
Chapter 14

A Localization System for Mobile Robot
Using Scanning Laser and Ultrasonic

Measurement

14.1. Introduction

The ability of locating itself in the environment is essential for a mobile
robot to execute its commands. Localization is fundamental to subsequent
tasks such as map building and collision-free path planning. Various methods
have been developed by many researchers. A review on the mobile robot
localization technologies can be found in [BOR 97]. Among those, odometry
was widely used to determine the momentary position. Borenstein and Feng
[BOR 96] improved the accuracy of odometry up to one order of magnitude
by measuring and correcting the robot’s systematic errors. However, wheel
slippage and ground roughness would cause a fatal error in the robot’s
heading measurement, which could later introduce a significant position
error, should the robot travel a long way. In order to improve the robot’s
heading accuracy as well as the dead reckoning accuracy, gyroscope was
used and tested by many researchers [KOM 94, HAR 96, FEN 96, BOR 98,
CHU 01]. The dead reckoning method using a gyroscope can avoid the
influence of wheel slippage and ground roughness on a robot heading
measurement, and hence provides a more accurate momentary position and
heading than odometry does. But low-cost gyroscopes suffers from random
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drift over long-time running. Dead reckoning is a relative localization
method, and may suffer from unbounded accumulative errors. To compensate
this, an absolute method must be used. Triangulation using landmarks is a
commonly adopted method [COH 92, BET 97, FON 05]. To use artificial
landmark triangulation, the position of each landmark must be known. This is
not convenient when the robot’s working environment is unstructured. To use
natural landmark triangulation, an accurate map for the environment should
be available. Often, to build a map of the robot’s environment is a tough task
for users. Tsai [TSA 98] combined a flux gate compass, a rate-gyro and two
encoders to get an optimal estimate for robot heading, and combined the dead
reckoning position estimate with ultrasonic range measurements to remove
accumulated position errors, but the coverage of the ultrasonic transmitter
was limited to a small area. And this method fails in the environment where
the magnetic field of the earth is twisted. Vision-based localization and
simultaneous localization and mapping (SLAM) are regarded as key
essentials for a real autonomous mobile robot and have been widely
researched in recent years [SE 05, ROY 07]. But the computational
complexity hinders their realistic application.

Our efforts focus on developing a simple, low-cost, continuously accurate
and convenient method of mobile robot localization using a multisensor. We
assume that the mobile robot has a base station fixed to the ground where the
robot can recharge itself. The robot’s position and heading are relative to the
base station. The method’s novelty lies in the combination of scanning laser
and ultrasonic measurement to construct an absolute localization system. A
scanning laser and an ultrasonic transmitter are mounted on the base station
to measure the robot’s angle and distance relative to it. Another scanning
laser is mounted on the robot to measure the base station’s relative angle in
the robot’s frame. The base station and the robot are wirelessly connected
through radio frequency (RF). Using the extended Kalman filter, the data of a
scanning laser and ultrasonic absolute positioning system are fused with the
dead reckoning system that utilizes a low-cost gyroscope. This method
achieves the convenience that neither an extra artificial landmark nor an
accurate map of the environment is needed, and it is suitable for both a
structured and an unstructured environment.

The chapter is organized as follows. Section 14.2 describes the
mechanical and electronic hardware configuration of our positioning system.
Section 14.3 details the proposed method. The performance of the method is
given in section 14.4. Section 14.5 presents our conclusion.
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14.2. System configuration

The mechanical structure of our mobile robot is typical, which consists of
two independently driven back wheels and a freely rotating front wheel. The
robot has a digital signal processing (DSP) unit as its central controller. A
low-cost and high drifting numerical Micro-Electro-Mechanical Systems
(MEMS) gyroscope ADIS16255 is utilized in dead reckoning. Two optical
incremental encoders are mounted on the driving motors to provide the
odometry information of each wheel for the dead reckoning. A compass is
not used for the reason that in some environments the magnetic field is
twisted and it will lose its function or bring error heading information to the
robot, especially when the magnetic field’s direction changes slowly from
place to place.

Because of the wheel slippage, surface roughness and gyro-drift, there is
accumulative error in the robot position estimation. So, an absolute
positioning system is needed to compensate the accumulative error in the
dead reckoning system. To improve the convenience of installation, we make
full use of the base station and no extra landmark is needed. According to
polar coordinates system, to locate the robot, the angle and distance of the
robot in the base station polar coordinates system should be known. A laser
scanner with a high-resolution optical encoder is mounted on the base station
to get the polar angle. An ultrasonic wave transmitter is attached to the
scanning laser and rotates with it. Figure 14.1 shows the structure.

Figure 14.1. Assembling structure of the scanning laser, ultrasonic
transmitter and the laser receiver array on base station

A laser receiver array and an ultrasonic wave receiver array are mounted
on the robot. They can receive the laser and ultrasonic wave that comes from
any direction from the base station. Figure 14.2 shows the structure.
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Figure 14.2. Assembling structure of the laser receiver array,
ultrasonic receiver array and the laser emitter on robot

When the laser is received by the robot, it sends an RF signal to the base
station to indicate that the robot is scanned by the base. Then, the base station
sends the angle of the scanning laser encoder to the robot and emits an
ultrasonic wave pulse after that. Since the time delay from the RF
transmitting to the ultrasonic wave sending is constant, the time of flight
(TOF) of the ultrasonic wave can be measured so as to obtain the distance
from the base station to the robot.

Figure 14.3. Sketch of the scanning laser and ultrasonic
absolute positioning system

To compensate the angle drift of the low-cost gyroscope, we mounted
another scanning laser on the robot, and the laser’s direction is also measured
by a high-resolution optical incremental encoder, as shown in Figure 14.2.
The laser line emitted by the base station and the robot are modulated to
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different frequencies to avoid mutual and sunlight interruption. The base
station also has a laser receiver array to receive the laser from the robot.
When the robot laser is received by the base station, it sends an RF signal to
the robot. The moment robot receives the signal from the base station, the
angle of the scanning laser encoder is read out. Together with the position of
the base station and the robot, the robot heading can be calculated. And then
fused with the gyroscope information, the optimal robot heading is estimated.

A sketch of the scanning laser and ultrasonic absolute positioning system
is shown in Figure 14.3.

14.3. Implementation

14.3.1. Dead reckoning system

When the robot is not scanned by the base station, it works in a dead
reckoning mode. Tsai [TSA 98] used a multisensorial scheme fusing data
from a gyro, a flux compass and two encoders to get an optimal estimate of
the robot heading. But when we apply this method, it fails when the direction
of the Earth’s magnetic field changes slowly from place to place. In this
condition, the absolute difference between the compass heading and gyro
heading is less than the selected threshold in every sampling period (0.5 s),
and the error information in a compass is fused in the robot heading.
Gradually, the robot heading converges to the direction of the magnetic field,
which has been twisted. This is because the error model in a compass
measurement is not a discrete-time, zero-mean white Gaussian process when
the magnetic field is slowly twisted. So in our system, we measure the robot
relative heading by fusing information from a gyro and two encoders, and
later fuse the relative heading with scanning laser angle information when the
base station is scanned by the robot. Let ( )e kθ and ( )1e kθ − denote the
robot heading angle estimated by using the information from two wheel
encoders at time k and ( ) ,1k − so ( )e kθ can be calculated by:

e ( ) ( 1) ( ) / ( )e r r l l ek k p c p c d n kθ θ= − + Δ − Δ + [14.1]

where rpΔ and lpΔ denote the pulse increase of right encoder and left
encoder from time ( )1k − to time k. d denotes the distance between the
driven wheels. cr and cl convert the encoder pulse to distance traveled by the
right and left wheels in millimeters. In order to get the accurate value of cr
and cl, we manually drive the robot to track along a straight line path for a
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distance l, and read the pulse increase pr and pl. The cr and cl can be
calculated by cr = l/pr and cr = l/pl. Several measurements are needed to
increase accuracy by calculating the average value of cr and cl. Measurement
noise ne(k) is assumed to be a zero-mean white Gaussian process with
variance 2 .eσ

Let ( )g kθ and ( )1g kθ − denote the robot heading angle estimated from
a gyroscope. For convenience, we rewrite here the equation of the gyro
heading measurement in [TSA 98]:

( 1)
( ) ( 1) ( ) ( )

kT

g g gk T
k k t dt n kθ θ θ

•

−
= − + + [14.2]

where ( )tθ is the gyro’s rotational rate. T is the integration period. The noise
( )gn k is also assumed to be a zero-mean white Gaussian process with

variance 2
gσ . According to [TSA 98], if the absolute difference between

( )e kθ and ( )g kθ is less than a selected threshold, the dead reckoning
optimal robot heading estimated by fusing information from the gyro and two
encoders is:
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otherwise, ( ) ( ).d gk kθ θ= After the fusing, we let ( ) ( ) ( ).e g dk k kθ θ θ= =

The gyro and encoder information updating period that we use is 10 ms to
provide the robot real-time heading information that is needed in its real-time
control. ( )e kθ and ( )g kθ are fused every 0.5 s. We call it the fusing period.
In between the fusing period, ( )d kθ is equal to ( ).g kθ If the fusing period is
too small, the error between ( )e kθ and ( )g kθ will be constantly below the
threshold even when wheel slippage occurs. Therefore, error information will
be fused in the robot heading.

Next, the robot’s dead reckoned position ( , )d dx y is updated every 10 ms
by:

( ) ( 1)d d dx k x k x= − + Δ [14.4]
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( ) ( 1)d d dy k y k y= − + Δ [14.5]

where

( ) ( 1)
cos( )
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sin( )
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p c p c k k

y
θ θΔ + Δ + −

Δ = [14.7]

14.3.2. Scanning laser and ultrasonic positioning system

The dead reckoning positioning system is relative and will suffer from
unbounded accumulative error. Therefore, an absolute positioning system is
needed to eliminate the accumulative error in the robot heading and position
in time. The scanning laser mounted on the base station scans the robot
repeatedly. When the robot is scanned by the base station, it sends an RF
signal. When the base station receives the RF signal, it sends the scanning
laser angle α (shown in Figure 14.3) to the robot also through RF and then
emits an ultrasonic wave pulse immediately. Let tr f denote the moment when
the RF (which contains the scanning laser angle) is received by the robot, and
tul denote the moment when ultrasonic wave pulse is received by the robot.
The radio signal travels in the air at light speed. So its flying time can be
ignored, then the ultrasonic flying time is:

0f ul rft t t t= − − [14.8]

where t0 denotes the system’s constant time delay from the RF transmitting to
the ultrasonic wave sending in the base station and the RF receiving delay in
the robot. As the sound speed is related to the density of air, there is a
temperature sensor on the robot to compensate the sound speed variance. So,
the distance between the robot and the base station, drb, is measured. Along
with the angle of the scanning laser, the robot’s absolute position (xa, ya)  in
the frame of base station can be calculated by:

cos( )a rbx d α= [14.9]

sin( )a rby d α= [14.10]

If the distance between the dead reckoned position and the absolute
position measured by a scanning laser and a ultrasonic positioning system is
less than a selected threshold, the absolution position (xa, ya) is fused with the
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dead reckoning system by extended Kalman filter. We define
( ) ( ( ), ( )),X k x k y k= ( ) ( ( ), ( ))d d dX k x k y k= and let K(k) denote the Kalman

filter error gain at time k. The extended Kalman filter consists of the
following steps:

1) The one-step optimal prediction ˆ ( | 1)X k k − should be the dead reckoned
position Xd (k) calculated by equations [14.4], [14.5], [14.6] and [14.7]. Thus,

ˆ ( | 1) ( )dX k k X k− = [14.11]

Its propagation error covariance matrix ( | 1)P k k −� can be calculated by:

( | 1) ( 1 | 1) ( 1)P k k P k k Q k− = − − + −� � [14.12]

where ( 1 | 1)P k k− −� is the error covariance matrix of optimal estimate
ˆ ( 1 | 1)X k k− − at time k – 1, and Q(k – 1) is the diagonal covariance matrix
of process noises.

2) Since the robot’s position state X(k) can be returned by the scanning
laser and ultrasonic positioning system, the state transition matrix F(k + 1, k)
and observation matrix C(k) should be a unit matrix, so K(k) is calculated by:

( ) ( | 1)[ ( | 1) ( )]K k P k k P k k R k= − − +� � [14.13]

where R(k) denotes the diagonal covariance matrix of measurement noises.

3) Then, we can get the robot position’s optimal estimate ˆ ( | )X k k and

update the error covariance matrix ( | )P k k� using:

ˆ ˆ ˆ( | ) ( | 1) ( )[ ( ) ( | 1)]aX k k X k k K k X k X k k= − + − − [14.14]

( | ) [ ( )] ( | 1)P k k I K k P k k= − −� � [14.15]

where Xa(k) denotes the robot absolute position calculated by [14.9] and
[14.10] at time k, namely Xa(k) = (xa(k), ya(k)). After the fusing, we let

( ( ), ( )) ( ( ), ( ))d dx k y k x k y k= [14.16]

to eliminate the accumulative error in dead reckoned position.



A Localization System for Mobile Robot 377

There is also a scanning laser with a high-resolution encoder mounted on the
robot in order to compensate for the accumulative error in robot orientation. The
moment the base station is scanned by the robot, it also sends a signal to the robot
through RF. The robot then receives the signal and records the robot scanning
laser angle β in the robot frame (shown in Figure 14.3). Let α denote the angle
the robot’s position is at in the base station frame. Therefore,

arctan( ( ) / ( ))y k x kα = [14.17]

where (x(k), y(k)) is the optimal estimate of the robot’s position at time k. So,
the robot’s heading from the scanning laser can be calculated by:

( ) ( ( ) ( )) ( )l lk k k n kθ π β α= − − + [14.18]

where nl(k) is the measurement noise, which is also assumed to be a zero-
mean white Gaussian process with variance 2 .lσ Figure 14.3 shows the
relationship of θ, β and α in [14.18]. Also, if the absolute error between θl
and θd is less than a selected threshold, for example 3°, the robot’s optimal
heading can be estimated by:

2 2

2 2

( ) ( )
( ) .d l l d

l a

k k
k

θ σ θ σθ
σ σ

+
=

+
[14.19]

where the dead reckoned robot heading θd (k) is also assumed to be a zero-
mean white Gaussian process with variance 2

dσ After the estimation, we let
( )d kθ θ= to eliminate the accumulative error in dead reckoning angle.

Furthermore, with the scanning laser and the ultrasonic absolute
positioning system, the robot can initialize its position and heading at any
position and orientation within the system’s effective range. To do this, the
robot first calculates its initial position through [14.9] and [14.10], and then
the heading can be calculated by [14.17] and [14.18].

14.4. Experimental results

We applied the proposed localization system to a lawn robot as shown in
Figure 14.4 and our objective is to make it work for a long period of time
(e.g. for about one hour) without losing its position, where the lawn robot is
designed to mow the lawn with coverage planning rather than randomly.
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Therefore, it would not surpass the lawn edge during its mowing work
without the assistance of a buried electric wire, which is needed by such
current products. In our experiments, the base station is placed at origin (0,0).
The scanning laser on the base station and the robot slowly scans from side to
side with a period of 5 s.

Figure 14.4. The experimental lawn robot

We first conduct an experiment to evaluate the accuracy of the ultrasonic
distance measurement on which the performance of the scanning laser and
ultrasonic absolute localization system largely depends. The lawn robot is
placed at four different distances away from the base station: 240, 1,200,
2,100 and 3,000 cm. When the distance is larger than 35 m, the ultrasonic
wave becomes so weak that the receiver array on the robot fails to receive it.
Figure 14.5 shows the accuracy. There are 40 measurements at each distance.
The respective mean square errors of the four curves in Figure 14.5 are 2.9,
3.0, 5.4 and 8.3 cm. The absolute errors stay well within 10 cm when the
distance is approximately 10 m and less. The error becomes larger when
the robot gets farther, but stays mostly within 10 cm when the distance is
about 20 m. Even at the range of 30 m, the measurement error is acceptable at
the 10 cm order of magnitude. The occasional wrong measurements with
the absolute error lager than 15 cm can be filtered out by the data fusing
strategy.
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Figure 14.5. Accuracy of scanning laser and ultrasonic positioning system

The next experiment aims at evaluating the accuracy of the scanning laser
and ultrasonic absolute positioning system. The robot stops at several
specified points in the environment and its position is calculated using the
information coming from the scanning laser and the ultrasonic distance
measurement. Figure 14.6 shows the results. The crossing point of the dashed
line in each subfigure is the robot’s specified position, and the circles denote
its calculated position by the absolute positioning system, namely ( , ).a ax y
The calculated position in each subfigure seems to be classified into two
clusters. This is due to the angle error of the base station scanning laser. Our
encoder linked with the scanning laser has a resolution of 1,000 pulses per
circle. Therefore, one pulse error in the pulse counter will lead to 0.36° error
in the angle measurement. Using encoders of higher resolution will have
higher accuracy. The position error led by the angle becomes larger when
the robot gets farther away from the base station. Within each point cluster,
the error is caused by the fluctuation in ultrasonic distance measurement. As
we can see from Figure 14.6, this scanning laser and ultrasonic positioning
system is effective when the robot works within 30 m from the base station
with the position error being kept at a 10 cm order of magnitude.
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Figure 14.6. Accuracy of ultrasonic distance measurement (cm)

The last experiment evaluates the robot’s real-time running performance
with the dead reckoning fused with the scanning laser and ultrasonic
positioning system. Before the experiment, the parameters of noise models
are calculated, where 2 2,gσ = 2 2,eσ = 2 2,dσ = 2 2,lσ = ( ) ( 1)Q k Q k= − =

{1000, 1000}diag and ( ) ( 1)R k R k= − = {1000, 1000}.diag The initial

conditions of Kalman filter are ˆ (0|0 ) (0, 1200)X = and (0|0)P diag=�

{1000, 1000} (angle unit: degree, distance unit: mm). The experiment was
performed on an outdoor lawn. We first manually drive the robot carefully
along a 24 m × 24 m square shape path marked on the lawn by white tape.
(The white tape is only used to assist the driver in steering the robot exactly
on the desired path, and not used for robot navigation.) In the progress, the
robot’s calculated position is stored in its memory for every 60 cm traveled.
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Then, the stored data are sent to the computer through serial port. Figure 14.7
shows that the calculated position fits well with robot trajectory.

Figure 14.7. Robot trajectory and its calculated position

After that, we let the robot navigate itself automatically along the
24 m × 24 m square path, as shown by the dotted path in Figure 14.7, which
was also preprogrammed in the robot. Since it is difficult to measure the
robot’s position error during its navigation, we measure its position when it
returns and stops at the starting point (0, 200 cm). This error measuring
method was used in [BOR 96] and [CHU 01]. But during our measurement,
the robot’s software program remains running, and it keeps navigating after
the measurement is done. This is in an effort to test the robot’s continuous
localization ability for long-time running. There are 20 continuous runs with
each run lasting about 2.5 min. Both clockwise and anticlockwise
measurements are tested. Let ( , )r rx y denote the tape measured point where
the robot returns and ( , )c cx y denote its calculated position. The error points
( , )r c r cx x y y− − between the returning points and the calculated position are
denoted by small squares (clockwise measurements) and circles
(anticlockwise measurements) in Figure 14.8. Although the position error
becomes reasonably larger when the robot gets farther, the returning point
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error at (0, 200 cm) keeps robustly within a 10 cm order of magnitude. The
accumulative error of relative dead reckoning is effectively compensated by
fusing with the absolute positioning system. This confirms that the proposed
method is convergent over long-time running.

Figure 14.8. Robot trajectory and its calculated position

14.5. Conclusion

This chapter has developed a low-cost, simple and convenient
multisensor-based mobile robot localization system. The information from a
low-cost gyro and two wheel encoders are fused to get the robot’s temporary
heading and position. A scanning laser angle measurement and ultrasonic
distance measurement system is employed to eliminate the accumulative
error in robot’s dead reckoned heading and position. The proposed
localization system can work both indoors and outdoors and needs no
artificial landmarks or accurate map of the robot’s working environment,
only a base station is needed. Experimental results show that the system
works well on a lawn robot. With our localization system, the lawn robot can
work on the lawn continuously for a long period of time within 30 m from
the base station. The lawn edge can be stored in the robot to avoid it
surpassing the edge. Furthermore, the robot can initialize itself at any
position within the system’s effective range.
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