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9
Robotics, Dynamics, 

and Kinematics

After all the electronic sensing, signal processing, and computing have been 
put into effect, most applications must result in some mechanical movement. 
We might be required to look at the theory of coordinating the axes of a robot 
to put the workpiece in the correct position or more simply to choose a motor 
and gearbox to move a load at a safe top speed.

9.1 GEARS, MOTORS, AND MECHANISMS

Electricity is powerful stuff. It is quite easy to relate electrical power to 
mechanical power in metric units, although pounds and feet will require a lot 
of conversion factors.

Consider the following:

1 9 81kilogram force newtons
so a force of one newt

= .
oon is about the weight of an apple

joule newto
( )

=1 1 nn-meter
watt joule per second1 1=

So a one-watt motor, if it were 100% effi cient, could lift a one-kilogram mass 
at a rate of 10 centimeters per second. To lift a 75-kilogram passenger in an 
elevator at one meter per second will require
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75 9 81 1× ×. W

Now the motor may be only 50% effi cient, so provision must be made for 1.5 
kilowatts per passenger, plus a lot more for accelerating the cage.

In selecting a motor for a mechatronic task, it is important to allow for 
suffi cient power. But it is also important not to provide excessive power, force, 
or speed.

Some time in the 1950s, the autopilot of a passenger aircraft decided that 
the aircraft should plunge vertically. Not surprisingly, the pilot disagreed, but 
could not disengage the autopilot. The resulting tug-of-war came to an end 
when the geartrain of the autopilot broke. Ever since, autopilots have been 
designed with a shear link, a sort of mechanical fuse, so that the possible 
disaster can ultimately be blamed on pilot error.

9.1.1 Calculating Motor Performance

A typical small motor might have a top speed of some 6000–12,000 revolu-
tions per minute, that is, 100–200 revolutions per second. How can we convert 
this rotary motion into a linear motion of, say, 1 meter per second?

A pulley to match this speed would have to have an effective circumference 
of between 5 and 10 millimeters—much smaller than practical. With a reduc-
tion gear of ratio 30 : 1, however, the pulley could be between 50 and 100 mm 
in diameter (remember that π is involved).

There are a number of parameters that will defi ne the motor: the 
resistance, the stall torque, the no-load speed, the moment of inertia, the 
rated voltage, and the rated power. We should also consider the starting 
torque.

When the motor rotates, it generates a back-emf—indeed, any good motor 
can be used as a generator. There is an important coeffi cient that we will call 
kV, where, if we neglect the starting torque

k VV = ( )rated no loadrpm60 2π

The generated voltage will be

V kVgen = w

where w is the angular velocity of the rotation. You will note that kV has been 
calculated to make the generated voltage equal to the rated voltage at the 
no-load speed.

A good permanent-magnet DC motor will have a small starting torque and 
corresponding small starting voltage. If allowed to run freely, it will take little 
current since it will run at such a speed that the generated back-emf almost 
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equals the supply voltage. If a load is applied to the motor, it will slow down, 
the back-emf will drop, and the current will increase accordingly until the 
drive torque is equal to the load torque. That leads us to another important 
parameter, kT, such that

Torque = k iT

where i is the current in the motor. We can calculate kT from the resistance 
R and the rated stall torque by

k R VT = stall torque rated

Under load and at steady speed, the output power is the product of the torque 
and the angular velocity, so it is given by

k i

k V k R
T

T V

ω
ω ω= −( )

When the motor runs free, the output power is zero; when the motor is stalled, 
the output power is also zero. Maximum mechanical power is obtained at half 
the no-load speed, when the back-emf Vgen will be V/2.

At any speed, the power dissipated in the motor as heat is i2 R, while the 
power taken from the supply is iV. But

V V iR= +gen

so the mechanical power output, equal to supply power minus dissipation, is

=

=

V i

k iV

gen

ω

But above we saw that this power was

k iTw

so

k kT V=

So we can simply call these two parameters, which are actually the same 
parameter, k. The voltage generated per radian per second is equal to the 
meter-newtons of torque per ampere of current.

We also see that at half no-load speed, the output mechanical power is 
equal to the dissipated heat.
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9.1.2 The Effect of an Inertial Load

Now we can set up a differential equation for the motor, when driven with no 
load from voltage V:

I
d
dt

ki

k
V k

R

w

w

=

= −

The motor will accelerate up to its steady speed with time constant I R/k2.
When we add an inertial load of mass M, it will increase the effective 

moment of inertia to I + M r2, where r is the “effective pulley,” the distance 
moved by the mass for each radian of motor rotation. This takes any gearbox 
into consideration.

The maximum acceleration from rest is

r
d
dt

r
kV R

I Mr

ω

=
+ 2

which will be greatest if the motor, gearbox, pulley, and mass are “matched” 
so that

Mr I2 =

Of course, maximizing the acceleration may not be the most important objec-
tive. There may be a standing force on the mass, for example, if the mass 
moves vertically or if it is part of a machine with a cutting force. If the motor 
must withstand a disturbance torque at rest, the power taken from the supply 
will correspond to that torque acting at the motor’s top speed. And all that 
power will be dissipated as heat in the motor.

It may, therefore, be desirable to increase the gear ratio, thereby decreasing 
the effective pulley, to obtain a compromise between standing torque and 
peak acceleration. If the gear ratio is doubled, for example, the standing 
torque is halved while the peak acceleration is reduced from its optimum by 
only 20%.

The gear ratio can be multiplied by 3.7 before the peak acceleration is 
halved, although this will reduce the top speed by the same factor of 3.7. Good 
design is always a matter of compromise.

9.1.3 Mechanisms

When we wish to convert the rotation of a motor to the motion of a load, a 
pulley is merely one very simple example of a mechanism to use. The choice 
will often have very little to do with dynamics.
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A pulley-and-belt system (Fig. 9.1) has the advantage of simplicity, but has 
other drawbacks. In its simple form there is the risk of slip, so that there is 
an error between motion at the motor and motion of the load. This can be 
avoided with a “toothed belt”—although there is still the issue of stretching 
of the belt.

A more robust mechanism might appear to be the rack-and-pinion system 
(Fig. 9.2). A gear on the motor or its gearbox now runs on a rack, or linear 
gear, running the length of the travel required. This has some penalties of 
cost, but a greater drawback is that the motor now travels with the mass as 
part of the load.

Machine tools favor the lead screw (Fig. 9.3), a rod with square-cut threads 
running the length of the slideway. On one hand, mechanical effi ciency is 
poor; on the other hand, it is insensitive to disturbing forces. It is also likely 
to suffer from “backlash.”

In any system with “teeth,” particularly a gearbox, the problem of backlash 
requires attention. As the motor rotates, the load is pushed along. When the 

Belt

Motor

Load

Figure 9.1 Pulley and belt.

Moving motor

Fixed rack

Figure 9.2 Rack and pinion.

Motor

Figure 9.3 Lead screw.
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motor stops and reverses, it must rotate a little way before the “other side” 
of the tooth engages to push the load the other way. There are several 
remedies.

An “antibacklash” gearbox can be installed. This is, in effect, two gear-
boxes working in parallel. A spring ensures that one gear pushes the output 
shaft hard up against the other gear. If enough torque is applied, the backlash 
is still there.

The same sort of effect occurs if the axis is vertical, so that the gearbox 
“holds the load up” and contact is always made on the same face of the gear.

In a rack-and-pinion system, the pinion can be sprung against the rack.
In a machine tool, care is usually taken to approach a setting from the same 

direction, as when a lathe traverse is moved to take a deeper cut.
This is a good point to mention a signifi cant aspect of control theory.

If we attempt to close a control loop around a backlash element, we will 
have problems. On reaching the target, the controller is likely to oscillate 
in a limit cycle as it attempts to nudge the load on either side of zero error. 
We can include a velocity term measured at the motor, but this might 
merely convert the dithering to a slower twitch.

Alternatively, we can concentrate on controlling the motor position alone. 
The control problem will be much simpler, but now we might have an error 
in the load position equal to the backlash. Elasticity in a drive belt can 
pose a similar dilemma.

Of course, the load might not be constrained to move in a straight line. The 
whole appeal of the revolute robot is that arms rotate about pivots at the 
joints, where any straight lines are the result of cunning coordination of axes 
working in unison. Other devices rely on mechanisms such as the four-bar 
linkage that can result in rotation about a “virtual pivot.”

Gearbox design is an art in itself. As well as conventional gears, there are 
worm drives, harmonic drives, sun and planet mechanisms, and many more. 
When the relationship between motor speed and load speed is to be nonlinear, 
there are solutions that include elliptic gears. Yet, however complicated the 
mechanism, we can apply the principle of virtual work.

The product of load force multiplied by the distance that it moves must, 
ignoring friction losses, be equal to the product of motor torque multiplied 
by the angle through which it rotates.

9.2 THREE-DIMENSIONAL MOTION

A point P in space is defi ned by a three-dimensional vector, but the method 
employed to represent it is not unique. The most obvious form is Cartesian 
(Fig. 9.4a), in which, the three coordinates are found by resolving the vector 
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from the origin in the directions of three orthogonal vectors through that 
origin. There are also spherical polar (Fig. 9.4c) coordinates, equivalent to 
defi ning the latitude, longitude, and distance of the point from the origin, also 
cylindrical polar (Fig. 9.4b), in which the point is represented by radius, direc-
tion, and height.

Not only is the location of the origin a matter of choice, we can orient 
the orthogonal vectors of Cartesian coordinates with 3 more degrees of 
freedom.

For now, however, let us take it that the origin is fi xed and that we have 
three unit vectors i, j, and k defi ning the x, y, and z directions.

As we saw in Chapter 7, our point P can be represented as (x,y,z)′, 
meaning

x y zi j k+ +

When the point moves, x, y, and z will vary as functions of time. Now we can 
take the derivatives of the vector components to calculate the velocity and 
acceleration. It is worth making a few remarks about these.

As it moves, P will follow a curve in space (see Fig. 9.5). The velocity vector 
will be a tangent to this curve at P. The acceleration can be broken into two 
perpendicular components. One of these is in the same direction as the veloc-
ity, representing a change in speed, while the other is perpendicular to the 
path, aligned through the instantaneous center of rotation, the center of cur-
vature of the path at that point.

This may seem too simple—and it is. When we start to analyze the motion 
of a robot, we must deal with six dimensions, not just three. We are concerned 
with solid bodies, not mere points in space. We have three dimensions of 
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(r, q, z)  
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Spherical polar
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Figure 9.4 (a) Cartesian (x,y,z), (b) cylindrical (r,q,z), and (c) spherical polar (r,q,f) 
coordinates.
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freedom in the location of one particular point of the object, but then we can 
perform three rotations to orient the object in space. We might think of these 
rotations as movement about the pitch, roll, and yaw axes of an aircraft (see 
Fig. 9.6).

Instead of the vector coordinates of just one of its points, we have to think 
of the position and orientation of the object as being defi ned by the transfor-
mation that maps each of its points to the new position that it takes up. Let 
us fi rst consider the transformation of rotation.

t

n

b

P

Figure 9.5 Center of curvature.

x

y

z

Yaw

Roll

Pitch

Figure 9.6 Schematic representation of 6 degrees of freedom.
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9.2.1 Rotations

We can set up a coordinate system of three orthogonal axes in the object. To 
start with, these will coincide with our “reference system” axes i, j and k that 
stay fi xed. But as we rotate the object about the origin, its axes will move to 
be three other orthogonal vectors through the origin.

Let us consider three such unit vectors a, b, and c, passing through 
the origin of our coordinate system and orthogonal to each other (Fig. 
9.7).

A point expressed in terms of these vectors as coordinates (x,y,z)′ will 
be

a b cx y z+ +

This can be expanded as

i j k[ ]
































a b c

a b c

a b c

x

y

z

1 1 1

2 2 2

3 3 3

to give the coordinates of the same point in terms of the reference system.
We transform the coordinates to the reference axes by multiplying (x,y,z)′ 

by this matrix A. So, let us look at some of the properties of A.
Since they are unit vectors, a · a = 1, b · b = 1 and c · c = 1. Also, since the 

vectors are orthogonal, the scalar product of any two different vectors is zero, 
for example, a · b = 0.

Let us consider the product of A with its transpose:

j

i

k

a
b

c

a i j k =   +   +  a a a1 2 3

Figure 9.7 Unit vectors.
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′ =

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


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
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A A

a a a

b b b

c c c

a b c

a b c

a b c

1 2 3

1 2 3

1 2 3

1 1 1
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Remember the “scalar products” way to look at matrix multiplication. We see 
that

′ =
















A A

a a a b a c

b a b b b c

c a c b c c

· · ·

· · ·

· · ·

But from what we know of these scalar products

′ =
















A A

1 0 0

0 1 0

0 0 1

So

′ =A A I

or

′ = −A A 1

The rotation transformation matrix is extremely easy to invert!
There is a further property that we have to preserve; the axes must make 

up a “righthanded” set. The conventional set of axes will be i and j, as we 
draw x and y on a horizontal sheet of graph paper, and k vertically upward 
in the z direction.

Because it reverses the x coordinate, the matrix

−















1 0 0

0 1 0

0 0 1

would map a lefthanded glove into a righthanded glove, something no rotation 
could do. Yet it satisfi es the property of having three mutually orthogonal 
unit vectors as its rows and its columns. What is wrong?

A property of a rotation is that there is an axis about which the rotation 
takes place. Now, if a vector x is aligned with this axis, it is not changed by 
being transformed by A; in other words

Ax x=
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So x is an eigenvector of A, with eigenvalue 1. All the eigenvalues of a rotation 
must be 1, so the determinant of A must be 1. The determinant of the glove-
bending matrix is −1, so it cannot represent a rotation.

We should look at some examples of rotation matrices. If we rotate the x–y 
plane by an angle q1 about the z axis (Fig. 9.8), we get new coordinates:

x y x y zcos sin sin cosq q q q1 1 1 1− +( ), ,

The z component stays the same.
In matrix terms, the transformation is

cos sin

sin cos

θ θ
θ θ

1 1

1 1

0

0

0 0 1

−















A rotation q2 about the y axis would be represented by

cos sin

sin cos

q q

q q

2 2

2 2

0

0 1 0

0−

















Note that a positive rotation is “clockwise looking out along the axis,” so this 
tips the x axis downward.

If we multiply the matrices together to get the result of applying both 
transformations, we will start to build up a string of sines and cosines that 
will be lengthy to write and muddling to read. Therefore, we use considerable 
abbreviation and write cos q1 as c1, sin q1 as s1, and so on. If we apply these in 
order, the transformed coordinates will be

c s

s c

c s

s c

x

y

z

2 2

2 2

1 1

1 1

0

0 1 0

0

0

0

0 0 1−
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



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
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



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

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

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q1

Figure 9.8 Rotation about z axis.
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Note that the transformation that is applied fi rst is closest to the vector; in 
other words, the matrices are ordered right to left. Note, too, that the order 
is important and must not be changed. Here the result is

c c s c s

s c

s c s s c

x

y

z

1 2 1 2 2

1 1

2 1 1 2 2

0

−

−


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
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



















Check that the columns are unit vectors that are mutually orthogonal.
See rotations in action at www.essmech.com/9/2/1.htm
So far we have been considering transformations that leave the origin fi xed, 

but we must also be able to move the coordinates anywhere in three 
dimensions.

9.2.2 Translations

To move an object a vector distance, we simply add that vector to every one 
of its points.

For example, a point (x,y,z)′ can be moved a vector distance (1,2,3)′ to 
arrive at (x + 1, y + 2, z + 3)′—it’s not really diffi cult! To fi nd the new vector, 
we simply add the displacement to it.

The problem is that we now have two different processes for dealing 
with the two types of movement: rotation and translation. One involves mul-
tiplying the point coordinates by a 3 × 3 matrix, while the other involves 
adding constants to each component. Can we fi nd some way of gluing them 
together into a single operation? If we can, we can start to deal with combina-
tions of transformations, such as “screwing” where the object is rotated at the 
same time as it is moved along the rotation axis.

We have to appease the mathematicians! Rotation is a transformation 
given by a simple multiplication of a vector by a matrix, but the ability to add 
a constant to the result requires an affi ne transformation.

However, there is a way around the problem. Suppose that instead of 
writing our vector as (x,y,z)′ we write it as (x,y,z,1)′.

What is the 1 for? It gives something for a matrix to grab onto to add a 
translation d to the vector! But now the vector has four components, and the 
matrix is 4 × 4.

We can “partition” a matrix to see its various parts in action, so if we write 
T x for the product of our point with a transformation matrix, now 4 × 4, we 
can break it down as follows.

A Ad x x d

0 0 0 1 1 1










=

+





Thus, at the expense of changing our matrices to 4 × 4, where the bottom row 
is always (0,0,0,1), we can apply any combination of rotations and translations, 
just by multiplying the T matrices together.

This transformation is called the Denavit–Hartenberg (or D–H) matrix.



9.3 KINEMATIC CHAINS

The most usual form for a robot is a chain of links with actuated joints 
between them. These joints can be revolute, a sort of powered hinge, or pris-
matic, with one member sliding past another. We will refer to both types as 
axes. Although some kinematic chains can be “closed,” such as the four-bar 
linkage of Figure 9.9, most robots are “open” where only one end of the chain 
is fi xed.

When we consider the toolpiece of a robot, its location in space has been 
transformed by the motion of every axis in turn that moves it. Before we can 
address the task of deciding on joint angles or displacements to put the tool 
where we want it, we have to derive an expression for its location and orienta-
tion in terms of the joint axis variables.

9.3.1 Chains of Axes

When we have just one movable axis, there is a single transformation and all 
is straightforward. When we have a robot such as the Unimation Puma, with 
6 degrees of freedom, we have to be systematic in the way that we analyze 
it.

Let us start with i, j, and k as the usual x,y,z axes fi xed in the mounting of 
the robot and call them frame 0. We need to know the transformation that 
will convert the coordinates of anything held in the gripper into coordinates 
with respect to the reference frame 0 in the robot’s base.

We can defi ne a succession of frames as we make our way along the robot 
to the gripper. Each of these frames will have a local x, y, and z direction 
related by some transformation to the next frame. Some transformations will 
relate to the variable angles that make up the axes; others will simply take us 
from one end to the other of a link such as the “forearm.”

We can choose the frames so that the transformations between them are 
extremely simple, involving either a rotation about one of the axes or a trans-
lation along one of the axes.

Let us see this in action (Fig. 9.10).

Figure 9.9 Four-bar linkage (sometimes called three-bar).
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The joints of the Puma can be thought of as mimicking the human body. 
The fi rst joint is a “waist joint” that rotates the whole of the rest of the robot 
about a vertical axis.

Then, mounted a little to one side, is a simplifi ed “shoulder joint.” This 
allows the upper arm to rotate about a horizontal axis extending from the 
“shoulder.”

Next we have a simplifi ed “elbow joint,” also allowing rotation about a 
horizontal axis parallel to that of the shoulder.

Then we have three wrist joints to which it is diffi cult to assign names. The 
fi rst allows rotation about the line of the forearm, as you would use when 
turning a door handle. The second is a hinge perpendicular to this, such as 
you might use when petting a dog. The third is a twist, rather like a screw-
driver held between fi ngers and thumb.

We need to defi ne a chain of frames all the way from frame 0 to the 
gripper. For our fi rst “journey,” let us simply climb up the shaft of the 
robot to the height of the shoulder, where we will put frame 1. The transfor-
mation 0

1T will convert frame 1 coordinates to frame 0 coordinates, and so 
will be

Figure 9.10 Axes of a Unimation Puma.
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where h is the height of the shoulder from the base. This transformation will 
simply add h to the z coordinate.

Now we will use the waist joint to rotate the line of the shoulder. This is a 
rotation about the z axis through an angle q1, and we will use our shorthand 
notation. Frame 2 will now be at shoulder height with the y axis along the 
line of the shoulder pivot:
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Now, since the upper arm is offset from the shoulder, for frame 3 we should 
step in the y direction to the line of the upper arm, distance a:
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Now the shoulder axis rotates the upper arm q2 about the y axis of frame 3, 
so we align frame 4 with that limb. But should we align it with x or z? It seems 
logical to measure the arm’s angles up and down from “straight out,” so we 
choose x.
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Now we must “move down the upper arm” to the elbow, by a distance l, say. 
This is in the x direction of frame 4, so
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In the Unimation Puma, the forearm is offset slightly from the upper arm, 
but to avoid adding an extra frame, we can take account of this in the value 
of a, above.

So now let us bend the elbow through q3 and line up frame 6 with the 
forearm. Once again, the pivot is the y axis and zero defl ection is taken as 
“elbow straight”:
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Frame 7 is lined up with the forearm, but has moved down to the wrist, dis-
tance m:
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Frame 8 follows the fi rst wrist rotation q4 about the local x axis.
Frame 9 “waves farewell” q5 about the local y axis.
Frame 10 “twists the screwdriver” q6 about the local x axis.
Finally, frame 11 “reaches” the tip of the “screwdriver.”

As an exercise, write down the corresponding transformations.
So, just what do we do with all these matrices? Each matrix transforms the 

coordinates to the next-lower frame of reference; the fi nal transformation 0
1T 

brings us to the reference frame 0. But remember that the matrices are 
stacked up right to left, with the fi rst to be applied closest to the vector that 
it multiplies, which in this case is the coordinate of a point with respect to the 
gripper axes. So the product ends up as
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We have more matrices to multiply than there are axes, but they are all ele-
mentary rotations about an axis or translation along an axis. A prismatic joint 
appears no different from translation along a limb. The only difference is that 
the distance parameter will be a variable.

Although the fi nal matrix will be unique, there can be many ways to get 
there. Rotations about the y axis can be changed so that the “travel” along a 



limb is in the z direction, rather than x. But when the matrices are all multi-
plied together, they must give the same result.

There is another methodology that involves just one matrix for each actu-
ated axis. The matrices are not primitives, as above, but are generally the 
product of three elementary moves.

9.3.2 D–H Parameters

The mechanism consists of a chain of links between one axis and the next. 
The Denavit–Hartenberg convention is based on making all rotations and 
prismatic actuations take place about the z axis of a frame:

• We have a set of axes at each joint. The z axes zn−1 and zn at each end of 
link n are aligned with the axis of rotation or translation there.

• The x axis xn at the “outer end” is chosen so that it is normal to both of 
these z axes.

• Now that we know xn and zn, we can defi ne yn to be perpendicular to 
these to make up a righthanded set of axes.

• If the z axes are not parallel, the transformation for that link must 
include a “twist” a about the x axis.

• The translation will consist not only of a displacement l in the x direc-
tion, but can also have a z component d to account for an offset between 
the points where the “previous” and the “next” normals intersect the z 
axis.

For a rotation q about the fi rst of these z axes, this results in a transformation 
matrix between these frames:
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The link transformation can thus be defi ned by a set of D–H parameters: 
the actuation angle q, the link length l, the link offset d, and the twist 
a .

KINEMATIC CHAINS     177



178     ROBOTICS, DYNAMICS, AND KINEMATICS

But with the slightest change in the convention, the “formula” for the 
transformation will be changed. It is my opinion that the approach of chaining 
a set of elementary transformations is safer and better.

9.3.3 Inverse Kinematics

Of course, calculating the kinematics of the robot is only half the story. We 
can now express the location and orientation of the gripper in terms of the 
axis movements, but what we really want is to fi nd the axis values needed to 
put the gripper in some desired position. This calculation is referred to as 
inverse kinematics.

To fi nd the required joint angles, we can calculate the transformation rep-
resenting the desired position and then compare coeffi cients with the general 
transformation that is full of sines and cosines of those joint angles. That 
leaves us with some unpleasant simultaneous equations to solve. In fact, the 
result of aligning the three rotations of the wrist joint of the Unimation Puma 
through the same point reduces the algebra and trigonometry signifi cantly. 
Nevertheless, the solutions are not unique.

For any given gripper position and attitude, there is an “elbow up” solution 
as well as an “elbow down” one. These are doubled again with “lefty” and 
“righty.” By “turning its back” on the work, the robot can turn its single “right 
arm” into a left one.

Then, of course, not all positions have a solution. The desired position 
might be just out of reach of the outstretched arm.

Another problem is singularity. The robot normally has 6 degrees of freedom. 
But when two joints are in line, such as the wrist and “screwdriver twist,” the 
degrees of freedom drop to 5. In the neighborhood of a singularity, one of the 
axes will have to move rapidly for the slightest change of the target position.

Think of the problem of trying to watch aircraft as they fl y past straight 
overhead.

Of course, the robot might not have six axes, and we might not wish to 
move in all 6 degrees of freedom. For example, a “pick and place” robot might 
be concerned with placing components on a circuit board. The components 
are presented “fl at,” so we have no need to tilt them. We might, however, need 
to rotate them about a vertical axis to align them with the board, in which 
case we would need to move them to an accurate x–y position. We need a 
fourth axis to lift them above the board before we place them, but this might 
just travel between two stops.

Clearly, for a solution to make sense, there must be the same number of 
control axes as we wish to obtain degrees of freedom. But what if our robot 
has seven axes?

For various reasons, extra axes might be added, perhaps to allow the robot 
to “reach around corners.” In this case a unique solution is impossible, not even 
a choice of one in four. To extract a solution, an extra condition has to be 
imposed, such as that one axis is held at an extreme or at zero defl ection.



9.4 ROBOT DYNAMICS

From the kinematics, we have a chain of matrices that can be multiplied 
together to obtain the transformation matrix describing the motion of a robot. 
The right hand column defi nes the location of the origin of the gripper, while 
a 3 × 3 submatrix tells us the gripper’s orientation. From this submatrix we 
can unravel the parameters in terms of pitch, roll, and yaw to obtain a vector 
with six components:

x y z, , , , ,θ φ ψ( )′

Each of these coeffi cients will be a function of all six joint axes
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and so on.
Although solving to fi nd functions for the axis values might not be 

easy, we can fi nd the effect of a “twitch” in one of the axes by partial 
differentiation.

If we change just q1 by dq1, the change in x will be
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In fact, we can calculate all the partial derivatives to fi nd the Jacobian, a 
matrix that has these partial derivatives as its coeffi cients.

Now, at any given position, these coeffi cients will just be numbers that we 
can calculate, so that we can fi nd the effect of “nudging” the joints from
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If we are off target, we know the values we need to approach it, at least to a 
fi rst approximation. We should therefore be able to calculate a set of axis 
corrections to bring us closer, simply by inverting the Jacobian and multiply-
ing by the error vector.

Often this will work! But it is possible that the Jacobian is singular and has 
no fi nite inverse. That is what happens at a singularity.

All is not lost. A method of successive approximations can bring us closer 
to the target, or to the point in the “reachable” space that is closest to it. For 
each axis in turn, inspect the corresponding column of the Jacobian and 
decide whether a positive or a negative nudge will bring us closer to the target, 
or whether that axis should remain the same. Apply the nudges and measure 
the new error. When there is no sign of improvement, halve the nudge size.

The Jacobian also relates the gripper velocity to the velocities of the axes. 
If the objective is to move it along a path at maximum speed, one or more of 
the axes will be required to reach maximum velocity. As the gripper moves 
along the path, the identity of the limiting axis will probably change. Once 
again, the Jacobian and its inverse will be valuable tools in calculating the 
axis drive values.

9.5 SIMULATING A ROBOT

Many years ago my son, Richard, helped me develop a package to simulate 
and articulate robot mechanisms. A version has been converted into Visual 
Basic and is available on the Web at http://www.essmech.com/9/5.htm.

The initial task is to design robot “parts,” sets of points in three dimensions 
joined by a selection of lines. The data format is a set of coordinate triples 
defi ning the points and a set of integer pairs defi ning the pairs of points to 
be joined by lines.

These parts are then “assembled” to construct the robot. The robot can 
take the form of a simple chain, such as a manipulator, or alternatively a robot 
with multiple attachments such as articulated legs. The restriction is that there 
are no closed chains.

So, how are the parts “attached”? Two points on a component of the 
assembly are defi ned as “primary” and “secondary.” They will act as the 
hinge about which the new part will rotate. Two points on the new part are 
also defi ned as primary and secondary where the hinge will be attached. To 
align the new part, the two primary points are moved together, by a simple 
displacement, and the new part is rotated to bring the two vectors between 
primary and secondary points into line. The hinge is now complete.

Each part or “limb” of the assembly now has a set of properties. First is 
the identifi er of the shape that it takes—several parts can use the same shape. 
Second is the identity of the “parent” limb, the part to which it is attached, 
with a pair of integers to defi ne the primary and secondary points of the 
parent that form the hinge. Another pair of integers will defi ne the primary 



and secondary points of the part itself. Two variables describe the hinge angle 
and its datum value. Finally, a transformation matrix describes the absolute 
position and orientation of the part.

Each hinge is manipulated in turn. To change the hinge angle, a transfor-
mation is calculated that represents a rotation about the line of the hinge. 
This is applied to the part that “owns” the hinge and also to any other parts 
that are attached to that part.

The line of the hinge, defi ned by the primary and secondary points p0 and 
p1 of the parent, is found by multiplying the parent’s shape coordinates by its 
transformation.

So, how can we fi nd the transformation that represents rotation about this 
line? Let us fi rst consider its 3 × 3 rotation matrix. Suppose that the direction 
of the hinge axis is given by the unit vector c. What is the effect of rotation 
about this axis through the origin on a general vector x?

We can break x down into a component in the direction of c and another 
orthogonal to it:

c x c⋅( )

x c x c− ⋅( )

When we rotate x about c through an angle q, this perpendicular component 
will become

x c x c− ⋅( )( ) cosq

and there will be a second component the same size as

x c x c− ⋅( )( ) sinq

but in a direction perpendicular to both c and the orthogonal component of 
x. But we can “turn” the orthogonal component to line up with this direction, 
simply by taking its cross-product with the unit vector c to get

c x c x c× − ⋅( )( ) sinq

But c × c = 0, so this reduces to

c x× sinq

The three components can be combined to give the resulting vector

c x c x c x c c x⋅( ) + − ⋅( ){ } + ×{ }cos sinq q

or
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c x c x c x⋅( ) −( ) + + ×{ }1 cos cos sinq q q

This is fi ne as a mathematical expression, but to be useful, we have to express 
it in matrix terms for computing. We can rearrange the fi rst term as a matrix 
multiplied by x. We can also express the cross-product c × x as the product of 
x with a matrix.

So, in matrix terms we have the result
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The braces give a “recipe” for a matrix that describes the rotary part of the 
transformation, R. But we need to take into account that the line p0–p1 prob-
ably does not pass through the origin, so the matrix becomes 4 × 4 with a 
translation component in the fourth column.

For the translation part, we fi rst subtract the coordinates of the primary 
point p0 from x, then multiply by R and add p0 again. So the fourth column 
of the transformation is given by

p p0 0− R

There is no need to record the bottom row of the transformation matrix, since 
this is always (0 0 0 1). Although needed for the perfection of a mathemati-
cian’s algebra, the computer is perfectly capable of performing 3 × 4 matrix 
operations without it.

The same sort of transformation is needed to align the hinge when attach-
ing a new part. In this case, the axis of rotation is the cross-product of the 
two vectors that join primary and secondary points of the component and of 
its parent. To calculate the angle of the rotation needed, we note that the 
scalar product of the two vectors divided by the product of their moduli gives 
us the cosine of the angle between them. The magnitude of the cross-product 
divided by the product of their moduli gives us the sine.

Robot joints are not always revolute. Some are prismatic, where one part 
slides linearly against another. This transformation is much simpler to calcu-
late than the rotary one. It simply involves adding a proportion of vector c to 
every point:
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Now each part can be multiplied by its transformation to give its absolute 
position.

One way to project the coordinates for plotting on the screen is to ignore 
the y coordinate and simply plot the (x,z) coordinates. If desired, however, a 
perspective projection is simple. Plot z/(y + r) against x/(y + r), where r is the 
distance from which the robot is viewed.

Of course, the code on the Website is only the beginning. Once you have 
designed and tested your robot, you need to rewrite a large part of the code 
so that you can coordinate the simultaneous movement of the axes.
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