ELECTRICAL ENERGY EFFICIENCY

ELECTRICAL ENERGY EFFICIENCY TECHNOLOGIES AND APPLICATIONS

Andreas Sumper BarcelonaTech (UPC), Institute for Energy Research (IREC), Spain

Angelo Baggini University of Bergamo, Italy

This edition first published 2012 © 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Electrical energy efficiency : technologies and applications / Andreas Sumper and Angelo Baggini.

p. cm.

Includes bibliographical references and index. ISBN 978-0-470-97551-0 (hardback)

1. Electric power–Conservation–Standards. 2. Energy conservation–Standards. 3. Energy dissipation.

4. Electric power transmission-Reliability. I. Baggini, Angelo B. II. Sumper, Andreas.

TJ163.3.E39 2012 621.31-dc23

2012000609

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470975510

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

Contents

List of Contributors		xi	
Prefa	e	xiii	
Forev	ord	XV	
1	Overview of Standardization of Energy Efficiency <i>Franco Bua and Angelo Baggini</i>	1	
1.1	Standardization1.1.1ISO1.1.2IEC1.1.3CEN and CENELECFurther Readings	3 4 5 6 8	
2	Cables and Lines Paola Pezzini and Andreas Sumper	9	
2.12.22.3	Theory of Heat Transfer2.1.1Conduction2.1.2Convection2.1.3RadiationCurrent Rating of Cables Installed in Free AirEconomic Aspects	10 10 10 11 12 15	
2.4	Calculation of the Current Rating: Total Costs 2.4.1 Evaluation of CJ		
2.5	Determination of Economic Conductor Sizes2.5.1Economic Current Range for Each Conductor in a Series of Sizes2.5.2Economic Conductor Size for a Given Load	18 18 18	
2.6	Summary References		
3	Power Transformers <i>Roman Targosz, Stefan Fassbinder and Angelo Baggini</i>	21	
3.1	Losses in Transformers3.1.1No-Load Losses3.1.2Load Losses	23 23 24	

	3.1.3	Auxiliary Losses	24
	3.1.4	Extra Losses due to Harmonics, Unbalance and Reactive Power	25
3.2	Efficiency and Load Factor		
3.3	Losses and Cooling System		
3.4	Energy	Efficiency Standards and Regulations	32
	3.4.1	MEPS	37
	3.4.2	Mandatory Labelling	37
	3.4.3	Voluntary Programmes	37
3.5	Life Cycle Costing		39
	3.5.1	Life Cycle Cost of Transformers	40
	3.5.2	Detailed Considerations	44
3.6	Design,	, Material and Manufacturing	47
	3.6.1	Core	47
	3.6.2	Windings	52
	3.6.3	Other Developments	54
3.7	Case St	udy – Evaluation TOC of an Industrial Transformer	54
	3.7.1	Method	55
	3.7.2	Results	56
	Referen	nces	59
	Further	Readings	59
3.A	Annex		60
	3.A.1	Selected MEPS	60
4		ng Automation, Control and Management Systems Baggini and Annalisa Marra	71
4.1		ation Functions for Energy Savings	72
	4.1.1	Temperature Control	72
	4.1.2	Lighting	74
	4.1.3	Drives and Motors	74
		Technical Alarms and Management	75
	4.1.5	Remote Control	76
4.2	Automation Systems		76
	4.2.1	KNX Systems	77
4.0	4.2.2	Scada Systems	82
4.3		ation Device Own Consumption	86 86
4.4	Basic Schemes		
		Heating and Cooling	86
		Ventilation and Air Conditioning	95
	4.4.3	Lighting	107
	4.4.4	Sunscreens	109
	4.4.5	Technical Building Management	110
4.7	4.4.6	Technical Installations in the Building	111
4.5	The Estimate of Building Energy Performance		113
	4.5.1	European Standard EN 15232	113
	4.5.2	Comparison of Methods: Detailed Calculations and	117
	Б. 4	BAC Factors	115
	Further Readings		124

5	Power	Quality Phenomena and Indicators	125	
	Andrei	Cziker, Zbigniew Hanzelka and Ireana Wasiak		
5.1	RMS Voltage Level			
	5.1.1	Sources	127	
	5.1.2	Effects on Energy Efficiency	128	
	5.1.3	Mitigation Methods	130	
5.2	Voltage Fluctuations		132	
	5.2.1		132	
	5.2.2		134	
	5.2.3	Effects and Cost	135	
	5.2.4	Mitigation Methods	138	
5.3	Voltage	Voltage and Current Unbalance		
	5.3.1	Disturbance Description	139	
	5.3.2	Sources	140	
	5.3.3	Effect and Cost	140	
	5.3.4	Mitigation Methods	143	
5.4	Voltage	e and Current Distortion	145	
	5.4.1	Disturbance Description	145	
	5.4.2	Sources	146	
	5.4.3	Effects and Cost	147	
	5.4.4	Mitigation Methods	153	
	References		162	
	Further	Readings	162	
6	On Site Generation and Microgrids		165	
	Irena Wasiak and Zbigniew Hanzelka			
6.1	Techno	logies of Distributed Energy Resources	166	
	6.1.1	Energy Sources	166	
	6.1.2	Energy Storage	170	
6.2	Impact	of DG on Power Losses in Distribution Networks	175	
6.3	Microgrids		178	
	6.3.1	Concept	178	
	6.3.2	Energy Storage Applications	180	
	6.3.3	Management and Control	182	
	6.3.4	Power Quality and Reliability in Microgrids	184	
	References		186	
	Further Readings		187	
7	Electri	c Motors	189	
	Joris Lemmens and Wim Deprez			
7.1	Losses in Electric Motors		190	
	7.1.1	Power Balance and Energy Efficiency	191	
	7.1.2	Loss Components Classification	193	
	7.1.3	Influence Factors	195	
7.2	Motor I	Efficiency Standards	199	
	7.2.1	Efficiency Classification Standards	199	

	7.2.2 Efficiency Measurement Standards	200
	7.2.3 Future Standard for Variable Speed Drives	207
7.3	High Efficiency Motor Technology	
	7.3.1 Motor Materials	210
	7.3.2 Motor Design	218
	7.3.3 Motor Manufacturing	224
	References	226
8	Lighting	229
	Mircea Chindris and Antoni Sudria-Andreu	
8.1	Energy and Lighting Systems	
	8.1.1 Energy Consumption in Lighting Systems	230 230
	8.1.2 Energy Efficiency in Lighting Systems	231
8.2	Regulations	233
8.3	Technological Advances in Lighting Systems	234
	8.3.1 Efficient Light Sources	234
	8.3.2 Efficient Ballasts	239
	8.3.3 Efficient Luminaries	241
8.4	Energy Efficiency in Indoor Lighting Systems	242
	8.4.1 Policy Actions to Support Energy Efficiency	242
	8.4.2 Retrofit or Redesign?	245
	8.4.3 Lighting Controls	247
	8.4.4 Daylighting	251
8.5	Energy Efficiency in Outdoor Lighting Systems	252
	8.5.1 Efficient Lamps and Luminaires	253
	8.5.2 Outdoor Lighting Controls	256
8.6	Maintenance of Lighting Systems	259 260
	References	
	Further Readings	261
9	Electrical Drives and Power Electronics	263
	Daniel Montesinos-Miracle, Joan Bergas-Jané and Edris Pouresmaeil	
9.1	Control Methods for Induction Motors and PMSM	266
	9.1.1 V/f Control	266
	9.1.2 Vector Control	271
	9.1.3 DTC	272
9.2	Energy Optimal Control Methods	274
	9.2.1 Converter Losses	275
	9.2.2 Motor Losses	276
	9.2.3 Energy Optimal Control Strategies	276
9.3	Topology of the Variable Speed Drive	276
	9.3.1 Input Stage	277
	9.3.2 DC Bus	278
	9.3.3 The Inverter	279
9.4	New Trends on Power Semiconductors	280

	9.4.1	Modulation Techniques	281
	9.4.2	Review of Different Modulation Methods	283
	Reference	ces	291
	Further l	Readings	193
10	Industrial Heating Processes		295
	Mircea (Chindris and Andreas Sumper	
10.1	General	Aspects Regarding Electroheating in Industry	298
10.2		ectroheating Technologies	302
	10.2.1	Resistance Heating	302
	10.2.2	Infrared Heating	309
	10.2.3	Induction Heating	314
	10.2.4	Dielectric Heating	318
	10.2.5	Arc Furnaces	325
10.3		Aspects Regarding the Increase of Energy Efficiency in Industrial	
	Heating	Processes	326
	10.3.1		327
	10.3.2	· · · · · · · · · · · · · · · · · · ·	329
	10.3.3	Increasing the Efficiency of the Existing Electroheating Equipment	330
	Reference		333
	Further I	Readings	334
11	Heat, Ve	entilation and Air Conditioning (HVAC)	335
	Poharto	Villafáfila-Robles and Jaume Salom	
	Koberio	villajajila-Kobles and Jaume Salom	
11.1	Basic Co		336
11.1 11.2	Basic Co		336 338
	Basic Co	nental Thermal Comfort	
11.2	Basic Co Environi HVAC S 11.3.1	oncepts nental Thermal Comfort ystems <i>Energy Conversion</i>	338 342 344
11.2	Basic Co Environi HVAC S 11.3.1 11.3.2	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance	338 342 344 346
11.2 11.3	Basic Co Environi HVAC S 11.3.1 11.3.2 11.3.3	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency	338 342 344 346 347
11.2	Basic Co Environi HVAC S 11.3.1 11.3.2 11.3.3 Energy N	oncepts nental Thermal Comfort ystems <i>Energy Conversion</i> <i>Energy Balance</i> <i>Energy Efficiency</i> Measures in HVAC Systems	338 342 344 346 347 348
11.2 11.3	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service	338 342 344 346 347 348 348
11.2 11.3	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods	338 342 344 346 347 348 348 348
11.2 11.3	Basic Co Environi HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device	338 342 344 346 347 348 348 348 348 351
11.2 11.3	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources	338 342 344 346 347 348 348 348 351 353
11.2 11.3	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources	338 342 344 346 347 348 348 348 351 353 354
11.2 11.3	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources	338 342 344 346 347 348 348 348 351 353
11.2 11.3	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference Further D Data Ce	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources res Readings	338 342 344 346 347 348 348 348 351 353 354
11.2 11.3 11.4	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference Further D Data Ce	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources Sees Readings	338 342 344 346 347 348 348 348 351 353 354 355
11.2 11.3 11.4	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference Further D Data Ce	oncepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources es Readings mtres Baggini and Franco Bua	338 342 344 346 347 348 348 348 351 353 354 355
11.211.311.412	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference Further I Data Ce Angelo E Standard	Ancepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources Sees Readings ntres Baggini and Franco Bua Is ption Profile	338 342 344 346 347 348 348 348 351 353 354 355 357 357 358
 11.2 11.3 11.4 12 12.1 	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference Further D Data Ce Angelo E Standard Consum 12.2.1	Ancepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources Sees Readings ntres Baggini and Franco Bua Is ption Profile Energy Performance Index	338 342 344 346 347 348 348 348 351 353 354 355 357 357 358 360
 11.2 11.3 11.4 12 12.1 	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference Further D Data Ce Angelo E Standard Consum 12.2.1 IT Infras	Ancepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources Sees Readings Intres Baggini and Franco Bua Is ption Profile Energy Performance Index structure and Equipment	338 342 344 346 347 348 348 348 351 353 354 355 357 357 358 360 360
 11.2 11.3 11.4 12 12.1 12.2 	Basic Co Environt HVAC S 11.3.1 11.3.2 11.3.3 Energy N 11.4.1 11.4.2 11.4.3 11.4.4 Reference Further D Data Ce Angelo E Standard Consum 12.2.1	Ancepts nental Thermal Comfort ystems Energy Conversion Energy Balance Energy Efficiency Measures in HVAC Systems Final Service Passive Methods Conversion Device Energy Sources Sees Readings ntres Baggini and Franco Bua Is ption Profile Energy Performance Index	338 342 344 346 347 348 348 348 351 353 354 355 357 357 358 360

	12.3.3	Network Equipment	361
	12.3.4	Consolidation	362
	12.3.5	Virtualization	362
	12.3.6	Software	363
12.4	Facility Infrastructure		363
	12.4.1	Electrical Infrastructure	363
	12.4.2	HVAC Infrastructure	365
12.5	DG and	CHP for Data Centres	368
12.6	Organizing for Energy Efficiency		369
	Further	Readings	370
13	Reactiv	e Power Compensation	371
	Zbigniev	v Hanzelka, Waldemar Szpyra, Andrei Cziker and Krzysztof Piątek	
13.1	Reactive Power Compensation in an Electric Utility Network		373
	13.1.1	Economic Efficiency of Reactive Power Compensation	377
13.2	Reactive Power Compensation in an Industrial Network		380
	13.2.1	Linear Loads	381
	13.2.2	Group Compensation	383
	13.2.3	Nonlinear Loads	387
13.3	Var Compensation		391
	13.3.1	A Synchronous Condenser	391
	13.3.2	Capacitor Banks	392
	13.3.3	Power Electronic Compensators/Stabilizers	393
	References		398
	Further Readings		
Index			399

Index

List of Contributors

Angelo Baggini Industrial Engineering Department University of Bergamo Via Marconi 5 24044 Dalmine BG, Italy

Joan Bergas-Jané Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) Universitat Politècnica de Catalunya (UPC) Escuela Técnica Superior de Ingeniería Industrial de Barcelona Av. Diagonal, 647. Planta 2 08028 Barcelona, Spain

Franco Bua ECD Engineering Consulting and Design Vai Maffi 21 27100 Pavia, Italy

Mircea Chindris Electrical Power Systems Dept. Technical University of Cluj-Napoca 15, C.Daicoviciu st. 400020 Cluj-Napoca, Romania

Andrei Czicker Electrical Power Systems Dept. Technical University of Cluj-Napoca 15, C.Daicoviciu st. 400020 Cluj-Napoca, Romania

Wim Deprez Dept. Electrical Engineering ESAT K.U. Leuven, Research group ELECTA Kasteelpark Arenberg 10 3001 Heverlee, Belgium

Stefan Fassbinder Berantung elektrotechnische Anwendungen Deutsches Kupferinstitut Am Bonneshof 5 D-40474 Dusseldorf, Germany

Zbigniew Hanzelka University of Science and Technology – AGH 30-059 Cracow, Al. Mickiewicza 30 Poland

Joris Lemmens Dept. Electrical Engineering ESAT K.U. Leuven, Research group ELECTA Kasteelpark Arenberg 10 3001 Heverlee, Belgium

Annalisa Marra ECD Engineering Consulting and Design Vai Maffi 21 27100 Pavia, Italy

Daniel Montesinos-Miracle Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) Universitat Politècnica de Catalunya (UPC) Escuela Técnica Superior de Ingeniería Industrial de Barcelona Av. Diagonal, 647. Planta 2 08028 Barcelona, Spain

Paola Pezzini Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) Universitat Politècnica de Catalunya (UPC) Escuela Técnica Superior de Ingeniería Industrial de Barcelona Av. Diagonal, 647. Planta 2 08028 Barcelona, Spain

Krzysztof Piątek University of Science and Technology – AGH 30-059 Cracow, Al. Mickiewicza 30, Poland

Edris Pouresmaeil Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) Universitat Politècnica de Catalunya (UPC) Escuela Técnica Superior de Ingeniería Industrial de Barcelona Av. Diagonal, 647. Planta 2 08028 Barcelona, Spain

Jaume Salom Institut de Recerca en Energia de Catalunya (IREC) Jardins de les Dones de Negre 1, 2^a pl. 08930 Sant Adrià de Besòs, Spain

Antoni Sudrià-Andreu Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) Universitat Politècnica de Catalunya (UPC) Escuela Técnica Superior de Ingeniería Industrial de Barcelona Av. Diagonal, 647. Planta 2 08028 Barcelona, Spain Andreas Sumper Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) Universitat Politècnica de Catalunya (UPC) Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona Carrer Comte d'Urgell, 187 - 08036 Barcelona, Spain

and

Institut de Recerca en Energia de Catalunya (IREC) Jardins de les Dones de Negre 1, 2^a pl. 08930 Sant Adrià de Besòs, Spain

Waldemar Szpyra University of Science and Technology – AGH 30-059 Cracow, Al. Mickiewicza 30, Poland

Roman Targosz Polish Copper Promotional Centre Plac Jana Pawla II 1-2 50-136 Wrocalw, Poland

Roberto Villafáfila-Robles Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA) Universitat Politècnica de Catalunya (UPC) Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona Carrer Comte d'Urgell, 187 - 08036 Barcelona, Spain

Irena Wasiak Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Automatyki i Informatyki Instytut Elektroenergetyki ul. Stefanowskiego 18/22 90-924 Łódź, Poland

Preface

Energy efficiency technologies are common technologies from different engineering fields used to reduce the energy required to provide products and services. As electricity is the most flexible energy form known to humans and one of the most important energy forms used in industry and commercial applications, a specific focus on electrical energy efficiency is required. So, electrical energy efficiency is a set of engineering technologies that are dedicated to increasing the electrical energy efficiency of applications. These engineering technologies are very widespread and can vary from power quality engineering to the thermal engineering of electrical applications, including economic aspects.

Together with electrical safety, in the coming years electrical energy efficiency should become one of the mandatory design criteria in every process, installation or building.

The difficulty of electrical energy efficiency engineering is to obtain a holistic view of an application; in most cases a specific knowledge of the technology is needed, but a deep understanding of the industrial process and the problem to be solved is necessary in order to achieve the overall efficiency goal. Often, optimal solutions for partial problems provide a moderate contribution to the overall energy efficiency of the process. Engineers should have multidisciplinary knowledge, for instance knowledge about electrical applications, power quality, control techniques and heat transfer. Also, an important aspect to consider is the ability to analyse the industrial process and to determine what efficiency actions need to be taken.

The increase in electrical energy efficiency is closely related to the evaluation of the efficiency measures to be taken, mainly by investment analysis. Efficient solutions often need higher investments and these usually need management approval. The manager also has to understand how energy efficient solutions can improve the process efficiency and therefore a higher productivity can be achieved.

In 2000 a group of academics and industrialists launched a life-long learning programme co-funded by the European Commission dedicated to Power Quality problems called Leonardo Power Quality Initiative (LPQI). This project created a network of experts in energy that created several follow-on projects such as LPQIves and Leonardo Energy. Most of the information on these programmes is available at the Leonardo Energy webpage (http://www.leonardo-energy.org). Inspired by this project, part of this working group contributed to the *Handbook of Power Quality*, edited by Angelo Baggini in 2008.

In one of the project meetings in Brussels in 2008 the idea of a comprehensive book on electrical energy efficiency was born and the content of the book was worked out during the following years.

The novel approach in this book is to give the reader a straightforward introduction to the technologies and their applications used to increase electrical energy efficiency. The reader will find efficiency aspects emphasized in this comprehensive book and an expert view given on the most important industrial and commercial fields of electrical engineering. Each chapter covers a different technology in order to achieve an efficiency goal in a wide range of application fields.

Before you begin to study this book, we would like to mention the important contributions of all the authors of the chapters from all around the world. Without their expert views, this work would not be possible. We hope that you find this book interesting reading.

> Andreas Sumper, Barcelona, Spain Angelo Baggini, Pavia, Italy

Foreword

There are no doubts that energy security and climate change are two of the most frequent topics discussed by policy makers. The oil price is now at around US\$100 per barrel and, because of the increasing demand and the continuing depletion of the reserves, this price level will stay or may even increase. The human impact on climate change is not disputed anymore in the scientific community, as well as the worrying news that the irreversible impact has already started and only a drastic change in the level of CO_2 emissions will mitigate the large and very costly impact on the society.

Energy efficiency and energy conservation are gaining importance as key components in many national and international strategies to mitigate the impact of climate change, to improve security of energy supply and increase competitiveness, to preserve natural resources (energy, material and water, amongst others) and also to reduce other energy-related environmental pollution. However, investment in energy efficiency technologies from R&D to implementation, in buildings, equipment and industrial systems, is still far too less than the economics and the energy and climate change situation would suggest.

Energy efficiency policies, programmes and support schemes are still very much needed to overcome market, institutional, financial and legal barriers, and to create a favourable market for energy efficiency investments at the level that a rational economic behaviour would justify. In particular, support schemes for energy efficient technologies are very much debated as many consider that the future energy cost savings should be enough to motivate end users.

The other major issue is the awareness that what matters in climate change is to reduce the absolute energy demand if we want to mitigate the inevitable full climate change impact. Reduction in energy demand can be achieved by improving the energy efficiency of the service provided (technological aspect) and/or by realising energy savings without necessarily making technological improvements (behavioural aspect, for instance less overheating or overcooling, less driving). Energy efficiency is an important component to achieve energy savings, as it allows having the same services (e.g. lighting, cooling, heating) with less use of energy. However, improved energy efficiency – i.e. replacing a technology with a more energy efficient one – does not per se assure energy savings, and there are numerous examples where as a result of introducing a more efficient technology the actual consumption indeed increases, because of the rebound effect or because of installing larger and more numerous appliances and equipment (larger volume of appliances, more frequent usage).

There is an increased interest in energy efficiency and energy savings amongst policy makers, economists and academics (from the technology, economy, policy and human behaviour side). There is the need to further explore energy efficiency technologies (such as control systems,

solid state lighting, variable speed drives and vacuum insulation) and gather new evidence on policies and socio-economic issues related to energy use, consumption and behaviour. At the same time, with increased policy activities in the energy efficiency and energy saving field, there is a new need to evaluate the past and present policies in different countries, to show the clear contribution of energy efficiency to energy security and climate change mitigation.

Paolo Bertoldi European Commission Joint Research Centre Ispra Italy