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COMBINATIONAL CIRCUITS

7.1  INTRODUCTION TO DIGITAL CIRCUITS

Digital design is concerned with the design of digital electronic circuits. Digital 
circuits are required to handle just two voltage levels, a true level and a false 
level. Because these circuits handle two basic levels as opposed to infinitely 
many voltage levels as analog circuits do, they are more reliable. They last 
longer. Also, they are more consistent than analog circuits by repeatedly gen-
erating the same results under the same input conditions. The best-known 
digital system today is the computer; many computer-based products are man-
ufactured today. The low cost, the reliability, the versatility of such circuits 
allows incorporating computers in virtually all intelligent products at the 
present time. Two main classes of digital circuits cover the world of digital 
design. The first is combinational circuits. They are digital circuits that produce 
outputs when the inputs are presented to them. Such circuits have no memory. 
The second kind of digital circuit is the sequential circuit, or those digital 
circuits that have memory capability. Combinational circuits will be the subject 
of Chapters 7 and 8. Sequential circuits will be addressed in Chapter 9.

7.2  BINARY NUMBERS: A QUICK INTRODUCTION

This chapter assumes that the reader has some knowledge about numbering 
systems, in particular binary and hexadecimal numbering systems. We will 
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move at a fast pace throughout this subject, hopefully not to bore anyone and 
at the same time present the needed fundamentals. A binary number is rep-
resented with two uniquely defined digits, ones and zeros. A binary digit is 
generically referred to as a bit, which stands for binary term. Any integer 
number can be represented with the appropriate number of ones and zeros.

Let us consider three-bit binary numbers first. If we exhaustively come up 
with all the binary combinations of three binary terms it is easy to see that the 
list in Table 7.1 contains all the possible binary combinations. In this chapter 
we will only address positive or unsigned binary numbers. In the next chapter 
we will cover positive as well as signed or negative numbers.

The algorithm to generate base 10 or decimal numbers is simple and we 
use it all the time, without even giving it a second thought. In base 10 we have 
10 uniquely defined digits, 0 through 9. With those 10 digits we can write all 
possible integer numbers as long as we have the freedom of having enough 
digits to represent the largest number that we are interested in. For example, 
if we are asked to write all the possible 3-decimal digit integers; the first 
decimal number is (000)10 while the largest one is (999)10. We know that after 
(000)10 comes (001)10 then (002)10 and so on until (009)10. Now we ran out of 
uniquely defined digits so we reset the least significant decimal digit to zero 
and set to 1 the digit left to the rightmost decimal digit or the least significant 
decimal digit. We now compose (010)10, then (011)10, and so on until we reach 
(019)10. This algorithm is repeated and we clearly know from grade school how 
to come up with all the 3-digit decimal numbers all the way up to (999)10 or 
any other larger sequence of them.

Now if we want to do the same thing for a different base number, like for 
integer binary numbers, the algorithm is no different from what we already do 
with decimal numbers. The possibly “new” thing is that we only have two 
uniquely defined bits, so that we exhaust the use of each bit sooner than we 
do when dealing with the decimal numbering system. The sequence of all the 
possible 3-bit integer binary number was listed in Table 7.1. Note that the 
binary number 01100111 as an 8-bit number consists of eight bits; each bit 

Table 7.1  List of all possible three-bit unsigned binary 
numbers with their decimal equivalents

3-Bit Binary Numbers (Base 2) Decimal (Base 10)

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7
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position is referred to as: b7 b6 b5 b4 b3 b2 b1 b0, where bit b0 is referred to as 
the least significant bit or LSB and b7 is the most significant bit or MSB of our 
8-bit wide number.

So since b7 b6 b5 b4 b3 b2 b1 b0 = 01100111, that means that every bit is 
weighted in the following fashion:

	
0 2 1 2 1 2 0 2 0 2 1 2 1 2 1 2

64 32 4 2 1 103

7 6 5 4 3 2 1 0

1

× + × + × + × + × + × + × + ×
= + + + + = ( ) 00.

After computing the sum above the equivalent decimal number is (103)10

	 = + + + + =64 32 4 2 1 103 10( ) .

Continuing with 8-bit binary integers, 8 bits span 28 = 256 uniquely defined 
8-bit binary combinations. The reader should convince herself that zero in 8-bit 
binary is: 0000_0000 and 255 is 1111_1111, the largest possible 8-bit unsigned 
binary integer. The underscores used to separate four-bit groups is simply to 
enhance the readability of the number. The reader not too familiar with binary 
sequences is encouraged to write down the complete binary sequence starting 
at (0000_0000)2 ending at (1111_1111)2.

Hexadecimal numbers have 16 uniquely defined symbols:
0, 1, 2,…, 9, A, B, C, D, E, F. Table 7.2 lists the first 16 hexadecimal (or hex) 

numbers, their binary and decimal equivalents.

Table 7.2  List of 16 uniquely defined hex digits, their binary and 
decimal equivalents

Hexadecimal 
(Hex, Base 16) Binary (Base 2) Decimal (Base 10)

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
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Example 7.1  Represent the decimal number (183)10 in binary and in hex.

Solution to Example 7.1

Initially we are not sure how many bits the number (183)10 requires in binary 
representation. To sort of figure out the number of bits required, let us list the 
powers of two:

Note from Table 7.3 that the number (128)10 can be represented in binary 
simply by writing:

	 ( _ ) ( ) .1000 0000 1282 10=

Similarly 128 + 64 = (192)10 is written as:

	 ( _ ) ( ) .1100 0000 1922 10=

Since we want to write the number (183)10 in binary representation we know 
that 8 bits will suffice. To convert from decimal to binary, algorithmically we 
proceed as follows:

We divide (183)10 by 2 to give an integer quotient of 91 and a remainder of 
½. This process is repeated until the integer quotient becomes zero. We record 
all the operations as shown below:

Integer quotient Remainder Bit position Weight
183/2 = 91 + ½ b0 = 1(LSB) 1
91/2 = 45 + ½ b1 = 1 2
45/2 = 22 + ½ b2 = 1 4
22/2 = 11 + 0 b3 = 0 8
11/2 = 5 + ½ b4 = 1 16
5/2 = 2 + ½ b5 = 1 32
2/2 = 1 + 0 b6 = 0 64
1/2 = 0 + ½ b7 = 1(MSB) 128

From above we conclude that (183)10 = (1011_0111)2.

Table 7.3  Some powers of two and bit 
position in a binary number

Powers of 2 Binary Bit Position

20 = 1 b0

21 = 2 b1

22 = 4 b2

23 = 8 b3

24 = 16 b4

25 = 32 b5

26 = 64 b6

27 = 128 b7
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Now to convert (183)10 to hex we simply translate each group of four bits 
into their hex equivalent starting with the LSB position according to Table 7.2, 
thus:

	 ( ) ( _ ) ( ) .183 1011 0111 710 2 16= = B

In Chapter 8 we will address some interesting ways of representing positive 
and negative binary numbers. This will be useful to design digital arithmetic 
circuits.

7.3  BOOLEAN ALGEBRA

In 1854, English mathematician and philosopher George Boole developed 
what is known today as Boolean algebra. Later on in 1938, American engineer 
and mathematician Claude Elwood Shannon also introduced a two-valued 
algebra he denominated switching algebra. Boolean algebra, also known as 
switching algebra, consists of binary variables and the logical operations 
among them. All logic variables that we will deal with have a binary value; 
that is, they can only take one out of two possible values, either 1 or 0, which 
we can associate with a true value and a false value, respectively, or vice-versa. 
Why do we need to deal with logic that only handles two values or two logic 
levels? Because it is easier and it is more reliable to develop, build, and use 
circuits that handle two values rather than circuits that handle infinitely many 
or many more values than just two. Circuits that handle infinitely many values 
are commonly referred to as analog circuits. Analog circuits are not as reliable, 
repeatable, and maintainable as digital circuits are.

The three most important logic operations are:

AND, OR, NOT

If we group these operators as follows: group (1) AND, NOT group (2) OR, 
NOT it is interesting to state that all possible binary or combinational func-
tions, regardless of their length or complexity, can be implemented with just 
the operators of either group (1) or (2). We will come back to this concept 
once we study the fundamental logic rules and operations.

7.3.1  AND Logic Operation

Given a two-variable switching function f(A, B), where A and B are binary-
valued variables, function f can be exhaustively represented with the aid of a 
truth table.
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Table 7.4  Truth table for the AND logic operator

Input A Input B Output f(A,B) = A B

0 0 0
0 1 0
1 0 0
1 1 1

Example 7.3  Derive the truth table for of three-input variable binary-valued 
function g (A, B, C). The And-ing of three or more variables does not change 
the significance of the AND operator. In general the And-ing of any number 
of binary-valued variables is true when the true value of each independent 
variable (A, B, C, . . . ) is true. For all other cases our function is false. This is 
succinctly listed in Table 7.5.

Binary-Valued Functions: Example 7.2  Let A and B be two-valued binary 
independent variables. Let us assume that variable A means: it-is-a-sunny-day 
and variable B means: the-soil-is-dry. Further assume that when A is true it 
takes the value 1, when B is true it also takes the value 1. We want to come 
up with a binary-valued function f of variables A, B that is true (1) when both 
A and B are both true, else f is false (0). Table 7.4 explicitly and fully describes 
that requirement.

Now let us assume that the meaning of function f is: “turn-on-watering-
system.” So it seems intuitive to think that f = A And’ed with B is true when 
both A and B are true, else f is false. The logic symbol for the AND operator 
is a dot or the absence of it. For example:

	 f ( , ) . .A B A And-ed with B A B AB= = =

We will interchangeably place the AND “.” (dot) or leave it out trying to make 
the logic expression more readable.

A true means: it-is-a-sunny-day while, A false means: NOT it-is-a-sunny-day, 
or grammatically more pleasant, false A means “it is not a sunny day.”

This can be written in two ways: it is a sunny day− − − − = ( )it-is-a-sunny-day ’
Similarly B true means: “the-soil-is-dry” while B false means: NOT 

“the-soil-is-dry”
Finally, it is also important to see that function f is binary-valued as well; 

refer to Table 7.4.

7.3.2  OR Logic Operation (Also Called Inclusive OR, or XNOR)

Let us begin with a little more advanced logic function, the 3-variable OR or 
inclusive OR. Given the three binary-valued independent variables A, B, C, 
function h(A,B,C) = A + B + C is true if and only if any one or more 
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independent variables are true, else h (A,B,C) is false. The “+” signs are not 
arithmetic signs, they represent the logic OR (or inclusive OR) operation. This 
OR is referred to as being inclusive because the output function is true not 
only whenever each independent variable is true, but also includes the case 
when one or more than one independent variable is true. We will cover shortly 
the two-variable exclusive OR, which requires that both independent variables 
have the opposite true value for the exclusive OR function to be true.

Table 7.6 depicts a three-variable inclusive OR function.

Exercise:  Derive the truth table of a two-variable inclusive OR function.

7.3.3  NOT Logic Operation or Inversion—NAND and NOR

Inversion is the simplest of all logic operations. Given a binary-valued function 
f of an arbitrary number of independent binary-valued variables and its associ-
ated truth table, NOT f or f  truth table is generated by changing function f 
output column ones with zeros and zeros with ones.

Table 7.6  Three-variable OR truth table

Input C Input B Input A Output h (A, B, C) = A + B + C

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Table 7.5  Three-variable AND truth table

Input C Input B Input A Output g (A, B, C) = A.B.C

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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Example 7.4  Let us define a function f AB=  which we will refer to as A 
NAND’ed with B. The letter “N” in the acronym “NAND” stands for negation 
or not.

Referring to our originally studied function f = AB, in Table 7.4, function 
f AB=  is simply annotated in truth table of Table 7.7.

In the above table, output f column, f(A,B) = AB, has been complemented 
bit-by-bit to form the column of our NAND function that is f AB= .

Example 7.5  Let us define a function g A B= +  which we will refer to as A 
NOR’ed with B. The letter “N” in the acronym “NOR” stands for negation or 
not. Table 7.8 presents the truth table of a two-variable OR under column g 
and NOR, under column g.

Table 7.7  Truth table for the AND & NAND logic operators

Input A Input B Output f(A,B) = AB Output f AB(A B, ) =

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Table 7.8  Truth table for the OR & NOR logic operators

Input A Input B Output g(A,B) = A + B Output g A B= +

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

7.3.4  Exclusive OR Logic Operation or XOR

The two-variable XOR is defined as true whenever an independent variable 
is true while the other one is false. Additionally when both variables have the 
same true value the XOR is false. Table 7.9 below presents the truth table 
of a two-variable exclusive-or function and the two-variable equivalence 
function.

Another way of defining the two-variable XOR is:

	 A XOR B A B AB AB  = ⊕ = + . 	 (7.1)
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Table 7.9  Exclusive or and equivalence truth tables

Input A Input B
Output f(A,B) = A ⊕ B = A 

XOR B

Output f A B( , )A B A= ⊕ =  
EQUIVALENCE B = A 

XNOR B

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

Equation (7.1) is interpreted from Table 7.9 as follows: A exclusive-or B is true 
whenever (A is true and B false) or (when A is false and B is true). The paren-
theses used in the previous sentence emphasize the precedence of the logical 
operations. Note that A B⊕  is not true when both A and B have the same 
logic value. This is the reason why the XOR is referred to as an exclusive-OR, 
it excludes the cases for which both A and B have the same true value. (Two 
binary variables have the same true value whenever both are true or both are 
false.) Remember that A + B (A inclusive-OR B) is true when both A and B 
are true in addition to being true when either only A or B is true.

The negation of A B⊕  or A B⊕  is referred to as A equivalence B or A 
XNOR B. Refer one more time to Table 7.9. Similarly, A B A⊕ =  equiva-

lence B is defined as true whenever (A and B are true) or (A and B are true), 
else A equivalence B is false.

7.3.5  DeMorgan’s Laws, Rules, and Theorems

DeMorgan’s laws are the most powerful Boolean algebra rules. There are two 
of them. First we will state the two-variable laws, then we will present the 
generalized multivariable rules. Let A and B be two-valued independent vari-
ables, then

	 Rule 1( ) .A B A B+ = 	 (7.2)

	 Rule 2( ) . .A B A B= + 	 (7.3)

It is appropriate to prove these rules and we will do that using truth tables.
We build Table 7.10 containing independent variables A and B, then we will 

generate columns corresponding to the following functions: A, B, A + B, 
A B+ , AB. Shall the column corresponding to A B+  equal to column AB we 
can affirm that Rule (1) holds.

Adding functions: A B. , (A B+ ) under columns viii and ix we also prove 
Rule (2).

Looking at the results of Table 7.10 we observe that columns vi and vii 
are identical, this proves that: Rule (1) A B AB+ =  is true. Similarly, we observe 
that columns viii and ix are identical, thus proving Rule (2) A B A B. = + .
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Both Rules (1) and (2) can be generalized for n binary valued variables W0, 
W1, W2, . . . Wn-1, where n is an integer.

Generalized DeMorgan Rule (1)

	 W W W W W W W Wn n0 1 2 1 0 1 2 1+ + + + =− −… …. . . . 	 (7.4)

Generalized DeMorgan Rule (2)

	 W W W W W W W Wn n0 1 2 1 0 1 2 1. . . . .… �− −= + + + + 	 (7.5)

Exercise:  Prove using truth tables that DeMorgan’s Rules (1) and (2) 
hold for four variables. Hint: Four variables will span 16 unique binary 
combinations.

7.3.6  Other Boolean Algebra Postulates and Theorems

We present in this section some other basics postulates and theorems used in 
Boolean algebra. Most of them are quite intuitive and a few others are not so 
intuitive. Postulates need not be proven, theorems generally are. Only some 
less intuitive theorems will be proven.

Assume that Table 7.11 uses binary-valued variables: X, Y, and Z.

Example 7.6  Using Boolean postulates and theorems, find the comple
ment the following Boolean expressions. Reduce the expressions as much as 
possible.

(a)	 f X Y XY Y X( , ) = +
(b)	 f X Y Z X Y Z( , , , ) ( )W W= +

(a) We first apply DeMorgan’s rules to the complement of equation (a) and 
then apply the distributive postulate to the complemented function, we obtain:

	 f XY XY= + .

Table 7.10  Truth table to prove 2-variable DeMorgan’s rules

i ii iii iv v vi vii viii ix

A B A B A + B A B+ AB A B. (A B+ )

0 0 1 1 0 1 1 1 1
0 1 1 0 1 0 0 1 1
1 0 0 1 1 0 0 1 1
1 1 0 0 1 0 0 0 0
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Table 7.11  Boolean algebra postulates and theorems

Part (1) Part (2): Its Dual

Identity postulate X + 0 = X X . 1 = X
Idem-potent postulate X X+ = 1 X .X = X
Neutral element postulate X + 1 = 1 X . 0 = 0
Complements postulate X X+ = 1 X . X = 0
Distributive postulate X (Y + Z) = XY + XZ X + YZ = (X + Y)(X + Z)
Involution theorem (Double negation) X X=
Commutative theorem X + Y = Y + X X . Y = Y .X
Associative theorem X + (Y + Z) = (X + Y) + Z X (YZ) = (XY)Z
Absorption theorem X + XY = X X (X+Y) = X

Note that all the postulates and theorems only apply to ANDs, ORs, or NOTs operators.
Some of the above postulates and theorems may or may not apply to exclusive- and/or equiva-
lence operations.

(b) Applying distribution, complementing, and applying De Morgan’s rule to 
Equation (b), we obtain:

	 f WXZ YZ f WXZ YZ W X Z Y Z= + = = + + +, . ( )( ).then

Let us use distribution one more time, thus:

	 f W X Z Y Z WY XY Y Z WZ XZ Z= + + + = + + + + + =( )( )

Observe the four right-most terms above; let us apply absorption three con-
secutive times, among terms: YZ WZ XZ Z+ + + .

Hence:

	 YZ WZ XZ Z YZ WZ Z YZ Z Z+ + + = + + = + = .

Finally, f WY XY Z= + + .

7.3.7  The Duality Principle

Table 7.11 lists the most important postulates and theorems in Boolean algebra. 
The previously covered DeMorgan Laws present a good example of duality. 
Let us look back at Equations (7.2) and (7.3). The duality principle states that 
one rule (e.g., rule 1) may be obtained for the other one (2) by interchanging 
operators and identity elements. For our example, using DeMorgan Laws, we 
interchange OR and AND operators and replace 1’s with 0’s and 0’s with 1’s. 
Also refer to the complements postulate to see how operators are inter-
changed and 1’s and 0’s are swapped.
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7.3.8  Venn Diagrams

In order to prove some of the theorems in Table 7.11, instead of using truth 
tables, we will use Venn diagrams. Venn diagrams provide a graphical method-
ology to visually perform logic operations in a very intuitive fashion. Each 
variable such as A, B, and so on is represented with a circle. All variables must 
be within a single rectangular area, which is referred to as the universal set, 
which is a frame of reference where all variables reside. The purpose of having 
a universal set is to easily draw A and its complement A. Figure 7.1 (a) depicts 
variable A, which is represented by the area within the circle (A is the area 
outside of A but within the universal set), (b) shows A inclusive-or B (note 
the complete area of both variables A, B), (c) depicts the common area to 
both A and B, thus area AB is cross-hatched, (d) shows A XOR B (observe 
that the cross-hatched areas are also equivalent to AB AB+ ), and finally (e) 
shows the complement of A XOR B.

Using the concepts just learned about Venn diagrams we will use them to 
prove graphically some of the theorems listed in Table 7.11.

Figure 7.2 depicts the graphical justification of the absorption theorem, part 
1. Part (a) shows X, part (b) shows XY, and part (c) shows the ORing of 
X + XY = X.

Figure 7.3 shows the graphical representation of the dual of the first absorp-
tion part 2. X (X + Y) = X (from Table 7.11).

Exercise:  Show using Venn diagram the validity of DeMorgan Rules (1) 
and (2).

7.4  MINTERMS: STANDARD OR CANONICAL SUM OF PRODUCTS 
(SOP) FORM

Binary variables may appear in their normal form, sometimes referred to as 
their true form, and their complemented form. For example, given A a binary-
valued variable, we can have A and A. If we consider two binary variables, 
such as A and B, since each one of them can take its true and complemented 
value, both variables together span four unique binary combinations. Table 
7.12 depicts two variables and their four combinations and also three variables 
and their eight unique binary combinations.

Each of those binary combinations of the ANDed variables is referred to 
as a minterm. Generalizing the preceding concept given n variables, such n 
variables can span 2n unique binary combinations. Each of those combinations 
is shown in Table 7.12 for 3 and 2 variables.

Note that each minterm is the logic product or the ANDing of the variable 
in question, not complemented when they represent ones and complemented 
when they represent zeros. It is also important to say that variable A was 
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Figure 7.1  Venn diagrams (a) A and its complement A; (b) A + B = A Inclusive-or B; 
(c) AB = A and B; (d) A ⊕ B = A Exclusive-or B; (e) A B A⊕ =  Equivalence B.

+

+
____________

(a)

(b)

(c)

(d)

(e)



Figure 7.2  Absorption Theorem (a) X; (b) XY; (c) X + XY = X.
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Figure 7.3  Absorption theorem part (2) (a) X; (b) X + Y; (c) X (X + Y ) = X.
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chosen to represent the LSB of each minterm. Without loss of generality, any 
variable name can represent any bit position. The ordering is simply a matter 
of convenience. As long as one chooses a way of doing things, it is better and 
less error-prone to stick to a methodical way of defining your minterms.

Table 7.12  Three-variable and two-variable minterms

3-Variable Minterms 2-Variable Minterms

C B A Minterm Acronym B A Minterm Acronym

0 0 0 CBA m0 0 0 BA m0

0 0 1 CBA m1 0 1 BA m1

0 1 0 C BA m2 1 0 BA m2

0 1 1 C BA m3 1 1 BA m3

1 0 0 CBA m4

1 0 1 CBA m5

1 1 0 CBA m6

1 1 1 CBA m7

Example 7.7  Given a three-variable function f C B A CBA CBA CBA( , , ) = + + , 
write the function as a sum of minterms. Table 7.13 presents a 3-variable func-
tion table listing all of its minterms. By inspection of function f(C, B, A) we 
can identify that the function contains three minterms that are ORed (or logi-
cally summed). The first minterm is m7, the second one is m1 and the third and 
last one is m4.

So our function f C B A CBA CBA CBA( , , ) = + +  can also be written in a 
so-called sum-of-products form (SOP), and after rearranging its minterms in 
an ascending order we obtain:

	 f C B A( , , ) = + +m m m1 4 7 	 (7.6)

which in a more compact form can be written as:

	 f C B A( , , ) ( , , ).= ∑ 1 4 7 	 (7.7)

Function f(C, B, A) is written by Equation (7.7) in a canonical or standard 
sum-of-products form (SOP). Each minterm is generically referred to as a 
product, the logic AND is equivalently called a logic product because of its 
similarity with regular arithmetic. And it is a sum-of-product because each 
minterm present in the function is ORed or logically added. The OR operation 
is also called a logic sum or simply a sum if the context clearly is that of a logic 
OR-ing.



MINTERMS: STANDARD OR CANONICAL SUM OF PRODUCTS (SOP) FORM    471

Example 7.8  Given function f(C, B, A) = CA + BA, expand it to represent it 
in its canonical SOP form.

Solution to Example 7.8

The given function clearly is not already given as a sum of its minterms.
What we need to do is to create “logic redundancies” that do not affect 

the original logic of the function. For example, ANDing terms like (CC), 
since ( )CC = 1 and ANDing 1 to any logical expression does not alter its origi-
nal logic, is a way of creating such redundancy. Another type of possible 
redundancy is ANDing terms like (B B+ ) to the original function, which will 
not alter the initial logic of the function because ( )B B+ = 1. Proceeding with 
our function f:

	 f C B A CA BA( , , ) .= + 	 (7.8)

Since (Eq. 7.8) term CA is missing the literal B we AND the term (BB) with 
the term CA without changing the original logic of function f. At the same 
time we create a redundancy to the term BA by ANDing the term (CC) with 
the term BA. Hence:

	 f C B A CA BB CC BA( , , ) ( ) ( ) .= + 	 (7.9)

Applying logic product distribution and making sure that variables are con-
sistently organized from C down to A (e.g., CBA)

	 f C B A CBA CBA CBA CBA( , , ) .= + + + 	 (7.10)

Eliminating only the second instance of the term CBA because it is redundant 
yields:

	 f C B A CBA CBA CBA( , , ) .= + + 	 (7.11)

Table 7.13  Three-variable function of Example 7.7

3-Variable Minterms

C B A Minterm f(C, B, A)

0 0 0 CBA 0
0 0 1 CBA 1
0 1 0 C BA 0
0 1 1 C BA 0
1 0 0 CBA 1
1 0 1 CBA 0
1 1 0 CBA 0
1 1 1 CBA 1
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7.5  MAXTERMS: STANDARD OR CANONICAL PRODUCT OF SUMS 
(POS) FORM

Given any logic function in its standard SOP form, taking its complement 
we obtain a product-of-sum form (POS). Each POS term is referred to as a 
maxterm.

Table 7.14 lists all the minterms for a three-variable function and its 
corresponding complements. Such complements are defined as the function 
maxterms.

Binary-valued functions not only can be expressed in a standard SOP form, 
but also in a standard product-of-sums (POS) form. Let us explain with the 
following example.

Table 7.14  Minterms and maxterms for three-variable functions

C B A Minterm
Minterm Acronym 

mi = Mi Maxterm
Maxterm Acronym 

Mi = mi

0 0 0 CBA m0 C + B + A M0

0 0 1 CBA m1 C B A+ + M1

0 1 0 C BA m2 C B A+ + M2

0 1 1 C BA m3 C B A+ + M3

1 0 0 CBA m4 C B A+ + M4

1 0 1 CBA m5 C B A+ + M5

1 1 0 CBA m6 C B A+ + M6

1 1 1 CBA m7 C B A+ + M7

Rewriting Equation (7.11) in SOP form and rearranging terms:

	 f C B A( , , ) ( , , ).= + + = ∑m m m5 7 3 3 5 7 	 (7.12)

Example 7.9  Given the following function in standard SOP form, convert it 
to its standard POS form.

	 f C B A( , , ) ( , , ).= + + = ∑m m m6 7 3 3 6 7 	 (7.13)

The following steps will lead to the expected results:
It is intuitive to see that if a function f is given in standard SOP form, such 

as Equation (7.13), then its complement ( f ) also in standard SOP form will 
list all those minterms that are not listed in function f. That is to say:

	 f C B A( , , ) ( , , , , ).= + + + + = ∑m m m m m0 1 2 4 5 0 1 2 4 5 	 (7.14)
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Note that from Table 7.11 of postulates and theorems, idem potent, which 
states that:

X X+ = 1, does justify f and f  expressed by Equations (7.13) and (7.14).
Now let us proceed to take the complement of f , thus from Equation (7.14):

	 f C B A m m m m m( , , ) .= + + + +0 1 2 4 5

Applying Boolean algebra on f
=
, using the minterm and maxterm definitions 

from Table 7.14 we obtain:

f C B A C B A C B A C B A C B A= + + + + + + + + + + + + + +( ) ( ) ( ) ( ) ( ). 	 (7.15)

Identifying every maxterm from Equation (7.15) with the aid of Table 7.14 we 
find that:

	 f f= = M M M M M0 1 2 4 5. 	 (7.16)

Equation (7.16) can be written in POS compact form using the symbol π to 
indicate multiplication, hence:

	 f = ∏( , , , , ).0 1 2 4 5 	 (7.17)

Equation (7.17) is a standard POS form for the originally given function f. It 
is very important to remember that the π symbol indicates that the numerals 
within the parentheses are maxterms and not minterms.

Example 7.10  Let us consider designing a logic block that receives three 
input binary variables X, Y, and Z and we want it to have a single output which 
detects whenever two or more of the inputs are ones, else we want to output 
to be zero. Derive the truth table for such circuit.

Let us draw a truth table with three inputs and one output. Simply follow 
the example requirements, whenever we see two or more ones in any Z Y X 
row we must write a one at the output, all other cases require a zero output. 
A digital circuit such as the one just described is called a majority detector 
circuit. Refer to Table 7.15 for a truth table of the majority circuit.

The standard SOP form for our majority detector circuit is:

	 F Z Y X( , , ) ( , , , ).= ∑ 3 5 6 7 	 (7.18)

7.6  KARNAUGH MAPS AND DESIGN EXAMPLES

Unless we work with one or two variables, logic equations can become quite 
complex, particularly when we need to simplify them and express them as less 



474    COMBINATIONAL CIRCUITS

complicated expressions. Rather than using the postulates and theorems of 
Table 7.11, which can easily become cumbersome and lengthy, there is a meth-
odology attributed to Karnaugh, referred to as solving or simplifying logic 
equations using Karnaugh maps. This is the topic of this section. Let us begin 
defining the Karnaugh (K) map construction. For a two-variable map, we need 
to have a map with as many cells as minterms the number of variables spans. 
A two-variable K. map has 22 = 4 cells. A three-variable K. map has 23 = 8 cells, 
and so on. Figure 7.4 depicts a 2, 3, and 4-cell Karnaugh maps. We will start 
covering 2-variable maps progressing onto 3 and 4-variables.

7.6.1  Two-Variable Karnaugh Maps

The two-variable K. map is shown in Figure 7.4a. The map clearly shows the 
relationship between its cells (squares) and the two variables A and B.

Note that the 2-variable map is drawn such that the rightmost vertical 
column corresponds to variable A (i.e., A = 1), in true value or noncomple-
mented. The leftmost vertical column corresponds to A, A false or A comple-
mented. Similarly the bottom row corresponds to B (B = 1), and the top row 
corresponds to B (B = 0). The four-cell map becomes fully defined. Note that 
the cell at B = 0 and A = 0, corresponds to minterm 0. Cell at B = 0 and A = 1 
corresponds to minterm 1. Similarly, cell at B = 1 and A = 0 corresponds to 
minterm 2, and cell at B = 1 and A = 1 corresponds to minterm 3. So let us 
solve some problems to see the 2-variable Karnaugh map at work.

We will solve a handful of 2-variable maps in a somewhat intuitive fashion. 
Problem solving and K. map simplification will become clearer using 3 and 
4-variable maps. In some ways, 2-variable maps are too simple to appreciate 
the properties of K. map method. We will address simplification in the Kar-
naugh map sense more thoroughly after all the 2-variable examples.

Example 7.11  Refer to Figure 7.5a for this example.
Given function f(B, A) = m0 + m1 + m2 + m3, find a maximally simplified SOP 

form logic expression. As we discussed in earlier sections, canonical or standard 
SOP forms express a logic function as a logic sum (Or-ing) of the appropriate 

Table 7.15  Truth table of a majority detector circuit

Input Z Input Y Input X Output F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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Figure 7.4  Two, three, and four-variable Karnaugh maps definition.
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Figure 7.5  Two-variable Karnaugh Maps examples: (a), (b), (c), (d), (e), and (f).
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minterms. Standard forms are not maximally simplified from the following cri-
teria. Minterms show all possible variables that the function has. For example, 
2-variable functions have two-bit minterms (e.g., such as BA); three-variable 
functions have three-bit minterms, and so forth. Some functions can be 
expressed in a simplified SOP form by reducing the number of variables of 
some or all of its original standard form SOP form minterms. Additionally, 
upon logic simplification, some minterms may disappear from the simplified 
SOP form, this yielding a logic sum of less terms than its corresponding stan-
dard SOP form. This new form is referred to as a simplified SOP form. Let us go 
over these concepts simplifying our given function f(B, A). By inspection of 
Figure 7.5a we can see that function f has ones in all of its minterms. It may not 
be clear right now, but it will become more obvious after we cover a few more 
examples that function f(B, A) is always true. This means that regardless of the 
individual values of variables A and B, f(B, A) is always true, that is f(B, A) = 1.

This fact is indicated in part (a) of Figure 7.5 by encircling all four 
minterms.

Summary of what a maximally simplified SOP form is in the K. map sense is:

1.	 Not all variables will necessarily show in every term being OR-ed.
2.	 The total number of OR-ed terms will not necessarily be the same number 

as the number of OR-ed terms in the function’s standard SOP form.
3.	 The simplified function will still have an SOP form, this means that it is 

implemented with just two-levels or logic like a standard SOP form. 
However, because of points (1) and (2), the number of OR terms will typi-
cally (although not all the time) be smaller and not all the variables will 
be present in each OR-ed term.

Example 7.12  Given a new function f(B, A) = m0 + m1, find a maximally 
simplified SOP form. Refer to Figure 7.5b to observe the K. map of our func-
tion. Note that the K. map has four distinct areas: A, A, B, and B. Moreover, 
area A graphically corresponds to the Or-ing or sum of minterms m1 and m3, 
(i.e., m1 + m3). Area A corresponds to the logic sum of m0 and m2 (i.e., m0 + m2). 
Similarly, area B corresponds to m2 + m3. Finally, B corresponds to m0 + m1. 
We can easily identify that our function can simply be represented by area  
B. This means that f(B, A) = m0 + m1 is logically equal to f B A B( , ) = . Other 
ways of proving that f B=  is true is by logic simplification or using truth tables 
or Venn diagrams.

For example, let us prove using logic simplification that f B A m m B( , ) = + =0 1

. Since:

	 m BA m BA0 1= =and , 	

we write:

	 f B A m m BA BA( , ) .= + = +0 1

f B A m m B( , ) = + =0 1
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Example 7.13  Now referring to the K. map of Figure 7.5c obtain a maximally 
simplified SOP form for f(B, A) = m1 + m2 + m3.

This example is slightly more involved than the previous ones. Now is a 
good point to start presenting the concept of adjacent cells. Adjacency in the 
K. map sense are those cells whose binary representation only differs by one 
bit. Let us inspect any 2-variable K. map. Cell 00 (corresponding to minterm 
m0) is adjacent to cell 01 because there is only one bit difference between 00 
and 01. Additionally, cell 00 is adjacent to cell 10 because of the same reason. 
However, cell 00 is not adjacent to cell 11 (minterm m3), because two bits differ 
between binary 00 and 11. In a generalized and graphical way, adjacent cells 
are those cells that are above, below, left. and right of a cell. Those cells that 
are diagonally placed with respect to the cell in question are not adjacent cells. 
So back to Example 7.13, let us start encircling as many adjacent cells as pos-
sible, such that the number of encircled cells is a power of two. When we can 
no longer encircle more adjacent cells in the first round, we repeat the process 
again, until we run out of cells to encircle. We must attempt to produce the 
smallest number of encirclements possible. Every new encirclement of cells 
may re-encircle previously encircled cells; this process usually ensures that the 
largest possible number of adjacent cells is obtained. In summary, Karnaugh 
map cells encirclements for the purpose of simplification should follow the 
following basic steps:

1.	 Combine the largest possible number of adjacent cells.
2.	 Such number of cells must be a power of two.
3.	 Minimize the overall number of encircled cells.
4.	 It may be convenient to re-encircle some previously encircled cells to 

reduce the overall number of variables that a term ends up having.

It is important to be aware that the methodology described does not neces-
sarily provide a unique solution. It will be up to the design engineer to adopt 
the most convenient solution for the application. It is also important to know 
that this technique highly depends on the expertise of the user. The more 
problems one solves, the better and the easier it will be to obtain a simplified 

Using the distribution property we obtain:

	 f B A B A A( , ) ( )= +

and since from the idem-potent property from Table 7.11, A A+ = 1, hence:

	 f B A B( , ) .=

Exercise:  Prove that ( , )f B A m m B= + =0 1  using Venn diagrams.
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Example 7.14  Find maximally simplified SOP forms for the two functions 
given by Figure 7.5d,e. Both of these maps are handled at the same time 
because it is straightforward to see that one is the complement of the other. 
Addressing first Figure 7.5d, note that cells 01 and 10 are not adjacent in the 
K. map sense, because they differ by more than one bit position. Consequently, 
the best possible encirclement is to encircle each minterm separately. We can 
observe that this function:

	 m m BA BA1 2+ = + 	 (7.19)

is A B⊕  from Equation (7.1). In a similar fashion, we can identify that Figure 
7.5e function:

	 m m A B A equivalence B A NXOR B0 3+ = ⊕ = =   . 	 (7.20)

Just as for the previous case, its minterms 00 and 11 are not adjacent.
From Equations (7.19) and (7.20) we conclude that the standard forms for 

exclusive or and equivalence cannot be simplified in the K. map sense, because 
for each function, none of its minterms is adjacent to any other minterm within 
the function.

Example 7.15  For the K. map of Figure 7.5f find a maximally simplified 
SOP form.

Now it is easy to see that minterms 00 and 10 are adjacent. We encircle 
them and notice that they correspond to area A. Their simplified function is 
simply, A.

solution. Initially, it is strongly recommended to solve a problem in at least 
two or more possible ways.

Referring again to Figure 7.5c let us encircle cells 1 and 3. Clearly, we cannot 
encircle all three cells because 3 is not a power of 2. After encircling cells 1 
and 3, only minterm 2 remains uncircled. Let us encircle minterm 2 re-encircling 
minterm 3 which is adjacent to 2. We are done encircling all the minterms on 
the K. map that have ones. Looking again at Figure 7.5c, we can easily identify 
that the encirclement of cells 1 and 3 coincides with the area that corresponds 
to A. The encirclement of cells 2 and 3 corresponds to B. So the simplified 
function is:

	 f B A m m m A B( , ) .= + + = +1 2 3

7.6.2  Three-Variable Karnaugh Maps

The three-variable map was defined in Figure 7.4b. Let us observe the adjacent 
cells. For example, cell 000 corresponding to minterm m0 has cells 001, 010, 
100; note all these cells differ by no more than one bit position with respect 
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to cell 000. Additionally, note that cells 011, 101, 110, and 111 are not adjacent 
with respect to cell 000.

Exercise:  Explain why.

It is quite instructive to think about a 3-variable K. map as being rolled up on 
a cylindrical surface with a horizontal axis and also rolled up on a cylindrical 
surface with a vertical axis. Figure 7.6a depicts a 3-variable rolled up along a 
horizontal axis cylinder. Minterms m0, m1, m3, and m2 are respectively adjacent 
to minterms m4, m5, m7, and m6; either looking above or below minterms m0, 
m1, m3, and m2. Figure 7.6b depicts the same cylindrical surface whose axis is 
rotated 180°. In Figure 7.6a, minterms m0, m1, m3, and m2 are on the front of 
the cylinder while minterms m4, m5, m7, and m6 are on the back, thus the latter 
are not visible from the front. The opposite takes places in Figure 7.6b: mint-
erms m4, m5, m7, and m6 are on the front while minterms m0, m1, m3, and m2 are 
on the back.

Figure 7.7 depicts a 3-variable map wrapped around a vertical axis cylindri-
cal surface. Since the 3-variable map has 4 cells per row and 2 rows, we can 
only see two cells of each row in Figure 7.7a.

The front half of the cylinder. This top half contains minterms m0 and m1 
on the top row; and minterms m4 and m5 on the bottom row. To aid with the 
understanding of this spatial description, also refer to Figure 7.4b, which 
depicts the complete 3-variable map on a flat surface. Back to Figure 7.7a, as 
we rotate the cylinder 90° in the clockwise direction, while looking at the front 
of the cylinder, we see minterms m1 and m3 on the top front row, and minterms 

Figure 7.6  Spatial representation of a 3-variable map wrapped around a horizontal axis cylin-
drical surface. (a) Minterms 0, 1, 3, 2 on the front; (b) minterms 4, 5, 7, 6 on the front.
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m4 m5 m7 m6

(a)

(b)
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m5 and m7 on the second row; see Figure 7.7b. Another 90° rotation in the 
same direction is depicted in Figure 7.7c, and one last 90° rotation is depicted 
in Figure 7.7d. What is the purpose of all these cylindrical surfaces rotations 
for? The ideas that want to be conveyed are an aid to identify adjacent cells 
without having to figure this out by inspecting every bit of every minterm. 
Note that adjacent cells in the horizontal direction can be observed using 
Figures 7.7a through 7.7d, which depict the cylinder along a vertical axis. For 
example, minterms adjacent to m1 are m3 to the right, Figure 7.7b and m0 to 
the left, Figure 7.7a. Similarly, this can also be appreciated when looking at 
the adjacent cells to minterm m4. Minterm m5 to the right of m4 is adjacent to 
m4, Figure 7.7a and m6 to the left of m4 is also adjacent to m4, Figure 7.4d. We 
use the cylindrical picture with a horizontal axis, Figure 7.6a,b when we want 
to find the adjacent cells to any minterm by looking either above or below the 
minterm of interest. Obviously, for the 3-variable map case, the cells above 
and below a minterm of interest are basically the same thing because the 

Figure 7.7  Spatial representation of a 3-variable map wrapped around a vertical axis cylindri-
cal surface.

(a) (b)

(c) (d)
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Example 7.16  Given a 3-variable function g C B A( , , ) ( , , , )= ∑ 2 3 4 5 , find a 
maximally simplified SOP form using K. maps. Figure 7.8 depicts function g 
minterms on a 3-variable K. map.

Solution to Example 7.16

Let us begin by encircling the largest possible number of adjacent minterms, 
such that that number is a power of two. We clearly obtain one grouping with 
minterms m2 and m3 and a second and last grouping produces the grouping of 
m4 and m5. The solution to this problem is particularly straightforward because 
we do not have other choices of encircling minterms that would produce 
similar results. Referring to Figure 7.8 we see that the maximally simplified 
SOP form yields:

	 g C B A CB CB( , , ) ( , , , ) .= = +∑ 2 3 4 5

Note: The solution of Example 7.16 is the exclusive or of which variables? 
Answer: B, C.

Example 7.17  Given function w C B A( , , ) ( , , , )= ∑ 3 4 6 7 , find a maximally sim-
plified SOP form using K. maps. Representing the given function on the 
3-variable K. map of Figure 7.9a we encircle m6 and m7, then m3 and m7 and 
finally m4 and m6. We show this in Figure 7.9a and we obtained the following 
simplified function:

Figure 7.8  Three-variable map for Example 7.16.

3-variable map wraps around the cylinder, and it only has two rows. The 
4-variable K. map is really the first K. map that we are studying that will exhibit 
all the features seen in Karnaugh maps.
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Figure 7.9  Three-variable map for Example 7.16: (a) redundant enclosure m6 and m7; 
(b) redundancy removed.
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	 w C B A BA CB CA( , , ) .= + + 	 (7.21)

If we carefully examine Figure 7.9a we can see a redundant enclosure of min-
terms m6 and m7 given by Equation (7.21) term C B; C B does not provide 
any more logical information. Figure 7.9b shows this term removed, so that 
our maximally simplified SOP form yields:

	 w C B A BA CA( , , ) .= + 	 (7.22)

Exercise:  Prove using truth tables that Equations (7.21) and (7.22) are 
logically equivalent.



484    COMBINATIONAL CIRCUITS

Figure 7.10  Four spatial views of a 4-variable map wrapped around a horizontal axis cylindri-
cal surface.
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7.6.3  Four-Variable Karnaugh Maps

The four-variable map spans 16 cells or minterms. The map is depicted in Figure 
7.4c. As usual, the minterms on this map have been encoded with variables:

DCBA, where A is the least significant bit variable and D is the most sig-
nificant bit variable. It should be clear that DCBA represents m0, DCBA 
represents m1 and so forth. Figure 7.4c also shows the groups of minterms for 
every one of its four variables. For the purpose of more easily visualizing 
adjacent cells, we can assume that the map is wrapped around a horizontal 
axis cylindrical surface as shown in Figure 7.10.
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Example 7.18  Given function G D C B A( , , , ) ( , , , , , , , , )= ∑ 1 4 6 7 8 9 10 11 15 , find 
a maximally simplified SOP form. Function G is given in Figure 7.12.

Solution to Example 7.18

Using a 4-variable map, we write the unity minterms according to the given 
function G. We encircle groups of adjacent minterms as shown in Figure 7.12. 
Pay close attention to the choices made grouping adjacent minterms. The 
groupings shown provide the least number of terms and the least number of 
variables per term.

The choices made lead to the following SOP simplification:

	 G D C B A CBA DCA CBA DC( , , , ) .= + + + 	 (7.23)

Figure 7.10a depicts the 4-variable map wrapped around a horizontal cyl-
inder. The two top rows are the only ones visible to the reader. That is, row 
with minterms m0, m1, m3 & m2 and row with minterms m4, m5, m7, & m6. The 
other two rows are on the back of the cylindrical surface and cannot be seen 
by the reader. Figure 7.10b depicts the initial cylindrical surface rotated 90 
degrees in the direction shown by the arrow. Rows with minterms m4, m5, m7, 
& m6 and minterms m12, m13, m15, & m14 are visible to the reader; the other two 
rows of minterms are not visible. Similarly, after rotating another 90 degrees 
Figure 7.10b we obtain 7.10c which depicts the visible minterms and finally 
7.10d depicts the visible minterms after rotating the cylinder one more quarter 
of a turn.

Figure 7.10 allows us to determine simply by visual inspection adjacent 
minterm to any cell of interest by looking at the cell above and below the cell 
in question. For example, for cell m0, we see that m8 is adjacent to it because 
m0 is right below m8 according to Figure 7.10d. Minterm m4 is also adjacent to 
m0, since it is located right below m0 in Figure 7.10a.

To analyze the adjacencies left and right of any cell of interest we develop 
the spatial view of the 4-variable map wrapped around a vertical axis cylindri-
cal surface; this is depicted in Figure 7.11.

In this case we wrap around a vertical axis cylindrical surface our 4-variable 
map. Figure 7.11a depicts two of the four columns of minterms that are visible 
to the reader. These are: m0, m4, m12, & m8 and minterms m1, m5, m13, & m9. As 
before, the other two columns are not visible to the reader, since they are on 
the back of the cylinder of Figure 7.11a. The next three Figure 7.11b,c,e show 
the previous view of the cylinder rotated around its vertical axis 90 degrees at 
a time. Each figure depicts the two front columns that are visible to the reader. 
Using Figure 7.11, it is easy to visualize adjacent cells to the left and to the 
right of the cell of interest. Between Figures 7.10 and 7.11, all adjacent cells 
to any one of the 16-cell, 4-variable map can easily be found.
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Figure 7.11  Four spatial views of a 4-variable map wrapped around a vertical axis cylindrical 
surface.

(a) (b)

(c) (d)
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Figure 7.12  Four-variable Karnaugh map for Example 7.18.
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7.6.4  Five-Variable Karnaugh Maps

A simple way of handling the 5-variable map, which spans 32 minterms, is to 
use two 4-variable maps. One of the maps is created for the most significant 
variable equated to zero (or false), and the second map is created for the most 
significant variable equated to one (or true). We will use variables E, D, C, B, 
A where E is the most significant variable bit and A is the least significant 
variable bit. Figure 7.13 depicts the basic 5-variable, 32-minterm, Karnaugh 
map. The upper map is used for E and the lower map for E. The adjacencies 
within each map are no different than those adjacencies defined for the 
4-variable map. The additional adjacency criterion of the 5-variable map is 
across maps.

A cell on the E map that has the same relative position on the E map is by 
definition adjacent because their associated minterm would differ by only the 
most ignificant bit (variable E). Let us look at some examples: cell m0 and m16 are 
adjacent because m E D C B A0 = =. . . . 0_0000 and m E D C B A16 = =. . . . 1_0000, 
the only difference is their most significant bit (MSB); thus, since there is a 
single bit difference they are adjacent. Another example is given by minterms 
m15 and m31. m E D C B A15 = =. . . . 0_1111 and m31 = E.D.C.B.A = 1_1111, again 
they only differ by one bit.

Exercise:  List all other adjacent cells between E and the E maps.
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Figure 7.13  Five-variable Karnaugh map definition.

D

BA

D
_

00 01 11 10

00

01

m
16

m17 m19 m

m20 m21
m

23 m22

DC BA BA BA BA

A

BB
_

AA
_ _

11

10 m24 m27 m26

m28 m29 m31
m30

DC

DC

DC

DC

C

C
_

C
_

D

BA

D
_

00 01 11 10

00

01

m0 m1
m3 m2

m4 m5
m7 m6

DC BA BA BA BA

A

BB
_

AA
_ _

11

10 m8 m9 m11 m
10

m12 m13 m15
m14

DC

DC

DC

DC

C

C
_

C
_

E Map
_

E Map

18

m25

Minterm variable ordering: EDCBA

_ _

_

_

_ _ _ _

_ _ _ _

_ _

_

_



KARNAUGH MAPS AND DESIGN EXAMPLES    489

Figure 7.14  Five-variable map for Example 7.19.
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Example 7.19  Given the following function:

	 W E D C B A( , , , , ) ( , , , , , , , , , , ),= ∑ 0 2 4 6 9 13 21 23 25 29 31 	 (7.24)

find a maximally simplified SOP form.
Figure 7.14 shows the minterms of function W. Minterms m0, m2, m4, and 

m6 encircled on the E map yield the simplified term E D A. . . Since minterms 
m0, m2, m4, and m6 have no adjacent minterms in map E, the term E D A. .  has 
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a leading E. Adjacent terms to the E map minterms m0, m2, m4, and m6 are E 
map minterms m16, m18, m20, and m22, but these last four minterms have zeroes 
(blank cells) on the E map. The first simplified term of function W is E D A. . . 
The next group of minterms on the E map is m13 and m9. The correspondingly 
adjacent group on the E map is m29 and m25. For each of the maps, this group 
is represented by the term D B A. . . Since this group is present on both maps, 
D B A. .  does not have either a leading E or E literal. Alternatively, consider 
that the D B A. .  group on the E map is annotated as E D B A. . . ; also consider 
the D B A. .  group on the E map is annotated as E D B A. . . . Now in the final 
expression we would have to write:

	 E D B A E D B A. . . . . . ,+ 	 (7.25a)

as part of the overall simplified expression for function W. But from Equation 
(7.25a), it is easy to observe that:

	 E D B A E D B A E E D B A. . . . . . ( )( . . ).+ = + 	 (7.25b)

Since from Table 7.11 we know that:

	 E E+ = 1. 	 (7.26)

Thus, Equation (7.25b) becomes:

	 D B A. . . 	 (7.27)

Equation (7.27) is the second term of simplified function W, as shown by (7.28).
Finally, the third and last term of simplified W is obtained from the E map. 

Grouping minterms m21, m23, m29, and m31. This simplification turns out to be 
C.A and since it is only present on the E map, the complete term is E.C.A, 
which is the third and last term of the maximally simplified SOP form of func-
tion W, as shown by (7.28).

The complete maximally simplified function W given by Equation (7.24) is 
then:

	 W E D C B A E D A D B A E C A( , , , , ) . . . . . . .= + + 	 (7.28)

7.7  PRODUCT OF SUMS SIMPLIFICATIONS

All Karnaugh map simplifications covered so far yielded a simplified sum of 
products form (SOP). When we want to produce a simplified product of sums 
form (POS) some changes need to be taken into account. Let us address those 
with the next example.
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Example 7.20  Given function:

	 f D C B A( , , , ) ( , , , , , , , , )= ∑ 3 4 6 7 11 12 13 14 15 	 (7.29)

The ones marked in Figure 7.15a represent the minterms of function f. The 
cells marked with zeros (actually cells left blank) are all the minterms not 
included in f.

As usual we can obtain a simplified SOP form for f and this is:

	 f D C B A C A D C B A( , , , ) . . . .= + + 	 (7.30)

Equation (7.30) is obtained with the map of Figure 7.15a.
Now let us consider the map of f complement (or simply f ). Refer to Figure 

7.15b.
From this figure we obtain a simplified SOP form for f , which is:

	 f D C B A C A C B D B A( , , , ) . . . . .= + + 	 (7.31)

Now let us take the complement of Equation (7.31) and applying DeMorgan 
rules we obtain:

	 f D C B A f D C B A C A C B D B A( , , , ) ( , , , ) ( )( )( ).= = + + + + 	 (7.32)

Equation (7.32) is a maximally simplified product of sums for function f(D, C, 
B, A).

Figure 7.15 depicts the maps for Example 7.20.

7.8  DON’T CARE CONDITIONS

When a logic circuit is designed, we obtain its truth table and we transform 
the standard sum of products form into a simplified sum of products or product 
of sums form.

The assumption always has been up until now, that all minterms were 
defined. This means that minterms were either one’s or zero’s. There are some 
applications where not all the possible binary combinations that a number of 
binary-valued variables spanned are actually used. When this is the case, it is 
convenient to define the unused binary combination as a third and not previ-
ously defined state. We call such state a don’t care. A don’t care is typically 
represented with an X. The advantage of defining this don’t care is convenient 
because the logic simplification can lead to an easier and more compact simpli-
fied SOP or POS form. Let us address this with an example.

Assume that we have a 4-bit binary-coded-decimal (BCD) number. A single 
digit 4-bit BCD number ranges from 00002 = 010 to 10012 = 910. If one wants to 
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Figure 7.15  Karnaugh maps for Example 7.20: (a) map of f; (b) map of f .
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express the number 1010 in BCD, one needs an extra BCD digit (a new 4-bit 
set) to represent 1010 = 0001_1001BCD. Table 7.16 lists some double digit BCD 
numbers, followed by their decimal and binary representations.

Table 7.16  Some Binary Coded Decimal Numbers 
and their decimal and binary representations

BCD Decimal Binary

0000_0000 0 0000_0000
0000_0001 1 0000_0001
0000_0010 2 0000_0010
0000_0011 3 0000_0011
0000_0100 4 0000_0100
0000_0101 5 0000_0101
0000_0110 6 0000_0110
0000_0111 7 0000_0111
0000_1000 8 0000_1000
0000_1001 9 0000_1001
0001_0000 10 0000_1010
0001_0001 11 0000_1011
0001_0010 12 0000_1100

. .
 .

. .
 .

. .
 .

0001_1000 18 0001_0010
0001_1001 19 0001_0011
0010_0000 20 0001_0100
0010_0001 21 0001_0101
0010_0010 22 0001_0110

Example 7.21  Design a BCD digit range detector: Our problem assumes that 
we want to design a combinational circuit that receives as input a single-digit 
4-bit BCD number. When the BCD digit is either 6, 7, or 8, we want the output 
of the range detector circuit to be a “1,” else we want such output to be “0.” 
We want to come up with a truth table for the range detector circuit. Addition-
ally provide a maximally simplified SOP form for the designed range detector 
circuit. Based on the requirements the truth table follows below. We define 
the BCD digit having bits DCBA, where A is the LSB and D is the MSB. Note 
that the problem implicitly assumes that the six 4-bit binary combinations 
1010 through 1111 will not be present at the inputs; refer to last six rows of 
Table 7.17.

From the truth table of Table 7.17 we can easily start filling out a four-
variable Karnaugh map with the values of output F. Figure 7.16 depicts the 
four-variable map for our BDC range detector. First, carefully observe the six 
don’t cares on minterms m10 through m15. As expected minterms m6, m7, and 
m8 are 1’s. All other minterms are 0’s.
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Here comes the most important part about simplifying with don’t care 
conditions.

Since the don’t care minterms will never be present at the DCBA inputs, it 
is to the designer’s advantage, to most conveniently adopt either a value of 1 
or 0 for the don’t cares in such way that it maximally simplifies the terms to 
be encircled.

Table 7.17  Truth table for a BCD range detector

Input D Input C Input B Input A Output F

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

Figure 7.16  Four-variable for map for BCD range detector.
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Figure 7.16 shows a possible way of encircling cells. For those don’t cares 
that end up within the picked enclosures of minterms we assume that they are 
valued as 1’s. For all other don’t cares we assume they are 0’s. However, in 
doing that we still do not change the don’t care notation on the Karnaugh map, 
that is, we leave the X.

The maximally SOP form for the BCD range detector is:

	 F D C B A C B D A( , , , ) . . .= + 	 (7.33)

Exercise:  Try other encirclements selecting other don’t cares and compare 
your results against Equation (7.33). What can you tell about your findings?

7.9  LOGIC GATES: ELECTRICAL AND TIMING CHARACTERISTICS

Logic gates are available in integrated circuit packages or as macros or com-
binational logic building blocks in Application Specific Integrated Circuits 
(ASICs), Complex Programmable Logic Devices (CPLDs), Field Program-
mable Gate Arrays (FPGAs), and other devices. Figure 7.17 depicts the most 
common schematic symbols of the most commonly used logic gates.

All of the above gates are conceptually and sometimes physically available 
with more than two inputs. There may be three, four, and more inputs in a 
gate. Using DeMorgan’s rules we will justify the logic equivalences given in 
Figure 7.17. For a positive AND gate, A ANDed with B is A.B. From DeMor-
gan’s rule (Eq. 7.3)

	 A B A B. .= + 	 (7.34)

Equation (7.34) justifies the logic equivalence between Figure 7.17c,d.
Complementing Equation (7.34) yields:

	 AB A B A B= = +. . 	 (7.35)

Equation (7.35) justifies the logic equivalence of Figure 7.17a,b.
From the other DeMorgan rule (Eq. 7.2) we have that:

	 A B AB+ = . 	 (7.36)

Equation (7.36) justifies the logic equivalence between Figure 7.17g,h. Now 
complementing Equation (7.36) yields:

	 A B A B A B+ = + = . . 	 (7.37)

Equation (7.37) justifies the logic equivalence between Figure 7.17e,f. Note 
that neither (i) nor (j) are logically equivalent. The same is true for (k) and 
(l). Figure 7.17i is the logic complement of Figure 7.17j. So is Figure 7.17k,l.
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Figure 7.17  (a) Positive AND gate; (b) negative OR gate; (c) NAND gate; (d) DeMorganized 
NAND gate; (e) positive OR gate; (f) negative AND; (g) NOR gate; (h) DeMorganized NOR 
gate; (i) Exclusive OR gate; (j) Exclusive NOR gate or Equivalence gate; (k) buffer, no inversion; 
(i) inverting buffer or inverter.
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Table 7.18  Some electrical characteristics of low voltage TTL (LVT)

Symbol Parameter Test Conditions

Limits Temperature 
Range: −40°C to 

+85°C

UnitsMIN TYP MAX

Recommended operating conditions
VCC DC supply 

voltage
2.7 3.3 V

VIH High-Level input 
voltage

2.0 V

VIL Low-level input 
voltage

0.8 V

IOH High-level output 
current

–20 mA

IOL Low-level output 
current

32 mA

Electrical characteristics
VOH High-level output 

voltage
VCC = 2.7 V, 

IOH = −6 mA
2.4 V

VOL Low-level output 
voltage

VCC = 2.7 V, 
IOL = 32 mA

0.4 V

IL Input leakage 
current applies 
to IIH and IIL

VCC = 3.6V, VI = VCC 
or GND (0 V)

±1 µA

7.9.1  Gates Key Electrical Characteristics

For the sake of brevity we will only consider gates that operate with 3.3 V  
TTL logic levels. TTL or Transistor-Transistor-Logic is a class of digital circuits 
built with bipolar transistors and resistors. TTL became at one point in time 
the most widespread logic family used in computers and almost all other elec-
tronic equipment. Within our context TTL is used to mean TTL-compatible-
logic-levels. The actual logic implementation may not necessarily be TTL, it 
just means that its input and output logic levels comply with the TTL family 
of integrated circuits levels. Other families of integrated circuits are CMOS 
and ECL. Today one can say that CMOS is the most widespread logic family 
of integrated circuits.

Table 7.18 defines the voltage logic levels for a zero (low voltage level) input 
and output and for a one (high voltage level) input and output. Note that 
expressing the state of an input or an output with a voltage level makes it 
independent as to whether the application that uses such gate or circuit with 
high true or low true signals.

Table 7.18 is a simplified real-device data sheet characteristics for the read-
er’s convenience. Figure 7.18 depicts a gate output driving another gate input. 
Both the high and the low levels are shown. Let us concentrate on the logic 



498    COMBINATIONAL CIRCUITS

zero or the low level. When a gate output drives a low level to the input of 
another gate, the output must not exceed VOL MAX voltage level which is 0.4 V 
for TTL compatible logic. While at the same time the input gate must be 
capable of accepting a low level that does not exceed a maximum level of 
VIL MAX of 0.8 V. Note that the difference between VIL MAX and VOL MAX is actu-
ally 0.4 V (400 mV), and it is referred to as the low-level noise margin for 
TTL-compatible logic. Similarly, when the output of a gate drives a high level 
to the input of another gate, the output must not be below VOH MIN of 2.4 V. It 
is also the case that a high output driving an input also has a 400 mV noise 
margin. The noise margin is a desirable voltage to have to account for system 
noise, power supply ripple, and other sources of noise that can couple onto 
the driving and the receiving lines of each gate.

Now what about the current specifications? That is, IOH, IOL, IIH, and IIL? 
When an output is at a high voltage level, the driving gate sources a current 
to the input gate, the sourced current flows outward from the output. Conven-
tionally, this current is negative (refer to the IOH entry in Table 7.18). When an 
output is at a low voltage level, the driving gate sinks current and sunk current 
conventionally has a positive sign (refer to the IOL entry in Table 7.18). IIH is 
the current into an input terminal when a specified high voltage level is applied 
to it. IIL is the current into an input terminal when a specified low voltage level 
is applied to it. IIH and IIL are typically found only on devices with bipolar 
inputs and that significantly have different levels of pull-down current to 
provide a logic low and pull-up current to provide a logic high. CMOS devices, 
however, just have an IL or a leakage current at the input. Such levels of IL are 
measured at both low and high bias conditions. Figure 7.18 depicts an output 
driving an input, indicating all the voltage levels.

For TTL logic levels, the switching threshold is around 1.5–1.6 V.

Figure 7.18  TTL output driving a TTL input.
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7.9.2  Gates Key Timing Characteristics

When a digital input signal is applied to a combinational circuit the output 
will not respond (or change) until the combinational circuit time-propagation 
delay elapses.

JEDEC, the Joint Electronic Device Engineering Council, is the semicon-
ductor engineering standardization body of the Electronics Industries Alli-
ance, a trade association that represents all areas of industry. JEDEC defines 
the propagation delay time as the time specified between reference points on 
the input and output voltage waveforms with the output changing from one 
defined level (either high or low) to the other defined level. Thus, there will 
be a tPHL and a tPLH, respectively, a high-to-low propagation delay (tPD), and a 
low-to-high propagation delay. The maximum value of tPD simply is the worst-
case or longest case of tPHL and a tPLH. Figure 7.19 depicts the propagation 
delay time that exists in a LVTTL combinational circuit, or simply just a 
LVTTL gate between an input and an output. Output 1 depicts both low-to-
high and high-to-low tPD. Output 2 depicts the same delays assuming it is the 
complement of Output 1. Note that the time references are measured at 1.5 V, 
or about half of the 3.3 V power supply rail. A 1.5 V is referred to as the 
LVTTL logic switching threshold. Although the switching threshold of the 
logic may vary, perhaps as much as ±0.5 V or more, what matters is that all 
the timing measurements be made consistently with respect to the same 1.5-V 
reference level.

Examples of tPD of integrated circuit gate delays are anywhere around 10 
ns (older TTL technology) to as little as a fraction of a nanosecond (for  
high speed CMOS technologies and ECL). Reference 5 in the Further  
Reading section has a discussion on TTL, CMOS, and ECL families of inte-
grated circuits.

Figure 7.19  Logic gate propagation delay times.

Input

Output 1

Output 2

0 V

2.7 V

VOH

VOH

VOL

VOL

tPLH

tPHL

tPLH

tPHL

0 V

2.7 V

1.5 V

1.5 V

1.5 V 1.5 V

1.5 V

1.5 V



500    COMBINATIONAL CIRCUITS

7.10  SUMMARY

This chapter introduced the reader to combinational circuits, which are also 
referred to as circuits with no memory capability. Binary numbers were pre-
sented along with the essential elements of switching or Boolean algebra.

Standard or canonical SOP and POS forms are ways of representing logic 
functions. For the purpose of logic implementation, where usually we want the 
number of gates to be reduced as well as the number of inputs per gate to obtain 
simplified SOP and POS. Methods of simplification were presented by covering 
2 through 5-variable Karnaugh maps. K maps of 6 or more variables become 
somewhat impractical to use effectively. We will address other logic design tech-
niques to overcome using huge K. maps. Finally, we studied the most basic elec-
trical and timing characteristics of logic gates. The examples were centered 
around TTL-compatible logic levels gates, not necessarily implemented in TTL 
technology. Although it is completely true that TTL technology is obsolete, 
other logic families, like CMOS and BiCMOS, have adopted TTL levels to inter-
face to the many devices, such as line drivers, that continue to use TTL levels.
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PROBLEMS

7.1  Convert the following 16-bit positive binary numbers to decimal:
(a)	 1101_1111_1010_0001
(b)	 1111_1111_1111_1111
(c)	 1000_0000_0000_0000
(d)	 1000_1000_1000_1000
(e)	 1001_0110_1100_0111

7.2  Convert the following 16-bit 2’s complement numbers to decimal:
(a)	 1101_1111_1010_0001
(b)	 1111_1111_1111_1111
(c)	 1000_0000_0000_0000
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(d)	 1000_1000_1000_1000
(e)	 1001_0110_1100_0111

7.3  Convert the following 4-BCD-digit (16-bits) numbers to decimal:
(a)	 1101_1111_1010_0001
(b)	 1111_1111_1111_1111
(c)	 1000_0000_0000_0000
(d)	 1000_1000_1000_1000
(e)	 1001_0110_1100_0111

7.4  Convert the following decimal numbers into 16-bit 2’s complement.
(a)	 1537
(b)	 −10418
(c)	 32700
(d)	 0
(e)	 −32700

7.5  Using De Morgan’s rules, find simplified logic equivalent Boolean 
expressions:
(a)	 A B C+ +
(b)	 A C B. +
(c)	 A B A B A B A B. . . .+ + +
(d)	 A B C D A B C D A B C D. . . . . . . . .+ +

7.6  Express the following functions in SOP and POS canonical forms:

(a)	 F D A B BD= + +( )
(b)	 F yz wxy wxz wxz= + + +
(c)	 F A B B C= + +( )( )
(d)	 F = 1
(e)	 F = (xy + z)(y + xz)

7.7  Using Karnaugh maps find simplified sum-of-product forms for the fol-
lowing logic functions:
(a)	 f A B( , ) ( , , )= ∑ 0 1 3

(b)	 g A B C D( , , , ) ( , , , , )= ∑ 0 1 4 58 9

(c)	 h A B C D( , , , ) ( , , , , , , , )= ∑ 0 1 2 3 8 10 11 15

(d)	 k A B C D( , , , ) ( , , , , , , , , )= ∑ 1 3 4 7 8 9 10 11 14

7.8  Using Karnaugh maps find simplified product-of-sum forms for the fol-
lowing logic functions:
(a)	 f A B( , ) ( , , )= ∏ 1 2 3
(b)	 g A B C D( , , , ) ( , , , , , )= ∏ 0 1 4 5 8 9



502    COMBINATIONAL CIRCUITS

(c)	 h A B C D( , , , ) ( , , , , , , , )= ∏ 1 2 5 6 9 12 13 14
(d)	 k A B C D( , , , ) ( , , , , , , , , )= ∏ 1 3 4 7 8 9 10 11 14

7.9  Graphically depict a 3-variable XOR using Venn Diagrams.

7.10  Graphically depict a 4-variable XNOR using Venn Diagrams.

7.11  Generate the truth table of a 4-variable XOR function.

7.12  Obtain the truth table for the following Boolean function: 
F X Y Z X Y X Y Y Z( , , ) . . .= + + .

7.13  Write the sum-of-products form of a 3-variable XOR.

7.14  Write the product-of-sums form of a 3-variable XOR.

7.15  Obtain the truth table of a 4-variable majority logic circuit.
That is, majority is obtained whenever two or more variables are true, 

else majority is false.

7.16  Create a 2-level logic implementation of the majority function obtained 
in Problem 7.15.

7.17  Assume that you have an inverting gate with a 10 ns high-to-low and 
low-to-high propagation delay. If you connect the output of this gate to 
its input with a zero-delay wire, sketch the waveform that you would 
see with an oscilloscope. An oscilloscope is an instrument that allows 
one to visualize how an electric waveform varies with respect to time.

7.18  Given logic gates which all have a high-to-low and low-to-high 20-ns 
propagation delay, what is the maximum propagation delay of a function 
implemented in three levels of logic.

7.19  Given logic gates which all have a high-to-low and low-to-high 20-ns 
propagation delay, what is the maximum propagation delay of a function 
implemented in four levels of logic.

7.20  From doing Problems 7.18 and 7.19 what can you generalize when a 
logic function is implemented with more levels of logic? Clearly the 
propagation delay increases linearly with each new level of logic.


