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3
CIRCUIT THEOREMS  

AND METHODS OF 
CIRCUIT ANALYSIS

3.1  INTRODUCTION

Circuit analysis is finding the current and voltage on every element of the 
circuit being analyzed. In previous chapters we addressed solving circuits using 
Ohm’s and Kirchhoff’s laws. This chapter will enhance your portfolio of circuit-
solving techniques by introducing new circuit methods of analysis. The methods 
covered in this chapter are superposition, Thévenin’s, Norton’s, Mesh, and 
Nodal methods. But why do we need so many more methods? The answer is 
an issue of practicality. Solving a circuit becomes easier with more knowledge 
of different methods. This helps the person solving a circuit in several ways. 
Many times the number of variables in a circuit is too large, and thus difficult 
to solve by hand. If we have a computer to solve the circuit, why do I care 
about the number of variables? Well so far in our world, computers are faster 
but may not always generate the correct answer. It is important that we, as 
circuit analysis engineers, have at least a rough idea if the numerical answer 
that the computer will provide is within reasonable expectations. It is always 
important to be able to do a rough analysis to understand if computer findings 
are at least meaningful for the given circuit and within the expected range. All 
the following methods will ultimately allow us to use a checks and balances 
approach to circuit solving.

Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers, First Edition. 
Ed Lipiansky.
© 2013 The Institute of Electrical and Electronics Engineers, Inc. Published 2013 by John Wiley 
& Sons, Inc.
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3.2  THE SUPERPOSITION METHOD

The superposition method is applicable and valid for solving circuits if the 
circuit is linear. In a general sense, a function f(x) is said to be linear if-and-
only-if* the following conditions are met:

1.	 Function f(x) domain and its range are linear spaces over the same scalar 
field.

2.	 Homogeneity Property: For all values of x in the function domain and 
every scalar α then

	 f x f x( ) ( ).α α= 	 (3.1)

3.	 Additivity Property: For every pair of element domains x1 and x2, the 
following holds:

	 f x x f x f x( ) ( ) ( ).1 2 1 2+ = + 	 (3.2)

It can be observed that Equation (3.1) holds when f(x) is a linear function.
In general a function f(x), that has the form:

	 f x ax b( ) ,= + 	 (3.3)

where a is the slope of the line and b is its y-intercept, is said to be linear only 
if its y-intercept is zero. That is,

	 f ( ) .0 0= 	 (3.4)

Important Points:

	 f ax b( ) ,x = + 	 (3.5)

for b ≠ 0, is NOT a linear function. However, Equation (3.5) is still the equa-
tion of a straight line. The function

	 f x ax( ) = 	 (3.6)

is linear for any value of a and x [1].
Graphically we state that a line that goes through the origin of coordinates 

is a linear function. However, a line, whose equation does not go through the 

*  The symbol “⇔” stands for “if-and-only-if,” meaning that logically, it is a necessary and sufficient 
condition.
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origin of coordinates, is not a linear function. Figure 3.1a,b show lines that are 
linear functions and lines that are not linear functions.

Let us present an example of the homogeneity property given that

	 f x x( ) = 3 	 (3.7)

and α = 4.5, we need to verify that Equation (3.1) holds for all values of x 
when applied to Equation (3.7):

	 f x x( . ) ( . ).4 5 3 4 5= 	 (3.8)

To prove that the homogeneity property holds, let us present Table 3.1.

Figure 3.1  (a) Lines that are linear functions; (b) lines that are not linear functions.
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The entries of this table are:

Column 1:  x
Column 2:	 f(x) = 3x
Column 3:	 α
Column 4:	 α f(x) and
Column 5:	 f(α x)

By inspection of Table 3.1’s columns 4 and 5, it is clear that Equation (3.1) 
holds. Without loss of generality we can state Equation (3.1) will hold for the 
infinitely many values of x for the given f(x) and for any given value of α.

In reference to the additivity property we will prove that it is met by a linear 
function in a graphical way (Fig. 3.2).

By inspection of Figure 3.2 we can see that Equation (3.2) holds, repeated 
for the reader’s convenience

	 f x x f x f x( ) ( ) ( ).1 2 1 2+ = +

Homogeneity and additivity properties together are completely equivalent to 
stating that a linear function complies with the superposition property:

	 f x x f x f x( ) ( ) ( ).α α α α1 1 2 2 1 1 2 2+ = + 	 (3.9)

So when a function complies with Equation (3.9), it is said to be linear. Con-
versely, when a function is linear, it complies with Equation (3.9).

Logically, the above is stated as follows:
Given f(x), a function whose domain is x, and its range f(x) is a

	 Linear function f x x f x f x⇔ + = +( ) ( ) ( ).α α α α1 1 2 2 1 1 2 2

Table 3.1  Table used to exemplify numerically the homogeneity property

Col 1 Col 2 Col 3 Col 4 Col 5

x f(x) = 3x α α f(x) f(α x) = 4.5 × (3x)
0 f(0) = 3 × (0) = 0 4.5 4.5 × (0) = 0 4.5 × [3 × (0)] = 0
1 f(1) = 3 × (1) = 3 4.5 4.5 × (3) = 13.5 4.5 × [3 × (1)] = 13.5
2 f(2) = 3 × (2) = 6 4.5 4.5 × (6) = 27 4.5 × [3 × (2)] = 27
3 f(3) = 3 × (3) = 9 4.5 4.5 × (9) = 40.5 4.5 × [3 × (3)] = 40.5
n f(n) = 3 × (n) = 3 n 4.5 4.5 × (3 n) = 13.5 n 4.5 × [3 × (n)] = 13.5 n

Note: Col stands for Column.

Example 3.1  Prove that the equation of a straight line f(x) = 4x + 7, not 
passing through the origin of coordinates (i.e., b ≠ 0), is not a linear function 
of x.



Figure 3.2  The validity of the additivity property for a linear function. (a) Linear function evalu-
ated at x1: f(x1); (b) linear function evaluated at x2: f(x2); (c) linear function evaluated at x1 + x2: 
f(x1 + x2) = f(x1) + f(x2).
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3.2.1  Circuits Superposition

Let us now apply the superposition property to electric circuits. Assume that 
we are given an electrical circuit that can contain any number of resistors, in 
the black box represented in Figure 3.3. Two external voltage sources are 
applied to the circuit. We also refer to these two voltage sources as the circuit 
excitations. The output of the circuit is referred to as the circuit response.

Solution to Example 3.1

Simply using the homogeneity property, Equation (3.1), f(α x) = α f(x).
It can be seen that f(x) = 4x + 7 is not a linear function because

	 f x x( )α α= +4 7 	 (3.10)

and

	 α α α αf x x x( ) ( ) .= + = +4 7 4 7 	 (3.11)

From Equations (3.10) and (3.11) we see that

	 f x f x( ) ( ).α α≠ 	 (3.12)

Thus, function f(x) = 4x + 7, the equation of a straight line, is not a linear func-
tion from the standpoint that it does not comply with Equation (3.9). Nonethe-
less, f(x) = 4x + 7 is the equation of a straight line.

Figure 3.3  Electrical linear circuit with two external voltage sources: v1 and v2.
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If we have a linear circuit where x is the excitation and y = f(x) is its 
response, the superposition property tells us that

Given:

y1 = f(v1), where y1 is the response of the circuit due to excitation v1 and
y2 = f(v2), where y2 is the response of the circuit due to excitation v2.

The sum of the circuit responses y1 + y2 = f(v1) + f(v2) equals the response of 
the sum of the circuit excitations y1 + y2 = f(v1 + v2).

Moreover, thanks to the linearity of the circuit, we can also calculate the 
response of the circuit to excitation v1 while excitation v2 is inhibited. This 
yielding the response y1 for v2 = inhibited. Similarly, we can calculate the 
response of the circuit y2 when excitation v1 is inhibited. Finally, adding the 
individually found responses we obtain

	 y yv v1 2 2( ) ( ).for inhibited for 1 inhibited= =+ 	 (3.13)

Equation (3.13) provides the complete response of the circuit due to nonin-
hibited excitations or the response of the circuit due to both excitations applied 
simultaneously.

When the excitation is a voltage source v, inhibiting the excitation means 
to replace the voltage source with a short circuit (v = 0). When the excitation 
is a current source i, inhibiting the excitation means to remove the current 
source from the circuit, or open-circuiting the current source.

To follow up with the circuit given in Figure 3.3, we can solve the circuit by 
superposition, which means by applying one excitation at a time, while inhibit-
ing the other one. The complete response of the circuit is obtained by adding 
each of the individual responses as Figure 3.4a,b show. So the total response 
of the circuit is

	 V V Voutput output due to v output due to v= +- - - - - - 21 . 	 (3.14)

So now we may ask the question, why is it better to use superposition to solve 
a circuit, if it seems that the number of steps grows in the process? So let us 
address this question with an example.

Example 3.2  Given the circuit of Figure 3.5, find the current I2 through resis-
tor R2 using superposition.

Now let us apply superposition. Calculate the current through R2 but only 
due to the presence of the V = 12 V excitation, removing or open-circuiting 
current source I. We obtain the circuit shown in Figure 3.6, which clearly is 
simpler to solve than the original circuit of Figure 3.5. By inspection of circuit 
in Figure 3.6, the 12 V source is applied directly across R1, thus the current 
through R1 is easily calculated using Ohm’s law:
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Figure 3.4  Application of superposition to the circuit of Figure 3.3: (a) circuit response due to 
v1 when v2 = 0; (b) circuit response due to v2 when v1 = 0.
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	 I1 V/= 12 6 Ω. 	 (3.15)

Now let us calculate the current through the series of R2 and R3. Thus, current 
I23 is

	 I23 2 3= +V/ R R( ). 	 (3.16)
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Using the numerical values from Figure 3.6 leads to

	 I23 12 V/ 3 3 A= + =( ) .Ω 2 	 (3.17)

Now we need to calculate the current that flows through R2 when excitation 
V = 12 V is replaced by a short circuit. We present this circuit in Figure 3.7.

By close examination we can see that R1 is short-circuited, so basically only 
R2 and R3 are in parallel with the 3 A current source. This circuit is shown in 
Figure 3.8.

Figure 3.5  Circuit for Example 3.2.
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Figure 3.6  Example 3.2: Removing current source I and applying superposition under the 
effect of V.
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By inspection of Figure 3.8 note that the circuit was redrawn eliminating 
the presence of R1, because it was short-circuited (see Fig. 3.7). Clearly we see 
now that the 3-A current source I delivers current to two equal valued resis-
tors in parallel R2 and R3. From Kirchoff’s current law (KCL) we know that 
the current has to be divided equally between R2 and R3. Thus, the current 
flowing through R2, after the elimination of the 12-V voltage source, is 1.5 A.

Finally, to complete the application of superposition for Example 3.2, we 
present the previously obtained currents that flow through R2. When the 3-A 
current source was removed, the current through R2 flowed from left to right, 
as shown in Figure 3.9, under Idue to V=12 V. When the 12-V voltage source was 

Figure 3.7  Removing voltage source V and applying superposition under the effect of 
current I.
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Figure 3.8  Example 3.2: Eliminating the short circuited resistor R1.
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removed, the current through R2 flowed from right to left, as shown in Figure 
3.9, under Idue to I=3 A.

The net resulting current of 0.5 A, flows through R2 due to the simultaneous 
effect of both the voltage and the current sources in the direction on the larger 
current of 2 A.

Figure 3.9  Net current flowing through resistor R2.
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I = 1.5 A(due to I=3 A)

Net Current Flow through R is: 2 A − 1.5 A = 0.5 A in the direction of the larger current

2

2

2

Total due to both voltage and current sources
present is I = 2.0 − 1.5 = 0.5 A

= 2 − 1.5 = 0.5 AI

2

2

2

3.3  THE THÉVENIN METHOD

The Thévenin method is very powerful since it allows one to replace a large 
linear circuit with a voltage source and a resistor in series. Such voltage is 
referred to as the Thévenin voltage and the resistor is called the Thévenin 
resistor. If we are dealing with an AC circuit, the term resistor is replaced with 
impedance. From Chapter 2, impedance is a combination of R, L, and C circuit 
elements.
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*  Circuit elements refer to resistors in DC circuits; but it refers to resistors, inductors, and capaci-
tors in AC circuits.

The linear circuit, to be replaced, can contain any number of circuit ele-
ments*, independent and/or dependent voltage, and current sources. It is 
important to note that the controlling voltage or current of the dependent 
sources need to reside within the same linear circuit that is to be replaced with 
the Thévenin equivalent circuit.

Figure 3.10 shows a DC linear circuit and its Thévenin equivalent circuit. 
The Thévenin equivalent voltage is a DC source for the DC case. Figure 3.11 
shows an AC linear circuit and its Thévenin equivalent. The Thévenin equiva-
lent voltage is an AC source for the AC case.

In both Figures 3.10 and 3.11, the load can even be a nonlinear load, it is 
not required for it to be linear, as the circuit that will be replaced with its 
Thévenin equivalent does. The arbitrary load may also have dependent voltage 
or current sources. Their controlling voltage or current shall be within the 
arbitrary load circuit itself.

Figure 3.10  DC Thévenin equivalent of a DC circuit.
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Figure 3.11  AC Thévenin equivalent of an AC circuit.
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3.3.1  Application of the Thévenin Method

Methodology to find the Thévenin equivalent circuit: (as it applies to Example 
3.3, Fig. 3.12)

1.	 First slice the portion of the circuit that we want to find the Thévenin 
equivalent circuit at two nodes only. This circuit has to be linear.

In our example we have drawn a dotted line a-b. The portion of the 
circuit that we want to Thévenize is on the left-hand side of the dotted 
line. Ensure that if dependent sources are present on the circuit to be 
Thévenized, the slicing of the circuit must not separate the dependent 
sources from their respective controlling variables.

2.	 The Thévenin voltage is calculated as follows: separate the circuit to be 
Thévenized at the terminals a and b from the associated circuit that is 
on the right-and side of the dotted line. The Thévenin voltage (VThévenin) is 
calculated as the open-circuit voltage across terminals a and b. In particu-
lar, this is the voltage across resistor R3 for our example of Figure 3.12a.

3.	 To calculate the Thévenin resistance for DC circuits or the Thévenin 
impedance in AC circuits, inhibit in the linear circuit to be Thévenized 
all the independent voltage and current sources. To inhibit a voltage 
source, each source should be replaced with a short circuit. Open-
circuiting or simply removing the current source from the circuit inhibits 
a current source. No action needs to be taken with dependent voltage or 
current sources. However, it is appropriate to remind the reader that any 
dependent sources in the linear circuit to be Thévenized must have their 
controlling variable within the same circuit to be Thévenized. Once all 
independent sources have been inhibited, calculate the resistance in the 
DC case (or the impedance in the AC case) seen across terminals a and 
b. The result is what we call the Thévenin resistance (or impedance) 
referred to as either RTh (or ZTh).

4.	 The entire circuit on the left of the dotted line can now be replaced by 
the series of the Thévenin voltage source and the Thévenin resistance 
(or impedance).

Example 3.3, which follows, goes explicitly over a numerical applica-
tion of Thévenin.

Example 3.3  Given the circuit of Figure 3.12a, find the Thévenin equivalent 
circuit at the left of the a-b dotted line. Use the Thévenin equivalent circuit 
found to calculate the current of the original circuit.

Referring to Figure 3.12a, we want to find the Thévenin equivalent of the 
circuit to the left of the a-b dotted line. Separating this circuit from the rest of 
the circuit on the right side of the a-b dotted line, we next find the open-circuit 
voltage across resistor R3. This is the Thévenin voltage, and it is calculated as 
follows applying Kirchoff’s voltage law (KVL):
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Figure 3.12  Circuit to apply the Thévenin method: (a) original circuit; (b) Thévenin equivalent 
on left of portion not to be Thévenized; (c) merging of the found Thévenin equivalent with the 
non-Thévenized portion of the circuit.
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	 V V R R RTh = +1 3 1 3/( ) 	 (3.18)

	 VTh = × + =10 3 6 3 3 333/ V( ) . . 	 (3.19)

The Thévenin resistance RTh is calculated by inhibiting (short-circuiting) the 
10-V voltage source and calculating the resistance seen to the left of the a-b 
dotted line.

This yields the parallel of R1 and R3:

	 R R R R RTh = × + =( ) ( ) .1 3 1 3 2/ Ω 	 (3.20)

Next we substitute the circuit to the left of the a-b dotted line with its Thévenin 
equivalent, which is a 3.333-V DC source, from Equation (3.19) in series with 
RTh = 2 Ω, from Equation (3.20). Finally, in Figure 3.12c we merged the 
Thévenin equivalent circuit with the rest of the untouched right-hand side 
original circuit. The resulting circuit is almost trivial and allows us to calcu
late the current in the circuit by Ohm’s law in a straightforward fashion. We 
connect the found Thévenin equivalent circuit with the right-hand side circuit 
of Figure 3.12b. Combining the two voltage sources into Vnew, we obtain Figure 
3.12c:

	 I = − =( . ) . .5 3 333 V/ A5 0 3334Ω 	 (3.21)

Example 3.4  Given the circuit of Figure 3.13a, find the Thévenin equivalent 
circuit of the circuit to the left of the a-b dotted line. Reattach the equivalent 
circuit to resistor R3 to calculate the current through R3.

Figure 3.13a shows the originally given circuit, while Figure 3.13b shows the cir
cuit to-be-Thévenized not connected to its load R3. At this point we calculate 
the Thévenin voltage; the open-circuit voltage across terminals a and b needs to 
be determined. To proceed with this calculation, we will use the superposition 
method; refer to the circuit of Figure 3.13b. We will split the problem into two 
easier problems to solve. We will compute the voltage Vab due to the effect of 
8-V voltage source V, open-circuiting the current source I. This will yield VTh due 

to 8 V. On the second step we calculate Vab due to the effect of the 1-A current 
source I, short-circuiting the 8-V voltage source. This will yield VTh due to 1 A. Upon 
obtaining those two partial voltages, the total voltage, which is the Thévenin 
voltage, is the algebraic sum of VTh due to 8 V and VTh due to 1 A. An algebraic sum 
refers to performing a sum taking into account the signs or polarities of the 
voltages involved. In our particular case, both polarities are positive.

Let us refer to Figure 3.14a and b to see how we partition the originally 
given circuit (Fig. 3.13a) into two separate circuits, each of which will be driven 
by one of the sources while the other source is inhibited.

Referring to Figure 3.14a we calculate VTh due to 8 V as follows:

	 V VR R RTh due to  V 2 /8 1 2= +( ). 	 (3.22)
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Using the respective values in Equation (3.22) from Figure 3.14a, we obtain

	 VTh due to  V / V8 8 12 4 12 6= × + =( ) . 	 (3.23)

Now referring to Figure 3.13b, we calculate VTh due to 1 A as follows:
By KCL we can see by inspection that

	 1 1 2= +( ) ( ),V R V Rab ab/ / 	 (3.24)

where: Vab/R1 and Vab/R2 are respectively the currents through resistors R1 
and R2.

Using the component values from Figure 3.13b into Equation (3.24) yields

	 1 1 4 1 12= +Vab( )./ / 	 (3.25)

	 V VTh due to ab  A 3 V1 = = . 	 (3.26)

Figure 3.13  Circuit for Example 3.4: (a) original circuit; (b) sliced circuit to which Thévenin is 
applied.
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Figure 3.14  Superposition method for Thévenin Example 3.4: (a) effect of V = 8 V voltage 
source, 1 A current source open-circuited; (b) effect of I = 1 A current source, 8 V voltage 
source short-circuited; (c) elimination of all sources to compute the Thévenin resistance.
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Now from the results of Equations (3.23) and (3.26) we add both voltages 
leading to

	 V VTh due to Th due to  V   A V V V8 1 6 3 9+ = + = . 	 (3.27)

Now we need to calculate the Thévenin resistance (refer to Figure 3.14c). The 
voltage source is replaced by a short circuit and the current source is open-
circuited. RTh is simply the parallel of resistors R1 and R2. So now we have all 
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the elements of the Thévenin equivalent circuit. These are shown in Figure 
3.15a. In Figure 3.15b, the Thévenin equivalent circuit is joined to resistor  
R3. Finally, the current through R3 is simply calculated using Ohm’s law, 
leading to

	 I V R RTh Th= + = + =( ) ( ) .3 9 3 6 1/ A 	 (3.28)

Figure 3.15  (a) Thévenin equivalent of Example 3.4; (b) Thévenin equivalent merged with the 
resistive load.
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3.4  NORTON’S METHOD

Several decades after the invention of the Thévenin method, American engi-
neer Edward Norton invented an analysis method which bears his name today. 
Norton’s method of analysis is the dual of Thévenin’s method. Duality, in 
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Table 3.2  Some dual pairs

Resistance Conductance
Inductance Capacitance
Voltage Current
Voltage source Current source
Node Mesh
Open circuit Short circuit
KVL KCL
Thévenin Norton
Elements in series Elements in parallel

Figure 3.16  (a) Thévenin equivalent circuit; (b) Norton equivalent circuit.
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a

b

Norton Norton = 1/RTh

Th

Th

(a)

(b)

circuit analysis, refers to circuits that can be described by the same set of equa-
tions and solutions, except that certain elements are interchanged.

Table 3.2 lists the dual-pair elements.
The dual of a Thévenin equivalent circuit is its Norton’s equivalent.
Figure 3.16 shows the dual of Thévenin equivalent. Thévenin is a series of 

two elements; Norton is transformed by duality into a parallel of two elements. 
The Thévenin voltage source becomes a Norton current source. The Thévenin 
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Example 3.5  Given the Thévenin equivalent circuit of Figure 3.16a, find the 
Norton equivalent circuit. Assume that VTh = 24 V and RTh = 4 Ω.

Using the source transformation from Equations (3.31) and (3.32), the 
Norton current source is calculated as follows:

	 I V RNorton Th Th= = =/ / A24 4 6 . 	 (3.33)

resistance becomes a Norton conductance. For more details on duality in 
circuit theory, the reader is referred to the Bibliography at the end of the 
chapter.

In Figure 3.16b the value of the Norton current source is given by

	 I V RNorton Th Th= / 	 (3.29)

The Norton current is obtained short-circuiting the Thévenin equivalent circuit 
and calculating the current that flows through the short. So the Norton current 
source (INorton) is the short-circuit current in the Thévenin equivalent circuit.

And the Norton resistance is

	 R RThN = . 	 (3.30)

Note the Norton equivalent resistance is identical to the Thévenin equivalent 
resistance. For the sake of simplicity we will continue to use RTh whether we 
use the Thévenin or the Norton equivalent circuits.

3.4.1  Source Transformations

Every voltage source in series with a resistance or impedance can be converted 
into a parallel equivalent of a current source in parallel with a conductance 
or admittance.

Equations (3.31) and (3.32) address the source transformations between 
Thévenin and Norton equivalent circuits. The equations below address the 
source transformation when we have an AC Thévenin source and in series with 
a Thévenin impedance.

	 I = V /ZNorton Th Th 	 (3.31)

and

	 Z = ZN Th. 	 (3.32)

It is important to understand that the current, voltage, and impedance in Equa-
tions (3.31) and (3.32) are all phasors. Some textbooks define the Norton 
admittance YN = 1/ZN, which is consistent with Equations (3.31) and (3.32).
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The Norton equivalent resistance equals the Thévenin resistance:

	 R RTh N= = 4 Ω. 	 (3.34)

The source transformation method allows the conversion of a Thévenin equiv-
alent circuit into a Norton equivalent circuit and vice versa. There is a direct 
way to obtain the Norton equivalent circuit from the given circuit, without 
previously finding its Thévenin equivalent. This is the topic of the following 
section.

3.4.2  Finding the Norton Equivalent Circuit Directly  
from the Given Circuit

The procedure follows:

1.	 Separate the circuit for which the Norton equivalent circuit is to be found 
from the rest of the circuit or its load. If there are any dependent voltage 
or current sources in the circuit for which the equivalent circuit is to be 
found, the dependent source and its control variable must reside within 
such circuit.

2.	 To find the Norton resistance, calculate it exactly as the Thévenin resistance 
was calculated. Inhibit all voltage and current sources in the circuit. That is, 
open-circuit all current sources, and short-circuit all voltage sources.

3.	 Calculate the Norton equivalent current source by shorting terminals a 
and b of the circuit whose Norton equivalent circuit is to be found. Refer 
to Figure 3.17. The Norton current source IN is the calculated short-
circuit current that flows through shorted terminals a and b.

4.	 The Norton equivalent of the original circuit is the parallel of IN and RTh 
(remember that RTh and RN are always identical).

Example 3.6  Find the Norton equivalent circuit of the circuit of Figure 3.17b. 
Use the found Norton equivalent circuit to calculate the load current IL 
through resistor RL, refer to Figure 3.17a.

By inspection of Figure 3.17b, inhibiting all voltage and current sources, we 
find that the Norton resistance equals the series of R1 and R2 in parallel with 
R3. Thus,

	 R R R R R R R RN Th= = + + +( ) ( ).1 2 3 1 2 3/ 	 (3.35)

Using the given values for the resistors,

	 R RN Th= = + + + =( ) ( ) .3 3 6 3 3 6 3/ Ω 	 (3.36)

Let us calculate the Norton current source using Equation (3.33). Prior to this 
calculation, let us simplify the circuit from Figure 3.17b a little further.
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Figure 3.17  Finding the Norton equivalent circuit for Example 3.6: (a) original circuit; (b) circuit 
from which to find Norton’s equivalent circuit.
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By inspection of the circuit in Figure 3.17b note that V and R1 are in series, 
on the left side of nodes x and y. We can do a source transformation of V and 
R1 to convert them into a current source in parallel with a resistor.

	 I I V R V Rshort circuit Norton Th Th- / /= = = 1. 	 (3.37)

	 I I Ishort circuit Norton ST- / A= = = =21 3 7 . 	 (3.38)

The result of this source transformation is provided in Figure 3.18b. Note that 
after such source transformation, the 3 Ω resistor R1 appears in Figure 3.18b 
renamed as RST. The Norton current calculated in the source transformation 
is presented as IST = 7 A. Note: The subscript ST stands for source transforma-
tion. Then, using the Norton equivalent circuit for the voltage source transfor-
mation and substituting it into the original circuit of Figure 3.17b, we obtain 
Figure 3.19a.

So let us combine the two current sources into one, thus 6 A + 7 A = 13 A 
and name this current ICombined (refer to Figure 3.19b). Now let us short-circuit 
the terminals a and b and calculate the Norton short circuit current. This will 
be done in four steps, with Equations (3.39) through (3.42).

Figure 3.18  Source transformation as an interim step toward finding the Norton equivalent: 
(a) Thévenin equivalent; (b) Norton equivalent.
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Figure 3.19  (a) Circuit of Example 3.6 after a source transformation; (b) circuit of Example 
3.6 after combination of the two current sources; (c) final Norton equivalent circuit: Example 3.6.
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From Figure 3.19b and since R2 and RST are in parallel, we get

	 V I R R R Rpq Combined ST ST= +2 2/( ), 	 (3.39)

where Vpq is the voltage across the terminals of the (13 A) ICombined current source.
Note: In Figure 3.19b, the shorting of terminals a and b, essentially elimi-

nates resistor R3 from the circuit seen in Figure 3.19a. Since this voltage Vpq is 
the same as the voltage across the parallel of RST and R2, by Ohm’s law:
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3.5  THE MESH METHOD OF ANALYSIS

The mesh method of circuit analysis is based on KVL. It provides a more 
effective way of deriving circuit equations virtually by quick inspection of the 
circuit. The mesh method is more suitable and intuitive when the circuit con-
tains independent voltage sources. The method is somewhat less intuitive when 
current sources are also included and probably the least intuitive when depen-
dent voltage and current sources are also present. The mesh method solves for 
mesh currents as opposed to finding individual branch currents for every 
circuit branch. This is advantageous because the number of unknowns is some-
what reduced.

We will address the methodology of writing mesh equations for various 
circuits via examples that will grow in complexity.

	 I I R R R R Rshort circuit Combined ST ST= +[ ( )]2 2 2/ / 	 (3.40)

Eliminating R2 from numerator and denominator:

	 I I R R Rshort circuit Combined ST ST= +/( )2 	 (3.41)

Now using the values for Equation (3.41) from Figure 3.19b:

	 Ishort circuit = + =13 3 3 3 6 5/ A( ) . . 	 (3.42)

This short circuit current of 6.5 A will be the Norton equivalent current source 
of the originally provided circuit (Fig. 3.17b). The 3-Ω resistor RST from Equa-
tion (3.36) is the Thévenin resistor of the equivalent model, as it can be seen 
in Figure 3.19c.

The final step, Figure 3.19c, is to attach the 7-Ω load resistor RL to the 
Norton equivalent circuit and calculate the current through RL.

Thus, we obtain

	 V I R R R Rab Norton N L N L= +[ ( )]./ 	 (3.43)

Thus, the current through RL is:

	 I V RL ab L= / . 	 (3.44)

Plugging the value of Vab from Equation (3.44) into Equation (3.43)

	 I I R R RL Norton N N L= +[ ( )]./ 	 (3.45)

	 IL = 1 95 A. . 	 (3.46)
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The following assumptions when using the mesh method are made:

1.	 All circuits that we will analyze are planar. The mesh method does not 
work for non-planar circuits.

2. 	A mesh is a closed loop that does not contain other loops within it.

Planar circuits are those circuits that can be drawn on a plane without its 
branches crossing each other. Nonplanar circuits are those that cannot be 
drawn or redrawn without one or more branches crossing. Figure 3.20 presents 
examples of planar and nonplanar circuits. Nonplanar circuits are outside the 
scope of this book and are studied in advanced circuit analysis courses. Careful 
observation of Figure 3.20a reveals that the circuit is actually planar; however, 
at first sight it initially may appear nonplanar. Circuit Figure 3.20b is the exact 
same circuit as that in a. Finally, c is a true nonplanar circuit.

Figure 3.21 shows a simple circuit with two meshes: one of them is: a-b-c-
d-a, the second one is b-e-f-c-b. It is important to observe that a-b-e-f-c-d-a is 
a loop and not a mesh, because it includes one previously defined mesh.

3.5.1  Establishing Mesh Equations. Circuits with Voltage Sources

Let us assume we have a two-mesh circuit as the one shown in Figure 3.22. 
Note that the circuit has three independent voltage sources, three resistors and 
two meshes. We also introduce the concept of mesh currents. Mesh current II 
is the current in the mesh formed by elements V1, R1, R2, and V2. Mesh current 
III is the current in the mesh formed by elements V2, R2, R3, and V3. The branch 
currents are Ib1, Ib2, and Ib3. It is important to see that mesh currents are not 
in general the same as branch currents. Note that mesh currents are named 
with Roman numeral subscripts in this example, whereas branch currents are 
named with regular number subscripts.

Branch current Ib1 is the current that flows through the branch that contains 
voltage source V1 and resistor R1. Similarly, branch current Ib2 is the current 
that flows through the branch that contains V2 and R2; and branch current Ib3 
is the branch current that flows through elements R3 and V3. So let us look 
into the relationship that exists between branch currents and mesh currents.

In particular for the circuit shown in Figure 3.22, the following are how the 
branch and mesh currents relate to each other:

	 I II b= 1 	 (3.47)

	 I I II II b− = 2 	 (3.48)

	 I III b= 3, 	 (3.49)

where in Equations (3.47) through (3.49) the currents in the left-hand side of 
the equal signs are mesh currents. The currents on the right-hand side of the 
equal sign are branch currents. Once we establish the mesh equations for the 
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Figure 3.20  Planar and nonplanar circuits: (a) nonplanar circuit, that is, planar circuit in dis-
guise; (b) same planar circuit redrawn; (c) true nonplanar circuit.
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given circuit, the mesh currents are the unknowns in the mesh method of 
analysis. Since we have two meshes, we will be able to obtain two mesh equa-
tions and solve for the unknown mesh currents II and III. The branch currents 
in each specific circuit element are calculated using Equations (3.47) through 
(3.49) after the mesh currents are found.
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Figure 3.21  Meshes and loops in a circuit.
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Figure 3.22  Two-mesh equations for Example 3.7.

R1

1

R

R

3

3

2

2

V

V

V
II III

Mesh 1 Mesh 2

Ib1 Ib3

b2I

Initially we will apply KVL to each mesh, but work with mesh currents 
instead of branch currents. So for

	 Mesh 1 1 2 1 2: ( ) .V V I R I I RI I II− = + − 	 (3.50)

	 Mesh 2 2 3 2 3: ( ) .V V I I R I RII I II− = − + 	 (3.51)

Note that the direction of the mesh currents was arbitrarily chosen to be 
clockwise. When applying KVL to each mesh we travel each mesh in the 
clockwise direction too. It is usually a headache to the reader, understanding 
why is that currents directions and the direction of traveling the meshes are 
picked arbitrarily? The simple answer to this is that as long as the voltage rises 
and voltage drops signs are respected in a consistent manner, the numerical 
answer will provide a positive sign when such current direction was assigned 
in the way in which it was assumed; or it will provide a negative sign if the 
current actually flows in the direction opposite to the one assumed. Do not 
get hung up on this; solving problems will clarify these apparently confusing 
arbitrary choices.
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So now let us regroup the terms of Equations (3.50) and (3.51) with respect 
to the mesh currents and obtain

	 Mesh 11 2 1 2 2: ( ) .V V I R R I RI II− = + − 	 (3.52)

	 Mesh 2 2 3 2 2 3: ( ).V V I R I R RI II− = − + + 	 (3.53)

Equations (3.52) and (3.53) are a system of simultaneous linear equations that 
allows us to find the two unknown mesh currents II and III.

We can also rewrite the system of simultaneous equations in matrix form 
as follows:

	
V V

V V

R R R

R R R

I

I
I

II

1 2

2 3

1 2 2

2 2 3

−
−

=
+ −

− +
. 	 (3.54)

Example 3.7  Now let us consider a numerical example using the circuit of 
Figure 3.22 and mesh equations in matrix form, from Equation (3.54), assum-
ing the following component values:

	 R R R1 2 33 1 3= = =Ω Ω Ω, , . 	 (3.55)

	 V V V1 2= = =V 1 V 2 V2 3, , . 	 (3.56)

Using the values from Equations (3.53) and (3.54) into the mesh equation 
obtained in Equation (3.52) we obtain

	
2 1

1 2

3 1 1

1 3 1

−
−







=
+ −
− +













I

I
I

II

. 	 (3.57)

Solving matrix Equation (3.57) we obtain

	 II = 0 2. .A 	 (3.58)

	 III = −0 2. .A 	 (3.59)

Using the mesh to branch currents relationships from Equations (3.47), (3.48), 
and (3.49) we obtain

	 I II b= =1 0 2. A 	 (3.60)

	 I I II II b− = = − − =2 0 2 0 2 0 4. ( . ) .A A A 	 (3.61)

	 I III = = −b A3 0 2. . 	 (3.62)

Refer to Figure 3.23 to see the original circuit from Figure 3.22 with the added 
mesh and branch currents values found in the above calculations.

To verify the correctness of the numerical results, work out the mesh equa-
tions of circuit of Figure 3.23, using the results of Equations (3.58) through 
(3.62). Make sure that KCL for all nodes and KVL for all meshes are met.
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Example 3.8  Given the circuit of Figure 3.24, derive the mesh equations; find 
all the branch currents as functions of the mesh currents and the voltage at 
node A with respect to ground. Provide numerical answers for all of the cur-
rents and voltages requested.

By inspection of the circuit in Figure 3.24 we can write the mesh equations 
in the same way we did it for the previous problem, using KVL:

	 Mesh 1 1 2 1 2: ( ) ( ) .V V I I R I I RI III I II− = − + − 	 (3.63)

	 Mesh 2 2 3 2 3: ( ) ( ) .V V I I R I I RII I II III− = − + − 	 (3.64)

	 Mesh 3 4 4 3 1: ( ) ( ) .V I R I I R I I RIII III II III I= + − + − 	 (3.65)

Regrouping Equations (3.63) through (3.65) based on each of the mesh cur-
rents, we obtain

	 Mesh (1 1 2 1 2 2 1: ) .V V I R R I R I RI II III− = + − − 	 (3.66)

	 Mesh (2 2 3 2 2 3 3: ) .V V I R I R R I RI II III− = − + + − 	 (3.67)

	 Mesh 3 2 3 1 3 1 3 4: ( ).V V I R I R I R R RI II III− = − − + + + 	 (3.68)

We will come back to Equations (3.66) through (3.68) when we will cover 
finding out the mesh equations simply by inspection of the circuit; eliminating 
the steps where we applied KVL, Equations (3.63) through (3.65).

Now rewriting Equations (3.66) through (3.68) in matrix form we get

	

V V

V V

V

R R R R

R R R R

R R R R R

I

I

I

I

II

III

1 2

2 3

4

1 2 2 1

2 2 3 3

1 3 1 3 4

−
− =

+ − −
− + −
− − + +

.. 	 (3.69)

Using the numerical values from Figure 3.24 into matrix Equation (3.69), we 
obtain

Figure 3.23  Two-mesh equations solutions for Example 3.7.
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5 8

8 4

7

1 2 2 1

2 2 3 3

1 3 1 3 4

−
− =

+ − −
− + −
− − + +

I

I

I

I

II

III

. 	 (3.70)

Solving the matrix above, it yields:

	 II = 1 36364. .A 	 (3.71)

	 III = 2 54545. .A 	 (3.72)

	 IIII = 2 A. 	 (3.73)

By inspection of the circuit of Figure 3.24 we see that the branch to mesh 
current relationships are

	 I I Ib I III1 = − . 	 (3.74)

	 I I Ib I II2 = − . 	 (3.75)

	 I I Ib II III3 = − . 	 (3.76)

	 I Ib III4 = . 	 (3.77)

Plugging the values of II (Eq. 3.71) through IIII (Eq. 3.73) into Equations (3.74) 
through (3.77) yields:

Figure 3.24  Mesh analysis for circuit for Example 3.8.
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	 Ib1 0 63644= − . .A 	 (3.78)

	 Ib2 1 18182= − . .A 	 (3.79)

	 Ib3 0 54545= . .A 	 (3.80)

	 Ib4 2= A. 	 (3.81)

By inspection of the branch currents in Figure 3.24 and the results of Equa-
tions (3.78) through (3.81) we can see that results for currents Ib1 and Ib2 
produced negative results. This means that if we go back to Figure 3.24, cur-
rents Ib1 and Ib2 actually flow in the opposite direction as that shown in the 
picture.

Finally, it is easy to see that voltage at node A with respect to ground (or 
VA) equals

	 V V I RA b= −1 1 1. 	 (3.82)

Plugging the given and the calculated values into Equation (3.77) we obtain

	 VA = − − =5 0 63644 1 5 63643( . ) . .V 	 (3.83)

As an additional exercise to the reader, verify that all the branch currents, 
given by Equations (3.74) through (3.77), numerically comply with KCL. The 
reader should also verify numerically that all KVL Equations (3.66) through 
(3.68) hold. Hint: Use the calculated values and plug them into the appropriate 
circuit equations.

Example 3.9  Writing Mesh Equations by Inspection of the Circuit
Let us start first with the circuit of Example 3.7, Figure 3.22. We repeat this 
circuit for the reader’s convenience in Figure 3.25.

Let us study the circuit diagram carefully. Mesh 1 contains voltage sources 
V1 and V2 and resistors R1 and R2. Mesh current II is defined to travel mesh 1 
in the clockwise direction. Mesh 2 contains voltage sources V2 and V3 and 
resistors R2 and R3. Mesh current III is defined to travel mesh 2 also in a clock-
wise direction.

3.5.2  Establishing Mesh Equations by Inspection of the Circuit

From the example problems already addressed, we notice that we have been 
working with circuits that only have voltage sources. Because of this, it is more 
suitable and also straightforward to derive mesh equations using KVL around 
each mesh. What we will do in this section is to skip the writing of the circuit 
equations using KVL, as we did for Example 3.7; see Equations (3.52) and 
(3.53).
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Referring to the previously obtained mesh equations in matrix form, refer 
to Equation (3.54), we repeat them here again for the reader’s convenience:

	
V V

V V

R R R

R R R

I

I
I

II

1 2

2 3

1 2 2

2 2 3

−
−

=
+ −

− +
	 (3.84)

So now referring to matrix Equation (3.84), note that the vector column of 
voltages has 2 × 1 dimensions and elements:

	 v V V1 1 2= − . 	 (3.85)

and

	 v V V2 2 3= − . 	 (3.86)

The 2 × 2 resistance matrix has elements

	 a R R a R11 1 2 12 2= + = − 	 (3.87)

	 a R a R R21 2 22 2 3= − = + 	 (3.88)

The 2 × 1 vector column of currents contains mesh currents II and III. Usually 
the mesh currents are the unknowns to be found.

We can also express the mesh equations with Ohm’s law in matrix form:

	 V R I= , 	 (3.89)

where | V | is a 2 × 1 voltage column, |R| is a 2 × 2 resistance matrix, and |I| is 
a 2 × 1 current column.

For the construction of the mesh equations in matrix form, we make the 
following observations:

Figure 3.25  Circuit for Example 3.9 finding mesh equations by circuit inspection.
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The top element of the voltage column v1 equals the algebraic sum (taking 
into account the sign of each source) of the voltage sources in mesh 1, traveling 
mesh 1 in the clockwise direction. That is V1 − V2 from Equation (3.85).

The bottom element of the voltage column v2 equals the algebraic sum of 
the voltage sources of mesh 2 traveling mesh 2 in the clockwise direction. That 
is V2 − V3 from Equation (3.86)

Now for the resistive matrix, element a11 will always have the sum of all the 
resistive elements in mesh 1. Note that this sum will always be a sum of posi-
tive numbers.

For the resistive matrix, element a22 will always have the sum of all the 
resistive elements in mesh 2. Note that this sum will always be a sum of posi-
tive numbers.

Let us concentrate on the a12 term of the resistive matrix. We see (Fig. 3.25) 
that resistor R2 is a common element between meshes I and II. And since mesh 
current II flows in the clockwise direction, while mesh current III flows through 
R2 in the opposite direction; the contribution of the III R2 term will have a 
negative sign. Note that if both mesh currents had been chosen such that they 
both flowed through the common element in the same direction, then the sign 
of term III R2 would have been positive.

Finally, for the resistance matrix terms a21 is the term in mesh 2 that is 
common to mesh 1. For the same reason, since mesh current III flows in the 
opposite direction of mesh current II, the term a21 will have a negative sign.

The column of mesh currents simply contains the unknown mesh currents 
to be found which are II and III. Let us also observe that the resistance matrix 
will always have positive elements on its main diagonal: that is, elements a11 
and a22. The reciprocal terms (a12 and a21) may be both positive and both nega-
tive depending on the directions chosen for the mesh currents, as explained 
earlier. Finally, if the circuit is passive, that means it does not contain any 
dependent sources, elements a12 and a21 are identical in sign and magnitude. 
This is to say that the resistance matrix is symmetrical.

Important Points: Deriving Mesh Equations by Circuit Inspection:
Resistance Matrix: Main diagonal always contains positive elements, none of 
which can be zero.

If the circuit is passive the resistance matrix is symmetrical (i.e., a12 = a21).

A passive circuit only contains resistors, inductors, or capacitors, but it cannot 
contain dependent voltage or dependent current sources. Some examples 
using dependent sources will be given in Chapter 6.

Drill Problem 3.10:  Using the previously seen methodology, find out by 
inspection the mesh equations for the circuit of Figure 3.26 (this is the same 
circuit used for Example 3.8).
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3.5.3  Establishing Mesh Equations When There Are also  
Current Sources

The mesh method of analysis is very straightforward when the circuit contains 
voltage sources. However, if the circuit in addition to containing voltage 
sources contains current sources, some changes will occur in the mesh  
equations. To better understand the differences, let us address this with 
Example 3.11.

Figure 3.26  Mesh equations by circuit inspection for Drill Problem 3.10.
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Example 3.11  Refer to the circuit of Figure 3.27 to work on this example.

Some Important Notations Pertaining to Circuits:
Referring to the circuit of Figure 3.27: Note that the voltage across resistor R1 
is VA − VREF = VA − 0 = VA

The voltage across resistor R2 assumes the highest voltage at node B with 
respect to node A is denoted VBA, which is also equal to VB − VA. It also means 
that node B is more positive than node A. Note that if the voltage at node B 
is less positive than the voltage of node A, then VB − VA is a negative number. 
For example, If VB = 4 V and VA = 5 V, then VB − VA = −1 V.

On the other hand, if we want to talk about the voltage across resistor R2, 
where the higher voltage is assumed to be at node A, and the lower voltage 
is at node B, the voltage across R2 is VAB which is also equal to VA − VB. Also 
note that VAB = −VBA.

The voltage across current source IS1 is VDA. The voltage at node D is 
assumed to be larger than the voltage at node A. That is: VDA = VD − VA.
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Similarly, the voltage across current source IS2 is VB. The voltage at node B 
is assumed to be higher than the voltage at node VREF; note that VREF was 
defined as our reference or zero-volt ground node.

So now by inspection of circuit of Figure 3.27 we see four meshes, that is, 
I, II, III, and IV. Starting with mesh I, if we want to establish the mesh equa-
tions for this mesh, we cannot use the value of the current source IS2 in the 
KVL equations since the voltage across current source IS2 is VB. We can then 
write mesh I equation as follows:

	 Mesh I V I I R I RB IV I I = − −( ) 2 1 	 (3.90)

	 Mesh II V I I R I I RB II IV II III = − + −( ) ( )3 4 	 (3.91)

	 Mesh III V I R I I RIII III II − = + −1 5 4( ) 	 (3.92)

It is not necessary to write the equation for Mesh IV since mesh current IV 
(IIV) is known numerically. That is,

	 I IIV S= 1. 	 (3.93)

The last equation we need is current source IS2 which equals the differences 
between mesh currents III and II. That is,

	 I I IS II I2 = − . 	 (3.94)

Figure 3.27  Mesh equations of circuits with voltage and current sources for Example 3.11.
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Refer to Figure 3.28, the super-mesh just described is shown after the physical 
removal of current source IS2. Remember this step is justified by Equations 
(3.95) and (3.96).

Referring to Figure 3.28, note that independent current source IS1 is identi-
cal to the selected mesh current IIV. In a typical circuit, like the one of Figure 
3.27, the independent current and voltage sources are known; the same goes 
for the resistors. Generally, the mesh currents are unknown. But let us talk 
about how many mesh current equations we need and how many mesh cur-
rents are unknown. We have a total of four mesh currents II, III, IIII, and IIV. 

Now if we subtract Equation (3.91) from Equation (3.90), the unknown voltage 
VB is eliminated from the result and we obtain

	 ( ) ( ) ( ) .I I R I R I I R I I RIV I I IV II III II− − + − + − =2 1 3 4 0 	 (3.95)

Reordering Equation (3.95) grouping by mesh currents yields

	 − + − + + + + =I R R I R R I R I R RI II III IV( ) ( ) ( ) .1 2 3 4 4 2 3 0 	 (3.96)

The elimination of voltage VB from Equations (3.95) and (3.96) is equivalent 
to thinking as merging meshes I and II; this new merged mesh is called a super-
mesh. This super-mesh consists of elements R1, R2, R3, and R4 after the elimina-
tion of current source IS2.

Figure 3.28  The creation of the super-mesh for Example 3.11.
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We already mentioned that IIV is numerically known because it is equal to the 
value of independent current source IS1, see Figure 3.27. Thus, the only unknown 
mesh currents are: II, III, and IIII. To find the three unknown mesh currents we 
need three linearly independent equations. The first one is Equation (3.96) and 
the other two are Equations (3.92) and (3.94). We repeat these three key equa-
tions here for the reader’s convenience. Since we also know from Equation 
(3.93) that mesh current IIV is known and equals IS1, we replace IIV with IS1 in 
Equation (3.96) and obtain

	 − + − + + + + =I R R I R R I R I R RI II III S( (1 2 3 4 4 1 2 3 0) ( ) ) . 	 (3.97)

	 − = + −V I R I I RIII III II1 5 4( ) . 	 (3.98)

where IS2 = III − II

In a typical problem all resistors R1 through R5, the two current sources IS1 
and IS2, and voltage source V1 are numerically known.

What we just did mathematically with Equation (3.97) is the following:
The voltage VB across current source IS2 is not initially known and Equation 

(3.96) eliminates VB. This merges or creates a so called super-mesh with meshes 
I and II. Two meshes that share a current source are referred to as an essential 
mesh. So we re-draw the circuit of Figure 3.27 showing the newly formed 
super-mesh and it is shown in Figure 3.28. On the other hand, mesh IV is 
nonessential because its current source IS1 is not shared with any other mesh. 
Thus, we eliminate (or open circuit) current source IS1. These steps along with 
the super-mesh are both shown in the circuit of Figure 3.29.

Figure 3.29  Circuit for Example 3.11 after the elimination of all independent current sources.
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It is important to state that a super-mesh does not have a current of its own. 
Note that the original mesh currents II through IIV continue to flow through 
the elements of the newly formed super-mesh in Figure 3.29. This is certainly 
a requirement which was derived by Equation (3.96). We will show next a 
simpler method using the super-mesh concept of deriving Equation (3.96), 
without having to write the individual equations for meshes I and II as we did 
previously.

Following the super-mesh of Figure 3.29, travel the super-mesh in the direc-
tion indicated by the heavy arrow accounting for all voltage drops and rises. 
In our example, the super-mesh does not have any voltage rises (i.e., voltage 
sources) of its own; however, it may have them in other examples.

	 I R I I R I I R I II I IV II IV II III1 2 3 R+ − + − + − =( ) ( ) ( ) .4 0 	 (3.99)

Since mesh current IIV equals the current IS1 (Fig. 3.27),

	 I IIV S= 1. 	 (3.100)

After regrouping terms in Equation (3.99) around, the mesh current becomes:

	 − + − + + + + =I R R I R R I R I R RI II III S( ( (1 2 3 4 4 1 2 3 0) ) ) . 	 (3.101)

Note that Equation (3.101) is identical to Equation (3.97).
The fourth and last equation is for essential mesh III. This is probably the 

simplest equation to write since it contains only a voltage source and we need 
to write the mesh equation using KVL. Note: An essential mesh is one that 
has current sources, and it is not a super mesh.

	 Mesh III V I I R I RIII II III − = − +1 4 5( ) . 	 (3.102)

Solving the four equations, which we rewrite below for the reader’s conve-
nience, all mesh currents, are numerically obtained.

	 − + − + + + + =I R R I R R I R I R RI II III S( ( (1 2 3 4 4 1 2 3 0) ) ) . 	 (3.103)

	 − = + −V I R I I RIII III II1 5 4( ) . 	 (3.104)

	 I I IS II I2 = − . 	 (3.105)

A system of three simultaneous linear equations with three unknowns; Equa-
tions (3.103) through (3.105), is solved to obtain mesh currents II, III, and IIII.

Remember that IIV is already known by inspection of the circuit of Figure 
3.27, Equation (3.100).

By inspection of the circuit of Figure 3.30 we can find the branch currents 
on every resistor as a function of their mesh currents.
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	 Branch current through resistor R I IB I   1 1= = . 	 (3.106)

	 Branch current through resistor R I I IB IV   I2 2= = − . 	 (3.107)

	 Branch current through resistor R I I IB II IV   3 3= = − . 	 (3.108)

	 Branch current through resistor R I I IB II III   4 4= = − . 	 (3.109)

	 Branch current through resistor R I IB III   5 5= = . 	 (3.110)

Figure 3.30  Circuit to solve by mesh analysis method for Example 3.12.
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Example 3.12  Using the circuit of Figure 3.27, and assuming the element 
values given by Equations (3.111) through (3.118), calculate the values of all 
four mesh currents. Hint: Use Equations (3.103) through (3.105).

Once the mesh currents are obtained, calculate the branch currents through 
resistors R1 through R5. Hint: Use Equations (3.106) through (3.110). Then, 
calculate the voltages at nodes A, B, C, and D with respect to ground.

	 R1 1= Ω, 	 (3.111)

	 R2 2= Ω, 	 (3.112)

	 R3 3= Ω, 	 (3.113)

	 R4 4= Ω, 	 (3.114)
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	 R5 5= Ω, 	 (3.115)

	 IS1 2= A, 	 (3.116)

	 IS2 5= A, 	 (3.117)

	 V1 1= V. 	 (3.118)

The circuit is presented again for the reader’s convenience in Figure 3.30.
Using the circuit values given by Equations (3.111) through (3.118), plug-

ging them into mesh Equations (3.103) through (3.105), we obtain the follow-
ing mesh currents:

The author assumes that the reader can solve a system of linear simultane-
ous equations. Bear in mind that one of this book’s goals is to learn circuit 
analysis; however, it is not the main goal of this book to walk the reader 
through solving algebraic equations.

Then,

	 II = −2 01351. .A 	 (3.119)

	 III = 2 98649. .A 	 (3.120)

	 IIII = 1 21622. .A 	 (3.121)

	 I found by circuit inspectionIV = 2 A    ( ). 	 (3.122)

Now, using Equations (3.106) through (3.110) to calculate the branch currents, 
we obtain

	 I IB I1 2 01351= = − . .A 	 (3.123)

	 I I IB I IV2 4 01351= − = − . .A 	 (3.124)

	 I I IB II IV3 0 98649= − = . .A 	 (3.125)

	 I I IB II III4 1 77027= − = . .A 	 (3.126)

	 I IB III5 1 21622= = . .A 	 (3.127)

Refer one more time to Figure 3.30 to see the branch current directions and 
compare them with the signs of Equations (3.123) through (3.127).

Note that branch current IB1 was defined in the same direction as mesh 
current II; however, the numerical result of IB1 = −2.01351 A means branch 
current IB1 actually flows from node A to the reference node. It is also true 
that branch current IB2 defined to flow from node B into node C, because of 
the negative sign of its result, actually flows from C to B.

By inspection of Figure 3.30 we can easily find the corresponding nodal 
voltages as function of their branch currents and their respective branch 
resistors.
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	 V I RA B= − 1 1. 	 (3.128)

	 V V I RA B B− = 2 2. 	 (3.129)

	 V V I RB C B− = 3 3. 	 (3.130)

	 V I RC B= 4 4. 	 (3.131)

	 V I RD B= 5 5. 	 (3.132)

Now plugging the values of branch current and resistors into (we find the 
nodal voltages)

	 VA = 2 013521. .V 	 (3.133)

	 VB = 10 0405. .V 	 (3.134)

	 VC = 7 08108. .V 	 (3.135)

	 VD = 6 08108. .V 	 (3.136)

Let us note that from Equation (3.133), VA is a positive voltage with respect 
to ground, which means that VGND − VA = 0 − VA = −VA = IB1  × R1, which is 
consistent with the direction which branch current IB1 has in Figure 3.30 and 
its negative result given by Equation (3.123).

Similarly note that nodal voltage VA is positive but smaller than the nodal 
voltage at VB (i.e., VA < VB or 2.01351 V < 10.0405 V). That explains why based 
on the direction defined for branch current IB2 (Fig. 3.30), the numerical result 
is negative; that is, from Equation (3.124)

	 IB2 4 01351= − . .A

On a final note on this example, mesh currents are defined currents just for 
the mesh method of analysis. Mesh currents are not currents that can be 
directly measured, like branch currents can.

3.5.4  Establishing Mesh Equations When There Are  
also Dependent Sources

In this section we will address a circuit with an independent voltage source 
and also a dependent current source. We will see that the mesh equations can 
be stated simply starting with the circuit KVL equations. The fact that there 
is a dependent source does not change significantly how KVL equations need 
to be written. We will find then that a constraint equation links the dependant 
source output (a current 4IA in our next example) and its independent variable 
(IA). Finally, we will see that the matrix mesh equations lead to a nonsymmetri-
cal matrix, because a dependent source represents an active device. More on 
dependent sources will be covered on the chapter on transistors.
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Example 3.13  Establish the mesh equations starting with KVL: Let us refer 
to the circuit of Figure 3.31. There is a dependent voltage source, whose output 
voltage is, 4IA, which is referred to as the dependent variable or the voltage 
source output. The current IA is the control variable of our dependent source. 
This current IA is defined to be the current that flows through the 10-Ω resistor, 
with the direction shown in Figure 3.31. Keep in mind that dependent sources 
(current of voltage types) are mathematical models to represent devices that 
have gain. You cannot buy a dependent source in a battery store or anywhere 
else; a dependent source is a circuit-modeling concept. We will address the 
meaning of gain when studying operational amplifiers and transistorized cir-
cuits. Finally, we add that in cases that have dependent sources, the author 
prefers not to address a by-inspection method, because its rules are more 
complex than those for the straightforward cases of mesh equations with just 
independent voltage sources.

Using the already predefined mesh current of Figure 3.31, we can write for 
each mesh their respective mesh equations using KVL around each mesh:

	 Mesh I I I I1: 24 10 121 2 1 3= − + −( ) ( ). 	 (3.137)

	 Mesh I I I I I2: 0 10 24 42 1 2 2 3= − + + −( ) ( ). 	 (3.138)

	 Mesh I I I I IA3: − = − + −4 12 43 1 3 2( ) ( ). 	 (3.139)

Note that in Mesh 3 (3.139), term –4IA is a voltage not a current; refer again 
to Figure 3.31.

By inspection of the circuit in Figure 3.31, it is easy to see that

	 I I IA = −1 2. 	 (3.140)

Figure 3.31  Establishing mesh equations for circuits with a dependent source.
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Equation (3.139) shows branch current IA expressed as a function of the circuit 
mesh currents. Now regrouping terms in Equations (3.137) through (3.139) 
and using Equation (3.140) to eliminate the use of IA, we obtain the following 
mesh equations:

	 Mesh I I I1: 24 22 10 121 2 3= − − . 	 (3.141)

	 Mesh I I I2: 0 10 38 41 2 3= − + − . 	 (3.142)

	 Mesh I I I3: 0 8 8 161 2 3= − − + . 	 (3.143)

Dividing by two on both sides of the equal sign Equations (3.141) and (3.142), 
dividing (3.143) by eight, and rewriting them in their matrix form yields:
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Solving the matrix system, one obtains that

	 I1 2 25= . .A 	 (3.145)

	 I2 0 75= . .A 	 (3.146)

	 I3 1 5= . .A 	 (3.147)

And using Equation (3.140) for IA,

	 IA = − =2 25 0 75 1 5. . . .A 	 (3.148)

The actual matrix solving is left as an exercise to the reader.
Notice that as predicted, the resistance matrix in Equation (3.144) is not 

symmetrical, that is, because there was a dependent source in the circuit. That 
is, a23 = −2 is not equal to a32 = −1. Question to the reader: Which other ele-
ments of matrix (3.144) prove that the matrix is not symmetrical?

3.5.4.1  Commentary on Mesh Analysis  Note that given a circuit with 
only voltage sources and “n” meshes, there are n mesh currents that can be 
defined. This yields a system of n independent equations with n unknowns.

However, if there are any current sources in a mesh, each current source 
reduces the number of linearly independent equations by one per current 
source per mesh. Finally, if the circuit contains at least one dependent source, 
the resistance matrix will not be symmetrical like it is in the case of a passive 
circuit. A passive circuit only contains resistors (additionally capacitors  
and inductors if it is an AC circuit) and independent voltage and/or current 
sources.
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3.6  THE NODAL METHOD OF ANALYSIS

The nodal method of circuit analysis is based on KCL. It provides a more 
effective way of deriving circuit equations virtually by quick inspection of the 
circuit. The nodal method is more suitable and intuitive when the circuit con-
tains independent current sources. The method is somewhat less intuitive when 
voltage sources are also included and probably the least intuitive when depen-
dent voltage and current sources are present. For a circuit that contains n 
nodes, one of the nodes is arbitrarily chosen as the reference node or ground, 
and the remaining “n − 1”nodal voltages of the circuits are typically the 
unknowns. We will address the methodology of writing KCL equations for 
various circuits via examples that will grow in complexity.

Unlike the mesh method, the nodal method works for planar and nonplanar 
circuits. It is commonly the method of choice of some electric and electronic 
circuit simulation programs.

3.6.1  Establishing Nodal Equations: Circuits with Independent 
Current Sources

Let us assume that we have a circuit such as the one presented in Figure 3.32. 
By inspection we see that the circuit has four nodes. The reference node is 
usually chosen to be at the bottom of the circuit. Additionally, the nonrefer-
ence nodes are: A, B, and C.

Figure 3.32  Circuit with current sources to establish nodal equations.
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Using KCL at each of the nodes we obtain

	 Node A I I V R V V RA A B / /: 1 3 1 2− = + −( ) . 	 (3.149)

	 Node B I V V R V V RB A B C / /: 2 2 3= − + −( ) ( ) . 	 (3.150)

	 Node C I V R V V RC C B / /: 3 4 3= + −( ) . 	 (3.151)

Regrouping Equations (3.149) through (3.151) around their nodal voltages we 
obtain

	 Node A I I V R R V RA B / / /: ( ) ( ).1 3 1 2 21 1 1− = + − 	 (3.152)

	 Node B I V R V R R V RA B C / ( / / /: ( ) ) ( ).2 2 2 3 31 1 1 1= − + + − 	 (3.153)

	  Node C I V R V R RB C / / /: ( ) ( )3 3 3 41 1 1= − + + 	 (3.154)

In the above three equations we have three unknowns, the nodal voltages VA, 
VB, and VC. Once those voltages are found, the branch currents in every branch 
element can easily be calculated using Ohm’s law.

Let us make a notation simplification, remembering that the inverse of a 
resistance R is its conductance G, where G = 1/R.

We can re-write Equations (3.152) through (3.154) in matrix form and they 
become:
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, 	 (3.155)

where [I] is a 3 × 1 column of current sources. The 3 × 3 matrix in Equation 
(3.155) is referred to as the conductance matrix [G]. The vector of nodal volt-
ages contains all nonreference node voltages, VA, VB, and VC. Equation (3.155) 
can be written in a more compact form and that is

	 I G V[ ] = [ ][ ]. 	 (3.156)

Equation (3.156) is another matrix form of Ohm’s law using the conductance 
matrix G.

Example 3.14  Find the nodal voltages VA, VB, and VC and currents on resis-
tors R1 through R4 in the circuit of Figure 3.32. Hint: Use Equations (3.152) 
through (3.154) or matrix system (Eq. 3.155).

Referring again to the circuit of Figure 3.32 and using the corresponding 
values for the independent current sources and resistors we rewrite Equation 
(3.155) as follows:
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Example 3.16  Refer to the circuit of Figure 3.33. On first sight the circuit 
appears to be complicated; however, after looking at it for some time and 
understanding its topology, it is not so.

Although the circuit contains six resistors and six independent current 
sources, its topology is not that much different from that of the circuit of  
Figure 3.32.

Note that our circuit, Figure 3.33, still has three nonreference nodes and a 
reference node (ground). For simplicity and convenience, the nonreference 
nodes are named A, B, and C.

So although this circuit has many more resistors and current sources than 
the one of Figure 3.32, it is still a circuit whose nodal equations matrix is 3 × 3, 
that is, three rows by three columns. Let us assume that the elements of the 

Solving the linear system of three equations with three unknowns we obtain 
for the nodal voltages:

	 VA = 0 947368. .V 	 (3.158)

	 VB = 26 7368. .V 	 (3.159)

	 VC = 27 3684. .V 	 (3.160)

Having obtained the nodal voltages we can use them to calculate the branch 
currents for resistors R1 through R5. Thus:

	 I V RB A1 1 0 947368 6 0 157895= = =/ / A. . 	 (3.161)

	 I V V RB B A2 2 26 7368 0 947368 5 5 15789= − = − =( ) ( . . ) ./ / A 	 (3.162)

	 I V V RB C B3 3 27 3684 26 7368 4 0 157895= − = − =( ) ( . . ) ./ / A 	 (3.163)

	 I V RB C4 4 27 3684 4 6 84211= = =/ / A. . , 	 (3.164)

where, in Equation (3.161), current IB1 flows from node A to ground; in Equa-
tion (3.162) IB2 flows from node B into node A; in (3.163) IB3 flows from node 
C into node B. Finally, in (3.164) IB4 flows from node C to ground.

Drill Problem 3.15:  Using the circuit of Figure 3.32 and the found branch 
currents given by Equations (3.161) through (3.163), check that KCL is met 
at nodes A, B, C, and VREF (the grounded node).

3.6.2  Establishing Nodal Equations by Inspection:  
Circuits with Current Sources

The nodal equations of circuits with current sources and a relatively small 
number of nodes are quite easy to determine. Let us start working on the 
circuit of the next example.



202    CIRCUIT THEOREMS AND METHODS OF CIRCUIT ANALYSIS 

first row of our matrix 3 × 3 are: a11, a12, a13. Second row elements are: a21, a22, 
a23; and the third row elements are: a31, a32, a33. The system of three nodal equa-
tions and three unknowns is provided first. Then we will look at every equation 
term and identify how it is associated to the given circuit diagram.

Again referring to Figure 3.33 by inspection of the circuit we have

	 Node A I I I G G G V G V G VS S S A B C : 1 2 6 1 2 6 2 6+ − = + + − −( ) . 	 (3.165)

	 Node B I I I G V G G G V G VS S S A B C : 3 2 4 2 2 3 4 4− − = − + + + −( ) . 	 (3.166)

	 Node C I I I G V G V G G G VS S S A B C : 4 6 5 6 4 4 5 6+ − = − − + + +( ) . 	 (3.167)

A general inspection of Equations (3.165) through (3.167) should make it clear 
that each equation is written for every nonreference node and the effects of 
the other nonreference node over the node in question. Equation (3.165) cor-
responds to node A, Equation (3.166) corresponds to node B, and Equation 
(3.167) corresponds to node C. In particular in Equation (3.165), we observe 
that it has a current term on the left-hand side of the equal sign. The term 
(G1 + G2 + G6)VA expresses the effect of all conductances connected to node 

Figure 3.33  Circuit for Example 3.14: establishing nodal equations by inspection.
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A; the term: −G2VB expressed the effect of adjacent node B over node 
A. Finally, the last term: −G6VC expresses the effect of adjacent node C over 
node A.

Referring to Figure 3.33 let us go over every term of Equation (3.165) one 
more time. The left hand term of Equation (3.165) is the algebraic sum of the 
currents at node A. Currents flowing into the node are positive, while currents 
leaving the node are negative. Thus, the term: IS1 + IS2 − IS6. The first term to 
the right of the equal sign: (G1 + G2 + G6)VA consists of the sum of all the 
conductances directly connected to node A, that is, conductances G1, G2, and 
G6. Because they are all connected to node A, they need to be multiplied by 
VA. The next term of Equation (3.165), that is, −G2VB, contains a term that is 
minus the conductance between nodes A and B times nodal voltage VB. G2 is 
also referred to as the shared conductance between nodes A and B. Finally, 
the last term of Equation (3.165), that is, −G6VC, is minus the shared conduc-
tance between nodes A and C (−G6) times the nodal voltage VC. Similarly, we 
can go over Equation (3.166). In the current term IS3 − IS2 − IS4, note that IS3 
enters node B, that is why IS3 has a positive sign, while currents IS2 and IS4 
leave node B, thus their negative sign. Continuing with Equation (3.166), 
the term: −G2VA denotes the influence of node A over node B. The next term, 
(G2 + G3 + G4)VB shows the effect of the actual node in question, that is, 
node B, and the sum of all conductances connecting to such node times its 
nodal voltage VB. Finally, term: −G4VC expresses the influence of node C over 
node B.

Last, let us briefly describe Equation (3.167). The current term: IS4 − IS5 + IS6 
is the sum of the currents entering node C minus the currents leaving node C. 
Term: −G6VA shows the impact of node A over node C through their shared 
conductance G6. Term: −G4VB shows the impact of node B over node C through 
their shared conductance G4. Finally, term: (G4 + G5 + G6)VC is the effect of 
all conductances connecting to node C, times its nodal voltage VC.

Now that we have gone over the terms of Equations (3.165) through (3.167), 
it is easy to convert such equation into their matrix form:

I I I

I I I

I I I
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S S S
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	 (3.168)

In the above matrix equations we have that

	 a G G G a G a G11 1 2 6 12 2 13 6= + + = − = −; ; . 	 (3.169)

	 a G a G G G a G21 2 22 2 3 4 23 4= − = + + = −; ; . 	 (3.170)

	 a G a G a G G G31 6 32 4 33 4 5 6= − = − = + +; ; . 	 (3.171)

Note all the main diagonal elements of the [G] matrix, a11, a22, and a33 
are always nonzero and positive. Additionally, if the circuit matrix has no 
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Example 3.17  Again, using the circuit of Figure 3.33, calculate the numerical 
values of nodal voltages VA, VB, and VC. After you find the three nodal voltages, 
find the currents through every resistor. Hint: Use Equations (3.165) through 
(3.167) or solve the matrix system given by Equation (3.168).

For this example, all we have to do is to use the values given for the inde-
pendent current sources and the resistors and solve Equation (3.168).

So plugging in the appropriate values into matrix Equation (3.168) we 
obtain

	

2 3 7

5 3 4
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0 5 0 2 1 0 2 1

0 2 0 2 0 1667 1
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	 (3.175)

dependent sources, that is to say, the circuit is passive and thus its matrix is 
symmetrical.

A symmetrical matrix is that whose elements that are mirrored around its 
main diagonal are identical. In general aij = aji for i and j from 1 to 3, but i ≠ j. 
In particular for our example this means that

	 a a12 21= . 	 (3.172)

	 a a13 31= . 	 (3.173)

	 a a23 32= . 	 (3.174)

We will provide the method without applying KCL, as it was done in the previ-
ous section and stating directly the procedural steps:

1.	 For arithmetic convenience, convert every resistor into its equivalent 
conductance. That is, G = 1/R.

2.	 Identify all nonreference nodes and the reference node. This step is 
already given in our example.

3.	 Determine the conductance matrix [G] which will have dimensions of 
(number of nodes − 1) × (number of nodes − 1), in our example: 3 × 3.

4.	 Determine the independent current sources column vector [I].
5.	 Write the matrices in the form: [I] =  [G][V],

where [V] is the column of nodal voltages or the unknowns. In our example:

	 V

V

V

V

A

B

C

[ ] =













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Remember that the 3 × 3 matrix coefficients are formed by sum of the con-
ductances (not the resistances) given by the circuit of Figure 3.33.

Solving Equation 3.175 we obtain the following nodal voltages:

	 VA = 0 84812. .V 	 (3.176)

	 VB = 1 02857. .V 	 (3.177)

	 VC = 3 23609. .V 	 (3.178)

The current for every resistor are simply given by Ohm’s law:
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3.6.3  Establishing Nodal Equations When There Are also  
Voltage Sources

The nodal method is more suitable and straightforward, when the circuit only 
contains current sources, because the method is derived using KCL at each 
nonreference node. It is also possible to apply the nodal method when, in 
addition to current sources, voltage sources are present. This, even though it 
is somewhat less intuitive, it simplifies the nodal equations by one equation 
per voltage source that constitutes a super node.

Example 3.18  Refer to Figure 3.34 to solve the three-node circuit that con-
tains two independent current sources and two independent voltage sources. 
The nonreference nodes are clearly labeled: A, B, and C. We cannot apply 
nodal analysis as usual because of the presence of the voltage sources. It is not 
possible to know the currents through the independent voltage sources, before 
making any calculations. Inspecting the circuit of Figure 3.34 carefully, we can 
see that even though there are three nodes in the circuit, the voltage at node 
A is already known, it actually is V1 = 4 V. We can also see by inspection that 
the difference of nodal voltages VB and VC equals the value of the voltage 
source V2 = 3 V. That is, V2 = VB − VC = 3 V.
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So there are two constraint equations:

	 V V VB C2 3= − = V. 	 (3.179)

	 V VA1 4= = V. 	 (3.180)

Nodes B and C are encircled in Figure 3.34, and they are defined as a super-
node.

Note that at the indicated super-node, KCL also applies. So the sum of all 
super-node entering current equals the sum of all super node leaving currents, 
that is,

	 I I I I I IS S2 2 3 1 1 4+ + + = + . 	 (3.181)

Since IS1 = 5 A and IS2 = 2 A, then Equation (3.181) becomes

	 I I I I2 3 1 47+ + = + . 	 (3.182)

Figure 3.34  Circuit to be solved by the nodal method.
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Additionally, by inspection of the circuit of Figure 3.34, we see that

	 I V R VB B1 1 5= =/ / . 	 (3.183)

	 I V V R V VA C A C2 2 1= − = −( ) ( ) ./ / 	 (3.184)

	 I V V R V VA B A B3 3 3= − = −( ) ( ) ./ / 	 (3.185)

	 I V R VC C4 4 8= =/ / . 	 (3.186)

Using Equations (3.183) through (3.186) in Equation (3.182) we obtain

	 ( ) ( ) .V V V V V VA C A B B C− + − + = +/ / / /1 3 7 5 8 	 (3.187)

Solving Equation (3.187) with constraint Equations (3.181) and (3.182), we 
obtain the values for VB and VC.

	 VB = 9 47236. .V 	 (3.188)

	 VC = 6 47236. .V 	 (3.189)

Now since all the nodal voltages are known, we can easily find the branch 
currents through all the resistors using Equations (3.183) through (3.186).

	 I V R VB B1 1 5 1 89447= = =/ / A. . 	 (3.190)

	 I V V R V VA C A C2 2 1 2 47236= − = − = −( ) ( ) . ./ / A 	 (3.191)

	 I V V R V VA B A B3 3 3 1 82412= − = − = −( ) ( ) . ./ / A 	 (3.192)

	 I V R VC C4 4 8 0 809045= = =/ / A. . 	 (3.193)

To determine the currents of each of the independent voltage sources, it is a 
simple application of KCL. This is left as an exercise to the reader.

3.6.4  Establishing Nodal Equations When There Are  
Dependent Sources

Let us analyze a circuit that contains two independent current sources, an 
independent voltage source and a dependent voltage source. An example of 
this nature is likely as complex as it can be, to solve by hand.

Example 3.19  Using the circuit of Figure 3.35 establish the nodal equations 
for the circuit using KCL.

By inspection of the circuit of Figure 3.35 we can see that the 10-V depen-
dent voltage source has a control voltage V, which is the voltage developed 
across the independent 10-A current source, with the shown polarity. Nodes 
C and D are super-nodes. The voltage at node D with respect to ground is 
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25 V. The only nodal equations that we need to establish are those at nodes A 
and B.

One more time referring to the circuit in Figure 3.35, let us note that the 
currents entering node A are 10 A (an independent current source), and 
branch current I2, while branch current I3 leaves node A. Additionally, we 
observe that for node B, the 8 A-independent current source and both branch 
currents I1 and I2 leave node B.

Since that branch current I1 flows from node B to node C, thus

	 I V VB C1 1 9= −( ) ( )./ / 	 (3.194)

Branch current I2 flows from node B to node A. Thus,

	 I V VB A2 0 5= −( ) . ./ 	 (3.195)

Branch current I3 flows from node A to ground, and

	 I VA3 0 25= / . , 	 (3.196)

Figure 3.35  Circuit for Example 3.19: nodal method containing dependent sources.
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we can establish the two nodal equations:

at Node A:

	 10 0 25 0 5= − −V V VA B A/ /. ( ) . 	 (3.197)

and

at Node B:

	 − = − + −8 1 9 0 5( ) ( ) . .V V V VB C B A/ / / 	 (3.198)

Now, regrouping equations and finding the inverses of the resistances in Equa-
tions (3.197) and (3.198), we obtain the nodal equations for the circuit:

	 Node A V VA B : 10 4 2 2= + −( ) . 	 (3.199)

	 Node B V V VA B C : − = − + + −8 2 9 2 9( ) 	 (3.200)

Note that Equations (3.199) and (3.200) are two equations with three unknown 
nodal voltages: VA, VB, and VC. Again by inspection of the circuit of Figure 3.35 
we can write one constraint equation that relates nodal voltage VC to the 
dependent source voltage V:

By inspection of the circuit we can see that

	 10 V = VC. 	 (3.201)

	 VA = − =10 9 V V  V. 	 (3.202)

And

	 V V VC A= − . 	 (3.203)

Using Equations (3.201) and (3.202) into Equations (3.199) and (3.200) and 
solving for the nodal voltages we get

	 VA = 2 2381. .V 	 (3.204)

	 VB = 1 71429. .V 	 (3.205)

	 VC = 2 4867. .V 	 (3.206)

And since V = VC − VA from Equation (3.203),

	 V V= − =2 48677 2 2381 0 24867. . . . 	 (3.207)

Now that we have all the nodal voltages, the calculation of the branch currents 
easily follows:
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3.6.4.1  Commentary on Nodal Analysis  Note that given a circuit with 
only current sources and “n” nodes, there are “n − 1” necessary and sufficient 
linearly independent nodal equations required to find the n nodal voltages. 
However, if there are any voltage sources in the circuit, this creates so-called 
super-nodes. Each super-node voltage source reduces the number of nodal volt-
ages by one per source. Finally, if the circuit contains at least one dependent 
source, the resistance matrix will not be symmetrical like it is in the case of a 
passive circuit. A passive circuit only contains resistors (additionally capacitors 
and inductors if it is an AC circuit) and independent sources.

3.7  WHICH ONE IS THE BEST METHOD?

We looked at the following circuit theorems and methods of analysis:

1.	 Superposition theorem
2.	 Thévenin theorem
3.	 Norton theorem
4.	 Source transformations
5.	 Mesh method of analysis
6.	 Nodal method of analysis

It is strictly the user, you, who has to make a decision of what method to use. 
Not everyone will necessarily agree that one method is better than another one. 
However, it is true, if one is comfortable using any of the methods presented, 
equally well, sometimes using one method instead of another one can really 
speed up the circuit solving process, particularly when this is done by hand.

3.7.1  Superposition Theorem Highlights

It is a divide-and-conquer approach. Given a circuit with multiple independent 
current or voltage sources, one is able to calculate the effect of all sources by 

	 I1 6 95238= − . .A 	 (3.208)

	 I2 1 04762= − . .A 	 (3.209)

	 I3 8 95238= . .A 	 (3.210)

	 I4 22 5132= . .A 	 (3.211)

The current through the 25-V independent voltage source is: 14.5132 A and the 
current through the voltage-controlled voltage source 10 V is 5.56085 A.

The reader is strongly encouraged to apply KCL to each node of the circuit 
of Figure 3.35 to validate that the calculated currents are correct.
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enabling one source at a time while inhibiting all other ones. This is repeated 
until every source was enabled in a mutually exclusive fashion. The algebraic 
sum of the individual effects leads to the composite result, that is, as if all the 
sources were applied simultaneously. This method only works with linear cir-
cuits, usually the majority of circuits that we will be dealing with, but be careful 
it is not all of them (e.g., a diode is a nonlinear device). Superposition of power 
quantities does not apply even if the circuit is linear. The applicability of super-
position applies to the currents and voltages of linear circuits. The most inter-
esting feature of superposition is that one solves a larger number of problems, 
where each problem is easier to solve. Or at least that should be the idea when 
applying this method.

It works with independent and dependent sources, AC and DC voltages and 
currents. However, it is important to note that when applying superposition, 
the dependent sources must not be inhibited like the independent sources are 
(i.e., one at a time); the dependent sources must be left alone. Some Problems 
at the end of the chapter will allow you to practice solving circuits by super-
position with dependent and independent sources.

3.7.2  Thévenin Theorem Highlights

Thévenin theorem allows one to replace a piece of a circuit that we choose, 
with a Thévenin voltage source in series with a Thévenin resistance (or imped-
ance). Many times this simplifies solving the circuit. Thévenin applies to linear 
circuits with independent and dependent voltage and current sources and AC 
and DC voltages and currents. When dealing with dependent sources, just like 
when applying superposition, we do not touch (or inhibit) the dependent 
sources. The reason is that dependent sources have their own control variable. 
Finally, upon slicing a circuit to find its Thévenin equivalent, if the sliced circuit 
contains a dependent voltage or current source, you must make sure that the 
control variables of such sources do not get separated from the circuit being 
Thévenized.

3.7.3  Norton’s Theorem Highlights

Norton’s theorem allows one to replace a piece of a circuit that we choose, 
with a Norton current source in parallel with a Norton resistance (or imped-
ance). The Norton resistance is calculated in exactly the same way as the 
Thévenin resistance. Norton only applies to linear circuits with independent 
and dependent voltage and current sources and AC and DC voltages and cur-
rents. When dealing with dependent sources, just like when applying superpo-
sition, we do not touch (or inhibit) the dependent sources. The reason is that 
dependent sources have their own control variable. Finally, upon slicing a 
circuit to find its Norton equivalent, if the sliced circuit contains a dependent 
voltage or current source, you must make sure that the control variables of 
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such sources do not get separated from the circuit whose Norton equivalent 
is being sought.

3.7.4  Source Transformations Highlights

This method basically derives from the convertibility that exists between inde-
pendent voltage into independent current sources, by applying Thévenin and 
Norton Theorems. An independent voltage source in series with a resistor (or 
impedance) can be converted into an independent current source in parallel 
with the same resistor (or impedance).

So upon solving a circuit with a large number of mixed current and voltage 
sources, it may become convenient to either transform all the current sources 
into voltage sources or vice-versa in order to apply the by-inspection mesh or 
nodal methods. So whether we apply Thévenin, Norton, or source transforma-
tions, it is important to note that the Thévenin resistance (or impedance) is 
identical to the Norton equivalent resistance (or impedance).

3.7.5  Mesh Method of Analysis Highlights

The mesh method applies to circuits that are planar. Recall that a planar circuit 
is one that can be drawn without any branches crossing any other. Beware that 
there are circuits that may appear to be nonplanar; however, redrawing them 
reveals that they are actually planar. This method is more appealing when we 
have voltage sources in the meshes, because it uses KVL as its main method 
of analysis.

This method seems more intuitive and easier to approach with the “by 
inspection method” earlier described, but only when voltage sources are 
present. When current sources are present, it reduces the number of mesh 
equations by one per current source. The mesh method with both voltage and 
current sources also has a by inspection method, but we do not cover this on 
this text. The by-inspection method with voltage and current sources is some-
what more complicated to memorize. The mesh method applies when there 
are dependent sources as well. Finally, it can be said that the mesh method is 
usually an attractive choice when the number of meshes is small.

3.7.6  Nodal Method of Analysis Highlights

The nodal method is a more general method than the mesh method. The nodal 
method applies to planar and nonplanar circuits. This method is more appeal-
ing to use when the circuit contains current sources because it fundamentally 
uses KCL for the analysis. The method, however, is also applicable when there 
are voltage sources. This creates a reduction in the number of nodal equations 
of one by voltage source. There is also a by inspection nodal method which is 
intuitive and easier to apply when only current sources are present. The by 
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Figure 3.36  Circuit example to be solved by six different methods.
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inspection nodal method also exists for current and voltage sources but it is 
less intuitive to apply, thus we do not cover it.

3.8  USING ALL THE METHODS

To help determine which method is more effective, the circuit of Figure 3.36 
will be solved by all six methods covered throughout this chapter. These are: 
superposition, Thévenin, Norton, source transformations, mesh, and nodal.

3.8.1  Solving Using Superposition

Let us present Example 3.20 to appreciate the different approaches to solving 
circuits using the different methods presented in this chapter. Refer to the 
circuit of Figure 3.36. The problem to solve in this example is to find the value 
of the nodal voltage A with respect to ground.

Example 3.20  Solving the Circuit of Figure 3.36 by Superposition
This is a circuit with three independent voltage sources and three resistors. 
Solving this problem by superposition takes three steps to disable one source 
at a time and calculating the value of voltage A. In a fourth and last step, we 
calculate the composite solution by obtaining the algebraic sum of the three 
previous results.

Proceeding with this problem, we break this circuit down into three simpler 
circuits. Refer to Figure 3.37 parts a, b, and c.
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Figure 3.37  Solving circuit of Example 3.20 by superposition: (a) only source V1 is present; 
(b) only source V2 is present; (c) only source V3 is present.
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Circuit of Figure 3.37a is the original circuit powered by source V1, while 
sources V2 and V3 are inhibited (replaced with short circuits). The circuit of b 
is powered by source V2 while V1 and V3 are inhibited. Finally, the circuit of c 
is powered by source V3, while V1 and V2 are inhibited.

So for the circuit of Figure 3.37a we have

	 V V R R R R RA due to V| [ )]( ).1 1 1 2 3 2 3= +/( // // 	 (3.212)

Equation (3.212) tells us that voltage VA is the voltage across the parallel of 
resistors R2 and R3. The current through the circuit is the voltage V1 divided 
by the series combination of R1 and (R2//R3), thus we arrive at Equation 
(3.212). R2//R3 is short-hand notation for the calculation of R2 in parallel with 
R3. Plugging in the component values from Figure 3.37a into Equation (3.212) 
we get

	 VA due to V| [ . )]( . ) .1 3 2 0 5 1 0 5 1 3 7= + =/( // // / V 	 (3.213)

For the circuit of Figure 3.37b, the reasoning is similar as the case before. Thus,

	 V V R R R R RA due to V| [ )]( )2 2 2 1 3 1 3= +/( // // 	 (3.214)

Plugging in the component values from Figure 3.37b into Equation (3.214) 
we get:

	 VA due to V| [ ( . )]( ) .2 6 0 5 2 1 2 1 24 7= + =/ // // / V 	 (3.215)

For the circuit of Figure 3.37c, the reasoning is similar as the case before.  
Thus,

	 V V R R R R RA due to V| [ ( )]( ).3 3 3 1 2 1 2= +/ // // 	 (3.216)

Plugging in the component values from Figure 3.37c into Equation (3.216)  
we get

	 VA due to V| [ ( . )]( . ) .3 4 1 2 0 5 2 0 5 8 7= + =/ // // / V 	 (3.217)

	 V V V VA = = =3 7 0 01 2 3/ V due to excitation when and, . 	 (3.218)

	 V V V VA = = =24 7 0 02 3/ V due to excitation when and1, . 	 (3.219)

	 V V V VA = = =8 7 0 03 1 2/ V due to excitation when and, , 	 (3.220)

Adding all three voltages at node A, due to voltage excitations V1, V2, and V3 
we obtain

	 V V VA due to V A due to V A due to V| | | .1 2 3 3 7 24 7 8 7 5+ + = + + =/ / / V 	 (3.221)
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Note: In this particular case, because all the voltages are positive, there is no 
difference between their sum and their algebraic sum.

Since VA is known, it is now easy to find branch currents I1, I2. and I3.

	 I V V RA1 1 1 3 5 2 1= − = − = −( ) ( ) ./ / A 	 (3.222)

	 I V V RA2 2 2 6 5 0 5 2= − = − =( ) ( ) . ./ / A 	 (3.223)

	 I V V RA3 3 3 4 5 1 1= − = − = −( ) ( ) ./ / A 	 (3.224)

Referring back to the circuit of Figure 3.36 note that current I2 is positive; thus, 
it flows in the same direction assumed in the circuit. Currents I1 and I3 flow in 
the opposite direction than the one originally assumed. This is consistent with 
the fact that VA = 5 V, which is smaller than V2 but it is higher than V1 and V3. 
Remember, current flows from high voltages to lower voltages, and its flow is 
considered positive.

3.8.2  Example 3.21: Solving the Circuit of Figure 3.36 by Thévenin

Now let us analyze the same circuit of Figure 3.36 using Thévenin’s theorem. 
We refer to the step-by-step procedure following the circuits in Figures 3.38 and 
3.39. So the first thing we do is to slice the original circuit such that one piece is 
to be Thévenized while the remaining circuit will not be touched, initially.

We do exactly that if Figure 3.38a−c, respectively, show the circuits to cal-
culate the Thévenin voltage and resistance.

Figure 3.38a shows the calculated Thévenin voltage and resistance, of 16/3 V 
and 1/3 Ω, respectively.

The calculation of VTh simply is the open-circuit voltage at terminals A and 
B of the circuit of Figure 3.38a. Note that this circuit is a single mesh circuit 
and applying KVL to it we obtain

	 V V I R Rmesh2 3 2 3− = +( ) 	 (3.225)

and

	 V V I RTh mesh= −2 2. 	 (3.226)

Solving Equations (3.225) and (3.226) we obtain that

	 Imesh = − + =( ) ( . ) .6 4 0 5 1 4 3/ / A 	 (3.227)

Thus, from Equation (3.226),

	 VTh = − = − =6 4 3 1 2 6 2 3 16 3( )( ) ./ / / / V 	 (3.228)

From Figure 3.38c we see that RTh is the parallel of R2 and R3; that is, RTh = 1/3 Ω.
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Figure 3.38  Example 3.21: (a) circuit to be Thévenized; (b) circuit used to find VTh; (c) circuit 
used to find RTh.
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Figure 3.39 shows the final steps, the Thévenin equivalent circuit, and the 
attachment of the Thévenized circuit to the portion of the circuit that was not 
Thévenized.

The only things left are to apply KVL to the circuit of Figure 3.39b  
which is

	 V V I R RTh Final Th− = +1 1( ), 	 (3.229)

Figure 3.39  (a) The Thévenin equivalent; (b) the Thévenin equivalent circuit reattached to the 
left side of the sliced circuit, which was not Thévenized.
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and calculate the voltage across nodes A and B.

	 V V I RAB Th Final Th= − . 	 (3.230)

Now using the numerical values for the terms of Equation (3.230) inspecting 
Figure 3.39b it yields

	 IFinal = 1 A. 	 (3.231)

and

	 VAB = 5 V. 	 (3.232)

3.8.3  Example 3.22: Solving the Circuit of Figure 3.36 by Norton

In a similar fashion, the original circuit of Figure 3.36 can be solved using 
Norton’s theorem. We use Figures 3.40 and 3.41 to follow the step-by-step 
process. We slice the circuit to which we will apply Norton in Figure 3.40a. The 
circuit to which Norton will be applied is on the right-hand side of the dotted 
line. Next we compute the short-circuit current, that is, the Norton current IN 
seen on the circuit of Figure 3.40b, and calculate the Norton resistance with 
the circuit of Figure 3.40c. The Norton current of Figure 3.40b can be calcu-
lated using any other method of choice. You may choose to use KCL and state 
that the Norton or short-circuit current IN of Figure 3.40b is

	 I V R V RN = +2 2 3 3/ / , 	 (3.233)

which numerically yields

	 IN = 16 A. 	 (3.234)

Note that the above takes into account that the voltage at node A is identical 
to the voltage at Ground or 0 V. Why? Because nodes A and Ground are tied 
together by a wire of zero resistance, thus both nodes are really the same  
node and they are at the same voltage level. Now looking at Figure 3.40c, the 
Norton resistance is the parallel equivalent of R2 and R3 and it is RN = 1/3 Ω. 
Recall that to calculate the Norton resistance, we short-circuit voltage  
sources and open-circuit current sources. Our example only has two voltage 
sources V1 and V2, which are short-circuited to calculate the Norton resistance, 
Figure 3.40c.

Moving now to Figure 3.41 we draw the Norton equivalent circuit attached 
to the left-hand side of the original circuit that was left alone at slicing time, 
see Figure 3.40a. We use KCL at node A and state that

	 ( ) .V V R V RA A N1 1 16− + =/ / 	 (3.235)
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Plugging numerical values into Equation (3.235) it yields that

	 VA = 5 V. 	 (3.236)

Note that in the circuit of Figure 3.40, VA is now zero because node A is 
grounded; refer to Figure 3.40b.

Figure 3.40  Example 3.22: (a) slicing the circuit; (b) calculating the Norton current; (c) calcu-
lating the Norton resistance.
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As a final step, we can apply a source transformation to the series circuit 
formed by V1 and resistor R1 of Figure 3.41. This last step, not shown in Figure 
3.40, will convert the entire circuit into a single current source in parallel with 
a single resistor.

Drill Problem: Derive the above final step in Example 3.22, using Figure 3.41. 

3.8.4  Example 3.23: Solving the Circuit of Figure 3.36 Using  
Source Transformations

Referring again to the original circuit of Figure 3.36, it is easy to see that we 
have three voltage sources in series with a resistor. Applying Thévenin’s to 
Norton’s source transformation to each source and its resistor in series, we 
convert them into a current source in parallel with a resistor.

The equations to do this are:

	 I V RN 1 1 1 3 2 1 5= = =/ / A. . 	 (3.237)

	 I V RN 2 2 2 6 0 5 12= = =/ / A. . 	 (3.238)

	 I V RN 3 3 3 4 1 4= = =/ / A. 	 (3.239)

The resistances in parallel with each one of the Norton current sources are 
the same resistors that were in series with each voltage source.

From Figure 3.42a we see that the parallel independent current sources 
equal to their algebraic sum of currents. The resistors in parallel are combined 
into a single parallel equivalent resistor, shown in Figure 3.42b

Thus, the total resulting current is obtained adding Equations (3.237) 
through (3.239), and this is

	 I I I IN N N Ntotal1 2 3 17 5+ + = = . .A 	 (3.240)

Figure 3.41  Example 3.22: Norton equivalent circuit attached to original circuit left out.
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The total equivalent parallel resistance, that is, 2 Ω in parallel with 0.5 Ω and 
in parallel with 1 Ω equals

	 R R R Rpar equiv- // // // // /= = =1 2 3 2 0 5 1 2 7. Ω 	 (3.241)

and the nodal voltage,

	 V I RA Thtotal par equiv= =- V5 . 	 (3.242)

Note: The operator “//” stands for parallel equivalent resistor: so that a//b is 
equal to: (ab)/(a + b).

Figure 3.42  (a) Voltage source to current source transformation of circuit of Figure 3.36; 
(b) Norton resistance.
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3.8.5  Example 3.24: Solving the Circuit of Figure 3.36 Using  
the Mesh Method

The circuit of Figure 3.36 is repeated in Figure 3.43. In addition to the original 
information two mesh currents IM1 and IM2 have been arbitrarily defined. Note 
that IM1 was chosen to flow in the counter clockwise direction in mesh 1. IM2 
was chosen to flow in the clockwise direction in mesh 2. Now we can start 
writing the mesh equations for this circuit.

	 Mesh 1 2 1 1 2 2 1 1: ( )V V I I R I RM M M− = + + 	 (3.243)

	 Mesh 2 2 3 2 1 2 2 3: ( ) .V V I I R I RM M M− = + + 	 (3.244)

Distributing and regrouping Equations (3.243) and (3.244) by mesh currents 
we obtain

	 Mesh 1 2 1 1 1 2 2 2: ( )V V I R R I RM M− = + + 	 (3.245)

	 Mesh 2 2 3 1 2 2 2 3: ( ).V V I R I R RM M− = + + 	 (3.246)

Important observation: In Equations (3.245) and (3.246) the IM2R2 and IM1R2 
terms have a positive sign because both mesh currents IM1 and IM2 flow through 
R2, the common element between both meshes, in the same direction. We could 
have also obtained Equations (3.245) and (3.246) directly by inspection of the 
circuit in Figure 3.43.

We plug into Equations (3.245) and (3.246) the values from Figure 3.43  
and get

Figure 3.43  Circuit of Figure 3.36 solved by the mesh method.
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	 6 3 2 0 5 0 51 2− = + +I IM M( . ) . . 	 (3.247)

	 6 4 0 5 1 51 2− = +I IM M. . . 	 (3.248)

Solving Equations (3.247) and (3.248) for IM1 and IM2 we obtain

	 IM1 1= A. 	 (3.249)

	 IM 2 1= A. 	 (3.250)

Finally, by inspection of the circuit of Figure 3.43 we see that

	 V V I I RA M M= − +2 1 2 2( ) . 	 (3.251)

And again plugging the values from Figure 3.43 and from Equations (3.249) 
and (3.250) we obtain

	 VA = 5 V. 	 (3.252)

3.8.6  Example 3.25: Solving the Circuit of Figure 3.36 Using  
the Nodal Method

Figure 3.44 addresses the solving of this circuit by the nodal method. Note that 
the circuit of Figure 3.44 has actually four nodes (A, B, C, D, and VREF). But 
fortunately, the nodal voltages at nodes B, C, D with respect to VREF are 
known. That is,

Figure 3.44  Solving the circuit of Figure 3.36 using the nodal method.
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	 V VB = =1 3 V. 	 (3.253)

	 V VC = =2 6 V. 	 (3.254)

	 V VD = =3 4 V. 	 (3.255)

So in actuality there is one nonreference node and an unknown nodal volt
age VA.

Nodes B, C, D are super nodes, and we can state the single nodal equation 
needed to solve VA. By inspection of the circuit of Figure 3.44, the single nodal 
equation is

	 ( ) ( ) ( ) .V V R V V R V V RA A A− + − + − =1 1 2 2 3 3 0/ / / 	 (3.256)

Now plugging the values from Figure 3.44 into Equation (3.256) it yields

	 ( ) ( ) . ( ) .V V VA A A− + − + − =3 2 6 0 5 4 1 0/ / / 	 (3.257)

Solving for VA we obtain that

	 VA = 5 V. 	 (3.258)

3.9  SUMMARY AND CONCLUSIONS

After all six methods have been used, the reader is encouraged to go over 
them at least one more time to understand each of the techniques used. 
Leaving personal preferences aside, the nodal and the source transformation 
methods are quite brief and powerful. For example, look at the single Equation 
(3.257) used with the nodal method. The nodal method allows one to solve the 
problem with a single nodal equation because of the presence of super nodes. 
The source transformation method allows solving the problem with simple 
arithmetic. Now whether one can state that these two are the easiest methods 
is a different story. Clearly, superposition breaks down a single problem into 
three simpler ones. In some ways this introduces more opportunity to make 
an arithmetic error. Thévenin and Norton are not so bad. Finally, the mesh 
method allows us to solve for voltage VA writing two equations. Ultimately, it 
is the reader who can clearly state which is the easiest and fastest method to 
apply for him or her, this becoming more of a personal preference and not an 
absolute fact.
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Figure 3.45  Circuit for Problem 3.1.
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PROBLEMS

3.1  For the circuit in Figure 3.45 determine using the superposition method: 
(1) Current delivered by the current source I, (2) voltage across resistor 
R, (3) current through resistor R, (4) voltage across current source I, (5) 
power delivered by voltage source V, (6) power delivered by current 
source I, (7) power consumed by resistor R.

3.2  For the circuit in Figure 3.46 determine using the superposition method 
the power consumed by resistors R1, R2, and R3, and the power delivered 
by voltage sources V1, V2, and V3.

3.3  For the circuit given in Figure 3.47, find the voltage value at node A 
using superposition. Note that the circuit has two independent voltage 
sources and one voltage-controlled voltage source (VCVS). Hint: When 
you apply superposition, eliminate the independent sources one at a 
time. Never eliminate the dependent source and its control voltage.
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Figure 3.46  Circuit for Problem 3.2.
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Figure 3.47  Circuit for Problem 3.3.
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3.4  For the circuit given in Figure 3.48, find the voltage at node A using 
superposition. Note that the circuit has two independent sources and 
one VCVS. Hint: When you apply superposition, eliminate the indepen-
dent sources one at a time. Never eliminate the dependent source and 
its control voltage or current.
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Figure 3.48  Circuit for Problem 3.4.
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Figure 3.49  Circuit for Problem 3.5.
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3.5  For the circuit given in Figure 3.49, find the voltage between node A 
and ground. Apply any circuit solving method of your preference.

3.6  For the circuit given in Figure 3.50, calculate the power consumed by 
load resistor RL = 2 Ω.

3.7  Using the circuit of Figure 3.46 and assuming that V2 = 0 V, recalculate 
using any circuit analysis method the power consumed by resistors R1, 
R2, and R3, and the power delivered by voltage sources V1, and V3.

3.8  Using the circuit of Figure 3.51, apply any circuit analysis method to 
determine current I3 through resistor R3. Hint: This problem is much 
simpler than what it appears to be.



PROBLEMS    229

Figure 3.50  Circuit for Problem 3.6.
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Figure 3.51  Circuit for Problem 3.8.
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3.9  Using the circuit of Figure 3.52, apply Thévenin’s method as many times 
as needed, to find current I4 through resistor R4.

3.10  Using the circuit of Figure 3.52, find current I4 through resistor R4 trans-
forming all voltage sources to current sources and applying KCL.

3.11  Using the circuit of Figure 3.52, find current I4 through resistor R4 using 
superposition.

3.12  Using the circuit of Figure 3.52, find current I4 through resistor R4 using 
source transformations. Hint: Convert voltage sources into current 
sources and apply KCL.

3.13  Using the circuit of Figure 3.53, find the voltage across and current 
through every resistor, that is, R1 through R4.
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Figure 3.52  Circuit for Problems 3.9 through 3.12.
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Figure 3.53  Circuit for Problem 3.13.
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3.14  Calculate the total power delivered by all sources and consumed by all 
resistors in the circuit of Figure 3.54. Hint: There may be situations when 
a source does not deliver power, because it is being charged by some 
other source in the circuit. Question: Is that the case for this example? 
Justify your answer.

3.15  Find branch currents I1, I2, and I3 of the circuit of Figure 3.55.

3.16  Apply mesh analysis to calculate branch currents I1, I2, and I3 of the 
circuit of Figure 3.56.



Figure 3.54  Circuit for Problem 3.14.
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Figure 3.55  Circuit for Problem 3.15.
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Figure 3.56  Circuit for Problem 3.16.
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Figure 3.57  Circuit for Problem 3.17.
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Figure 3.58  Circuit for Problems 3.18, 3.19, and 3.20.
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3.17  Apply nodal analysis to calculate node voltages V1, V2, and V3 of the 
circuit of Figure 3.57.

3.18  Apply nodal analysis to calculate node voltages V1 and V2 of the circuit 
of Figure 3.58.

3.19  Apply Norton’s analysis to calculate node voltages V1 and V2 of the 
circuit of Figure 3.58.

3.20  Applying superposition calculate node voltages V1 and V2 of the circuit 
of Figure 3.58.


