
Stylish
F# 6

Crafting Elegant Functional Code
for .NET 6
—
Second Edition
—
Kit Eason

Stylish F# 6
Crafting Elegant Functional

Code for .NET 6

Second Edition

Kit Eason

Stylish F# 6: Crafting Elegant Functional Code for .NET 6

ISBN-13 (pbk): 978-1-4842-7204-6 ISBN-13 (electronic): 978-1-4842-7205-3
https://doi.org/10.1007/978-1-4842-7205-3

Copyright © 2022 by Kit Eason

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Kit Eason, based on data courtesy of NYC Open Data

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484272046. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Kit Eason
Farnham, Surrey, UK

https://doi.org/10.1007/978-1-4842-7205-3

To Val, Matt, Meg, Kate, Andy, Noah, and Darwin:
my own persistent collection.

v

Chapter 1: The Sense of Style ��� 1

Why a Style Guide? ��� 1

Understanding Beats Obedience ��� 2

Good Guidance from Bad Code ��� 2

What About Testability? ��� 8

Complexity Explosions �� 8

Summary��� 9

Chapter 2: Designing Functions Using Types �� 11

Miles and Yards (No, Really!) ��� 11

Converting Miles and Yards to Decimal Miles�� 12

How to Design a Function ��� 13

Sketch the Signature of the Function �� 14

Naively Code the Body of the Function �� 14

Review the Signature for Type Safety �� 15

Review and Refine ��� 19

A Final Polish �� 21

Recommendations �� 23

Summary��� 24

Exercises ��� 24

Exercise Solutions ��� 25

Table of Contents

About the Author ���xv

About the Technical Reviewer ���xvii

Acknowledgments ��xix

Introduction ��xxi

vi

Chapter 3: Missing Data ��� 29

A Brief History of Null �� 29

Option Types vs� Null ��� 32

Consuming Option Types ��� 34

Pattern Matching on Option Types ��� 35

The Option Module �� 36

Option Type No-Nos ��� 43

Designing Out Missing Data �� 44

Interoperating with the Nullable World ��� 48

Leaking In of Null Values ��� 48

Defining a SafeString Type �� 49

Using Option�ofObj ��� 50

Using Option�ofNullable ��� 51

Leaking Option Types and DUs Out �� 52

Using Option�toObj ��� 52

Using Option�toNullable ��� 53

The Future of Null �� 54

The ValueOption Type �� 55

Recommendations �� 56

Summary��� 56

Exercises ��� 57

Exercise Solutions ��� 58

Chapter 4: Working Effectively with Collection Functions �������������������������������������� 61

Anatomy of a Collection Function ��� 61

Picking the Right Collection Function ��� 64

Detailed Collection Function Tables �� 66

Practicing with Collection Functions ��� 72

Exercise Setup ��� 72

Single Collection Function Exercises ��� 73

Multiple Collection Function Exercises �� 77

Table of ConTenTs

vii

Partial Functions ��� 80

Coding Around Partial Functions ��� 82

Using the “try” Idiom for Partial Functions �� 84

Consuming Values from try… Functions ��� 86

Try… Function Exercises �� 86

Functions for Other Kinds of Collections ��� 87

When the Collection Function Is Missing �� 88

Common Mistakes �� 89

Recommendations �� 93

Summary��� 94

Exercise Solutions ��� 94

Chapter 5: Immutability and Mutation�� 99

These Folks Are Crazy! �� 99

Classic Mutable Style �� 99

Immutability Basics ��� 101

Common Mutable Patterns ��� 103

Linear Search �� 104

Guarded Linear Search �� 105

Process All Items ��� 107

Repeat Until ��� 110

Find Extreme Value �� 112

Summarize a Collection ��� 115

Recommendations �� 117

Summary��� 118

Exercises ��� 118

Exercise Solutions ��� 119

Chapter 6: Pattern Matching �� 123

Weaving Software with Patterns ��� 123

Pattern Matching Basics ��� 123

When Guards ��� 126

Table of ConTenTs

viii

Pattern Matching on Arrays and Lists ��� 127

Pattern Matching on Tuples �� 129

Pattern Matching on Records�� 130

Pattern Matching on Discriminated Unions��� 133

Pattern Matching on DUs in Function Parameters �� 135

Pattern Matching in Let Bindings �� 138

Revisiting Single-Case Discriminated Unions ��� 139

Pattern Matching in Loops and Lambdas�� 141

Pattern Matching and Enums �� 142

Active Patterns �� 144

Single-Case Active Patterns �� 144

Multicase Active Patterns �� 146

Partial Active Patterns ��� 147

Parameterized Active Patterns �� 149

Pattern Matching with “&” �� 150

Pattern Matching on Types �� 151

Pattern Matching on Null �� 153

Recommendations �� 154

Summary��� 156

Exercises ��� 157

Exercise Solutions ��� 160

Chapter 7: Record Types ��� 165

Winning with Records ��� 165

Record Type Basics ��� 165

Record Types and Immutability ��� 167

Default Constructors, Setters, and Getters �� 169

Records vs� Classes �� 169

Structural Equality by Default �� 170

Records as Structs �� 173

Mapping from Instantiation Values to Members �� 175

Table of ConTenTs

ix

Records Everywhere? ��� 176

Pushing Records to the Limit �� 177

Generic Records �� 178

Recursive Records ��� 179

Records with Methods ��� 180

Records with Methods – A Good Idea? �� 183

Anonymous Records ��� 184

Anonymous and Named Record Terminology �� 186

Anonymous Records and Comparison ��� 186

“Copy and Update” on Anonymous Records �� 189

Serialization and Deserialization of Anonymous Records�� 190

Anonymous Records in Type Hints �� 192

Struct Anonymous Records ��� 192

Anonymous Records and C# �� 193

Pattern Matching on Anonymous Records��� 193

Adding Methods to Anonymous Records ��� 194

Mutation and Anonymous Records �� 194

Record Layout ��� 195

Recommendations �� 196

Summary��� 198

Exercises ��� 198

Exercise Solutions ��� 200

Chapter 8: Classes �� 205

The Power of Classes �� 205

Additional Constructors ��� 215

Values As Members ��� 217

Simple Mutable Properties �� 219

Member Getters and Setters with Bodies ��� 220

Named Parameters and Object Initialization Syntax ��� 222

Indexed Properties �� 223

Table of ConTenTs

x

Interfaces �� 226

Object Expressions �� 232

Abstract Classes ��� 235

Abstract Members ��� 235

Default Member Implementations ��� 236

Class Equality and Comparison ��� 237

Implementing Equality ��� 237

Implementing Comparison �� 243

Recommendations �� 246

Summary��� 246

Exercises ��� 248

Exercise Solutions ��� 249

Chapter 9: Programming with Functions �� 253

Functions First �� 253

Functions as Values �� 253

Currying and Partial Application�� 255

Mixing Tupled and Curried Styles �� 257

Function Signatures Revisited �� 259

Type Hints for Functions ��� 260

Functions That Return Functions �� 262

Function Composition ��� 265

Recommendations �� 268

Summary��� 269

Exercises ��� 269

Exercise Solutions ��� 272

Chapter 10: Asynchronous and Parallel Programming ��� 275

Ordering Pizza ��� 275

A World Without Async �� 276

Running the Synchronous Downloader ��� 282

Converting Code to Asynchronous �� 284

Table of ConTenTs

xi

Locking Shared Resources ��� 290

Testing Asynchronous Downloads��� 291

Batching �� 292

Throttling ��� 297

C# Task vs� F# Async ��� 299

F# Tasks �� 301

Recommendations �� 304

Summary��� 305

Exercises ��� 306

Exercise Solutions ��� 307

Chapter 11: Railway Oriented Programming �� 311

Going Off the Rails �� 311

On the Factory Floor �� 312

Adapting Functions for Failure �� 316

Writing a Bypass Adapter �� 317

Writing a Pass-Through Adapter ��� 318

Building the Production Line ��� 319

Making It Official ��� 323

Love Your Errors �� 324

Recommendations �� 328

Summary��� 329

Exercises ��� 330

Exercise Solutions ��� 333

Chapter 12: Performance �� 337

Design Is Compromise �� 337

Some Case Studies ��� 338

BenchmarkDotNet ��� 338

Case Study: Inappropriate Collection Types �� 340

Avoiding Indexed Access to Lists �� 343

Table of ConTenTs

xii

Using Arrays Instead of Lists ��� 345

Use Sequences Instead of Arrays �� 346

Avoiding Collection Functions ��� 347

Avoiding Loops Having Skips ��� 349

Inappropriate Collection Types – Summary ��� 350

Case Study: Short-Term Objects ��� 352

Sequences Instead of Arrays ��� 355

Avoiding Object Creation ��� 356

Reducing Tuples �� 357

Using Struct Tuples �� 358

Operator Choice ��� 360

Short-Term Objects – Summary �� 362

Case Study: Naive String Building ��� 364

StringBuilder to the Rescue ��� 366

Using String�Join ��� 367

Using Array�Parallel�map �� 368

Using String Interpolation �� 370

Naive String Building – Summary ��� 371

Other Common Performance Issues ��� 372

Searching Large Collections �� 372

Comparison Operators and DateTimes �� 372

Concatenating Lists ��� 372

For-Loop with Unexpected List Creation �� 372

F# and Span Support �� 373

The Importance of Tests �� 373

Recommendations �� 375

Summary��� 376

Exercises ��� 377

Exercise Solutions ��� 380

Table of ConTenTs

xiii

Chapter 13: Layout and Naming ��� 383

Where Are My Braces? �� 383

It’s Okay Pluto, I’m Not a Planet Either �� 384

Some Infelicitous Code ��� 386

Convenience Functions ��� 390

Column Extraction Functions �� 391

The Observation Range Type ��� 393

The Importance of Alignment �� 395

The Minor Planet Type ��� 397

Recommendations �� 404

Summary��� 405

Exercise �� 406

Exercise Solution �� 407

Chapter 14: Summary ��� 409

F# and the Sense of Style ��� 409

Designing Functions with Types �� 409

Missing Data ��� 410

Collection Functions �� 410

Immutability and Mutation �� 411

Pattern Matching �� 411

Record Types ��� 411

Classes �� 412

Programming with Functions �� 412

Asynchronous and Parallel Programming ��� 413

Railway Oriented Programming �� 414

Performance ��� 414

Layout and Naming ��� 415

Onward! �� 416

Index ��� 417

Table of ConTenTs

xv

About the Author

Kit Eason is a software developer and educator with more than 20 years of experience.

He has been programming in F# since 2011 and is employed at Perpetuum Ltd., working

on an extensive network of energy-harvesting vibration sensors fitted to railway rolling

stock and infrastructure. Kit is an avid F# user who is passionate about teaching others.

He has contributed to several publications, including the Apress book “Beginning F#.”

He often teaches on the topic of F#, and his popular videos appear on Udemy and

Pluralsight.

xvii

About the Technical Reviewer

Stachu Korick stumbled upon F# in 2014 and instantly

fell in love with both the language and the surrounding

community. Most importantly, he met his wife Olya after

speaking on F# at a local .NET conference near Philadelphia.

As time allows, he works on an F# podcast WTF# (https://

wtfsharp.com). Beyond software, Stachu spends his time as

an amateur woodworker, playing with his cats, practicing

chemistry, or jotting down bits of lyrics to eventually

compose into music.

https://urldefense.proofpoint.com/v2/url?u=https-3A__wtfsharp.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=idWvZqljDWFUOXrAMeAaTYYX9xaDBsdgFg5n4R3gL6E&s=wcEtFZ2j9iML9bH5Vo-tcvXkWkOriUNTVV6woBEQ0d8&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__wtfsharp.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=idWvZqljDWFUOXrAMeAaTYYX9xaDBsdgFg5n4R3gL6E&s=wcEtFZ2j9iML9bH5Vo-tcvXkWkOriUNTVV6woBEQ0d8&e=

xix

Acknowledgments

I am grateful for the generous help I received in putting Stylish F# together. Thanks to

Stachu Korick (Second Edition) and Quinton Coetzee (First Edition) for their exceedingly

diligent and constructive technical reviews. To Val Eason for detecting many typos

and poor turns of phrase. To Dr. Jon Harrop for providing detailed technical feedback

on Chapter 12, and to several other F# community members who have provided

feedback on the first edition and ideas for the second. To Jason Heeris for kindly giving

permission to reproduce the cartoon in Chapter 1. To Don Syme, Phillip Carter, and the

F# community for the never-ending stream of compiler and tooling improvements that

propel F# forward. And to Matt Jones and the amazing team at Perpetuum for providing

the best working environment I’ve ever experienced. Thanks also to the tireless crew at

Apress: Joan Murray, Jill Balzano, and Laura Berendson. Any errors, omissions, or plain

wrong-headedness are, of course, still my own responsibility.

xxi

Introduction

There are three distinct philosophies which you can apply to computer programming.

You can think of programming as a science, where the measure of progress is how well

you discover and reflect fundamental mathematical concepts in your code. You can

think of it as a discipline, where you seek to establish and follow rules about how code

should be written and organized. Or, best of all, you can think of it as a craft, where,

yes, you apply some of the science and some of the discipline; but you leaven those

with a generous helping of human creativity. To do this successfully, you need a fair

bit of experience, because crafting something is an inherently intuitive process. This

book aims to get you to a level where you can craft code confidently. It does this by

distilling and passing on my own experience of writing F# systems in numerous different

industries over the past ten years.

Before you start this book, you’ll need at least some knowledge of F# syntax and

concepts. Maybe you’ve read some of the wide range of beginner material that’s

available, and probably you’ll have written at least a few simple F# programs yourself.

You may well have deeper experience of other languages, such as C# or Python. That

said, I have framed the book so that C# knowledge is not a hard prerequisite: I learned

F# before I learned C#, and if I can do it, so can you! Also you definitely don’t need any

background in computer science or functional programming. I don’t have even a trace of

formal education in either of these areas.

So what’s between the covers? In Chapter 1, I’ll establish some principles which will

help us decide whether we are coding well and say a little bit about why coding stylishly

is important. In Chapter 2, we’ll pick up the basic tools of our craft and learn to chisel

out elegant and reliable functions. In Chapter 3, we’ll tackle the thorny issue of missing

data, learning some effective techniques for writing dependable code when certain

values might not be available. In Chapter 4, we’ll pick up some more powerful crafting

tools, the so-called collection functions, and explore how you can use them to achieve a

surprising amount with very little code. In Chapter 5, we’ll delve into the strange world

of immutability: how you can write programs which achieve a result without explicitly

changing anything. In Chapter 6, we’ll look at pattern matching, a concept you may

have looked at a little when you learned F# syntax, but which is surprisingly pervasive

xxii

and powerful in quality F# code. In Chapter 7, we’ll explore record types, F#’s go-to

structure for storing groups of labeled values. In Chapter 8, we’ll cover some ground

which might already be familiar to C# developers: object-oriented classes. In Chapter 9,

we’ll return to the topic of F# functions and explore what it means for a function to also

be a first-class value. In Chapter 10, we’ll tame the apparent complexity of asynchronous

and parallel programming: it needn’t be as hard as you think! In Chapter 11, we’ll look

at Railway Oriented Programming, an interesting metaphor you can use to help you

think about processing pipelines. In Chapter 12, we’ll investigate performance: Can

you really write code which is both elegant and fast? In Chapter 13, we’ll establish some

useful techniques for laying out your code and naming items to maximize readability.

In Chapter 14, I’ll briefly reiterate what we’ve learned.

As this book is primarily about the language, you’ll find relatively few references

to other libraries. Of course, to build substantial systems, you’ll almost always want to

pull in NuGet packages for requirements such as unit testing, serialization, web serving,

and so forth. But these libraries constitute a large and fast-changing landscape, so I’ve

chosen to pare things down to the F# essentials for this book. For the same reason,

I hardly mention graphical user interface or web development. Since the first edition of

this book, F# has become much more widely used in these areas, but this has been via

innovations in the surrounding ecosystem (notably the Fable transpiler), whereas in

these pages, I want to concentrate on the F# language itself.

This focus also means that most of the code examples can be typed in and run

as cells in a .NET Interactive notebook. They are provided in notebook form in the

downloadable code samples. In the small number of cases where you need to write a

compilable program, I take you through the process in the text alongside the example.

These non-notebook examples are also provided in the downloadable code but in

“project” form so that you can open and build them in Visual Studio Code (with the

Ionide extension), Visual Studio, or JetBrains Rider.

I very much hope you enjoy sharing my F# experience as much as I enjoyed

acquiring it. Don’t forget to have fun!

InTroduCTIon

1
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_1

CHAPTER 1

The Sense of Style
Mystification is simple; clarity is the hardest thing of all.

—Julian Barnes, English Novelist

 Why a Style Guide?
In this chapter, I will talk a little about why we as F# developers need a style guide and

what such a guide should look like. I’ll also outline a few principles that, independent of

language, great developers follow. These principles will be our guiding light in the many

decisions we’ll examine in future chapters.

One of the most common issues for developers beginning their journey into F#

is that the language is neither old enough nor corporate enough to have acquired

universally accepted and comprehensive idioms. There simply isn’t the same depth of

“best practice” and “design patterns” as there is in older languages such as C# and Java.

Newcomers are often brought to a standstill by the openness of the choices before them

and by a lack of mental tools for making those choices.

Traditionally, teams and language communities have dealt with this kind of problem

by adopting “coding standards,” together with tools to support and enforce them, such

as “StyleCop” and “ReSharper.” But I must admit to having a horror of anything so

prescriptive. For me, they smack too much of the “human wave” approach to software

development, in which a large number of programmers are directed toward a coding

task, and “standards” are used to try and bludgeon them into some approximation of a

unified team. It can work, but it’s expensive and depressing. This is not the F# way!

https://doi.org/10.1007/978-1-4842-7205-3_1#DOI

2

 Understanding Beats Obedience
So how are we to assist the budding F# developer, in such a way that their creativity and

originality are respected and utilized, while still giving them a sense of how to make

choices that will be understood and supported by their peers? The answer, I believe, is

to offer not coding standards, but a style guide. I mean “guide” in the truest sense of the

word: something that suggests rather than mandates and something that gives the reader

the tools to understand when and why certain choices might be for the best and when

perhaps the developer should strike out on their own and do something completely

original.

In coming to this conclusion, I’ve been inspired by Steven Pinker’s superb guide to

writing in English, The Sense of Style (Penguin Books, 2014). The book is a triumph of

guidance over prescription, and my hope is to set the same tone here. Pinker makes the

point that stylish writing isn’t merely an aesthetic exercise: it is also a means to an end,

that end being the spread of ideas. Exactly the same is true of stylish coding, in F# or

any other computer language. The aim is not to impress your peers, to adhere slavishly

to this or that “best practice,” or to wring every possible drop of processing power out

of the computer. No, the aim is to communicate. The only fundamental metric is how

effectively we communicate using our language of choice. Therefore, the measure of the

usefulness of a style guide is how much it improves the reader’s ability to communicate

with peers, and with the computer, via the code they write.

 Good Guidance from Bad Code
Let’s begin by defining what kinds of communication problems we are trying to avoid.

We can get to the bottom of this by looking at the common characteristics of code bases

which everyone would agree are bad. Avoid those characteristics and we can hope that

our code can indeed communicate well!

Regardless of the era or technology involved, hard-to-work-with code bases tend to

have the following characteristics in common.

Characteristic 1: It’s hard to work out what’s going on when looking closely at any

particular piece of code.

To understand any one part of the program, the reader must think simultaneously

about what is going on in various other widely scattered pieces of code and

configuration. This cartoon (Figure 1-1) sums up the situation brilliantly.

Chapter 1 the SenSe of Style

3

Figure 1-1. This is why you shouldn’t interrupt a programmer

Interrupting busy programmers is bad, but the whistling coffee carrier isn’t the only

villain in this cartoon. The other is the code, which requires the developer to keep so

much context in their personal working memory. When we write such code, we fail to

communicate with people (including our future selves) who will have to maintain and

extend it.

Chapter 1 the SenSe of Style

4

Note I’ll describe the kind of code that isn’t readable with minimum context as
having poor semantic focus. In other words, relevant meaning isn’t concentrated in
a particular place but is spread about the code base.

Listing 1-1 shows an example of code that has poor semantic focus (along with a

number of other problems!).

Listing 1-1. Code with bad semantic focus

 let addInterest (interestType:int, amt:float, rate:float, y:int) =

 let rate = checkRate rate

 let mutable amt = amt

 checkAmount(&amt)

 let mutable intType = interestType

 if intType <= 0 then intType <- 1

 if intType = 1 then

 let yAmt = amt * rate / 100.

 amt + yAmt * (float y)

 else

 amt * System.Math.Pow(1. + (rate/100.), float y)

It is literally impossible to predict the behavior of this code without looking at other

code elsewhere. What are checkRate and checkAmount doing? Is it OK that the value

interestType can be any value from 2 upward with the same result? What happens

when any of the parameters is negative? Or are some or all of the invalid range cases

prevented elsewhere, or within checkRate and checkAmount? Could those protections

ever get changed by accident?

And you can bet that when you see code like this, then the other code you then have

to look at, such as the bodies of checkRate and checkAmount, is going to have similar

issues. The number of “what if?” questions increases – literally exponentially – as one

explores the call chain.

By the way, when I was writing this example, part of me was thinking “no

professional would ever do this,” and a larger part of me was remembering all the times

when I had seen code exactly like it.

Characteristic 2: It’s hard to be sure that any change will have the effects one wants,

and only those effects.

Chapter 1 the SenSe of Style

5

In hard-to-maintain code, it’s also difficult to answer questions such as the following:

• Can I refactor with confidence, or does the mess I’m looking at

conceal some special cases that won’t be caught properly by

apparently cleaner code?

• Can I extend the code to handle circumstances it wasn’t originally

designed for and be confident that both the old circumstances and

the new circumstances are all correctly handled?

• Could the code here be undermined in the future by some change

elsewhere?

Again, this is fundamentally a failure of communication with a human audience.

Note I’ll describe code that is difficult to change safely as having poor revisability
because the consequences of any local revision are not readily predictable.

I’ll give some specific examples in Chapter 5, but I’ll bet that if you’ve been in the

industry more than 5 minutes, you can provide plenty of your own!

Characteristic 3: It’s hard to be certain of the author’s intent.

A bad code base raises similar unsettling questions in the area of authorial intent:

• What did the author mean by a particular section of code? Does the

code actually do what they apparently think it should do? Is that even

the right thing in the context of the system as a whole?

• If there appear to be gaps in the logic in the code, did the author

realize they were there? Who is wrong, the author or the reader?

• If there are logic gaps, are the circumstances where they could

manifest themselves prevented from occurring, or are the resulting

errors handled elsewhere? Or have they never happened due to

good luck? Or do they sometimes happen, but no one noticed or

complained?

As if reading code wasn’t hard enough, the maintainer is now placed in a position of

having to read the mind of the original author, or worse still, the minds of every author

who has touched the code. Not the recipe for a good day at work and another failure to

communicate.

Chapter 1 the SenSe of Style

6

Note I’ll describe the kind of code where the author’s intentions are unclear as
having poor motivational transparency. We can’t readily tell what the author was
thinking and whether they were right when they were thinking it.

Here’s a great example of some code (in C# as it happens) where it’s hard to divine

the author’s intention. This is code that is published by a major cloud service provider,

apparently with a perfectly straight face, as an example of how to iterate over stored

objects. Perhaps a little cruelly, I’ve removed some helpful code comments (Listing 1-2).

Listing 1-2. Code with bad motivational transparency

ListVersionsRequest request = new ListVersionsRequest()

{

 BucketName = bucketName,

 MaxKeys = 2

};

do

{

 ListVersionsResponse response = client.ListVersions(request);

 foreach (ObjectVersion entry in response.Versions)

 {

 Console.WriteLine("key = {0} size = {1}",

 entry.Key, entry.Size);

 }

 if (response.IsTruncated)

 {

 request.KeyMarker = response.NextKeyMarker;

 request.VersionIdMarker = response.NextVersionIdMarker;

 }

 else

 {

 request = null;

 }

} while (request != null);

Chapter 1 the SenSe of Style

7

My problem with this code is that request is used both as an object embodying

a client request and as a sort of break marker, used to transport to the end of the loop

the fact that response.IsTruncated has become true. Thus, it forces you to carry two

distinct meanings of the label "request" in your head.

This immediately makes the reader start wondering, “Is there some reason why the

author did this, something which I’m not understanding when I’m reading the code?

For example, will any resources allocated when request was instantiated be released

promptly when the assignment to null occurs? Was this therefore an attempt at prompt

disposal?” (Would you know, without googling it, if resources are disposed promptly

on assignment to null? I have googled it and I still don’t know.) This is on top of the

mental overhead caused by the way the code has to transport state (KeyMarker and

VersionIdMarker) from the response to the request. Admittedly, this isn’t the sample

author’s fault as it is part of the API design, but with some careful coding, it might have

been possible to mitigate the issue.

All in all, reading this code starts a great many mental threads in the user’s head, for

no good reason. We can do better.

Characteristic 4: It's hard to tell without experimentation whether the code will be

efficient.

Any algorithm can be expressed in myriad ways, but only a very few of these will

make decent use of the available hardware and runtime resources. If you’re looking at

code with a tangle of flags, special cases, and ill-thought-out data structures, it is going

to be very difficult to keep efficiency and performance in mind. You’ll end up getting to

the end of a hard day fiddling with such code and thinking: “Oh well, at least it works!”

As data volumes and user expectations grow exponentially, this will come back to bite

you – hard!

Note I’ll describe code that isn’t obviously efficient as having poor mechanical
sympathy.

Again, it’s a failure of communication. The code should be written in a way that

satisfies both the human and electronic audiences, so the human maintainer can

understand it, and the computer can execute it efficiently. I’ll give some bad and good

examples in Chapter 12.

Chapter 1 the SenSe of Style

8

Generally, the term “mechanical sympathy” means the ability to get the best out of

a machine by having some insight into how the machine operates. In a world of perfect

abstractions (such as perfect automatic gearboxes or perfect computer languages), we

wouldn’t need mechanical sympathy. But we do not yet live in such a world. Incidentally,

the term is sometimes attributed to racing driver Jackie Stewart, but although he used it, a

quick glance at Google Ngrams suggests it predates him as a well- used phrase.

 What About Testability?
If you are worrying that I have missed out another characteristic of bad code, poor

testability, don’t worry. Testability is always at the forefront of my mind, but it’s my belief

that it would be hard to write code that had good semantic focus, good revisability, good

motivational transparency, and good mechanical sympathy, without it automatically

turning out to have good testability. Test-driven design aficionados would put the cart

and the horse the other way around, which is fine by me, but it’s not the way I want to

tackle things in this book.

 Complexity Explosions
Everyone would agree that maintaining bad, poorly communicating code is an

unpleasant experience for the individual. But why does this matter in a broader sense for

software engineering? Why should we spend extra time polishing code when we could

be rushing on to the next requirement?

The reason is that these sources of uncertainty exert an inexorable pressure toward

a complexity explosion. A complexity explosion occurs when developers, under all sorts

of time and commercial pressures, give up trying to fully reason about existing code and

start to commit sins such as the following:

• Duplicating code, because that feels safer then generalizing existing

code to handle both old and new cases

• Programming by coincidence, in which one keeps changing code

until it “seems to work,” because the code is just too hard to reason

about comprehensively

• Avoiding refactoring, because it seems too risky or time consuming in

the short term to be worth doing

Chapter 1 the SenSe of Style

9

The reason why I refer to such situations as explosions is because these bad practices

lead to further uncertainty, which leads to more widespread bad practice, and so

forth. Complexity explosions are the reason why, when joining a team working on an

established code base, the new developer is so often tempted to say, “Shouldn’t we just

rewrite the whole thing?” Complexity explosions are expensive and hard to recover from!

To prevent them, it’s important to write code that doesn’t put others (or your future self)

into a position where the sins look more tempting than the path of righteousness.

Everything about this book is designed to help you minimize the risk of complexity

explosions. If any of the techniques I suggest seem a little hard at first, consider the cost

and pain of the alternative!

 Summary
I hope I’ve convinced you that writing good code is a worthwhile investment of time and

that I’ve helped you spot some of the characteristics of bad code so that you can see the

practical advantages of every recommendation in this book.

The great news is that the F# language makes it easier than ever to avoid writing

bad code, by making it easy to write programs that are semantically focused, revisable,

motivationally transparent, and mechanically sympathetic. In the following chapters,

you’ll learn to write such great code and to enjoy doing it. For once in life, the path to

righteousness is downhill!

Chapter 1 the SenSe of Style

11
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_2

CHAPTER 2

Designing Functions
Using Types

When you remove layers, simplicity and speed happen.

—Ginni Rometty, CEO, IBM

Object-Oriented (OO) programming is currently the dominant design approach in

almost all software development. In OO, the natural unit of work is, unsurprisingly, the

“object” or “class,” and design effort is focused on defining classes that have the right

shapes, behaviors, and relationships for the tasks at hand. In F#, by contrast, the natural

units of work are types, which describe the shape of data, and functions, units of code

that take some (typed) input and produce some (typed) output in a predictable fashion.

It makes sense, therefore, to start our journey into stylish F# coding by looking at how

best to design and code relatively simple types and functions. It’s a surprisingly rich and

rewarding topic.

 Miles and Yards (No, Really!)
For the examples in this chapter, I’m going to choose a deliberately messy business

domain. No cherry-picked, simplified examples here! Let me introduce you to the weird

and wonderful world of premetrication units and the British railroad (in British parlance,

“railway”) system. British railways are still measured, for some purposes at least, in miles

and yards. A yard is just under 1 meter and will be familiar to American and most British

readers. A mile is 1,760 yards and again will be familiar to many readers (Table 2-1).

https://doi.org/10.1007/978-1-4842-7205-3_2#DOI

12

Table 2-1. Some Rail Units of Distance

Name Equal to

Yard 0.9144 meters

Mile 1760 yards

That’s simple enough, but it might surprise you to learn how miles and yards are

recorded in some British railway systems. They use a single floating-point value, where

the whole miles are in the whole part of the number and the yards are in the fractional

part, using .0 for zero yards and .1759 for 1,759 yards. For example, a mile and a half

would be 1.0880 because half a mile is 880 yards. A fractional part greater than .1759

would be invalid because at 1,760 yards, we are at the next mile.

Now you know why I chose British railway mileages as a nice gnarly domain for

our coding examples.1 Clearly, some rather specific coding is needed to allow railway

systems to do apparently straightforward things like reading, calculating with, storing,

and printing such miles.yards distances. This gives us a great opportunity to exercise our

type- and function-design skills.

 Converting Miles and Yards to Decimal Miles
Let’s start with the conversion from a miles-and-yards value, as perhaps read from a

railway GIS (Geographic Information System), to a more conventional floating-point

representation of miles and fractional miles, which would be useful for calculation.

This conversion is needed because, for example, you can’t just add two miles-and-yards

values, as the fractional part would not add properly. (Think about adding 1.0880

[one-and-a-half miles] to another 1.0880. Would you get three miles?) Because

of the ever present risk of confusion, I’ll use very specific terminology for the two

representations (Table 2-2).

1 Just be grateful that, for now at least, I’m ignoring another common railway unit, the “chain,”
which is equal to, wait for it, 22 yards or 1/80th of a mile.

Chapter 2 Designing FunCtions using tYpes

13

Table 2-2. Miles Terminology

Term Example Value Real-World Meaning

miles.yards 1.0880 one and a half miles

decimal miles 1.5 one and a half miles

 How to Design a Function
Here is my thought process for coding any function. I’ll list the steps first and then work

through the example.

• Sketch the signature of the function – naively, what types of inputs

does it take, and what type does it return? What should the function

itself be called? Does the planned signature fit well into code that

would need to call it?

• Code the body of the function, perhaps making some deliberately

naive assumptions if this helps get quickly to a “first cut.”

• Ask, does the sketched signature cover the use cases and eliminate

as many potential errors as possible? If not, refine the signature and

then the body to match.

• In coding the body, did you learn anything about the domain? Did

you think of some new error cases that could have been eliminated

at the signature level? Is the function name still a good reflection of

what it does? Refine the name, signature, and body accordingly.

• Rinse and repeat as necessary.

In outlining these steps, I’ve dodged the whole issue of tests. How and when unit

tests are written is an important topic, but I’m not getting into that here.

Now let us apply these steps to the miles.yards to decimal miles problem.

Chapter 2 Designing FunCtions using tYpes

14

 Sketch the Signature of the Function
You can sketch out the signature of a function straight into code by typing the let binding

of the function, using specified rather than inferred types, and making the body of the

function simply raise an exception. Listing 2-1 shows my initial thought on the miles.

yards to decimal miles converter.

Listing 2-1. Sketching out a function signature

 open System

 let convertMilesYards (milesPointYards : float) : float =

 raise <| NotImplementedException()

Here we are saying, “We’ll have a function called convertMilesYards that takes

a floating-point input and returns a floating-point result.” The function will compile,

meaning that you could even experiment with calling it in other code if you wanted. But

there is no danger of forgetting to code the logic of the body because it will immediately

fail if actually called.

 Naively Code the Body of the Function
Now we can replace the exception in the body of the function with some real code.

In the miles.yards example, this means separating the “whole miles” element

(for instance, the “1” part of 1.0880) from the fractional part (the 0.0880) and dividing

the fractional part by 0.1760 (remembering that there are 1,760 yards in a mile).

Listing 2-2 shows how this looks in code.

Listing 2-2. Naively coded function body

 let convertMilesYards (milesPointYards : float) : float =

 let wholeMiles = milesPointYards |> floor

 let fraction = milesPointYards - float(wholeMiles)

 wholeMiles + (fraction / 0.1760)

 // val decimalMiles : float = 1.5

 let decimalMiles = 1.0880 |> convertMilesYards

Chapter 2 Designing FunCtions using tYpes

15

As you can see from the example at the end of Listing 2-2, this actually works fine. If

you wanted, you could stop at this point, add some unit tests if you hadn’t written these

already, and move on to another task. In fact, for many purposes, particularly scripts

and prototypes, the code as it is would be perfectly acceptable. As you go through the

next few sections of this chapter, please bear in mind that the changes we make there

are refinements rather than absolute necessities. You should make a mental cost-benefit

analysis at every stage, depending on how polished and “bullet proof” you need the

code to be.

 Review the Signature for Type Safety
The next step in the refinement process is to reexamine the signature, to check whether

there are any errors we could eliminate using the signature alone. It’s all very well to

detect errors using if/then style logic in the body of a function, but it would be much

better to make these errors impossible to even code. Prominent OCaml2 developer Yaron

Minsky calls this “making illegal state unrepresentable.” It’s an important technique

for making code motivationally transparent and revisable – but it can be a little hard to

achieve in code where numeric values are central.

In our example, think about what would happen if we called our naive function

with an argument of 1.1760. If you try this, you’ll see that you get a result of 2.0, which

is understandable because (fraction / 0.1760) is 1.0 and, in case you’d forgotten,

1.0 + 1.0 is 2.0. But we already said that fractional parts over 0.1759 are invalid because

from 0.1760 onward, we are into the next mile. If this happened in practice, it would

probably indicate that we were calling the conversion function using some other

floating-point value that wasn’t intended to represent miles.yards distances, perhaps

because we accessed the wrong field in that hypothetical railway GIS. Our current code

leaves the door open to this kind of thing happening silently, and when a bug like that

gets embedded deep in a system, it can be very hard to find.

A traditional way of handling this would be to check the fractional part in the body

of the conversion function and to raise an exception when it was out of range. Listing 2-3

shows that being done. (As a brief digression, note how we use nameof when raising the

exception so that the correct name is output even if the parameter is renamed.)

2 OCaml is a language closely related to F#.

Chapter 2 Designing FunCtions using tYpes

16

Listing 2-3. Bounds checking within the conversion function

 open System

 let convertMilesYards (milesPointYards : float) : float =

 let wholeMiles = milesPointYards |> floor

 let fraction = milesPointYards - float(wholeMiles)

 if fraction > 0.1759 then

 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),

 "Fractional part must be <= 0.1759")

 wholeMiles + (fraction / 0.1760)

 // System.ArgumentOutOfRangeException: Fractional part must be <= 0.1759

 // Parameter name: milesPointYards

 let decimalMiles = 1.1760 |> convertMilesYards

But this isn’t making illegal state unrepresentable; it’s detecting an invalid state after

it has happened. It’s not obvious how to fix this because the milesPointYards input is

inherently a floating-point value, and (in contrast to, say, Discriminated Unions) we

don’t have a direct way to restrict the range of values that can be expressed. Nonetheless,

we can bring the error some way forward in the chain.

We start the process by noting that miles.yards could be viewed as a pair of integers,

one for the miles and one for the yards. (In railways miles.yards distances, we disregard

fractional yards.) This leads naturally to representing miles.yards as a Single-Case

Discriminated Union (Listing 2-4.)

Listing 2-4. Miles and yards as a Single-Case Discriminated Union

 type MilesYards = MilesYards of wholeMiles : int * yards : int

Just in case you aren’t familiar with Discriminated Unions, we are declaring

a type called MilesYards, with two integer fields called wholeMiles and yards.

From a construction point of view, it’s broadly the same as the C# in Listing 2-5.

Consumption- wise though, it’s very different, as we’ll discover in a moment.

Chapter 2 Designing FunCtions using tYpes

17

Listing 2-5. An immutable class in C#

public class MilesYards

{

 private readonly int wholeMiles;

 private readonly int yards;

 public MilesYards(int wholeMiles, int yards)

 {

 this.wholeMiles = wholeMiles;

 this.yards = yards;

 }

 public int WholeMiles { get { return this.wholeMiles; } }

 public int Yards { get { return this.yards; } }

}

I should also mention that in Discriminated Union declarations, the field names (in

this case, wholeMiles and yards) are optional, so you will often encounter declarations

without them, as in Listing 2-6. I prefer to include field names, even though it’s a little

wordier, because this improves motivational transparency.

Listing 2-6. A Single-Case Discriminated Union without field names

 type MilesYards = MilesYards of int * int

Going back to our function design task, we’ve satisfied the need for a type that

models the fact that miles.yards is really two integers. How do we integrate that with the

computation we set out to do? The trick is to isolate the construction of a MilesYards

instance from any computation. This is an extreme version of “separation of concerns”:

here the concern of constructing a valid instance of miles.yards is a separate one from

the concern of using it in a computation. Listing 2-7 shows the construction phase.

Listing 2-7. Constructing and validating a MilesYards instance

 open System

 type MilesYards = MilesYards of wholeMiles : int * yards : int

 let create (milesPointYards : float) : MilesYards =

 let wholeMiles = milesPointYards |> floor |> int

Chapter 2 Designing FunCtions using tYpes

18

 let fraction = milesPointYards - float(wholeMiles)

 if fraction > 0.1759 then

 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),

 "Fractional part must be <= 0.1759")

 let yards = fraction * 10_000. |> round |> int

 MilesYards(wholeMiles, yards)

Note the carefully constructed signature of the create function: it takes a floating-

point value (from some external, less strictly typed source like a GIS) and returns our

nice strict MilesYards type. For the body, we’ve brought across some of the code from

the previous iteration of our function, including the bits that validate the range of the

fractional part. Finally, we’ve constructed a MilesYards instance using whole miles

and yards.

All this may seem a trifle pernickety, but separating construction and conversion like

this has a number of benefits:

• The mapping from floating point to MilesYards is separately testable

from the conversion to decimal yards.

• We could use the independent MilesYards type in other useful ways,

such as overriding its ToString() method to provide a standard

string representation.

• The signature and implementation are motivationally transparent.

Even if a reader wasn’t familiar with the strange miles.yards

convention in British railways, they’d see instantly what we

were trying to do, and they’d be very clear that we were doing it

deliberately.

• Likewise, it’s semantically focused: the reader only has to worry about

one thing at a time.

• The code is also revisable. For example, if a new requirement

surfaced to create distance values from miles and chains (a chain

in railways is 22 yards, and yes, this unit is widely used), it would be

obvious what to do.

Now it only remains to implement the computation. Listing 2-8 shows a first cut of

code to do that.

Chapter 2 Designing FunCtions using tYpes

19

Listing 2-8. Computing decimal miles from a MilesYards instance

 let milesYardsToDecimalMiles (milesYards : MilesYards) : float =

 match milesYards with

 | MilesYards(wholeMiles, yards) ->

 (float wholeMiles) + ((float yards) / 1760.)

Again, the signature is super explicit: MilesYards -> float. In the body, we

use pattern matching to recover the wholeMiles and yards payload values from the

MilesYards instance. Then we use the recovered values in a simple computation to

produce decimal miles. Incidentally, if you aren’t familiar with Discriminated Unions,

the match expression is how we get at the fields of the DU. This is one way in which a DU

differs from an immutable class such as the C# example in Listing 2-5.

 Review and Refine
At this point, we have a somewhat safer and more explicit implementation. But it’s

not time to rest yet: we should still ruthlessly review the signature, naming, and

implementation to ensure they are the best they can be.

The first thing that might jump out at you is the naming of the create function.

“Create” is rather a vague word. What if we wanted to create an instance from some other

type, such as a string? We could perhaps rename create to fromMilesPointYards - but

that still leaves open the issue of what we are creating. And if we incorporated the result

type in the name as well, it would be too long.3 How about moving the function into a

module with the same name as the type and naming it fromMilesPointYards (Listing 2-9)?

Listing 2-9. Using a module to associate functions with a type

 open System

 type MilesYards = MilesYards of wholeMiles : int * yards : int

 module MilesYards =

 let fromMilesPointYards (milesPointYards : float) : MilesYards =

 // ... Same body as 'create' before ...

3 The longest item name I ever created was EventModuleBlockBedroomAllocationDelegates.
I’m not proud.

Chapter 2 Designing FunCtions using tYpes

20

 let toDecimalMiles (milesYards : MilesYards) : float =

 // ... Same body as 'milesYardsToDecimalMiles' before ...

 // 4.5

 printfn "%A"

 (MilesYards.fromMilesPointYards(4.0880)

 |> MilesYards.toDecimalMiles)

 // Error: System.ArgumentOutOfRangeException: Fractional

 // part must be <= 0.1759 (Parameter 'milesPointYards')

 printfn "%A" (MilesYards.fromMilesPointYards(4.5))

This style of creation, using a from... function within a module, is nice because it

leaves open the possibility that we might add additional ways of creating a MilesYards

instance. For example, we might later add a fromString function. From the point

of view of the caller, they would be doing a MilesYards.fromMilesPointYards or a

MilesYards.fromString, which is just about as motivationally transparent as you

could wish. We were also able to simplify the name of the conversion function from

milesYardsToDecimalMiles to toDecimalMiles.

One objection to our current code is that we haven’t quite achieved “making illegal

state unrepresentable.” Someone could simply construct their own invalid MilesYards

instance like this:

let naughty = MilesYards.MilesYards(1, 1760)

Thus, they’d bypass our carefully crafted fromMilesPointYards function. If this really

bothers you, you can move the Single-Case Discriminated Union inside the module and

make its case private (Listing 2-10).

Listing 2-10. Hiding the DU constructor

 module MilesYards =

 type MilesYards =

 private MilesYards of wholeMiles : int * yards : int

Now the only way to create a MilesYards instance is to go via the

fromMilesPointYards function or via any other creation functions we might add in

the future.

Chapter 2 Designing FunCtions using tYpes

21

Note sometimes, making a Du case constructor private in this way can cause
problems. For example, test code or serialization/deserialization sometimes
needs to see the constructor. also, you won’t be able to pattern match to recover
the underlying values. if using private constructors causes more problems than
it solves, just put the type outside the module again, and don’t worry too much
about it.

 A Final Polish
Time for a last look at the code to see if there is anything we can improve or simplify.

Listing 2-11 shows where we are so far. (I have reverted to the type-outside-module style

we were using prior to Listing 2-10, as this is what I find myself doing most in practice.)

Listing 2-11. A pretty good implementation of miles.yards conversion

open System

type MilesYards = MilesYards of wholeMiles : int * yards : int

module MilesYards =

 let fromMilesPointYards (milesPointYards : float) : MilesYards =

 let wholeMiles = milesPointYards |> floor |> int

 let fraction = milesPointYards - float(wholeMiles)

 if fraction > 0.1759 then

 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),

 "Fractional part must be <= 0.1759")

 let yards = fraction * 10_000. |> round |> int

 MilesYards(wholeMiles, yards)

 let toDecimalMiles (milesYards : MilesYards) : float =

 match milesYards with

 | MilesYards(wholeMiles, yards) ->

 (float wholeMiles) + ((float yards) / 1760.)

Chapter 2 Designing FunCtions using tYpes

22

I now only have a couple of objections to this code, and they are both in the

area of conciseness. The first is that we can avoid the match expression in the body

of toDecimalMiles. Perhaps surprisingly, the way to do that is to move the pattern

matching into the parameter declaration! Listing 2-12 shows before-and-after versions of

the function.

Listing 2-12. Pattern matching in parameter declarations

 /// Before:

 let toDecimalMiles (milesPointYards : MilesYards) : float =

 match milesYards with

 | MilesYards(wholeMiles, yards) ->

 (float wholeMiles) + ((float yards) / 1760.)

 /// After:

 let toDecimalMiles (MilesYards(wholeMiles, yards)) : float =

 (float wholeMiles) + ((float yards) / 1760.)

This trick, which only works safely with Single-Case Discriminated Unions,

causes the pattern match to occur at the caller/callee function boundary, rather than

within the body of callee. From the caller’s point of view, the type they have to provide

(a MilesYards DU instance) is unchanged; but within the callee, we have direct access

to the fields of the DU, in this case, the wholeMiles and yards values. I’m laboring this

point slightly because the first time you see this approach in the wild, it can be incredibly

confusing.

Another thing we can tighten up a little is the repeated casting to float, such as in

this line:

 (float wholeMiles) + ((float yards) / 1760.)

This casting is necessary because F# is stricter when mixing integers and

floating- point types than, for example, C#. You have to explicitly cast in one direction

or the other, which is intended to help you focus on your code’s intentions and thus to

avoid subtle floating-point bugs. However, all those brackets and float keywords do

make the code a bit wordy. We can get around this by creating a little operator to do

the work. Listing 2-13 shows how this looks. (Obviously, you can put the operator in a

different scope if you want to use it more widely.)

Chapter 2 Designing FunCtions using tYpes

23

Listing 2-13. Using an operator to simplify mixing floating-point and

integer values

 module MilesYards =

 let private (~~) = float

 ...

 let toDecimalMiles (MilesYards(wholeMiles, yards)) : float =

 ~~wholeMiles + (~~yards / 1760.)

The reason I chose ~~ as the name of this operator is that the wavy characters are

reminiscent of an analog signal.

I personally find this a very useful trick when writing computational code. That said,

many F# developers are reluctant to create their own operators, as it can obfuscate code

as much as it simplifies. I’ll leave the choice to you.

 Recommendations
Here are the key points I want you to take away from this chapter.

• To write a function, first define the required signature and then write

the body. Refine the signature and body until as many errors as

possible are eliminated declaratively at the signature (type) level, and

remaining errors are handled imperatively in the function body.

• To model a business type, consider using a Single-Case

Discriminated Union. Provide functions to act on the type (e.g., to

create instances and to convert to other types) in a module with the

same name as the type. For extra safety, optionally put the type inside

the module and make its single case private.

• Consider using operators – sparingly - to simplify code. In particular,

consider declaring conversion operators such as ~~ to simplify code

that mixes floating-point and integer values.

Chapter 2 Designing FunCtions using tYpes

24

 Summary
In this chapter, you learned how to design and write a function. You started by thinking

about types: what type or types the function should take as parameters and what type it

should return. Then you coded the body of the function, before circling back to the type

signature to try and eliminate possible errors. You learned how to define a Single-Case

Discriminated Union type representing some business item together with supporting

functions to instantiate the type and to transform the type to another type. You learned

the importance of Single-Case Discriminated Unions and about the usefulness of hiding

the constructor to maximize type safety. Finally, you learned a couple of tricks to simplify

your code: doing pattern matching in the declaration of a function parameter and using

operators to simplify common operations such as casting to float.

In the next chapter, we’ll look at missing data: how best to express the concept that a

data item is missing or irrelevant in a particular context.

 Exercises
Here are some exercises to help you hone the skills you’ve gained so far. Exercise

solutions are at the end of the chapter.

EXERCISE 2-1 – HANDLING NEGATIVE DISTANCES

there’s a hole in the validation presented previously: we haven’t said anything about what

happens when the input distance is negative. if we decided that negative distances simply

aren’t valid (because miles.yards values always represent a physical position on a railway

network), what would you need to change in the code to prevent negative values entering

the domain?

Hint: You could do this around the same point in the code where we already check the range of

the yards value.

Chapter 2 Designing FunCtions using tYpes

25

EXERCISE 2-2 – HANDLING DISTANCES INVOLVING CHAINS

For some purposes, British railway distances aren’t expressed in miles and yards, but in miles

and chains, where a chain is defined as 22 yards (see Figure 2-1).

Figure 2-1. A sign identifying a British railway bridge. The figures at the very
bottom represent a distance from some datum, in miles and chains

Write a new type and module that can create and represent a distance in whole miles and

chains and convert such a miles-and-chains distance to decimal miles. the only way to

create the new MilesChains distance should be by supplying a whole miles and a

chains input (i.e., two positive integers), so unlike MilesYards, you won’t need a

fromMilesPointYards function.

Hint: there are 80 chains in a mile.

 Exercise Solutions

EXERCISE 2-1 – HANDLING NEGATIVE DISTANCES

to complete this exercise, you just need to add a couple of lines to

validate milesPointYards using an if expression and then raise an

ArgumentOutOfRangeException.

Chapter 2 Designing FunCtions using tYpes

26

open System

type MilesYards = MilesYards of wholeMiles : int * yards : int

module MilesYards =

 let private (~~) = float

 let fromMilesPointYards (milesPointYards : float) : MilesYards =

 let wholeMiles = milesPointYards |> floor |> int

 let fraction = milesPointYards - float(wholeMiles)

 if fraction > 0.1759 then

 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),

"Fractional part must be <= 0.1759")

 if milesPointYards < 0.0 then

 raise <| ArgumentOutOfRangeException(nameof(milesPointYards),

"Must be > 0.0")

 let yards = fraction * 10_000. |> round |> int

 MilesYards(wholeMiles, yards)

 let toDecimalMiles (MilesYards(wholeMiles, yards)) : float =

 ~~wholeMiles + (~~yards / 1760.)

// Error: System.ArgumentOutOfRangeException: Must be > 0.0 (Parameter

'milesPointYards')

printfn "%A" (MilesYards.fromMilesPointYards(-1.))

EXERCISE 2-2 – HANDLING DISTANCES INVOLVING CHAINS

to complete this exercise, you need to create a single-Case Discriminated union much like the

MilesYards Du, but with wholeMiles and chains as its fields. since the exercise states

that you should only be able to create valid instances, put the Du into a module and make its

case private. add a fromMilesChains function that range-validates the wholeMiles and

chains arguments and then use them to make a MilesChains instance.

to convert to decimal miles, create a toDecimalMiles function that pattern matches to

retrieve the wholeMiles and chains values and then use the 80-chains-per-mile conversion

factor to calculate decimal miles.

Chapter 2 Designing FunCtions using tYpes

27

 open System

 module MilesChains =

 let private (~~) = float

 type MilesChains =

 private MilesChains of wholeMiles : int * chains : int

 let fromMilesChains(wholeMiles : int, chains : int) =

 if wholeMiles < 0 then

 raise <| ArgumentOutOfRangeException(nameof(wholeMiles),

"Must be >= 0")

 if chains < 0 || chains >= 80 then

 raise <| ArgumentOutOfRangeException(nameof(chains),

"Must be >= 0 and < 80")

 MilesChains(wholeMiles, chains)

 let toDecimalMiles (MilesChains(wholeMiles, chains)) : float =

 ~~wholeMiles + (~~chains / 80.)

Chapter 2 Designing FunCtions using tYpes

29
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_3

CHAPTER 3

Missing Data
Not even a thought has arisen; is there still a sin or not?

—Zen Koan, 10th Century CE

This is a chapter about nothing! Specifically, it’s about how we handle the absence of

data in our programs. It’s a more important topic than you might think at first: bugs

caused by incorrect handling of missing data, typically manifested as “null reference

errors,” are distressingly common in Object-Oriented programs. And this still happens,

despite code to avoid such errors forming a significant proportion of the line count of

many C# code bases.

In this chapter I’ll try to convince you how serious a problem this is and show you the

many features and idioms that F# offers to mitigate and even eliminate this class of error.

 A Brief History of Null
When computer scientist Tony Hoare invented the concept of null in 1965 in developing

ALGOL W, his purpose was to represent a thing or property that is potentially present but

might not be present in a particular situation. Take the ALGOL W program in Listing 3-1,

where null values are used extensively.

Listing 3-1. Some ALGOL W code that uses null

RECORD PERSON (

 STRING(20) NAME;

 INTEGER AGE;

 LOGICAL MALE;

 REFERENCE(PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING, ELDERSIBLING

);

https://doi.org/10.1007/978-1-4842-7205-3_3#DOI

30

REFERENCE(PERSON) PROCEDURE YOUNGESTUNCLE (REFERENCE(PERSON) R);

 BEGIN

 REFERENCE(PERSON) P, M;

 P := YOUNGESTOFFSPRING(FATHER(FATHER(R)));

 WHILE (P ¬= NULL) AND (¬ MALE(P)) OR (P = FATHER(R)) DO

 P := ELDERSIBLING(P);

 M := YOUNGESTOFFSPRING(MOTHER(MOTHER(R)));

 WHILE (M ¬= NULL) AND (¬ MALE(M)) DO

 M := ELDERSIBLING(M);

 IF P = NULL THEN

 M

 ELSE IF M = NULL THEN

 P

 ELSE

 IF AGE(P) < AGE(M) THEN P ELSE M

 END

Here, the ability to have a null or an actual value is used to model – for example - the

fact that a person might or might not have an elder sibling. Null and nonnull instance

values are used as flags to go down various branches of code. The modeling is definitely

a bit fuzzy: for instance, FATHER and MOTHER are also nullable, even though everyone

has a mother and father. Perhaps this models the fact that we might not know who they

are. This kind of ambiguity was excusable in the 1960s, but coding patterns in the style

of Listing 3-1 are still surprisingly common, even though there are now well-known

techniques for modeling such relationships much more explicitly.

Of course, things have improved somewhat since 1965: in C#, for example, we now

have the null coalescing operator ??, which allows us to retrieve either the nonnull

value of some source item, or some other value, typically a default. As of C# 6.0, we also

have the null-conditional operators ?. and ?[] that allow us to reach into an object or

array for a property or indexed item and safely return null if either the object with the

property, or the property itself, is null.

Despite these improvements, we all regularly see problems caused by null-based

modeling. Spotting a ticketing machine or timetable display that has crashed with a

null reference error can brighten any programmer’s commute. Figure 3-1 shows a less

high- profile but equally typical example: Team Explorer in Visual Studio 2017 exposing

a null reference exception during a git syncing operation.

Chapter 3 Missing Data

31

What has happened in these cases (typically) is that code has tried to access some

property or method of an object, which is itself null, such as the arrival time of the first

train when there is no known first train.

It’s common to blame the programmer in these situations, attributing such errors

either to incompetence or to outdated practices and technologies. But it isn’t as simple

as that. I took a look at the GitHub issue list of a very modern, reputable, high-profile

C# code base. (I won’t be so rude as to name it.) When I checked (in April 2021) for

mentions of null references in that GitHub issue list, I got hundreds of hits, many of

which were still open (Table 3-1). (There will of course be some double counting in these

figures.)

Figure 3-1. Visual Studio 2017 Team Explorer exposing a null reference exception

Table 3-1. Null Reference Mentions in a

Major C# Code Base Issue List

Search Term Open Closed

nullreferenceexception 201 521

null reference 264 811

null-ref 73 191

nullref 2 24

Chapter 3 Missing Data

32

Incidentally, when I updated these figures for the new edition of this book, the

figures in all but two categories had gone up since 2018. Clearly, it isn’t just “bad

programmers” making these mistakes: null reference errors are accidents waiting to

happen. Rather than blaming the operator, we should follow the basic principles of

ergonomics and design such errors out of the technology at the language level.

At the time of writing, the primary approach in C# is still to “code around” the

problem of null, which works (if you remember to do it) but does have a cost. I analyzed

several open-source C# code bases and found that the proportion of lines involved in

managing nulls (null checks, uses of null-coalescing and null-conditional operators)

amounted to between 3% and 5% of the significant lines of code. Not crippling by any

means, but certainly a significant distraction. Anything we can do to make this process

easier has a worthwhile payoff.

The conclusion must be that paying attention to missing data and spending some

time learning the techniques handle to it correctly, or avoiding it completely, are among

the most useful things you can do as you learn idiomatic F# coding.

 Option Types vs. Null
F#’s answer to the problem of potentially absent values is the option type. If you’ve coded

in F# at all, you are probably familiar with option types, but please bear with me for a few

moments while I establish very clearly what option types are and what they are not.

Fundamentally, the option type is just another Discriminated Union (DU), a type

that represents several case values, each of which may have a different type of payload.

Just in case you aren’t fully conversant with DUs, Listing 3-2 shows a general example: a

type that can represent the dimensions of a square, a rectangle, or a circle. The Shape DU

is made generic (the <'T> part) so that we could express the dimensions in any type we

wanted – single precision, double precision, integer pixels, or whatever.

Listing 3-2. Example of a Discriminated Union

 type Shape<'T> =

 | Square of height:'T

 | Rectangle of height:'T * width:'T

 | Circle of radius:'T

Chapter 3 Missing Data

33

Conceptually, the F# option type is just the same: you can think of it as being a

generic DU as shown in Listing 3-3. (Actually, within the compiler, it’s not quite as

simple as that. For one thing, the option type has its own keyword: option.)

Listing 3-3. The Option type viewed as a Discriminated Union

 type Option<'T> =

 | Some of 'T

 | None

One obvious difference between Shape and Option is that one of the cases of

Option takes no payload at all - which makes sense because we can’t know the value of

something that, by definition, doesn’t exist. DU cases without payloads are perfectly fine.

Listings 3-4 and 3-5 show us creating and pattern matching on the Shape DU and the

Option DU in exactly the same way, to illustrate that there is nothing really magical about

the Option DU.

Listing 3-4. Creating and using the Shape DU

 type Shape<'T> =

 | Square of height:'T

 | Rectangle of height:'T * width:'T

 | Circle of radius:'T

 let describe (shape : Shape<float>) =

 match shape with

 | Square h -> sprintf "Square of height %f" h

 | Rectangle(h, w) -> sprintf "Rectangle %f x %f" h w

 | Circle r -> sprintf "Circle of radius %f" r

 let goldenRect = Rectangle(1.0, 1.61803)

 // Rectangle 1.000000 x 1.618030

 printfn "%s" (describe goldenRect)

Listing 3-5. Creating and using the Option DU

 let myMiddleName = Some "Brian"

 let herMiddleName = None

Chapter 3 Missing Data

34

 let displayMiddleName (name : Option<string>) =

 match name with

 | Some s -> s

 | None -> ""

 // >>>Brian<<<

 printfn ">>>%s<<<" (displayMiddleName myMiddleName)

 // >>><<<

 printfn ">>>%s<<<" (displayMiddleName herMiddleName)

The Shape type and the (built-in) Option type are treated in comparable ways

in Listings 3-4 and 3-5 – the only real difference is that we could have declared

the displayMiddleName function’s argument using string option instead of

Option<string>, thus:

 let displayMiddleName (Name : string option) = ...

I could have done this because the compiler offers a special keyword for option

types. I only used the Option<string> version in Listing 3-5 to highlight the fact that

option types are DUs. In practice, you should use the option keyword as this is built into

the language, making it widely understood and performant.

 Consuming Option Types
How does all this help us step away from the risky world of nullable types, where we are

always one missed null check away from a NullReferenceException? The difference

from using nulls is that – provided we don’t deliberately bypass F# idioms – we are forced

by the compiler to consider both the Some and None cases whenever we consume an

option type. Consider Listing 3-6, where we have a billing details record that might, or

might not, have a separate delivery address. (Again, this isn’t great modeling – see the

next few sections for some improvements.)

Listing 3-6. Modeling an optional delivery address using an Option type

 type BillingDetails = {

 Name : string

 Billing : string

 Delivery : string option }

Chapter 3 Missing Data

35

 let myOrder = {

 name = "Kit Eason"

 billing = "112 Fibonacci Street\nErehwon\n35813"

 delivery = None }

 let hisOrder = {

 name = "John Doe"

 billing = "314 Pi Avenue\nErewhon\n15926"

 delivery = Some "16 Planck Parkway\nErewhon\n62291" }

 // Error: the expression was expected to have type 'string'

 // but here has type 'string option'

 printfn "%s" myOrder.delivery

 printfn "%s" hisOrder.delivery

Note how at the end of Listing 3-6, we try to treat the orders’ delivery addresses as

strings, not as string options, which are a different type. This causes a compiler error

for both the myOrder and hisOrder cases, not just a runtime error in the myOrder case.

This is the option type protecting us by forcing us to consider the has-data and no data

possibilities at the point of consumption.

This begs the question: How are we supposed to access the underlying value or

payload? There are several ways to do this, some more straightforward than others, so in

the next few sections, we’ll go through these and examine their benefits and costs.

 Pattern Matching on Option Types
Since an option type is a Discriminated Union, the obvious way to get at its payload

(when there is one) is using pattern matching using a match expression (Listing 3-7).

Listing 3-7. Accessing an option type’s payload using pattern matching

 // BillingDetails type and examples as Listing 3-6.

 let addressForPackage (details : BillingDetails) =

 let address =

 match details.delivery with

 | Some s -> s

 | None -> details.billing

 sprintf "%s\n%s" details.name address

Chapter 3 Missing Data

36

 // Kit Eason

 // 112 Fibonacci Street

 // Erehwon

 // 35813 printfn "%s" (addressForPackage myOrder)

 // John Doe

 // 16 Planck Parkway

 // Erewhon

 // 62291

 printfn "%s" (addressForPackage hisOrder)

Consuming option types using explicit pattern matching in this way has clear

trade- offs. The big advantage is that it’s simple: everyone familiar with the basics of

F# syntax will be familiar with it, and the reader doesn’t require knowledge of other

libraries (or even computer science theory!) to understand what is going on. The

disadvantage is that it’s a little verbose and pipeline unfriendly.

I’ll present alternatives in future sections, but before I do, let me say this: if you, and

anyone maintaining your code, aren’t completely comfortable with the basics of option

types – comfortable to the extent that everyone is ready and keen to move onto more

fluent methods of consumption – I’d advise that you stick with good old-fashioned

pattern matching, at least for a while. As with many other areas of F# coding, trying to get

too clever too quickly can lead to some pretty obscure code and a definite blurring of the

principles of motivational transparency and semantic focus.

 The Option Module
Once you are ready to go beyond pattern matching, you can start using some of the

functions available in the Option module. I personally found the Option module

functions a little hard to get my head around at first. I suspect this is because English

language descriptions of these functions don’t make much sense without examples – so

proceed with this section slowly!

 The Option.defaultValue Function

Let me start off with the equivalent code, in the Option module world, to that presented

in Listing 3-7 – that is, getting either a string representing a delivery address or a default

value (Listing 3-8).

Chapter 3 Missing Data

37

Listing 3-8. Defaulting an Option Type Instance using Option.defaultValue

 type BillingDetails = {

 Name : string

 Billing : string

 Delivery : string option }

 let addressForPackage (details : BillingDetails) =

 let address =

 Option.defaultValue details.billing details.delivery

 sprintf "%s\n%s" details.name address

The usage of addressForPackage is exactly the same as in Listing 3-7, so I haven’t

repeated the usage here.

Option.defaultValue is pretty straightforward: you give it an option type as its

second argument (in this case, details.delivery), and it’ll either return the underlying

value of that instance if there is one or instead the value you give it in the first parameter

(in this case, details.billing). One thing that might confuse you is the ordering of the

parameters – the default value first and the option value second. The reason for this is to

make the function “pipeline friendly.” The usefulness of this becomes clear if we apply

Option.defaultValue as part of a pipeline, as in Listing 3-9.

Listing 3-9. Using Option.defaultValue in a pipeline

 let addressForPackage (details : BillingDetails) =

 let address =

 details.delivery

 |> Option.defaultValue details.billing

 sprintf "%s\n%s" details.name address

 The Option.iter Function

The Option module also offers a function to do something imperative with an option

type, for example, printing out its payload or writing it to a file. It’s called Option.

iter, by analogy with functions like Array.iter that “do something imperative” with

each element of a collection. If the value is Some, it performs the specified imperative

Chapter 3 Missing Data

38

action once using the payload; otherwise, it does nothing at all. The function

printDeliveryAddress in Listing 3-10 prints "Delivery address: <address>" if there

is such an address; otherwise, it takes no action.

Listing 3-10. Using Option.iter to take an imperative action if a value is

populated

 let printDeliveryAddress (details : BillingDetails) =

 details.delivery

 |> Option.iter

 (fun address -> printfn "%s\n%s" details.name address)

 // No output at all

 myOrder |> printDeliveryAddress

 // Delivery address:

 // John Doe

 // 16 Planck Parkway

 // Erewhon

 // 62291

 hisOrder |> printDeliveryAddress

There are additional Option module functions analogous to their collection-

based cousins. These include Option.count, which produces 1 if the value is Some,

otherwise 0, and Option.toArray and Option.toList, which produce a collection of

length 1 containing the underlying value, otherwise an empty collection.

 Option.map and Option.bind

The two Option module functions that I personally struggled most with were Option.map

and Option.bind, so we’ll spend a little more time on them. The documented behavior

of these functions is a good example of descriptions of function behavior in English

not being terribly useful (Table 3-2). (It may be that the descriptions are more helpful

if – unlike me – you have a computer science or formal functional programming

background!)

Chapter 3 Missing Data

39

 The Option.map Function

Option.map is a way to apply a function to the underlying value of an option type if it

exists and to return the result as a Some case; and if the input value is None, to return None

without using the function at all. An example probably says it better: Listing 3-11 is a

variation on printDeliveryAddress.

Listing 3-11. Using Option.map to optionally apply a function, returning an

option type

 let printDeliveryAddress (details : BillingDetails) =

 details.delivery

 |> Option.map

 (fun address -> address.ToUpper())

 |> Option.iter

 (fun address ->

 printfn "Delivery address:\n%s\n%s"

 (details.name.ToUpper()) address)

 // No output at all

 myOrder |> printDeliveryAddress

 // Delivery address:

 // JOHN DOE

 // 16 PLANCK PARKWAY

 // EREWHON

 // 62291

 hisOrder |> printDeliveryAddress

Table 3-2. Documented Behavior of the Option.map and Option.bind Functions

Function Description

Option.map transforms an option value by using a specified mapping function

Option.bind invokes a function on an optional value that itself yields an option

Chapter 3 Missing Data

40

Here, the requirement is to print a delivery address in capitals if it exists, otherwise

to do nothing. We combine Option.map, to do the uppercasing when necessary, with

Option.iter, to do the printing.

Another way of thinking of Option.map is in diagram form (Figure 3-2).

In the None case (top of the diagram), the None effectively passes through untouched

and never goes near the uppercasing operation. In the Some case (bottom of diagram),

the payload is uppercased and comes out as a Some value. At this point, we begin to see

the beginnings of the “Railway Oriented Programming” paradigm, which we’ll discuss in

detail in Chapter 11.

 The Option.bind Function

Option.bind is so similar to Option.map that I found it very hard to get my head around

the difference. (Indeed, I still often catch myself trying each of them until the compiler

errors go away!) I think the best way to start is to compare the signatures of Option.map

and Option.bind (Table 3-3).

Figure 3-2. Option.map as a diagram

Chapter 3 Missing Data

41

Look at them carefully: the only difference is that the “binder” function needs to

return an option type ("U" option) rather than an unwrapped type ("U"). The usefulness

of this is that if you have a series of operations, each of which might succeed (returning

Some value) or fail (returning None), you can pipe them together without any additional

ceremony. Execution of your pipeline effectively “bails out” after the first step that

returns None, because subsequent steps just pass the None through to the end without

attempting to do any processing.

Think about a situation where we need to take the delivery address from the previous

example, pull out the last line of the address, check that it is a postal code by trying to

convert it into an integer, and then look up a delivery hub (a package-sorting center)

based on the postal code. The point is that several of these operations might “fail,” in the

sense of returning None.

• The delivery address might not be specified (i.e., have a value

of None).

• The delivery address might exist but be an empty string, hence

having no last line from which to get the postal code.

• The last line might not be convertible to a postal code.

(I’ve made some simplifying assumptions here: I’m ignoring the billing address; I’m

ignoring any validation that might in practice mean the delivery address isn’t an empty

string; I’m assuming that a postal code must simply be an integer; and I’m assuming

that the hub lookup always succeeds.) What does the code look like to achieve all this?

(Listing 3-12).

Table 3-3. Type Signatures for Option.map and Option.bind

Function Signature

Option.map ('T -> 'U) -> 'T option -> 'U option

Option.bind ('T -> 'U option) -> 'T option -> 'U option

Chapter 3 Missing Data

42

Listing 3-12. Using Option.bind to create a pipeline of might-fail operations

 open System

 type BillingDetails = {

 Name : string

 Billing : string

 Delivery : string option }

 let tryLastLine (address : string) =

 let parts =

 address.Split([|'\n'|],

 StringSplitOptions.RemoveEmptyEntries)

 // Could also just do parts |> Array.tryLast

 match parts with

 | [||] ->

 None

 | parts ->

 parts |> Array.last |> Some

 let tryPostalCode (codeString : string) =

 match Int32.TryParse(codeString) with

 | true, i -> i |> Some

 | false, _ -> None

 let postalCodeHub (code : int) =

 if code = 62291 then

 "Hub 1"

 else

 "Hub 2"

 let tryHub (details : BillingDetails) =

 details.delivery

 |> Option.bind tryLastLine

 |> Option.bind tryPostalCode

 |> Option.map postalCodeHub

Chapter 3 Missing Data

43

 let myOrder = {

 name = "Kit Eason"

 billing = "112 Fibonacci Street\nErehwon\n35813"

 delivery = None }

 let hisOrder = {

 name = "John Doe"

 billing = "314 Pi Avenue\nErewhon\n15926"

 delivery = Some "16 Planck Parkway\nErewhon\n62291" }

 // None

 myOrder |> tryHub

 // Some "Hub 1"

 hisOrder |> tryHub

In Listing 3-12, we have a trylastLine function that splits the address by line

breaks and returns the last line if there is one, otherwise None. Similarly, tryPostalCode

attempts to convert a string to an integer and returns Some value only if that succeeds.

The postalCodeHub function does a super-naive lookup (in reality, it would be some

kind of database lookup) and always returns a value. We bring all these together in

tryHub, which uses two Option.bind calls and an Option.map call to apply each of

these operations in turn to get us from an optional delivery address to an optional

delivery hub.

This is a really common pattern in idiomatic F# code: a series of Option.bind and

Option.map calls to get from one state to another, using several steps, each of which

can fail. Common though it is, it is quite a high level of abstraction, and it’s one of those

things where you have to understand everything before you understand anything. So if

you aren’t comfortable using it for now – don’t. A bit of nested pattern matching isn’t

the worst thing in the world! I’ll return to this topic in Chapter 11 when we talk about

“Railway Oriented Programming,” at which point perhaps it’ll make a little more sense.

 Option Type No-Nos
Using option types can be frustrating at first. There’s often a strong temptation to bypass

the pattern-matching or bind/map approach and instead tear open the package by

examining the IsSome and Value properties that the option type offers (Listing 3-13).

Chapter 3 Missing Data

44

Listing 3-13. Antipattern: accessing Option type payloads using hasValue

and Value

 // Accessing payload via .IsSome and .Value

 // Don't do this!

 let printDeliveryAddress (details : BillingDetails) =

 if details.delivery.IsSome then

 printfn "Delivery address:\n%s\n%s"

 (details.name.ToUpper())

 (details.delivery.Value.ToUpper())

Don’t do this! You’d be undermining the whole infrastructure we have built up for

handling potentially missing values in a composable way.

Some people would also consider explicit pattern matching using a match

expression (in the manner of Listing 3-7) and antipattern too and would have you

always use the equivalent functions from the Option module. I think this is advice that’s

great in principle but isn’t always easy to follow; you’ll get to fluency with Option.map,

Option.bind, or so forth in due course. In the meantime, a bit of pattern matching isn’t

going to hurt anyone, and the lower level of abstraction may make your code more

comprehensible to nonadvanced collaborators.

 Designing Out Missing Data
So far, we’ve been accepting the admittedly not-great modeling embodied in our original

BillingDetails type. (As a reminder, this is repeated in Listing 3-14.)

Listing 3-14. The BillingDetails type

 type BillingDetails = {

 Name : string

 Billing : string

 Delivery : string option }

The reason I say this is not great is that it isn’t clear under what circumstances the

delivery address might not be there. (You might have to look elsewhere in the code to

Chapter 3 Missing Data

45

find out, which is a violation of the principle of semantic focus.) We can certainly improve

on this. Let’s think about what the business rules might be for the BillingDetails type:

• There must always be a billing address.

• There might be a different delivery address but….

• There must be no delivery address if the product isn’t a physically

deliverable one, such as a download.

A good way to model this kind of thing is to express the rules as Discriminated Union

cases. Listing 3-15 shows how this might play out.

Listing 3-15. Modeling delivery address possibilities using a DU

 type Delivery =

 | AsBilling

 | Physical of string

 | Download

 type BillingDetails = {

 Name : string

 Billing : string

 delivery : Delivery }

In the new Delivery type, we’ve enumerated the three business possibilities: that the

delivery address is the same as the billing address, that the delivery address is a separate

physical address, or that the product is a download that does not need a physical

address. Only in the Physical case do we need a string in which to store the address. In

Listing 3-16, I’ve shown how it feels to consume the revamped BillingDetails type.

Listing 3-16. Consuming the improved BillingDetails type

 let tryDeliveryLabel (billingDetails : BillingDetails) =

 match billingDetails.delivery with

 | AsBilling ->

 billingDetails.billing |> Some

 | Physical address ->

 address |> Some

Chapter 3 Missing Data

46

 | Download -> None

 |> Option.map (fun address ->

 sprintf "%s\n%s" billingDetails.name address)

 let deliveryLabels (billingDetails : BillingDetails seq) =

 billingDetails

 // Seq.choose is a function which calls the specified function

 // (in this case tryDeliveryLabel) and filters for only those

 // cases where the function returns Some(value). The values

 // themselves are returned.

 |> Seq.choose tryDeliveryLabel

 let myOrder = {

 name = "Kit Eason"

 billing = "112 Fibonacci Street\nErehwon\n35813"

 delivery = AsBilling }

 let hisOrder = {

 name = "John Doe"

 billing = "314 Pi Avenue\nErewhon\n15926"

 delivery = Physical "16 Planck Parkway\nErewhon\n62291" }

 let herOrder = {

 name = "Jane Smith"

 billing = "9 Gravity Road\nErewhon\n80665"

 delivery = Download }

 // seq

 // ["Kit Eason

 // 112 Fibonacci Street

 // Erehwon

 // 35813";

 // "John Doe

 // 16 Planck Parkway

 // Erewhon

 // 62291"]

 [myOrder; hisOrder; herOrder]

 |> deliveryLabels

Chapter 3 Missing Data

47

In Listing 3-16, I’ve imagined that we want a function that generates delivery

labels only for those orders that require physical delivery. I’ve divided the task up into

two parts:

• The tryDeliveryLabel function uses a match expression to extract

the relevant address. Then (when it exists), it uses Option.map to pair

this with the customer name to form a complete label.

• The deliveryLabels function takes a sequence of billingDetails

items and applies tryDeliveryLabel to each item. Then it uses

Seq.choose both to pick out those items where Some was returned

and to extract the payloads of these Some values. (I go into more detail

about Seq.choose and related functions in Chapter 4.)

Viewed in the light of the principles I laid out in Chapter 1, the code in Listings 3-15

and 3-16 is much better:

• It has good semantic focus. You can tell without looking elsewhere

what functions such as tryDeliveryLabel will do and why.

• It has good revisability. Let’s say you realize that you want to support

an additional delivery mechanism: so-called “Click and Collect,”

where the customer comes to a store to collect their item. You might

start by adding a new case to the Delivery DU, maybe with a store

ID payload. From then on, the compiler would tell you all the points

in existing code that you needed to change, and it would be

pretty obvious how to add new features such as a function to list

click-and- collect orders and their store IDs.

• It has good motivational transparency. You aren’t left wondering why

a particular delivery address is None. The reasons why an address

might or might not exist are right there in the code. Other developers

both “above you” in the stack (e.g., someone designing a view model

for a UI) and “below you” (e.g., someone consuming the data to

generate back-end fulfilment processes) can be clear about when and

why certain items should and should not be present.

Chapter 3 Missing Data

48

Modeling like this, where we use DUs to provide storage only for the DU cases

where a value is required, brings us toward the nirvana of “Making Illegal State

Unrepresentable,” an approach that I believe does more to eliminate bugs than any other

coding philosophy I’ve come across.

 Interoperating with the Nullable World
In this section, I’ll talk a bit about the implications of nullability when interoperating

between F# and C#. There shouldn’t be anything too unexpected here, but when

working in F#, it’s always worth bearing in mind the implications of interop scenarios.

 Leaking In of Null Values
If you’re of a skeptical frame of mind, you’ll realize that there is a pretty big hole in my

suggestion so far in this chapter (i.e., the claim that you can protect against null values

by wrapping things in option types or Discriminated Unions). The hole is that (if it is a

nullable reference type like a string), the wrapped type could still have a value of null.

So, for example, the code in Listing 3-17 will compile fine, but it will fail with a null

reference exception at runtime.

Listing 3-17. A null hiding inside an Option type

 type BillingDetails = {

 Name : string

 Billing : string

 Delivery : string option }

 let printDeliveryAddress (details : BillingDetails) =

 details.delivery

 |> Option.map

 (fun address -> address.ToUpper())

 |> Option.iter

 (fun address ->

 printfn "Delivery address:\n%s\n%s"

 (details.name.ToUpper()) address)

Chapter 3 Missing Data

49

 let dangerOrder = {

 name = "Will Robinson"

 billing = "2 Jupiter Avenue\nErewhon\n199732"

 delivery = Some null }

 // NullReferenceException

 printDeliveryAddress dangerOrder

(As an aside, and perhaps a little surprisingly, doing a printfn "%s" null or a

sprint "%s" null is fine – formatting a string with %s produces output as if the string

was a nonnull, empty string. The problem in Listing 3-17 is the call to the ToUpper()

method of a null instance.)

Obviously, you wouldn’t knowingly write code exactly like Listing 3-17, but it

does indicate how we are at the mercy of anything calling our code that might pass

us a null. This doesn’t mean that the whole exercise of using option types or DUs is

worthless. Option types and other DU wrappers are primarily useful because they make

the intention of our code clear. But it does mean that, at the boundary of the code we

consider to be safe, we need to validate for or otherwise deal with null values.

 Defining a SafeString Type
One generalized way to deal with incoming nulls is to define a new wrapper type and

perform the validation in its constructor (Listing 3-18).

Listing 3-18. Validating strings on construction

 type SafeString (s : string) =

 do

 if s = null then

 raise <| System.ArgumentException()

 member __.Value = s

 override __.ToString() = s

 type BillingDetails = {

 name : SafeString

 billing : SafeString

 delivery : SafeString option }

Chapter 3 Missing Data

50

 let printDeliveryAddress (details : BillingDetails) =

 details.delivery

 |> Option.map

 (fun address -> address.Value.ToUpper())

 |> Option.iter

 (fun address ->

 printfn "Delivery address:\n%s\n%s"

 (details.name.Value.ToUpper()) address)

 // NullReferenceException at construction time

 let dangerOrder = {

 name = SafeString "Will Robinson"

 billing = SafeString "2 Jupiter Avenue\nErewhon\n199732"

 delivery = SafeString null |> Some }

Having done this, one would need to require all callers to provide us with a

SafeString rather than a string type.

It’s a tempting pattern, but frankly, things like nullable strings are so ubiquitous

in .NET code that hardly anyone bothers. The overhead of switching to and from such

null-safe types so that one can consume them and use them in .NET calls requiring

string arguments is just too much to cope with. This is particularly in the case of

mixed-language code bases, where, like it or not, nullable strings are something of a

lingua franca.

 Using Option.ofObj
We can fight the battle at a different level by using some more functions from the

Option module; there are several very useful functions here to help mediate between

the nullable and the nonnullable worlds. The first of these is Option.ofObj, which

takes a reference type instance and returns that same instance wrapped in an option

type. It returns Some value if the input was nonnull, or None if the input was null.

This is invaluable at the boundaries of your system, when callers might give you nulls

(Listing 3-19).

Chapter 3 Missing Data

51

Listing 3-19. Using Option.ofObj

 let myApiFunction (stringParam : string) =

 let s =

 stringParam

 |> Option.ofObj

 |> Option.defaultValue "(none)"

 // You can do things here knowing that s isn't null

 printfn "%s" (s.ToUpper())

 // HELLO

 myApiFunction "hello"

 // (NONE)

 myApiFunction null

 Using Option.ofNullable
If you have an instance of System.Nullable (e.g., a nullable integer), you can use

Option.ofNullable to smoothly transition it into an option type (Listing 3-20).

Listing 3-20. Using Option.ofNullable

 open System

 let showHeartRate (rate : Nullable<int>) =

 rate

 |> Option.ofNullable

 |> Option.map (fun r -> r.ToString())

 |> Option.defaultValue "N/A"

 // 96

 showHeartRate (System.Nullable(96))

 // N/A

 showHeartRate (System.Nullable())

Incidentally, Listing 3-20 was inspired by my exercise watch, which occasionally tells

me that my heart rate is null.

Chapter 3 Missing Data

52

 Leaking Option Types and DUs Out
Clearly, the flipside of letting nulls leak into our F# code is the potential for leakage

outward of F#-specific types such as the option type and Discriminated Unions in

general. It’s possible to create and consume these types in languages such as C# using

compiler-generated sugar such as the NewCase constructor and the .IsCase, .Tag, and

.Item properties, plus a bit of casting. However, it’s generally regarded as bad manners

to force callers to do so, if those callers might not be written in F#. Again, some functions

in the Option module come to the rescue.

 Using Option.toObj
Option.toObj is the mirror image of Option.ofObj. It takes an option type and returns

either the underlying value if it is Some or null if it is None. Listing 3-21 shows how we

might handle returning a nullable “location” string for a navigation UI.

Listing 3-21. Using Option.toObj

 open System

 let random = new Random()

 let tryLocationDescription (locationId : int) =

 // In reality this would be attempting

 // to get the location from a database etc.

 let r = random.Next(1, 100)

 if r < 50 then

 Some (sprintf "Location number %i" r)

 else

 None

 let tryLocationDescriptionNullable (locationId : int) =

 tryLocationDescription()

 |> Option.toObj

 // Sometimes null, sometimes "Location number #"

 tryLocationDescriptionNullable 99

Chapter 3 Missing Data

53

Alternatively, you might want to repeat the kind of pattern used in standard

functions like System.Double.TryParse(), which return a Boolean value indicating

success or failure, and place the result of the operation (if successful) into a “by

reference” parameter (Listing 3-22). This is a pattern that might feel more natural if the

function is being called from C#.

Listing 3-22. Returning success or failure as a Boolean, with result in a reference

parameter

 open System

 let random = new Random()

 let tryLocationDescription (locationId : int, description : string

byref) : bool =

 // In reality this would be attempting

 // to get the description from a database etc.

 let r = random.Next(1, 100)

 if r < 50 then

 description <- sprintf "Location number %i" r

 true

 else

 description <- null

 false

 Using Option.toNullable
It won’t surprise you to learn that Option.toNullable is the counterpart of Option.

ofNullable. It gets you from an option type to a nullable type, for example,

Nullable<int>. Listing 3-23 shows us getting a heart rate from an unreliable sensor and

returning either null or a heart rate value. (Clearly, unlike my exercise watch, the UI

would need to know how to handle the null case!)

Chapter 3 Missing Data

54

Listing 3-23. Using Option.toNullable

 open System

 let random = new Random()

 let getHeartRateInternal() =

 // In reality this would be attempting

 // to get a heart rate from a sensor:

 let rate = random.Next(0, 200)

 if rate = 0 then

 None

 else

 Some rate

 let tryGetHeartRate () =

 getHeartRateInternal()

 |> Option.toNullable

 The Future of Null
At the time of writing, there is some light at the end of the tunnel regarding nulls in the

.NET framework. (Hopefully, the light is not of the oncoming-train variety!) C# 8.0 allows

you to specify that reference types such as strings are not nullable by default. This feature

is opt-in; when switched on, you have to use specific syntax (adding a question mark to

the declaration – see Listing 3-24) to declare a reference type as nullable. In due course,

this should make it less likely that C# code that calls our nice clean F# code will send

us null values by accident. At the time of writing, however, this feature is turned off by

default, so the impact for the time being is likely to be small.

Listing 3-24. C# 8.0 Syntax for nullable and nonnullable types

class Person

{

 public string FirstName; // Not null

 public string? MiddleName; // May be null

 public string LastName; // Not null

}

Chapter 3 Missing Data

55

 The ValueOption Type
In addition to option types, F# offers a type called ValueOption. This is analogous to the

option type, except that it is a value type (i.e., a struct) rather than a reference type. This

means that instances of ValueOption are stored on the stack or inline in their parent

array, which can help performance in some scenarios. Listing 3-25 shows usage of the

ValueOption type. Note the new voption keyword and the ValueSome and ValueNone

case names.

Listing 3-25. Using the ValueOption type

 let valueOptionString (v : int voption) =

 match v with

 | ValueSome x ->

 sprintf "Value: %i" x

 | ValueNone ->

 sprintf "No value"

 // "No value"

 ValueOption.ValueNone

 |> valueOptionString

 // "Value: 99"

 ValueOption.ValueSome 99

 |> valueOptionString

There is also a ValueOption module that contains useful functions like ValueOption.

bind, ValueOption.map, ValueOption.count, and ValueOption.iter, which behave in

the same way that we described for the Option module previously.

Using ValueOption values can have performance benefits in some kinds of code. To

quote the documentation for value option types:

Not all performance-sensitive scenarios are “solved” by using structs. You
must consider the additional cost of copying when using them instead of
reference types. However, large F# programs commonly instantiate many
optional types that flow through hot paths, and in such cases, structs can
often yield better overall performance over the lifetime of a program.

The only way to be sure is to experiment with realistic volumes and processing paths.

Chapter 3 Missing Data

56

 Recommendations
Here are the key points I’d like you to take away from this chapter.

• Avoid using null values to represent things that legitimately might

not be set. Instead, use Discriminated Unions to model explicit cases

when a value is or is not relevant, and only have storage for the value

in the cases where it is relevant. If DUs make things too complicated,

or if it is obvious from the immediate context why a value might not

be set, model it as an option type.

• To make your option-type handling more fluent, consider using

functions from the Option module such as Option.bind, Option.map,

and Option.defaultValue to create little pipelines that get you safely

through one or more processing stages, each of which might fail. But

don’t get hung up on this – pattern matching is also fine. What’s not fine

is accessing the .IsSome and .Value properties of an option type!

• At the boundary of your system, consider using Option.ofObj and

Option.ofNull to move incoming nullable values into the option

world and Option.toObj and Option.toNullable for option values

leaving your code for other languages.

• Avoid exposing option types and DUs in APIs if callers might be

written in C# or other languages that might not understand F# types.

• Remember the voption type and ValueOption module for optional

values you want to be stored as structs. Using voption may have

performance benefits.

 Summary
In this chapter, you learned how to stop thinking of null values and other missing data

items as rare cases to be fended off as an afterthought in your code. You found out how

to embrace and handle missing data stylishly using F#’s rich toolbox, including option

types, value option types, Discriminated Unions, pattern matching, and the Option and

ValueOption modules. These techniques may not come easily at first, but after a while,

you’ll wonder how you managed in any other way.

Chapter 3 Missing Data

57

In the next chapter, we’ll look at how to use F#’s vast range of collection functions,

functions that allow you to process collections such as arrays, lists, and IEnumerable

values with extraordinary fluency.

 Exercises

EXERCISE 3-1 – SUPPORTING CLICK AND COLLECT

take the code from Listing 3-16 and update it to support the following scenario:

there is an additional delivery type called “Click and Collect.”

When a BillingDetails instance’s delivery value is “Click and Collect,” we need to store

an integer StoreId value but no delivery address. (We still store a billing address as for the

other cases.)

Write and try out a function called collectionsFor. it needs to take an integer StoreId

and a sequence of BillingDetails instances and return a sequence of “Click-and-Collect”

instances for the specified store.

EXERCISE 3-2 – COUNTING NONNULLS

You have a BillingDetails type and some orders in this form:

 type BillingDetails = {

 Name : string

 Billing : string

 Delivery : string option }

 let myOrder = {

 name = "Kit Eason"

 billing = "112 Fibonacci Street\nErehwon\n35813"

 delivery = None }

 let hisOrder = {

 name = "John Doe"

 billing = "314 Pi Avenue\nErewhon\n15926"

 delivery = None }

Chapter 3 Missing Data

58

 let herOrder = {

 name = "Jane Smith"

 billing = null

 delivery = None }

 let orders = [| myOrder; hisOrder; herOrder |]

What is the most concise function you can write to count the number of BillingDetails

instances that have a nonnull billing address? (ignore the delivery address.)

Hint: One way to solve this is using two functions from the Option module. Option.ofObj

is one of them. the other one we only mentioned in passing, earlier in this chapter. You might

also want to use Seq.map and Seq.sumBy.

 Exercise Solutions
This section shows solutions for the exercises in this chapter.

EXERCISE 3-1 – SUPPORTING CLICK AND COLLECT

You can achieve the requirement by adding a new case called ClickAndCollect of int to

the Delivery DU (or ClickAndCollect of storeId:int).

then your collectionsFor function can do a Seq.choose, containing a lambda that maps

the ClickAndCollect back into Some, using a when clause to check the StoreId. all other

cases can be mapped to None, meaning they don’t appear in the results at all.

module Exercise_03_03 =

 type Delivery =

 | AsBilling

 | Physical of string

 | Download

 | ClickAndCollect of int

 type BillingDetails = {

 Name : string

 Billing : string

 delivery : Delivery }

Chapter 3 Missing Data

59

 let collectionsFor (storeId : int) (billingDetails : BillingDetails seq) =

 billingDetails

 |> Seq.choose (fun d ->

 match d.delivery with

 | ClickAndCollect s when s = storeId ->

 Some d

 | _ -> None)

 let myOrder = {

 name = "Kit Eason"

 billing = "112 Fibonacci Street\nErehwon\n35813"

 delivery = AsBilling }

 let yourOrder = {

 name = "Alison Chan"

 billing = "885 Electric Avenue\nErewhon\n41878"

 delivery = ClickAndCollect 1 }

 let theirOrder = {

 name = "Pana Okpik"

 billing = "299 Relativity Drive\nErewhon\79245"

 delivery = ClickAndCollect 2 }

 // { name = "Alison Chan";

 // billing = "885 Electric Avenue

 // Erewhon

 // 41878"; }

 // delivery = ClickAndCollect 1;}

 [myOrder; yourOrder; theirOrder]

 |> collectionsFor 1

 |> Seq.iter (printfn "%A")

You’ll also have to add a new case to the pattern match in the tryDeliveryLabel function

to ensure it ignores Click-and-Collect instances.

 | ClickAndCollect _

 -> None

Chapter 3 Missing Data

60

EXERCISE 3-2 – COUNTING NONNULLS

there are many ways to do this. You can, for example, use Seq.map to pick out the billing

address, another Seq.map with an Option.ofObj to map from nulls to None and nonnulls

to Some, and Seq.sumBy with an Option.count to count the Some values. remember,

Option.count returns 1 when there is a Some and 0 when there is a None.

 let countNonNullBillingAddresses (orders : seq<BillingDetails>) =

 orders

 |> Seq.map (fun bd -> bd.billing)

 |> Seq.map Option.ofObj

 |> Seq.sumBy Option.count

 countNonNullBillingAddresses orders

Chapter 3 Missing Data

61
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_4

CHAPTER 4

Working Effectively
with Collection Functions

I’m an intuitive musician. I have no real technical skills. I can only play six
chords on the guitar.

—Patti Smith, Musician

Collection functions are central to productive F# coding. Trying to code without them is

as crazy as trying to play the guitar without learning chords. Though you don’t need to

know all the chords to be a decent guitarist, you do need the basic ones, and to be able to

use them instinctively. The same is true for using collection functions when coding in F#.

But how to start with this seemingly mountainous task? There are over 100 collection

functions in the Array module alone! This chapter will get you familiar with the most

useful collection functions and show you how to combine them to achieve complex

processing tasks with just a few lines of code. I’ll also show you how to spot and recover

from mistakes commonly made when using collection functions.

 Anatomy of a Collection Function
If you’ve coded at all in F#, you’re probably already familiar with the concept of collection

functions, at least through examples such as Array.map and Array.filter. Likewise,

if you’re primarily a C# developer, you’ll be familiar with the equivalents in LINQ:

Select and Where. But just in case you aren’t familiar with collection functions, here’s a

quick primer.

https://doi.org/10.1007/978-1-4842-7205-3_4#DOI

62

The collection functions in F# are a set of functions that are always available in F#

(you don’t have to bring in any extra dependencies) and which let you “do something”

with a collection. A collection in this context is a grouping of values of the same type,

such as an array, an F# list, or any type that implements IEnumerable. The kinds of

operations you can perform are things like filtering, sorting, or transforming. Listing 4-1

shows an example of filtering.

Note In the numeric literals such as 250_000m in Listing 4-1, the underscores
are just a readability aid, equivalent to the commas we might use when
handwriting the numbers. The m suffix specifies that these are decimal values,
which is a good choice when handling money amounts.

Listing 4-1. Filtering example

type House = { Address : string; Price : decimal }

let houses =

 [|

 { Address = "1 Acacia Avenue"; Price = 250_000m }

 { Address = "2 Bradley Street"; Price = 380_000m }

 { Address = "1 Carlton Road"; Price = 98_000m }

 |]

let cheapHouses =

 houses |> Array.filter (fun h -> h.Price < 100_000m)

// [|{Address = "1 Carlton Road"; Price = 98000M;}|]

printfn "%A" cheapHouses

Note In the C# LINQ and SQL worlds, this is known as a Where operation rather
than a filter operation – it’s the same thing.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

63

The collection functions come in a number of flavors, based on the collection type

to which they are applicable. Each flavor lives in its own module, so there is an Array

module for working on .NET arrays, a Seq module for working on IEnumerables (known

as “sequences” in the F# world), and a List module for working on F# lists. (There are

some other flavors that I’ll come to later.) Typically, a collection function takes at least

two arguments:

• A function that defines details of the operation we want to perform.

For example, the Array.filter function takes a function that

itself takes a collection element and returns a Boolean value.

Elements where that function returns true are returned in the

result of the filter operation.

In the example in Listing 4-1, we defined the element-processing

function anonymously, by saying (fun h -> h.Price <

100_000m). When defined anonymously in this way, the function

is known as a lambda function or lambda expression.

• An instance of the collection we want to work on – for example,

an array.

This is a different approach from the one in C#, where collection functions are

normally defined as extension methods on the type. For example, using LINQ in C#, we

would do a houses.Where to perform filtering, "Where" being an extension method on

the type of houses.

Collection functions that take and use a function argument are “higher-order

functions.” But some collection functions, such as Array.sort, don’t take a function

argument (in the case of sort because the sorting is done using default comparison).

These ones are collection functions but aren’t higher-order functions.

Some of the collection functions need additional arguments. For instance,

Array.init, which creates an array, needs to be told how many elements to create.

Typically, here is how the ordering of the parameters of a collection function goes:

 1. Any parameters that don’t fall into the other two categories – for

example, the length of the required collection

 2. The function to be applied

 3. The collection itself, always as the last parameter

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

64

This ordering makes collection functions “pipeline friendly” because the forward-

pipe operator passes the result of the preceding operation (typically in this context, a

collection) into the last parameter of the next operation.

Note When you define your own collection functions, use the same parameter
ordering style as the built-in functions so that yours will also be pipeline friendly.

The other essential property of collection functions is that they are designed to be

used in an immutable way. For example, if you filter a collection, you end up with a new

collection containing only the desired elements. The original collection is unaffected.

The one slight exception is iter, which returns unit and therefore doesn’t convey any

useful information back to the caller. Instead, you would use iter to do something in the

“outside world” like printing output or sending messages.

 Picking the Right Collection Function
I personally find lists that show the signature of the function, for example ('T -> 'Key)

-> 'T [] -> 'T [], not particularly useful in finding the right function, so in Table 4-1,

I have put together a more human-friendly reference, which should help you identify the

right tool for the job.

Table 4-1. Commonly Used Collection Functions

Begin with End up with Functions

Many equally Many map, mapi, sort, sortBy, rev

Many fewer filter, choose, distinct,

take, truncate, tail, sub

Many one length, fold, reduce, average,

head, sum, max, maxBy, min,

minBy, find, pick

Many Boolean exists, forall, isEmpty

(continued)

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

65

To use this table, you need to think about just two things:

• How many elements do I want to start off with?

• How many elements do I want to end up with?

We’re not talking absolute numbers here, but in terms of options such as no

elements, exactly one element (or value), or up-to-n elements. In the table, I’ve called these

cardinalities Nothing, One, and Many. When I say Many-to-Equally Many, I mean that

the number of elements returned is the same as the number provided. In cases where

the function will return at most the same number of elements (but probably fewer), I’ve

called the cardinality Fewer.

Oddly enough, thinking first about the cardinality of the operation you want is better

than thinking first about the specific operation.

Table 4-1 doesn’t cover all the collection functions, just the ones that are most widely

used. Once you get used to thinking in terms of collection operations by practicing

with the common ones listed previously, you’ll find it relatively easy to scan the

documentation for the more exotic functions, such as Array.sortInPlaceWith.

1 Although, strictly speaking, unfold starts with one item – an initial state – that state is usually
something empty like a zero-length collection, so I am including it in “Begin with nothing.”

Begin with End up with Functions

Nothing Many init, create, unfold1

Many Nothing (except side

effects)

iter, iteri

Many of

Many

Many concat, collect

Many groupings groupBy

, 2 of Many Many append, zip

Many 2 of Many partition

Table 4-1. (continued)

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

66

As an example of using Table 4-1, say we have a collection of houses, and we want

to retrieve just those houses that have a sale price of less than $100,000. Our “Begin

with” cardinality is Many, and our “End up with” cardinality is Fewer. A quick glance at

Table 4-1 shows us that the functions that fit this profile are filter, choose, distinct,

and sub. At this point, it’s probably pretty obvious from the name which one of these we

need (it’s filter), but if it isn’t, at least we only have four functions to consider. How

do we choose between these? In Tables 4-2 through 4-11, I give a breakdown of the

commonly used functions in each classification. The table you would use for the house

example is Table 4-3 because that is the one for Many-to-Fewer operations.

 Detailed Collection Function Tables
Just skim these detailed tables for now and come back to them as reference when you do

the exercises that follow.

Table 4-2. Many-to-Equally Many Collection Functions

Function Description Useful Variants

map Takes each of the input values, applies the provided function to it,

and returns all the results

Array.Parallel.map

mapi as map, but the provided function is called with two arguments:

an index value starting with 0 and ending with n-1 and the

current element

Parallel.mapi

rev returns a collection containing the original elements in reverse

order

sort returns a collection containing all the elements, but sorted using

the default comparer for the element type

sortBy

sortBy as sort, but compares using not the elements, but the results of

sending the elements to the provided function

sortByDescending,

sortWith

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

67

Table 4-3. Many-to-Fewer Collection Functions

Function Description Useful Variants and Alternatives

filter returns only those elements that return true when

the provided filtering function is applied to them

choose applies the provided function to each element and

returns the values of function results when those

function results were Some(value)

distinct returns the elements after eliminating any

duplicates, where duplicates are identified using the

default comparer for the element type

distinctBy

sub returns a subset of the elements, starting with the

element at the specified index and continuing for the

specified length (available for arrays only)

array slicing syntax, for example,

let arr2 = arr.[3..5]

take returns the first n elements takeWhile, truncate

truncate returns at most the first n elements (fewer if the

collection contains fewer than n elements)

tail returns all elements after the first element

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

68

Table 4-4. Many-to-One Collection Functions

Function Description Useful Variants

length Calculates the number of elements in the collection also available as a

property on arrays and

f# lists, for example,

arr.Length

fold Starts with an initial value, applies the provided function to that

value and the first element of the collection, then applies the

function to the previous result and the second element of the

collection, and so forth until all the elements have been used.

returns the final accumulated result of all these operations

foldBack

reduce Like fold, but takes its initial state from the first element reduceBack

average Computes the average value of the elements averageBy

head gets the first element

sum Computes the total value of the elements sumBy

max gets the maximum element maxBy

min gets the minimum element minBy

find gets the first element for which the provided function returns

true

tryFind, pick

pick returns the first result for which the provided function returns

Some

tryPick, find

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

69

Table 4-5. Many-to-Boolean Collection Functions

Function Description Useful Variants

exists returns true if any of the elements returns true when passed into

the provided function

forall returns true if all the elements return true when passed into the

provided function

isEmpty returns true if the collection has no elements

Table 4-6. Nothing-to-Many Collection Functions

Function Description
Useful Variants and
Alternatives

init Creates a collection with n elements, where each element value

is created by calling the provided function. an index parameter

(starting at 0 and ending at n-1) is provided to each call to the

function

initInfinite

(for sequences)

create Creates a collection with n elements, whose elements are initially

the specified single value (available for arrays only)

zeroCreate

unfold Creates a collection by taking a specified initial value and passing

it to the provided “generator” function. If the generator function

returns, say, Some(x,y), then x is added to the sequence and y is

passed into the next iteration. If the function returns None, then

the sequence ends

array and list

comprehensions

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

70

Table 4-8. Many-of-Many to Many Collection Functions

Function Description
Useful Variants
and Alternatives

concat Takes a collection of collections and returns a single collection of

all the input elements. Note the distinction between concat and

append. concat takes a collection of collections, whereas append

takes exactly two collections

collect Takes a collection, applies the provided function to each of the

elements (where the function itself returns a collection) and returns

a single collection of all the results. Whenever you find yourself

using a map followed by a concat, it’s likely you can replace this

with collect. Strictly speaking, this isn’t a “Many-of-Many to Many”

operation, but it feels most natural to put it in this category

Table 4-7. Many-to-Nothing Collection Functions

Function Description
Useful Variants
and Alternatives

iter Takes each collection element in turn and executes the provided

function using the element. The provided function needs to return

nothing (in f# terms, unit, denoted by the literal ()). Thus, the

only way iter can affect the outside world is via “side effects,”

such as writing files, printing lines to the console, and updating

mutable values

iteri

iteri as iter, but the provided function is called with two arguments: the

current element and an index value starting with 0 and ending with n-1

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

71

Table 4-10. 2-of-Many to Many Collection Functions

,

Function Description
Useful Variants and
Alternatives

append Creates a collection consisting of all the elements from both the

input collections

zip Takes two collections and returns a single collection, each of

whose elements is a tuple of the corresponding values from each

of the input collections

zip3

Table 4-9. Many-to-Groupings Collection Functions

Function Description
Useful Variants and
Alternatives

groupBy Takes a collection, applies the provided function to each of the

elements, and returns the distinct values of the results, together

with all the elements that resulted in each key result

Table 4-11. Many to 2-of-Many Collection Functions

Function Description
Useful Variants
and Alternatives

partition Takes a collection and returns a tuple of two collections, the

first of which contains elements that returned true when the

provided function was applied, and the second contains those

which returned false (available for arrays and f# lists only)

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

72

 Practicing with Collection Functions
Much of the productivity gain from programming in F# comes from effective use of

collection functions. So I want to spend a little time practicing how to choose and

combine them in a variety of situations. This section contains some exercises that will let

you do just that. They get progressively more difficult, so please make sure you take the

time to go through them in order so that your skills in this area are really secure.

Remember to refer back to Tables 4-1 through 4-11 to help you find the right

collection function in each case. All the exercises in this section can be solved with a call

to a single collection function. We’ll explore tasks needing several collection functions in

the next section.

 Exercise Setup
You’ll need a little code to provide data and useful functions to work with. Either

download the source code for this chapter or create an F# script file and add the code

from Listing 4-2, replacing anything the creation template added for you.

Listing 4-2. Setup code for exercises

type House = { Address : string; Price : decimal }

module House =

 let private random = System.Random(Seed = 1)

 /// Make an array of 'count' random houses.

 let getRandom count =

 Array.init count (fun i ->

 { Address = sprintf "%i Stochastic Street" (i+1)

 Price = random.Next(50_000, 500_000) |> decimal })

module Distance =

 let private random = System.Random(Seed = 1)

 /// Try to get the distance to the nearest school.

 /// (Results are simulated)

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

73

 let tryToSchool (house : House) =

 // Because we simulate results, the house

 // parameter isn’t actually used.

 let dist = random.Next(10) |> double

 if dist < 5. then

 Some dist

 else

 None

type PriceBand = | Cheap | Medium | Expensive

module PriceBand =

 // Return a price band based on price.

 let fromPrice (price : decimal) =

 if price < 100_000m then

 Cheap

 elif price < 200_000m then

 Medium

 else

 Expensive

Take a moment to read the code in Listing 4-2. It provides a type called House, which

has an address and a price. (This is a very naive model but will do for the topics covered

in this chapter.) There is also a function called House.getRandom, which will create

some House instances for you, with random prices and ascending street numbers. I’ve

hardwired the seed of the random number generator so you always get the same results,

which will make debugging some of your exercise solutions easier. The usage of the

Distance.tryToSchool and PriceBand.fromPrice functions will become apparent as

you go through the exercises.

As you tackle the exercises, structure your code as I do when I go through Exercise 4-1

with you. This will help you concentrate on the logic of the collection functions. Solutions

for the exercises are at the end of the chapter.

 Single Collection Function Exercises
Each of the exercises in this section can be solved using just one collection function.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

74

EXERCISE 4-1 – TRANSFORMING DATA ITEMS

Note I’ll do this exercise with you to help you get used to working with the
provided code and the collection functions tables.

Take a sample of 20 houses, and for each house, produce a string in the form

Address: 1 Stochastic Street - Price: 123456.00000

The number of decimal places displayed for the price doesn’t matter.

To tackle this exercise, first, make sure you have the code from Listing 4-2 in a

notebook cell or an F# script. The downloadable notebook for this chapter already has

the necessary code in one of the cells. Begin by binding a value called housePrices

(Listing 4-3).

Listing 4-3. Binding a value

// Listing 4-2 code above here

let housePrices =

Now take a careful look at the exercise requirements. It doesn’t require you to write

a general-purpose function, just to take one sample of 20 houses and produce some

results. That means you can just make a value (not a function) using a let binding with

no arguments. You can start to define the required value by getting the sample of 20

houses, using the getRandom function in the House module (Listing 4-4).

Listing 4-4. Getting the houses sample

let housePrices =

 House.getRandom 20

Looking back at the exercise requirement again, you are required to produce one

string for each input house. In terms of Table 4-1, this is clearly a Many to Equally Many

operation. There are only a few collection functions in the table that match this profile:

map, mapi, sort, sortBy, and rev. It’s probably obvious which of these are definitely

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

75

not the one we need, as this isn’t a sorting or reversing operation. You can refine your

choice further by looking at Table 4-2 to review what each function does. The map

function looks promising, since its description, “Takes each of the input values, applies

the specified function to it, and returns all the results,” looks very similar to what you

want to achieve. You don’t want the mapi function, as there is no need for the index value

it provides. To use Array.map, you can continue your code as in Listing 4-5.

Listing 4-5. Calling the map function

let housePrices =

 House.getRandom 20

 |> Array.map (fun h ->) // Still needs a body...

Note In Listing 4-5, I’ve typed the final closing bracket for the map’s lambda
function, even though the function doesn’t yet have a body. Doing this helps to
ensure that Intellisense works correctly while you type the body of the lambda
function.

Now you need a body for the lambda function, which needs to take a House instance

and produce a string in the required format. That’s easy using the sprintf function

(Listing 4-6).

Listing 4-6. Providing a lambda body for the map function

let housePrices =

 House.getRandom 20

 |> Array.map (fun h ->

 sprintf "Address: %s - Price: %f" h.Address h.Price)

housePrices

To test the function, execute the relevant notebook cell, or select all the code in your

F# script (including the setup code) and send it to F# Interactive. Your output should

look something like Listing 4-7. If using a notebook, the output will be shown as a

table, but the content should be similar. Your house prices might vary from the listing,

depending on the implementation of System.Random in your environment.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

76

Listing 4-7. Output from a successful run of the exercise code

 val housePrices : string [] =

 [|"Address: 1 Stochastic Street - Price: 161900.000000";

 ...

 "Address: 20 Stochastic Street - Price: 365808.000000"|]

Exercise solved!

Now tackle the remaining exercises on your own. You can solve each of them with a

single collection function, and the code in each case can be structured in a very similar

way to Listing 4-6.

EXERCISE 4-2 – CALCULATING AN AVERAGE

Take a sample of 20 houses and calculate the average of their prices.

you can assume the list isn’t empty (you know it has 20 houses!).

EXERCISE 4-3 – SELECTING BASED ON A CONDITION

Take a sample of 20 houses and get all the houses that cost over $250,000.

EXERCISE 4-4 – ATTEMPTING A CALCULATION AND CHOOSING SUCCESSES

Take a sample of 20 houses and return an array of tuples, each tuple containing a house and

the distance to the nearest school. use the Distance.tryToSchool function to calculate

the distance. exclude houses for which this function returns None.

Sample output:

val housesNearSchools : (Houses.House * double) [] =

 [|({Address = "1 Stochastic Street";

 Price = 161900M;}, 2.0); ({Address = "3 Stochastic Street";

 Price = 99834M;}, 2.0); ...

Clue: although you can achieve this in a single collection function, the lambda it uses will need

to do some pattern matching on the Some/None cases returned by Distance.tryToSchool.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

77

 Multiple Collection Function Exercises
By now, you should be pretty slick at selecting and using an individual collection

function to solve a problem. Now it’s time to practice combining collection functions

to solve slightly more complex problems. You’ll need to use more than one collection

function for each of the exercises in this section. When tackling these exercises,

remember to think about the cardinality (e.g., Many-to-Fewer) of each step you need to

achieve the goal.

EXERCISE 4-5 – FILTERING AND ITERATING

Note I’ll do this exercise with you to help you get used to combining collection
functions.

Take a sample of 20 houses, find the ones that cost over $100,000, and iterate over the

results printing (not returning) their addresses and prices. The exact format doesn’t matter, as

long as the address and price are printed in some form.

you should be able to complete this exercise using two collection functions.

If you remember the previous section, you’ll know immediately that the first function

you’ll need is the Many-to-Fewer function filter.

You can begin coding by getting the house sample and calling filter (Listing 4-8).

Listing 4-8. Filtering the sample

House.getRandom 20

|> Array.filter (fun h -> h.Price > 100_000m)

Reading the second part of the exercise, you might notice that you aren’t required

to create (in F# terms, bind) an actual value, but merely to print results. (In functional

programming terms, we are using side effects.) This means that we need a Many-to-None

operation, which should help you quickly narrow your choice down to the iter function.

To implement this second operation, simply use the forward-pipe operator (|>) to

send the results from the filtering operation to the iteration operation (Listing 4-9).

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

78

Listing 4-9. Iterating over an array

House.getRandom 20

|> Array.filter (fun h -> h.Price > 100_000m)

|> Array.iter (fun h ->

 printfn "Address: %s Price: %f" h.Address h.Price)

If you run this, you should get output that looks something like this.

Address: 1 Stochastic Street Price: 161900.000000

Address: 3 Stochastic Street Price: 260154.000000

...

Address: 20 Stochastic Street Price: 365808.000000

Now go on to complete the other multifunction exercises yourself. In each case, you

should be able to solve the exercise by using two or more collection functions, piped

together as we did here.

EXERCISE 4-6 – ORDERING

extend the previous exercise, this time ensuring that the houses are printed in descending

order of price.

you should be able to complete this exercise using three collection functions (including the two

already used in exercise 4-5).

EXERCISE 4-7 – FILTERING AND AVERAGING

Take a sample of 20 houses and find the average price of all the houses that cost over

$200,000.

you can assume for this exercise that there will be at least one house that fulfills the criterion.

you should be able to complete this exercise using two collection functions.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

79

EXERCISE 4-8 – FINDING A SINGLE ELEMENT

Take a sample of 20 houses and find the first house that costs less than $100,000 and for

which we can calculate the distance to a school. The results should include the house instance

and the calculated distance to school.

you can assume for this exercise that there will be at least one house that fulfills the criteria.

you should be able to complete this exercise using two collection functions.

Clue: you can reuse some of the solution code from exercise 4-4 to help complete this

exercise.

EXERCISE 4-9 – GROUPING

Take a sample of 20 houses, and create an array of tuples, where the first element of

each tuple is a price band. a price “band” is a range of prices created using the provided

PriceBand.fromPrice function. The second element of the tuple is a sequence of all the

houses that fall into the band.

It’s ok if a band is omitted when there are no houses in that band. Within a grouping, the

houses should be in ascending order of price.

example output:

 val housesByBand : (Houses.PriceBand * Houses.House []) [] =

 [|(Medium,

 [|{Address = "12 Stochastic Street";

 Price = 161613M;};

 ...

 {Address = "13 Stochastic Street";

 Price = 194049M;}|]);

 (Cheap,

 [|{Address = "11 Stochastic Street";

 Price = 62886M;};

 ...

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

80

 {Address = "2 Stochastic Street";

 Price = 99834M;}|]);

 (Expensive,

 [|{Address = "7 Stochastic Street";

 Price = 209337M;};

 ...

 {Address = "14 Stochastic Street";

 Price = 495395M;}|])|]

you should be able to complete this exercise using three collection functions.

 Partial Functions
There’s another characteristic of collection functions that I omitted from the tables and

exercises shown previously for simplicity, but which you must always bear in mind. That

characteristic is whether the collection function is partial. (This is a separate concept

from the concept of partial application, which I tackle in Chapter 9.)

In this context, a function is partial if it can cause an error rather than return a value,

even when given a logically possible input. We’re talking here about errors that are

inherent to the input and the function in question, not externally induced conditions

such as running out of memory or having one’s network connection fall over. A good

example of a function that is partial in this sense is the head function (e.g., Array.head).

Using head on an empty collection will cause an ArgumentException. An empty

collection doesn’t have a first element.

Another example is the zip function, but here the situation is a little trickier. It’s an

error to perform an Array.zip when the input arrays are different lengths. But it’s fine to

use Seq.zip when the input sequences are different lengths: the leftover elements in the

longer sequence will just be ignored.

Table 4-12 gives a list of the functions from Table 4-1 that are partial. Whenever you

use a function from this list, think carefully about whether the input could ever cause an

error condition.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

81

Table 4-12. Partial Collection Functions to Watch Out For

Function Error Condition Ways to Avoid

average, max,

maxBy,

min,

minBy

Collection is empty Check length first and define a suitable value (e.g.,

0 or None) in that situation. also be sure to check

whether there is an official implementation of

tryAverage, tryMax, etc. (at the time of writing,

these have not been implemented)

find No elements matched

the condition (or the

collection was empty)

use tryFind and handle the Some() and None

cases when consuming the result

pick No elements matched

the condition (or the

collection was empty)

use tryPick and handle the Some() and None

cases when consuming the result

reduce Collection is empty, so

there is no way to get

an initial state for the

accumulator

use fold and provide an explicit initial state

sub Collection doesn’t have

enough elements

Check ranges first

use filter to select elements instead

zip (Array and

List versions)

Collections are different

lengths

Check lengths are equal

use Seq.zip and accept that “leftover” elements will

be lost

head and last Collection is empty use tryHead or tryLast

Check length first and define a suitable value in that

situation

tail Collection is empty Check length first and define a suitable value in that

situation

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

82

By the way, any kind of function can be partial. The issue doesn’t just affect

collection functions, but it does crop up most commonly in practice when using

collection functions.

Note get in the habit of thinking about partiality whenever using a collection
function, and handle the failure cases explicitly.

Don’t think about a function being partial as a bug in the function: all these cases are

inherent in the nature of the function. How can you possibly get the maximum value in

an empty list?

Incidentally, a function that isn’t partial in this sense is known as a total function,

though you will hardly ever hear this term used outside a math or computer science

context (I had to look it up).

 Coding Around Partial Functions
As you can see from Table 4-12, many built-in collection functions have try...

equivalents (e.g., tryFind), which return None if there is no value to return, or

Some(value) if there is, thus making them nice safe total functions. When no such

function is available (or you don’t want to use it), there are several other things

you can do.

For example, let’s say you have some transaction values and a business rule that

says, “When there are no transactions, the average transaction value is considered to be

zero.” Listing 4-10 shows how you might define an averaging function that meets this

requirement.

Listing 4-10. A function to compute an array average, or zero when the array

is empty

module Average =

 let averageValue (values : decimal[]) =

 if values.Length = 0 then

 0.m

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

83

 else

 values |> Array.average

 // 370.m

 let ex1 = [|10.m; 100.m; 1000.m|] |> averageValue

 // 0.m

 let ex2 = [||] |> averageValue

This would work fine in the specific case of an array of decimal values, but since

this is a book on style, I probably ought to mention a couple of alternatives. The first

(Listing 4-11) takes an array of any type (not just decimal) and uses the GenericZero

function to return a suitably typed zero value.

Listing 4-11. A generic function to compute an array average, or zero when the

array is empty

module Average =

 let inline averageOrZero (values : 'T[]) =

 if values.Length = 0 then

 LanguagePrimitives.GenericZero<'T>

 else

 values |> Array.average

 // 370.m

 let ex3 = [|10.m; 100.m; 1000.m|] |> averageOrZero

 // 370.f

 let ex3f = [|10.f; 100.f; 1000.f|] |> averageOrZero

 // 0.m

 let ex4:decimal = [||] |> averageOrZero<decimal>

 // 0.f

 let ex4f:decimal = [||] |> averageOrZero<float32>

Another possibility (Listing 4-12) is to allow the caller to specify what should be

returned when the collection is empty.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

84

Listing 4-12. A function to compute an array average, or a caller-supplied default

when the array is empty

module Average =

 let inline averageOr (defaultValue : 'T) (values : 'T[]) =

 if values.Length = 0 then

 defaultValue

 else

 values |> Array.average

 // 370.m

 let ex5 = [|10.m; 100.m; 1000.m|] |> averageOr 0.m

 // 370.f

 let ex5f = [|10.f; 100.f; 1000.f|] |> averageOr 0.f

 // 0.m

 let ex6 = [||] |> averageOr 0.m

 // 0.f

 let ex6f = [||] |> averageOr 0.f

Note that in both Listings 4-11 and 4-12, I’ve had to “inline” the functions using the

inline keyword because they call Array.average, which has a static parameter.

Note remember the principle of semantic focus: the place to handle, for example,
the empty collection case is right here in the code where it could occur. Don’t rely on
the caller to condition your inputs to prevent conditions such as an empty collection.
The calling code might get changed, or your function might get used in new code,
and in either case, the input prechecking might be forgotten about.

 Using the “try” Idiom for Partial Functions
Another way of coding around partial functions is to define your own try... version that

returns Some(value) when a sensible value can be returned and None when it cannot.

For example, at the time of writing, there is no built-in Array.tryAverage function.

Listing 4-13 shows how to code your own in just a few lines.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

85

Listing 4-13. Defining an idiomatic tryAverage function

module Array =

 let inline tryAverage (values : 'T[]) =

 if values.Length = 0 then

 None

 else

 values |> Array.average |> Some

Note Notice that in the averageOr and tryAverage example in Listings 4-10
through 4-13, I put the function in a module called Array. This means that, for
example, tryAverage will be available elsewhere as Array.tryAverage and
can thus be used in exactly the same way as the built-in functions such as Array.
tryFind.

I definitely prefer this final approach: defining your own try... function. This is

because it is in line with a couple of our coding principles:

• It displays good semantic focus because everything about the process

of calculating an average (and returning None when not possible)

is handled in one place in the code. The decision as to what to do

when the result is None (use a default, raise an error, or whatever)

is delegated back to where it should be, in the caller, which is likely

to have more “knowledge” about the particular case where the

averaging is required.

• It displays good motivational transparency: you are saying to the

reader, “Here I intend to define a function which behaves like other,

similarly named functions such as tryHead.” This leverages the

reader’s existing knowledge of how such functions behave, making

the code a lot easier to read.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

86

 Consuming Values from try… Functions
Whether you use a built-in try... function like tryFind, or one you defined yourself,

you must explicitly handle both the Some and None possibilities when consuming the

result. Listing 4-14 shows the one simple way of calling the tryAverage function and

dealing with the return value. Here, we use an explicit match statement on the Some and

None cases.

Listing 4-14. Consuming option type results using match expressions

 // "The average was 370.000000"

 match [|10.m; 100.m; 1000.m|] |> Array.tryAverage with

 | Some av -> printfn "The average was %f" av

 | None -> printfn "There was no average."

 // "There was no average."

 match [||] |> Array.tryAverage with

 | Some av -> printfn "The average was %f" av

 | None -> printfn "There was no average."

There are arguably nicer alternatives to this, which are discussed in Chapters 3 and 11.

 Try… Function Exercises
These exercises are variations on some of the previous exercises, except here we remove

the assumption that the relevant collection is nonempty.

EXERCISE 4-10 – FILTERING, AVERAGING, AND TRY

Take a sample of 20 houses and find the average price of all the houses that cost over

$200,000.

you’ll need to make sure you handle the case where no houses in the sample cost over

$200,000. (you will need to change the price criterion a little to test this.)

you should be able to complete this exercise using two collection functions, but you may need

to define one of these functions yourself.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

87

EXERCISE 4-11 – FINDING A SINGLE ELEMENT IF ANY

Take a sample of 20 houses and find the first house that costs less than $100,000 and for

which we can calculate the distance to a school. The results should include the house instance

and the calculated distance to school.

you’ll need to make sure you handle the case where no houses meet the criteria. (you will

need to change the price criterion a little to test this.)

you should be able to complete this exercise using two collection functions.

Clue: you can reuse some of the solution code from previous exercises to help complete this

exercise.

 Functions for Other Kinds of Collections
Although most F# developers are familiar with the most widely used modules of

collection functions, the Array, Seq, and List modules, they sometimes forget that

similar functions are available for more specialized collections (Table 4-13).

For example, let’s say you have a word list generated from some natural language text

(like the text of a novel), and this word list is stored as a Set to guarantee uniqueness.

Now you want to create another set that contains only lowercased versions of the inputs.

Listing 4-15 shows how you might do that.

Table 4-13. Less-Well-Known Collection Functions

Module Purpose

Array2D, Array3D, Array4D Basic operations on n-dimensional arrays

Map Basic operations on the Map type

Set Basic operations on the Set type

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

88

Listing 4-15. Using Set.map

let novelWords = Set ["The";"the";"quick";"brown";"Fox";"fox"]

// set ["brown"; "fox"; "quick"; "the"]

let lowerWords =

 novelWords

 |> Set.map (fun w -> w.ToLowerInvariant())

lowerWords

Note that the Set.map operation is strictly speaking a Many-to-Fewer operation, since

it produces a Set, and sets inherently eliminate duplicates. For example, if the input set

contained “The” and “the,” the output set would contain only “the.”

 When the Collection Function Is Missing
Collection functions normally exist in all the flavors you are likely to need – that is,

for arrays, F# lists, and sequences. However, in some cases, the one you might want is

missing: for example, there is an Array.partition and a List.partition, but no Seq.

partition. When you need such a missing function, simply convert the collection you

are working with into a collection type for which the function you need is available,

using either the Collection.ofOtherCollection or Collection.toOtherCollection

functions. For instance, Array.ofSeq or Seq.toArray. See Listing 4-16.

Listing 4-16. Using Array.partition on a sequence

type House = { Address : string; Price : decimal }

module House =

 /// Make a sequence of 'count' random houses.

 let getRandomSeq count =

 let random = System.Random(Seed = 1)

 Seq.init count (fun i ->

 { Address = sprintf "%i Stochastic Street" (i+1)

 Price = random.Next(50_000, 500_000) |> decimal })

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

89

// Convert a sequence of houses into an array, so that we

// can use Array.partition to divide them into affordable and

// unaffordable. (There is no Seq.partition.)

let affordable, unaffordable =

 House.getRandomSeq 20

 |> Array.ofSeq

 |> Array.partition (fun h -> h.Price < 150_000m)

affordable, unaffordable

You can convert the result back to the original collection type if necessary. For

example, you could add |> Seq.ofArray to the end of Listing 4-16.

 Common Mistakes
There are a few mistakes that are commonly made when using collection functions.

Quite often, these don’t really matter as the output is the same, but it’s worth watching

out for them, so as to keep your code as robust and stylish as possible.

• Forgetting which functions are partial: I covered this in the section on

partial functions previously. Always handle the error cases (such as

an empty collection) explicitly, typically by using the try... version

of the function.

• Not using the choose function: In my early days with F#, I would often

write pipelines that called a function that might return None, then

filtered for the Some cases, and finally recovered the underlying values

by using pattern matching or the Option.Value property. When you

catch yourself doing this, use the choose function instead. It does the

Some filtering and the value recovery for you. See Listing 4-17.

• Not using the collect function: You may find yourself writing

a pipeline that produces a collection of collections and then

immediately joins these into a single collection using the concat

function. Instead, use the collect function to achieve this in a

single step.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

90

• Long lambda bodies: If the body of a lambda function gets beyond

two or three lines, consider pulling it out into a separate, named

function and calling that. This will help you mentally isolate the logic

of the function from the logic of the pipeline as a whole. It’ll also

reduce indenting! See Listing 4-18.

• Lambdas that could be direct calls: Whenever your code contains

code like (fun x -> doSomething x), it can be replaced simply with

doSomething. Listing 4-17 contains an example of this more concise

approach, where we do |> Array.map trySchoolDistance instead of

|> Array.map (fun h -> trySchoolDistance h).

• Overlong pipelines: Pipelines that contain more than a handful of

forward-pipe operations can be hard to read and debug. Consider

breaking them up, perhaps by binding an intermediate value and

then passing this into a separate pipeline. This problem can be

mitigated by using anonymous record types instead of tuples to

carry structured values between pipeline stages. This can make the

meaning of intermediate values clearer by careful naming. We’ll

discuss this properly in Chapter 7.

• Overlong or obscure tuples: Certain operations naturally produce

tuples, which you will then want to pattern match back into individual

values, for processing in the next step of your pipeline. Again, the

solution to this is often anonymous records. See Listing 4-19.

Listing 4-17. Using the choose function

module Array =

 let inline tryAverage (a : 'T[]) =

 if a.Length = 0 then

 None

 else

 a |> Array.average |> Some

// Calculate the average known distance to school

// in a sample of 20 houses.

let averageDistanceToSchool =

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

91

 House.getRandom 20

 |> Array.map Distance.tryToSchool

 |> Array.filter (fun d -> d.IsSome)

 |> Array.map (fun d -> d.Value)

 |> Array.tryAverage

// As previous function, but use Array.choose instead

// of map, filter and map.

let averageDistanceToSchool2 =

 House.getRandom 20

 |> Array.choose Distance.tryToSchool

 |> Array.tryAverage

averageDistanceToSchool, averageDistanceToSchool2

Listing 4-18. Avoiding long lambda functions

// Get houses with their price bands the long-winded way:

let housesWithBands =

 House.getRandom 20

 |> Array.map (fun h ->

 let band =

 if h.Price < 100_000m then

 Cheap

 elif h.Price < 200_000m then

 Medium

 else

 Expensive

 h, band)

// Most of the code above could be pulled into a fromPrice function:

// (Here we use the one that is already defined in the PriceBand module

// in a previous listing.)

let housesWithBands2 =

 House.getRandom 20

 |> Array.map (fun h ->

 h, h.Price |> PriceBand.fromPrice)

housesWithBands, housesWithBands2

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

92

Listing 4-19. Replacing tuples with anonymous records

module PriceBand =

 let order = function

 | Cheap -> 0 | Medium -> 1 | Expensive -> 2

// A report of price bands and the houses that fall into them:

House.getRandom 20

|> Seq.groupBy (fun h -> h.Price |> PriceBand.fromPrice)

|> Seq.sortBy (fun (band, _) -> band |> PriceBand.order)

|> Seq.iter (fun (band, houses) ->

 printfn "---- %A ----" band

 houses

 |> Seq.iter (fun h -> printfn "%s - %f" h.Address h.Price))

// Like the previous report, but using an anoymous record to

// reduce use of tuples:

House.getRandom 20

|> Seq.groupBy (fun h -> h.Price |> PriceBand.fromPrice)

|> Seq.map (fun (band, houses) ->

 {| PriceBand = band; Houses = houses |})

|> Seq.sortBy (fun group -> group.PriceBand |> PriceBand.order)

|> Seq.iter (fun group ->

 printfn "---- %A ----" group.PriceBand

 group.Houses

 |> Seq.iter (fun h -> printfn "%s - %f" h.Address h.Price))

---- Cheap ----

2 Stochastic Street - 99834.000000

9 Stochastic Street - 95569.000000

...

---- Medium ----

1 Stochastic Street - 161900.000000

12 Stochastic Street - 161613.000000

...

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

93

---- Expensive ----

3 Stochastic Street - 260154.000000

4 Stochastic Street - 397221.000000

...

 Recommendations
Here are some key points to take away from this chapter:

• Become familiar with the many collection functions available to you

in modules such as Array, List, and Seq and the more specialized

modules such as Map and Set.

• Learn how to map from the problem you are trying to solve

(e.g., “I have an array of numbers and I want the average of the largest

three”) to the type signatures that are likely to help solve them

(e.g., 'T [] -> 'T [] for the sorting, 'T [] -> 'T [] for the

top-three selection, and ^T [] -> ^T for the average) and from

there to the specific collections you are going to need (Array.sort,

Array.truncate, and Array.average).

• If you find type signatures a little inaccessible, refer back to Tables 4-2

through 4-11 for a more visual reference to the most useful collection

functions.

• Beware of collection functions that are partial, such as Array.head,

which raises an exception when the array is empty. Use the try...

version (e.g., Array.tryHead), or if there isn’t one, consider writing

one using the try... naming style.

• Think of explicit looping, especially using mutable values, as a last

resort. There’s usually a collection function or a combination of them

that will do the job more simply.

• Use pipelines of collection functions, but don’t let them get too long.

Remember that anonymous records, discussed at length in Chapter 7,

are often preferable to tuples when passing values between stages of

a pipeline.

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

94

 Summary
Collection functions are the guitar chords of the F# world. You simply can’t get by

without a good working knowledge of the basic functions and how to fit them together.

In most domains, a large proportion of your F# code should consist of pipelines of

collection functions that map, filter, summarize, and group data to get from the inputs

you have to the outputs you want. Enjoy the feeling of using collection functions to

achieve F#’s enduring goal: to solve complex problems with simple code.

In the next chapter, we’ll look at immutability, the curious notion that we should

write programs that don’t change anything; and we’ll also learn when to break back out

of this mindset and use mutation.

 Exercise Solutions
This section shows solutions for the exercises in this chapter. For the code shown here to

run, you’ll also need the code for the Houses module in Listing 4-2.

EXERCISE 4-1 – TRANSFORMING DATA ITEMS

let housePrices =

 House.getRandom 20

 |> Array.map (fun h ->

 sprintf "Address: %s - Price: %f" h.Address h.Price)

housePrices

|> Array.iter (printfn "%O")

alternatively, you could have used string interpolation, like this:

let housePrices2 =

 House.getRandom 20

 |> Array.map (fun h ->

 sprintf $"Address: {h.Address} - Price: {h.Price}")

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

95

EXERCISE 4-2 – CALCULATING AN AVERAGE

let averagePrice =

 House.getRandom 20

 |> Array.averageBy (fun h -> h.Price)

EXERCISE 4-3 – SELECTING BASED ON A CONDITION

let expensive =

 House.getRandom 20

 |> Array.filter (fun h -> h.Price > 250_000m)

EXERCISE 4-4 – ATTEMPTING A CALCULATION AND CHOOSING SUCCESSES

let housesNearSchools =

 House.getRandom 20

 |> Array.choose (fun h ->

 // See also the "Missing Data" chapter

 match h |> Distance.tryToSchool with

 | Some d -> Some(h, d)

 | None -> None)

EXERCISE 4-5 – FILTERING AND ITERATING

House.getRandom 20

|> Array.filter (fun h -> h.Price > 100_000m)

|> Array.iter (fun h ->

 printfn "Address: %s Price: %f" h.Address h.Price)

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

96

EXERCISE 4-6 – ORDERING

House.getRandom 20

|> Array.filter (fun h -> h.Price > 100_000m)

|> Array.sortByDescending (fun h -> h.Price)

|> Array.iter (fun h ->

 printfn "Address: %s Price: %f" h.Address h.Price)

EXERCISE 4-7 – FILTERING AND AVERAGING

let averageOver200K =

 House.getRandom 20

 |> Array.filter (fun h -> h.Price > 200_000m)

 |> Array.averageBy (fun h -> h.Price)

EXERCISE 4-8 – FINDING A SINGLE ELEMENT

let cheapHouseWithKnownSchoolDistance =

 House.getRandom 20

 |> Array.filter (fun h -> h.Price < 100_000m)

 |> Array.pick (fun h ->

 match h |> Distance.tryToSchool with

 | Some d -> Some(h, d)

 | None -> None)

EXERCISE 4-9 – GROUPING

let housesByBand =

 House.getRandom 20

 |> Array.groupBy (fun h -> h.Price |> PriceBand.fromPrice)

 |> Array.map (fun group ->

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

97

 let band, houses = group

 band, houses |> Array.sortBy (fun h -> h.Price))

you can also “pattern match” in the lambda declaration of the Array.map call for a more

concise solution:

 let housesByBand2 =

 House.getRandom 20

 |> Array.groupBy (fun h -> h.Price |> PriceBand.fromPrice)

 |> Array.map (fun (band, houses) ->

 band, houses |> Array.sortBy (fun h -> h.Price))

EXERCISE 4-10 – FILTERING, AVERAGING, AND TRY

To test this solution, you’ll need to increase the price criterion so that the sample is empty.

module Array =

 let inline tryAverageBy f (a : 'T[]) =

 if a.Length = 0 then

 None

 else

 a |> Array.averageBy f |> Some

let averageOver200K =

 House.getRandom 20

 |> Array.filter (fun h -> h.Price > 200_000m)

 |> Array.tryAverageBy (fun h -> h.Price)

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

98

EXERCISE 4-11 – FINDING A SINGLE ELEMENT IF ANY

To test this solution, you’ll need to decrease the price criterion so that the sample is empty.

let cheapHouseWithKnownSchoolDistance =

 House.getRandom 20

 // Try lower price values to explore what happens

 // when the filter returns no results.

 |> Array.filter (fun h -> h.Price < 100_000m)

 |> Array.tryPick (fun h ->

 match h |> Distance.tryToSchool with

 | Some d -> Some(h, d)

 | None -> None)

ChapTer 4 WorkINg effeCTIveLy WITh CoLLeCTIoN fuNCTIoNS

99
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_5

CHAPTER 5

Immutability and Mutation
Nothing is so painful to the human mind as a great and sudden change.

—Mary Wollstonecraft Shelley, from the novel Frankenstein

 These Folks Are Crazy!
Most software developers, for most of the history of programming, have been entirely

comfortable with mutation. Code that uses mutation declares a variable (perhaps with

some initial value, perhaps uninitialized) and then updates its value one or more times

until some final result is achieved. It’s so natural of an approach (at least for those of

us who came to programming via languages such as BASIC, JavaScript, and C) that we

didn’t really feel the need to name it. Mutable programming was programming.

For people with that kind of background, the first encounter with immutable style

is disorientating to say the least. I still clearly remember seeing an early presentation

on F# and thinking “these folks are crazy.” The only reason I stayed with it was because

the presenter was particularly engaging. It was beyond me at the time to think that

immutable style programming might actually be useful. I certainly wouldn’t have

entertained the notion that it could even be easier. How the times have changed!

My aim in this chapter is to show you how immutable style can indeed be easier. I

hope by the end you’ll agree that most code should be written in an immutable style,

with mutation only coming into play where performance considerations, or the nature of

the operation being performed, genuinely require it.

 Classic Mutable Style
For most of my career, I’ve written code in the style exemplified in Listing 5-1. (In

different languages, obviously; it’s the logic that’s important.)

https://doi.org/10.1007/978-1-4842-7205-3_5#DOI

100

Listing 5-1. A loop using mutation

open System

open System.IO

let latestWriteTime (path : string) (searchPattern : string) =

 let files = Directory.EnumerateFiles(path, searchPattern,

 SearchOption.AllDirectories)

 let mutable latestDate = DateTime.MinValue

 for file in files do

 let thisDate = File.GetLastWriteTime(file)

 if thisDate > latestDate then

 latestDate <- thisDate

 latestDate

latestWriteTime @"c:\temp" "*.*"

The pattern here is that we set some variable to an initial state (it might be null,

zero, an empty string, or whatever); then we perform some kind of loop, updating the

variable repeatedly; and finally, we use whatever value was set last. In this case, the

“variable” is the mutable value latestDate, and we keep updating it whenever the write

date of the file we’re looking at is later than the last value we set. There are variations

on the pattern – sometimes, we break out of the loop when some condition is attained;

sometimes, the mutable thing is a collection to which we add elements; and so forth.

This kind of coding works fine when the logic is as simple as in Listing 5-1. But as

soon as things get even remotely complicated, the code gets very hard to follow. For

example, we might end up with nested loops and a variety of variables being declared

and updated at various different scopes. Or a variable might get updated in two

successive loops, maybe having the same business meaning in each loop or maybe

having a subtly different one. You might answer that this kind of coding is bad practice

whether you are writing in a mutable style or not; but the fact is that it’s extremely

common, and it leads to a lot of bugs. It’s also somewhat verbose. And in a sense, it isn’t

DRY (“Don’t Repeat Yourself”) because, as I’ll illustrate later, one is in fact repeating the

same essential logic each time one does it.

Chapter 5 ImmutabIlIty and mutatIon

101

 Immutability Basics
So what is the immutable equivalent to Listing 5-1, and how do we get to it? The secret

is to think “up” one level of abstraction, work out what we are really doing, and find the

appropriate built-in F# functions to achieve it. Applying this method to Listing 5-1, your

thought process should be

• Oops, I’m using a mutable. Is there a better way?

• What I really want is the maximum date for a list of files.

• A list is a sequence, and there is a Seq.max function.

Following this approach, you might end up with a first cut of your immutable version

looking like Listing 5-2.

Listing 5-2. First cut of an immutable latestWriteTime

open System.IO

let latestWriteTime (path : string) (searchPattern : string) =

 Directory.EnumerateFiles(path, searchPattern,

 SearchOption.AllDirectories)

 // Could also just say '|> Seq.map File.GetLastWriteTime' here.

 |> Seq.map (fun file -> File.GetLastWriteTime(file))

 |> Seq.max

latestWriteTime @"c:\temp" "*.*"

This is already a vast improvement over Listing 5-1. It’s more concise, which is

not automatically an advantage, but here, where we are plugging well-understood

operations together in a completely idiomatic way, it certainly is. It follows the principle

of motivational transparency – the use of Seq.max tells us we are looking for the largest

something, and the Seq.map tells us what that something is. And it also follows the

principle of revisability. If we suddenly decided we wanted the earliest write time

instead of the latest, we’d just have to change the Seq.max to a Seq.min. Contrast that

with Listing 5-1, where we’d have to change both the initial value of the mutable and the

operator of the check (less than instead of greater than).

Chapter 5 ImmutabIlIty and mutatIon

102

There’s another, subtler, but more fundamental advantage of removing the reliance

on mutation. Working at this level lets us reason about our code without getting involved

in the nitty-gritty of intermediate values, terminating conditions, and so forth. It’s a

slight digression, but here’s an example of how thinking at this higher level can help. If

you were paying attention during Chapter 4, you might remember that certain functions

are partial; that is, they don’t return valid outputs for seemingly sensible inputs. If you

don’t immediately see the significance of this, try running the code from Listing 5-2 for a

search pattern for which no file exists, for example:

 latestWriteTime @"c:\temp" "doesnotexist.*"

You’ll get an “input sequence is empty error.” Seq.max is a partial function: you

can’t find the maximum value of “no values.” Back in Listing 5-1, the no-files situation

was dealt with by returning DateTime.MinValue. This kind of works, but it violates

the principle of motivational transparency because the caller isn’t forced by the type

signature to think about the empty-file-list case. Therefore. they may not deal properly

with DateTime.MinValue. Imagine a UI saying “You last updated a file on 1st January

0001.” It wouldn’t look great, would it?

How do we force callers to handle empty cases? We learned in Chapter 3 that the

answer is often an option type, so we start by hoping there is a built-in Seq.tryMax

function to do the work for us, by returning None when there is nothing in the sequence.

At the time of writing, there isn’t such a function, but defining one is almost trivial.

Listing 5-3 shows us defining Seq.tryMax and then using it to ensure we return None

when there are no files and Some date when there is at least one file.

Listing 5-3. Defining and using Seq.tryMax to handle the empty case

open System.IO

module Seq =

 let tryMax s =

 if s |> Seq.isEmpty then

 None

 else

 s |> Seq.max |> Some

Chapter 5 ImmutabIlIty and mutatIon

103

let tryLatestWriteTime (path : string) (searchPattern : string) =

 Directory.EnumerateFiles(path, searchPattern,

 SearchOption.AllDirectories)

 |> Seq.map File.GetLastWriteTime

 |> Seq.tryMax

// Some date

printfn "Most recent file: %A" (tryLatestWriteTime @"c:\temp" "*.*")

// None

printfn "Most recent file: %A" (tryLatestWriteTime @"c:\temp"

"doesnotexist.*")

Now the caller is forced to think about the no-files case and to handle it explicitly. It

might do this by defaulting the value using pattern matching or Option.defaultValue,

or it might use Option.bind and Option.map to skip subsequent processing when the

return value from trylatestWriteTime is None. It doesn’t matter how the caller handles

None – it’s good enough to know that it will be handled.

 Common Mutable Patterns
When transitioning to an “immutable-first” coding style, it’s easy to get blocked,

particularly if the mutable answer to the problem is already obvious to you. If this

happens, don’t worry: just code the function in mutable style if that’s what seems more

natural, and then go look at it again to see what is needed to transform it to immutable

style. Once you’ve done this a few times, you’ll start to recognize the logical mappings

between the old and new approaches, and you’ll gradually find yourself able to code in

immutable style by default.

To help you with the process, here’s a list of common mutable-style coding patterns,

together with suggestions on how to reexpress them in immutable style. For each

pattern, I’ll first show how you might naively code the F# solution; then I’ll give the

immutable equivalent.

Chapter 5 ImmutabIlIty and mutatIon

104

 Linear Search
In this pattern, the aim is to search a sequence of items for the first that meets a specific

condition.

Listing 5-4. Linear Search in mutable style

type Student = { Name : string; Grade : char }

let findFirstWithGrade (grade : char) (students : seq<Student>) =

 let mutable result = { Name = ""; Grade = ' ' }

 let mutable found = false

 for student in students do

 if not found && student.Grade = grade then

 result <- student

 found <- true

 result

// { Name = Jones, B; Grade = 'B' }

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> findFirstWithGrade 'B'

In Listing 5-4, we set a mutable value to some arbitrary “empty” value. Then we loop

over the items in the collection until we find one that meets the criterion. When we find

it, we take a note of its value by updating the mutable value with the found value. When

the loop is complete, we return that mutable value.

In a language like C or C#, we would also break out of the loop when we found the

first element. This would skip the cost of further iterations and would avoid overwriting

our mutable found value with some later matching element. In F#, we don’t have a break

keyword, so we use a mutable value found to achieve a similar effect. (There are still

some useless iterations, but at least they are cheap.)

There are several aspects of this code that shout out “refactor me as immutable”:

• Use of mutable values

• Use of an arbitrary empty initialization value (often null in other

languages)

Chapter 5 ImmutabIlIty and mutatIon

105

• For-loops

• Use of flag values such as found

The good news is that the refactoring is easy (Listing 5-5).

Listing 5-5. Linear Search in immutable style

type Student = { Name : string; Grade : char }

let findFirstWithGrade (grade : char) (students : seq<Student>) =

 students

 |> Seq.find (fun s -> s.Grade = grade)

// { Name = Jones, B; Grade = 'B' }

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> findFirstWithGrade 'B'

In Listing 5-5, we simply use Seq.find to do the work. This has a couple of

advantages:

• We are letting the F# libraries do the work, so we won’t introduce any

of the bugs that inevitably creep in with mutable values.

• We can now reason more readily about the code. For example,

the fact that Seq.find is a partial function (see Chapter 4) should

immediately flag up the fact we should be handling the “not found”

case explicitly, which leads us nicely onto “Guarded Linear Search.”

 Guarded Linear Search
This pattern is like Linear Search, except that we handle the fact that a matching element

might not be found (Listing 5-6).

Chapter 5 ImmutabIlIty and mutatIon

106

Listing 5-6. Guarded Linear Search in mutable style

type Student = { Name : string; Grade : char }

let tryFindFirstWithGrade (grade : char) (students : seq<Student>) =

 let mutable result = { Name = ""; Grade = ' ' }

 let mutable found = false

 for student in students do

 if not found && student.Grade = grade then

 result <- student

 found <- true

 if found then

 Some result

 else

 None

// Some ({ Name = Jones, B; Grade = 'B' })

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> tryFindFirstWithGrade 'B'

In C-like languages, it would be common to raise an exception in the “not found”

case, or to return a null. Instead, I’ve chosen to make the function return an option type,

so the caller has a fighting chance of knowing what has happened. I’ve used the found

mutable value to decide whether to return Some value or None.

The warning signs that this isn’t great F# code are the same as they were for Listing 5-4,

and the cure is equally simple (Listing 5-7).

Listing 5-7. Guarded Linear Search in immutable style

type Student = { Name : string; Grade : char }

let tryFindFirstWithGrade (grade : char) (students : seq<Student>) =

 students

 |> Seq.tryFind (fun s -> s.Grade = grade)

Chapter 5 ImmutabIlIty and mutatIon

107

// Some ({ Name = Jones, B; Grade = 'B' })

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> tryFindFirstWithGrade 'B'

Seq.tryFind is a total function (i.e., not a partial function), which gives us a warm

feeling that our function will work in a predictable way from the caller’s point of view,

whether or not the collection is empty or an element is found.

 Process All Items
In this pattern, we do something “to” or “with” every element in a collection. We need

to do different things in the “to” (imperative) version vs. the “with” (functional) version.

Listing 5-8 shows us processing every student by doing something imperative using each

element.

Listing 5-8. Process All Items, imperative version, in looping style

type Student = { Name : string; Grade : char }

let printGradeLabel (student : Student) =

 printfn "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let printGradeLabels (students : seq<Student>) =

 for student in students do

 printGradeLabel student

// GARCIA, A\nGrade: A\n...

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> printGradeLabels

Listing 5-8 really isn’t too bad – there is no explicit mutation anywhere. The

argument for the more idiomatic version (Listing 5-9) is only that it’s more consistent

with how we like to handle collections generally in F# code.

Chapter 5 ImmutabIlIty and mutatIon

108

Listing 5-9. Process All Items, imperative version, in loop-free style

type Student = { Name : string; Grade : char }

let printGradeLabel (student : Student) =

 printfn "%s\nGrade: %c\n " (student.Name.ToUpper()) student.Grade

let printGradeLabels (students : seq<Student>) =

 students

 |> Seq.iter (fun student -> printGradeLabel student)

 // Alternatively:

 //|> Seq.iter printGradeLabel

// GARCIA, A\nGrade: A\n...

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> printGradeLabels

Using Seq.iter also allows us (if we want) to avoid having an explicit value for a

single student, as shown in the commented-out line in Listing 5-9. This is more concise,

but it does require you to name your functions clearly, and not to have pipelines that are

too long. Otherwise, you risk sacrificing readability.

How about processing a collection of items by doing some calculation using each

element and returning all the results? Listing 5-10 shows a mutable-style approach.

Listing 5-10. Process All Items, returning a result for each, in mutable style

type Student = { Name : string; Grade : char }

let makeGradeLabel (student : Student) =

 sprintf "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let makeGradeLabels (students : seq<Student>) =

 let result = ResizeArray<string>()

 for student in students do

 result.Add(makeGradeLabel student)

 result |> Seq.cast<string>

Chapter 5 ImmutabIlIty and mutatIon

109

// [GARCIA, A\nGrade: A\n...

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> makeGradeLabels

Here, we start with an empty collection that is mutable, in the sense that it can be

added to. I’ve used ResizeArray, which is F#’s alias for System.Collections.Generic.

List. (You can actually resize an ordinary .NET array with the Array.Resize, but… well,

just don’t.) We call a function for each element in the input list and add the result to the

output list. Finally, we return the built-up list. I’ve also explicitly cast the result so that it

is a sequence of strings, because it isn’t the caller’s concern that we used a ResizeArray

to build up the result.

This “initialize-empty-then-add” style of coding is almost unthinkable when you’ve

mentally made the transition to immutable style, but it’s the pattern I see most from

people who haven’t yet made the transition. (Incidentally, you may well see this style

legitimately used in low-level or asynchronous code, but most code should avoid it.)

Another common mutable approach is to initialize a collection of the right size with

zero-valued elements and then mutate them to the right values (Listing 5-11).

Listing 5-11. Process All Items in mutable style, another approach

type Student = { Name : string; Grade : char }

let makeGradeLabel (student : Student) =

 sprintf "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let makeGradeLabels (students : seq<Student>) =

 let length = students |> Seq.length

 let result = Array.zeroCreate<string> length

 let mutable i = 0

 for student in students do

 result.[i] <- makeGradeLabel student

 i <- i + 1

 result |> Seq.ofArray

Chapter 5 ImmutabIlIty and mutatIon

110

// [GARCIA, A\nGrade: A\n...

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> makeGradeLabels

While Listings 5-10 and 5-11 may seem self-evidently ridiculous as I’ve presented

them here, somewhat more complex instances of what is fundamentally the same thing

abound. So watch out for them. Generally, when the input is a collection of known size

and the result is a collection of the same size, the answer is map (Listing 5-12).

Listing 5-12. Process All Items, returning a result for each, in immutable style

type Student = { Name : string; Grade : char }

let makeGradeLabel (student : Student) =

 sprintf "%s\nGrade: %c\n" (student.Name.ToUpper()) student.Grade

let makeGradeLabels (students : seq<Student>) =

 students

 |> Seq.map makeGradeLabel

// [GARCIA, A\nGrade: A\n...

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Jones, B"; Grade = 'B' }

 { Name = "Ng, S"; Grade = 'A' }]

|> makeGradeLabels

Listings 5-10 and 5-11 may be among the most common antipatterns in beginner F#

code, but they are also the easiest to rectify. Sprinkle your code with map operations!

 Repeat Until
Often, we need to repeat an operation until some condition has been reached, but

there is no way to know the condition until we have executed the operation at least

once. Many languages provide a “repeat until” construct to handle this, but not F#.

We also don’t have the concept of “breaking out of a for-loop”, exiting before all

elements have been exhausted. Thus, our attempt to do this in mutable style

(Listing 5-13) is notably inelegant. In Listing 5-13, I’ve also had to add a function

Chapter 5 ImmutabIlIty and mutatIon

111

called tryGetSomethingFromApi that simulates a “must call once” API. Ignoring that

mock function, let’s focus on improving listThingsFromApi.

Listing 5-13. Repeat Until in mutable style

// Simulate something coming from an API which only

// tells you if you are going to get something after

// you asked for it.

let tryGetSomethingFromApi =

 let mutable thingCount = 0

 let maxThings = 10

 fun () ->

 if thingCount < maxThings then

 thingCount <- thingCount+1

 "Soup"

 else

 null // No more soup for you!

let listThingsFromApi() =

 let mutable finished = false

 while not finished do

 let thing = tryGetSomethingFromApi()

 if thing <> null then

 printfn "I got %s" thing

 else

 printfn "No more soup for me!"

 finished <- true

// I got Soup (x10)

// No more soup for me!

listThingsFromApi()

We can improve on this using a “sequence” expression, in which we call the API,

convert the result into an option type using Option.ofObj, and decide whether to

continue based on whether the result is Some or None. Note that the sequence expression

is recursive because it needs to include not only the result from “this” iteration, using

yield, but also the results from every subsequent iteration, using yield! (note the

exclamation mark after yield).

Chapter 5 ImmutabIlIty and mutatIon

112

Listing 5-14. Repeat Until in immutable style using a recursive sequence

expression

// Simulate something coming from an API which only

// tells you if you are going to get something after

// you asked for it.

let tryGetSomethingFromApi =

 let mutable thingCount = 0

 let maxThings = 10

 fun () ->

 if thingCount < maxThings then

 thingCount <- thingCount+1

 "Soup"

 else

 null // No more soup for you!

let rec apiToSeq() =

 seq {

 match tryGetSomethingFromApi() |> Option.ofObj with

 | Some thing ->

 yield thing

 yield! apiToSeq()

 | None ->

 ()

 }

let listThingsFromApi() =

 apiToSeq()

 |> Seq.iter (printfn "I got %s")

// I got Soup (x10)

listThingsFromApi()

 Find Extreme Value
In this pattern, we are trying to find an extreme value, typically a maximum or minimum

value. That “max-ness” or “min-ness” might be expressed in all sorts of ways, simply

Chapter 5 ImmutabIlIty and mutatIon

113

as the magnitude of a number, closeness to or distance from zero, time duration,

alphabetical order, and so on. Focusing for a moment on numerical magnitude,

here’s how we might naively code getting the maximum of a sequence of numbers

(Listing 5-15).

Listing 5-15. Naive get-maximum function in mutable style

open System

let getMax (numbers : seq<float>) =

 let mutable max = Double.MinValue

 for number in numbers do

 if number > max then

 max <- number

 max

// 9.8

let ex1 = [1.3; 9.8; 4.5; -13.0] |> getMax

// -1.7976931348623157E+308

let ex2 = [] |> getMax

ex1, ex2

Listing 5-15 has several serious shortcomings. It only works for collections of

floating-point values; it has no way of finding a whole object in a collection, based on

some property of each element; and most seriously of all, it will return an arbitrary

value (-1.797693135e+308) if the collection is empty. This is an obvious candidate for

the “try” idiom, where we return Some maximum or None. At the time of writing, there

isn’t a Seq.tryMax nor a Seq.tryMaxBy, but it’s simple to write them (Listing 5-16).

Listing 5-16. Implementing Seq.tryMax and Seq.tryMaxBy

module Seq =

 let tryMax s =

 if s |> Seq.isEmpty then

 None

 else

 s |> Seq.max |> Some

Chapter 5 ImmutabIlIty and mutatIon

114

 let tryMaxBy f s =

 if s |> Seq.isEmpty then

 None

 else

 s |> Seq.maxBy f |> Some

Listing 5-16 means we don’t need to write the code in Listing 5-15 at all – we’d just

call Seq.tryMax. If we want to get the maximum of a collection of objects “by” some

property, we’d call Seq.tryMaxBy as defined at the end of Listing 5-16 and used in

Listing 5-17.

Listing 5-17. Using Seq.tryMaxBy

type Student = { Name : string; Grade : char }

let tryGetLastStudentByName (students : seq<Student>) =

 students

 |> Seq.tryMaxBy (fun s -> s.Name)

// { Name = "Ng, S" Grade = 'A' }

[{ Name = "Garcia, A"; Grade = 'A'}

 { Name = "Ng, S"; Grade = 'A' }

 { Name = "Jones, B"; Grade = 'B' }]

|> tryGetLastStudentByName

Going back to the “distance from zero” requirement, Listing 5-18 shows how we

might code this, again using Seq.tryMaxBy. The abs function returns the absolute value

of its input – for example, abs -1.0 is 1.0.

Listing 5-18. Using Seq.tryMaxBy to find furthest from zero

// Some(-5.3)

let furthestFromZero =

 [| -1.1; -0.1; 0.; 1.1; -5.3 |]

 |> Seq.tryMaxBy abs

furthestFromZero

Chapter 5 ImmutabIlIty and mutatIon

115

 Summarize a Collection
Frequently, we’re trying to produce a single value that in some sense summarizes a

collection. Straightforward summaries such as summing or averaging can easily be

dealt with using appropriate collection functions such as Seq.sum, Seq.sumBy, Seq.

average, and Seq.averageBy. But what about calculations that aren’t directly covered

by built-in functions? Let’s take the example of calculating the root mean square (RMS)

of a data series. This is a measure that expresses, for example, the effective voltage of an

alternating electric current. Because it oscillates between positive and negative values,

the simple average of the voltage is 0. But by calculating the average of the squares

(converting the negative parts of each wave to positive) and then taking the square root

of the results, we can produce a useful figure. Listing 5-19 shows how one might be

tempted to do this in a mutable style.

Listing 5-19. Calculating RMS in mutable style

let rms (s : seq<float>) =

 let mutable total = 0.

 let mutable count = 0

 for item in s do

 total <- total + (item ** 2.)

 count <- count + 1

 let average = total / (float count)

 sqrt average

// 120.2081528

[|0.; -170.; 0.; 170.|] |> rms

Even though there is no Seq.rms function, it’s still possible to achieve the same result

with no mutation. In Listing 5-20, we average “by” the square of each sample; then we

pipe the result into the built-in sqrt function.

Chapter 5 ImmutabIlIty and mutatIon

116

Listing 5-20. Calculating RMS in immutable style

let rms (s : seq<float>) =

 s

 |> Seq.averageBy (fun item -> item ** 2.)

 |> sqrt

// 120.2081528

[|0.; -170.; 0.; 170.|] |> rms

This is common: even if there isn’t a summary collection function to do exactly what

you want, you can normally combine collection functions with other calculations to get

where you need to be. The presence of mutable accumulator values (such as total and

count in Listing 5-19) is a sure-fire sign that you can improve your code in this way.

Sometimes, you still need to thread an “accumulator” value through a collection

computation because the value at position n depends on the cumulative value built up at

position n-1. Listing 5-21 shows a mutable example, in this case, multiplying together all

the successive elements of a collection.

Listing 5-21. Cumulative computation in mutable style

let product (s : seq<float>) =

 let mutable total = 1.

 for item in s do

 total <- total * item

 total

// 1.98

[| 1.2; 1.1; 1.5|] |> product

This is, technically speaking, a “fold” operation, and to support it, we have Seq.fold

(and Array.fold, etc.). Fold sometimes gets bad press because it can be confusing, but

here it is a perfect fit (Listing 5-22).

Chapter 5 ImmutabIlIty and mutatIon

117

Listing 5-22. Cumulative computation in immutable style

let product (s : seq<float>) =

 s

 |> Seq.fold (fun acc elem -> acc * elem) 1.

// 1.98

[| 1.2; 1.1; 1.5|] |> product

Incidentally, I have a way of taming the confusion that can easily accompany use

of fold. I always name the two arguments of the lambda function, which represent

the accumulated value and the value of the current element, acc and elem. Somehow

sticking to the acc-elem mantra, rather than using context-specific names like

totalSoFar and thisElement, helps me remember which way round to put the values

and how they are used.

 Recommendations
Here are the main points you should take away from this chapter:

• Programming in immutable style is key in accessing the benefits of

programming in F#.

• Watch out for the common signs of mutable or imperative

programming style: use of mutable values, use of arbitrary

initialization values (e.g., nulls), for-loops, and use of flag or

“sentinel” values such as found.

• It’s OK to code a first cut in mutable style. But when that is working,

try to factor it into immutable style, often using collection functions

such as Seq.max to work at a higher level of abstraction.

• As you get used to the style, it’ll start feeling natural to code in

immutable style from the outset.

Chapter 5 ImmutabIlIty and mutatIon

118

 Summary
In this chapter, I’ve listed some of the most common coding patterns where, in C-like

languages and in the absence of wonderful technologies like LINQ in C#, one has to

resort to using mutable values and looping. I hope you’re convinced that this old style of

coding is hardly ever necessary.

Of course, you sometimes have to resort to mutable style for performance reasons.

But personally, I have found this relatively rare. All that said, feel free to start off in

mutable style and refactor to immutable as you go along. You soon find that immutable-

first becomes your natural default.

In the next chapter, we’ll look at pattern matching, a technique for flow control and

data assignment that leaves if and switch statements in the dust!

 Exercises

EXERCISE 5-1 – CLIPPING A SEQUENCE

Write a function “clip,” which takes a sequence of values and returns a sequence of the same

length, in which the values are the same as the inputs, except elements that were higher than

a defined ceiling are replaced with that ceiling.

For example:

 // seq [1.0; 2.3; 10.0; -5.0]

 [| 1.0; 2.3; 11.1; -5. |]

 |> clip 10.

you can solve this exercise using one collection function and one other function.

Chapter 5 ImmutabIlIty and mutatIon

119

EXERCISE 5-2 – MINIMUM AND MAXIMUM

you come across a function that appears to be designed to calculate the minimum and

maximum values in a sequence:

open System

let extremes (s : seq<float>) =

 let mutable min = Double.MaxValue

 let mutable max = Double.MinValue

 for item in s do

 if item < min then

 min <- item

 if item > max then

 max <- item

 min, max

// (-5.0, 11.1)

[| 1.0; 2.3; 11.1; -5. |]

|> extremes

how would you rewrite the function to avoid using mutable values? you can ignore the

situation where the input sequence is empty.

Given a precomputed array of one million elements, how does the performance of your

function compare with the mutable version?

you can solve this exercise using two collection functions.

 Exercise Solutions
This section shows solutions for the exercises in this chapter.

Chapter 5 ImmutabIlIty and mutatIon

120

EXERCISE 5-1 – CLIPPING A SEQUENCE

you can achieve the requirement by writing a function that takes a required ceiling value and a

sequence. then you can use Seq.map to map the input values to the lower of either the input

element or the specified ceiling, using the built-in min function.

open System

let clip ceiling (s : seq<_>) =

 s

 |> Seq.map (fun x -> min x ceiling)

// seq [1.0; 2.3; 10.0; -5.0]

[| 1.0; 2.3; 11.1; -5. |]

|> clip 10.

EXERCISE 5-2 – MINIMUM AND MAXIMUM

you can achieve the requirement simply by using Seq.min and Seq.max and returning the

results as a tuple by putting a comma between the calls.

let extremesImmutable (s : seq<float>) =

 s |> Seq.max,

 s |> Seq.min

// (11, -5)

[| 1.0; 2.3; 11.1; -5. |]

|> extremesImmutable

basic performance can be analyzed by using code like this:

// Performance test:

open System

open System.Diagnostics

let r = Random()

let big = Array.init 1_000_000 (fun _ -> r.NextDouble())

let sw = Stopwatch()

Chapter 5 ImmutabIlIty and mutatIon

121

// Test the mutable version:

sw.Start()

let min1, max1 = big |> extremes

// min: 0.999998 max: 0.000002 - time: 12ms

printfn "min: %f max: %f - time: %ims" min1 max1 sw.ElapsedMilliseconds

sw.Stop()

// Test the immutable version:

sw.Restart()

let min2, max2 = big |> extremesImmutable

// min: 0.999998 max: 0.000002 - time: 19ms

printfn "min: %f max: %f - time: %ims" min2 max2 sw.ElapsedMilliseconds

sw.Stop()

as you can see from the comments, on my setup and when running in a notebook, the

immutable version takes 50% longer than the mutable version. If s is allowed to be a generic

sequence (seq<_>), the situation is much, much worse:

// Some variations - generic sequence:

let extremesImmutableGeneric (s : seq<_>) =

 s |> Seq.max,

 s |> Seq.min

// Test the immutable, generic sequence version:

sw.Restart()

let min3, max3 = big |> extremesImmutableGeneric

// min: 0.999998 max: 0.000002 - time: 173ms

printfn "min: %f max: %f - time: %ims" min3 max3 sw.ElapsedMilliseconds

sw.Stop()

you can offset this by inlining the function (i.e., let inline extremes...):

// Generic sequence, inline function

let inline extremesImmutableGenericInline (s : seq<_>) =

 s |> Seq.max,

 s |> Seq.min

Chapter 5 ImmutabIlIty and mutatIon

122

// Test the immutable, generic sequence version:

sw.Restart()

let min4, max4 = big |> extremesImmutableGenericInline

// min: 0.999998 max: 0.000002 - time: 22ms

printfn "min: %f max: %f - time: %ims" min4 max4 sw.ElapsedMilliseconds

sw.Stop()

making functions inline is a technique that you should use very selectively. We’ll return to

performance in Chapter 12.

Chapter 5 ImmutabIlIty and mutatIon

123
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_6

CHAPTER 6

Pattern Matching
We may say most aptly, that the Analytical Engine weaves algebraical pat-
terns just as the Jacquard-loom weaves flowers and leaves.

—Ada Lovelace, Computer Pioneer

 Weaving Software with Patterns
I have many “favorite” F# features, but my favorite favorite is pattern matching! Perhaps

this is because it’s the feature that takes us furthest away from Object-Oriented coding,

letting us truly differentiate from legacy coding patterns. Another nice aspect is how

unexpectedly pervasive it can be in well-factored code bases. Prepare to be surprised at

the places where you can use pattern matching to simplify and beautify your code. But

also be prepared to exercise some restraint in using your newfound superpower. Pattern

matching can be overdone.

Because pattern matching tends to be completely new, conceptually, to many

developers, I’m going to be more gradual in my explanations than I have been in other

chapters of this intermediate book. I’ll start with the very basics.

 Pattern Matching Basics
At its simplest, pattern matching is analogous to the switch or case constructs found in

many languages. For example, Listings 6-1 and 6-2 show how we’d implement simple

switching of control using C# and F#.

https://doi.org/10.1007/978-1-4842-7205-3_6#DOI

124

Listing 6-1. Case switching in C#

int caseSwitch = 1;

switch (caseSwitch)

{

 case 1:

 Console.WriteLine("Case 1");

 break;

 case 2:

 Console.WriteLine("Case 2");

 break;

 default:

 Console.WriteLine("Default case");

 break;

}

Listing 6-2. Case switching in F#

let caseSwitch = 2

match caseSwitch with

| 1 -> printfn "Case 1"

| 2 -> printfn "Case 2"

| _ -> printfn "Default case"

This is explicit pattern matching – that is, we are using the match keyword – and it’s

super clear what is going on.

Using pattern matching to match on integer literals like this is a bit like using an

expensive torque wrench as a hammer, but even here there are some surprising goodies

to be had. Try commenting out the bottom line in Listing 6-2. You’ll get a compiler

warning saying “Incomplete pattern matches on this expression. For example,

the value '0' may indicate a case not covered by the pattern(s).” The

F# compiler checks, at the type level, whether a value that isn’t covered by the listed

cases could conceivably be passed in. And just in case you don’t believe it, it gives you

an example! I can’t tell you how many times that feature alone has saved my bacon.

Incidentally, it’s a good habit to have no warnings in your F# code or even to turn on

the “warnings as errors” setting in your development/build environment. F# warnings

Chapter 6 pattern MatChing

125

are almost always pointing you to a genuine weakness in your code, and “Incomplete

pattern matches” warnings are the best example of this.

If you want multiple conditions to invoke the same body of code, use several

| case constructs and follow the last of them with the -> arrow and then the code

to be executed (Listing 6-3).

Listing 6-3. Handling multiple match cases

let caseSwitch = 3

// "Maybe 3, maybe 4"

match caseSwitch with

| 1 -> printfn "Case 1"

| 2 -> printfn "Case 2"

| 3

| 4 -> printfn "Maybe 3, maybe 4"

| _ -> printfn "Default case"

I love how layout and syntax work together here so that you can run your eye down

the code and spot anomalies and special cases at a glance. The code is almost a diagram

of what you want to happen.

Now let’s start treating the torque wrench with a bit of respect. What else can it do?

Well it can recover the value that actually matched at runtime, if you follow the case or

cases with as x (Listing 6-4).

Listing 6-4. Recovering a matched value

let caseSwitch = 3

// "Maybe 3, maybe 4. But actually 3."

match caseSwitch with

| 1 ->

 printfn "Case 1"

| 2 ->

 printfn "Case 2"

| 3 | 4 as x ->

 printfn "Maybe 3, maybe 4. But actually %i." x

| _ ->

 printfn "Default case"

Chapter 6 pattern MatChing

126

Using the as x construct means that an identifier of the appropriate type, called x

(or whatever you want to label it), is bound with the value that matched. The scope of

this identifier is limited to the code that’s executed as a result of the match. In the code of

other cases, and outside the match expression, it has no meaning.1

I like to think of a match expression as a kind of time travel, allowing you to go back

and get the value that must have been assigned for this case to have matched.

 When Guards
If you want a bit more branching, using the value recovered in a match case, you can use

a when guard. A when guard is a bit like an if expression, and it uses the recovered value

for some comparison. Only if the comparison returns true is the following code executed

(Listing 6-5).

Listing 6-5. Matching with a when guard

let caseSwitch = 11

// "Less than a dozen"

match caseSwitch with

| 1 ->

 printfn "One"

| 2 ->

 printfn "A couple"

| x when x < 12 ->

 printfn "Less than a dozen"

| x when x = 12 ->

 printfn "A dozen"

| _ ->

 printfn "More than a dozen"

1 No horrific fall-through semantics, as in C!

Chapter 6 pattern MatChing

127

 Pattern Matching on Arrays and Lists
What if the value being matched is a bit more structured – say, an array? We can pattern

match on arrays and pick out cases having specific element counts (Listing 6-6).

Listing 6-6. Pattern matching on arrays

let arr0 = [||]

let arr1 = [|"One fish"|]

let arr2 = [|"One fish"; "Two fish"|]

let arr3 = [|"One fish"; "Two fish"; "Red fish"|]

let arr4 = [|"One fish"; "Two fish"; "Red fish"; "Blue fish"|]

module Pond =

 let describe (a : string[]) =

 match a with

 | [||] ->

 "An empty pond"

 | [| fish |] ->

 sprintf "A pond containing one fish: %s" fish

 | [| f1; f2 |] ->

 sprintf "A pond containing two fish: %s and %s" f1 f2

 | _ ->

 "Too many fish to list!"

// An empty pond

// A pond containing one fish: One fish

// A pond containing two fish: One fish and Two fish

// Too many fish to list!

// Too many fish to list!

[| arr0; arr1; arr2; arr3; arr4 |]

|> Array.map Pond.describe

This process of recovering the constituents of a structured type is often called

decomposition.

Array decomposition is a little limited, as you have to specify either arrays of specific

sizes (including size zero) or a catch-all case using an underscore. List decomposition is

a bit more powerful, taking advantage of the linked structure of a list (Listing 6-7).

Chapter 6 pattern MatChing

128

Listing 6-7. Pattern matching on lists

let list0 = []

let list1 = ["One fish"]

let list2 = ["One fish"; "Two fish"]

let list3 = ["One fish"; "Two fish"; "Red fish"]

let list4 = ["One fish"; "Two fish"; "Red fish"; "Blue fish"]

module Pond =

 let describe (a : List<string>) =

 match a with

 | [] ->

 "An empty pond"

 | [fish] ->

 sprintf "A pond containing one fish only: %s" fish

 | head::tail ->

 sprintf "A pond containing one fish: %s (and %i more fish)"

 head (tail |> List.length)

// A pond containing one fish only: One fish

// A pond containing one fish: One fish (and 1 more fish)

// A pond containing one fish: One fish (and 2 more fish)

// A pond containing one fish: One fish (and 3 more fish)

[| list1; list2; list3; list4 |]

|> Array.map Pond.describe

Here, the first two cases are pretty much as Listing 6-6, except we use list brackets []

instead of “array clamps” [||]. The next case uses a cons operator ::. When constructing

a list, you can use the cons operator to join a single element onto the beginning of a list

(e.g., "One fish" :: ["Two fish"; "Red fish"]). But here we are using it in the

opposite direction – to recover the first element and all subsequent elements (if any)

from an existing list. (You can see now why I referred to pattern matching as a form of

time travel: the :: operator works both forwards in time to compose and backwards in

time to decompose. You can also think of this as the :: operator being “inverted.”)

Chapter 6 pattern MatChing

129

In Listing 6-7, I’ve used the identifiers head and tail in the cons case, that is,

head::tail. I normally use the names head and tail in cons matching, regardless

of the business meanings of the particular values in question. (The alternative in this

case might have been something like firstFish::otherFishes.) This is one of those

conventions, like using acc and elem in fold functions, which helps your mind recognize

common idioms with as little cognitive overhead as possible and saves you from some

unnecessary decision-making.

You might want to experiment a bit to prove what I said about the possibility of the

tail containing zero elements. Comment out the | [fish] -> case from Listing 6-7

and its following printf line. What do you expect to happen when you send list1 into

the match expression? Were you right?

Finally, you might have noticed that although the individual “ponds” in Listing 6-7

are of type List<string>, the demonstration in the last two lines makes an array of those

lists and uses Array.map to process them. I could just as well have used a list of lists, but

it’s also absolutely fine to mix collections as I have done here.

 Pattern Matching on Tuples
We’ve got a bit ahead of ourselves and missed out one of the most pervasive forms of

pattern matching – so pervasive it’s not that obvious that it is pattern matching at all.

Consider a function that returns a tuple. You can call that function and decompose the

tuple result straight into separate values like this (Listing 6-8).

Listing 6-8. Pattern matching on tuples in a let binding

let extremes (s : seq<_>) =

 s |> Seq.min,

 s |> Seq.max

// lowest : int = -1

// highest : int = 9

let lowest, highest =

 [1; 2; 9; 3; -1] |> extremes

// -1, 9

lowest, highest

Chapter 6 pattern MatChing

130

You can also explicitly pattern match on tuples using the match keyword. For

example, the Int32.TryParse function returns a tuple consisting of a Boolean flag to

say whether the parsing succeeded and the parsed integer value. (The compiler cleverly

translates into a tuple result from the “real” signature of TryParse, in which the value is

placed in a by-reference parameter.) Thus, you can pattern match to recover the value

and place it into an option type, which makes it more usable from the rest of your F#

code (Listing 6-9).

Listing 6-9. Pattern matching on tuples using match

open System

let tryParseInt (s : string) =

 match Int32.TryParse(s) with

 | true, i -> Some i

 | false, _ -> None

// Some 30

"30" |> tryParseInt

// None

"3X" |> tryParseInt

 Pattern Matching on Records
You can also use pattern matching to decompose record types. This is sometimes useful

when you want to pluck one or two values out of the record and ignore the rest.

Listing 6-10. Pattern matching on record types

type Track = { Title : string; Artist : string }

let songs =

 [{ Title = "Summertime"

 Artist = "Ray Barretto" }

 { Title = "La clave, maraca y guiro"

 Artist = "Chico Alvarez" }

 { Title = "Summertime"

 Artist = "DJ Jazzy Jeff & The Fresh Prince" }]

Chapter 6 pattern MatChing

131

let distinctTitles =

 songs

 |> Seq.map (fun song ->

 match song with

 | { Title = title } -> title)

 |> Seq.distinct

// seq ["Summertime"; "La clave, maraca y guiro"]

distinctTitles

In Listing 6-10, we pull Title out of the record and ignore Artist. (You aren’t

obliged to use Artist = _ to do this; you can just omit the fields you aren’t interested

in.). The syntax is a little confusing at first because Title = title looks almost like

an assignment but written backward, given that it is title (on the right) that receives

the value.

There are more concise ways to achieve what we did in Listing 6-10 (e.g., Seq.map

(fun song -> song.Title)) – but it’s worth getting used to record matching in the

context of a match expression, as it’ll make things easier to understand when we start to

discover record matching in other constructs. In fact, let’s jump ahead a bit and look at

one example of pattern matching on records without a match expression.

Say the Track type from Listing 6-10 has a few more fields, and we want to write a

function that formats a track name and artist as a menu item. Clearly, that function only

cares about two fields from the Track type, but it would be quite nice to be able to throw

whole Track instances at the function, without either the caller or the callee having to

break out the fields of interest. Listing 6-11 shows how to achieve exactly that.

Listing 6-11. Pattern matching at the function call boundary

type TrackDetails = {

 Id : int

 Title : string

 Artist : string

 Length : int }

let songs =

 [{ Id = 1

 Title = "Summertime"

 Artist = "Ray Barretto"

Chapter 6 pattern MatChing

132

 Length = 99 }

 { Id = 2

 Title = "La clave, maraca y guiro"

 Artist = "Chico Alvarez"

 Length = 99 }

 { Id = 3

 Title = "Summertime"

 Artist = "DJ Jazzy Jeff & The Fresh Prince"

 Length = 99 }]

// The TrackDetails. prefix is is only needed here to avoid a warning when

// working in Notebooks. (A previous cell defines a record with the same

// field names.)

let formatMenuItem ({ TrackDetails.Title = title; TrackDetails.Artist =

artist }) =

 let shorten (s : string) = s.Substring(0, 10)

 sprintf "%s - %s" (shorten title) (shorten artist)

// Summertime - Ray Barret

// La clave, - Chico Alva

// Summertime - DJ Jazzy J

songs

|> Seq.map formatMenuItem

|> Seq.iter (printfn "%s")

The magic happens in the parameter list of formatMenuItem, where we say ({

Title = title; Artist = artist }). This will cause values called title and artist

to be bound with the relevant fields’ values from a Track instance, and they will be

available within the function body. Other fields from the record are ignored. See how the

Seq.map near the bottom of the listing can send in whole Track instances.

You could argue that this technique offers a whole new paradigm of parameter

declaration: an alternative to both the curried style, where you just list the parameters

with spaces, meaning the caller can populate as many as it feels like; and the tupled style,

where the caller must supply values for all parameters. In this new paradigm, the caller

must supply a whole record instance, but the callee only sees some of the values. It can

be very useful, but it’s a trick to use sparingly. I’ve come across it in my own code and

been confused by it!

Chapter 6 pattern MatChing

133

 Pattern Matching on Discriminated Unions
It’s time for the yin of pattern matching to meet its yang, in the form of Discriminated

Unions. A Discriminated Union (DU) is a type that has several labeled cases, each of

which may have an associated payload of any type. The payload type associated with

each case can be different. Multiple types can be put into the payload of a DU case

simply by tupling them together or using another complex type such as a class or record.

You can recover the payload of a DU instance using explicit pattern matching

(Listing 6-12). In Listing 6-12, we are modeling readings for two kinds of UK domestic

electricity meters. The “Standard” meter is one where your consumption is simply

recorded as a single number. The “Economy 7” meter is one where daytime and

nighttime consumption is recorded separately and charged at different rates. Clearly,

a single “meter read” event will produce one value for standard readings and two

(which we absolutely must not mix up) for Economy 7. Given these rules, the code in

Listing 6-12 should be fairly self-explanatory. The function MeterReading.format takes a

MeterReading instance of either type and formats it appropriately for printing on a bill or

web page, using pattern matching to recover the reading(s).

Listing 6-12. Pattern matching on a DU

type MeterReading =

 | Standard of int

 | Economy7 of Day:int * Night:int

module MeterReading =

 let format(reading : MeterReading) =

 match reading with

 | Standard reading ->

 sprintf "Your reading: %07i" reading

 | Economy7(Day=day; Night=night) ->

 sprintf "Your readings: Day: %07i Night: %07i" day night

let reading1 = Standard 12982

let reading2 = Economy7(Day=3432, Night=98218)

// "Your reading: 0012982", "Your readings: Day: 0003432 Night: 0098218"

reading1 |> MeterReading.format, reading2 |> MeterReading.format

Chapter 6 pattern MatChing

134

If you are at an intermediate level in F#, DUs and pattern matching will be pretty

familiar to you. But let me point out some language features in Listing 6-12 that are

little used in F# code bases generally and which I think should be used more. First,

I’ve assigned labels to each of the readings in the Economy7 case, that is, Economy7 of

Day:int * Night:int rather than Economy7 of int*int. Second, I’ve used those labels

when instantiating Economy 7 readings, that is, Economy7(Day=3432, Night=98218)

rather than Economy7(3432, 98218). (F# doesn’t force you to do this, even if you’ve

given labels to the tuple elements in the case declaration.) Finally, when decomposing

out the day and night values in the pattern match, I’ve again used the labels, that is,

| Economy7(Day=day; Night=night) rather than | Economy7(day, night). There’s an

oddity in the decomposition part: note how the decomposition syntax has a semicolon,

while when you construct the instance, you used a comma (Table 6-1).

I suspect there is a reason for this: here, the decomposition isn’t quite the “opposite”

of the composition because in the decomposition, you can legitimately omit some of the

items from the payload. For example, if you just wanted to pull out the day reading, you

could use the match case | Economy7(Day=day) ->

Anyway, if you choose not to label the items in your payload, Listing 6-13 shows the

same functionality as Listing 6-12, but without the labels.

Listing 6-13. DUs and pattern matching without payload labels

type MeterReading =

 | Standard of int

 | Economy7 of int * int

module MeterReading =

Table 6-1. DU Labeled Payload Elements

Construction and Decomposition Syntax

Action Syntax

Construction Economy7(Day=3432, Night=98218)

Decomposition Economy7(Day=day; Night=night)

Chapter 6 pattern MatChing

135

 let format(reading : MeterReading) =

 match reading with

 | Standard reading ->

 sprintf "Your reading: %07i" reading

 | Economy7(day, night) ->

 sprintf "Your readings: Day: %07i Night: %07i" day night

let reading1 = Standard 12982

let reading2 = Economy7(3432, 98218)

// "Your reading: 0012982", "Your readings: Day: 0003432 Night: 0098218"

reading1 |> MeterReading.format, reading2 |> MeterReading.format

You will see code like Listing 6-13 much more often, but I prefer the style of

Listing 6-12 if there is any possibility of confusion between the elements of a DU

payload, or if the nature of the payload isn’t immediately obvious from context.

Remember: motivational transparency!

Another alternative to labeling the payload elements is to have the payload as a

whole be a type with some structure, for example, a record type. Thus, the field labels

or member names make the code self-documenting, taking the place of the payload

element labels. Using a “proper” type is obviously a less minimalist approach than

simply having labels in the DU payload (and generally I like minimalism), but obviously,

it has benefits if you have broader uses for the type anyway.

 Pattern Matching on DUs in Function Parameters
If you think back to the section “Pattern Matching on Records,” you might remember that

we said you can pattern match in the declaration of a function, thus:

let formatMenuItem ({ Title = title; Artist = artist }) = ...

In this way, you can recover items from the incoming type and use their values

within the function body. It might occur to you that the same should be possible for

Discriminated Unions. And yes, you can – with certain important restrictions. Imagine

you are trying to implement complex numbers. For this example, all you need to know

about complex numbers is that each one has two components, the real and imaginary

parts, and that to add two complex numbers, you add each one’s real parts and

Chapter 6 pattern MatChing

136

each one’s imaginary parts and make a new complex number using the two results.

(Incidentally, there is no need, in reality, to implement complex numbers, as they are

already right there in System.Numerics. Nonetheless, they do make a useful example.)

Listing 6-14 shows how you could model complex numbers using a single-case DU.

Listing 6-14. Implementing complex numbers using a single-case DU

type Complex =

 | Complex of Real:float * Imaginary:float

module Complex =

 let add (Complex(Real=r1;Imaginary=i1))

(Complex(Real=r2;Imaginary=i2)) =

 Complex(Real=(r1+r2), Imaginary=(i1+i2))

let c1 = Complex(Real = 0.2, Imaginary = 3.4)

let c2 = Complex(Real = 2.2, Imaginary = 9.8)

// Complex(Real=2.4, Imaginary=13.2)

let c3 = Complex.add c1 c2

c3

Note how, as in Listing 6-12, I’ve opted to label the two components of the payload

tuple, as it is rather critical we don’t mix up the real and imaginary components! The

key new concept here is the add function, where I’ve done pattern matching in the

parameter declaration to pull out the actual values we need for the computation. In

the body of the add function, we simply construct a new Complex instance, doing the

necessary computation at the same time. Once again, we use the slightly odd semicolon-

based syntax at the decomposition stage, even though we compose the instances

using commas.

Exactly as with records, this technique can be useful in certain circumstances.

But it is a double-edged sword in terms of readability, particularly for nonadvanced

maintainers of your code. I would say I’ve regretted using single-case DUs in the manner

outlined in Listing 6-14 about as often as I’ve been pleased with the results.

I mentioned “certain important restrictions” when you want to do pattern matching

in a function declaration. Apart from the readability risk, the main restriction is that the

DU you are using should be a single-case one, or the pattern you use should cover all the

Chapter 6 pattern MatChing

137

possibilities. Consider Listing 6-15, where I have extended the complex number example

from Listing 6-14 so that we can have either a “real” number, which is just an everyday

floating-point number, or the complex number we described earlier.

Listing 6-15. Pattern matching in function declaration on a multicase DU

type Number =

 | Real of float

 | Complex of Real:float * Imaginary:float

module Number =

 // Warning: Incomplete pattern matches on this expression...

 let add (Complex(Real=r1;Imaginary=i1))

(Complex(Real=r2;Imaginary=i2)) =

 Complex(Real=(r1+r2), Imaginary=(i1+i2))

This immediately causes a compiler warning where the add function is declared

because the function only handles one of the two DU cases that could be sent to it. Never

ignore this kind of warning: if the DU truly needs to have multiple cases, you will have to

refactor any code that uses it to handle all the cases. Failing to do so will undermine the

whole edifice of type safety that using F# lets you construct.

You could extend the parameter binding to cover all the cases, as in Listing 6-16.

Listing 6-16. Handling a multicase DU in a function parameter

type Number =

 | Real of float

 | Complex of Real:float * Imaginary:float

module Number =

 // Gets rid of the compiler warning but doesn't make much sense!

 let addReal (Complex(Real=a)|Real(a)) (Complex(Real=b)|Real(b)) =

 Real(a+b)

Leaving aside whether this is a mathematically valid operation, this really isn’t

terribly readable, and I struggle to think of a good reason to do it, except perhaps in

rather specialized code.

Chapter 6 pattern MatChing

138

 Pattern Matching in Let Bindings
There’s yet another place you can use DU pattern matching: directly in let bindings.

If you have a complex number, stored as a single-case DU as in Listing 6-14, you can

recover its components directly in a let binding (Listing 6-17).

Listing 6-17. Pattern matching in a let binding

type Complex =

 | Complex of Real:float * Imaginary:float

let c1 = Complex(Real = 0.2, Imaginary = 3.4)

let (Complex(real, imaginary)) = c1

// 0.2, 3.4

real, imaginary

You can also use the component labels if you want to, that is:

 let (Complex(Real=real; Imaginary=imaginary)) = c1

Note that when using labels like this, you must use a semicolon separator rather than

a comma, as we saw earlier.

If you want an assign from a multicase DU, you can do so using the | character,

providing you bind the same value in all cases and use _ to ignore “leftover” values

(Listing 6-18).

Listing 6-18. A let binding from a multicase DU

type Complex =

 | Real of float

 | Complex of Real:float * Imaginary:float

let c1 = Complex(Real = 0.2, Imaginary = 3.4)

let (Complex(real, _)|Real (real)) = c1

// 0.2

real

Chapter 6 pattern MatChing

139

As I said in the previous section, the times where it is useful and advisable to do this

are fairly rare.

Pattern matching in let bindings is a really useful trick once you get used to

it. But do bear in mind the readability implications based on the skill level of your

collaborators. Don’t do it just to look clever!

 Revisiting Single-Case Discriminated Unions
Now that we’ve looked at pattern matching in a number of contexts, let’s revisit the use of

Single-Case Discriminated Unions, which we first looked at in connection with railway

miles and yards back in Chapter 2. What is the most concise syntax we can think of to

validate or clean values on creation of such a DU and to retrieve the wrapped value in a

caller-friendly way? This time I’ll use heading as an example. A heading is a direction of

travel measured clockwise from North and has values between 0.0° and 359.999…°. If

some operation takes the value clockwise past 359.999°…, or anticlockwise past 0°, we

need to “wrap around” appropriately. For example, 5° clockwise from 359° is 4°, and

5° anticlockwise from 4° is 359°. Similarly, if something creates a heading using

an out-of-range value, say, 361°, we also wrap it around, in this case, to 1°. Listing 6.19

shows one way to achieve all this.2

Listing 6-19. Expressing a heading as a DU

module Heading =

 [<Struct>]

 type Heading =

 private Heading of double

 member this.Value = this |> fun (Heading h) -> h

 let rec create value =

 if value >= 0.0 then

 value % 360.0 |> Heading

 else

 value + 360.0 |> create

2 I am indebted to Jordan Marr (https://twitter.com/jordan_n_marr) for suggesting
this technique.

Chapter 6 pattern MatChing

https://twitter.com/jordan_n_marr

140

// "Heading: 180.0"

let heading1 = Heading.create 180.0

printfn "Heading: %0.1f" heading1.Value

// "Heading: 90.0"

let heading2 = Heading.create 450.0

printfn "Heading: %0.1f" heading2.Value

// "Heading: 270.0"

let heading3 = Heading.create -450.0

printfn "Heading: %0.1f" heading3.Value

// "Heading: 270.0"

let heading4 = Heading.create -810.0

printfn "Heading: %0.1f" heading4.Value

Parts of Listing 6-19 will already be familiar to you: we use a Single-Case DU to carry

a payload value, we place the type inside a module named after the DU, and we make

its case (also called Heading) private – which makes it impossible to bypass validation

by creating an instance directly. For a (potential) performance gain, we mark the DU

with the [<Struct>] attribute. Finally, we provide a create function to do instantiation.

In Chapter 2, we used a create function to both validate and instantiate, but here we

clean and instantiate: values outside the range 0.0…359.99… are automatically wrapped

around. Wrapping values above 360.0 is easy – we can use the modulus operator %.

Wrapping values below 0.0 requires recursively adding 360.0 until the value is brought

into range. There are probably more mathematical ways to achieve this, but I quite like

the elegance of the recursion. We have to mark the create function as recursive by saying

let rec instead of just let.

But the real innovation is the addition of the member called this.Value. From a

caller’s point of view, it allows code to retrieve the wrapped value using, for example,

heading1.Value. The member pipes this into a lambda that uses pattern matching

to get the wrapped value as h, which is then returned to the caller. Providing a Value

member is more succinct from the consumer’s point of view than having to pattern

match at the point of consumption. Also note that – ignoring the [<Struct>] attribute

and the create function – a DU with a Value member part can even be achieved as a

“one liner” (Listing 6-20).

Chapter 6 pattern MatChing

141

Listing 6-20. Expressing a heading as a one-line DU

type Heading = Heading of double member this.Value = this |> fun

(Heading h) -> h

 Pattern Matching in Loops and Lambdas
Sometimes, you have a collection of tuples or records that you want to loop over, either

explicitly using for-loops or implicitly using higher-order functions such as iter and map.

Pattern matching comes in useful here because it lets you seamlessly transition from the

collection items to the items to be used in the body of the for-loop or lambda function

(Listing 6-21).

Listing 6-21. Pattern matching in loops

let fruits =

 ["Apples", 3

 "Oranges", 4

 "Bananas", 2]

// There are 3 Apples

// There are 4 Oranges

// There are 2 Bananas

for (name, count) in fruits do

 printfn "There are %i %s" count name

// There are 3 Apples

// There are 4 Oranges

// There are 2 Bananas

fruits

|> List.iter (fun (name, count) ->

 printfn "There are %i %s" count name)

In Listing 6-21, we make a list of tuples and then iterate over it in both a for-loop

and a higher-order function style. In both cases, a pattern match in the form of (name,

count) lets us recover the values from the tuple, for use in the body code.

Chapter 6 pattern MatChing

142

You can also do this with Record Types, and there’s an exercise showing that at the

end of the chapter. And you can do it with Discriminated Unions, though normally only

when they are single case.

Purely as a curiosity, Listing 6-22 shows an example of “cheating” by looping with a

pattern match over a multicase Discriminated Union. This code actually works (it will

just iterate over the cases that are circles) but isn’t great practice unless your aim is to

annoy purists. You will get a compiler warning.

Listing 6-22. Pattern matching in loop over a multicase DU (bad practice!)

type Shape =

 | Circle of Radius:float

 | Square of Length:float

 | Rectangle of Length:float * Height:float

let shapes =

 [Circle 3.

 Square 4.

 Rectangle(5., 6.)

 Circle 4.]

// Circle of radius 3.000000

// Circle of radius 4.000000

// Compiler wanning: "Incomplete matches on this expression..."

for (Circle r) in shapes do

 printfn "Circle of radius %f" r

 Pattern Matching and Enums
If you want a Discriminated Union to be treated more like a C# enum, you must assign

each case a distinct value, where the value is one of a small set of simple types such as

byte, int32, and char. Listing 6-23 shows how to combine this feature, together with

the Sytem.Flags attribute, to make a simplistic model of the Unix-style file permissions

structure.

Chapter 6 pattern MatChing

143

Listing 6-23. Simple model of Unix-style file permissions

open System

[<Flags>]

type FileMode =

 | None = 0uy

 | Read = 4uy

 | Write = 2uy

 | Execute = 1uy

let canRead (fileMode : FileMode) =

 fileMode.HasFlag FileMode.Read

let modea = FileMode.Read

let modeb = FileMode.Write

let modec = modea ^^^ modeb

// True, False, True

canRead modea, canRead modeb, canRead modec

Here, the DU FileMode can take one of four explicit values, each of which is

associated with a bit pattern (000, 001, 010, and 100). We can use the HasFlag property

(which is added for us because we used the Flags attribute) to check whether an

instance has a particular bit set, regardless of the other bits. We can also bitwise-OR two

instances together, using the ^^^ operator.

But beware! As soon as you make a DU into an enum, code can assign to it any

value that is compatible with the underlying type, including one not supported by any

specified case. For example:

 open Microsoft.FSharp.Core.LanguagePrimitives

 let naughtyMode =

 EnumOfValue<byte, FileMode> 255uy

For the same reason, enum pattern matching that doesn’t contain a default case

(“_”) will always cause a compiler warning saying “Enums may take values outside

known cases. For example, the value ‘enum<FileMode> (3uy) may indicate a

case not covered by the pattern(s).” The compiler knows, at the type level, that any

value of the underlying type could be sent in, not just one covered by the specified DU

cases (Listing 6-24).

Chapter 6 pattern MatChing

144

Listing 6-24. Pattern matching on an enum DU without a default case

open System

[<Flags>]

type FileMode =

 | None = 0uy

 | Read = 4uy

 | Write = 2uy

 | Execute = 1uy

let describeReadability (fileMode : FileMode) =

 let read =

 // Compiler warning: "Enums may take values outside known cases..."

 match fileMode with

 | FileMode.Read -> "can"

 | FileMode.None

 | FileMode.Write

 | FileMode.Execute -> "cannot"

 printfn "You %s read the file"

Because it makes a hole in type safety, I always avoid using enum DUs except in very

specific scenarios, typically those involving language interop.

 Active Patterns
Pattern matching and Discriminated Unions are exciting enough, but there’s more!

Active Patterns let you exploit the syntactical infrastructure that exists to support pattern

matching, by building your own mapping between values and cases. Once again,

because this is a somewhat advanced feature, I’m going to explain Active Patterns from

the very beginning. Then we can discuss their stylistic implications.

 Single-Case Active Patterns
The simplest form of Active Pattern is the Single-Case Active Pattern. You declare it by

writing a case name between (| and |) (memorably termed banana clips), followed by a

single parameter, and then some code that maps from the parameter value to the case.

Chapter 6 pattern MatChing

145

For instance, in Listing 6-25, we have an Active Pattern that takes a floating-point

value and approximates it to a sensible value for a currency, which for simplicity we are

assuming always has two decimal places.

Listing 6-25. A Single-Case Active Pattern

open System

let (|Currency|) (x : float) =

 Math.Round(x, 2)

// true

match 100./3. with

| Currency 33.33 -> true

| _ -> false

With the Currency Active Pattern in place, we can pattern match on some floating-

point value that has an arbitrary number of decimal places (such as 33.333333...) and

compare it successfully with its approximated value (33.33).

The code is now nicely integrated with the semantics of pattern matching generally,

especially when recovering the matched value. Listing 6-26 shows us using Currency

in the three contexts we have seen for other pattern matching: match expressions, let

bindings, and function parameters.

Listing 6-26. Recovering decomposed values with Active Patterns

open System

let (|Currency|) (x : float) =

 Math.Round(x, 2)

// "That didn't match: 33.330000"

// false

match 100./3. with

| Currency 33.34 -> true

| Currency c ->

 printfn "That didn't match: %f" c

 false

Chapter 6 pattern MatChing

146

// C: 33.330000

let (Currency c) = 1000./30.

printfn "C: %0.4f" c

let add (Currency c1) (Currency c2) =

 c1 + c2

// 66.66

add (100./3.) (1000./30.)

 Multicase Active Patterns
While Single-Case Active Patterns map any value to a single case, Multicase Active

Patterns map any value to one of several cases. Let’s say you have a list of wind turbine

model names (I got mine from the USGS wind turbine database here: https://

eerscmap.usgs.gov/uswtdb/), and you want to divide these into ones made by

Mitsubishi, ones made by Samsung, and ones made by some other manufacturer.

(Since we are dealing with unconstrained string input data, it’s essential to provide an

“Other” case). Listing 6-27 shows how we might do this using a combination of regular

expressions and Multicase Active Patterns.

Listing 6-27. Categorizing wind turbines using Multicase Active Patterns

and Regex

open System.Text.RegularExpressions

let (|Mitsubishi|Samsung|Other|) (s : string) =

 let m = Regex.Match(s, @"([A-Z]{3})(\-?)(.*)")

 if m.Success then

 match m.Groups.[1].Value with

 | "MWT" -> Mitsubishi

 | "SWT" -> Samsung

 | _ -> Other

 else

 Other

Chapter 6 pattern MatChing

https://eerscmap.usgs.gov/uswtdb/
https://eerscmap.usgs.gov/uswtdb/

147

// From https://eerscmap.usgs.gov/uswtdb/

let turbines = [

 "MWT1000"; "MWT1000A"; "MWT102/2.4"; "MWT57/1.0"

 "SWT1.3_62"; "SWT2.3_101"; "SWT2.3_93"; "SWT-2.3-101"

 "40/500"]

// MWT1000 is a Mitsubishi turbine

// ...

// SWT1.3_62 is a Samsung turbine

// ...

// 40/500 is an unknown turbine

turbines

|> Seq.iter (fun t ->

 match t with

 | Mitsubishi ->

 printfn "%s is a Mitsubishi turbine" t

 | Samsung ->

 printfn "%s is a Samsung turbine" t

 | Other ->

 printfn "%s is an unknown turbine" t)

Listing 6-27 exploits the observation that all (and only) Mitsubishi turbines have

model names starting with “MWT,” and Samsung ones start with either “SWT” or “SWT-

.” We use a regular expression to pull out this prefix and then some string literal pattern

matching to map onto one of our cases. It’s important to note that the Active Pattern is

defined using a let binding rather than a type declaration, even though the fact that it

has a finite domain of cases makes it feel like a type.

Multicase Active Patterns have a serious limitation: the number of cases is capped

at seven. Since I’m pretty sure there are more than seven wind turbine manufacturers,

Multicase Active Patterns wouldn’t be a great fit when trying to map every case in the

real dataset. You’d have to be content with a more fluid data structure.

 Partial Active Patterns
Partial Active Patterns divide the world into things that match by some condition and

things that don’t. If we just wanted to pick out the Mitsubishi turbines from the previous

example, we could change the code to look like Listing 6-28.

Chapter 6 pattern MatChing

148

Listing 6-28. Categorizing wind turbines using Partial Active Patterns

open System.Text.RegularExpressions

let (|Mitsubishi|_|) (s : string) =

 let m = Regex.Match(s, @"([A-Z]{3})(\-?)(.*)")

 if m.Success then

 match m.Groups.[1].Value with

 | "MWT" -> Some s

 | _ -> None

 else

 None

// From https://eerscmap.usgs.gov/uswtdb/

let turbines = [

 "MWT1000"; "MWT1000A"; "MWT102/2.4"; "MWT57/1.0"

 "SWT1.3_62"; "SWT2.3_101"; "SWT2.3_93"; "SWT-2.3-101"

 "40/500"]

// MWT1000 is a Mitsubishi turbine

// ...

// SWT1.3_62 is not a Mitsubishi turbine

turbines

|> Seq.iter (fun t ->

 match t with

 | Mitsubishi m ->

 printfn "%s is a Mitsubishi turbine" m

 | _ as s ->

 printfn "%s is not a Mitsubishi turbine" s)

Here, we can pattern match on just two cases – Mitsubishi and “not Mitsubishi,”

the latter represented by the default match “_”. Notice that in the nonmatching case,

although the Active Pattern doesn’t return a value, you can recover the input value using

the “as” keyword and a label (here I used “as s”).

Chapter 6 pattern MatChing

149

 Parameterized Active Patterns
You can parameterize Active Patterns, simply by adding extra parameters before the final

one. (The last parameter is reserved for the primary input of the Active Pattern.) Say, for

example, you had to validate postal codes for various regions. US postal codes (zip codes)

consist of five digits, while UK ones have a rather wacky format consisting of letters and

numbers (e.g., “RG7 1DP”). Listing 6-29 uses an Active Pattern, parameterized using a

regular expression to define a valid format for the region in question.

Listing 6-29. Using parameterized Active Patterns to validate postal codes

open System

open System.Text.RegularExpressions

let zipCodes = ["90210"; "94043"; "10013"; "1OO13"]

let postCodes = ["SW1A 1AA"; "GU9 0RA"; "PO8 0AB"; "P 0AB"]

let regexZip = @"^\d{5}$"

// Simplified: the official regex for UK postcodes is much longer!

let regexPostCode = @"^[A-Z](\d|[A-Z]){1,3} \d[A-Z]{2}$"

let (|PostalCode|) pattern s =

 let m = Regex.Match(s, pattern)

 if m.Success then

 Some s

 else

 None

// ["90210"; "94043"; "10013"]

let validZipCodes =

 zipCodes

 |> List.choose (fun (PostalCode regexZip p) -> p)

// ["SW1A 1AA"; "GU9 0RA"; "PO8 0AB"]

let validPostCodes =

 postCodes

 |> List.choose (fun (PostalCode regexPostCode p) -> p)

validZipCodes, validPostCodes

Chapter 6 pattern MatChing

150

In Listing 6-29, I’ve had to simplify the regular expression used for UK postcodes as

the real (government endorsed!) one is too long to fit into book-listing form.

One important point to note about Listing 6-29 is that although the Active Pattern

we have defined is a “Complete” one (declared using (|PostalCode|) rather than

(|PostalCode|_)), it can still return Some or None as values.

 Pattern Matching with “&”
Occasionally, it’s useful to be able to “and” together items in a pattern match. Imagine,

for example, your company is offering a marketing promotion that is only available to

people living in “outer London” (in the United Kingdom), as identified by their postcode.

To be eligible, the user needs to provide a valid postcode, and that postcode must begin

with one of a defined set of prefixes. Listing 6-30 shows one approach to coding this

using Active Patterns.

Listing 6-30. Using & with Active Patterns

open System.Text.RegularExpressions

let (|PostCode|) s =

 let m = Regex.Match(s, @"^[A-Z](\d|[A-Z]){1,3} \d[A-Z]{2}$")

 if m.Success then

 Some s

 else

 None

let outerLondonPrefixes =

 ["BR";"CR";"DA";"EN";"HA";"IG";"KT";"RM";"SM";"TW";"UB";"WD"]

let (|OuterLondon|) (s : string) =

 outerLondonPrefixes

 |> List.tryFind (s.StartsWith)

let promotionAvailable (postcode : string) =

 match postcode with

 | PostCode(Some p) & OuterLondon(Some o) ->

 printfn "We can offer the promotion in %s (%s)" p o

 | PostCode(Some p) & OuterLondon(None) ->

Chapter 6 pattern MatChing

151

 printfn "We cannot offer the promotion in %s" p

 | _ ->

 printfn "Invalid postcode"

let demo() =

 // "We cannot offer the promotion in RG7 1DP"

 "RG7 1DP" |> promotionAvailable

 // "We can offer the promotion in RM3 5NA (RM)"

 "RM3 5NA" |> promotionAvailable

 // "Invalid postcode"

 "Hullo sky" |> promotionAvailable

demo()

In Listing 6-30, we have two Active Patterns, a PostCode one that validates UK

postcodes and an OuterLondon one that checks whether a postcode has one of the

defined prefixes (and also returns which prefix matched). In the promotionAvailable

function, we use & to match on both PostCode and OuterLondon for the main

switching logic.

Note the symbol to “and” together items in a pattern match is a single &, in
contrast to && that is used for logical “and” in, for example, if expressions.

Incidentally, it might look as though PostCode and OuterLondon would each be

called twice for each input string, but this is not the case. The code is more efficient than

it appears at first glance.

 Pattern Matching on Types
Occasionally, even functional programmers have to deal with type hierarchies! Sometimes,

it’s because we are interacting with external libraries like System.Windows.Forms, which

make extensive use of inheritance. Sometimes, it’s because inheritance is genuinely

the best way to model something, even in F#. Whatever the reason, this can place us in

a position where we need to detect whether an instance is of a particular type or is of

a descendent of that type. You won’t be surprised to learn that F# achieves this using

pattern matching.

Chapter 6 pattern MatChing

152

In Listing 6-31, we define a two-level hierarchy with a top-level type of Person

and one lower-level type Child, which inherits from Person and adds some extra

functionality, in this case, just the ability to print the parent’s name. (For simplicity, I’m

assuming one parent per person.)

Listing 6-31. Pattern matching on type

type Person (name : string) =

 member _.Name = name

type Child(name, parent : Person) =

 inherit Person(name)

 member _.ParentName =

 parent.Name

let alice = Person("Alice")

let bob = Child("Bob", alice)

let people = [alice; bob :> Person]

// Person: Alice

// Child: Bob of parent Alice

people

|> List.iter (fun person ->

 match person with

 | :? Child as child ->

 printfn "Child: %s of parent %s" child.Name child.ParentName

 | _ as person ->

 printfn "Person: %s" person.Name)

With this little hierarchy in place, we define a list called people and put both alice

and bob into the list. Because collections require elements to all be the same type, we

must shoehorn (upcast) bob back into a plain old Person. Then when we iterate over the

list, we must use pattern matching to identify whether each element is “really” a Child,

using the :? operator, or is just a Person. I use a wildcard pattern “_” to cover the Person

case; otherwise, I will get a compiler warning. This is because the operation “:? Person”

is redundant, since all the elements are of type Person.

Pattern matching on types is indispensable when dealing with type hierarchies in F#,

and I use it unhesitatingly when hierarchies crop up.

Chapter 6 pattern MatChing

153

 Pattern Matching on Null
Remember back in Chapter 3 we used Option.ofObj and Option.defaultValue to

process a nullable string parameter? Listing 6-32 shows an example of that approach.

Listing 6-32. Using Option.ofObj

let myApiFunction (stringParam : string) =

 let s =

 stringParam

 |> Option.ofObj

 |> Option.defaultValue "(none)"

 // You can do things here knowing that s isn't null

 sprintf "%s" (s.ToUpper())

// AN ACTUAL STRING, (NONE)

myApiFunction "hello", myApiFunction nullAn actual string

Well there is an alternative, because you can pattern match on the literal null. Here’s

Listing 6-32, redone using null pattern matching (Listing 6-33).

Listing 6-33. Pattern matching on null

let myApiFunction (stringParam : string) =

 match stringParam with

 | null -> "(NONE)"

 | _ -> stringParam.ToUpper()

// AN ACTUAL STRING, (NONE)

myApiFunction "An actual string", myApiFunction null

How do you choose between these alternatives? On stylistic grounds, I prefer the original

version (Listing 6-32) because – at least for code that is going to be maintained by people

with strong F# skills – sticking everywhere to functions from the Option module feels more

consistent. But there’s no doubt that the new version (Listing 6-33) is slightly more concise

and more likely to be readable to maintainers who are earlier in their F# journey. You might

also want to experiment with performance in your use case, since it looks as though the

null-matching version creates no intermediate values and may therefore allocate/deallocate

less memory. In performance-critical code, this could make quite a difference.

Chapter 6 pattern MatChing

154

 Recommendations
Get used to pattern matching almost everywhere in your code. To help you remember

the breadth of its applicability, here’s a table both to remind you of what pattern

matching features are available and to help you decide when to use them (Table 6-2).

Table 6-2. Pattern Matching Features and When to Use Them

Feature Example Suggested Usage

Match keyword match x with

| Case payload -> code...

Use widely. Consider Option module

(e.g., Option.map) when dealing

with option types

Default case

(“wildcard”)

match x with

| Case payload -> code...

| _ -> code ...

With caution. Could this cause you to

ignore important cases added in the

future?

When guards | x when x < 12 -> code... Use freely when applicable.

Complicated schemes of when-

guarding may indicate another

approach is needed, for example,

active patterns

On arrays match arr with

| [||] -> code...

| [|x|] -> code...

| [|x;y|] -> code...

With caution. the cases can never be

exhaustive, so there will always be

a wildcard (default) case. Would lists

and the cons operator :: be a better

fit?

On lists match l with

| [] -> code...

| acc::elem -> code...

Use freely when applicable.

indispensable in recursive list-

processing code

in let bindings on

tuples

let a, b =

GetNameVersion(...)

Use widely

(continued)

Chapter 6 pattern MatChing

155

Table 6-2. (continued)

Feature Example Suggested Usage

On records match song with

| { Title = title } ->

code...

Use freely when collaborators are

reasonably skilled in F#

On Discriminated

Unions with match

keyword

match shape with

| Circle r -> code...

Use widely

On DUs using

payload item labels

match reading with

| Economy7(Day=day;

Night=night) -> code...

Use where it improves readability or

avoids mixing elements up

On records

in parameter

declarations

let formatMenuItem ({ Title

= title; Artist = artist })

= code...

With caution. May be confusing if

collaborators are not highly skilled

On Single-Case

Discriminated

Unions in parameter

declarations

let add

(Complex(Real=a;Imaginary=b))

(Complex(Real=c;Imaginary=d))

= code...

With caution. May be confusing if

collaborators are not highly skilled.

need to be sure the DU will remain

single case or at worst that all

cases are handled. Very useful in

specialized situations

in let bindings

on Discriminated

Unions

let (Complex(real,

imaginary)) = c1

With caution. May be confusing if

collaborators are not highly skilled

in Loops and

Lambdas

for (name, count) in fruits

do

code...

Use freely when applicable, especially

on tuples

(continued)

Chapter 6 pattern MatChing

156

 Summary
If you aren’t pattern matching heavily, you aren’t writing good F# code. Remember that

you can pattern match explicitly using the match keyword, but you can also pattern

match in let bindings, loops, lambdas, and function declarations. Active Patterns add a

whole new layer of power, letting you map from somewhat open-ended data like strings

or floating-point values to much more strongly typed classifications.

But pattern matching can be overdone, leading to code that is unreadable to

collaborators who may not be experienced in F#. Doing this violates the principle of

motivational transparency.

In the next chapter, we’ll look more closely at F#’s primary mechanism for storing

groups of labeled values: record types.

Table 6-2. (continued)

Feature Example Suggested Usage

On enums match fileMode with

| FileMode.Read -> "can"

| FileMode.Write -> "cannot"

| ...

With caution. the matching can

never be exhaustive unless there is a

wildcard case, so new cases added

later can cause bugs

active patterns let (|PostalCode|) pattern s

= code...

Use where applicable and

collaborators are reasonably skilled in

F#. Beware of the limitation of seven

cases

On types match person with

| :? Child as child ->

code...

Use freely when forced to deal with

OO inheritance

On null match stringParam with

| null -> code...

Use freely, but also consider mapping

to an option type and using, for

example, Option.map and Option.

bind

Chapter 6 pattern MatChing

157

 Exercises

EXERCISE 6-1 – PATTERN MATCHING ON RECORDS WITH DUS

exercise: Let’s say you want to amend the code from Listing 6-12 so that a meter reading can

have a date. this is the structure you might come up with:

type MeterValue =

| Standard of int

| Economy7 of Day:int * Night:int

type MeterReading =

 { ReadingDate : DateTime

 MeterValue : MeterValue }

how would you amend the body of the MeterReading.format function so that it formats

your new MeterReading type in the following form?

"Your readings on: 01/01/2022: Day: 0003432 Night: 0098218"

"Your reading on: 01/01/2022 was 0012982"

You can use DateTime.ToShortDateString() to format the date.

module MeterReading =

 let format(reading : MeterReading) =

 raise <| System.NotImplementedException()

 "TODO"

let reading1 = { ReadingDate = DateTime(2022, 01, 01)

 MeterValue = Standard 12982 }

let reading2 = { ReadingDate = DateTime(2022, 01, 01)

 MeterValue = Economy7(Day=3432, Night=98218) }

// "Your readings on: 01/01/2022: Day: 0003432 Night: 0098218",

// "Your reading on: 01/01/2022 was 0012982"

reading1 |> MeterReading.format, reading2 |> MeterReading.format

Chapter 6 pattern MatChing

158

EXERCISE 6-2 – RECORD PATTERN MATCHING AND LOOPS

exercise: Start with this code from Listing 6-21:

let fruits =

 ["Apples", 3

 "Oranges", 4

 "Bananas", 2]

// There are 3 Apples

// There are 4 Oranges

// There are 2 Bananas

for (name, count) in fruits do

 printfn "There are %i %s" count name

// There are 3 Apples

// There are 4 Oranges

// There are 2 Bananas

fruits

|> List.iter (fun (name, count) ->

 printfn "There are %i %s" count name)

add a record type called FruitBatch to the code, using field names Name and Count. how

can you alter the fruits binding to create a list of FruitBatch instances and the for

loop and iter lambda so that they have the same output as they did before you added the

record type?

EXERCISE 6-3 – ZIP+4 CODES AND PARTIAL ACTIVE PATTERNS

exercise: in the United States, postal codes can take the form of simple five-digit Zip codes, or

“Zip+4” codes, which have five digits, a hyphen, and then four more digits. here is some code

that defines active patterns to identify Zip and Zip+4 codes, but with the body of the Zip+4

pattern omitted. the exercise is to add the body.

Chapter 6 pattern MatChing

159

open System

open System.Text.RegularExpressions

let zipCodes = [

 "90210"

 "94043"

 "94043-0138"

 "10013"

 "90210-3124"

 // Letter O intead of zero:

 "1OO13"]

let (|USZipCode|_|) s =

 let m = Regex.Match(s, @"^(\d{5})$")

 if m.Success then

 USZipCode s |> Some

 else

 None

let (|USZipPlus4Code|_|) s =

 raise <| NotImplementedException()

zipCodes

|> List.iter (fun z ->

 match z with

 | USZipCode c ->

 printfn "A normal zip code: %s" c

 | USZipPlus4Code(code, suffix) ->

 printfn "A Zip+4 code: prefix %s, suffix %s" code suffix

 | _ as n ->

 printfn "Not a zip code: %s" n)

hint: a regular expression to match Zip+4 codes is “^(\d{5})\-(\d{4})$”. When this

expression matches, you can use m.Groups.[1].Value and m.Groups.[2].Value to

pick out the prefix and suffix digits.

Chapter 6 pattern MatChing

160

 Exercise Solutions
This section shows solutions for the exercises in this chapter.

EXERCISE 6-1 – PATTERN MATCHING ON RECORDS WITH DUS

i tackled this exercise in two passes. in the first pass, i pattern matched on the whole

MeterReading structure using a combination of record pattern matching and DU pattern

matching to pull out the date and reading or readings:

type MeterValue =

| Standard of int

| Economy7 of Day:int * Night:int

type MeterReading =

 { ReadingDate : DateTime

 MeterValue : MeterValue }

module MeterReading =

 let format(reading : MeterReading) =

 match reading with

 | { ReadingDate = readingDate

 MeterValue = Standard reading } ->

 sprintf "Your reading on: %s was %07i"

 (readingDate.ToShortDateString()) reading

 | { ReadingDate = readingDate

 MeterValue = Economy7(Day=day; Night=night) } ->

 sprintf "Your readings on: %s were Day: %07i Night: %07i"

 (readingDate.ToShortDateString()) day night

let reading1 = { ReadingDate = DateTime(2022, 01, 01)

 MeterValue = Standard 12982 }

let reading2 = { ReadingDate = DateTime(2022, 01, 01)

 MeterValue = Economy7(Day=3432, Night=98218) }

// "Your reading on: 01/01/2022 was 0012982"

// "Your readings on: 01/01/2022: Day: 0003432 Night: 0098218",

reading1 |> MeterReading.format, reading2 |> MeterReading.format

Chapter 6 pattern MatChing

161

the salient lines are these:

 | { ReadingDate = readingDate

 MeterValue = Standard reading }

 ...

 | { ReadingDate = readingDate

 MeterValue = Economy7(Day=day; Night=night) }

note how the curly braces {...} indicate that we are pattern matching on records, but

within this, we also have <DUCase>(Label=value) syntax to decompose the DU field of

the record.

this worked, but i wasn’t happy with it because of the repetition of the reading date pattern

match and of the date formatting ((readingDate.ToShortDateString())).

in a second pass, i eliminated the repetition. i used pattern matching in the parameter

declaration to pick out the date and value fields. i also created a formatted date string in one

place rather than two.

module MeterReading =

 // "MeterReading."" prefix only needed in Notebooks where there may be

 // more than one definition of MeterReading in scope.

 let format { MeterReading.ReadingDate = date; MeterReading.MeterValue =

meterValue } =

 let dateString = date.ToShortDateString()

 match meterValue with

 | Standard reading ->

 sprintf "Your reading on: %s was %07i"

 dateString reading

 | Economy7(Day=day; Night=night) ->

 sprintf "Your readings on: %s were Day: %07i Night: %07i"

 dateString day night

Chapter 6 pattern MatChing

162

EXERCISE 6-2 – RECORD PATTERN MATCHING AND LOOPS

in the fruits binding, you just need to use standard record-construction syntax:

type FruitBatch = {

 Name : string

 Count : int }

let fruits =

 [{ Name="Apples"; Count=3 }

 { Name="Oranges"; Count=4 }

 { Name="Bananas"; Count=2 }]

in the for loop and List.iter lambda, you can use record pattern matching in the form {

FieldName1=label1; FieldName2=label2...} to recover the name and count values.

// There are 3 Apples

// There are 4 Oranges

// There are 2 Bananas

for { Name=name; Count=count } in fruits do

 printfn "There are %i %s" count name

// There are 3 Apples

// There are 4 Oranges

// There are 2 Bananas

fruits

|> List.iter (fun { Name=name; Count=count } ->

 printfn "There are %i %s" count name)

remember that in both cases, just using “dot” notation in the loop/lambda body to retrieve the

record fields is also legitimate and more common.

Chapter 6 pattern MatChing

163

EXERCISE 6-3 – ZIP+4 CODES AND PARTIAL ACTIVE PATTERNS

the body of the Zip+4 active pattern should look something like this:

let (|USZipPlus4Code|_|) s =

 let m = Regex.Match(s, @"^(\d{5})\-(\d{4})$")

 if m.Success then

 USZipPlus4Code(m.Groups.[1].Value,

 m.Groups.[2].Value)

 |> Some

 else

 None

See how when the regular expression matches, we return a USZipplus4Code case whose

payload is a tuple of the two matching groups.

Chapter 6 pattern MatChing

165
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_7

CHAPTER 7

Record Types
Proper storage is about creating a home for something so that minimal
effort is required to find it and put it away.

—Geralin Thomas, Organizing Consultant

 Winning with Records
Record types are a simple way of recording small groups of values. You define a set of

names and corresponding types; then you can create, compare, and amend instances of

these groupings with some extremely simple syntax. But behind this simplicity lies some

powerful and well-thought-out functionality. Learn to wield record types effectively and

you’ll be well on the way to becoming an expert F# developer. It’s also worth knowing

when not to use record types and what the alternatives are in these circumstances.

We’ll cover both explicitly declared named record types and also implicitly declared

anonymous record types.

 Record Type Basics
Declaring and instantiating a record type could hardly be easier. You define the names

(field labels) of the items you want the record to contain, together with their types, all in

curly braces (Listing 7-1).

https://doi.org/10.1007/978-1-4842-7205-3_7#DOI

166

Listing 7-1. Declaring a record type

 open System

 type FileDescription = {

 Path : string

 Name : string

 LastModified : DateTime }

Then you create instances simply by binding values to each name, again in curly

braces (Listing 7-2).

Listing 7-2. Instantiating record type instances

 open System.IO

 let fileSystemInfo (rootPath : string) =

 Directory.EnumerateFiles(rootPath, "*.*",

 SearchOption.AllDirectories)

 |> Seq.map (fun path ->

 { Path = path |> Path.GetDirectoryName

 Name = path |> Path.GetFileName

 LastModified = FileInfo(path).LastWriteTime })

Note that at instantiation time, you don’t have to mention the name of the record

type itself, just its fields. The exception to this is when two record types have field names

in common, in which case you may have to prefix the first field name in the binding with

the name record type you want, for example, { FileDescription.Path =

You can access the fields of record type instances using dot-name notation, exactly

as if they were C# class members (Listing 7-3).

Listing 7-3. Accessing record type fields using dot notation

 // Name: ad.png Path: c:\temp Last modified: 15/08/2017 22:07:34

 // Name: capture-1.avi Path: c:\temp Last modified: 27/02/2017 22:04:31

 // ...

 fileSystemInfo @"c:\temp"

 |> Seq.iter (fun info -> // info is a FileDescription instance

 printfn "Name: %s Path: %s Last modified: %A"

 info.Name info.Path info.LastModified)

Chapter 7 reCord types

167

 Record Types and Immutability
Like most things in F#, record types are immutable by default. You can in principle bind

the whole record instance as mutable using let mutable (Listing 7-4), but this means

that the entire record instance can be replaced with a new and different record using the

<- operator. It does not make the individual fields mutable. In practice, I can’t remember

ever declaring an entire record to be mutable.

Listing 7-4. Declaring a record instance as mutable

 type MyRecord = {

 String : string

 Int : int }

 let mutable myRecord =

 { String = "Hullo clouds"

 Int = 99 }

 // {String = "Hullo clouds";

 // Int = 99;}

 printfn "%A" myRecord

 myRecord <-

 { String = "Hullo sky"

 Int = 100 }

 // {String = "Hullo sky";

 // Int = 100;}

 printfn "%A" myRecord

What about making the fields of the record mutable? This is certainly possible

(Listing 7-5), and having done this, you can assign into fields using <-. This isn’t quite as

unheard of as declaring whole records mutable, but it’s still rare. I guess there might be

performance-related cases where this might be desirable, but again I can’t recall doing

it myself.

Chapter 7 reCord types

168

Listing 7-5. Declaring record fields as mutable

 type MyRecord = {

 mutable String : string

 mutable Int : int }

 let myRecord =

 { String = "Hullo clouds"

 Int = 99 }

 // {String = "Hullo clouds";

 // Int = 99;}

 printfn "%A" myRecord

 myRecord.String <- "Hullo sky"

 // { String = "Hullo sky";

 // Int = 99;}

 printfn "%A" myRecord

By far, the most common and idiomatic way of “amending” record types is using the

not-very-snappily-named copy-and-update record expression (Listing 7-6).

Listing 7-6. “Amending” a record using copy and update

 type MyRecord = {

 String : string

 Int : int }

 let myRecord =

 { String = "Hullo clouds"

 Int = 99 }

 // {String = "Hullo clouds";

 // Int = 99;}

 printfn "%A" myRecord

 let myRecord2 =

 { myRecord with String = "Hullo sky" }

 // { String = "Hullo sky";

 // Int = 99;}

 printfn "%A" myRecord2

Chapter 7 reCord types

169

In a copy-and-update operation, all the fields of the new record are given the values

from the original record, except those given new values in the with clause. Needless to

say, the original record is unaffected. This is the idiomatic way to handle “changes” to

record type instances.

 Default Constructors, Setters, and Getters
One downside to immutability by default: you may occasionally have problems with

external code (particularly serialization and database code) failing to instantiate record

types correctly, or throwing compilation errors about default constructors. In these

cases, simply add the [<CLIMutable>] attribute to the record declaration. This causes

the record to be compiled with a default constructor and getters and setters, which the

external framework should find easier to cope with.

 Records vs. Classes
Records offer a nice, concise syntax for grouping values, but surely they aren’t that

different from the conventional “object” of object orientation (which are known in F#

as class types or just classes). After all, if we make a class-based version of Listings 7-1

and 7-2, the code doesn’t look all that different and seems to behave exactly the same

(Listing 7-7).

Listing 7-7. F# Object-Oriented class types vs. records

 open System

 type FileDescriptionOO(path:string, name:string,

lastModified:DateTime) =

 member __.Path = path

 member __.Name = name

 member __.LastModified = lastModified

 open System.IO

 let fileSystemInfoOO (rootPath : string) =

 Directory.EnumerateFiles(rootPath, "*.*",

 SearchOption.AllDirectories)

Chapter 7 reCord types

170

 |> Seq.map (fun path ->

 FileDescriptionOO(path |> Path.GetDirectoryName,

 path |> Path.GetFileName,

 (FileInfo(path)).LastWriteTime))

We’ll look properly at classes in Chapter 8, but it’s fairly easy to see what is going

on here. The class we make is even immutable. So do we really need to bother with

record types? In the next few sections, I’ll discuss some of the advantages (and a few

disadvantages!) of using record types.

 Structural Equality by Default
Consider the following attempt to represent a position on the Earth’s surface with a class,

using latitude and longitude (Listing 7-8).

Listing 7-8. Representing latitude and longitude using a class

 type LatLon(latitude : float, longitude : float) =

 member __.Latitude = latitude

 member __.Longitude = longitude

You might think that if two positions have the same latitude and longitude values,

they would be considered equal. But with a class, they are not1 (Listing 7-9).

Listing 7-9. Some types are less equal than others

 let waterloo = LatLon(51.5031, -0.1132)

 let victoria = LatLon(51.4952, -0.1441)

 let waterloo2 = LatLon(51.5031, -0.1132)

 // false

 printfn "%A" (waterloo = victoria)

 // true

 printfn "%A" (waterloo = waterloo)

 // false!

 printfn "%A" (waterloo = waterloo2)

1 In this example, I’m ignoring the perils of comparing floating-point values (which, even if they
are different by a tiny amount, are still different) for exact equality.

Chapter 7 reCord types

171

This is because classes in both F# and C# have what is called reference or referential

equality by default, which means that to be considered equal, two values need to

represent the same physical object in memory. Sometimes, as in the LatLon example,

this is very much not what you want.

The conventional way around this in C# (and you can do the same for classes in F#)

is to write custom code that decides whether two instances are equal in some

meaningful sense. The trouble is in practice this is quite an endeavor, requiring you to

override Object.Equals, implement System.IEquatable, override Object.GetHashCode,

and (admittedly optionally) override the equality and inequality operators. Who has

time for all that? (I will show how to do it in Chapter 8, just in case you do have time!)

Record types, by contrast, have what is called structural equality. (I think that’s a

terrible name, so I always mentally translate this to content equality.) With structural

equality, two items are considered equal if all their fields are equal. Listing 7-10 shows

the LatLon issue being solved simply by using a record instead of a class.

Listing 7-10. Default structural (content) equality with record types

 type LatLon = {

 Latitude : float

 Longitude : float }

 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }

 let victoria = { Latitude = 51.4952; Longitude = -0.1441 }

 let waterloo2 = { Latitude = 51.5031; Longitude = -0.1132 }

 // false

 printfn "%A" (waterloo = victoria)

 // true

 printfn "%A" (waterloo = waterloo)

 // true

 printfn "%A" (waterloo = waterloo2)

You can mess things up again, though, if one of the fields of your record is itself of a

type that implements referential equality. This is because, under those circumstances,

the records’ fields aren’t all equal by their own types’ definitions of “equal” – so the

records won’t be considered equal. Listing 7-11 shows an example of this happening.

Chapter 7 reCord types

172

Listing 7-11. Do all the fields of your record implement the right equality?

 type Surveyor(name : string) =

 member __.Name = name

 type LatLon = {

 Latitude : float

 Longitude : float

 SurveyedBy : Surveyor }

 let waterloo =

 { Latitude = 51.5031

 Longitude = -0.1132

 SurveyedBy = Surveyor("Kit") }

 let waterloo2 =

 { Latitude = 51.5031

 Longitude = -0.1132

 SurveyedBy = Surveyor("Kit") }

 // true

 printfn "%A" (waterloo = waterloo)

 // false

 printfn "%A" (waterloo = waterloo2)

Because they use different instances of the Surveyor class, the instances waterloo

and waterloo2 aren’t considered equal, even though from a content point of view, the

surveyors have the same name. If we had created one Surveyor instance in advance

and used that same instance when creating each of the LatLon instances, waterloo and

waterloo2 would have been equal again! The general solution to this would be either

to use a record for the Surveyor type or override the Surveyor equality-checking logic.

Although worth bearing in mind, this issue rarely comes up in practice.

Another edge case is when you actually want records to have referential equality.

That’s easy: add the [<ReferenceEquality>] attribute (Listing 7-12).

Listing 7-12. Forcing reference equality for record types

 [<ReferenceEquality>]

 type LatLon = {

 Latitude : float

 Longitude : float }

Chapter 7 reCord types

173

 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }

 let waterloo2 = { Latitude = 51.5031; Longitude = -0.1132 }

 // true

 printfn "%A" (waterloo = waterloo)

 // false

 printfn "%A" (waterloo = waterloo2)

Once again, I can’t ever recall having to use the ReferenceEquality attribute in real

code. If you do use it, remember you won’t be able to sort instances using default sorting

because the attribute disables greater than/less than comparison. While we are on the

subject, you can also add the NoEquality attribute to disable “equals” and “greater/less

than” operations on a record type, or you can even disable “greater/less than” operations

while allowing “equals” operations using the NoComparison attribute. I have seen the

NoEquality attribute used precisely once in real code. Stylistically, I would say that –

given what records are for – use of ReferenceEquality, NoEquality, and NoComparison

attributes in general “line of business” code is probably a code smell, though they no

doubt have their place in highly technical realms.

Be aware that the ReferenceEquality, NoEquality, and NoComparison attributes

are all F# specific. Other languages are under no obligation to respect them (and

probably won’t).

 Records as Structs
Another possible reason to favor records is that, subject to certain restrictions, they can

easily be marked as structs. This affects the way they are stored. To quote the official

documentation:

Structures are value types, which means that they are stored directly on the
stack or, when they are used as fields or array elements, inline in the par-
ent type.

You make a record of a struct simply by adding the [<Struct>] attribute. As Listing 7-13

shows, this can have a substantial effect on performance.

Chapter 7 reCord types

174

Listing 7-13. Marking a record type as a struct

 type LatLon = {

 Latitude : float

 Longitude : float }

 [<Struct>]

 type LatLonStruct = {

 Latitude : float

 Longitude : float }

 let sw = System.Diagnostics.Stopwatch.StartNew()

 let llMany =

 Array.init 1_000_000 (fun x ->

 { LatLon.Latitude = float x

 LatLon.Longitude = float x })

 // Non struct: 51ms

 printfn "Non struct: %ims" sw.ElapsedMilliseconds

 sw.Restart()

 let llsMany =

 Array.init 1_000_000 (fun x ->

 { LatLonStruct.Latitude = float x

 LatLonStruct.Longitude = float x })

 // Struct: 17ms

 printfn "Struct: %ims" sw.ElapsedMilliseconds

Scenarios vary widely in regard to creating, accessing, copying, and releasing

instances, so you should experiment diligently in your use case, rather than blindly

assuming that using the Struct attribute will solve any performance woes.

There is one significant implication of using struct records: if you want any field of

the record type to be mutable, you must declare the whole instance as mutable too, as in

Listing 7-14.

Listing 7-14. Struct records must be mutable instances to mutate fields

 [<Struct>]

 type LatLonStruct = {

 mutable Latitude : float

 mutable Longitude : float }

Chapter 7 reCord types

175

 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }

 // Error: a value must be mutable in order to mutate the contents.

 waterloo.Latitude <- 51.5032

 let mutable waterloo2 = { Latitude = 51.5031; Longitude = -0.1132 }

 waterloo2.Latitude <- 51.5032

 Mapping from Instantiation Values to Members
The final, and for me, clinching advantage of records over classes is the direct and

complete mapping from what you provide when creating instances to what you get

back when consuming instances. If you create a LatLon record instance by providing a

latitude and longitude, then you automatically know the following facts when you later

consume the instance:

• You can get all the values back that you originally provided and in

their original form.

• You can’t get anything else back other than what you provided

(unless you define members on the record type, which is possible

but rare).

• You can’t create an instance without providing all the

necessary values.

• Nothing can change the values you originally provided – unless you

declare fields as mutable, which generally is unwise.

These may seem like small points, but they contribute greatly to the motivational

transparency and semantic focus of your code. As an example, consider the third point:

You can’t create an instance without providing all the necessary values. Contrast that with

the coding pattern that any experienced OO developer has seen, where you need to both

construct an object instance and set some properties in order for the object to become

usable. (Any place you use object-initializer syntax to get to a usable state is an example.)

The fact that, in order to create a record, you have to provide values for all its fields

has an interesting consequence: if you add a field, you’ll have to make code changes

everywhere that record is instantiated. This is true even if you make the field an option

type – there is no concept in record instantiation of default values for fields, even ones

that are option types. At first, this can seem annoying, but it is actually a very good thing.

Chapter 7 reCord types

176

All sorts of subtle bugs can creep in if it’s possible to add a property to a type without

making an explicit decision about what that property should contain, everywhere the

type is used. Those compiler errors are telling you something!

 Records Everywhere?
If the case for record types is so compelling, why don’t we use them everywhere? Why

does F# even bother to offer OO-style class types? Are these just a concession to C#

programmers, to be avoided by the cool kids?

The answer is “no”; class types definitely have a place in F# code. I’ll go into detail on

class types in Chapter 8, but just to balance all the positive things I’ve said about record

types, Table 7-1 shows some reasons why you might not want to use them, together with

some suggestions for alternatives.

The last of these points bears a little elaboration. From time to time, I have come

across code bases where records of functions have been used as a supposedly more

functional alternative to interfaces. In principle, this does have a few advantages:

• Unlike code that uses interfaces, you don’t have to upcast to the

interface type whenever you want to use the interface. (I give a few

more details of this in Chapter 8.)

• It can make it easier to use partial application when using the

“pretend interface.”

• It’s sometimes claimed to be more concise.

Table 7-1. When to Consider Not Using Record Types

Scenario Consider instead

external and internal representations of data need to differ Class types

Need to participate in an inheritance hierarchy – either to inherit

from or be inherited from in a traditional oo sense

Class types

Need to represent a standard set of functions, with several

realizations that share function names and signatures, but have

different implementations

F# interfaces and/or abstract

types, inherited from by class

types

Chapter 7 reCord types

177

The MSDN F# Style Guide comes out firmly against records-as-interfaces, and,

having worked with a substantial code base where records were used in this way, so do I!

To quote the guide:

Use interface types to represent a set of operations. This is preferred to other
options, such as tuples of functions or records of functions… Interfaces are
first-class concepts in .NET....

In my experience, use of records-as-interfaces leads to unfriendly, incomprehensible

code. When editing, one rapidly gets into the situation where everything has to compile

before anything will compile. In concrete terms, your screen fills with red squiggly lines,

and it’s very hard to work out what to do about it! With true interfaces, by contrast, the

errors resulting from incomplete or slightly incorrect code are more contained, and it’s

much easier to work out if an error results, for example, from a wrongly implemented

method or from a completely missing one. Interfaces play more nicely with Intellisense

as well. As for the supposed advantage of partial application – well, I’d much rather

maintainers (including my future self) have some idea of what is going on than save a

few characters by not repeating a couple of function parameters.

I’m not saying, by the way, that records shouldn’t implement interfaces, which they

can do in exactly the same way as I show with classes in Chapter 8. If you find that useful,

it’s fine.

One notable exception to what I’ve said previously is when working with “Fable

Remoting.” Fable, in case you haven’t come across it, is an F#-to-JavaScript compiler

that allows you to write both the back and front end of a web application in F#. This

architecture requires the ability to make function calls from the front end, in the browser,

to the back end - a .NET program running on the server. Without going into detail here, it

turns out that describing such an interface in terms of a record-of-functions works very

well in that specialized case.

 Pushing Records to the Limit
Now that you’re familiar with how and when to use basic record types, it’s time to look at

some of the more exotic features and usages that are available. Don’t take this section as

encouragement to use all the techniques it describes. Some (not all) of these tricks really

are rarities, and when it’s truly necessary to use them, you’ll know.

Chapter 7 reCord types

178

 Generic Records
Records can be generic – that is, you can specify the type (or types) of the fields, as a

kind of meta-property of the record type. The meta-property is called a type parameter.

Listing 7-15 shows a LatLon record that could use any type for its Latitude and

Longitude fields.

Listing 7-15. A generic record type

 type LatLon<'T> = {

 mutable Latitude : 'T

 mutable Longitude : 'T }

 // LatLon<float>

 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }

 // LatLon<float32>

 let waterloo2 = { Latitude = 51.5031f; Longitude = -0.1132f }

 // Error: Type Mismatch...

 printfn "%A" (waterloo = waterloo2)

Note that we don’t have to specify the type to use at construction time. The simple fact

that we say { Latitude = 51.5031f... versus { Latitude = 51.5031... (note the “f,”

which specifies a single-precision constant) is enough for the compiler to create a record that

has single-precision instead of double-precision fields. Also notice that, since waterloo and

waterloo2 are different types, we can’t directly compare them using the equals operator.

What if you don’t want to leave type inference to work out the type of the generic

parameter? (Very occasionally type inference can even find it impossible to work this

out.) Clearly, in this case, we can’t use the trick of prefixing the first field binding with

the record type name to disambiguate, as the name will be the same in each case.

Instead – as in any let binding – you can specify the type of the bound value, in this case,

LatLon<float> or LatLon<float32> (Listing 7-16).

Listing 7-16. Pinning down the generic parameter type of a record type

 type LatLon<'T> = {

 mutable Latitude : 'T

 mutable Longitude : 'T }

Chapter 7 reCord types

179

 // LatLon<float>

 let waterloo : LatLon<float> = {

 Latitude = 51.5031

 Longitude = -0.1132 }

 // Error: The expression was expected to have type 'float32'

 // but here has type 'float'.

 let waterloo2 : LatLon<float32> = {

 Latitude = 51.5031f

 Longitude = -0.1132 }

In this case, as shown in the final lines of Listing 7-16, it’s an error to try and bind a

field using a value of a different type (note the missing “f” in the Longitude binding).

 Recursive Records
Record types can also be recursive – that is, the type can have a field containing a value of

its own type. Not easy to put into words, so jump straight to Listing 7-17, where we define

a type to represent some imaginary user interface.

Listing 7-17. A recursive record type

 type Point = { X : float32; Y : float32 }

 type UiControl = {

 Name : string

 Position : Point

 Parent : UiControl option }

 let form = {

 Name = "MyForm"

 Position = { X = 0.f; Y = 0.f }

 Parent = None }

 let button = {

 Name = "MyButton"

 Position = { X = 10.f; Y = 20.f }

 Parent = Some form }

Chapter 7 reCord types

180

Each UiControl instance can have a parent that is itself a UiControl instance. It’s

important that the recursive field (in this case, Parent) is an option type. Otherwise, we

are implying either that the hierarchy goes upward infinitely (making it impossible to

instantiate) or that it is circular.

Oddly enough, it is possible to instantiate circular hierarchies, using let rec and and

(Listing 7-18). I present this mainly as a curiosity – if you need to do it in practice, either

you are doing something very specialized or something has gone terribly wrong in your

domain modeling!

Listing 7-18. Instantiating a circular set of recursive records

 // You probably don't want to do this!

 type Point = { X : float32; Y : float32 }

 type UiControl = {

 Name : string

 Position : Point

 Parent : UiControl }

 let rec form = {

 Name = "MyForm"

 Position = { X = 0.f; Y = 0.f }

 Parent = button }

 and button = {

 Name = "MyButton"

 Position = { X = 10.f; Y = 20.f }

 Parent = form }

 Records with Methods
Anyone with an Object-Oriented programming background will be wondering whether

it’s possible for records to have methods. And the answer is yes, but it may not always be

a great idea.

Chapter 7 reCord types

181

 Instance Methods

Listing 7-19 shows us adding a Distance instance method to our familiar LatLon record

and then calling it exactly as one would a class method.

Listing 7-19. Adding an instance method to a record type

type LatLon =

 { Latitude : float

 Longitude : float }

 // Naive, straight-line distance

 member this.DistanceFrom(other : LatLon) =

 let milesPerDegree = 69.

 ((other.Latitude - this.Latitude) ** 2.)

 +

 ((other.Longitude - this.Longitude) ** 2.)

 |> sqrt

 |> (*) milesPerDegree

let coleman = {

 Latitude = 31.82

 Longitude = -99.42 }

let abilene = {

 Latitude = 32.45

 Longitude = -99.75 }

// Are we going to Abilene? Because it's 49 miles!

printfn "Are we going to Abilene? Because it's %0.0f miles!"

 (abilene.DistanceFrom(coleman))

Note that the distance calculation I do here is extremely naive. In reality, you’d want

to use the haversine formula, but that’s rather too much code for a book listing.

Instance methods like this work fine with record types and are quite a nice solution

where you want structural (content) equality for instances and also to have instance

methods to give you fluent syntax like abilene.DistanceFrom(coleman).

Chapter 7 reCord types

182

 Static Methods

You can also add static methods. If you do this, it’s probably because you want to

construct a record instance using something other than standard record construction

syntax. For example, Listing 7-20 adds a TryFromString method to LatLon, which tries

to parse a comma-separated string into two elements and then tries to parse these as

floating-point numbers, before finally constructing a record instance in the usual curly-

bracket way.

Listing 7-20. Adding a static method to a record type

open System

type LatLon =

 { Latitude : float

 Longitude : float }

 static member TryFromString(s : string) =

 match s.Split([|','|]) with

 | [|lats; lons|] ->

 match (Double.TryParse(lats),

 Double.TryParse(lons)) with

 | (true, lat), (true, lon) ->

 { Latitude = lat

 Longitude = lon } |> Some

 | _ -> None

 | _ -> None

// Some {Latitude = 50.514444;

// Longitude = -2.457222;}

let somewhere = LatLon.TryFromString "50.514444, -2.457222"

// None

let nowhere = LatLon.TryFromString "hullo trees"

printfn "%A, %A" somewhere nowhere

This is quite a nice way of effectively adding constructors to record types. It might be

especially useful it you want to perform validation during construction.

Chapter 7 reCord types

183

 Method Overrides

Sometimes, you want to change one of the (very few) methods that a record type has by

default. The most common one to override is ToString(), which you can use to produce

a nice printable representation of the record (Listing 7-21).

Listing 7-21. Overriding a method on a record

type LatLon =

 { Latitude : float

 Longitude : float }

 override this.ToString() =

 sprintf "%f, %f" this.Latitude this.Longitude

// 51.972300, 1.149700

{ Latitude = 51.9723

 Longitude = 1.1497 }

|> printfn "%O"

In Listing 7-21, I’ve used the “%O” format specifier, which causes the input’s

ToString() method to be called.

 Records with Methods – A Good Idea?
I don’t think there is anything inherently wrong with adding methods to record types.

You should just beware of crossing the line into territory where it would be better to use

a class type. If you are using record methods to cover up the fact that the internal and

external representations of some data do in fact need to be different, you’ve probably

crossed the line!

There is an alternative way of associating behavior (functions or methods) with types

(sets of data): group them in an F# module, usually with the same name as the type and

placed just after the type’s definition. We looked at this back in Chapter 2, for example,

in Listing 2-9, where we defined a MilesYards type, for representing British railroad

distances, and a MilesYards module containing functions to work with the type. In my

opinion, the modules approach is generally better than gluing the functions to the record

in the form of methods.

Chapter 7 reCord types

184

 Anonymous Records
Although the declaration syntax of F# records is about as lightweight as it could be, there

are sometimes situations where even that overhead seems too much. For times like this,

F# offers anonymous records. Anonymous records bring most of the benefits of “named”

records – in terms of strong typing, type inference, structural (content) equality, and so

forth – without the overhead of having to declare them explicitly.

Let’s say you want to work with GPS coordinates. You might use a LatLon type like

the one we declared back in Listing 7-10, but with anonymous records, you can get rid of

the declaration (Listing 7-22). The only tax you have to pay is to insert vertical bar (“|”)

characters inside the curly brackets. Notice how you still get a type that has Latitude and

Longitude fields, just like a named record.

Listing 7-22. Creating anonymous records

 // {| Latitude : float; Longitude : float |}

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 // {| Latitude : float; Longitude : float |}

 let victoria = {| Latitude = 51.4952; Longitude = -0.1441 |}

 printfn "%0.2f, %0.2f; %0.2f, %0.2f"

 waterloo.Latitude waterloo.Longitude

 victoria.Latitude victoria.Longitude

Use of anonymous records doesn’t undermine the type safety that is the mainstay of

F# code. For example, in Listing 7-23, we try to add the value 1.0f to the latitude of an

anonymous latitude/longitude record, but I get an error because the type of the latitude

field is a double-precision floating-point number, whereas 1.0f is single precision.

Listing 7-23. Type safety and anonymous records

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 // The type 'float32' does not match the type 'float'

 let newLatitude = waterloo.Latitude + 0.1f

Chapter 7 reCord types

185

A good use of anonymous records is in pipelines where more than one value

needs to be passed between successive stages. If you are using tuples in these cases,

it’s very easy to mix values up or lose track of what is going on. In these cases, at least

consider doing something like Listing 7-24. This code is designed to take a collection

of artist names and sort them while ignoring definite and indefinite articles such as

“The” in “The Bangles” and “A” in “A Flock of Seagulls.” A couple of other requirements

complicate matters: the sort should be case insensitive, and a “display name” should be

generated which shows the sorting value with the case preserved (e.g., “Bangles, The”).

Listing 7-24. Using anonymous records to clarify intermediate values

 let artists =

 [|

 "The Bangles"; "Bananarama"; "Theo Travis"

 "The The"; "A Flock of Seagulls"; "REM"; "ABBA";

 "eden ahbez"; "Fairport Convention"; "Elbow"

 |]

 let getSortName (prefixes : seq<string>) (name : string) =

 prefixes

 |> Seq.tryFind name.StartsWith

 |> Option.map (fun prefix ->

 let mainName = name.Substring(prefix.Length)

 sprintf "%s, %s" mainName prefix)

 |> Option.defaultValue name

 let sortedArtists =

 artists

 |> Array.map (fun artist ->

 let displayName =

 artist |> getSortName ["The "; "A "; "An "]

 {| Name = artist

 DisplayName = displayName

 SortName = displayName.ToUpperInvariant() |})

 |> Array.sortBy (fun sortableArtist ->

 sortableArtist.SortName)

Chapter 7 reCord types

186

This could certainly be achieved by having the lambda in the Array.map operation

return a tuple. But using an anonymous record makes very clear the roles that the three

created values play: the original name, the display name with the article moved to the

end, and the uppercased sort name. When we come to sort the results in the last line,

it’s very clear that we are using SortName to sort on. Anything which consumed these

results could also use these fields appropriately and unambiguously.

Another advantage of code like this is that when you use a debugger to pause

program execution and view values, it’s much clearer which value is which. The field

names in anonymous records are shown in the debugger.

 Anonymous and Named Record Terminology
At this point, I need to make a brief point about terminology. The documentation

for anonymous records contains the magnificent heading “Anonymous Records are

Nominal,” which appears at first sight to be a contradiction in terms. What this is saying

is that anonymous records have a “secret” name and so technically are “nominal,”

even though we don’t give them a name in our code. For simplicity, in this section, I’m

using named records to mean those declared up front with the type Name = { <field

declarations> } syntax and instantiated later and anonymous record to mean those

instantiated without prior declaration using the {| <field values> |} syntax.

Anonymous records seem to be almost too good to be true. Surely, there are some

showstopping limitations. In practice, there are very few and indeed some things which

you might expect would not work are in fact fine. Here are some points which might be

worrying you about anonymous records.

 Anonymous Records and Comparison
Anonymous records have the same equality and comparison rules as named records.

Consider Listing 7-25, where I create latitude/longitude anonymous records for several

locations. These can be compared using structural (content) equality: two instances

that have the same coordinates are considered equal. And when the instances are

compared (e.g., for sorting purposes), a sensible comparison is done using the contents

of their fields.

Chapter 7 reCord types

187

Listing 7-25. Equality and comparison of anonymous record instances

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 let victoria = {| Latitude = 51.4952; Longitude = -0.1441 |}

 let waterloo2 = {| Latitude = 51.5031; Longitude = -0.1132 |}

 // false

 printfn "%A" (waterloo = victoria)

 // true

 printfn "%A" (waterloo = waterloo)

 // true

 printfn "%A" (waterloo = waterloo2)

 // true, because (51.5031,-0.1132 is 'greater' than (51.4952, -0.1441)

 printfn "%A" (waterloo > victoria)

The same stipulation applies here as it does to named records: that each of the fields

of the record itself has structural equality.

What happens if I instantiate anonymous records having the same fields in different

parts of my code? Are these instances also type compatible? In Listing 7-26, I instantiate

anonymous records in two different functions; then I have some code to return true if

the types coming from those separate locations are the same. They are! From this also

flows the fact that they can be compared or checked for equality just as if the two sources

had returned instances of a single named type. For completeness, I also create a third

anonymous record with an apparently minor difference; the fields are single-precision

numbers as denoted by the f in the literals. This is a different type and so cannot be

compared or checked for equality with the others.

Listing 7-26. Anonymous records with the same names and types of fields are

the same type

 let getSomePositions() =

 [|

 {| Latitude = 51.5031; Longitude = -0.1132 |}

 {| Latitude = 51.4952; Longitude = -0.1441 |}

 |]

Chapter 7 reCord types

188

 let getSomeMorePositions() =

 [|

 {| Latitude = 51.508; Longitude = -0.125 |}

 {| Latitude = 51.5173; Longitude = -0.1774 |}

 |]

 let getSinglePositions() =

 [|

 {| Latitude = 51.508f; Longitude = -0.125f |}

 {| Latitude = 51.5173f; Longitude = -0.1774f |}

 |]

 let p1 = getSomePositions() |> Array.head

 let p2 = getSomeMorePositions() |> Array.head

 let p3 = getSinglePositions() |> Array.head

 // f__AnonymousType3108251393`2[System.Double,System.Double]

 printfn "%A" (p1.GetType())

 // f__AnonymousType3108251393`2[System.Double,System.Double]

 printfn "%A" (p2.GetType())

 // true

 printfn "%A" (p1.GetType() = p2.GetType())

 // false

 printfn "%A" (p1 = p2)

 // f__AnonymousType3108251393`2[System.Single,System.Single]

 printfn "%A" (p3.GetType())

 // false

 printfn "%A" (p1.GetType() = p3.GetType())

 // Error: Type mismatch

 printfn "%A" (p1 = p3)

Chapter 7 reCord types

189

 “Copy and Update” on Anonymous Records
Again, the behavior is at least as good as for named records, but with a little bonus.

Listing 7-27 shows us moving the position of a latitude/longitude anonymous record by

1 degree of latitude using the with keyword. You can go beyond this to create a new type,

with additional fields, on the fly. Also in Listing 7-27, we create a new instance with the

same latitude and longitude, but with an altitude value as well. Finally, we do both, using

with to create a new instance from an existing one, having both an altered value for an

existing field, and a new field. Stylistically, I think you could easily take this too far, but

you may find it useful in some circumstances.

Listing 7-27. Copy-and-update operations on anonymous records

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 let nearWaterloo =

 {| waterloo

 with Latitude = waterloo.Latitude + 1.0 |}

 let waterloo3d =

 {| waterloo

 with AltitudeMetres = 15.0 |}

 let nearWaterloo3d =

 {| waterloo

 with

 Latitude = waterloo.Latitude + 1.0

 AltitudeMetres = 15.0 |}

It’s also worth noting that the basis for a with construct that adds one or more fields

doesn’t have to be an anonymous record, so long as it returns an anonymous record.

Listing 7-28 is like Listing 7-27 except that we are “extending” a named record, the result

being an anonymous record.

Chapter 7 reCord types

190

Listing 7-28. Creating a new anonymous record with an additional field, based

on a named record

 type LatLon = { Latitude : float; Longitude : float }

 let waterloo = { Latitude = 51.5031; Longitude = -0.1132 }

 // {| Latitude = 52.531; Longitude = -0.1132; AltitudeMetres = 15.0 |}

 let nearWaterloo3d =

 {| waterloo

 with

 Latitude = waterloo.Latitude + 1.0

 AltitudeMetres = 15.0 |}

 Serialization and Deserialization of Anonymous Records
Listing 7-29 shows us happily serializing and deserializing yet another anonymous latitude/

longitude instance using System.Text.Json. The deserialization syntax is interesting:

we don’t have a named record type to provide as the type parameter of the Deserialize

method. But that’s fine – in the angle brackets, we can specify the field names and types in

{| |} brackets, just as they appear in the type signature of the waterloo value.

Listing 7-29. Serializing and deserializing anonymous records

 open System.Text.Json

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 let json = JsonSerializer.Serialize(waterloo)

 // {"Latitude":51.5031,"Longitude":-0.1132}

 printfn "%s" json

 let waterloo2 =

 JsonSerializer.Deserialize<

 {| Latitude : float; Longitude : float |}>(json)

 // { Latitude = 51.5031

 // Longitude = -0.1132 }

 printfn "%A" waterloo2

Chapter 7 reCord types

191

This raises an interesting possibility. If you are facing the task of deserializing some

JSON from an external source, you can use exactly this syntax to keep things super

lightweight. In Listing 7-30, we get a response from the PLOS Open Access science

publisher, in this case, a list of papers about DNA. We are only interested in a subset

of the many fields and subfields of the JSON response. We specify these as a nested,

anonymous type in the type parameter of Deserialize.

Listing 7-30. Using anonymous records to deserialize JSON API results

open System.Net.Http

open System.Text.Json

let client = new HttpClient()

let response =

 client.GetStringAsync("http://api.plos.org/search?q=title:DNA").Result

let abstracts =

 JsonSerializer.Deserialize<

 {| response :

 {| docs :

 {| id : string; ``abstract`` : string[] |}[]

 |}

 |}>(response)

// { response =

// { docs =

// [|{ abstract =

// [|"Nucleic acids, due to their structural and chemical

properties, can form double-stranded secondary...

// id = "10.1371/journal.pone.0000290" }; ...

printfn "%A" abstracts

There are several interesting things to note here. These points are not specific to

anonymous records but do help us to keep things lightweight in this context:

• If we are not interested in a property of the JSON, that’s fine – we

just don’t mention it in the anonymous record we specify in the type

parameter.

Chapter 7 reCord types

192

• If we happen to specify fields in the anonymous record that aren’t in

the JSON, we will get nulls or zeros. (If you edit one of the field names

and rerun the code, you’ll see what I mean.) You will have to watch

out for mistakes like this at runtime because there is no way for the

compiler to spot them.

• If there happens to be a clash between a property name in the JSON

and a reserved word in F#, you will need to put the field name in

double back quotes. We have done this with the word abstract in

Listing 7-30.

 Anonymous Records in Type Hints
You can use anonymous records in type hints. Listing 7-31 shows a function that uses

anonymous records in both the parameter part and the result part of its declaration. I’m

not sure that using anonymous records in this way makes for particularly readable code,

but you may find it a useful trick in specialized situations.

Listing 7-31. Anonymous records in type hints

 let toSinglePrecision

 (latLon : {| Latitude : float; Longitude : float |})

 : {| Latitude : single; Longitude : single |} =

 {| Latitude = latLon.Latitude |> single

 Longitude = latLon.Longitude |> single |}

 let waterloo = {| Latitude = 51.5031; Longitude = -0.1132 |}

 let waterlooSingle = waterloo |> toSinglePrecision

 Struct Anonymous Records
You might remember that named records can be forced to be structs using the [<Struct>]

attribute. This causes them to be stored directly on the stack or inline in their parent type

or array. The syntax is a bit different for anonymous records because there is no type

declaration on which to put an attribute. Instead, you use the struct keyword where you

instantiate the record, just before the opening {| brackets. (Listing 7-32). You can also do

this when specifying an anonymous record as the parameter of a function. Calls to that

function will be inferred to be using structs as well.

Chapter 7 reCord types

193

Listing 7-32. Structural anonymous records

 let waterloo = struct {| Latitude = 51.5031; Longitude = -0.1132 |}

 let formatLatLon

 (latLon : struct {| Latitude : float; Longitude : float |}) =

 sprintf "Latitude: %0.3f, Longitude: %0.3f"

 latLon.Latitude latLon.Longitude

 // Type inference deduces that the anonymous record being

 // instantiated here is a struct.

 // "Latitude: 51.495, Longitude: -0.144"

 printfn "%s"

 (formatLatLon {| Latitude = 51.4952; Longitude = -0.1441 |})

 Anonymous Records and C#
From C#’s point of view, F# anonymous records look like C#’s anonymous types. If

a C# caller requires an anonymous type, feel free to give it an anonymous record as

your return value. More commonly, if an F# caller is calling a C# API that requires an

anonymous type, you can give it an anonymous record instance.

 Pattern Matching on Anonymous Records
Finally, we come to something which anonymous records don’t support! You can’t

pattern match on them. If we attempt to adapt the code from Listing 6-11 in the

previous chapter, we find that it doesn’t compile when anonymous records are used

(Listing 7-33).

Given how lightweight named records are anyway, this is hardly a major hardship.

However, it’s worth noting that there is an open language design suggestion to add a

degree of pattern matching for anonymous records, so it’s possible that code like

Listing 7-33 may be possible in future.

Chapter 7 reCord types

194

Listing 7-33. You cannot pattern match on anonymous records

 let songs =

 [{| Id = 1

 Title = "Summertime"

 Artist = "Ray Barretto"

 Length = 99 |}

 {| Id = 2

 Title = "La clave, maraca y guiro"

 Artist = "Chico Alvarez"

 Length = 99 |}

 {| Id = 3

 Title = "Summertime"

 Artist = "DJ Jazzy Jeff & The Fresh Prince"

 Length = 99 |}]

 // Doesn't compile:

 let formatMenuItem ({| Title = title; Artist = artist |}) =

 let shorten (s : string) = s.Substring(0, 10)

 sprintf "%s - %s" (shorten title) (shorten artist)

 Adding Methods to Anonymous Records
You cannot directly add methods to anonymous records. There are workarounds for this,

but I can’t think of a reason you would do such a thing, given how much it obfuscates

your code. I rarely even add methods to named records!

 Mutation and Anonymous Records
You can’t declare an anonymous record with a mutable field, though again there is an

open language suggestion to address this. Again, I rarely if ever have mutable fields in a

named record. Having one in an anonymous record seems even more inadvisable. You

can declare entire anonymous record instances as mutable, but I am hard-pressed to

think of a situation where you would want to do so.

Chapter 7 reCord types

195

 Record Layout
I cover spacing and layout in general in Chapter 13, but there are few code formatting

points that are specific to record types (both named and anonymous).

• Use Pascal case for both record type names and for the individual

field labels. All the listings in this chapter follow that approach.

• Where a record type definition or instantiation doesn’t fit

comfortably into a single line, break it into multiple lines, left aligning

the field labels. If you put fields on separate lines, omit the separating

semicolons. Don’t mix single and multiline styles (Listing 7-34).

• Use the field names in the same order in the record type definition as

in any instantiations and with operations.

Listing 7-34. Good and bad record type layout

 // Declaration:

 // Good

 type LatLon1 = { Lat : float; Lon : float }

 // Good

 type LatLon2 =

 { Latitude : float

 Longitude : float }

 // Good

 type LatLon3 = {

 Latitude : float

 Longitude : float }

 // Bad - needless semi-colons

 type LatLon4 = {

 Latitude : float;

 Longitude : float }

Chapter 7 reCord types

196

 // Bad - mixed newline style

 type Position = { Lat : float; Lon : float

 Altitude : float }

 // Instantiation:

 // Good

 let ll1 = { Lat = 51.9723; Lon = 1.1497 }

 // Good

 let ll2 =

 { Latitude = 51.9723

 Longitude = 1.1497 }

 // Bad - needless semi-colons

 let ll3 =

 { Latitude = 51.9723;

 Longitude = 1.1497 }

 // Bad - mixed newline style

 let position = { Lat = 51.9723; Lon = 1.1497

 Altitude = 22.3 }

 Recommendations
Here are my suggestions to help you make great code with record types:

• Prefer records to class types unless you need the internal and external

representations of data to differ, or the type needs to have “moving

parts” internally.

• Think long and hard before making record fields or (worse still!)

whole records mutable; instead, get comfortable using copy-and-

update record expressions (i.e., the with keyword).

• Make sure you understand the importance of “structural” (content)

equality in record types, but make sure you also know when it would

be violated. (When a field doesn’t itself, have content equality.)

Chapter 7 reCord types

197

• Sometimes, it’s useful to add instance methods, static methods, or

overrides to record types, but don’t get carried away: having to do

this, a lot might indicate that a class type would be a better fit.

• Consider putting record types on the stack with [<Struct>] if this

gives you performance benefits across the whole life cycle of the

instance.

• Lay your record type definitions and instantiations out carefully and

consistently.

Next, some recommendations specific to anonymous records:

• Consider anonymous records where the scope of the instances

you create is narrow; a few lines or at most one module or source

file. Pipelines that use tuples to pass values between their stages

are a particularly attractive target. If the type is more pervasive, it’s

probably better to declare a named record up front.

• Obviously, don’t use anonymous records if one of their shortcomings

is going to force you into strange workarounds. For instance, if you

need to pattern match on records, anonymous records are currently

a nonstarter. Likewise, you won’t get far in adding methods to

an anonymous record, and the workarounds to this aren’t, in my

opinion, particularly useful.

• Although you can use anonymous records in type hints, I’m not

convinced that you should do so. It leads to some pretty strange

function headers, and in general, these look much simpler if done in

terms of named record types declared separately.

• Don’t discount the cognitive benefits of declaring a named record

up front. When you name a record type, you are making a focused

statement about what kind of thing you want to create and work

with. If you are clear about that, a lot of the code that instantiates and

processes instances of the record type will naturally “fall out” of that

initial statement of intent.

• Anonymous records are usually the best solution when interacting

with C# code that produces or consumes anonymous objects.

Chapter 7 reCord types

198

 Summary
Effective use of records is core to writing great F# code. It’s certainly my go-to data

structure when I want to store small groups of labeled values. I only switch to classes

(Chapter 8) when I find that I’m adorning my record types to the extent they might as

well be classes – which is rarely. And any day I find that I’m using the with keyword

with record types is a good day! I often use anonymous records to clarify code where, in

earlier versions of F#, I might have used tuples.

All that said – classes have their place, even in F# code, so in the next chapter, we’ll

talk about them in considerable detail.

 Exercises

EXERCISE 7-1 – RECORDS AND PERFORMANCE

you need to store several million items, each consisting of X, y, and Z positions (single

precision) and a DateTime instance. For performance reasons, you want to store them on

the stack.

how might you model this using an F# record?

how can you prove, in the simple case, that instantiating a million records works faster when

the items are placed on the stack than when they are allowed to go on the heap?

EXERCISE 7-2 – WHEN TO USE RECORDS

you have an idea for a novel cache that stores expensive-to-compute items when they are

first requested and periodically evicts the 10% of items that were least accessed over a

configurable time period. Is a record a suitable basis for implementing this? Why or why not?

don’t bother to actually code this – it’s just a decision-making exercise.

Chapter 7 reCord types

199

EXERCISE 7-3 – EQUALITY AND COMPARISON

a colleague writes a simple class to store music tracks but is disappointed to discover that

they can’t deduplicate a list of tracks by making a set instance from them:

 type Track (name : string, artist : string) =

 member __.Name = name

 member __.Artist = artist

 let tracks =

 [Track("The Mollusk", "Ween")

 Track("Bread Hair", "They Might Be Giants")

 Track("The Mollusk", "Ween")]

 // Error: The type 'Track' does not support the

 // comparison constraint

 |> Set.ofList

What’s the simplest way to fix the problem?

EXERCISE 7-4 – MODIFYING RECORDS

start off with the struct record from exercise 7-1. Write a function called translate that takes a

position record and produces a new instance with the X, y, and Z positions altered by specified

amounts, but the time value unchanged.

 open System

 [<Struct>]

 type Position = {

 X : float32

 Y : float32

 Z : float32

 Time : DateTime }

EXERCISE 7-5 – ANONYMOUS RECORDS

how would you alter the solution to exercise 7-1 so that you return an array of struct anonymous

records instead of struct named records? What effect does doing this have on performance?

Chapter 7 reCord types

200

 Exercise Solutions

EXERCISE 7-1 – RECORDS AND PERFORMANCE

you need to create a record type with suitably typed fields X, Y, Z, and Time. Mark the

record with the [<Struct>] attribute to force instances to be placed on the stack. Note that

DateTime is also a value type (struct) so the Time field should not interfere with the storage.

 open System

 [<Struct>]

 type Position = {

 X : float32

 Y : float32

 Z : float32

 Time : DateTime }

you can do a simple performance check by starting a “stopwatch” and checking its

elapsedMilliseconds property.

 let sw = System.Diagnostics.Stopwatch.StartNew()

 let test =

 Array.init 1_000_000 (fun i ->

 { X = float32 i

 Y = float32 i

 Z = float32 i

 Time = DateTime.MinValue })

 sprintf "%ims" sw.ElapsedMilliseconds

on my system, the instantiation took around 40ms with the [<Struct>] attribute and around

50ms without it. In reality, you’d need to check the whole life cycle of the items (instantiation,

access, and release) in the context of the real system and volumes you were working on.

Chapter 7 reCord types

201

EXERCISE 7-2 – WHEN TO USE RECORDS

this sounds like something with a number of moving parts, including storage for the

cached items, a timer for periodic eviction, and members allowing values to be retrieved

independently of how they are stored internally. there is also, presumably, some kind of

locking going on for thread safety. this clearly fulfills the criteria of “internal storage differs

from external representation” and “has moving parts,” which means that one or more class

types are almost certainly a more suitable approach than a record type.

EXERCISE 7-3 – EQUALITY AND COMPARISON

simply change the class type to a record type. Now your type will have structural (content)

equality, and set.ofList can be used successfully to deduplicate a collection of tracks.

 type Track = {

 Name : string

 Artist : string }

 // set [{Name = "Bread Hair";

 // Artist = "They Might Be Giants";};

 // {Name = "The Mollusk";

 // Artist = "Ween";}]

 let tracks =

 [{ Name = "The Mollusk"

 Artist = "Ween" }

 { Name = "Bread Hair"

 Artist = "They Might Be Giants" }

 { Name = "The Mollusk"

 Artist = "Ween" }]

 |> Set.ofList

Chapter 7 reCord types

202

EXERCISE 7-4 – MODIFYING RECORDS

Use the with keyword to assign new values for the X, Y, and Z values. Note that you can

access the old values from the original instance using dot notation. Make sure you have

the instance to be “modified” as the last function parameter, to make your function pipeline

friendly.

open System

[<Struct>]

type Position = {

 X : float32

 Y : float32

 Z : float32

 Time : DateTime }

let translate dx dy dz position =

 { position with

 X = position.X + dx

 Y = position.Y + dy

 Z = position.Z + dz }

let p1 =

 { X = 1.0f

 Y = 2.0f

 Z = 3.0f

 Time = DateTime.MinValue }

// { X = 1.5f;

// Y = 1.5f;

// Z = 4.5f;

// Time = 01/01/0001 00:00:00;}

p1 |> translate 0.5f -0.5f 1.5f

Chapter 7 reCord types

203

EXERCISE 7-5 – ANONYMOUS RECORDS

you can do this by using the keyword struct and instantiating an anonymous record with the

appropriate field names and values between {| |}:

open System

let sw = System.Diagnostics.Stopwatch.StartNew()

let test =

 Array.init 1_000_000 (fun i ->

 struct

 {| X = float32 i

 Y = float32 i

 Z = float32 i

 Time = DateTime.MinValue |})

sprintf "%ims" sw.ElapsedMilliseconds

In this simple case I couldn’t see any consistent difference between this version and a named

record version.

Chapter 7 reCord types

205
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_8

CHAPTER 8

Classes
It’s a curious thing about our industry: not only do we not learn from our
mistakes, we also don’t learn from our successes.

—Keith Braithwaite, Software Engineer

 The Power of Classes
F# classes give you the full power of Object-Oriented Programming (OOP)1. When

you need to go beyond record types, for example, when the external and internal

representations of data need to differ, or when you need to hold or even mutate state

over time, classes are often the answer. They are also a great solution when you need to

interact closely with an OO code base, for instance, by participating in a class hierarchy.

F# classes can inherit from C# classes and can implement C# interfaces, and C# can do

the same for F# classes and interfaces.

By the way, I’m avoiding using the phrase class types (although that is what we are

talking about) because there also exists a rather different concept, confusingly called type

classes. Type classes aren’t supported in F# at the time of writing, although there is work

going on in that area, so perhaps someday they will be. I’m not going to talk about them at

all in this book, and I’ll stick to the term class for F# object types and their C# equivalents.

A great example where you might want to move away from a purely functional style

is where you are dealing with streams. Streams have lots of “moving parts”: the content

of the stream itself, the current read position, whether that position is at the end, and so

forth. Compressed streams add a further level of complication, as do streams that have

some form of internal structure, such as an archive that might contain multiple subitems.

1 F# people often refer to “Object Programming” rather than “Object-Oriented Programming,”
to reflect the fact that we are happy to use OO features, but don’t base all our choices on OO
principles such as inheritance.

https://doi.org/10.1007/978-1-4842-7205-3_8#DOI

206

I was recently presented with exactly this situation, when I came across a

requirement to create so-called TGZ archives. A TGZ file consists of one or more tar

(which originally meant “tape archive”) files, each of which can contain one or more

other files. The whole outer file (or stream) is compressed using the gzip algorithm.

Figure 8-1 summarizes the situation.

Figure 8-1. Structure of a TGZ file

The good news is there is an open source library called SharpZipLib that can both

read and write tar and gzip streams. The less good news is that this library doesn’t have a

slick way to create a TGZ file, where we need to create a tar file/stream and compress it.

This calls for us to wrap up the available low-level features into a nice neat F# class.

We start defining an F# class by specifying its name and any constructor parameters

(Listing 8-1).

Chapter 8 Classes

207

Listing 8-1. Declaring a class

// Remove this line for use in a program (as opposed to a script or

Notebook)

// and add the Nuget package to your project instead.

#r "nuget: SharpZipLib, 1.3.2"

open System

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

The SharpZipLib library requires us to provide an “output stream.” Once archives

are created and compressed, the library will put the resulting bytes into this stream for

us. Because we don’t know whether the caller will want to use a file stream, a memory

stream, or whatever, in Listing 8-1, we require the caller to create the stream. So our new

class has a constructor parameter in which that stream can be provided. We also take

a parameter to specify the zip compression level and another to take the text encoding

used for entry names in the tar archive.

Next, we need to do any initialization work required when an instance is constructed

(Listing 8-2).

Listing 8-2. Adding a constructor body to a class

open System

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

Chapter 8 Classes

208

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream,

IsStreamOwner=false)

 do gzipStream.SetLevel(zipLevel)

 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding,

IsStreamOwner=false)

Initialization is done in the constructor body (everything between the constructor

parameters and the first member declaration). Here, we create a GZipOutputStream

instance and a TarOutputStream instance (both types provided by the SharpZipLib

library). These types will do the archiving and compression donkey work for us.

Imperative actions in the constructor body (things which are not let bindings, for

example, setting a property of a created object) must be in a do block. This is simply a

block of code following (usually indented below) the keyword do, which is executed

imperatively rather than returning a meaningful value. Hence, in Listing 8-2, we say do

before setting the zip level of the GZip stream.

Anything we bind with let in the constructor is available in the bodies of any

(nonstatic) class members. But such values aren’t available outside the class (unless we

explicitly expose them via members – which we’ll come to in a minute). By the way, you can

omit the constructor body entirely if there is nothing that needs to be done on construction.

Now we need our first member (Listing 8-3).

Listing 8-3. Adding a member to a class

open System

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

 (As Listing 8-2)

 /// Adds the content stream to the archive, starting at position 0 of

the content stream

Chapter 8 Classes

209

 /// and using the specified entry name.

 member _.AddEntry(entryName : string, content : Stream) =

 content.Position <- 0L

 let entry = Tar.TarEntry.CreateTarEntry(entryName,

Size=content.Length)

 tarStream.PutNextEntry(entry)

 content.CopyTo(tarStream)

 tarStream.CloseEntry()

Members are functions that are available outside the class: they are the world’s way

of communicating with the class by getting values from it or sending values to it. The

member AddEntry lets the caller add an entry to the zipped tar archive, by providing a

name for the entry and a stream containing the required contents.

Members are declared with the keyword member, followed – if necessary – by a

self-identifier such as this and then the name of the member and any parameters.

A self- identifier is only needed if the member needs to call other members of the same

instance. AddEntry does not do this, so we use an underscore to avoid an unused name

binding.

In the body of the member, we make sure the input stream is at the beginning and

then do the various steps which the SharpZipLib library requires for adding an entry.

Now let’s add another member to allow callers to add an entry based on a string

instead of a stream. Vanilla F# functions can’t be overloaded. In other words, you can’t

have two functions with the same name and different parameter lists. However, this rule

doesn’t apply to class members, so in Listing 8-4, we add an overload of the AddEntry

member using a string instead of a stream.

Listing 8-4. Adding an overloaded member to a class

open System

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

 (As Listing 8-2)

Chapter 8 Classes

210

 /// Adds the content stream to the archive, starting at position 0 of

the content stream

 /// and using the specified entry name.

 member _.AddEntry(entryName : string, content : Stream) =

 (As Listing 8-3)

 /// Adds the content string to the archive using the specified

entry name.

 member this.AddEntry(entryName : string, content : string) =

 use memStream = new MemoryStream()

 use memStreamWriter = new StreamWriter(memStream, AutoFlush=true)

 memStreamWriter.Write(content)

 this.AddEntry(entryName, memStream)

In Listing 8-4, the overload does need a self-identifier – because it works by copying

the input string to a stream and then calling the other overload to add that stream to the

archive. You can name self-identifiers whatever you like (within reason), but this is a

good default choice. It may seem a little asymmetrical to have one member without a

 self- identifier and another with one, but I think it’s preferable to do this than to break the

rule of having absolutely no bound – but unused – values.

Next, we need to deal with the thorny issue of finalization: how to tell SharpZipLib

that we have finished adding content and that it should finish populating the output

stream with a complete compressed archive. The only way which SharpZipLib provides

to do this is by disposing the GZipOutputStream and TarOutputStream instances. Only

when they are disposed do these classes write to their output streams. It makes sense

for our own wrapper class to do the same thing: when our type is disposed, the inner

SharpZipLib types should also be disposed, causing them to finish writing their outputs.

To provide disposability, a .NET class needs to implement the IDisposable interface.

It’s straightforward to do this in F# (Listing 8-5).

Listing 8-5. Implementing the IDisposable interface

open System

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

Chapter 8 Classes

211

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

 (As Listing 8-4)

 interface IDisposable with

 member this.Dispose() =

 tarStream.Dispose()

 gzipStream.Dispose()

 outputStream.Position <- 0L

In Listing 8-5, we implement the System.IDisposable interface and define its one

method, Dispose(). In Dispose(), we explicitly call the Dispose() methods of the

tarStream and gzipStream objects that we created in the constructor. This will cause

first the tar stream to finalize the output stream we provided to it, which is gzipStream.

So at this point, gzipStream has been given all the input it needs. Second, we dispose the

gzipStream object, which causes it to write our ultimate output (a zipped tar archive) to

the outputStream provided by the caller. Clearly, it is important we do this in the right

order, first, the “inner stream” (tar) and then the “outer stream” (zip). Last, as a courtesy

to the consumer of the output stream, we set the outputStream position to 0. This is

sensible as it’s almost certain that the caller will want to consume the output stream

from the start.

Now to check if our class works! Listing 8-6 shows it being used to add an entry

from a stream and then from a string. (To save you flipping backward and forward, I’ve

reproduced all the code in this listing.)

Listing 8-6. Testing the TGZipStream class

open System

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream,

IsStreamOwner=false)

Chapter 8 Classes

212

 do gzipStream.SetLevel(zipLevel)

 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding,

IsStreamOwner=false)

 /// Adds the content stream to the archive, starting at position 0 of

the content stream

 /// and using the specified entry name.

 member _.AddEntry(entryName : string, content : Stream) =

 content.Position <- 0L

 let entry = Tar.TarEntry.CreateTarEntry(entryName,

Size=content.Length)

 tarStream.PutNextEntry(entry)

 content.CopyTo(tarStream)

 tarStream.CloseEntry()

 /// Adds the content string to the archive using the specified

entry name.

 member this.AddEntry(entryName : string, content : string) =

 use memStream = new MemoryStream()

 use memStreamWriter = new StreamWriter(memStream, AutoFlush=true)

 memStreamWriter.Write(content)

 this.AddEntry(entryName, memStream)

 interface IDisposable with

 member this.Dispose() =

 tarStream.Dispose()

 gzipStream.Dispose()

 outputStream.Position <- 0L

let gZipStreamDemo() =

 // Change the path as appropriate.

 use fileStream = new FileStream(@"d:\temp\gZipStreamDemo.tgz",

IO.FileMode.Create)

 use tgz = new TGZipStream(3, Text.Encoding.Default, fileStream)

 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)

 use bytesStream = new MemoryStream(asciiCapitals)

Chapter 8 Classes

213

 tgz.AddEntry("Bytes", bytesStream)

 tgz.AddEntry("String", "Hello world")

gZipStreamDemo()

In Listing 8-6, we begin by creating a file stream to which we want our output to be

written. Because FileStream also implements IDisosable, we bind it with the keyword

use rather than let. This will cause the file stream to be disposed as soon as it goes out

of scope. Then we create an instance of our TGZipStream class, again with use as it too

implements IDisposable. Then we create and add the stream along with stream entries

using each of the overloaded methods of TGZipStream.

If you run the code (after changing the file path to match your environment), you

should end up with a file called gZipStreamDemo.tgz. You can open this file with a tool

such as 7-Zip (https://www.7- zip.org/) and you’ll see that it does indeed contain a tar

file, which itself contains an entry called “Bytes” with 26 bytes of data and an entry called

“String” with 11 bytes of data (Figure 8-2).

Figure 8-2. Viewing the gZipStreamDemo.tgz file in Z-Zip

Going back to the topic of disposal: when we bound our TGZipStream instance using

the keyword use, this caused the instance to be disposed when it went “out of scope,” in

other words, at the end of the code block where the instance was declared. This is the

usual way of doing things in F#, but it’s worth being aware of two alternatives which give

you a little more control. The first is the using function, which requires you to instantiate

Chapter 8 Classes

https://www.7-zip.org/

214

your disposable object in its first parameter and utilize it in its second parameter, which

is commonly expressed as a lambda (Listing 8-7).

Listing 8-7. Utilizing a disposable type with using

let gZipStreamUsingDemo() =

 // Change the path as appropriate.

 use fileStream = new FileStream(@"d:\temp\gZipStreamUsingDemo.tgz",

IO.FileMode.Create)

 using (new TGZipStream(3, Text.Encoding.Default, fileStream))

(fun tgz ->

 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)

 use bytesStream = new MemoryStream(asciiCapitals)

 tgz.AddEntry("Bytes", bytesStream)

 tgz.AddEntry("String", "Hello world")

)

gZipStreamUsingDemo()

The using function does have the very mild advantage that it allows you to define

a very explicit local block where your instance is valid and after which the instance

has definitely been disposed. But it does so at the cost of some extra bracketing, and in

general, one should prefer use. In practice, you will normally be creating a disposable

object in a small function, so it will quickly go out of scope and be disposed anyway.

If you want even more control, you can explicitly dispose a disposable object. Here,

you will come across what is arguably a bit of a rough edge in F#’s implementation of

Object-Oriented features: to access an interface method, you normally need to cast the

instance to the interface. The good news is that this is easy to do using the :> operator

(Listing 8-8).

Listing 8-8. Explicitly disposing a disposable object

let gZipStreamDisposalDemo() =

 // Change the path as appropriate.

 use fileStream = new FileStream(@"d:\temp\gZipStreamDisposalDemo.tgz",

IO.FileMode.Create)

 let tgz = new TGZipStream(3, Text.Encoding.Default, fileStream)

Chapter 8 Classes

215

 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)

 use bytesStream = new MemoryStream(asciiCapitals)

 tgz.AddEntry("Bytes", bytesStream)

 tgz.AddEntry("String", "Hello world")

 (tgz :> IDisposable).Dispose()

 // Error: ICSharpCode.SharpZipLib.Tar.TarException: TarBuffer.

WriteBlock - no output stream defined

 //tgz.AddEntry("Boom", "Boom")

gZipStreamDisposalDemo()

In Listing 8-8, we use the upcast operator :> to cast our TGZipStream instance to

IDisposable, having done which we can call Dispose().

You might like to prove that the object has indeed been disposed by uncommenting

the final line of Listing 8-8, so that we try to add an entry to the archive after we dispose

it. This causes an exception, which is exactly what you’d expect. However, as we don’t

handle this situation explicitly in our code, the exception comes from deep within the

SharpZipLib code:

ICSharpCode.SharpZipLib.Tar.TarException: TarBuffer.WriteBlock - no output

stream defined

You might want to think about how this could be improved. Unfortunately,

IDisposable doesn’t have a standard mechanism for detecting when an instance has

been disposed. Instead, you’d have to detect disposal yourself, perhaps using a mutable

flag initialized to false in the constructor and set to true in Dispose(), and raise a

suitable exception when this flag was true if members such as AddEntry() were called

post-disposal.

 Additional Constructors
Our main constructor requires the caller to specify a zip compression level and a text

encoding for tar entry labels. But what if the caller just wants to use default values for

these? We can do this by providing an additional constructor for our class (Listing 8-9),

using the new keyword as a sort of “constructor member.”

Chapter 8 Classes

216

Listing 8-9. An additional constructor

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream,

IsStreamOwner=false)

 do gzipStream.SetLevel(zipLevel)

 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding,

IsStreamOwner=false)

 /// Instantiates TGZipStream with a Zip level of 3 and a text encoding

of Encoding.Default.

 new(outputStream : Stream) =

 new TGZipStream(3, Text.Encoding.Default, outputStream)

 /// Adds the content stream to the archive, starting at position 0 of

the content stream

 /// and using the specified entry name.

 member _.AddEntry(entryName : string, content : Stream) =

 (As Listing 8-6)

 /// Adds the content string to the archive using the specified

entry name.

 member this.AddEntry(entryName : string, content : string) =

 (As Listing 8-6)

 interface IDisposable with

 (As Listing 8-6)

let gZipStreamAdditionalConstructorDemo() =

 // Change the path as appropriate.

 use fileStream = new FileStream(@"d:\temp\

gZipStreamAdditionalConstructorDemo.tgz", IO.FileMode.Create)

Chapter 8 Classes

217

 use tgz = new TGZipStream(fileStream)

 let asciiCapitals = Array.init 26 (fun i -> i + 65 |> byte)

 use bytesStream = new MemoryStream(asciiCapitals)

 tgz.AddEntry("Bytes", bytesStream)

 tgz.AddEntry("String", "Hello world")

gZipStreamAdditionalConstructorDemo()

Additional constructors must always call the primary constructor eventually, as the

final expression, but are free to do other work in their bodies and to provide their own

values for some of the main constructor parameters. In Listing 8-9, we provide default

zip level and text encoding values when calling the main constructor from the additional

constructor.

The requirement that additional constructors must call the main constructor implies

that the main constructor will be the most elaborate (have the most parameters), with

additional constructors providing various variations or defaults.

 Values As Members
Sometimes, it is useful to expose some internal value of a class – or something derived

from an internal value – as a member. Providing read-only access to internal values is

really simple (Listing 8-10), using the member val construct.

Listing 8-10. Exposing read-only internal values as members

open System.IO

open ICSharpCode.SharpZipLib

/// Embodies a zipped tar stream to which string and stream entries can

be added.

type TGZipStream(zipLevel : int, textEncoding : Text.Encoding, outputStream

: Stream) =

 let gzipStream = new GZip.GZipOutputStream(outputStream,

IsStreamOwner=false)

 do gzipStream.SetLevel(zipLevel)

Chapter 8 Classes

218

 let tarStream = new Tar.TarOutputStream(gzipStream, textEncoding,

IsStreamOwner=false)

 /// Instantiates TGZipStream with a Zip level of 3 and a text encoding

of Encoding.Default.

 new(outputStream : Stream) =

 new TGZipStream(3, Text.Encoding.Default, outputStream)

 /// Adds the content stream to the archive, starting at position 0 of

the content stream

 /// and using the specified entry name.

 member _.AddEntry(entryName : string, content : Stream) =

 (As Listing 8-6)

 /// Adds the content string to the archive using the specified

entry name.

 member this.AddEntry(entryName : string, content : string) =

 (As Listing 8-6)

 member val ZipLevel = zipLevel

 member val TextEncoding = textEncoding

 interface IDisposable with

 (As Listing 8-6)

let gZipStreamMemberDemo() =

 // Change the path as appropriate.

 use fileStream = new FileStream(@"d:\temp\gZipStreamMemberDemo.tgz",

IO.FileMode.Create)

 use tgz = new TGZipStream(3, Text.Encoding.Default, fileStream)

 // "Created tgz with zip level: 3, encoding: Unicode (UTF-8)"

 printfn "Created %s with zip level: %i, encoding: %s" (nameof tgz) tgz.

ZipLevel tgz.TextEncoding.EncodingName

gZipStreamMemberDemo()

In Listing 8-10, we expose ZipLevel and TextEncoding as members using the

syntax member val.... Note how the members don’t need brackets after their names in

this case.

Chapter 8 Classes

219

 Simple Mutable Properties
What do we want to do if we want some of the values encompassed by a class to be

settable from the outside? There are two ways of doing this, depending on the amount of

sophistication you need. This isn’t needed for the TGZ example, so instead let’s try to model

a simple “turtle,” as pioneered by the famous Logo programming language in the late 1960s.

Our version of a turtle can be given an initial position and has a settable heading. It can also

be told to walk a certain distance, at which point its position will change according to the

current heading and the distance it is told to walk. Listing 8-11 achieves all of this.

Listing 8-11. A simple turtle

open System

type Turtle(x : float, y : float) =

 member val X = x

 with get, set

 member val Y = y

 with get, set

 member val HeadingRadians = 0.

 with get, set

 member this.Walk(distance : float) =

 this.X <- this.X + (distance * Math.Sin(this.HeadingRadians))

 this.Y <- this.Y + (distance * Math.Cos(this.HeadingRadians))

let degreesToRadians d =

 d * Math.PI / 180.0

let turtleDemo() =

 let turtle = Turtle(0., 0.)

 turtle.HeadingRadians <- 90.0 |> degreesToRadians

 turtle.Walk(10.)

 turtle.HeadingRadians <- 180.0 |> degreesToRadians

 turtle.Walk(10.)

 printfn "Position now: %0.3f, %0.3f. Heading: %0.3f radians" turtle.X

turtle.Y turtle.HeadingRadians

// Position now: 10.000, -10.000, Heading: 3.142

turtleDemo()

Chapter 8 Classes

220

In Listing 8-11, our type takes an x and a y position as constructor arguments. It

has three members: X Y and HeadingRadians. X and Y are set at first to the values of x

and y from the constructor, and HeadingRadians gets an initial value of 0.0 (our turtle

always starts by facing North!). When you define a member with member val, you have

to bind an initial value, which is usually a constant, like 0.0, or comes from a constructor

parameter. If you want the member to be mutable, you say with get, set; or for read-

only members, you say just with get. We require the heading to be in radians rather

than degrees because this makes the position calculation super-simple. (.NET’s Math.

Sin and Math.Cos functions require arguments in radians.) Finally, we have a Walk()

method that does the necessary calculations to work out a new position. Since X and Y

are mutable members, we can set them by saying X <- new value. Here is one of those

cases where the member does need a self-identifier like this, because it accesses one of

the other members of the instance.

Also in Listing 8-11, we have a little convenience function to convert from degrees to

radians, making it a little easier to see that when we turn East (heading 90°), walk ten steps,

then turn South (heading 180°), and walk another ten steps, we end up in the right place.

Members bound with member val ... with get, set are a great solution when

the following conditions are true:

• The item needs to be readable from outside.

• We can get an initial value at construction time, typically from a

constant or a constructor argument.

• If the item needs to be writable from outside, no validation,

additional calculation, or further modifications are needed: the value

can just be set.

 Member Getters and Setters with Bodies
What if we want members that aren’t simple enough to be set directly? Let’s say that

we want the user of our Turtle class to be able to set the heading in degrees (more

intuitive for most humans), but for it to be stored and used for calculations internally

in radians (which saves a conversion in the Walk() method). This is a classic example

of “asymmetric representation”: what the outside world sees isn’t the same as what

happens internally. In this case, we can provide a getter and a setter that do actual work

when setting and retrieving the value from outside (Listing 8-12).

Chapter 8 Classes

221

Listing 8-12. Getters and setters with bodies

open System

type Turtle(x : float, y : float) =

 let mutable headingRadians = 0.

 let radiansPerDegree = Math.PI / 180.

 member val X = x

 with get, set

 member val Y = y

 with get, set

 member _.HeadingDegrees

 with get() =

 headingRadians / radiansPerDegree

 and set(degrees : float) =

 headingRadians <- degrees * radiansPerDegree

 member this.Walk(distance : float) =

 this.X <- this.X + (distance * Math.Sin(headingRadians))

 this.Y <- this.Y + (distance * Math.Cos(headingRadians))

let turtleDemo() =

 let turtle = Turtle(0., 0.)

 turtle.HeadingDegrees <- 90.0

 turtle.Walk(10.)

 turtle.HeadingDegrees <- 180.0

 turtle.Walk(10.)

 printfn "Position now: %0.3f, %0.3f. Heading: %0.3f degrees" turtle.X

turtle.Y turtle.HeadingDegrees

// Position now: 10.000, -10.000, Heading: 180 degrees

turtleDemo()

Listing 8-12 is very similar to Listing 8-11 except we have a HeadingDegrees member

that is no longer bound with member val. (But it doesn’t need a self-identifier, so we

put _ in that position.) We use with get() to define a function to get the value. This is

obtained by taking a mutable value called headingRadians (which is set initially to 0.0)

and dividing by a constant radiansPerDegree. Similarly, we use set(...) to define a

setter that converts to radians and updates the mutable value.

Chapter 8 Classes

222

Although F# developers generally try to minimize the number of mutable values in

their code, this is one case where using mutable is perfectly idiomatic (assuming it’s the

right scenario to be using a class at all). The scope of the mutable value is very narrow,

there is exactly one place it can be changed, and the effect any change will have is local

and obvious.

 Named Parameters and Object Initialization Syntax
Sometimes, it can be hard for a person reading some code to understand what the

various arguments going into a constructor or method actually mean. This is particularly

acute for Boolean flags, where a value of true or false gives no clue, at the call site, to

what the value might do. It’s time to demonstrate our commitment to the principle of

semantic focus by looking at some alternative construction styles (Listing 8-13).

Listing 8-13. Alternative construction styles

// Unnamed arguments:

let turtle1 = Turtle(1.2, 3.4)

// Named arguments:

let turtle2 = Turtle(x=1.2, y=3.4)

let turtle2b = Turtle(y=3.4, x=1.2)

// Object initialization syntax:

let turtle3 = Turtle(1.2, 3.4, HeadingDegrees=180.0)

// Named arguments and object initialization syntax:

let turtle4 = Turtle(x=1.2, y=3.4, HeadingDegrees=180.0)

turtle1, turtle2, turtle3, turtle4

In Listing 8-13, I show four variations on constructor calling.

• The turtle1 instance is constructed in the default manner, giving

arguments in the same order that the parameters are declared in the

constructor. To work out what the arguments mean, you’d have to guess

from their values or look at the class definition. (Or if you are lucky,

the author may have documented the parameters in a /// comment,

meaning that the definitions would appear in a tool tip in most IDEs.)

Chapter 8 Classes

223

• The turtle2 instance is constructed using named argument syntax.

It’s a little more verbose but much more readable, especially if there

are several parameters. The turtle2b instance illustrates how, with

this syntax, you can provide arguments in a different order if you

really want to.

• The turtle3 instance sets a property of the class at construction

time, in this case, HeadingDegrees, using object initialization syntax.

Here, we do this without using named argument syntax.

• The turtle4 instance combines named argument syntax with object

initialization syntax.

In my opinion, named argument syntax isn’t used in F# code as much as it should

be. If arguments are easy to mix up, it’s crucial: for example, I often see Latitude and

Longitude arguments being mixed up, because ordering conventions vary between

different code bases.

Object initialization syntax is more well used, particularly when interacting with C#-

based APIs, which tend to make extensive use of mutable properties. If you find yourself

creating instances and immediately setting their properties, always change this to object

initialization style.

In general, make sure you give some thought to which style you adopt. Naming at

the call site can be very helpful to the reader, especially when you are calling APIs that

require you to set lots of constructor arguments and mutable properties.

 Indexed Properties
We’ve already learned how to provide simple properties in a class by providing default

or explicit getters and setters. That’s fine if the properties are single values, but what if

you want a class to provide a collection property, one that you can access with the syntax

property.[index] (or, from F# 6, property[index])? For example, let’s implement a

ring buffer: a structure that contains a collection of length n. When we access elements

beyond the last, we circle back to element number (index modulus length). For instance,

in Figure 8-3, element [8] is actually the same item as element [0].

Chapter 8 Classes

224

Figure 8-3. A ring buffer

Listing 8-14 shows a simple ring buffer implementation that is initialized with values

from a sequence.

Listing 8-14. A ring buffer implementation

type RingBuffer<'T>(items : 'T seq) =

 let _items = items |> Array.ofSeq

 let length = _items.Length

 member _.Item i =

 _items.[i % length]

let fruits = RingBuffer(["Apple"; "Orange"; "Pear"])

// Apple Orange Pear Apple Orange Pear Apple Orange

for i in 0..7 do

 printfn "%s" fruits.[i]

// Invalid assignment

// fruits.[4] <- "Grape"

Chapter 8 Classes

225

The important part here is the member called Item. When a property has the name

Item and an index argument (here we used i), it describes a read-only, indexed property

that can be accessed by the caller using array-like syntax. Notice that I used the name

_items for the array backing store. I could instead have shadowed the original items

sequence by reusing the name items for the backing store array. By the way, the reason

I use a private backing store array, instead of directly accessing the items constructor

argument, is to avoid potentially slow indexed access into the items sequence.

You might also have noticed that I made the type generic, by adding the <'T>

parameter, just as we did with a record type in an earlier chapter. This means that the

ring buffer can have elements of any type.

If you want indexed properties to be settable, you need to use a slightly different

syntax, one with an explicit getter and setter (Listing 8-15).

Listing 8-15. Settable indexed properties

type RingBuffer<'T>(items : 'T seq) =

 let _items = items |> Array.ofSeq

 let length = _items.Length

 member _.Item

 with get(i) =

 _items.[i % length]

 and set i value =

 _items.[i % length] <- value

let fruits = RingBuffer(["Apple"; "Orange"; "Pear"])

fruits.[4] <- "Grape"

// Apple Grape Pear Apple Grape Pear Apple Grape

for i in 0..7 do

 printfn "%s" fruits.[i]

You can also have multidimensional indexed properties. Listing 8-16 implements

a (slightly mind-bending) two-dimensional ring buffer. Maybe this could be used to

represent a 2D gaming environment with wrap-around when a player went beyond the

finite bounds.

Chapter 8 Classes

226

Listing 8-16. A two-dimensional ring buffer

 type RingBuffer2D<'T>(items : 'T[,]) =

 let leni = items.GetLength(0)

 let lenj = items.GetLength(1)

 let _items = Array2D.copy items

 member _.Item

 with get(i, j) =

 _items.[i % leni, j % lenj]

 and set (i, j) value =

 _items.[i % leni, j % lenj] <- value

let numbers = Array2D.init 4 5 (fun x y -> x * y)

let numberRing = RingBuffer2D(numbers)

// 0 0 -> 0

// 0 1 -> 0

// ...

// 1 1 -> 1

// 1 2 -> 2

// ..

// 9 8 -> 3

// 9 9 -> 4

for i in 0..9 do

 for j in 0..9 do

 printfn "%i %i -> %A" i j (numberRing.[i,j])

The one subtlety here is that the dimension index parameters (i and j in this case)

must be tupled together. But the value parameter in the set declaration is curried – that

is, it’s outside the brackets that surround i and j.

 Interfaces
Interfaces are a key concept of the Object-Oriented world. An interface lets you define

a set of members in terms of their names and type signatures, but without any actual

behavior. Classes may then implement the interface, in other words, provide member

implementations that have the same names and type signatures as the members defined

Chapter 8 Classes

227

in the interface. We’ve already done these when we implemented the IDisposable

interface earlier.

Let’s imagine we want to have an interface that defines a simple media player. The

player needs to know how to open, play, stop playing, and eject media items. We want

to specify these behaviors in abstract terms, without worrying about whether a player

implementation plays audio, video, or something else (smell?), or thinking about how it

does so. Listing 8-17 shows an interface definition that meets these requirements.

Listing 8-17. Simple interface definition for a media player

type MediaId = string

type TimeStamp = int

type Status =

 | Empty

 | Playing of mediaId : MediaId * timeStamp : TimeStamp

 | Stopped of mediaId : MediaId

type IMediaPlayer =

 abstract member Open : mediaId : MediaId -> unit

 abstract member Play : unit -> unit

 abstract member Stop : unit -> unit

 abstract member Eject : unit -> unit

 abstract member Status : unit -> Status

Listing 8-17 starts with a couple of type aliases, which give new names for the

string and int types. I’m not a huge fan of littering code with type aliases, but when

defining interfaces, they make a lot of sense. They help motivational transparency by

incorporating meaningful names for both parameters and results in the type signature.

Next we have a Discriminated Union called Status, which embodies the states that the

media player can be in. (I’ve used labels for the payload elements, but I don’t have to.)

Finally, there is the actual interface definition. It starts with type <Name>, just like a class

definition, but since there can be no constructor, the name isn’t followed by brackets or

constructor parameters.

The definition of the interface consists of a series of abstract member definitions,

each of which must have a name, such as Open, and a type signature, such as mediaId :

MediaId -> unit. Use the keyword unit if you need to express the fact that the member

Chapter 8 Classes

228

doesn’t require any “real” parameters, or that it doesn’t return anything “real.” Again, I’ve

given names as well as types for each parameter, but in the case of interface definitions,

I don’t have to.

The beauty of interfaces is that you can start to think about the design of your

concrete types (the ones that will implement this interface) without getting distracted

by implementation details. For example, the fact that Open has a signature of

MediaId -> unit tells you that implementations of Open aren’t going to return any

feedback to the caller about whether they successfully opened the requested media

item. This further implies that any failures are either swallowed and not reported back

or are signaled in the form of exceptions. That might or might not be the best design: the

point is that you can think about it here, before committing to a lot of coding in either the

implementation of classes or their consuming code. If you have become accustomed to

designing systems based on function signatures, you could think of an interface as a sort

of big, multiheaded function signature.

Now that we have an interface definition, it’s time to start implementing the

interface: in other words, writing at least one class that provides actual code to execute

for each of the abstract members in the interface. To implement an interface, start by

defining a class in the usual way, providing a name and a constructor body (Listing 8-18).

Listing 8-18. Implementing an interface

type DummyPlayer() =

 let mutable status = Empty

 interface IMediaPlayer with

 member _.Open(mediaId : MediaId) =

 printfn "Opening '%s'" mediaId

 status <- Stopped mediaId

 member _.Play() =

 match status with

 | Empty

 | Playing(_, _) -> ()

 | Stopped(mediaId) ->

 printfn "Playing '%s'" mediaId

 status <- Playing(mediaId, 0)

Chapter 8 Classes

229

 member _.Stop() =

 match status with

 | Empty

 | Stopped(_) -> ()

 | Playing(mediaId, _) ->

 printfn "Stopping '%s'" mediaId

 status <- Stopped(mediaId)

 member _.Eject() =

 match status with

 | Empty -> ()

 | Stopped(_)

 | Playing(_, _) ->

 printfn "Ejecting"

 status <- Empty

 member _.Status() =

 status

Implement the interface by adding interface <Interface Name> with, followed by

implementations for each member in the interface. Each member declaration replaces

the abstract member from the interface with a concrete member containing real code.

The implementation needs to have the same function signature as the interface member

it is implementing.

In Listing 8-18, I’ve called the implementation DummyPlayer because this class

doesn’t really do very much – it certainly doesn’t actually play media! But you can see

how a real implementation would fit into the same interface/implementation pattern.

Now that we have a class that implements the interface, we can use it in code.

There is one minor complication, which always trips people up because it is a different

behavior from that in C#. To access any interface members, you must cast the concrete

class instance to the interface type, which you do with the :> (upcast) operator

(Listing 8-19).

Chapter 8 Classes

230

Listing 8-19. Accessing interface members

let player = new DummyPlayer() :> IMediaPlayer

// "Opening 'Dreamer'"

player.Open("Dreamer")

// "Playing 'Dreamer'"

player.Play()

// "Ejecting"

player.Eject()

// "Empty"

player.Status() |> printfn "%A"

To help me remember which operator to use, I visualize the upcast operator :> as a

sort of sarcastic emoticon, saying “Haha, you forgot to cast to the interface… again!”

In Listing 8-19, I cast to the interface as soon as I’ve constructed the class instance.

This is appropriate here because I am only accessing members that were part of the

interface. You can’t get away with this if you need to access members that aren’t part

of the interface – either direct members of the class itself or members from some

other interface that the class also implements. In those cases, you’ll need to cast to the

interface just before you access the relevant members (Listing 8-20).

Listing 8-20. Accessing instance and interface members

// Requires code from Listing 8-17

open System

open System.IO

type DummyPlayer() =

 let uniqueId = Guid.NewGuid()

 let mutable status = Empty

 let stream = new MemoryStream()

 member _.UniqueId =

 uniqueId

 interface IMediaPlayer with

Chapter 8 Classes

231

 member _.Open(mediaId : MediaId) =

 printfn "Opening '%s'" mediaId

 status <- Stopped mediaId

 member _.Play() =

 match status with

 | Empty

 | Playing(_, _) -> ()

 | Stopped(mediaId) ->

 printfn "Playing '%s'" mediaId

 status <- Playing(mediaId, 0)

 member _.Stop() =

 match status with

 | Empty

 | Stopped(_) -> ()

 | Playing(mediaId, _) ->

 printfn "Stopping '%s'" mediaId

 status <- Stopped(mediaId)

 member _.Eject() =

 match status with

 | Empty -> ()

 | Stopped(_)

 | Playing(_, _) ->

 printfn "Ejecting"

 status <- Empty

 member _.Status() =

 status

 interface IDisposable with

 member _.Dispose() =

 stream.Dispose()

Chapter 8 Classes

232

let player = new DummyPlayer()

(player :> IMediaPlayer).Open("Dreamer")

// 95cf8c51-ee29-4c99-b714-adbe1647b62c

printfn "%A" player.UniqueId

(player :> IDisposable).Dispose()

The class in Listing 8-20 implements two interfaces, IMediaPlayer and IDisposable,

and it also creates a memory stream in the class constructor, just as an example of a

resource that the class might want to dispose promptly when it itself is disposed. It also

has a member of its own, called UniqueId. At the end of Listing 8-20, we create a player,

open a media item, and then explicitly dispose the player. (By the way, it would be better

generally to create the player with the use keyword or the using function, meaning that

the player instance would be disposed on going out of context. I’ve coded in this way so

you can see the casting in action.)

Notice how, to call the Open() method, we cast to IMediaPlayer; to call the Dispose

method, we cast to IDisposable; and to use the UniqueId property, we don’t cast at all

because this is a member of the class itself. You might wonder why I didn’t have to cast

the stream instance to IDisposable when calling its Dispose() method. The answer

is that the C# code for MemoryStream didn’t implement the IDisposable interface

explicitly. F# always implements interfaces explicitly; in C#, you have the choice.

 Object Expressions
You can use an object expression to create a “something,” which inherits from a class or

implements one or more interfaces, but which is not a new named type. It’s a great way

of creating ad hoc objects for specific tasks, without actual, named types proliferating in

your code base.

Let’s say you are testing some class that takes a logger as one of its constructor

arguments and uses that logger throughout its implementation. You don’t want the

overhead of creating a real logger instance; you just want a simple dummy logger that

writes to the console or even does nothing. Listing 8-21 shows how to do that for the

MediaPlayer example, without creating any new types.

Chapter 8 Classes

233

Listing 8-21. Using object expressions

// Requires code from Listing 8-17

type ILogger =

 abstract member Info : string -> unit

 abstract member Error : string -> unit

type LoggingPlayer(logger : ILogger) =

 let mutable status = Empty

 interface IMediaPlayer with

 member _.Open(mediaId : MediaId) =

 logger.Info(sprintf "Opening '%s'" mediaId)

 status <- Stopped mediaId

 member _.Play() =

 match status with

 | Empty ->

 logger.Error("Nothing to play")

 | Playing(_, _) ->

 logger.Error("Already playing")

 | Stopped(mediaId) ->

 logger.Info(sprintf "Playing '%s'" mediaId)

 status <- Playing(mediaId, 0)

 member _.Stop() =

 match status with

 | Empty

 | Stopped(_) ->

 logger.Error("Not playing")

 | Playing(mediaId, _) ->

 logger.Info(sprintf "Playing '%s'" mediaId)

 status <- Stopped(mediaId)

 member _.Eject() =

 match status with

 | Empty ->

 logger.Error("Nothing to eject")

Chapter 8 Classes

234

 | Stopped(_)

 | Playing(_, _) ->

 logger.Info("Ejecting")

 status <- Empty

 member _.Status() =

 status

let logger = {

 new ILogger with

 member _.Info(msg) = printfn "%s" msg

 member _.Error(msg) = printfn "%s" msg }

let player = new LoggingPlayer(logger) :> IMediaPlayer

// "Nothing to eject"

player.Eject()

// "Opening 'Dreamer'"

player.Open("Dreamer")

// "Ejecting"

player.Eject()

In Listing 8-21, we make a new implementation of IMediaPlayer that requires a

logger as a constructor argument. The logger needs to be of type ILogger, which I’ve

also declared here but could just as easily be defined externally. The LoggingPlayer

implementation calls the logger’s Info and Error methods at various points. The

object expression part comes in the last few lines, where we create a value called

logger that implements ILogger but is not a new, named type. The curly brackets {}

are important here: they are part of the object expression. When various members of

the LoggingPlayer instance are called, these call the methods we defined in the logger

binding.

I personally don’t use object expressions very often, but they can certainly be useful.

The times I have used them have been in writing tests in F# for highly coupled C# code

bases. There they really have been a boon.

Chapter 8 Classes

235

 Abstract Classes
An abstract class is, broadly speaking, a class that allows at least some of its members

to be implemented by derived classes. The concept in F# is not precisely the same as

it is in C#, so if you are going to use abstract classes, it’s good to be clear about F#’s

interpretation of “abstract”:

• A method is abstract if it is marked with the keyword abstract,

meaning that it can be overridden in a derived class.

• Abstract members can have default definitions, meaning that they

can be but don’t have to be overridden.

• A class is only considered abstract if it contains at least one abstract

member that doesn’t have a default implementation. Classes that fall

into this category must be annotated with the [<AbstractClass>]

attribute.

• Thus, a class’s members can all be abstract without the class being

considered abstract: that’s when all the class’s abstract members have

default implementations. Classes that fall into this category must not

be annotated with the [<AbstractClass>] attribute.

Confused yet? Let’s look at some examples.

 Abstract Members
Listing 8-22 shows a simple class hierarchy with one abstract class and one derived class.

Listing 8-22. A simple abstract class

[<AbstractClass>]

type AbstractClass() =

 abstract member SaySomething : string -> string

type ConcreteClass(name : string) =

 inherit AbstractClass()

 override _.SaySomething(whatToSay) =

 sprintf "%s says %s" name whatToSay

Chapter 8 Classes

236

let cc = ConcreteClass("Concrete")

// "Concrete says hello"

cc.SaySomething("hello")

The abstract class’s member SaySomething is defined using the same kind of syntax

as we used when defining an interface: we specify the name of the member and its

signature (in this case, string -> string). Importantly, we use the [<AbstractClass>]

attribute because this truly is an abstract class: it has at least one abstract member

that doesn’t have a default definition. The error message you get if you omit the

[<AbstractClass>] attribute is a little confusing:

error FS0365: No implementation was given for 'abstract member

AbstractClass.SaySomething : string -> string'

So don’t forget the attribute!

 Default Member Implementations
Sometimes, we want to provide a default implementation for an abstract member: one

that will be used if a derived class doesn’t bother to override that member. Default

implementations are defined separately from the abstract definition. You use the same

syntax as for ordinary members, except by using the keyword default instead of member

(Listing 8-23).

Listing 8-23. Default abstract member implementation

type ParentClass() =

 abstract member SaySomething : string -> string

 default _.SaySomething(whatToSay) =

 sprintf "Parent says %s" whatToSay

type ConcreteClass1(name : string) =

 inherit ParentClass()

type ConcreteClass2(name : string) =

 inherit ParentClass()

 override _.SaySomething(whatToSay) =

 sprintf "%s says %s" name whatToSay

Chapter 8 Classes

237

let cc1 = ConcreteClass1("Concrete 1")

let cc2 = ConcreteClass2("Concrete 2")

// "Parent says hello"

printfn "%s" (cc1.SaySomething("hello"))

// "Concrete 2 says hello"

printfn "%s" (cc2.SaySomething("hello"))

See how SaySomething is defined twice in ParentClass, once as an abstract member

and again as the default implementation of that member.

It’s important to notice that because SaySomething now has a default

implementation, its class is no longer considered abstract. This is why I’ve renamed

the class ParentClass and removed the [<AbstractClass>] attribute. It would still

be abstract if there was at least one other abstract member that didn’t have a default

implementation.

Moving on to the derived classes: one of them, ConcreteClass1, doesn’t override

SaySomething, so the default implementation is used. The other one, ConcreteClass2,

does override SaySomething, and it is the overriding implementation that we see in

operation.

 Class Equality and Comparison
Although many F# developers don’t use inheritance or interfaces a great deal, there are

a few standard interfaces that we often have to support. One is IDisposable, which we

dealt with briefly previously. The others are IEquatable and IComparable, which are

used to determine if two instances are equal in some meaningful sense and whether one

is larger or smaller than another.

 Implementing Equality
Back in Chapter 7 we dodged the issue of latitude/longitude equality by storing positions

as F# records, which by default implement structural (content) equality. Now it’s

time to revisit the issue in the world of classes, where reference equality is the default.

Consider the code in Listing 8-24, and note how two instances of LatLon, landsEnd, and

landsEnd2, are considered unequal even though they refer to the same geographical

position.

Chapter 8 Classes

238

Listing 8-24. Two identical geographical positions might be “unequal”

type LatLon(latitude : float, longitude : float) =

 member val Latitude = latitude

 member val Longitude = longitude

let landsEnd = LatLon(50.07, -5.72)

let johnOGroats = LatLon(58.64, -3.07)

let landsEnd2 = LatLon(50.07, -5.72)

// false

printfn "%b" (landsEnd = johnOGroats)

// false

printfn "%b" (landsEnd = landsEnd2)

Note Comparing floating-point values is always a dangerous thing to do: two
Gps positions might only differ by the width of an atom and still be considered
different on the basis of floating-point comparison. to keep things simple, I’m
going to ignore that aspect and assume that instances like landsEnd and
landsEnd2 come from some completely repeatable source. I’m also ignoring what
happens if someone sends in an out-of- range value like 181.0 for longitude!

In the world of classes, the standard way to represent equality is to implement the

.NET interface IEquatable. There are some gotchas in doing this though, so I’ll take it a

step at a time and make a few deliberate mistakes.

Let’s start by simply making our class implement IEquatable, which is just a matter

of overriding the Equals method (Listing 8-25).

Listing 8-25. Just implementing IEquatable isn’t enough

open System

type LatLon(latitude : float, longitude : float) =

 member val Latitude = latitude

 member val Longitude = longitude

Chapter 8 Classes

239

 interface IEquatable<LatLon> with

 member this.Equals(that : LatLon) =

 this.Latitude = that.Latitude

 && this.Longitude = that.Longitude

let landsEnd = LatLon(50.07, -5.72)

let johnOGroats = LatLon(58.64, -3.07)

let landsEnd2 = LatLon(50.07, -5.72)

// false

printfn "%b" (landsEnd = johnOGroats)

// false

printfn "%b" (landsEnd = landsEnd2)

This compiles absolutely fine, and you might be forgiven for relaxing at that point.

Except that it doesn’t work! In the last line of Listing 8-25, landsEnd = landsEnd2 still

returns false. Confusingly, in the case of IEquatable, it isn’t enough just to implement

the interface. For a start, you must also override the Equals() method of System.Object.

(All classes are derived ultimately from System.Object, and for low-level operations like

equality, you do sometimes have to override its methods.) Listing 8-26 shows us doing

everything needed to make basic equality work.

Listing 8-26. Overriding Object.Equals

open System

[<AllowNullLiteral>]

type LatLon(latitude : float, longitude : float) =

 let eq (that : LatLon) =

 if isNull that then

 false

 else

 latitude = that.Latitude

 && longitude = that.Longitude

 member val Latitude = latitude

 member val Longitude = longitude

Chapter 8 Classes

240

 override this.GetHashCode() =

 hash (this.Latitude, this.Longitude)

 override _.Equals(thatObj) =

 match thatObj with

 | :? LatLon as that ->

 eq that

 | _ ->

 false

 interface IEquatable<LatLon> with

 member _.Equals(that : LatLon) =

 eq that

We’ve made a number of changes between Listings 8-23 and 8-24, and to make

equality work correctly, you’ll often need to do all of these things:

• The [<AllowNullLiteral>] attribute has been added to the class.

This allows other languages to create null instances. If we are

implementing LatLon as a class instead of an F# record, this is a likely

use case.

• There’s now a private eq function that does the real work of

comparing instances. This includes a null check, which is now

necessary as a result of adding [<AllowNullLiteral>].

• We’ve overridden the Object.Equals() method. Since this takes an

obj instance as its argument, this needs to pattern match on type

before calling eq.

• The IEquatable implementation also calls eq.

• We’ve also overridden the Object.GetHashCode() method.

In case you didn’t already know, GetHashCode() is a method that returns a “magic

number” that has the following qualities:

• If two objects are considered equal, they must have the same hash

code. (Within one Application Domain that is – the underlying hash

code generator can vary between platforms and versions.)

• If two objects are considered not equal, they will usually have

different hash codes, though this is far from guaranteed.

Chapter 8 Classes

241

The purpose of hash codes is to provide a quick way to check for likely equality in, for

example, dictionary implementations. You wouldn’t normally use hash codes directly –

unless you were implementing some special collection type of your own – but you are

encouraged to override GetHashCode so that your class can be placed into hash-based

collections efficiently. Luckily, this is often easy to do: just tuple together the items that

embody equality (in this case, the latitude and longitude values) and apply the built-in

hash function to them, as we did in Listing 8-26.

If you don’t override GetHashCode(), equality for the class will work correctly, but

you’ll get a compiler warning:

Warning FS0346: The struct, record or union type 'LatLon' has an explicit

implementation of 'Object.Equals'. Consider implementing a matching

override for 'Object.GetHashCode()'

With all these changes in place, Listing 8-27 demonstrates that equality now works

correctly from F#, including directly comparing instances with the = operator and adding

them to a dictionary, which requires equality.

Listing 8-27. Exercising equality

let landsEnd = LatLon(50.07, -5.72)

let johnOGroats = LatLon(58.64, -3.07)

let landsEnd2 = LatLon(50.07, -5.72)

// false

printfn "%b" (landsEnd = johnOGroats)

// true

printfn "%b" (landsEnd = landsEnd2)

let places = [landsEnd; johnOGroats; landsEnd2]

let placeDict =

 places

 |> Seq.mapi (fun i place -> place, i)

 |> dict

// 50.070000, -5.720000 -> 2

// 58.640000, -3.070000 -> 1

Chapter 8 Classes

242

placeDict

|> Seq.iter (fun kvp ->

 printfn "%f, %f -> %i"

 kvp.Key.Latitude kvp.Key.Longitude kvp.Value)

See how we use LatLon instances as keys in a dictionary. (The dictionary values here

are integers and aren’t meaningful beyond being something to put in the dictionary.)

The first instance (landsEnd, i=0) isn’t represented when we print out the dictionary

contents because it was replaced by another item with the same key (landsEnd2, i=2).

There is one final thing we need to do in regard to equality: ensure that the ==

operator works correctly from C# and VB.NET. To do this, add another override for the

op_Equality method (Listing 8-28).

Listing 8-28. Overriding op_Equality

open System

[<AllowNullLiteral>]

type LatLon(latitude : float, longitude : float) =

 let eq (that : LatLon) =

 if isNull that then

 false

 else

 latitude = that.Latitude

 && longitude = that.Longitude

 member val Latitude = latitude

 member val Longitude = longitude

 // static member (=) : this:LatLon * that:LatLon -> bool

 static member op_Equality(this : LatLon, that : LatLon) =

 this.Equals(that)

 override this.GetHashCode() =

 hash (this.Latitude, this.Longitude)

 override _.Equals(thatObj) =

 match thatObj with

 | :? LatLon as that ->

 eq that

Chapter 8 Classes

243

 | _ ->

 false

 interface IEquatable<LatLon> with

 member _.Equal

op_Equality is a static member. As in C#, this means that it isn’t associated with any

particular LatLon instance.

 Implementing Comparison
Sometimes, you can get away with only implementing equality and not comparison,

as we did in the previous section. In fact, it doesn’t seem particularly meaningful

to implement comparison (greater than/less than) for LatLon instances. Which is

genuinely “greater” – LatLon(1.0, 3.0) or LatLon(2.0, 0.0)? But there’s a catch: some

collections, such as F# sets, require their elements to be comparable, not just equatable,

because they rely on ordering to search for items efficiently. And, of course, other classes

might have an obvious sort order, which you might need to implement, so it’s important

to know how.

Here’s how to implement IComparable for our LatLon class (Listing 8-29).

Listing 8-29. Implementing IComparable

open System

[<AllowNullLiteral>]

type LatLon(latitude : float, longitude : float) =

 ...code as Listing 8-28...

 interface IComparable with

 member this.CompareTo(thatObj) =

 match thatObj with

 | :? LatLon as that ->

 compare

 (this.Latitude, this.Longitude)

 (that.Latitude, that.Longitude)

 | _ ->

 raise <| ArgumentException("Can't compare different types")

Chapter 8 Classes

244

Now that you’re familiar with interfaces in F#, this code should be pretty self-

explanatory. We implement IComparable and implement its one method: CompareTo().

Then, in a similar way to the Equals() override, we use pattern matching on types

to recover the other LatLon instance. We take the latitudes and longitudes from the

instances being compared and pass them as tuples to the built-in compare function,

which will do the real comparison work for us. Pleasingly, using compare means we don’t

have to worry about whether, for example, (50.07, -5.72) is less than or greater than

(58.64, -3.07). Whatever the compare function does for us is going to be consistent.

In Listing 8-30, we prove that a list of LatLon instances from Listing 8-29 can be put

into a Set and that duplicates by geographical position are eliminated in the process.

Listing 8-30. Using class instances that implement IComparable

let landsEnd = LatLon(50.07, -5.72)

let johnOGroats = LatLon(58.64, -3.07)

let landsEnd2 = LatLon(50.07, -5.72)

let places = [landsEnd; johnOGroats; landsEnd2]

// 50.070000, -5.720000

// 58.640000, -3.070000

places

|> Set.ofList

|> Seq.iter (fun ll -> printfn "%f, %f" ll.Latitude ll.Longitude)

One final wrinkle: there are actually two versions of IComparable: a nongeneric and

a generic one. In Listing 8-29, we only implemented the nongeneric one. This works, but

there can be a benefit in also implementing the generic version. Some APIs will try to

use both, starting with the generic version, which can improve performance. Listing 8-31

shows how to add the generic version of IComparable to the LatLon definition.

Listing 8-31. Adding a generic version of IComparable

open System

[<AllowNullLiteral>]

type LatLon(latitude : float, longitude : float) =

 let eq (that : LatLon) =

 if isNull that then

 false

Chapter 8 Classes

245

 else

 latitude = that.Latitude

 && longitude = that.Longitude

 let comp (that : LatLon) =

 compare

 (latitude, longitude)

 (that.Latitude, that.Longitude)

 member val Latitude = latitude

 member val Longitude = longitude

 static member op_Equality(this : LatLon, that : LatLon) =

 this.Equals(that)

 override this.GetHashCode() =

 hash (this.Latitude, this.Longitude)

 override _.Equals(thatObj) =

 match thatObj with

 | :? LatLon as that ->

 eq that

 | _ ->

 false

 interface IEquatable<LatLon> with

 member _.Equals(that : LatLon) =

 eq that

 interface IComparable with

 member _.CompareTo(thatObj) =

 match thatObj with

 | :? LatLon as that ->

 comp that

 | _ ->

 raise <| ArgumentException("Can't compare different types")

 interface IComparable<LatLon> with

 member _.CompareTo(that) =

 comp that

As with equality, I’ve moved the implementation of comparison to a private

function called comp and delegated to that from both the IComparable and the new

IComparable<LatLon> implementations.

Chapter 8 Classes

246

Now you know why F# record types, with structural equality and comparison by

default, are so valuable! If you even dip a toe into equality or comparison for classes,

you pretty much have dive into the pool completely. Sometimes, that’s worth it,

sometimes not.

 Recommendations
Here are the ideas I’d like you to take away from this chapter:

• Use F# classes when the modeling possibilities offered by simpler

structures, such as F# records and Discriminated Unions, aren’t

sufficient. Often, this is because there is a requirement for

asymmetric representation: the type is more than just a grouping of

its construction values, or it needs to have moving parts.

• Also use classes when you need to participate in a class hierarchy,

by inheriting from some other class or providing the ability to be

inherited from. This is most common when interacting with C# code

bases but may also be perfectly legitimate in F#-only code bases

in cases where class hierarchies are the easiest way to model the

requirement.

• Be aware of the benefits and costs of going down the OO route. Don’t

just do it because you happen to have more experience in modeling

things in an OO way. Explore the alternatives that F# offers first.

• Don’t forget the power of object expressions to inherit from base

types or implement interfaces without creating a new type.

• All the major OO modeling facilities offered by C# are also available

in F#: classes, abstract classes, interfaces, read-only, and mutable

properties – even nullability.

 Summary
The chapter has two messages. The explicit message is “Here’s how to do Object

Orientation in F#. Here’s how to write classes, use interfaces, override methods, and so

forth.” The implicit message is “Object Orientation can be a slippery slope.” Compare, for

Chapter 8 Classes

247

example, what we ended up with in Listing 8-31 with what would have been achieved,

almost for free, using an F# record (accepting the dangers and limitations of comparing

floating-point values, which apply to both the class and the record version). Also, it’s

interesting to note that this chapter is the longest in the book and was by far the hardest

to write. It’s hard to be concise when writing classes or writing about classes!

Object Orientation has its own internal logic that, when followed, doesn’t always

lead to the simplest solution. Therefore, you need to be keenly aware of the costs (and,

to be fair, benefits) of even starting down this path for any particular piece of design. The

costs are, broadly speaking, the following:

• The OO philosophy sometimes feels as though it involves taking

something complicated and making it more complicated. (I’m

indebted to Don Syme, “father of F#,” for this phrase.)

• OO code can be harder to reason about than a good, functional

implementation, especially once one opens the door to mutability.

• OO code tends to embrace the concept of nullability, which can

complicate your code. That said, as we discovered in Chapter 3,

the introduction of nullable reference types into C# may change the

balance of power here.

At the same time, you shouldn’t discount the benefits of an OO approach:

• .NET is fundamentally an OO platform. This isn’t just built into

the C# language – the lower-level IL into which both C# and F#

are compiled is also inherently object oriented. This fact can leak

into your F# code, and frankly you shouldn’t waste too much time

fighting it.

• Many of the NuGet packages and other APIs you will be coding

against will be written in terms of classes, interfaces, and so forth.

Again, this is just a fact of life.

• The OO world has an immense depth of experience in building

working, large-scale systems. A dyed-in-the-wool F# developer like

me would argue that these systems have often not been built in the

most productive way. But there is no denying there have been many

successes. It seems foolish to dismiss all this hard-won knowledge.

Chapter 8 Classes

248

So that you can make informed design decisions, make sure you are familiar with the

basics of F# classes, constructors, overrides, interfaces, and abstract classes. Don’t forget

how useful object expressions can be for making ad hoc extensions to a class without

a proliferation of types. Above all, be extremely cautious about implementing deep

hierarchies of classes. I’ve rarely seen this turn out well in F# code bases.

In the next chapter, we’ll return to F# fundamentals and look at how to get the best

out of functions.

 Exercises

EXERCISE 8-1 – A SIMPLE CLASS

Make a class that takes three byte values called r, g, and b and provides a byte property

called Level, which contains a grayscale value calculated from the incoming red, green, and

blue values.

the grayscale value should be calculated by taking the average of the r, g, and b values. You’ll

need to cast r, g, and b to integers to perform the calculation without overflow.

Note this is a terrible way to calculate grayscale values and probably a terrible
way to model them! the focus of this and the next few exercises is on the
mechanics of class definition.

EXERCISE 8-2 – SECONDARY CONSTRUCTORS

add a secondary constructor for the GrayScale class from exercise 8-1. It should take a

system.Drawing.Color instance and construct a GrayScale instance from the color’s R,

G, and B properties.

Chapter 8 Classes

249

EXERCISE 8-3 – OVERRIDES

Override the ToString() method of GrayScale so that it produces output like this, where

the number is the Level value:

GrayScale(140)

EXERCISE 8-4 – EQUALITY

Implement equality for the GrayScale class by overriding GetHashCode() and Equals()

and implementing the generic version of IEquatable. the GrayScale class should not be

nullable (don’t add the [<AllowNullLiteral>] attribute).

prove that GrayScale(Color.Orange) is equal to GrayScale(0xFFuy, 0xA5uy,

0x00uy).

prove that GrayScale(Color.Orange) is not equal to GrayScale(Color.Blue).

What happens if you check equality for GrayScale(0xFFuy, 0xA5uy, 0x00uy) and

GrayScale(0xFFuy, 0xA5uy, 0x01uy). Why is this?

 Exercise Solutions

EXERCISE 8-1 – A SIMPLE CLASS

this can be done in three lines of code. Note the casting between byte and int and back

again. this is done so that there is no overflow during the addition, but the Level property is

still a byte.

type GrayScale(r : byte, g : byte, b : byte) =

 member _.Level =

 (int r + int g + int b) / 3 |> byte

// 127

GrayScale(255uy, 128uy, 0uy).Level

Chapter 8 Classes

250

EXERCISE 8-2 – SECONDARY CONSTRUCTORS

add a secondary constructor using the new keyword and pass the color values individually

through to the main constructor.

open System.Drawing

type GrayScale(r : byte, g : byte, b : byte) =

 new (color : Color) =

 GrayScale(color.R, color.G, color.B)

 member _.Level =

 (int r + int g + int b) / 3 |> byte

// 83

GrayScale(Color.Brown).Level

EXERCISE 8-3 – OVERRIDES

add a straightforward override and use sprintf to produce the formatted output.

open System.Drawing

type GrayScale(r : byte, g : byte, b : byte) =

 new (color : Color) =

 GrayScale(color.R, color.G, color.B)

 member _.Level =

 (int r + int g + int b) / 3 |> byte

 override this.ToString() =

 sprintf "GrayScale(%i)" this.Level

// GrayScale(140)

GrayScale(Color.Orange) |> printfn "%A"

// GrayScale(255)

GrayScale(255uy, 255uy, 255uy) |> printfn "%A"

Chapter 8 Classes

251

EXERCISE 8-4 – EQUALITY

Follow the pattern shown in listing 8-24, but since you have not added the

[<AllowNullLiteral>] attribute, you shouldn’t check for null in the eq function.

open System

open System.Drawing

type GrayScale(r : byte, g : byte, b : byte) =

 let level = (int r + int g + int b) / 3 |> byte

 let eq (that : GrayScale) =

 level = that.Level

 new (color : Color) =

 GrayScale(color.R, color.G, color.B)

 member _.Level =

 level

 override this.ToString() =

 sprintf "GrayScale(%i)" this.Level

 override this.GetHashCode() =

 hash level

 override _.Equals(thatObj) =

 match thatObj with

 | :? GrayScale as that ->

 eq that

 | _ ->

 false

 interface IEquatable<GrayScale> with

 member _.Equals(that : GrayScale) =

 eq that

let orange1 = GrayScale(Color.Orange)

let blue = GrayScale(Color.Blue)

let orange2 = GrayScale(0xFFuy, 0xA5uy, 0x00uy)

let orange3 = GrayScale(0xFFuy, 0xA5uy, 0x01uy)

// true

printfn "%b" (orange1 = orange2)

// false

Chapter 8 Classes

252

printfn "%b" (orange1 = blue)

// true

printfn "%b" (orange1 = orange3)

GrayScale(0xFFuy, 0xA5uy, 0x00uy) is equal to GrayScale(0xFFuy,

0xA5uy, 0x01uy) even though the input rGB levels are slightly different. this is because

we lose some accuracy (we round down when doing integer division) in calculating Level to

fit into a byte range (0..255), so certain different combinations of inputs will result in the same

Level value.

Chapter 8 Classes

253
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_9

CHAPTER 9

Programming
with Functions

“Form follows function” – that has been misunderstood. Form and function
should be one, joined in a spiritual union.

—Frank Lloyd Wright, Architect

 Functions First
One of the things that makes F# a functional-first language is that its functions are

“first-class values.”1 But what does that really mean, and how genuinely useful is it? In

this chapter, you’ll get the answers to these questions and learn how you can use (and

sometimes abuse) this feature to build simple, refactorable code. This is one of those

topics where we move quite a way from the familiar ground of Object-Oriented code. So

buckle up and enjoy the ride!

 Functions as Values
What does it mean to describe a function as a value? Consider a simple function that

adds two numbers (Listing 9-1).

1 Just to clarify for readers with English as an additional language: the word “class” in this
paragraph doesn’t refer to “classes” in a programming sense (i.e., as in Chapter 8). In this
paragraph, by “first-class,” we mean something that is built naturally into the language syntax,
rather than something that needs extra ceremony to use.

https://doi.org/10.1007/978-1-4842-7205-3_9#DOI

254

Listing 9-1. Binding a function to another label

// int -> int -> int

let add a b = a + b

// int -> int -> int

let addUp = add

// 5

printfn "%i" (add 2 3)

// 5

printfn "%i" (addUp 2 3)

Listing 9-1 shows that we can not only define a function and use it: we can also bind

it to another label (let addUp = add) and call that as if it were the original function. We

can also pass it as an argument to some other function and have that other function call

the supplied function (Listing 9-2).

Listing 9-2. A function as a parameter for another function

let add a b = a + b

let applyAndPrint f a b =

 let r = f a b

 printfn "%i" r

// "5"

applyAndPrint add 2 3

In Listing 9-2, the function applyAndPrint has a parameter called f, whose signature

is a function that takes two values and returns an integer. In its body, applyAndPrint

calls the provided function – whatever it is – and prints the result.

All this is achieved without any additional ceremony, for example, having to make

the function be a “delegate” or a “func.” It’s just a value that happens to be a function.

The fact that it is a function (and not a single integer value or a string or whatever) is

deduced by the compiler entirely by the way it is used. In this case, the key line is

let r = f a b.

Chapter 9 programming with FunCtions

255

Furthermore, the compiler knows the function must return an integer, because we

use its result in a printfn statement that uses a %i format string.

Treating functions as values unlocks a rich store of possibilities for expressing

yourself in code. But it comes with the need to understand a few distinctly non- Object-

Oriented concepts, which I’ll cover in the next few sections.

 Currying and Partial Application
To get a bit more out of functions as values, we need to go into the twin concepts of

curried arguments and partial application. You can think of curried arguments as being

arguments expressed as separate values like this:

let add a b = a + b

…as opposed to the (for many people) more familiar style of tupled arguments, which

are bracketed together like this:

let add (a, b) = a + b

Note i’m using the terms “curried arguments” and “tupled arguments”
here even though, strictly speaking, these are function parameters (in the
definition), not arguments (actual values at call time). it just happens that “curried
arguments” and “tupled arguments” are the more commonly used, if less, precise
phrases.

Partial application is the act of binding a function while providing values for some,

but not all, of the expected arguments (Listing 9-3).

Listing 9-3. Partial application

// int -> int -> int

let add a b = a + b

// int -> int

let addTwo = add 2

Chapter 9 programming with FunCtions

256

// 5

printfn "%i" (add 2 3)

// 5

printfn "%i" (addTwo 3)

In Listing 9-3, we bind a function called addTwo, which takes one argument and adds

it to the constant 2. This is achieved by using (applying) add and providing one argument

value: 2. The one “left-over” argument of add is now required by addTwo, and when we

supply a value for it (last line of Listing 9-3), an actual calculation is done.

Incidentally, we can only use partial application because the add function’s

arguments are curried, not tupled. With tupled arguments, the caller always has to

provide the complete tuple.

Note another way to think of currying is that every function in F# takes only one
parameter. if a function is bound with, say, two (nontupled) parameters, it’s really a
function that takes one parameter and returns a function that itself takes the other
parameter.

You may well wonder why you’d ever want to curry and partially apply! The short

answer is code reuse. Imagine you want a simple function that surrounds a string with

two other strings. The surrounding strings might be brackets, quote marks, or even

comment delimiters. Listing 9-4 shows how you can do this in a concise way using

partial application.

Listing 9-4. Parenthesizing strings using partial application

let surround prefix suffix s =

 sprintf "%s%s%s" prefix s suffix

let roundParen = surround "(" ")"

let squareParen = surround "[" "]"

let xmlComment = surround "<!--" "-->"

let quote q = surround q q

let doubleQuote = quote "\""

Chapter 9 programming with FunCtions

257

// ~~Markdown strikethrough~~

printfn "%s" (surround "~~" "~~" "Markdown strikethrough")

// (Round parentheses)

printfn "%s" (roundParen "Round parentheses")

// [Square parentheses]

printfn "%s" (squareParen "Square parentheses")

// <!--XML comment-->

printfn "%s" (xmlComment "XML comment")

// "To be or not to be"

printfn "%s" (doubleQuote "To be or not to be")

In Listing 9-4, we start with a simple function called surround, which does the

fundamental work of surrounding a string with two other strings. The surround function

has curried arguments, which means we can use partial application to specialize the

function in various different ways: roundParen and squareParen parenthesize a string

with round and square brackets, respectively; and just to prove that we can use longer

surrounding strings, xmlComment surrounds the string with <!-- and -->. We also define

a quote function, which uses the same string before and after the input string, again by

calling surround. Then we specialize quote further, as doubleQuote, to surround the

input string with double quotation marks.

 Mixing Tupled and Curried Styles
There’s nothing in the rule book that says you can’t mix tupled and curried styles. Let’s

say you decide that it’s invalid to allow the enclosing strings to be applied separately in

the surround function. You could enforce that by tupling together the prefix and suffix

parameters (Listing 9-5).

Listing 9-5. Mixed tupled and curried styles

let surround (prefix, suffix) s =

 sprintf "%s%s%s" prefix s suffix

let roundParen = surround ("(", ")")

let squareParen = surround ("[", "]")

Chapter 9 programming with FunCtions

258

let xmlComment = surround ("<!--", "-->")

let quote q = surround(q, q)

let doubleQuote = quote "\""

// ~~Markdown strikethrough~~

printfn "%s" (surround ("~~", "~~") "Markdown strikethrough")

// (Round parentheses)

printfn "%s" (roundParen "Round parentheses")

// [Square parentheses]

printfn "%s" (squareParen "Square parentheses")

// <!--XML comment-->

printfn "%s" (xmlComment "XML comment")

// "To be or not to be"

printfn "%s" (doubleQuote "To be or not to be")

Note how all the code in Listing 9-5 has been amended so that prefix and suffix

are provided as a single tuple. But there is still partial application going on, for instance,

when we define specialized versions like roundParen and quote, where we provide the

whole prefix/suffix tuple but no value for the s parameter.

Stylistically, mixing tupled and curried styles is relatively rare, though oddly enough

we have encountered one example earlier in this book. It happened in Chapter 8, when

we had to provide a tuple for the two indices of a two- dimensional array property in the

property’s setter, and yet the value to be set was curried. (The relevant code is repeated

in Listing 9-6).

Listing 9-6. Mixed tupled and curried styles in the wild

type RingBuffer2D<'T>(items : 'T[,]) =

 let leni = items.GetLength(0)

 let lenj = items.GetLength(1)

 let _items = Array2D.copy items

 member _.Item

 with get(i, j) =

 _items.[i % leni, j % lenj]

 and set (i, j) value =

 _items.[i % leni, j % lenj] <- value

Chapter 9 programming with FunCtions

259

It’s also worth saying that many F# developers prefer the curried style even when

they don’t intend to use partial application, simply because it means there are fewer

brackets to type and match up.

When writing a function, it’s important to think through the order of the curried

arguments; which arguments will you want to provide “first,” and which will you want to

leave open for specialization?

 Function Signatures Revisited
We discussed function signatures a bit in Chapter 2, but I want to revisit the topic here

because it’s very important to start thinking in function signatures when designing

code. Like me, you might initially have been a bit irritated to find that in F#, the type

signature of a function like add is int -> int -> int. “Why,” I thought, “can’t they use

a different symbol to separate the parameter list (int and another int) from what the

function returns? (int). Why is it all just arrows?” The answer is because when we use

curried style, there truly is no distinction. Every time we provide an argument value for

a parameter, one item gets knocked off that undifferentiated list of parameters, until we

finally bind an actual value with a nonfunction type like int (Listing 9-7).

Listing 9-7. Function signatures and function application

// int -> int -> int

let add a b = a + b

// int -> int

let addTwo = add 2

// int

let result = addTwo 3

Note how the type signature of the add function differs if we tuple its parameters

(Listing 9-8).

Chapter 9 programming with FunCtions

260

Listing 9-8. Function signature for tupled arguments

// int * int -> int

let add(a, b) = a + b

// int

let result = add(2, 3)

The asterisk in the construct int * int shows that these values are part of a tuple,

and the function is expecting a whole tuple, not just two integers that might be provided

separately.

It’s worth getting familiar with F#’s way of expressing type signatures for two reasons:

they let you verify that a function has the “shape” you expect, and they let you pin down

that shape, if you want to, using type hints.

 Type Hints for Functions
When a function takes another function as a parameter, the “outer” function obviously

needs to apply the provided function appropriately. Think about the code in Listing 9-9,

where we provide a function to another function.

Listing 9-9. A function as a parameter for another function

let add a b = a + b

let applyAndPrint f a b =

 let r = f a b

 printfn "%i" r

// "5"

applyAndPrint add 2 3

Type inference deduces that the signature of the function f is ‘a -> ‘b -> int; in

other words, “function f takes a parameter of unknown type ‘a and another parameter of

unknown type ‘b and returns an integer.” The actual add function that we send in fits this

signature (where ‘a and ‘b also turn out to be integers). But sometimes you will want to

think about things in a different way: choosing to specify the type of f up front, by giving

a type hint. You write the type hint using the same notation as shown in the

Chapter 9 programming with FunCtions

261

type signatures we’ve just been discussing: that is, a list of parameter types, separated by

-> if the parameters are to be curried, or * if they are to be tupled together. Listing 9-10

shows this in action. First (in applyAndPrint1), we allow the incoming curried

arguments to be unknown types ‘a and ‘b, expressed as (f : 'a -> 'b -> int). Second

(in applyAndPrint2), we pin them down to be integers, expressed as (f : int -> int

-> int). And finally (in applyAndPrint3), we require a tuple of two integers, expressed

as (f : int * int -> int).

Listing 9-10. Using type hints to specify function types

// Takes curried arguments:

let add a b = a + b

// Takes tupled argument:

let addTupled(a, b) = a + b

// f must take curried arguments and return an int:

let applyAndPrint1 (f : 'a -> 'b -> int) a b =

 let r = f a b

 printfn "%i" r

// f must take curried integer arguments and return an int:

let applyAndPrint2 (f : int -> int -> int) a b =

 let r = f a b

 printfn "%i" r

// f must take tupled integer arguments and return an int:

let applyAndPrint3 (f : int * int -> int) a b =

 let r = f(a, b)

 printfn "%i" r

// Must use the curried version of add here:

applyAndPrint1 add 2 3

applyAndPrint2 add 2 3

// Must use the tupled version of add here:

applyAndPrint3 addTupled 2 3

Chapter 9 programming with FunCtions

262

This means that when writing a function that takes another function, you have two

options (we’ll call the functions newFunction and paramFunction):

• Work on the body of newFunction first, and let the compiler work

out the type of paramFunction itself based on how it is used (as

Listing 9-9).

• Specify the signature of the paramFunction in newFunction’s

parameter list using a type hint so that the compiler can check

that you call paramFunction correctly in newFunction’s body (as

Listing 9-10).

The final outcome can be just the same, because usually you can remove the type

hint when everything is compiling successfully.

For me, there is no hard and fast rule for which approach to take. I usually start by

relying entirely on type inference at first, but if either the compiler or I get confused, I try

adding a type hint in case that clarifies matters. I normally try removing the type hint at

the end of the process, but I don’t let it ruin my day if type inference can’t work out the

signature, which sometimes does happen in otherwise valid code. In those cases, I leave

the type hint in and move on. Even then, I often find later that my code elsewhere was

imperfect, and when I sort that out, I try again to remove type hints I left in earlier.

All that being said, it can be useful to provide type hints for functions you expect

other people to have to call or refer to a lot, for example, the public API of a library you

are publishing. This can help readability for people who might not be interested in the

nuts and bolts of your code, or who are viewing it outside an IDE.

 Functions That Return Functions
Not only can functions take functions; functions can return functions. Unlike with

parameters, explicitly returning functions requires you to pay a tiny syntax overhead,

the keyword fun followed by an argument list and a forward arrow ->. We can rejig the

add function from Listing 9-1 so that it behaves in exactly the same way but works by

explicitly returning a function (Listing 9-11).

Chapter 9 programming with FunCtions

263

Listing 9-11. Explicitly returning a function

// int -> int -> int

let add a =

 fun b -> a + b

// 5

printfn "%i" (add 2 3)

See how in Listing 9-11 we use fun b -> to specify that we want to create a

function that takes one argument, which we call b. Since this is the last expression in

the definition of add, it is this newly minted function that is returned. Notice also how

the type signature of the new add is the same as it was in Listing 9-1. This bears out

what I was saying earlier: that you can think of a function with two arguments as only

really taking one argument and returning a function that itself requires the remaining

argument.

Why on earth would you want to make a function definition more complicated by

explicitly returning another function? The answer is: you can do useful work, and/or

hide data, by placing it inside the outer function but before the returned function. In

Listing 9-12, we define a simple counter that takes a starting point, and each time it is

invoked, it returns the next integer.

Listing 9-12. A simple counter using explicit returning of a function

let counter start =

 let mutable current = start

 fun () ->

 let this = current

 current <- current + 1

 this

let c1 = counter 0

let c2 = counter 100

// c1: 0

// c2: 100

// c1: 1

// c2: 101

// c1: 2

Chapter 9 programming with FunCtions

264

// c2: 102

// c1: 3

// c2: 103

// c1: 4

// c2: 104

for _ in 0..4 do

 printfn "c1: %i" (c1())

 printfn "c2: %i" (c2())

The counter function works by initializing a little bit of mutable state (current) and

then returning a function that returns the current value and increments the state. This is

a nice way of using, but concealing, some mutable state. (As implemented here, though,

I wouldn’t want to warrant that it’s thread safe.)

Another situation where you might like to create and use, but not expose, a bit of

state is random number generation. One way of generating random numbers is to create

a new instance of the System.Random class and then call one of its methods to produce

values. It’s always a little annoying to have to worry about the scope of the System.

Random instance. But you can get around this by binding a value that creates the System.

Random and then returns a function that gets the next value from it (Listing 9-13).

Listing 9-13. Hiding a System.Random instance by returning a function

let randomByte =

 let r = System.Random()

 fun () ->

 r.Next(0, 255) |> byte

// E.g. A3-52-31-D2-90-E6-6F-45-1C-3F-F2-9B-7F-58-34-44-

for _ in 0..15 do

 printf "%X-" (randomByte())

printfn ""

In Listing 9-13, the function we return takes unit (expressed as two round brackets)

and uses – but does not expose – a System.Random instance to return a random byte.

Although we call randomByte() multiple times, only one System.Random() instance is

created. In addition to the data-hiding aspect, this pattern is also useful where it takes

significant time to initialize the state within the outer function.

Chapter 9 programming with FunCtions

265

 Function Composition
Once we realize that functions are simply values, it’s logical to ask if we can in some

way add them together, as we can number values (by adding) or string values (by

concatenating). The answer, you won’t be surprised to learn, is “yes.” Let’s imagine you

have the task of taking some text and replacing all the directional or typographic quote

marks with nondirectional or neutral ones. For example, this text:

“Bob said ‘Hello’,” said Alice.

… would be translated to this:

"Bob said 'Hello'," said Alice. (Note the nondirectional quote marks.)

The actual replacement is simply a matter of calling .NET’s String.Replace

method a couple of times in functions called fixSingleQuotes and fixDoubleQuotes

(Listing 9-14). Then we bind a function called fixTypographicQuotes. which calls

fixSingleQuotes and fixDoubleQuotes to do its work.

Listing 9-14. First cut of removing typographic quotes

module Quotes =

 module Typographic =

 let openSingle = '\u2018' // ‘

 let closeSingle = '\u2019' // ’

 let openDouble = '\u201C' // “

 let closeDouble = '\u201D' // ”

 module Neutral =

 let single = '\u0027' // '

 let double = '\u0022' // "

 /// Translate any typographic single quotes to neutral ones.

 let fixSingle (s : string) =

 s

 .Replace(Typographic.openSingle, Neutral.single)

 .Replace(Typographic.closeSingle, Neutral.single)

Chapter 9 programming with FunCtions

266

 /// Translate any typographic double quotes to neutral ones.

 let fixDouble (s : string) =

 s

 .Replace(Typographic.openDouble, Neutral.double)

 .Replace(Typographic.closeDouble, Neutral.double)

 /// Translate any typographic quotes to neutral ones.

 let fixTypographic (s : string) =

 s

 |> fixSingle

 |> fixDouble

"This had "typographical 'quotes'"" |> Quotes.fixTypographic

There’s nothing inherently wrong with the way Quotes.fixTypographic is defined

in Listing 9-14. Indeed, I would often be tempted to leave the code in that state. But

there are several alternative ways of expressing the same logic, any of which you may

encounter in the wild, and some of which you might even prefer.

Firstly, we note that Quotes.fixSingle returns a string and Quotes.fixDouble takes

a string. Whenever some function takes the same type that another function returns,

you can compose them together into a new function using the function composition

operator >> (Listing 9-15).

Listing 9-15. Basic function composition

 /// Translate any typographic quotes to neutral ones using

 /// function composition.

 let fixTypographic (s : string) =

 let fixQuotes = fixSingle >> fixDouble

 s |> fixQuotes

In Listing 9-15, we define a function called fix, which is a combination of fixSingle

and fixDouble. When fix is called, fixSingle will be called first (using the input to

fix), and its output will be passed to fixDouble. Whatever fixDouble returns will be

returned as the result of fixTypographic. Having defined fixTypographic, we then call

it by passing the input s into it.

We can eliminate still more code by not explicitly binding fixQuotes, instead doing

the composition “on the fly” in brackets and passing s into that (Listing 9-16).

Chapter 9 programming with FunCtions

267

Listing 9-16. Using a composed function without binding it to a name

 /// Translate any typographic quotes to neutral ones using

 /// function composition.

 let fixTypographic (s : string) =

 s |> (fixSingle >> fixDouble)

This does exactly the same thing as Listing 9-15, but without binding the composed

function to an arguably unnecessary token.

Finally, we note that the explicit parameter s isn’t really needed because its sole

purpose is to be passed into the composition of fixSingle and fixDouble. If we simply

delete it, we still end up with a function fixTypographic that takes a string and returns a

string (Listing 9-17).

Listing 9-17. Eliminating an unnecessary parameter

 /// Translate any typographic quotes to neutral ones using

 /// function composition.

 let fixTypographic =

 fixSingle >> fixDouble

It takes a while before one starts automatically recognizing where functions can

be composed with >>, rather than pipelined together with |>. But once you start

“feeling the force,” there is a temptation to go crazy with function composition.

You may even find yourself bending other parts of your code just so that you can

use composition. This is often a good thing: functions that are easily composable

are often well-designed functions. But also remember: composition isn’t a goal

in itself. The principles of motivational transparency and semantic focus trump

everything else.

For example, if you use function composition extensively, the reader of your code

will have fewer named bindings, like fixTypographic, to give them clues as to what is

going on. And in the worst case, if the code has to be debugged, they won’t have a bound

value to look at because the composed functions have effectively been put into a black

box. Sometimes, code with a few explicitly bound intermediate values is simply more

readable and more maintainable. Use function composition with restraint!

Chapter 9 programming with FunCtions

268

 Recommendations
Here are some thoughts I’d like you to take away from this chapter:

• Remember the twin concepts of currying (defining parameters as

separate, untupled items) and partial application (binding a function

value by applying another function giving some, but not all, its

curried parameters).

• Consider defining the parameters of your function in curried style.

It can reduce noise (brackets) and make your functions more

flexible to use.

• Define curried parameters (more commonly known as curried

arguments) in an order that is likely to make partial application by a

consumer make the most sense.

• Use currying and partial application judiciously to clarify and

simplify your code and to eliminate code repetition.

• Functions can take other functions as arguments. Exploit this to

create beautiful, decoupled code. Remember that you have a choice

about whether to specify the signature of the incoming function using

a type hint or to allow type inference to infer its signature based on

how it is used.

• Functions can explicitly return other functions. This can be a great

way to get data hiding without classes.

• Whenever a function’s input is the same type as another function’s

output, they can be composed together using the >> operator. The

fact that the functions you have written are composable is a good

sign, but that doesn’t mean you have to compose them with >>. You

may be sacrificing readability and ease of debugging.

Chapter 9 programming with FunCtions

269

 Summary
Coding gurus love to talk about “decoupled code.” But in Object-Oriented languages,

functions are still coupled to classes in the form of methods, and parameters are still

coupled to one another in the form of tuples. F# sets functions free by making them first-

class values, able to be declared independently, called, passed as arguments, returned as

results, and composed together; all vastly increasing the expressiveness of the language. In

part, this is achieved by using the concept of curried arguments, which can be applied one

at a time, with each supplied argument taking us one step closer to an actual computation.

One of the keys to writing stylish F# code is to make good but cautious use of these

powers. Above all, don’t always use partial application and composition to reduce your

code down to the most concise expression humanly possible. It won’t be readable or

maintainable.

In the next chapter, we’ll leave the rarefied world of F# functions and start our

journey into performant F# code by looking at asynchronous and parallel programming.

 Exercises

EXERCISE 9-1 – FUNCTIONS AS ARGUMENTS

think back to the code from Listing 9-2, where we supplied an add function to

applyAndPrint, which calls add and prints the results:

let add a b = a + b

let applyAndPrint f a b =

 let r = f a b

 printfn "%i" r

// "5"

applyAndPrint add 2 3

Define another function called multiply that multiplies its arguments. Can it be used by

applyAndPrint?

what if you want to send in a function to subtract its second input from its first? is it possible

to do this without defining a named function called something like subtract?

Chapter 9 programming with FunCtions

270

EXERCISE 9-2 – FUNCTIONS RETURNING FUNCTIONS

in Listing 9-12, we defined a counter that returned a function to count up from a defined

starting point:

let counter start =

 let mutable current = start

 fun () ->

 let this = current

 current <- current + 1

 this

let c1 = counter 0

let c2 = counter 100

for _ in 0..4 do

 printfn "c1: %i" (c1())

 printfn "c2: %i" (c2())

Define another function called rangeCounter that returns a function that generates numbers

in a circular pattern between a specified range, for example, 3, 4, 5, 6, 3, 4, 5, 6, 3….

EXERCISE 9-3 – PARTIAL APPLICATION

the following code shows a function featureScale that “rescales” a dataset so that all the

values fall into a specified range. the scale function calls featureScale to normalize a

dataset into the range 0..1.

let featureScale a b xMin xMax x =

 a + ((x - xMin) * (b - a)) / (xMax - xMin)

let scale (data : seq<float>) =

 let minX = data |> Seq.min

 let maxX = data |> Seq.max

 // let zeroOneScale = ...

 data

 |> Seq.map (fun x -> featureScale 0. 1. minX maxX x)

 // |> Seq.map zeroOneScale

Chapter 9 programming with FunCtions

271

// seq [0.0; 0.5; 1.0]

[100.; 150.; 200.]

|> scale

how would you amend the code so that the mapping operation at the end of the scale function

did not use a lambda function? that is, so that it reads something like this:

|> Seq.map zeroOneScale

You can assume that the provided dataset is nonempty.

EXERCISE 9-4 – FUNCTION COMPOSITION

You have a list of functions, each of which takes a float argument and returns another float, like this:

let pipeline =

 [fun x -> x * 2.

 fun x -> x * x

 fun x -> x - 99.9]

the list is nonempty but otherwise can have any length.

how would you write a function applyAll that can take such a list of functions and apply

them all, taking the result of the first function and feeding it into the second, taking the result

of that and feeding it into the third function, and so forth, until a final result is produced? Your

function should be callable like this:

let applyAll (p : (float -> float) list) =

 // Replace this:

 raise <| System.NotImplementedException()

let r = 100. |> applyAll pipeline

// 39900.1

printfn "%f" r

hints:

• You can combine values in a nonempty list using List.reduce.

• remember that there is an F# operator that can combine (compose) two

functions into one, providing that the output of the first is compatible with the

input of the second.

Chapter 9 programming with FunCtions

272

 Exercise Solutions

EXERCISE 9-1 – FUNCTIONS AS ARGUMENTS

it’s straightforward to define a multiply function and pass it into applyAndPrint:

let add a b = a + b

let multiply a b = a * b

let applyAndPrint f a b =

 let r = f a b

 printfn "%i" r

// "5"

applyAndPrint add 2 3

// "6"

applyAndPrint multiply 2 3

to define a subtract function without naming it, you can use the fun keyword in the call to

applyAndPrint:

// "-1"

applyAndPrint (fun x y -> x - y) 2 3

or you could just pass an operator straight in:

// "-1"

applyAndPrint (-) 2 3

EXERCISE 9-2 – FUNCTIONS RETURNING FUNCTIONS

You can achieve this using a similar pattern to Listing 9-12 but with a little if/then logic to

calculate the next value and wrap it round when it passes the upper bound.

let rangeCounter first last =

 let mutable current = first

 fun () ->

 let this = current

 let next = current + 1

Chapter 9 programming with FunCtions

273

 current <-

 if next <= last then

 next

 else

 first

 this

// r1: 3 r2: 6

// r1: 4 r2: 7

// r1: 5 r2: 8

// r1: 6 r2: 9

// r1: 3 r2: 10

// r1: 4 r2: 11

// ...

// r1: 3 r2: 8

let r1 = rangeCounter 3 6

let r2 = rangeCounter 6 11

for _ in 0..20 do

 printfn "r1: %i r2: %i" (r1()) (r2())

EXERCISE 9-3 – PARTIAL APPLICATION

You need to bind a value called something like zeroOneScale, which is a partial application

of featureScale providing values for the a, b, xMin, and xMax parameters. the resulting

function only has one parameter, x, and so can be used directly in a Seq.map operation.

let featureScale a b xMin xMax x =

 a + ((x - xMin) * (b - a)) / (xMax - xMin)

let scale (data : seq<float>) =

 let minX = data |> Seq.min

 let maxX = data |> Seq.max

 let zeroOneScale = featureScale 0. 1. minX maxX

 data

 |> Seq.map zeroOneScale

// seq [0.0; 0.5; 1.0]

[100.; 150.; 200.]

|> scale

Chapter 9 programming with FunCtions

274

EXERCISE 9-4 – FUNCTION COMPOSITION

this can be achieved using List.reduce (or Seq.reduce) and the >> (function

composition) operator.

let pipeline =

 [fun x -> x * 2.

 fun x -> x * x

 fun x -> x - 99.9]

let applyAll (p : (float -> float) list) =

 p |> List.reduce (>>)

let r = 100. |> applyAll pipeline

// 39900.1

printfn "%f" r

since List.reduce is a partial function and raises an exception if the list is empty, the

function pipeline list must contain at least one function.

if you want, you can omit the explicit parameter for applyAll, as the reduce operation will

return a composed function, which itself expects a parameter.

 let applyAll =

 List.reduce (>>)

Chapter 9 programming with FunCtions

275
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_10

CHAPTER 10

Asynchronous
and Parallel Programming

I know how hard it is to watch it go.

And all the effort that it took to get there in the first place.

And all the effort not to let the effort show.

—Everything but the Girl, Band

 Ordering Pizza
In asynchronous programming, we embrace the fact that certain operations are best

represented by running them separately from the main flow of logic. Instead of stopping

everything while we wait for a result, we expect those separate computations to notify us

when they have completed, at which point we’ll deal with their results. It’s a bit like one

of those restaurants where you order, say, a pizza, and they give you a pager that flashes

when your order is ready. You’re free to grab a table and chat with your friends. When

the pager goes off, you collect your pizza and carry on with the main business of your

visit – eating!

F# offers an elegant approach for asynchronous computation (actually a choice of

two elegant approaches!), but it has to be said that working asynchronously inevitably

complicates the business logic of your code. The trick is to keep the impacts to the

minimum. For most applications, by adopting a small set of coding patterns, you can

keep your code elegant and readable while still getting the benefits of asynchronous

working.

https://doi.org/10.1007/978-1-4842-7205-3_10#DOI

276

The first of these approaches, and the one with the longest history in the F#

ecosystem, is the async computation expression. (Don’t worry for now about what

a “computation expression” is.) The second approach, added in F# 6.0, is the task

computation expression. The task approach is more closely aligned with the way in which

asynchronous work is done in C#. But first we’ll tackle F#’s classic approach: async.

 A World Without Async
Because the benefits and impacts of asynchronous working tend to manifest across the

whole structure of your program, I’m going to break with the practice of most of this

book and offer a complete, potentially useful program as the example for this whole

chapter. The example is a bulk file downloader, a console program that can find all

the file download links in a web page and download all the files. It’ll also be able to

filter what it downloads. For example, you could download just the files whose names

end in “.gz”. As a starting point, I’ll offer a synchronous version of the program. Then

I’ll go through all the steps necessary to make it work asynchronously using the async

computation expression. This reflects my normal coding practice: I tend to write a

synchronous version initially to get all the business logic clear; then I translate relevant

portions into an asynchronous world.

To avoid including a huge listing, I’ve broken up the program into parts that I’ll

discuss separately. If you want to follow along, create an F# console program called

MassDownload (Listing 10-1) and simply add the code from the listings into .fs files

named after the module in the code.

Listing 10-1. Creating the MassDownload program

$ mkdir MassDownload

$ cd MassDownload

$ dotnet new console -lang F#

We’ll start with a module that can print colored messages to the console, which

will be useful to show when downloads start, complete, fail, and so forth (Listing 10-2).

Its message function also shows the managed thread ID for the current thread, which

will help us explore the behavior of our program as we transition it to an asynchronous

approach.

Chapter 10 asynChronous and parallel programming

277

Notice also how I use partial application, as introduced in the previous chapter, to

provide functions called red, green, and so forth to issue messages in those colors.

Listing 10-2. Log.fs – printing colored console messages

namespace MassDownload

module Log =

 open System

 open System.Threading

 /// Print a colored log message.

 let message (color : ConsoleColor) (message : string) =

 Console.ForegroundColor <- color

 printfn "%s (thread ID: %i)"

 message Thread.CurrentThread.ManagedThreadId

 Console.ResetColor()

 /// Print a red log message.

 let red = message ConsoleColor.Red

 /// Print a green log message.

 let green = message ConsoleColor.Green

 /// Print a yellow log message.

 let yellow = message ConsoleColor.Yellow

 /// Print a cyan log message.

 let cyan = message ConsoleColor.Cyan

Now let’s write some functions that get the file download links from the target web

page (Listing 10-3). The absoluteUri function deals with the fact that some web pages

provide download links relative to their own addresses (e.g., downloads/myfile.txt)

while others provide absolute addresses (e.g., https://mysite.org/downloads/myfile.

txt). The code here is pretty simplistic and may not work in all cases, but I wanted to

keep it simple, as URL processing is not the main topic of this chapter.

The getLinks function takes a URI and a regular expression pattern and parses the

web page to get all the download links that match the pattern. Note that this function

uses HtmlDocument.Load, which is provided by the FSharp.Data NuGet package.

You’ll need to add this package to your console project (e.g., dotnet add package

FSharp.Data).

Chapter 10 asynChronous and parallel programming

https://mysite.org/downloads/myfile.txt
https://mysite.org/downloads/myfile.txt

278

Listing 10-3. Download.fs – functions for getting download links from a

web page

namespace MassDownload

module Download =

 open System

 open System.IO

 open System.Net

 open System.Text.RegularExpressions

 // From Nuget package "FSharp.Data": dotnet add package FSharp.Data

 open FSharp.Data

 /// If a download link starts with http: or https: return a Uri of it

 /// unchanged, otherwise return a uri of it relative to its page.

 let private absoluteUri (pageUri : Uri) (filePath : string) =

 if filePath.StartsWith("http:")

 || filePath.StartsWith("https:") then

 Uri(filePath)

 else

 let sep = '/'

 filePath.TrimStart(sep)

 |> (sprintf "%O%c%s" pageUri sep)

 |> Uri

 /// Get the URLs of all links in a specified page matching a

 /// specified regex pattern.

 let private getLinks (pageUri : Uri) (filePattern : string) =

 Log.cyan "Getting names..."

 let re = Regex(filePattern)

 let html = HtmlDocument.Load(pageUri.AbsoluteUri)

 let links =

 html.Descendants ["a"]

 |> Seq.choose (fun node ->

 node.TryGetAttribute("href")

Chapter 10 asynChronous and parallel programming

279

 |> Option.map (fun att -> att.Value()))

 |> Seq.filter (re.IsMatch)

 |> Seq.map (absoluteUri pageUri)

 |> Seq.distinct

 |> Array.ofSeq

 links

Next up, we have a function that attempts to download a file from a given URI to

a given local path (Listing 10-4). If you are following along, the code for this listing

should be included in the Download module we started in Listing 10-3. The tryDownload

function uses WebClient.DownloadFile to do its work. It reports success by returning

Result.OK or failure (if there is an exception) by returning Result.Error.

Listing 10-4. Download.fs continued – the tryDownload function

 /// Download a file to the specified local path.

 let private tryDownload (localPath : string) (fileUri : Uri) =

 let fileName = fileUri.Segments |> Array.last

 Log.yellow (sprintf "%s - starting download" fileName)

 let filePath = Path.Combine(localPath, fileName)

 use client = new WebClient()

 try

 client.DownloadFile(fileUri, filePath)

 Log.green (sprintf "%s - download complete" fileName)

 Result.Ok fileName

 with

 | e ->

 let message =

 e.InnerException

 |> Option.ofObj

 |> Option.map (fun ie -> ie.Message)

 |> Option.defaultValue e.Message

 Log.red (sprintf "%s - error: %s" fileName message)

 Result.Error e.Message

Chapter 10 asynChronous and parallel programming

280

Note Creating and disposing WebClient instances locally like this might cause
thread exhaustion problems in high-volume scenarios, so it might in practice
be better to create a single WebClient instance externally and provide it as a
parameter. i’ve left the creation locally here in the interest of simplicity.

Also within the Download module, we have one public function, GetFiles (Listing 10-5).

GetFiles uses getLinks to list the required download links and calls tryDownload for each

of the resulting paths. We count up the Result.Ok and the Result.Error results to provide

success and error counts.

Listing 10-5. Download.fs continued – the GetFiles function

 /// Download all the files linked to in the specified webpage, whose

 /// link path matches the specified regular expression, to the

specified

 /// local path.

 let GetFiles (pageUri : Uri) (filePattern : string) (localPath : string) =

 let links = getLinks pageUri filePattern

 let downloadResults =

 links

 |> Array.map (tryDownload localPath)

 let isOk = function

 | Ok _ -> true

 | Error _ -> false

 let successCount =

 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =

 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 {|

 SuccesCount = successCount

 ErrorCount = errorCount

 |}

Chapter 10 asynChronous and parallel programming

281

Finally, in Listing 10-6, we have a main function for the console program. It calls

Download.GetFiles to do its work. We also use a System.Diagnostics.Stopwatch to

time the whole operation.

Listing 10-6. Program.fs – the console program’s main function

open System

open System.Diagnostics

open MassDownload

[<EntryPoint>]

let main args =

 // A program to get multiple files from download links provided on a

website.

 // (Quite naive - intended mainly as a basis for demonstrating async

programming.)

 // E.g. dotnet run https://minorplanetcenter.net/data "neam.*\.json\.

gz$" "c:\temp\downloads"

 // dotnet run http://compling.hss.ntu.edu.sg/omw "\.zip$" "c:\

temp\downloads"

 //

 // Large!

 // dotnet run http://storage.googleapis.com/books/ngrams/books/

datasetsv2.html "eng\-1M\-2gram.*\.zip$" "c:\temp\downloads"

 if args.Length = 3 then

 let uri = Uri args.[0]

 let pattern = args.[1]

 let localPath =args.[2]

 let sw = Stopwatch()

 sw.Start()

 let result =

 Download.GetFiles uri pattern localPath

Chapter 10 asynChronous and parallel programming

282

 Log.cyan

 (sprintf "%i files downloaded in %0.1fs, %i failed."

 result.SuccessCount sw.Elapsed.TotalSeconds result.ErrorCount)

 0

 else

 Log.red @"Usage: massdownload url nameregex download path - e.g.

massdownload https://minorplanetcenter.net/data neam.*\.json\.gz$

c:\temp\downloads"

 1

You can run the program for data from the Minor Planet Center by typing

dotnet run https://minorplanetcenter.net/data “neam.*\.json\.gz$”

“c:\temp\downloads”

You’ll need to make sure the directory used in the command line (c:\temp\

downloads) exists, or change the command line to use one that does. To help you try out

the program on different web pages, here is a table of URLs where you will find some files

to download and corresponding regular expression patterns (Table 10-1).

 Running the Synchronous Downloader
Here’s the output I got when I ran our synchronous program for the minor planets data

(Listing 10-7).

Table 10-1. Some Download URLs and Name Patterns

URL Pattern Comments

https://minorplanetcenter.net/data neam.*\.json\.gz$ minor planets

http://compling.hss.ntu.edu.sg/omw \.zip$ Computational

linguistics

http://storage.googleapis.com/books/

ngrams/books/datasetsv2.html

eng\-1m\-2gram.*\.zip$ google n-grams

Very large!

Chapter 10 asynChronous and parallel programming

https://minorplanetcenter.net/data
https://minorplanetcenter.net/data
http://compling.hss.ntu.edu.sg/omw
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

283

Listing 10-7. Behavior of the synchronous downloader

neam00_extended.json.gz - starting download (thread ID: 1)

neam00_extended.json.gz - download complete (thread ID: 1)

neam01_extended.json.gz - starting download (thread ID: 1)

neam01_extended.json.gz - download complete (thread ID: 1)

neam02_extended.json.gz - starting download (thread ID: 1)

...

neam15_extended.json.gz - starting download (thread ID: 1)

neam15_extended.json.gz - download complete (thread ID: 1)

16 files downloaded in 6.4s, 0 failed. (thread ID: 1)

The files are downloaded one at a time, everything happens on the same thread

(ID: 1), and the whole process takes about 6 seconds. If we run it for a bigger dataset,

the computational linguistics one, it takes quite a while. Figure 10-1 shows what was

happening on my Wi-Fi connection while the computational linguistics download ran.

While the Wi-Fi connection is kept fairly busy, it certainly isn’t maxed out (it’s a

200Mbps connection). But the main concern with the behavior of this synchronous

version is the fact that it hogs an entire thread throughout the time it is running. It does

this even though much of the time is spent waiting for server responses as blocks of data

are sent over the network. In .NET, a thread is considered quite an expensive resource,

one which – on a busy machine – could be doing other work during these waits.

Figure 10-1. Wi-Fi usage during a run of the synchronous mass downloader

Chapter 10 asynChronous and parallel programming

284

 Converting Code to Asynchronous
To remedy the situation, we need to go through all our code to identify operations

where our code is “ordering pizza”: in other words, starting an operation that will take

a significant amount of time and which doesn’t require our main thread’s attention to

complete. Typically, this will be input/output operations, where the real work happens

in disk controllers, network interfaces, networks, and remote servers. The first place

where our code orders pizza is in the getLinks function (back in Listing 10-3), where we

load an HTML document that comes from a remote server:

 let html = HtmlDocument.Load(pageUri.AbsoluteUri)

If you look at the Intellisense for HtmlDocument, you might notice that there’s also an

AsyncLoad function. What if you simply use this in your html binding? (Listing 10-8).

Listing 10-8. The return type of HtmlDocument.AsyncLoad

 let private getLinks (pageUri : Uri) (filePattern : string) =

 Log.cyan "Getting names..."

 let re = Regex(filePattern)

 // val html : Async<HtmlDocument>

 let html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)

 ...

The code following the let html = binding won’t compile now because html is no

longer an HtmlDocument instance; it’s an Async<HtmlDocument>. Instead of giving you a

pizza, the person at the counter has given you a pager: effectively the promise of a pizza

and a means of knowing when it’s ready. So just like when you order at a restaurant that

uses a pager system, you need to adjust your expectations and behave a little differently:

that is, don’t eat the pager!

The way to achieve this change of worldview in F# is with an async computation

expression, which is very easy to use. Firstly, rename the function to asyncGetLinks to

reflect its new asynchronous nature. Then move the whole body of the function into

curly brackets, and place the word async before these. Instead of let to bind the html

value, use let!. Finally, instead of simply “mentioning” the links value at the end of the

function to return it, explicitly return it using the return keyword (Listing 10-9).

Chapter 10 asynChronous and parallel programming

285

Listing 10-9. Placing a function body into an async computation expression

 /// Get the URLs of all links in a specified page matching a

 /// specified regex pattern.

 let private asyncGetLinks (pageUri : Uri) (filePattern : string) =

 async {

 Log.cyan "Getting names..."

 let re = Regex(filePattern)

 let! html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)

 let links =

 html.Descendants ["a"]

 |> Seq.choose (fun node ->

 node.TryGetAttribute("href")

 |> Option.map (fun att -> att.Value()))

 |> Seq.filter (re.IsMatch)

 |> Seq.map (absoluteUri pageUri)

 |> Seq.distinct

 |> Array.ofSeq

 return links

 }

The let! and return keywords are only valid in the context of computation

expressions such as async {}. In brief, a computation expression or “CE” is a section

of code where certain keywords, such as let! and return, have special meanings. In

an async {} CE, let! effectively means “Please get me a pizza and page me when it’s

ready. I or one of my friends will come back to this exact point when you page us. In the

meantime, I’ll feel free to find a table and chat.” Using return is analogous to linking a

particular pizza order with a pager and handing over the pager instead of the pizza.

The next place where we “order pizza” is in the tryDownload function, where we use

WebClient.DownloadFile:

 client.DownloadFile(fileUri, filePath)

Again, this is an I/O operation that is going to take time, in this case, an

eternity in CPU terms because we might be downloading large files. There are two

asynchronous methods in the WebClient API to choose from: DownloadFileAsync and

Chapter 10 asynChronous and parallel programming

286

DownloadFileTaskAsync. The one we want is DownloadFileTaskAsync. (The other one

requires us to provide an event handler to notify us of completion, almost as if we had to

give the pizza restaurant our own pager. This seems a bit too much trouble to be worth it,

even for pizza.)

To use DownloadFileTaskAsync in the context of an F# async computation

expression, we need to do two things. First, we need to translate it from a C# Task into

an F# Async, which you can easily do using Async.AwaitTask. (I’ll follow up on the

differences between Task and Async in a moment.) Second, since this is an imperative

operation that doesn’t of itself return anything, we need to use the do! keyword instead

of let! to specify that it should be run asynchronously without returning a value. And

finally, we need to use the return keyword to return the Result.Ok or Result.Error

results (Listing 10-10).

Listing 10-10. Using Async.AwaitTask and do! to perform an async imperative

operation

 /// Download a file to the specified local path.

 let private asyncTryDownload (localPath : string) (fileUri : Uri) =

 async {

 let fileName = fileUri.Segments |> Array.last

 Log.yellow (sprintf "%s - starting download" fileName)

 let filePath = Path.Combine(localPath, fileName)

 use client = new WebClient()

 try

 do!

 client.DownloadFileTaskAsync(fileUri, filePath)

 |> Async.AwaitTask

 Log.green (sprintf "%s - download complete" fileName)

 return (Result.Ok fileName)

 with

 | e ->

 let message =

 e.InnerException

 |> Option.ofObj

 |> Option.map (fun ie -> ie.Message)

Chapter 10 asynChronous and parallel programming

287

 |> Option.defaultValue e.Message

 Log.red (sprintf "%s - error: %s" fileName message)

 return (Result.Error e.Message)

 }

By now, you should be able to see a pattern emerging in what we need to do to make

a function asynchronous:

• Place the body in an async {} block.

• Identify any time-consuming external operations where the API you

are using offers an Async version.

• Use let! or do! to bind or imperatively execute them. Where

necessary, use Async.AwaitTask to translate from a C# Task to an

F# Async.

• Return (the promise of) results using the return keyword.

Incidentally, there is also a match! keyword, which you can use to call async

functions, and pattern match on the results, in a single operation.

Next, we need to apply a similar recipe to the next level up: the GetFiles function

that calls getLinks and tryDownload (now the async... versions) to do its work. We can

start off in exactly the same way, placing the whole function body in async {} and using

let! to bind asyncGetLinks (Listing 10-11).

Listing 10-11. Starting to make GetFiles asynchronous

 /// Download all the files linked to in the specified webpage, whose

 /// link path matches the specified regular expression, to the

specified

 /// local path.

 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath :

string) =

 async {

 let! links = asyncGetLinks pageUri filePattern

 ...

The next few lines of AsyncGetFiles require a little more thought. The current code

is repeated in Listing 10-12.

Chapter 10 asynChronous and parallel programming

288

Listing 10-12. Synchronous download code

 let downloadResults =

 links

 |> Array.map (tryDownload localPath)

We can’t just change tryDownload to asyncTryDownload because the async version

no longer immediately does its work and returns results: instead, it returns a promise of

work not yet even started. We could make the code compile by forcing the computation

to execute and awaiting its result (Listing 10-13), but then we’ve gained almost nothing

because the download operations are still performed one at a time, even though they run

on different threads.

Listing 10-13. An antipattern for multiple, similar async computations

 let downloadResults =

 links

 /// Antipattern: using Async.RunSynchronously anywhere but

the top level:

 |> Array.map (fun link ->

 asyncTryDownload localPath link |> Async.RunSynchronously)

Getting names... (thread ID: 1)

neam00_extended.json.gz - starting download (thread ID: 8)

neam00_extended.json.gz - download complete (thread ID: 13)

neam01_extended.json.gz - starting download (thread ID: 13)

neam01_extended.json.gz - download complete (thread ID: 4)

...

neam15_extended.json.gz - starting download (thread ID: 5)

neam15_extended.json.gz - download complete (thread ID: 5)

16 files downloaded in 5.8s, 0 failed. (thread ID: 1)

This is like ordering multiple pizzas one at a time and for each one waiting at the

counter for the pager to flash before ordering the next.

Instead, what we want to do is gather all the ready-to-go computations and run them

simultaneously (or at least allow .NET to run them as simultaneously as resources allow).

This can be achieved by sending the results of Seq.map (asyncTryDownload...) into the

function Async.Parallel and using a let! binding to bind the results (Listing 10-14).

Chapter 10 asynChronous and parallel programming

289

Listing 10-14. Using Async.Parallel

 /// Download all the files linked to in the specified webpage, whose

 /// link path matches the specified regular expression, to the specified

 /// local path.

 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath :

string) =

 async {

 let! links = asyncGetLinks pageUri filePattern

 let! downloadResults =

 links

 |> Array.map (asyncTryDownload localPath)

 |> Async.Parallel

 let isOk = function

 | Ok _ -> true

 | Error _ -> false

 let successCount =

 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =

 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return

 {|

 SuccessCount = successCount

 ErrorCount = errorCount

 |}

 }

We’ll refine this logic later, but this is good enough for now. Finally, we need to

amend the program’s main function slightly so that it calls AsyncGetFiles and waits for

its results (Listing 10-15).

Chapter 10 asynChronous and parallel programming

290

Listing 10-15. program.fs – calling AsyncGetFiles

 ...

 let result =

 Download.AsyncGetFiles uri pattern localPath |> Async.

RunSynchronously

 ...

It’s reasonable to use Async.RunSynchronously at this top level because nothing

else, other than the execution of the command-line program as whole, depends on the

completion of this operation. (If we were writing something with a user interface, it would be

a different story, as we wouldn’t want the UI to freeze while the downloads were happening.)

 Locking Shared Resources
There’s one more task to do, and that is to control access to a shared, mutable resource

that all the download tasks will use concurrently. And what is that resource? It’s the

console, with its colored messages! Each of the simultaneous computations might

output to the console at any time, so if you don’t control access to it, you’ll get jumbled-

up messages and colors. The fix is relatively easy: use the lock keyword (Listing 10-16).

Listing 10-16. Make a function thread safe using a lock expression

 /// Print a colored log message.

 let message =

 let lockObj = obj()

 fun (color : ConsoleColor) (message : string) ->

 lock lockObj (fun () ->

 Console.ForegroundColor <- color

 printfn "%s (thread ID: %i)"

 message Thread.CurrentThread.ManagedThreadId

 Console.ResetColor())

The new version of message is a nice example of the technique we introduced in the

previous chapter: using a binding that creates some state but keeps it private and then

returns a function that uses that state. In this case, the state in question is simply an

arbitrary object that is used by the lock expression to ensure exclusive access.

Chapter 10 asynChronous and parallel programming

291

Needless to say, locking is a very complex subject. But in this context, Listing 10-16

shows a simple and effective way to achieve exclusive access for an operation that won’t

take long to run.

 Testing Asynchronous Downloads
It is time to check whether our shiny new asynchronous download performs better. Here

are the results of running against the minor planets data (Listing 10-17, compare with

Listing 10-7).

Listing 10-17. Log messages from an asynchronous run

Getting names... (thread ID: 1)

neam11_extended.json.gz - starting download (thread ID: 18)

neam15_extended.json.gz - starting download (thread ID: 14)

neam00_extended.json.gz - starting download (thread ID: 4)

neam08_extended.json.gz - starting download (thread ID: 13)

neam09_extended.json.gz - starting download (thread ID: 19)

...

neam07_extended.json.gz - download complete (thread ID: 14)

neam13_extended.json.gz - download complete (thread ID: 14)

neam03_extended.json.gz - download complete (thread ID: 4)

neam15_extended.json.gz - download complete (thread ID: 14)

neam06_extended.json.gz - download complete (thread ID: 14)

16 files downloaded in 3.9s, 0 failed. (thread ID: 1)

The differences between this and Listing 10-7 are striking:

• The downloads run on several threads, and the thread that logs the

completion of a download is usually different from the thread that

started it, even though both the “started” and “complete” log messages

are issued by the same function. This is the magic of let! and do!.

• All the downloads are started before any of them complete. Compare

that with the way started/completed messages simply alternate in the

synchronous version.

• Most importantly of all, the whole operation takes under 4 seconds

instead of over 6 seconds.

Chapter 10 asynChronous and parallel programming

292

The usage of my Wi-Fi connection, when downloading the larger computational

linguistics dataset, is equally striking (Figure 10-2).

In Figure 10-1, throughput on the interface was very spiky and hovered around

4–5Mbps. In the asynchronous version, we get up to over 150Mbps initially (note the

difference in scale on the charts), and it stabilizes at around 25Mbps. I would guess that

the tail-off we observe is the server at the other end throttling the download – but even

allowing for this, we are downloading five times faster than the synchronous version.

 Batching
One thing I’ve learned in several decades of coding is never to trust one’s first successful

run! Let’s try the same code against the Google n-grams dataset. (You’ll find the URL and

regular expression pattern for this in Table 10-1.)

Note this is a large dataset. don’t leave this running on a metered connection!

This is how things looked after a minute or so of running (Listing 10-18 and

Figure 10-3).

Figure 10-2. Wi-Fi throughput downloading files asynchronously

Chapter 10 asynChronous and parallel programming

293

Listing 10-18. Downloading a large number of files

Getting names... (thread ID: 1)

googlebooks-eng-1M-2gram-20090715-1.csv.zip - starting download

(thread ID: 8)

googlebooks-eng-1M-2gram-20090715-22.csv.zip - starting download

(thread ID: 24)

googlebooks-eng-1M-2gram-20090715-19.csv.zip - starting download

(thread ID: 22)

googlebooks-eng-1M-2gram-20090715-20.csv.zip - starting download

(thread ID: 23)

googlebooks-eng-1M-2gram-20090715-17.csv.zip - starting download

(thread ID: 13)

googlebooks-eng-1M-2gram-20090715-14.csv.zip - starting download

(thread ID: 17)

googlebooks-eng-1M-2gram-20090715-10.csv.zip - starting download

(thread ID: 4)

googlebooks-eng-1M-2gram-20090715-2.csv.zip - starting download

(thread ID: 19)

googlebooks-eng-1M-2gram-20090715-0.csv.zip - starting download

(thread ID: 5)

...

Figure 10-3. Wi-Fi throughput while downloading a large number of files

Chapter 10 asynChronous and parallel programming

294

Something is certainly going on, as evidenced by the Wi-Fi throughput. But even

after several minutes, I found that no download had been completed. This pattern might

not be ideal for a couple of reasons:

• Although Google’s servers will probably be just fine, some other

services might throttle if you ask for too much at once. (We seemed to

see this in Figure 10-2 when the throughput tailed off, which I suspect

was a result of server throttling.) Database servers might even run

out of connection resources if not configured to service a tsunami of

requests like this.1

• We might want to start work on some downloaded files as soon as

possible. For instance, we might want to start uncompressing them or

getting data out of them as soon as they are downloaded. In the pizza

analogy, we don’t want all the cooks to spend their time kneading

dough and chopping toppings for a large order, when they could be

spending at least some time putting batches of assembled pizzas into

ovens. This means trying to download fewer files at once so that some

files have a chance to complete earlier in the overall process.

So how do we deal with this? One possibility is to explicitly batch our computations

into groups of a specified size and then send each batch through individually using

Async.Parallel just across the batch (Listing 10-19).

Listing 10-19. Using Seq.chunkBySize to create computation batches

/// Download all the files linked to in the specified webpage, whose

 /// link path matches the specified regular expression, to the specified

 /// local path.

 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath :

string) =

 // This could equally well be a parameter:

 let batchsize = 5

 async {

1 I had precisely this problem in my “day job,” during the period I was writing this chapter.

Chapter 10 asynChronous and parallel programming

295

 let! links = asyncGetLinks pageUri filePattern

 let downloadResults =

 links

 |> Seq.map (asyncTryDownload localPath)

 |> Seq.chunkBySize batchsize

 |> Seq.collect (Async.Parallel >> Async.RunSynchronously)

 |> Array.ofSeq

 let isOk = function

 | Ok _ -> true

 | Error _ -> false

 let successCount =

 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =

 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return

 {|

 SuccessCount = successCount

 ErrorCount = errorCount

 |}

 }

In Listing 10-19, we use Seq.chunkBySize, which groups a sequence into batches

of specified size (the last batch might be smaller). Then for each such batch, we do an

Async.Parallel >> Async.RunSynchronously to run just that batch in parallel.

The behavior for this version is shown in Listing 10-20 and Figure 10-4, using a batch

size of 5.

Listing 10-20. Behavior of explicitly batched download

Getting names... (thread ID: 1)

googlebooks-eng-1M-2gram-20090715-1.csv.zip - starting download

(thread ID: 8)

googlebooks-eng-1M-2gram-20090715-12.csv.zip - starting download

(thread ID: 14)

Chapter 10 asynChronous and parallel programming

296

googlebooks-eng-1M-2gram-20090715-11.csv.zip - starting download

(thread ID: 12)

googlebooks-eng-1M-2gram-20090715-10.csv.zip - starting download

(thread ID: 5)

googlebooks-eng-1M-2gram-20090715-0.csv.zip - starting download

(thread ID: 4)

googlebooks-eng-1M-2gram-20090715-0.csv.zip - download complete

(thread ID: 16)

googlebooks-eng-1M-2gram-20090715-1.csv.zip - download complete

(thread ID: 5)

googlebooks-eng-1M-2gram-20090715-10.csv.zip - download complete

(thread ID: 5)

googlebooks-eng-1M-2gram-20090715-12.csv.zip - download complete

(thread ID: 5)

googlebooks-eng-1M-2gram-20090715-11.csv.zip - download complete

(thread ID: 18)

googlebooks-eng-1M-2gram-20090715-13.csv.zip - starting download

(thread ID: 18)

...

Figure 10-4. Wi-Fi throughput during explicitly batched download

Chapter 10 asynChronous and parallel programming

297

On the plus side, we do start seeing downloads complete much earlier in the process,

meaning that we could get started with further processing of those files. But notice the

pattern of the log messages. The first file of the second batch doesn’t start downloading

until the last file of the first batch has finished downloading. Hence, the five-deep

bands of “started” and “completed” messages in the log. This is reflected in the network

throughput: it dips toward the end of each batch as the last part of the last file dribbles

through.

What we need is throttling: the ability to start a limited number of computations

simultaneously and to start a new one each time a previous one completes.

 Throttling
Recent versions of F# now provide throttled, asynchronous, parallel processing via

an additional, optional parameter of the Async.Parallel function called – snappily –

maxDegreeOfParallelism (Listing 10-21).

Listing 10-21. Asynchronous, parallel, throttled downloads

 /// Download all the files linked to in the specified webpage, whose

 /// link path matches the specified regular expression, to the specified

 /// local path.

 let AsyncGetFiles (pageUri : Uri) (filePattern : string) (localPath :

string) =

 // This could equally well be a parameter:

 let throttle = 5

 async {

 let! links = asyncGetLinks pageUri filePattern

 let! downloadResults =

 links

 |> Seq.map (asyncTryDownload localPath)

 |> (fun items -> Async.Parallel(items, throttle))

Chapter 10 asynChronous and parallel programming

298

 let isOk = function

 | Ok _ -> true

 | Error _ -> false

 let successCount =

 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =

 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return

 {|

 SuccessCount = successCount

 ErrorCount = errorCount

 |}

 }

The additional parameter specifies the largest number of computations that will be

started simultaneously. This behaves really nicely, as you can see from the log messages

and Wi-Fi throughput (Listing 10-22 and Figure 10-5).

Listing 10-22. Behavior of a parallel, throttled download

Getting names... (thread ID: 1)

googlebooks-eng-1M-2gram-20090715-1.csv.zip - starting download

(thread ID: 11)

googlebooks-eng-1M-2gram-20090715-0.csv.zip - starting download

(thread ID: 5)

googlebooks-eng-1M-2gram-20090715-10.csv.zip - starting download

(thread ID: 4)

googlebooks-eng-1M-2gram-20090715-12.csv.zip - starting download

(thread ID: 15)

googlebooks-eng-1M-2gram-20090715-11.csv.zip - starting download

(thread ID: 12)

googlebooks-eng-1M-2gram-20090715-1.csv.zip - download complete

(thread ID: 4)

googlebooks-eng-1M-2gram-20090715-13.csv.zip - starting download

(thread ID: 4)

Chapter 10 asynChronous and parallel programming

299

googlebooks-eng-1M-2gram-20090715-12.csv.zip - download complete

(thread ID: 13)

googlebooks-eng-1M-2gram-20090715-14.csv.zip - starting download

(thread ID: 13)

...

Figure 10-5. Wi-Fi throughput during parallel, throttled download

Initially, a batch of five downloads is started; then as soon as one completes, another

one is started on whatever thread happens to be available. This keeps the network

connection nice and busy but without having a great number of downloads all fighting

for limited bandwidth.

 C# Task vs. F# Async
Now that you’ve seen the benefits of asynchronous programming, it’s time to revisit

something we glossed over earlier: the difference between an F# Async and a C# Task.

They each represent their language’s conception of an asynchronous computation

that will return some type when completed. However, there is an important difference.

Broadly speaking, C# uses a “hot task” model: when something creates a Task instance,

the underlying computation is already running. F# uses a “cold task” model: the caller is

responsible for starting the computation.

Chapter 10 asynChronous and parallel programming

300

Both Async and Task are, of course, valid models: the problems arise when we have

to stand astride both worlds. For example, in Listing 10-9, we were able to use the result

of HtmlDocument.AsyncLoad directly in a let! binding thus:

 let! html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)

…only because HtmlDocument is an F#-first API and returns an F# Async –

which is what let! expects. By contrast, in Listing 10-10, we used WebClient.

DownloadFileTaskAsync, which returns a C# Task. To make it compatible with do!,

which expects an F# Async, we had to pipe it into Async.AwaitTask.

 do!

 client.DownloadFileTaskAsync(fileUri, filePath)

 |> Async.AwaitTask

Although we happened to be using do! in this case, the same would have applied for

a let! or match! binding.

When using async {}, this dichotomy has a number of practical and stylistic

implications that you should always be aware of when coding in F#.

• As we’ve already said, when an API returns a C# Task, you’ll have

to convert it into an F# Async, using Async.AwaitTask, if you want

to use it in an async computation expression with let!, do! ,

and match!.

• If you’re writing a general-purpose API that exposes asynchronous

functions, you should by default return a C# Task rather than an

F# Async. This follows the general guidance that APIs for use in

languages other than F# should not expose F#-specific types. You can

work in terms of F# Async internally and at the last moment convert

into a C# Task using Async.StartAsTask – or you can use the

relatively new F# task computation expression (see below).

• API functions that return a C# Task should be named with a suffix of

Async – for example, WebClient.DownloadFileTaskAsync.

• It’s OK, though, for APIs aimed primarily at F# consumers, such as

FSharp.Data.HtmlDocument, to expose asynchronous functions that

return F# Async instances.

Chapter 10 asynChronous and parallel programming

301

• F#-centric APIs that return an F# Async should be named with a

prefix of Async – for example, HtmlDocument.AsyncLoad.

• Be aware that translation between the two approaches (F# Async and

Task) has a performance penalty.

 F# Tasks
F#’s async {} was designed prior to C# having a streamlined pattern for defining and

consuming asynchronous computations, so it made sense to have an F#-specific

approach. C# later introduced the async/await pattern using a somewhat different

philosophy, and since then, some developers have found it annoying to have to translate

between the two styles. As of F# 6 and .NET 6, F# has a task {} computation expression

that works entirely in terms of C#-style tasks.

To use this feature, simply enclose the relevant code in task {} instead of async {}, and

remove any explicit translations you may be making between async results and tasks

(Listing 10-23).

Listing 10-23. Using the F# 6 task {} computation expression

 /// Get the URLs of all links in a specified page matching a

 /// specified regex pattern.

 let private getLinksAsync (pageUri : Uri) (filePattern : string) =

 task {

 Log.cyan "Getting names..."

 let re = Regex(filePattern)

 let! html = HtmlDocument.AsyncLoad(pageUri.AbsoluteUri)

 let links =

 html.Descendants ["a"]

 |> Seq.choose (fun node ->

 node.TryGetAttribute("href")

 |> Option.map (fun att -> att.Value()))

 |> Seq.filter (re.IsMatch)

 |> Seq.map (absoluteUri pageUri)

 |> Seq.distinct

 |> Array.ofSeq

Chapter 10 asynChronous and parallel programming

302

 return links

 }

 /// Download a file to the specified local path.

 let private tryDownloadAsync (localPath : string) (fileUri : Uri) =

 task {

 let fileName = fileUri.Segments |> Array.last

 Log.yellow (sprintf "%s - starting download" fileName)

 let filePath = Path.Combine(localPath, fileName)

 use client = new WebClient()

 try

 do!

 client.DownloadFileTaskAsync(fileUri, filePath)

 Log.green (sprintf "%s - download complete" fileName)

 return (Result.Ok fileName)

 with

 | e ->

 let message =

 e.InnerException

 |> Option.ofObj

 |> Option.map (fun ie -> ie.Message)

 |> Option.defaultValue e.Message

 Log.red (sprintf "%s - error: %s" fileName message)

 return (Result.Error e.Message)

 }

In doing this, you lose the ability to use Async.Parallel, but you can use LINQ’s

parallel async features to achieve broadly the same result (Listing 10-24).

Listing 10-24. Using LINQ to run tasks in parallel

 open System.Linq

 ...

 /// Download all the files linked to in the specified webpage, whose

 /// link path matches the specified regular expression, to the specified

Chapter 10 asynChronous and parallel programming

303

 /// local path.

 let GetFilesAsync (pageUri : Uri) (filePattern : string) (localPath :

string) =

 // This could equally well be a parameter:

 let throttle = 5

 task {

 let isOk = function

 | Ok _ -> true

 | Error _ -> false

 let! links = getLinksAsync pageUri filePattern

 let! downloadResults =

 links

 .AsParallel()

 .WithDegreeOfParallelism(throttle)

 .Select(fun uri -> tryDownloadAsync localPath uri)

 |> System.Threading.Tasks.Task.WhenAll

 let successCount =

 downloadResults |> Seq.filter isOk |> Seq.length

 let errorCount =

 downloadResults |> Seq.filter (isOk >> not) |> Seq.length

 return

 {|

 SuccessCount = successCount

 ErrorCount = errorCount

 |}

 }

If for some reason you are constrained to use an earlier F# and .NET version, you can

include the NuGet package TaskBuilder.fs to achieve much the same effect. Unusually,

this NuGet package consists of a single source file, hence the .fs part of its name. You

can still add it to your project in the same way you would a more conventional package.

Chapter 10 asynChronous and parallel programming

304

You will also need to open the namespace FSharp.Control.Tasks.V2. This package

provides a task {} computation expression which – though built on different compiler

infrastructure – has the same behavior.

 Recommendations
Here are some basic steps that are worth taking away from this chapter:

• Get your business logic working correctly in a synchronous way.

• Identify places where you are “ordering pizza,” in other words,

making a request, usually via an API, which will take some time and

doesn’t require the involvement of the current thread. Any good

API should offer an asynchronous implementation of the call you

are making.

• Assuming the function from where you are ordering pizza is

reasonably well factored, simply enclose its body with async {}.

Change the ordering-pizza calls from let to let!, or if they

are imperative, use do!. To pattern match on the result of an

asynchronous call, you can use match!.

• If the function from where you are ordering pizza is not well factored,

you may need to break it down to make it easier to enclose the

appropriate code in async {} blocks.

• If an asynchronous API call returns a C# Task rather than an

F# Async, you’ll also have to convert the Task to an Async using

Async.StartAsTask.

• Return (the promise of) data from the async{} expression using the

return keyword.

• Do the same thing to any higher-level functions that call the

functions you just changed. Keep on going until you reach the

top of the hierarchy, where you actually use the data or expose an

API. I’ve heard this process referred to as implementing async “all the

way down.”

Chapter 10 asynChronous and parallel programming

305

• If exposing an API for use by other languages, translate the F# Async

to a C# Task using Async.StartAsTask. This avoids exposing F# types

where they may not be natively understood.

• To actually get results, use Async.RunSynchronously. But do this as

little as possible – generally at the top of your “async-all-the-way-

down” chain. You may not have to do it at all if you want external

code that calls your functions to decide when to expect results – for

example, when your program has a web-based or desktop UI.

• To run similar, independent requests in parallel, use Async.

Parallel, adding a throttle parameter if appropriate.

• Consider using a task {} computation expression (included in

.NET 6 or later, otherwise available via the TaskBuilder.fs NuGet

package) to minimize translations between F# asyncs and C# tasks.

• Finally, all this may be moot if your computation is limited by the

local CPU power available (“CPU bound”) and you don’t have a

UI that you need to keep responsive. In those cases, you might

as well use Array.Parallel.map or one of its siblings from the

Array.Parallel module. We’ll revisit this topic in Chapter 12.

 Summary
In this chapter, you learned how to deal with situations where your application is

“ordering pizza” – in other words, setting off a computation that will take some time

and for which it isn’t necessary for the current thread to stay involved. You found out

how to deal with these cases by enclosing them in an async {} or task {} computation

expression and using let!, match!, and do! to set off the time-consuming computation

and to have control to return to the same point (but likely on a different thread) once a

result is obtained.

Asynchronous and parallel programming is a huge topic. In a wide-ranging book like

this, we can really only scratch the surface. Having said that, the techniques described in

this chapter should serve you well in most situations.

In the next chapter, we’ll look at Railway Oriented Programming, a coding philosophy

that encourages you to think about errors as hard as you think about successes, so that

both the “happy” and “sad” paths in your code are equally well expressed.

Chapter 10 asynChronous and parallel programming

306

 Exercises
This section contains exercises to help you get used to translating code into an

asynchronous world.

EXERCISE 10-1 – MAKING SOME CODE ASYNCHRONOUS

in the following code, the Server module contains a simulated server endpoint that returns

a random string, taking half a second to do so. in the Consumer module, we call the server

multiple times to build up an array of strings, which we then sort to produce a final result.

open System

module Random =

 let private random = System.Random()

 let string() =

 let len = random.Next(0, 10)

 Array.init len (fun _ -> random.Next(0, 255) |> char)

 |> String

module Server =

 let AsyncGetString (id : int) =

 // id is unused

 async {

 do! Async.Sleep(500)

 return Random.string()

 }

module Consumer =

 let GetData (count : int) =

 let strings =

 Array.init count (fun i ->

 Server.AsyncGetString i |> Async.RunSynchronously)

 strings

 |> Array.sort

Chapter 10 asynChronous and parallel programming

307

let sw = System.Diagnostics.Stopwatch()

sw.Start()

Consumer.GetData 10 |> ignore

printfn "That took %ims" sw.ElapsedMilliseconds

if you run the code, you’ll notice that this operation takes over 5 seconds to get ten results.

Change the Consumer.GetData() function so that it is asynchronous and so that it runs all

its calls to Server.AsyncGetString() in parallel.

you don’t need to throttle the parallel computation. the changed function should be an F# style

async function; that is, it should return Async<String[]>.

hint: you’ll also need to change the calling code so that the result of the changed function is

passed into Async.RunSynchronously.

EXERCISE 10-2 – RETURNING TASKS

how would your solution to exercise 10-1 change if Consumer.GetData() needed to return

a C# style Task? the dummy api should be unchanged; in other words, it should still return an

Async<string>.

there is more than one way to solve this exercise.

 Exercise Solutions

EXERCISE 10-1 – MAKING SOME CODE ASYNCHRONOUS

rename Consumer.GetData() to AsyncGetData() to reflect its new return type. enclose

its body in an async {} block. Change the binding of strings from let to let!. remove

the call to Async.RunSynchronously and instead pass the results of the Array.init

(which will now be an array of Async<string> instances) into Async.Parallel. Finally,

return the result of sorting the array explicitly using the return keyword.

 let AsyncGetData (count : int) =

 async {

 let! strings =

Chapter 10 asynChronous and parallel programming

308

 Array.init count (fun i -> Server.AsyncGetString i)

 |> Async.Parallel

 return

 strings

 |> Array.sort

 }

in the calling code, pass the result of Consumer.AsyncGetData into Async.

RunSynchronously to actually run the computation.

let sw = System.Diagnostics.Stopwatch()

sw.Start()

Consumer.AsyncGetData 10 |> Async.RunSynchronously |> ignore

printfn "That took %ims" sw.ElapsedMilliseconds

run the code to verify that the computation takes roughly half a second.

EXERCISE 10-2 – RETURNING TASKS

rename Consumer.AsyncGetData() to GetDataAsync() to reflect its new return type.

then you can either use Async.StartAsTask or change the function body to a task {}

computation expression.

to achieve the first of these: after the end of the function’s async {} block, add |> Async.

StartAsTask to start the computation running and return a C# Task.

 let GetDataAsync1 (count : int) =

 async {

 let! strings =

 Array.init count (fun i -> Server.AsyncGetString i)

 |> Async.Parallel

 return

 strings

 |> Array.sort

 } |> Async.StartAsTask

in the calling code, add an Async.AwaitTask call to await the result of the task.

Chapter 10 asynChronous and parallel programming

309

let sw = System.Diagnostics.Stopwatch()

sw.Start()

Consumer.GetDataAsync1 10

|> Async.AwaitTask

|> Async.RunSynchronously

|> ignore

printfn "GetDataAsync1 took %ims" sw.ElapsedMilliseconds

to use the task {} approach – first, if you are not using .net 6, bring in the TaskBuilder.

fs nuget package and open the namespace at the beginning of your code.

// Remove these two lines if your .NET Interactive is configured to use .NET

6 or later.

#r "nuget: TaskBuilder.fs"

open FSharp.Control.Tasks.V2

then rename and amend the GetData... function so that its body is a task {}

computation expression.

 let GetDataAsync2 (count : int) =

 task {

 let! strings =

 Array.init count (fun i -> Server.AsyncGetString i)

 |> Async.Parallel

 return

 strings

 |> Array.sort

 }

the calling code can be as earlier in this exercise solution, remembering to call

getdataasync2.

Chapter 10 asynChronous and parallel programming

311
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_11

CHAPTER 11

Railway Oriented
Programming

On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?” I am not able
rightly to apprehend the kind of confusion of ideas that could provoke such
a question.

—Charles Babbage, Computer Pioneer

 Going Off the Rails
Railway Oriented Programming (ROP) is an analogy invented by F#’s premier educator,

Scott Wlaschin. It describes a programming philosophy in which we embrace errors as a

core part of program flow, rather than exiling them to the separate domain of exception

handling. Scott didn’t invent the technique, but he did invent the analogy, which has

helped many F# developers understand this initially daunting but powerful technique.

Although I’ve titled this chapter according to Scott’s analogy, I’m going to use a slightly

different way to describe what is going on. Rest assured, I am still talking about ROP. I

just thought it might be interesting to look at it using an alternative mental image. You

may want to treat this chapter as a companion piece to Scott’s own description of ROP,

which you can find (among a cornucopia of other invaluable material) at https://

fsharpforfunandprofit.com.

https://doi.org/10.1007/978-1-4842-7205-3_11#DOI
https://fsharpforfunandprofit.com
https://fsharpforfunandprofit.com

312

 On the Factory Floor
You’ve decided to get into the widget business! You are going to build your very own

highly automated widget factory. You’ll make them so cheaply the entire widget industry

will be disrupted. Investors and admirers will flock to your door!

One small problem – how do you lay this factory out? Widget making is a complex

process: machining the raw material into shape, polishing certain parts, coating other

parts, bolting on subassemblies, and so on. You want to keep your factory compact and

easy to manage; otherwise, you’ll just be another widget wannabe. Your initial layout

design is like this (Figure 11-1).

Each box represents a machine tool performing one of the manufacturing processes.

Leading into each box is a conveyor for taking items into the machine, and leading out

of each box is another conveyor that takes items on to the next process. The conveyor

coming out of a machine will not be the same as the one going in because work items

that come out will be a different shape from what goes in. Luckily, numerous styles of

conveyors are available, so you just pick (or even build) the conveyor style to suit each

stage. Laying out the machines is pretty straightforward: you place them in a line, in the

order the processes must be performed. This way the conveyors with matching styles

naturally link up. You can hardly go wrong.

You show your production line design to an experienced manufacturing engineer.

But she isn’t impressed.

“What about quality control?” she asks. “Is the whole production line going to stop

every time a single step goes wrong for one widget?”

Shamefaced you return, literally, to the drawing board. Diversion is your

answer! Within each process, there will be a quality control step. If the widget being

processed fails that step, it is shot out on a different conveyor and into a rejects hopper

(Figure 11-2).

Figure 11-1. Naive layout for a widget factory

Chapter 11 railway Oriented prOgramming

313

You show the engineer your new layout.

“That’s better,” she says, “But still not great. Someone will have to keep an eye on

all those rejects hoppers, and they’re scattered all the way along the line.” She grabs the

pencil. “Maybe you want something more like this?” (Figure 11-3).

This solves the multiple-rejects-hoppers problem, but it’s messy in other ways. It’s

going to be fiddly linking up both sets of conveyors, especially with the rejects conveyors

sticking out of the side like that. It feels repetitive somehow.

“No worries,” says the engineer. “I know some folks who build special adapter

housings for machine tools. The housing has two conveyors going in. The main one takes

good parts into the machine tool inside. The other one takes rejects in and just passes

them straight on out again. If there is a new reject from the current machine, it gets put

onto the rejects conveyer along with any existing rejects. Once you’ve put each of your

machine tools in one of those housings, you can join the housings together as simply as

your original concept.” She draws another diagram (Figure 11-4).

Figure 11-3. Combining rejects

Figure 11-2. Simple handling for rejects

Chapter 11 railway Oriented prOgramming

314

This is getting exciting, but you need to check your understanding.

“So internally the housing looks something like this, right? The machine tool needs

to put rejects from its own process on the rejects conveyer, and good parts on the main

out- conveyor. And it can pass through incoming rejects untouched?” (Figure 11-5).

“Spot on,” replies the engineer. “And you’re going to need a couple of other housings.

I’m guessing some of your processes never fail, so better include a housing which just

passes rejects through” (Figure 11-6).

Figure 11-4. Adapter housings for easier process linkage

Figure 11-5. Adapter housing detail

Chapter 11 railway Oriented prOgramming

315

“And you’ll also need to pay a bit of attention to what happens at the end of the line.

Do you really want to just toss all the rejects into the trash? I think you might want to

count them by kind of failure, report them, or something like that. If so, you’ll need the

reject adapter housing” (Figure 11-7).

“You can put in any machine you like to handle incoming rejects. It might pass them

on in some form, it might report them, or it might just destroy them. Good inputs just

pass straight through the adapter untouched.”

“What about the first machine on the line?” you ask. “Won’t that need a special type

of adapter?”

Figure 11-6. Adapter housing detail for processes that never fail

Figure 11-7. Reject adapter housing detail

Chapter 11 railway Oriented prOgramming

316

“Nope,” replies the engineer. “If it’s a typical machine that takes a good input and

produces a good output or a failure, it can just sit at the front of the line, because its

good/bad outputs will fit into the second machine’s adapted inputs.”

This makes so much sense, and you’re keen to get on with the details.

“Can you hook me up with the folks who make these magic housings?” you ask.

“Sure!” replies the engineer. “There’s just the small matter of my fee.”

“Will you accept stock options?” you ask….

 Adapting Functions for Failure
In the widget manufacturing example, your initial stab at rejects handling (Figure 11-2)

is like the concept of raising and handling exceptions in .NET languages like C# and F#.

When something goes wrong, you “jump out” of the natural sequence of processing

(you raise an exception), and what happens to that exception is of no concern to the

local section of code. The exception will be handled elsewhere or (all too often) simply

ignored (Listing 11-1).

Listing 11-1. Raising an exception. Where she stops, nobody knows!

open System

let checkString (s : string) =

 if isNull(s) then

 raise <| ArgumentNullException("Must not be null")

 elif String.IsNullOrEmpty(s) then

 raise <| ArgumentException("Must not be empty")

 elif String.IsNullOrWhiteSpace(s) then

 raise <| ArgumentException("Must not be white space")

 else

 s

// I love F#

let r1 = checkString "I love F#"

r1

// Error: System.ArgumentException: Must not be white space

// let r2 = checkString "\t"

Chapter 11 railway Oriented prOgramming

317

This makes the type signature of the function a lie: the function can really either

return its official result type or an exception. This is, arguably, a violation of the principle

of semantic focus. You can’t tell from the outside (by its signature) what kinds of things

a function will do under all circumstances; and you can’t tell from the inside (looking

at the body of the function) whether the function’s callers have any strategy at all for

handling errors. The aim of ROP is to get away from this by making failures part of the

signature of a function and by providing a bypass mechanism so that, as in Figure 11-4,

functions can be joined together in such a way that failures whizz past any later

functions in the production line.

 Writing a Bypass Adapter
Although the “adapters” you’ll need do exist in F#, it’s worth trying to write a couple of

them from scratch, as this makes it much easier to understand how the whole concept

works. Let’s start with the adapter from Figure 11-5. It needs to take a function (the

equivalent to the machine tool hidden within the adapter housing) and an input (the

equivalent of an incoming, partially made widget). If the input is currently valid, it needs

to be processed using the supplied function. If the input is already a failure, it needs to

be passed through untouched.

Since a function can only have one type, this means we need to bundle together

good values and failures in the same type. And by now you probably realize that

bundling different things together usually means a Discriminated Union. Let’s call it

Outcome (Listing 11-2).

Listing 11-2. An Outcome Discriminated Union

type Outcome<'TSuccess, 'TFailure> =

 | Success of 'TSuccess

 | Failure of 'TFailure

In Listing 11-2, there’s a Success case and a Failure case. We keep the payload types

of the DU generic using 'TSuccess and 'TFailure because we don’t want to commit to a

specific payload type for either the success or the failure path.

Chapter 11 railway Oriented prOgramming

318

Now we need to write the adapter itself. Let’s start with a spot of pseudocode.

• Take a function and an input (which might already be a success or a

failure).

• If the input is valid so far, pass it to the supplied function.

• If the input is already an error, pass it through untouched.

It only takes a few lines of F# to achieve this (Listing 11-3).

Listing 11-3. The basic adapter in code

type Outcome<'TSuccess, 'TFailure> =

 | Success of 'TSuccess

 | Failure of 'TFailure

let adapt func input =

 match input with

 | Success x -> func x

 | Failure f -> Failure f

 Writing a Pass-Through Adapter
Now we need the second kind of adapter the manufacturing engineer suggested

(Figure 11-6): a “pass-through” adapter, which is used to wrap processes that can’t

themselves fail and which allows failure inputs to whizz by (Listing 11-4).

Listing 11-4. The pass-through adapter in code

let passThrough func input =

 match input with

 | Success x -> func x |> Success

 | Failure f -> Failure f

Listing 11-4 is almost laughably similar to Listing 11-3; I have highlighted the only

difference. Whereas the func of Listing 11-3 is itself capable of returning Success or

Failure, the func of Listing 11-4 is (by definition) one which can’t fail. Therefore, to let

it participate in the pipeline, its result has to be wrapped in a Success case. So we simply

say func x |> Success.

Chapter 11 railway Oriented prOgramming

319

 Building the Production Line
Now we’ll need an example process to try out this new concept. Let’s take a requirement

to accept a password, validate it in various ways, and then save it if it is valid. The

validations will be the following:

• The password string can’t be null, empty, or just whitespace.

• It must contain mixed case alphabetic characters.

• It must contain at least one of these characters: - _ ! ?

• Any leading/trailing whitespace must be trimmed.

The password should be saved to a database if valid; if not, there needs to be an error

message.

Listing 11-5 shows the code to perform each of these steps individually. (We haven’t

joined them into a pipeline yet.)

Listing 11-5. Some password validation code

 open System

let notEmpty (s : string) =

 if isNull(s) then

 Failure "Must not be null"

 elif String.IsNullOrEmpty(s) then

 Failure "Must not be empty"

 elif String.IsNullOrWhiteSpace(s) then

 Failure "Must not be white space"

 else

 Success s

let mixedCase (s : string) =

 let hasUpper =

 s |> Seq.exists (Char.IsUpper)

 let hasLower =

 s |> Seq.exists (Char.IsLower)

Chapter 11 railway Oriented prOgramming

320

 if hasUpper && hasLower then

 Success s

 else

 Failure "Must contain mixed case"

let containsAny (cs : string) (s : string) =

 if s.IndexOfAny(cs.ToCharArray()) > -1 then

 Success s

 else

 Failure (sprintf "Must contain at least one of %A" cs)

let tidy (s : string) =

 s.Trim()

let save (s : string) =

 let dbSave s : unit =

 printfn "Saving password '%s'" s

 // Uncomment this to simulate an exception:

 // raise <| Exception "Dummy exception"

 let log m =

 printfn "Logging error: %s" m

 try

 dbSave s

 |> Success

 with

 | e ->

 log e.Message

 Failure "Sorry, there was an internal error saving your password"

The exact details of the code in Listing 11-5 are less important than the general

pattern of these functions: if validation succeeds, they return a value wrapped in a

Success case. If validation fails, they return an error message wrapped in a Failure

case. The save() function is slightly more complicated: it handles any exceptions that

come back from writing to the (imaginary) database and returns a message wrapped in

a Failure case if an exception occurred. It just happens that the result of a successful

database save operation is just unit, but unit can still be returned wrapped in a Success

like any other type. The tidy() function is an example of a “can’t fail” process (assuming

the string isn’t null, which is tackled in an earlier step).

Chapter 11 railway Oriented prOgramming

321

Now we need to make sure these functions are all called in the right order – the

equivalent of rolling the machines onto the factory floor, putting them inside their

adapters, and bolting them all together into a production line. Listing 11-6 shows a first

cut of this stage. (It assumes that the Outcome DU, the adapt and passThrough functions,

and the password validation functions from previous listings are available.)

Listing 11-6. Lining the machines up on the factory floor

 // password:string -> Outcome<unit, string>

 let validateAndSave password =

 let mixedCase' = adapt mixedCase

 let containsAny' = adapt (containsAny "-_!?")

 let tidy' = passThrough tidy

 let save' = adapt save

 password

 |> notEmpty

 |> mixedCase'

 |> containsAny'

 |> tidy'

 |> save'

// Success ()

validateAndSave "Correct-Horse-Battery-Staple-9"

// Failure 'Must contain at least one of "-_!?"'

validateAndSave "LetMeIn"

In Listing 11-6, we take each of the validation functions (apart from the first)

and partially apply adapt or passThrough by providing the validation function as an

argument. This is the precise equivalent, in our analogy, to putting the machine tool

inside its adapter. In each case, I’ve just added a single quote (') to the name of the

adapted version, just so you can tell which functions have been adapted. Items such as

mixedCase' are now functions that require their input value to be wrapped in Outcome

and which will just pass on Failure cases untouched.

Chapter 11 railway Oriented prOgramming

322

Why didn’t we have to adapt the first function (notEmpty)? Well, exactly as the

manufacturing engineer said, the very first machine tool doesn’t need an adapter

because it already takes nonwrapped input and returns an Outcome case, and so it can be

plugged into the second (adapted) machine without change.

At this point, we can do a sanity check by looking at the signature of the

validateAndSave function. We see that the signature is password:string ->

Outcome<unit, string>. This makes sense because we want to accept a string password

and get back either an Outcome.Success with a payload of unit (because the database

save operation returns unit) or an Outcome.Failure with a payload of string, which will

be the validation or saving error message.

Now we need to try this all out. Listing 11-7 exercises our code for various invalid

passwords and one valid one.

Listing 11-7. Exercising the validateAndSave function

// Failure "Must not be null"

null |> validateAndSave |> printfn "%A"

// Failure "Must not be empty"

"" |> validateAndSave |> printfn "%A"

// Failure "Must not be white space"

" " |> validateAndSave |> printfn "%A"

// Failure "Must contain mixed case"

"the quick brown fox" |> validateAndSave |> printfn "%A"

// Failure "Must contain at least one of "-_!?""

"The quick brown fox" |> validateAndSave |> printfn "%A"

// Success ()

"The quick brown fox!" |> validateAndSave |> printfn "%A"

Listing 11-7 shows that our function works – invalid passwords are rejected with a

user-friendly message, and valid ones are “saved.” If you want to see what happens when

there is an exception during the save process (maybe we lost the database connection?),

simply uncomment the line in the save function (in Listing 11-5) that raises an

exception. In that case, the specific error details will be logged, and a more general error

message will be returned that would be safe to show to the user (Listing 11-8).

Chapter 11 railway Oriented prOgramming

323

Listing 11-8. Results of an exception during saving

 Saving password 'The quick brown fox!'

 Logging error: Dummy exception

 Failure "Sorry, there was an internal error saving your password"

Listing 11-6 is a little wordy! If you were paying attention in Chapter 9, you might

recognize this as a prime candidate for function composition using the >> operator.

Listing 11-9 shows the magic that happens when you do this!

Listing 11-9. Composing adapted functions

// string -> Outcome<unit, string>

let validateAndSave =

 notEmpty

 >> adapt mixedCase

 >> adapt (containsAny "-_!?")

 >> passThrough tidy

 >> adapt save

We’ve moved the “adapting” of the various functions into the body of the pipeline

and joined the adapted functions with the >> operator. We get rid of the password

parameter because a string input is expected anyway by notEmpty, and this requirement

of a parameter “bubbles out” to the validateAndSave function. The type signature of

validateAndSave is unchanged (although the password string is now unlabeled), and if

we run it again using the code from Listing 11-7, it works exactly the same. Amazing!

 Making It Official
I said at the outset that F# has its own ROP types. So how do we use these rather than our

handcrafted Outcome type? The DU we named Outcome is officially called Result, and the

DU cases are Ok and Error. So each of the password validation and processing functions

needs some tiny naming changes (e.g., Listing 11-10).

Chapter 11 railway Oriented prOgramming

324

Listing 11-10. Using the official Result DU

let notEmpty (s : string) =

 if isNull(s) then

 Error "Must not be null"

 elif String.IsNullOrEmpty(s) then

 Error "Must not be empty"

 elif String.IsNullOrWhiteSpace(s) then

 Error "Must not be white space"

 else

 Ok s

Likewise, the official name for what I called adapt is bind, and the official name

for passThrough is map. So the validateAndSave function needs to open the Result

namespace and call map and bind (Listing 11-11).

Listing 11-11. Using bind and map

open Result

// string -> Result<unit, string>

let validateAndSave =

 notEmpty

 >> bind mixedCase

 >> bind (containsAny "-_!?")

 >> map tidy

 >> bind save

Incidentally, you may notice a close resemblance between Result.bind/Result.map

and Option.bind/Option.map, which we discussed way back in Chapter 3. These two

names, map and bind, are pretty standard in functional programming and theory. You

eventually get used to them.

 Love Your Errors
Remember when the engineer said you were going to need an adapter for the rejects?

Well it’s time to tackle that. At the moment, we have cheated a little, by making all the

functions return Error cases that have strings as payloads. It’s as if we assume that on

Chapter 11 railway Oriented prOgramming

325

the production line, rejects at every stage would fit on the same rejects conveyor – which

might well not be the case if the rejects from different stages were different shapes.

Luckily in F# world, we can force all the kinds of rejects into the same wrapper by (say it

aloud with me) creating another Discriminated Union!

This DU will have to list all the kinds of things that can go wrong, together with

payloads for any further information that might need to be passed along (Listing 11-12).

Listing 11-12. An error-types Discriminated Union

open System

type ValidationError =

 | MustNotBeNull

 | MustNotBeEmpty

 | MustNotBeWhiteSpace

 | MustContainMixedCase

 | MustContainOne of chars:string

 | ErrorSaving of exn:Exception

let notEmpty (s : string) =

 if isNull(s) then

 Error MustNotBeNull

 elif String.IsNullOrEmpty(s) then

 Error MustNotBeEmpty

 elif String.IsNullOrWhiteSpace(s) then

 Error MustNotBeWhiteSpace

 else

 Ok s

let mixedCase (s : string) =

 let hasUpper =

 s |> Seq.exists (Char.IsUpper)

 let hasLower =

 s |> Seq.exists (Char.IsLower)

 if hasUpper && hasLower then

 Ok s

 else

 Error MustContainMixedCase

Chapter 11 railway Oriented prOgramming

326

let containsAny (cs : string) (s : string) =

 if s.IndexOfAny(cs.ToCharArray()) > -1 then

 Ok s

 else

 Error (MustContainOne cs)

let tidy (s : string) =

 s.Trim()

let save (s : string) =

 let dbSave s : unit =

 printfn "Saving password '%s'" s

 // Uncomment this to simulate an exception:

 raise <| Exception "Dummy exception"

 try

 dbSave s

 |> Ok

 with

 | e ->

 Error (ErrorSaving e)

Listing 11-12 starts with the new DU. Most of the cases have no payload because they

just need to convey the fact that a certain kind of thing went wrong. The MustContainOne

has a payload that lets you say what characters were expected. The ErrorSaving case has

a slot to carry the exception that was raised, which a later step may choose to inspect if

it needs to. See how we also had to change most of the validation functions so that their

Error results wrap a ValidationError case – for example, Error MustNotBeNull. Here, to

be clear, we have a DU wrapped up in another DU. Another small change in Listing 11-12

is that I’ve removed the log function from the save() function, for reasons that will

become clear in a moment.

Now we need the “rejects adapter” that the engineer suggested. The adapter function

lives with map and bind in the Result namespace, and it is called mapError. The best way to

think about mapError is by comparing the physical diagrams from Figures 11-6 and 11-7.

Here, they are again side by side (Figure 11-8).

Chapter 11 railway Oriented prOgramming

327

The map function takes an input, and if it is good, it processes it using a supplied

function (which cannot fail) and returns a good output. It passes through preexisting

bad inputs untouched. mapError is like a vertical flip of the same thing. It takes an input,

and if it is good, it passes it through untouched. If the input is bad, it processes it using a

supplied function, which itself returns a bad result.

We can use mapError to branch our logic depending on what kind of error occurred,

maybe just translating it into a readable message, maybe logging exceptions (but hiding

them from the end user), and so forth (Listing 11-13).

Listing 11-13. Using mapError

open Result

// string -> Result<unit, ValidationError>

let validateAndSave =

 notEmpty

 >> bind mixedCase

 >> bind (containsAny "-_!?")

 >> map tidy

 >> bind save

Figure 11-8. Comparing map and mapError

Chapter 11 railway Oriented prOgramming

328

let savePassword =

 let log m =

 printfn "Logging error: %s" m

 validateAndSave

 >> mapError (fun err ->

 match err with

 | MustNotBeNull

 | MustNotBeEmpty

 | MustNotBeWhiteSpace ->

 sprintf "Password must be entered"

 | MustContainMixedCase ->

 sprintf "Password must contain upper and lower case characters"

 | MustContainOne cs ->

 sprintf "Password must contain one of %A" cs

 | ErrorSaving e ->

 log e.Message

 sprintf "Sorry there was an internal error saving the password")

See in Listing 11-13 how the signature of validateAndSave has changed to

string -> Result<unit, ValidationError>, because we made all the validation

functions return ValidationError cases when there was a problem. Then in the

savePassword function, we composed validateAndSave with Result.mapError. We

gave mapError a lambda function that matches on the ValidationError cases to

generate suitable messages and in one case to log an exception.

This approach has the interesting consequence that it forces you to enumerate every

kind of thing that could go wrong with your process, all in a single DU. This certainly

takes some getting used to, but it is potentially a very useful discipline. It helps you avoid

wishful thinking or an inconsistent approach to errors.

 Recommendations
If you’ve been enthused about Railway Oriented Programming, here’s how I recommend

you get started:

• Identify processes that involve several steps, each of which might fail

in predictable ways.

Chapter 11 railway Oriented prOgramming

329

• Write a DU that enumerates the kinds of errors that can occur. (You

can obviously add cases to this as you go along.) Some cases might

just identify the kind of error; others might have a payload with more

information, such as an exception instance, or more details about the

input that triggered the failure.

• Write a function for each step in your process. Each should take a

nonwrapped input (or inputs) and return either a good output in

the form of a Result.Ok that wraps the step’s successful output or a

Result.Error that wraps a case from your error-types DU.

• Compose the steps into a single pipeline. To do this, wrap each

function but the first using Result.bind (or Result.map for

operations that need to fit into the pipeline but which can’t fail).

Compose the wrapped functions with the function composition

operator >>.

• Use Result.mapError at the end of the pipeline to process failure

cases, for example, by attaching error messages or writing to a log.

 Summary
I hope you now understand enough about ROP to make an informed decision about

whether to use it. You’re also equipped to dive in and maintain existing code bases that

use ROP or some variation of it.

I’d worry, though, if I succeeded too well and left you an uncritical enthusiast for the

technique. The truth is that ROP is rather controversial in the F# community, with both

passionate advocates and passionate critics. The official F# coding conventions have

quite a lot to say on the subject. They conclude:

Types such as Result<‘Success, ‘Error> are appropriate for basic operations
where they aren’t nested, and F# optional types are perfect for representing
when something could either return something or nothing. They are not a
replacement for exceptions, though, and should not be used in an attempt
to replace exceptions. Rather, they should be applied judiciously to address
specific aspects of exception and error management policy in targeted ways.

—F# Style Guide, Microsoft and contributors

Chapter 11 railway Oriented prOgramming

330

In my opinion, ROP works rather nicely in the same sorts of places where function

composition works nicely: constrained pipelines of operations, where the pipeline has

limited scope, such as our password validation example. Using it at an architectural level

works less well in my experience, tending to blur motivational transparency, at least for

ordinary mortals.

In the next chapter, we’ll look at performance – how to measure the speed of F#

functions and how to make them faster.

 Exercises

EXERCISE 11-1 – REPRODUCING MAPERROR

you might remember that we started by writing our own versions of map and bind in the form

of adapt and passThrough functions:

type Outcome<'TSuccess, 'TFailure> =

 | Success of 'TSuccess

 | Failure of 'TFailure

let adapt func input =

 match input with

 | Success x -> func x

 | Failure f -> Failure f

let passThrough func input =

 match input with

 | Success x -> func x |> Success

 | Failure f -> Failure f

Can you implement a passThroughRejects function, with the same behavior as the built-in

mapError function?

Hint: look carefully at Figure 11-8 and the surrounding text.

Chapter 11 railway Oriented prOgramming

331

EXERCISE 11-2 – WRITING AN ROP PIPELINE

you are working on a project to handle some incoming messages, each containing a file

name and some data. the file name is a string representation of a datetimeOffset when the

data was captured. the data is an array of floating-point values. the process should attempt

to parse the file name as a datetimeOffset (some might fail due to spurious messages) and

should also reject any messages where the data array contains any nan (“not-a-number”)

values. any rejects need to be logged.

the following listing contains a partial implementation of the requirement. your task is to fill in

the code marked with tOdO, removing the exceptions that have been placed there. each tOdO

should only take a line or two of code to complete.

open System

type Message =

 { FileName : string

 Content : float[] }

type Reading =

 { TimeStamp : DateTimeOffset

 Data : float[] }

let example =

 [|

 { FileName = "2019-02-23T02:00:00-05:00"

 Content = [|1.0; 2.0; 3.0; 4.0|] }

 { FileName = "2019-02-23T02:00:10-05:00"

 Content = [|5.0; 6.0; 7.0; 8.0|] }

 { FileName = "error"

 Content = [||] }

 { FileName = "2019-02-23T02:00:20-05:00"

 Content = [|1.0; 2.0; 3.0; Double.NaN|] }

 |]

let log s = printfn "Logging: %s" s

type MessageError =

 | InvalidFileName of fileName:string

 | DataContainsNaN of fileName:string * index:int

Chapter 11 railway Oriented prOgramming

332

let getReading message =

 match DateTimeOffset.TryParse(message.FileName) with

 | true, dt ->

 let reading = { TimeStamp = dt; Data = message.Content }

 // TODO Return an OK result containing a tuple of the

 // message file name and the reading:

 raise <| NotImplementedException()

 | false, _ ->

 // TODO Return an Error result containing an

 // InvalidFileName error, which itself contains

 // the message file name:

 raise <| NotImplementedException()

let validateData(fileName, reading) =

 let nanIndex =

 reading.Data

 |> Array.tryFindIndex (Double.IsNaN)

 match nanIndex with

 | Some i ->

 // TODO Return an Error result containing an

 // DataContainsNaN error, which itself contains

 // the file name and error index:

 raise <| NotImplementedException()

 | None ->

 // TODO Return an Ok result containing the reading:

 raise <| NotImplementedException()

let logError (e : MessageError) =

 // TODO match on the MessageError cases

 // and call log with suitable information

 // for each case.

 raise <| NotImplementedException()

// When all the TODOs are done, uncomment this code

// and see if it works!

//

//open Result

//

Chapter 11 railway Oriented prOgramming

333

//let processMessage =

// getReading

// >> bind validateData

// >> mapError logError

//

//let processData data =

// data

// |> Array.map processMessage

// |> Array.choose (fun result ->

// match result with

// | Ok reading -> reading |> Some

// | Error _ -> None)

//

//example

//|> processData

//|> Array.iter (printfn "%A")

 Exercise Solutions

EXERCISE 11-1 – REPRODUCING MAPERROR

the function you want is a kind of mirror image of passThrough. i’ve repeated

passThrough here for comparison:

let passThrough func input =

 match input with

 | Success x -> func x |> Success

 | Failure f -> Failure f

let passThroughRejects func input =

 match input with

 | Success x -> Success x

 | Failure f -> func f |> Failure

Chapter 11 railway Oriented prOgramming

334

EXERCISE 11-2 – WRITING AN ROP PIPELINE

here is a possible solution. added lines are marked with dOne.

open System

type Message =

 { FileName : string

 Content : float[] }

type Reading =

 { TimeStamp : DateTimeOffset

 Data : float[] }

let example =

 [|

 { FileName = "2019-02-23T02:00:00-05:00"

 Content = [|1.0; 2.0; 3.0; 4.0|] }

 { FileName = "2019-02-23T02:00:10-05:00"

 Content = [|5.0; 6.0; 7.0; 8.0|] }

 { FileName = "error"

 Content = [||] }

 { FileName = "2019-02-23T02:00:20-05:00"

 Content = [|1.0; 2.0; 3.0; Double.NaN|] }

 |]

let log s = printfn "Logging: %s" s

type MessageError =

 | InvalidFileName of fileName:string

 | DataContainsNaN of fileName:string * index:int

let getReading message =

 match DateTimeOffset.TryParse(message.FileName) with

 | true, dt ->

 let reading = { TimeStamp = dt; Data = message.Content }

 // DONE

 Ok(message.FileName, reading)

 | false, _ ->

 // DONE

 Error (InvalidFileName message.FileName)

Chapter 11 railway Oriented prOgramming

335

let validateData(fileName, reading) =

 let nanIndex =

 reading.Data

 |> Array.tryFindIndex (Double.IsNaN)

 match nanIndex with

 | Some i ->

 // DONE

 Error (DataContainsNaN(fileName, i))

 | None ->

 // DONE

 Ok reading

let logError (e : MessageError) =

 // DONE

 match e with

 | InvalidFileName fn ->

 log (sprintf "Invalid file name: %s" fn)

 | DataContainsNaN (fn, i) ->

 log (sprintf "Data contains NaN at position: %i in file: %s" i fn)

open Result

let processMessage =

 getReading

 >> bind validateData

 >> mapError logError

let processData data =

 data

 |> Array.map processMessage

 |> Array.choose (fun result ->

 match result with

 | Ok reading -> reading |> Some

 | Error _ -> None)

example

|> processData

|> Array.iter (printfn "%A")

Chapter 11 railway Oriented prOgramming

336

Logging: Invalid file name: error

Logging: Data contains NaN at position: 3 in file: 2019-02-23T02:00:20-05:00

{ TimeStamp = 23/02/2019 02:00:00 -05:00

 Data = [|1.0; 2.0; 3.0; 4.0|] }

{ TimeStamp = 23/02/2019 02:00:10 -05:00

 Data = [|5.0; 6.0; 7.0; 8.0|] }

Chapter 11 railway Oriented prOgramming

337
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_12

CHAPTER 12

Performance
Since the engine has a mode of acting peculiar to itself, it will in every par-
ticular case be necessary to arrange the series of calculations conformably
to the means which the machine possesses; for such or such a process which
might be very easy for a [human] calculator may be long and complicated
for the engine, and vice versâ.

—L. F. Menabrea, describing Charles Babbage’s Analytical Engine, 1842

(Translated by Ada Lovelace)

 Design Is Compromise
In programming, there is always a tension between abstraction and efficiency. Code

that has a higher level of abstraction is less likely to define the minimum number of

operations needed to achieve the correct result in a specific situation. Conversely,

code that is written at a lower level will often be faster but will be less widely

applicable, leading to more repetition and sometimes worse maintainability. As a

language that encourages you to work at a relatively high level of abstraction, F# can

sometimes leave you at the wrong end of this trade-off. This chapter aims to give you

the tools to recognize common performance bottlenecks in F# code and the skills

needed to resolve these to a reasonable degree, without fatally compromising the

readability of your code.

Getting from correct code to correct, efficient code is one of the coding tasks that I

find the most satisfying. I hope that by the end of this chapter, you’ll feel the same way.

https://doi.org/10.1007/978-1-4842-7205-3_12#DOI

338

 Some Case Studies
.NET performance, and code performance generally, is a huge topic. Rather than getting

lost in a sea of performance-related issues, I’m going to focus on a few case studies

that represent mistakes I commonly see being made (often by me). Incidentally, you

might notice that I haven’t included asynchronous code in these case studies: this topic

was covered in Chapter 10. For each case study, I’m going to present some correctly

functioning but inefficient code. Then I’ll help you identify why it’s inefficient and

show you the steps you can go through to make it relatively fast, but still correct and

maintainable.

But before we can embark on the case studies, we need a framework for measuring

and comparing performance. Enter “BenchmarkDotNet.”

 BenchmarkDotNet
Through most of this book, I’ve avoided using third-party libraries, as I wanted to

focus on the language itself. But in the case of performance, we need something that

can provide a fair measure of execution speed, which includes running our code a

number of times and performing back-to-back comparisons of different versions.

BenchmarkDotNet does exactly this and works nicely with F#.

You can either use the source code provided with this book or create your own

project using the following steps:

• Create a command-line F# project.

mkdir performance

cd performance

dotnet new console -lang F#

• Add the package “BenchmarkDotNet.”

dotnet add package BenchmarkDotNet

• Add a file called Dummy.fs before Program.fs and populate it with the

code from Listing 12-1.

• Replace the code in Program.fs with the code from Listing 12-2.

Chapter 12 performanCe

339

Listing 12-1. Dummy functions to benchmark (Dummy.fs)

module Dummy

let slowFunction() =

 System.Threading.Thread.Sleep(100)

 99

let fastFunction() =

 System.Threading.Thread.Sleep(10)

 99

The code in Listing 12-1, Dummy.fs, is the test subject – the actual code whose

performance we want to check. Initially, this will be a dummy, but later we’ll add real

code to test.

Listing 12-2. Executing the benchmarks (Program.fs)

open System

open BenchmarkDotNet.Running

open BenchmarkDotNet.Attributes

module Harness =

 [<MemoryDiagnoser>]

 type Harness() =

 [<Benchmark>]

 member _.Old() =

 Dummy.slowFunction()

 [<Benchmark>]

 member _.New() =

 Dummy.fastFunction()

[<EntryPoint>]

let main _ =

 BenchmarkRunner.Run<Harness.Harness>()

 |> printfn "%A"

 0

The code in Listing 12-2, Program.fs, is the “boiler plate” we need to get

BenchmarkDotNet to call our code repeatedly to measure its performance.

Chapter 12 performanCe

340

Once you have all the source in place, run the project, making sure you force the

build to be in Release configuration:

dotnet run -c release

You should get a large volume of diagnostic output and toward the end a table of

timings as in Listing 12-3.

Listing 12-3. Dummy benchmark output

| Method | Mean | Error | StdDev | Median | Allocated |

|------- |----------:|---------:|---------:|----------:|----------:|

| Old | 110.93 ms | 2.193 ms | 3.283 ms | 110.66 ms | - |

| New | 18.62 ms | 0.458 ms | 1.349 ms | 19.11 ms | - |

The “Method” column contains the names of the methods in the Harness class that

we used to call our actual test-subject functions. As we are going to be back-to-back

testing original vs. performance-enhanced versions, I’ve called these “Old” and “New.”

The “Mean” column shows the average time needed to execute the functions we are

testing. Not surprisingly, the “Old” function (slowFunction()) takes more time than the

“New” function (fastFunction()). The difference in means is roughly 10:1, reflecting

the fact that the slow dummy function sleeps for ten times as long. (It’s not exactly 10:1

because of other overheads that are the same for each version.)

The “Error,” “StdDev,” and “Median” columns give other relevant statistical measures

of runtimes. The “Allocated” column shows how much managed memory – if any – was

allocated per invocation of the functions under test. For the purposes of this chapter

we’ll focus mainly on the “Mean” column. If the function being tested causes garbage

collections, there will be additional columns in the table showing how many Generation

0, 1, and 2 collections occurred.

 Case Study: Inappropriate Collection Types
Now that we have some nice benchmarking infrastructure in place, it’s time to look at

common performance antipatterns and their remedies. We’ll start with what happens if

you use an inappropriate collection type or access it inappropriately.

Chapter 12 performanCe

341

Imagine you have a need to create a “sample” function. It takes a collection of values

and returns only every n’th value, for some provided value of n which we’ll call interval.

For example, if you gave it the collection ['a';'b';'c';'d'] and an interval of 3, it

would return ['a';'d']. The requirement doesn’t say anything about what type of

collection contains the input, so you decide to be idiomatic and use F# lists as both the

input and the return values. Listing 12-4 shows your first cut of this logic.

Listing 12-4. First cut of a sample function

let sample interval data =

 [

 let max = (List.length data) - 1

 for i in 0..interval..max ->

 data.[i]

]

We want to generate an F# list, so we use a list comprehension (the whole body of

the function is in []). We use a for loop with a skip value of interval as the sampling

mechanism. Items are returned from the input list using the -> operator (a shortcut for

yield in for-loops) together with indexed access to the list, that is, data.[i]. Seems

reasonable – but does it perform?

To find out, we’ll need to integrate it with the project we put together in Listings 12-1

and 12-2. Add another file called InappropriateCollectionType.fs and ensure that it is

first in the compilation order. Populate it with the code from Listing 12-5.

Listing 12-5. Integrating a function with benchmarking

module InappropriateCollectionType

module Old =

 let sample interval data =

 [

 let max = (List.length data) - 1

 for i in 0..interval..max ->

 data.[i]

]

Chapter 12 performanCe

342

module New =

 let sample interval data =

 [

 let max = (List.length data) - 1

 for i in 0..interval..max ->

 data.[i]

]

In Listing 12-5, we declare modules Old and New to hold baseline and (in the

future) improved versions of our function-under-test. At this stage, the Old and New

implementations of sample are the same.

To make the test harness call these functions and to give them something to work on,

change the Harness module within Program.fs to look like Listing 12-6.

Listing 12-6. Modifying the test harness

module Harness =

 [<MemoryDiagnoser>]

 type Harness() =

 let r = Random()

 let list = List.init 1_000_000 (fun _ -> r.NextDouble())

 [<Benchmark>]

 member _.Old() =

 list

 |> InappropriateCollectionType.Old.sample 1000

 |> ignore

 [<Benchmark>]

 member _.New() =

 list

 |> InappropriateCollectionType.New.sample 1000

 |> ignore

In Listing 12-6, we create some test data, called list, for the test functions to

work on, and we link up the Old and New benchmark functions to the Old and New

implementations in the InappropriateCollectionType module.

Chapter 12 performanCe

343

Note BenchmarkDotnet offers ways to ensure that time-consuming initializations
occur only once globally, or once per iteration. Search online for “benchmarkdotnet
setup and cleanup” for details. I haven’t done this here for simplicity. this won’t
greatly affect the measurements, but it will have some impact on the time the
overall benchmarking process takes to run.

With the code from Listings 12-5 and 12-6 in place, you can run the project and

check the results. Your timings should look something like Listing 12-7, though obviously

the absolute values will depend on the speed of your machine, what .NET and compiler

version you are using, and so forth.

Listing 12-7. Baseline timings

| Method | Mean | Error | StdDev | Allocated |

|------- |--------:|---------:|---------:|----------:|

| Old | 1.103 s | 0.0112 s | 0.0110 s | 31 KB |

| New | 1.091 s | 0.0062 s | 0.0058 s | 33 KB |

The key points are that the Old and New methods take similar times (to be expected as

they are currently calling identical functions) and that the amount of time per iteration,

at over a second, is significant. We have a baseline from which we can optimize!

 Avoiding Indexed Access to Lists
One red flag in this code is that it uses indexed access into an F# list: data.[i]. Indexed

access into arrays is fine – the runtime can calculate an offset from the beginning of

the array using the index and retrieve the element directly from the calculated memory

location. (The situation might be a little more complex for multidimensional arrays.) But

indexed access to an F# list is a really bad idea. The runtime will have to start at the head

of the list and repeatedly get the next item until it has reached the n’th item. This is an

inherent property of linked lists such as F# lists.

Indexed access to an F# list element is a so-called O(n) operation; that is, the time

it takes on average is directly proportional to the length of the list. By contrast, indexed

access to an array element is an O(1) operation: the time it takes on average is independent

of the size of the array. Also, it takes no longer to retrieve the last element of an array than

the first (ignoring any effects of the low-level caching that might go on in the processor).

Chapter 12 performanCe

344

So can we still use an F# list (which, rightly or wrongly, was our original design

decision) while avoiding indexed access? My first thought on this was Listing 12-8, which

I wrote almost as a “straw man,” not expecting it to be particularly effective.

Listing 12-8. First attempt at optimization

 let sample interval data =

 data

 |> List.indexed

 |> List.filter (fun (i, _) ->

 i % interval = 0)

 |> List.map snd

In Listing 12-8, we use List.indexed to make a copy of the original list but

containing tuples of an index and the original value, for example, [(0, 1.23);

(1, 0.98); ...]. Then we use List.filter to pick out the values whose indexes are

a multiple of the required interval. Finally, we use List.map snd to recover just the

element values as we no longer need the index values.

I had low expectations of this approach, as it involves making a whole additional list

(the one with the indexes tupled in); filtering it (with some incidental pattern matching),

which will create another list; and mapping to recover the filtered values, which will

create a third list. Also, a bit more vaguely, this version is very functional, and we’ve been

conditioned over the years to expect that functional code is inherently less efficient than

imperative code.

To check my expectations, add the code from Listing 12-8 into the New module in

InappropriateCollectionType.fs replacing the existing sample implementation, and

run the project. Were you surprised? Listing 12-9 shows the results I got. (I’ve omitted

some of the statistical columns to save space.)

Listing 12-9. Results of first optimization attempt

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |-----------:|----------:|----------:|----------:|----------:|

| Old | 1,099.6 ms | - | - | - | 33 KB |

| New | 134.0 ms | 9000.0000 | 5200.0000 | 1400.0000 | 62,563 KB |

Chapter 12 performanCe

345

The good – and perhaps surprising – news is that this is very nearly an order of

magnitude faster: 134ms vs. 1,100ms. The takeaway here is that indexed access to F#

lists is a disaster for performance. But the fix has come at a cost: there is a great deal of

garbage collection going on, and in all three generations. This aspect should not be a

surprise: as we just said, the code in Listing 12-8 creates no less than three lists to do its

work, only one of which is needed in the final result.

 Using Arrays Instead of Lists
Time for another optimization. What if we revoke our initial design decision to use F#

lists for the input and output and work with arrays instead? An array is an inherently

more efficient data structure for many operations because it is a contiguous block

of memory. There is no overhead, as there is with lists, for pointers from the n’th to

the n+1’th element. Changing the code to use arrays simply means changing all the

references to the List module to use the Array module instead (Listing 12-10).

Listing 12-10. Directly replacing lists with arrays

 let sample interval data =

 data

 |> Array.indexed

 |> Array.filter (fun (i, _) ->

 i % interval = 0)

 |> Array.map snd

You’ll also have to add a line to the test harness (in Program.fs) to make and use an

array version of the test data (Listing 12-11).

Listing 12-11. Providing an array in the test harness

 type Harness() =

 let r = Random()

 let list = List.init 1_000_000 (fun _ -> r.NextDouble())

 let array = list |> Array.ofList

 [<Benchmark>]

 member _.Old() =

 list

Chapter 12 performanCe

346

 |> InappropriateCollectionType.Old.sample 1000

 |> ignore

 [<Benchmark>]

 member _.New() =

 array

 |> InappropriateCollectionType.New.sample 1000

 |> ignore

This improves on the elapsed time of the list-based version by about half but still

does a considerable amount of garbage collection (Listing 12-12).

Listing 12-12. Results of using arrays instead of lists

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |------------:|----------:|----------:|---------:|----------:|

| Old | 1,098.67 ms | - | - | - | 33 KB |

| New | 67.00 ms | 4500.0000 | 2625.0000 | 750.0000 | 39,200 KB |

Again, perhaps this isn’t too surprising: array creation might be a bit more efficient

than list creation, but we are still creating three arrays and using two of them only for a

brief moment.

 Use Sequences Instead of Arrays
There’s tension between the fact that we’d quite like to keep the code idiomatic (a

pipeline of collection functions) and the fact that the current version creates some big

transient objects. Is there any way to reconcile that? Whenever we want a collection to

exist but not exist, we should think about F# sequences. What happens if we replace all

the Array module references with Seq references? (Listing 12-13).

Listing 12-13. Using sequences instead of arrays

 let sample interval data =

 data

 |> Seq.indexed

 |> Seq.filter (fun (i, _) ->

 i % interval = 0)

 |> Seq.map snd

Chapter 12 performanCe

347

To make this a fair test, we ought to make sure the sequence is actually retrieved, so

add an Array.ofSeq to the calling code. We can also revert back to the original list as

input, as lists can be used as sequences (Listing 12-14).

Listing 12-14. Retrieving the sequence

 [<Benchmark>]

 member __.New() =

 list

 |> InappropriateCollectionType.New.sample 1000

 |> Array.ofSeq

 |> ignore

This makes a very satisfactory difference (Listing 12-15).

Listing 12-15. Results of using sequences instead of lists

| Method | Mean | Gen 0 | Gen 1 | Allocated |

|------- |------------:|----------:|--------:|----------:|

| Old | 1,097.62 ms | - | - | 31 KB |

| New | 19.97 ms | 3812.5000 | 31.2500 | 31,275 KB |

We reduced the average elapsed time by 70% compared with the previous iteration,

and although there is still a lot of garbage collection going on, there is less of it and it is

almost all in Generation 0, with none at all in Generation 2. Compared with the original

baseline, our code is now more than 50 times faster!

 Avoiding Collection Functions
We’ve spent quite a long time tweaking a collection-function-based implementation of

sample. The current implementation has the advantage that it is highly idiomatic and

has a reasonable degree of motivational transparency. But is it really the best we can do?

If we go back to Listing 12-4, we observe that the main problem was that we were

using indexed access to an F# list. Now that we have relaxed the requirement to have

lists as inputs and outputs, what happens if we restate the same code in array terms?

(Listing 12-16).

Chapter 12 performanCe

348

Listing 12-16. Array comprehension instead of list comprehension

 let sample interval data =

 [|

 let max = (Array.length data) - 1

 for i in 0..interval..max ->

 data.[i]

 |]

In Listing 12-16, I’ve highlighted all the differences from Listing 12-4: all we have

to do is use array clamps ([|...|]) instead of list brackets ([...]) to enclose the

comprehension, and Array.length instead of List.length to measure the length of the

data. You’ll also need to undo the changes to Program.fs we made in Listing 12-14,

as we’re back to accepting and returning an array rather than a sequence, as in

Listing 12-11.

With those simple changes, we’ve fixed the main issue with the baseline version:

indexed access into a linked list structure. How does it perform? (Listing 12-17).

Listing 12-17. Results of using array comprehension instead of list

comprehension

| Method | Mean | Gen 0 | Gen 1 | Allocated |

|------- |----------------:|-------:|-------:|----------:|

| Old | 1,130,741.04 us | - | - | 31 KB |

| New | 13.91 us | 3.9215 | 0.1221 | 32 KB |

Note that in Listing 12-17, the measurements are now shown in microseconds (us)

rather than milliseconds (ms) because the New measurement is too small to measure

in milliseconds. This is impressive: we’ve now improved execution time from the

baseline by an astonishing factor of 80,000, nearly five orders of magnitude. It’s as

if we found a shortcut on the journey from New York to Paris that shortened the

distance from 6000 kilometers to less than 100 meters. And we’ve done so using only

functional constructs: an array comprehension and a yielding-for-loop. I’ve sometimes

encountered people who consider this style nonfunctional, but I disagree. There is no

mutation, no declare-then-populate patterns, and it’s very concise.

Chapter 12 performanCe

349

 Avoiding Loops Having Skips
I’ve heard it said that loops with skips (for i in 1..10..1000 ...) compile to less

efficient IL than loops with an implicit skip size of 1 (for i in 1..100 ...). I’ve no

idea if this is still true (we’re not going to get into the whole business of inspecting

IL in this book), but it’s relatively easy to check whether this makes a difference in

practice. Listing 12-18 shows an implementation that avoids a skipping for-loop. We

calculate an array index by multiplying the loop counter by the interval. The hard part

is defining the upper bound of the loop.

Listing 12-18. Avoiding a skipping for-loop

 let sample interval data =

 [|

 let max =

 ((data |> Array.length |> float) / (float interval)

 |> ceil

 |> int) - 1

 for i in 0..max ->

 data.[i * interval]

 |]

This makes no significant difference to performance (Listing 12-19). Either it’s

no longer true that skipping loops are substantially less efficient or the overhead

of multiplying up the array index has overwhelmed any gains from avoiding a

skipping loop.

Listing 12-19. Results of avoiding a skipping loop

| Method | Mean | Gen 0 | Gen 1 | Allocated |

|------- |----------------:|-------:|-------:|----------:|

| Old | 1,109,881.03 us | - | - | 32 KB |

| New | 13.31 us | 3.9215 | 0.1221 | 32 KB |

Chapter 12 performanCe

350

Apart from the fact that it makes no difference to performance, there are several

reasons why I’d be reluctant to go this far in real code:

• It lowers the motivational transparency of the code, by making it a

little bit less obvious what the author was intending to do.

• It’s a true microoptimization, with effects that could easily change

between architectures or compiler versions. By working at this

level, we deny ourselves any potential improvements in the way the

compiler and runtime work with respect to skipping loops.

• The code is much riskier, with a complicated calculation for defining

the upper bound of the loop. (It took me no less than six attempts to

get it right!) In going down this route, we are laying ourselves open to

off-by- one errors and other silly bugs: exactly the kind of thing that

idiomatic F# code excels at avoiding.

 Inappropriate Collection Types – Summary
Figure 12-1 shows a chart of the effects of our various changes.

 -

 2,00,000

 4,00,000

 6,00,000

 8,00,000

 10,00,000

 12,00,000

Baseline Avoid index into
list

Use array not list Use seq not array Avoid collection
functions

Avoid skipping
loops

m
icr

os
ec

on
ds

Average Execution Time

Figure 12-1. Impact of various improvements to collection usage

Chapter 12 performanCe

351

The improvements are dominated by the simple change of not using indexing into

an F# list. Figure 12-2 shows the same measurements on a logarithmic scale, which

makes it easier to compare the last few items.

The takeaways from this section are as follows:

• Don’t do indexed access into F# lists – that is, myList.[i]. Either use

a different collection type or find another way of processing the list.

• Be familiar with the performance characteristics of the collection

data structures and functions that you are using. At the time of

writing, these functions are somewhat patchily documented

regarding their time complexity (O(n), O(1), etc.), so you may have

to do a little online searching or experimentation to pin this down.

Don’t default to using F# lists just because they might be considered

more idiomatic. Unless you are playing to the strengths of lists (which

boils down to use of the head::tail construct), arrays are often the

better choice.

 1

 10

 100

 1,000

 10,000

 1,00,000

 10,00,000

 1,00,00,000

Baseline Avoid index
into list

Use array
not list

Use seq not
array

Avoid
collection
functions

Avoid
skipping

loops

m
icr

os
ec

on
ds

Average Execution Time (Log Scale)

Figure 12-2. Impact of various improvements to collection usage on a log scale

Chapter 12 performanCe

352

• Pipelines of collection functions (.filter, .map, and so forth) can

have decent performance, provided you choose the right collection

type in the first place.

• Sequences (and functions in the Seq module) can sometimes be

a way of expressing your logic in terms of pipelines of collection

functions, without the overhead of creating and destroying short-

lived collection instances.

• Comprehensions (e.g., placing code in array clamps and using yield

or a for...-> loop) can have stellar performance. Don’t be fooled

into thinking such code is in some way “not functional” just because

the for keyword is involved.

• Beware of low-level microoptimizations: Are you denying yourself

the benefits of potential future compiler or platform improvements?

Have you introduced unnecessary risk into the code?

 Case Study: Short-Term Objects
An oft-quoted dictum in .NET programming is that you shouldn’t unnecessarily create

and destroy large numbers of reference types because of the overhead of allocating them

and later garbage collecting them. How true is this in practice, and how can we avoid it?

Imagine you are tasked with taking in a large number of three-dimensional points (x,

y, and z positions) and identifying those which are within a given radius of some other

fixed point. (For example, you might be trying to identify all the stars that fall within a

certain radius of the Sun.) We’ll assume that the API of the function must take a radius

value, a tuple of three floats for the “fixed” point, and an array of tuples of three points for

the candidate positions (Listing 12-20).

Listing 12-20. The required API for a point-searching function

 let withinRadius

 (radius : float)

 (here : float*float*float)

 (coords : (float*float*float)[]) : (float*float*float)[] =

 ...

Chapter 12 performanCe

353

As a further given, you have access to a class that can do 3D distance calculations

(Listing 12-21).

Listing 12-21. A 3D point class that can do distance calculations

type Point3d(x : float, y : float, z : float) =

 member __.X = x

 member __.Y = y

 member __.Z = z

 member val Description = "" with get, set

 member this.DistanceFrom(that : Point3d) =

 (that.X - this.X) ** 2. +

 (that.Y - this.Y) ** 2. +

 (that.Z - this.Z) ** 2.

 |> sqrt

 override this.ToString() =

 sprintf "X: %f, Y: %f, Z: %f" this.X this.Y this.Z

The type from Listing 12-21 can do the required distance calculation, but you might

notice it contains other things – a mutable Description field and a ToString override –

which we don’t particularly need for the requirement. This is pretty typical in an object-

oriented scenario: the functionality you need is coupled with a certain amount of other

stuff you don’t need.

To start exploring this requirement, add another file called ShortTermObjects.fs to

your project, and populate it with the code from Listings 12-21 and 12-22.

Listing 12-22. First cut of the withinRadius function

module ShortTermObjects

type Point3d(x : float, y : float, z : float) =

 // Code as Listing 12-21

 ...

type Float3 = (float * float * float)

module Old =

 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let here = Point3d(here)

Chapter 12 performanCe

354

 coords

 |> Array.map Point3d

 |> Array.filter (fun there ->

 there.DistanceFrom(here) <= radius)

 |> Array.map (fun p3d -> p3d.X, p3d.Y, p3d.Z)

module New =

 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let here = Point3d(here)

 coords

 |> Array.map Point3d

 |> Array.filter (fun there ->

 there.DistanceFrom(here) <= radius)

 |> Array.map (fun p3d -> p3d.X, p3d.Y, p3d.Z)

As in the previous section, the Old and New implementations are the same initially.

Note also that we use a type alias (type Float3 = (float * float * float)) to avoid

repeating the tuple of three floats throughout the code.

We do the required selection by mapping the incoming array of tuples into Point3d

instances and filtering the result using the DistanceFrom instance method. Finally, we

map back to an X, Y, Z tuple, as the requirement states we have to return tuples, not

Point3d instances.

To integrate with the benchmarking, you’ll also need to alter Program.fs so that the

Harness module looks like Listing 12-23.

Listing 12-23. Integrating the 3D distance calculation with benchmarking

module Harness =

 [<MemoryDiagnoser>]

 type Harness() =

 let r = Random(1)

 let coords =

 Array.init 1_000_000 (fun _ ->

 r.NextDouble(), r.NextDouble(), r.NextDouble())

 let here = (0., 0., 0.)

 [<Benchmark>]

Chapter 12 performanCe

355

 member __.Old() =

 coords

 |> ShortTermObjects.Old.withinRadius 0.1 here

 |> ignore

 [<Benchmark>]

 member __.New() =

 coords

 |> ShortTermObjects.New.withinRadius 0.1 here

 |> ignore

When I ran this code, I didn’t have particularly high hopes: this was going to create a

million instances of Point3d just so that we could use the DistanceFrom method for each

instance. Listing 12-24 shows the results. (Old and New are roughly the same here, as the

same function is being used in this first version.)

Listing 12-24. Results of a baseline run

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |---------:|----------:|----------:|----------:|----------:|

| Old | 166.7 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54 MB |

| New | 160.6 ms | 6250.0000 | 3500.0000 | 750.0000 | 54 MB |

The statistics in Listing 12-24 aren’t as bad as I’d feared – the average execution time

works out at about 0.17 microseconds per input position. Not terrible, though of course

that depends entirely on your objectives. Over 50Mb of memory is being allocated

during processing, which might have an effect on the wider system, and there are

garbage collection “survivors” into Generations 1 and 2. The .NET garbage collector is

pretty good at collecting so-called “Generation 0” items, but for every extra generation

that an object survives, it will have been marked and copied, and all pointers to it will

have been updated. This is costly! So can we improve on our baseline?

 Sequences Instead of Arrays
We learned earlier that sequences can sometimes be a better choice than arrays (or

other concrete collections) for pipeline operations that create reference types. It’s simple

enough to apply this to the current example (Listing 12-25).

Chapter 12 performanCe

356

Listing 12-25. Using sequences instead of arrays

 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let here = Point3d(here)

 coords

 |> Seq.map Point3d

 |> Seq.filter (fun there ->

 there.DistanceFrom(here) <= radius)

 |> Seq.map (fun p3d -> p3d.X, p3d.Y, p3d.Z)

 |> Seq.toArray

This runs a little faster and allocates a bit less memory than the baseline example,

and no objects survive into Generation 1 – but the overall improvement is nothing to

write home about (Listing 12-26).

Listing 12-26. Results of using sequences instead of arrays

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |---------:|----------:|----------:|----------:|----------:|

| Old | 171.7 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54 MB |

| New | 117.1 ms | 5600.0000 | - | - | 46 MB |

 Avoiding Object Creation
Maybe it’s time to question the whole approach of creating Point3d instances just so we

can use one of Point3d’s methods. Even if you didn’t have access to Point3d’s source

code, you’d probably be able to code the calculation for a 3D distance yourself, based on

the widely known formula √((x1–x2)2 + (y1-y2)2 + (z1-z2)2).

Listing 12-27 shows what happens when we do this.

Listing 12-27. Avoiding object creation

 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let distance (p1 : float*float*float) (p2: float*float*float) =

 let x1, y1, z1 = p1

 let x2, y2, z2 = p2

 (x1 - x2) ** 2. +

 (y1 - y2) ** 2. +

Chapter 12 performanCe

357

 (z1 - z2) ** 2.

 |> sqrt

 coords

 |> Array.filter (fun there ->

 distance here there <= radius)

This shaves about 50% off the execution time and is vastly lighter on memory

allocation. There is no recorded garbage collection (Listing 12-28).

Listing 12-28. Results of avoiding object creation

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |----------:|----------:|----------:|----------:|----------:|

| Old | 169.84 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |

| New | 83.58 ms | - | - | - | 126 KB |

 Reducing Tuples
You might be wondering what happens if we simplify the signature of the distance

function so that it takes six separate floating-point values instead of two tuples of three

floating- point values. This enables us to decompose here into x, y, and z only once,

though we still have to decompose each candidate point, now using pattern matching in

the filter lambda (Listing 12-29).

Listing 12-29. Reducing tuples

 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let distance x1 y1 z1 x2 y2 z2 =

 (x1 - x2) ** 2. +

 (y1 - y2) ** 2. +

 (z1 - z2) ** 2.

 |> sqrt

 let x1, y1, z1 = here

 coords

 |> Array.filter (fun (x2, y2, z2) ->

 distance x1 y1 z1 x2 y2 z2 <= radius)

Chapter 12 performanCe

358

This makes no useful difference as compared with the results in Listing 12-28

(Listing 12-30).

Listing 12-30. Result of reducing tuples

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |----------:|----------:|----------:|----------:|----------:|

| Old | 172.00 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |

| New | 83.50 ms | - | - | - | 126 KB |

 Using Struct Tuples
F# has the concept of “struct tuples” – tuples that are value types rather than reference

types. Would using struct tuples improve the performance of our withinDistance

function? Listing 12-31 shows the new code. Note how we have to use the struct

keyword everywhere we instantiate or pattern match on a struct tuple.

Listing 12-31. Using struct tuples

type Float3s = (struct(float * float * float))

module New =

 let withinRadius

 (radius : float)

 (here : Float3s)

 (coords : Float3s[]) =

 let distance p1 p2 =

 let struct(x1, y1, z1) = p1

 let struct(x2, y2, z2) = p2

 (x1 - x2) ** 2. +

 (y1 - y2) ** 2. +

 (z1 - z2) ** 2.

 |> sqrt

 coords

 |> Array.filter (fun there ->

 distance here there <= radius)

Chapter 12 performanCe

359

For this change, we’ll also have to amend Program.fs, as the signature of the

function being tested has changed slightly (Listing 12-32). (This would be a practical

disadvantage of this optimization if the original source of the data couldn’t be changed

to produce struct tuples: you’d have to map all your tuples to struct tuples before calling

withinDistance.)

Listing 12-32. Providing struct tuples

module Harness =

 [<MemoryDiagnoser>]

 type Harness() =

 let r = Random(1)

 let coords =

 Array.init 1_000_000 (fun _ ->

 r.NextDouble(), r.NextDouble(), r.NextDouble())

 let here = (0., 0., 0.)

 let coordsStruct =

 coords

 |> Array.map (fun (x, y, z) -> struct(x, y, z))

 let hereStruct = struct(0., 0., 0.)

 [<Benchmark>]

 member __.Old() =

 coords

 |> ShortTermObjects.Old.withinRadius 0.1 here

 |> ignore

 [<Benchmark>]

 member __.New() =

 coordsStruct

 |> ShortTermObjects.New.withinRadius 0.1 hereStruct

 |> ignore

Unfortunately, the move to struct tuples doesn’t make much difference for this

benchmark (Listing 12-33).

Chapter 12 performanCe

360

Listing 12-33. Results of moving to struct tuples

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |----------:|----------:|----------:|----------:|----------:|

| Old | 170.76 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |

| New | 85.28 ms | - | - | - | 135 KB |

 Operator Choice
We seem to be scraping the bottom of the barrel in relation to memory management.

Does anything else stand out as being capable of improvement? What is the code

doing most?

One thing it is doing a lot is squaring, in the lines that look like this: (x1 - x2) **

2. + This seems pretty innocent, but there is a tiny clue to a potential problem –

the fact that we are squaring by raising to a floating-point exponent, 2.0. Maybe the **

operator is more general than it needs to be. What if we use the pown function, which

raises to an integer exponent? It’s a simple change (Listing 12-34).

Listing 12-34. Using pown instead of the ** operator

 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let distance x1 y1 z1 x2 y2 z2 =

 pown (x1 - x2) 2 +

 pown (y1 - y2) 2 +

 pown (z1 - z2) 2

 |> sqrt

 let x1, y1, z1 = here

 coords

 |> Array.filter (fun (x2, y2, z2) ->

 distance x1 y1 z1 x2 y2 z2 <= radius)

You’ll also have to undo the changes to Program.fs that we made in Listing 12-32,

as we are no longer bothering with struct tuples. The results of using pown are very

satisfying (Listing 12-35)!

Chapter 12 performanCe

361

Listing 12-35. Results of using pown instead of the ** operator

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |-----------:|----------:|----------:|---------:|----------:|

| Old | 167.257 ms | 6250.0000 | 3500.0000 | 750.0000 | 54,839 KB |

| New | 9.113 ms | - | - | - | 126 KB |

This is almost ten times faster than anything we’ve achieved before and 18 times

faster than the baseline. Looking at the compiler source, perhaps this isn’t too surprising.

There are several steps involved in getting to the final operation of multiplying x by itself,

of which Listing 12-36 is just the last.

Listing 12-36. Part of the compiler logic behind the ** operator

 let inline ComputePowerGenericInlined one mul x n =

 let rec loop n =

 match n with

 | 0 -> one

 | 1 -> x

 | 2 -> mul x x

 | 3 -> mul (mul x x) x

 | 4 -> let v = mul x x in mul v v

 | _ ->

 let v = loop (n/2) in

 let v = mul v v in

 if n%2 = 0 then v else mul v x in

 loop n

Are we satisfied yet? Well even pown x 2 is a little more general than we need, as we

know that we really just want to do x*x. What if we make one last change to do exactly

that (Listing 12-37)?

Chapter 12 performanCe

362

Listing 12-37. Avoiding using pown for squaring

 let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let distance x1 y1 z1 x2 y2 z2 =

 let dx = x1 - x2

 let dy = y1 - y2

 let dz = z1 - z2

 dx * dx +

 dy * dy +

 dz * dz

 |> sqrt

 let x1, y1, z1 = here

 coords

 |> Array.filter (fun (x2, y2, z2) ->

 distance x1 y1 z1 x2 y2 z2 <= radius)

This makes a further 60% difference! (Listing 12-38).

Listing 12-38. Results of avoiding using pown

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |-----------:|----------:|----------:|----------:|----------:|

| Old | 172.101 ms | 6666.6667 | 3666.6667 | 1000.0000 | 54,839 KB |

| New | 3.815 ms | - | - | - | 126 KB |

We’ve now achieved a gain of 98% over the original implementation. It’s probably

time to stop scraping the barrel.

 Short-Term Objects – Summary
Figure 12-3 shows a chart of the effects of our various changes.

Chapter 12 performanCe

363

 -
 20,000
 40,000
 60,000
 80,000

 1,00,000
 1,20,000
 1,40,000
 1,60,000
 1,80,000

Baseline Use seq
not array

Use
functions

not
objects

Reduce
tuples

Use
struct
tuples

Use pown
not **

Use
multiply

not pown

m
icr

os
ec

on
ds

Average Execution Time

Figure 12-3. Impact of various improvements to object usage

The results are dominated by one kind of change: not the way we use objects or

collections, but our choice of operator to do the distance calculation.

The takeaways from this section are as follows:

• If many reference objects are placed into collections, the collections

and their functions can have a bearing on performance over and

above the cost of the objects themselves. For example, when dealing

with long lists of reference type instances, pipelines of sequence

functions can be better than pipelines of array functions.

• Think about why you are creating objects. Could the methods you

are calling be factored out into stand-alone functions, meaning

that the whole object-instantiation/collection issue goes away

(unless those functions themselves allocate memory)? Refactoring

into independent functions has additional benefits in terms of

conciseness, decoupling, and testability.

• Concerns about allocation of tuples, and the possible gains from

using struct tuples, can be important, but quick wins are not

guaranteed.

Chapter 12 performanCe

364

• Though discussions of performance in .NET languages often focus

on memory management, this is far from being the whole story.

Consider algorithms and operators as well.

• Only use ** for raising to noninteger exponents. Use pown when

raising to integer exponents, and also consider simple self-

multiplication when the exponent is known in advance (e.g.,

squaring, cubing, etc.). More generally, remember there is a trade-off

between how generic and general-purpose things are (such as the

generic ** operator) and how efficient they are.

 Case Study: Naive String Building
As developers, we often find ourselves building up strings, for example, for formatting

values in UIs or data exports, or sending messages to other servers. It’s easy to get wrong

on .NET – but fortunately not too hard to get right either.

For this section, we’ll imagine we’ve been tasked with formatting a two-dimensional

array of floating-point values as a single CSV (comma-separated values) string, with line

ends between each row of data. For simplicity, we’ll assume that F#’s default floating-

point formatting (with the "%f" format specifier) is sufficient. We’ll further assume that

the array, while not trivial, fits in memory and that its CSV also fits in memory, so we

don’t need a fancy streaming approach.

Add a new file called NaiveStringBuilding.fs to the benchmarking project and

copy into it the code from Listing 12-39.

Listing 12-39. First cut of a CSV builder

module NaiveStringBuilding

open System

module Old =

 let private buildLine (data : float[]) =

 let mutable result = ""

 for x in data do

 result <- sprintf "%s%f," result x

 result.TrimEnd(',')

Chapter 12 performanCe

365

 let buildCsv (data : float[,]) =

 let mutable result = ""

 for r in 0..(data |> Array2D.length1) - 1 do

 let row = data.[r, *]

 let rowString = row |> buildLine

 result <- sprintf "%s%s%s" result rowString Environment.NewLine

 result

module New =

 // Code as in Old module above.

Also change the Harness module in Program.fs to look like Listing 12-40.

Listing 12-40. Integrating CSV generation with benchmarking

module Harness =

 [<MemoryDiagnoser>]

 type Harness() =

 let data =

 Array2D.init 500 500 (fun x y ->

 x * y |> float)

 [<Benchmark>]

 member __.Old() =

 data

 |> NaiveStringBuilding.Old.buildCsv

 |> ignore

 [<Benchmark>]

 member __.New() =

 data

 |> NaiveStringBuilding.New.buildCsv

 |> ignore

In Listing 12-40, we generate a 500 x 500 element array: not exactly “big data,” but it’s

still a quarter of a million elements, so will give our CSV builder a decent workout. (You

can reduce the number of elements if the benchmarks run too slowly for you.) How does

the naive, mutation-based solution shape up? (Listing 12-41).

Chapter 12 performanCe

366

Listing 12-41. Results of naive CSV string building

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |--------:|------------:|------------:|------------:|----------:|

| Old | 1.027 s | 340000.0000 | 149000.0000 | 140000.0000 | 3 GB |

| New | 1.032 s | 336000.0000 | 145000.0000 | 136000.0000 | 3 GB |

This is not good. Building the CSV for our relatively modest 500 x 500 array takes

over a second and allocates an astonishing 3GB of memory. There is garbage collection

going on in all three generations. Imagine you’d put this code on a web server for,

say, generating client downloads for scientific or banking customers. You would not

be popular! The reason things are so bad is the level at which we are mutating things.

Every time we do a result <- sprintf..., we are discarding the string object that was

previously referred to by the label result (making it available for garbage collection

in due course) and creating another string object. This means allocating and almost

immediately freeing vast amounts of memory.

 StringBuilder to the Rescue
The problems of string mutation aren’t unique to F#. There is a nice solution in .NET

called System.Text.StringBuilder, which is designed to tackle exactly this kind of

situation. Listing 12-42 shows how you can use it. The code doesn’t have to change

much: the mutable result is replaced by a StringBuilder instance, and the actual

mutation of result in buildLine is replaced by calling the string builder’s Append()

method. (Confusingly, calling Append both does an in-place append and returns the

StringBuilder instance, which is why we have to pipe its result into ignore.) In the

buildCsv function, we use StringBuilder.AppendLine() to get the line breaks. Finally,

we call the string builder’s ToString() method to get the built-up string.

Listing 12-42. Using StringBuilder for string concatenation

 open System.Text

 let private buildLine (data : float[]) =

 let sb = StringBuilder()

 for x in data do

 sb.Append(sprintf "%f," x) |> ignore

 sb.ToString().TrimEnd(',')

Chapter 12 performanCe

367

 let buildCsv (data : float[,]) =

 let sb = StringBuilder()

 for r in 0..(data |> Array2D.length1) - 1 do

 let row = data.[r, *]

 let rowString = row |> buildLine

 sb.AppendLine(rowString) |> ignore

 sb.ToString()

The results are impressive: a 14-fold speedup and nearly a 40-fold improvement in

memory allocation (Listing 12-43).

Listing 12-43. Result of using StringBuilder for string concatenation

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |------------:|------------:|------------:|------------:|----------:|

| Old | 1,036.89 ms | 341000.0000 | 150000.0000 | 141000.0000 | 3,127 MB |

| New | 72.97 ms | 9857.1429 | 2000.0000 | 1000.0000 | 81 MB |

 Using String.Join
If we now focus on the buildLine function, we notice a few things about it that should

make us a little unhappy:

• It’s too much code for what must surely be a commonly required

operation: joining a set of strings together with some separator at

the joins.

• At the end of the string building process, we have to go back and trim

off the final separator.

It turns out that .NET offers a built-in function for doing pretty much all we want.

String.Join takes a separator and an array of strings to join, so all we need to do before

calling it is map the floats into strings in the required format (Listing 12-44).

Chapter 12 performanCe

368

Listing 12-44. Using String.Join

 open System.Text

 let private buildLine (data : float[]) =

 let cols = data |> Array.map (sprintf "%f")

 String.Join(',', cols)

 let buildCsv (data : float[,]) =

 let sb = StringBuilder()

 for r in 0..(data |> Array2D.length1) - 1 do

 let row = data.[r, *]

 let rowString = row |> buildLine

 sb.AppendLine(rowString) |> ignore

 sb.ToString()

This gives a further incremental improvement in performance and quite a good

reduction in memory allocation (Listing 12-45).

Listing 12-45. Result of using String.Join

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |------------:|------------:|------------:|------------:|----------:|

| Old | 1,026.21 ms | 339000.0000 | 148000.0000 | 139000.0000 | 3,127 MB |

| New | 62.46 ms | 5750.0000 | 2125.0000 | 875.0000 | 47 MB |

 Using Array.Parallel.map
If we look again at Listing 12-44, we notice that we have an array mapping operation.

With such operations, you can often speed things up by using Array.Parallel.map

instead (Listing 12-46). Array.Parallel.map has the same type signature and observable

behavior as Array.map, but the computations it specifies are done in parallel, spread

across your available cores. Obviously, we don’t want to do this until we are convinced

that the operation we are doing is itself reasonably efficient, but here it seems justified.

Chapter 12 performanCe

369

Listing 12-46. Using Array.Parallel.map

 open System.Text

 let private buildLine (data : float[]) =

 let cols = data |> Array.Parallel.map (sprintf "%f")

 String.Join(',', cols)

 let buildCsv (data : float[,]) =

 let sb = StringBuilder()

 for r in 0..(data |> Array2D.length1) - 1 do

 let row = data.[r, *]

 let rowString = row |> buildLine

 sb.AppendLine(rowString) |> ignore

 sb.ToString()

This brings us a considerable speed improvement, a great cost-benefit given the

simplicity of the code change (Listing 12-47).

Listing 12-47. Result of using Array.Parallel.map

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |------------:|------------:|------------:|------------:|----------:|

| Old | 1,013.15 ms | 338000.0000 | 147000.0000 | 138000.0000 | 3,127 MB |

| New | 29.77 ms | 6437.5000 | 2250.0000 | 968.7500 | 50 MB |

A couple of things to be aware of when using Array.Parallel.map. First, its impact

will obviously be very dependent on the number of available cores. It’s not uncommon

for cheaper cloud instances (e.g., on Microsoft Azure) to have fewer cores than a typical

developer machine, so the in-production speedup may be disappointing. You may have

to experiment with running your benchmarks on a cloud instance to clarify this. And

second, try not to nest Array.Parallel operations. You will rapidly bump into the law of

diminishing returns.

Chapter 12 performanCe

370

 Using String Interpolation
If you are really concentrating, you may be wondering if other point optimizations in the

buildLine function might squeeze out a little more performance:

• Using Seq.map instead of Array.map.

• Using String.Format instead of F#’s sprintf to format the floating- point

values into strings:

let cols = data |> Array.Parallel.map (fun x -> String.Format("{0}", x))

• Using F# string interpolation.

Of these, I found that the only substantial improvement was by using F# string

interpolation (Listing 12-48) (notice the $"x").

Listing 12-48. Using string interpolation

 open System.Text

 let private buildLine (data : float[]) =

 let cols = data |> Array.Parallel.map (fun x -> $"x")

 String.Join(',', cols)

 let buildCsv (data : float[,]) =

 let sb = StringBuilder()

 for r in 0..(data |> Array2D.length1) - 1 do

 let row = data.[r, *]

 let rowString = row |> buildLine

 sb.AppendLine(rowString) |> ignore

 sb.ToString()

This improved performance by a surprising 50% and memory allocation by two-fifths

(Listing 12-49).

Listing 12-49. Result of using string interpolation

| Method | Mean | Gen 0 | Gen 1 | Gen 2 | Allocated |

|------- |------------:|------------:|------------:|------------:|----------:|

| Old | 1,029.77 ms | 342000.0000 | 151000.0000 | 142000.0000 | 3,127 MB |

| New | 14.26 ms | 4109.3750 | 625.0000 | 234.3750 | 32 MB |

Chapter 12 performanCe

371

 -

 2,00,000

 4,00,000

 6,00,000

 8,00,000

 10,00,000

 12,00,000

Baseline StringBuilder String.Join Array.Parallel.map String interpolation

m
icr

os
ec

on
ds

Average Execution Time

Figure 12-4. Impact of various improvements to string building

Overall, we’ve achieved approximately a 72-fold improvement in performance and

two orders of magnitude less memory allocation.

 Naive String Building – Summary
Figure 12-4 shows a chart of the effects of our various changes.

The takeaways from this section are as follows:

• Mutating string instances really means discarding and replacing the

entire instance with another one. This is a disaster for performance.

• The .NET StringBuilder class is optimized for exactly

this requirement and can offer a huge speed and memory

efficiency boost.

• When joining strings together with a separator, String.Join gives

good performance with minimal code.

• Using Array.Parallel.map gives a great low-code-impact speed boost.

Bear in mind the number of cores on the machine where the code will

be running live. Nest Array.Parallel.map operations at your peril.

• It’s well worth experimenting with alternatives to sprintf for formatting

values. In this case, string interpolation halved our execution time.

Chapter 12 performanCe

372

 Other Common Performance Issues
I should mention a few other common performance issues. We don’t have room for case

studies for these, but a brief description should be enough to help you avoid them.

 Searching Large Collections
If you find yourself repeatedly searching through large collections using Array.find,

Array.tryFind, Array.contains, and so forth, consider making the collection an

F# Map, a .NET Dictionary, or some other collection optimized for lookup.

 Comparison Operators and DateTimes
If you need to do large numbers of less-than, greater-than, or equality comparisons

with DateTime or DateTimeOffset instances, consider using DateTime.CompareTo or

DateTimeOffset.CompareTo. At the time of writing, this works about five times faster (in

a brief informal test) than =, >, >=, <, and <=.

 Concatenating Lists
The @ operator concatenates two F# lists. This is a relatively expensive operation, so you

may want to avoid doing it in performance critical code. Building up lists using the cons

operator (::) is OK (assuming that a list is otherwise suitable for what you are doing)

because that’s what linked lists are optimized for.

 For-Loop with Unexpected List Creation
What’s the practical difference between these two lines of code? (Listing 12-50).

Listing 12-50. A right way and a wrong way to write a simple indexed for-loop

for i in 0..9999 do...

for i in [0..9999] do...

The first is a simple for-loop and is correct. The second instantiates a list instance

with 10,000 elements and iterates over the list. The body of the loops could be the same,

and the second would perform much more slowly and would use more memory.

Chapter 12 performanCe

373

 F# and Span Support
Be aware that F# 4.5 introduced support for the .NET type Span<T>. To quote MSDN

Magazine:

System.Span<T> is a new value type at the heart of .NET. It enables the rep-
resentation of contiguous regions of arbitrary memory, regardless of
whether that memory is associated with a managed object, is provided by
native code via interop, or is on the stack. And it does so while still provid-
ing safe access with performance characteristics like that of arrays.

Usage of Span is too low level an undertaking to go into detail here, but if you are

really struggling for performance and you think working directly with a range of memory

might help, you can do so using F#’s support for Span.

 The Importance of Tests
I’ve done all this benchmarking without having shown any tests to prove that the

functions being tested still work correctly. This is simply to keep down the amount of

code included in the book. In reality, it would be important to have passing tests before

you started the optimization process – and to keep running them for each optimization

pass. Broadly, your workflow should be like Figure 12-5. You might prefer to write at least

some of the tests before writing the implementation, but my key point is they should be

in place before you start optimizing.

Chapter 12 performanCe

374

Start

Code in

idiomatic style

Add tests

Run

performance

check

Perf. OK?

Run tests

Tests pass?

Finish

Identify

bottlenecks

Fix worst

bottleneck

Fix test failure No

Yes

No

Yes

Figure 12-5. Workflow for running tests and checking performance

Chapter 12 performanCe

375

You might shortcut the process a bit by doing several performance optimization

passes before rerunning tests. But the important thing is that nothing gets included in

your product that doesn’t both pass functional tests and have acceptable performance.

This is especially true when replacing pipelines of collection functions with more

handcrafted logic. The lower the level of abstraction you are working at, the more

potential there is for silly off-by-one errors and so forth: just the kinds of things that one

avoids if one sticks to using collection functions.

 Recommendations
Here are some lessons that are worth taking away from this chapter:

• When performance is important, have a method for measuring it in a

simple and repeatable way. BenchmarkDotNet is a good choice.

• Be keenly aware of the performance characteristics of any collection

types and functions you are using. Indexed access into F# lists and list

concatenation with @ are traps that are particularly easy to fall into.

• Instantiating and later destroying reference values (i.e., classes) have

a cost. Be mindful of whether those objects need to exist – could a

function do the work instead?

• When instances are in a collection, the type of collection used can

also affect memory behavior. Using sequence functions instead of

concrete collection functions for intermediate steps in a pipeline can

sometimes help (e.g., Seq.map instead of Array.map).

• Although discussion of .NET performance often focuses on the

memory footprint and life cycles of objects, other considerations,

such as the choice of operators, can sometimes have a greater impact.

Remember the impact of using ** vs. pown or simple multiplication.

• Naive string building is a common source of performance problems.

StringBuilder and String.Join can help. String interpolation can

be faster than sprintf.

Chapter 12 performanCe

376

• Array.Parallel.map can have a big impact on performance when

multiple cores are available. Add it as a last step when you are sure

the mapping function itself is efficient.

• When dealing with DateTimes and DateTimeOffsets, CompareTo is

currently faster than comparison operators such <, >, and =.

• Don’t use for x in [y..z] unless you really did intend to create a

collection of values to iterate over. Omit the brackets.

• You can get great improvements in performance without

moving away from a functional, immutable style. Beware of

microoptimizations that make your code less reliable, less

maintainable, and less likely to benefit from future compiler or

platform enhancements.

 Summary
Optimizing F# code can be a pleasure rather than a chore, provided you set up good

benchmarks and code with a degree of mechanical sympathy. Code a baseline version

that works, bearing in mind the principles of motivational transparency and semantic

focus. While you should avoid obvious howlers (like indexed access into F# lists), you

shouldn’t worry overly much about performance during this step. Ensure tests and

benchmarks are in place for this baseline version. Then tackle bottlenecks. You can often

achieve improvements of several orders of magnitude without compromising the clarity

and maintainability of your code.

Finally, I want to say a big thanks to the authors and maintainers of

BenchmarkDotNet. It’s an awesome library, and we’ve only skimmed the surface of its

capabilities here.

In the next chapter, we’ll move our focus back from the computer to the human and

discuss how to use code layout and naming to maximize the readability and hence the

revisability of our code.

Chapter 12 performanCe

377

 Exercises

EXERCISE 12-1 – CONCATENATING LISTS

You come across the following code, which adds some new transactions to an existing

collection of transactions. It seems to be a bottleneck in your system.

type Transaction = { Id : int } // Would contain more fields in reality

let addTransactions

 (oldTransactions : Transaction list)

 (newTransactions : Transaction list) =

 oldTransactions @ newTransactions

let transactions1 = List.init 10_000_000 (fun i -> { Id = i})

let transactions2 = List.init 10_000_000 (fun i -> { Id = i+1_000_000})

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let allTransactions = addTransactions transactions1 transactions2

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

assuming that the old and new transaction collections don’t have to be f# lists, how could you

speed up the system with minimal code changes?

EXERCISE 12-2 – SPEEDING UP FILTERING

a colleague suggests that you could speed up the following code (from Listing 12-37) by

mapping to the distance in parallel and then filtering. (at the time of writing, there is no

Array.Parallel.filter function, which is why you’d have to map first.)

type Float3 = (float * float * float)

let withinRadius (radius : float) (here : Float3) (coords : Float3[]) =

 let distance x1 y1 z1 x2 y2 z2 =

 let dx = x1 - x2

 let dy = y1 - y2

 let dz = z1 - z2

 dx * dx +

Chapter 12 performanCe

378

 dy * dy +

 dz * dz

 |> sqrt

 let x1, y1, z1 = here

 coords

 // Original code:

 // |> Array.filter (fun (x2, y2, z2) ->

 // distance x1 y1 z1 x2 y2 z2 <= radius)

 |> Array.Parallel.map (fun (x2, y2, z2) ->

 distance x1 y1 z1 x2 y2 z2)

 |> Array.filter (fun d -> d <= radius)

let r = Random(1)

let coords =

 Array.init 1_000_000 (fun _ ->

 r.NextDouble(), r.NextDouble(), r.NextDouble())

let here = (0., 0., 0.)

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let result =

 coords

 |> withinRadius 0.1 here

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

Would you expect this to improve performance? Why/why not?

Chapter 12 performanCe

379

EXERCISE 12-3 – CHANGING THE APPROACH TO CSV GENERATION

how could you change the following code (originally from Listing 12-46) so that the entire

2D array is mapped into string representations of the numbers in one step and only then

converted into CSV lines?

let buildLine (data : float[]) =

 let cols = data |> Array.Parallel.map (sprintf "%f")

 String.Join(',', cols)

let buildCsv (data : float[,]) =

 let sb = StringBuilder()

 for r in 0..(data |> Array2D.length1) - 1 do

 let row = data.[r, *]

 let rowString = row |> buildLine

 sb.AppendLine(rowString) |> ignore

 sb.ToString()

let data =

 Array2D.init 500 500 (fun x y ->

 x * y |> float)

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let csv =

 data

 |> buildCsv

 |> ignore

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

What impact does doing this have on performance?

hints:

• You can get rid of the buildLine function in your new version.

• remember there is an Array2D module.

• You won’t be able to work in parallel.

Chapter 12 performanCe

380

 Exercise Solutions

EXERCISE 12-1 – CONCATENATING LISTS

Concatenating lists with @ tends to be slow. Given that we are not required to use lists,

it’s simple to replace them with arrays and to use Array.append to perform the joining.

Depending on the point in your code at which you wanted to get the results, you could also

experiment with using sequences.

type Transaction = { Id : int } // Would contain more fields in reality

let addTransactions

 (oldTransactions : Transaction[])

 (newTransactions : Transaction[]) =

 Array.append oldTransactions newTransactions

let transactions1 = Array.init 10_000_000 (fun i -> { Id = i})

let transactions2 = Array.init 10_000_000 (fun i -> { Id = i+1_000_000})

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let allTransactions = addTransactions transactions1 transactions2

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

EXERCISE 12-2 – SPEEDING UP FILTERING

Generally speaking, the suggested change would be slower. this is because the Array.

Parallel.map operation creates a whole new array, which we then filter.

Chapter 12 performanCe

381

EXERCISE 12-3 – CHANGING THE APPROACH TO CSV GENERATION

this can be achieved by doing an Array2D.map to generate the string representation of

every array value and then iterating over the result row-wise, doing a String.Join and an

AppendLine in a single line of code.

open System.Text

let buildCsv (data : float[,]) =

 let dataStrings =

 data |> Array2D.map (sprintf "%f")

 let sb = StringBuilder()

 for cols in 0..(dataStrings |> Array2D.length1) - 1 do

 sb.AppendLine(String.Join(',', cols)) |> ignore

 sb.ToString()

let data =

 Array2D.init 500 500 (fun x y ->

 x * y |> float)

let stopwatch = System.Diagnostics.Stopwatch.StartNew()

let csv =

 data

 |> buildCsv

 |> ignore

sprintf "That took %ims" stopwatch.ElapsedMilliseconds

I found the performance results were considerably worse than the prior (Listing 12-46)

version, taking 78ms when run in a notebook, rather than 38ms.

this is at least partly because we are no longer doing an Array.Parallel.map to generate

the string representations. there is no Array2D.Parallel.map.

Chapter 12 performanCe

383
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_13

CHAPTER 13

Layout and Naming
I think for a lot of amateurs, their alignment is always out.

—Karrie Webb, Professional Golfer

 Where Are My Braces?
Newcomers to F# are often disorientated by how different everything seems. Indentation

is semantically significant – most code isn’t enclosed in curly brackets. There’s an

increased emphasis on functions “floating free” without being in classes. And there

are strange-seeming practices such as currying and partial application. These factors

combine to undermine the comfortable naming and layout habits we might rely on in,

say, C#. All this means that it can be hard to be sure that one is coding in a team-friendly,

maintainable style. In this chapter, I’ll demonstrate some practices and conventions that

should help you get over this feeling.

Incidentally, if you want to automate your layout, you might want to consider using

Fantomas (https://github.com/fsprojects/fantomas). Fantomas automates layout

and can even fix issues such as the use of the old-fashioned in keyword (verbose syntax).

It’s automatically used by JetBrains Rider and can be installed as a plug-in/extension in

Visual Studio Code and Visual Studio.

There is also a very comprehensive guide to layout and naming within the F#

Style Guide (https://docs.microsoft.com/en- us/dotnet/fsharp/style- guide/),

which I’d urge you to read as soon as you’ve come to grips with the basics of F# syntax.

Rather than reiterate the Style Guide’s recommendations in this chapter, I’m going to

take a case-study approach. We’ll start with some code that embodies some… let’s say

“infelicities” I commonly see being perpetrated in F# code. We’ll progressively tidy and

refactor the example until it is code to be proud of. Please don’t treat my suggestions as

https://doi.org/10.1007/978-1-4842-7205-3_13#DOI
https://github.com/fsprojects/fantomas
https://docs.microsoft.com/en-us/dotnet/fsharp/style-guide/

384

rules (I have a personal horror of “coding standards”), but as useful suggestions born

of experience. It’s more important that you finish this chapter wanting to organize your

code well, than it is to memorize this or that convention.

 It’s Okay Pluto, I’m Not a Planet Either
Our example will be some code to process data from the International Astronomical

Union’s Minor Planet Center. In case astronomy isn’t your forte, a minor planet is

essentially anything natural orbiting the Sun, which isn’t a proper planet or a comet.

The Minor Planet Center provides a data file of all the known minor planets, which

you can download from here: www.minorplanetcenter.net/iau/MPCORB/MPCORB.

DAT. The format is documented here: https://minorplanetcenter.net/iau/info/

MPOrbitFormat.html.

The aim of our code is to let consumers easily query the data file, to produce

information such as a list of the brightest minor planets, or those with the most

eccentric orbits.

Note This chapter has made use of data and/or services provided by the
International Astronomical Union's Minor Planet Center.

To help understand the code, let’s take a quick look at the file format. Listing 13-1

shows an abridged version of the start of the file.

Listing 13-1. The start of the MPCORB.DAT file

MINOR PLANET CENTER ORBIT DATABASE (MPCORB)

This file contains published orbital elements for all numbered and

unnumbered multi- opposition minor planets for which it is possible to make

reasonable

(about 30 more lines of explanation)

ChAPTer 13 LAyoUT And nAMIng

http://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT
http://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT
https://minorplanetcenter.net/iau/info/MPOrbitFormat.html
https://minorplanetcenter.net/iau/info/MPOrbitFormat.html

385

Des'n H G Epoch M Peri. Node Incl.

e n a Reference #Obs #Opp Arc rms

Perts Computer

00001 3.53 0.15 K2175 248.40797 73.73770 80.26762

10.58820 0.0783941 0.21429254 2.7656551 0 MPO600179 7283 120

1801-2021 0.51 M-v 30k Pan 0000 (1) Ceres 20210128

00002 4.22 0.15 K2175 230.07779 310.44122 172.91972

34.89867 0.2297622 0.21335178 2.7737791 0 MPO636060 8823 119

1804-2021 0.58 M-c 28k Pan 0000 (2) Pallas 20210716

The MPCORB.DAT file begins with some explanatory text, then some heading

information followed by a set of dashes, and finally lines of data in fixed-length columns.

(I’ve wrapped and separated the data lines in Listing 13-1 to make it clearer where the

break is.)

Let’s also look at the documentation file (Listing 13-2).

Listing 13-2. Extract from the file format documentation

The column headed 'F77' indicates the Fortran 77/90/95/2003/2008 format

specifier that should be used to read the specified value.

 Columns F77 Use

 1 - 7 a7 Number or provisional designation

 (in packed form)

 9 - 13 f5.2 Absolute magnitude, H

 15 - 19 f5.2 Slope parameter, G

(several more columns)

 124 - 126 i3 Number of oppositions

 For multiple-opposition orbits:

 128 - 131 i4 Year of first observation

 132 a1 '-'

 133 - 136 i4 Year of last observation

 For single-opposition orbits:

 128 - 131 i4 Arc length (days)

 133 - 136 a4 'days'(several more columns)

ChAPTer 13 LAyoUT And nAMIng

386

So essentially the logic of the code to read the file will need to be:

• Skip all the lines up to and including the line that looks like -------…

• For each subsequent line…

• Take characters 1–7 and use them as a string for the designation.

• Take characters 9–13 and interpret them as a floating-point value for

the absolute magnitude.

• And so forth for each data item.

One complication will be the data between columns 128 and 136, which is

interpreted differently depending on the value of the preceding “Number of oppositions”

item. An opposition is simply the passage of the body through the opposite side of the sky

from the Sun, when viewed from Earth. It’s significant because during opposition, the

body is as its most visible.

 Some Infelicitous Code
With those requirements in mind, Listing 13-3 shows some messy but working code.

Have a read – how typical is this of F# you have written or had to maintain?

Listing 13-3. Initial state of the minor planets reading code

module MinorPlanets =

 open System

 let toCharArray (s : string) =

 s.ToToCharArray()

 let toDouble (s : string) =

 match Double.TryParse(s) with

 | true, x -> Some x

 | false, x -> None

 let toChar (s : string) =

 if String.IsNullOrWhiteSpace(s) then None

 else

 Some(s.[0])

ChAPTer 13 LAyoUT And nAMIng

387

 let toInt (s : string) =

 match Int32.TryParse(s) with

 | true, x -> Some x

 | false, x -> None

 let columnAsString startInd endInd (line : string) =

 line.Substring(startInd-1,endInd-startInd+1).Trim()

 let columnAsCharArray startInd endInd (line : string) =

 toCharArray(columnAsString startInd endInd line)

 let columnAsInt startInd endInd (line : string) =

 toInt(columnAsString startInd endInd line)

 let columnAsDouble startInd endInd (line : string) =

 toDouble(columnAsString startInd endInd line)

 let columnAsChar startInd endInd (line : string) =

 toChar(columnAsString startInd endInd line)

 type ObservationRange =

 | SingleOpposition of int

 | MultiOpposition of int * int

 let rangeFromLine (oppositions : int option) (line : string) =

 match oppositions with

 | None -> None

 | Some o when o = 1 ->

 line |> columnAsInt 128 131

 |> Option.map SingleOpposition

 | Some o ->

 match (line |> columnAsInt 128 131),

 (line |> columnAsInt 133 136) with

 | Some(firstObservedYear), Some(lastObservedYear) ->

 MultiOpposition(firstObservedYear,

 lastObservedYear) |> Some

 | _ -> None

ChAPTer 13 LAyoUT And nAMIng

388

 type MinorPlanet = {

 Designation : string; AbsMag : float option

 SlopeParam : float option; Epoch : string

 MeanAnom : float option; Perihelion : float option

 Node : float option; Inclination : float option

 OrbEcc : float option; MeanDaily : float option

 SemiMajor : float option; Uncertainty : char option

 Reference : string; Observations : int option

 Oppositions : int option; Range : ObservationRange option

 RmsResidual : double option; PerturbersCoarse : string

 PerturbersPrecise : string; ComputerName : string

 Flags : char[]; ReadableDesignation : string

 LastOpposition : string }

 let private create (line : string) =

 let oppositions = line |> columnAsString 124 126 |> toInt

 let range = line |> rangeFromLine oppositions

 {

 Designation = columnAsString 1 7 line

 AbsMag = columnAsDouble 9 13 line

 SlopeParam = columnAsDouble 15 19 line

 Epoch = columnAsString 21 25 line

 MeanAnom = columnAsDouble 27 35 line

 Perihelion = columnAsDouble 38 46 line

 Node = columnAsDouble 49 57 line

 Inclination = columnAsDouble 60 68 line

 OrbEcc = columnAsDouble 71 79 line

 MeanDaily = columnAsDouble 81 91 line

 SemiMajor = columnAsDouble 93 103 line

 Uncertainty = columnAsChar 106 106 line

 Reference = columnAsString 108 116 line

 Observations = columnAsInt 118 122 line

 Oppositions = oppositions

 Range = range

 RmsResidual = columnAsDouble 138 141 line

 PerturbersCoarse = columnAsString 143 145 line

ChAPTer 13 LAyoUT And nAMIng

389

 PerturbersPrecise = columnAsString 147 149 line

 ComputerName = columnAsString 151 160 line

 Flags = columnAsCharArray 162 165 line

 ReadableDesignation = columnAsString 167 194 line

 LastOpposition = columnAsString 195 202 line

 }

 let createFromData (data : seq<string>) =

 data

 |> Seq.skipWhile (fun line ->

 line.StartsWith("----------")

 |> not) |> Seq.skip 1

 |> Seq.filter (fun line ->

 line.Length > 0)

 |> Seq.map (fun line -> create line)

It’s important to say that this code, messy though it is, actually works! Listing 13-4

gives some code you can use to try it out. As we make our way through the various

issues, we won’t be changing any of the functionality at all: this chapter is entirely about

organization and presentation.

Listing 13-4. Trying out the code

open System.IO

// To run this program, please first download the data from:

// https://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT

// Brightest 10 minor planets (absolute magnitude)

// Edit the path to reflect where you stored the file:

@".\MinorPlanets\MPCORB.DAT"

|> File.ReadLines

|> MinorPlanets.createFromData

|> Seq.sortBy (fun mp ->

 mp.AbsMag |> Option.defaultValue Double.MaxValue)

|> Seq.truncate 10

ChAPTer 13 LAyoUT And nAMIng

390

|> Seq.iter (fun mp ->

 printfn "Name: %s, Abs. magnitude: %0.2f"

 mp.ReadableDesignation

 (mp.AbsMag |> Option.defaultValue nan))

Name: (136199) Eris, Abs. magnitude: -1.11

Name: (134340) Pluto, Abs. magnitude: -0.45

Name: (136472) Makemake, Abs. magnitude: -0.12

Name: (136108) Haumea, Abs. magnitude: 0.26

Name: (90377) Sedna, Abs. magnitude: 1.57

Name: (225088) Gonggong, Abs. magnitude: 1.92

Name: (90482) Orcus, Abs. magnitude: 2.29

Name: (50000) Quaoar, Abs. magnitude: 2.50

Name: (532037) 2013 FY27, Abs. magnitude: 3.20

Name: (4) Vesta, Abs. magnitude: 3.31

Note by the way that in astronomy, a lower magnitude number means a greater

brightness.

 Convenience Functions
So where do we start? It might help to organize the code into smaller modules, thus

improving the semantic focus that’s available to the reader. One grouping is obvious:

functions such as toCharArray and toDouble are general-purpose convenience

functions that don’t have any direct relationship with the astronomy domain. We can

move these into a module called Convert (Listing 13-5).

Listing 13-5. A Convert module

module Convert =

 open System

 let toCharArray (s : string) =

 s.ToToCharArray()

 let tryToDouble (s : string) =

 match Double.TryParse(s) with

ChAPTer 13 LAyoUT And nAMIng

391

 | true, x -> Some x

 | false, _ -> None

 let tryToChar (s : string) =

 if String.IsNullOrWhiteSpace(s) then None

 else

 Some(s.[0])

 let tryToInt (s : string) =

 match Int32.TryParse(s) with

 | true, x -> Some x

 | false, _ -> None

Putting just these functions in a module helps us focus what else might be wrong

with them. Some of them return option types, so I renamed them using the “try” idiom –

for example, tryToDouble. Also, the match expressions contained a bound but unused

value x in the false branch. I replaced these with underscores. Always try to remove

unused bindings in your code: explicitly ignoring them using underscore shows that you

didn’t just overlook them, adding motivational transparency.

 Column Extraction Functions
Another obvious set of candidates for moving into a module is functions such as

columnAsString and columnAsCharArray, which are all about picking out a substring from

a data line and converting it into some type. Moving them into a Column module means we

can get rid of the repetitive use of the column prefix in their names. We also use the “try”

idiom here when an option type is returned. Many of the columns have missing values in the

dataset – some minor planets are in the process of discovery so not all the parameters will be

known. For robustness, I’ve assumed that almost anything might be missing (Listing 13-6).

Listing 13-6. A Column module

module Column =

 let asString startInd endInd (line : string) =

 line.Substring(startInd-1,endInd-startInd+1).Trim()

 let asCharArray startInd endInd (line : string) =

 Convert.toCharArray(asString startInd endInd line)

ChAPTer 13 LAyoUT And nAMIng

392

 let tryAsInt startInd endInd (line : string) =

 Convert.tryToInt(asString startInd endInd line)

 let tryAsDouble startInd endInd (line : string) =

 Convert.tryToDouble(asString startInd endInd line)

 let tryAsChar startInd endInd (line : string) =

 Convert.tryToChar(asString startInd endInd line)

Again, now that the functions are in a module, we can focus on what could be

improved within them. Listing 13-7 shows an arguably more idiomatic version.

Listing 13-7. Alternative layout for dot notation and using function composition

module Column =

 let asString startInd endInd (line : string) =

 let len = endInd - startInd + 1

 line

 .Substring(startInd-1, len)

 .Trim()

 let asCharArray startInd endInd =

 (asString startInd endInd) >> Convert.toCharArray

 let tryAsInt startInd endInd =

 (asString startInd endInd) >> Convert.tryToInt

 let tryAsDouble startInd endInd =

 (asString startInd endInd) >> Convert.tryToDouble

 let tryAsChar startInd endInd =

 (asString startInd endInd) >> Convert.tryToChar

The things that have changed in Listing 13-7 are the following:

• In asString, I removed the length calculation that was being done

on the fly in the Substring call. Instead, I’ve put it into a separate

binding (let len = ...). This reduces the number of things the

reader has to think about at any one time.

ChAPTer 13 LAyoUT And nAMIng

393

• Also in the asString function, I changed the layout to an indented

style where each method call (.Substring() and .Trim()) is on its

own line. I quite like this style because, again, it lets the reader think

about one thing at a time. It’s mimicking the F# pipeline style where

you put each |> someFunction on a separate line.

• In the other functions (asCharArray etc.), I’ve used function

composition. For example, in asCharArray, we explicitly compose

the asString and Convert.toCharArray to produce the desired

mapping from a data line to a value. This means we can remove the

explicit line parameter because the partial application of asString

still leaves the requirement of a line input. You might want to reflect

on whether this is truly an improvement: it’s one of those cases where

it depends on the skill levels of the maintainers.

 The Observation Range Type
The next category of code that deserves to go into a separate module is the code relating

to the “observation range” data. Just to recap, one of the data items needs to be different

depending on the number of oppositions of the minor planet that have been observed.

When only one opposition has been seen, we need to show how many days the body

was observed for. When more than one opposition has been seen, we give the calendar

years of the first and last observation. Listing 13-8 shows the relevant section from the

documentation.

Listing 13-8. Observation range of a minor planet

 124 - 126 i3 Number of oppositions

 For multiple-opposition orbits:

 128 - 131 i4 Year of first observation

 132 a1 '-'

 133 - 136 i4 Year of last observation

 For single-opposition orbits:

 128 - 131 i4 Arc length (days)

 133 - 136 a4 'days'(several more columns)

ChAPTer 13 LAyoUT And nAMIng

394

The existing code rightly models this as a Discriminated Union. But the DU and its

constructing function need to be pulled out into their own module (Listing 13-9).

Listing 13-9. The Observation module

module Observation =

 type Range =

 private

 | SingleOpposition of ArcLengthDays:int

 | MultiOpposition of FirstYear:int * LastYear:int

 let fromLine (oppositions : int option) (line : string) =

 match oppositions with

 | None ->

 None

 | Some o when o = 1 ->

 line

 |> Column.tryAsInt 128 131

 |> Option.map SingleOpposition

 | Some _ ->

 let firstYear = line |> Column.tryAsInt 128 131

 let lastYear = line |> Column.tryAsInt 133 136

 match firstYear, lastYear with

 | Some(fy), Some(ly) ->

 MultiOpposition(FirstYear=fy, LastYear=ly) |> Some

 | _ ->

 None

This is a great pattern for F# code: define a domain type in a module of its own, and

place one or more functions to create instances of that type (or otherwise work with

it) in the same module. As we’ve discussed before, the one issue this does give you is

that of choosing names for the module and the type. Here, I’ve settled on Observation

and Range. I made both the case constructors for Range private, as we provide a means

of creating instances within the module: the fromLine function. You might have to

remove the private keyword if it caused problems with serialization or with use from

other languages. In that case, you might as well name both the module and the type

“ObservationRange” and place the type outside the module.

ChAPTer 13 LAyoUT And nAMIng

395

A few other things I’ve changed in the observation range functions:

• I changed the layout of the DU so that each case is indented to the

right of the keyword type. This isn’t required by F#’s indentation

rules, but the coding guidelines firmly recommend it.

• I named each of the fields of the DU (ArcLengthDays, FirstYear,

and LastYear). This greatly improves motivational transparency.

You might also notice that I used these labels when constructing the

MultiOpposition instance near the end of Listing 13-9.

• I renamed the rangeFromLine function as fromLine. The module

name now gives sufficient context. The function will be invoked, thus:

let range = line |> Observation.fromLine oppositions

• I bound firstYear and lastYear values explicitly, rather than doing

it on the fly in the match expression. Again, this reduces the cognitive

load on the reader. Heavily nested calls, each level of which does

some separate calculation, are the absolute bane of code readability.

And they make step debugging much harder.

• I tidied up some of the slightly idiosyncratic indentation.

 The Importance of Alignment
The indentation changes merit a little more commentary. In one of the changes in

Listing 13-9, this

 line |> columnAsInt 128 131

 |> Option.map SingleOpposition

has become this:

 line

 |> Column.tryAsInt 128 131

 |> Option.map SingleOpposition

ChAPTer 13 LAyoUT And nAMIng

396

It’s particularly heinous to mix new-line styles when writing pipelines. It makes

the reader wonder whether there is some unnoticed reason why successive lines are

different. To avoid this, the simple rule is this: single piping operations can go into a

single line; multiple piping operations like this example should each go on a separate

line. In that case, the forward- pipe operators go at the beginning of each line.

The second indentation change in Listing 13-9 was this:

 match (line |> columnAsInt 128 131),

 (line |> columnAsInt 133 136) with

 | Some(firstObservedYear), Some(lastObservedYear) ->

 MultiOpposition(firstObservedYear,

 lastObservedYear) |> Some

 | _ -> None

to this:

 let firstYear = line |> Column.tryAsInt 128 131

 let lastYear = line |> Column.tryAsInt 133 136

 match firstYear, lastYear with

 | Some(fy), Some(ly) ->

 MultiOpposition(FirstYear=fy, LastYear=ly) |> Some

 | _ ->

 None

Apart from the separate binding of firstYear and lastYear, the point here is that if one

branch of a match expression (the bit after the ->) is on the same line as the ->, the other

branches should also be on the same line. Conversely, as in this example, if any branch

won’t nicely fit on the same line, all the branches should begin on an indented new line.

Why am I banging on about indentation so much? It’s to do with the way the

human eye and brain process information. What we are aiming for is code laid out in a

very rectilinear (lined-up) style, where items that perform a similar role (e.g., different

branches of the same match expression, or different steps of the same pipeline) are

all lined up with one another. Then the reader can run their eye down the code and

quickly pick out all the lines of equivalent significance. This engages the visual pattern

processing part of the brain, which works somewhat separately (and faster) than the part

of the brain concerned with interpreting the language of the code itself. I’ve illustrated

this in Figure 13-1, showing with boxes the kinds of categories the reader might be

looking for. Finding them is so much easier when the boxes are left aligned!

ChAPTer 13 LAyoUT And nAMIng

397

 The Minor Planet Type
Now we tackle the core “domain object”: the type that represents an individual minor

planet. Here’s the initial state of the code (Listing 13-10).

Figure 13-1. Code is more readable when thoughtfully aligned

ChAPTer 13 LAyoUT And nAMIng

398

Listing 13-10. Initial state of the minor planet type

 type MinorPlanet = {

 Designation : string; AbsMag : float option

 SlopeParam : float option; Epoch : string

 MeanAnom : float option; Perihelion : float option

 Node : float option; Inclination : float option

 OrbEcc : float option; MeanDaily : float option

 SemiMajor : float option; Uncertainty : char option

 Reference : string; Observations : int option

 Oppositions : int option; Range : Observation.Range option

 RmsResidual : double option; PerturbersCoarse : string

 PerturbersPrecise : string; ComputerName : string

 Flags : char[]; ReadableDesignation : string

 LastOpposition : string }

It’s horrible! In an effort to make the code more compact, two record fields have been

put on each line. Some fields are divided by a semicolon, and others are not. Some of the

field names, such as AbsMag, are abbreviated, while others, such as PerturbersPrecise,

are written out fully. There are no triple-slash comments on the fields, so the consumer

won’t get tool tips explaining the significance of each field, its units, etc. Let’s move the

type into its own module and tidy it up (Listing 13-11).

Listing 13-11. A tidier version of the minor planet type

module MinorPlanet =

 type Body = {

 /// Number or provisional designation (packed format)

 Designation : string

 /// Absolute magnitude

 H : float option

 /// Slope parameter

 G : float option

 /// Epoch in packed form

 Epoch : string

ChAPTer 13 LAyoUT And nAMIng

399

 /// Mean anomaly at the epoch (degrees)

 M : float option

 /// Argument of perihelion, J2000.0 (degrees)

 Perihelion : float option

 /// Longitude of the ascending node, J2000.0 (degrees)

 Node : float option

 /// Inclination to the ecliptic, J2000.0 (degrees)

 Inclination : float option

 /// Orbital eccentricity

 e : float option

 /// Mean daily motion (degrees per day)

 n : float option

 /// Semimajor axis (AU)

 a : float option

 /// Uncertainty parameter

 Uncertainty : char option

 /// Reference

 Reference : string

 /// Number of observations

 Observations : int option

 /// Number of oppositions

 Oppositions : int option

 /// Year of first and last observation,

 /// or arc length in days.

 Range : Observation.Range option

 /// RMS residual (arcseconds)

 RmsResidual : double option

 /// Coarse indicator of perturbers

 PerturbersCoarse : string

 /// Precise indicator of perturbers

 PerturbersPrecise : string

 /// Computer name

 ComputerName : string

 /// Flags

 Flags : char[]

ChAPTer 13 LAyoUT And nAMIng

400

 /// Readable designation

 ReadableDesignation : string

 /// Date of last observation included in orbit solution (YYYYMMDD)

 LastOpposition : string }

I’ve put the type in its own module, MinorPlanet, and called the type itself Body. (If

I were going for the type-outside-the-module style, both the type and the module could

simply have been called MinorPlanet.) Each field has its own line and its own triple-

slash comment. More controversially, I’ve used shorter names for some of the fields,

such as H for absolute magnitude. I did this because this is the officially accepted domain

term for the item. When astronomers see a value H in the context of a Solar System

body, they know it means absolute magnitude. I’ve even reflected the fact that some

accepted domain terms are lowercase, for example, e for orbital eccentricity. I think this

is reasonable in a domain such as this, where there is an accepted terminology having

some terms conventionally expressed in lowercase.

How far you take use of domain terminology is an interesting question. In math-

related code, I have occasionally found myself using Greek letters and symbols as names,

as in Listing 13-12.

Listing 13-12. Using Greek characters in code

let eccentricity 𝜖 h μ =
 1. + ((2. * 𝜖 * h * h) / (μ * μ))
 |> sqrt

This has the advantage that your code can look a lot like the accepted formula for a

particular mathematical calculation. But it does mean a lot of copy and pasting of special

characters or use of ALT-xxx keyboard codes, so it is probably not to be encouraged!

Getting back to the minor planet record type, we also need to place the related

functions into our MinorPlanet module. Listing 13-13 shows the tidied-up function to

create a MinorPlanet.Body instance from a string.

Listing 13-13. Creating a MinorPlanet.Body instance

module MinorPlanet =

 type Body = {

 // Code as Listing 13-11

 ...

ChAPTer 13 LAyoUT And nAMIng

401

 let fromMpcOrbLine (line : string) =

 let oppositions = line |> Column.asString 124 126 |> Convert.

tryToInt

 let range = line |> Observation.fromLine oppositions

 {

 Designation = line |> Column.asString 1 7

 H = line |> Column.tryAsDouble 9 13

 G = line |> Column.tryAsDouble 15 19

 Epoch = line |> Column.asString 21 25

 M = line |> Column.tryAsDouble 27 35

 Perihelion = line |> Column.tryAsDouble 38 46

 Node = line |> Column.tryAsDouble 49 57

 Inclination = line |> Column.tryAsDouble 60 68

 e = line |> Column.tryAsDouble 71 79

 n = line |> Column.tryAsDouble 81 91

 a = line |> Column.tryAsDouble 93 103

 Uncertainty = line |> Column.tryAsChar 106 106

 Reference = line |> Column.asString 108 116

 Observations = line |> Column.tryAsInt 118 122

 Oppositions = oppositions

 Range = range

 RmsResidual = line |> Column.tryAsDouble 138 141

 PerturbersCoarse = line |> Column.asString 143 145

 PerturbersPrecise = line |> Column.asString 147 149

 ComputerName = line |> Column.asString 151 160

 Flags = line |> Column.asCharArray 162 165

 ReadableDesignation = line |> Column.asString 167 194

 LastOpposition = line |> Column.asString 195 202

 }

I’ve taken another potentially controversial step here: I’ve aligned the start-and-

end index positions as if they were numbers in a table. There are advantages and

disadvantages to this. The obvious disadvantage is that it’s fiddly to do. And if you

rename anything, you have to adjust the alignment. The advantage, and for me it’s an

overwhelming one in this case, is again that you can run your eye down the code and

spot patterns and anomalies.

ChAPTer 13 LAyoUT And nAMIng

402

If you are going to follow this approach, it’s well worth being familiar with your

editor’s block selection features. In Visual Studio, you can ALT+drag to select a

rectangular block, which makes it much easier to adjust alignment. In Visual Studio

Code, it’s SHIFT+ALT+click. I would only do this kind of super-alignment in special cases

such as Listing 13-13, where there are a lot of necessarily repetitive lines of code.

Listing 13-14 shows the original code for creating minor planet record instances from

a sequence of strings.

Listing 13-14. Original code for creating minor planet instances

 let createFromData (data : seq<string>) =

 data

 |> Seq.skipWhile (fun line ->

 line.StartsWith("----------")

 |> not) |> Seq.skip 1

 |> Seq.filter (fun line ->

 line.Length > 0)

 |> Seq.map (fun line -> create line)

By now, you probably recognize what needs doing here. We should move the header-

skipping code to its own function, and we should get rid of the crazy indenting. A good

principle to adopt is to indent things the minimum amount that is required by the

compiler. This applies even if you have to add extra line breaks to achieve it – unless the

line is going to be pretty short anyway. Listing 13-15 shows the improved version.

Note This principle of indenting things as little as possible – even if it means
adding extra line breaks – is very different from the conventions adopted by other
languages, notably Python. The big advantage of the minimal-indent approach is
that your code won’t stop compiling due to indenting issues, if a label is renamed
to a name with a different length.

ChAPTer 13 LAyoUT And nAMIng

403

Listing 13-15. Improved code for creating minor planet instances

module MinorPlanet =

 // Code as Listing 13-11 and 13-13

 ...

 let private skipHeader (data : seq<string>) =

 data

 |> Seq.skipWhile (fun line ->

 line.StartsWith("----------") |> not)

 |> Seq.skip 1

 let fromMpcOrbData (data : seq<string>) =

 data

 |> skipHeader

 |> Seq.filter (fun line -> line.Length > 0)

 |> Seq.map fromMpcOrbLine

I’ve also renamed the createFromData function to fromMpcOrbData as this is a little

more specific. The abbreviation MpcOrb is reasonable here because that is what the input

file is called.

Finally, here’s how the demonstration code needs to change to reflect the

improvements we’ve made (Listing 13-16).

Listing 13-16. Calling the revised code

 open System.IO

// Get data from: https://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT

// Brightest 10 minor planets (absolute magnitude)

@".\MinorPlanets\MPCORB.DAT"

|> File.ReadLines

|> MinorPlanet.fromMpcOrbData

|> Seq.sortBy (fun mp ->

 mp.H |> Option.defaultValue Double.MaxValue)

|> Seq.truncate 10

|> Seq.iter (fun mp ->

 printfn "Name: %s, Abs. magnitude: %0.2f"

ChAPTer 13 LAyoUT And nAMIng

404

 mp.ReadableDesignation

 (mp.H |> Option.defaultValue nan))

Name: (136199) Eris, Abs. magnitude: -1.11

Name: (134340) Pluto, Abs. magnitude: -0.45

Name: (136472) Makemake, Abs. magnitude: -0.12

Name: (136108) Haumea, Abs. magnitude: 0.26

Name: (90377) Sedna, Abs. magnitude: 1.57

Name: (225088) Gonggong, Abs. magnitude: 1.92

Name: (90482) Orcus, Abs. magnitude: 2.29

Name: (50000) Quaoar, Abs. magnitude: 2.50

Name: (532037) 2013 FY27, Abs. magnitude: 3.20

Name: (4) Vesta, Abs. magnitude: 3.31

 Recommendations
Use thoughtful naming and layout to maximize the readability of your code. In particular:

• Choose names for types and functions that reflect exactly what they

represent or do – but don’t be verbose. Remember that the name

of the module in which items live can provide additional context,

allowing you to keep the item names relatively short.

• When you are forced to bind a value that you don’t later use, for

example, in a match expression, use underscore to explicitly ignore it.

• Use the try… idiom when a function returns an option type.

• Don’t force the reader to think about too much at a time. For

example, a line with heavy nesting and multiple calculations might

benefit from being broken up into separate, explicit steps.

• Isolate nondomain-specific items from domain-specific items,

typically by placing them in separate modules. Different “domain

objects” should also go into (or beside) their own modules, along

with closely associated functions. More generally, keep modules

short by ruthlessly classifying items into small groupings. Sometimes,

this process can be helped by nesting modules.

ChAPTer 13 LAyoUT And nAMIng

405

• Where there is already established domain terminology, derive the

naming in your domain-specific code from that terminology.

• When using Discriminated Unions, seriously consider giving explicit

names to any case payload fields, especially when there are several

fields that could be confused.

• When a pipeline uses more than one forward-pipe operator, place

each operation on a separate line. Never ever mix the single-line with

the new- line style.

• Within a match expression, be consistent on whether the code

following -> is on the same or a new line.

• When declaring and constructing records, place fields on separate

lines unless the record definition is very small. Never mix single-line

and new- line styles in the same record declaration or construction.

• For domain classes, record types and API functions; use triple-slash

comments to document members, fields, and public functions. Only

rarely can you cram sufficient information into the name.

• Above all, name items and align your code to maximize the eye’s

ability to spot patterns – and exceptions to those patterns. If you only

take away one principle from this chapter, make it this one!

 Summary
It’s rare to be able to organize code perfectly on the first pass. It’s absolutely fine to hack

something together just to see if it works and to help you understand the domain you are

working on. This is in keeping with the exploratory spirit of F# coding. But what happens

next is also important. Tirelessly polish your code using the principles from this chapter.

What you are aiming for is code that, in the words of computer scientist Tony Hoare, has

“obviously no deficiencies”:

There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other way is to
make it so complicated that there are no obvious deficiencies. The first
method is far more difficult.

ChAPTer 13 LAyoUT And nAMIng

406

As Hoare points out, achieving “obviously no deficiencies” isn’t easy. But the cost

of bugs escalates exponentially as they become embedded in a larger system and in

the associated processes. So designing code that has “obviously no deficiencies” is –

even in the medium term – much cheaper. Remember what we said in Chapter 1 about

complexity explosions!

In the next chapter, we’ll draw together the various threads from this book and

remind ourselves of the key practices required to produce truly stylish F# code.

 Exercise

EXERCISE 13-1 – MAKING CODE READABLE

The following working code searches for files below a certain path and returns those files

whose names match a regular expression and which have the ReadOnly attribute set.

open System.IO

open System.Text.RegularExpressions

let find pattern dir =

 let re = Regex(pattern)

 Directory.EnumerateFiles

 (dir, "*.*", SearchOption.AllDirectories)

 |> Seq.filter (fun path -> re.IsMatch(Path.GetFileName(path)))

 |> Seq.map (fun path ->

 FileInfo(path))

 |> Seq.filter (fun fi ->

 fi.Attributes.HasFlag(FileAttributes.ReadOnly))

 |> Seq.map (fun fi -> fi.Name)

find "[a-z]." @"c:\temp"

how would you reorganize this code to make it easier to read, maintain, and extend?

hint: you might want to add a few modules, which may each have only one function.

ChAPTer 13 LAyoUT And nAMIng

407

 Exercise Solution

EXERCISE 13-1 – MAKING CODE READABLE

here’s my attempt to improve this code. how does yours compare?

open System.IO

open System.Text.RegularExpressions

module FileSearch =

 module private FileName =

 let isMatch pattern =

 let re = Regex(pattern)

 fun (path : string) ->

 let fileName = Path.GetFileName(path)

 re.IsMatch(fileName)

 module private FileAttributes =

 let hasFlag flag filePath =

 FileInfo(filePath)

 .Attributes

 .HasFlag(flag)

 /// Search below path for files whose file names match the specified

 /// regular expression, and which have the 'read only' attribute set.

 let findReadOnly pattern dir =

 Directory.EnumerateFiles(dir, "*.*", SearchOption.AllDirectories)

 |> Seq.filter (FileName.isMatch pattern)

 |> Seq.filter (FileAttributes.hasFlag FileAttributes.ReadOnly)

find "[a-z]." @"c:\temp"

ChAPTer 13 LAyoUT And nAMIng

409
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3_14

CHAPTER 14

Summary
We are what we repeatedly do. Excellence, then, is not an act, but a habit.

—Will Durant, Historian and Philosopher (paraphrasing Aristotle)

 F# and the Sense of Style
Well, you reached the end – congratulations! I very much hope you picked up some

useful habits from these pages. They’re distilled from several years of very happy

experience of using F# in a wide variety of industries. While you may not agree with

everything I say, I hope I’ve helped you become a more reflective practitioner of the art

of programming in F#.

Before I let you go, let me reiterate the key points from each of the preceding

chapters. If any of these still feel unfamiliar, it might be worth turning back to the

chapters in question.

 Designing Functions with Types
In Chapter 2, I talked about how to design and write that fundamental unit of work in F#:

the function. My approach is to start by defining the required signature. Then I write a

body that matches the signature. Likely as not, doing this causes me to rethink what the

function should really do and hence what its signature should be. I repeatedly refine the

signature and body, trying to eliminate as many errors as possible at the signature (type)

level – but also making sure any remaining potential errors are handled explicitly in the

function body.

https://doi.org/10.1007/978-1-4842-7205-3_14#DOI

410

I also pointed out the usefulness of Single-Case Discriminated Unions for modeling

some business types. It’s often useful to place such a union into or beside a module

named after the type in question, together with functions to create and work with

instances of the union.

In passing, I also mentioned how you can sometimes simplify code by defining your

own operators. It’s a technique to use sparingly.

 Missing Data
In Chapter 3, I showed you ways to stop using null values for representing missing data.

Either you can use Discriminated Unions to model cases where data items are present or

absent, or you can use option types in situations where the possibilities are simply “value

present” or “value not present” and where it’s obvious from context why these cases

would occur.

I talked about the Option module, in particular the Option.bind, Option.map, and

Option.defaultValue functions, which you can use to make your option type handling

pipeline-friendly. There are also functions such as Option.ofObj and Option.ofNull,

which can help you transition data between the nullable and the F# world.

Don’t forget that the advent of “nullable reference types” in C# – that is, the potential

for reference types to be nonnullable by default – is slowly changing the landscape here.

You’ll need to keep up with the latest language design thinking for both C# and F# to get

the best from these changes.

Finally, I mentioned that you should avoid exposing F#-specific types, such as DUs

and option types, in APIs that might be consumed by C# or other .NET languages.

 Collection Functions
In Chapter 4, I showed how vital the fluent use of collection functions is to effective F#

programming. I encouraged you to get familiar with the many functions in the Array,

List, and Seq modules, such as map, iter, and filter. I pointed out the importance of

choosing and interpreting functions, particularly collection functions, by looking at their

type signatures. Remember there are handy visual tables in this chapter to help you with

this (Tables 4-1 through 4-11).

Chapter 14 Summary

411

Be aware of the significance of partial functions and learn to handle their failure

cases gracefully. Often, this can be done by using a try... variant of a function, which

returns an option type, or by writing such a variant yourself.

I pointed out the dangers of loops that use mutable values as counters and flags.

There is almost always an easier way of achieving the same thing using a collection

function. Learn to write neat, elegant pipelines of collection functions – but don’t let

them get too long, or maintainers may find them difficult to interpret and debug.

 Immutability and Mutation
In Chapter 5, I discussed how, though baffling at first, immutability by default is the key to

the practical benefits of functional programming. Once you understand how to program

in an immutable style, try to get in the habit of coding in that style first, only falling back

on mutation for performance reasons, or because what you’re trying to do isn’t possible

to express clearly in immutable terms. I realize, though, that it may take a while before this

approach seems natural to you. Remember that using the collection functions is often the

way to move away from loop- based, mutable programming to mutable style.

 Pattern Matching
In Chapter 6, I showed how there’s more to pattern matching than match expressions.

I urged you to practice recognizing and using pattern matching wherever it can occur.

Use Table 6-2 as a guide both to what syntax features are available and how freely to

use them. Understand active patterns and use them where appropriate, but not at the

expense of obfuscating your code. Remember that you can pattern match on types,

which is indispensable when dealing with class hierarchies, and on the literal null,

which may sometimes be useful when dealing with nullable values.

 Record Types
In Chapter 7, I discussed how to use record types as the first choice for representing

small groups of named items. Be familiar with the design considerations that drive the

choice of records over classes: records are to be preferred when there are no “moving

parts,” and the external and internal representations of data can be the same.

Chapter 14 Summary

412

When you need to “modify” a record type instance, reach for the with keyword

rather than making the record instance or its fields mutable.

I discussed the difference between structural (content) equality, as implemented by

default in record types, and reference equality, as implemented by default in classes.

You can add instance or static methods to records, but do so sparingly. Alternatives

include placing the record type and closely related functions in a module, or – when

behaviors need to be complex and closely coupled to the type – using a class instead.

Remember that you don’t have to declare a record type in advance. If the scope

is small, it might be worth instantiating an anonymous record with {| Label =

value; ... |}.

Finally, I think it’s worth understanding the implications of applying the [<Struct>]

attribute to a record type.

 Classes
In Chapter 8, I discussed F#’s approach to .NET classes, which allow you to represent

combinations of private and public values and behaviors. I suggest you reach for classes

rather than record types when you truly need asymmetric representation of data, or

you need moving parts. Typically, having moving parts involves there being an internal

mutable state, together with methods that indirectly let the caller change that state.

Here, F# classes are the most natural fit. Also consider using F# classes when you need to

participate in a C#-style class hierarchy.

Conversely, be aware of the costs of using classes. I showed how using them can lead

to accidental complexity, which often starts because of a need to implement equality

and/or comparison between class instances.

Remember that object expressions can sometimes let you provide inheritance-like

behavior with minimal code.

 Programming with Functions
In Chapter 9, I introduced the twin concepts of currying and partial application.

Currying is the separation of function parameters into individual items, and partial

application is providing just some of those parameters when using the function. Prefer

Chapter 14 Summary

413

curried style unless there is a special reason to tuple a function’s parameters together.

Define curried parameters in an order that best allows the caller to partially apply when

necessary. Use partial application if it makes your code clearer or eliminates repetition.

I showed how functions are first-class values, meaning you can create them, bind

them to other values, pass or receive them as parameters, and return them as the result

of other functions – all with little more effort than it takes to do the same for, say, an

integer.

I explained how you can compose functions using the >> operator, if the two

functions return and take the same types. Consider using this feature if it genuinely

simplifies or clarifies your code. Be wise to the costs of function composition in terms of

readability and the ability to step through code and inspect intermediate values.

 Asynchronous and Parallel Programming
In Chapter 10, I illustrated asynchronous programming using the analogy of ordering

pizza at a restaurant – one which gives you a pager to tell you when your meal is ready.

To make your code asynchronous, identify places where your code is “ordering pizza,”

typically requesting a disk or network operation. Use let!, use!, or match! bindings in

an async {} block to perform such operations, freeing up the thread to do other work

and ensuring that another thread picks up and processes the result when it becomes

available. Return the (promise of a) result of an async {} block using the return

keyword.

I pointed out the difference between the F# “cold task” model for asynchronous

calls and C#’s “hot task” model – where the task is running as soon as it is defined. Be

prepared to translate between the two worlds, for example, by using Async.StartAsTask

to create a running, C#-style task. Use Async.RunSynchronously very sparingly to

actually get the result of an asynchronous computation, remembering that doing so

is equivalent to waiting at the restaurant counter for your pizza pager to go off. In an

extended example, I took you through the process of implementing “async all the way

down,” at each layer of a stack of functions.

Where it makes sense to run several asynchronous computations in parallel,

consider doing so with Async.Parallel, remembering that this takes an optional

parameter that allows you to limit the number of threads working simultaneously.

Chapter 14 Summary

414

For computations that don’t need to be asynchronous but which can usefully be run

in parallel, simply use Array.Parallel.map or one of the other functions in the Array.

Parallel module.

Don’t forget that F# now has a native task {} computation expression, allowing you

to work directly in terms of C#-style “hot tasks.”

 Railway Oriented Programming
In Chapter 11, I took you through the ROP style. This is an approach centered around

the use of the Result type, which allows you to represent the results of computations

that might pass or fail. I recast the ROP metaphor in terms of machine tools in a widget

factory. Each machine tool is placed into an “adapter housing” so that we can put

together a production line of units, each of which can bypass failures and process

successes from the previous step. In ROP, the basic functions generally take a “naked”

type as input and return a result wrapped in a Result type. We use an adapter function

(Result.bind) to convert each such function so that it both takes a Result type and

returns a Result type. Functions thus adapted can be composed using >>. ROP also

uses Result.map to adapt functions that can never fail so that they can also slot into the

pipeline.

We can use a Discriminated Union to enumerate all the error possibilities, with some

cases having payloads to convey further information about the error. Doing this means

that errors that have occurred anywhere in the pipeline can be handled in a centralized

way using Result.mapError.

I suggested that you use ROP judiciously. But even if you choose not to adopt it in

your code, you should be sure to understand how it works, as doing so can yield insights

that are applicable in your F# programming generally.

 Performance
In Chapter 12, I encouraged you to code with mechanical sympathy, being aware of the

performance characteristics of the data structures and algorithms that you employ.

For example, don’t use indexed access into F# lists, and don’t create large numbers of

objects unnecessary, particularly if they will persist beyond Generation 0 of the garbage

collection cycle.

Chapter 14 Summary

415

Use collection functions combined with the appropriate collection types to

write performant code. For example, Array.map and Array.filter might in some

circumstances be a better choice than List.map and List.filter. If you don’t want

intermediate collections in a pipeline to be realized, consider using functions from the

Seq module. Remember that comprehensions (code in seq {}, [||], or [], combined

with the yield keyword) can be a great way to combine somewhat imperative code with

functional concepts, all in a performant way.

Where performance is critical, create repeatable benchmarks. I gave an example

of doing this using BenchmarkDotNet. First write correct code, typically supported by

unit tests. Then refine performance progressively, all while keeping an eye both on the

benchmark results and the unit test results.

I suggested that you shouldn’t optimize prematurely, nor microoptimize

unnecessarily, especially if doing so compromises the clarity or reliability of your code or

risks not getting the benefits of future compiler or platform improvements.

 Layout and Naming
In Chapter 13, I encouraged you to treat layout and naming as key drivers of the quality

of your code. I suggested that you choose concise names that reflect exactly what an

item does or represents. Placing items in carefully named modules can help with this.

It’s often useful to classify types and functions carefully, for example, separating generic

from domain-specific types and functions and placing functions relating to each type

into their own module.

I gave a few tips on layout. These boil down to organizing your code to help the

eye pick out patterns (and exceptions to those patterns) using consistent line breaks

and indentation. You can also help the reader by using triple-slash comments to

document public functions, types, etc., as these comments will appear as tool tips in

most editors.

I also pointed you to the official F# Style Guide, which contains a wealth of more

detailed recommendations on topics such as naming, spacing, and indentation.

Chapter 14 Summary

416

 Onward!
You’re now equipped to write stylish, performant, maintainable code. But if you ever find

yourself in doubt, try applying the principles we established in Chapter 1.

• Semantic focus: When looking at a small piece of code, can the reader

understand what is going on without needing a great deal of context

from elsewhere in the codebase – or worse still, from outside it?

• Revisability: Can the maintainer make changes to the code and

be confident that there won’t be unexpected knock-on effects

elsewhere?

• Motivational transparency: Can the reader tell what the author of the

code intended to achieve, and why each piece of code is as it is?

• Mechanical sympathy: Does the code make best use of the facilities

available in the platform and the language, for instance, by using the

right data structure and accessing it in an efficient way?

Stick to these principles, learn what language features help you adhere to them, and

you’ll have an enjoyable and productive time with F#. Have fun!

Chapter 14 Summary

417
© Kit Eason 2022
K. Eason, Stylish F# 6, https://doi.org/10.1007/978-1-4842-7205-3

Index

Symbols
@ operator, 372

A
abs function, 114
absoluteUri function, 277
Abstract class

definition, 235
default implementation, 236, 237
members, 235

Active Patterns
definition, 144
multicase, 146, 147
parameterized, 149
partial, 147, 148
single-case, 144, 145

add function, 136, 260
AddEntry member, 209
addTwo, 256
Anonymous records

C#, 193
comparison, 186–188
copy/update, 189
creating, 184
definition, 184
mutation, 194
named record, 186
pattern matching, 193
serialization/deserialization, 190–192

structs, 192
type hints, 192
type safety, 184, 185

Array.Parallel module, 305
Array.Parallel.map, 376
asString function, 393
Asynchronous/parallel programming, 269

async {} blocks, 304
batching, 292, 294–296
code, 306–308
computation, 275, 276
converting code, 284, 286–289
C# vs. F#, 299, 300
download files, 276–282
F# tasks, 301–303
locking shared resources, 290
partial application, 277
running synchronous downloader,

282, 283
testing, 291, 292
throttling, 297, 298

Asynchronous programming, 413
AsyncLoad function, 284
Authorial intent, 5

B
BenchmarkDotNet, 338–340
BillingDetails type, 45
buildCsv function, 366
buildLine function, 367, 370

https://doi.org/10.1007/978-1-4842-7205-3#DOI

418

C
Classes, 412

abstract class, 235
adding member, 208, 209
comparison, 237, 243, 244
constructors, 215, 217, 248
declaration, 207
disposable object, 214, 215
equality, 237–242, 249, 251
example, 205
F#, 246
IDisposable interface, 210, 211
indexed properties, 223–225
interfaces, 226–227, 229–231
member getters/setters, 220, 221
mutable properties, 219, 220
named parameter/object initialization,

222, 223
object expression, 232–234
OO approach, 247
overrides, 250
secondary constructors, 250
TGZ file, 206
TGZipStream class, 211, 212
types, 205
value as members, 217, 218

Collection functions, 410
anatomy, 61–63
definition, 61
elements, 65, 66
exercises, 72, 73
many-of-many to many, 70
many to 2-of-many, 71
many-to-Boolean, 69
many-to-equally many, 66
many-to-grouping, 71
many-to-nothing, 70
multiple collection, 77–79

nothing-to-many, 69
picking right collection, 64
single collection, 73–76

Column module, 391, 392
Communication problems, 2
compare function, 244
Complexity explosion, 8
cons operator, 128
counter function, 264
create function, 140
createFromData function, 403
Currying, 412

D
deliveryLabels function, 47
Delivery mechanism, 47
Deserialize method, 190
Discriminated Union (DU), 32, 133
Dispose method, 232
Dispose() methods, 211
Distance calculation, 363, 364
DistanceFrom method, 355

E
Equals() override, 244

F
Forward-pipe operators, 396
Functions

arguments, 269, 272
code, 13–15
composition, 265–267, 271, 274
computation, 17, 18
conversion, 15, 16
curried arguments/partial

applications, 255, 256

INDEX

419

curried parameters, 268
first-class values, 253
functions as values, 253, 254
mix tupled/curried styles, 257, 258
partial application, 270, 271, 273
return functions, 262–264
returning arguments, 272, 273
returning functions, 270
review/refine, 19, 20
signatures, 14, 259, 260
type hints, 260–262

G
GenericZero function, 83
Geographic Information System (GIS), 12
GetHashCode(), 240
getLinks function, 277
gzip algorithm, 206
gZipStreamDemo.tgz, 213

H
Harness module, 342

I, J, K
Ill-thought-out data structures, 7
Immutability/mutation, 411
Immutable version, 101
Indentation, 395, 396
inline keyword, 84
Int32.TryParse function, 130

L
Layout/naming, 415, 416
Let binding, 147

M
main function, 281, 289
map function, 327
match keyword, 124, 156
match! keyword, 287
Mechanical sympathy, 8, 414
member val construct, 217
Miles-and-yards value, 12
MinorPlanet module, 400
Minor planet instances, 402, 403
Motivational transparency, 47, 101,

102, 391
MPCORB.DAT file, 385
Mutable-style coding patterns, 103

cumulative computation, 117
extreme value, 112, 113
guarded linear search, 105, 106
linear search, 104
process all items, 107–110
repeat Until, 111
RMS, 116
summarizes, 115

Mutation, 99
loop, 100

N
Naive function, 15
Naive string building

array parallel.map, 368, 369
concatenation, 366
CSV builder, 364, 366
improvements, 371
interpolation, 370
string join, 367, 368
two-dimensional array, 364

NaiveStringBuilding.fs, 364

INDEX

420

NoComparison attribute, 173
Null, 29, 30

C# code, 31, 32
constructor, 49
DU, 52
future, 54
leaking in, 48
Option.ofNullable, 51
Option.ofObj, 50
Option.toNullable, 53
Option.toObj, 52
vs. option types, 32–34
string type, 50

O
Object.Equals() method, 240
Object Orientation, 247
Object-Oriented languages, 269
Object-Oriented Programming

(OOP), 11, 205
Observation range data, 393
Observation range functions, 395
Open() method, 232
Opposition, 386
Option module functions, 36, 410
Option.bind function, 38, 40, 41, 43
Option.iter function, 37
Option.map function, 38–40
Option types, 34

default value, 36, 37
missing values, 43
Option module, 36
Option.bind, 38
Option.iter, 38
Option.map, 38
pattern matching, 35, 36

P, Q
paramFunction, 262
Partial application, 412
Partial functions

array, 88, 89
coding, 82–84
collection function, 81
definition, 80
exercises, try function, 86
mistakes, 89–92
modules, 87
try, 86
try idiom, 84, 85

Passed as arguments, 269
passThrough functions, 321
Pattern matching, 22, 23, 411

active patterns, 158, 159
&, 150, 151
arrays/lists, 127, 129
case swiching, C#, 123
case swiching, F#, 124
definition, 123
DUs, 133–135, 157, 160, 161
enums, 142, 143
feature, 154
guards, 126
let bindings, 138, 139
loops, 158, 162
loops/lambdas, 141
multiple conditions, 125
null, 153
parameters, 135–137
records, 130–132
recovered value, 125, 126
Single-Case Discriminated Unions, 140
Single-Case DU, 139, 140

INDEX

421

tuples, 129
types, 151, 152
Zip+4 active pattern, 163

Performance
concatenating lists, 377
CSV generation, 379, 381
design, 337
F#/span support, 373
issues, 372
tests, 373, 375

Performance antipatterns
inappropriate collection type

arrays, 345, 346
avoid indexed access, 343, 344
collection usage, 350–352
functions, avoid, 347, 348
sample function, 341
sequences, 346, 347
skipping for-loop, avoid, 349
test harness, 342
timings, 343

R
Railway Oriented Programming

(ROP), 414
adapting functions, failure, 316
bypass adapter, 317, 318
definition, 311
errors, 324–328
factory floor, 312–315
F# coding conventions, 329
outcome, 323
pipeline, 331, 332, 334, 335
production line, 319–322
reproducing maperror, 330
writing pass-through adapter, 318

Record types, 411
anonymous, 197, 203
vs. classes

F# object oriented class, 169
instantialtion values to

members, 175
structs, 173, 174
structural equality, 170–173

class types, 176
constructors/setters/getters, 169
declaration, 166
definition, 165
equality, 199, 201
generic, 178, 179
immutability, 167–169
instances, 166
layout, 195, 196
methods

instance, 181
overrides, 183
static, 182

modifying, 199, 202
performance, 198, 200
principle, 176, 177
recursive, 179, 180
struct, 197

return keyword, 286
Revisability, 47, 101

S
save() function, 322, 326
SaySomething, 236
Semantic focus, 47, 390
Semantic focus, 4
Seq.tryMax function, 102
SharpZipLib library, 206–209

INDEX

422

Short-term objects
benchmarking, 354
object creation, 356
operator choice, 360–362
reducing tuples, 357
required API, 352
sequence instead of arrays, 356
struct tuples, 358, 359
withinRadius function, 353

Single-Case Discriminated Unions,
139, 410

sprintf function, 75
Struct attribute, 174
System.Random instance, 264
System.Text.StringBuilder, 366

T
Testability, 8
TGZ archives, 206
tidy() function, 320
ToString() method, 18, 366

ToUpper() method, 49
Triple-slash comments, 398, 400
tryAverage function, 86
tryDeliveryLabel function, 47
tryDownload function, 285
TryFromString method, 182
tryGetSomethingFromApi function, 111
Type-outside-module style, 21

U
UniqueId, 232
using function, 213, 214

V
validateAndSave function, 322–324
ValueOption type, 55

W, X, Y, Z
Walk() method, 220

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Sense of Style
	Why a Style Guide?
	Understanding Beats Obedience
	Good Guidance from Bad Code
	What About Testability?
	Complexity Explosions
	Summary

	Chapter 2: Designing Functions Using Types
	Miles and Yards (No, Really!)
	Converting Miles and Yards to Decimal Miles

	How to Design a Function
	Sketch the Signature of the Function
	Naively Code the Body of the Function
	Review the Signature for Type Safety
	Review and Refine

	A Final Polish
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 3: Missing Data
	A Brief History of Null
	Option Types vs. Null
	Consuming Option Types
	Pattern Matching on Option Types
	The Option Module
	The Option.defaultValue Function
	The Option.iter Function
	Option.map and Option.bind
	The Option.map Function
	The Option.bind Function

	Option Type No-Nos
	Designing Out Missing Data
	Interoperating with the Nullable World
	Leaking In of Null Values
	Defining a SafeString Type
	Using Option.ofObj
	Using Option.ofNullable
	Leaking Option Types and DUs Out
	Using Option.toObj
	Using Option.toNullable
	The Future of Null

	The ValueOption Type
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 4: Working Effectively with Collection Functions
	Anatomy of a Collection Function
	Picking the Right Collection Function
	Detailed Collection Function Tables
	Practicing with Collection Functions
	Exercise Setup
	Single Collection Function Exercises
	Multiple Collection Function Exercises

	Partial Functions
	Coding Around Partial Functions
	Using the “try” Idiom for Partial Functions
	Consuming Values from try… Functions

	Try… Function Exercises
	Functions for Other Kinds of Collections
	When the Collection Function Is Missing
	Common Mistakes
	Recommendations
	Summary
	Exercise Solutions

	Chapter 5: Immutability and Mutation
	These Folks Are Crazy!
	Classic Mutable Style
	Immutability Basics
	Common Mutable Patterns
	Linear Search
	Guarded Linear Search
	Process All Items
	Repeat Until
	Find Extreme Value
	Summarize a Collection

	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 6: Pattern Matching
	Weaving Software with Patterns
	Pattern Matching Basics
	When Guards
	Pattern Matching on Arrays and Lists
	Pattern Matching on Tuples
	Pattern Matching on Records
	Pattern Matching on Discriminated Unions
	Pattern Matching on DUs in Function Parameters
	Pattern Matching in Let Bindings
	Revisiting Single-Case Discriminated Unions
	Pattern Matching in Loops and Lambdas
	Pattern Matching and Enums
	Active Patterns
	Single-Case Active Patterns
	Multicase Active Patterns
	Partial Active Patterns
	Parameterized Active Patterns

	Pattern Matching with “&”
	Pattern Matching on Types
	Pattern Matching on Null
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 7: Record Types
	Winning with Records
	Record Type Basics
	Record Types and Immutability
	Default Constructors, Setters, and Getters
	Records vs. Classes
	Structural Equality by Default
	Records as Structs
	Mapping from Instantiation Values to Members

	Records Everywhere?
	Pushing Records to the Limit
	Generic Records
	Recursive Records
	Records with Methods
	Instance Methods
	Static Methods
	Method Overrides

	Records with Methods – A Good Idea?

	Anonymous Records
	Anonymous and Named Record Terminology
	Anonymous Records and Comparison
	“Copy and Update” on Anonymous Records
	Serialization and Deserialization of Anonymous Records
	Anonymous Records in Type Hints
	Struct Anonymous Records
	Anonymous Records and C#
	Pattern Matching on Anonymous Records
	Adding Methods to Anonymous Records
	Mutation and Anonymous Records

	Record Layout
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 8: Classes
	The Power of Classes
	Additional Constructors
	Values As Members
	Simple Mutable Properties
	Member Getters and Setters with Bodies
	Named Parameters and Object Initialization Syntax
	Indexed Properties
	Interfaces
	Object Expressions
	Abstract Classes
	Abstract Members
	Default Member Implementations

	Class Equality and Comparison
	Implementing Equality
	Implementing Comparison

	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 9: Programming with Functions
	Functions First
	Functions as Values
	Currying and Partial Application
	Mixing Tupled and Curried Styles
	Function Signatures Revisited
	Type Hints for Functions
	Functions That Return Functions
	Function Composition
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 10: Asynchronous and Parallel Programming
	Ordering Pizza
	A World Without Async
	Running the Synchronous Downloader
	Converting Code to Asynchronous
	Locking Shared Resources
	Testing Asynchronous Downloads
	Batching
	Throttling
	C# Task vs. F# Async
	F# Tasks
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 11: Railway Oriented Programming
	Going Off the Rails
	On the Factory Floor
	Adapting Functions for Failure
	Writing a Bypass Adapter
	Writing a Pass-Through Adapter
	Building the Production Line
	Making It Official
	Love Your Errors
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 12: Performance
	Design Is Compromise
	Some Case Studies
	BenchmarkDotNet
	Case Study: Inappropriate Collection Types
	Avoiding Indexed Access to Lists
	Using Arrays Instead of Lists
	Use Sequences Instead of Arrays
	Avoiding Collection Functions
	Avoiding Loops Having Skips
	Inappropriate Collection Types – Summary

	Case Study: Short-Term Objects
	Sequences Instead of Arrays
	Avoiding Object Creation
	Reducing Tuples
	Using Struct Tuples
	Operator Choice
	Short-Term Objects – Summary

	Case Study: Naive String Building
	StringBuilder to the Rescue
	Using String.Join
	Using Array.Parallel.map
	Using String Interpolation
	Naive String Building – Summary

	Other Common Performance Issues
	Searching Large Collections
	Comparison Operators and DateTimes
	Concatenating Lists
	For-Loop with Unexpected List Creation

	F# and Span Support
	The Importance of Tests
	Recommendations
	Summary
	Exercises
	Exercise Solutions

	Chapter 13: Layout and Naming
	Where Are My Braces?
	It’s Okay Pluto, I’m Not a Planet Either
	Some Infelicitous Code
	Convenience Functions
	Column Extraction Functions
	The Observation Range Type
	The Importance of Alignment
	The Minor Planet Type
	Recommendations
	Summary
	Exercise
	Exercise Solution

	Chapter 14: Summary
	F# and the Sense of Style
	Designing Functions with Types
	Missing Data
	Collection Functions
	Immutability and Mutation
	Pattern Matching
	Record Types
	Classes
	Programming with Functions
	Asynchronous and Parallel Programming
	Railway Oriented Programming
	Performance
	Layout and Naming
	Onward!

	Index

