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ALTERNATING  
CURRENT CIRCUITS

2.1  AC VOLTAGE AND CURRENT SOURCES, ROOT MEAN SQUARE 
VALUES (RMS), AND POWER

When we plug a toaster into an electrical outlet in our kitchen, insert a slice 
of bread into a slot, we notice that the toaster starts to get hot very quickly. If 
we take a peek in the slot where the slice of bread is, we can see that the 
internal wires in the toaster become red hot. The toaster-heating elements are 
approximately 1 to 2 kW rated resistors, depending on the toaster make and 
model, rated to operate at the household AC supply voltage. This is a simple 
example of an alternating current (AC) voltage source, supplying an AC 
current to the toaster-heating elements in operation. Both of these waveforms, 
voltage and current, vary sinusoidally with respect to time. The AC current, 
being “pushed” by the AC voltage source, is the cause of heat being produced 
in the immediate vicinity of the toaster-heating element. The outlet on the 
kitchen wall is the point where we connect the appliance to the AC voltage 
source. The AC volt age source from the electric utility company is usually 
located in a remote site, far away from the home. In most households in the 
Unites States, the standard AC voltage is 120 V. The 120 V refers to the root 
mean square (RMS) value of the sinusoidal waveform, where RMS is defined 
mathematically by the following equation:
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Equation (2.1) is the RMS value of waveform f(t).
In Equation (2.1) T is the period of the waveform. The waveform f(t) can be 

either a voltage or a current, and t is the time, the independent variable. RMS 
of a waveform is also referred to as the effective value of the waveform.

When f(t) is a sinusoidal waveform such as v(t) = V sin (ωt + θ); V is the 
amplitude (or peak value) of the sinusoidal waveform in volts, ω is its angular 
frequency equal to 2πf, where f equals the inverse of the sinusoid’s period T 
or the sinusoid frequency, given in units of second−1 or hertz, and θ is the 
sinusoidal waveform phase shift. The units of the angular frequency ω are 
given in radians per second. Solving Equation (2.1) for a sinusoidal voltage, 
the RMS value of it is

 V V Veffective RMS= = ≅/ V2 0 707. ,  (2.2)

where V is the peak value or magnitude of the sinusoidal waveform. So the 
120 V at the kitchen outlet is the RMS value of the sinusoidal waveform that 
the electric utility company provides to U.S. households. Also applying Equa-
tion (2.2) to a current waveform, i(t) = I sin (ωt + θ), we find that its RMS value 
is also

 I I Ieffective RMS= = 0 707. .  (2.3)

In Equation (2.3) I is the peak value or amplitude of the current waveform.

2.1.1  Ideal and Real AC Voltage Sources

An ideal AC voltage source is one that produces a sinusoidal voltage that 
varies with time. Most importantly, the amplitude and the RMS value of such 
voltage source does not vary based on how much current the load across the 
source terminals is drawing. This means that the internal resistance of an ideal 
AC voltage source is zero. So whether the voltage source supplies no current 
or very large currents, the voltage amplitude and RMS value remain constant. 
It is also true that the waveforms retain their sinusoidal shape and original 
frequency f and phase angle θ. On the other hand, a real AC voltage source 
amplitude does not remain constant with the level of current being supplied 
by the real AC voltage source. This concept is similar to that of ideal and real 
DC voltage sources. The real AC voltage source can be modeled as an ideal 
AC voltage source in series with its internal resistance, the real AC voltage 
source internal resistance is not zero, and it is a finite number as shown by 
Figure 2.1.
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• The internal resistance of an ideal AC voltage source is zero, which means 
that the source can supply an unlimited current to its load.

• In contrast, real AC voltage sources cannot provide infinite current when 
the source terminals are short-circuited.

• The internal resistance of a real AC voltage source is never zero and it is 
a finite number.

• The internal resistance of a real AC voltage source is always greater than 
0 Ω.

• The internal resistance is an indicator of the current sourcing capability 
of the voltage source.

Figure 2.1  Representation of (a) ideal and (b) real AC voltage sources.
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Example 2.1 Ideal versus Real Voltage Sources
Let us assume that we have an ideal voltage source, this can be a DC or an 
AC source. An ideal voltage source has zero internal resistance. Thus, a load 
connected across the terminals of the voltage source can draw any amount of 
current dictated by the load value. For example, given an ideal 12-V DC source 
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connected across a 10 Ω, 1 Ω, 0.1 Ω, 0.01 Ω, or any other resistor value (except 
for zero), the current is always determined by Ohm’s law. A 10 Ω resistor 
draws 12 V/10 Ω = 1.2 A from the ideal 12-V source. The 1 Ω resistor draws 
12 V/1 Ω = 12 A; a 0.1 Ω draws 12 V/0.1 Ω = 120 A and the 0.01 Ω resistor 
draws 12 V/0.01 Ω = 1200 A from the voltage source. Now what happens if the 
resistor placed across the ideal voltage source has a 0 Ω value? The current 
that the ideal voltage source would have to supply is infinite. So to be realistic 
with how much current an ideal voltage source can supply, it is fair to say that 
any amount of current desired can be provided by the source, but not  
an infinite current. Using circuit simulators, if we simulated a short-circuited 
voltage source with a 0-Ω internal resistor, it produces an indetermination.

For the ideal AC voltage source, there is conceptually no difference with 
respect to the ideal DC source. The key difference is that the AC source sup-
plies a perfectly sinusoidal time varying waveform; which has a peak value or 
amplitude, a frequency, and a phase angle.

Sinusoidal Waveforms: A sinusoid, from basic trigonometry, is a periodic 
waveform that repeats itself with a period T; it is also positive half of the time, 
and it is negative the other half of the time. Figure 2.2 shows a sinusoidal 
voltage of frequency f, amplitude V, and phase θ. Figure 2.3 shows a sinusoidal 
source applied to a resistor.

When we discussed DC circuits we stated that V = I R (Ohm’s law), where 
I and V are DC values of current and voltage, respectively. For sinusoidal-
varying waveforms v(t) and i(t), Ohm’s law holds true as well:

Generalized Form of Ohm s Law’

 v t i t R( ) ( )=  (2.4)

Figure 2.2  Sinusoidal voltage.
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Example 2.2 Assume an ideal AC voltage source that generates a voltage 
equal to v(t) = Vpeak sin (ωt + θ), Vpeak = 12 V, ω = 2π 1 rad/s, and θ = 0°. Evalu-
ate the current waveform obtained for the following resistive loads RL: (a) 
10 Ω; (b) 1 Ω; (c) 0.1 Ω, and (d) 0.01 Ω.

Answer to Example 2.2

From Equation (2.4), since v(t) = i(t) RL, thus i(t) = Vpeak/RL sin (ωt + θ).
Thus, we obtain

(a) i(t) = 1.2 sin (2πt) for RL = 10 Ω;
(b) i(t) = 12 sin (2πt) for RL = 1 Ω;
(c) i(t) = 120 sin (2πt) for RL = 0.1 Ω; and
(d) i(t) = 1200 sin (2πt) for RL = 0.01 Ω.

All currents are given in amperes.

Figure 2.3  An AC voltage source applied across a resistor.

R

v(t)= V sin (wt − q)max

Equation (2.4) holds for all values of time such that t ≥ 0. Moreover, Equa-
tion (2.4) is not limited to sinusoidal-varying waveforms but to any real-world 
time-varying currents and voltages that are functions of time. Finally, Equation 
(2.4) tells us that whatever the current as a function of time waveform is,  
the voltage developed across such resistor is proportional to the current 
waveform.

In particular, when v(t) = V sin (ωt + θ) and i(t) = I sin (ωt + θ),

 V t RI tsin( ) sin( ).ω θ ω θ+ = +  (2.5)

Figure 2.4 below depicts a plot of Equation (2.5). Note that both current and 
voltage waveforms are sinusoidal and proportional to each other. Resistance 
R is the constant of proportionality. It is also important to note that the angular 
frequency ω (or 2πf ) is the same for the current and voltage waveforms.
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From Figure 2.4, we can see that both sine waves are exactly in-phase. This 
means that the voltage and current peak values occur at the same time, as well 
as their valleys (negative peaks), zero crossings, and so on.

Referring to the toaster example powered by a sinusoidal voltage source, 
we calculate that the instantaneous power consumed by the resistor is

 p t v t i t( ) ( ) ( ).=  (2.6)

In particular, when v(t) = V sin (ωt + θ) and i(t) = V sin (ωt + θ),
then

 p t VI t( ) sin ( ).= +2 ω θ  (2.7)

Figure 2.4  Resistor with sinusoidal voltage, current, and instantaneous power.
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From the trigonometric equality,

 sin ( cos ).2 1
2

1 2x x= −  (2.8)

Using Equation (2.8) in Equation (2.7), we obtain

 p t VI t( ) cos( ) .= − +[ ]1
2

2ω θ  (2.9)

Equation (2.9) is the instantaneous power on resistor R. Refer to Figure 2.4 
which depicts, from top to bottom, voltage across the resistor, current through 
the resistor, instantaneous power consumed by the resistor, and the average 
power on the resistor.

Equation (2.9) has two terms, a constant power term equal to

 1
2

VI.  (2.10)

The second term varies with twice the original frequency and is given by Equa-
tion (2.11):

 – cos( ).
1
2

2ω θt +  (2.11)

The average power consumed by the resistor is given by

 P
T

p t dtaverage

T

= ∫1
0

( ) .  (2.12)

Integrating Equation (2.12), where p(t) is given by Equation (2.9), yields

 P VIaverage =
1
2

.  (2.13)

V and I, respectively, are the peak values of voltage and current.
The resistor will dissipate an amount of heat that is the average value of  

its instantaneous power. Again looking at Equation (2.9), the average value 
of p(t) is

 P
T

VI t dtaverage

T

= +∫1 2

0

sin ( ) .ω θ  (2.14)
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And solving the integral of Equation (2.14) yields

 P VIaverage =
1
2

.  (2.15)

V and I are respectively the amplitude (or peak values) of voltage and current.
Integrating the term

 – cos( )
1
2

2ω θt +  (2.16)

between 0 and period T, yields zero.
Now from Equations (2.2) and (2.3), we know that for sinusoidal 

waveforms,

 V V VRMS = ≈/ 2 0 707.  (2.17)

and

 I I IRMS = ≈/ 2 0 707. .  (2.18)

Substituting the VRMS and IRMS values in Equation (2.15), we obtain that

 P I Vaverage RMS RMS= .  (2.19)

The average power dissipated by a resistor when a sinusoidal current flows 
through it, developing a sinusoidal voltage across it, is the product of the RMS 
(or effective) values of such current and voltage.

The RMS values of current and voltage on the resistor are thermally equiva-
lent to DC values of same current and voltage. The following example explains.

Example 2.3 Power Calculations on a Resistor Powered by an AC Voltage
Given a 10 Ω resistor R, with an AC voltage source v(t) applied across its 
terminals, where v(t) = 25 sin (2π 60t), where f = 60 Hz, note that the phase θ, 
in this example has a value of zero. Note: The peak value of the sinusoidal 
waveform above is 25 V.

(a) Determine the value of the AC current developed through the 
resistor.

(b) Find the average AC power dissipated by the resistor finding the AC 
waveform corresponding RMS values.

(c) Find equivalent values of DC voltage and DC current that will produce 
the same power dissipation as the RMS values of the AC waveforms 
produce.



106  ALTERNATING CURRENT CIRCUITS 

Solution to Example 2.3

(a) The current through the resistive circuit is

 

i t v t R

t

t

( ) ( )

sin( )

. sin( ) .

=
=
=

/

/

A

25 10 120

2 5 120

π
π

(b) Using Equations (2.17) and (2.18), we find the RMS values of voltage 
and current waveforms are

 V VRMS = ≅/ V2 17 68. .  (2.20)

 IRMS = ≅I/ A2 1 77.  (2.21)

Thus, the power dissipated by the resistor equals

 P V Idissipated RMS RMS= = =17 68 1 77 31 29. . . .V A W

(c) Since VRMS = 17.68 V and IRMS = 1.77 A, DC values of 17.68 V and 
1.77 A will produce the same power dissipation of

 
P V I V I

P
dissipated RMS RMS DC DC

dissipated

= =
= × =17 68 1 77 31 29. . . .W

 (2.22)

From a thermal perspective, the resistor sees no difference between the power 
produced by sinusoidal current and voltage or by equivalent DC values.

Example 2.4 Given a 1 Ω resistor and a 1 A DC current source, determine 
the peak value of an AC current source with a 1 Ω load, which produces the 
same power dissipation as the DC source. Hint: The resistor dissipates 1 W in 
DC and must also dissipate 1 W in AC.

Solution to Example 2.4

Given that the DC current value is 1 A, a sinusoidal AC current with an RMS 
current of 1 A will produce the same power dissipation as the DC value. Thus, 
the peak value of the sinusoidal current is 1 2 1 41× ≈ . A. Refer to Equation 
(2.18).

2.1.2  Ideal and Real AC Current Sources

An ideal AC current source is one that produces a current that varies in a 
sinusoidal fashion with respect to time. Most importantly, the amplitude of  
an ideal AC current source does not vary based on how much voltage gets 
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Figure 2.5  (a) Ideal and (b) real current source models in standby mode.
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i(t)

i(t)

r

(a)

(b)

developed across the current source, based on the load that it has across its 
terminals. So whether the current source supplies current to a short-circuit 
load or a very light load (resistor of high ohmic value), the current amplitude 
remains constant. The internal resistance of an ideal current source is infinitely 
large; this means that regardless of the load applied across its terminal, the 
current remains constant and the voltage is given by the current times the 
voltage across the load. The standby condition of a current source is obtained 
by short-circuiting the current source terminals. When ideal current source 
terminals are left open-circuited, the voltage developed across the current 
source approaches an infinitely large value. When we have a real current source 
and leave its terminals open-circuited, the voltage developed across the current 
source terminals is very large, and there is a great likelihood of damaging the 
current source. A real AC current source amplitude does not remain constant 
with the level of voltage being developed across the real AC current source. 
An ideal current source is depicted in Figure 2.5a. The real AC current source 
can be modeled as an ideal AC current source in parallel with its internal 
resistance, as shown by Figure 2.5b. Current source terminals, whether  
the source is real or ideal, must always be short-circuited when no load is  
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connected to its terminals (standby mode). Why? Because when the current 
source terminals are open-circuited, then the ideal and real current source 
voltage approaches a very large voltage value.

Just like with DC circuit voltage sources, an AC voltage source is in a 
standby mode when its terminals are in an open-circuit condition; its open-
circuit voltage is read, but since there is no load applied across its terminals, 
no current is delivered by the voltage source.

An ideal or real AC current source in standby mode must have its terminals 
short-circuited, or a 0-Ω resistance across its terminals. A current source is in 
a benign state when its terminals are short-circuited. Figure 2.6a shows a basic 
voltage source with internal resistance and load resistance in series. Figure 
2.6b depicts an ideal load line of an ideal 10-V voltage source with internal 

Figure 2.6  (a) Voltage source model with internal resistance; (b) different internal resistance 
voltage sources models under the same load condition.
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resistance rint0 = 0 Ω, and three real voltage sources with internal resistances 
of rint1 = 0.1 Ω, rint2 = 0.2 Ω, and rint3 = 0.3 Ω. All four voltage sources have a 
10-A current load. It is important to note that for equal current loading, the 
output voltage (load voltage VL) of the source with the largest internal resis-
tance (rint3) is the lowest. The ideal source with zero internal resistance pro-
duces the highest possible voltage, which is 10 V. The load line equation is 
given from Kirchhoff’s and Ohm’s laws by

 V V r IL oc int L= − .  (2.23)

In Equation (2.23) VL is the voltage across the load (VL). Refer again to 
Figure 2.6a.

The load voltages for each load line equation for rint0, rint1, rint2, and rint3 for 
Voc = 10 V and load current IL = 10 A, respectively, are

 V V r IL oc int L= − =0 10 V.  (2.24)

 V V r IL oc int L= − = − × =1 10 0 1 10 9. .V  (2.25)

 V V r IL oc int L= − = − × =2 10 0 2 10 8. .V  (2.26)

 V V r IL oc int L= − = − × =3 10 0 3 10 7. .V  (2.27)

Exercise: For Equations (2.25), (2.26), and (2.27) determine the actual load 
resistance RL at the given conditions.

For Equation (2.25), the output or load voltage is 9 V, and since the load 
current is 10 A, then RL = 9 V/10 A = 0.9 Ω. Similarly for Equation (2.26), 
RL = 8 V/10 A = 0.8 Ω and for Equation (2.27), RL = 7 V/10 A = 0.7 Ω.

Figure 2.7 depicts an ideal load line of an ideal 10-A current source with 
internal resistance rint0 → ∞ and three real current sources with internal resis-
tances of rint1 = 10 Ω, rint2 = 5 Ω, and rint3 = 3.333 Ω. All four current sources 
have a load that causes the load voltage to be 10-V. It is important to note that 
for equal voltage at the load, the current of the source with the numerically 
smallest internal resistance (rint3) produces the lowest load current. The goal 
is to obtain as much of the current source current to flow through the load. 
The ideal source with an infinite internal resistance produces the highest pos-
sible load current IL, which is 10 A. For the example on hand a current source 
with a 10-Ω internal resistance and 10 V at the load produces 9 A through the 
load and 1 A through the internal resistance. A current source with a 5-Ω 
internal resistance and 10 V at the load produces 8 A through the load and 
2 A through the internal resistance. Finally, a current source with a 3.3333-Ω 
internal resistance and 10 V at the load produces 7 A through the load and 
3 A through the internal resistance. Refer to Equations 2.24 through 2.27.

The load line equation is given from Kirchhoff’s and Ohm’s laws by  
Equation (2.28):
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 I I
V
r

L
L

int

= − .  (2.28)

In Equation (2.28), IL is the current through the load resistance RL, I is the 
total current that the current source supplies, rint is the current source internal 
resistance, and VL is the load voltage or the voltage across RL (RL does not 
appear in Equation (2.28), refer to Figure 2.7a for the location of RL). Thus, 
using Equation (2.28), the line load equations for rint0, rint1, rint2, and rint3 for 
I = 10 A and load voltage VL = 10 V, respectively, are

 I I rL int= = → ∞10 0A because, .  (2.29)

 I I
V
r

L
L

int

= − = − =
1

10 10 10 9( ) ./ A  (2.30)

Figure 2.7  (a) Current source model with internal resistance; (b) different internal resistance 
current sources at the same load voltage.
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 I I
V
r

L
L

int

= − = − =
2

10 10 5 8( ) ./ A  (2.31)

 I I
V
r

L
L

int

= − = − =
3

10 10 3 333 7( . ) ./ A  (2.32)

Independent current source I can be a DC current or an AC current source. 
When using a DC current source, I simply is the current DC value; when using 
an AC current source, I is typically the peak value of the sinusoidal current.

2.2  SINUSOIDAL STEADY STATE: 
TIME AND FREQUENCY DOMAINS

When sinusoidal voltage or current sources excite an RLC network, the sinu-
soidal voltage and current waveforms are of the same angular frequency ω in 
sinusoidal steady state. Sinusoidal steady state means that transient behavior 
is over. For the circuit given in Figure 2.8, which shows an AC voltage source 
in series with a resistor R, capacitor C, and inductor L, we can state the circuit 
equations using Kirchoff’s voltage law (KVL) and Kirchoff’s current law 
(KCL) directly in the time domain.

The time domain circuit equations for a resistor, capacitor, and inductor are 
summarized in Table 2.1 from previous sections of this chapter. The various 
scientists and engineers that developed basic circuit theory throughout most 
of the 19th century experimentally obtained such equations. It is important to 
state that the equations of Table 2.1 hold true regardless of the waveform that 
excites each element. For example, for a resistor, if its current iR(t) is a constant 
(DC), then its voltage vR(t) is a constant, since the voltage–current behavior 
is vR(t) = iR(t)R. Similarly, if the resistor current is a sinusoidal function of time, 
so will be the voltage across it. A second example for an inductor, if its current 
is a sinusoidal waveform with respect to time, the voltage developed across 
such inductor varies proportionally to the derivative of its current with respect 
to time. That is, vL(t) = Ldi(t)L/dt.

Figure 2.8  Series RLC circuit with sinusoidal voltage source.

R L C

v(t) = V sin (wt−q)
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2.2.1  Resistor under Sinusoidal Steady State

Based on the voltage–current relationships for R in Table 2.1, when

 i t I tR ( ) sin( ).= +ω θ  (2.33)

 v t i R IR t V tR R( ) sin( ) sin( ).= = + = +ω θ ω θ  (2.34)

V, the peak voltage, is defined as:

 V IR= .  (2.35)

In Equation (2.35), I is the peak value of the current waveform and R is the 
resistor value.

Previously seen Figure 2.4 depicts the voltage and current waveform of a 
resistor with sinusoidal excitation. Figure 2.4 also shows the instantaneous 
power on the resistor and the average value of the power dissipated. Important 
facts to observe are that both voltage and current waveforms are exactly in 
phase; that is, they both have the same zero crossings, positive and negative 
peaks.

2.2.2  Inductor under Sinusoidal Steady State

Based on the voltage–current relationships for L in Table 2.1, when

 i t I tL( ) sin( ).= +ω θ  (2.36)

 v t Ldi dt LI t V tL L( ) cos( ) cos( ).= = + = +/ ω ω θ ω θ  (2.37)

V peak is defined as

 V LI= ω ,  (2.38)

Table 2.1  Voltage–current and current–voltage relationships for electric components 
(Universal time domain equations)

Circuit Element
Basic Voltage–Current 

Relationship
Basic Current–Voltage 

Relationship

R vR(t) = iR(t) R i t
v t

R
R

R( )
( )

=

L v t L
di t

dt
L

L( )
( )

= i t
L

v t dtL L

t

( ) ( )=
−∞
∫1

C v t
C

i t dtC C

t

( ) ( )=
−∞
∫1

i t C
dv t

dt
C

C( )
( )

=
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where ω is the angular frequency of the exciting current, I is the peak value 
of the current waveform, and L is the inductor value.

Figure 2.9 depicts the voltage and current waveform of an inductor with 
sinusoidal excitation. An important fact to observe is that the voltage wave-
form leads the current waveform by 90° (or π/2 radians). It is also interesting 
to note that the peak value of the voltage waveform (V) is a frequency-
dependent term (recall that ω = 2πf ). We will discuss instantaneous power in 
the inductor shortly.

2.2.3  Capacitor under Sinusoidal Steady State

Based on the voltage–current relationships for C in Table 2.1, when

 v t V tC ( ) sin( ).= +ω θ  (2.39)

 i t Cdv dt CV t I tC C( ) cos( ) cos( ).= = + = +/ ω ω θ ω θ  (2.40)

Figure 2.9  Inductor under sinusoidal voltage, current, and instantaneous power.

0 90 180 270

degrees

+

+ +

+ +

+

--

- -

- -
0

(A)

(V)

(W)

iL(t)

vL(t)

pL(t)



114  ALTERNATING CURRENT CIRCUITS 

I, the peak current, is defined as:

 I CV= ω ,  (2.41)

where ω is the waveform angular frequency, C is the capacitance value, V is 
the peak value of the voltage waveform; thus, I is the peak value of the current 
waveform through the capacitor.

Figure 2.10 depicts the current, voltage, and instantaneous power wave-
forms of a capacitor with sinusoidal excitation. An important fact to observe 
is that in a capacitor, the current waveform leads the voltage waveform by 90° 
(or π/2 rad). It is also interesting to note that the peak value of the current 
waveform (i c) is an angular frequency-dependent term (ω = 2πf ). We will 
discuss instantaneous power in the capacitor shortly.

Figure 2.10  Capacitor under sinusoidal voltage, current, and instantaneous power.
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From Equations (2.33) through (2.41), Table 2.2 summarizes the results 
obtained.

Note: Figures 2.9 and 2.10 depict degrees in their horizontal axis; this is totally 
equivalent to display time, where 90° is 1/4 of a sinusoidal period, 180° is half-
a-period, and so on.

When circuits operate in sinusoidal steady state, it is particularly useful  
to use complex numbers instead of manipulating time domain equations. 
When using time domain equations, differential equations need to be solved. 
When dealing with complex numbers, complex algebra manipulations are 
required instead of having to solve differential equations. This topic will be 
addressed further in the section about phasors.

2.2.4  Brief Complex Number Theory Facts

The purpose of this section is to provide a brief review on complex numbers 
and their basic operations.

Mathematically, “i” is the imaginary number unit; however, electrical engi-
neers prefer to use “j” because the letter i is reserved for current.

Complex number theory begins with its fundamental assumption or 
definition:

 j = −1  (2.42)

A complex number z is a number of the form a + jb, where a is the real part 
of the complex number z, Re {z} = a and b is the imaginary part of z, Im {z} = b.

Complex number:

 z a jb= +  (2.43)

is said to be represented in rectangular form. Complex numbers can be repre-
sented on the complex plane. The horizontal axis of this plane is used to 
represent the real part of the complex number, and the vertical axis or the  

Table 2.2  Time domain equations for R, L, and C with sinusoidal excitation

Electric Element Voltagea Currenta
Voltage–Current 

Phase Relationship

Resistor vR(t) = V sin (ωt + θ) iR(t) = I sin (ωt + θ) vR and iR are 
in-phase

Inductor vL(t) = V cos (ωt + θ) iL(t) = I sin (ωt + θ) vL leads iL by 90o

Capacitor vC(t) = V sin (ωt + θ) iC(t) = I cos (ωt + θ) iC leads vC by 90o

a All waveforms are referred to as sinusoidal, regardless whether they are expressed by a sine or 
a cosine function.
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j-axis is used to represent the imaginary part of the complex number. Figure 
2.11 shows the complex plane, and on the plane there are four examples of 
complex numbers.

In particular, a complex number with its zero real part is said to be a pure 
imaginary number. Conversely, a complex number with zero imaginary part is 
said to be a real number.

Examples of pure imaginary numbers in rectangular form are

0 3 3+ =j j ;

0 4 5 4 5+ =j j. . ;

 0 1+ =j j;

0 + =j jπ π.

Figure 2.11  Complex plane showing complex numbers in rectangular form.
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Examples of real numbers in rectangular form are

 + + =1 0 1j ;

 π π− =j0 ;

 23 7 0 23 7. . ;+ =j

 1 0 1+ =j .

2.2.4.1 Complex Numbers in Polar Form Complex numbers can also be 
represented in polar form. Figure 2.12 shows a complex number with real part 
a, imaginary part b, and how it relates to its modulus or absolute value ρ (rho) 
and its phase angle θ (theta) with respect to the real axis.

From Figure 2.12 and trigonometric identities, one can see that the absolute 
value of the complex number is related to its rectangular component as follows:

 ρ = +a b2 2 .  (2.44)

Figure 2.12  Complex numbers in rectangular and in polar forms.
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The phase angle θ, also called the argument of z, is related to its rectangular 
components as follows:

 θ = 





−tan ,1 b
a

 (2.45)

where a and b are respectively the real and imaginary part of complex 
number z.

The complex number in polar form is represented as follows:

 z = ∠ρ θ.  (2.46)

Figure 2.12 also depicts the four quadrants within the trigonometric circle:

Quadrant I encompasses angles in the range: 90° < θ < 0°
Quadrant II encompasses angles in the range: 180° < θ < 90°
Quadrant III encompasses angles in the range: 270° < θ < 180°
Quadrant IV encompasses angles in the range: 360° < θ < 270°

where 0°, 90°, 180°, 270°, and 360° angles are the boundaries between 
quadrants.

It is also important to note that the following convention is also accepted:
Negative angles whose angle absolute value is within the range: 90° < |θ| < 0° 

are in Quadrant IV.

Example 2.5 Negative angles whose angle absolute value is within the range:
90° < |θ| < 0°.
−30°, −5°, and −75° are all examples of angles that reside in Quadrant IV.

Example 2.6 Negative angles whose angle absolute value is within the range:
180° < |θ| < 90°.
−110°, −145°, and −175° are all examples of angles that reside in Quad-

rant III.

Example 2.7 Negative angles whose angle absolute value is within the range:
270° < |θ| < 180°.
−190°, −205°, and −265° are all examples of angles that reside in Quad-

rant II.

Example 2.8 Negative angles whose angle absolute value is within the range:
270° < |θ| < 360°.
−280°, −300°, and −334° are all examples of angles that reside in Quad-

rant I.
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Example 2.9 Convert the following complex numbers from rectangular form 
to polar form:

(a) z0 = 2 + j3
(b) z1 = −5 + j4
(c) z2 = −1 − j5
(d) z3 = 4 − j6

Applying Equations (2.43) through (2.45) for (a) through (d) we obtain

(a) z0 = 2 + j3 = (22 + 32)½ ∠tan−1 (3/2) = 3.606∠56.31°
(b) z1 = −5 + j4 = [(−5)2 + 42]½ ∠tan−1 [4/(−5)] = 6.403∠141.34°
(c) z2 = −1 − j5 = [(−1)2 + (−5)2]½ ∠tan−1 [(−5)/(−1)] = 5.099∠258.69°
(d) z3 = 4 − j6 = [42 + (−6)2]½ ∠tan−1 [(−6)/4] = 7.211∠−56.31°

2.2.4.2 Complex Numbers in Euler’s Form From Euler’s identity,

 z = = +ρ ρ θ θθe jj (cos sin ),  (2.47)

where ρ is the modulus or amplitude of the complex number z and θ the angle 
that its module has with respect to the real axis; complex number z then is

 z = = ∠ρ ρ θθe j .  (2.48)

From Euler’s equality, Equation (2.47), it can be seen by looking at the rect-
angular representation of a complex number, previously given by Equation 
(2.43), that

 Re{ } cosz = =a ρ θ  (2.49)

and

 Im{ } sinz = =b ρ θ  (2.50)

Equations (2.49) and (2.50) show a direct conversion of complex number from 
polar form into Euler form.

Example 2.10 Convert the following complex numbers from polar form to 
Euler’s form:

 z1 3 606 56 31= ∠ °. .

 z2 6 403 141 34= ∠ °. .
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2.2.4.3 Arithmetic Operations with Complex Numbers

2.2.4.3.1  Rectangular Form Addition/Subtraction

 Given and c thenz z z z1 2 1 2= + = + + = + + +a jb jd a c j b d, ( ) ( ).  (2.51)

 Given and thenz z z z1 2 1 2= + = + − = − + −a jb c jd a c j b d, ( ) ( ).  (2.52)

From Equations (2.51) and (2.52), it can be seen that for addition or subtrac-
tion in rectangular form, real parts get added or subtracted, and imaginary 
parts get added or subtracted.

 z3 5 099 258 69= ∠ °. .

 z4 7 211 56 31= ∠ − °. .

The conversion from polar form is straightforward; it just uses the modulus 
and the phase angle in Euler’s equation. Yielding

 z e j
1

56 313 606 56 31 3 606= ∠ ° = °. . . .

 z e j
2

141 346 403 141 34 6 403= ∠ ° = °. . . .

 z e j
3

258 695 099 258 69 5 099= ∠ ° = °. . . .

 z e j
4

56 317 211 56 31 7 211= ∠ − ° = °−. . . .

Example 2.11 Given complex numbers z0, z1, z2, and z3 in rectangular form, 
perform the following operations: (a) z0 + z1; (b) z2 − z3; (c) z1 + z2 − z3; and (d) 
−z0 − z2.

 z0 = +2 3j

 z1 = − +5 4j

 z2 = − −1 5j

 z3 = −4 6j

Solutions to Example 2.11

(a) z0 + z1 = (2 − 5) + j(3 + 4) = −3 + j7
(b) z2 − z3 = (−1 − j5) − (4 − j6) = −1 − 4 − j5 + j6 = −5 + j
(c) z1 + z2 − z3 = −5 + j4 − 1 − j5 − (4 − j6) = −10 + j5
(d) −z0 − z2 = −(2 + j3) − (−1 − j5) = −1 + j2
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2.2.4.3.2  Polar and Euler’s Forms Addition/Subtraction To add or subtract 
complex numbers in polar or Euler’s forms, it is convenient to convert the 
complex numbers to rectangular form, do the addition (or subtraction), and 
convert the results back to polar or Euler’s form.

2.2.4.3.3  Rectangular Form Multiplication

 Given and thenz z z z1 2 1 2= + = + × = + × +a jb c jd a jb c jd, ( ) ( ).  (2.53)

Performing the term-by-term multiplication of both complex numbers in rect-
angular form and taking into account that j2 = −1, leads to

 z z1 2× = − + +( ) ( )ac bd j ad bc  (2.54)

Example 2.12 Multiplication of complex numbers given in rectangular form.
Given z1 = 8 + j6, z2 = 2 − j1; find the product z1 × z2 operating with both 

numbers in their given rectangular form.

Solution to Example 2.12

 
z z1 2× = + − = + − + × − ×

= + + − = +
( )( ) ( )( )8 6 2 1 16 6 1 6 1 8

16 6 12 8 22 4

j j j j j j

j j j

2.2.4.3.4  Euler’s and Polar Forms Multiplication Given: z1 1 1 1
1= = ∠ρ ρ θθe j  

and z2 2 2 2
2= = ∠ρ ρ θθe j , respectively in Euler’s form and polar form.

The product is obtained by multiplying ρ1 and ρ2, and by adding their 
respective phase angles, θ1 + θ2, so that the final product is

 z z1 2× = + +( ) .( )ρ ρ θ θ
1 2

1 2e j  (2.55)

Equation (2.55) is in Euler’s form and similarly in polar form:

 z z1 2× = + ∠ +( ) ( ).ρ ρ θ θ1 2 1 2  (2.56)

Example 2.13 Find the product of z1 and z2. z1 = 12∠25° and z2 = 3∠60.

Solution to Example 2.13

Applying Equation (2.55), we calculate the desired product:

 z z1 2× = ∠ ° × ∠ ° = ∠ ° + ° = ∠ °( ( ) . ( ) .12 25 3 60 12 3 25 60 36 85
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2.2.4.3.5  Rectangular Form Division

 Given and then / /z z z z1 2 2 1= + = + = + +a jb c jd c jd a jb, ( ) ( ).  (2.57)

Multiplying the numerator and denominator by the complex conjugate of the 
denominator allows rationalizing the complex number. That is, it eliminates 
the imaginary part of the number of the denominator.

Since the denominator in the given case is

 ( ),a jb+

its complex conjugate has the same real part but complementary imaginary 
part; that is,

 Complex Conjugate ( ) .a jb a jb+ = −  (2.58)

Since z1 = a + jb, its complex conjugate is indicated as

 z1
* = −a jb.  (2.59)

Then,

 z z2 1/ =
+ −
+ −

( )( )
( )( )
c jd a jb
a jb a jb

 (2.60)

 
( )( )

( )
( ) ( )

( )
.

c jd a jb
a b

ac bd j ad bc
a b

+ −
+

=
+ + −

+2 2 2 2  (2.61)

Example 2.14 Division of complex numbers given in rectangular form.
Given z2 = 8 + j6, and z1 = 2 − j1, find the quotient z2/z1 using both numbers 

in rectangular form.

Solution to Example 2.14

 
z z2 1/ /= + − =

+ +
− +

=
− + +

( ) ( )
( )( )
( )( )

( )
(

8 6 2 1
8 6 2 1
2 1 2 1

16 6 12 8
j j

j j
j j

j
22 1

10 20
5

2 4

2 2+

=
+

= +

)

.
j

j

 (2.62)

2.2.4.3.6  Polar and Euler’s Forms Division  Given: z1 = = ∠ρ ρ θθ
1 1 1

1e j  and 
z2 = = ∠ρ ρ θθ

2 2 2
2e j , where we define z2 as the dividend and z1 as the divisor.

The quotient of z2/z1 is obtained by dividing the modulus of the dividend 
by the modulus of the divisor (ρ2/ρ1), and by subtracting the divisor phase 
angle θ1 from the dividend phase angle θ2 so that the final quotient is
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 z z2 1/ /= −( ) ( )ρ ρ θ θ2 1 2 1e j  (2.63)

in Euler’s form and similarly in polar form:

 z z2 1× = ∠ −( ) ( ).ρ ρ θ θ2 1 2 1/  (2.64)

Example 2.15 Find the quotient of z2/z1, where z2 = 3∠60° and z1 = 12∠25°.

Solution to Example 2.15

Applying Equation (2.64) we calculate the desired quotient:

 z z2 1/ /= ∠ ° × ∠ ° = ∠ ° − ° = ∠ °( ) ( ) ( ) . .3 60 12 25 3 12 60 25 0 25 35  (2.65)

2.3  TIME DOMAIN EQUATIONS: FREQUENCY DOMAIN IMPEDANCE 
AND PHASORS

The basic equations describing the voltage–current relationships, where 
voltage and current are functions of time in resistors, capacitors, and inductors 
(see Table 2.1), are referred to as the time domain equations of those electric 
components. Those equations were experimentally determined. In the particu-
lar case that we need to deal with sinusoidal steady-state regime, current and 
voltage waveforms have a single frequency, and they vary sinusoidally with 
respect to time; it is possible to manipulate the waveform with phasors instead 
of the time domain differential or integral equations.

We will address phasors shortly, but the main advantage of using phasors, 
provided that the circuit is in sinusoidal steady state, is that the voltage and 
current calculations need not be in the time domain; consequently, no differ-
ential equations need to be solved. Phasors allow current and voltage calcula-
tions to be made with simple arithmetic equations. The catch is that such 
arithmetic is complex arithmetic; real and imaginary numbers are involved.

2.3.1  Phasors

A sinusoidal voltage or current waveform varying with respect to time, such as

 v t V t( ) sin( )= +ω θ

can also be described with a phasor of amplitude or peak value V, rotating 
at a constant angular frequency ω, and θ its phase shift with respect to zero 
degrees. Figure 2.13 depicts a phasor rotating in counterclockwise direction 
generating as it rotates each ordinate or sine value of our sinusoid.

For Figure 2.13 above, the phase angle θ is assumed to be zero, which is the 
reason why the sine wave in the time domain begins at the origin of the time axis.
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Figure 2.13  Phasor-generated sine wave with zero-phase angle.
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Example 2.16 Determine the phasor of the following sinusoidal, time domain 
equation.

Given: v(t) = V sin (ωt + θ), where V = 20 V, ω = 60 rad/s, and θ = 45°.
Rewriting the sinusoidal waveform with the given numerical values results in

 v t t( ) sin( ).= − °20 60 45

We can represent the sinusoidal waveform with its generating phasor instead 
of using the time-varying sine function. The phasor is: 20∠45°. Figure 2.14 
depicts this phasor.

Example 2.17 Phasor of sinusoidal waveform i(t) = 5 sin (60t + 30°).
i(t) is a current waveform, of a 5 A peak amplitude, 60 rad/s angular fre-

quency ω, and a 30° phase angle θ. The phasor is: 5∠30°.
Figure 2.15 depicts such current phasor.

2.3.2  The Impedance Concept

The impedance of a circuit element, where a circuit element can be a resistor, 
an inductor or a capacitor, is defined as the ratio of its voltage phasor V divided 
by its current phasor I. So referring to the time domain equations for R, L, 
and C circuit elements (Table 2.1) with sinusoidal excitation, we will find their 
equivalent voltage and current phasor to determine what their impedance is. 



TIME DOMAIN EQUATIONS: FREQUENCY DOMAIN IMPEDANCE AND PHASORS  125

Figure 2.14  Phasor of sinusoidal waveform: v(t) = 20 sin (60t − 45°).

V = 20 V 

45º

w = 60 rad/s

Figure 2.15  Current phasor for current waveform i(t) = 5 sin (60t − 30°).

I = 5 A

30º

wt = 60 rad/s
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Before proceeding much further, it is important to emphasize that the imped-
ance concept is only meaningful at one angular frequency and when the volt-
age and current waveforms are sinusoidal. To evaluate the phasors for each 
circuit element, we will make use of Table 2.2. For the reader’s convenience, 
Table 2.2 is repeated here:

Example 2.18 Given a sinusoidal voltage and current equal to

 v t tR ( ) sin( )= − °120 2 60 45π  (2.67)

and

 i t tR ( ) sin( ),= − °20 2 60 45π  (2.68)

* A pure resistor, also called an ideal resistor, means within this context, that the resistor exclu-
sively has resistive properties and has no parasitic inductive or capacitive characteristics.

Table 2.2  Time domain equations for R, L, and C with sinusoidal excitation

Electric Element Voltagea Currenta
Voltage–Current 

Phase Relationship

Resistor vR(t) = V sin (ωt + θ) iR(t) = I sin (ωt + θ) vR and iR are 
in-phase

Inductor vL(t) = V cos (ωt + θ) iL(t) = I sin (ωt + θ) vL leads iL by 90o

Capacitor vC(t) = V sin (ωt + θ) iC(t) = I cos (ωt + θ) iC leads vC by 90o

a All waveforms are referred to as sinusoidal, regardless whether they are expressed by a sine or 
a cosine function.

2.3.3  Purely Resistive Impedance

For a resistor from Table 2.2 we have that both sinusoidal voltage and current 
are in phase, so the impedance of a pure* resistor is a real number, expressed 
by Equation (2.66):

 Z V IR R R= / .  (2.66)

In Equation (2.66), VR is the voltage phasor that corresponds to the time-
varying sinusoidal voltage developed across the resistor. IR is the current 
phasor that corresponds to the time-varying current through the resistor.

That is, vR(t) = V sin (ωt + θ). IR is the current phasor of the sinusoidal time-
varying waveform that flows through the resistor. ZR denotes impedance and, 
in a general sense, V, I, and Z are complex numbers (actually referred to as 
phasors). However, because both voltage and current phasors are always in 
phase on a resistor, the actual impedance for a pure resistor is a real number. 
Often times, the impedance of a pure resistor is referred to as simply R, the 
resistance itself.
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where vR = 120 V is the voltage peak value, ω = 2π 60 rad/s, ( f = 60 Hz), and 
phase angle θ is 45° for the resistor voltage waveform of Equation (2.67). 
Similarly for the current waveform, iR = 20 A is the current peak value, ω = 
2π 60 rad/s, ( f = 60 Hz), and phase angle θ is 45° (Eq. 2.68).

Determine the voltage and current phasors on the resistor and the resistor 
value.

Solution to Example 2.18

From Equation (2.66) we can see that the voltage phasor corresponding to 
such time domain waveform is

 VR = ∠ °120 45  (2.69)

and the current phasor is

 IR = ∠ °20 45 .  (2.70)

Thus, ZR = 120/20 = 6 Ω, a real number, which means that the impedance is 
purely resistive in this case.

Note that the resistive impedance turns out to be a real number after all. 
This will not happen with inductors and capacitors. In general, impedance 
phasors will always be of the complex form, with nonzero real and imaginary 
parts, when a circuit contains resistance, plus inductance and/or capacitance.

Graphical interpretation of phasors VR = 120–45° and IR = 20–45°
Both phasors VR and IR rotate at a constant angular frequency ω = 
2π 60 rad/s = 376.98 rad/s, and since both phasors are in phase, their phase 
difference is zero. Figure 2.16 is a representation of both phasors in the complex 
plane.

2.3.4  Inductive Impedance: Inductive Reactance

For an inductor, from Table 2.2, we have that the sinusoidal voltage across the 
inductor leads the sinusoidal current through the inductor by 90°. The imped-
ance of a pure* inductor is

 Z V IL L L= / .  (2.71)

In Equation (2.71), VL is the voltage phasor that corresponds to the time-
varying sinusoidal voltage developed across the inductor. That is, vL(t) = 
V cos (ωt + θ). IL is the current phasor of the sinusoidal time-varying waveform 
that flows through the inductor. ZL denotes impedance and in a general sense, 

* A pure inductor also called an ideal inductor means, in this context, that the inductor exclusively 
has inductive properties and no parasitic resistive or capacitive characteristics.
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Example 2.19 Given: a sinusoidal voltage and current equal to

 v tL( ) cos( )= + °45 2 100 20π  (2.72)

and

 i t tL( ) sin( ).= + °5 2 100 20π  (2.73)

From trigonometry we know that

 cos sin .x xleads by 90°  (2.74)

Thus

 v t i tL L( ) ( )leads by 90°  (2.75)

We can now proceed and determine that the respective phasors for vL(t) and 
iL(t) are

Figure 2.16  Resistor voltage and current phasors.

|VR|= 120 V

|IR|= 20 A

w = 2π60 rad/s

q = 45°

VL, IL, and ZL are complex numbers (they are also referred to as phasors). 
However, because on a pure inductor its voltage phasor always leads the 
current phasor by 90°, the actual impedance of a pure inductor is a pure imagi-
nary number (i.e., has zero real part).
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Example 2.20 Determine the voltage and current phasors and the impedance 
of the pure inductor from Example 2.19.

Equations (2.76) and (2.77) are repeated here for the reader’s convenience:

 VL = ∠ °45 110 .  (2.78)

 IL = ∠ °5 20 .  (2.79)

From Equations (2.78) and (2.79), since we know that the impedance of an 
inductor is the ratio of voltage and current phasors, this leads to

 
Z

Z
L

L

= ∠ ° − °
= = ∠ °

45 5 110 20

9 90

/ ( )

Ω
 (2.80)

or simply

 XL = ∠ °9 90Ω ( )in polar form  (2.81)

or

 XL j= 9 Ω ( ),in rectangular form  (2.82)

where XL is defined as the reactive inductance of the given inductor. The reac-
tive inductance, Equation (2.81), represents a pure imaginary number as pre-
dicted earlier.

 VL = ∠ °45 110  (2.76)

and

 IL = ∠ °5 20 ,  (2.77)

where |VL| = 45 V, ω = 2π 100 rad/s, ( f = 100 Hz), and phase angle θ is 110° for 
the inductor voltage waveform of Equation (2.61). Similarly for the current 
waveform, IL = 5 A, ω = 2π 100 rad/s, ( f = 100 Hz), and the phase angle θ 
is 20°.

Using Equation (2.71) with Equations (2.76) and (2.77), we get that ZL = 
VL/IL = 9Ω∠90° = j9Ω, an imaginary number.

We can further look at equations for vL and iL from Table 2.2 since

 v t V tL( ) cos( )= +ω θ  (2.83)

and

 i t I tL( ) sin( ),= +ω θ  (2.84)
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also remembering from Table 2.2 that vL(t) = LdiL(t)/dt. Using this equation 
into Equations (2.83) and (2.84) we obtain for

 v t Ldi t dt Ld I t dtL L( ) ( ) [ sin( )]= = +/ /ω θ  (2.85)

 v t LI tL( ) cos( ),= +ω ω θ  (2.86)

where the term (ωLI) is the peak voltage V of Equation (2.86) for vL(t):

 V V LIpeak= = =ω XL ,  (2.87)

where |XL| is the absolute value of the inductive reactance given in Equation 
(2.71). The absolute value of the inductive reactance equals the absolute value 
of the inductor impedance, because its impedance real part is zero.

Again identifying the phasors for time domain Equations (2.85) and (2.86), 
we get that for an inductor,

 V I XL L L= .  (2.88)

Equation (2.88) is very important because it describes Ohm’s law in phasor 
form or for an inductor when used in sinusoidal steady state. Note that all 
three terms, VL, IL, and XL, are complex numbers, and in a general sense they 
have magnitude and phase.

From Equations (2.78) and (2.79), the impedance of a pure inductor in 
rectangular form is

 Z X V I Z XL L L L L L= = = =/ for an inductorj Lω ( , ).  (2.89)

Graphical interpretation of inductor phasors VL = 45–110° and IL = 5–20°
Both phasors VL and IL are rotating at a constant angular frequency ω = 
2π 100 rad/s = 628.30 rad/s; both phasors are separated by a fixed 90° phase 
difference, where VL leads IL by 90°. Figure 2.17 is a representation of both 
VL and IL inductor phasors in the complex plane. Note that the initial phase 

Figure 2.17  Inductor voltage and current phasors.
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* A pure capacitor, also called an ideal capacitor, means in this context, that the capacitor exclu-
sively has capacitive properties and has no parasitic resistive or inductive characteristics.

Example 2.21 Given a capacitor with a sinusoidal voltage and current 
equal to

 v t tC ( ) sin( )= + °14 2 2 45π MHz  (2.91)

and

 i t tC ( ) cos( ).= + °2 2 2 45π MHz  (2.92)

Thus

 v t tC ( ) sin( )= × + °14 4 10 456π  (2.93)

and i t tC ( ) cos( )= × + °2 4 10 456π  (2.94)

We can see from (2.93) and (2.94) that the capacitor current leads the capaci-
tor voltage by 90°. Please also refer to Table 2.2.

 Capacitor phasor I leads capacitor phasor V byC C 90°  (2.95)

We can now proceed and determine that the respective phasors for vC(t) 
and iC(t) are

 VC = ∠ °14 45  (2.96)

angle from both the inductor voltage and capacitor current were eliminated 
from Figure 2.17.

2.3.5  Purely Capacitive Impedance: Capacitive Reactance

For a capacitor from Table 2.2 we have that the sinusoidal current through the 
capacitor leads the sinusoidal voltage drop across the capacitor by 90°. The 
impedance of a pure* capacitor is

 Z = V /IC C C,  (2.90)

where VC is the voltage phasor that corresponds to the time-varying sinusoidal 
voltage developed across the inductor, i.e., vC(t) = V sin (ωt + θ). IC is the 
current phasor of the sinusoidal time-varying waveform that flows through the 
capacitor. ZC denotes impedance, and in a general sense, VC, IC, and ZC are 
complex numbers (actually referred to as phasors).

However, because on a pure capacitor its current always leads the voltage 
phasor by 90°, the actual impedance of a pure capacitor is a pure imaginary 
number (has zero real part).
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and since IC leads VC by 90°

 IC = ∠ °2 135 ,  (2.97)

where VC = 14 V peak voltage, ω = 12.57 Mrad/s, (f = 2 MHz), and phase 
angle θ is 45° for the capacitor voltage waveform of Equation (2.91). Similarly 
for the current waveform, IC = 2 A peak current, ω = 12.57 Mrad/s, (f = 2 MHz), 
and phase angle θ is 135°.

Determine the voltage and current phasors and the impedance of the pure 
capacitor.

Solution to Example 2.21

From Equation (2.91), we can see that the voltage phasor corresponding to 
such time domain waveform is

 VC = ∠ °14 45 .  (2.98)

And from Equation (2.95), the current phasor is

 IC = ∠ °2 135 .  (2.99)

From Equations (2.98) and (2.99), we know that since the impedance of a 
capacitor is the ratio of voltage and current phasors, this leads to

 
Z

Z 9
C = ∠ ° − °

= = ∠ − °
14 2 45 135

7 0

/ ( )

C Ω
 (2.100)

or simply

 X 9C = ∠ − °7 0Ω ( ).in polar form  (2.101)

Or

 
XC = −

=
j in rectangular form

j also in rectangular form w

7

1 7

Ω
Ω

( )

( ) ( ,/ iithout rationalizing j).
 (2.102)

In Equation (2.102), XC is defined as the reactive capacitance of the given 
capacitor. The reactive capacitance, Equation (2.102), represents a pure imagi-
nary number as predicted earlier.

We can further look at equations for vC and iC from Table 2.2, and since

 v t V tC ( ) sin( )= +ω θ  (2.103)
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and

 i t I tC ( ) cos( ),= +ω θ  (2.104)

also remember from Table 2.1 that iC(t) = CdvC(t)/dt. Using this expression 
into Equations (2.103) and (2.104) we obtain for

 v t Cdv t dt Cd V t dtC C( ) ( ) [ sin( )]= = +/ /ω θ  (2.105)

 v t CV tC ( ) cos( ),= +ω ω θ  (2.106)

where the term ω C V is the peak voltage V of Equation (2.106):

 V V CVpeak= = ω .  (2.107)

Again identifying the phasors for time domain Equations (2.104) and (2.106), 
we get that for a capacitor,

 V I X .C C C=  (2.108)

Equation (2.108) is very important because it describes Ohm’s law in phasor 
form, for a capacitor when used in sinusoidal steady state. Note that all three 
terms, VC, IC, and XC are complex numbers that have magnitude and phase.

In general, for a pure capacitor, the reactive capacitance is given by

 Z XC C= = = −
1 1

j C
j

Cω ω
.  (2.109)

Note that |XC| = 1/ωC is the absolute value of the capacitive reactance.

Graphical interpretation of inductor phasors VC = 14–45° and IC = 2–135°
Both phasors VC and IC are rotating at a constant angular frequency ω = 2π 
2 Mrad/s = 12.57 Mrad/s; both phasors are separated by a fixed 90° phase 
difference, where VC lags IC by 90°. Figure 2.18 is a representation of both VC 
and IC capacitor phasors in the complex plane.

2.3.6  R, L, and C Impedances Combinations

From the previous three sections we can summarize that the impedances for 
R, L, and C elements are

 Z V /IR R R= = R  (2.110)

 Z X V /IL L L L= = = j Lω  (2.111)

 Z = XC C = = −
1 1

j C
j

Cω ω
.  (2.112)
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Given any R, L, C circuit series and parallel combinations of impedance are 
handled similarly to how serial and parallel combinations of resistors are cal-
culated. In DC circuit calculations with resistors, all the operations are done 
with real numbers. In AC, sinusoidal steady-state analysis impedances are in 
general complex numbers and in phasor form. Note: The concept of impedance 
and phasors is defined for the frequency domain. Impedance and phasors do 
not make any sense in the time domain.

Example 2.22 Compute the series equivalent impedance of ZR, ZC, and ZL.

 Z Z Z Zseries-equivalent R C L= + + .  (2.113)

Given that ZR = 10 Ω, ZL = j 60 Ω and ZC = −j30 Ω, calculate the series equiva-
lent impedance.

Since

 Z Z Z Zseries-equivalent R C L= + + ,  (2.114)

using the given values leads to

 
Zseries-equivalent = − +

= +
10 30 60

10 30

Ω Ω Ω
Ω Ω

j j

j (in rectangfular fform)
 (2.115)

and

 
= + ∠− +
= ∠ °

( ) arctan( )

. . ( ).

10 30 30 10

31 62 71 57

2 2 1 2/ /

in polar form
 (2.116)

Figure 2.18  Capacitor voltage and current phasors.
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Example 2.23 For the previous example, calculate the values of capacitance 
and inductance assuming that the angular frequency is 1 Mrad/s.

Solution to Example 2.23

From Equations (2.111) and (2.112) we know that 

 Z X V /IL L L L= = = j Lω .  (2.117)

 Z XC C= = = −
1 1

j C
j

Cω ω
.  (2.118)

Since ω = 1 Mrad/s and since |ZL| = |jωL| = ωL,

 L = = = = × −ZL / Mrad/s / Mrad/s H H1 60 1 60 60 10 6Ω µ ,

and for C, using Equation (2.118),

 C = = × = = × −1 1 1 30 33 33 33 33 10 9/ / Mrad/s nF Fω ZC Ω . . .

Example 2.24 Parallel Equivalent Impedance
Given that ZR = 10 Ω, ZL = j60 Ω and ZC = −j30 Ω, calculate the parallel 
equivalent impedance in rectangular, polar, and Euler’s forms.

Similarly to what we did with resistors, we do it with impedances, but 
remembering that impedances are phasors, or complex numbers with magni-
tude and phase, then,

 
1 1 1 1

Z Z Z Zparallel-equivalent R L C

= + + .  (2.119)

It is convenient to transform the given impedance into their polar forms, which 
are ZR = 10 Ω∠0°, ZL = 60Ω∠+90°, and ZC = 30Ω∠−90°.

Then using Equation (2.119) and using the impedances in polar form we 
obtain

 1/Zparallel-equivalent = ∠ ° + ∠− ° + ∠+ °1 10 0 1 60 90 1 30 90/ / /Ω Ω Ω .  (2.120)

After converting each impedance term on the right-hand side of Equation 
(2.120) from polar form into rectangular form, adding the three of them and 
then obtaining the inverse of the addition, leads to

 1/Zparallel-equivalent = + −1 10 1 60 30/ /j j  (2.121)

 Zparallel-equivalent = −9 729 1 622. . ,j  (2.122)

where Equation (2.122) is the equivalent impedance in rectangular form.
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2.4  POWER IN AC CIRCUITS

Circuits on sinusoidal steady state draw power from their sinusoidal power 
source. When R, L,C circuits are connected to a sinusoidal power source, some 
of the power drawn by the circuit is consumed by it; this is called real, true, 
active, or average power. Active power is measured in Watts (W). Active power 
is power that the load takes from the source to perform useful work. Active 
power gets converted into heat on the resistive part of the impedance. The 
capacitors and/or inductors present in the circuit cause the source to produce 
some additional power that is not consumed by the load. In the capacitor case, 
this power establishes the electric field on the capacitor itself; in the inductor 
case, this power establishes the magnetic field on the inductor. The power 
drawn from the power source by the capacitive and inductive elements does 
not produce any active power. This capacitive and inductive power is referred 
to as reactive power, and it is measured in reactive volt-amperes (VAR). The 
total power taken by a load from the AC power source is some combination 
of the total active power plus the total reactive power. This total power is 
referred to as the apparent power (S), measured in volt-amperes (VAs). So 
what is the relationship between apparent (S), active (P), and reactive (Q) 
powers?

We will answer this question soon, but first let us study the instantaneous 
power drawn by a resistor, a capacitor, and an inductor when they are fed by 
an AC source.

Let us go over active, reactive, and apparent power one more time. Active 
or real power is the easiest to understand. And it is the total energy absorbed 
by the resistive component of the load during each sinusoidal cycle. Energy is 
measured in units of power (W) multiplied by units of time, for example, watt-
seconds or watt-hours. Real or active power is measured in watts.

The physical meaning of reactive power is not as easy or intuitive to under-
stand. Reactive power, denoted by Q, refers to the maximum value of instanta-
neous power absorbed by the reactive component of the load. The instantaneous 
reactive power is alternatively positive and negative, twice per sinusoidal cycle. 
For an inductor, refer to Figure 2.9, and for a capacitor, refer to Figure 2.10. 
Note that the instantaneous power in a reactive element (i.e., either an induc-
tor or a capacitor) is positive for the first quarter of the sinusoidal cycle, and 

 Zparallel-equivalent = ∠− °9 863 9 465. .  (2.123)

And finally,

 Zparallel-equivalent = − °9 863 9 465. .e j  (2.124)

where Equation (2.122) is in rectangular form, Equation (2.123) is in polar 
form, and Equation (2.124) is in Euler’s form.
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then it becomes negative during the second quarter of the cycle, positive on 
the third quarter, and negative on the final quarter cycle. Refer to Figures 2.9 
and 2.10. Positive instantaneous power means that the generator provides 
power to the reactive load; negative instantaneous power means to the load 
returns the power back to the source. Note that the average or active power 
consumed by a reactive element is zero on a cycle per cycle basis. Active and 
reactive powers are related, and the combination of both is referred to as 
apparent power measured in VAs. In the next several sections we will discuss 
instantaneous power in resistors, inductors, and capacitors. This will lead to 
active, reactive, and apparent powers and their relationship which is explained 
by means of the triangle of powers.

2.4.1  AC Instantaneous Power Drawn by a Resistor

From Table 2.1, when a sinusoidal current and voltage are produced on a resis-
tor, we know that both waveforms are in phase. And from Equation (2.9), 
repeated here for the reader’s convenience, the instantaneous power on the 
resistor is

 p t VI VI tR ( ) cos( ),= − +1 2 1 2 2/ / ω θ  (2.125)

where V and I are respectively peak values of voltage and current.
We also have seen (from Eqs. 2.12 through 2.19) that the average power 

consumed by the resistor is evaluated as follows:

 P /average-resistor = −∫1 2
0

T I V V I t dtRMS RMS RMS RMS

T

[ sin( )] ,ω  (2.126)

which leads to

 P /average = =1 2VI I VRMS RMS  (2.127)

because the term VRMS IRMS sin 2ωt average value is zero.
Earlier in this Chapter, Figure 2.4 shows the sinusoidal current, voltage on 

a resistor, the instantaneous power, and the average power consumed by the 
resistor. It is important and interesting to observe that the average power 
consumed by the resistor always flows from the AC power source into the 
resistor. Such average power is always positive.

2.4.2  AC Instantaneous Power Drawn by a Capacitor

The instantaneous power drawn by a capacitor is the product of its instanta-
neous voltage and current. From previous sections we know that the instan-
taneous voltage across the capacitor lags the instantaneous current waveform 
by 90°. That is to say,
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 V jX IC C C= − in phasor form or the frequency domain  (2.128)

and

 I t V tC Ccos( ); sin( ) ,ω θ ω θ+ + in the time domain  (2.129)

where in both Equations (2.128) and (2.129), IC and VC are respectively the 
peak values of AC current and AC voltage on the capacitor. As usual, ω is the 
angular frequency and θ is an arbitrary phase angle. Note that θ shows up on 
both AC current and voltage. For simplicity and without loss of generality we 
will assume that θ is zero.

The product of its AC voltage and current gives the instantaneous power 
on the capacitor;

 p t v t i tC C C( ) ( ) ( ),= ×  (2.130)

where we substitute the waveforms from Equation (2.129) into Equation 
(2.130) and obtain

 p t V t I tC C C( ) sin( ) cos( )= ×ω ω  (2.131)

 = V I t tC C sin( )cos( ).ω ω  (2.132)

In Equation (2.132), VC and IC are respectively the peak voltage and current 
values.

Using the following trigonometric identity in Equation (2.132),

 sin sin cos2 2x x x=  (2.133)

leads to

 = 1 2 2/ V I tC C sin ω  (2.134)

 = V I tRMS RMS sin ,2ω  (2.135)

where V VRMS C= / 2 and I IRMS C= / 2 are the RMS values of voltage and 
current.

 P /average-capacitor = ∫1 2
0

T V I t dtRMS RMS

T

sin ω  (2.136)

 Paverage-capacitor = 0.  (2.137)

From Equation (2.137) we observe that the average power consumed by the 
capacitor during an AC period is zero. Referring to the double frequency 
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instantaneous power waveform of Figure 2.10, it is possible to see that the 
integral of the instantaneous power waveforms between an integral number 
of cycles T is zero.

Again referring to Figure 2.10, it can be seen that the instantaneous power 
drawn by the capacitor is alternatively positive and negative every quarter of 
a period of the original voltage and current waveforms. When the instanta-
neous power is positive, it means that the source is providing instantaneous 
power to the capacitor; when the instantaneous power is negative, the capaci-
tor is returning power to the source. This is what originates the capacitive 
reactive power in a capacitor, and it is sometimes called as the entertaining 
power between the source and the capacitor.

2.4.3  AC Instantaneous Power Drawn by an Inductor

The instantaneous power drawn by the inductor is the product of its instanta-
neous voltage and current. From previous sections we know that the instan-
taneous voltage across the inductor leads the instantaneous current waveform 
by 90°. That is to say,

 V jX IL L L= in phasor form or the frequency domain  (2.138)

and

 V t I tL Lcos( ); sin( ) ,ω θ ω θ+ + in the time domain  (2.139)

where in both equations above, VL and IL are respectively the peak values of 
AC voltage and AC current. As usual, ω is the angular frequency and θ is the 
phase angle.

Note that θ shows up on both AC voltage and current. For simplicity and 
without loss of generality we will assume that θ is zero.

The product of its AC voltage and current gives the instantaneous power 
on the inductor.

 p t v t i tL L L( ) ( ) ( ),= ×  (2.140)

where we substitute the waveforms from 2.139 into Equation (2.140) and obtain

 p t V t I tL L L( ) cos sin= ×ω ω  (2.141)

 = V I t tL L cos sinω ω  (2.142)

Using the following trigonometric identity in Equation (2.142),

 sin sin cos2 2x x x=  (2.143)
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leads to

 = 1 2 2/ V I tL L sin ω  (2.144)

 = V I tRMS RMS sin ,2ω  (2.145)

where V VRMS L= / 2 and I IRMS L= / 2 are the RMS values of voltage and 
current:

 P /average-inductor = ∫1 2
0

T V I t dtRMS RMS

T

sin .ω  (2.146)

Evaluating the integral

 Paverage-inductor = 0.  (2.147)

From Equation (2.147) we can see that the average power consumed by the 
inductor during a sinusoidal AC period is zero. Refer to previously seen Figure 
2.9. From this figure it can be seen that the instantaneous power drawn by the 
inductor is alternatively positive and negative every quarter of a period. A period 
refers to the voltage or current period. Both voltage and current waveforms on an 
inductor have the same frequency when the excitation is sinusoidal.

When the instantaneous power is positive, it means that the source is pro-
viding instantaneous power to the inductor; when the instantaneous power is 
negative, the inductor is returning power to the source. This is what originates 
the inductive reactive power in an inductor, and it is sometime called as the 
entertaining power between the source and the inductor.

2.4.3.1 AC Power Triangle Active, capacitive reactive, inductive reactive, 
and apparent powers are geometrically related by the power triangle. When 
an impedance Z has all three electric components (R, L, and C), the active 
power, dissipated on the resistive part of the impedance, is drawn horizontally 
and is denoted as P. The inductive reactive power is represented vertically and 
pointing toward the positive side of the complex plane. It is denoted as Q 
inductive and has a positive sign. The capacitive reactive power is represented 
vertically and pointing down toward the negative side of the complex plane. 
It is denoted as Q capacitive and has a negative sign. The active and net reac-
tive power (inductive reactive power or capacitive reactive power) are related 
to each other by the Pythagorean relationship, from phasor analysis:

 S P Q2 2 2= + ,  (2.148)

where S in VA is the apparent power; P is the active power in watts consumed 
by the resistive part of the impedance; Q is the net reactive power in VAR 
(reactive volt-ampere).
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Figure 2.19 depicts active power with net inductive reactive power, and 
Figure 2.20 depicts active power with net capacitive reactive power.

From basic trigonometry it can be observed that

 P S= cosϕ  (2.149)

and

 Q S= sin ,ϕ  (2.150)

where φ is defined as the power factor for sinusoidal steady state.
Thus,

 Power Factor PF= = cos .ϕ  (2.151)

Figure 2.19  Power triangle with net inductive reactive power.
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For sinusoidal steady state, it can also be observed that

 PF /= P S.  (2.152)

Power factor is an important figure of merit that electric utility companies 
observe closely. The utility company does not want its customer’s electrical 
loads to demand too much reactive power. Why? Because the electric genera-
tors need to produce an excess power (reactive power) that does not end up 
as useful work developed at the load. Remember that reactive power is power 
that is supplied by the generator to the load and returned back from the load 
to the generator on a cyclical basis. When a capacitor’s electric fields and 
inductor’s magnetic fields are created, they cause for the existence of capaci-
tive and inductive reactive power respectively. Ideally, the electric utility 
company wants that reactive power to be zero, or in other words, they want 
to see a very close to unity power factor (PF = 1). From Equation (2.151) for 
PF to be one, φ has to be zero. For inductive loads, the current through the 
inductor lags the voltages across it, and the power factor is said to be lagging. 
For capacitive loads, the current through the capacitor leads the voltage across 
it, and the power factor is said to be leading.

Figure 2.20  Power triangle with net capacitive reactive power.
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After all being said, why is it that important that the power factor of an 
electrical load be one or very close to one? The reasons are that if power factor 
is smaller or much smaller than one, the utility company electric generator  
has to generate excessive power that will not end up being used by the load 
as active power. Let us remember that the load produces useful work con-
suming active power. The power distribution wiring needs to be thicker if  
the power factor is smaller than one. The dimensioning of the power distri-
bution wiring must be made based on the apparent power drawn by the  
load. This ensures that the AC power distribution wires to the load are appro-
priately sized.

Example 2.25 Determine the total apparent, active, and reactive power that 
a 2 Ω resistive load with a unity power factor draws from an AC 220 VRMS 
voltage generator.

Solution to Example 2.25

Since

 S P Q2 2 2= +  (2.153)

where

 P S= cosϕ  (2.154)

and

 Q S= sinϕ  (2.155)

where cos φ equals one, as stated by the problem assumption, thus, φ equals 
0° and sin φ = 0.

From Equations (2.154) and (2.155),

 P S=  (2.156)

and

 Q = 0  (2.157)

where

 P S V RRMS= = = = =2 2220 2 24 2 24 2/ / kW kVA. .

In this example the apparent power equals the active power dissipated by the 
load, and there is zero reactive power between the generator and the load.
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Example 2.26 Determine the total apparent, active, and reactive powers that 
an impedance of an absolute value of 11 Ω, and an inductive power factor of 
0.8. The impedance draws 20 ARMS from a 220 VRMS AC voltage generator. Also 
determine the impedance real and imaginary parts.

Solution to Example 2.26

Since apparent power

 S I VRMS RMS=  (2.158)

 S = =20 220 4400A V VA.

And since

 S P Q2 2 2= +  (2.159)

where

 P S= cosϕ  (2.160)

and

 Q S= sinϕ  (2.161)

 P = × =4400 0 8 3520. W

and where cos φ equals 0.8, as stated by the problem assumption, thus, φ = 
36.87° and sin φ = 0.6.

Then,

 Q = × =4400 0 6 2640. .VAR

 R Z= ° =cos . .36 87 8 8 Ω  (2.162)

and

 X ZL = ° =sin . .36 87 6 6 Ω  (2.163)

where XL is inductive.
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2.5  DEPENDENT VOLTAGE AND CURRENT SOURCES

Dependent sources produce either a voltage or a current, where such voltage 
or current depends on either a voltage or a current on some other part of the 
circuit or network.

Dependent sources are widely used to model active circuits like operational 
amplifiers, transistor-based amplifiers, and transistors such as bipolars and 
MOSFETs.

There are four basic kinds of dependent sources; two dependent voltage 
sources and two dependent current sources. Within each type there are current- 
and voltage-controlled sources.

The four types of dependent sources are listed below:

1. Voltage-controlled dependent voltage source or VCVS
2. Current-controlled dependent voltage source or CCVS
3. Voltage-controlled dependent current source or VCCS
4. Current-controlled dependent current source or CCCS

2.5.1  Voltage-Controlled Voltage Source (VCVS)

The voltage-controlled voltage source is a dependent source that allows us to 
model a voltage amplifier. Without knowing yet about the internals of a voltage 
amplifier, we can define such a circuit element as a two-port device. One input 
port that receives and input voltage Vin and one output port that generates an 
output voltage which is a magnification of the input voltage Vin by some con-
stant A, where A stands for amplification factor or simply its amplification.

Figure 2.21 depicts the symbol diagram of a VCVS which is very appropri-
ate to model the behavior of a voltage amplifier, such as the one just described.

Figure 2.22 depicts the use of a VCVS in a circuit example. Note that 
Vout = A Vin; thus, A has to be dimensionless because A = Vout/Vin, and its units 
are then volts/volts. 

Note that in the VCVS circuit example, the voltage source of value Vout = 
A Vin produces an output voltage that depends on the value of input voltage Vin, 

Figure 2.21  Voltage-controlled voltage source.
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which is shown across resistor R2. Just to wrap up this example, let us evaluate 
the overall output voltage of the complete circuit, V2 as a function of Vsig.

From Figure 2.22, using KVL, we can write for the left-hand side loop that

 V
R

R R
Vin sig=

+
2

1 2

.  (2.164)

Using KVL for the right-hand side loop we get

 AV I R Rin out out L= +( ).  (2.165)

Combining Equation (2.164) with Equation (2.165), and since V2 = Iout × RL, 
it yields

 V
A

R R
R

R
R R

V
out L

L sig2
2

1 2

=
+ +

.  (2.166)

2.5.2  Current-Controlled Voltage Source (CCVS)

A current-controlled voltage source is a dependent source that allows us to 
model a trans-resistance amplifier. Without knowing yet about the internals 
of a trans-resistance amplifier, we can define such a circuit element as a two-
port device. One input port that receives and input current Iin and one output 
port that generates an output voltage which is a magnification of the input 
current Iin by some constant Γ (rho), where Γ stands for trans-resistance ampli-
fication factor or simply its amplification Γ. Note that the units of Γ are ohms.

Figure 2.23 depicts the symbol diagram of a CCVS which is very appropri-
ate to model the behavior of a trans-resistance amplifier. Figure 2.24 depicts 
the use of a CCVS in a circuit example. Note that Vout = Γ Iin; thus, Γ is in ohms, 
because Γ = Vout /Iin units are volts/ampere.

Figure 2.22  Use of a VCVS in a circuit example.
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Note that in the CCVS circuit example of Figure 2.24, the voltage source 
of value Vout = Γ Iin produces an output voltage that depends on the value of 
input current Iin, which flows in the circuit of R1 and R2 and excited by Vsig.

2.5.3  Voltage-Controlled Current Source (VCCS)

A voltage-controlled current source is a dependent source that allows us to 
model a trans-conductance amplifier. Without knowing yet about the internals 
of a trans-conductance amplifier, we can define such a circuit element as a 
two-port device. One input port that receives and input voltage Vin and one 
output port that generates an output current which is a magnification of the 
input voltage Vin by some constant G, where G stands for trans-conductance 
amplification factor or simply its amplification G, where G has conductance 
units (Ω−1).

Figure 2.25 depicts the symbol diagram of a VCCS which is very appropriate 
to model the behavior of a trans-conductance amplifier, such as the one just 
described.

Figure 2.26 depicts the use of a VCCS in a circuit example. Note that Iout = 
G Vin.

Figure 2.23  Current-controlled voltage source.
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Figure 2.24  Use of a CCVS in a circuit example.
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Note that in the VCCS circuit example the current source of value:
Iout = G Vin produces an output current that depends on the value of input 

voltage Vin, which is shown across resistor R2.

2.5.4  Current-Controlled Current Source (CCCS)

A current-controlled current source is a dependent source that allows us to 
model a current amplifier. Without knowing yet about the internals of a current 
amplifier, we can define such a circuit element as a two-port device. One input 
port that receives and input current Iin and one output port that generates an 
output current which is a magnification of the input current Iin by some con-
stant β, where β stands for current amplification factor or simply its amplifica-
tion β. Note that β has no dimensions since it is obtained as the ratio of two 
currents. A current amplifier is also referred to as a buffer. We will see in later 
chapters that buffers can be implemented with transistors or with operational 
amplifiers.

Figure 2.27 depicts the symbol diagram of a CCCS which is very appropriate 
to model the behavior of a current amplifier, such as the one just described.

Figure 2.28 depicts the use of a CCCS in a circuit example.
Note that in the CCCS circuit example the voltage source of value Iout = β Iin 

produces an output current that depends on the value of input current Iin, 
which is shown in the circuit of Figure 2.28.

Figure 2.25  Voltage-controlled current source.
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2.6  SUMMARY OF KEY POINTS

This chapter covers the fundamentals of AC circuits. It is important to under-
stand the concept of effective value (RMS) of voltage and current and the role 
they play on R, L, and C elements and how they produce different kinds of 
AC power: active, reactive, and apparent. It is also of great interest to know 
how to manipulate circuit equations in the time domain as well as in the fre-
quency domain. In the time domain, derivatives and integrals of current or 
voltage usually apply. In the frequency domain, phasors replace the tedious-
to-deal-with differential equations. Phasor diagrams make AC circuit calcula-
tions easier. The catch is that this method works when the voltage and current 
frequencies are the same. “Dependent sources” is a topic of great interest to 
model electronic devices or active devices that have gain. More on this subject 
is covered in Chapters 5 and 6.

FURTHER READING

1. Charles Alexander and Matthew Sadiku, Fundamentals of Electric Circuits, 2nd ed., 
McGraw Hill, New York, 2004.

2. Charles Monier, Electric Circuit Analysis, Prentice Hall, Upper Saddle River, NJ, 
2001.

3. David Bell, Fundamentals of Electric Circuits, 4th ed., Prentice Hall, Upper Saddle 
River, NJ, 1988.

Figure 2.27  Current-controlled current source.
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Figure 2.29  50% duty cycle square-wave voltage waveform for Problem 2.2.
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PROBLEMS

2.1 A toaster is rated at 1 kW and for an AC voltage of 120 V at 60 Hz.
(a) Determine the resistance of the toaster, before its temperature 

increases. Assume that the resistance is at room temperature.
(b) Determine the RMS value of current flowing through the toaster 

when it is dissipating 1 kW.
(c) Determine the peak value of the current through the toaster when 

it is dissipating 1 kW.
(d) If the resistance of the toaster has +/−10% tolerance, calculate the 

minimum and maximum power that the toaster will consume 
under the two extremes of resistance values.

2.2 Evaluate the RMS value of the voltage waveform drawn in Figure 2.29. 
Assume that the peak amplitude of the waveform is 1 V, its period T is 
1 msec, and 50% duty cycle.

2.3 Evaluate the average DC voltage waveform for the double rectified 
sine-wave waveform depicted in Figure 2.30. Analytically, the wave-
forms can be described as follows:

 v t t t( ) sin ; := ≤ ≤ω for /π 2 0

 v t t t( ) sin ; := − ≤ ≤ω for /π π2

This alternatively can be expressed as

 v t t( ) sin .= ω

2.4 Calculate the RMS value of a 10 A DC current.
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Figure 2.30  Double rectified sine-wave waveform for Problem 2.3.
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2.5 Given an RLC-series circuit, where R = 10 Ω, L = 320 nH, C = 100 µF, 
find the absolute value of the impedance of the circuit at the following 
frequencies:
(a) 1 Hz
(b) 10 Hz
(c) 100 Hz
(d) 1 kHz
(e) 10 kHz
(f) 100 kHz
(g) 1 MHz, and
(h) 10 MHz.

2.6 For an RLC-series circuit, where R = 10 Ω, L = 320 nH, C = 100 µF, 
calculate the absolute value of inductive reactance and the capacitive 
reactance at the following frequencies:
(a) 1 Hz
(b) 10 Hz
(c) 100 Hz
(d) 1 kHz
(e) 10 kHz
(f) 100 kHz
(g) 1 MHz, and
(h) 10 MHz.

2.7 (a) For the circuit given in Problem 2.5, find the frequency at which the 
absolute value of the inductive reactance equals the absolute value  
of the capacitive reactance (i.e., resonance condition). (b) At this fre-
quency find the peak value of current for a 1-V peak sinusoidal voltage 
at the resonant frequency.

2.8 The circuit of Problem 2.5 is said to be at its resonant frequency when 
the absolute value of its inductive reactance equals the absolute value 
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of its capacitive reactance. The resonant frequency was calculated in 
Problem 2.7. Assuming a 1-V peak sinusoidal voltage, (a) find the value 
of current in the circuit at a frequency equal to 10 times the resonant 
frequency of the circuit, and (b) find the value of current in the circuit 
at a frequency equal to one-tenth of the resonant frequency of the 
circuit.

Draw conclusions from the numerical answers that you obtain for 
this problem.

2.9 An impedance of value Z = (400 + j 350) Ω is connected to a sinusoidal 
voltage of 416 V RMS. (a) Compute the apparent, active, and reactive 
powers that the impedance absorbs from the AC generator. (b) Deter-
mine the power factor of the circuit.

2.10 Establish the time domain equations (i.e., differential equations) of an 
RLC-series circuit powered by a sinusoidal voltage source v(t) = Vpeak 
sin (ωt + θ). Hint: The final equation is a second-order differential equa-
tion with constant coefficients.

2.11 Establish the time domain equations (i.e., differential equations) of a 
parallel RLC circuit powered by a sinusoidal current source i(t) = Ipeak 
sin (ωt + θ).

Hint: The final equation is a second-order differential equation with 
constant coefficients.

2.12 Given a 10 Ω resistor in series with a 10 µF capacitor, and an AC voltage 
source of Vin = 100 V ej0, of a 1 kHz frequency, determine: (1) if the 
current through the circuit leads or lags the input voltage Vin across the 
RC series; (2) the phase angle between the input voltage and the circuit 
series current), and (3) the phase angle between the voltage source and 
the voltage across the capacitor.

2.13 Given an RLC series circuit, where R = 100 Ω, L = 1 µH, and C = 10 µF, 
determine the frequency at which the circuit goes into resonance.

2.14 Express the series impedance given in Problem 2.12 in complex nota-
tion. Hint: Z(jω).

2.15 Given that Z1 = (30 + j 25) Ω and Z2 = (20 − j 15) Ω, calculate: (1) the 
series combination of both impedances, and (2) the parallel combination 
of both impedances.

2.16 Given impedance (Z1 = 30 + j 25) Ω, find the value of inductance of its 
inductive reactance at a frequency of 1 kHz.

2.17 Given impedance (Z2 = 20 − j 15) Ω, find the value of the capacitive 
reactance of the impedance at a frequency of 1 kHz.

2.18 Given an RLC series circuit, where R = 5 Ω, the reactive reactance is 
+j 18 Ω, and the capacitive reactance is −j 10 Ω connected to a sinusoidal 



PROBLEMS  153

Figure 2.31  RLC series circuit for Problem 2.18.
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voltage source Vin of RMS value of 100 V, determine the circuit complete 
phasor diagram. The following phasors must be shown: (1) circuit current 
phasor, I, (2) resistor voltage phasor, VR, (3) capacitive reactance volt-
age phasor, VC, and (4) inductive reactance voltage phasor, VL. Find and 
show on the phasor diagram all the numerical phase angle values 
between the current and the three voltages (Fig. 2.31).

2.19 Given an RLC series circuit with an impedance Z = 100 − j 45 at 60 Hz, 
assume that the circuit is energized by a 240 V 60 Hz sinusoidal voltage 
generator. (1) Calculate the real, apparent, and reactive power of the 
circuit, and (2) calculate the circuit power factor.

2.20 Given the circuit of Figure 2.32, note that I = 5 V1, between node 2 and 
ground, is a voltage-controlled current source (VCCS), whose output 
current value is I = 5 V1, and the control voltage is V1 = 10 V. Calculate 
the voltage at every node with respect to ground and the currents 
through every resistor, the independent voltage source, and the VCCS.

Figure 2.32  Circuit for Problem 2.20.
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Figure 2.33  Circuit for Problem 2.21.
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2.21 Given the circuit of Figure 2.33, note that the element between node C 
and ground is a current-controlled current source (CCCS), whose output 
current is 10 Iin, and the control current is Iin. Calculate the voltage at 
every node (A through D) with respect to ground and the currents 
through every resistor, the independent voltage source, and the VCCS 
dependent source.


