Software 1n Hardware
Description Languages

5.1 Introduction

A whole range of methods can be listed for the joint simulation of hardware
and software, which are concisely summarised by Rowson in [355]. The most
important criteria here are: precision with regard to timing; simulation speed; the
availability of models; and the possibility of debugging the simulated software.
The simulation speed and timing precision are normally in competition with one
another. The approaches described in what follows provide various compromises
in this context, see Table 5.1.

The most precise, but consequently also the most expensive, simulation option is
to describe the processor core in question with such accuracy that the signal timing
is reproduced exactly at the connections. The software is available as information
in the storage model and is processed during the simulation of hardware. This
particularly exact modelling is associated with the longest running times.

We can abstract from this model and demand only that the signals at the termi-
nals are correct at every active edge of the clock signal. This can firstly simplify
the model, because for the most part the signal delays can be disregarded in a
synchronously executed processor core. Furthermore, the number of simulation
events is significantly reduced in comparison to the precise timing. Both lead to a
significant acceleration of the simulation.

In the next step we can move to the modelling of the command set and its
execution. In this procedure the values are correctly illustrated in the registers and
in the memory but details such as the pipelining of instructions may be neglected.
As a result a large part of the timing information is lost.

The approaches described up to this point each require suitable processor models.
However, techniques exist that do not necessitate the modelling of the hardware.
This is the case firstly if the communication between software and hardware runs
asynchronously and the time between the communications thus plays no role. In
this case it is sufficient to compile the software for the simulation workstation and

Mechatronic Systems Georg Pelz
© 2003 John Wiley & Sons, Ltd ISBN: 0-470-84979-7

84 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

Table 5.1 Methods of hardware/software co-simulation according to Rowson [355]

Approach Speed in inst. / sec. Model necessary
Exact pin timing 1-100 Yes
Cyclically precise pin timing 50-1000 Yes
Instruction level 2000-20000 Yes
Timing disregarded Typically limited by the hardware simulation No

to connect to the hardware by means of a type of ‘handshake’. Thus the software
will be executed at the full speed of the simulation workstation. A further situ-
ation in which the timing may be neglected to a certain degree is the situation
in which the execution of the software is defined in a fixed time period. Accord-
ingly, events and new inputs are only exchanged at fixed time points. Now, if we
can ensure that the software is always fast enough to conclude the calculations
before the end of the current grid interval, then the timing can be disregarded.
Makki et al. [254] suggest this for a realisation with hardware description lan-
guages, but details are not provided. Another approach is followed by van Zanten
et al. [407] and Adamski et al. [3]. In this the controller core and the mechanics
model — both formulated in the programming language C—are linked together
and simulated jointly in the initial system investigations. The controller software is
thus considered without taking into account the underlying hardware. However, this
simple model of the co-simulation of hardware and software is often not adequate.
The reasons for this are numerous. For example, one reason is the possible influ-
ence of an underlying real-time operating system. Also, the occurrence of further
interrupts — perhaps for communication with other controllers — often frustrates
the use of this variant. Finally, in some cases the aim is for the simulation to
reach the speed limit, for example, in order to construct fast controllers with short
calculation intervals.

Further increases in speed can only be achieved by omitting parts of the model
or by the use of emulation. The latter two options will not be considered further
in the following.

It is often necessary for the development of the electronics for mechatronic
and micromechatronic systems to record the timing between software, electron-
ics and mechanics with a large degree of precision, in order to thereby correctly
evaluate the dynamics between the domains. A good compromise here is a sim-
ulation that reflects the temporal behaviour of the running software with regard
to processor cycles. The consideration of approaches for the cyclically correct
co-simulation of software, electronics and mechanics forms the focal point of this
chapter. In addition to the abstractions already mentioned we must also give some
thought to the realisation of the co-simulation. One possibility is to use a simulator
backplane, see Gasteier and Glesner [112] or Ghosh et al. [118]. By contrast, the
methods represented in Sections 5.2 and 5.3 increasingly point in the direction of a
model transformation on the basis of hardware description languages. Finally, the
method described in Section 5.4 aims at the cyclically correct coupling of software

5.3 CO-SIMULATION BY SOFTWARE INTERPRETATION 85

main (argc,argv)
int argc;
char argvl]; I:> Mem PIO

int i, j, stat;
double v1, v2;

{

while (true) ({
vl = mem[pio] ;
if (vl > THRESH) ({
if (!check(vl))
continue;
stat = getstat();
if (stat == 0) CPU
putstat (HARD) ;

Figure 5.1 Execution of software by the simulation of hardware

processing and hardware, but, in contrast to the backplane, this is achieved at the
modelling level by hardware description languages.

5.2 Simulation of Hardware for the Running
of Software

The simplest and at the same time the least efficient method for the cyclically
correct co-simulation of digital hardware and software is the mere description of
the hardware using hardware description languages, see for example Buchenrieder
and Rozenblit [51] or Le Marrec ef al. [218], as well as Figure 5.1. In a first
approximation this takes place on the level of the blocks involved such as CPU,
main memory, etc. At the start of the simulation, the modelled main memory is
filled with the appropriate content so that a simulation of the hardware draws the
execution of the software along with it. One such model was implemented and
simulated for Motorola 68HCOS architecture. It includes behavioural models for
the CPU, the main memory and a parallel interface. These models include the
necessary interfaces to communicate with each other via the address and data bus.
The performance of such a model lies at around 500 assembler instructions per
CPU second on a SUN-Sparc 20. This is clearly too slow for the time spans in the
range of seconds to be considered in mechatronics. Therefore, this approach will
not be described in more detail at this point.

5.3 Co-simulation by Software Interpretation

A first step towards accelerating the cyclically correct co-simulation of hardware
and software is motivated by the observation that the precise consideration of

86 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

main(argc,argv)
int argc; | poE)
char argvl]; ; Mem SESSEENE P1O

{

Il

int i, j, stat;
double v1, v2;

while (true) {
vl = mem[pio];
if (vl > THRESH) {
if (!check(vl))

continue;
stat = getstat () ; :
if (stat == 0) i CPU

putstat (HARD) ;

Figure 5.2 Execution of software by simulation at controller level

bus traffic between CPU and main memory, like many other details, does not
contribute significantly to the investigation of the system as a whole. Rather, it is
virtually always sufficient to imitate the interface behaviour of the controller, see
Figure 5.2. This facilitates a whole range of simplifications in the model. Thus it
may be possible to represent the memory primarily by an array of integer numbers
or bit vectors. Memory access can be formulated as access to the array. The data
and address bus and the associated logic are thus dispensed with completely.

In a more precise consideration, the objective of the model in question also
alters. Where before it was primarily a question of describing the hardware cor-
rectly, now such a model becomes an interpreter for the running software. This is
beneficial in two respects. Firstly, the model is significantly simplified, secondly
there is a considerable acceleration of the simulation. Interpretative models with
various characteristics exist. For example, Gupta et al. [130] link an interpretative
software simulator to the simulator responsible for the hardware for each simulator
coupling, taking into account cyclically correct timing. Furthermore, Ecker outlines
the formulation of a software interpreter in VHDL, see [92], in which precise timing
is largely disregarded. Finally, Pelz et al. [326], [327] suggest a cyclically correct
implementation of a software interpreter for the Motorola 68HCOS architecture in
VHDL, which is coupled to mechanics models in hardware description languages.
This approach will be described in more detail in what follows. It offers a simula-
tion speed of around 5000 assembler instructions per CPU second on a SUN-Sparc
20. Thus the performance of the simulation lies above that of the method described
in the previous paragraph by approximately an order of magnitude.

Hardware description 5.1 that follows provides an example of the description
of a (fictitious) processor at interpreter level. The characteristics of the proces-
sor architecture largely relate to the register variables and the command set. The
model consists of a process in which one assembler instruction is executed in
each loop. At the beginning the instruction is fetched from the main memory,

5.3 CO-SIMULATION BY SOFTWARE INTERPRETATION 87

the Opcode is separated, and the addresses of the operands evaluated. There
then follows a large CASE instruction, which serves to decode the operation in
question. A few instructions are provided for each opcode, which may perform
arithmetic or logical actions, set the PC in the event of jumps, calculate flags and
much more.

ARCHITECTURE interpreter OF cpu IS
-- Type declaration for register and main memory
TYPE registers IS ARRAY (0 TO 31) OF
std_logic_ vector (31 downto 0);
TYPE memory IS ARRAY (0 TO 512) OF
std_logic_vector (31 downto O0);

BEGIN
cycle: PROCESS

VARIABLE reg : registers; -- Registers

VARIABLE mem : memory; -- Memory

VARIABLE pc : natural; -- Programme counter

VARIABLE adr : natural; -- Address variable

VARIABLE inst : std logic_vector -- Instruction
(31 downto 0);

VARIABLE disp : std_logic_vector -- Displacement
(31 downto 0) ;

VARIABLE opcode : std_logic_vector -- Opcode
(7 downto 0) ;

VARIABLE r3, rl, r2: natural; -- Register adr.

VARIABLE i8 : integer; -- 8 bit number

VARIABLE zflag : std_logic; -- Zero flag

BEGIN

inst := mem(pc) ; -- Fetch instruction

pc := pc + 1; -- Increment PC

opcode := inst (31 downto 24); -- Extract opcode

r3 := To_Nat (inst (23 downto 16)) ; -- Determine

rl := To Nat (inst (15 downto 8)); -- register adr.

r2 := To Nat (inst(7 downto 0));-- from instruct.

is := To_Int(inst(7 downto 0)); -- Immediate Op.

- Decode opcode
CASE opcode IS

WHEN op_add => -- Perform
reg(r3) = reg(rl) + reg(r2); -- addition
zflag = (reg(xr3) = 0) ? ‘1" : *0’; -- Zero flag?
WHEN op_add_ immediate => -- Perform
reg(r3) := reg(rl) + 18; -- addition imm.

zflag := (reg(r3) = 0) ? ‘1" : *0’; -- Zero flag?

88 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

WHEN op_sub =>=> -- Perform
reg(r3) := reg(rl) - reg(r2); -- subtraction
zflag = (reg(x3) = 0) ? ‘1’ : *0’; -- Zero flag?

WHEN op_and => -- Perform
reg(r3) := reg(rl) and reg(r2); -- logical AND
zflag := (reg(r3) = 0) 2 ‘1’ : *0'; -- Zero flag?

WHEN op_ load =»> -- Load reg.
disp := mem(pc) ; -- Determine disp.
pc := pc + 1; -- Increment PC
adr := To _Nat(reg(rl) + disp); -- Determine address
reg(r3) := mem(adr) ; -- Load

WHEN op store => -- Save reg.
disp = mem(pc) ; -- Determine disp.
pc = pc + 1; -- Increment PC
adr = To_Nat(reg(rl) + disp); -- Determine address
mem (adr) = reg(r3); -- Store in mem.

WHEN op_branch on zero => -- Jump command
IF (zflag = ‘1’) THEN -- If flag =1

disp := mem(pc) ; -- Determine disp.

pc := pc + 1; -- Increment PC

adr := pc + To_Nat (disp) ; -- Determine address

pc := adr; -- Set PC
END IF;

WHEN others =>
-- Unknown opcode
ASSERT false REPORT "illegal instruction"
SEVERITY warning;
WAIT;
END CASE;
END PROCESS;
END ARCHITECTURE;

Hardware description 5.1 VHDL description of a simple processor as software interpreter

5.4 Co-simulation by Software Compilation
5.4.1 Introduction

The approach described in the previous section interprets software during the run-
ning time in order to process it. This generates a considerable cost to be paid

5.4 CO-SIMULATION BY SOFTWARE COMPILATION 89

during simulation. The better alternative is to shift the compilation cost from the
running time to a pre-simulation stage. This generally means that two versions
of the software exist. One is compiled for the simulation workstation, the other is
compiled for the processor on which it is to run in the system. Now, if the software
exists in a higher programming language and we are only interested in the function
and not in the timing, then the differences between the processors do not play a
significant role. The prerequisite for this is that the software always calculates a
certain result within a predetermined time period. A whole range of approaches
to HW/SW co-simulation are based upon this principle such as, for example, the
work of Becker et al. [21] or Thomas et al. [399].

We can expand upon this methodology so that cyclically correct timing is also
taken into account. However, to achieve this we have to make a detour in the
modelling. In a first step the assembler or machine programme is compiled into
a C routine that both reflects the functionality and correctly takes into account
the timing of the software execution on the basis of the clock cycles of the target
processor. Zivojnovié and Meyr show this in [438] for pure digital electronics, with
both software and electronics being described in C modules so that these only have
to be linked together. Pelz et al. expand upon this approach in [328] based upon a
compiled co-simulation of software, electronics and mechanics by implementing an
appropriate synchronisation between simulator and software model in a hardware
description language. Here the representation of the assembler programme in C is
automated by a compiler based upon a disassembler. Overall this method can also
be regarded as a modelling of software, see Figure 5.3.

In what follows this approach of representing system software in C routines and
linking it into a simulator on the basis of hardware description languages will be
investigated in further detail.

5.4.2 Software representation

In a first stage, the system software should be represented in a C routine that takes
into account both the function and timing on the level of machine instructions. In

main (argc,argv)
int argc;
char argv([];
{
int i, j, stat;
double v1, v2;
Software

e () model

vl = mem[pio] ;
if (vl > THRESH) {
if (!check(vl))
continue;
stat = getstat();
if (stat == 0)
putstat (HARD) ;

Figure 5.3 Execution of software by modelling at software level

90 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

order to subsequently bring about synchronisation, it must be possible to leave the
routines at any desired points and re-enter them again later; they must therefore
be ‘re-entrant’.

Furthermore, it is necessary that they have a memory so that the applicable
system state can be held in the form of a context. Such a context thus includes the
registers of the underlying processor and the complete main memory. Furthermore,
a second context is saved in parallel so that the synchronisation —as described
more precisely later — can refer back to an old state.

The basic idea is now to store short blocks of C instructions, which each rep-
resent an assembler instruction, one after the other in a routine. The sequence of
C blocks thus corresponds with the sequence of assembler instructions, so that
sequential progress through the assembler instructions corresponds with sequential
progress through the C blocks.

A C block for an assembler instruction in principle contains the following
components:

e Execution of the operation, e.g. for arithmetic and logical operations.
e Setting of the flags, depending upon operation.

e Setting the programme counter, normally by an increment based upon the byte
number of the operation, or in the event of jumps an addition (relative) or an
assignment (absolute).

e Protecting the return address on the stack in the event of subprogramme calls.
e Addition of the number of required cycles on the cycle counter.

e Calculation of the current time from the cycle counter.

e Control of the debugger.

e Details of the representation will be described in Section 5.4.4 on the basis of
an example.

5.4.3 Synchronisation
Introduction

The synchronisation between hardware and software serves to effect the correct
chronological sequence of events in the software model and hardware model in
the simulator. A significant prerequisite for a simple and efficient solution is that
the simulation of the hardware runs in a linear manner and at most is delayed only
now and then. All other strategies would have an effect deep within the logic or
circuit simulator used, thus shifting the problem from the modelling level to the
tool level, which would often rule out solutions based upon commercial simulators.

In order to achieve this the software should run for a defined time span. This is
effected by calling up an external C routine from the hardware model. With regard

5.4 CO-SIMULATION BY SOFTWARE COMPILATION 91

to the timing of the return of the software, the question is raised as to whether
the sequence of load or store instructions includes reference to the I/O ports, i.e.
whether it wants to exchange data from within itself with the hardware. If this is the
case then the processing of the software is interrupted immediately. Otherwise the
software runs until the predefined time point. Upon return, the C routine informs
the hardware of the time point t that it reached. Since the software has run in zero
time from the point of view of the hardware, the hardware should now be simulated
up to time point t so that time equality exists between software and hardware, and
thus data can be exchanged if necessary. However, the sequence described up until
now only functions as long as no interrupt is triggered. In the event of an interrupt
occurring, the state of the software is initially brought to the time point at which
the interrupt occurred. Then synchronisation occurs and the programme counter
is set to the interrupt vector, whereupon the normal sequence can once again be
resumed. The forms of synchronisation described thus far will be considered in
more detail in what follows.

Synchronisation without interrupt

Let us initially assume that no access to I/O ports has occurred during the process-
ing of the software, see Figure 5.4. Before the software can once again proceed
for a certain period of time, a synchronisation must take place. This means primar-
ily that we wait until the hardware has also been simulated up to the time point
at which the software currently stands. When the software and hardware show
the same value for time, the software can once again proceed and the described
procedure runs from the start.

Figure 5.5 illustrates the case of access to the I/O port. Here the occurrence
of a corresponding load or store command leads to the software sequence being

l Synchronisation l Synchronisation
Hardware simulation Hardware simulation
Hardware
e
Software l Software Time
simulation
l Software >
simulation JSFadq e
A
. > <\Predetermined time
cra bra e passed

Figure 5.4 Synchronisation between hardware and software after the time allotted for the
software has elapsed

92 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

l Synchronisation l Synchronisation l Synchronisation
Hardware simulation‘ Hardware simulation - Hardware simulation
Hardware .
Software l Software Time
simulation
—<_
l Software L
simulation Ida sta Dra e
Software »
A .) \ \ Store to
l S|mulat|02 sta bra = e Ida main memory
) + Store to e
. . > . / 1/0 port Load to
clra clrx e sta /0 port

Figure 5.5 Synchronisation of software and hardware after the occurrence of load and store
instructions (Ida and sta) relating to the I/O ports

interrupted. Then we again wait until the hardware has reached the current time
of the software. At this point the appropriate values can be exchanged between
hardware and software. Then the software is restarted.

Synchronisation after an interrupt

This case occurs if the software has been executed up until time point t and it is
found during the hardware simulation that an interrupt has been triggered at time
point t' < t, that has invalidated the current progress of the software simulation,
see Figure 5.6. The problem is solved in two stages. In the first stage the software
has to be brought back to its state at the time of the interrupt t'. We first jump
back to the old state that is stored at the start of every software operation. This
is also called a time-warp in the literature on the general coupling of simulators,
see the work of Jefferson [168] and [169]. Then the software is simulated up
until the time of the interrupt. We can think of this as a type of ‘replay’ of a
sequence that has already played out in the past. After the replay the software
shows the precise state at time point t'. A synchronisation point is then inserted
here, which permits the interrupt to be taken into account at exactly the right time.
Then the software simulation begins again from the instruction that refers to the
interrupt vector.

5.4.4 Example of software modelling

The representation of the software shall be explained on the basis of an example
in what follows. Programme 5.1 shows parts of an assembler programme and

5.4 CO-SIMULATION BY SOFTWARE COMPILATION 93

Synchronisation Interrupt and Synchronisation
Synchronisation

Hardware simulation Hardware simulation
Hardware
im
l Software l Software Software
simulation simulation
A
r N
> 2nd attempt
clra bra eoeeeeeeeeeeneen remaining simulation
2nd attempt,
repla .
l ssicr)r:tv:le?trign play Invalid due
u B / to interrupt
A

1 1
clra bra = e

Figure 5.6 Synchronisation of software and hardware after the occurrence of an interrupt

Programme 5.2 shows the corresponding C routine which was automatically gen-
erated. Both the assembler instructions in question and the context of the C routine
are compatible with the architecture and the command set of the Motorola 68HCO05
microcontroller.

PORTA: EQU $0010 ; Declaration of PORT A as address
PORTB: EQU $0001 ; Declaration of PORT B as address
PORTC: EQU $0002 ; Declaration of PORT C as address
PORTD: EQU $0003 ; Declaration of PORT D as address

org $100 ; Position in the memory: 0100 Hex
START : ; Start label
lda PORTA ; (load A) Load port A in accumulator
jsr SRX ; (jump subroutine) Execute subroutine SRX
bra SRY ; (branch) Branch to label SRY
SRY: ; Label SRY

org $200 ; Position in the memory: 0200 Hex
SRX: ; Label of the subroutine SRX
Programme 5.1 Excerpt from assembler programme

Upon its call up, the fundamental sequence of the C routine initially rests upon
determining whether this is the first time the routine has been run. If so, a whole

94 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

range of initialisations are necessary, such as, for example, filling the memory with
the programme, resetting the register and jumping to the first instruction.

If the C routine has been called before, the correct context must first of all
be created. If it is a replay the old stored context is activated by exchanging
(exchange context) with the current context. Then the old context is always
protected by copying (copy context). The jump to the hub brings about a jump
to the instruction referred to in the programme counter of the current context.

The 1da, jsr and bra instructions from the assembler programme can also be
found in the C routine. There are called by labels (1256, 1258, 1261), which
permit jumping to the instructions using the goto command.

First the 1da should be considered more closely. Depending upon the targetted
address this command fetches a value from the memory or from a port and stores
it in the accumulator. First a routine is called up for this instruction, which controls
the debugger and thus permits it to visualise the software sequence, indicate values,
and control the software sequence by means of breakpoints. The user interface of
the debugger is shown in Figure 5.7. The next instruction decides whether the

pragns vector __RESET @ OxFffe:
nt op @ Owld0:
Take [t data. stater
Contrel int ol. 2. 32
l | oid hard_damet i
dangi)z

I old matnd) £

W iF (iop - 40) 3 0) [/% scceleration beyond 4.0 =/
/= suitch to hard damping =/
op = 1;
state = -L2

% walt for some time ... &/
el = 16:
ubi I (- lm=i §

AL CREE D
ation tise: 1.

FANOL S
il
cgram counteri

Figure 5.7 Software debugger for virtual hardware

5.4 CO-SIMULATION BY SOFTWARE COMPILATION 95

address given in the direct addressing is a port represented in the memory area
or a memory location in the main memory. In the first case the addressed port is
accessed via the routine fetch io. In the second case the accumulator c1->ac
is set to the value of the memory cell at which the byte points to the opcode. It
should also be mentioned that the pointer c1 points to the current context. A type
declaration of the context is located at the start of the C routine. Then the cycle
counter is incremented by 3 and the programme counter by 2. Finally, the affected
flags are updated and the current time t _cur calculated. The two other commands
shown are processed in a similar manner.

The jsr instruction describes the call of a subroutine, so that the return address
is initially stored on the stack in two bytes. Then the address of the subroutine is
calculated from the two bytes following the opcode and entered into the programme
counter. Then the cycle counter is incremented and the current time calculated.
Finally there is a jump to the label hub at which the large switch instruction
initiates a jump to the correct label. This diversion is necessary because in C it
is not generally possible to jump to a variable destination by means of a goto
command.

Finally, the bra instruction includes the calculation of a relative jump, which can
also be in a backwards direction. The second byte of this instruction — the width
of the jump —should thus be regarded as a signed number, which is expressed in
the appropriate C instruction. After the normal incrementation of the cycle counter
and the calculation of the time the actual jump again takes place via the hub.

typedef struct context {

/* Programme counter (pc), Accumulator (ac), Index register
(ix), Stack pointer (sp), Flag register (cc), Cycle
counter (cyc), Main memory (m) ...*/

unsigned int ac, ix, sp, pc, cc, cyc, .

unsigned int m[MEMORYSIZE] ;

.7

} CONTEXT;
static CONTEXT conl, con2, *cl=&conl, *c2=&con2;

software sim(t_start, t stop ...) ... ; {
if (t_start > 0.0) {
if (t_start ss< t_cur old) {
/* t_cur _old = Time when routine was last left,
Replay! ... */

exchange context (&cl, &c2) ;

}

copy_context (cl,c2) ;

goto hub;
}

else

96 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

/* Start time = 0, first call:

Initialise debugger, logger, context etc.

Fill the main memory with the programme */
cl->m[256] 182; cl->m[257] 16;
cl->m[258] 205; cl->m[259] 1; cl->m[260] = 20;
cl->m[268] = 32; cl->m[269] = 3;

/* Initialise context ... */

cl->pc = 256*cl->m[MEMORYSIZE-2] + kl->m[MEMORYSIZE-1];

cl-s>ac = 0; cl->ix = 0; cl-»>sp = 511; cl->cc = 0;

goto hub;

/* Assembler programme in C ... */

10256: /* 1lda, Load Accumulator, direct addr. */
debugger(...); /* Control debugger */

if (is_io(cl->mlcl->pc+1l]))/* IO or main memory? */
cl->ac=fetch io(cl->m[cl->pc+l]);/* IO access */

else
cl-sac=cl->m[cl->m[cl->pc+1]];/* Main memory access */
cl->cyc+=3; cl->pc+=2; /* Increment cyc, pc */
set _flags(...); /* Update the flags */
t_cur=cl->cyc*CYCTIME; /* Update the time */
10258: /* jsr, Jump Subroutine, ext. addr. */
debugger(...); /* Control debugger */

cl->m[cl->sp--1=(cl->pc+3)%256;/* Protect return */
cl->m[cl->sp--1=(cl->pc+3)/256;/* address on stack */
cl->pc=256*kl->m[cl->pc+l]l+cl->m[cl->pc+2];/* Set pc */

cl->cyc+=5; /* Increment cyc */
t_cur=cl->cyc*CYCTIME; /* Update time */
goto hub; /* Initiate the jump */
10261: /* bra, Branch, relative addressing */
debugger(...); /* Control debugger */

cl-s>pc=cl->pc+2+cl->m[cl->pc+1]>127 ?/* Calculate rel. */
(- (256-cl->m[cl->pc+1])) : (cl->m[cl->pc+1]);/* jump */

cl->cyc+=3; /* Increment cyc */

t_cur=cl->cyc*CYCTIME; /* Update time */

goto hub; /* Initiate the jump */
hub:

switch(cl->pc) {
case 256: goto 10256;
case 258: goto 10258;
case 261: goto 10261;

H}

Programme 5.2 Simplified software model in programming language C

5.4 CO-SIMULATION BY SOFTWARE COMPILATION 97

The main task of synchronisation is to act as an interface between software and
external hardware. Externally it adopts the connections of the processor. Internally
the C routine is called up. In accordance with the preceding representation of
the synchronisation algorithms, a formulation in a hardware description language
will now be represented, see Hardware description 5.2. The language used here is
MAST (Avant!) because the research work in question, see [328], was performed
in this language.

The majority of the synchronisation lies in a WHEN instruction, the body of
which is executed if its condition is true. It is thus largely comparable with a
process in VHDL. In the body there is initially an interrogation of the interrupt line
to determine whether a replay is necessary. This is performed if necessary, and then
the actual execution of the software takes place. Upon return from the C routine the
software reports that it was able to simulate until time point t cur. Then an event
at time t_cur is initiated upon the softsync signal. When this occurs, software
and hardware are synchronised. Thus data can be exchanged and a new software
operation started. This is taken into account accordingly by the WHEN instruction.

template m6805 ... # Interface description
state time t_cur # Current software time upon return
state time t_old # Start time of the last software call
state time step # Desired length of the software operation

state logic 4 softsync # Carries events for synchronisation
foreign software sim # External C routine

If simulation beginning or event at the softsynch
variable or active edge on the interrupt line

when (time init | event on(softsync) |

(event on(interrupt)&(interrupt==14 0))) {

if (event on(interrupt) & (interrupt==14 0)) { # Interrupt!

Replay, time supplies the current time

(t_cur, ...) = software sim(t_old,time,...) # C-Routine
}
(t_cur, ...) = software sim(time,time+step,...) # C-Routine
schedule event (t_cur, softsync, 14 1)) # softsync event
t_old = time # Save old start time

}
}

Hardware description 5.2 Simplified description of the synchronisation between hardware
and software in the hardware description language MAST

98 5 SOFTWARE IN HARDWARE DESCRIPTION LANGUAGES

5.4.5 Debugging of software

The visualisation of software cannot be achieved in a worthwhile manner using the
tools of an electronics or mechanics simulator. Ideally, the tools used for pure soft-
ware development would be used. Such debuggers show the instruction currently
being executed and the content of the variables. Furthermore, it is possible to act
upon the sequence of the software by setting breakpoints and then investigating
particular points in steps. It should also be possible to change the value of the
variables during execution.

However, we are dealing with software that is run on virtual hardware. Fur-
thermore, feedback effects from electronic and possibly mechanical system com-
ponents, also have to be taken into account. Such a debugger has been developed,
see Pelz et al. [328], and correspondingly incorporated into the software model.
Figure 5.7 shows the user interface that has been developed for this.

The two buttons ‘Take Control’ and ‘Leave Control’, which allow us to take over
the control of the simulation or leave it again, are of primary importance. In control
mode we can move forward in ‘Single Step’ mode or proceed directly to the next
halt point ‘Go to break’. An ‘Interrupt’ interrupts such a sequence, whilst ‘Reset’
restores the original state. In the top window the system programme is displayed
at assembler or programming language level. Clicking on a line sets or recalls
a break. The bottom left window shows the most important system information,
and particularly the current content of the register, whilst the bottom right window
shows the variable contents.

5.5 Summary

In this chapter the inclusion of software using hardware description languages was
investigated. Using the results obtained we can now look at systems that incorpo-
rate software components in addition to electronics and other domains. Significant
features are the cyclically correct management of software operation on a con-
troller, efficiency as a result of the compiled simulation of the software, and the
options of linking in a debugger for the visualisation and control of the simulation
process. Using the methods for the modelling of mechanics in hardware descrip-
tion languages, dealt with in the next chapter, yields a universal modelling process
for mechatronic and micromechatronic systems that can be executed directly upon
available commercial simulators.

