
550

9

SEQUENTIAL LOGIC AND
STATE MACHINES

9.1  INTRODUCTION

Logic is classified in two main types: combinational and sequential. We covered
examples of combinational circuits in the previous chapter. This chapter mainly
deals with sequential logic circuits. Let us recall that combinational logic cir-
cuits are those whose outputs depend on the current inputs. Such outputs are
considered good or stable after the gate propagation delays have settled down.
Combinational circuits are logic circuits without memory capabilities. Sequen-
tial logic circuits’ outputs depend not only on the current inputs but also on
their past history. This means that somehow sequential circuits must have some
sort of memory. Such information in the sequential circuit memory is referred
to as a state. Having added the memory concept to the sequential circuit, the
outputs of a sequential circuit may depend on the current inputs and the
current state or just on the current state. The terms sequential logic or state
machine are often interchangeably used. Now within sequential state machines
there are two categories of them: synchronous and asynchronous state
machines. The majority of digital designs are done with synchronous logic.
Synchronous designs are very well behaved and controlled by typically a fixed
frequency clock, the clock supplies pulses at well-defined intervals of time.
Asynchronous designs are not clocked and designers try to stay away from
them because of their complexity and debug difficulties. In synchronous
designs states can only change upon an active edge of the clock. Asynchronous

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition.
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley
& Sons, Inc.

INTRODUCTION 551

designs are useful when input signals to the circuit may change at any time.
Asynchronous circuits must obtain a stable state before an input can change
again. Simultaneous changes of more than one input at a time are usually
prohibited in asynchronous circuits. When two different micro-controllers
communicate to each other, since each one has its own synchronous clock
domain, the interfacing between the two is done as if the circuits were asyn-
chronous with respect to each other. Examples of ways of allowing communi-
cation between independently synchronous machines are serial interfaces,
such as RS-232, I2C, and so on. Another example of asynchronous signals that
need to be interfaced to a synchronous machine are the external devices inter-
rupts that need to be routed to a micro-controller interrupt line. To accomplish
that, asynchronous circuits, referred to as synchronizers and priority encoders
are employed. Throughout this chapter the emphasis is given on synchronous
state machines.

It is important to visualize that almost anything built in electronics is or
contains one or more state machines. A garden-watering control system with
a soil humidity sensor embedded in the soil is a good example of a state
machine. The watering system can be programmed to water for 5 minutes
every day provided that the humidity sensor detects more soil moisture is
needed. However, if the humidity sensor detects enough soil moisture, the
watering period for that day can be skipped. Other examples of embedded
state machines that we see on a daily basis are traffic lights, washing machines,
alarm clocks, computerized controls in automobiles, like anti-lock braking
systems (ABS), cash registers in stores, global positioning systems (GPS), all
kinds of telephones and many more gadgets. Table 9.1 below summarizes the
two types of sequential state machines that exist and some of their fundamen-
tal characteristics.

Table 9.1  Types of sequential logic circuits

Sequential Circuits (Have Memory)

Synchronous Asynchronous
Clocked Non clocked
Moore Mealy Outputs changes occur on response to

a change on an input. Changing
more than one input at any given
time is avoided.

Outputs depend on
present state only

Outputs depend on
present state and
current inputs

Simplest to understand Complicated to understand
Robust design. Preferred design practice.

Very reliable behavior.
Hard to debug. Designers avoid them

as much as practically possible.
Whenever used they are usually
interfaced with clocked state
machines. Require synchronizing
circuits.

552 SEQUENTIAL LOGIC AND STATE MACHINES

9.2  LATCHES AND FLIP-FLOPS (FF)

The fundamental memory element is the latch. A latch can memorize a binary
state indefinitely as long as there is power to the circuit and no failures occur.
The basic latch is built with two NOR gates or two NAND gates. More elabo-
rate combinations of latches and features can be obtained and are referred to
as flip-flops. Figure 9.1 depicts an SR-latch implementation that with two NOR
gates.

From Figure 9.1 we observe that the output of each NOR is fed back into
one of the inputs of the adjacent NOR gate. That scheme is called a cross-
coupled NOR gate configuration. The S (Set) and the R (Reset) inputs are the
controlling signals to the latch. The Q output or simply the noninverted output,
and Q or the inverted output indicate the state the latch is in. Assuming one
correctly uses the latch, it can only be in one of two possible states at any given
time. The Set state is when the latched Q output holds a one (Q holds a zero).
The Reset state is when the latched Q output holds a zero (Q holds a one).
The Set state is also called the Preset state, while the Reset state is also called
the Clear state. For consistency we will continue to talk just about Set and
Reset states. The latch is said to be in a state (Set or Reset) after the transients
and gate propagation delays effects are over. A very simple example of the
use of a latch is to detect if a signal made a change from one state to the other.
For example, we leave the house and would like to know if our telephone will
ring at least once during our absence. Assume that the latch is initially in a
Reset state and its Q output driving an LED, the LED is off and we leave the
house. An off LED means the phone never rang. Assume that during our
absence the phone rings, the LED will light up. When we come home we see
the turned on LED. What happens if the phone ringed more than once,
nothing would happen, the LED continues to be turned on. Note that a latch
can only store one bit of information. We need more latches if we want to
detect multiple rings. We will get there. The fact that the latch has two outputs
it does not mean that it can store two bits; because after transients elapse the
outputs are always complements of each other (provided that the latch was

Figure 9.1  SR-latch with NOR gates.

S (set input)

R (reset input)
Q

Q
_

LATCHES AND FLIP-FLOPS (FF) 553

used correctly). We will analyze several cases to understand the SR-latch
operation.

Case 1 The latch is initially Reset and then the SR inputs set it.
Let us remember that the output of a NOR gate is one only if both of its

inputs are zero, and the output is one when either one of its inputs is one.
The following analysis can be followed with the aid of Figure 9.2. Observe

that the S and R inputs of the latch are negated or zero. We need to check
if the state of its outputs Q = 0 and Q = 1 is consistent with inputs S = 0 and
R = 0. Since Q = 1 and R = 0, the top NOR gate produces a 0 at the Q output.
Since Q = 0 and S = 0 the bottom NOR gate sustains a 1. Interchangeably,
if we analyze the same conditions starting with the bottom gate we have

Figure 9.2  Case 1: From a Reset latch to a Set latch: (a) latch circuit with sequence of inputs
and outputs; (b) timing diagram.

S = 0

R = 0 Q = 0

Q = 1
_

(a)

(b)

S

R

Q

Q
_

time in gate propagation delays

1 2 3 4 5

0
0

0

t = 0 1 2 3 4

0 0 0

1

t = 0 1 2 3 4

1 0 0

t = 0 1 2 3 4

1 1 1

0

1 2 3 4

0 0 0

t = 0

554 SEQUENTIAL LOGIC AND STATE MACHINES

that since S = 0 and Q = 0 the gate output Q is 1. Now since the top gate
has Q = 1 and R = 0 at its inputs the Q output sustains a 0. This analysis
allows us to state that if the latch is already Reset and its inputs R and S
are zeros that Reset state is held. We just concluded analyzing the initial
state of the latch at time t = 0. Note that the timing diagram of Figure 9.2
is in units of gate delays. That is, generally we will assume that both NOR
gates have the same gate propagation delay. When we will make different
assumptions they will be noted. Continuing with Figure 9.2, at time t = 1
the S input goes high with a zero rise time (very very quickly), and it stays
high for two gate delays. The first change that takes place in the circuit is
on the lower NOR gate, because one of its inputs is S. S = 1 along with the
zero from the Q output causes the lower gate output Q to change from 1
to 0. This change takes no more that one gate delay, from t = 1 to t = 2. The
new value of Q = 0 is fed into the upper NOR gate along with R = 0, this
produces after one gate propagation delay a 1 at the upper gate output Q,
so at time t = 3 the latch is in its new state, the Set state. Note that if the S
input did not stay high for two gate delays the latch would not function
correctly because the signals would not have time to fully propagate through
both NOR gates. Input S drops back to 0 at time t = 3. So S had been high
for the latch minimum required length of time. The latch is now Set (Q = 1)
and remains Set as long as R = 0 and S = 0 as the timing diagram shows.
The reader should validate that Set state is stable analyzing the latch like
we did at the beginning of Case 1.

Figure 9.2a depicts the timing transitions at times 0, 1, 2, . . .

Case 2 Figure 9.3 shows the operation of latch initially Set, then being
Reset by R = 1, S = 0. The reader is strongly encouraged to do a similar
analysis to that made for Case 1.

Case 3 Figure 9.4 depicts a case with an initially Reset latch, is later Set
once, then its inputs are held low (R = 0, S = 0) and Set again a second time.

Figure 9.3  Case 2: From a Set latch to a Reset latch: (a) latch circuit with sequence of inputs
and outputs; (b) timing diagram.

S = 0

R = 0 Q = 1

Q = 0
_

(a)

0

1

t = 0 1 2 3 4

1 0 0

0

t = 0 1 2 3 4

0 0 0

t = 0

1 2 3 4

1 1 1

0

1 2 3 4

0 0 0

t = 0

Figure 9.4  Case 3: From a Reset latch to a Set latch followed by one more Setting: (a) latch
circuit with sequence of inputs and outputs; (b) timing diagram.

S = 0

R = 0
Q= 0

Q= 1
_

S

R

Q

Q
_

1 2 3 4 5

0

0

0

t = 0 1 2 3 4

0 0 0

1

t = 0 1 2 3 4

1 0 0

t = 0

1 2 3 4

0 0 0

0

1 2 3 4

1 1 1

t = 0

6

5

0

1

5

5
1

5

0

(a)

(b)

time in gate propagation delays

Figure 9.3  (Continued)

(b)

S

R

Q

Q
_

time in gate propagation delays

1 2 3 4 50

556 SEQUENTIAL LOGIC AND STATE MACHINES

The importance of this case is to show that an already Set latch when Set
again, remains Set, no changes.

Case 4 Shows a misuse of the latch. When both inputs are one (S = 1,
R = 1) the latch no longer has complementary outputs. But this is not as
bad as what follows. Upon both inputs dropping back to 0 a race condition
takes place. Figure 9.5b timing diagram expresses that with question marks
along the horizontal axis starting at time t = 3. If both gates delays are
identical it is not possible to determine the state of outputs Q and Q. Their
state is undetermined. However, if one gate is faster than the other one, the
faster gate will race and dominate the end state of the latch. Both of these
cases are depicted by Figure 9.6, which assumes that the top gate (gate 1)
is faster than gate 2, and Figure 9.7 which assumes that the bottom gate

Figure 9.5  Case 4: Nonallowed usage of the latch; both NOR gates have identical gate delays
so that a final state is undetermined: (a) latch circuit; (b) timing diagram.

S = 0

R = 0
Q= 0

Q= 1
_

S

R

Q

Q
_

1 2 3 4 5

0

1

0

t = 0 1 2 3 4

1 0 0

1

t = 0 1 2 3 4

1 0 0

t = 0

1 2 3 4

0 ? ?

0

1 2 3 4

0 ? ?

t = 0

6

5

0

0

5

5
?

5

?

Undetermined

(a)

(b)

time in gate propagation delays

????????????????????????????????????

????????????????????????????????????

LATCHES AND FLIP-FLOPS (FF) 557

(gate 2) is faster than gate 1. In summary, Figures 9.5, 9.6 and 9.7 are all
representations of Case 4, the nonallowed case.

Having worked on all of the above examples we are now ready to write
the characteristic table of the SR-latch. Table 9.2 summarizes the latch
behavior.

9.2.1  NAND-Implemented R S/  Latch

An SR-latch implemented with NAND gates turns out to be an SR-latch with
low-true or active low inputs. S becomes active when driven low, else S is
inactive. The same is true for R. R becomes active when driven low, and inac-
tive when driven high. It is important and also interesting to notice that the
noninverted Q output is the output of the NAND gate whose input is S. Unlike

Figure 9.6  Case 4: Nonallowed usage of the latch; top NOR gate is faster than bottom NOR
gate: (a) latch circuit; (b) timing diagram.

S = 0

R = 0
Q= 0

Q= 1
_

S

R

Q

Q
_

1 2 3 4 5

0

1

0

t = 0 1 2 3 4

1 0 0

1

t = 0 1 2 3 4

1 0 0

t = 0

1 2 3 4

0 0 0

0

1 2 3 4

0 1 1

t = 0

6

5

0

0

5

5
1

5

0

1

2

Gate 1 is faster than Gate 2

(a)

(b)

time in gate propagation delays

558 SEQUENTIAL LOGIC AND STATE MACHINES

Figure 9.7  Case 4: Nonallowed usage of the latch; bottom NOR gate is faster than top NOR
gate: (a) latch circuit; (b) timing diagram.

S = 0

R = 0
Q= 0

Q= 1
_

S

R

Q

Q
_

time in gate propagation delays
1 2 3 4 5

0

1

0

t = 0 1 2 3 4

1 0 0

1

t = 0 1 2 3 4

1 0 0

t = 0

1 2 3 4

0 1 1

0

1 2 3 4

0 0 0

t = 0

6

5

0

0

5

5
0

5

1

1

2

Gate 2 is faster than Gate 1

(a)

(b)

Table 9.2  NOR-based SR-latch characteristic table

S R Q Q Description

0 0 Retains previously
latched state of Q

Retains previously
latched state of
inverted Q

Holds the previously latched
state

0 1 0 1 Reset
1 0 1 0 Set
1 1 0 0 Nonallowed condition. Outputs

are no longer complements
of each other. A race
condition occurs upon both
inputs being negated.

LATCHES AND FLIP-FLOPS (FF) 559

the NOR-based SR-latch that has it Q output associated with the active high
R input. Figure 9.8 shows the implementation of a NAND-based R S/ latch.
Table 9.3 presents the characteristic table for a NAND-based latch.

Other than the differences observed on Table 9.3, the NAND-based latch
is not different from the NOR-based latch. They both hold the previously
latched state when both inputs are negated, they both can be in one of two
possible states at any given time; the Q and Q loose their complementary
nature upon both inputs being asserted at the same time. Finally, both latches
exhibit a race condition when the inputs are negated immediately after being
both asserted.

9.2.2  SR-Latch with Enable

We place an AND gate in front of every latch input and a clock pulse gates
the flow of the S and R inputs to the latch. When the clock pulse is high the
latch is a regular SR-latch, but when the clock pulse is low, the latch holds the
previously latched state. Figure 9.9 depicts an SR-latch with enable.

Figure 9.8  NAND-based R S/ latch.

S (set input)

R (reset input)
Q

Q

_

_

_

Table 9.3  Characteristic cable for the  R S/  latch

S R Q Q Description

0 0 1 1 Nonallowed condition. Outputs
are no longer complements of
each other. A race condition
occurs upon both inputs
being negated.

0 1 1 0 Set
1 0 0 1 Reset
1 1 Retains previously

latched state of Q
Retains previously

latched state of
inverted Q

Holds the previously latched
state

560 SEQUENTIAL LOGIC AND STATE MACHINES

Figure 9.9  NOR-based SR-latch with clock pulse or enable.

Rinternal

Q

Q
_

Sinternal

R

S

CP = Clock Pulse

Table 9.4  NOR-based SR-latch with clock pulse or enable, characteristic table

R S Clock Pulse Q Q

0 0 1 Previously latched Q Previously latched inverted Q
0 1 1 1 0
1 0 1 0 1
1 1 1 Not-allowed Not-allowed
X X 0 Previously latched Q Previously latched inverted Q

Table 9.4 shows the SR-latch with enable characteristic table. Note that we
called the enable (E) is also called clock pulse (CP). The emphasis is on the
fact that the enable is a level sensitive control line, unlike flip-flops, which we
will cover in other sections of this chapter, are clock-edge sensitive devices.

The NAND-based version of the latest follows for reference. Figure 9.10
depicts the NAND-based latch. Table 9.5 contains the NAND-based latch
characteristic table. Note that regardless of the clock pulse or enable control
line, both latches implementations, either with NOR or NAND gates still have
the nonallowed state that would lead to a race condition upon their inputs
negating at the same time. One more time let us remember that the NOR-
based latch has active high inputs (R, S) while the NAND-based latch has
active low inputs (R S,). However, when we add the two NAND gates to gate
the R S, inputs into the NAND-based SR-latch, refer again to Figure 9.10, it
is worth mentioning that the composite latch, which includes the gating NAND
gates, acts as if it was an active high input device, whereas the internal NAND-
based SR-latch is still an active low input device. Refer to the annotations for
the internal R S, inputs (active low) and the external R,S inputs (active high)
in Figure 9.10.

Whenever we want to refer to a latch with active high or active low inputs,
with enable or without it, there are four new schematic symbols for them. Refer
to Figure 9.11, which depicts the three types of latches that we have been discuss-
ing. It is important to note that regardless of the internal implementation of

LATCHES AND FLIP-FLOPS (FF) 561

circuit presented by a schematic symbol, its inputs and its characteristic table
govern its behavior.

9.2.3  Master/Slave SR-Flip-Flop

SR-latches are useful in control applications. Latches with and without clock
pulse enable are still not very precise because their Q outputs will not settle
to their stable state as long as the enable is active or as long as the inputs do
not settle. What we would like to have are devices that respond to either a
low-to-high or a high-to-low going edge of the clock pulse or enable. Such
devices, which are clock-edge sensitive or master slave devices, change state
at the active edge of their clock. The clock is no longer called enable, it is just
the clock input. An enable has the connotation of level sensitivity, whereas
clocks have the connotation of edge sensitivity.

Figure 9.10  NAND-based SR-latch with clock pulse or enable.

Rinternal

Q

Q

_

Sinternal

R

S

CP = Clock Pulse

Non-complemented output

_

_

External active high input
DeMorgan’s equivalents

DeMorgan’s equivalents

active low input

active low input

External active high input

Table 9.5  NOR-based SR-latch with clock pulse or enable characteristic table

R S Clock Pulse Q(t + 1) Q t()+ 1

0 0 1 Previously latched Q(t) Previously latched Q t()
0 1 1 1 (Set) 0
1 0 1 0 (Reset) 1
1 1 1 1 (Not allowed) 1 (Not allowed)
X X 0 Previously latched Q(t) Previously latched Q()t

562 SEQUENTIAL LOGIC AND STATE MACHINES

One master/slave configuration can be implemented with two cascaded
SR-latches. Figure 9.12 shows the interconnection of both latches. Negative
and a positive edge triggered flip-flops with their respective schematic symbols
are shown.

Note a few differences between the symbols for latches and for flip-flops.
All positive edge-sensitive devices show their clock with a small triangular
symbol adjacent to the clock input line inside the device symbol. Negative
edge-sensitive devices show their clock with a small triangular symbol adjacent
to the clock input line and within the device symbol. Additionally, a bubble
(inverting circle) is drawn at the base of the triangular symbol, just outside the
symbol perimeter. Since clocks are inputs to flip-flop, clocks are drawn on the
left-hand side of the schematic symbol. Figure 9.12 c and d depict, respectively,

Figure 9.11  Latches schematics symbols: (a) SR-latch with active high inputs and no enable;
(b) SR-latch with active low inputs and no enable; (c) SR-latch with active high inputs and an
active high enable.

Q

Q
_

S

R

Q

Q
_

S

R

_

_

Q

Q
_

S

R

CP

(a)

(b)

(c)

LATCHES AND FLIP-FLOPS (FF) 563

symbols of a negative edge triggered SR flip-flop and a positive edge triggered
SR flip-flop.

Let us analyze how the SR flip-flop of Figure 9.12a operates. The first SR-
latch is referred to as the master latch, while the right-hand side latch is the
slave device. Note that both latches are simply active high inputs latches with

Figure  9.12  SR-latches forming an SR master/slave flip-flop: (a) negative edge triggered
SR flip-flop; (b) positive edge triggered SR flip-flop; (c) negative edge triggered flip-flop symbol;
(d) positive edge triggered flip-flop symbol.

(a)

(b)

(c) (d)

564 SEQUENTIAL LOGIC AND STATE MACHINES

active high enable input. The inverter in the clock line of the latches causes
them to become enabled in a mutually exclusive fashion. When the left-hand
side latch is enabled or open, the right-hand side one is disabled or latched,
and vice versa. A latched SR-latch refers to the latch holding or preserving its
output value due to its negated enable.* So let us present any of the three
valid input combinations (i.e., R = S = 0, or R = 1, S = 0, or R = 0, S = 1) to the
left-hand side latch. The rightmost latch will preserve or hold its outputs at

Figure 9.13  Positive and negative edge triggered SR flip-flop timing.

Qinternal

Qinternal

Q

Q
_

time units (these are not gate delays)
1 2 3 4 50 6

_

R

S

Clock

Master
open

Slave closed

Master
open

Slave closed

Master
open

Slave closed

Master
closed

Slave open

Master
closed

Slave open

Master
closed

Slave open

* A latch is said to be enabled when its outputs may change due to changes of its inputs. A latch
is said to be disabled when its outputs are latched and will not change due to changes of its inputs.

LATCHES AND FLIP-FLOPS (FF) 565

whatever state was previously latched, but the leftmost latch will act according
to the setting of its inputs since its enable is active. The master latch transitions
to the commanded new state;* the enable goes low, thus placing the master
latch in hold mode. Now the slave latch sees a high clock because of the
inverter in the clock line. The master holds it previously latched contents now
and the slave gets commanded by the Q outputs of the master latch to change
to the state commanded. Now let us look at this entire process as if the com-
plete master/slave configuration was a whole device to the external user, such
user is the one that observes only the master inputs and the slave Q outputs.
The change seen on the master-slave Q outputs occur as if the slave state
outputs were changing on the negative transition of the clock. Figure 9.13
depicts a timing diagram of a master/slave SR flip-flop. Although the R & S
inputs, Q and Q internal output signals and the Q and Q outputs of the slave
device are shown, it is important to look at the R & S inputs of the master
device and the outputs of the slave device to appreciate the effect of the
outputs changing at the negative edge of the clock. The Qinternal and Q ernalint are
important for the correct operation of the flip-flop, but at the flip-flop high
level view, the most important signals to observe are R and S inputs and the
flip-flop Q and Q outputs.

It is also important to see that the master/slave scheme did not in any way
suppress the nonallowed conditions of both latches. That means that if both
inputs R & S became asserted, the master would loose complementary outputs,
both Qinternal and Q ernalint will go to zero at time unit 2. Upon closing the master
and opening the slave, both negated outputs of the master stage will propagate
to the slave device, time unit 3. Between time units 2 and 3 both inputs R &
S drop to zero. This will cause indeterminate output of the master stage upon
its enable going high at time unit 3. On the next and low clock level the insta-
bility propagates to the slave stage at time unit 4. Figure 9.14 shows the opera-
tion of the SR-latch-based flip-flop under the nonallowed conditions, that is:
R = S = 1 and then both negating simultaneously (R = S = 0).

9.2.4  Master/Slave JK Flip-Flop

It is meaningful to ask ourselves why don’t we suppress or fix the nonallowed
condition of the SR latches and flip-flops. This exactly is what a JK flip-flop
does. The JK (in short) is sort of the Cadillac of the flip-flops, as we will see
very soon. The JK flip-flop not only has a master and a slave stages but also
has some additional logic that blocks the nonallowed condition being present
at its inputs. Figure 9.15 depicts the implementation of a JK using SR-latches,
and inverter for the clock line and two AND gates to block the disallowed
condition that would otherwise cause a race.

* Setting the R & S inputs at the desired levels and applying the clock to the flip-flop causes the
issuing of a command. Such command can make the flip-flop transition to another state.

566 SEQUENTIAL LOGIC AND STATE MACHINES

Figure 9.14  SR flip-flop operating under nonallowed conditions.

1 2 3 4 50 6

Undetermined
states

Qinternal

Qinternal

Q

Q
_

_

time (ms)

R

S

Clock

note that
complementary
nature of
Q output is lost

Master
open

Slave closed

Master
open

Slave closed

Master
open

Slave closed

Master
closed

Slave open

Master
closed

Slave open

Master
closed

Slave open

Let us inspect the JK and find out if it operates like the SR flip-flop at least
under some input conditions. Assuming the JK is initially in the Set state and
that its inputs J and K are zero, we know that the master latch should also be
holding a Set state. Remember that a Set state means that Q = 1 and Q = 0.
Notice the two AND gates, one fed by the Q output of the slave latch and the
other AND fed by the Q output of the slave latch. Since we are assuming that
both J & K are equal to 0 (this is our initial condition), the outputs of both
AND gates produce zeros. These zeros feed the R and S inputs of the master
stage latch. Thus, upon clocking this device as long as we want, while the JK
inputs are negated, the flip-flop will preserve or hold the previously captured
state. Such previous state in our example was the Set state. If we start the
analysis all over again with just a minor change that the JK initial state is a

LATCHES AND FLIP-FLOPS (FF) 567

Reset we will arrive at the same conclusion. This means that our newly defined
JK flip-flop holds the previous state for negated inputs J and K. This is so far
no different than an SR flip-flop.

Assuming the JK flip-flop is again Set, if we bring the K input high and keep
J low, note that the JK lower AND gate, is fed by a one from the Set state (or
the Q output) and a 1 from the fact that K is high. Thus, the master stage SR
latch sees the condition R = 1, S = 0, which after the clock allows to propagate
the output of the master stage to the slave stage the JK flip-flop ends up in a
Reset state. Similarly, if the JK is already Reset, clocking the condition R = 1,
S = 0 will continue to Reset the JK, thus it stays Reset for as long as we keep
clocking the flip-flop.

Now if we assume that out original JK flip-flop is either Set or Reset, input
conditions are: R = 0, S = 1,the flip-flop will end up in a Set state for as long
as we keep clocking the JK. So far the JK flip-flop behaves just like an SR
flip-flop for the given conditions.

Now the JK becomes more interesting, assume an initially Set JK flip-flop
and inputs J and K are both high, one more time following the logic of Figure
9.15a the one at the Q output of the slave stage along with K input that is one,
produces a one at the output of the lower AND with inputs Q and K. Remem-
ber that J is one and with its associated AND gate that receives a zero from the

Figure  9.15  Negative edge-triggered master/slave JK flip-flop: (a) flip-flop logic circuit;
(b) schematics symbol.

Q

Q
_

S

R

CP

Q

Q
_

S

R

CP

J

K

Clock

Q

Q
_

Qinternal

Qinternal
_

J

K

Clock

(a)

(b)

Q

Q
_

J

K

568 SEQUENTIAL LOGIC AND STATE MACHINES

Q output of the slave stage, thus it produces a zero at the S input of the master
stage SR latch. In summary, the master latch sees R = 1 and S = 0. These condi-
tions produce the master latch to Reset. This Reset state propagates to the slave
stage so that after a complete clock, the JK flip-flop Q output goes from 1 to 0.

Now what happens if we clock the JK FF one more time, while both inputs
J and K are still 1? Now since the Q output of the slave stage is 0, with K = 1
into the bottom AND gate produces a zero into the R input of the slave stage.
However, since Q is 1 and J is 1, the top AND generates a 1 into the J input
of the JK flip-flop. Upon such state of the inputs propagating through the
master and slave stages, after one complete clock cycle, the Q output of the
JK sets again. If we allow the clock to run indefinitely, the JK flip-flop Q output
will toggle from 1 to 0 and from 0 to 1. Similarly, Q toggles from 0 to 1 and
from 1 to 0. The above function of the JK just described does not preclude
both inputs to the JK of being one.

Next we summarize the complete behavior of our negative edge triggered
master/slave JK flip-flop. Table 9.6 summarizes the JK FF characteristic table.

Table 9.6 applies to negative clock edges. The same table applies to positive
edge triggered JK flip-flop if under the Clock column we indicate an up-going
arrow. The logic for a positive edge triggered JK and its schematics symbols
are depicted in Figure 9.16.

The SR FF is very similar to the JK FF; the difference is that the SR does
not support the simultaneous assertion of its R and S inputs. By inspection of
the JK FF characteristic table, it is easy to see that only the last row of the JK
would be equivalent to a nonallowed condition for the SR. We present the SR
FF characteristic table in Table 9.7. Since generally we will be using positive
edge triggered devices, the SR characteristic table is presented for rising clock
edges.

9.2.5  Master/Slave T and D Type Flip-Flops

We will now study two more flip-flops and we will address them as particular
cases of a JK. If we tie both inputs of a JK flip-flop together as shown in Figure
9.17a, the JK is renamed T for Toggle flip-flop and its schematic symbol
can be found in Figure 9.17b. Table 9.8 lists the characteristic table of a T
flip-flop.

Table 9.6  Negative edge triggered master/slave JK 
flip-flop characteristic table

Clock J K Q(t + 1)

↓ 0 0 Hold (no change)
↓ 0 1 0 (Reset)
↓ 1 0 1 (Set)
↓ 1 1 Complement (toggle)
0 X X Hold (no change)

LATCHES AND FLIP-FLOPS (FF) 569

The next and last flip-flop that we will cover is the D-type flip-flop or the
Data flip-flop. The D-type flip-flop can be constructed by tying the JK inputs
as depicted by Figure 9.17c; its schematic symbol is presented in Figure 9.17d.

The D-type flip-flop characteristic table is presented in Table 9.9.
The D flip-flop is commonly used to store a bit of information. It is in

essence a 1-bit register. Remember that the SR latch studied earlier also stores
one bit of information, but the latch is not a clocked device like the D flip-flop,
the latch is referred to as an asynchronous device. Multi-bit registers are made
with D flip-flops; a flip-flop per bit of storage is required. With the current

Figure 9.16  Positive edge-triggered master/slave JK: (a) Flip-flop logic circuit; (b) schematics
symbol.

Q

Q
_

S

R

CP

Q

Q
_

S

R

CP

J

K

Clock

Q

Q
_

Qinternal

Qinternal
_

J

K

Clock

(a)

(b)

Q

Q
_

J

K

Table 9.7  Positive edge triggered master/slave SR 
flip-flop characteristic table

Clock S R Q(t + 1) Comments

↑ 0 0 Q(t) Hold (no change)
↑ 0 1 0 Reset
↑ 1 0 1 Set
↑ 1 1 Not-allowed Unpredictable
0 X X Q(t) Hold (no change)

570 SEQUENTIAL LOGIC AND STATE MACHINES

Figure 9.17  (a) Positive edge triggered master slave T flip-flop circuit diagram; (b) schematic
symbol; (c) positive edge triggered master slave D flip-flop circuit diagram; (d) schematic
symbol.

D Q

Q
_

J

K

T

Clock

Q

Q
_

J

K

T Q

Q
_

T

Clock

D Q

Q
_

D

Clock

Clock

(a) (b)

(c) (d)

Table 9.8  T-flip-flop characteristic table

Clock T Q(t + 1) Comment

↑ 0 Q(t) Hold (no change)
↑ 1 Q t() Complement (toggle)
0 X Q(t) Hold (no change)

Table 9.9  D-flip-flop characteristic table

Clock D Q(t + 1) Comment

↑ 0 0 Reset
↑ 1 1 Set
0 X Q(t) Hold (no change)

state-of-the-art technology, the D-FF is the most widely used sequential device.
Field programmable gate arrays (FPGAs), application specific integrated cir-
cuits (ASICs), and programmable logic devices (PLDs) make use of the D-FF
extensively. The D flip-flop is the most commonly used device. The other flip-
flops (SR, T, and JK) were more heavily used when medium scale integration
(MSI) circuits use was more prevalent. Those MSI ICs were the very popular
7400 series, manufactured by many different IC manufacturers for more than
two decades.

TIMING CHARACTERISTICS OF SEQUENTIAL ELEMENTS 571

Those were the days when there were practically no FPGAs, ASICs, and
PLDs. When these types of devices became available, they were not as widely
used and their cost was high. That situation is practically reversed today.

9.3  TIMING CHARACTERISTICS OF SEQUENTIAL ELEMENTS

This section deals with the fundamental timing parameters that clocked
sequential devices must meet in order to operate correctly. Given a flip-flop
like an SR, JK, T, or a D-type, before an active edge of the clock, it is required
that the inputs be stable before and after the active edge of the clock makes
its active transition. A positive edge-triggered device active transition of its
clock is a low-to-high clock transition. A negative edge-triggered device active
transition of its clock is a high-to-low clock transition. The time required by
the device inputs to be stable prior to the active transition of the clock is called
the set-up time (tSU).

Additionally, the data inputs to the flip-flops are required to stay at the level
that they were set up for a period of time immediately after the active edge
of the clock. This time is referred to as the input data hold-time (tH). For
example, if one wants to clock a high level into a D flip-flop, the high level must
be stable before, during, and after the active edge of the clock by a total time
given by tSU + tH. These two timing parameters insure that the delays and
timing requirements of the master and slave stages within the flip-flops are
met. When we studied SR-latches we learned that the minimum required delay
for a single latch to produce a stable output is at least two-gate delays. To
obtain some positive margin, the latch inputs should be stable some time
longer than that minimum requirement. Luckily integrated circuit flip-flop
manufacturers and ASIC manufacturers dictate the timing parameters required
by their internal flip-flops. Another important timing parameter of a flip-flop
is the clock-to-output propagation delay also called the clock-to-Q delay. Gen-
erally speaking the clock-to-Q (tCQ) and the clock to Q- - (tCQ

) need not and they
are usually not the same. Engineers calculating timing requirements usually
pick the longest of both clock-to-output times. Figure 9.18 shows the set-up;
hold time and clock-to-output parameters of a clocked device and how they
are related to the active edge of the clock.

9.3.1  Timing of Flip-Flops with Additional Set and  
Reset Control Inputs

The four flip-flops that we studied (i.e., SR, JK, D, and T) may be available
with two additional control inputs, Set and Reset. What is the purpose of these
control inputs? Since flip-flops are used to design state machines, many times
it is convenient to start or restart a flip-flop to a known state. Such state may
be a Reset or a Set, depending on the application. Flip-flops available in inte-
grated circuits are usually made with asynchronous reset and set control

572 SEQUENTIAL LOGIC AND STATE MACHINES

inputs. Other flip-flops are available with synchronous inputs. Asynchronous
reset and set control inputs act on the state output of the flip-flop (the Q
outputs) completely asynchronously with respect to the clock. We learned that
flip-flops will only change state on or immediately after the active edge of the
clock; and asynchronous control input will make the flip-flop change state
virtually at any point between active clock edges. Synchronous set and reset
inputs are like any other inputs of the flip-flop, like J or K inputs, they must
meet the set-up and hold time requirements of the flip-flop and the flip-flop
makes a transition to either the set or reset state on the next active clock edge.
Figure 9.19 depicts a timing diagram of a flip-flop with asynchronous reset and
one with synchronous reset. A flip-flop asynchronous reset or set input is
required not to assert during an active clock transition, else possible timing
malfunction may occur.

Note that in Figure 9.19a upon the assertion of the active high asynchronous
reset, the Q output goes low virtually immediately or shortly after the Q
output delay without waiting for the next active edge of the clock. This means

Figure 9.18  Flip-flop timing parameters.

Data inputs

tSU tH

Active clock edge

Window of required data stability

Clock

Data need not be stable Data need not be stable

Valid Present State Q(t) Valid Next State Q(t+1)Q and Q outputs
_

tCOmin

COmaxt

Flip-flop R, S, D, T, J, or K

VT TV

VT

VT

TIMING CHARACTERISTICS OF SEQUENTIAL ELEMENTS 573

that the present state is abruptly interrupted and the reset is applied at the Q
output. In Figure 9.19b upon the assertion of the active high synchronous reset,
the Q output waits until the active edge of the clock arrives, and then the Q
output gets reset then. Naturally there is also a clock-to-output delay before
the Q output changes to the zero state. It is important to see that in the

Figure 9.19  Timing diagram showing (a) asynchronous reset and (b) synchronous reset.

Clock

Asynchronous Reset

Q output Q(t) Q(t+1)

Clock

Synchronous Reset

Q output Q(t) Q(t+1)

Asynchronous Reset aborts completion of
next state prior to next active edge clock

Synchronous Reset allows completion of next state, then state after “next state” is Reset

Present state Next state

Present state Next state

(a)

(b)

574 SEQUENTIAL LOGIC AND STATE MACHINES

synchronous case the currently being executed state reaches completion and
the reset state synchronously takes place on the subsequent active clock edge.

9.4  SIMPLE STATE MACHINES

Instead of defining what state machines are, we will present a simple example
of a synchronous state machine; understand what it does, how it is described,
and how it is designed. Later on we will make general statements as to what
state machines are, but not without having gone over one simple but complete
example.

Example 9.1 Define a 2-bit synchronous up binary counter with an asynchro-
nous reset: (1) Write its state table and (2) state diagram. (3) Perform a logic
implementation of the counter using positive edge-triggered JK flip-flops.

Solution to Example 9.1

A 2-bit synchronous up binary counter is a 2-bit state machine. Upon clocking
the state machine the counter will go through states 00, 01, 10, 11, and it will
repeat that sequence of four states indefinitely, as long as it continues to be
clocked. Figure 9.20 shows the state machine state diagram, while Table 9.10
depicts the state table of the 2-bit counter. The purpose of the asynchronous
reset is for external logic to reset the state machine upon power-up. If there
was no reset the initial state of the state machine after power-up is unpredict-
able; in other words with no reset initializing the flip-flop, one cannot predict
which will be the starting state.

Note that the state machine Q1 state bit is the MSB and Q0 is the LSB. The
state machine has an asynchronous input, its Reset which we can easily imple-
ment using the asynchronous reset of the flip-flops to be used. Note that the
state machine upon Reset being negated and receiving clocks it will walk
through states 00, 01, 10, 11, 00, . . . indefinitely. If at any time Reset goes high
the state machine will abruptly go to state 00. Notice that all state transitions
are conditioned by the Reset input, the present state and upon the reception
of a clock the machine will move to its next state. Unfortunately, the state
diagram does not show in a clean way the fact that Reset is asynchronous. If
the design requirements would have been to do the same design with a syn-
chronous Reset, the state diagram would not change. Usually in state machine
design Reset is one of the few or sometimes the only asynchronous control
signal in the system. It is customary to synchronize asynchronous signals into
the clock domain of the state machine that one is dealing with.

State machines in a general sense have two main parts, its sequential
logic, that is the flip-flops that memorize the state Q(t). They also have their

SIMPLE STATE MACHINES 575

00

01

10

11

Reset = 1

Reset = 1

Res
et

 =
 1

R
es

et
 =

 1

Rese
t =

 0

Res
et

 =
 0

Reset = 0

Reset = 0

State key: Q1 Q0

MSB LSB

Figure 9.20  2-bit synchronous up binary counter state diagram.

Table 9.10  State table for the 2-bit counter of Example 9.1

Clock

Present State Next State Async. Reset Input

Q1(t) Q0(t) Q1(t + 1) Q0(t + 1) (Active high) Reset

↑ 0 0 0 1 0
↑ 0 1 1 0 0
↑ 1 0 1 1 0
↑ 1 1 0 0 0
0 X X 0 0 1

combinational logic, which is the logic used by the sequential portion of the
machine to determine the inputs to the flip-flops that will generate the next
state. Figure 9.21 depicts a high-level circuit diagram showing the state machine
pieces. The block with the shape of a cloud represents combinational logic, or
simply circuitry without memory. Note: having said that reset is needed to
initialize the state of a machine, other methodologies are used to initialize state
machines. One such method is designing scannable machines. All the state
machine registers upon power on can be configured like a giant shift register
and a known state is clocked in every flip-flop. Once all flip-flops are initialized

576 SEQUENTIAL LOGIC AND STATE MACHINES

the state machine is placed back in its normal operating mode and begins to
run. For a good reference in scannable systems refer to [1].

By inspection of Figure 9.21 we can observe that the present state through
the combinational logic produces the outputs for flip-flops 1 and 2 inputs. Reset
as stated earlier is directly applied to the asynchronous reset input that we
assume the JK flip-flops already have. So we need to come up with four logic
equations, which are the equations of the flip-flop inputs as a function of the
present state. The equations follow:

 J Q Q1 1 0= f(), (9.1)

 K Q Q1 1 0= g(), (9.2)

 J Q Q0 1 0= h(), (9.3)

 K Q Q0 1 0= i(), . (9.4)

With the present state information and the combinational logic the inputs to
each flip-flop is presented so that upon the next active edge of the clock the
state machine goes to its next state. So before doing the design we need a dif-
ferent form of the JK flip-flop characteristic table that facilitates the design
process. Such new table is the JK flip-flop excitation table. Actually, the excita-
tion table presents the same information provided by the characteristic table
but in the following form:

Figure 9.21  2-bit up synchronous counter logic diagram.

Clk

Q

Q
_

J

K

Clk

Q

Q
_

J

K

Reset

Reset

Q1

(MSB)

Q0

Clock

Asynchronous_Reset

FF-1

FF-0

J

J

K

K

1

1

0

0

Comb. logic

Q1

Q0

State bit

State bit

(LSB)

SIMPLE STATE MACHINES 577

“What do the FF inputs need to be to make a transition from a determined
present state to a desired next state when the active clock edge is present?”
Review Table 9.6 with the JK FF characteristic table. Using Table 9.6
we compose the excitation table for the JK FF. Table 9.11 depicts such excita-
tion table.

It is important to emphasize that since the excitation table has a present
state and a next state column without showing the clock explicitly, the same
table applies to positive as well as to negative edge-triggered devices. Let us
recall from the previous chapter that X refers to a don’t care condition, either
a 1 or a 0.

State Machine Design Process Our 2-bit counter has four states and we
are using two flip-flops to implement it. A circuit designed with n flip-flops can
support a maximum number of 2n states; this is the case in our example: 2-bit
machine and four states. At times some sequential circuit designs have less
than 2n states. So we need to be careful about what we do if the state machine
accidentally lands in one of those unused states. For the design process we will
merge the state table of the desired state machine (Table 9.10) with the excita-
tion table (Table 9.11) of the flip-flops to be used. We construct a new table
that has present state, next state information, and the outputs of the combina-
tional circuit of Figure 9.21; such outputs are the flip-flop inputs. The new table
is the excitation table for the complete design and Table 9.12 shows it.

Table 9.11  JK FF excitation table

Present State Next State JK FF inputs

Q(t) Q(t + 1) J K

0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

Table 9.12  Excitation table for the 2-bit counter design of Ex. 9.1 using JK FF

Inputs of
Combinational
Circuit

Next State

Outputs of Combinational
Circuit

Present State Flip-Flop Inputs

Q1(t) Q0(t) Q1(t + 1) Q0(t + 1) J1 K1 J0 K0

0 0 0 1 0 X 1 X
0 1 1 0 1 X X 1
1 0 1 1 X 0 1 X
1 1 0 0 X 1 X 1

578 SEQUENTIAL LOGIC AND STATE MACHINES

Notice that the asynchronous Reset input was left out of the excitation table
because it is directly hardwired to the asynchronous reset of the flops (Fig. 9.21).

The present and next state columns of Table 9.12 are identical to those of
Table 9.10.

To fill in the columns for J1, K1, J0, and K0 of Table 9.12 we will proceed to
work with FF-1 inputs first and FF-0 later. Let us ask ourselves what do inputs
J1 and K1 need to be to go from a present state Q1(t) = 0 to next state
Q1(t + 1) = 0. The answer to this is on Table 9.11 third line from the top, that
is, J1 = 0 and K0 = X. So we proceed to fill in the first line under the J1 and K1
columns with 0 and X, respectively. For the next entry: what do inputs J1 and
K1 need to be to go from a present state Q1(t) = 0 to next state Q1(t + 1) = 1.
Again from Table 9.11 the answer is J1 = 1 and K1 = X. This is the next entry
under columns for J1 and K1. We continue doing the same process until we are
done with columns J1 and K1. We do the same for flip-flop 0 columns J0 and
K0. Having completed Table 9.12 we look at it from a different perspective
when we need to design the combinational logic that the state machine
requires, refer one more time to Figure 9.21. Imagine that we remove from
Table 9.12 the two columns that correspond to the next state bits Q1(t + 1) and
Q0(t + 1). What is left of Table 9.12 should be seen as a combinational logic
truth table. This table has four outputs: J1, K1, J0, and K0. These four outputs
are Equations (9.1) through (9.4), which are functions of the present state bits
Q1(t) and Q0(t). To solve the four logic equations we can do four K. maps, one
per output. Figure 9.22 shows the K. maps.

The SOP simplifications from each output follow:

 J Q1 0= (9.5)

 K Q1 0= (9.6)

 J0 1= (9.7)

 K0 1= . (9.8)

Note that the SOP functions for J1 and K1 became independent of Q1. J0 and K0
end up being constants (Equations (9.7) and (9.8)). The actual circuit diagram
for the complete state machine of Example 9.1 is redrawn with the actual logic
found with Equations (9.5) through (9.8). Figure 9.23 shows the circuit.

9.4.1  SR Flip-Flop Excitation Table

To derive the excitation tables of the SR flip-flop we refer back to character-
istic table provided by Table 9.7. This table is repeated below for the reader’s
convenience.

Starting with the SR flip-flop, this device basically works like the JK flip-
flop with the exception of the S = 1, R = 1 which is not allowed for the SR.
Tables 9.13 and 9.14 show the SR FF characteristic and excitation tables,
respectively.

SIMPLE STATE MACHINES 579

Figure 9.23  State machine for Example 9.1 logic implementation.

Clk

Q

Q
_

J

K

Clk

Q

Q
_

J

K

Reset

Reset

Q1

(MSB)

Q0

Clock

Asynchronous_Reset

FF-1

FF-0

J1

J

K1

K

0

0

Q0

Tied to Logic “1” (VDD) State bit

State bit

Figure 9.22  Karnaugh maps for outputs J1, K1, J0, and K0.

0

1

0 1

0 1

2 3

Q0

0

1

0 1

0 1

2 3

Q1

Q0

Q1

Q0

Q1

Q1

Q0

Q0

Q1

Q0

Q1

Q0

Q1

Q1

Q0

0

1

0 1

0 1

2 3

0

1

0 1

0 1

2 3

J1 K.Map K1 K.Map

J0 K.Map K0 K.Map

1

XX

X X

1

1

1

X

X

X

X

1

1

580 SEQUENTIAL LOGIC AND STATE MACHINES

Recall that to construct the excitation table of an SR FF we need to ask
ourselves what do inputs S and R need to be prior to the active clock edge, to
cause a transition from a given the present state to a desired next state? From
Table 9.13, Row 1, states that S = 0 and R = 0 will do the job, because it holds
the previous state. Also S = 0 and R = 1 (Table 9.13, Row 2) will do the same
thing because this condition Resets the FF. Thus, S = 0 and R = X produces a
transition from present state zero to next state zero; refer to Table 9.14, Row
1 for S = 0, R = X. It is easy to see that S = 1 and R = 0 (Table 9.13, Row 3)
Sets the FF and that S = 0 and R = 1 (Table 9.13, Row 2) Resets the FF. Finally,
having a present state of one to transition to a next state of one we either Set
the FF (S = 1 and R = 0) or hold the previous state (S = 0 and R = 0); thus,
S = X and R = 0; refer to Table 9.14, Row 4.

9.4.2  T Flip-Flop Excitation Table

In a similar fashion, to derive the T FF excitation table we start with the T FF
characteristic table (Table 9.15).

Again we ask ourselves the question: “what does input T need to be prior
to the active clock edge, to cause a transition from a given the present state
to a desired next state?” We start constructing the T FF excitation Table 9.16.
So using the T FF characteristic Table 9.15, we see that to obtain a zero present
state to zero next state transition, the T input needs to be a zero (hold, no state

Table 9.13  SR FF characteristic table

Row Clock S R Q(t + 1)

1 ↑ 0 0 Hold last Q(t)
2 ↑ 0 1 0 (Reset)
3 ↑ 1 0 1(Set)
4 ↑ 1 1 Not-allowed
5 0 X X Hold last Q(t)

Table 9.14  SR FF excitation table

Row

Present State Next State
SR FF
inputs

Q(t) Q(t + 1) S R

1 0 0 0 X
2 0 1 1 0
3 1 0 0 1
4 1 1 X 0

SIMPLE STATE MACHINES 581

change). This gets written as a zero entry under Row 1 for T FF input column
of Table 9.16. To fill in the T input for Rows 2 and 3 of Table 9.16, inspecting
Table 9.15 we see that in both cases input T must be a one. Finally, for Table
9.15, Row 1, for the T FF not to change from present state 1 to next state 1,
then T input needs to be a zero. This is shown on Table 9.16, Row 4 and under
the T FF input column.

9.4.3  D Flip-Flop Excitation Table

Similar to the way we did with the SR and T excitation tables we create the
D FF excitation table. Note that the D FF, which is the simplest one to under-
stand, simply copies whatever the D input is, to the Q output upon the active
edge of the clock.

Since we want an excitation table to cause the usual four-row present state
to next state transitions, the D input needs to be whatever we want the next
state to become. Tables 9.17 and 9.18 depict the characteristic and the excita-
tion tables for a D FF.

Table 9.15  T-flip-flop characteristic table

Row Clock T Q(t + 1) Comment

1 ↑ 0 Q(t) Hold (no change)
2 ↑ 1 Q t() Complement (toggle)
3 0 X Q(t) Hold (no change)

Table 9.16  T FF excitation table

Row

Present State Next State T FF input

Q(t) Q(t + 1) T

1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Table 9.17  D Flip-flop characteristic table

Clock D Q(t + 1) Comment

↑ 0 0 Reset
↑ 1 1 Set
0 X Q(t) Hold (no change)

582 SEQUENTIAL LOGIC AND STATE MACHINES

Table 9.18  D FF excitation table

Row

Present State Next State D FF input

Q(t) Q(t + 1) D

1 0 0 0
2 0 1 1
3 1 0 0
4 1 1 1

Example 9.2 Let us now use the D flip-flop to implement a 2-bit up binary
counter just like the one that we covered in Example 9.1. The counter will
have an asynchronous reset input that upon being asserted it will force the
counter to go to state Q1Q0 = 00. Implement the counter only with D flip-flops
and the required next state combinational logic.

Clearly the state diagram for this counter is identical to the state diagram
depicted in Figure 9.20. The logic implementation though is structurally similar
to that of Figure 9.21, but the JK FF’s are replaced with D FF’s. Figure 9.24
depicts the circuit diagram of our counter to be implemented with D FF’s. The
design of the state machine control logic is implemented generating the excita-
tion table of the complete circuit using the D FF excitation tables and the state
machine state diagram. Table 9.19 depicts Example 9.2 excitation table.

Proceeding to do the K. maps for D0 and D1 both as functions of present
state bits: Q1(t) and Q0(t) we obtain the K. maps shown in Figure 9.25

Figure 9.24  2-bit binary up counter for Example 9.2.

Clk

Q

Q
_

D

Clk

Q

Q
_

D

Reset

Reset

Q1

(MSB)

Q0

Clock

Asynchronous_Reset

FF-1

FF-0

D

D

1

0

Comb. logic

Q1

Q0

State bit

State bit

(LSB)

SIMPLE STATE MACHINES 583

 D f Q t Q t Q0 1 0 0= =[(), ()] (9.9)

 D Q t Q t Q Q1 1 0 0 1= = ⊕g[(), ()] (9.10)

Equations (9.9) and (9.10) lead to the logic implementation presented in
Figure 9.26.

Table 9.19  Excitation table for the 2-bit up counter design of Example 9.2 using D FF

Inputs of
Combinational Circuit

Next State

Outputs of
Combinational Logic

Present State Flip-flop inputs

Q1(t) Q0(t) Q1(t + 1) Q0(t + 1) D1 D0

0 0 0 1 0 1
0 1 1 0 1 0
1 0 1 1 1 1
1 1 0 0 0 0

Figure 9.25  K. maps for D FF inputs D0 and D1 as a function of the present state bits.

0

1

0 1

0 1

2 3

Q

Q
0

1

Q1

Q0

0

1

0 1

0 1

2 3

Q

Q0

1

Q1

Q0

D K. Map 1D K. Map0

1

1

1

1

The previous examples dealt with a synchronous state machine that made state
transitions in an unconditional fashion. Except for the asynchronous Reset
input to the flip-flops, (and of course the clock) there were no other inputs to
the state machine. Let us now consider slightly more complex state machines.
Assume that we want to design a machine that makes state transitions upon
being on a certain state and upon an input being one or zero. Such state transi-
tions are referred to as conditional state transitions, because they depend on
the state of an external state machine input in addition to the present state of
the machine. Unconditional state transitions occur when the present to next
state transition takes places irrespective of the level of the state machine
external input. In a general sense, state machines can have a mix of conditional
and unconditional state transitions or only one of the two kinds.

584 SEQUENTIAL LOGIC AND STATE MACHINES

Figure 9.26  Logic implementation of 2-bit up counter with D FFs.

Clk

Q

Q
_

D

Clk

Q

Q
_

D

Reset

Reset

Q1

(MSB)

Q0

Clock

Asynchronous_Reset

FF-1

FF-0

D

D

1

0

Q0

State bit

State bit

Q0

_

Q1

0Q
_

Example 9.3 Given the state diagram of Figure 9.27, (a) find the state table of
the circuit and (b) perform a logic implementation of the state machine using D
FF. Assume that the external state machine input A is synchronous to the state
machine clock. This concept has to do with state machine timing requirements,
which will be discussed in another section within this chapter. So do not worry
a whole lot of the previous sentence right away, we will get to it in greater detail.

Figure 9.27 state diagram exhibits two different types of state transitions:
conditional as well as unconditional transitions. The state machine has two bits
of state and a single external and clock-synchronized input A. State transitions
from state 00 to 11 or 01 are conditional transitions. The state diagram should
be read as follows for those transitions: If the present state is 00 and input A
is high the next state is 01, else if present state is 00 and input A is low the
next state is 11. All other transitions, that is, from state 01 to 00, 11 to 00 and
10 to 00, are unconditional state transitions. Let us make clear before the circuit
is drawn that the state key is defined as Q1 Q0, where Q0 is the LSB of state.
From the state diagram in Figure 9.27 we will construct the excitation table
for the circuit to be designed. Note that the only conditional state transitions
that exist are Rows 1 and 2 of Table 9.20; state transition from 00 to 11 occurs
only upon input A being low. On Row 2 the state transition from 00 to 01
occurs on A being high. Rows 3 through 8 all show unconditional state transi-
tions. For example, for the state transition 01 to 00 we can see in Rows 3 and
4 that take place regardless of whether A is low or high.

SIMPLE STATE MACHINES 585

Carefully inspecting excitation Table 9.20 we have to obtain combinational
equations for the D FF inputs D1 and D0 as functions of the present state and
the external state machine input A. So imagining that the next states columns
are gone from Table 9.20 we use such table as a truth table to find out the
simplified products of sum logic equations for the D FF inputs D0 and D1.

 D1 1 0= f Q t Q t A[(), (),] (9.11)

 D0 1 0= g Q t Q t A[(), (),]. (9.12)

We proceed creating the K. maps for each FF input, but note that for this
example the K. maps are 3-variable maps which can be observed from Equa-
tions (9.11) and (9.12).

From the K. maps of Figure 9.28 we obtain:

 D Q Q A1 1 0= (9.13)

and

 D Q Q0 1 0= . (9.14)

The logic implementation of our state machine using logic Equations (9.13)
and (9.14) is depicted in Figure 9.29.

Figure 9.27  State diagram for Example 9.3.

00

11

10

01

A=1
A=0

State key: Q1 Q0

586 SEQUENTIAL LOGIC AND STATE MACHINES

Table 9.20  Excitation table for the state machine design of Ex. 9.3 using D FF

Row

Combinational Circuit
Inputs

Next State

Combinational
Circuit Outputs

Present State
External

Input
 Flip-Flop

Inputs

Q1(t) Q0(t) A Q1(t + 1) Q0(t + 1) D1 D0

1 0 0 0 1 1 1 1
2 0 0 1 0 1 0 1
3 0 1 0 0 0 0 0
4 0 1 1 0 0 0 0
5 1 0 0 0 0 0 0
6 1 0 1 0 0 0 0
7 1 1 0 0 0 0 0
8 1 1 1 0 0 0 0

Figure 9.28  Karnaugh maps for Example 9.3.

00 01 11 10

0

1

Q

A

0 1 3 2

4 5 7 6

1

Q

Q

00 01 11 10

0

1

Q A

0 1 3 2

4 5 7 6

1 1

1

1

K. map for D1

K. map for D0

0
A

Q
0

A
Q1

0

Q
0

Q1

SIMPLE STATE MACHINES 587

Example 9.4 Design a 3-bit down binary counter. Design an output called
MIN-COUNT that detects when state 0 (000) is reached. The output must be
a function of the state bits. Use D FFs. (1) generate the state diagram of the
counter, (2) generate the circuit excitation table, (3) find the logic for output
MIN-COUNT and (4) find the complete logic for the counter state machine.
We will move a little faster throughout this example, since most of the concepts
have already been explored in previous examples. Refer to Figure 9.30 for the
state machine state diagram.

The excitation table (Table 9.21) follows from the state diagram. The state
diagram of our down counter has unconditional state transitions. This means
that no external input to the counter exists to prevent or allow any of the state
transitions. The output logic has to detect state 000; this output must remain
asserted during the time the counter is at state 000. Once the counter is in any
other state, the output has to be negated. Thus, the logic for the MIN-COUNT
output is a three input AND gate that receives inverted state bits: Q2(t), Q1(t),
and Q0(t). By DeMorgan’s rule such gate is a three-input NOR gate.

Now to design the state machine we use excitation Table 9.21 come up with
the excitation functions or the input equations of each state flip-flop: D2, D1,
and D0 as a function of the three state bits Q2(t), Q1(t), and Q0(t). Proceeding
as we did before, we need to produce three 3-variable Karnaugh maps to
obtain a simplified SOP expression for each FF input.

From Figure 9.31 we obtain a simplified SOP forms for D2, D1, and D0:

Figure 9.29  Logic implementation of state machine for Example 9.3.

Clk

Q

Q
_

D

Clk

Q

Q
_

D

Q0

(MSB)Q1

Clock

FF-0

FF-1

D

D

0

1

Q1

State bit

State bit

Q1

_

Q0

1Q
_

Q0

_

_
_

A
_

Q0

_

A

588 SEQUENTIAL LOGIC AND STATE MACHINES

Table 9.21  Excitation table for the down counter of Example 9.4

Present State Output Next State
D Flip-Flop

Inputs

Q2(t) Q1(t) Q0(t) MIN-COUNT Q2(t + 1) Q0(t + 1) Q0(t + 1) D2 D1 D0

0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 1 0 0 1 0
1 0 0 0 0 1 1 0 1 1
1 0 1 0 1 0 0 1 0 0
1 1 0 0 1 0 1 1 0 1
1 1 1 0 1 1 0 1 1 0

Figure 9.30  State diagram of 3-bit down counter for Example 9.4.

111

110

101

100

000

001

010

011

/ MIN-COUNT=1 / MIN-COUNT=0

/ MIN-COUNT=0

/ MIN-COUNT=0

/ MIN-COUNT=0/ MIN-COUNT=0

/ MIN-COUNT=0

/ MIN-COUNT=0

State Key: Q Q Q2 1 0

SIMPLE STATE MACHINES 589

Figure 9.31  Karnaugh maps for FF next state equations for Example 9.4: (a) D2 map; (b) D1
map; (c) D0 map.

00 01 11 10

0

1

Q

Q

0 1 3 2

4 5 7 6

1 Q2

K. map for D2

Q 0Q
Q2

1

1
0

00 01 11 10

0

1

Q

Q

0 1 3 2

4 5 7 6

1

Q2

K. map for D1

Q 0Q
Q2

1

1
0

00 01 11 10

0

1

Q

Q

0 1 3 2

4 5 7 6

1

Q2

K. map for D0

Q 0Q
Q2

1

1
0

1

1

1 1

1

1

1

1 1

(a)

(b)

(c)

590 SEQUENTIAL LOGIC AND STATE MACHINES

 D Q Q Q Q Q Q Q2 2 1 0 2 1 2 0= + + (9.15)

 D Q Q Q Q Q Q1 1 0 1 0 1 0= + = ⊕ (9.16)

 D Q0 0= . (9.17)

Figure 9.32 depicts the implemented state machine of Example 9.4 with next
state Equations (9.15), (9.16), and (9.17).

Figure 9.32  Implementation of state machine for Example 9.4.

Clk

Q

Q
_

D

Clk

Q

Q
_

D

Q2

(MSB)

Q1

Clock

FF-2

FF-1

D

D

2

1

Q2

State bit

Q1

_

Q0

Q2

_

_

Clk

Q

Q
_

D
Q0

FF-0

Q0

_

Q1

_

Q
_

2

Q0

Q2

Q1

Q1

Q0

MIN_COUNTQ1

Q0

Q2

Example 9.5 A shift register: An n-bit shift register is an n-bit register that
makes provision of shifting its stored data by one bit position at every active
clock edge. It is possible to design shift registers that shift bits to the right or
that can shift bits to the left. More elaborate shift registers can be designed to

SIMPLE STATE MACHINES 591

shift left or right upon asserting a shift direction control input. In this example
we will address a 4-bit shift register that shifts data from its LSB one bit posi-
tion to the left to a more significant bit. The LSB will get loaded with a zero.
For example, given the 4-bit binary number 1010, shifting it left by one bit
position leads to 0100; another shift left will produce 1000; another shift left
produces 0000. Figure 9.33 depicts the left shifting of the example just described.

Shift registers are used in arithmetic and control type operations. Multipli-
cation and division algorithms use shift registers. Control applications can use

Figure 9.33  Left shifting a four-bit number, loading the LSB with a zero: (a) left-shift operation;
(b) four-bit shift register with D FF.

QD QD

(MSB)

Clock

D

QD Q Q0Q1Q2

Q0

D

FF-1FF-2FF-3 FF-0
_

Q1

_
Q2

_

Q3

Q3

_

Q
_

Q
_

Q
_

Q
_

Direction of data transfer

1 10 0

10 0

1 00 0

0

0 00 0

Initial data

Data after third left-shift

Data after second left-shift

Data after first left-shift

“0”

“0”

“0”

“0”

“0”

(a)

(b)

592 SEQUENTIAL LOGIC AND STATE MACHINES

9.5  SYNCHRONOUS STATE MACHINES 
GENERAL CONSIDERATIONS

State machines consist of three fundamental pieces of logic. The flip-flops,
which serve as the memory elements, store state information. The next state
logic is the logic that receives state information and external state machine
inputs if any. The third and last piece is the logic that generates the machine
outputs. The next state logic produces the correct signals to the flip-flops, so
that the transition to the desired next state occurs. Figure 9.34a,b depict the
two most important state machine architectures, the Moore and the Mealy
state machines. Referring to Figure 9.34a we see a Moore machine block
diagram. This machine has next state logic and flip-flops, which does not differ
much from a Mealy (Fig. 9.34b) state machine. The fundamental difference
between the Moore and Mealy is the way in which both state machines produce
the control outputs. Moore machines produce their outputs with combina-
tional logic that is only function of the present state bits. Mealy state machines
produce their control outputs with combinational logic that is a function not
only of the present state bits but also the external inputs to the state machine.

This implies that the control outputs not only may change when the state
is updated but also when the any of the state machine external inputs change.
Note that it is customary in computer architecture literature to indicate clocked
elements with memory (i.e., flip-flops) with a heavy trace where their Q outputs
are. Sometimes when the heavy trace is shown the clock does not need to be
explicitly drawn, as we did in Figure 9.34.

9.5.1  Synchronous State Machine Design Guidelines

The single most important step of designing a state machine is the complete,
accurate and concise description of the problem that needs to be solved. This
is in essence producing a specification. Now we need to translate such descrip-
tion into a state diagram. Determine the external state machines inputs and
the control outputs. We also need to determine the number of states needed,
try to minimize them if possible. Choose the flip-flops type to be used. Do the
state assignments. There are three basic ways of making state assignments. The
simplest one is to do binary state assignments, usually takes the smallest
number of flip-flops but with more next state combinational logic. If we know
that some state machine outputs need to be glitch free during their transition

shift registers. Other uses of shift registers include serial-to-parallel and
parallel-to-serial data conversion for data communication applications.
Advanced central processing units (CPUs) use shift registers in conjunction
with multiplexers to implement barrel shifters. Barrel shifters allow a CPU to
perform shifts either left or right by any amount of desired bits, such that the
amount of bits is within the width of the CPU registers, in a single clock cycle.

SYNCHRONOUS STATE MACHINES GENERAL CONSIDERATIONS 593

Figure 9.34  State machine types: (a) Moore state machine; (b) Mealy state machine.

State Feedback

Y

Input-1

Input-2

Input-m

Q0

1Q

Qn-1

Next-state
Combinational Logic

State

Clock

Output Logic

1

Y

Y

2

L

Input-1

Input-2

Input-m

Q0

1Q

Qn-1

Next-state
Combinational Logic

State

Clock

Output Logic

1

Y

Y

2

L

Y

State Feedback

(a)

(b)

to their active level, it is beneficial to Gray code encode the states. Gray code
encoding is a binary code that only varies by one and only one bit between
adjacent codes. Note that the following 3-bit Gray code sequence 000, 001, 011,
010,110, 111, 101, 100 differs between adjacent terms by no more than one bit
position. So if in addition to Gray code encoding the states, a state bit is chosen

594 SEQUENTIAL LOGIC AND STATE MACHINES

to be a needed state machine output, then such output will be glitch-free. For
example, if one of our state machine outputs is a WRITE signal, we definitely
want this signal not to glitch, ever. State one-hot encoding is another technique
that uses a flip-flop per state. Although this scheme uses more flip-flops that
it would require if we binary encoded the states, it has the advantage that it
is very simple to design and debug. Usually when designing state machines
FPGAs using a few more flip-flops is not a problem when compared to the
benefits that it provides. Care must be exercised upon resetting the state
machine to a desired initial state. We create the excitation table of the state
machine. That means to construct a table that shows the required excitation
(flip-flop inputs) to obtain the desired next state for state/ input combination.
This leads to the design of the next state logic. Finally, we decide how we want
the outputs to be generated. Do we want a Moore machine, where the outputs
are strictly functions of the state bits? Alternatively, do we need a Mealy
machine, where the outputs depend not only on the state bits but also on the
state machine inputs? Finally, we draw a complete schematics or logic diagram
of the design. The above steps assume a fairly manual procedure to design
state machine. These days CAD tools such as hardware description languages
(HDL), Verilog and VHDL being the two most popular ones, allow a designer
to design and simulate the behavior of the state machine before it is actually
implemented with logic gates. HDLs are beyond the scope of this book. Refer-
ences to HDLs are cited in the Further Reading section of this chapter.

In summary, we can list the basic steps required to design synchronous state
machines.

(a) Produce a complete and succinct state machine specification.
(b) Determine number of states needed, state machine inputs and outputs.
(c) Produce a state diagram and state assignments.
(d) Optionally minimize the number of states.
(e) If any unused states are present in the state machine designed, ensure

that if for some undesired reason the state machine got into one or
more of such states, that it finds a graceful way to continue operating,
to recover or to stop.

(f) Choose the flip-flop type to be used.
(g) Produce the circuit excitation table.
(h) Design the next state logic using the excitation table.
(i) Design the output logic.
(j) All or some of the steps above will have to be repeated and refined

until you reach at a satisfactory solution that meets the requirements.

It is important to keep in mind that there are three major factors that are
present in any practical design that is done with the purpose of becoming a
large volume product. From an engineering point of view the natural factor is

SYNCHRONOUS STATE MACHINES GENERAL CONSIDERATIONS 595

quality. Quality is associated with the idea that the machine works, reliably
and consistently. The other two factors are that the project has to meet a given
schedule and meet its cost targets. In essence quality, cost, and schedule are
practically inseparable factors that at one point or another throughout the
design cycle, will force engineering to make tradeoffs to meet the overall goals.

9.5.2  Timing Considerations: Long and Short Path Analyses

Synchronous state machines need to operate at some intended clock fre-
quency. But this is not all; most importantly, every clocked device has its own
set-up and hold time requirements that need to be met at all times. Given a
simple synchronous state machine such as the one in Figure 9.35, the timing
path between to consecutive clock edges is:

 t t t TCOmax PDmax SUmin CLKmin+ + ≤ (9.18)

Figure 9.35  Long path analysis of a simple state machine.

Q

Q
_

D
Q0

D-FF-0

Q0

_

Q

Q
_

D
Q1

D-FF-1

Q1

_

Combinational
Logic A

tPDA

tPDB

Clock

Combinational
Logic B

Path 0

Path 1

D1

D0

596 SEQUENTIAL LOGIC AND STATE MACHINES

where tCOmax is the flip-flop maximum clock-to-output delay, tPDmax is the com-
binational logic maximum propagation delay, tSUmin is the minimum required
set-up time that the manufacturers specifies for its flip-flop, and TCLKmin is the
minimum required clock period to allow the required minimum set-up time
to the flip-flop. Equation (9.18) has to be met individually for every one of the
timing paths that exist in the circuit designed.

In particular and referring to the two-path state machine of Figure 9.35,
Equation (9.18) can be written for each one of the long paths. One path, Path
0, shown with very heavy lines, begins at the Q0 output of DFF-0, continues
to the input of combinational logic B, the output of logic B ends at the D1
input of DFF-1.The second long path, Path 1, is drawn with standard weight
lines, begins at the Q1 output of DFF-1, continues through combinational logic
A, and ends at the D0 input of DFF-0. Rewriting Equation (9.18) for path 0
which starts at the Q0 output of DFF-0 and ends at the D1 input of DFF-1, we
obtain.

 t t t TCO max PDBmax SU min CLKmin0 1+ + ≤ . (9.19)

For the other path, beginning at the Q1 output of DFF-1 and ending at the D0
input of DFF-0, we have:

 t t t TCO max PDAmax SU min CLKmin1 + + ≤0 . (9.20)

In Equation (9.19) tCO0max is the maximum or longest clock-to-output delay of
FF0, tPDBmax is the maximum propagation delay of combinational logic B and
tSU1min is the minimum required set-up time needed by FF1, which is the des-
tination flip-flop of this path. Similarly, in Equation (9.20) tCO1max is the
maximum or longest clock-to-output delay of FF1, tPDAmax is the maximum
propagation delay of combinational logic A and tSU0min is the minimum required
set-up time needed by FF0, which is the destination flip-flop of this path. Note
that in order to meet set-up time requirements both long paths must be strictly
less than TCLKmin. The state machine uses the same clock (at least from a logical
standpoint) ; whichever path is the longest is the one that determines the
maximum frequency of operation. This example ignores wire delays, transmis-
sion lines effects, clock skews, and signal integrity issues.

When a state machine path, such as the one given by Equations (9.19) or
(9.20) is not met, we refer to this as being a long path (also referred to as the
critical path of the state machine). Excessive long paths cause set-up time viola-
tions. Set-up and/or hold time violations of a flip-flop cause the device to
temporarily go into an undefined or metastable state. Looking at Equation
(9.18) it is clear to see that given a TCLKmin is equivalent to specifying a
maximum operating frequency. So once TCLKmin is fixed, the three left-hand
side terms in Equation (9.18) need to be such that their sum is strictly less
than TCLKmin. When tCOmax + tPDmax + tSUmin equals TCLKmin, the set-up time of the
flip-flop is just marginally met. In practice we want to have a small but positive

SYNCHRONOUS STATE MACHINES GENERAL CONSIDERATIONS 597

Figure 9.36  Short path analysis of a simple state machine.

margin to account for other factors such as noise, ground bounce and other
electrical effects not accounted for by Equation (9.18). Long path analysis or
set-up time calculations are an edge-to-edge phenomenon. In practical designs
usually the term that can be significantly reduced in order to meet set-up time
is the combinational logic propagation delay (tDmax). The reason is that once a
family or type of flip-flop is selected for the design, the state machine designer
has little or no control over tCO and tSU since these are flip-flop timing param-
eters. On the other hand, when every effort was made to meet Equation (9.18)
either by reducing tPdmax or by changing flip-flops for faster ones (with smaller
tCOmax and tSUmin), there is still a possibility of rearranging the circuit logic and
topology. Shall this last attempt fail to meet Equation (9.18), there is no more
option other than reducing the operating frequency of the state machine.
Stretching out the clock cycle of the state machine is the last and least desir-
able mean to implement, when the machine violates set-up time.

We have not mentioned anything about hold time requirements yet. Hold
time analysis is also referred to as short path analysis. Let us consider the
simple circuit of Figure 9.36.

The circuit of Figure 9.36 is a synchronous divide-by-two counter. Let us
look into the hold time requirements by its flip-flop. Since the complemented
Q output is tied back into the D input at the time an active clock edge occurs
the data present at the D input has to be held constant or stable not just before
the clock edge but also immediately after the clock edge. So we then write this
requirement as:

 t tCOmin Hmin≥ . (9.21)

At first Equation (9.21) seems a bit awkward to understand. One of the
reasons is that neither the clock period nor the set-up time show up in Equa-
tion (9.21). Since the data into the flip-flop is provided by its complemented
Q output, fed directly with a zero delay wire, it is under the control of how
fast is the clock-to-inverted-Q-output delay. This also determines how long
the current data at the D input stays around (hold time requirement) imme-
diately after the clock edge. So that is the reason why it is important that the

598 SEQUENTIAL LOGIC AND STATE MACHINES

Example 9.6 Given the simple state machine of Figure 9.36 assume the fol-
lowing flip-flop parameters are: tCOmin = 1 ns tCOmax = 5 ns, tSUmin = 3 ns and
tHmin = 1.5 ns.

(a) Determine doing long path analysis, the highest frequency at which
the flip-flop can be clocked reliably. Assume that zero timing margin
on set-up is acceptable.

(b) Doing short path analysis, determine if there are any hold time viola-
tions. Assume that zero margin on hold time is acceptable.

Solution to Example 9.6

(a) For long path analysis for the circuit of Figure 9.36 we have that:

 t t t TCOmax PDmax SUmin CLKmin+ + ≤ (9.23)

where tCOmax = 5 ns, tPDmax = 0 ns and we assume that the wire has zero
delay and tSUmin = 3 ns. We rewrite Equation (9.23) using the numerical
values and it becomes:

 5 3+ + ≤0 tCLKmin. (9.24)

Thus tCLKmin = 8 ns, which corresponds to a frequency of 125 MHz.
(b) Doing short path analysis and not to have a hold time violation the

following is required:

 t tCOmin Hmin≥ (9.25)

where tCOmin = 1 ns and tHmin = 1.5 ns.

Clearly Equation (9.25) cannot be met with the values given so the circuit has
a hold time violation. Note that regardless of the clock frequency you cannot

clock-to-output minimum delay be larger than the hold time required by the
flip-flop. Shall the flip-flop be too fast, that is, tCOmin < tH, a hold time violation
takes place. Analyzing hold time violations or the lack of them is referred to
as short path analysis. Just like in the set-up case, for hold time requirements
Equation (9.21) wants the inequality to be “greater than or equal”. When tCOmin
equals tH the flip-flop just barely meets hold time requirements. It is practically
desirable for Equation (9.21) to exceed the hold time required by the flip-flop.
In other words:

 t tCOmin H+ =positive-margin . (9.22)

SUMMARY 599

fix the hold time violation. In ASIC design what engineers do is place a buffer
between the D input and the Q output with a propagation delay of at least
0.5 ns, for this particular example just to comply with the hold time required
by the flip-flop. However, care must be exercised because helping the hardware
meet hold time, degrades or takes away timing margin out of the set-up time.
Now Equation (9.23) no longer has a 0 ns tPDmax term and it becomes 0.5 ns,
and that reduces the maximum frequency of operation from 125 MHz down
to 117.6 MHz (tCLK = 8.5 ns).

9.6  SUMMARY

This chapter covers sequential devices or devices with memory. Latches and
flip-flops are the fundamental memory elements with which to build state
machines. It is important to distinguish the latch from a flip-flop. Generally, a
latch is basically an asynchronous device, it typically does not have a clock
and is not sensitive to a clock edge. A flip-flop typically is referred to as a
master/slave clock edge sensitive device. When in doubt, the reader should
read the context carefully to determine which type of device the author is
referring to. State machines are logic circuits that have combinational logic,
that is, gates without feedback, plus sequential logic, or devices built using
combinational logic with feedback. Remember that the basic latch was built
with 2- NOR gates (alternatively with 2 NAND gates) with feedback in a
cross-coupled configuration. Synchronous state machine are circuits whose
flip-flops get clocked at the same time. State machines have state bits, and
their next state upon applying the subsequent clock edge depends not only
on the present state but also on the machine external inputs. We generally
described two basic synchronous state machines, the Moore and the Mealy
types. The basic difference between them is that the Mealy state machine
produces outputs that are function of the state and external inputs. The Moore
state machine produces outputs, which are only functions of the state. We
designed state machine deriving excitation tables for the circuits, using any
flip-flop type we really prefer to use. The D flip-flop is the predominant type
used in programmable logic and ASICs. A general section on how to design
state machines was provided. Such design emphasizes the state assignment an
encoding types available: binary, Gray code and one-hot. Finally designers try
to stay away from total asynchronous designs for reasons of design difficulty
and not being easy to test. Generally designs are quasi-synchronous. Each
state machine has its own clock domain; however, both of them need to inter-
face to each other. Timing analysis can be broken down in two major pieces:
long-path and short-path timing analyses. It is a requirement that every path
in a circuit has to comply with both to have a timing error-free (or metastability-
free) design.

600 SEQUENTIAL LOGIC AND STATE MACHINES

Table 9.22  State table for Problems 9.2 through 9.5

Clock Input A Present State Next State

↑ 1 00 10
↑ 0 00 01
↑ X 01 10
↑ 0 10 11
↑ 1 10 00
↑ 1 11 10
↑ 0 11 01

FURTHER READING

1. Parag K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice Hall
International, London, 1985.

2. Frederick J. Hill and Gerald R. Peterson, Digital Systems Hardware Organization
and Design, 3rd ed., John Wiley and Sons, New York, 1981.

3. David J. Comer, Digital Logic and State Machine Design, 3rd ed., Oxford University
Press, New York, 1995.

4. Donald E. Thomas and Philip R. Moorby, The Verilog Description Language, 4th ed.,
Kluwer Academic Publishers, Norwell, MA, 1998.

PROBLEMS

9.1 Draw the circuit of a master-slave JK flip-flop entirely with NAND
gates.

9.2 Implement the state machine whose state table is shown in Table
9.22 with JK flip-flops and combinational gates. Draw the circuit
schematics.

9.3 Implement the state machine whose state table is shown in Table 9.22
with two D-type flip-flops and logic gates. Draw the circuit schematics.

9.4 Implement the state machine whose state table is shown in Table 9.22
with a ROM of the smallest possible size; and using D-type flip-flops.
Draw the circuit schematics.

9.5 Implement the state machine whose state table is shown in Table 9.22
with 1-of-8 muxes and D-type flip-flops. Draw the circuit schematics.

9.6 For the state machine of Figure 9.37 derive a complete state table. Note
that the state machine has 2 bits of state and two external inputs: A and
B. Draw the circuit schematics.

9.7 Design the state machine, whose state diagram is shown by Figure 9.37
using 2 JK flip-flops and some minimal number of logic gates. Draw the
circuit schematics.

Figure 9.38  State diagram for Problem 9.12.

0000

0001

0010

0100 1100

1111

1110

1011

0101

0110

0111 1000

1001

1101

0011

1010

X
_

X

X

X
_

X
_

X

X

X
_

X
X
_

X X
_

X

X
_

X
_

X

Figure 9.37  State diagram for Problems 9.6 through 9.10.

00

0111

10

A B

A B

A B

A B

_

_ _

_

A
_

A

A B
_

A B
_ _

A B
_

A B

602 SEQUENTIAL LOGIC AND STATE MACHINES

9.8 Design the state machine of Figure 9.37 using 2 T-type flip-flops and
some minimal number of logic gates. Draw the circuit schematics.

9.9 Design the state machine of Figure 9.37 using 2 D-type flip-flops and
some minimal number of logic gates. Draw the circuit schematics.

9.10 Design the state machine of Figure 9.37 using the smallest size ROM
and two D-type flip-flops. Draw the circuit schematics.

9.11 Design a 3-bit decrementing binary counter. Write the state table of the
to-be-designed counter. Draw the circuit schematics.

9.12 Design a state machine that whose state diagram is given by Figure 9.38.
(a) Do an implementation using the smallest possible ROM and the
smallest possible number of D-type flip-flops. (b) Write a table with the
micro-code for the ROM. Assume that input X is already synchronized
to the state machine clock. Draw the circuit schematics.

