (n – 2)

Recursion is a powerful way of solving problems, and is often preferred in functional
languages before loop constructs. Let's look at three recursive functions to illustrate
its flexibility and power:

let rec sum list =
 match list with
 | head :: tail -> head + sum tail
 | [] -> 0

http://www.allitebooks.org

Learning More About F#

[56]

This function will sum a list of elements recursively using the match construct on the
list argument. The list is split for head and tail in the first match statement and then
the function is called again with the tail part. If the list is empty, zero is returned.
In the end, the sum of the list will be returned:

let rec len list =
 match list with
 | head :: tail -> 1 + len tail
 | [] -> 0

To determine the length of a list, we slightly modify the mysum function to add one
instead of the element for every element encountered. Of course there is a built-in
function to do this, as we have seen before. The built-in function map, can be
constructed using a recursion like this:

let rec mymap f = function
 | [] -> []
 | x::xs -> f x::mymap f xs

Understanding this function will give you a better understanding about the built-in
functions and functional programming in general. Many functions can be defined
using recursion and pattern matching. We will learn more about pattern matching in
the later part.

Tail recursion
Tail recursion is a way of optimizing the recursion and easing the callback stack.
Every time a call is made to the function, a new stack frame is allocated on the stack.
This will eventually case StackOverflowException. In other words, tail recursion is
used when you expect thousands of iterations.

Tail recursion can be described as:

• An optimization technique
• A way to ease the stack and ensure there are no stack overflows
• Sometimes harder to understand and reason about

To illustrate the concepts of tail recursion, we'll convert a traditional
recursively-defined function for the factorial. The factorial, n!, is a product of all
positive numbers less than or equal to n. For example, 4! is defined as 4 * 3 * 2 * 1,
which is 24:

let rec factorial1 n =
 match n with

Chapter 2

[57]

 | 0 | 1 -> 1
 | _ -> n * factorial1(n - 1)

let factorial2 n =
 let rec tailrecfact n acc =
 match n with
 | 0 -> acc
 | _ -> trecfact (n - 1) (acc * n)
 tailrecfact n 1

We can now verify if the function returns the correct value for 4! as follows:

> factorial1 4;;
val it : int = 24

> factorial2 4;;
val it : int = 24

Let's try out a somewhat larger factorial. The parameter doesn't have to be big to
result in a large answer:

> factorial1 10;;
val it : int = 3628800

> factorial2 10;;
val it : int = 3628800

Pattern matching
Pattern matching is used for control flow. It allows programmers to look at a value,
test it against a series of conditions, and perform certain computations depending on
whether that condition is met. It matches different patterns:

let sampleMatcher value =
 match value with
 | 0 -> "Zero"
 | 1 -> "One"
 | _ -> "Greather than one"

sampleMatcher 0

The preceding snippet defines a function that matches the argument provided to
the function with different patterns. This illustrates the basic idea behind pattern
matching. We can modify it further.

Learning More About F#

[58]

Incomplete pattern matching
Let's look at an example of incomplete pattern matching:

let sampleMatcher value =
 match value with
 | 0 -> "Zero"
 | 1 -> "One"

The preceding code snippet is incomplete pattern matching, because we don't
consider values other than zero or one. The compiler will tell you this:

warning FS0025: Incomplete pattern matches on this expression.
For example, the value '2' may indicate a case not covered by the
pattern(s).

This is also true if we consider a simple string pattern matcher:

let nameMatcher name =
 match name with
 | "John" -> "The name is John"
 | "Bob" -> "Hi Bob!"

This is fixed using a wildcard operator (_), like in the first example explained in the
preceding snippet:

let nameMatcher name =
 match name with
 | "John" -> "The name is John"
 | "Bob" -> "Hi Bob!"
 | _ -> "I don't know you!"

nameMatcher "John"
nameMatcher "Linda"

Using guards
In imperative programming, we use if statements with expressions to express
conditions. This is accomplished using pattern matching and guards. Guards use the
keyword when to specify the condition. Let's look at an example where this is useful:

let sampleMatcher value =
 match value with
 | 0 -> "Zero"
 | 1 -> "One"
 | x when x > 1 -> "Greather than one"
 | _ -> "Some strange value"

Chapter 2

[59]

sampleMatcher 0
sampleMatcher 1
sampleMatcher 2
sampleMatcher -1

The name guard tells us something about their properties. They guard the pattern
based on conditions.

Pattern matching in assignment and input
parameters
Pattern matching is also useful in assignments together with tuples, like this:

> let (bid, ask) = (100.0, 110.0);;
val bid : float = 100.0
val ask : float = 110.0

As you can see in the preceding example, the pattern matching mechanism will
assign the values to each name. This is handy for multiple assignments:

> let (x, y, z) = (3.0, 2.0, 4.0);;
val z : float = 4.0
val y : float = 2.0
val x : float = 3.0

It's also possible to use the wildcard to ignore a value in the assignment:

> let (x, y, _) = (3.0, 2.0, 4.0);;
val y : float = 2.0
val x : float = 3.0

Active patterns
Active patterns allow programmers to wrap ad hoc values and objects in union-like
structures for use in pattern matching. First you define the partitioning of the input
data using various expressions that act on the data. Each partition can have its own
customized logic.

Suppose we want to verify whether an order is valid or not. Let's use the Order class,
which will be introduced in a later section. The order can be valid and either
a market or limit order, or simply invalid. Take a look at the order class further in
the chapter if you are curious about how it is implemented or its properties.

We start by introducing an active pattern with a very simple one, namely one that
figures out if a number is positive or negative:

Learning More About F#

[60]

let (|Negative|Positive|) number =
 if number >= 0.0 then
 Positive
 else
 Negative

let TestNumber (number:float) =
 match number with
 | Positive -> printfn "%f is positive" number
 | Negative -> printfn "%f is negative" number

We can use F# Interactive to explore the TestNumber function using different
floating point numbers:

> TestNumber 0.0;;
0.000000 is positive
val it : unit = ()

> TestNumber 16.0;;
16.000000 is positive
val it : unit = ()

> TestNumber -7.0;;
-7.000000 is negative
val it : unit = ()

Next, we look at the active pattern to verify an order:

let (|Limit|Market|Invalid|) (order:Order) =
 if order.Type = OrderType.Limit && order.Price > 0.0 then
 Limit
 else if order.Type = OrderType.Market && order.Price = 0.0 then
 Market
 else
 Invalid

let TestOrder (order:Order) =
 match order with
 | Market -> printfn "Market order"
 | Limit -> printfn "Limit order"
 | Invalid -> printfn "Invalid order"

Let's call TestOrder with some different order values:

> TestOrder (Order(Buy, Limit, 5.0));;
Limit order

Chapter 2

[61]

val it : unit = ()

> TestOrder (Order(Sell, Market, 0.0));;
Market order
val it : unit = ()

> TestOrder (Order(Sell, Limit, 0.0));;
Invalid order
val it : unit = ()

> TestOrder (Order(Buy, Market, 2.0));;
Invalid order
val it : unit = ()

> TestOrder (Order(Sell, Invalid, 2.0));;
Invalid order
val it : unit = ()

The code works, and you now know more about active patterns and how they can be
used to make life simpler.

Partial active patterns are used when parts of the input match, which is helpful in
the case where strings need to be parsed to numbers. Let's look at an example where
single partial active patterns are used to make this clearer:

let (|Integer|_|) str =
 match System.Int32.TryParse(str) with
 | (true,num) -> Some(num)
 | _ -> None

let (|Double|_|) str =
 match System.Double.TryParse(str) with
 | (true,num) -> Some(num)
 | _ -> None

let testParse numberStr =
 match numberStr with
 | Integer num -> printfn "Parsed an integer '%A'" num
 | Double num -> printfn "Parsed a double '%A'" num
 | _ -> printfn "Couldn't parse string: %A" numberStr

> testParse "10.0"
Parsed a double '10.0'
val it : unit = ()

Learning More About F#

[62]

> testParse "11"
Parsed an integer '11'
val it : unit = ()

> testParse "abc"
Couldn't parse string: "abc"
val it : unit = ()

The partial active pattern is used automatically in the matching inside the
testParse function.

Introducing generics
In this section, we are going to look briefly at generics and how to define generic
functions. The F# compiler is capable of finding out whether a function can be
generic or not. This function together with type inference is a very powerful
combination that allows for clean and easy-to-read code. Although, sometimes you
want to specify your own functions as generic. If they are generic, they will be able to
handle various types. Doing so will reduce the need of writing several functions with
the same logic for every type involved.

Just to illustrate the concept described previously, we can take a look at a function
that will create a list based on three parameters. This function is generic, so the type
can be specified when used:

let genericListMaker<'T>(x, y, z) =
let list = new List<'T>()
 list.Add(x)
 list.Add(y)
 list.Add(z)
 list

Let's use it in F# Interactive:

> genericListMaker<int>(1, 2, 3);;val it : List<int> = seq [1; 2; 3]
> genericListMaker<float>(1.0, 2.0, 3.0);;val it : List<float> = seq
[1.0; 2.0; 3.0]
> genericListMaker<string>("1", "2", "3");;val it : List<string> = seq
["1"; "2"; "3"]

First we use integers to create a list and the function creates a list for us. Secondly,
the function is used with floats. And last but not least, we use ordinary strings.
The function works in the same way here in all cases indifferent of the types.

Chapter 2

[63]

Lazy evaluation
Lazy evaluations or lazy computations are, as the name suggests, lazy. This means
that they are not bothered until the last moment, which is when the value is needed.
This type of evaluation can help improve the performance of the code. For example,
sequences use lazy evaluation. Lazy evaluation also allows expensive computations
to be defined without them being evaluated before they are needed. Lazy expressions
are generic, and the type is determined when the expression is evaluated.

Let's take a look at how you can define your own lazy constructs:

let lazyListFolding =
 lazy
 (
 let someList = [for i in 1 .. 10 -> i * 2]
 List.fold (+) 0 someList
)

We can now evaluate this function using F# Interactive:

> let forcedMultiply1 = lazyListFolding.Force();;

val forcedMultiply1 : int = 110

When you execute the function definition, the compiler will tell you that the value is
not created; it's lazy in the following way:

val lazyMultiply : Lazy<int> = Value is not created.

Units of measure
Units of measure are a way to associate signed integers and floating point numbers
with units. The units can describe weight, length, volume, and currencies.
One useful application of units of measure is currency and currency conversion.
Units of measure are used to verify the types involved to ensure they are used
correctly. All information about them is removed by the compiler after verification
and is not part of the resulting executable program.

First we take a look at the normal way of implementing currency conversion in F#.
There is no guarantee that the actual rate is correct, or that the calculation uses the
correct units:

/// Conversion rate representing 1 EUR in USD
let rateEurUsd = 1.28M

Learning More About F#

[64]

/// Converts amount in EUR to USD
let euroToUsds eur = eur * rateEurUsd

/// Convert 10000 EUR to USD
let usd = euroToUsds 10000.0M

There is no robust way to verify the correctness of the conversion made in the
preceding snippet with respect to the units. Every value is just treated as floating
point numbers. It can be of great importance to be able to verify the units involved.
The Mars Climate Orbiter was lost at the end of September 1999 as a result of units.
The software on the ground was producing pound-seconds instead of newton-
seconds, which led the spacecraft to vaporize in the atmosphere of Mars.

The same holds for currencies, where it's of great importance to be able to verify the
correctness of the units used. Let's convert the preceding code to use the units of the
measure construct:

[<Measure>]
type USD

[<Measure>]
type EUR

let rateEurUsd = 1.28M<EUR/USD>

// Converts amount in EUR to USD
let euroToUsds (eur:decimal<EUR>) = eur * rateEurUsd

// Convert 10000 EUR to USD
let usd = euroToUsds 10000.0M<EUR>

Here the compiler will verify that the units are correct using the type information
provided. Very handy indeed! What if we use the wrong units? We modify the code
to include a measure for YEN:

[<Measure>]
type USD

[<Measure>]
type EUR

[<Measure>]
type YEN

let rateEurUsd = 1.28M<EUR/USD>

Chapter 2

[65]

// Converts amount in EUR to USD
let euroToUsds (eur:decimal<EUR>) = eur * rateEurUsd

// Convert 10000 EUR to USD
let usd = euroToUsds 10000.0M<YEN>

Running this in F# Interactive will result in an error with the following message:

error FS0001: Type mismatch. Expecting a
 decimal<EUR>
but given a
 decimal<YEN>
The unit of measure 'EUR' does not match the unit of measure 'YEN'

The message is quite clear about what's wrong, and this is a great help for writing the
correct code involving different units to be handled and converted in various ways.

Asynchronous and parallel programming
Asynchronous and parallel programming will be introduced in this section, together
with events, thread pools, background workers, and the MailboxProcessor (agents).
All these constructs exist with one purpose in life: to make life easier for the
programmer. Modern computers have CPUs capable of executing several threads in
parallel, which opens doors to new possibilities. These possibilities require a good
toolkit for concurrent and parallel programming. F# is a very good candidate,
and one of its design principles is to be a good fit in these types of situations.

Events
Events are useful when you want a certain function to execute upon a specific event
that will occur sometime in the future. This is often applicable to GUI programming,
where a user will interact in some way with the interface. The pattern is called
event-driven programming, where events drive the execution of the program.
The following example illustrates this in a simple manner:

open System.Windows.Forms

let form = new Form(Text="F# Events",
 Visible = true,
 TopMost = true)

form.Click.Add(fun evArgs -> System.Console.WriteLine("Click event
handler"))
Application.Run(form)

Learning More About F#

[66]

Here, a form is created, a regular .NET form. The parameters to the constructor sets
the title, the visibility to true, and specifies it to be on top. Then, a click handler is
installed, with a lambda function as the event handler. Upon execution, the function
will simply print out a text message to the console.

In F#, you have the possibility to manipulate the event stream. This can be useful
if there is a need to filter out certain events or do some manipulation. Events are
first-class values in F#, which makes it possible to pass them around like other
variables. Let's take a look at how to filter out events. In the following example,
the click events are filtered out depending on their coordinates:

open System.Windows.Forms

let form = new Form(Text="F# Events",
 Visible = true,
 TopMost = true)

form.MouseDown
|> Event.filter (fun args -> args.X < 50)
|> Event.map (fun args -> printfn "%d %d" args.X args.Y)

Here, we modified the code to listen to the MouseDown event, which clicks in the form
itself. The MouseDown events are then filtered depending on their coordinates, which
are part of the event argument. If the event passes the filter, a function is called that
prints the coordinates to the console. This filtering process can be very useful and
makes it possible to create advanced filters and logic for events with code that's clean
and easy to understand.

Background workers
Say you make a program where you need calculations to take part. Sometimes these
calculations will run for quite a long time. Background workers are a solution when
you want to execute long running tasks that run in the background. The code will be
executed in a separate thread:

open System.Threading
open System.ComponentModel

let worker = new BackgroundWorker()
worker.DoWork.Add(fun args ->
 for i in 1 .. 50 do
 // Simulates heavy calculation
 Thread.Sleep(1000)
 printfn "%A" i
)

Chapter 2

[67]

worker.RunWorkerCompleted.Add(fun args ->
 printfn "Completed..."
)

worker.RunWorkerAsync()

Here is an illustrative example of how to use background workers in the simplest
manner. The worker will execute a function that simulates a calculation process
and finally will notify us on completion. You can schedule tasks to be executed
sequentially just by using the function Add. Here are two jobs executed in order,
and finally we are notified upon completion:

open System.Threading
open System.ComponentModel

let worker = new BackgroundWorker()
worker.DoWork.Add(fun args ->
 for i in 1 .. 50 do
 // Simulates heavy calculation
 Thread.Sleep(1000)
 printfn "A: %A" i
)

worker.DoWork.Add(fun args ->
 for i in 1 .. 10 do
 // Simulates heavy calculation
 Thread.Sleep(500)
 printfn "B: %A" i
)

worker.RunWorkerCompleted.Add(fun args ->
 printfn "Completed..."
)

worker.RunWorkerAsync()

Sometimes it's desirable to be able to cancel the execution in Backgroundworker.
To be able to do this, we have to make some minor modifications to the preceding
code. First we set a flag in the constructor, WorkerSupportsCancellation = true,
and then we check a flag every time we iterate the calculation:

open System.ComponentModel

let workerCancel = new BackgroundWorker(WorkerSupportsCancellation =
true)

Learning More About F#

[68]

workerCancel.DoWork.Add(fun args ->
 printfn "apan %A" args
 for i in 1 .. 50 do
 if (workerCancel.CancellationPending = false) then
 Thread.Sleep(1000)
 printfn "%A" i
)

workerCancel.RunWorkerCompleted.Add(fun args ->
 printfn "Completed..."
)

workerCancel.RunWorkerAsync()

If you run this code, you will see no cancellation. Just that the code is prepared to
handle a cancellation. To do a cancellation on the preceding execution, you need to
run the following line:

workerCancel.CancelAsync()

Use F# Interactive and run the main code for some iterations and then run the
CancelAsync() function. This will terminate the background worker.

Threads
Threads are essential parts in any modern software. In F#, threads are essentially
.NET threads with all of the .NET functionality. If you have previous knowledge
from any other .NET language, the following code will be familiar to you:

open System.Threading

let runMe() =
 for i in 1 .. 10 do
 try
 Thread.Sleep(1000)
 with
 | :? System.Threading.ThreadAbortException as ex ->
printfn "Exception %A" ex
 printfn "I'm still running..."

let thread = new Thread(runMe)
thread.Start()

Chapter 2

[69]

We spawn a thread by passing a delegate to the Thread constructor. The thread
will run the function runMe. The new part may be the way exceptions are handled.
They are handled using pattern matching.

It's possible to spawn many threads. And they will be executed concurrently.

open System.Threading

let runMe() =
 for i in 1 .. 10 do
 try
 Thread.Sleep(1000)
 with
 | :? System.Threading.ThreadAbortException as ex ->
printfn "Exception %A" ex
 printfn "I'm still running..."

let createThread() =
 let thread = new Thread(runMe)
 thread.Start()

createThread()
createThread()

Here, two threads are created and they run concurrently. Sometimes the output will
be intervened; this is due to the fact that they have no synchronization. Spawning
threads are quite costly, and will become noticeable if many threads are spawned
and terminated. Every thread uses some memory, and if the threads are short lived,
you better use a thread pool to enhance performance.

Thread pools
As mentioned in the previous section, spawning threads is quite costly. This is
because it often involves the operating system itself to handle the task. If the threads
are short lived, thread pools come to the rescue. A thread pool creates and terminates
threads depending on the load. When a thread has finished executing a task, they
sit in a queue waiting for the next task. F# uses the .NET ThreadPool class. This
example will also be familiar to you if you have used the equivalent class in C# or
any other .NET language:

open System.Threading

let runMe(arg:obj) =
 for i in 1 .. 10 do

Learning More About F#

[70]

 try
 Thread.Sleep(1000)
 with
 | :? System.Threading.ThreadAbortException as ex ->
printfn "Exception %A" ex
 printfn "%A still running..." arg

ThreadPool.QueueUserWorkItem(new WaitCallback(runMe), "One")
ThreadPool.QueueUserWorkItem(new WaitCallback(runMe), "Two")
ThreadPool.QueueUserWorkItem(new WaitCallback(runMe), "Three")

In the preceding code, we enqueue three tasks to be executed by the thread pool.
They will all be executed without being enqueued. This is because the thread pool
will spawn up to the ThreadPool.GetMaxThreads() threads, which are usually 1024
threads. Over that amount, they will be queued.

Asynchronous programming
Asynchronous code performs requests that are not completed immediately.
That means they are doing operations that will be completed sometime in the future
without blocking the current thread. Instead of waiting for that result to be available,
multiple requests can be issued and the result will be handled as soon as it becomes
available. This way of programming is called asynchronous programming. The
program is not blocking just because of a result that is not yet available. Instead,
as mentioned, the program will be notified when the result is ready. A common
application is IO, where the CPU time can be used for something better than waiting
for the IO operation to complete. There are often a lot of callbacks involved in
asynchronous programming. Historically, asynchronous programming has been
done in .NET using the Asynchronous Programming Model (APM).

MSDN has a detailed page about APM, that is, http://msdn.
microsoft.com/en-us/library/ms228963.aspx.

Without going into a lot of details about the APM and asynchronous callbacks,
we will simply introduce the asynchronous workflows in F#. This enables us to
write asynchronous code without the need for explicit callbacks.

Chapter 2

[71]

The F# asynchronous workflows
To use asynchronous workflows, you simply wrap your code that you want to be
asynchronous in the async block. It's that simple, but the entire truth is not covered
yet. There is one more thing. The code inside the async block has to be asynchronous
in itself to make use of the asynchronous workflow:

async { expression }

Here the expression is wrapped inside the async block. The expression is set up to
run asynchronously by Async.Start, which means, without blocking the current
thread. This is especially desirable if the current thread is the GUI thread.

Asynchronous binding
When you work with asynchronous code and expressions and want to bind them
to values, you have to use a modified version of the original let keyword, let!.

This enables the execution to continue after the binding without blocking the current
thread. It's a way of telling the binding that the value is asynchronous and will be
used later, when the result is available.

Consider the following code:

myFunction1()
let! response = req.AsyncGetResponse()
myFunction2()

If we don't use the let! (let bang) operator here, myFunction2 will have to wait for the
result of the asynchronous request. We simply do not need the result in response right
away, and can better utilize the CPU by running myFunction2 instead of nothing.

Examples of using an async workflow
This example illustrates some of the concepts of asynchronous programming using
parallel constructs. Here we will download data from Yahoo! finance using an
asynchronous function in the WebClient class, AsyncDownloadString. This function
takes a URL and downloads the content. In this case, the content will be CSV,
containing the daily OHLC prices from 2010-01-01 until 2013-06-06. We start by just
downloading the data in parallel and counting the number of bytes fetched for each
stock symbol:

open System.Net
open Microsoft.FSharp.Control.WebExtensions

Learning More About F#

[72]

/// Stock symbol and URL to Yahoo finance
let urlList = ["MSFT", "http://ichart.finance.yahoo.com/table.csv?s=M
SFT&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "GOOG", "http://ichart.finance.yahoo.com/table.csv?s=G
OOG&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "EBAY", "http://ichart.finance.yahoo.com/table.csv?s=E
BAY&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "AAPL", "http://ichart.finance.yahoo.com/table.csv?s=A
APL&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "ADBE", "http://ichart.finance.yahoo.com/table.csv?s=A
DBE&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
]

/// Async fetch of CSV data
let fetchAsync(name, url:string) =
 async {
 try
 let uri = new System.Uri(url)
 let webClient = new WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 printfn "Downloaded historical data for %s, received %d
 characters" name html.Length
 with
 | ex -> printfn "Exception: %s" ex.Message
 }

/// Helper function to run in async parallel
let runAll() =
 urlList
 |> Seq.map fetchAsync
 |> Async.Parallel
 |> Async.RunSynchronously
 |> ignore

/// Get max closing price from 2010-01-01 for each stock

runAll()

Now that we have seen how to download data in parallel and verified that it actually
works, we will extend the example to do some useful operations on the data as well.
The code is almost identical to the earlier one, except that we added a function,
getMaxPrice, to parse the CSV and then iterate the sequence using pipes. We will then
extract the maximum closing price for the entire period for each stock. All this is done
in parallel, asynchronously:

Chapter 2

[73]

open System.Net
open Microsoft.FSharp.Control.WebExtensions

/// Stock symbol and URL to Yahoo finance
let urlList = ["MSFT", "http://ichart.finance.yahoo.com/table.csv?s=M
SFT&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "GOOG", "http://ichart.finance.yahoo.com/table.csv?s=G
OOG&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "EBAY", "http://ichart.finance.yahoo.com/table.csv?s=E
BAY&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "AAPL", "http://ichart.finance.yahoo.com/table.csv?s=A
APL&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
 "ADBE", "http://ichart.finance.yahoo.com/table.csv?s=A
DBE&d=6&e=6&f=2013&g=d&a=1&b=1&c=2010&ignore=.csv"
]

/// Parse CSV and extract max price
let getMaxPrice(data:string) =
 let rows = data.Split('\n')
 rows
 |> Seq.skip 1
 |> Seq.map (fun s -> s.Split(','))
 |> Seq.map (fun s -> float s.[4])
 |> Seq.take (rows.Length - 2)
 |> Seq.max

/// Async fetch of CSV data
let fetchAsync(name, url:string) =
 async {
 try
 let uri = new System.Uri(url)
 let webClient = new WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 let maxprice = (getMaxPrice(html.ToString()))
 printfn "Downloaded historical data for %s, max closing
 price since 2010-01-01: %f" name maxprice
 with
 | ex -> printfn "Exception: %s" ex.Message
 }

Learning More About F#

[74]

/// Helper function to run in async parallel
let runAll() =
 urlList
 |> Seq.map fetchAsync
 |> Async.Parallel
 |> Async.RunSynchronously
 |> ignore

/// Get max closing price from 2010-01-01 for each stock

runAll()

We have now looked at two examples, or two versions of the same example. You can
experiment and extend this example as much as you like to learn more about how to
work with parallel and asynchronous constructs in F#.

Parallel programming using TPL
We have already covered parts of the asynchronous workflow in F# in the previous
section. In this section, we'll focus on the .NET TPL (Task Parallel Library).

There are also parallel sequences that you can explore on your own if
you are interested.

The TPL is more useful than an asynchronous workflow; if the threads involved are
going to do CPU work often. In other words, if there is less IO work to be done,
the TPL is the one to be chosen. The TPL is part of the .NET framework 4, and can
be used from all the .NET languages.

The simplest way to program parallel programs is to replace for loops with
Parallel.For and Parallel.ForEach, which is found in the System.Threading
namespace. These two functions will enable loops to execute in parallel instead of
in a sequence. Of course, it's not this simple in reality. For example, it's hard if the
current iteration depends on another iteration, which is where you have
a loop dependence.

MailboxProcessor
The MailboxProcessor is also called an agent. Agents are constructs to support
concurrent applications without too many insights into the implementation
details. They are also more suitable where no shared memory is used, for example,
in distributed computer systems with many nodes.

Chapter 2

[75]

The agent became famous from the Erlang programming language where it is called
an actor. The concepts of actors have been partially implemented in various libraries
for other programming languages. One major library is Akka for Scala, which is now
part of the official Scala distribution.

We'll introduce agents by looking at an example which keeps track of a maximum
value. Every time a message is received, the agent recalculates the maximum value.
It's also possible to send a reset message. All communication with agents is handled
using message passing. Messages are typically discriminated unions. This will be
clear after we have walked through an example:

open System

// Type for our agent
type Agent<'T> = MailboxProcessor<'T>

// Control messages to be sent to agent
type CounterMessage =
 | Update of float
 | Reset

module Helpers =
 let genRandomNumber (n) =
 let rnd = new System.Random()
 float (rnd.Next(n, 100))

module MaxAgent =
 // Agent to keep track of max value and update GUI
 let sampleAgent = Agent.Start(fun inbox ->
 let rec loop max = async {
 let! msg = inbox.Receive()
 match msg with
 | Reset ->
 return! loop 0.0
 | Update value ->
 let max = Math.Max(max, value)

 Console.WriteLine("Max: " + max.ToString())

 do! Async.Sleep(1000)
 return! loop max
 }
 loop 0.0)

let agent = MaxAgent.sampleAgent
let random = Helpers.genRandomNumber 5
agent.Post(Update random)

Learning More About F#

[76]

In this example, we make use of modules to illustrate how to structure the program
when it becomes bigger. First we redefine MailboxProcessor to be called Agent,
for simplicity. The module helpers then contain a function to generate
a random number.

Finally, the module MaxAgent is defined with the Agent itself. The Agent reacts
upon received messages using pattern matching. If the message is the reset message,
the value is reset; otherwise, the agent updates the maximum value and waits for
one second.

The last three lines will create the agent and send it a random value. You can execute
the last two lines in repetition to send multiple random values and update the agent.
This will produce an output close to the following:

Max: 15

val random : float = 15.0
val it : unit = ()

>

val random : float = 43.0
val it : unit = ()

> Max: 43

val random : float = 90.0
val it : unit = ()

> Max: 90

Let's send a reset message and see what happens. Do this by using F# Interactive
as before:

agent.Post(Reset)

Now send some updates with random values:

let random = Helpers.genRandomNumber 5
agent.Post(Update random)

Agents are powerful constructs that act as state machines. You send messages to
them and they change state depending on the logic they contain.

Chapter 2

[77]

A brief look at imperative programming
In this section, we will look at imperative programming and object orientation.
It's hard to do object orientation without involving imperative programming.
In other words, mutable state. Mutable state and pure functional programming is
not a good combination, in fact pure functional programming forbids mutable state
totally. To our rescue, F# is not a pure functional programming language, so mutable
state is allowed. With this knowledge, we can continue and learn about object
orientation and how it's carried out in F#.

Object-oriented programming
F# is a multi-paradigm language where object orientation makes up parts of it.
This makes the language interact seamlessly with the other .NET languages in the
case of objects. Features that are well known because they are used in almost every
modern programming language are imperative programming, object orientation,
storing, and manipulating data. Combine imperative and functional programming;
F# tried this and has in many ways succeeded. F# objects can have constructors,
methods, properties (getters and setters), and fields.

Classes
Classes and objects are the foundation of object-oriented programming (OOP).
They are used to model actions, processes, and any conceptual entities in
applications. Apart from modules, classes are the most useful way in F# to
represent and encapsulate data and related functionality.

Consider a class to represent orders in a trading system. The order will first have
order-side, order-type, and a price. We'll continue to extend the functionality of
this class in this section to explore classes and object-orientation principles:

type OrderSide =
 | Buy
 | Sell

type OrderType =
 | Market
 | Limit

type Order(s: OrderSide, t: OrderType, p: float) =
 member this.S = s
 member this.T = t
 member this.P = p

Learning More About F#

[78]

We can use the newly-defined type, order, and investigate the member variables
using F# Interactive:

> let order = Order(Buy, Limit, 45.50);;

val order : Order

> order.S;;
val it : OrderSide = Buy
> order.T;;
val it : OrderType = Limit
> order.P;;
val it : float = 45.5

Objects and members
We'll now extend the class order to have a function that will enable us to toggle the
order-side. The order-side has to be mutable, and we need a member function that
performs the actual work. The function to do this will be called toggleOrderSide
and will use pattern matching for the discriminated union OrderSide:

// Toggle order side
type Order(s: OrderSide, t: OrderType, p: float) =
 let mutable S = s
 member this.T = t
 member this.P = p

 member this.Side
 with get() = S
 and set(s) = S <- s

 member this.toggleOrderSide() =
 match S with
 | Buy -> S <- Sell
 | Sell -> S <- Buy

As seen previously, we investigate the changes to our class using F# Interactive:

> let order = Order(Buy, Limit, 45.50);;

val order : Order

> order.Side;;
val it : OrderSide = Buy
> order.toggleOrderSide();;

Chapter 2

[79]

val it : unit = ()
> order.Side;;
val it : OrderSide = Sell
> order.toggleOrderSide();;
val it : unit = ()
> order.Side;;
val it : OrderSide = Buy

This may look like a lot of new stuff at once. But first we use the keyword mutable,
to indicate that the value S is mutable. This is needed because we want to change its
value on an already created object. The opposite is immutable, as we talked about
in the previous chapter. Pattern matching takes care of the actual work, and the ←
operator is used to assign new values to mutable variables.

Take a look at the MSDN article about values in F# at http://msdn.
microsoft.com/en-us/library/dd233185.aspx.

Methods and properties
Wouldn't it be nice to be able to access the price and order-type fields using a better
name like T or P? It's always a good tradition to name your objects, types, and
functions in a clear and concise way. This enables both you and other programmers
to understand the intention behind the code better.

type Order(s: OrderSide, t: OrderType, p: float) =
 let mutable S = s
 member this.T = t
 member this.P = p

 member this.Side
 with get() = S
 and set(s) = S <- s

 member this.Type
 with get() = this.T

 member this.Price
 with get() = this.P

 member this.toggleOrderSide() =
 match S with
 | Buy -> S <- Sell
 | Sell -> S <- Buy

Learning More About F#

[80]

It's now possible to access the member values using the properties side and type,
respectively. Properties are just another name for getters and setters. Getters and
setters retrieve and change values. You can define members to be read only by
omitting the setters, as for the type property:

> order.Type;;
val it : OrderType = Limit

> order.Price;;
val it : float = 45.5

Overloaded operators
Overloaded operators can be useful if a specific functionality has to be exposed
without calling a particular function:

type Order(s: OrderSide, t: OrderType, p: float) =
 let mutable S = s
 member this.T = t
 member this.P = p

 member this.Side
 with get() = S
 and set(s) = S <- s

 member this.Type
 with get() = this.T

 member this.Price
 with get() = this.P

 member this.toggleOrderSide() =
 S <- this.toggleOrderSide(S)

 member private this.toggleOrderSide(s: OrderSide) =
 match s with
 | Buy -> Sell
 | Sell -> Buy

 static member (~-) (o : Order) =
 Order(o.toggleOrderSide(o.Side), o.Type, o.Price)

Chapter 2

[81]

Look at the last line in this example; here we define an overloaded operator, a unary
minus. This operator is defined to toggle the order-side of the order object.

We can use F# Interactive to investigate this and how it is used in the code outside
of the order object definition:

> let order1 = Order(Buy, Limit, 50.00);;

val order1 : Order

> let order2 = -order1;;

val order2 : Order

> order1;;
val it : Order = FSI_0263+Order {P = 50.0;
 Price = 50.0;
 Side = Buy;
 T = Limit;
 Type = Limit;}
> order2;;
val it : Order = FSI_0263+Order {P = 50.0;
 Price = 50.0;
 Side = Sell;
 T = Limit;
 Type = Limit;}

As you can see, we first create the order1 object and then we create order2 to be
defined as -order1. This will call the overloaded operator in the order class and
toggle the order side. Compare the order sides in the last two outputs and see
for yourself.

Using XML documentation
XML documentation is useful when you want to autogenerate documentation for
your code. If you just put the documentation directly in a triple-slash comment,
the entire content will be a summary. The other possibility is to use specific XML
tags to specify which type of documentation the specific text belongs to. Doing that
enables you, as a programmer, to document the code in a more versatile way.

Learning More About F#

[82]

Useful XML tags
The following are some useful XML tags:

Tag Description
summary Summary describes code that is commented on
Returns Specifies what's returned
Remark A remark or something to notice about the code
exception Specifies exceptions that may be thrown from the code
See also Enables you to link your documentation to other sections for more details

Typical XML documentation
XML documentation is used by Visual Studio and it's IntelliSense to provide
information about the code. Let's add some XML documentation to a function
that we have used before and investigate how it affects IntelliSense:

/// <summary>Extracts the maximum closing price from the provided CSV
string</summary>
///<param name="str">Unparsed CSV string.</param>
///<remarks>Will leave the two last lines unhandled, due to Yahoo
specific conditions</remarks>
///<returns>The maximum closing price for the entire sequence.</
returns>
let getMaxPrice(data:string) =
 let rows = data.Split('\n')
 rows
 |> Seq.skip 1
 |> Seq.map (fun s -> s.Split(','))
 |> Seq.map (fun s -> float s.[4])
 |> Seq.take (rows.Length - 2)
 |> Seq.max

Chapter 2

[83]

The final result will look something like the following. Here you can see IntelliSense
and how it includes the summary at the bottom in the tool tip box:

Summary
In this chapter we looked into the F# language and its various features in more
detail. The objective was to introduce in more detail relevant parts of the language
to be used later throughout the book. F# is a big language and not all features are
useful at once. There are many resources to explore on the Internet, and the F# 3.0
Specification is one of them. Some of the examples here were quite large and contain
many of the features and aspects covered.

You will be well prepared for the next chapter if you have digested the material
provided here. Next up is financial mathematics and numerical analysis.

Financial Mathematics and
Numerical Analysis

In this chapter, the reader will be introduced to the basic numerical analysis and
algorithm implementation in F#. We will look at how integer and floating-point
numbers are implemented, and we will also look at their respective limitations.
The basic statistics are covered, and the existing functions in F# are studied and
compared with custom implementations.

This chapter will build up the foundation of numerical analysis that can be used
when we look at option pricing and volatility later on. We'll also use some of the
functionality covered in the previous chapter to implement the mathematical
functions for aggregate statistics and to illustrate their usefulness in real life.

In this chapter, you will learn:

• Implementing algorithms in F#
• Numerical concerns
• Implementing basic financial equations
• Curve fitting and regression
• Matrices and vectors in F#

Financial Mathematics and Numerical Analysis

[86]

Understanding the number representation
In this section, we will show you how numbers are represented as integers or
floating-point numbers in computers. Numbers form the foundation of computers
and programming. Everything in a computer is represented by the binary numbers,
ones and zeroes. Today, we have 64-bit computers that enable us to have a 64-bit
representation of integers and floating-point numbers naively in the CPU. Let's take
a deeper look at how integers and floating-point numbers are represented in the
following two sections.

Integers
When we talk about integers, denoted as Z, we are talking specifically about
machine-precision integers that are represented exactly in the computer with
a sequence of bits. Also, an integer is a number that can be written without a
fractional or decimal component and is denoted as Z by convention. For example, 0
is represented as 000000..., 1 is represented as ...000001, 2 is represented as ...000010,
and so on. As you can see from this pattern, numbers are represented in the power
of two. To represent negative numbers, the number range is divided into two halves
and uses two's complement.

When we talk about integer representation without any negative numbers, that is,
numbers from zero and up, we talk about unsigned integers.

Two's complement
Two's complement is a way of dividing a range of binary numbers into positive
and negative decimal numbers. In this way, both positive and negative numbers
can be represented in the computer. On the other hand, this means that the range of
numbers is the half for two's complement in relation to the unsigned representation.
Two's complement is the main representation used for signed integers.

Positive

1111

1110

1101

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

1101

Negative

Overflow

Positive

(-1)

(-4)

(-3)

(-5)

(-6)

(-7)

(-8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(0)

(-2)

Chapter 3

[87]

The representation of integers in two's complement can be thought of as a ring, as
illustrated in the preceding figure. The overflow occurs when the maximum allowed
positive or negative value increases. Overflow simply means that we pass the barrier
between positive and negative numbers.

The following table shows some integers and the representation of their
two's complement:

Decimal Two's complement
127 0111 1111
64 0100 0000
1 0000 0001
0 0000 0000
-1 1111 1111
-64 1100 0000
-127 1000 0001
-128 1000 0000

As you can see, the range for the 8-bit signed integers is from -128 to -127. In more
general terms:

[-2 ,2 -1]
n n-1 -1

Floating-point numbers
Floating-point numbers, denoted as R, represent a quantity where decimals are
needed to define them. Another way of describing these numbers is to think of them
as values represented as a quantity along a continuous line. They are needed to
model things in real life, such as economic, statistical, and physical quantities.
In the machine, floating-point numbers are represented by the IEEE 754 standard.

The IEEE 754 floating-point standard
The IEEE 754 floating-point standard describes floating-points using a mantissa
and an exponent; see the following figure.

Financial Mathematics and Numerical Analysis

[88]

For example, a 64-bit floating point number is made up of the following bit pattern:

Sign bit Exponent Mantissa
1 bit 11 bits 52 bits

1.2345 = 12345 10 -4x

Mantissa Exponent

An example of floating-point numbers and their binary representations are shown in
the following table:

Binary representation Floating-point number
0x0000000000000000 0.0
0x3ff0000000000000 1.0
0xc000000000000000 -2.0
0x4000000000000000 2.0
0x402E000000000000 15.0

F# Interactive is capable of decoding the representations of floating-point numbers in
hexadecimal format into floating-points:

> 0x402E000000000000LF;;
val it: float = 15.0

Try out the preceding binary representations in F# Interactive.

Learning about numerical types in F#
In F#, as in most other modern languages, there is a variety of numerical types. The
main reason for this is to enable you, as a programmer, to choose the most appropriate
numerical type at any given situation. Sometimes there is no need for a 64-bit integer
as 8-bit will be enough for small numbers. Another aspect is memory efficiency and
consumption, that is, 64-bit integers will consume eight times as much as 8-bit integers.

Chapter 3

[89]

The following is a table with the most common numerical types used in the F# code.
They come in two main varieties; integers and floating-point numbers:

Type Description Example
byte 8-bit unsigned integers 10uy, 0xA0uy
sbyte 8-bit signed integers 10y
int16 16-bit signed integers 10s
uint16 16-bit unsigned integers 10us
int, int32 32-bit signed integers 10
uint32 32-bit unsigned integers 10u
int64 64-bit signed integers 10L
uint64 64-bit unsigned integers 10UL
nativeint Hardware-sized signed integers 10n
unativeint Hardware-sized signed integers 10un
single, float32 32-bit IEEE 754 floating-point 10.0f
double, float 64-bit IEEE 754 floating-point 10.0
decimal High-precision decimal 10.0M
bigint Arbitrary precision integers 10I
complex Complex numbers using 64-bit

floats
Complex(10.0, 10.0)

The following are some examples of how to use suffixes for integers:

> let smallestnteger = 10uy;;
val smallestnteger : byte = 10uy

> let smallerInteger = 10s;;
val smallerInteger : int16 = 10s

> let smallInteger = 10us;;
val smallInteger : uint16 = 10us

> let integer = 10L;;
val integer : int64 = 10L

Financial Mathematics and Numerical Analysis

[90]

Arithmetic operators
Arithmetic operators should be familiar to you; however, we'll cover them in this
section for consistency. The operators work as expected, and the succeeding table
illustrates this using an example for each one. The remainder operator that returns
the remainder from an integer division is worth noticing.

Let's look at an example to see this in more detail. First, we try to divide 10 by 2, and
the remainder is 0 as expected:

> 10 % 2;;
val it : int = 0

If we try to divide 10 by 3, we get 1 as the remainder, because 3 x 3 = 9,
and 10 – 9 = 1:

> 10 % 3;;
val it : int = 1

The following table shows arithmetic operators with examples and a description:

Operator Example Description
+ x + y Addition
- x - y Subtraction
* x * y Multiplication
/ x / y Division
% x % y Remainder
- -x Unary minus

Arithmetic operators do not check for overflow. If you want to check
for overflow, you can use the Checked module. You can find more
about the Checked module at http://msdn.microsoft.com/en-
us/library/vstudio/ee340296.aspfx.

Learning about arithmetic comparisons
Arithmetic comparisons are used to compare two numbers for relationships.
It's good to know all the operators that are shown in the following table:

Chapter 3

[91]

Operator Example Description
< x < y Less than
<= x <= y Less than or equal to
> x > y Greater than
>= x >= y Greater than or equal to
(=) x = y Equality
<> x <> y Inequality
min min x y Minimum
max max x y Maximum

Some examples of arithmetic comparisons are as follows:

> 5.0 = 5.0;;
val it : bool = true
> 1 < 4;;
val it : bool = true
> 1.0 > 3.0;;
val it : bool = false

It is also worth noticing that you can't compare numbers of different types in F#.
To do this, you have to convert one of them as follows:

> 5.0 >= 10;;
 5.0 >= 10
 -------^^
stdin(10,8): error FS0001: This expression was expected to have type
float but here has type int

Math operators
The following table of mathematical operators covers the most basic mathematical
functions that are expected to be found in a programming language or its
standard libraries:

Operator Example Description
abs abs x Overloaded absolute value
acos acos x Overloaded inverse cosine
asin asin x Overloaded inverse sine
atan atan x Overloaded inverse tangent
ceil ceil x Overloaded floating-point ceil

Financial Mathematics and Numerical Analysis

[92]

Operator Example Description
cos cos x Overloaded cosine
exp exp x Overloaded exponent
floor floor x Overloaded floating-point floor
log log x Overloaded natural logarithm
log10 log10 x Overloaded base-10 logarithm
(**) x ** y Overloaded exponential
pown pown x y Overloaded integer exponential
round round x Overloaded rounding
sin sin x Overloaded sine function
sqrt sqrt x Overloaded square root function
tan tan x Overloaded tangent function

Conversion functions
There are no implicit conversions in F# as conversions have to be done manually
using conversion routines. Conversion must be made explicitly between types using
the operators that are described in the following table:

Operator Example Description
byte byte x Overloaded conversion to a byte
sbyte sbyte x Overloaded conversion to a signed byte
int16 int16 Overloaded conversion to a 16-bit integer
uint16 uint16 Overloaded conversion to an unsigned 16-bit

integer
int32, int Int32 x, int x Overloaded conversion to a 32-bit integer
uint32 uint32 x Overloaded conversion to an unsigned 32-bit

integer
int64 int64 x Overloaded conversion to a 64-bit integer
uint64 uint64 x Overloaded conversion to an unsigned 64-bit

integer
nativeint nativeint x Overloaded conversion to a native integer
unativeint unativeint x Overloaded conversion to an unsigned native

integer
float, double float x, double x Overloaded conversion to a 64-bit IEEE

floating-point number
float32, single float32 x, single x Overloaded conversion to a 32-bit IEEE

floating-point number

Chapter 3

[93]

Operator Example Description
decimal decimal x Overloaded conversion to a System.decimal

number
char char x Overloaded conversion to a System.Char value
enum enum x Overloaded conversion to a typed enum value

This means that there will never be any automatic type conversion behind the scenes
that may lead to loss of precision. For example, numbers are not converted from
floating-points to integers just to fit the code that you have written. The compiler
will tell you that there is an error in the code before converting it (it will never be
converted by the compiler). The positive side about this is that you always know the
representation of your numbers.

Introducing statistics
In this section, we'll look at statistics using both built-in functions and simple custom
ones. Statistics are used a lot throughout quantitative finance. Larger time series
are often analyzed, and F# has great support for sequences of numbers; some of its
power will be illustrated in the examples mentioned in this section.

Aggregate statistics
Aggregated statistics is all about statistics on aggregated data such as sequences of
numbers collected from measurements. It's useful to know the average value in such
a collection; this tells us where the values are centered. The min and max values are
also useful to determine the extremes in the collection.

In F#, the Seq module has this functionality built-in. Let's take a look at how to use it
in each case using an example.

Calculating the sum of a sequence
Consider a sequence of 100 random numbers:

let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 100 -> rnd()]

We can calculate the sum of the preceding sequence, data, using the pipe operator
and then the module function Seq.sum:

let sum = data |> Seq.sum

Financial Mathematics and Numerical Analysis

[94]

Note that the result, sum, will vary from time to time due to the fact that we use a
random number generator:

> sum;;
val it : float = 42.65793569

You might think that the sum function is not the most useful one; but there are times
you need it, and knowing about its existence in the module library will save you time.

Calculating the average of a sequence
For this example, let's modify the random seed function a bit to generate 500
numbers between 0 and 10:

let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 500 -> rnd() * 10.0]

The expected value of this sequence is 5 because of the distribution of the
random function:

let avg = data |> Seq.average

The value may vary a bit due to the fact that we generate numbers randomly:

> avg;;
val it : float = 4.983808457

As expected, the average value is almost 5. If we generate more numbers, we will
soon come closer and closer to the theoretical expected value of 5:

let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 10000 -> rnd() * 10.0]

let avg = data |> Seq.average

> avg;;
val it : float = 5.006555917

Calculating the minimum of a sequence
Instead of iterating the sequence and keeping track of the minimum value using
some kind of a loop construct with a temporary variable, we lend ourselves towards
the functional approach in F#. To calculate the minimum of a sequence, we use the
module function Seq.min:

Chapter 3

[95]

let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 10 -> rnd() * 10.0]

val data : float list =
 [5.0530272; 6.389536232; 6.126554094; 7.276151291; 0.9457452972;
 7.774030933; 7.654594368; 8.517372011; 3.924642724; 6.572755164]

let min = data |> Seq.min

> min;;
val it : float = 0.9457452972

This looks a lot like the preceding code seen, except that we generate 10 random
numbers and inspect the values in the list. If we manually look for the smallest value
and then compare it to the one calculated by F#, we see that they match.

Calculating the maximum of a sequence
In the following example, we'll use Seq.max to calculate the maximum number
of a list:

let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 5 -> rnd() * 100.0]

val data : float list =
 [7.586052086; 22.3457242; 76.95953826; 59.31953153; 33.53864822]

let max = data |> Seq.max

> max;;
val it : float = 76.95953826

Calculating the variance and standard deviation
of a sequence
So far, we have already used the existing functions for our statistical analysis.
Now, let's implement variance and standard deviation.

Financial Mathematics and Numerical Analysis

[96]

Calculating variance
Let's use the following function and calculate the variance for a dice:

let variance(values=
 let average = Seq.average values
 values
 |> Seq.map (fun x -> (1.0 / float (Seq.length values)) * (x -
 average) ** 2.0)
 |> Seq.sum

A dice has six discrete outcomes, one to six, where every outcome has equal
probability. The expected value is 3.5, (1 + 2 + 3 + 4 + 5 + 6)/6. The variance of a dice
is calculated using the following function:

> variance [1.0 .. 6.0];;
val it : float = 2.916666667

Calculating standard deviation
We start by implementing the standard deviation function using the previously
defined variance function. According to statistics, standard deviation is the square
root of the variance:

let stddev1(values:seq<float>) = sqrt(variance(values))

The preceding function works just fine, but to illustrate the power of sequences, we
will implement the standard deviation using the fold function. The fold function
will apply a given function to every element and accumulate the result. The 0.0
value in the end just means that we don't have an initial value. You may remember
this from the section about fold in the previous chapter. If we were to fold using
multiplication, 1.0 is used instead as the initial value. In the end, we just pass the
sum to the square root function, sqrt, and we are done:

let stddev2(values) =
 let avg = Seq.average values
 values
 |> Seq.fold (fun acc x -> acc + (1.0 / float (Seq.length
 values)) * (x -avg) ** 2.0) 0.0
 |> sqrt

Let's verify using some sample data:

> stddev1 [2.0; 4.0; 4.0; 4.0; 5.0; 5.0; 7.0; 9.0];;
val it : float = 2.0

> stddev2 [2.0; 4.0; 4.0; 4.0; 5.0; 5.0; 7.0; 9.0];;
val it : float = 2.0

Chapter 3

[97]

Now, we can go back and analyze the random data that was generated and used
earlier when we looked at the build in the sequence functions:

let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 100 -> rnd() * 10.0]

let var = variance data
let std = stddev2 data

We can check the fact that the square of the standard deviation is equal to the variance:

> std * std = var;;
val it : bool = true

Looking at an example application
The example application that we'll look at in this section is a combination of the parts
that we looked at in this chapter and will simply produce an output with statistics
about the given sequence of data:

/// Helpers to generate random numbers
let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 500 -> rnd() * 10.0]

/// Calculates the variance of a sequence
let variance(values:seq<float>) = values
 |> Seq.map (fun x -> (1.0 / float (Seq.length values)) * (x -
 (Seq.average values)) ** 2.0)
 |> Seq.sum

/// Calculates the standard deviation of a sequence
let stddev(values:seq<float>) = values
 |> Seq.fold (fun acc x -> acc + (1.0 / float (Seq.length
 values)) * (x - (Seq.average values)) ** 2.0) 0.0
 |> sqrt

let avg = data |> Seq.average
let sum = data |> Seq.sum
let min = data |> Seq.min
let max = data |> Seq.max
let var = data |> variance
let std = data |> stddev

Financial Mathematics and Numerical Analysis

[98]

Evaluating the code results in an output of the statistical properties of the random
sequence generated is shown as follows:

val avg : float = 5.150620541
val sum : float = 2575.310271
val min : float = 0.007285140458
val max : float = 9.988292227
val var : float = 8.6539651
val std : float = 2.941762244

This means that the sequence has an approximate mean value of 5.15 and an
approximate standard deviation of 2.94. Using these facts, we can rebuild the
distribution assuming that the numbers are distributed according to any of the
known distributions, such as normal distribution.

Using the Math.NET library
Instead of implementing your own functions for numerical support, there is an
excellent library called Math.NET. It's an open-source library covering fundamental
mathematics such as linear algebra and statistics.

The Math.NET library consists of the following libraries:

• Math.NET numerics: Numerical computing
• Math.NET neodym: Signal processing
• Math.NET linq algebra: Computer algebra
• Math.NET yttrium: Experimental network computer algebra

In this section, we'll look at Math.NET numerics, and see how it can help us in our F#
programming. First, we need to make sure that Math.NET is installed on our system.

Installing the Math.NET library
The Math.NET library can be installed using the built-in Package Manager.

Chapter 3

[99]

1. Open the Package Manager Console by going to View | Other Windows |
Package Manager Console.

2. Type in the following command:
Install-Package MathNet.Numerics

3. Wait for the installation to complete.

You can read more about the Math.NET project on the project's
website: http://www.mathdotnet.com/.

Introduction to random number generation
Let's start by looking at the various ways of generating random numbers. Random
numbers are frequently used in statistics and simulations. They are used extensively
in the Monte Carlo simulations. Before we start looking at Math.NET and how to
generate random numbers, we need a little bit of the background theory.

Pseudo-random numbers
In computers and programming, random numbers often refer to pseudo-random
numbers. Pseudo-random numbers appear to be random, but they are not. In other
words, they are deterministic if some properties of the algorithm and the seed that is
used are known. The seed is the input to the algorithm to generate the number. Often,
one chooses the seed to be the current time of the system or another unique number.

Financial Mathematics and Numerical Analysis

[100]

The random number generator in the System.Random class that is provided with
the .NET platform is based on a subtractive random number generator algorithm by
Donald E. Knuth. This algorithm will generate the same series of numbers if the same
seed is used.

Mersenne Twister
The Mersenne Twister pseudo random number generator is capable of producing
less deterministic numbers in an efficient way. These properties make this algorithm
one of the most popular ones used today. The following is an example of how to use
this algorithm in Math.NET:

open MathNet.Numerics.Random

let mersenneTwister = new MersenneTwister(42);
let a = mersenneTwister.NextDouble();

In F# Interactive, we can generate some numbers using Mersenne Twister:

> mersenneTwister.NextDouble();;
val it : float = 0.7965429842

> mersenneTwister.NextDouble();;
val it : float = 0.9507143116

> mersenneTwister.NextDouble();;
val it : float = 0.1834347877
> mersenneTwister.NextDouble();;
val it : float = 0.7319939383

> mersenneTwister.NextDouble();;
val it : float = 0.7796909974

Probability distributions
Probability distributions are commonly used in statistics and finance. They are used
to analyze and categorize a set of samples to investigate their statistical properties.

Normal distribution
Normal distribution is one of the most commonly used probability distributions.

Chapter 3

[101]

In Math.NET, normal distribution can be used in the following way:
open MathNet.Numerics.Distributions

let normal = new Normal(0.0, 1.0)
let mean = normal.Mean
let variance = normal.Variance
let stddev = normal.StdDev

By using the preceding example, we create a normal distribution with zero mean and
a standard deviation of one. We can also retrieve the mean, variance, and standard
deviation from a distribution:

> normal.Mean;;
val it : float = 0.0

> normal.Variance;;
val it : float = 1.0

> normal.StdDev;;
val it : float = 1.0

In this case, the mean and standard deviation is the same as we specified in the
constructor of the Normal class. It's also possible to generate random numbers
from a distribution. We can use the preceding distribution to generate some
random numbers, from the properties that are defined:

> normal.Sample();;
val it : float = 0.4458429471

> normal.Sample();;
val it : float = 0.4411828389

> normal.Sample();;
val it : float = 0.9845689791

> normal.Sample();;
val it : float = -1.733795869

In the Math.NET library, there are also other distributions such as:

• Poisson
• Log normal
• Erlang
• Binomial

Financial Mathematics and Numerical Analysis

[102]

Statistics
In Math.NET, there is also great support for descriptive statistics that can be used
to determine the properties of a collection of samples. The samples can be numbers
from a measurement or generated by the same library.

In this section, we'll look at an example where we'll analyze a collection of samples
with known properties, and see how the DescriptiveStatistics class can help
us out.

We start by generating some data to be analyzed:

let dist = new Normal(0.0, 1.0)
let samples = dist.Samples() |> Seq.take 1000 |> Seq.toList

Notice the conversion from Seq to List; this is done because otherwise, samples will
be a lazy collection. This means that the collection will be a set of different numbers
every time it's used in the program, which is not what we want in this case. Next we
instantiate the DescriptiveStatistics class:

let statistics = new DescriptiveStatistics(samples)

It will take the samples that were previously created and create an object that
describes the statistical properties of the numbers in the samples list. Now,
we can get some valuable information about the data:

// Order Statistics
let maximum = statistics.Maximum
let minimum = statistics.Minimum

// Central Tendency
let mean = statistics.Mean

// Dispersion
let variance = statistics.Variance
let stdDev = statistics.StandardDeviation

If we look closer at the mean, variance, and standard deviation respectively,
we see that they correspond well with the expected values for the collection:

> statistics.Mean;;
val it : float = -0.002646746232

> statistics.Variance;;
val it : float = 1.000011159

> statistics.StandardDeviation;;
val it : float = 1.00000558

Chapter 3

[103]

Linear regression
Linear regression is heavily used in statistics where sample data is analyzed. Linear
regression tells the relationship between two variables. It is currently not part of
Math.NET but can be implemented using it. Regression in Math.NET is an asked-for
feature; and hopefully, it will be supported natively by the library in the future.

Using the least squares method
Let's look at one of the most commonly used methods in linear regression, the least
squares method. It's a standard approach to find the approximate solution using the
least squares method. The least squares method will optimize the overall solution
with respect to the squares of the error, which means that it will find the solution
that best fits the data.

The following is an implementation of the least squares method in F# using Math.
NET for the linear algebra part:

open System
open MathNet.Numerics
open MathNet.Numerics.LinearAlgebra
open MathNet.Numerics.LinearAlgebra.Double
open MathNet.Numerics.Distributions

/// Linear regression using least squares

let X = DenseMatrix.ofColumnsList 5 2 [List.init 5 (fun i ->
 1.0); [10.0; 20.0; 30.0; 40.0; 50.0]] X
let y = DenseVector [| 8.0; 21.0; 32.0; 40.0; 49.0 |]
let p = X.QR().Solve(y)
printfn "X: %A" X
printfn "y: %s" (y.ToString())
printfn "p: %s" (p.ToString())

let (a, b) = (p.[0], p.[1])

The independent data y and the dependent data x are used as inputs to the solver.
You can use any linear relationship here, between x and y. The regression coefficients
will tell us the properties of the regression line, y = ax + b.

Financial Mathematics and Numerical Analysis

[104]

Using polynomial regression
In this section, we're going to look at a method for fitting a polynomial to data
points. This method is useful when the relationship in the data is better described by
a polynomial, such as a second or third degree one. We'll use this method in Chapter
6, Exploring Volatility, where we'll fit a second degree polynomial to a option data to
construct a graph over the volatility smile. We'll lay out the foundations needed for
that use case in this section.

We'll continue to use Math.NET for our linear algebra calculations, to solve for the
coefficients for a polynomial of a second degree.

We'll start out by generating some sample data for a polynomial:

y x x= -3 +5
2

Then, we generate x-values from -10.0 to 10.0 with increments of 0.2, and y-values
using these x-values and the preceding equation with added noise. To accomplish
this, the normal distribution with zero mean and 1.0 in standard deviation is used:

let noise = (Normal.WithMeanVariance(0.0,0.5))
/// Sample points for x^2-3x+5
let xdata = [-10.0 .. 0.2 .. 10.0]
let ydata = [for x in xdata do yield x ** 2.0 - 3.0*x + 5.0 +
 noise.Sample()]

Next, we use the linear algebra functions from Math.NET to implement the
least square estimation for the coefficients. In mathematical terms, this can be
expressed as:

c A A A y= ()
T T-1

This means we will use the matrix A, which stores the x-values and the y-vector to
estimate the coefficient vector c. Let's look at the following code to see how this
is implemented:

let N = xdata.Length
let order = 2

/// Generating a Vandermonde row given input v
let vandermondeRow v = [for x in [0..order] do yield v ** (float
 x)]

Chapter 3

[105]

/// Creating Vandermonde rows for each element in the list
let vandermonde = xdata |> Seq.map vandermondeRow |> Seq.toList

/// Create the A Matrix
let A = vandermonde |> DenseMatrix.ofRowsList N (order + 1)
A.Transpose()

/// Create the Y Matrix
let createYVector order l = [for x in [0..order] do yield l]
let Y = (createYVector order ydata |> DenseMatrix.ofRowsList
 (order + 1) N).Transpose()

/// Calculate coefficients using least squares
let coeffs = (A.Transpose() * A).LU().Solve(A.Transpose()
 * Y).Column(0)

let calculate x = (vandermondeRow(x) |> DenseVector.ofList) *
 coeffs

let fitxs = [(Seq.min xdata).. 0.02 ..(Seq.max xdata)]
let fitys = fitxs |> List.map calculate
let fits = [for x in [(Seq.min xdata).. 0.2 ..(Seq.max xdata)] do
 yield (x, calculate x)]

The values in the coefficient vector are in reverse order, which means they
correspond to a polynomial that fits the data, but the coefficient is reversed:

> coeffs;;
val it = seq [4.947741224; -2.979584718; 1.001216438]

Financial Mathematics and Numerical Analysis

[106]

The values are pretty close to the polynomial we used as the input in the preceding
code. The following is a graph of the sample data points together with the fitted curve.
The graph is made using FSharpChart, which we'll look into in the next chapter.

Polynomial regression using Math.net

The curious reader can use the following snippet to produce the preceding graph:

open FSharp.Charting
open System.Windows.Forms.DataVisualization.Charting

fsi.AddPrinter(fun (ch:FSharp.Charting.ChartTypes.GenericChart) ->
 ch.ShowChart(); "FSharpCharting")
let chart = Chart.Combine [Chart.Point(List.zip xdata ydata);
 Chart.Line(fits).WithTitle("Polynomial regression")]

Learning about root-finding algorithms
In this section, we'll learn about the different methods used in numerical analysis
to find the roots of functions. Root-finding algorithms are very useful, and we
will learn more about their applications when we talk about volatility and
implied volatility.

Chapter 3

[107]

The bisection method
In this section, we will look at a method for finding the roots of a function using the
bisection method. This method will be used later in this book to numerically find
the implied volatility for an option that is given a certain market price. The bisection
method uses iteration and repeatedly bisects an interval for the next iteration.

The following function implements bisection in F#:

let rec bisect n N (f:float -> float) (a:float) (b:float)
 (t:float) : float =
 if n >= N then -1.0
 else
 let c = (a + b) / 2.0
 if f(c) = 0.0 || (b - a) / 2.0 < t then
 // Solution found
 c
 else
 if sign(f(c)) = sign(f(a)) then
 bisect (n + 1) N f c b t
 else
 bisect (n + 1) N f a c t

Looking at an example
Now, we will look at an example of solving the roots of a quadratic equation.
The equation, x^2 - x- 6, is plotted in the following figure:

100

80

60

40

20

-10 -5 5 -10

Financial Mathematics and Numerical Analysis

[108]

The roots of the preceding quadratic equation can easily be seen in the figure.
Otherwise, there are analytical methods of solving it; for example, the method
of completing the square. The roots of the equation are -2 and 3.

Next, we create an anonymous function in F# to describe the one that we are
interested in solving the roots for:

let f = (fun x -> (x**2.0 - x - 6.0))

We can test the preceding function using the roots that we found in the
preceding figure:

> f(-2.0);;
val it : float = 0.0

> f(3.0);;
val it : float = 0.0

The results are as expected. Now, we can continue and use the lambda function
as an argument to the bisect function:

// First root, on the positive side
let first = bisect 0 25 f 0.0 10.0 0.01

// Second root, on the negative side
let second = bisect 0 25 f -10.0 0.0 0.01

The first two arguments, 0 and 25, are used to keep track of the iterations. We pass
in 0 because we want to start from iteration 0 and then iterate 25 times. The next
argument is the function itself that we defined in the preceding code as f. The next two
arguments are limits, that is, the range within which we can look for the root. And the
last one is just a value for the accuracy used for comparison inside the iteration.

We can now inspect the two variables and see if we find the roots:

> first;;
val it : float = -2.001953125

> second;;
val it : float = 2.998046875

They are almost equal to the analytical solution of -2 and 3 respectively. This is
something that is typical for numerical analysis. The solutions will almost never be
exact. In every step, some inaccuracy is added due to the floating-point numbers,
rounding, and so on.

Chapter 3

[109]

Finding roots using the Newton–Raphson
method
The Newton-Raphson method, or simply Newton's method, usually converges
faster than the bisection method. The Newton-Raphson method also needs the
derivative of the function, which can be a problem in some cases. This is especially
true when there is no analytical solution available. The following implementation
is a modification of the bisection method using the derivative of the function to
determine if a solution has been found. Let's look at the implementation of Newton's
method in F#:

// Newton's Method
let rec newtonraphson n N (f:float -> float) (fprime:float ->
 float) (x0: float) (tol:float) : float =
 if n >= N then -1.0
 else
 let d = fprime(x0)
 let newtonX = x0 - f(x0) / d
 if abs(d) < tol then
 -1.0
 else
 if abs(newtonX - x0) < tol then
 newtonX // Solution found
 else
 newtonraphson (n +1) N f fprime newtonX tol

One of the drawbacks of using the preceding method is that we use a fixed point
convergence criteria, abs(newtonX - x0) < tol, which means that we can be far
from the actual solution when this criteria is met.

Looking at an example
We can now try to find the square root of two, which is expected to be 1.41421. First,
we need the function itself, fun x -> (x**2.0 – 2.0). We also need the derivative
of the same function, x -> (2.0*x):

let f = (fun x -> (x**2.0 - 2.0))
let fprime = (fun x -> (2.0*x))
let sqrtOfTwo = newtonraphson 0 25 f fprime 1.0 10e-10

Now, we use the Newton-Raphson method to find the root of the function, x^2 - 2.
Using F# Interactive, we can investigate this as follows:

> newtonraphson 0 25 f fprime 1.0 10e-10;;
val it : float = 1.414213562

Financial Mathematics and Numerical Analysis

[110]

This is the answer we would expect, and the method works for finding roots! Notice
that if we change the starting value, x0, from 1.0 to -1.0, we'll get the negative root:

> newtonraphson 0 25 f fprime -1.0 10e-10;;
val it : float = -1.414213562

This is also a valid solution to the equation, so be aware of this when you use this
method for solving the roots. It can be helpful to plot the function, as we did in the
section about the bisection method, to get a grip on where to start from.

Finding roots using the secant method
The secant method, which doesn't need the derivative of the function, is an
approximation of the Newton-Raphson method. It uses the finite difference
approximation in iterations. The following is a recursive implementation in F#:

// Secant method
let rec secant n N (f:float -> float) (x0:float) (x1:float)
 (x2:float) : float =
 if n >= N then x0
 else
 let x = x1 - (f(x1))*((x1 - x0)/(f(x1) - f(x0)))
 secant (n + 1) N f x x0

Looking at an example
Let's look at an example where we use the secant method to find one root of a function.
We'll try to find the positive root of 612, which is a number just under the square of 25
(25 x 25 = 625):

let f = (fun x -> (x**2.0 - 612.0))

> secant 0 10 f 0.0 10.0 30.0;;
val it : float = 24.73863375

Chapter 3

[111]

Summary
In this chapter, we looked deeper into F# and numerical analysis and how well
the two fit together because of the functional syntax of the language. We covered
algorithm implementation, basic numerical concerns, and the Math.NET library.
After reading this chapter, you will be more familiar with both F# and numerical
analysis and be able to implement algorithms yourself. At the end of the chapter, an
example using the bisection method was covered. This method will prove to be very
useful later on when we talk about Black-Scholes and implied volatility.

In the next chapter, we will build on what we learned so far and extend our
current knowledge with data visualization, basic GUI programming, and plotting
financial data.

Getting Started with Data
Visualization

In this chapter, you will learn how to get started with data visualization and build
graphical user interfaces (GUIs) in F#. In quantitative finance, it is essential to be
able to plot and visualize time series. F# is a great tool for this and we'll learn how
to use F# as an advanced graphical calculator using F# Interactive.

The content in this chapter will be used throughout the book whenever user
interfaces are needed. In this chapter you will learn:

• Programming of basic GUI in F# and .NET
• Plotting data using Microsoft Charts
• Plotting financial data
• Building an interactive GUI

Making your first GUI in F#
F# leverages the .NET platform and GUI programming is no exception. All classes
from the .NET platform are available in this section. We will concentrate on the one
from the System.Windows.Forms namespace.

It's possible to use the same code from F# Interactive and modify the GUI on the fly.
We will look at this in more detail in the Displaying data section.

Let's look at an example where we make use of a .NET form and a button.
The button will be connected to an event handler called for every click on the button.
As you can see when you read the code, event handlers are higher-order functions
that result in a clean and compact code.

Getting Started with Data Visualization

[114]

open System.Windows.Forms

let form = new Form(Text = "First F# form")
let button = new Button(Text = "Click me to close!", Dock =
DockStyle.Fill)

button.Click.Add(fun _ -> Application.Exit() |> ignore)
form.Controls.Add(button)
form.Show()

The screenshot for the output of the preceding code is as follows:

The first GUI application in F# consisting of a form and a button

Composing interfaces
Now, we have looked at the first code to generate a form and composed a very
simple interface consisting of a button. As you may have noticed, F# has no
visual designer as present in the other .NET languages. There are several ways
of composing interfaces in F#:

• Writing interface code manually
• Using the C# visual designer and converting the code into F#
• Building a library using other .NET language and using it from F#
• Building your own visual designer to output F# code

Chapter 4

[115]

In this book, we will mainly use the first alternative—writing interface code
manually. This may seem tedious, but the upside is total control over the layout.
We'll now look at a larger example using an agent to keep track of the highest
number and a user interface with a button. When a user clicks on that button,
a random number is sent to the agent (see the following screenshot). The agent then
outputs the highest number every second. Also, the example illustrates the use of
namespaces and modules in a realistic fashion. This gives the reader an idea of when
to use namespaces and modules, and how to structure the programs when they
become larger.

The form of the agent application, with a button to send values to the agent.

The order of the files in the project is as follows:

• Agent
• GUI
• Program

Otherwise, you will see some errors due to references. See the following
figure showing Solution Explorer and notice the order:

Getting Started with Data Visualization

[116]

More about agents
First we start with the agent. The agent is much the same as the agent in the section
about agents in Chapter 2, Learning More About F#, except for some modifications and
the namespace Agents. The code is as follows:

namespace Agents

 open System

 // Type for our agent
 type Agent<'T> = MailboxProcessor<'T>

 // Control messages to be sent to agent
 type CounterMessage =
 | Update of float
 | Reset

 module Helpers =
 let genRandomNumber (n) =
 let rnd = new System.Random()
 float (rnd.Next(n, 100))

 module MaxAgent =
 // Agent to keep track of max value and update GUI
 let sampleAgent = Agent.Start(fun inbox ->
 let rec loop m = async {
 let! msg = inbox.Receive()
 match msg with
 | Reset ->
 return! loop 0.0
 | Update value ->
 let m = max m value

 Console.WriteLine("Max: " + m.ToString())

 do! Async.Sleep(1000)
 return! loop m
 }
 loop 0.0)

Chapter 4

[117]

The screenshot for the preceding code is as follows:

The console window with the output from the agent

The user interface
The user interface is placed in the GUI namespace. SampleForm inherits from the
Form .NET class. If you are familiar with other .NET languages, you will see some
of the common steps involved. All the layout code is also a part of the code. There is
no visual designer in F#, as mentioned earlier. To use System.Windows.Forms,
you have to add a reference to the assembly with the same name. The code is
as follows:

namespace GUI

 open System
 open System.Drawing
 open System.Windows.Forms
 open Agents

 // User interface form
 type public SampleForm() as form =
 inherit Form()

 let valueLabel = new Label(Location=new Point(25,15))
 let startButton = new Button(Location=new Point(25,50))
 let sendButton = new Button(Location=new Point(25,75))
 let agent = MaxAgent.sampleAgent

Getting Started with Data Visualization

[118]

 let initControls =
 valueLabel.Text <- "Sample Text"
 startButton.Text <- "Start"
 sendButton.Text <- "Send value to agent"
 do
 initControls

 form.Controls.Add(valueLabel)
 form.Controls.Add(startButton)

 form.Text <- "SampleApp F#"

 startButton.Click.AddHandler(new System.EventHandler
 (fun sender e ->
 form.eventStartButton_Click(sender, e)))

 // Event handler(s)
 member form.eventStartButton_Click(sender:obj,
 e:EventArgs) =
 let random = Helpers.genRandomNumber 5
 Console.WriteLine("Sending value to agent: " +
 random.ToString())
 agent.Post(Update random)
 ()

The main application
This is the main application entry point. It is annotated to tell the runtime
environment (.NET platform) from where to start out. This is done by using the
[<STAThread>] annotation. Here, we simply kick off the application and its GUI.
The code for SampleForm is as follows:

// Main application entry point
namespace Program

 open System
 open System.Drawing
 open System.Windows.Forms

 open GUI

 module Main =
 [<STAThread>]
 do

Chapter 4

[119]

 Application.EnableVisualStyles()
 Application.SetCompatibleTextRenderingDefault(false)
 let view = new SampleForm()
 Application.Run(view)

Learning about event handling
Event driven programming and events from user are common ways of building
GUIs. Event handlers are easy in F#, and lambda functions are easy to read
and understand. Compact code is always preferable and makes things such as
maintenance and understanding of the code easier for everyone involved.

If we look more closely at the code previously used for event handling, you can see
that we first use a lambda function and inside the lambda we call a member function
of the class:

startButton.Click.AddHandler(new System.EventHandler
 (fun sender e ->
 form.eventStartButton_Click(sender, e)))

 // Event handler(s)
 member form.eventStartButton_Click(sender:obj,
 e:EventArgs) =
 let random = Helpers.genRandomNumber 5
 Console.WriteLine("Sending value to agent: " +
 random.ToString())
 agent.Post(Update random)
 ()

This is just a way of making the code more readable and easier to understand.
It's of course possible to include all the logic in the lambda function directly;
but this approach is leaner, especially for larger projects.

Displaying data
Displaying and visualizing data is essential to get a better understanding of its
characteristics. Also, data is at its core in quantitative finance. F# is a sharp tool for
data analysis and visualization. A majority of the functionalities of visualization
and user interfaces comes from the .NET platform. Together with the exploratory
characteristics of F#, especially through F# Interactive, the combination becomes
very efficient and powerful.

Getting Started with Data Visualization

[120]

Let's start out by using F# Interactive to create a form that will display data feed to it.
This means we will have a form that can change the content at runtime, without the
need for recompiling. The controls in the form are also interchangeable:

// The form
open System
open System.Drawing
open System.Windows.Forms

let form = new Form(Visible = true, Text = "Displaying data in F#",
 TopMost = true, Size = Drawing.Size(600,600))

let textBox =
 new RichTextBox(Dock = DockStyle.Fill, Text = "This is a text
 box that we can feed data into", Font = new Font("Lucida
 Console",16.0f,FontStyle.Bold), ForeColor = Color.DarkBlue)

form.Controls.Add textBox

If you run this code, you will see a form with the title Displaying data in F# as the
one shown in the following screenshot:

The window with a RichTextBox control to display data

We need a function to send data to the textbox in the window and display it.
Here is the one to do the job for us:

let show x =
 textBox.Text <- sprintf "%30A" x

Now, we can use the function and it will send the formatted data to our textbox
(textBox). Here are some examples that show you how to use the function; it's
useful to utilize the pipe function as illustrated in the later snippets:

show (1,2)
show [0 .. 100]
show [0.0 .. 2.0 .. 100.0]

Chapter 4

[121]

// Using the pipe operator
(1,2,3) |> show
[0 .. 99] |> show
[for i in 0 .. 99 -> (i, i*i)] |> show

If you want to clear the contents of the textbox, you can write:

textBox.Clear()

The output is as follows:

This is how the form looks with the content generated from the previous snippet

Try this out for yourself and see which work flow is best suited for you.

Getting Started with Data Visualization

[122]

Extending the form to use a table
Now that we have looked at how to use F# Interactive and feed data to a form on the
fly, we can extend the concept and use a table as follows:

open System
open System.Drawing
open System.Windows.Forms

// The form
let form2 = new Form(Visible = true, Text = "Displaying data in F#",
 TopMost = true, Size = Drawing.Size(600,600))

// The grid
let data = new DataGridView(Dock = DockStyle.Fill, Text = "Data
 grid", Font = new Drawing.Font("Lucida Console", 10.0f), ForeColor
 = Drawing.Color.DarkBlue)

form2.Controls.Add(data)

// Some data
data.DataSource <- [| ("ORCL", 32.2000, 31.1000, 31.1200, 0.0100);
 ("MSFT", 72.050, 72.3100, 72.4000, 0.0800);
 ("EBAY", 58.250, 58.5200, 58.5100, 0.0100)|]

The preceding code will add DataGridView to the form, with some styling added to
it. The last lines of code will populate DataGridView with some sample data. It will
finally look something like the following figure:

DataGridView added to the form with sample data

Chapter 4

[123]

Let's extend the example and use code to set the column headers together with code
to use a collection:

open System
open System.Drawing
open System.Windows.Forms
open System.Collections.Generic

// The form
let form2 = new Form(Visible = true, Text = "Displaying data in F#",
 TopMost = true, Size = Drawing.Size(600,600))

// The grid
let data = new DataGridView(Dock = DockStyle.Fill, Text = "Data grid",
 Font = new Drawing.Font("Lucida Console", 10.0f), ForeColor =
 Drawing.Color.DarkBlue)

form2.Controls.Add(data)

// Generic list
let myList = new List<(string * float * float * float * float)>()

// Sample data
myList.Add(("ORCL", 32.2000, 31.1000, 31.1200, 0.0200))
myList.Add(("MSFT", 72.050, 72.3100, 72.4000, 0.0100))

data.DataSource <- myList.ToArray()

// Set column headers
do data.Columns.[0].HeaderText <- "Symb"
do data.Columns.[1].HeaderText <- "Last sale"
do data.Columns.[2].HeaderText <- "Bid"
do data.Columns.[3].HeaderText <- "Ask"
do data.Columns.[4].HeaderText <- "Spread"

do data.Columns.[0].Width <- 100

Getting Started with Data Visualization

[124]

The result will look something like the window in the following screenshot:

A formatted DataGridView using a collection as data source

Displaying financial data from Yahoo! Finance
Now we will look at a bigger example application, where we will use the concepts
introduced this far and extend the functionality to cover visualization of financial
data. Here, we will download data from Yahoo! Finance and display the closing
prices together with a calculated moving average in the same chart window.
The application will finally look something like the one in the following screenshot:

An example application to visualize data form Yahoo! Finance

Chapter 4

[125]

Understanding the application code
The application will use some code introduced in previous sections, as well as in
previous chapters. If you don't recognize any of the content, please go back and
refresh on that particular topic. The main building block here is Systems.Windows.
Forms and System.Windows.Forms.DataVisualization.Charting. A lot more
information is available online at MSDN: http://msdn.microsoft.com/en-us/
library/system.windows.forms.datavisualization.charting.aspx.

Let's look at the code needed to provide the preceding functionality:

#r "System.Windows.Forms.DataVisualization.dll"

open System
open System.Net
open System.Windows.Forms
open System.Windows.Forms.DataVisualization.Charting
open Microsoft.FSharp.Control.WebExtensions

We'll first create a chart and initialize it by setting style and ChartAreas:

// Create chart and form
let chart = new Chart(Dock = DockStyle.Fill)
let area = new ChartArea("Main")
chart.ChartAreas.Add(area)

Then the form is created and displayed. After that, the title of the program is set
and the chart control is added to the form:

let mainForm = new Form(Visible = true, TopMost = true,
 Width = 700, Height = 500)

do mainForm.Text <- "Yahoo Finance data in F#"
mainForm.Controls.Add(chart)

Then, there is some code to create the two charting series needed and some style is
set to the two charting series to distinguish them from each other. The stock price
series will be red, and the moving average will be blue:

// Create series for stock price
let stockPrice = new Series("stockPrice")
do stockPrice.ChartType <- SeriesChartType.Line
do stockPrice.BorderWidth <- 2
do stockPrice.Color <- Drawing.Color.Red
chart.Series.Add(stockPrice)

Getting Started with Data Visualization

[126]

// Create series for moving average
let movingAvg = new Series("movingAvg")
do movingAvg.ChartType <- SeriesChartType.Line
do movingAvg.BorderWidth <- 2
do movingAvg.Color <- Drawing.Color.Blue
chart.Series.Add(movingAvg)

// Syncronous fetching (just one stock here)

Now, the code for the fetching of data is the same as we used in the previous chapter,
Chapter 3, Financial Mathematics and Numerical Analysis.

let fetchOne() =
 let uri = new
 System.Uri("http://ichart.finance.yahoo.com/table.csv?
 s=ORCL&d=9&e=23&f=2012&g=d&a=2&b=13&c=1986&ignore=.csv")
 let client = new WebClient()
 let html = client.DownloadString(uri)
 html

// Parse CSV
let getPrices() =
 let data = fetchOne()
 data.Split('\n')
 |> Seq.skip 1
 |> Seq.map (fun s -> s.Split(','))
 |> Seq.map (fun s -> float s.[4])
 |> Seq.truncate 2500

The interesting part here is how data is added to the chart. This is done by iterating
the time series and using the series.Points.Add method. It's an elegant and
concise way of doing it. The ignore operator is used to simply skip the resulting
value from the Points.Add method, ignoring it.

// Calc moving average
let movingAverage n (prices:seq<float>) =
 prices
 |> Seq.windowed n
 |> Seq.map Array.sum
 |> Seq.map (fun a -> a / float n)

// The plotting
let sp = getPrices()
do sp |> Seq.iter (stockPrice.Points.Add >> ignore)

let ma = movingAverage 100 sp
do ma |> Seq.iter (movingAvg.Points.Add >> ignore)

Chapter 4

[127]

Extending the application to use
Bollinger bands
We'll now extend the application we used in the previous section to use Bollinger
bands. Bollinger bands is an extension of moving average, where two bands are
added—one upper band and one lower band. The bands are typically K (where
K=2.0) times a moving standard deviation above and below the moving average.
We need to add a function to calculate the moving standard deviation. We can use
the standard deviation from the previous chapter and use it with the Seq.windowed
function, as shown in the following code. In this example, we also add legends to
specify which data series corresponds to which color. The screenshot is as follows:

Example application extended to use Bollinger Bands

The code looks pretty much like the code used in the preceding example; except for
the calculation of the upper and lower band, and the moving standard deviation:

/// Another example with Bollinger Bands
#r "System.Windows.Forms.DataVisualization.dll"

open System
open System.Net
open System.Windows.Forms
open System.Windows.Forms.DataVisualization.Charting
open Microsoft.FSharp.Control.WebExtensions

Getting Started with Data Visualization

[128]

// Create chart and form
let chart = new Chart(Dock = DockStyle.Fill)
let area = new ChartArea("Main")
chart.ChartAreas.Add(area)

Legends are easily added to a chart using chart.Legends.Add:

// Add legends
chart.Legends.Add(new Legend())

let mainForm = new Form(Visible = true, TopMost = true,
 Width = 700, Height = 500)

do mainForm.Text <- "Yahoo Finance data in F# - Bollinger Bands"
mainForm.Controls.Add(chart)

// Create series for stock price
let stockPrice = new Series("stockPrice")
do stockPrice.ChartType <- SeriesChartType.Line
do stockPrice.BorderWidth <- 2
do stockPrice.Color <- Drawing.Color.DarkGray
chart.Series.Add(stockPrice)

// Create series for moving average
let movingAvg = new Series("movingAvg")
do movingAvg.ChartType <- SeriesChartType.Line
do movingAvg.BorderWidth <- 2
do movingAvg.Color <- Drawing.Color.Blue
chart.Series.Add(movingAvg)

We'll need two new data series for our upper and lower bands respectively:

// Create series for upper band
let upperBand = new Series("upperBand")
do upperBand.ChartType <- SeriesChartType.Line
do upperBand.BorderWidth <- 2
do upperBand.Color <- Drawing.Color.Red
chart.Series.Add(upperBand)

// Create series for lower band
let lowerBand = new Series("lowerBand")
do lowerBand.ChartType <- SeriesChartType.Line
do lowerBand.BorderWidth <- 2
do lowerBand.Color <- Drawing.Color.Green
chart.Series.Add(lowerBand)

Chapter 4

[129]

// Syncronous fetching (just one stock here)
let fetchOne() =
 let uri = new
 System.Uri("http://ichart.finance.yahoo.com/table.csv?
 s=ORCL&d=9&e=23&f=2012&g=d&a=2&b=13&c=1986&ignore=.csv")
 let client = new WebClient()
 let html = client.DownloadString(uri)
 html

// Parse CSV
let getPrices() =
 let data = fetchOne()
 data.Split('\n')
 |> Seq.skip 1
 |> Seq.map (fun s -> s.Split(','))
 |> Seq.map (fun s -> float s.[4])
 |> Seq.truncate 2500

// Calc moving average
let movingAverage n (prices:seq<float>) =
 prices
 |> Seq.windowed n
 |> Seq.map Array.sum
 |> Seq.map (fun a -> a / float n)

The code to calculate the moving standard deviation is a modification of the code
used in the previous chapter, to work with the Seq.windowed function:

// Stddev
let stddev2(values:seq<float>) =
 let avg = Seq.average values
 values
 |> Seq.fold (fun acc x -> acc + (1.0 / float (Seq.length
 values)) * (x - avg) ** 2.0) 0.0
 |> sqrt

let movingStdDev n (prices:seq<float>) =
 prices
 |> Seq.windowed n
 |> Seq.map stddev2

// The plotting
let sp = getPrices()
do sp |> Seq.iter (stockPrice.Points.Add >> ignore)

Getting Started with Data Visualization

[130]

let ma = movingAverage 100 sp
do ma |> Seq.iter (movingAvg.Points.Add >> ignore)

This section is pretty interesting. Here, we add and subtract the result from the
moving standard deviation to the moving average, which is multiplied with the
K-value to form the upper and lower band:

// Bollinger bands, K = 2.0
let ub = movingStdDev 100 sp
// Upper
Seq.zip ub ma |> Seq.map (fun (a,b) -> b + 2.0 * a) |> Seq.iter
 (upperBand.Points.Add >> ignore)
// Lower
Seq.zip ub ma |> Seq.map (fun (a,b) -> b - 2.0 * a) |> Seq.iter
 (lowerBand.Points.Add >> ignore)

You can extend this application and implement other technical indicators if you like.
The nice thing about using F# Interactive is that the application itself doesn't have to
be restarted to show new data. In other words, you can use movingAvg.Points.Add
and the point will be added to the chart.

Using FSharp.Charting
FsChart is a commonly used F# chart library implemented as a functional wrapper
over the Microsoft Chart Control. This control can save you some work because there
is no need for boilerplate code as in the preceding examples for Microsoft Chart
Control. FsChart is also designed to work with F# and integrate better with
F# Interactive.

The library can be installed using the Package Manager Console by typing:

Install-Package FSharp.Charting

Creating a candlestick chart from stock prices
Let's look at the code for displaying a candlestick chart of the same stock as used
before (Oracle) with data from Yahoo! Finance. This time there is less boilerplate
code needed to set up the charting. The main part of the program consists of
downloading, parsing, and converting the data:

Chapter 4

[131]

open System
open System.Net
open FSharp.Charting
open Microsoft.FSharp.Control.WebExtensions
open System.Windows.Forms.DataVisualization.Charting

To use FSharpCharting, first we need to set up the chart as follows:

module FSharpCharting =
 fsi.AddPrinter(fun (ch:FSharp.Charting.ChartTypes.GenericChart) ->
 ch.ShowChart();
 "FSharpCharting")

// Syncronous fetching (just one stock here)
let fetchOne() =
 let uri = new
 System.Uri("http://ichart.finance.yahoo.com/table.csv?
 s=ORCL&d=9&e=23&f=2012&g=d&a=2&b=13&c=2012&ignore=.csv")
 let client = new WebClient()
 let html = client.DownloadString(uri)
 html

We need to reorder the data from open, high, low close to high, low, and open close.
This is done when we parse the strings to floating point numbers. Also, we include the
date as the first value. The date will be used by FSharpCharts to order the candles.

// Parse CSV and re-arrange O,H,L,C - > H,L,O,C
let getOHLCPrices() =
 let data = fetchOne()
 data.Split('\n')
 |> Seq.skip 1
 |> Seq.map (fun s -> s.Split(','))
 |> Seq.map (fun s -> s.[0], float s.[2], float s.[3], float
 s.[1], float s.[4])
 |> Seq.truncate 50

// Candlestick chart price range specified
let ohlcPrices = getOHLCPrices() |> Seq.toList
Chart.Candlestick(ohlcPrices).WithYAxis(Max = 34.0, Min = 30.0)

Getting Started with Data Visualization

[132]

The data will be downloaded, parsed, and displayed in the chart and the final result
will look something like the following screenshot:

Using FSharpCharts to display a candlestick chart

Creating a bar chart
In this example, we'll learn how to plot a histogram of a distribution generated by
Math.NET. Histograms are useful to visualize statistical data and get a grip of their
properties. We'll use a simple normal distribution with a zero mean and a standard
deviation of one.

open System
open MathNet.Numerics
open MathNet.Numerics.Distributions
open MathNet.Numerics.Statistics
open FSharp.Charting

module FSharpCharting2 =
 fsi.AddPrinter(fun ch:FSharp.Charting.ChartTypes.GenericChart)
 -> ch.ShowChart(); "FSharpCharting")

Chapter 4

[133]

Next we'll create the normal distribution that will be used in the histogram:

let dist = new Normal(0.0, 1.0)
let samples = dist.Samples() |> Seq.take 10000 |> Seq.toList
let histogram = new Histogram(samples, 35);

Unfortunately, Math.NET and FSharpCharting is not compatible out of the
box. We need to convert the histogram from Math.NET to use it with the
Chart.Column function:

let getValues =
 let bucketWidth = Math.Abs(histogram.LowerBound -
 histogram.UpperBound) / (float histogram.BucketCount)
 [0..(histogram.BucketCount-1)]
 |> Seq.map (fun i -> (histogram.Item(i).LowerBound +
 histogram.Item(i).UpperBound)/2.0, histogram.Item(i).Count)

Chart.Column getValues

As you can see in the following screenshot, the distribution looks a lot like the
normal distribution. You can experiment with the number of buckets yourself to see
how this behavior will change with the number of buckets. Also, you can increase
the number of samples used.

Using FSharpCharts to display a histogram

Getting Started with Data Visualization

[134]

Summary
In this chapter, we looked at data visualization in F# and learned to build user
interfaces. We have looked at how to use F# to create user interfaces without
a visual designer. There are pros and cons of using this approach of course.
The main benefit is total control and there is no hidden magic. On the other side,
it can be time consuming when we talk about larger GUI applications.

In the next chapter, we'll use the data visualization tools introduced in this chapter
to study some interesting properties of options. We'll talk about the basics of the
options and how they are priced using the Black Scholes formula. Also, the Black
Scholes formula will be implemented in F# and discussed in detail.

Learning Option Pricing
In this chapter, you will learn how to get started with option pricing using the
Black-Scholes formula and the Monte Carlo method. We'll compare the two
methods and see where they are most suitable in real-world applications.

In this chapter you will learn:

• The Black-Scholes option pricing formula
• How to use the Monte Carlo method to price options
• European, American, and Exotic options
• How to use real market data from Yahoo! Finance in option pricing
• Plotting the greeks in F#
• The basics of Wiener processes and the Brownian motion
• The basics of stochastic differential equations

Introduction to options
Options come in two variants, puts and calls. The call option gives the owner of the
option the right, but not the obligation, to buy the underlying asset at the strike price.
The put option gives the holder of the contract the right, but not the obligation, to sell
the underlying asset. The Black-Scholes formula describes the European option,
which can only be exercised on the maturity date, in contrast to, for example,
American options. The buyer of the option pays a premium for this in order to cover
the risk taken from the counterpart's side. Options have become very popular and they
are used in the major exchanges throughout the world, covering most asset classes.

The theory behind options can become complex pretty quickly. In this chapter,
we'll look at the basics of options and how to explore them using the code written
in F#.

Learning Option Pricing

[136]

Looking into contract specifications
Options come in a wide number of variations, some of which will be covered briefly
in this section. The contract specifications for options will also depend on their type.
Generally, there are some properties that are more or less general to all of them.
The general specifications are as follows:

• Side
• Quantity
• Strike price
• Expiration date
• Settlement terms

The contract specifications, or known variables, are used when we valuate options.

European options
European options are the basic form of options that other types of options extend.
American options and Exotic options are some examples. We'll stick to European
options in this chapter.

American options
American options are options that may be exercised on any trading day on or
before expiry.

Exotic options
Exotic options are options belonging to the broad category of options, which may
include complex financial structures, and may be combinations of other instruments
as well.

Learning about Wiener processes
Wiener processes are closely related to stochastic differential equations and volatility.
A Wiener process, or the geometric Brownian motion, is defined as follows:

t t t tdS S dt S dWµ σ= +

Chapter 5

[137]

The preceding formula describes the change in the stock price or the underlying asset
with a drift, µ, and a volatility, σ, and the Wiener process, Wt. This process is used to
model the prices in Black-Scholes.

We'll simulate market data using a Brownian motion or a Wiener process
implemented in F# as a sequence. Sequences can be infinite and only the values
used are evaluated, which suits our needs. We'll implement a generator function
to generate the Wiener process as a sequence as follows:

// A normally distributed random generator
let normd = new Normal(0.0, 1.0)
let T = 1.0
let N = 500.0
let dt:float = T / N

/// Sequences represent infinite number of elements
// p -> probability mean
// s -> scaling factor
let W s = let rec loop x = seq { yield x; yield! loop (x +
 sqrt(dt)*normd.Sample()*s)}
 loop s;;

Here, we use the random function in normd.Sample(). Let's explain the parameters
and the theory behind the Brownian motion before looking at the implementation.
The parameter T is the time used to create a discrete time increment dt. Notice
that dt will assume there are 500 N:s, 500 items in the sequence; this of course
is not always the case, but it will do fine here. Next, we use recursion to create
the sequence, where we add an increment to the previous value (x+...), where x
corresponds to xt-1.

We can easily generate an arbitrary length of the sequence as follows:

> Seq.take 50 (W 55.00);;
val it : seq<float> = seq [55.0; 56.72907873; 56.96071054;
 58.72850048; ...]

Learning Option Pricing

[138]

Here, we create a sequence of length 50. Let's plot the sequence to get a better
understanding about the process as shown in the following screenshot:

A Wiener process generated from the preceding sequence generator

Next, we'll look at the following code to generate the graph shown in the
preceding screenshot:

open System
open System.Net
open System.Windows.Forms
open System.Windows.Forms.DataVisualization.Charting
open Microsoft.FSharp.Control.WebExtensions
open MathNet.Numerics.Distributions;

// A normally distributed random generator
let normd = new Normal(0.0, 1.0)

// Create chart and form
let chart = new Chart(Dock = DockStyle.Fill)
let area = new ChartArea("Main")
chart.ChartAreas.Add(area)

let mainForm = new Form(Visible = true, TopMost = true,
 Width = 700, Height = 500)

Chapter 5

[139]

do mainForm.Text <- "Wiener process in F#"
mainForm.Controls.Add(chart)

// Create series for stock price
let wienerProcess = new Series("process")
do wienerProcess.ChartType <- SeriesChartType.Line
do wienerProcess.BorderWidth <- 2
do wienerProcess.Color <- Drawing.Color.Red
chart.Series.Add(wienerProcess)

let random = new System.Random()
let rnd() = random.NextDouble()
let T = 1.0
let N = 500.0
let dt:float = T / N

/// Sequences represent infinite number of elements
let W s = let rec loop x = seq { yield x; yield! loop (x +
 sqrt(dt)*normd.Sample()*s)}
 loop s;;

do (Seq.take 100 (W 55.00)) |> Seq.iter (wienerProcess.Points.Add
 >> ignore)

Most of the code will be familiar to you at this stage, but the interesting part is the
last line, where we can simply feed a chosen number of elements from the sequence
into Seq.iter, which will plot the values elegantly and efficiently.

Learning the Black-Scholes formula
The Black-Scholes formula was developed by Fischer Black and Myron Scholes in
the 1970s. The Black-Scholes formula is a stochastic partial differential equation
which estimates the price of an option. The main idea behind the formula is the
delta neutral portfolio. They created the theoretical delta neutral portfolio to reduce
the uncertainty involved.

This was a necessary step to be able to come to the analytical formula, which we'll
cover in this section. The following are the assumptions made under the
Black-Scholes formula:

• No arbitrage
• Possible to borrow money at a constant risk-free interest rate (throughout the

holding of the option)

Learning Option Pricing

[140]

• Possible to buy, sell, and shortlist fractional amounts of underlying assets
• No transaction costs
• Price of the underlying asset follows a Brownian motion, constant drift,

and volatility
• No dividends paid from underlying security

The simplest of the two variants is the one for call options. First, the stock price is
scaled using the cumulative distribution function with d1 as a parameter.
Then, the stock price is reduced by the discounted strike price scaled by the cumulative
distribution function of d2. In other words, it's the difference between the stock price
and the strike price using probability scaling of each and discounting the strike price:

() () () ()
1 2, r T tC S t N d S N d Ke− −= −

The formula for the put option is a little more involved, but follows the same
principles, shown as follows:

() () ()
() () ()2 1

, ,r T t

r T t

P S t Ke S C S t

N d Ke N d S

− −

− −

= − +

= − − −

The Black-Scholes formula is often separated into parts, where d1 and d2 are the
probability factors describing the probability of the stock price being related to the
strike price:

()

()

2

1

2

2

1

1 ln
2

1 ln
2

Sd r T t
KT t

Sd r T t
KT t

d T t

σ
σ

σ
σ

σ

   = + + −   −     
   = + + −   −     

= − −

The parameters used in the preceding formula can be summarized as follows:

• N: The cumulative distribution function
• T: Time to maturity, expressed in years
• S: The stock price or other underlying assets
• K: The strike price
• r: The risk-free interest rate
• σ: The volatility of the underlying assets

Chapter 5

[141]

Implementing Black-Scholes in F#
Now that we've looked at the basics behind the Black-Scholes formula and the
parameters involved, we can implement it ourselves. The cumulative distribution
function is implemented here to avoid dependencies and to illustrate that it's quite
simple to implement it yourself too. The Black-Scholes formula is implemented in
F# by using the following code. It takes six arguments; the first is a call-put-flag that
determines if it's a call or put option. The constants a1 to a5 are the Taylor series
coefficients used in the approximation for the numerical implementation:

let pow x n = exp(n * log(x))

type PutCallFlag = Put | Call

/// Cumulative distribution function
let cnd x =
 let a1 = 0.31938153
 let a2 = -0.356563782
 let a3 = 1.781477937
 let a4 = -1.821255978
 let a5 = 1.330274429
 let pi = 3.141592654
 let l = abs(x)
 let k = 1.0 / (1.0 + 0.2316419 * l)
 let w = (1.0-1.0/sqrt(2.0*pi)*exp(-
 l*l/2.0)*(a1*k+a2*k*k+a3*(pow k 3.0)+a4*(pow k 4.0)+a5*(pow k
 5.0)))
 if x < 0.0 then 1.0 - w else w

/// Black-Scholes
// call_put_flag: Put | Call
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes call_put_flag s x t r v =
 let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))
 let d2=d1-v*sqrt(t)
 //let res = ref 0.0

 match call_put_flag with
 | Put -> x*exp(-r*t)*cnd(-d2)-s*cnd(-d1)
 | Call -> s*cnd(d1)-x*exp(-r*t)*cnd(d2)

Learning Option Pricing

[142]

Let's use the black_scholes function using some numbers for the call and put
options. Suppose we want to know the price of an option where the underlying
asset is a stock traded at $58.60 with an annual volatility of 30 percent. The
risk-free interest rate is, let's say, one percent. We can use our formula that we
defined previously to get the theoretical price according to the Black-Scholes
formula of a call option with six months to maturity (0.5 years):

> black_scholes Call 58.60 60.0 0.5 0.01 0.3;;
val it : float = 4.465202269

We will get the value for the put option just by changing the flag of the function:

> black_scholes Put 58.60 60.0 0.5 0.01 0.3;;
val it : float = 5.565951021

Sometimes, it's more convenient to express the time to maturity in number of days
instead of years. Let's introduce a helper function for that purpose:

/// Convert the nr of days to years
let days_to_years d = (float d) / 365.25

Note the number 365.25, which includes the factor for leap years. This is not
necessary in our examples, but is used for correctness. We can now use this function
instead when we know the time in days:

> days_to_years 30;;
val it : float = 0.08213552361

Let's use the same preceding example, but now with 20 days to maturity:

> black_scholes Call 58.60 60.0 (days_to_years 20) 0.01 0.3;;
val it : float = 1.065115482

> black_scholes Put 58.60 60.0 (days_to_years 20) 0.01 0.3;;
val it : float = 2.432270266

Using Black-Scholes together with charts
Sometimes, it's useful to be able to plot the price of an option until expiration.
We can use our previously defined functions and vary the time left and plot the
values coming out. In this example, we'll make a program that outputs the graph
shown in the following screenshot:

Chapter 5

[143]

A chart showing prices for call and put options as a function of time

The following code is used to generate the graph in the preceding screenshot:

/// Plot price of option as function of time left to maturity
#r "System.Windows.Forms.DataVisualization.dll"

open System
open System.Net
open System.Windows.Forms
open System.Windows.Forms.DataVisualization.Charting
open Microsoft.FSharp.Control.WebExtensions

/// Create chart and form
let chart = new Chart(Dock = DockStyle.Fill)
let area = new ChartArea("Main")
chart.ChartAreas.Add(area)
chart.Legends.Add(new Legend())

let mainForm = new Form(Visible = true, TopMost = true,
 Width = 700, Height = 500)

Learning Option Pricing

[144]

do mainForm.Text <- "Option price as a function of time"
mainForm.Controls.Add(chart)

/// Create series for call option price
let optionPriceCall = new Series("Call option price")
do optionPriceCall.ChartType <- SeriesChartType.Line
do optionPriceCall.BorderWidth <- 2
do optionPriceCall.Color <- Drawing.Color.Red
chart.Series.Add(optionPriceCall)

/// Create series for put option price
let optionPricePut = new Series("Put option price")
do optionPricePut.ChartType <- SeriesChartType.Line
do optionPricePut.BorderWidth <- 2
do optionPricePut.Color <- Drawing.Color.Blue
chart.Series.Add(optionPricePut)

/// Calculate and plot call option prices
let opc = [for x in [(days_to_years 20)..(-(days_to_years
 1))..0.0] do yield black_scholes Call 58.60 60.0 x 0.01 0.3]
do opc |> Seq.iter (optionPriceCall.Points.Add >> ignore)

/// Calculate and plot put option prices
let opp = [for x in [(days_to_years 20)..(-(days_to_years
 1))..0.0] do yield black_scholes Put 58.60 60.0 x 0.01 0.3]
do opp |> Seq.iter (optionPricePut.Points.Add >> ignore)

The preceding code is just a modified version of the code shown in the previous
chapter with the options parts added. We have two series in this chart, one for
call options and one for put options. We also add a legend for each of the series.
The last part is the calculation of the prices and the actual plotting. List comprehensions
are used for compact code, and the Black-Scholes formula is called everyday until
expiration, where the days are counted down by one day at each step.

It's up to you as the reader to modify the code to plot various aspects of the option,
such as the option price as a function of an increase in the underlying stock price,
and so on.

Chapter 5

[145]

Introducing the greeks
The greeks are partial derivatives of the Black-Scholes formula with respect to
a particular parameter, such as time, rate, volatility, or stock price. The greeks can
be divided into two or more categories with respect to the order of the derivatives.
In this section, we'll look at the first-order and second-order greeks.

First-order greeks
In this section, we'll present the first-order greeks using the following table:

Name Symbol Description
Delta Δ Rate of change of option value with respect to the change in

the price of the underlying asset.
Vega ν Rate of change of option value with respect to the change in

the volatility of the underlying asset. It is referred to as the
volatility sensitivity.

Theta Θ Rate of change of option value with respect to time.
The sensitivity with respect to time will decay as time elapses,
and this phenomenon is referred to as the time decay.

Rho ρ Rate of change of option value with respect to the interest
rate.

Second-order greeks
In this section, we'll present the second-order greeks using the following table:

Name Symbol Description
Gamma Γ Rate of change of delta with respect to a change in the price of

the underlying asset.
Veta - Rate of change in Vega with respect to time.
Vera - Rate of change in Rho with respect to volatility.

Some of the second-order greeks are omitted for clarity; we'll not
cover these in this book.

Learning Option Pricing

[146]

Implementing the greeks in F#
Let's implement the greeks: Delta, Gamma, Vega, Theta, and Rho. First, we look
at the formulas for each greek. In some of the cases, they vary for calls and puts
respectively as shown in the following table:

Name Symbol Formula for Calls Formula for Puts
Delta ∆ ()1N d ()1 1N d −

Gamma Γ ()1
1

N d
S Tσ

′

−

Vega ν ()1SN d T t′ −

� eta Θ () () ()1
22

r T tSN d
rKe N d

T t
σ − −′

− −
−

() () ()1
22

r T tSN d
rKe N d

T t
σ − −′

− + −
−

Rho ρ () () ()2r T tK T t e N d− −− () () ()2r T tK T t e N d− −− − −

We need the derivative of the cumulative distribution function, which in fact is the
normal distribution with a mean of 0 and standard deviation of 1:

/// Normal distribution
open MathNet.Numerics.Distributions;

let normd = new Normal(0.0, 1.0)

Delta
Delta is the rate of change of the option price with respect to the change in the price
of the underlying asset:

/// Black-Scholes Delta
// call_put_flag: Put | Call

Chapter 5

[147]

// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes_delta call_put_flag s x t r v =
 let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))
 match call_put_flag with
 | Put -> cnd(d1) - 1.0
 | Call -> cnd(d1)

Gamma
Gamma is the rate of change of delta with respect to the change in the price of
the underlying asset. This is the second derivative with respect to the price of the
underlying asset. It measures the acceleration of the price of the option with respect
to the underlying price:

/// Black-Scholes Gamma
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes_gamma s x t r v =
 let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))
 normd.Density(d1) / (s*v*sqrt(t)

Vega
Vega is the rate of change of the option value with respect to the change in the
volatility of the underlying asset. It is referred to as the sensitivity of the volatility:

/// Black-Scholes Vega
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes_vega s x t r v =
 let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))
 s*normd.Density(d1)*sqrt(t)

Learning Option Pricing

[148]

Theta
Theta is the rate of change of the option value with respect to time. The sensitivity
with respect to time will decay as time elapses, and this phenomenon is referred to
as the time decay:

/// Black-Scholes Theta
// call_put_flag: Put | Call
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes_theta call_put_flag s x t r v =
 let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))
 let d2=d1-v*sqrt(t)
 let res = ref 0.0
 match call_put_flag with
 | Put -> -(s*normd.Density(d1)*v)/(2.0*sqrt(t))+r*x*exp(-
 r*t)*cnd(-d2)
 | Call -> -(s*normd.Density(d1)*v)/(2.0*sqrt(t))-r*x*exp(-
 r*t)*cnd(d2)

Rho
Rho is the rate of change of the option value with respect to the interest rate:

/// Black-Scholes Rho
// call_put_flag: Put | Call
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes_rho call_put_flag s x t r v =
 let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))
 let d2=d1-v*sqrt(t)
 let res = ref 0.0
 match call_put_flag with
 | Put -> -x*t*exp(-r*t)*cnd(-d2)
 | Call -> x*t*exp(-r*t)*cnd(d2)

Chapter 5

[149]

Investigating the sensitivity of the greeks
Now that we have all the greeks implemented, we'll investigate the sensitivity of
some of them and see how they vary when the underlying stock price changes.

The following screenshot is a surface plot with four of the greeks where the time and
the underlying price is changing. This figure is generated in MATLAB, and will not
be generated in F#. We'll use a 2D version of the graph to study the greeks as shown
in the following screenshot:

The surface plot of Delta, Gamma, Theta, and Rho of a call option

Learning Option Pricing

[150]

In this section, we'll start by plotting the value of Delta for a call option where we
vary the price of the underlying asset. This will result in the following 2D plot as
shown in the following screenshot:

.
A plot of call option delta versus the price of the underlying asset

The result in the plot shown in the preceding screenshot will be generated by the
code presented next. We'll reuse most of the code from the example where we looked
at the option prices for calls and puts. A slightly modified version is presented in the
following code, where the price of the underlying asset varies from $10.0 to $70.0:

/// Plot delta of call option as function of underlying price
#r "System.Windows.Forms.DataVisualization.dll"

open System
open System.Net
open System.Windows.Forms
open System.Windows.Forms.DataVisualization.Charting
open Microsoft.FSharp.Control.WebExtensions

/// Create chart and form
let chart = new Chart(Dock = DockStyle.Fill)
let area = new ChartArea("Main")
chart.ChartAreas.Add(area)
chart.Legends.Add(new Legend())

Chapter 5

[151]

let mainForm = new Form(Visible = true, TopMost = true,
 Width = 700, Height = 500)
do mainForm.Text <- "Option delta as a function of underlying
 price"
mainForm.Controls.Add(chart)

/// Create series for call option delta
let optionDeltaCall = new Series("Call option delta")
do optionDeltaCall.ChartType <- SeriesChartType.Line
do optionDeltaCall.BorderWidth <- 2
do optionDeltaCall.Color <- Drawing.Color.Red
chart.Series.Add(optionDeltaCall)

/// Calculate and plot call delta
let opc = [for x in [10.0..1.0..70.0] do yield black_scholes_delta
 Call x 60.0 0.5 0.01 0.3]
do opc |> Seq.iter (optionDeltaCall.Points.Add >> ignore)

We can extend the code to plot all four greeks, as shown in the screenshot with the
2D surface plots. The result will be a graph as shown in the following screenshot:

A graph showing greeks for a call option with respect to a price change (x axis)

Learning Option Pricing

[152]

Code listing for visualizing the four greeks
The following is the code listing for the entire program used to create the
preceding graph:

#r "System.Windows.Forms.DataVisualization.dll"

open System
open System.Net
open System.Windows.Forms
open System.Windows.Forms.DataVisualization.Charting
open Microsoft.FSharp.Control.WebExtensions

/// Create chart and form
let chart = new Chart(Dock = DockStyle.Fill)
let area = new ChartArea("Main")
chart.ChartAreas.Add(area)
chart.Legends.Add(new Legend())

let mainForm = new Form(Visible = true, TopMost = true,
 Width = 700, Height = 500)

do mainForm.Text <- "Option delta as a function of underlying
 price"
mainForm.Controls.Add(chart)

We'll create a series for each greek as follows:

/// Create series for call option delta
let optionDeltaCall = new Series("Call option delta")
do optionDeltaCall.ChartType <- SeriesChartType.Line
do optionDeltaCall.BorderWidth <- 2
do optionDeltaCall.Color <- Drawing.Color.Red
chart.Series.Add(optionDeltaCall)

/// Create series for call option gamma
let optionGammaCall = new Series("Call option gamma")
do optionGammaCall.ChartType <- SeriesChartType.Line
do optionGammaCall.BorderWidth <- 2
do optionGammaCall.Color <- Drawing.Color.Blue
chart.Series.Add(optionGammaCall)

/// Create series for call option theta
let optionThetaCall = new Series("Call option theta")
do optionThetaCall.ChartType <- SeriesChartType.Line
do optionThetaCall.BorderWidth <- 2

Chapter 5

[153]

do optionThetaCall.Color <- Drawing.Color.Green
chart.Series.Add(optionThetaCall)

/// Create series for call option vega
let optionVegaCall = new Series("Call option vega")
do optionVegaCall.ChartType <- SeriesChartType.Line
do optionVegaCall.BorderWidth <- 2
do optionVegaCall.Color <- Drawing.Color.Purple
chart.Series.Add(optionVegaCall)

Next, we'll calculate the values to plot for each greek:

/// Calculate and plot call delta
let opd = [for x in [10.0..1.0..70.0] do yield black_scholes_delta
 Call x 60.0 0.5 0.01 0.3]
do opd |> Seq.iter (optionDeltaCall.Points.Add >> ignore)

/// Calculate and plot call gamma
let opg = [for x in [10.0..1.0..70.0] do yield black_scholes_gamma
 x 60.0 0.5 0.01 0.3]
do opg |> Seq.iter (optionGammaCall.Points.Add >> ignore)

/// Calculate and plot call theta
let opt = [for x in [10.0..1.0..70.0] do yield black_scholes_theta
 Call x 60.0 0.5 0.01 0.3]
do opt |> Seq.iter (optionThetaCall.Points.Add >> ignore)

/// Calculate and plot call vega
let opv = [for x in [10.0..1.0..70.0] do yield black_scholes_vega
 x 60.0 0.1 0.01 0.3]
do opv |> Seq.iter (optionVegaCall.Points.Add >> ignore)

The Monte Carlo method
The Monte Carlo method is used to sample numerical integration using random
numbers and to study the mean value of a large number of samples. The Monte
Carlo method is especially useful when there is no closed form solution available.

In this section, we'll look at the simplest case, where we have path-dependent
European options. We are going to sample numerical integration using a random
drifting parameter. This will lead to various average values for the stochastic
process, which makes up the movement of the underlying asset. We'll do this using
1,000 and 1,000,000 samples respectively and compare the results. Let's dig into the
following code:

Learning Option Pricing

[154]

/// Monte Carlo implementation

/// Convert the nr of days to years
let days_to_years d =
 (float d) / 365.25

/// Asset price at maturity for sample rnd
// s: stock price
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
// rnd: sample
let price_for_sample s t r v rnd =
 s*exp((r-v*v/2.0)*t+v*rnd*sqrt(t))

/// For each sample we run the monte carlo simulation
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
// samples: random samples as input to simulation
let monte_carlo s x t r v (samples:seq<float>) = samples
 |> Seq.map (fun rnd -> (price_for_sample s t r v rnd) - x)
 |> Seq.average

/// Generate sample sequence
let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 1000 -> rnd() * 1.0]

Let's test it with the same values used for the Black-Scholes formula for a put option:

 > black_scholes 'c' 58.60 60.0 0.5 0.01 0.3;;
 val it : float = 4.465202269

 /// Monte carlo for call option
 > monte_carlo 58.60 60.0 0.5 0.01 0.3 data
 val it : float = 4.243545757

Chapter 5

[155]

This is close to being spot on; we can increase the number of samples and see if we
get another value:

let random = new System.Random()
let rnd() = random.NextDouble()
let data = [for i in 1 .. 1000000 -> rnd() * 1.0]

/// Monte carlo for call option
> monte_carlo 58.60 60.0 0.5 0.01 0.3 data;;
val it : float = 4.146170039

The preceding code uses the following formula to accomplish the task of estimating
the price. In a short summary, the Monte Carlo method here can be thought of as
a random pick of the drifting parameter σ*rnd*sqrt(t). The mean of all these
samples generated will then represent the estimated value of the option at maturity.
In reality, the Monte Carlo method is not used for European options, in contrast to
what's illustrated in this section. The choice of European options was mainly due to
simplicity, to illustrate the concepts:

() ()
2

exp
2

S T S 0 r T Tσ σ ∈
  

= − +  
  

The formula to estimate the sample value of a price at maturity for an asset

Summary
In this chapter, we looked at option pricing in F# using the famous Black-Scholes
formula together with the Monte Carlo method for European options. Once again,
F# has proven itself powerful, and in numerical implementations, this is especially
true. The code is almost identical to the mathematical functions, which makes it
easy to implement without any extra ceremony needed. The lessons learned in this
chapter will be used in the next chapter to dig deeper into options and volatility.

Exploring Volatility
In this chapter, you will learn about volatility and using numerical methods in F#
to explore the properties of options. We'll solve for the intrinsic volatility, called
implied volatility, in the Black-Scholes model using the code from the previous
chapter and extending it with numerical methods covered in Chapter 3, Financial
Mathematics and Numerical Analysis.

In this chapter you will learn:

• Actual volatility and implied volatility
• Using F# to calculate actual volatility
• Solving for implied volatility in Black-Scholes
• Using numerical methods for options
• Delta hedging
• Briefly about volatility arbitrage

Introduction to volatility
In the previous chapter we looked at the basics behind Black-Scholes for European
options. We'll continue to explore options in this chapter and look at volatility and
how to use F# to help us out. Volatility measures changes in price as annualized
standard deviation, which is the rate at which the price of a financial instrument
fluctuates up or down. Higher volatility means larger dispersion and lower volatility
means, of course, smaller dispersion. Volatility relates to variance and variance
equals the square of the standard deviation, as covered previously.

Exploring Volatility

[158]

Black-Scholes assumes normal distributed movements in stock prices, which is not
really the case in reality according to observations. In real life, the distribution is
more fat-tailed, which means that negative price movements tend to be larger when
they occur, but positive movements are more common, and smaller on average.

Figure 1: Courtesy of Yahoo! Finance. Shows S&P 500 Index with low volatility (9.5 % annualized) and Apple
with high volatility (31 % annualized)

Actual volatility
Actual volatility is the current observed volatility over a specific period of time,
typically the last month or year. Actual volatility uses the current market price and
several previous observations. In simple terms, it is the standard deviation of the
logarithmic returns of a series of today's and existing price data.

Implied volatility
Implied volatility is the volatility encapsulated in option prices. If we use
Black-Scholes, we need to provide several inputs: stock price, strike price, risk free
interest rate, volatility, and time to expiration. This will output a theoretical price for
that option in terms of the assumptions made. We can use Black-Scholes backwards
to get the implied volatility. That means we can extract the volatility from the market
price of that option if it's traded on an exchange as a fair market price. Doing so
requires us to use a numerical method for root solving, which has been covered
in the chapter about numerical analysis.

Implied volatility using current prices will solve for implied volatility in the
Black-Scholes model using a bisection solver, which we will study in a later
section in this chapter.

Chapter 6

[159]

Exploring volatility in F#
Let's look at a sample program in F# that will cover some aspects of volatility and how
to calculate the volatility from real market data. We'll look at some tech stocks from
NASDAQ and calculate the annualized volatility for each of them. First, we need to
define a function to do the calculations. Annualized volatility is defined as follows:

SD

P
σσ =

Where P is the time period in years, σ is the annualized volatility, and SDσ is the
standard deviation during the time period P.

Here we use P as 1
SD #days

σ , this means we can rewrite the formula as:

SD #daysσ σ=

We start by using the function to calculate the standard deviation as mentioned in
Chapter 3, Financial Mathematics and Numerical Analysis:

/// Calculate the standard deviation
let stddev(values:seq<float>) =
 values
 |> Seq.fold (fun acc x -> acc + (1.0 / float (Seq.length
 values)) * (x - (Seq.average values)) ** 2.0) 0.0
 |> sqrt

Then we need a function to calculate the logarithmic returns. This is done using the
Seq.pairwise function, since we need a window of size 2. This is the same as using
the Seq.windowed function with a size of 2.

/// Calculate logarithmic returns
let calcDailyReturns(prices:seq<float>) =
 prices
 |> Seq.pairwise
 |> Seq.map (fun (x, y) -> log (x / y))

Last but not least, we have our function to calculate annualized volatility from the
return series:

/// Annualized volatility
let annualVolatility(returns:seq<float>) =
 let sd = stddev(calcDailyReturns(returns))
 let days = Seq.length(returns)
 sd * sqrt(float days)

Exploring Volatility

[160]

This function uses the mathematical equation described previously, with the number
of days squared and multiplied by the standard deviation for the return series. This
can be interpreted as a scaling factor.

These functions are the main building blocks we need to proceed with. The next step
is to reuse the functionality to obtain prices from Yahoo! Finance, slightly modified
to use the preceding functions. Next, we introduce two helper functions. The first is
to format a number as a string with a leading zero if the number is smaller than ten.
The second function is to help us construct the URL needed to request data from
Yahoo! Finance:

let formatLeadingZero(number:int):String =
 String.Format("{0:00}", number)

/// Helper function to create the Yahoo-finance URL
let constructURL(symbol, fromDate:DateTime, toDate:DateTime) =
 let fm = formatLeadingZero(fromDate.Month-1)
 let fd = formatLeadingZero(fromDate.Day)
 let fy = formatLeadingZero(fromDate.Year)
 let tm = formatLeadingZero(toDate.Month-1)
 let td = formatLeadingZero(toDate.Day)
 let ty = formatLeadingZero(toDate.Year)
 "http://ichart.finance.yahoo.com/table.csv?s=" + symbol +
 "&d=" + tm + "&e=" + td + "&f=" + ty + "&g=d&a=" + fm + "&b="
 + fd + "&c=" + fy + "&ignore=.csv"

/// Synchronous fetching (just one request)
let fetchOne symbol fromDate toDate =
 let url = constructURL(symbol, fromDate, toDate)
 let uri = new System.Uri(url)
 let client = new WebClient()
 let html = client.DownloadString(uri)
 html

/// Parse CSV
let getPrices stock fromDate toDate =
 let data = fetchOne stock fromDate toDate
 data.Trim().Split('\n')
 |> Seq.skip 1
 |> Seq.map (fun s -> s.Split(','))
 |> Seq.map (fun s -> float s.[4])
 |> Seq.takeWhile (fun s -> s >= 0.0)

/// Returns a formatted string with volatility for a stock
let getAnnualizedVol stock fromStr toStr =

Chapter 6

[161]

 let prices = getPrices stock (System.DateTime.Parse fromStr)
 (System.DateTime.Parse toStr)
 let vol = Math.Round(annualVolatility(prices) * 100.0, 2)
 sprintf "Volatility for %s is %.2f %%" stock vol

Let's try it out with a few stocks from NASDAQ using F# Interactive:

> getAnnualizedVol "MSFT" "2013-01-01" "2013-08-29";;
val it : string = "Volatility for MSFT is 21.30 %"

> getAnnualizedVol "ORCL" "2013-01-01" "2013-08-29";;
val it : string = "Volatility for ORCL is 20.44 %"

> getAnnualizedVol "GOOG" "2013-01-01" "2013-08-29";;
val it : string = "Volatility for GOOG is 14.80 %"

> getAnnualizedVol "EBAY" "2013-01-01" "2013-08-29";;
val it : string = "Volatility for EBAY is 20.82 %"

> getAnnualizedVol "AAPL" "2013-01-01" "2013-08-29";;
val it : string = "Volatility for AAPL is 25.16 %"

> getAnnualizedVol "AMZN" "2013-01-01" "2013-08-29";;
val it : string = "Volatility for AMZN is 21.10 %"

> getAnnualizedVol "^GSPC" "2013-01-01" "2013-08-29";;
val it : string = "Volatility for ^GSPC is 9.15 %"

The result of the preceding code can be summarized in the following table:

Symbol Name Annualized volatility
MSFT Microsoft Corp. 21.30 percent
ORCL Oracle 20.44 percent

GOOG Google Inc. 14.80 percent
EBAY eBay 20.82 percent
AAPL Apple Computer 25.16 percent
AMZN Amazon 21.10 percent
^GSPC S&P 500 9.15 percent

Exploring Volatility

[162]

From the preceding table, we can see and compare annualized volatility for the
selected stocks and the S&P 500 index. It's clear from the data which one has the
highest respectability and the lowest volatility. AAPL and ^GSPC are compared
in Figure 1 in the introduction of this chapter. Sometimes, volatility can tell you
something about the risk involved in investing in that particular instrument. But
keep in mind that this data is historical and will not interpret the future price
movements of an instrument.

The complete application
Following is the code listing for the entire program used earlier. You can modify the
parameters to the Yahoo! Finance web service that returns CSV data. The parameters
are a, b, c for the from-date parameter and d, e, f for the to-date parameter
together with the symbol of the stock, see the following table:

Parameter Description Example
s Stock symbol MSFT
d To month of year 07
e To day of month 29
f To year 2013
a From month of year 00
b To day of month 1
c To year 2013

Let's have a look at an example where we downloaded data from Yahoo! for a couple
of stocks listed on NASDAQ as well as the S&P500 index. We'll look at a timespan
from January 01, 2013 to August 2, 2013:

open System
open System.Net

/// Calculate the standard deviation
let stddev(values:seq<float>) =
 values
 |> Seq.fold (fun acc x -> acc + (1.0 / float (Seq.length
 values)) * (x - (Seq.average values)) ** 2.0) 0.0
 |> sqrt

/// Calculate logarithmic returns
let calcDailyReturns(prices:seq<float>) =
 prices
 |> Seq.pairwise

Chapter 6

[163]

 |> Seq.map (fun (x, y) -> log (x / y))

/// Annualized volatility
let annualVolatility(returns:seq<float>) =
 let sd = stddev(calcDailyReturns(returns))
 let days = Seq.length(returns)
 sd * sqrt(float days)

let formatLeadingZero(number:int):String =
 String.Format("{0:00}", number)

/// Helper function to create the Yahoo-finance URL
let constructURL(symbol, fromDate:DateTime, toDate:DateTime) =
 let fm = formatLeadingZero(fromDate.Month-1)
 let fd = formatLeadingZero(fromDate.Day)
 let fy = formatLeadingZero(fromDate.Year)
 let tm = formatLeadingZero(toDate.Month-1)
 let td = formatLeadingZero(toDate.Day)
 let ty = formatLeadingZero(toDate.Year)
 "http://ichart.finance.yahoo.com/table.csv?s=" + symbol +
 "&d=" + tm + "&e=" + td + "&f=" + ty + "&g=d&a=" + fm + "&b="
 + fd + "&c=" + fy + "&ignore=.csv"

/// Synchronous fetching (just one request)
let fetchOne symbol fromDate toDate =
 let url = constructURL(symbol, fromDate, toDate)
 let uri = new System.Uri(url)
 let client = new WebClient()
 let html = client.DownloadString(uri)
 html

/// Parse CSV
let getPrices stock fromDate toDate =
 let data = fetchOne stock fromDate toDate
 data.Trim().Split('\n')
 |> Seq.skip 1
 |> Seq.map (fun s -> s.Split(','))
 |> Seq.map (fun s -> float s.[4])
 |> Seq.takeWhile (fun s -> s >= 0.0)

/// Returns a formatted string with volatility for a stock
let getAnnualizedVol stock fromStr toStr =
 let prices = getPrices stock (System.DateTime.Parse fromStr)
 (System.DateTime.Parse toStr)

Exploring Volatility

[164]

 let vol = Math.Round(annualVolatility(prices) * 100.0, 2)
 sprintf "Volatility for %s is %.2f %%" stock vol

getAnnualizedVol "MSFT" "2013-01-01" "2013-08-29"
// val it : string = "Volatility for MSFT is 21.30 %"

getAnnualizedVol "ORCL" "2013-01-01" "2013-08-29"
// val it : string = "Volatility for ORCL is 20.44 %"

getAnnualizedVol "GOOG" "2013-01-01" "2013-08-29"
// val it : string = "Volatility for GOOG is 14.80 %"

getAnnualizedVol "EBAY" "2013-01-01" "2013-08-29"
// val it : string = "Volatility for EBAY is 20.82 %"

getAnnualizedVol "AAPL" "2013-01-01" "2013-08-29"
// val it : string = "Volatility for AAPL is 25.16 %"

getAnnualizedVol "AMZN" "2013-01-01" "2013-08-29"
// val it : string = "Volatility for AMZN is 21.10 %"

getAnnualizedVol "^GSPC" "2013-01-01" "2013-08-29"
// val it : string = "Volatility for ^GSPC is 9.15 %"

In this section we looked at actual volatility for some instruments using data from
Yahoo! Finance. In the next section we'll look into implied volatility and how to
extract that information from the Black-Scholes formula.

Learning about implied volatility
Here we'll use the bisection method introduced in Chapter 3, Financial Mathematics
and Numerical Analysis. This is a numerical method for finding roots. The implied
volatility is the root where the function value is zero for the Black-Scholes function
for different input parameters. The volatility of an underlying instrument is the input
to Black-Scholes which gives the same price as the current price of the option.

Vega tells us about the sensitivity in the option price for the changes in the volatility
of the underlying asset. Look at Yahoo! Finance and find the option data. Take that
option data into the following solve function:

Chapter 6

[165]

Figure 2: The VIX-index for the S&P500 index options from 2000-01-01 to 2013-11-01

The VIX-index, as seen in the preceding screenshot, is an index which combines the
implied volatility of S&P 500 index options. This can be interpreted as an indication
of future volatility.

Solving for implied volatility
Next we'll use a method for solving for implied volatility for European options.
This can be done by numerically solving for the root using the bisection method.

To be able to understand why we use the bisection solver to find the root of the
Black-Scholes equation, we need some tools. First we recapture the definition
of the call and put price as a function of the estimated volatility and a set of
parameters (denoted):

()
()
,.

,.

C f

P f

σ

σ

=


=

Exploring Volatility

[166]

To extract the implied volatility, we need an inverse function of the Black-Scholes
formula. Unfortunately, there is no analytical inverse of that function. Instead, we
can say that the Black-Scholes formula, with the implied volatility minus the current
market price of that option, has a call option in this case of zero. Following C is the
current market price for the call option studied in this section:

()
()

1 ,.

,. 0
C

C

g f g C

f C

σ

σ

−= ⇒ =

− =

This enables us to use a numerical root solver to find the implied volatility.
Following is an implementation of the bisection solver in F#. We'll also use the
earlier Black-Scholes implementation

/// Solve for implied volatility

let pow x n = exp (n * log(x))

type PutCallFlag = Put | Call

/// Cumulative distribution function
let cnd x =
 let a1 = 0.31938153
 let a2 = -0.356563782
 let a3 = 1.781477937
 let a4 = -1.821255978
 let a5 = 1.330274429
 let pi = 3.141592654
 let l = abs(x)
 let k = 1.0 / (1.0 + 0.2316419 * l)
 let w = (1.0-1.0/sqrt(2.0*pi)*exp(-
 l*l/2.0)*(a1*k+a2*k*k+a3*(pow k 3.0)+a4*(pow k 4.0)+a5*(pow k
 5.0)))
 if x < 0.0 then 1.0 - w else w

/// Black-Scholes
// call_put_flag: Call | Put
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes call_put_flag s x t r v =
 let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))

Chapter 6

[167]

 let d2=d1-v*sqrt(t)
 //let res = ref 0.0

 match call_put_flag with
 | Put -> x*exp(-r*t)*cnd(-d2)-s*cnd(-d1)
 | Call -> s*cnd(d1)-x*exp(-r*t)*cnd(d2)
/// Bisection solver
let rec bisect n N (f:float -> float) (a:float) (b:float) (t:float) :
float =
 if n >= N then -1.0
 else
 let c = (a + b) / 2.0
 if f(c) = 0.0 || (b - a) / 2.0 < t then
 // Solution found
 c
 else
 if sign(f(c)) = sign(f(a)) then
 bisect (n + 1) N f c b t
 else
 bisect (n + 1) N f a c t

Let's use it!

/// Calculate implied volatility for an option
bisect 0 25 (fun x -> (black_scholes Call 58.60 60.0 0.05475 0.0095 x)
- 1.2753) 0.0 1.0 0.001

Running the preceding code will result in an implied volatility of 0.3408203125,
approximately 34.1 percent volatility. Note that we have to subtract for the current
market price of the option (1.2753) as well, because we are solving for roots. The
last three inputs are the start and stop values, 0.0 and 1.0 means 0 percent and 100
percent respectively in terms of volatility. The stepping size is set to be 0.001, which
is 0.1 percent. A simple way to test whether the values are correct is to first use the
Black-Scholes formula using an actual volatility to get a theoretical price for
that option.

Let's assume we have a call option with a strike of $75.00, stock price of $73.00, 20
days to maturity (approximately 0.05475 years), a volatility of 15 percent, and a fixed
rate of 0.01 percent; this will result in an option price of:

let option_price = black_scholes Call 73.00 75.0 (days_to_years 20)
0.01 0.15

Exploring Volatility

[168]

We can now use this price to see if the bisection method works and solve for the
implied volatility. In this case we can expect an implied volatility to be exactly the
same as the volatility we put into the Black-Scholes formula; that is 15 percent:

> bisect 0 25 (fun x -> (black_scholes Call 73.00 75.0 (days_to_years
20) 0.01 x) - option_price) 0.0 1.0 0.001;;
val it : float = 0.1494140625

Delta hedging using Black-Scholes
A delta neutral portfolio is constructed by an option and the underlying instrument.
The portfolio will, in theory, be immune against small changes in the underlying
price. When talking about delta hedging, the hedge ratio of a derivative is used to
define the amount of underlying price needed for each option. Delta hedging is the
trading strategy that maintains a delta neutral portfolio for small changes in the
underlying price.

Briefly, let's look at how to do this in practice. Suppose we have N derivatives.
This needs to be hedged to protect against price movements. We then need to buy
the underlying stock to create the hedge. The whole procedure can be described in
three steps:

1. N derivatives need to be delta hedged
2. Buy underlying stock to protect derivatives
3. Rebalance hedge position on a regular basis

To determine how many stocks we need, we use the delta of the option, Δ. This tells
us how much the option price changes for a change in price of the underlying price.
The portfolio uses N∆ shares to be delta neutral; often there are 100 shares for each
options contract.

The price of the underlying stock is constantly fluctuating, which leads to changes in
the option prices. This means we also have to rebalance our portfolio. This is due to
the time value of options and the change in the underlying price.

Chapter 6

[169]

Let's use F# to calculate the number of stocks we need for a particular option to
delta hedge:

/// Assumes 100 shares of stock per option
let nr_of_stocks_delta_hedge N =
 (black_scholes_delta 'c' 58.0 60.0 0.5 0.01 0.3) * 100.0 *
 (float N)

/// Calculate nr of shares needed to cover 100 call options
nr_of_stocks_delta_hedge 100

If we evaluate the last row, we'll obtain the number of shares needed to create a delta
neutral hedge with 100 calls.

> nr_of_stocks_delta_hedge 100;;
val it : float = 4879.628104

The answer is approximately 4880 shares needed to hedge the call options.

Exploring the volatility smile
The volatility smile is a phenomenon frequently observed in the markets.
This phenomenon is mostly explained by the assumptions made in the Black-Scholes
formula. Black-Scholes assumes constant volatility throughout the life of an option.
If the Black-Scholes formula was corrected for this behavior, by taking into account the
nature of volatility being non-constant, we would end up with a flat volatility surface.

Further, the volatility smile describes the volatility for a certain price of the
option relative to the strike price of the same. The volatility surface is often
referring to a three-dimensional graph of the volatility smile, where time to
maturity and moneyness.

Moneyness is the ratio between the spot price of the underlying asset, S, and the
strike price of the option, K:

SM
K

=

Exploring Volatility

[170]

Next, we'll look at how to use F# to provide a graph for us where the volatility smile
is computed from parametric regression from real market data.

The following data is from Ericsson B options, from the OMX exchange in Sweden:

Figure 3: Volatility smile for a warrant

Chapter 6

[171]

As you can see in the following screenshot, the smile comes from the different
implied volatility for the strike prices:

Figure 4: Volatility smile as points from market data

We can use polynomial regression to estimate the volatility smile from the points
in the graph. This method was introduced in Chapter 3, Financial Mathematics and
Numerical Analysis; we'll build on the code from there. The polynomial will be of
order two, which means a second degree polynomial, that will describe the expected
volatility smile well.

Exploring Volatility

[172]

Let's look at an application that will produce the plot in Figure 5 using Math.NET
and FSharpChart:

open System.IO
open FSharp.Charting
open System.Windows.Forms.DataVisualization.Charting

open MathNet.Numerics
open MathNet.Numerics.LinearAlgebra
open MathNet.Numerics.LinearAlgebra.Double
open MathNet.Numerics.Distributions

let filePath = @"smile_data.csv"

/// Split row on commas
let splitCommas (l:string) =
 l.Split(',')

/// Read a file into a string array
let openFile (name : string) =
 try
 let content = File.ReadAllLines(name)
 content |> Array.toList
 with
 | :? System.IO.FileNotFoundException as e -> printfn
 "Exception! %s " e.Message; ["empty"]

/// Read the data from a CSV file and returns
/// a tuple of strike price and implied volatility%
let readVolatilityData =
 openFile filePath
 |> List.map splitCommas
 |> List.map (fun cols -> (cols.[2], cols.[3]))

/// Calculates moneyness and parses strings into numbers
let calcMoneyness spot list =
 list
 |> List.map (fun (strike, imp) -> (spot / (float strike),
 (float imp)))

Now that we have our data in a tuple, we'll use the spot price of the underlying
price, which was 83.2 at the time the data was collected. The mlist is the list of the
converted tuples with moneyness calculated for each one:

let list = readVolatilityData
let mlist = calcMoneyness 83.2 list

/// Plot values using FSharpChart
fsi.AddPrinter(fun (ch:FSharp.Charting.ChartTypes.GenericChart) ->
ch.ShowChart(); "FSharpChartingSmile")

Chapter 6

[173]

If you want to reproduce the previous plot, you can run the following line in
F# Interactive:

Chart.Point(mlist)

The final step is to calculate the regression coefficients and use these to calculate
the points for our curve. Then we will use a combined plot with the points and the
fitted curve:

/// Sample points
//let xdata = [0.0; 1.0; 2.0; 3.0; 4.0]
//let ydata = [1.0; 1.4; 1.6; 1.3; 0.9]

let xdata = mlist |> Seq.map (fun (x, _) -> x) |> Seq.toList
let ydata = mlist |> Seq.map (fun (_, y) -> y) |> Seq.toList

let N = xdata.Length
let order = 2

/// Generating a Vandermonde row given input v
let vandermondeRow v = [for x in [0..order] do yield v ** (float x)]

/// Creating Vandermonde rows for each element in the list
let vandermonde = xdata |> Seq.map vandermondeRow |> Seq.toList

/// Create the A Matrix
let A = vandermonde |> DenseMatrix.ofRowsList N (order + 1)
A.Transpose()

/// Create the Y Matrix
let createYVector order l = [for x in [0..order] do yield l]
let Y = (createYVector order ydata |> DenseMatrix.ofRowsList (order +
1) N).Transpose()

/// Calculate coefficients using least squares
let coeffs = (A.Transpose() * A).LU().Solve(A.Transpose() *
Y).Column(0)

let calculate x = (vandermondeRow(x) |> DenseVector.ofList) * coeffs

let fitxs = [(Seq.min xdata).. 0.01 ..(Seq.max xdata)]
let fitys = fitxs |> List.map calculate
let fits = [for x in [(Seq.min xdata).. 0.01 ..(Seq.max xdata)] do
yield (x, calculate x)]

Exploring Volatility

[174]

This is the code line to produce the combined plot with a title. The result will look as
shown in the following screenshot:

let chart = Chart.Combine [Chart.Point(mlist); Chart.Line(fits).
WithTitle("Volatility Smile")]

Figure 5: Volatility smile with polynomial regression curve

Summary
In this chapter, we looked into using F# for investigating different aspects of
volatility. Volatility is an interesting dimension of finance where you quickly dive
into complex theories and models. Here it's very much helpful to have a powerful
tool such as F# and F# Interactive. We've just scratched the surface of options and
volatility in this chapter. There is a lot more to cover, but that's outside the scope of
this book.

Most of the content here will be used in the trading system that we will develop in
the following chapters of this book. In the next chapter, we'll begin to look at the first
pragmatic building blocks of our trading system: orders and order types. We'll also
cover some aspects of pre-trade risk and how F# can help us model these.

Getting Started with Order
Types and Market Data

In this chapter you will learn how to model order types and market data and various
types of feeds in F#.

In this chapter you will learn:

• Modeling Order Types
• Modeling Market data
• Implementing simple pretrade risk analysis
• Using function composition and currying

Introducing orders
Typically, orders are instructions from the buyer's side to the seller's side regarding
how to buy and sell financial instruments. These orders are standardized to some
extent. In most situations, the orders and order types are determined by the broker
used and the exchange.

Order types
Order types are the types of orders that are found in trading systems and on
exchanges in general. Often you look at market orders, limit orders, and conditional
orders. In the conditional orders category, we have stop-orders and other orders
with special conditions for execution.

Getting Started with Order Types and Market Data

[176]

Other types exist as well, but they are considered to be synthetic orders because
they are combinations of the types previously described. Order types can be one
of the following:

• Market order
• Limit order
• Conditional and stop-orders

Market orders
Market orders are orders to be executed at the current market price on an exchange.
These orders will accept the current bid/ask (top of book) price for the particular
instrument. Furthermore, market orders are the simplest of the order types presented
here. Due to the uncertainty in the price for which the order will be executed, market
orders are not used where a more sophisticated risk profile is maintained. This
means that their uses are quite limited in reality.

Limit orders
Limit orders are the most commonly used order type. They are, as the name
suggests, limited to a fixed price. This means that the order has a limit price for
which they will be executed. For buy orders, this means that there is a limit, and they
are bounded above the limit price. All prices below this limit will be accepted for buy
orders. For sell orders, the opposite holds; there is a lower limit and the prices are
bounded below. All prices above this limit will be accepted for sell orders.

Conditional and stop-orders
Conditional orders, especially stop-orders, are orders that will be activated on the
exchange on certain conditions. Stop-orders are activated when a certain price is
touched by the order book (top of book). When this condition is met, the order will
be converted into a market order. Certain stop-orders that will be converted into
limit orders also exist.

Order properties
Order properties refer to the properties of an order describing what to do and
under which conditions. The following table presents the most basic properties
with descriptions and examples for each one.

Chapter 7

[177]

Property Description Examples
Order side Whether the order is a buy

or sell order with short sell
orders included

Buy, Sell

Order type Type of the order Market, Limit, and Stop
Order status The status for the order in

the execution flow
Created, New, Filled,
Canceled, and so on

Tif Time in force; how long an
order will remain active

GoodForDay, FillOrKill

Quantity Number of units to buy
or sell of the specific
instrument

10, 25, and 200

Price The limit price for the order 26.50, 55.10
Instrument The instrument to be used in

the order
MSFT, GOOG, AAPL

Stop price The stop price used in the
order

26.50, 55.10

Timestamp The date and time when the
order was created

2013-09-14 11:30:44

Next, we'll continue the work we started out in Chapter 2, Learning More About F#,
and extend the order class and describe some properties as discriminated unions.
First off, we will revisit the order side:

/// Order side
type OrderSide =
 Buy | Sell | Sellshort

In this context, the order side will have three alternatives; buy, sell, and sell short.
Then we have the order type, which will either be buy, sell, stop, or stop limit.
The stop limit is a stop order that will be converted into a limit order.

/// Order type
type OrderType =
 Market | Limit | Stop | StopLimit

Discriminated unions are elegant ways of describing data with different values. The
values can be many, without losing the readability. Next, we have the order status:

type OrderStatus =
 Created | New | Filled | PartiallyFilled | DoneForDay | Cancelled
 | Replaced | PendingCancel | Stopped | Rejected | Suspended |
 PendingNew | Calculated | Expired

Getting Started with Order Types and Market Data

[178]

There are many values for the order status; they are from the FIX 4.2 specification
and will be familiar to most of you who are familiar to FIX. They are here for
illustrative purposes and will be used in the trading system. Time in force (Tif)
has the most common alternatives used in trading:

type Tif =
 GoodForDay | GoodTilCancelled | ImmediateOrCancel | FillorKill

We'll introduce a new type here to be used along with the functionality introduced
in this section. First, we will look at the following code:

/// Validation result, ok or failed with message
type Result = Valid of Order | Error of string

Note the use of the Result in the preceding snippet; this is used so that we identify
the outcome of the validation function(s), which we'll introduce later on. For now,
you can think of them as a way of representing alternative return types.

The following order class is an extension on the work we did in Chapter 2, Learning
More About F#. It's implemented using some mutability, which is allowed in F#
because it's not a pure functional language in that sense. Mutability provides more
flexibility and compromises for more pragmatic solutions. Here, we use private
member fields and some new fields:

/// Order class
type Order(side: OrderSide, t: OrderType, p: float, tif: Tif, q: int,
i: string, sp: float) =
 // Init order with status created
 let mutable St = OrderStatus.Created
 let mutable S = side
 member private this.Ts = System.DateTime.Now
 member private this.T = t
 member private this.P = p
 member private this.tif = tif
 member private this.Q = q
 member private this.I = i
 member private this.Sp = sp

 member this.Status
 with get() = St
 and set(st) = St <- st

 member this.Side
 with get() = S
 and set(s) = S <- s

Chapter 7

[179]

 member this.Timestamp
 with get() = this.Ts

 member this.Type
 with get() = this.T

 member this.Qty
 with get() = this.Q

 member this.Price
 with get() = this.P

 member this.Tif
 with get() = this.tif

 member this.Instrument
 with get() = this.I

 member this.StopPrice
 with get() = this.Sp

 member this.toggleOrderSide() =
 S <- this.toggleOrderSide(S)

 member private this.toggleOrderSide(s: OrderSide) =
 match s with
 | Buy -> Sell
 | Sell -> Buy
 | Sellshort -> Sellshort

 static member (~-) (o : Order) =
 Order(o.toggleOrderSide(o.Side), o.Type, o.Price, o.tif, o.Q,
 o.I, o.Sp)

The preceding method will toggle the side of the order, which is useful if we,
 for example, want to change the side of the order without creating a new one.

The preceding class can be used in the same way as other classes in F#:

 // Limit buy order
let buyOrder = Order(OrderSide.Buy, OrderType.Limit, 54.50, Tif.
FillorKill, 100, "MSFT", 0.0)

Getting Started with Order Types and Market Data

[180]

The fields will be as follows, where the private fields are hidden and the property
getter functions are the names of the fields:

val it : Order = FSI_0050+Order {Instrument = "MSFT";
 Price = 54.5;
 Qty = 100;
 Side = Buy;
 Status = Created;
 StopPrice = 0.0;
 Tif = FillorKill;
 Timestamp = 2013-09-14 12:01:57;
 Type = Limit;}

Suppose you want to validate an order for correctness and avoid simple mistakes.
For example, if the order is a limit order, we can check whether the order has a price
above zero. Furthermore, if the order is a stop order, the stop price has to be greater
than zero, and so on. Let's write a function to execute this order:

/// Validates an order for illustrative purposes
let validateOrder (result:Result) : Result=
 match resultwith
 | Error s -> Error s
 | Valid order ->
 let orderType = order.Type
 let orderPrice = order.Price
 let stopPrice = order.StopPrice
 match orderType with
 | OrderType.Limit ->
 match orderPrice with
 | p when p > 0.0 -> Valid order
 | _ -> Error "Limit orders must have a price > 0"
 | OrderType.Market -> Valid order
 | OrderType.Stop ->
 match stopPrice with
 | p when p > 0.0 -> Valid order
 | _ -> Error "Stop orders must have price > 0"
 | OrderType.StopLimit ->
 match stopPrice with
 | p when p > 0.0 && orderPrice > 0.0 -> Valid order
 | _ -> Error "Stop limit orders must both price > 0 and
 stop price > 0"

Chapter 7

[181]

The function will take an order object wrapped in the order monad. This will become
clear when we look at how to use it in the following code:

1. We can create some orders of various types and see if our validation
function works.
// Limit buy order
let buyOrder = Order(OrderSide.Buy, OrderType.Limit, 54.50, Tif.
FillorKill, 100, "MSFT", 0.0)

// Limit buy order, no price
let buyOrderNoPrice = Order(OrderSide.Buy, OrderType.Limit, 0.0,
Tif.FillorKill, 100, "MSFT", 0.0)

// Stop order that will be converted to limit order, no limit
price
let stopLimitNoPrice = Order(OrderSide.Buy, OrderType.StopLimit,
0.0, Tif.FillorKill, 100, "MSFT", 45.50)

// Stop order that will be converted to market order
let stopNoPrice = Order(OrderSide.Buy, OrderType.Stop, 0.0, Tif.
FillorKill, 100, "MSFT", 45.50)

2. Now, we will test our validation function for the preceding orders
just created:
// Validate sample orders
validateOrder (Valid buyOrder) // Ok
validateOrder (Valid buyOrderNoPrice) // Failed
validateOrder (Valid stopLimitNoPrice) // Failed
validateOrder (Valid stopNoPrice) // Ok

3. Let's suppose we also want a validator to check whether the instrument is
set for an order. We can then run these tests one by one. First, we need a
function to do the validation:
let validateInstrument (result:Result) : Result =
 match result with
 | Error l -> Error l
 | Valid order ->
 let orderInstrument = order.Instrument
 match orderInstrument.Length with
 | l when l > 0 -> Valid order
 | _ -> Error "Must specify order Instrument"

Getting Started with Order Types and Market Data

[182]

4. Running this in F# Interactive will result in the following:
> validateInstrument (Valid stopNoPriceNoInstrument);;
val it : Result = Error "Must specify order Instrument"

5. Now we want to combine the two validators into one validator. This can be
done in F# using function composition. Function composition, with the >>
operator, lets you take two or more functions and combine them into one
new function. You can look at function composition as a way of chaining
functions together. This is useful when smaller building blocks are used
and reused and supports modularity.
/// Composite validator
let validateOrderAndInstrument = validateOrder >>
validateInstrument

6. This function can now be used in the same way as the one we used previously:
// Stop order that will be converted to market order
let stopNoPriceNoInstrument = Order(OrderSide.Buy, OrderType.Stop,
0.0, Tif.FillorKill, 100, "", 45.50)

validateOrderAndInstrument (Valid stopNoPriceNoInstrument)

This is a rather powerful way of combining functionality and can be useful in
many situations. We'll come back to function composition later on when we look
at pretrade risks.

Understanding order execution
Let's look at order execution and order flow for a moment. Order execution is where
the orders are executed, typically at an exchange. For algorithmic trading, the buy
side (trader) will often have their own order management system or order execution
engine at the exchange, close to the exchange's trading servers. The orders at the
exchange are typically limit orders; there are other types too. All other order types
are considered to be synthetic orders or non-native orders. If you use a broker, you
will never see this. But for high frequency trading, limit orders are considered to be
the only native type. Market orders are simply limit orders with the current market
price (from the top of book).

The following illustration shows a simple order flow between an order execution
engine and the exchange. The order execution engine resides on the buy side and
keeps track of the orders that are currently in and their status.

Chapter 7

[183]

Order execution flow and status updates for an order

The order status of an order is represented by the discriminated union we have
seen before:

type OrderStatus =
 Created | New | Filled | PartiallyFilled | DoneForDay | Cancelled
 | Replaced | PendingCancel | Stopped | Rejected | Suspended |
 PendingNew | Calculated | Expired

The property will be updated for the order management system when an execution
report is received for that particular order. First the order has the order status
Created and then if it is accepted, it will have the order status New. Then, it will
have any of the order statuses from the preceding OrderStatus object; for example
Filled, Expired, Rejected, and so on.

Introducing market data
Market data is the data representing the current bid/ask for a financial instrument
at an exchange. The market data can either be the top of book, best bid/ask for the
particular instrument, or an aggregated book with several levels of depth. Normally,
we just look at the best bid/ask prices, top of book called quotes. Market data can
also be sent as OHLC bars or candles. Such bars are only useful for visualizing price
information in charts or for trading at a longer horizon. It is a simple way of filtering
the price information. The midpoint is defined as the average between the bid and ask.

Type Quote =
{
 bid : float

Getting Started with Order Types and Market Data

[184]

 ask : float
} member this.midpoint() = (this.bid + this.ask) / 2.0

Let's see how to use this type:

let q = {bid = 1.40; ask = 1.45} : Quote

We can calculate the midpoint as follows:

> q.midpoint();;
val it : float = 1.425

We can extend the Quote type to have a built-in function to calculate the spread for
that quote:

type Quote =
 {
 bid : float
 ask : float
 }
 member this.midpoint() = (this.bid + this.ask) / 2.0
 member this.spread() = abs(this.bid - this.ask)

let q2 = {bid = 1.42; ask = 1.48} : Quote

> q2.midpoint();;
val it : float = 1.45
> q2.spread();;
val it : float = 0.06

Sometimes, in real systems, the bid and ask are not sent in the same object because
updates to them will not occur simultaneously. Then, it's preferable to separate them:

// Often data is just sent from the feed handler, as bid or ask
type LightQuote =
 | Bid of float | Ask of float

let lqb = Bid 1.31
let lqa = Ask 1.32

Chapter 7

[185]

Implementing simple pretrade risk
analysis
In this section, we'll briefly cover pretrade risks for a simple trading system.
Pretrade risks are everything that are considered to be risks and analyzed before
the order is sent to the exchange. Typically, this is done in the trading engine or
order execution engine or order management system. Here we'll consider basic
pretrade risk measurements, such as order size and maximum distance for limit
prices (that is values that tend to be high/low from the current market price).

The following are the examples of pretrade risk rules:

• Limit the order price distance from the current market price
• The maximum order value
• Total exposure
• Number of orders sent per time unit

Validating orders
Let's dive into some code and look at how pretrade risk can be implemented using
functional programming and function composition. We'll look at two simple
pretrade risk rules. The first one is for the total order value and the other one is for
checking if the limit price is set on the favorable side of the current market price.
This can be useful for manual trading, for example.

let orderValueMax = 25000.0; // Order value max of $25,000

/// A simple pre trade risk rule
let preTradeRiskRuleOne (result:Result) : Result =
 match result with
 | Error l -> Error l
 | Valid order ->
 let orderValue = (float order.Qty) * order.Price
 match orderValue with
 | v when orderValue > orderValueMax -> Error "Order value
 exceeded limit"
 | _ -> Valid order

Getting Started with Order Types and Market Data

[186]

The next rule we will use is currying, which is a concept we talked about in Chapter
2, Learning More About F#. Currying is a way of calling a function where parts of the
functions arguments are saved to be specified later. The following is the second rule
for our pretrade risk analysis:

// Using currying
let preTradeRiskRuleTwo (marketPrice:float) (result:Result) : Result =
 match result with
 | Error l -> Error l
 | Valid order ->
 let orderLimit = (float order.Qty) * order.Price
 match orderLimit with
 | v when orderLimit < marketPrice && order.Side = OrderSide.
 Buy -> Error "Order limit price below market price"
 | v when orderLimit > marketPrice && order.Side = OrderSide.
 Sell -> Error "Order limit price above market price"
 | _ -> Valid order

We will now use function composition, as before, and create new rules from
existing ones:

let validateOrderAndInstrumentAndPreTradeRisk =
 validateOrderAndInstrument >> preTradeRiskRuleOne

let validateOrderAndInstrumentAndPreTradeRisk2 marketPrice
 = validateOrderAndInstrument >> preTradeRiskRuleOne >>
 (preTradeRiskRuleTwo marketPrice)

validateOrderAndInstrumentAndPreTradeRisk (Valid
 stopNoPriceNoInstrument)
validateOrderAndInstrumentAndPreTradeRisk (Valid
 buyOrderExceetsPreTradeRisk)
validateOrderAndInstrumentAndPreTradeRisk2 25.0 (Valid
 buyOrderBelowPricePreTradeRisk)

This pattern can quickly become quite impractical. However, there is an elegant
technique to be used where we first specify the functions in a list and then use
List.reduce and the composite operator to create a new composition:

/// Chain using List.reduce
let preTradeRiskRules marketPrice = [
 preTradeRiskRuleOne
 (preTradeRiskRuleTwo marketPrice)
]

/// Create function composition using reduce, >>, composite operator

Chapter 7

[187]

let preTradeComposite = List.reduce (>>) (preTradeRiskRules 25.0)

preTradeComposite (Valid buyOrderExceetsPreTradeRisk)
preTradeComposite (Valid buyOrderBelowPricePreTradeRisk)

Introducing FIX and QuickFIX/N
In this section we'll learn about the FIX 4.2 standard and the QuickFIX/N library for
.NET. FIX is the standard protocol of communicating with brokers and exchanges
and stands for Financial Information eXchange. It has been around since the early
90s and uses an ASCII-based representation of messages. Other alternatives exist,
such as proprietary APIs and protocols.

Using FIX 4.2
In this section we'll refactor the existing trading system in order to use
FIX 4.2 messages.

1. Download FIXimulator from the following URL:
http://fiximulator.org/

2. Download QuckFIX/n from the following URL:
http://www.quickfixn.org/download.

3. Extract the files from the archives into folders.
4. Start FIXimulator by running fiximulator.bat.

When you have started FIXimulator, it will look like the following figure. At the
bottom of the application, there is a status bar with indicators. The leftmost indicator
is for the client connection status. The first step is to make a successful connection to
the simulator.

Configuring QuickFIX to use the simulator
To be able to connect to the FIXimulator, you need a proper configuration file,
config.cfg, in the classpath of the project as well as the correct path in the
SessionSettings constructor in the following code:

Getting Started with Order Types and Market Data

[188]

The contents of config.cfg are:

[DEFAULT]
ConnectionType=initiator
ReconnectInterval=60
SenderCompID=TRADINGSYSTEM

[SESSION]
BeginString=FIX.4.2
TargetCompID=FIXIMULATOR
StartTime=00:00:00
EndTime=00:00:00
HeartBtInt=30
ReconnectInterval=10
SocketConnectPort=9878
SocketConnectHost=192.168.0.25
FileStorePath=temp
ValidateUserDefinedFields=N

ResetOnLogon=Y
ResetOnLogout=Y
ResetOnDisconnect=Y

You have to change the value of the SocketConnectHost field to suit your setup,
and this will be your local IP address if you run the simulator on the same machine.

There is also a configuration file for the simulator, namely FIXimulator.cfg, where
the value of TargetCompID has to be changed to TRADINGSYSTEM.

Chapter 7

[189]

No client is connected

On the client side, in our program, we'll use the QuickFIX library and implement the
methods needed in order to connect to the simulator. Add the following code to a
new file FIX.fs. We'll use this in the final project, so it's recommended to work
from the TradingSystem project while doing this project, which will start in the
next chapter.

namespace FIX

 open System
 open System.Globalization
 open QuickFix
 open QuickFix.Transport
 open QuickFix.FIX42
 open QuickFix.Fields

Getting Started with Order Types and Market Data

[190]

To use QuickFIX, a number of interfaces have to be implemented. The
ClientInitiator function is where the messages will be handled:

module FIX =
 type ClientInitiator() =
 interface IApplication with
 member this.OnCreate(sessionID : SessionID) : unit =
 printfn "OnCreate"
 member this.ToAdmin(msg : QuickFix.Message, sessionID :
 SessionID) : unit = printf "ToAdmin"
 member this.FromAdmin(msg : QuickFix.Message, sessionID :
 SessionID) : unit = printf "FromAdmin"
 member this.ToApp(msg : QuickFix.Message, sessionID :
 SessionID) : unit = printf "ToApp"
 member this.FromApp(msg : QuickFix.Message, sessionID :
 QuickFix.SessionID) : unit = printfn"FromApp -- %A" msg
 member this.OnLogout(sessionID : SessionID) : unit =
 printf "OnLogout"
 member this.OnLogon(sessionID : SessionID) : unit = printf
 "OnLogon"

The ConsoleLog function is another interface needed to support logging.

type ConsoleLog() =
 interface ILog with
 member this.Clear() : unit = printf "hello"
 member this.OnEvent(str : string) : unit =
 printfn "%s" str
 member this.OnIncoming(str : string) : unit =
 printfn "%s" str
 member this.OnOutgoing(str : string) : unit =
 printfn "%s" str

type ConsoleLogFactory(settings : SessionSettings) =
 interface ILogFactory with
 member this.Create(sessionID : SessionID) : ILog =
 new NullLog() :> ILog

Finally, we have FIXEngine itself. This is the interface provided to the other parts of
the system. It provides methods to start, stop, and send orders.

type FIXEngine() =
 let settings = new SessionSettings(@"conf\config.cfg")
 let application = new ClientInitiator()
 let storeFactory = FileStoreFactory(settings)
 let logFactory = new ConsoleLogFactory(settings)
 let messageFactory = new MessageFactory()

Chapter 7

[191]

 let initiator = new SocketInitiator(application, storeFactory,
 settings)
 let currentID = initiator.GetSessionIDs() |> Seq.head
 member this.init() : unit =
 ()
 member this.start() : unit =
 initiator.Start()
 member this.stop() : unit =
 initiator.Stop()

Now we can try the preceding code using F# Interactive, and we will be connected to
the simulator. The client connection status in the FIXimulator window will now be
green if everything worked out successfully.

let fixEngine = new FIX.FIXEngine()
fixEngine.init()
fixEngine.start()

The client connection status is green when the client is connected

Getting Started with Order Types and Market Data

[192]

Let's make things more interesting and try out some code to send an order to the
simulator. As previously mentioned, orders have various properties. The fields in
our Order object are supposed to mimic the FIX 4.2 fields as closely as possible.
We'll first try out the QuickFIX representation or orders, and send a limit order to
the simulator to see if everything works as expected. To do this, we'll add a method
to FIXEngine:

member this.sendTestLimitOrder() : unit =
 let fixOrder = new NewOrderSingle()
 fixOrder.Symbol <- new Symbol("ERICB4A115")
 fixOrder.ClOrdID <- new ClOrdID(DateTime.Now.Ticks.ToString())
 fixOrder.OrderQty <- new OrderQty(decimal 50)
 fixOrder.OrdType <- new OrdType('2'); // Limit order
 fixOrder.Side <- new Side('1');
 fixOrder.Price <- new Price(decimal 25.0);
 fixOrder.TransactTime <- new TransactTime();
 fixOrder.HandlInst <- new HandlInst('2');
 fixOrder.SecurityType <- new SecurityType("OPT"); // Option
 fixOrder.Currency <- new Currency("USD");
 // Send order to target
Session.SendToTarget(fixOrder, currentID) |> ignore

This method will just be used for testing purposes and it is useful to have a working
reference when we later add support to translate our internal Order object into the
representation used by QuickFIX. You have to restart the F# Interactive session to
see the changes in FIXEngine that we did earlier. Run the following code, and you'll
hopefully have sent your first order to the simulator:

let fixEngine = new FIX.FIXEngine()
fixEngine.init()
fixEngine.start()
fixEngine.sendTestLimitOrder()

Chapter 7

[193]

The client connection status is green when the client is connected

Let's stay in FIXimulator for a moment and see what useful functionality we got.

Getting Started with Order Types and Market Data

[194]

You can select the Orders tab in the simulator and you will have a new view,
as shown in the following screenshot:

Investigating the order properties from incoming orders

The SenderCompID field corresponds to the actual sender of the order, which is
the TradingSystem. We can also see the other properties of the order. Inside the
simulator, you have several alternatives for each order, for example:

• Acknowledged
• Canceled
• Rejected
• Executed

Chapter 7

[195]

We need some support for keeping track of the orders in our system and to change
their state depending on the messages received from the counterpart (simulator); this
is done by using the ClientInitiator function. Here we have the method called
FromApp, which is a method to handle incoming messages; for example, modify
the state of the orders in the system. The message to listen to, in the case of order
execution management, is ExecutionReport. It is exactly what the name suggests,
a report of execution. First we'll implement the code to just print out the status from
the last order execution in the simulator. Then we'll use the simulator to test it out.

member this.FromApp(msg : QuickFix.Message, sessionID : QuickFix.
SessionID) : unit =
 match msg with
 | :? ExecutionReport as report ->
 match report.OrdStatus.getValue() with
 | OrdStatus.NEW ->
 printfn "ExecutionReport (NEW) %A" report
 | OrdStatus.FILLED ->
 printfn "ExecutionReport (FILLED) %A" report
 | OrdStatus.PARTIALLY_FILLED ->
 printfn "ExecutionReport (PARTIALLY_FILLED) %A" report
 | OrdStatus.CANCELED ->
 printfn "ExecutionReport (CANCELED) %A" report
 | OrdStatus.REJECTED ->
 printfn "ExecutionReport (REJECTED) %A" report
 | OrdStatus.EXPIRED ->
 printfn "ExecutionReport (EXPIRED) %A" report
 | _ -> printfn "ExecutionReport (other) %A" report
 | _ -> ()

In the preceding code, we try to cast msg to an ExecutionReport instance and if
that succeeds, we pattern match on the order status. Let's try this together with
the simulator.

1. Send a test order to the simulator using fixEngine.sendTestLimitOrder().
2. In FIXimulator, under Orders, select the received order.
3. Press the Acknowledge button.
4. F# Interactive will output the execution report, which will look

something like:
ExecutionReport (NEW) seq [[6, 0]; [11, 1]; [14, 0]; [17,
E1385238452777]; ...]

This means we have received an execution report, and the order status is
now New.

Getting Started with Order Types and Market Data

[196]

5. Select the same order in the simulator and click on Cancel.
ExecutionReport (CANCELED) seq [[6, 0]; [11, 1]; [14, 0]; [17,
E1385238572409]; ...]

6. We'll repeat the procedure, but this time we'll acknowledge and then execute
the order in two steps, resulting in a New, Partial fill, and Filled
execution report.

7. Send a test order again.
8. Acknowledge the order.
9. Execute the order with LastShares=50 and LastPx=25.
10. Execute again with LastShares=50 and LastPx=24.
11. Watch the output in F# Interactive.

Note the order in which the execution reports arrive. First, we execute half the
order resulting in a partial fill. Then, we execute the remaining 50, which will fill
the order.

ExecutionReport (PARTIALLY_FILLED) seq [[6, 25]; [11, 1]; [14, 50];
 [17, E1385238734808]; ...]
ExecutionReport (FILLED) seq [[6, 24.5]; [11, 1]; [14, 100]; [17,
 E1385238882881]; ...]

In the simulator, we can see the value in the AvgPx column is 24.5. This corresponds
to the average price for the whole order. Next, we'll implement a lightweight order
manager to keep track of all this for us.

Let's look at the modified code for the FromApp callback function where we just
altered the status of the order matching the order ID:

| OrdStatus.NEW ->
 printfn "ExecutionReport (NEW) %A" report
 orders |> Seq.find (fun order -> order.Timestamp.ToString() =
report.ClOrdID.getValue()) |> (fun order -> order.Status <-
 OrderStatus.New)

The orders list is a BindingList, which is just a declaration we use for
experimentation outside of the MVC model where it will be located in the final system.

/// Use a list of NewOrderSingle as first step
let orders = new BindingList<Order>()
let fixEngine = new FIX.FIXEngine(orders)
fixEngine.init()
fixEngine.start()
let buyOrder1 = Order(OrderSide.Buy, OrderType.Limit, 24.50, Tif.
 GoodForDay, 100, "ERICB4A115", 0.0)

Chapter 7

[197]

let buyOrder2 = Order(OrderSide.Buy, OrderType.Limit, 34.50, Tif.
 GoodForDay, 100, "ERICB4A116", 0.0)
let buyOrder3 = Order(OrderSide.Buy, OrderType.Limit, 44.50, Tif.
 GoodForDay, 100, "ERICB4A117", 0.0)
fixEngine.sendOrder(buyOrder1)
fixEngine.sendOrder(buyOrder2)
fixEngine.sendOrder(buyOrder3)

The sendOrder method is also modified slightly so that it can handle our Order
objects and convert them to the QuickFIX representation:

member this.sendOrder(order:Order) : unit =
 let fixOrder = new NewOrderSingle()
 /// Convert to Order to NewOrderSingle
 fixOrder.Symbol <- new Symbol(order.Instrument)
 fixOrder.ClOrdID <- new ClOrdID(order.Timestamp.ToString())
 fixOrder.OrderQty <- new OrderQty(decimal order.Qty)
 fixOrder.OrdType <- new OrdType('2'); /// TODO
 fixOrder.Side <- new Side('1');
 fixOrder.Price <- new Price(decimal order.Price);
 fixOrder.TransactTime <- new TransactTime();
 fixOrder.HandlInst <- new HandlInst('2');
 fixOrder.SecurityType <- new SecurityType("OPT"); /// TODO
 fixOrder.Currency <- new Currency("USD"); /// TODO
 /// Add to OMS
 orders.Add(order)
 /// Send order to target
 Session.SendToTarget(fixOrder, currentID) |> ignore

We can now use the code elaborated so far to test out the simple order manager
using the simulator. When the three orders are sent to the simulator, the output will
look like the following screenshot. Select the first one and click on Acknowledge.
We can now compare the contents of the orders list to see if the execution report is
handled and if the order manager has done its job.

Here is the first Order in the orders list:

{Instrument = "ERICB4A115";
 OrderId = "635208412525809991";
 Price = 24.5;
 Qty = 100;
 Side = Buy;
 Status = Created;
 StopPrice = 0.0;
 Tif = GoodForDay;
 Timestamp = 2013-11-23 22:09:31;
 Type = Limit;}
…

Getting Started with Order Types and Market Data

[198]

This will be changed to the following if everything works out:

{Instrument = "ERICB4A115";
OrderId = "635208412525809991";
Price = 24.5;
Qty = 100;
Side = Buy;
Status = New;
StopPrice = 0.0;
Tif = GoodForDay;
Timestamp = 2013-11-23 22:09:31;
Type = Limit;}

Testing out the first version of our order manager

The remaining part is to include support for partial fills, where we have open and
executed quantities and the average price. This is the final part of the order manager
to be elaborated. We'll also enhance the outputs from the ClientInitiator function
to include these fields from the execution reports.

Chapter 7

[199]

The following are the modifications done to the code to handle the order
management part:

member this.findOrder str =
 try
 Some (orders |> Seq.find (fun o -> o.Timestamp = str))
 with | _ as ex -> printfn "Exception: %A" ex.Message; None

member this.FromApp(msg : QuickFix.Message, sessionID : QuickFix.
SessionID) : unit =
match msg with
| :? ExecutionReport as report ->
 let qty = report.CumQty
 let avg = report.AvgPx
 let sta = report.OrdStatus
 let oid = report.ClOrdID
 let lqty = report.LeavesQty
 let eqty = report.CumQty

let debug = fun str -> printfn "ExecutionReport (%s) # avg price:
%s | qty: %s | status: %s | orderId: %s" str (avg.ToString()) (qty.
ToString()) (sta.ToString()) (oid.ToString())

 match sta.getValue() with
 | OrdStatus.NEW ->
 match this.findOrder(oid.ToString()) with
 | Some(o) ->
 o.Status <- OrderStatus.New
 | _ -> printfn "ERROR: The order was not found in OMS"
 debug "NEW"

To handle the status of Filled, we set the average price, the open quantity, and the
executed quantity:

 | OrdStatus.FILLED ->
 /// Update avg price, open price, ex price
 match this.findOrder(oid.ToString()) with
 | Some(o) ->
 o.Status <- OrderStatus.Filled
 o.AveragePrice <- double (avg.getValue())
 o.OpenQty <- int (lqty.getValue())
 o.ExecutedQty <- int (eqty.getValue())
 | _ -> printfn "ERROR: The order was not found in OMS"
 debug "FILLED"

Getting Started with Order Types and Market Data

[200]

To handle the status of PartiallyFilled, we set the average price, the open
quantity, and the executed quantity:

 | OrdStatus.PARTIALLY_FILLED ->
 /// Update avg price, open price, ex price
 match this.findOrder(oid.ToString()) with
 | Some(o) ->
 o.Status <- OrderStatus.PartiallyFilled
 o.AveragePrice <- double (avg.getValue())
 o.OpenQty <- int (lqty.getValue())
 o.ExecutedQty <- int (eqty.getValue())
 | _ -> printfn "ERROR: The order was not found in OMS"
 debug "PARTIALLY_FILLED"

The remaining status updates are straightforward updates:

 | OrdStatus.CANCELED ->
 match this.findOrder(oid.ToString()) with
 | Some(o) ->
 o.Status <- OrderStatus.Cancelled
 | _ -> printfn "ERROR: The order was not found in OMS"
 debug "CANCELED"
 | OrdStatus.REJECTED ->
 match this.findOrder(oid.ToString()) with
 | Some(o) ->
 o.Status <- OrderStatus.Rejected
 | _ -> printfn "ERROR: The order was not found in OMS"
 debug "REJECTED"
 | OrdStatus.REPLACED ->
 match this.findOrder(oid.ToString()) with
 | Some(o) ->
 o.Status <- OrderStatus.Replaced
 | _ -> printfn "ERROR: The order was not found in OMS"
 debug "REPLACED"
 | OrdStatus.EXPIRED ->
 printfn "ExecutionReport (EXPIRED) %A" report
 | _ -> printfn "ExecutionReport (other) %A" report
| _ -> ()

We can test this out using the simulator, and a test run with partial fills, as before,
results in the following content in the orders list:

{AveragePrice = 0.0;
ExecutedQty = 0;
Instrument = "ERICB4A115";
OpenQty = 0;
Price = 24.5;
Qty = 100;
Side = Buy;
Status = Cancelled;

Chapter 7

[201]

...

{AveragePrice = 23.0;
ExecutedQty = 100;
Instrument = "ERICB4A116";
OpenQty = 0;
Price = 34.5;
Qty = 100;
Side = Buy;
Status = Filled;
...

{AveragePrice = 24.5;
ExecutedQty = 100;
Instrument = "ERICB4A117";
OpenQty = 0;
Price = 44.5;
Qty = 100;
Side = Buy;
Status = Filled;
...

The final iteration and testing of the order manager

Getting Started with Order Types and Market Data

[202]

The values will be presented in a data grid in the GUI for the trading system,
which we'll start preparing in the next chapter.

Summary
In this chapter we introduced several concepts regarding orders and market data.
We also looked at how to model orders and market data in F# using some of the
information available from the FIX 4.2 standard to guide us. It's good to have an
overview of these facts while working with quantitative finance, especially when
dealing with algorithmic trading.

The results from this chapter will be used when we start to set up the trading system,
which we'll start doing in the next chapter. We'll also look at how to implement test
cases for the validation code provided in this chapter.

Setting Up the Trading
System Project

In this chapter we'll set up the trading system, which we'll develop throughout the
rest of this book. The trading system will summarize the things we've learned so far.
It's also a good way of illustrating the power of F# in combination with existing tools
and libraries. We'll start out by setting up the project in Visual Studio, then adding
the references needed for testing and connecting to Microsoft SQL Server. Type
providers and Language-INtegrated-Query (LINQ) will be briefly introduced here,
and more details will be covered in the next chapter.

In this chapter, we will learn:

• More about automated trading
• Test-driven development
• Requirements for the trading system
• Setting up the project
• Connecting to a database
• Type providers in F#

Explaining automated trading
Automated trading is becoming increasingly popular these days. Most trading
strategies can be implemented to be traded by a computer. There are many benefits
to automating a trading strategy. The trading strategy can be backtested using
historical data. This means the strategy is run on historical data and the performance
of the strategy can be studied. We'll not cover backtesting in this book, but the
trading system developed here can be modified to support backtesting.

Setting Up the Trading System Project

[204]

Automated trading systems are, as the name suggests, automated systems for
trading that are run on a computer. They often consist of several parts such as feed
handlers, order management systems, and trading strategies. Typically, automated
trading systems will represent a pipeline from market data to orders to be executed,
and keep track of state and history. Rules are written to be executed in near real time
for the market data entering the system. It's much like a regular control system, with
an input and an output. In the following chapters we'll look at how to implement a
rather simple, yet powerful, trading system in F#, wrapping up what we have learnt
in this book.

The following are the parts of an automated trading system:

• Feed handlers and market data adapters
• Trading strategies
• Order execution and order management
• Persistence layer (DBs)
• GUI for monitoring and human interaction

Here is the block diagram showing the parts of an automated trading system:

Persistence layer (DBs)

Feed handler Order execution
Decision Engine

[Trading strategies]

Figure 1: Typical block diagram of a trading system

Understanding software testing and
test-driven development
When writing software, it's crucial to be able to test the functionality of the system
being written. In software development, there is a popular and effective way of
writing code in a more agile fashion, namely test-driven development. This method
is driven by tests, and the tests written before the main logic are implemented. In
other words, when you are about to write a test case for a system, you will certainly
have a couple of requirements already at hand, or an idea about the software. In
test-driven development, the tests will reflect the requirements. This is a way of
writing the requirements in code that will test the piece of software for a given set
of functionality. The tests are implemented as test cases, and test cases are collected

Chapter 8

[205]

into test suites. The tests will preferably be automated with a tool. Having automated
tests will enable the developers to rerun the tests every time a change is made to
the code.

We'll focus on unit testing in this chapter using NUnit.

Understanding NUnit and FsUnit
NUnit is an open source unit testing framework for all .NET languages, same as
JUnit is for Java. NUnit enables the programmer to write unit tests, and execute the
test to be able to see which tests are successful and which failed. In our project we'll
use NUnit and its external tool for running tests. A typical line for testing in F# using
FsUnit can look something like the following:

> 1 |> should equal 1;;

Requirements for the system
In this section we'll discuss some of the main requirements for the trading system.
We'll not specify all the details, because some of them are needed to be divided into
parts. The trading system will make use of some libraries and tools, specified in the
following section.

Table some of the most important requirements of the trading system we'll develop.
It will be a simple system with trading options for volatility arbitrage opportunities
using S&P 500 index options and the CBOE Volatility Index (VIX). The S&P 500 index
consists of the largest 500 companies listed on NYSE or NASDAQ. It's considered
to be a general indicator of the U.S. stock market. The VIX is an index of the implied
volatility of S&P 500 index options.

The system should be able to do the following:

• Store log entries in a Microsoft SQL Server database
• Store trade history in a Microsoft SQL Server database
• Download quotes from Yahoo! Finance
• Manage orders
• Send an order using FIX 4.2
• Connect using FIX 4.2 to a FIX simulator
• Execute a trading strategy written in F#
• Be controlled from a basic GUI with start/stop buttons
• Display the current position(s)

Setting Up the Trading System Project

[206]

• Display the current profit and loss
• Display the latest quote(s)
• Use the MVC pattern

The following are the libraries and tools used:

• QuickFIX/N: The FIX protocol for .NET
• QuantLib: This is a library for quantitative finance
• LINQ
• Microsoft SQL Server
• Windows Forms
• FSharpChart: This is an F# friendly wrapper of Microsoft Chart Controls

Setting up the project
In this section we'll set up the solution in Visual Studio. It will consist of two projects;
one project for the trading system and one project for the tests. Separating the two
has some advantages and will produce two binaries. The tests will be run from the
NUnit program, which is a standalone program for running unit tests.

The following steps will create two projects in the same solution:

1. Create a new F# application, name it TradingSystem as shown in the
following screenshot:

Chapter 8

[207]

Figure 2: Adding a new project to a solution

2. Add a new project to the existing TradingSystem solution. Right-click on the
solution as shown in Figure 2, and navigate to Add | New Project.... Create
another F# application and name it TradingSystem.Tests.

Setting Up the Trading System Project

[208]

3. Next, we have to add the testing frameworks to the TradingSystem.Tests
project as shown in the following screenshot:

Figure 3: The solution with the two projects

4. Now we have the solution set up with two projects. You can see the
references in each of the projects in Figure 3. We'll add some more references
to both projects in this chapter. Next we'll install the testing frameworks, first
NUnit, then FsCheck.

Installing the NUnit and FsUnit frameworks
In this section we'll look at how to install NUnit and FsUnit and how to use it with
F# Interactive to verify that everything works as expected.

Chapter 8

[209]

To install NUnit and FsUnit, follow these steps in Visual Studio 2012:

1. Go to the Package Manager console by navigating to VIEW | Other
Windows | Package Manager Console.

2. Select TradingSystem.Tests as the default project in the drop-down menu.
3. Type in Install-Package NUnit.
4. Type in Install-Package FsUnit.
5. Type in Add-BindingRedirect TradingSystem.Tests. The following

screenshot shows the result from the preceding steps:

The last command is to ensure that Fsharp.Core is up-to-date, and it will
also update App.config if necessary.

6. Let's play around with the NUnit framework in F# Interactive to get a feeling
of what it is and to see if everything is set up correctly. Add the following
code to an F# script file:
#r @"[...]\TradingSystem\packages\FsUnit.1.2.1.0\Lib\Net40\FsUnit.
NUnit.dll";;
#r @"[...]\TradingSystem\packages\NUnit.2.6.2\lib\nunit.framework.
dll";;

open NUnit.Framework
open FsUnit

1 |> should equal 1

Setting Up the Trading System Project

[210]

7. Note that you have to find the path of the two DLLs, because it will
differ from machine to machine. Simply go to References in your project
(TradingSystem.Tests), click on the particular framework in Solution
Explorer, and Full Path will be updated in the Properties window.
Use this Full Path in the preceding code, do it for both the DLLs.

Finally you can test the preceding code:

> 1 |> should equal 1;;
val it : unit = ()

This means our first testing framework is set up successfully. Next we'll look
at adding some tests in the code and run them from NUnit.

Connecting to Microsoft SQL Server
This chapter will assume you have a running instance of Microsoft SQL Server either
on your local machine, as part of Visual Studio 2012, or on a remote machine with
access permissions as shown in the following screenshot:

Chapter 8

[211]

The steps for connecting to Microsoft SQL Server are as follows:

1. Navigate to VIEW | Server Explorer.
2. Right-click on Data Connections, and choose Add connection.
3. Select Microsoft SQL Server (SqlClient) as the Data Source.
4. Choose the local machine if you have Microsoft SQL Server installed locally.
5. Select Use Windows Authentication.
6. Specify the name of the database. From now on, we'll refer to our database

as TradingSystem.
7. To test whether the setup is successful, press Test Connection in the

lower-left corner.
8. Press OK.
9. Then you will encounter a dialog asking if you want to create it, press Yes.
10. Now we have the database for our project, and next we'll add the tables

needed for the project. To do this, open VIEW | SQL Server Object
Explorer. It will look like the following screenshot:

11. To add our tables, we'll use the SQL snippets provided in the next step.
Right-click on the TradingSystem database, and click on New Query….
Paste the following code to create the table Log.

12. The following is the SQL code to create the Log table:
DROP TABLE LOG
CREATE TABLE LOG
(

Setting Up the Trading System Project

[212]

 log_id int IDENTITY PRIMARY KEY,
 log_datetime datetime DEFAULT CURRENT_TIMESTAMP,
 log_level nvarchar(12) DEFAULT 'info',
 log_msg ntext
)

13. This will output the following in the SQL terminal below the editor:
Command(s) completed successfully.

We'll use this table in the next section about type providers and LINQ.

Introducing type providers
Type providers are powerful ways of dealing with structured data from XML
documents, SQL databases, and CSV files. They combine the type system of F# with
structured data, which can be a tedious task in statically typed languages in many
cases. Using type providers, the type of the data source is automatically converted to
native types; this means the data is parsed and stored using the same field names as
used in the data source. This enables Visual Studio and IntelliSense to support you in
your coding without looking in the data source for the field names all the time.

Using LINQ and F#
LINQ is a feature in the .NET framework and has been supported in F# since Version
3.0. It's used to provide powerful query syntax and can be used together with
databases, XML documents, .NET collections, and so on. In this section we'll briefly
introduce LINQ and see how we can use it together with a SQL database. But first
we'll look at LINQ together with collections:

1. First we need a list of values:
let values = [1..10]

2. Then we can construct our first LINQ query, which will select all the values
in the list:
let query1 = query { for value in values do select value }
query1 |> Seq.iter (fun value -> printfn "%d" value)

3. This is not that useful, so let's add a condition. We'll now select all values
greater than 5, this is done using a where clause:
let query2 = query { for value in values do
 where (value > 5)
 select value }
query2 |> Seq.iter (fun value -> printfn "%d" value)

Chapter 8

[213]

4. We can add another condition, selecting values greater than 5 and less than
8:

let query3 = query { for value in values do
 where (value > 5 && value < 8)
 select value }
query3 |> Seq.iter (fun value -> printfn "%d" value)

This is quite powerful, and it's more useful when dealing with data from, for example,
SQL databases. In the next section we'll look at a sample application using both type
providers and LINQ to insert and query a database.

Explaining sample code using type providers
and LINQ
In this section we'll look at a sample application using type providers and LINQ.
We'll use the Log table that we created earlier. This is a good way to test if everything
works with the SQL database and the permissions to read and write to and from it:

open System
open System.Data
open System.Data.Linq
open Microsoft.FSharp.Data.TypeProviders
open Microsoft.FSharp.Linq

#r "System.Data.dll"
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.Linq.dll"

The connection string has to be changed in some cases; if so, simply check the
Connection string value in the properties for the database:

/// Copied from properties of database
type EntityConnection = SqlEntityConnection<ConnectionString="Data
Source=(localdb)\Projects;Initial Catalog=TradingSystem;
Integrated Security=True;
Connect Timeout=30;Encrypt=False;TrustServerCertificate=False",
Pluralize = true>
let context = EntityConnection.GetDataContext()

/// Format date according to ISO 8601
let iso_8601 (date:Nullable<DateTime>) =
 if date.HasValue then
 date.Value.ToString("s")
 else "2000-00-00T00:00:00"

Setting Up the Trading System Project

[214]

We'll use LINQ to query our table. The code will be modified and used in the final
application. Here we have one query to list all entries from the Log table:

/// Query all LOG entries
let listAll() =
 query { for logentry in context.LOGs do
 select logentry }
 |> Seq.iter (fun logentry -> printfn "%s -- %d -- %s -- %s"
 (iso_8601 logentry.log_datetime) logentry.log_id
 logentry.log_level logentry.log_msg)

/// Insert a LOG entry
let addEntry(logLevel, logMsg) =
 let fullContext = context.DataContext
 let logTimestamp = DateTime.Now
 let newEntry = new EntityConnection.ServiceTypes.LOG(log_level
 = logLevel,
 log_msg = logMsg,
 log_datetime = Nullable(logTimestamp))
 fullContext.AddObject("LOGs", newEntry)
 fullContext.SaveChanges() |> printfn "Saved changes: %d
 object(s) modified."

We can use F# Interactive to see if the code works by adding a log entry and then
trying to obtain it:

> addLogEntry("INFO", "Just a simple log entry");;
Saved changes: 1 object(s) modified.
val it : unit = ()

> listAll();;
2013-09-26T14:08:02 -- 1 -- INFO -- Just a simple log entry
val it : unit = ()

This seems to work fine, and we can consider the SQL Server setup done. We'll
add tables and functionality in the next two chapters. But this is fine for now,
the setup is complete.

It's also convenient to browse the data in Visual Studio for a table in the database.
To do this, right-click on the Log table in the SQL Server Object Explorer and View
Data. You will see a view similar to the following screenshot:

Chapter 8

[215]

Creating the remaining table for our project
The SQL database will be used to store the state and history of our system. It's
mainly for illustrative purposes. We'll store log information and trade history. For
this, we have to add a new table, and this will be done in the same way as before.

CREATE TABLE TRADEHISTORY
(
 tradehistory_id int IDENTITY PRIMARY KEY,
 tradehistory_datetime datetime DEFAULT CURRENT_TIMESTAMP,
 tradehistory_instrument nvarchar(12),
 tradehistory_qty int,
 tradehistory_type nvarchar(12),
 tradehistory_price float
)

If you execute the preceding SQL code, you will now see the table added to the
Tables view in the SQL Server Object Explorer as shown in the following screenshot:

Following in our previous footsteps, we will examine sample code to query and
insert a trade history entry:

/// Query trading history
let listAllTrades() =
 query { for trade in context.TRADEHISTORies do select trade }
 |> Seq.iter (fun trade -> printfn "%A" (iso_8601
 trade.tradehistory_datetime, trade.tradehistory_id,

Setting Up the Trading System Project

[216]

 trade.tradehistory_instrument, trade.tradehistory_type,
 trade.tradehistory_price, trade.tradehistory_qty))

/// Insert a trade
let addTradeEntry(instrument, price, qty, otype) =
 let fullContext = context.DataContext
 let timestamp = DateTime.Now
 let newEntry = new
 EntityConnection.ServiceTypes.TRADEHISTORY
 (tradehistory_instrument = instrument,
 tradehistory_qty = Nullable(qty),
 tradehistory_type = otype,
 tradehistory_price =
 Nullable(price),
 tradehistory_datetime =
 Nullable(timestamp))
 fullContext.AddObject("TRADEHISTORies", newEntry)
 fullContext.SaveChanges() |> printfn "Saved changes: %d
 object(s) modified."

We can use F# Interactive to see if the code works by adding a trade entry and then
trying to obtain it:

> addTradeEntry("MSFT", 45.50, 100, "limit")
Saved changes: 1 object(s) modified.
val it : unit = ()

> listAllTrades()
("2013-11-24T20:40:57", 1, "MSFT", "limit", 45.5, 100)
val it : unit = ()

It seems to work fine!

Writing test cases
In this section we'll look at some of the test cases that can be written for the trading
system. We'll use NUnit together with the graphical user interface provided by NUnit
to accomplish this. The following screenshot displays the main GUI from NUnit:

Chapter 8

[217]

Figure 4: The NUnit user interface

Before we start to write real tests for our system, we'll write a simple test to verify
that our setup is correct. NUnit will automatically rerun the executable every time
it's built. We start by writing a simple test inside the TestOrderValidation file,
before we write the real ones:

[<Test>]
let OneIsEqualToOne() =
 1 |> should equal 1

This is quite silly, but we'll be able to see if NUnit detects changes and if NUnit will
detect the test cases inside the .exe file. The steps for writing a simple test case are
as follows:

1. Open up NUnit and navigate to File | Open Project....
2. Select the .exe file corresponding to the .exe? file in TradingSystem.

Tests, located in ..\visual studio 2012\Projects\TradingSystem\
TradingSystem.Tests\bin\Debug.

Setting Up the Trading System Project

[218]

3. Press the Run button and it should look like the following figure:

Figure 5: NUnit when the sample unit test is run successfully

Now that we know the setup is correct, let's start to write some real unit tests for our
order validation code:

namespace TradingSystem.Tests

open System
open NUnit.Framework
open FsUnit

open TradingSystem.Orders

module OrderTests =
 [<Test>]
 let ValidateBuyOrder() =
 let buyOrder = Order(OrderSide.Buy, OrderType.Limit,
 54.50, Tif.FillorKill, 100, "MSFT", 0.0)
 validateOrder (Right buyOrder) |> should equal (Right
 buyOrder)

Chapter 8

[219]

Now we need to build the project and then NUnit should be able to detect the
changes. If everything works correctly, the NUnit GUI should look like the
following screenshot:

Figure 6: NUnit when the ValidateBuyOrder test is run

Let's add some more tests for the order validation code:

module ValidateOrderTests =
 [<Test>]
 let ValidateBuyOrder() =
 let buyOrder = Order(OrderSide.Buy, OrderType.Limit,
 54.50, Tif.FillorKill, 100, "MSFT", 0.0)
 validateOrder (Right buyOrder) |> should equal (Right
 buyOrder)

 [<Test>]
 let ValidateOrderNoPrice() =
 let buyOrderNoPrice = Order(OrderSide.Buy,
 OrderType.Limit, 0.0, Tif.FillorKill, 100, "MSFT", 0.0)
 validateOrder (Right buyOrderNoPrice) |> should equal
 (Left "Limit orders must have a price > 0")

 [<Test>]
 let ValidateStopLimitNoPrice() =
 let stopLimitNoPrice = Order(OrderSide.Buy,

Setting Up the Trading System Project

[220]

 OrderType.StopLimit, 0.0, Tif.FillorKill, 100, "MSFT",
 45.50)
 validateOrder (Right stopLimitNoPrice) |> should equal
 (Left "Stop limit orders must both price > 0 and stop
 price > 0")

 [<Test>]
 let ValidateStopNoPrice() =
 let stopNoPrice = Order(OrderSide.Buy, OrderType.Stop,
 0.0, Tif.FillorKill, 100, "MSFT", 45.50)
 validateOrder (Right stopNoPrice) |> should equal (Right
 stopNoPrice)

Note that the name of the module is renamed to ValidateOrderTests. We'll add
more tests for validating instruments and using pre-trade risks in the same file.
The following screenshot shows the four tests for validating orders:

NUnit when the four tests are run

Chapter 8

[221]

Details about the setup
The following is a listing of the references used in the project until now. Use this to
check if your project is up-to-date:

TradingSystemFSharp.Core

• FSharp.Data.TypeProviders

• mscorlib

• System

• System.Core

• System.Data

• System.Data.Linq

• System.Numerics

TradingSystem.Tests

• Fsharp.Core

• FsUnit.NUnit

• TradingSystem.Core

• FSharp.Data.TypeProviders

• mscorlib

• nunit.framework

• System

• System.Core

• System.Numerics

Summary
In this chapter we set up the project, consisting of the trading system itself and the
tests. We looked at how to use Visual Studio to handle our solution and integrate it
with NUnit and FsUnit. We also looked at how to connect to Microsoft SQL Server
and how to write queries in LINQ and retrieve data throughout the type providers.

In the next two chapters, we'll continue to develop the trading system from the base
built in this chapter.

Trading Volatility for Profit
In this chapter, we'll look at various trading strategies for volatility. We'll cover
directional volatility trading and relative value volatility arbitrage. Options and
payoff diagrams, where we use F# and FSharpChart to visualize them, are also
briefly covered. In this chapter, you will learn:

• Trading volatility
• Volatility arbitrage opportunities
• Obtaining and calculating the data needed for the strategy
• Deriving the mathematics behind volatility arbitrage

Trading the volatility
Trading volatility is like trading most other assets, except that volatility can't be
traded explicitly. Volatility is traded implicitly using, for example, options, futures,
and the VIX index. Because volatility is an intrinsic value of the assets, it can't
be traded directly. To be able to trade volatility, either a hedge position using a
derivative and its underlying asset or an option position is initiated.

One often divides volatility trading into two categories: directional trading and
relative value. Directional trading in volatility means we trade in the direction of the
volatility. If the volatility is high, we may initiate a short trade in volatility. Relative
value means we initiate two trades, where, for example, we go long in a call and
short in another call. The first call may be under-valued in terms of volatility and the
other may be slightly over-priced. The two related assets are then supposed to mean
revert, and the profit is to be monetized.

In this chapter, we'll briefly cover volatility trading and the ways of earning profit
from this activity.

Trading Volatility for Profit

[224]

Plotting payoff diagrams with
FSharpCharts
In this section, we'll construct basic payoff diagrams for European call and put
options. Payoff diagrams are useful to visualize the theoretical payoff given the
price of the stock and the strike of the option.

The payoff function for a call option is defined as follows:

{ }max ,0tS K−

And the payoff function for a put option is defined as follows:

{ }max ,0tK S−

Let's look at how to do this in F#. We start by defining the payoff functions for calls
and puts:

/// Payoff for European call option
// s: stock price
// k: strike price of option
let payoffCall k s = max (s-k) 0.0

/// Payoff for European Put option
// s: stock price
// k: strike price of option
let payoffPut k s = max (k-s) 0.0

We can use these functions to produce numbers to be fed into FSharpChart and
visualize the data:

/// Calculate the payoffs given payoff function
let payoff payoffFunction = [for s in 0.0 .. 10.0 .. 100.0 -> s,
 payoffFunction s]

We start by generating the payoff diagram for a call option with a strike value
of 50.0:

let callPayoff = payoff (payoffCall 50.0)
Chart.Line(callPayoff).WithTitle("Payoff - Call Option")

Chapter 9

[225]

The payoff diagram showing the call option

In the preceding chart, we can see the payoff of the call option being 0 until the stock
price reaches 50 (the strike of the option). From there, the payoff goes up. We only
plot values from 0 to 100, so the maximum payoff in this diagram is 50.

The procedure is the same for a put option with a strike value of 50.0:

let putPayoff = payoff (payoffPut 50.0)
Chart.Line(putPayoff).WithTitle("Payoff - Put Option")

The payoff diagram showing the put option

The payoff diagram for the put option is the opposite of what we had seen earlier.
In the preceding chart, the payoff will decline until it is zero at the strike of the
option. This means the put option will be profitable for stock prices below the
strike of the option.

Trading Volatility for Profit

[226]

Finally, we create a combined chart:

/// Combined chart of payoff for call and put option
let chart = Chart.Combine [Chart.Line(callPayoff);
 Chart.Line(putPayoff).WithTitle("Payoff diagram")]

Figure 3: The combined payoff diagram

Learning directional trading strategies
Directional trading in volatility means trading in the direction of the volatility. If the
volatility is high, we may initiate a short trade in volatility. In this section, we'll first
look at how to trade volatility using option strategies. Then, using an option and
the underlying price to trade volatility, we'll look at the VIX index and the delta
neutral position.

Trading volatility using options
One way of trading volatility is to use options. We'll look at two option strategies
for trading volatility or price movement in the underlying option.

Trading the straddle
The straddle position consists of two options: one put and one call. Straddles are
useful when the viewpoint of the underlying market is neutral, which means there is
no speculation in the long-term movement of the market. It also means the straddle
position is useful when one wants to trade volatility, regardless of the movement of
the market.

Chapter 9

[227]

Long straddle
A long straddle trade is created by taking a long position on both a call and a put
option with the same strike and expiration. The long straddle is useful if you think
the volatility is low and you want to monetize the potential increase in volatility.

The idea is that the two options (call and put) will cancel out the exposure to the
underlying market, except for the volatility in the underlying asset of the options.
This means the straddle is very sensitive to changes in volatility. In more technical
terms, their respective deltas will be close to 0.5 and -0.5, which means they cancel out.
This is because the delta for the money options is around 0.5 for calls and -0.5 for puts.

Let's look at some code to implement the payoff function for the long straddle:

/// Payoff for long straddle
// s: stock price
// k: strike price of option
let longStraddle k s =
 (payoffCall k s) +
 (payoffPut k s)

Chart.Line(payoff (longStraddle 50.0)).WithTitle("Payoff - Long
 straddle")

The following screenshot depicts the line chart for the payoff function for the
long straddle:

The combined payoff diagram

Trading Volatility for Profit

[228]

Short straddle
A short straddle is the opposite of a long straddle. Here, we create the position by
going short on one call and one put option that have the same strike and expiration.
A short straddle is used for trading a decrease in the volatility of an asset, without
exposure to the market in other aspects.

The code for the payoff for our short straddle is obtained by adding two short
positions (note the minus preceding (payoffCall k s)):

/// Payoff for Short straddle
// s: stock price
// k: strike price of option
let shortStraddle k s =
 -(payoffCall k s) +
 -(payoffPut k s)

Chart.Line(payoff (shortStraddle 50.0)).WithTitle("Payoff - Short

 straddle")

The following screenshot depicts the line chart for the payoff function for the
short straddle:

The combined payoff diagram

Trading the butterfly spread
The butterfly spread consists of three legs and comes in two flavors: the long
butterfly spread and the short butterfly spread.

Chapter 9

[229]

The long butterfly spread
The long butterfly position is created by selling two at-the-money call options and
buying two calls: an in-the-money call option and an out-of-the-money call option.
The two calls will serve as insurances for the short position.

In summary, you need to:

• Short sell two at-the-money call options
• Buy an in-the-money call
• Buy an out-of-the-money call

We can represent the preceding rules as code in F# to generate payoffs:

/// Payoff for long butterfly
// s: stock price
// h: high price
// l: low price
let longButterfly l h s =
 (payoffCall l s) +
 (payoffCall h s) -
 2.0 * (payoffCall ((l + h) / 2.0) s)

Chart.Line(payoff (longButterfly 20.0 80.0)).WithTitle("Payoff -
 Long butterfly")

This code will generate a diagram showing the payoff for the long butterfly:

The payoff diagram for the long butterfly spread

Trading Volatility for Profit

[230]

The short butterfly spread
The short butterfly position is created by buying two at-the-money call options and
selling an in-the-money and an out-of-the-money call. The two calls will serve as
insurances for the short position.

In summary, you have to:

• Buy two at-the-money (or in the middle of the two other's strike prices)
call options

• Sell an in-the-money call
• Sell an out-of-the-money call

We can represent the preceding rules as code in F# to generate payoffs:

/// Payoff for short butterfly
// s: stock price
// h: high price
// l: low price
let shortButterfly l h s =
 -(payoffCall l s) +
 -(payoffCall h s) -
 2.0 * -(payoffCall ((l + h) / 2.0) s)

Chart.Line(payoff (shortButterfly 20.0 80.0)).WithTitle("Payoff -
 Short butterfly")

This code will generate the following diagram showing the payoff for the
short butterfly:

The payoff diagram for the short butterfly spread

Chapter 9

[231]

Trading the VIX
Another alternative if you are is interested in trading volatility using a directional
trading strategy is to trade the VIX index. VIX is an index that combines the implied
volatility of the S&P 500 index options. This can be interpreted as an indication
of future volatility for the next 30 days to come. The prediction power of the VIX
is in parity with historical returns of the S&P 500 index itself. This means that the
information provided from the VIX is not a silver bullet when it comes to volatility
forecasting; it is better used for directional trading in volatility. The following is a
screenshot of a plot over the VIX index and a moving average indicator:

The VIX index from 2000-01-01 to 2013-11-01

Trading the delta neutral portfolio
A delta neutral portfolio is constructed by an option and the underlying instrument.
The portfolio will, in theory, be resistant to small changes in the underlying price
(delta neutral). On the other hand, other things tend to change the value of the
portfolio; this means we have to rebalance it on a regular basis.

In this section, we'll mainly extend our analysis of the delta neutral portfolio and
study how it can be used to trade volatility.

Trading Volatility for Profit

[232]

The following diagram shows the actual volatility and the implied volatility for
an asset:

0.1

0.2

0.3

0.4

0.5

Actual Implied

-2 2 4 6

The actual and implied volatilities for an asset

Which volatility should we use in the delta hedge position? We have two choices,
either the actual volatility or the implied volatility.

This turns out to be a rather tricky question to answer without studying the profit
and loss on a mark to market (MTM) basis for the two volatilities. To put it simply,
we can use the actual volatility and then take a random walk until the locked-in
profit is realized, that is, the two probability distributions intersect. The other choice
is to use the implied volatility. Using the implied volatility will result in a more
sane profit and loss curve, which is often preferred from the perspective of risk
management because the stochastic term is somewhat reduced, and the profit
will come in small increments over time until it's fully realized.

Deriving the mathematics
In this section, we'll look at the mathematics needed to trade a delta neutral portfolio.

The following table presents values of a market neutral portfolio:

Component Value

Option i
V

Stock i
S∆−

Cash i i
V S∆− �

Chapter 9

[233]

The following table shows the values of the market neutral portfolio for the next day:

Component Value

Option i iV dV+

Stock i iS dS−∆ −∆

Cash ()()1i iV S rdt DSdtα∆ ∆− + + −

Hedging with implied volatility
In this section, we are going to derive the mathematical tools for hedging
with implied volatility to be able to watch the mark to market profit and loss.

The following is the mark to market profit from the current day to the next day:

() ()2 2 21
2

i i i i i idV dS r V S dt DSdt S dt∆ ∆ ∆ σ σ Γ− − − − = − �

Here, S is the stock price and Γ is the Black-Scholes gamma function.

The following is the theoretical profit until the end of the arbitrage trade:

() ()
0

2 2 2
0

1
2

T
r i

t

e t t S dtσ σ Γ−− −∫�

We integrate the discounted value of each profit made until the end of the trade
to get the total theoretical profit.

Implementing the mathematics
Using Math.NET, let's implement the mathematics derived in the previous section
to get a feel of the close connection between the formulas and F#:

/// Mark-to-market profit

/// Normal distribution
open MathNet.Numerics.Distributions;

Trading Volatility for Profit

[234]

let normd = new Normal(0.0, 1.0)

/// Black-Scholes Gamma
// s: stock price
// x: strike price of option
// t: time to expiration in years
// r: risk free interest rate
// v: volatility
let black_scholes_gamma s x t r v =
let d1=(log(s / x) + (r+v*v*0.5)*t)/(v*sqrt(t))
normd.Density(d1) / (s*v*sqrt(t))

let mark_to_market_profit s,x,t,r,v,vh = 0.5*(v*v -
 vh*vh)*S*S*gamma(s,x,t,r,v)

Learning relative value trading strategies
Relative value volatility trading refers to trading volatility using opposite legs of
some financial instruments, such as options, to take advantage of the movement
in volatility. Usually, one would initiate a trade with a long call and a short call,
forming a two-legged trade. There are a lot of variations to these types of trades,
and we will mainly look at trading the slope of the volatility smile using options.
This will form the basis of the trading strategy used in this book.

Trading the slope of the smile
First, we'll recap Chapter 6, Exploring Volatility, where we looked at the smile effect
for options on the OMX exchange in Sweden. The volatility smile is a phenomenon
observed in stock markets. The smile is obtained by plotting the implied volatility
from the options on the y axis and moneyness on the x axis.

Moneyness is the ratio between the spot price of the underlying asset, S, and the
strike price of the option, K:

SM
K

=

In the following screenshot, you will see the moneyness, M, on the x axis and the
implied volatility on the y axis:

Chapter 9

[235]

The volatility smile

One shortcoming of the preceding chart is that we plot multiple expiration dates
in the same chart. We need to refine this approach to be able to study the volatility
smile in more detail. As the first step, let's modify the code for this:

open MathNet.Numerics
open MathNet.Numerics.LinearAlgebra
open MathNet.Numerics.LinearAlgebra.Double
open MathNet.Numerics.Distributions

let filePath = @"C:\Users\Gecemmo\Desktop\smile_data.csv"

/// Split row on commas
let splitCommas (l:string) =
 l.Split(',')

/// Read a file into a string array
let openFile (name : string) =
 try
 let content = File.ReadAllLines(name)
 content |> Array.toList
 with
 | :? System.IO.FileNotFoundException as e -> printfn
 "Exception! %s " e.Message; ["empty"]

The first modification is made in the readVolatilityData function where a date
parameter is added. This is used to filter out rows that match the date from the CSV file:

Trading Volatility for Profit

[236]

/// Read the data from a CSV file and returns
/// a tuple of strike price and implied volatility%
// Filter for just one expiration date
let readVolatilityData date =
 openFile filePath
 |> List.map splitCommas
 |> List.filter (fun cols -> cols.[1] = date)
 |> List.map (fun cols -> (cols.[2], cols.[3]))

The following code is the same as we used before, but in the next step, we need to
make a minor change:

/// 83.2
/// Calculates moneyness and parses strings into numbers
let calcMoneyness spot list =
 list
 |> List.map (fun (strike, imp) -> (spot / (float strike), (float
 imp)))

// Filter out one expiration date -- 2013-12-20
let list = readVolatilityData "2013-12-20"
let mlist = calcMoneyness 83.2 list

/// Plot values using FSharpChart
fsi.AddPrinter(fun (ch:FSharp.Charting.ChartTypes.GenericChart) ->
ch.ShowChart(); "FSharpChartingSmile")
Chart.Point(mlist)

The following is the code to plot the data points together with the regression line
obtained. As we will see in the chart, the regression is not satisfactory:

let xdata = mlist |> Seq.map (fun (x, _) -> x) |> Seq.toList
let ydata = mlist |> Seq.map (fun (_, y) -> y) |> Seq.toList

let N = xdata.Length
let order = 2

/// Generating a Vandermonde row given input v
let vandermondeRow v = [for x in [0..order] do yield v ** (float
 x)]

/// Creating Vandermonde rows for each element in the list
let vandermonde = xdata |> Seq.map vandermondeRow |> Seq.toList

/// Create the A Matrix
let A = vandermonde |> DenseMatrix.ofRowsList N (order + 1)

Chapter 9

[237]

A.Transpose()

/// Create the Y Matrix
let createYVector order l = [for x in [0..order] do yield l]
let Y = (createYVector order ydata |> DenseMatrix.ofRowsList
 (order + 1) N).Transpose()

The final step is to calculate the regression coefficients and to use these to calculate
the points for our curve. Then, we will use a combined plot with the points and the
fitted curve as we did in Chapter 6, Exploring Volatility:

/// Calculate coefficients using least squares
let coeffs = (A.Transpose() * A).LU().Solve(A.Transpose() *
 Y).Column(0)

let calculate x = (vandermondeRow(x) |> DenseVector.ofList) *
 coeffs

let fitxs = [(Seq.min xdata).. 0.01 ..(Seq.max xdata)]
let fitys = fitxs |> List.map calculate
let fits = [for x in [(Seq.min xdata).. 0.01 ..(Seq.max xdata)] do
 yield (x, calculate x)]

let chart = Chart.Combine [Chart.Point(mlist); Chart.Line(fits).
WithTitle("Volatility Smile - 2nd degree
 polynomial")]

The volatility smile for the expiration on January 20, 2013

Trading Volatility for Profit

[238]

Instead, we can try to fit a third degree polynomial and evaluate the graph. We just
change the order value to 2:

let order = 2

The volatility smile using a third degree polynomial with the same expiration date

The result is more compelling this time. As we can see, there is some inconsistency
between the options. This isn't necessarily the same as there exist some arbitrage
opportunities in this case.

How can we take advantage of the inconsistency in the volatility for options with
the same maturity date? One way could be to study the movements of the implied
volatility as time proceeds. What if the volatilities are mean reverting the regression
in some way?

First, we'll zoom in on the problem and on the set of options. The x axis is the
moneyness of the options. We'll look at the moneyness between 0.50 and 1.5
in the first experiment.

We write some F# code to help us with this:

// Filter on moneyness, 0.5 to 1.5
let mlist = calcMoneyness 83.2 list |> List.filter (fun (x, y) ->
 x > 0.5 && x < 1.5)

This is just a modification to the assignment to mlist, filtering on the x value.
The filter and a change to the second degree polynomial will render the following chart:

Chapter 9

[239]

The volatility smile using a second degree polynomial for moneyness between 0.5 and 1.5

We'll assume that the slope will change and that the slope is somewhat mean
reverting, meaning we can initiate a position with one long and one short position
in options affected by the movement.

Defining the trading strategy
The trading strategy for our system will be based on relative value volatility
arbitrage as described earlier. This will enable us to trade exclusively with options,
to be more precise, in-the-money call options.

First, we define the slope between the two "edges" of the moneyness: the upper and
lower bounds of the moneyness. We have to look at a graph for doing this. For the
preceding graph, that would typically be [0.5, 1.0].

To get a more mathematical expression for the slope, we look at two points and
calculate the slope from these:

() () ()1 2

1 2

t t
t

m m
σ σ

β
−

=
−

Here, m is the moneyness and σ (sigma) is the implied volatility from the option
prices. The slope can either rise or fall, which means β will increase, decrease,
or of course, neither will happen. Let's look at the two cases more closely.

Trading Volatility for Profit

[240]

Case 1 – increasing the slope
In the case of a slope that is lower than the regression (average), we can assume that
the slope will eventually revert. In the case of a rising slope, the slope is as follows:

() ()1 0 0t tβ β− >

This leads to the following inequality, where the combined volatility is lower at time
0 than in the upcoming point in time:

() () () ()1 0 2 0 1 1 2 1t t t tσ σ σ σ− < −

We can trade this increasing slope by creating a trade with one long call and one
short call. The difference between the rise in volatility will result in a potential profit.
This means we need to consider the Vega of the two options. In case the Vega is
higher for the option corresponding to 2σ than it is for 2σ , the position may
lose money.

Case 2 – decreasing the slope
As in the case of an increasing slope, the same holds for the case of a decreasing
slope. We can assume that the slope is reverting at some later point in time. This
means the slope at time one (t1) minus the slope at point zero (t0) is less than zero:

() ()1 0 0t tβ β− <

This leads to the following inequality, where the combined volatility is greater at
time zero than at the upcoming point in time:

() () () ()1 0 2 0 1 1 2 1t t t tσ σ σ σ− > −

The trade is initiated with a short call and a long call.

Defining the entry rules
The entry rules for the system will be:

• Every time there is a situation where the slope for β is lower than the slope
of the regression, we initiate a trade as per case 1

• Every time there is a situation where the slope for β is greater than the slope
of the regression, we initiate a trade as per case 2

Chapter 9

[241]

Defining the exit rules
The trade will be closed as soon as the inequality in either case 1 or 2 no longer holds.
This means the slope has reverted and we may lose money. We'll also add a time
constraint, which tells us to limit the duration of the trade to two days. This can be
adjusted of course, but this kind of behavior is typically for intraday behavior.

We will implement the rules defined here in the next chapter, where we put the
pieces together to build a fully working trading system by using options.

Summary
In this chapter, we have looked into the details about the theory needed for our
trading strategy. We derived some of the mathematical tools used in volatility
trading and discussed how these can be used in the trading system. Some of the
concepts have been introduced in earlier chapters and only slightly modified
versions were introduced here. In the next chapter, we'll put the pieces together
and look at how to present the data from the trading system in a GUI.

Putting the Pieces Together
This chapter covers the final step of building an automated trading system. We will
look at how to refactor the system and change it to reflect new requirements.

In this chapter you will learn about:

• Executing a trading strategy
• Presenting information in the GUI
• Possible additions to the trading system

Understanding the requirements
We've covered some of the requirements in Chapter 8, Setting Up the Trading System
Project, but let's review them again and see how the system will be defined. The main
thing about the automated trading system is that it needs to be able to process market
data and make decisions based on the data. The decisions will then be converted to FIX
4.2 messages and sent to a FIX simulator, a real broker, or the stock exchange. In this
rather simple setup, the market data will be the daily data from Yahoo! Finance that
will be downloaded and parsed daily.

The automated trading system should be able to:

• Store log entries in a Microsoft SQL Server database
• Store trading history in a Microsoft SQL Server database
• Download quotes from Yahoo! Finance
• Manage orders with an Order Management System (OMS)
• Send orders using FIX 4.2
• Connect the trading system to a FIX simulator via FIX 4.2

Putting the Pieces Together

[244]

• Execute a trading strategy written in F#
• Control itself using a basic GUI with start/stop buttons
• Display the current position(s)
• Display the current profit and loss (P&L)
• Display the latest quote(s)
• Use the MVC pattern and the INotifyPropertyChanged interface

The following is a diagram illustrating the data flow in the trading system:

Data flow in a trading system

Revisiting the structure of the system
We'll revisit the project structure and make sure all the dependencies are added.
The following are the parts of an automated trading system:

• Feed handlers and market data adapters
• Trading strategies
• Order execution and order management
• Persistence layer (DBs)
• GUI for monitoring the system

We need two new dependencies. They are as follows:

• System.Windows.Forms

• System.Drawing

Chapter 10

[245]

We need the System.Windows.Forms dependency to create our GUI. It provides
support for Windows itself and the controls that are used. The System.Drawing
dependency is also needed to provide the basic graphics functionality. The following
is a list of the references needed in the project. You can verify your own project
against the list to make sure you have all the dependencies needed.

The trading system is split into two projects: TradingSystem and
TradingSystem.Tests.

The following is the list of dependencies required for TradingSystem:

• FSharp.Core

• FSharp.Data.TypeProviders

• mscorlib

• NQuantLib

• System

• System.Core

• System.Data

• System.Data.Linq

• System.Drawing

• System.Numerics

• System.Windows.Forms

The following is the list of dependencies required for TradingSystem.Tests:

• Fsharp.Core

• FsUnit.NUnit

• TradingSystem.Core

• FSharp.Data.TypeProviders

• mscorlib

• nunit.framework

• System

• System.Core

• System.Numerics

Putting the Pieces Together

[246]

Understanding the Model-View-Controller
pattern
In this section, we'll look at the concept of the MVC design pattern. The MVC pattern
is a concept that was introduced at Xerox PARC and has been around since the early
days of Smalltalk. It is a high-level design pattern often used in GUI programming.
We'll use it later in more detail, but a gentle introduction here will make the concept
familiar to you when needed later.

The main idea behind MVC is to separate the model from the view. The view is
simply the GUI, which interacts with the user of the program. The GUI will take care
of the buttons clicked on and the data displayed on the screen. The model is the data
to be used in the program. It can be, for example, financial data. It's often desirable to
separate the code for the model (data) and the view (GUI).

The MVC pattern described in the preceding figure is a modified version of the
traditional MVC pattern. The main difference is that there is no direct communication
between the view and the model in this variant. This is a more refined way of using the
MVC pattern, where the view doesn't have to know anything about the model.

The model
The model is typically the data and the state of the application. In this case,
the model will consist of orders, the market data, and the state of the system.

The view
The view is the TradingSystemForm class and will be the only GUI form used apart
from dialog boxes, which are standard Windows Forms components. The view is
the GUI.

The controller
The controller is responsible for connecting the view to the model. The controller
is initialized with an instance of the model, and the view is added to the controller
during the execution of the program (Program.fs). The following diagram is a
schematic representation of the relationship between the parts in the MVC pattern:

Chapter 10

[247]

The MVC pattern, where the controller knows both the model and the view

In our case, the controller will be responsible for updating the view when an action
is taken. This means the model will notify the controller, and the controller will
update the view. Strictly speaking, this is a slightly modified version of the classic
MVC pattern where the model knows about the view and notifies the view instead
of the controller.

The main problem with this classic approach is that of tight coupling. Using the
controller as the mediator, a compound pattern is formed. This is the same strategy
used in popular libraries such as Cocoa by Apple.

Executing the trading strategy using
a framework
The trading strategy is executed through onMarketData when the downloading of
data is completed/successful (it sends a message to the agent). If any error occurs,
notify the agent. Everything is logged to a SQL backend (SQL Server).

The trading strategy will have six callable functions:

• onInit: This function is called when a strategy is initialized
• onStart: This function is called when the strategy starts
• onStop: This function is called when the strategy stops
• onMarketData: This function is called whenever new market data arrives
• onTradeExecution: This function is called whenever a trade is executed
• onError: This function is called with every error that occurs

Putting the Pieces Together

[248]

The trading strategy will be implemented as a type of its own where callbacks
are member functions that are called from the strategy executor. The strategy
executor consists of an agent receiving messages from the system. The start and stop
commands are sent from the two event handlers connected to the buttons in the GUI.

Let's look at the main structure of the framework used to execute the trading strategy:

/// Agent.fs
namespace Agents

open System

 type TradingStrategy() =
 member this.onInit : unit = printfn "onInit"
 member this.onStart : unit = printfn "onStart"
 member this.onStop : unit = printfn "onStop"
 member this.onTradeIndication : unit = printfn
 "onTradeIndication"

 // Type for our agent
 type Agent<'T> = MailboxProcessor<'T>

We need control messages to be used to communicate with the agent; these are
modeled as criminated unions. The messages are used to change the state and
communicate the change between the parts in the system. This is needed because
the agent is running in another thread, and the passing of the messages is the way
we communicate with them. An example of this is as follows:

// Control messages to be sent to agent
type SystemMessage =
 | Init
 | Start
 | Stop

type SystemState =
 | Created
 | Initialized
 | Started
 | Stopped

Chapter 10

[249]

The TradingAgent module will receive the control messages and take the
appropriate action. The following is the code to implement the functionality
to call the corresponding method in the trading strategy using pattern matching:

module TradingAgent =
let tradingAgent (strategy:TradingStrategy) = Agent.Start(fun
 inbox ->
 let rec loop state = async {
 let! msg = inbox.Receive()
 match msg with
 | Init ->
 if state = Started then
 printfn "ERROR"
 else
 printfn "Init"
 strategy.onInit
 return! loop Initialized
 | Start ->
 if state = Started then
 printfn "ERROR"
 else
 printfn "Start"
 strategy.onStart
 return! loop Started
 | Stop ->
 if state = Stopped then
 printfn "ERROR"
 else
 printfn "Stop"
 strategy.onStop
 return! loop Stopped
 }
loop Created)

Putting the Pieces Together

[250]

The following are parts of the GUI code that are used to control the trading system.
Most of the code uses .NET classes mainly from Windows Forms libraries.

There are many good resources available at MSDN about
Windows Forms at http://msdn.microsoft.com/en-us/
library/ms229601(v=vs.110).aspx.

// GUI.fs
namespace GUI

open System
open System.Drawing
open System.Windows.Forms
open Agents

// User interface form
type public TradingSystemForm() as form =
 inherit Form()

 let valueLabel = new Label(Location=new Point(25,15))
 let startButton = new Button(Location=new Point(25,50))
 let stopButton = new Button(Location=new Point(25,80))
 let sendButton = new Button(Location=new Point(25,75))

The trading strategy will be initiated and passed to the agent. During the initiation,
the parameters and other constant values will be passed:

let ts = TradingStrategy()
let agent = TradingAgent.tradingagent ts

let initControls =
 valueLabel.Text <- "Ready"
 startButton.Text <- "Start"
 stopButton.Text <- "Stop"
 sendButton.Text <- "Send value to agent"
 do
 initControls

 form.Controls.Add(valueLabel)
 form.Controls.Add(startButton)
 form.Controls.Add(stopButton)

 form.Text <- "F# TradingSystem"

Chapter 10

[251]

 startButton.Click.AddHandler(new System.EventHandler
 (fun sender e -> form.eventStartButton_Click(sender, e)))

 stopButton.Click.AddHandler(new System.EventHandler
 (fun sender e -> form.eventStopButton_Click(sender, e)))

 // Event handlers
 member form.eventStartButton_Click(sender:obj, e:EventArgs) =

When the Start button is pressed, this event handler is called and two messages
are sent to the agent:

 agent.Post(Init)
 agent.Post(Start)
 ()

 member form.eventStopButton_Click(sender:obj, e:EventArgs) =
 agent.Post(Stop)
 ()

The following is the code used in Program.fs to start the application and view
the GUI:

/// Program.fs
namespace Program

open System
open System.Drawing
open System.Windows.Forms

open GUI

module Main =
 [<STAThread>]
do
 Application.EnableVisualStyles()
 Application.SetCompatibleTextRenderingDefault(false)
 let view = new TradingSystemForm()
 Application.Run(view)

Putting the Pieces Together

[252]

Building the GUI
The GUI we used in the previous section is not sufficient for our trading application,
but it illustrated the basics of how to put a GUI together using F#. Next, we'll add
the controls needed and prepare it to present the information from the model. The
following is a mock representation showing where the controls will be placed and
the overall idea about the GUI:

A mock representation of the trading system's GUI

Let's look at the required code. Most of the code is straightforward, following the
same rules used in the GUI in the last section. The DataGridView control has some
properties set for the width to be adjusted automatically. The same is true for labels,
where the property AutoSize is set to true. The final GUI will look like the one in the
screenshot displayed after the following code:

/// GUI code according to mock
namespace GUI

open System
open System.Drawing
open System.Windows.Forms
open Agents
open Model

open System.Net
open System.ComponentModel

Chapter 10

[253]

 // User interface form
 type public TradingSystemForm() as form =
 inherit Form()

 let plLabel = new Label(Location=new Point(15,15))
 let plTextBox = new TextBox(Location=new Point(75,15))

 let startButton = new Button(Location=new Point(15,350))
 let stopButton = new Button(Location=new Point(95,350))
 let cancelButton = new Button(Location=new Point(780,350))
 let downloadButton = new Button(Location=new Point(780,15))

 let ordersLabel = new Label(Location=new Point(15,120))
 let dataGridView = new DataGridView(Location=new
 Point(0,140));

 let initControls =
 plLabel.Text <- "P/L"
 plLabel.AutoSize <- true

 startButton.Text <- "Start"
 stopButton.Text <- "Stop"
 cancelButton.Text <- "Cancel all orders"
 cancelButton.AutoSize <- true
 downloadButton.Text <- "Download data"
 downloadButton.AutoSize <- true

 do
 initControls

 form.Size <- new Size(900,480)

 form.Controls.Add(plLabel)
 form.Controls.Add(plTextBox)
 form.Controls.Add(ordersLabel)

 form.Controls.Add(startButton)
 form.Controls.Add(stopButton)

 form.Controls.Add(cancelButton)
 form.Controls.Add(downloadButton)

Putting the Pieces Together

[254]

 dataGridView.Size <- new Size(900,200)
 dataGridView.RowHeadersWidthSizeMode <- DataGridViewRow
 HeadersWidthSizeMode.EnableResizing
 dataGridView.AutoSizeColumnsMode <- DataGridViewAutoSize
 ColumnsMode.AllCells

 form.Controls.Add(dataGridView)

 form.Text <- "F# TradingSystem"

The final GUI build from the code according to the mock

Presenting information in the GUI
In this section, we'll look at ways of presenting information in a GUI which is
updated on a regular basis. We'll use the MVC pattern to update the data.

In .NET, in general, the interface INotifyPropertyChanged is used when the
notification of an update is needed in the model. In this example, we'll use a
DataGridView control and a DataSource that consists of a list with items of a
custom type implementing the INotifyPropertyChanged interface.

Chapter 10

[255]

The updates to the model are handled by the controller and then the GUI is updated
from the DataSource itself. Let's start by looking at the list of orders and how to
present that list of orders in the DataGridView control. Add the following code to
the GUI.fs file:

let initOrderList() =
 let modelList = new BindingList<Model.Order>()
 let buyOrder = Model.Order(Model.OrderSide.Buy,
 Model.OrderType.Limit, 54.50, Model.Tif.FillorKill,
 100, "MSFT", 0.0)
 modelList.Add(buyOrder)

 dataGridView.DataSource <- modelList
 dataGridView.Size <- new Size(900,200)
 dataGridView.RowHeadersWidthSizeMode <- DataGridViewRow
 HeadersWidthSizeMode.EnableResizing
 dataGridView.AutoSizeColumnsMode <- DataGridViewAutoSize
 ColumnsMode.AllCells

Also, add the following function call just under initControls:

initOrderList()

The GUI with DataGridView populated with an order item

As you may notice, the content in some cells is not displayed as we would like.
We need to add a custom cell formatter for them where we specify in which way
the value is presented in the GUI.

Putting the Pieces Together

[256]

Add the following line of code at the end in the initOrderList function:

dataGridView.CellFormatting.AddHandler(new
 System.Windows.Forms.DataGridViewCellFormattingEventHandler(fun
 sender e -> form.eventOrdersGrid_CellFromatting(sender, e)))

Then, we need to implement the eventOrdersGrid_CellFromatting function
as follows:

 member form.eventOrdersGrid_CellFromatting(sender:obj,
 e:DataGridViewCellFormattingEventArgs) =
 match (sender :?> DataGridView).
 Columns.[e.ColumnIndex].DataPropertyName with
 | "Status" -> e.Value <- sprintf "%A" model
 List.[e.RowIndex].Status
 | "Side" -> e.Value <- sprintf "%A" modelList.[e.RowIndex].Side
 | "Type" -> e.Value <- sprintf "%A" modelList.[e.RowIndex].Type
 | "Tif" -> e.Value <- sprintf "%A" modelList.[e.RowIndex].Tif
 | _ -> ()

Now when we run the program, the DataGridView control for the order items
will format the cells correctly as shown in the following screenshot:

The GUI with DataGridView using a custom cell formatter

Chapter 10

[257]

To make the GUI complete, we need to add functionalities to update text fields
and to handle button clicks. We need callback functions that will be called from
the controller to update the text fields in the GUI:

// Functions to update GUI from controller

let updatePlTextBox(str:string) =
 plTextBox.Text <- str

Next, we'll need event handlers for buttons. Each button will have its own event
handler as follows:

startButton.Click.AddHandler(new System.EventHandler
 (fun sender e -> form.eventStartButton_Click(sender, e)))

stopButton.Click.AddHandler(new System.EventHandler
 (fun sender e -> form.eventStopButton_Click(sender, e)))

cancelButton.Click.AddHandler(new System.EventHandler
 (fun sender e -> form.eventCancelButton_Click(sender, e)))

downloadButton.Click.AddHandler(new System.EventHandler
 (fun sender e -> form.eventDownloadButton_Click(sender, e)))

// Event handlers
member form.eventStartButton_Click(sender:obj, e:EventArgs) =
 Controller.startButtonPressed()
 Controller.testUpdateGUI(updateSP500TextBoxPrice)

member form.eventStopButton_Click(sender:obj, e:EventArgs) =
 Controller.stopButtonPressed()
 Controller.testUpdateGUI(updateSP500TextBoxPrice)

member form.eventCancelButton_Click(sender:obj, e:EventArgs) =
 Controller.cancelButtonPressed()
 Controller.testUpdateGUI(updateSP500TextBoxPrice)

member form.eventDownloadButton_Click(sender:obj, e:EventArgs) =
 Controller.downloadButtonPressed(updatePlTextBox,
 updateSP500TextBoxPrice, updateSP500TextBoxVol,
 updateVixTextBoxPrice, updateVixTextBoxVol)

Putting the Pieces Together

[258]

Adding support for downloading the data
The market data will be pulled from Yahoo! Finance on a daily basis; we'll
use closing prices and from them calculate the data needed. The data will be
downloaded once the Download data button in the GUI is clicked on. The following
is the code to illustrate how downloading can be handled by a background thread:

let fetchOne(url:string) =
 let uri = new System.Uri(url)
let client = new WebClient()
let html = client.DownloadString(uri)
html

let downloadNewData(url1:string, url2:string) =
 let worker = new BackgroundWorker()
 worker.DoWork.Add(fun args ->
 printfn("starting background thread")
 let data = fetchOne(url)
 printfn "%A" data)
 worker.RunWorkerAsync()

The trading system will follow these steps from the downloading process until the
data is parsed:

1. Download the data from Yahoo! Finance.
2. Parse the data and perform the calculations.
3. Store the data in the model.

Looking at possible additions to the
system
In this section, we'll look at possible additions to the trading system we have
developed. The ideas here can work as inspiration for an interested reader. Trading
systems involve topics from many areas in finance and computer science. The trading
system developed here is rather elementary and is mainly for illustrative purposes.

Chapter 10

[259]

Improving the data feed
The data feed used here isn't an actual feed; it's more of a data service. A data feed is
as the name suggests: a feed of data. The data feed will provide a continuous stream
of the market data to the application and follows a publisher-subscriber pattern. It's
not easy to find a data feed provider that delivers data for free. The following is a list
of some alternatives worth looking into:

• Bloomberg's Open Market Data Initiative:
http://www.openbloomberg.com/

• Interactive Brokers: https://www.interactivebrokers.com/en/main.php
• eSignal Feed API: http://www.esignal.com/

Support for backtesting
Backtesting is useful in many cases, the least being to verify the correctness of the
trading logic. Backtesting can also provide some valuable insights into the historical
performance of a trading strategy. When developing a backtesting engine, you need
a feed adapter to use historical data and a broker adapter to keep track of executed
orders and the profit and loss.

This data is used to calculate statistics such as:

• Total number of trades
• The ratio between winners and losers
• The average size of a trade
• Total return on an account
• Volatility and sharp ratio; sharp ratio is the volatility-adjusted return

Extending the GUI
The GUI provided for this trading system is quite limited. The GUI can easily be
extended to support more features and provide charts of the market data using
FSharpChart among others. One alternative is to develop the GUI using C# or
another language that has a visual designer built into Visual Studio. This makes
things much easier.

The main reason that the GUI is developed in F# in this book is to illustrate the
flexibility of F#. When there is a visual designer for F#, there is no reason not to
use F# for most parts of the program. Writing the GUI code by hand is cumbersome
regardless of the language that is used.

Putting the Pieces Together

[260]

Converting to the client-server architecture
The current architecture is better modelled as part of a client-server solution. In a
client-server solution, the data feed, strategy execution, and order management will
reside on the server, whereas the user interface will either be a native application or a
browser implementation. There are two ways to go here. The first is to communicate
with the server using a message queue such as Microsoft Message Queuing.
The other is to use a browser-based GUI, communicating with the server using
WebSockets and RESTful techniques.

Some useful technologies to look deeper into are:

• Microsoft Message Queuing (MSMQ)
• ZeroMQ
• WebSocket
• RESTful

Summary
In this chapter, we have put the pieces together we learned throughout this book,
and this has resulted in a trading system for volatility arbitrage. Many aspects of F#
programming and the .NET framework together with external libraries have been
illustrated and covered up to now.

Index
Symbols
@ operator 20

A
active patterns 59-62
actual volatility 158, 232
aggregate statistics

about 93
average of sequence, calculating 94
example application 97, 98
maximum of sequence, calculating 95
minimum of sequence, calculating 94
standard deviation of sequence, calculating

96, 97
sum of sequence, calculating 93
variance of sequence, calculating 96

American options 136
anonymous function

creating 16
application

extending, Bollinger bands used 127-130
arithmetic comparisons 90, 91
arithmetic operators 90
ark to market (MTM) basis 232
array module

functions 40
arrays 34, 38, 39, 54
asynchronous binding 71
asynchronous programming

about 65, 70
asynchronous binding 71
F# asynchronous workflows 71

Asynchronous Programming Model (APM)
70

async workflow
example 71-74

automated trading
about 203, 204
parts 204

B
background workers 66, 67
bar chart

creating 132, 133
bisection method

about 107
example 107, 108

Black-Scholes
delta hedging 168

Black-Scholes formula
about 135, 139
assumptions 139, 140
implementing, in F# 141, 142
using, with charts 142-144

black_scholes function 142
Bollinger bands

used, for extending application 127-130

C
call option 135
CancelAsync() function 68
candlestick chart

creating, from stock prices 130, 131
classes 77
code

documenting 22
Comma-Separated Values (CSV) 25
Common Language Infrastructure (CLI) 5
conditional orders 176

[262]

conversion functions 92, 93
currying 17, 18

D
data structures

arrays 34, 38, 39
discriminated unions 33, 36, 37
enumerations 34, 38
lists 34, 41-43
maps 34, 51
options 34, 52, 53
record types 33-35
selecting 54
sequences 34, 45, 47
sets 34, 48, 49
strings 34, 53

data visualization
about 119, 120
application code 125, 126
financial data, displaying from Yahoo

finance 124
form, extending 122, 124

Delta 146
delta hedging

Black-Scholes used 168, 169
delta-neutral portfolio

trading 231, 232
directional trading

about 226
butterfly spread, trading 228
delta-neutral portfolio, trading 231, 232
long butterfly spread 229
long straddle 227
options, used 226
short butterfly spread 230
short straddle 228
straddle, trading 226
strategies 226
VIX, trading 231

discriminated unions 33, 36, 37

E
enumerations 34, 38
European options 136
event handling 119
events 65, 66

Exotic options 136

F
F#

about 5, 6, 77, 113
Black-Scholes formula, implementing 141,

142
code documentation 22
currying 17, 18
data visualization 119
functions 15, 16
greeks, implementing 146
GUI programming 113
Hello World of finance application 22, 23
immutable variable 13
interfaces, composing 114, 115
lists 18, 19
mutable variable 13
numerical types 88
orders 175
primitive types 14, 15
programming with 12
tuples 21
URL 6
volatility, exploring 159-162

F# asynchronous workflows 71
filter function 20
Financial Information eXchange. See FIX
F# Interactive 10-12
first-order greeks 145
FIX 187
FIX 4.2

messages, using 187
using 187

FIXimulator 187
floating-point numbers

about 87
IEEE 754 floating-point standard 87

F# program
structuring 30

F# project
creating, in Visual Studio 6-8
F# script file, adding 9, 10
program template, understanding 8, 9

FsChart
about 130

[263]

candlestick chart, creating from stock prices
130, 131

F# script file
adding 9, 10

FSharpCharts
used, for plotting payoff diagrams 224, 225

FsUnit 205
functional programming

about 55
lazy evaluation 63
pattern matching 57
recursive functions 55
tail recursion 56
units of measure 63-65

functions
about 15, 16
anonymous function 16
higher-order function 17
pipe operator 22
using, in modules 31, 32

functions, array module
Array.average a 40
Array.empty 40
Array.exists f a 40
Array.filter f a 40
Array.find f a 40
Array.isEmpty a 40
Array.length a 40
Array.map f a 40
Array.max a 40
Array.min a 40
Array.sort a 40
Array.zip a b 40

functions, list module
List.append a b 45
List.average a 44
List.empty 45
List.exists f a 45
List.filter f a 45
List.find f a 45
List.fold f s a 45
List.head a 45
List.length a 45
List.map f a 45
List.max a 44
List.min a 45
List.nth a 44

List.sort a 45
List.tail a 45
List.zip a b 45

functions, map module
Map.add(k,v) 52
Map.containsKey k a 52
Map.empty 52
Map.exists f a 52
Map.filter f a 52
Map.find f a 52
Map.fold f s a 52
Map.partition f a 52

functions, sequence module
Seq.append a b 48
Seq.average a 48
Seq.empty 48
Seq.exists f a 48
Seq.filter f a 48
Seq.find f a 48
Seq.fold f s a 48
Seq.head 48
Seq.length a 48
Seq.map f a 48
Seq.max a 48
Seq.min a 48
Seq.nth a 48
Seq.sort a 48
Seq.zip a b 48

functions, Set module
Set.count a 50
Set.empty 50
Set.exists f a 50
Set.filter f a 50
Set.map 50
Set.partition f a 50

functions, String module
String.Compare s1 s1 54
String.Concat s1 s2 54
String.Copy s 54
String.Empty 54
String.exists f s 54
String.IsNullOrEmpty 54
String.IsNullOrWhiteSpace 54
String.length s 54
String.map f s 54

fun keyword 16

[264]

G
Gamma 147
generics 62
greeks

about 145
code listing, for visualizing 152, 153
Delta 146
first-order greeks 145
Gamma 147
implementing, in F# 146
Rho 148
second-order greeks 145
sensitivity, investigating 149-151
Theta 148
Vega 147

guards
using 58

GUI programming
in F# 113

GUI, trading system
building 252

H
Head function 20
Hello World of finance application

about 22, 23
code listing 24
coding 26
extending 25
imperative code 27
interoperability 27
understanding 24

higher-order function 17

I
IEEE 754 floating-point standard 87, 88
immutable variable 13
imperative code 27, 28
imperative programming 77
implied volatility 232

about 158, 164
extracting 166, 167
solving method 165

incomplete pattern matching 58
integers

two's complement 86
interfaces

agents 116
composing 114, 115
event handling 119
main application 118
user interface 117

L
Language-INtegrated-Query (LINQ) 203
lazy evaluation 63
least squares method 103
Length function 20
let keyword 12
let statement 33
limit orders 176
linear regression, Math.NET library

about 103
least squares method, using 103
polynomial regression, using 104-106

list module
functions 44, 45

lists
about 18, 19, 34, 41-43, 54
concatenating 20
pattern matching 44

M
MailboxProcessor 74-76
map function 20
map module

functions 52
maps 34, 51, 55
market data 183, 184
market orders 176
mathematics

deriving 232, 233
implementing 233
implied volatility, hedging 233

Math.NET library
about 98
implementing 98
installing 98, 99
linear regression 103
probability distributions 100

[265]

random number generation 99
statistics 102

Math.NET linq algebra 98
Math.NET neodym 98
Math.NET numerics 98
Math.NET yttrium 98
math operators 91
Microsoft SQL Server

connecting to 210-212
midpoint() function 35
modules

about 30
functions, using in 31, 32

Monte Carlo method 135, 154, 155
MouseDown event 66
mutable variable 13
MVC pattern, trading system

controller 246, 247
model 246
view 246

N
namespace 32, 33
Newton-Raphson method

about 109
example 109
used, for finding roots 109

normal distribution 100
number representation

about 86
floating-point numbers 87
integers 86

numerical types, F# 88
NUnit 205

O
object-oriented programming

about 77
classes 77
members 78, 79
method 79, 80
objects 78, 79
overloaded operators 80, 81
properties 79, 80

openFile function 25

open-high-low-close (OHLC) 34
open keyword 33
operator (:?) 25
options

about 34, 52, 53, 135
American options 136
call option 135
contract specifications 136
European options 136
Exotic options 136
put option 135

order execution 182, 183
order properties

about 176, 177
examples 177-182

orders
about 175
order execution process 182
properties 176

order types
about 175
conditional orders 176
limit orders 176
market orders 176
stop-orders 176

overloaded operators 80, 81

P
parallel programming

about 65
background workers 66, 67
events 65, 66
thread pools 69, 70
threads 68, 69
with TPL 74

pattern matching
about 44, 57
active patterns 59-62
guards, using 58
in assignments 59
incomplete pattern matching 58
in input parameters 59

payoff diagrams
plotting, FSharpCharts used 224, 225

pipe-forward operator (|>) 22
pipe operator 22

[266]

polynomial regression
using 104

possible additions, trading system
backtesting 259
client-server architecture, converting to 260
data feed, improving 259
GUI, extending 259

pretrade risk analysis
implementing 185
orders, validating 185, 186
rules 185

primitive types 14, 15
probability distributions, Math.NET library

100
program template

understanding 8, 9
prototyping 27
put option 135

Q
QuickFIX

configuring 187-202
QuickFix/n library 187

R
random number generation, Math.NET

library
about 99
Mersenne twister 100
pseudo-random numbers 99, 100

Read Eval Print Loop. See REPL
rec keyword 55
record types 33-35
recursive functions 55
relative value volatility trading

about 234
slope of smile, trading 234-239
strategies 234

REPL 5
requisites, trading system

libraries 206
listing 205
tools 206

Rho 148

root-finding algorithms
about 106
bisection method 107
roots, finding Newton-Raphson method

used 109
roots, finding secant method used 110

S
sample application

type providers, using with LINQ 213, 214
secant method

example 110
used, for finding roots 110

second-order greeks 145
sequence module

functions 48
sequences 34, 45, 47
series.Points.Add method 126
Set module

functions 50
sets 34, 48, 49, 55
software testing, trading system 204
statistics

about 93
aggregate statistics 93

stop-orders 176
String module

functions 54
strings 34, 53
sum function 16

T
Tail function 20
tail recursion 56
Task Parallel Library. See TPL
test cases, trading system

writing 216-220
test-driven development, trading system

204
testParse function 62
Theta 148
thread pools 69
threads 68, 69
TPL

about 74
parallel programming 74

[267]

trading strategy
defining 239
entry rules, defining 240
exit rules, defining 241
slope, decreasing 240
slope, increasing 240

trading system
automated trading 203
FsUnit, installing 209, 210
functionalities 243
GUI, building 252
history, saving 215, 216
information, presenting in GUI 254- 257
Microsoft SQL Server, connecting to 210,

211
MVC pattern 246
NUnit, installing 209, 210
possible additions 258
project structure 244, 245
requisites 205, 243
setting up 203-208
setup details 221
software testing 204
state, saving 215, 216
support, adding for downloading data 258
test cases 216
test-driven development 204
trading strategy, executing 247-250
TradingSystem 245
TradingSystem.Tests 245
type providers 212

tuples 21
type inference 13, 15
type providers

about 212
F#, using 212, 213
LINQ, using 212, 213

U
units of measure 63, 64, 65

V
values

functions, using in 31, 32
using, in modules 31, 32

Vega 147, 164
Visual Studio

F# project, creating in 6-8
getting started 6

VIX
trading 231

volatility
about 157
actual volatility 158
exploring, in F# 159-162
implied volatility 158
trading 223

volatility smile
about 169
exploring 169, 171

W
when keyword 58
Wiener processes 136-139

X
XML documentation 81, 82
XML tags

about 82
exception 82
remark 82
returns 82
see also 82
summary 82

Thank you for buying
F# for Quantitative Finance

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Windows Phone 7.5 Application
Development with F#
ISBN: 978-1-84968-784-3 Paperback: 138 pages

Develop amazing applications for Windows Phone
using F#

1. Understand the Windows Phone application
development environment and F# as a
language

2. Discover how to work with Windows Phone
controls using F#

3. Learn how to work with gestures, navigation,
and data access

Visual Studio 2012 and .NET 4.5
Expert Development Cookbook
ISBN: 978-1-84968-670-9 Paperback: 380 pages

Over 40 recipes for successfully mixing the powerful
capabilities of .NET 4.5 and Visual Studio 2012

1. Step-by-step instructions to learn the power of
.NET development with Visual Studio 2012

2. Filled with examples that clearly illustrate
how to integrate with the technologies and
frameworks of your choice

3. Each sample demonstrates key concepts to
build your knowledge of the architecture in a
practical and incremental way

Please check www.PacktPub.com for information on our titles

Microsoft .NET Framework 4.5
Quickstart Cookbook
ISBN: 978-1-84968-698-3 Paperback: 226 pages

Get up to date with the exciting new features in .NET
4.5 Framework with these simple but incredibly
effective recipes

1. Designed for the fastest jump into .NET 4.5,
with a clearly designed roadmap of progressive
chapters and detailed examples

2. A great and efficient way to get into .NET 4.5
and not only understand its features but clearly
know how to use them, when, how, and why

3. Covers Windows 8 XAML development,
.NET Core (with Async/Await and reflection
improvements), EF Code First and Migrations,
ASP.NET, WF, and WPF

C# 5 First Look
ISBN: 978-1-84968-676-1 Paperback: 138 pages

Write ultra responsive applications using the new
asynchronous features of C#

1. Learn about all the latest features of C#,
including the asynchronous programming
capabilities that promise to make apps ultra-
responsive

2. Examine how C# evolved over the years to
be more expressive, easier to write, and how
those early design decisions enabled future
innovations

3. Explore the language’s bright future building
applications for other platforms using the
Mono Framework

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing F# using
Visual Studio
	Introduction
	Getting started with Visual Studio
	Creating a new F# project
	Creating a new project in Visual Studio
	Understanding the program template
	Adding an F# script file

	Understanding F# Interactive
	Language overview
	Explaining mutability and immutability
	Primitive types
	Explaining type inference
	Explaining functions
	Learning about anonymous functions
	Explaining higher order functions
	Currying
	Investigating lists
	Concatenating lists

	Tuples
	The pipe operator

	Documenting your code
	Your first application
	The whole program
	Understanding the program
	Extending the example program
	The entire program

	The power of prototyping
	Functional languages in quantitative finance
	Understanding the imperative code and interoperability
	Summary

	Chapter 2: Learning More About F#
	Structuring your F# program
	Looking into modules
	Using functions and values in modules

	Namespaces

	Looking deeper inside data structures
	Record types
	Discriminated unions
	Enumerations
	Arrays
	Interesting functions in an array module

	Lists
	Pattern matching and lists
	Interesting functions in a list module

	Sequences
	Interesting functions in the sequence module

	Sets
	Maps
	Interesting functions in the map module
	Options
	Strings
	Interesting functions in the string module

	Choosing data structures
	Arrays
	Lists
	Sets
	Maps

	More on functional programming
	Recursive functions
	Tail recursion
	Pattern matching
	Incomplete pattern matching
	Using guards
	Pattern matching in assignment and input parameters
	Active patterns

	Introducing generics
	Lazy evaluation
	Units of measure

	Asynchronous and parallel programming
	Events
	Background workers
	Threads
	Thread pools
	Asynchronous programming
	The F# asynchronous workflows
	Asynchronous binding
	Example of using an async workflow

	Parallel programming using TPL
	MailboxProcessor

	A brief look at imperative programming
	Object-oriented programming
	Classes
	Objects and members
	Methods and properties
	Overloaded operators

	Using XML documentation
	Useful XML tags
	Typical XML documentation

	Summary

	Chapter 3: Financial Mathematics and Numerical Analysis
	Understanding number representation
	Integers
	Two's complement

	Floating-point numbers
	The IEEE 754 floating-point standard

	Learning about numerical types in F#
	Arithmetic operators
	Learning about arithmetic comparisons
	Math operators
	Conversion functions
	Introducing statistics
	Aggregate statistics
	Calculating the sum of a sequence
	Calculating the average of a sequence
	Calculating the minimum of a sequence
	Calculating the maximum of a sequence
	Calculating the variance and standard deviation
of a sequence
	Looking at an example application

	Using the Math.NET library
	Installing the Math.NET library
	Introduction to random number generation
	Pseudo-random numbers
	Mersenne Twister

	Probability distributions
	Normal distribution

	Statistics
	Linear regression
	Using the least squares method
	Using polynomial regression

	Learning about root-finding algorithms
	The bisection method
	Looking at an example

	Finding roots using the Newton–Raphson method
	Looking at an example

	Finding roots using the secant method
	Looking at an example

	Summary

	Chapter 4: Getting Started with Data Visualization
	Making your first GUI in F#
	Composing interfaces
	More about agents
	The user interface
	The main application
	Learning about event handling

	Displaying data
	Extending the form to use a table
	Displaying financial data from Yahoo! Finance
	Understanding the application code

	Extend the application to use Bollinger bands
	Using FSharp.Charting
	Creating a candlestick chart from stock prices

	Creating a bar chart
	Summary

	Chapter 5: Learning Option Pricing
	Introduction to options
	Looking into contract specifications
	European options
	American options
	Exotic options
	Learning about Wiener processes

	Learning the Black-Scholes formula
	Implementing Black-Scholes in F#
	Using Black-Scholes together with charts
	Introducing the greeks
	First-order greeks
	Second-order greeks

	Implementing the greeks in F#
	Delta
	Gamma
	Vega
	Theta
	Rho
	Investigating the sensitivity of the greeks
	Code listing for visualizing the four greeks

	The Monte Carlo method
	Summary

	Chapter 6: Exploring Volatility
	Introduction to volatility
	Actual volatility
	Implied volatility
	Exploring volatility in F#
	The complete application

	Learning about implied volatility
	Solving for implied volatility

	Delta hedging using Black-Scholes
	Exploring the volatility smile
	Summary

	Chapter 7: Getting Started with Order Types and Market Data
	Introducing orders
	Order types
	Market orders
	Limit orders
	Conditional and stop-orders

	Order properties

	Understanding order execution
	Introducing market data
	Implementing simple pretrade risk analysis
	Validating orders

	Introducing FIX and QuickFix/n
	Using FIX 4.2
	Configuring QuickFIX to use the simulator

	Summary

	Chapter 8: Setting up the Trading System Project
	Explaining automated trading
	Understanding software testing and
test-driven development
	Understanding NUnit and FsUnit
	Requirements for the system
	Setting up the project
	Installing the NUnit and FsUnit frameworks

	Connecting to Microsoft SQL Server
	Introducing type providers
	Using LINQ and F#
	Explaining sample code using type providers
and LINQ

	Creating the remaining table for our project

	Writing test cases
	Details about the setup

	Summary

	Chapter 9: Trading Volatility for Profit
	Trading the volatility
	Plotting payoff diagrams with FSharpCharts
	Learning directional trading strategies
	Trading volatility using options
	Trading the straddle

	Trading the butterfly spread
	Long butterfly spread
	Short butterfly spread

	Trading the VIX
	Trading the portfolio

	Deriving the mathematics
	Hedging with implied volatility
	Implementing the mathematics

	Learning relative value trading strategies
	Trading the slope of the smile

	Defining the trading strategy
	Case 1 – increasing slope
	Case 2 – decreasing slope
	Defining the entry rules
	Defining the exit rules

	Summary

	Chapter 10: Putting the Pieces Together
	Understanding the requirements
	Revisiting the structure of the system
	Understanding the Model-View-Controller pattern
	The model
	The view
	The controller

	Executing the trading strategy using
a framework
	Building the GUI
	Presenting information in the GUI
	Adding support for downloading the data
	Looking at possible additions to the system
	Improving the data feed
	Support for backtesting
	Extending the GUI
	Converting to the client-server architecture

	Summary

	Index

