
233

4
FIRST- AND SECOND-

ORDER CIRCUITS  
UNDER SINUSOIDAL  

AND STEP EXCITATIONS

4.1  INTRODUCTION

First-order circuits are very important in electrical and electronic engineering. 
Many higher order circuits can be reduced to a first-order circuit. Analyzing 
the behavior either in the time or in the frequency domains of a first-order 
circuit is unquestionably simpler than analyzing that of a higher order circuit. 
Essentially, first-order circuits have a single energy storage device. Such  
devices can be either a capacitor or an inductor. Examples of circuits that  
can be reduced to first-order circuits under certain conditions are electronic 
amplifiers, operational amplifiers, servomechanisms, electric motors, and other 
control networks.

Let us present an example of a first-order circuit.

Example 4.1  RL Series First-Order Circuit
Given a circuit that contains one resistor in series with an inductor, such as 
the one shown in Figure 4.1, we can calculate the output voltage to input 
voltage ratio as a function of frequency. Such ratio of voltages in the frequency 
domain is commonly referred to as H(jω), where H(jω) is called the circuit 
transfer function.

	 H j j j( ) ( ) ( ).ω ω ω= V Vout in/ 	 (4.1)
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Previously reviewing the material from Chapter 3 on AC analysis we can easily 
calculate H(jω) for the circuit in Figure 4.1.

The current in the RL circuit is calculated as follows:

	 I V= +in R j L/( )ω , 	 (4.2)

where I and Vin are respectively the current and voltage phasors of the circuit.
Now the output voltage Vout is calculated by multiplying the circuit current 

times the impedance or reactance of inductor L. Thus, we obtain

	 V Vout in( ) ( ) ( ).j j j L R j Lω ω ω ω/ /= + 	 (4.3)

And finally, our transfer function is

	 H j j j j L R j L( ) ( ) ( ) ( ).ω ω ω ω ω= = +V Vout in/ / 	 (4.4)

Furthermore, rationalizing the denominator, that is, multiplying numerator 
and denominator of Equation (4.4) by the complex conjugate of the denomi-
nator, (R − jω L), we obtain
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Equation (4.6) is of the form a + jb where the terms a and jb are frequency 
dependent. Additionally term jb is of inductive nature.

We can also write the time domain circuit equation for the circuit of Figure 
4.1; this leads to

Figure 4.1  Circuit for Example 4.1, a first-order series RL circuit.
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4.2  THE FIRST-ORDER RC LOW-PASS FILTER (LPF)

Let us investigate the RC circuit of Figure 4.2. This circuit is excited by a 
sinusoidal voltage waveform. Elements R and C are in series, the input voltage 
is applied to the two elements in series, the output is taken across the capacitor 
terminals.

4.2.1  Frequency Domain Analysis

Let us calculate the transfer function of this circuit:

	 H /( ) ( ) ( ).j j jω ω ω= V Vout in 	 (4.8)

The impedance of the resistor and capacitor in series is

	 Z j R j Cseries ( ) .ω ω= + 1/ 	 (4.9)

Figure 4.2  First-order RC low-pass filter.
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,= + 	 (4.7)

where vin(t) is the excitation, i(t) is the current through the circuit, i(t)R is the 
voltage drop across the resistor, and L d i(t)/dt is the voltage drop across the 
inductor.

Equation (4.7) is the time domain first-order differential equation that 
describes the circuit on hand.

The highest derivative in a differential equation determines the order of 
the differential equation.
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Then the current through the circuit is

	 Vin( ) ( ).j Z jseriesω ω/ 	 (4.10)

The above current times the impedance or reactive capacitance of the capaci-
tor 1/jωC equals the output voltage Vout (jω), thus we get

	 H( )
( )
( )

.j
V j
V j j RC

out

in

ω ω
ω ω

= =
+

1
1

	 (4.11)

Remember that from Chapter 3, ω is the angular frequency, which equals 2πf, 
where f is the frequency of the sinusoidal waveform in hertz.

Equation (4.11) describes the ratio of output voltage to input voltage of the 
RC circuit given by Figure 4.2, again referred to as the circuit transfer function 
in the frequency domain.

So let us now construct a table to plot the values of the transfer function 
H(jω) for a given R and a given C. The product

	 RC 	 (4.12)

is referred to as the circuit time constant. We will plot the transfer function of 
Equation (4.11) using two separate plots. One plot is for its magnitude, and 
the second plot for its phase, both are functions of frequency. Note that trans-
fer function of Equation (4.11) is a complex quantity and as such, it has mag-
nitude and phase.

4.2.2  Brief Introduction to Gain and the Decibel (dB)

It is common in circuit theory to refer to the output to input voltage ratio as 
the gain of the circuit. In the case of a first-order RC LPF circuit, such gain is 
always one* or less than one. Active circuits are those circuits containing 
operational amplifiers or transistors that usually are designed to have a gain 
larger than one. More on active circuits will be covered in Chapter 6.

When the gain is greater than 1, it is referred to as gain, but when the 
gain is less than 1, it is sometimes referred to as attenuation, or simply as a 
less-than-one gain. Passive first-order circuits have gains that are one or strictly 
less than 1.

When we talk about gain without any units associated to it, it is simply a 
ratio of voltages, thus it has no units because gain units are volts/volts. In circuit 
analysis, it is very common to define a new unit for gain and attenuation called 
the decibel (dB).

*  Mathematically speaking, the gain of an RC circuit may be very close to 1, but it is never exactly 
1. In practical terms the gain is 1 for frequencies one-tenth of the cutoff frequency and below.



THE FIRST-ORDER RC LOW-PASS FILTER (LPF)    237

The decibel is defined as follows for a ratio of voltages:

	 Gain in dB log V Vout in= 20 10 / . 	 (4.13)

It is important to mention that the argument of a decimal log must be a posi-
tive number. The log of a number less than or equal to zero is undefined.

So note that the gain (without units or in volts/volts), is also referred to, as 
the linear gain of a circuit. For example, given a circuit with a linear gain of 
10, by virtue of Equation (4.13) the gain in dB becomes:

	 20 10 1 2010log ( ) ./ dB= 	 (4.14)

For a circuit whose linear gain is 0.1, or an attenuation of 10, the gain in dB 
becomes:

	 20 1 10 2010log ( ) ./ dB= − 	 (4.15)

So from Equations (4.14) and (4.15) larger than one gains have units of posi-
tive decibels, while attenuations are always given in negative decibels. Note 
that a linear gain of 1 is:

	 0 20 1 110dB /= log ( ). 	 (4.16)

When we refer to a circuit with a gain of 1 or a gain of zero dB, we are talking 
about the exact same thing.

To summarize the relation between linear gain and logarithmic or gain in 
decibel we develop Table 4.1.

Positive linear gains are above 1 and negative linear gains are below 1. On 
the other hand, following Table 4.1, a −20 dB and a −40 dB gains can also be 
referred to as 20 dB and 40 dB attenuations, respectively.

Table 4.1  Relationship between linear 
gain or attenuation and gain in decibel

Linear Gain (V/V) Gain (dB)

0.01 −40
0.1 −20
1 0

10 20
100 40

1,000 60
10,000 80

100,000 100
1,000,000 120
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Example 4.2  Bode Plots of an RC LPF Transfer Function
Continuing with the circuit given in Figure 4.2 with transfer function given by 
Equation (4.11), the transfer function is repeated below for the reader’s 
convenience:

	 H j
V j
V j j RC

out

in

( )
( )
( )

.ω ω
ω ω

= =
+

1
1

	 (4.17)

We define a new term, the cutoff angular frequency ω0 in radians per second 
and the cutoff frequency f0 in hertz, as

	 ω0 1= /RC, 	 (4.18)

where:

	 ω π0 02= f . 	 (4.19)

4.2.3  RC LPF Magnitude and Phase Bode Plots

Since gains may range from very small to very large values, plotting the gain 
in decibel is very advantageous. A very large range of gains, for example from 
0.01 to 100,000 V/V, looks somewhat cumbersome when plotted in a linear 
scale. The gains are extremely compressed at low gain values and extremely 
expanded for large gain values.

To more evenly distribute the gain along the height of the y-axis the mag-
nitude of the gain is plotted in decibel. Since the decibel is a logarithmic func-
tion, plotting gain in decibel is effectively gain in a logarithmic scale. Plotting 
the gain values in decibel (e.g., −40 dB for a linear gain of 0.01 and +100 dB 
for a linear gain of 100,000) allows the plot to have the same amount of verti-
cal space allocated to display all the values of gain.

The horizontal axis of the magnitude Bode plot is frequency. Similarly  
to what is done to gain, frequency is plotted in logarithmic scale. So if we  
are interested in plotting the gain as a function of frequencies from 0.01 Hz 
to 100 kHz, the x-axis is scaled logarithmically. Doing this allows us to see 
the frequency range in a decompressed fashion. Plotting the frequency as a 
linear quantity would make the frequency axis very compressed at low fre-
quencies and greatly expanded at high frequencies. So for all practical pur-
poses, a Bode magnitude plot displays decibel linearly and frequency 
logarithmically; thus, it is a semi-log plot; but since the decibel is a logarithmic 
function, the magnitude plot is a log-log plot for gain in decibel versus fre-
quency in hertz.

The phase portion of the Bode plot of a transfer function displays degrees 
in the vertical axis and logarithmic frequency along the x-axis. Degrees are 
always plotted in a linear scale, because the range of degrees is in general not 
very large as gains or frequencies are.
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Now let us assume that our filter has a cutoff frequency f0 of 1 KHz, thus from 
combining Equations (4.18) and (4.19) we obtain

	 f RC0 1 2= / π 	 (4.20)

and from Equation (4.20)

	 RC f= =1 2 159 1550/ sπ . .µ 	 (4.21)

From Equation (4.18) the term RC is known as the circuit time constant τ 
(Greek letter tau) and its units are ohms multiplied by farads, which lead to 
time in seconds in the SI system of units (see Chapter 1).

For our particular example,

	 τ = 159 155. .µs 	 (4.22)

Important Point
The time constant τ of the circuit, that is, the RC product, determines the 
circuit frequency behavior.

The cutoff frequency of the circuit f0 is a very important characteristic of a 
circuit, as we will see shortly.

Now we can rewrite Equation (4.17) using ω0 and this becomes

	 H j
V j
V j j jf f

out

in

( )
( )
( )

.ω ω
ω ω ω

= =
+

=
+

1
1

1
10 0/ /

Since the cutoff frequency of the circuit is 1 kHz, we will pick to start plotting 
the Bode plots from frequencies much smaller than the cutoff frequency. In 
our case we will start at 1 Hz, somewhat arbitrarily we pick a high end fre-
quency of 1 MHz.

Let us construct a table listing frequency on the leftmost column followed 
by the linear magnitude of our transfer function and a third and last column 
with the phase angle of our transfer function. Remember that the transfer 
function of interest given by Equation (4.11) is a complex number that has a 
magnitude and a phase.

The magnitude is

	 H j
j RC j RC RC

ω
ω ω ω

( ) =
+

=
+

=
+

1
1

1
1

1

1 2( )
	 (4.23)

and since 1/RC = ω0 from Equation (4.18), simply becomes

	 H jω
ω ω

( ) =
+

1

1 2
0( / )

. 	 (4.24)
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The phase of Equation (4.11) is

	 ∠ = −H /( ) arctan( ).jω ω ω0 	 (4.25)

So our Table 4.2 follows:
Table 4.2 lists frequencies in the leftmost column, the magnitude as a dimen-

sionless number (volts/volts) in the center column and the phase in degrees in 
the rightmost column. In electronics the preferred way of displaying magni-
tude is in decibel. The output to input voltage ratio, which we will refer to as 
a gain, is usually expressed in decibels. A decibel was defined by Equation 
(4.13), which we repeat for the reader’s convenience.

	 V V in dB log V Vout in out in/ /= 20 10 . 	 (4.26)

We can easily verify using Equation (4.26) that for a gain ratio of 1 the gain 
in decibel equals 0 dB; for a gain ratio of 10, the gain equals 20 dB; a gain ratio 
of 100, the gain equals 40 dB; and a for gain ratio of 1000 equals 60 dB. So for 
every order of magnitude that the gain goes up, the gain in decibel goes up by 
20 dB. On the other hand, for a gain of 0.1, the gain in decibel equals −20 dB, 
for 0.01 it equals −40 dB, for 0.001 it equals −60 dB, and so on.

Figure 4.3 depicts the magnitude and phase Bode plots of the RC LPF 
tabulated in Table 4.2.

Important Points
For a first-order RC LPF circuit, the gain is close to 0 dB at frequencies below 
one-tenth of the cutoff frequency f0.

For a first-order RC LPF circuit the gain at the cutoff frequency f0 is 
−3.01 dB.

For a first-order RC LPF, the circuit the gain drops at a rate of −20 dB 
per decade from its cutoff frequency. This is to say that the gain drops by 
20 dB for a frequency 10 times f0, it drops another 20 dB for a frequency 100 
times f0, another 20 dB for a frequency 1000 times f0, and so on. (Refer to 
Table 4.3.)

Table 4.2  RC LPF transfer function: magnitude and phase as a function of frequency

Frequency (Hz) Linear Gain (V/V) Phase (Degrees)

1.000 0.999999500 −0.05729576
10.000 0.999950007 −0.57293870

100.000 0.995037481 −5.71059313
1,000.000 0.707117209 −44.99999998

10,000.000 0.099506625 −84.28940686
100,000.000 0.009999795 −89.42706130

1,000,000.000 0.001000029 −89.94270424
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The frequency axis does not have a zero or origin of frequencies because 
log of zero is nonexistent. The lowest frequency can be represented with a 
value as small as we desire, but not with zero.

Frequency is represented logarithmically for both magnitude and phase 
plots.

The magnitude or gain in decibel is represented linearly. There is a 0 dB 
origin for the vertical axis because the scale is linear in decibels.

The phase in degrees is represented linearly on the vertical axis.
The phase of an RC LPF is approximately 0° at frequencies below 1/10 

of f0. The phase of an RC LPF is approximately −90° at frequencies larger 
than 10 f0. At f0 the phase equals −45°.

Although the definition of the decibel may initially seem capricious, it is actu-
ally a better way that allows us to visualize the growth or the decay of the gain 
in a magnitude plot.

From the calculation in Table 4.2 we will build Table 4.3 that will contain 
the magnitude in decibels. Frequency, magnitude (linear gain), and phase are 
shown with a generous number of decimal places.

4.2.4  RC LPF Drawing a Bode Plot Using Just the Asymptotes

To draw the asymptotes of the Bode plots of our circuit (Fig. 4.2) we will 
normalize frequency. Instead of listing on the frequency axis the actual cutoff 

Figure 4.3  Exact magnitude and phase Bode plots of the first-order circuit of Example 4.2.
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frequency value of 1 KHz, we will denote this frequency as f0, so lower fre-
quencies will be a tenth, a one-hundredth, and so on of f0. Similarly, frequencies 
above f0 are 10 times, 100 times, and so on of f0. Figure 4.4 shows these normal-
ized frequencies on the horizontal axis.

From Table 4.3 and Figure 4.3 we see that the magnitude asymptotically 
approaches 0 dB from the cutoff frequency f0 to smaller frequencies. Also from 
the cutoff frequency to higher frequencies, the gain drops at a constant rate 

Figure 4.4  First-order RC LPF asymptotic Bode plots: magnitude and phase.
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of −20 dB per decade. But at the cutoff frequency, the gain is approximately 
−3 dB. In linear terms, this means that the amplitude of the sinusoidal wave-
form that excites the RC circuit becomes attenuated to about 70% from its 
original value. Referring one more time to Table 4.3, we can see that at the 
cutoff frequency f0 the output voltage magnitude is 0.707 of the original input, 
which has a magnitude of 1. That is, the output magnitude is approximately 
70.7% of the input magnitude.

In a similar fashion, we can see that the phase is −45° at f0. One more time 
looking at the phase in Table 4.3, we see that the phase at about one-tenth of 
f0 is −5.7°. And for even lower frequencies, the phase asymptotically approaches 
0°. On the other hand, at a frequency of 10 times f0, the phase is approximately 
5.7° below −90°.

So when Bode plots need to be drawn by hand, drawing its asymptotes is 
the preferred and quickest way of constructing magnitude and phase plots. 
This process not only saves a tremendous amount of number crunching but 
also makes the understanding of the plots more clear. The magnitude and 
phase plots are commonly referred to as the frequency response of the circuit. 
Figure 4.4 shows the asymptotic Bode plots for the circuit of Figure 4.2. Note 
that the gain is 0 dB flat from very low frequencies approximately up to the 
cutoff frequency f0. The second magnitude asymptote simply decays from f0 at 
a rate of −20 dB per decade. Once the magnitude asymptotes are drawn one 
can fill in by hand, the approximated gain curves. It is important to realize that 
the gain at f0 is −3 dB and not 0 dB as Table 4.3 shows.

For the phase, we can also draw its plot using the phase asymptotes. The 
phase is a little bit more involved than the magnitude at least initially. Let us 
start with frequencies well below f0, up to one-tenth of f0, we draw a straight 
line at zero degrees from low frequencies all the way up to 1/10 of f0. At a 
frequency of 10 times f0 the frequency asymptote is a horizontal line at −90 
degrees, starting at 10 f0 continuing at −90° into higher frequencies. From Table 
4.3, we know that at the cutoff frequency f0, the phase is −45°. Looking at 
Figure 4.4, we now draw a straight line of a phase angle of 0 degrees at 1/10 

Table 4.3  RC LPF transfer function: magnitude in dB and phase as a function of 
frequency

Frequency (Hz)
Normalized 

Frequency f/f0

Linear Gain 
(V/V) Gain in dB

Phase 
(Degrees)

1.000 0.001 f0 0.999999500 0.00 −0.05729576
10.000 0.01 f0 0.999950007 0.00 −0.57293870

100.000 0.1 f0 0.995037481 −0.04 −5.71059313
1,000.000 1 f0 0.707117209 −3.01 −44.99999998

10,000.000 10 f0 0.099506625 −20.04 −84.28940686
100,000.000 100 f0 0.009999795 −40.00 −89.42706130

1,000,000.000 1,000 f0 0.001000029 −60.00 −89.94270424
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of f0 all the way to −90° at 10 f0, such that this straight line passes through a 
−45° phase at f0. In this way the phase asymptotes are drawn. Now one can 
draw by hand the approximate phase curves. Note that at 1/10 of f0 and at 10 
f0 the phase is about 5.7° below zero degrees and 5.7° above −90°. Finally, it is 
important to note that the phase curve has an inflexion point at −45°, see 
Figure 4.3.

4.2.5  Interpretation of the RC LPF Bode Plots in the Time Domain

We will use the asymptotically drawn Bode plots to explain the meaning of 
the Bode magnitude and phase plots in terms of sinusoidal inputs applied to 
the RC LPF circuit. The same concepts can be extended to the actual (or exact) 
Bode plots that are tabulated in Table 4.3. So referring to Figure 4.4, the 
asymptotic Bode plots tell us the following:

First let us assume that a sinusoidal waveform of 1 V peak amplitude and 
a frequency of 0.01 f0 is applied to the input of the first-order RC LPF. The 
output voltage waveform that will be observed across the capacitor terminals 
is for all practical purposes equal in magnitude to the input waveform and 
equal in frequency with no phase shift with respect to the input. That is, both 
inputs and outputs have the same magnitude: 1; and both input and output 
sinusoidal waveforms are in phase (phase = 0°). The lower the input waveform 
frequencies with respect to the cutoff frequency of the RC filter, the more 
accurate the preceding statement is. Refer to the numerical values of linear 
gain and gain in dB for frequencies much smaller than f0 in Table 4.3.

Assume now that a sinusoidal input waveform of 1 V peak-amplitude and 
of a frequency f0 (equal to the circuit cutoff frequency) is applied to the input 
of the RC circuit. The output voltage across the capacitor will be a sinusoidal 
waveform of peak amplitude 30.3% smaller than the input amplitude; however, 
it will still be of the same frequency, as the input waveform; but the output 
will be lagging the input by a 45 degree-phase. Forty five degrees is an eight of 
a full sinusoidal cycle.

Let us consider now that a sinusoidal input waveform of 1 V peak-amplitude 
and of a frequency 10 times larger than f0, which is applied to the input of the 
RC circuit. The output voltage across the capacitor will be a sinusoidal wave-
form of peak amplitude 10 times smaller (20 dB) than the input amplitude; 
however, it will still be of the same frequency, as the input waveform; but the 
output will be lagging the input by about −84.3 degrees (almost −90 degrees). 
Clearly examining again the exact plots of Figure 4.3, the higher is the fre-
quency of the input waveform with respect to the circuit cutoff frequency, the 
closer the output to input phase will be to −90 degrees. If the input waveform 
frequency is 100 times f0 the output amplitude, while the input amplitude is 
always 1 V, the output waveform amplitude will be 100 times smaller (40 dB) 
than the input waveform amplitude. This behavior goes on and on, for every 
time the frequency goes up by a factor of 10 from the gain decays another 
20 dB. (Refer again to Figs. 4.3 and 4.4.)
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4.2.6  Why Do We Call This Circuit a LPF?

From the Bode plots just presented in Figures 4.3 and 4.4, it is clear to see that 
frequencies well below the cutoff frequency f0 do not get attenuated, they just 
pass through the circuit with a 0 dB gain (linear gain of 1), and a zero-degree 
phase shift. Frequencies well above the cutoff frequency become attenuated. 
We also see that the higher the frequency is above f0, the higher the attenu-
ation. The attenuation grows by 20 dB for every order of magnitude that the 
frequency grows above f0. Alternatively, the gain decreases at a rate of 20 dB 
per decade of frequency.

In summary, the RC circuit just analyzed allows low frequency signals to go 
through the circuit without attenuation and without phase-shift, whereas the 
high frequencies become progressively attenuated as the input signal fre-
quency goes up. At frequencies beyond 10 times the cutoff frequency, output 
signals exhibit a phase shift of approximately –90°. In reference to our RC 
LPF, which are low and which are high frequencies? The reference frequency 
is f0 the filter cutoff frequency. One-tenth below f0, the frequency is considered 
low. Ten times above f0, a frequency is considered high.

4.2.7  Time Domain Analysis of the RC LPF

Now let us analyze the time domain equations of the low-pass RC circuit. 
Referring one more time to the circuit of Figure 4.2, it is possible to establish 
the differential equation for such circuit. Let us apply Kirchoff’s voltage law 
(KVL) for the series of elements.

	 v t i t R v tin o( ) ( ) ( ),= +

where vin(t) is the excitation or the circuit input voltage.
i(t) is the current through the circuit, thus i(t) R is the voltage drop across 

the resistor and vo (t) is the voltage across the capacitor:
We will define a unit-step function excitation u(t) as follows:

	 u t t( ) = ≥1 0for

and

	 u t t( ) .= <0 0for

So applying the unit step function u(t) to the input of RC LPF we have that

	 v t u tin ( ) ( )=

and substituting vin with u(t) into vin(t) = i(t) R + vo(t), yields:

	 u t i t R v to( ) ( ) ( ).= + 	 (4.27)
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Since the current through the resistor and the capacitor have the same value,

	 i t Cdv t dto( ) ( ) .= / 	 (4.28)

Plugging Equation (4.28) into Equation (4.27) leads to

	 u t RC
dv t

dt
v to

o( )
( )

( ),= + 	 (4.29)

where Equation (4.29) is a first-order differential equation.
From calculus considerations to solve differential equations, the solution of 

Equation (4.29) has the form

	 v t A A eo
t( ) = + −

1 2
/τ 	 (4.30)

where A1 and A2 are two constants and τ is the circuit time constant RC. A1 
is the steady-state value of the output voltage since

	 for t → ∞,

	 v t Ao( ) .→ 1 	 (4.31)

This means that A1 is the final value of output voltage vo(t)after the transient 
is over. We call this final value Vfinal.

Thus,

	 V Afinal = 1. 	 (4.32)

Also note that the initial value of the output voltage vo(t)is found by making 
t = 0. Thus, from Equation (4.30),

	 = = = +V v A Aoinitial ( ) .0 1 2 	 (4.33)

Finally plugging Equations (4.32) and (4.33) in Equation (4.30) we obtain that

	 v t V V V eo final initial final
t( ) ( ) .( )= + − − /τ 	 (4.34)

Equation (4.34) is a general solution for a first-order circuit or a circuit with 
a single-time constant. We will use Equation (4.34) several times throughout 
this text and the homework problems.

Example 4.3  Given the single-time constant circuit of Figure 4.2, assuming 
that the input voltage is a unit-step function u (t − 1), R = 1 MΩ, C = 1 μF, 
calculate the final value of the output voltage vo(t) across the capacitor. Plot 
the output voltage waveform for positive values of time. Figure 4.5 displays 
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the input step function and the output as a function of time. Note that u (t − 1) 
is displaced or delayed from the origin of time by 1 second.

Now, since R = 1 MΩ and C = 1 μF, the time constant τ is 1 second. Now 
using Equation (4.34) and knowing that Vinitial = 0 V, Vfinal = 1 V we obtain

	 v t eo
t( ) .( )= − − −1 1 /τ 	 (4.35)

Equation (4.35) is plotted in Figure 4.5 from time 0 to 10 seconds. Note that 
at time t = 2 seconds the output voltage vo(t) has risen to

	 v eo( ) . .( )2 1 0 63212 1= − =− − /τ 	 (4.36)

Observing the waveform vo(t) in Figure 4.5, Equation (4.36) tells us that after one 
time constant the output reaches approximately 63% of its final value. After five 
time constants the output voltage across the capacitor reaches approximately 
99% of its final value. Figure 4.6 displays several step input responses to circuits 
that have a range of time constants from 0.1, 0.5, 1, 2, 5, and 10 seconds. The 
shorter the time constant of the circuit, the faster the output voltage will approach 
its final value. So for our Figure 4.6, the circuit with τ = 0.1 second has the fastest 
response of all the waveforms displayed. On the other hand, the circuit with τ = 10 
seconds has the slowest response. Notice that this waveform (10-second time 
constant) just reaches 63% of its final value after one time constant. The trajec-
tory of the output waveform for a 10-second time constant is only shown for two 
time constants (20 seconds). If we had plotted the Figure 4.6 up to t = 50 seconds, 
the waveform would have reached 99% of 1 V.

Figure 4.5  Unit step response of first-order RC LPF.
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Figure 4.6  Unit step responses of RC LPF of time constants 0.1, 0.5, 1, 2, 5, and 10 seconds.
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4.2.8  First-order RC LPF under Pulse and Square-Wave Excitation

We defined a unit step excitation u(t) using Equation (4.29) in the previous 
section.

Let us combine to unit step functions such that the first one u(t) is added, 
to a second u(t) that is delayed by tp seconds and inverted, so that:

	 u u t tp( ) ( ).t − − 	 (4.37)

Equation (4.37) is the expression of a single pulse of width tp.
Applying such pulse to an RC LPF and its responses are shown in Figure 

4.7 for a number of time constants. Note that for small time constants like 0.01 
second and 0.05 second the output voltage waveform resembles the input 
more closely that the larger time constant curves. As the circuit time constant 
increases, the output waveform looks less exponential and more linear (2, 5, 
and 10-second time constants).

Now let us consider a square-wave input, as the one shown in Figure 4.8. 
Such waveform is a continuous train of pulses that swings between 0 V and 
1 V with a 50% duty cycle. The waveform starts at 1 V at zero time for 1 
second, at this time it drops very quickly to 0 V for another second. After this 
last second at 0 V, the earlier described process repeats itself indefinitely. Note 
that the period T of this pulse train is 2 seconds.

Let us apply such excitation to the input of a first-order RC LPF. We will 
look at the responses of several RC LPF with time constants equal to 0.01, 
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Figure 4.7  First-order RC LPF and pulse responses for various time constants.
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Figure 4.8  The outputs of all nine different time constants RC LPF circuits.
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0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 seconds. Note that the smallest time constant 
is 1/200th of the 2-second period of the excitation. The longest time constant 
is five times the period of the excitation.

Figure 4.8 shows 50% duty cycle square-wave driving RC LPF of nine dif-
ferent time constants, for two full excitation periods (i.e., 4 seconds).

The shorter is the time constant with respect to the excitation period, the 
faster the output of each RC circuit follows the 50% duty cycle square-wave 
input. For example, referring to Figure 4.8, the output of the circuit whose time 
constant is 0.01 seconds closely follows the square-wave input, some rounding 
is seen at the end of the rising and falling edges of the output response. Addi-
tionally, this behavior of reaching fairly quickly a steady state is reached virtu-
ally from the first excitation period. Now let us concentrate on the slowest 
time constant circuit of 10 seconds. Note that because this time constant is 
actually larger than the excitation period, it takes some time for the output of 
the 10-second time constant circuit to reach a steady-state value. Within this 
context, a steady-state value refers to the waveform moving up and down with 
time such that its average value settles down to a constant value, and it does 
not change significantly anymore. Figure 4.9 depicts the similar waveforms of 
those of Figure 4.8 display but for a much longer period of time, that is, 30 
seconds. Note that Figure 4.9 only displays responses for nine different circuit 
of time constants equal to: 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 seconds. Care-
fully observing the 10-second time constant circuit response, we see that during 
the first 20 seconds starting at zero time, the output little by little rises as 

Figure 4.9  Square-wave responses of RC LPF of various time constants.
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seconds go by. Then somewhere in the neighborhood of 30 seconds, the output 
settles around the mean value of the square-wave input. Since our input has 
a 50% duty cycle and swings between 0 and 1 V, its mean value is exactly 0.5 V. 
The average value to which the output voltage will settle is 0.5 V. Figure 4.9 
does not quite show when the 10 seconds time constant circuit settles to 0.5 V 
because a few more seconds should have been plotted. Because the drawing 
becomes too busy and for a longer time, the author determined that 30-second 
was a better time frame to display. Looking at Figure 4.9 once more, the second 
slowest 5-second time constant response, second waveform from the time axis, 
more clearly reaches 0.5 V. On the other hand, note that those responses 
whose circuits have very fast time constant relative to the period of the square-
wave excitation, simply follow relatively closely their input. Such responses 
will never settle to an average value of 0.5 V of the input waveform.

4.2.9  The RC LPF as an Integrator

When a first-order RC LPF has a large time constant in comparison with the 
time that it takes for the input signal to make an appreciable change, the 
voltage drop across the output capacitor is small compared to the drop across 
the resistor. Referring again to Figure 4.2, the current through the circuit is

	 i t CdV t dto( ) ( )= / 	 (4.38)

and since Vo is small compared to the voltage across resistor R then,

	 i t V Rin( ) .= / 	 (4.39)

Combining Equations (4.38) and (4.39) we obtain

	 CdV t dt V Ro in( ) ,/ /= 	 (4.40)

which, after some algebraic manipulation and integration on both sides of the 
equal sign, it becomes

	 V RC V dto in= ∫1/ . 	 (4.41)

Equation (4.41) states that the output voltage of our RC LPF circuit is pro-
portional to the integral of the input voltage. The constant of proportionality 
is 1/RC.

Referring again to the responses of Figures 4.8 and 4.9, it is clear to note 
that the shorter the time constant of the circuit with respect to the period  
of the square-wave excitation, the output signal tends to follow the input 
waveform. This is noted for time constants of 0.01, 0.05, and 0.2 seconds. For 
longer time constants such as 5 and 10-second, the circuit behaves more like 
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an integrator. Notice that the integral of a (constant) horizontal line is a ramp. 
Indeed waveforms responses for 5- and 10-second time constants like fairly 
linear ramps and not so much exponential as described by Equation (4.34).

Summary of Important Points about RC LPFs in the Frequency Domain 
and Integrators in the Time Domain
A first-order RC LPF circuit allows sinusoidal frequencies smaller than one 
order of magnitude of its cutoff frequency to go through the circuit with little 
attenuation and no significant change in phase with respect to the input 
sinusoidal.

Sinusoidal frequencies of one order of magnitude higher that the cutoff 
frequency of the circuit become attenuated by 20 dB.

Sinusoidal frequencies of at least one order of magnitude higher that the 
cutoff frequency of the circuit or higher, approach a −90-degree phase shift 
with respect to the sinusoidal input.

The same first-order RC circuit performs time integration of the signals 
that are at least one order of magnitude higher in frequency than the filter 
cutoff frequency.

A practical limitation of the integrator implemented with a first-order RC 
LPF circuit is that the integrated output signal is attenuated, while other lower 
frequency signals below the cutoff frequency pass through the filter practi-
cally unaltered. We will see how to overcome these problems using an opera-
tional amplifier in Chapter 5.

4.3  THE FIRST-ORDER RC HIGH-PASS FILTER (HPF)

Let us investigate the RC circuit of Figure 4.10. This circuit is excited by a 
sinusoidal voltage waveform. Elements R and C are in series, the input voltage 

Figure 4.10  First-order RC high-pass filter (HPF).
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is applied to the two elements in series, the output is taken across the resistor 
terminals.

4.3.1  RC HPF Frequency Domain Analysis

Let us calculate the transfer function of this circuit:

	 H /( ) ( ) ( ).j j jω ω ω= V Vout in 	 (4.42)

The impedance of the resistor and capacitor in series is

	 Z j R
j C

series ( ) .ω
ω

= +
1

	 (4.43)

Then, the current through the circuit is

	 Vin( ) ( ).j Z jseriesω ω/ 	 (4.44)

The above current times the resistance equals the output voltage Vout (jω), thus 
we get

	 H
/

( )
( )
( )

j
V j
V j

R
R j C

out

in

ω ω
ω ω

= =
+

=
1

	 (4.45)

After some algebraic manipulations,

	 =
+
j RC

j RC
ω

ω1
. 	 (4.46)

Remember that from Chapter 2, ω is the angular frequency, which equals 2πf, 
where f is the frequency of the sinusoidal waveform in hertz. We also define 
the angular cutoff frequency:

	 ω0 1= /RC, 	 (4.47)

and the RC HPF cutoff frequency,

	 f RC0 1 2= / π . 	 (4.48)

Equation (4.46) describes the ratio of output voltage to input voltage of the 
RC circuit given by Figure 4.10, again referred to as the circuit transfer func-
tion in the frequency domain. Using the definition for f0 by Equation (4.48), 
we can rewrite the transfer function of the circuit as follows:
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	 (4.49)
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( )

( )
jω ω ω

ω ω
=

+
0

2
01

	 (4.50)

	 ∠ = −H j / /( ) ( ),ω π ω ω2 0arctan 	 (4.51)

where Equation (4.50) is the linear magnitude of Equation (4.49). Equation 
(4.51) is the phase in radians of Equation (4.49).

So let us now construct a table to plot the values of the transfer function 
H(jω) for a given RC HPF with a cutoff frequency f0. Assuming a 1 kHz cutoff 
frequency f0,

	 RC = =1 2 1000 159 155/ sπ . .µ 	 (4.52)

We will plot the transfer function of Equation (4.49) using two separate plots. 
One plot is for its magnitude and the second plot for its phase, both as func-
tions of frequency. Note that transfer function Equation (4.49) is a complex 
quantity and as such, it has magnitude and phase. Repeating the procedure 
that we previously used for the RC LPF we will tabulate the magnitude and 
phase values for the RC HPF. We show the outcome of such calculations in 
Table 4.4.

The gain and phase values of Table 4.4 have been calculated finding the 
magnitude and phase of the complex expression given by Equation (4.49).

Figure 4.11 depicts the exact magnitude and phase Bode plots for the RC 
HPF, generated using the values of Table 4.4.

4.3.2  Drawing an RC HPF Bode Plot Using Just the Asymptotes

To draw the asymptotes of the Bode plots of our first-order RC HPF (Fig. 
4.10), we will normalize the frequency axis. Instead of listing on the frequency 
axis the actual cutoff frequency value of 1 kHz, we will denote this frequency 

Table 4.4  RC HPF transfer function: magnitude and phase as functions of frequency

Frequency (Hz)
Normalized 

Frequency f/f0

Linear Gain 
(V/V) Gain in dB

Phase 
(Degrees)

1.000 0.001 f0 0.001000253 −60.00 89.94270424
10.000 0.01 f0 0.010002036 −40.00 89.42706130

100.000 0.1 f0 0.099528982 −20.04 84.28940687
1,000.000 1 f0 0.707296534 −3.01 45.00000002

10,000.000 10 f0 0.995318596 −0.04 5.710593139
100,000.000 100 f0 1.000233088 0.00 0.572938695

1,000,000.000 1,000 f0 1.000282601 0.00 0.057295758
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as f0, so lower frequencies will be a tenth, a one-hundredth, and so on of f0. 
Similarly, frequencies above f0 are 10 times, 100 times, and so on of f0. Figure 
4.11 shows these frequencies on the horizontal axis.

From Table 4.4 we see that the magnitude asymptotically approaches 0 dB 
from the cutoff frequency f0 to higher frequencies. Also from the cutoff fre-
quency to lower frequencies, the gain drops at a constant rate of 20 dB per 
decade. But at the cutoff frequency the gain is approximately −3 dB. In linear 
terms, this means that the amplitude of the sinusoidal waveform of frequency 
equal to f0, the cutoff frequency of our circuit that excites the RC circuit, 
becomes attenuated down to about 70.7% from its original value. Referring 
one more time to Table 4.4 we can see that at the cutoff frequency f0, the output 
voltage magnitude is 0.707 of the original input, which has a magnitude of 1. 
That is, the output magnitude is approximately 70.7% of the input 
magnitude.

In a similar fashion we can see that the phase is +45° at f0. One more time 
looking at the phase in Table 4.4, we see that the phase at one-tenth of f0 is 
about +84.3°. And for even lower frequencies, the phase asymptotically 
approaches +90°. On the other hand, at a frequency 10 times f0, the phase is 
approximately 5.7° more than the high frequency value of the phase, which 
is 0°. For all frequencies higher than about 10 times f0, the phase of the HPF 
is approximately 0 degrees (Figure 4.11).

We can also draw the HPF phase Bode plot using the phase asymptotes. 
Let us start with frequencies well below f0, up to one-tenth of f0, we draw a 

Figure 4.11  First-order RC HPF exact Bode plots.
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straight line at +90 degrees from low frequencies all the way up to 1/10 of f0. 
At a frequency of 10 times f0, the phase asymptote is a horizontal line at 0 
degrees, continuing into higher frequencies. From Table 4.4, we know that at 
the cutoff frequency f0, the phase is +45°. Looking at Figure 4.12, we now draw 
a straight line of a phase angle of 90° at 1/10 of f0 all the way to 0° at 10 f0, 

Figure 4.12  First-order RC HPF Bode plots asymptotes: magnitude and phase.
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such that this straight line passes through a +45° phase at f0. In this way, the 
phase asymptotes are drawn. Now one can draw by hand the approximate 
phase curves. Note that at 1/10 of f0 and at 10 f0, the phase is about 5.7° below 
+90° and about 5.7° above 0°, respectively. Finally, it is important to note that 
the phase curve has an inflexion point at 45°, see Figure 4.12. Figure 4.12 
depicts the asymptotes of the magnitude and phase Bode plots for a first-order 
RC HPF.

Important Points about the First-Order RC HPF
For a first-order RC HPF the circuit gain at the cutoff frequency f0 is −3.01 dB.

For a first-order RC HPF the gain is practically 0 dB at 10 f0 all the way 
to larger frequencies.

From f0 down in frequency the gain starts decreasing at a 20 dB per decade 
rate. So that at 0.1 f0 the gain is 20 dB below 0 dB. At 0.01 f0 the gain is another 
20 dB below, or 40 dB below the 0 dB gain line. At 0.001 f0 the gain is another 
20 dB below the preceding decibel at the previous decade in frequency or 
60 dB below the 0 dB gain line. This gain behavior continues to drop 20 dB 
as the frequency decreases by an order of decimal magnitude.

The frequency axis does not have a zero or origin of frequencies because 
log of zero is nonexistent. The lowest frequency can be represented with a 
value as small as we desire, but not with zero.

Frequency is represented logarithmically for both magnitude and phase 
plots.

The magnitude or gain in dB is represented linearly. There is a 0 dB origin 
for the vertical axis because the scale is linear in dB.

The phase in degrees is represented linearly on the vertical axis.
The phase of an RC HPF is approximately +90° at frequencies below 1/10 

of f0. The phase of an RC HPF is 0° at frequencies larger than 10 f0. At f0 the 
phase equals +45°.

4.3.3  Interpretation of the RC HPF Bode Plots in the Time Domain

We will use the asymptotically drawn Bode plots to explain the meaning of 
the Bode magnitude and phase plots in terms of sinusoidal inputs applied  
to the first-order RC HPF circuit (Fig. 4.12). We will explain this section at 
a faster pace because of the similarity that exists with first-order RC LPF, 
Section 4.2.

First let us assume that a sinusoidal waveform of 1 V peak amplitude and 
a frequency of 0.01 f0 is applied to the input of the first-order RC HPF. The 
output voltage waveform that will be observed across the resistor terminals is 
40 dB (a factor of 100) smaller than the 1 V input. At 0.1 f0, the output wave-
form is 20 dB (factor of 10) smaller than the 1 V input. At the cutoff frequency 
f0, the output magnitude is 3 dB below the 1 V input, meaning that the output 
is 70.7% of 1 V.
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For the phase of the RC HPF, there is 90° phase shift for frequencies below 
1/10th of f0. A phase of +45° exists at the cutoff frequency. Finally, the phase 
becomes close to 0° (actually 5.7°) for 10 times f0 and practically 0° at 100 f0 
frequencies and above.

4.3.4  Why Do We Call This Circuit an HPF?

From the Bode plots just presented in Figures 4.11 and 4.12 it is clear to see 
that frequencies below 1/10th of the cutoff frequency f0 get attenuated. Fre-
quencies above 10 times the cutoff frequency pass through the circuit with 
little or no attenuation. In summary, the RC circuit just analyzed allows high 
frequency signals to go through the circuit without attenuation, whereas the 
low frequencies become progressively attenuated as the input signal frequency 
goes below 1/10th of f0. In summary, our first-order RC HPF greatly attenuates 
low frequencies and passes high frequencies without any significant attenua-
tion. As usual, low frequencies are those that are smaller than 1/10th of f0, and 
high frequencies are those that are larger than 10 times f0. It is also interesting 
to notice that at frequencies equal to 10 f0 and above, the region of frequency 
at which the gain is 0 dB, the phase shift is also 0°. The range of frequencies 
starting at 10 f0 and going to larger frequencies is the pass-band frequency 
range of the filter. Within such range, signals pass through the filter unaltered 
in magnitude and in phase.

4.3.5  Time Domain Analysis of the RC HPF

Now let us analyze the time domain equations of the high-pass RC circuit. 
Referring one more time to the circuit of Figure 4.10, it is possible to establish 
the differential equation for such circuit. Simply applying KVL for the series 
of elements,

	 v t v t i t Rin cap( ) ( ) ( ) ,= + 	 (4.53)

where vin(t) is the excitation or the circuit input voltage, i(t)R equals the output 
voltage vo(t) and vcap(t) is the voltage across the capacitor of our RC HPF.

From Figure 4.10 we see that

	 v t v t v tcap in o( ) ( ) ( ).= − 	 (4.54)

Also,

	 i t C
d v t v t

dt
in o( )

[ ( ) ( )]
=

− 	 (4.55)

because [vin(t) − vo(t)] is the voltage across the capacitor.
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Since the current times the resistor R is the output voltage vo(t), then,

	 v t RCdv t dt RCdv t dto in o( ) ( ) ( ) .= −/ / 	 (4.56)

Rearranging terms, Equation (4.56) becomes

	 dv t
dt RC

v t
dv t

dt
o

in0 1( )
( )

( )
,+ = 	 (4.57)

where Equation (4.57) is a first-order differential equation. When input vin(t) 
is a step function u(t), the solution is given by Equation (4.34), repeated here 
for the reader’s convenience.

	 v t V V V eo final initial final
t( ) ( ) .( )= + − − /τ 	 (4.58)

In particular for our RC HPF, Figure 4.10, we calculate the values of the initial 
and final values from circuit boundary considerations.

The initial value of the output waveform is 1 V, the magnitude of our step 
input excitation function u(t). Why? Because upon impressing the 1-V pulse 
at the input of the circuit, assuming that the capacitor is initially discharged, 
the capacitor behaves like a short circuit to the 1-V edge. The final value  
of the output voltage after the transient behavior of the output is 0 V. Note 
that the capacitor has a blocking effect to the DC value of the step input. The 
output waveform will have no average value.

Now using Equation (4.54) and knowing that Vinitial = 1 V, Vfinal = 0 V we 
obtain

	 v t eo

t

( ) .=
−

τ 	 (4.59)

Equation (4.59) is plotted in Figure 4.13 with six different time constant values: 
0.1, 0.5, 1, 2, 5, and 10 seconds from time 0 to 20 seconds. By observation of 
the response curve for time constant 10, note that its value is down to 36.8% 
from its original value of 1 V after 10 seconds from the origin of time.

Note that an RC HPF with a time constant of 10 seconds, at time t = 10 
seconds, the output voltage vo(t) decays from its initial value of 1 V to

	 v eo( ) . .10 0 368
10
10= =

−
V 	 (4.60)

The same is true for all other waveforms, as an example the response curve 
for 1-second time constant is down to 36.8% of its original value of 1 V after 
1 second.

Back to Equation (4.58), we can verify that after five time constants, the 
response of the RC HPF will be down from its initial value of 1 V to 1% of 1 V.
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4.3.6  First-Order RC LPF under Pulse and Square-Wave Excitation

Let us apply a pulse of unity magnitude and 1-second duration to a first-order 
RC HPF with a 1-second time constant. The excitation and the corresponding 
response can be seen in Figure 4.14. The positive portion of the response is 
not new to us, since this is what we previously obtained in Figure 4.13 upon 
applying a unit-step. The difference in this example is that we are not applying 
a step, but a pulse. The 1-second pulse shown on the top of Figure 4.14 can be 
thought as the sum of a unit step at the origin, plus a 1-second delay inverted 
unit step. The equation for such step follows:

	 u t u t( ) ( ).− − 1 	 (4.61)

The positive portion of the response to such unit pulse is shown on the bottom 
section of Figure 4.14, and it is very much what we obtained for a unit step.
This positive portion of the response is exponential and follows Equation 
(4.58). The difference in this case is that we are applying a pulse. The pulse 
cuts short the step at 1 second. So at such time, a negative 1-V step  
is applied to the to the circuit input. Note that the response of the circuit  
due to this negative 1-V step applied at time = 1 second, will also be exponen-
tial but will start at t = 1 second and 1 volt below the voltage of magnitude 
Vp in the first exponential in Figure 4.14. From that point on, the pulse 
over the exponential response from the negative portion continues to decay 

Figure 4.13  Unit step response of an RC HPF for six different time constants.
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exponentially (actually to increase exponentially) toward 0 V. After several 
time constants, the response reaches a zero value. Let us ask ourselves, what 
is the voltage Vp at time t = 1 second? Using Equation (4.58) and knowing that 
the circuit time constant is 1 second, we obtain

	 V ep = = +−1 1 0 368/ V. . 	 (4.62)

The voltage at which the negative portion of the exponential response begins 
at t = 1 second is:

	 0 368 1 0 632. . .− = − V 	 (4.63)

It is important to observe that the average value of the complete response to 
the pulse, that is, the positive and the negative exponentials, have an average 
value of 0 V. In other words, the response has no DC component. Another way 
of saying this is that the area under the positive exponential equals the area 
above the negative exponential with respect to the time axis in both cases.

Now let us consider a square-wave input, as the one shown in Figure 4.15. 
Such waveform is a continuous train of pulses that swings between 0 V and 
1 V with a 50% duty cycle. The waveform starts at 1 V at zero time for 1 
second, at this time it drops very quickly to 0 V for another second. After this 
last second at 0 V, the earlier described process repeats itself indefinitely. Note 
that the period T of this square wave is 2 seconds.

Figure 4.14  First-order RC HPF input pulse response.
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Let us apply such excitation to the input of a 1-second time constant first-
order RC HPF. Note that during the first period of the square-wave input the 
response of the HPF settles down to a periodic response. The waveform indi-
cated by points A, B, C, and D is a transient waveform; the second portion of 
the response, D, E, F, G, H, and I becomes the waveform that will be repeated 
over and over as long as the excitation is applied to the input. In our next 
example, Figure 4.16, the excitation input is the same as in the previous 
example, 0 V to 1 V swing, 50% duty cycle square wave, period T = 2 seconds. 
But now the time constant of the HPF is very small compared to the period 
of the excitation, that is, τ is 0.1 seconds. The RC circuit is much faster that the 
period of the excitation; this is the cause why the response attains steady-state 
value within the first period of the excitation.

Our next and final example of an RC HPF response to a square-wave input 
is applied to a circuit with a 100-second time constant. This is slower than the 
2-second period of the excitation. Referring to Figure 4.17, it is clear to see 
that it takes in the order of 300 seconds (or three time constants) for the 
response to attain its steady state.

It is important and interesting to observe from Figures 4.15–4.17 that 
regardless of the RC circuit time constant, once the response attains a steady 
state, the average value or DC component of the response is zero. Let us 
remember that this occurs because of the DC blocking capacitor in the circuit. 
That is to say the output waveform has a zero average or zero DC value after 
the output transient behavior is over.

Figure 4.15  50% duty cycle square-wave driving RC HPF.
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4.3.7  The RC HPF as a Differentiator

From Equation (4.57), repeated here for the reader’s convenience,

	 dv t
dt RC

v t
dv t

dt
o

in0 1( )
( )

( )
.+ = 	 (4.64)

When the RC time constant and the output voltage are small, Equation (4.64) 
becomes

	 v t RC
dv t

dt
o

in( )
( )

.= 	 (4.65)

Equation (4.65) shows that under the conditions previously stated, the output 
voltage is proportional to the derivative of the input voltage.

As an example of differentiation, let us look back at Figure 4.16, the RC 
HPF has a time constant of 0.1 second, which is smaller than the excitation 
2-second period. Note that the circuit produces the derivative of the input 
waveform; the positive going transitions of the square-wave input become 
positive spikes, the negative going transitions become negative spikes upon 
the square wave becoming differentiated. Note that the constant levels of the 
square wave are zero, because the derivative of any constant is zero. As a 
counterexample of what is not a differentiator, refer this time to Figure 4.17, 

Figure 4.16  Square-wave excitation applied to a 0.1-second time-constant RC HPF.
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the time constant of this RC HPF is 100 seconds (a large number), while the 
period of the excitation waveform is still 2 seconds as in Figures 4.15 and 4.16.

The plot shown presents the signals after its transient portion, in other 
words, in steady state condition. Note that the input square wave of 50% duty 
cycle, period of 2 seconds, swings between 0 V and 1 V. This input waveform 
contains a non-zero DC component of 0.5 V. The RC HPF allows the wave-
form to pass straight through with little attenuation, but notice that its DC 
component of 0.5 V has been removed by the filter. This is noticed by the fact 
that the output now swings between −0.5 V and +0.5 V, its peak to peak ampli-
tude is still 1 V, no change with respect to the input. One more time referring 

Figure 4.17  Second square-wave excitation applied to a 100-second time-constant RC HPF, 
in steady state.

280s 290s 300s 310s 320s 330s 340s 350s 360s 370s 380s 390s 400s 410s 420s
−0.8V

−0.6V

−0.4V

−0.2V

0.0V

0.2V

0.4V

0.6V

0.8V

1.0V

1.2V
−0.8V
−0.7V
−0.6V
−0.5V
−0.4V
−0.3V
−0.2V
−0.1V

0.0V
0.1V
0.2V
0.3V
0.4V
0.5V
0.6V
0.7V
0.8V
0.9V
1.0V
1.1V
1.2V

V(vout)

V(n001)



SECOND-ORDER CIRCUITS    265

to Figure 4.17, looking closely at the output waveform of the filter, we notice 
a slight slope on the top and the bottom of the output waveform positive and 
negative cycles. The reason for this is that the filter passes through high fre-
quencies; however, it changes the phase of each frequency component by a 
positive 90° phase. Figure 4.17 displays the HPF response 280 seconds after 
the excitation was applied at the origin of time, 0 second.

Summary of Important Points about RC HPFs in the Frequency Domain 
and Differentiators in the Time Domain
A first-order RC HPF circuit allows sinusoidal waveforms of frequencies 
larger than one order of magnitude of its cutoff frequency to go through the 
circuit with little attenuation and with a 0° phase shift with respect to the 
sinusoidal input.

Sinusoidal waveforms whose frequencies are one order of magnitude 
lower than the cutoff frequency of the circuit are blocked by the RC HPF by 
being attenuated by 20 dB. Frequencies two orders of magnitude smaller than 
the cutoff are attenuated 40 dB. This goes on at a rate of 20 dB attenuation 
per decade. The phase of all frequencies at least one order of magnitude lower 
than f0 experience an approximate +90-degree phase shift.

The same first-order RC circuit performs time differentiation of the signals 
that have frequencies at least one order of magnitude lower than than the 
filter cutoff frequency.

A practical limitation of the differentiator implemented with a first-order 
RC HPF circuit is that the differentiated output signal is attenuated, while 
other higher frequency signals above the cutoff frequency pass through the 
filter practically unaltered. We will see how to overcome these problems using 
an operational amplifier in Chapter 5.

4.4  SECOND-ORDER CIRCUITS

Second-order circuits are described by second-order ordinary differential 
equations with constant coefficients. Refer to Equation (4.66) to observe a 
second-order circuit differential equation:

	 a
d f t

dt
a

df t
dt

a f t0

2

2 1 2
( ) ( )

( ).+ + 	 (4.66)

In Equation (4.66), f(t) usually is i(t) or v(t), respectively current or voltage 
varying with respect to time. a0, a1, and a2 are the constant coefficients, typically 
real numbers. t is time, the independent variable.

Equation (4.66) may be equated to zero or to a constant or to a function 
of time. Equation (4.66) equates the differential equation to zero, thus Equa-
tion (4.67):
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	 a
d f t

dt
a

df t
dt

a f t0

2

2 1 2 0
( ) ( )

( ) .+ + = 	 (4.67)

The differential equation of Equation (4.67) describes a second-order circuit 
without any external excitation. When Equation (4.66) is equated to a con-
stant, it is usually when the second-order circuit is excited by a step. From now 
on, we will refer to a circuit described by a differential equation of the form 
given by Equation (4.66) simply as a second-order circuit. Second-order cir-
cuits have one inductor, one capacitor, and they may or may not have a resis-
tor. When the second-order circuit does not have any resistors, it is said to be 
lossless.

4.5  SERIES RLC SECOND-ORDER CIRCUIT

We will analyze now a series RLC circuit, with a step input. Figure 4.18 depicts 
such a circuit.

From the circuit of Figure 4.18 we can derive the time domain equations. 
We obtain

	 L
di t

dt
i t R v VC step

( )
( ) .+ + = 	 (4.68)

In Equation (4.68), the first term on the left is the voltage drop on the induc-
tor, the voltage drop on the resistor follows, and vC is the drop across the 
capacitor. The differential equation, that is, Equation (4.68) is equated to Vstep, 
assumes that a step input is applied to the circuit at time t = 0.

Since

	 i C
dv t

dt
C

C=
( )

, 	 (4.69)

Figure 4.18  RLC series circuit with a step input excitation.
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Then

	 v
C

i t dt
C

i t dtC C= =∫ ∫1 1
( ) ( ) , 	 (4.70)

because iC(t) equals i(t). We are analyzing a series circuit so the current through 
any one of its elements is the same current in the circuit.

We plug Equation (4.70) into Equation (4.68):

	 L
di t

dt
i t R

C
i t dt Vstep

( )
( ) ( ) .+ + =∫1 	 (4.71)

Differentiating Equation (4.71) and rearranging terms, we obtain

	 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + = 	 (4.72)

In Equation (4.72) i(t) is the current through the capacitor which is the same 
as the current through the series circuit. When we solve, or find the solutions 
for differential Equation (4.72), we are finding the value of i as a function of 
time.

To find the solution of differential Equation (4.72), we will always end up 
with solutions that are functions of the following form:

	 i t k es t
1 1

1( ) .= 	 (4.73)

	 i t k es t
2 2

2( ) .= 	 (4.74)

Note that two solutions are found because it is a second-order system.
Equations (4.73) and (4.74) are solutions of Equation (4.72), and this means 

that if we plug each of the solutions into the differential equation, the solution 
will satisfy the mathematical operations of differential Equation (4.72). In 
Equations (4.73) and (4.74), k1, s1, k2, and s2 are constants, which can be real, 
imaginary, or complex. The differential equation solutions will determine three 
classic behaviors of second-order systems. These are

1.	 Overdamped,
2.	 Critically damped, and
3.	 Underdamped.

The reader is encouraged to plug Equation (4.73) into Equation (4.72)  
and validate the equation; similarly with Equation (4.74). So let us now  
plug a generic solution of the form of Equation (4.73) to our differential Equa-
tion (4.72):
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	 d ke
dt

R
L

d ke
dt

ke
LC

st st st2

2
0

( ) ( )
.+ + = 	 (4.75)

Computing the derivatives of Equation (4.75) we obtain

	 s ke
R
L

ske
LC

kest st st2 1
0+ + = . 	 (4.76)

Since est can never be zero for any finite time t, we can eliminate the instances 
of kest from Equation (4.76) and obtain

	 s
R
L

s
LC

2 1
0+ + = . 	 (4.77)

Equation (4.77) is called the characteristic equation of our differential 
equation.

Now, finding the roots for Equation (4.77) yields

	 s s
R
L

R L
LC

1 2
2

2
1
2

4
1

, ( ) .= − ± −/ 	 (4.78)

The roots of the characteristic equation are of three possible types:

1.	 Both roots are real and different, or
2.	 Both roots are real and equal, or
3.	 Both roots are complex conjugates*

The solutions of differential Equation (4.72) have one of the following forms:

	 i t k e k es t s t( ) : := +1 2
1 2 both roots are real and different overdaamped 	 (4.79)

	 i t k k t e t( ) ( ) : := +1 2
α both roots are real and identical criticallly damped 	 (4.80)

	 i t k t k t e t( ) ( cos sin ) : := + −
1 2ω ω α roots are complex conjugates undderdamped 	

(4.81)

When the roots of the characteristic equation are complex conjugates, the 
roots have the following complex notation:

	 s s j1 2, .= − ±α ω 	 (4.82)

*  There is a fourth case when the roots are complex conjugate but pure imaginary. However, this 
is a special case of Equation (4.81).
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In Equations (4.80) and (4.81),

	 α ζω= − n, 	 (4.83)

where ξ is defined as the damping factor, and ωn is the natural or undamped 
frequency.

ω in Equation (4.84) is called the damped frequency, equal to

	 ω ω ζ= −n 1 2 . 	 (4.84)

Based on Equation (4.72), repeated here for the reader’s convenience,

	 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + = 	 (4.85)

We can find the relationship between the damping factor ξ, the damped fre-
quency ω, and the undamped or natural frequency ωn with the circuit R, L, 
and C components.

From Equation (4.72) R/L is defined as 2ξωn. 1/LC is ωn
2, that is, the square 

of the circuit natural frequency. The notation using ξ and ωn is commonly used 
in control theory. Given those new defined parameters, we can rewrite Equa-
tion (4.77) as follows:

	 s
R
L

s
LC

s sn n
2 2 21

2+ + = + +ζω ω . 	 (4.86)

In reference to Equations (4.77) through (4.79), constants k1 and k2 are evalu-
ated for a specific problem like ours, by the knowledge of the circuit initial 
conditions. Exponents s1 and s2 are the roots of the characteristic equation. 
Referring to Equation (4.80), α is the real part of the s1 and s2 roots of our 
system. And ± ω is the imaginary part of the complex conjugate roots, also 
called the damped frequency. Referring once more to Figure 4.18 at time t = 0 
when the voltage step is applied, the current in the circuit cannot change instan-
taneously, because the inductor is initially opposed to any current changes. 
Thus, i(0+) = 0. This means that the second and third voltage terms of Equation 
(4.68) are zero. The iR term is zero because i(0+) = 0 and vC because the initial 
voltage across the capacitor is zero. Equation (4.68) is reduced to

	 di
dt

V

L
step( )

.
0+

= amp re per secondè

Example 4.4  Using the circuit of Figure 4.18, assume the following circuit 
components parameters:

	 R = = =5 1
1
6

Ω, ,L H C F 	 (4.87)

And a step input of 1 V at t0+.
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Note: The large values of inductance and capacitance are simply used to 
simplify the arithmetic of the problem.

Referring to Equation (4.72), repeated here for the reader’s convenience, 
thus,

	 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + = 	 (4.88)

Using the values provided by (4.87) in Equation (4.88) yields

	 d i t
dt

di t
dt

iC C
C

2

2
5 6 0

( ) ( )
.+ + = 	 (4.89)

The characteristic equation of Equation (4.89) is

	 s s2 5 6 0+ + = . 	 (4.90)

The roots of Equation (4.84) are

	 s s1 22 3= − = −; . 	 (4.91)

Thus, the solution of Equation (4.88) is of the form

	 i t k e k eC
s t s t( ) .= +1 2
1 2 	 (4.92)

Using the roots of the characteristic equation, Equation (4.92) becomes

	 i t k e k eC
t t( ) .= +− −

1
2

2
3 	 (4.93)

Let us determine constants k1 and k2 based on the problem initial conditions.
For t = 0, Equation (4.93) becomes:

	 0 1 2= +k k . 	 (4.94)

Now taking the derivative of Equation (4.92) yields

	 di t
dt

k e k et t( )
.= − −− −2 31

2
2

3 	 (4.95)

	 di t
dt

V
L

( )
.

0
1

+

= = 	 (4.96)

Because the current in the series circuit is zero, the inductor current cannot 
instantaneously change at t = t0+. The voltages across the capacitor and resistor 
are zero.
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As previously explained, using Equation (4.95) with the numerical values 
on-hand we obtain

	 1 2 31 2= − −k k . 	 (4.97)

Solving the system of simultaneous Equations (4.94) and (4.97) yields

	 k k1 21 1= = −; . 	 (4.98)

Using the values of k1 and k2 from Equations (4.98) and (4.93), we obtain the 
complete current response:

	 i t e eC
t t( ) = −− −2 3 <<< overdamped case 	 (4.99)

This example had a characteristic equation with two real and distinct roots; 
this is an overdamped-type response. In the next example we will study the 
response of the same second-order RLC circuit but with characteristic equa-
tion roots that are real and both are identical to each other. Since Example 
4.4 was covered in great detail, the next two examples will be dealt without 
that many steps.

Example 4.5  Using the circuit of Figure 4.18, assume the following circuit 
component parameters:

	 R L C= = =4 1
1
4

Ω, ,H F 	 (4.100)

and a 1-V step input. Derive an equation for the transient response of the 
circuit current, i(t).

From Equation (4.88),

	 d i t
dt

R
L

di t
dt LC

i t
2

2

1
0

( ) ( )
( ) .+ + = 	 (4.101)

Equation (4.101) holds because we are dealing with the same series RLC 
circuit. Using the value given by Equation (4.100), Equation (4.101) becomes

	 d i t
dt

di t
dt

iC C
C

2

2
4 4 0

( ) ( )
.+ + = 	 (4.102)

From Equation (4.102) the characteristic function is

	 s s2 4 4 0+ + = . 	 (4.103)
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The roots of Equation (4.103) are s1, s2 = −2; that is, −2 is a double root of 
characteristic Equation (4.103).

The solution will have the form of Equation (4.80), repeated below for the 
reader’s convenience:

	 i t k k t eC
t( ) ( ) .= +1 2

α 	 (4.104a)

Same as before for t0
+, when the step is applied to the circuit, since the inductor 

will not allow an instantaneous current change, iC(t) = 0 at the initial time t0+.
Thus,

	 i t kC ( ) .0 10+ = = 	 (4.104b)

Differentiating Equation (4.104a) after we substitute k1 with 0, we obtain

	 di t
dt

k teC t( )
.= α α

2 	 (4.105)

Evaluating Equation (4.105) at time t0+, yields

	 di t
dt

k teC t( )
.0

2 1
+

= =α α 	 (4.106)

Since thenα = −2,

	 k2
1
2

= − . 	 (4.107)

Using Equations (4.104) and (4.107), the solution is

	 i t teC
t( ) = −1

2
2 <<< critically damped case 	 (4.108)

Example 4.6  This example will address the series RLC circuit, with a 1-V 
step input when the roots of the characteristic equation are complex conju-
gates: R = 2 Ω, L = 1 H, C = 1/2 F.

The second-order differential equation that describes such system is

	 d i t
dt

di t
dt

iC C
C

2

2 2 0
( ) ( )

.+ + = 	 (4.109)

The circuit characteristic equation is

	 s s2 2 2 0+ + = . 	 (4.110)
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The roots of Equation (4.109) are

	 s s j1 2 1 1, .= − ± 	 (4.111)

The general solution of Equation (4.109) is of the form

	
i t k e k e

e k e k e
C

j t j t

t jt jt

( )

( )

( ) ( )= + =
= +

− + − −

− −

1
1 1

2
1 1

1 2

	 (4.112)

which is also of the general form previously shown by Equation (4.81):

	 i t e k t k tC
t( ) ( cos sin ).= +−

3 4 	 (4.113)

Note: The mathematical equivalence between Equations (4.112) and (4.113) 
is justified with Euler’s identity; that is,

	 e t j tj t± = ±ω ω ωcos sin . 	 (4.114)

Repeating Equation (4.81) for the reader’s convenience,

	 i t k t k t eC
t( ) ( cos sin )= + −

1 2ω ω α 	 (4.115)

and now we equate Equations (4.113) and (4.115):

	 e k t k t e k e k et t jt jt− − −+ = +( cos sin ) ( ).3 4 1 2 	 (4.116)

From Euler’s Equation (4.114) it can be shown that

	 cosω
ω ω

t
e ej t j t

=
− −

2
	 (4.117)

and

	 sin .ω
ω ω

t
e e

j

j t j t

=
+ −

2
	 (4.118)

Expanding the right-hand side term of Equation (4.116) using Euler’s identi-
ties we obtain

	 e k t k t e k t j t k t j tt t− −+ = − + −( cos sin ) [ (cos sin ) (cos sin )].3 4 1 2 	 (4.119)

Rearranging terms on the right-hand side of Equation (4.119) and comparing 
them against the left-hand side of Equation (4.119) we obtain that

	 k k k k j k k3 1 2 4 1 2= + = −and ( ). 	 (4.120)
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The initial conditions for this problem are exactly the same as what they were 
for Examples 4.4 and 4.5.

	 i t
di

dt
C

C( )
( )

.0 0
0

1+ =
+

=and 	 (4.121)

We evaluate the left-hand side term of Equation (4.119) at time t = 0+ and get

	 i e k k kC ( ) ( cos sin ) .0 0 0 00
3 4 3+ = + = =− 	 (4.122)

Now since k3 is 0,

	 di t
dt

d
dt

e k tC t( )
( sin ).= −

4 	 (4.123)

Thus,

	 di t
dt

k e t e tC t t( )
( cos sin ).= −− −

4 	 (4.124)

Since the initial condition 
di

dt
C ( )0

1
+

=  from Equation (4.121), we evaluate 

Equation (4.124) at time t = 0+
And this yields

	 di
dt

k e eC ( )
( cos sin )

0
0 0 14

0 0= + =− − 	 (4.125)

	 k4 1= . 	 (4.126)

Now we are ready to find our particular solution for

	 i t e k t k tC
t( ) ( cos sin ).= +−

3 4 	 (4.127)

Recall that k3 = 0 and k4 = 1. Thus,

	 i t e tC
t( ) sin ( . )= − <<< underdamped case Table 4 5 	 (4.128)

Exercise for the reader:  Technically speaking there is a fourth case, when 
the roots are pure imaginary and conjugate. Find the series RLC circuit 
voltage response across the capacitor due to a 1-V step voltage. Hint: 
Assume that the characteristic equation is s2 + 1 = 0. Determine the values 
of all three circuit components for the given characteristic equation.
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Table 4.5  Time domain step-input responses

Case Type of Roots Time Domain Response

Overdamped Negative real and 
distinct

Critically 
damped

Negative real and 
equal

Underdamped Complex 
conjugates with 
negative real 
parts

4.6  SECOND-ORDER CIRCUIT IN SINUSOIDAL STEADY STATE: 
BODE PLOTS

In this section we will observe the behavior of a second-order circuit in the 
frequency domain. That is to say we will look at its magnitude in decibels and 
its phase in degrees.

The circuit of Figure 4.18 depicts a second-order RLC circuit. We are inter-
ested in the voltage across the capacitor. Let us apply an AC voltage source 
to the input of the series.

Now we can calculate the ratio of the output voltage over the input voltage 
of the circuit.

The total impedance seen by the AC source is the series of the R, L, and C 
circuit elements. That is,

	 Z j R j L
j C

( ) .ω ω
ω

= + +
1

	 (4.129)

We are interested in the output voltage, which is the voltage across the capaci-
tor. If we think of the R, L series as one impedance, say we call it Z1, and 
we think of the capacitor as being impedance which we call Z2, we have 
then

	 Z j R j L1( )ω ω= + 	 (4.130)



276    FIRST- AND SECOND-ORDER CIRCUITS UNDER SINUSOIDAL AND STEP EXCITATIONS  

and

	 Z j
j C

2
1

( ) .ω
ω

= 	 (4.131)

The output voltage is calculated as if the impedances worked as resistor 
dividers.

Thus,

	
V
V

Z
Z Z

out

in

=
+

2

1 2

. 	 (4.132)

However, it is important to understand that all the voltages and impedances 
in Equation (4.132) are complex numbers, because they are representing com-
ponents operating at a the same sinusoidal frequency.

Plugging the values from Equations (4.130) and (4.131) into Equation 
(4.132), replacing the variable jω with the operator s yields after doing some 
arithmetic:

	
V
V LC s s

R
L LC

out

in

=
+ +

















1 1
12

	 (4.133)

Note: The s operator is called the Laplace variable or operator. We simply used 
the operator as a substitute for the complex number jω. A whole entire course 
can be taken on the Laplace transforms and its applications. Certainly, this is 
not the book to read about Laplace transforms.

Equation (4.133) is also referred to as the circuit or system transfer 
function.

This is the transfer function that we will plot to understand the magnitude 
and the phase behavior with respect to frequency.

The denominator of Equation (4.133) is a second-order equation (nothing 
new here). This denominator can be factored as (s −root1).(s −root2), where 
root1 and root2 are the denominator roots.

For the sake of simplicity and a clear presentation, we will assume the fol-
lowing numerical values for R, L, and C.

Assume that: L = 1 H, C = 1 F, and we plot 10 magnitude and 10 phase plots 
for the following values of R in ohms: 0.1, 0.3, 0.6, 0.9, 1, 2, 3, 4, 5, 10. Figure 
4.19 is a computer generated Bode plot (magnitude and phase) for the transfer 
function given by Equation (4.133).

The purpose of this demonstration is to reveal the most important charac-
teristics that a second-order system transfer function Bode plot has. Also 
compare those against the first-order Body plots at the beginning of this 
chapter.
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Figure 4.19  Magnitude and phase Bode plots of RLC circuit.
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Figure 4.19 shows magnitude and phase plots on the same sheet. The unit 
of magnitude is the decibel, the unit of phase is the degree.

Magnitude characteristics:
10 different magnitude plots are shown for the 10 given values of R.

The natural frequency fn, according to Equation (4.86), is ωn LC2 1= / , where 
ωn = 2πfn, which for L = 1 H and C = 1 F, fn = 0.15924 Hz. By inspection of 
Figure 4.19 we see that the magnitude peaks for small damping rations, and 
as the damping factor increases, the magnitude becomes less “peaky.”

It is also of importance to mention that the magnitudes peak at the natural 
frequency of the circuit:

	 f
LC

n =
1

2π
[ ].hertz 	 (4.134)

The negative slope of the magnitude plots are −40 dB per decade. Once the 
magnitude is at a frequency greater than or equal to 10 times the natural 
frequency, the slope is −40 dB/dec regardless of the damping ratio of the circuit.

Phase characterisitics:
The phase changes from 0 degrees to −180 degrees in approximately two 
decades of frequency. This statement is more accurate for lower damping 
ratios. The natural frequency is the crossover point for all phase plots. All 
phase plots will cross over at the fn regardless of the value of the damping 
ratio. The phase crossover point for the second-order system is −90 degrees.
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4.7  DRAWING THE SECOND-ORDER BODE PLOTS USING 
ASYMPTOTIC APPROXIMATIONS

The approximate methodology allows one to get very quickly approximate 
magnitude and phase plots. The Bode plots of a second-order system can be 
constructed as the composite plots of 2 first-order Bode plots.

In a generic way, assume that the natural frequency is fn. Following the 
asymptotic magnitude plot of Figure 4.20, we see that for frequencies less than 
or equal to 1/10 fn the magnitude plot is approximated by a 0 dB line.

From frequency fn, we draw a line with a −40 dB/dec slope.

Figure 4.20  Asymptotic method for a second-order system Bode plots.
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For the phase, we approximate it with a zero degree phase line at frequen-
cies less than or equal to 1/10 × fn. We then draw a horizontal phase line start-
ing at a frequency greater or equal to 10 × fn. Finally and once more referring 
to Figure 4.20, we draw a line for the phase from 0 degrees at 1/10 of fn all the 
way through the −180 degree point at a frequency 10 times fn.

4.8  SUMMARY

We looked at two of the most fundamental circuits in electrical and electronics 
engineering, the first-order RC LPF and HPF. They are first-order circuits 
because they have a single energy storage element, a capacitor. Their time 
domain equations are first-order differential equations. The circuits are fully 
characterized; that is, their time behavior as well as their frequency behavior 
are completely known by their RC time constant.

The RC LPF as its name states allows low frequencies to pass through it 
unaltered. The RC HPF allows high frequencies to pass through it, unaltered.

The behavior of an RC LPF can be that of an LPF or that of an integrator at 
frequencies well above the filter cutoff frequency. The behavior of an RC HPF 
can be that of an HPF or that of a differentiator at frequencies well below the 
filter cutoff frequency.

The RC LPF integrates when the frequency of the signal to be integrated 
is at least 10 times f0 or more. The RC HPF differentiates when the frequency 
of the signal to be differentiated is at most 0.1 times f0 or less. Recall that f0 is 
for both, HPF and LPF, their cutoff frequency.

Second-order circuits, have one capacitor and one inductor in addition to 
some resistance. Those two energy-storing circuit elements are what cause the 
overshooting and undershooting of the second-order time response, of course 
depending on the damping ratio. The larger the damping ratio, the smoother 
the response and no overshoot/undershoot will be observed. The smaller the 
damping ratio, the larger the overshoots and undershoots will be. Overshoot-
ing and undershooting are phenomena not observed in first-order circuits. For 
overshooting and undershooting to occur, the circuit has to be a second-order 
system or higher.
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Figure 4.21  Circuit for Problem 4.4.

1 A 1 µ

PROBLEMS

4.1  Given an RC low-pass filter circuit, like the one shown in Figure 4.2, 
assume that R = 1 kΩ and C = 1 μF. (a) Determine the filter cutoff fre-
quency, (b) determine the time constant of the circuit, and (c) draw the 
magnitude and phase asymptotic Bode plots of such filter for the fol-
lowing frequencies: 0.01 f0, 0.1 f0, 1 f0, 10 f0, 100 f0, where f0 refers to the 
cutoff or corner frequency. Make sure to use semi-log paper to draw the 
Bode plots.

4.2  For an RC low-pass filter with R = 1 kΩ and C = 1 μF, determine the 
steady-state output vout( jω) magnitude and phase when the a sinusoidal 
voltage vin( jω) is applied at the input. Tabulate magnitude and phase 
for the following frequencies: 0.01 f0, 0.1 f0, 1 f0, 10 f0, 100 f0, where f0 refers 
to the cutoff or corner frequency. Note: vout( jω) is the voltage across the 
capacitor.

4.3  For the circuit given in Figure 4.22, initially the capacitor is completely 
discharged. Determine the voltage that the capacitor will get charged 
up to, after the switch is closed instantaneously at time to and waiting 
for two circuit time constants.

4.4  Recall the current–voltage relationship of the voltage across a capacitor 
and the current flowing through it, is given by: iC (t) = CdVC/dt. (a) Calcu-
late the voltage developed across an initially discharged 1 μF capacitor 
when a DC current source is applied as shown by Figure 4.21. (b) Justify 
your answer based on the capacitor current–voltage relationship.

4.5  Using the circuit depicted by Figure 4.23, (a) draw the current through 
the 10 nH inductor when the square wave shown is applied to the induc-
tor for two complete periods; (b) determine the current numerical value 
at t = 1 μs; (c) determine the current numerical value at t = 2 μs.
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Figure 4.22  Circuit for Problem 4.3.
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Figure 4.23  Circuit for Problem 4.5.

L = 10

T = 1 µs

T / 2

t



282    FIRST- AND SECOND-ORDER CIRCUITS UNDER SINUSOIDAL AND STEP EXCITATIONS  

Figure 4.24  Circuit for Problem 4.6.
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Figure 4.25  Circuit for Problem 4.7.
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4.6  Using the circuit depicted by Figure 4.24, (a) determine the output 
voltage Vo(t) equation as a function of time, when the switch is quickly 
closed, (b) draw the output voltage vo(t), (c) determine the output 
voltage after 10 μs from closing the switch, and (d) Determine the 
output voltage after one second from closing the switch.

4.7  The switch in Figure 4.25 has been closed for a very long time in position 
A. At time t = 0, the switch is quickly moved to position B. (a) Deter-
mine the equation of i(t) for t > 0; (b) draw current i(t) for t > 0.

4.8  The switch in Figure 4.26 has been closed for a very long time in position 
A. At time t = 0, the switch is quickly moved to position B. (a) Deter-
mine the equation of i(t) for t > 0; (b) draw current i(t) for t > 0.

4.9  Given the circuit of Figure 4.27, (a) determine the circuit time constant, 
(b) determine the circuit cutoff frequency f0, and (c) construct the mag-
nitude and phase Bode plots using the asymptotic method for the trans-
fer function: Vout(jω)/Vin(jω). Use as frequency range, 2 decades below 
cutoff frequency f0 up to 2 decades above f0.
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Figure 4.26  Circuit for Problem 4.8.
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Figure 4.27  Circuit for Problem 4.9.
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4.10  For the RL series circuit of Figure 4.28, (a) determine the transfer func-
tion of the circuit, that is, Vout(jω)/Vin(jω); (b) determine the circuit cutoff 
frequency f0; (c) determine and draw the asymptotic Bode plots for the 
magnitude and the phase of the transfer function; the frequency range 
used should be from 0.01 f0 to 100 f0. This is a total of four decades of 
frequency; (d) which type of filter this circuit represents?

4.11  The capacitor in the circuit of Figure 4.29 is charged up to 50 V DC 
when the switch is open. Upon closing the switch very quickly, deter-
mine the transient current as a function of time that will flow through 
the circuit. Note: The circuit that initially charged the capacitor is not 
shown.

4.12  For the circuit of Figure 4.30, (a) calculate the circuit transfer function 
as a function of jω; (b) calculate the cutoff or corner frequency of the 
circuit; (c) draw the asymptotic magnitude and phase Bode plots.

4.13  For the circuit of Figure 4.30, determine the current transient response 
for a step input voltage of 0 to 1.
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Figure 4.28  Circuit for Problem 4.10.
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Figure 4.29  RC circuit for Problem 4.11.
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Figure 4.30  Circuit for Problems 4.12 and 4.13.
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4.14  For an RC high-pass filter, such as the one shown in Figure 4.10, if 
R = 100 Ω and C = 0.159 μF, (a) derive the transfer function of the 
circuit Vout(jω)/Vin(jω); (b) draw the magnitude and phase Bode plots 
from 2 frequency decades below the corner frequency up to 2 decades 
above the corner frequency.

4.15  Assume that you are given an RC low-pass filter, whose corner fre-
quency is 10 kHz. Calculate the exact magnitude in decibels and phase 
in degrees at 100 Hz, 10 kHz, and 100 kHz.

4.16  For the filter shown in Figure 4.31, assume a 1-V step is applied to the 
input. (a) Derive a time domain equation of the current through the 
circuit, (b) calculate the circuit time constant, and (c) plot the current 
response for two time constants. Hint: Apply Thévenin to simplify the 
problem.

4.17  Refer to the circuit of Figure 4.32. Determine the time domain equation 
of the current as a function of time. Make sure that you find all the initial 
conditions of the circuit. Assume that the capacitor is initially discharged. 
Hint: Apply Thévenin to the left-hand side of the 47 μF capacitor to 
simplify the problem.

Figure 4.31  Circuit for Problem 4.16.
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Figure 4.32  Circuit for Problem 4.17.
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Figure 4.33  Circuit for Problem 4.19.
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4.18  Refer to the second-order RLC series circuit of Figure 4.18. A 1-V step 
input voltage is applied at time t0, all the circuit initial conditions 
are zero.

(a) State the time domain equation of the circuit; ensure that you 
show the equation as a second-order system equation. (b) In a general 
fashion, explain the consequences when the roots are

(i) negative real and different, (ii) negative real and equal, and (iii) 
when the root are complex conjugates.

4.19  Refer to the second-order RLC parallel circuit of Figure 4.33. Assume 
that a 1-A step input current is applied at time t0, all the circuit initial 
conditions are zero.

(a) State the time domain equation of the circuit inductor current; 
ensure that you show the equation as a second-order system equation. 
(b) In a general fashion, explain the consequences when the roots are

(i) negative real and different, (ii) negative real and equal, and (iii) 
when the roots are complex conjugates.


