
603

10

A SIMPLE CPU DESIGN

The design of a simplified central processing unit (CPU) is covered in this
chapter. This design exemplifies a somewhat more involved and practical
design than the examples studied in the previous chapter. This entire chapter
basically is a huge example that shows the most important considerations
when designing a simple CPU. We start defining the CPU instruction set and
the machine instruction word. What the instructions do. The registers, memory,
and combinational logic blocks are the components that the CPU requires to
be able to execute the defined instruction set. We will also cover the design of
the sequencer or control section of the machine with the details of its state
diagram and circuit implementation. Finally, a system section covers some of
the most important aspects, and sometimes overlooked issues of embedded
system design: clocks, resets, power decoupling, and timing. The goal of this
chapter is not only to cover a simple CPU but at the same time a complex
enough design example that is more comprehensive than previously covered
design examples. The basic approach taken is mostly bottom up.

10.1  OUR SIMPLE CPU INSTRUCTION SET

This section introduces the reader to our small CPU instruction set. The
instruction set is carefully picked such that various types of the most popular
machine language instructions are represented. We will not categorize this

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition.
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley
& Sons, Inc.

604 A SIMPLE CPU DESIGN

design neither as a CISC or RISC example. CISC stands for Complex Instruc-
tion Set Computer and RISC stands for Reduced Instruction Set Computer.
From a computer architecture point of view our design is closer to a von
Neumann machine. This is an architecture that consists of a stored-program
digital machine that has a central processing unit and a single separate memory
unit that holds program instructions as well as data. An example of a RISC
and CISC is covered in References 3, 4, and 6 in the Further Reading section.

The instruction set architecture (ISA) that our simple CPU supports con-
sists of a few but very significant instructions that all real-world machines
support. The purpose of studying a very simple CPU is to prove basic archi-
tecture concepts to the reader, which later on we will use to add real world
factors that embedded systems face. Such factors over and above the computer
architecture are timing analysis of the CPU, how to clock the machine, the
reset logic, and integrated circuit power decoupling.

The basic instructions that our simple CPU supports are: LOAD, STORE,
AND, ADD, (unconditional jump) JMP, (conditional branch) BRNA, and
(complement) CMPA.

Our CPU has a single accumulator register or simply register A. Register
A is a 16-bit wide register. The computer memory has 4096 16-bit wide words,
that is, 4K words. Since the memory has 4K memory locations, the address
width required to address each word uniquely, is 12 since 212 is 4096. The
program counter register or the PC is 12 bits wide and it is used to store the
address of the instruction to be executed immediately after the currently being
executed instruction. Summarizing our CPU has 16-bit wide data paths
between register A and its memory. All memory accesses are done with a 12-
bit wide address. The PC stores the address of the to-be executed instruction.
Our simple CPU has a single 16-bit word instruction word. The lower 12 bits
are used as an address to memory for those instructions that require such
address, while the upper four bits are allocated as operational code bits (opcode
bits) format. Opcode bits are unique binary codes defined for every unique
instruction that the CPU supports. Table 10.1 below depicts the organization
of our CPU instruction word format.

 Opcode IWF= [:]15 12 (10.1)

 Address X IWF= [:].11 0 (10.2)

Now we are ready to explain what each instruction does from a programmer’s
model point of view.

Table 10.1  Instruction word format (IWF) bit assignments

MSB LSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operational code Memory address X

INSTRUCTION SET DETAILS: REGISTER TRANSFER LANGUAGE (RTL) 605

10.2  INSTRUCTION SET DETAILS: REGISTER TRANSFER 
LANGUAGE (RTL)

Micro-operations are the most basic actions that digital computers make.
Examples of micro-operations are: register to register transfers, register to
memory location transfers, memory location to register transfers, perform a
logic or arithmetic operation between a register and the contents of a memory
location, storing the result in the register or in the memory location. Data trans-
fers are indicated as: X ← Y, where X and Y are registers. The contents of
register Y, the source register, get transferred (in actuality is copied) to register
X, the destination register. The original contents of Y are preserved. In addition
to the data transfer itself; there may be conditions under which a transfer takes
place. For example: If “a bit of some register is set” (i.e., the condition) transfer
the contents of Memory location whose address is in the memory address reg-
ister MAR into register X. This is indicated as: X ← M [MAR], that is, specific
sequences of micro-operations constitute macro-instructions or machine lan-
guage instructions. Such instructions, in binary form, are loaded into the main
memory of our simple CPU and the CPU fetches, decodes, and executes them.
Assembly language is a symbolic language that allows programmers to more
easily write low-level machine language. An assembler typically translates the
assembly language instructions into machine language before execution. Let us
get started with our very simple CPU instruction set.

LOAD Instruction: Syntax LDA A, (X). This opcode is defined as 00002.
This instruction reads the contents of memory location whose address is X
and copies such contents into register A. It is important to recall that X is a
12-bit address and that the memory contents at any memory address and the
contents of register A are all 16 bits wide. The 16-bit data transfer that the
LOAD instruction produces is indicated as:

 A X← (). (10.3)

The LDA instruction does not affect the state of the S (Sign) bit. The S bit is
usually part of a condition codes register (CCR) or Processor Status Word
(PSW). This register holds bits that are set or reset based on some arithmetic
or logic operation outcomes. Our simple CPU will one have a Sign bit in its
CCR. The sign bit is the MSB of the results produced by the Arithmetic and
Logic Unit (ALU), to be discussed shortly.

STORE Instruction: Syntax STA (X), A: Its opcode is 00012. This instruction
reads the contents of register A and copies them into memory location whose
address is X. The 16-bit data transfer that the STORE instruction produces is
indicated as:

 () .X A← (10.4)

The STA instruction does not affect the state of the S (Sign) bit.

606 A SIMPLE CPU DESIGN

ADD Instruction: Syntax ADD A, (X): Its opcode is 00102. The ADD
instruction reads the contents of a memory location whose address is X,
adds them to the value contained in register A, prior to the execution of
the ADD, and produces the sum of these two 16-bit quantities, storing the
result in register A. It is the programmer’s responsibility to have some desired
value in register A prior to the execution of the ADD instruction. After the
ADD instruction is executed the original contents of A are overwritten. The
16-bit addition and data transfer that the ADD instruction produces is indi-
cated as:

 A A X← + (). (10.5)

Execution of this instruction sets the sign (S) flag. The S flag is a registered
copy of the accumulator MSB. When the accumulator is zero or positive the
S bit is zero, when the accumulator is negative the S bit is one. The S bit has
the same meaning as the MSB in a 2’s Complement number.

AND Instruction: Syntax AND A, (X): Its opcode is 00112. The AND
instruction reads the contents of a memory location whose address is X, per-
forms a bit-to-bit logical AND of the read memory contents and register A
bits, and stores the ANDing of these two 16-bit quantities in register A. It is
the programmer’s responsibility to have some desired value in register A prior
to the execution of the AND instruction. After the AND instruction is exe-
cuted the original contents of A are overwritten. The 16-bit data transfer that
the AND instruction produces is indicated as:

 A A X← . (). (10.6)

Execution of the AND instruction sets the sign flag accordingly.
JMP Instruction: Syntax JPM X: Its opcode is 01002. Upon execution of this

unconditional instruction the PC gets loaded with address X, which is bits 11:0
from the fetched instruction.

 PC X← . (10.7)

The JMP instruction does not affect the S flag.
BRNA Instruction: Syntax BRNA X: Its opcode is 01012. This instruction is

called branch on negative accumulator. This instruction looks at the Sign (S)
bit, if the S bit is 1 (i.e., a negative 2’s Complement number is in the accumula-
tor) the PC gets loaded with address X, which are bits 11:0 from the fetched
instruction. When the S bit is zero (accumulator is zero or positive) no change
to the PC takes place. That is the PC remains incremented by one from the
fetch cycle. This may sound a little confusing but it will be understood better
when we will study the data path architecture of our simple CPU:

 If S 1 then PC X() .= ← (10.8)

BUILDING A SIMPLE CPU: A BOTTOM-UP APPROACH 607

The BRNA instruction does not affect the S flag; however it uses the S setting
made by some prior instruction to the BRNA to make a decision.

CMP Instruction: Syntax CMP A: Its opcode is 01102. Upon execution
of this instruction the contents of accumulator register A become 1’s
complemented.

 A A← . (10.9)

Execution of this instruction sets the S bit accordingly.
Table 10.2 summarizes the instruction set of our simple CPU.

10.3  BUILDING A SIMPLE CPU: A BOTTOM-UP APPROACH

Our CPU is required to have the registers and memory access that support
the above-described instruction set. The CPU registers are part the program-
mer’s model of the CPU. However, there will invariably be other registers,
mechanisms and devices that are totally transparent (or not visible) to the
programmer. So before looking at the big view of the data path we will study
bits and pieces of the fundamental elements that constitute such data path
architecture.

10.3.1  The Registers

Our CPU needs registers. Registers are used to hold memory addresses,
memory data read or memory data to be written. Registers also hold the
operand of the ADD and AND instructions. Registers are typically built with
D type flip-flops; however they are not just a free running group of flip-flops.
Why not? If the registers were free running they would get loaded on every

Table 10.2  Simple CPU instruction set

Instruction
Syntax

Opcode (Binary)
IWF [15:12]

Address X
IWF [11:0]

Description of What
Gets Executed

Affects
Sign Flag?

LD A, (X) 0000 A valid address A ← (X) No
STA (X), A 0001 A valid address (X) ← A No
ADD A, (X) 0010 A valid address A ← A + (X) Yes
AND A, (X) 0011 A valid address A ← A . (X) Yes
BRNA X 0101 A valid address If S = 1 then

PC ← X
No

JPM X 0100 A valid address PC ← X No
CMP A 0110 Bits [11:0] are

ignored
A ← A− Yes

608 A SIMPLE CPU DESIGN

single active edge of the clock. To achieve a selective load of a register we
place a 1-of-2 Mux as shown in Figure 10.1. When the CPU control circuit
drives a zero onto the mux select line, the register holds it data indefinitely
because it keeps reloading itself with its own outputs for as long as clocks keep
coming into the register. When a control circuit drives a one onto the mux
select line, the external data placed on channel 1 of the mux gets loaded upon
the active edge of the clock clocking the register.

For example if we have a data path like the one shown in Figure 10.2, which
has four 8-bit registers A, B, C, and D. Assume that somehow all four registers
have their own initial values. Let us assume that on the next clock edge we
would like the contents of register A to get transferred to register B, overwrit-
ing the current value of B and preserving the current values of A, C, and D.
The control required to do that has to assert the load input for register B and
keep the load inputs of registers A, C, and D negated. The mux select lines
have to select input channel 0, which feeds the contents of register A onto the
inputs of all four registers. Upon the active clock edge only register B will get
written with the contents of A because register B has its load control input
asserted while the other three registers do not. So upon the active edge of the
clock clocking all four registers synchronously perform the following data
transfers:

Figure 10.1  Implementation of a register with synchronous load control.

n

n

01

S

n

Load

External data to be loaded into register

n-bit wide 1-of-2 Mux

n-bit Register

n

If (Load=0) then Reg. Holds

If (Load=1) then Reg. Loads

BUILDING A SIMPLE CPU: A BOTTOM-UP APPROACH 609

 B A← (10.10)

 A A← (10.11)

 C C← (10.12)

 D D← . (10.13)

Note from Equations (10.10) through (10.13) only B gets loaded with the
contents of register A. Data transfers (Eqs. 10.11 through 10.13) show that A,
C, and D preserve or hold their original contents, because their load control
inputs are negated upon the assertion of the clock edge. It is very important
to observe that although data transfers (Eqs. 10.10 through 10.13) are written
in a sequence, actually all four of them take place concurrently. This is what a
synchronous state machine does. For correct data transfers to take place,
set-up and hold times of all flip-flops need to be met. We will address timing
when we get to the control section of our simple CPU. Note that based on the
simple data path depicted by Figure 10.2 we can transfer the contents of any
one register to any two, or any three or all four registers. This is accomplished
by asserting the load lines of all the registers we want the new data to get
loaded into and by selecting the mux channel of the register that we want to
source or provide the data.

Figure 10.2  Simple data path architecture to show synchronous data transfers.

610 A SIMPLE CPU DESIGN

10.3.2  The Memory Access Path or Memory Interface

Our CPU main memory or simply its memory is an array of 4096 16-bit words
or 4Kx16. Twelve address lines are required to access 4096 locations since
212 = 4096. Each word is 16 bits wide so the data path to memory has 16 data
lines. Memory is designed in such way that one 16-bit data word out of 4096
words can be accessed at any given time. Our memory has two control input
lines: a READ and a WRITE. READ and WRITE can be both negated (non-
asserted), but only one control input can be asserted at any given time. This
means that we can only read a word from memory or write a word into
memory at a time.

Practically two registers are needed to interface the CPU with its memory.
The Memory Address Register or MAR register holds a memory address. The
Memory Buffer Register or MBR receives the data read from memory on
memory READS; or holds the data to-be-written into memory on memory
WRITES. The interfacing protocol between the CPU and its memory is per-
formed via the MAR and MBR registers.

Using the MAR and the MBR the data path transfers below are required
to read memory:

1. MAR ← Address; places desired address to read memory from, in the
MAR.

2. MBR ← Memory [MAR]; retrieves the contents of memory location
whose address is in the MAR.

For a memory write:

1. MAR ← Address; places desired memory address to write to in the
MAR.

2. MBR ← Data; places desired data to be written into memory in the
MBR.

3. Memory [MAR] ← MBR; performs the write. Transfers data from the
MBR into the memory location whose address is in the MAR.

Figure 10.3 depicts the data path and interfacing registers with our memory
array. Note that the MAR is 12 bits wide, because it has to hold a 12-bit address.
The MBR is 16 bits wide because the memory data is 16 bits wide. The memory
access path not only shows the path for the memory data but also the memory
address path. Data path pictures usually do not include control signals, like
the READ and WRITE controls for the memory. Register Q outputs are rep-
resented with a heavy line, refer to MAR and MBR in Figure 10.3. The register
clock is implicit. So when we see a rectangle with one of its sides being very
thick, it means that we have a register. Usually, the width of the register is
indicated with a little forward slash followed by the width of the input and
output buses in bits.

BUILDING A SIMPLE CPU: A BOTTOM-UP APPROACH 611

10.3.3  The Arithmetic and Logic Unit (ALU)

Instructions ADD and AND respectively require arithmetic and logic to be
performed on its operands. We will see within this chapter that two registers
will hold the operands that the ALU receives on its two input legs P and Q.
Both the ADD and the AND operations are performed with combinational
logic. Such logic constitutes the ALU. Figure 10.4 shows a high-level block
diagram of our ALU. Essentially our ALU has two 16-bit wide input legs, P
and Q and a 16-bit output leg Z. The ALU is designed to perform the opera-
tions listed in Table 10.3. Although it may not be clear as to why we need all
those operations now, please hang on and everything will come together when
we stitch together all the components of our simple CPU.

10.3.4  The Program Counter (PC)

We mentioned earlier that the 12-bit wide PC holds the address of the to-be-
fetched instruction when an instruction is currently being executed. The PC

Figure 10.3  Memory data path and interfacing registers.

Datain Dataout

MBR

MAR

Data out of memory

Data into memory

Mux

Address

16

16

16 16

16

1212
Memory Address
supplied to MAR

612 A SIMPLE CPU DESIGN

Table 10.3  ALU Basic operations

ALU Operation
High Level
Description

ALU Function
Select Code

Connect input leg Q to output leg Z PASS Q to Z 00
Complement input leg P and connect it to output

leg Z
P to Z 01

Arithmetic ADD of input legs P and Q send
result to output leg Z

(P + Q) to Z 10

Logical bit-to-bit AND of input legs P and Q
send result to output leg Z

(P . Q) to Z 11

Figure 10.4  (a) ALU high-level block diagram; (b) ALU block diagram.

P Q

Z

16 16

16

ALU Function Select Code 2

16-bit Adder
X 16 X 16

0123

P [15:0] Q [15:0]

S [1:0]

Z [15:0]

16-bit wide 1-of-4 MUX
ALU Function Select Code [1:0]

16 16

16 16 16 16 16

16161616

16

2

CinCo

(a)

(b)

BUILDING A SIMPLE CPU: A BOTTOM-UP APPROACH 613

keeps track of which instruction within a program the CPU is at. A program:
“a sequence of instructions with a defined purpose” is an oversimplified but
correct view of what a program is. During the execution of most of the CPU
instructions the PC gets incremented by one, since all of our instructions are
one 16-bit word in length. So unless our program encounters an unconditional
jump or a conditional branch instruction, the PC is always incremented by one.
Upon a jump or branch instruction the PC wants to be loaded with a new
destination or jump-to address. Such address, called address X, is fetched from
memory along with the four-bit opcode. Once the PC gets loaded with this
destination address X the jump will always fetch the next instruction from this
new destination address. In the case of the BRNA (branch on negative accu-
mulator) the branching will occur if the condition of a negative accumulator
(S flag set) was met before the BRNA instruction. If the branch condition is
met the next instruction fetch takes place from the destination address X. If
the branch condition is false the branch does not occur and the PC remains
loaded with the address of the previous instruction incremented by one. From
all of the above we need to have the PC perform at least three distinct func-
tions: hold its contents, auto-increment by one or get loaded with a new des-
tination address. Additionally the PC will have an asynchronous Reset input
line to ensure that its contents are cleared upon power-up reset. Because of
all of that functionality the PC is a little more involved that the accumulator
A, MAR or MBR registers. One way of implementing the PC is with a counter,
to obtain the auto-increment feature. The PC could use the CPU ALU to
increment its contents by one, but this is not desirable because the PC would
be using the ALU, which is a valuable resource of the CPU. Figure 10.5 depicts
an implementation of the PC. Table 10.4 describes all the operations that the
PC performs. Note that the PC implementation in itself is a simple synchro-
nous state machine. Its basic functions are: (1) hold, (2) increment by one, (3)
external data synchronous load, and (4) synchronous reset (or clear). Note that
the combinational logic between the PC input control lines (Incr, Load &
Clear) and the 12-bit wide 1-of-4 mux has two select lines S1 and S0, is designed
according to Table 10.4, look under columns PC Control Inputs and Mux Select
Inputs. Note that Rows 1 through 4 of Table 10.4 defines the main functions
of the PC combinational logic. In general control lines Incr, Load & Clear must
be asserted in a mutually exclusive fashion, when all control inputs are negated
the PC holds its previously clocked state. Assertion of two or three PC control
inputs is not meaningful and to avoid this illegal condition whenever they are
asserted the PC register will simply hold its previously clocked state. Refer to
Table 10.4 Rows 5 through 8. Finally Row 9 indicates that when the clock into
the PC is not active the PC register holds the previously clocked state. The
asynchronous Reset line is not shown in Table 10.4 since this table is busy
enough as it is. Figure 10.5 depicts a functional block diagram of the PC reg-
ister architecture.

Table 10.4 describes the operation or characteristic table of the PC register.
Carefully read Table 10.4 while and also inspect Figure 10.5.

Figure 10.5  The program counter register (PC).

External data to be loaded into
the PC register

12

0

1

S1

12-bit wide 1-of-4 Mux

2

3

12
-b

it
R

eg
is

te
r

12

12

12

12
S0

Y
12 12

12b’0000_0000_0001 12
-b

it
ad

de
r

12

12

12

Logic
ZeroCin

Incrementer Logic

Clear

Load

Incr

Combinational
Encoding

Asynchronous Reset

Hold Path

Synchronous Clear Path
12b’0000_0000_0000

NOTE:Register clock signal not explicitly shown.

Table 10.4  PC register characteristic table

Row Clock
High-true PC

Control Inputs

Mux
Select
Inputs

PC Next State Output
Becomes

PC Function#
Active
Edge Clear Load Incr S1 S0 Qn+1[11:0]

1 ↑ 0 0 0 0 0 Qn+1 ← Qn[11:0] Hold
2 ↑ 0 0 1 0 1 Qn+1 ← Qn+1 Increment
3 ↑ 0 1 0 1 0 Qn+1 ← Ext-Datan[11:0] Load
4 ↑ 1 0 0 1 1 Qn+1 ← 0 Synchronous

Clear
5 ↑ 0 1 1 0 0 Qn+1 ← Qn[11:0] Hold
6 ↑ 1 1 0 0 0 Qn+1 ← Qn[11:0] Hold
7 ↑ 1 0 1 0 0 Qn+1 ← Qn[11:0] Hold
8 ↑ 1 1 1 0 0 Qn+1 ← Qn[11:0] Hold
9 Inactive X X X X X Qn+1 ← Qn[11:0] Hold

DATA PATH ARCHITECTURE: PUTTING THE LOGIC BLOCKS TOGETHER 615

10.4  DATA PATH ARCHITECTURE: PUTTING THE LOGIC 
BLOCKS TOGETHER

Do not read this section until you have a good understanding of everything
in this chapter that precedes this section. We will be heavily referring to previ-
ous sections, figures and tables. Once you are are ready we will begin to discuss
how the individual logic blocks from Section 10.3 fit together. When our CPU
has to execute an instruction it does it in three basic stages: (1) instruction
fetch, (2) instruction decode (3) instruction execution. From a digital design
standpoint each of the stages mentioned may be have one or more states.

10.4.1  Data Path: LDA Instruction Fetch, Decode and Execution RTL

When an instruction has to be fetched from memory the Program Counter
Register (PC), which should have the address of the to-be-executed instruction
has to transfer its contents to the MAR. To fetch an instruction means that the
instruction has to be read from memory and be placed in some register within
the CPU. Remember that our CPU instructions are only one 16-bit word long
and it is not a multi-word instruction like in some advanced machines. The
instruction upper four bits are the opcode and the lower 12 bits are address
X. Refer to the ISW in Table 10.1. Upon being fetched, the instruction needs
to be decoded; this tells the CPU what instruction was just fetched from
memory and what else it needs to do. Upon the CPU figuring out which
instruction it fetched, and assuming that in our example it was a LDA A, (X);
the CPU knows that it requires bringing a word of data from a memory loca-
tion whose address is X. Such data are copied from memory into the memory
MBR. Lastly the CPU transfers such word, now in the MBR, to accumulator
register A. This last data path transfer finalizes the execution phase of the
instruction. That is, A ← (X), refer to Table 10.2.

Let us look at the data path architecture diagram of Figure 10.6. Our com-
plete simple CPU data path and its main memory interface consist of four
registers and the ALU. The PC register holds the address of the to-be executed
instruction for the currently being executed instruction. The MAR register
holds the address of a memory location the CPU wants to access. The MBR
register is used to read data from and write data to memory. Remember that
the PC register shown in Figure 10.6 is actually all the logic of Figure 10.5. We
will explain the need for the MAR and the MBR multiplexers in the data path
as we explain the operation of key instructions that use such muxes. Going
back one more time to our LDA instruction, the fetch cycles consist of:

 1 MAR PC. .← (10.14)

For this transfer to happen the selection of channel 1 of the MAR_MUX
enables the PC to the MAR path. The transfer of the PC contents into the
MAR is setting up the address from where to do the LDA instruction fetch

616 A SIMPLE CPU DESIGN

from memory. Remember our instructions are all 16 bits wide and one word
long. If Step (1) above happens to be the very first cycle that the CPU has to
perform upon power-up reset or cold-start, the PC is previously cleared via its
asynchronous clear line by the power-up reset circuitry (not shown), refer to
Figure 10.5 to see the asynchronous clear line into the PC. The second data
transfer that the LDA instruction requires is a memory read (or actual instruc-
tion fetch) that is:

 2 MBR M MAR PC PC. []; .← ← + 1 (10.15)

Also at this time the contents of the PC are incremented by one. When the
instruction completes with all its micro-operations the PC will already be
pointing to the next instruction in memory. There is no reason to delay incre-
menting the PC or yet worse, to do it with a whole separate microinstruction.
We will see shortly that if the PC needs to get loaded with a different value

Figure 10.6  Data path architecture of our simple CPU.

P Q

Z

A

ALU

MBR

MBR_MUX

Main Memory

4,096 x 16

Datain Dataout

MAR

MAR_MUX

PC

Address12

12

12

12

16

16

16

16

16 16

12

MBR[11:0] MBR[11:0]

16
16

16

16

MBR[15:0]

0 1

0 1

DATA PATH ARCHITECTURE: PUTTING THE LOGIC BLOCKS TOGETHER 617

(instead of its incremented value) when JMP and BRNA instructions are
executed, the PC will get overwritten with the address that these instructions
jump or branch to. After micro-operation (2) the MBR has fetched complete
instruction, 4-bit opcode and 12-bit address X. Notice that at the completion
of step (2) both the MBR gets loaded with the contents of memory pointed
to by the address held in the MAR and the PC is incremented by one. The is
no resource conflict for those two operations to be performed on the same
state (or clock); that is because we designed the increment PC function such
that it does not use the CPU ALU to do this. Refer to Figure 10.5 note that
the PC has its own increment control line.

The next step for the CPU is to decode the opcode bits, which are in bits
MBR [15:12]. Hence:

 3 15 12 11 0. [:]; [:].Decode MBR MAR MBR ← (10.16)

Step 3 is a good time to transfer MBR [11:0] (address X) to the MAR, since
address X will be needed to get the operand from memory. The operand refers
to the data in memory that needs to be copied into the MBR. The two micro-
operations in step three occur concurrently. Refer to Equation (10.16).

Now the CPU knows that the fetched instruction was an LDA and that data
from memory location whose address is X has to be brought into the CPU
MBR. Thus:

 4. [].MBR M MAR← (10.17)

Remember that the address in the MAR is already X from Step 3.
The heart of the CPU data path is its ALU and accumulator register A.

Note that the ALU can PASS the contents of the MBR connected to the ALU
Q input leg straight into its accumulator register A. This portion of the data
transfer is required for the final execution path of the LDA instruction. So the
ALU is placed in PASS Q mode by the control logic and the data from
memory, now in the MBR gets transferred to register A, in one clock cycle.
Hence:

 5. .A MBR← (10.18)

Summarizing, the complete sequence of micro-operations to fully fetch, decode
and execute our LDA instruction follows:

 1. MAR PC← (10.19)

 2 1. [];MBR M MAR PC PC← ← + (10.20)

 3 15 12 11 0. [:]; [:]Decode MBR MAR MBR ← (10.21)

 4. []MBR M MAR← (10.22)

 5. .A MBR← (10.23)

618 A SIMPLE CPU DESIGN

We will see later that the five micro-instructions given by Equations (10.19)
through (10.23) occur in five clocks.

10.4.2  All Other Instructions: Fetch, Decode and Execution: RTL

Having gone through the LDA instruction fetch, decode and execution in
detail we will go over the rest of the instructions a little faster. We will empha-
size the differences that each instruction presents with respect to a previously
described instruction. To start with, it is important for the reader to know that
all seven instructions of our simple CPU have the same identical fetch and
decode steps. We will see in the control section that what we are calling steps
are actually states of the controller state machine that steers the data transfers
throughout the data path of the machine. In summary all instructions perform
the same three states to do the instruction fetch (first two states) and instruc-
tion decode (third state). For the reader’s convenience these three states are
repeated here:

 1. MAR PC← (10.24)

 2 1. [];MBR M MAR PC PC← ← + (10.25)

 3 15 12 11 0. [:]; [:].Decode MBR MAR MBR ← (10.26)

10.4.2.1  Store  Instruction  Having said that, let us look into the STA
instruction and its difference with respect to LDA. Referring to Table 10.2
STA stores data from register A into a memory location whose address is X.
That is:

 () .X A← (10.27)

The STA (X), A instruction stores or writes the contents of register A into
memory location whose address is X. LDA on the other hand reads memory
from address X, refer to Equation (10.22). Continuing with our STA instruc-
tion, in its fourth state we need to transfer register A data into the MBR and
in the fifth state we write A to memory. Note that the MAR is already loaded
with address X from state (3), refer to Equation (10.26). Summarizing the five
states of the STA (X), A:

 1. MAR PC← (10.28)

 2 1. [];MBR M MAR PC PC← ← + (10.29)

 3 15 12 11 0. [:]; [:]Decode MBR MAR MBR ← (10.30)

 4. MBR A← (10.31)

 5. [] .M MAR MBR← (10.32)

DATA PATH ARCHITECTURE: PUTTING THE LOGIC BLOCKS TOGETHER 619

Basically states (4) and (5) (Eqs. 10.31 and 10.32) respectively, accomplish
Equation (10.27), that is,

 () .X A←

10.4.2.2  Add Instruction  Referring one more time to Table 10.2 the ADD
A, (X) performs:

 A A X← + (). (10.33)

ADD needs to read contents of memory location whose address is X and
then add them to the existing contents of register A and store the results in
A. So state four is identical to state four of the LDA instruction, which reads
memory from location X into the MBR. The fifth state adds the read data now
in the MBR to A and places the result in A. This last step overwrites the previ-
ous contents of A and sets the S bit accordingly. Thus ADD is:

 1. MAR PC← (10.34)

 2 1. [];MBR M MAR PC PC← ← + (10.35)

 3 15 12 11 0. [:]; [:]Decode MBR MAR MBR ← (10.36)

 4. []MBR M MAR← (10.37)

 5. .A A MBR← + (10.38)

The produce Equation (10.38) the CPU controller has to select the ALU ADD
function select lines. Refer to Table 10.3.

10.4.2.3  And Instruction  From a data path or register transfer language
(RTL) viewpoint AND is virtually identical to ADD. The sole difference is
that the CPU controller selects the AND function of the ALU instead of the
ADD. So for the AND instruction we have that:

 1. MAR PC← (10.39)

 2 1. [];MBR M MAR PC PC← ← + (10.40)

 3 15 12 11 0. [:]; [:]Decode MBR MAR MBR ← (10.41)

 4. []MBR M MAR← (10.42)

 5. . .A A MBR← (10.43)

10.4.2.4  Conditional Branch Instruction  Branch on negative accumula-
tor needs to check the state of the S bit, upon this bit being one it loads the
PC with address X, which as usual is already in the MAR from state 3. If the

620 A SIMPLE CPU DESIGN

S bit is zero then the PC remains with its previous contents, which are PC + 1
from state 2. Hence:

 1. MAR PC← (10.44)

 2 1. [];MBR M MAR PC PC← ← + (10.45)

 3 15 12 11 0. [:]; [:]Decode MBR MAR MBR ← (10.46)

 4 1. ?If S bit = (10.47)

 5. : .Then PC MAR← (10.48)

10.4.2.5  Unconditional  Jump  Instruction  Simply requires loading the
PC with the MAR that already has address X from state 3. This instruction
only has four states, which are:

 1. MAR PC← (10.49)

 2 1. [];MBR M MAR PC PC← ← + (10.50)

 3 15 12 11 0. [:]; [:]Decode MBR MAR MBR ← (10.51)

 4. .PC MAR← (10.52)

10.4.2.6  Complement  Accumulator  Instruction  This is an instruction
that already has its operand, that is, register A, in the CPU itself, it does not
need to go to memory to read a location to get the operand like the AND and
ADD instructions do. To generate A ← A−, the controller simply needs to select
the ALU PASS P to Z mode to complement the accumulator and store it back
into itself. Thus the CMP A instruction looks like:

 1. MAR PC← (10.53)

 2 1. [];MBR M MAR PC PC← ← + (10.54)

 3 15 12 11 0. [:]; [:]Decode MBR MAR MBR ← (10.55)

 4. .A ← A (10.56)

Figure 10.7 depicts a complete state diagram of all seven instructions. The state
assignment of each state is not done in Figure 10.7 yet. This will be addressed
when we design the CPU controller state machine. Notice that for all seven
instructions we used the numbers (1), (2), etc. just to indicate the sequence of states
in time. Those numbers should not be construed as the state number assignment.

10.5  THE SIMPLE CPU CONTROLLER

The controller is the state machine that orchestrates the functioning of the
data path data transfers, registers loading, PC incrementing, synchronous

THE SIMPLE CPU CONTROLLER 621

clearing, ALU function selection, MAR and MBR multiplexers steering,
memory reads and writes, so that the instruction set is executed as described
by its state diagram (Fig. 10.7). We need to first identify all the inputs and the
outputs that our controller needs. This process has to be done by mainly careful
inspections of Figures 10.6 and 10.7 and it is greatly a comprehensive process.
Input signals to our controller are: (1) MBR [15:12] the opcode of each instruc-
tion. (2) The accumulator MSB stored in the S bit flip-flop (not explicitly
shown on the data path diagram). (3) A system level asynchronous reset
to clear the PC upon power-up. Outputs of the controller are listed by func-
tional block and are the following: (1) For register A: LOAD_A, (2) for the
MAR: LOAD_MAR, (3) for the MBR: LOAD_MBR, (4) for the PC: INCR_
PC, LOAD_PC and CLEAR_PC all three signal being synchronous controls.
(5) The asynchronous clear control for the PC: ASYNC_CLEAR_PC will be
generated by the reset logic (not covered yet) and not by the controller. (6)

Figure 10.7  Simple CPU state diagram.

←

MAR ← PC

MBR ←
M [MAR]

PC ← PC+1

Decode
MBR[15:12]

MAR ←
MBR[11:0]

LDA A,(X) STA A,(X) AND A,(X)ADD A,(X)

A ← MBR

MBR ← AMBR ←
M [MAR]

M [MAR] ←
MBR

A ←
A + MBR

A ←A. MBR

MBR ←
M [MAR]

MBR ←
M [MAR]

JMP XBRNA X CMP A

A ← ĀPC ← MAR
Is (S = 1) ?
(Is A < 0 ?)

PC ← MAR

yes no

622 A SIMPLE CPU DESIGN

The MAR mux needs a MAR_MUX_SEL line, (7) the MBR mux needs a
MBR_MUX_SEL line, (8) the ALU needs two bits of ALU_FUNCTION_
SELECT bits. (9) We need a READ and a WRITE control signals for the
memory array. Finally four bits of state are needed for our controller because
since our state diagram has 16 states or less (actually 15). In summary we have:

Five input bits for the controller and one input bit for the asynchronous
CLEAR for the PC from the reset logic. Twelve control outputs and four state
bits. State bits are outputs too. It is interesting to mention that a relatively
large number of control signals are needed even though we are dealing with
a very simple CPU.

10.5.1  State Assignments and Controller Implementation

Carefully reviewing RTL micro-operations (Eqs. 10.14 through 10.56) and the
state diagram of Figure 10.7 we will make the following state assignments and
justify their selection later. Starting with the first state at the top of Figure 10.7
we assign to it the value of 0, then state 1 and 2 for the fetching and decoding
states. For the LDA instruction, we assign states 3 and 4. States 5 and 6 for
STA; states 7 and 8 for ADD; states 9 and 10 for AND; states 11 and 12 for
the BRNA, state 13 for JMP, and state 14 for CMP A. There is only one state
that remains unassigned, state 15. Since state 15 is an unused state we can
design our controller state machine assigning unused state 15 to uncondition-
ally go to the machine instruction fetch, state 0. Another option is to make
state 15 an isolated state (Fig. 10.8). Alternatively, if the CPU reaches state 15,
for example upon power up reset or due to some failure mechanism, we may
choose to force the user to re-start or power cycle the CPU, since the CPU
would freeze. Although this may seem a little unreasonable, it may be a better
choice than letting the computer start fetching instructions from perhaps not
the correct memory address. Or perhaps with some other register contents
corrupted.

Let’s talk about the state transitions that exist with the current state assign-
ment. All transitions from state 0 to 1, from state 1 to 2, from state 3 to 4, from
state 5 to 6, from state 7 to 8, from state 9 to 10 and from state 11 to 12, are
achieved by incrementing the previous state by one. For example, you reach
state 10 by incrementing state 9 by one. All state transitions from state 4 to 0,
6 to 0, 8 to 0, 10 to 0, 12 to 0, 13 to 0, and 14 to 0 are reached by clearing a state
register of the to-be-designed state machine controller. Finally all transitions
from state 2 to state 3, 5, 7, 9, 11, 13, and 14 are attained by loading the cor-
responding state into the state register. This has an important implication when
we need to design the controller for our simple CPU. The reason is that the
hardware implementation of the controller is greatly simplified because there
are only three types of state transitions: that is, Increment, Load or Clear. This
is the same register architecture as the one used for the PC register, refer one
more time to Figure 10.5. We will implement the controller with a 4-bit state
register and three 1-of-16 multiplexers. Figure 10.9 depicts the hardwired

THE SIMPLE CPU CONTROLLER 623

Figure 10.8  State assignments of our simple CPU state diagram.

MAR ← PC
0

1

2

MBR ←
M [MAR]

PC ← PC+1

Decode
MBR[15:12]

MAR ←
MBR[11:0]

LDA A,(X) STA A,(X) AND A,(X)ADD A,(X)

A ← MBR

MBR ← A
MBR ←
M [MAR]

3

4 6 8 10 12

5 7 9 11 13 14

M [MAR] ←
MBR

A ←
A + MBR

A ←A. MBR

MBR ←
M [MAR]

MBR ←
M [MAR]

JMP XBRNA X CMP A

A ← APC ← MAR
Is (S = 1) ?
(Is A < 0 ?)

PC ← MAR

yes no

15

¯

implementation of the controller. It is called a hardwired implementation
because it is not programmable or as easily changeable as it would be if we
used a programmable memory device, such device is referred to as the micro-
sequencer or controller micro-store. Because of space reasons this book does
not deal with micro-store based controllers. However, the reader can find
material for further study under the Further Reading section at the end of this
chapter.

The hardwired controller of Figure 10.9 is a clean and simple implementa-
tion. The logic has not been minimized in any way. The multiplexers are there
to emphasize the function we want the state counter to take; these functions
are increment, load or clear, all of them synchronous functions. The initial
clearing of the state counter or register is accomplished with it asynchronous
reset supplied by the reset or power-on circuit, not shown. Careful analysis of

624 A SIMPLE CPU DESIGN

Figure 10.9 in conjunction with 10.8 allows the reader to understand the way
the controller walks through each and every one of the assigned states, depend-
ing on the instruction that is presented for external loading to the state counter.
Table 10.5 shows the mapping that needs to be produced from each state to
the appropriate assertion of the output control signals. The state bits to output
signal mapping can be implemented with a Read Only Memory (ROM) or
combinational logic gates to do the decoding to assert the appropriate control
outputs. The reader is asked, as an exercise, to design the combinational logic
described by Table 10.5. Hint: The inputs of the logic should be Q[3:0] the
state bits of the controller state counter.

Figure 10.9  Hardwired implementation of our simple CPU controller or sequencer.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

MBR [15:12]

INC CLRLOAD

State Counter
INC

LOAD
CLR

INC
LD
CLR

4

OPCODE

4-BIT STATE REGISTER
COUNTER

Q [3:0] Q [3:0]
Q [3:0]

Sel [3:0]Sel [3:0]Sel [3:0]

1-of-4 Mux 1-of-4 Mux 1-of-4 Mux

ASYNCHRONOUS-RESET

ACLR

“High”

“High”

“Low” “Low”“High”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“Low”

“High”

“High”

“High”

“High”

“S bit”

“Low” “Low”

“Low”

“Low”

“Low”

“Low”

“Low” “High”

“High”

“High”

“High”

“High”

“High”

“Low”

“Low”

“Low”

“Low”

“High”“Low”

“Low”

“S bit”“Low”

INC LOAD CLR

T
ab

le
 1

0.
5 

C
o

m
b

in
at

io
n

al
 l

o
g

ic
 o

r 
R

O
M

 t
ab

le
 t

o
 d

ri
ve

 t
h

e 
C

P
U

 c
o

n
tr

o
lle

r 
co

n
tr

o
l 

o
u

tp
u

ts

St
at

e
C

on
tr

ol
 O

ut
pu

ts

Q
[3

:0
]

L
D

_A
L

D
_M

A
R

L
D

_M
B

R
L

D
_P

C
IN

C
_P

C
C

L
R

_P
C

M
R

B
_

M
U

X
_S

E
L

M
A

R
_

M
U

X
_S

E
L

A
L

U
_F

U
N

C
_

SE
L

[1
:0

]
M

_R
D

M
_W

R

 0
0

1
0

0
0

0
X

1
X

X
0

0
 1

0
0

1
0

1
0

1
X

X
X

1
0

 2
0

1
0

0
0

0
X

0
X

X
0

0
 3

0
0

1
0

0
0

1
X

X
X

1
0

 4
1

0
0

0
0

0
X

X
00

0
0

 5
0

0
1

0
0

0
0

X
X

X
0

0
 6

0
0

0
0

0
0

X
X

X
X

0
1

 7
0

0
1

0
0

0
1

X
X

X
1

0
 8

1
0

0
0

0
0

X
X

10
0

0
 9

0
0

1
0

0
0

1
X

X
X

1
0

10
1

0
0

0
0

0
X

X
11

0
0

11
0

0
0

0
0

0
X

X
X

X
0

0
12

0
1

0
0

0
0

X
1

X
X

0
0

13
0

1
0

0
0

0
X

1
X

X
0

0
14

1
0

0
0

0
0

X
X

01
0

0
15

0
0

0
0

0
0

X
X

X
X

0
0

625

626 A SIMPLE CPU DESIGN

In Table 10.5 several control output names have been abbreviated: for
example LOAD_A is renamed: LD_A, to have more room on the table. Let
us refer to the LDA instruction RTL given by Equations (10.19) through
(10.23). Referring to Table 10.5, Figure 10.6 and the LDA RTL repeated for
the reader’s convenience, we verify how Table 10.5 was filled in.

 State MAR PC0: ← (10.57)

 State MBR M MAR PC PC1 1: [];← ← + (10.58)

 State Decode MBR MAR MBR 2 15 12 11 0: [:]; [:]← (10.59)

 State MBR M MAR3: []← (10.60)

 State A MBR4: .← (10.61)

In state 0: we need to assert LD_MAR = 1 and MAR_MUX_SEL = 1 to
transfer data from the PC into the MAR, and all other control signals need
to be negated upon receiving the active edge of the clock. Once in state
1: LD_MBR = 1, MBR_MUX_SEL = 1 and M_RD = 1 reads memory loca-
tion pointed to by the MAR and saves the read data in the MBR. Simultane-
ously the INC_PC = 1 to increment the PC by one. Once on state 2: The
MBR[15:12] get looked at (decoded) by the controller and MBR[11:0] trans-
ferred to the MAR, so that LD_MAR = 1, MAR_MUX_SEL = 0. This micro-
operation just copied address X into the MAR. The controller asserts its
LOAD Mux output to load a jump to state 3 to go to the LDA instruction
execution sequence. On state 3 M_RD = 1, MBR_MU_SEL = 1 and LD_
MBR = 1 reads memory data from address X. Finally once in state 4 ALU_
FUNC_SEL = 00 (PASS Q to Z) and LD_A = 1 transfers the contents in the
MBR to register A.

For the rest of the instructions the reader should refer to the state diagram
with state assignments of Figure 10.8 and with the aid of Figure 10.6 (data path
architecture) start verifying the correctness of the contents of the rest of Table
10.5. Please allocate, as long a time as you need, the first time going through
the complete table may take more than a few hours and more than one sitting.
I have been there; please do not feel frustrated, this will only make sense once
you go over the material exhaustively.

10.6  CPU TIMING REQUIREMENTS

This section will be concerned with identifying the timing paths in the machine
data path, memory interface and controller. To study these paths we will make
a reasonable assumption, which is that all clocks arrive at their registers clock
inputs at the same time. This means that we assume that there is zero clock-
skew. Starting with the data path architecture of Figure 10.6 timing paths are
simply identified starting from the Q outputs of a register working your way

CPU TIMING REQUIREMENTS 627

though a combinational data path or simply through a bus wire into the D
inputs of either the same or another register.

The following are the long paths in Figure 10.6:

1. PC Q outputs through MAR_MUX into MAR D inputs.
2. MRB Q outputs through MAR_MUX into MAR D inputs.
3. MBR Q outputs through ALU leg Q into A register D inputs.
4. Register A Q outputs through ALU leg P into register A D inputs.
5. Register A Q outputs through MBR_MUX into MBR D inputs.
6. MBR Q outputs into PC D inputs.
7. MAR Q outputs through memory address to data out through MBR_

MUX into MBR D inputs.
8. MBR Q outputs though memory data in and data out, through MBR_

MUX into MBR D inputs.

For the logic of the CPU controller of Figure 10.9 we can identify the following
paths:

9. MBR Q outputs to state counter D inputs.
10. State counter Q outputs to INC MUX select lines to state counter INC

input.
11. State counter Q outputs to LOAD MUX select lines to state counter

LOAD input.
12. State counter Q outputs to CLR MUX select lines to state counter

CLR input.
13. S-bit flip-flop Q output through INC Mux INC output into state

counter INC input.
14. S-bit flip-flop Q output through CLR Mux CLR output into state

counter CLR input.

When we want to study for each timing path their corresponding long path,
to calculate if the set-up time is met we proceed as follows with path (1): We
use the maximum clock-to-output time of the sourcing register, the maximum
propagation delay of the combinational logic and the minimum set-up time
required by the D input of the receiving register.

So when we want to study path (1) as a long path it becomes:

 1. .PC t t MAR tclock-to-output max delay max pd MAR_MUX SU+ +

Finally to determine if such path meets the set-up time requirement of the
MAR register we need to check if:

 PC t t MAR t Tclock-to-output max delay max pd MAR_MUX SU clk+ + ≤ mmin.

628 A SIMPLE CPU DESIGN

When we want to study the effect of the same path (1) as a short path, we
consider the fastest or shortest delay at which the Q outputs of the PC travel
plus the shortest delay through the MAR_MUX combinational logic. Since we
want to analyze the corresponding short path we want the check if the follow-
ing inequality is met:

 PC t t MAR tclock-to-output min delay min pd MAR_MUX HOLD+ ≥ .

The reader is strongly encouraged to establish all 14 long path and 14 short
path equations for the complete CPU. In general we find that the longest path
usually is the path through the ALU because it has the largest amount of
combinational logic. The usual short paths are those that connect registers Q
outputs through short wires straight into registers D inputs. One such example
in our CPU design is the MBR[15:12] to state counter inputs.

10.7  OTHER SYSTEM PIECES: CLOCK, RESET AND 
POWER DECOUPLING

10.7.1  Clock

The clock of a synchronous state machine is typically generated with a crystal-
based oscillator with good stability. Clocks are buffered and distributed to its
loads in a point-to-point fashion. With the current sub-nanosecond rise/ fall
times and clock frequencies of today, virtually all signals are interconnected
point-to-point for optimal signal integrity and timing behavior. Clock buffers
used should be preferably packaged within the same IC package and the wire
lengths should be matched. When the clock frequencies are high, like several
hundred megahertz crystal oscillators are not available so Phase Lock Loop
circuits (PLL) are used to generate gigahertz range frequencies. PLLs are not
within the scope of this book and an excellent reference [7] to this topic is
given in the Further Reading section of this chapter.

10.7.2  Reset

Upon good power being applied to a CPU-based system, reset is the first
hardware signal that the system requires to power-up correctly. In our simple
CPU, reset clears the PC and the CPU controller state counter register. In real
world systems reset initializes or clears all the appropriate registers on board
or within programmable devices such as CLPDs and FPGAs, it also allows
the clock generating circuit to start running. It is extremely important for the
reset or Power-On Reset (POR) signal not to glitch, because that may cause
registers to come out of reset at different times and the system to behave
unpredictably. It is desirable to assert reset asynchronously to ensure that all
resettable devices are cleared regardless of the state of their clock. However,

OTHER SYSTEM PIECES: CLOCK, RESET AND POWER DECOUPLING 629

it is more advisable to negate reset synchronously. Reset should be released
(negated) synchronously, because releasing reset in an uncontrolled environ-
ment (i.e., asynchronously) may cause its flip-flops or registers to go meta-
stable. Two problems may occur upon an asynchronous reset release: (a) the
reset recovery time may be violated and (b) reset negation may occur at dif-
ferent clock cycles for different clocked elements. The reset recovery time is
the time between when reset is negated and the time that the clock edge signal
goes active again. Figure 10.10 depicts a very bad example of a reset circuit.
It has multiple problems. Upon power-on, assuming a discharged capacitor,
the low-true RESET signal will start at zero and has an exponentially increas-
ing waveform. This waveform may not be suitable for the ICs that receive the
reset, because it may stay at the IC logic threshold too long. It may not apply
reset for the required time because the exponential ramp up time is not very
precise. Chips generally have a normal operating voltage plus and minus 5 or
10 percentage points of such voltage. The assertion of reset with the circuit of
Figure 10.10 is not very well defined. The diode that the circuit has across the
10 kΩ resistor is to provide a quick discharge path of the capacitor if a user
turns off the system and turns it back on quickly. A better scheme would use
a Schottky diode since it has a lower forward voltage drop.

A somewhat improved reset is depicted in Figure 10.11.

Figure 10.10  A poor example of a reset circuit.

R = 1KΩ

Active low RESET signal

C = 1 µF

VDD

630 A SIMPLE CPU DESIGN

Figure 10.11  Improved reset circuit.

1 µF

R = 1KΩ

The advantage of this circuit is that a Schmitt trigger logic gate is used to
shape the reset pulse. A Schmitt trigger gate has built-in hysteresis properties,
thus filtering out short-lived glitches and reset pulse variations.

An even better approach can be implemented with two D flip-flops syn-
chronously clocked, but having asynchronous reset inputs. The second flip-flop
reduces metastability. The operation of this reset circuit is clean. Reset out is
active low. It produces an asynchronous active high reset, even before the
clock runs. But upon active low Reset_Out being released a low level (i.e., no
reset) is synchronously clocked into active low reset_out. The two synchroniz-
ing flip-flops reduce the probability of metastable behavior to practically neg-
ligible levels. Figure 10.12 depicts such reset circuit. This circuit is commonly
used at board level as well as in programmable devices level designs.

At the board level reset chips are available from several IC manufacturers,
such as Analog Devices (ADI), Intersil, Maxim, ST Microelectronics, Texas
Instruments (TI) and several others. Such ICs are referred to as supply voltage
supervisors or reset chips. Supervisor circuits monitor system voltages from a
range that may vary from about 0.5V to some upper voltage limit like 5 V.
When the voltage dips below a preset threshold or when a manual reset (typi-
cally a pushbutton) drops to a logic low (active low manual reset) the active
low open drain reset output asserts. It usually remains asserted low
for a user-programmed time delay. An external resistor and capacitor time

OTHER SYSTEM PIECES: CLOCK, RESET AND POWER DECOUPLING 631

constant usually control such time delay. These supervisor chips use a precision
reference voltage to achieve good threshold accuracy (typically 1% or better).
When the DC voltage to an embedded system dips below the required
minimum voltage for proper operation, the supervisor circuit asserts the reset
signal; this initiates a system shut down. Current flow stops and the voltage to
the supervisor may increase due to decreased IR drop. This produces a false
reset negation from the supervisor circuit, that is, the supervisor incorrectly
turns the system back on. To mitigate that problem sensing voltage hysteresis
is provided to the supervisory circuit. For more details on supervisory circuits
refer to the websites of the IC manufacturers mentioned above. Examples
of some power-on reset or supervisory ICs are: Intersil ISL6131, Maxim
MAX691A, MAX700 and MAX800 series, Analog Devices ADM63xx series,
TI TPS3808 series, and many others.

10.7.3  Power Decoupling

Just like any IC on a system good decoupling with low equivalent series resis-
tance (ESR) and low lead inductance capacitors must be supplied to every IC
on the board. What is decoupling for? Power supplies provide voltage and

Figure 10.12  Reset circuit with asynchronous assertion and synchronous negation.

D Q

CLR

D Q

CLR

CLK

VDD

DELAY
LINE

R

RESET-OUT

ESET

Filtered ResetActive Low Asynchronous Reset Assertion

Synchronous Reset Assertion

632 A SIMPLE CPU DESIGN

current to integrated circuits over the time they need to be operational. IC’s
make sudden transitions, usually in the nanosecond range, of one or many of
their inputs and output pins. Such fast signals transitions produce high current
demands as the power across the IC droops a few millivolts. The power across
the IC power pins droops, because there is no power supply that can have
a time response to such a fast power demand. The power supply and its
power distribution scheme, cables, traces and wires that route the power to
the point of consumption, both have a finite and definitely non-zero response
to current transients. For example 300 kHz switching power supplies, may have
a bandwidth or capacity to respond to current transients of about 10 micro-
seconds. During these 10 microseconds the decoupling capacitors, placed in
extremely close proximity to the IC being decoupled, provide the amount of
current for the amount of time that the power supply requires to react and
start to provide current to the IC. This indicates that the decoupling capacitor
in a very first pass approximation has to be able to provide enough current
for a certain minimum time allowing its voltage to droop no more than a
predetermined limit. Such calculation is based on the basic equation than links
current voltage and time in a capacitor. From Chapter 1 we know that such
relationship is:

 i t C
dv t

dt
C

C()
()= (10.62)

Let us consider the following numerical example to illustrate how to calculate
the value of decoupling capacitance needed. Assume that our power supply
has a bandwidth of 100 kHz, which means that it will be able to respond to
current transients after 10 microseconds from the beginning of the current
transient event. Assume that we want to have a maximum voltage droop across
the IC power pins of no more than 300 mV. Finally assume that the current
transient demanded by the IC is 1 A. From Equation (10.62) we calculate
C as:

 C
i d t

dv t
C

C

= ()
().

 (10.63)

Replacing differentials with finite time and voltage increments or decrements
in Equation (10.63) we obtain:

 C = × × =
−1 10 10

0 300

6

.
. .33 333 Fµ

When decoupling calculations need to done more accurately equivalent series
resistance (ESR) and lead inductance (ESL) of the capacitor should be taken
into account. A very comprehensive treatment of this topic can be found
in [1,2].

PROBLEMS 633

10.8  SUMMARY

This chapter defined the instruction set of a very simple CPU. A data path
architecture was presented to support the defined instruction set. Using such
data path we covered the microinstructions of every machine language instruc-
tion or simply called a macroinstruction. We further developed the state
diagram of the complete instruction set, and the sequencer design.. The longest
instructions take five states or clocks to fully execute and the shortest ones
take four clocks. We further look into some system level issues: timing, clocks,
and their distribution, resets and power decoupling.

FURTHER READING

1. Larry Smith, Decoupling Capacitor Calculations for CMOS Circuits, Electrical Per-
formance of Electronic Packaging Conference, 1994.

2. Larry Smith, et al., Power Distribution System Design Methodology and Capacitor
Selection for Modern CMOS Technology, 1999.

3. David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture,
Morgan Kaufmann Publishers, San Francisco, CA, 2007.

4. David A. Patterson and John L. Hennessy, Computer Organization and Design the
Hardware/Software Interface, Morgan Kaufmann Publishers, San Mateo, CA, 1994.

5. John Mick and Jim Brick, Bit-Slice Microprocessor Design, McGraw-Hill, New York,
1980.

6. Carl Hamacher, Zvonko Vranesic, and Safwat Zaky, Computer Organization, 5th
ed., McGraw-Hill, New York, 1978.

7. Roland Best, Phase Lock Loops, 6th ed., McGraw-Hill, New York, 2007.

PROBLEMS

10.1 Design the two new instructions shown at the bottom of Table 10.6
Note:
1. The new instruction set supports two more instructions: LD B, (X)

and STA (X), B.
2. The CPU has one new 16- bit register: that is, register B.

(a) Make any needed modifications to the data path architecture
of Figure 10.6.

(b) Draw a complete state diagram only of the two new instruc-
tions shown in Table 10.6.

10.2 In reference to Figure 10.9 the CPU controller:
(a) Redesign the control logic of Figure 10.9 using a minimally sized

ROM and D-type registers for the new instruction set of Table 10.6.

634 A SIMPLE CPU DESIGN

Table 10.6  New simple CPU instruction set

Instruction
Syntax

Opcode
(Binary)

IWF [15:12]
Address X
IWF [11:0]

Description of What
Gets Executed

Affects
Sign Flag?

LD A, (X) 0000 A valid address A ← (X) No
STA (X), A 0001 A valid address (X) ← A No
ADD A, (X) 0010 A valid address A ← A + (X) Yes
AND A, (X) 0011 A valid address A ← A. (X) Yes
BRNA X 0101 A valid address If S = 1 then PC → X No
JPM X 0100 A valid address PC ← X No
CMP A 0110 Bits [11:0] are

ignored
A ← A

–
Yes

LD B, (X) 0111 A valid address B ← (X) No
STA (X), B 1000 A valid address (X) ← B No

(b) Draw the circuit schematic of the new simple CPU controller logic.
(c) Write the micro-code that the ROM needs to perform the com-

plete instruction set given by Table 10.6.

10.3 Assume we want to add another new instruction to Table 10.6 New
Instruction Set. This new instruction is:

 OR A X A A X, (); ()← +

The OR instruction does a bit-to-bit OR operation between the contents
of memory location whose address is X and the contents of register A,
it finally stores the result in register A, overwriting its original contents.
Remember that the new instruction has to increment the contents of
the PC just as any other instruction does.

(a) Enumerate and describe all the required changes to the data path
architecture, and (b) the state diagram.

10.4 Assume we want to add another new instruction to Table 10.6 New
Instruction Set. This new instruction is:

 NOP clock cycles doing nothing; 5

The NOP should have a normal instruction fetch and decode cycles. The
actual execute cycle should be long enough to use 5 cycles of the clock,
including the fetch and decode phases.

Remember the new instruction has to increment the contents of the
PC just as any other instruction does. However, the NOP must not
change the contents of registers A and B and must not affect the ALU
flag bit S (sign bit).

PROBLEMS 635

(a) Enumerate and describe all the changes to the data path archi-
tecture, and the state diagram that apply.

10.5 Create an algorithm that allows one to add two 4-bit unsigned binary
numbers and produce the resulting sum in BCD.

For example: 1001 + 0001 = 1010, binary nine plus binary one equals
binary ten. Your algorithm should report the sum as: 0001_0000, which
stands for ten in binary coded decimal (BCD). Similarly 0110 + 0101 =
1011 should be reported as 0001_0001 (eleven in BCD). And a last
example, 0011 + 0010 = 0101, binary 3 plus binary 2 equals equals five
in BCD.

10.6 Design the logic hardware to implement the algorithm found in Problem
10.5. Draw the circuit schematics of the logic.

10.7 Let us assume that we want to design a MOVE instruction that copies the
contents of a memory location whose address is X, into another memory
location whose address is Y. Such instruction must not affect ALU flags,
it must increment the PC just as any other instruction does. The original
(and likely unknown) contents of memory location Y are overwritten
with the data copied from address X. Original contents of memory loca-
tion X remain unchanged. The syntax for such new instruction is:

 MOVE Y X Y X(), (); () ()←

(a) Enumerate and describe any (and all) required changes to the data
path architecture, (b) instruction word format (IWF), and (c) the state
diagram.

For part (a) draw and show needed changes to the data path archi-
tecture of Figure 10.6. For part (b) generate the complete state diagram
for the new instruction only.

10.8 For the circuit schematics of Figure 10.13 assume the following timing
parameters:

D-type Flip-flop:

 t 2 nsCLK-to-QMAX =

 t nsCLK-to-Qmin = 1

 t nsSU = 1 5.

 t nsH = 0 5.

The circuit represents a hardwired shift register without external reset
line or controls.

Assume that the wires are ideal and have no delays. Assume that the
clock arrives at all flip-flop clock inputs at the same time, no clock skew.

636 A SIMPLE CPU DESIGN

(a) Determine the maximum frequency at which the shift register can
be reliably clocked.

(b) Determine the available hold time (short path) available to each
flip-flop.

(c) Assume that flip-flop 1 clock has a rising edge at time 0 ns and
flip-flop 2 receives the same logically rising edge 1 ns later. Deter-
mine the available hold time (short path) available to each flip-
flop. (This point and the next one no longer assume zero
clock-skew.)

(d) Draw the following waveforms: clock 1, clock 2, FF1 input data,
FF1 Q output, FF2 input data, and FF2 Q output, showing clock
skews.

Figure 10.13  Circuit for Problem 10.8.

FF-1

D Q

FF-2

D Q

CLOCK

