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Mathematics for Control

8.1 DIFFERENTIAL EQUATIONS

8.1.1 Breaking Down the State Equations

In Section 6.6, we saw how a system could be described by a matrix state 
equation of the form

ẋ x u= +A B

in which there are several simultaneous fi rst-order equations.
We have looked at an example where

˙

˙
x v

v bu

=
=

and we could consider applying feedback

u x v b= − −( )6 5

to get

v̇ x v= − −6 5
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In matrix form these equations are

 

˙

˙
x

v

x

v






=
− −












0 1

6 5  (8.1)

We can eliminate v from the two equations to get the “conventional” form of 
a single second-order differential equation

˙̇ ˙x x x= − −6 5

or

˙̇ ˙x x x+ + =5 6 0

8.1.2 Solving the Single-Variable Equation

There are a number of ways to solve such an equation. The high-school 
approach is to say try emt. If

x emt=

then

ẋ memt=

and

˙̇x m emt= 2

so

˙̇ ˙x x x m m emt+ + = + +( )5 6 5 62

The exponential will be nonzero for all fi nite values of m and t, so we equate 
the quadratic to zero and solve it, in this case getting roots m = −2 and 
m = −3.

The general solution will be

x Ae Bet t= +− −2 3

where A and B are constants determined by the initial conditions

x A B

x A B

0

0 2 3

( ) = +
( ) = − −˙
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8.1.3 Solving the Matrix Equation Directly

Now let us consider the matrix form again. Can we solve Equation (8.1) in a 
more direct way?

The equation has the form

ẋ x= A

Suppose that x happens to be in the direction of one of the eigenvectors of 
A, which we will call x. We could write

x

x

=
=

n

n

x
x� �

where x is a constant vector. Now Ax = lx, since that is how eigenvectors 
and eigenvalues are defi ned, so Ax will be in the same direction as x;

ẋ x= A

tells us that

�n nx x= λ

and since x is constant, we have

ṅ n= l

which has the solution

n n e t= ( )0 l

If l is positive, this will represent a function that will keep growing to infi nity. 
If l is negative, it will die away to zero. For stability, this l must be 
negative.

But there will be as many eigenvalues and eigenvectors as the order of the 
system. For second- and higher-order systems, we can express x as a mixture 
of the eigenvectors. So now we need all the eigenvalues to be negative, since 
if any one of them.  should be positive, the corresponding component will grow 
to infi nity.

However, some of the roots could be complex. 
Now

e t j tj tw w w= ( ) + ( )cos sin
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So

e e e

e t j t

j t t j t

t

λ ω λ ω

λ ω ω

+( ) =
= ( ) + ( )( )cos sin

If the real part of the root is positive, the response will be a sine wave that 
keeps on growing. So, for stability, the real parts of every one of the roots 
must be negative.

Let us take another look at the response of the position control system, by 
fi nding the eigenvalues of the matrix that describes it:

0 1

6 5− −






We take the determinant of A − lI

−
− − −

l
l

1

6 5

and arrive at the quadratic equation

l l2 5 6 0+ + =

The roots are l = −2 and l = −3. Does that sound familiar?
Replace the m in Section 8.1.2 by s, and you will see something resembling 

the notation of the Laplace transform. Of course, the roots are the same, yet 
again.

8.2 THE LAPLACE TRANSFORM

The mathematical justifi cation of the Laplace transform involves integrals 
over infi nite time. The inverse requires an infi nite contour integral in the 
complex frequency domain. But all of this is irrelevant to the way the notation 
is used by a mechatronic engineer.

8.2.1 The Basis of the Transform

The signifi cant property of its defi nition is that the transform of the derivative 
of a function is the variable s times the transform of the function, minus the 
value of the function at t = 0:

L L�x s x x( ) = ( ) − ( )0



This achieves two things. It eliminates derivatives, turning each differentia-
tion into a variable s. It also gives a formal method of dealing with the initial 
conditions. The result is a function of s for which the corresponding function 
of time can be looked up in a table. In effect, the table of transforms is a cook 
book full of “Here’s one I prepared earlier.”

Now, when we take the transform of our equation for the position system, 
we get

L L�� � �x x x s s x sx x x+ +( ) = + +( ) ( ) − ( ) − ( ) −5 6 5 6 0 0 5 02 (( )

so, here is that quadratic again!
With no other input, this expression is equal to zero, so we can rearrange 

it to get

L x
s x x

s x
( ) = +( ) ( ) + ( )

+ +
5 0 0

5 62

�

So now we know the Laplace transform of x, but what is it as a function of 
time?

The cornerstone of the method is the uniqueness theorem, which 
states that there is one and only one function of time that corresponds to any 
transform in s. If we have constructed a table of functions and their trans-
forms, then, if we can match the transform, we have found the right 
function.

In the case above, we can factorize the denominator and split the 
expression into partial fractions. If, for example, x(0) = 2 and x

.
(0) = −5, we 

get

L x
s s

( ) =
+

+
+

1
2

1
3

and of course when we look them up in the table, we fi nd the same pair of 
exponentials as before.

In the mid-1950s, before the Laplace notation became fashionable, the 
Heaviside D operator was used for the same purpose. Where today we see 
polynomials in s, then we would have seen polynomials in D, although an 
extra s appears in the denominators of the functions in the table of 
transforms.

In the D operator notation, the transform that is just 1 corresponds to the 
unit step, which is zero for all negative time and has value 1 for all positive 
time. The Laplace function 1/s corresponds to the unit step, but the inverse 
of the Laplace function 1 is the unit impulse. This has a time integral of 1, 
but is infi nitesimally thin, so that it has to be infi nitely tall. It is not a very 
comfortable function to have to deal with.
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8.2.2 Transfer Functions

A useful application of the Laplace transform notation is for the expression 
of transfer functions. They have an important place in the analysis of control 
systems, as long as they are not held to be the one and only method.

Consider yet again the motor system described by the equation ẍ = u, and 
suppose yet again that we wish to apply feedback. This time, however, we have 
no tacho signal and have only x to feed back.

We know that making u = −ax will give us

˙̇x ax= −

which is the equation for simple harmonic motion. Undamped oscillation is 
not the best kind of control that we might hope for. So, as we did in the experi-
ment of Chapter 3, we try to “guess” the velocity from x.

To estimate the velocity, we fi rst construct xslow, where

d
dt

x k x xslow slow= −( )

In Laplace terms, ignoring initial conditions, this becomes

sX k X Xslow slow= −( )

where capitals are used for the transforms, so

s k X kX+( ) =slow

or

X
k

s k
Xslow =

+

We estimated the velocity as k(x − xslow) so that

V kX k
k

s k
X

sk
s k

X

est = −
+

=
+

So, now that we have an estimated velocity to feed back, let us try

˙̇x ax bv= − − est



which in Laplace terms is expressed as

s X aX b
sk

s k
X2 = − −

+

We can multiply through by (s + k) and reorganize to get

s ks a bk s ak X3 2 0+ + +( ) +( ) =

To test stability, we look at the roots of the cubic in s. The response will 
involve terms in est for each root of the polynomial. As before, if the real part 
of any root is positive, the exponential will run away and the system will 
clearly be unstable. So once again we see that all the roots must have negative 
real parts.

Lemma. A cubic can always has one real root, so it can be factorized into 
the form

s p s qs r

s p q s pq r s pr

+( ) + +( )
= + +( ) + +( ) +

2

3 2

Now we know that if and only if p, q, and r are positive, the roots will have 
negative real parts and the system will be stable. An easy deduction is that 
the three coeffi cients of the polynomial must be positive, but there is 
another condition. Look at the product of the middle two coeffi cients

p r pq r+( ) +( )

If p, q, and r are positive, this is clearly greater than pr, which is just one 
of terms when expanded. But this is the product of the fi rst and last coef-
fi cients. So, for stability, the product of the middle two coeffi cients must 
be greater than the product of the outer two.

In the example above, if a, b, and k are all positive, we can see that the condi-
tion for stability is satisfi ed. So here is a theory confi rming that estimating 
the velocity by this method will always work as far as stability is concerned, 
but we have to look deeper to select values for the “best performance.”

8.2.3 Transfer Functions and Matrices

We can mix the transform method with the matrix state equations, too. When 
we have

ẋ x u= +A B

THE LAPLACE TRANSFORM     149



we can take the transform to get

s A BX X U= +

which we can rearrange by introducing a unit matrix I, to get

sI A B−( ) =X U

from which we get

X U= −( )−
sI A B

1

This gives us a transfer function matrix that enables us to express each 
element of X in terms of the elements of input function U.

8.3 DIFFERENCE EQUATIONS

Until now, when we have used the computer to update the state variables, we 
have been careful to make the timestep small, so that the approximation to 
continuous differential equations will be suffi ciently accurate. But can we fi nd 
another way to analyze the system that recognizes the discrete-time nature 
of computer control?

8.3.1 Sequences of Discrete-Time Samples

As far as the computer is concerned, x is not a continuous function but is 
defi ned by a sequence of sampled values, x0, x1, x2, x3.  .  .  .  The analysis is made 
much easier if we assume that these are taken at regular equal intervals of 
time, T, so that our continuous and discrete systems are linked by

x x nTn = ( )

The computer outputs its control variable un very shortly after the measure-
ment of xn, and u remains constant until the next sample time.

With continuous variables, we defi ned our equations in terms of rate of 
change. Now we can instead look at the difference between samples, so that 
instead of

dx
dt

ax bu= +

we have something like

x x cx dun n n n+ − = +1
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but it is all so much simpler if instead of differences we just think of the next 
value.

x c x dun n n+ = +( ) +1 1

At the end of Section 6.3, we constructed a solution to the differential equa-
tion by multiplying both sides by an exponential and integrating. We got 
Equation (6.4)

x t x e ub e aat at( ) = ( ) + −( )0 1

which calculated the value of x an interval t after applying a constant input 
u. If the interval is T, we have

x T x e u b e aaT aT( ) = ( ) + ( ) −( )0 0 1

With slight modifi cation this will tell us the value of x at time (n + 1)T in 
terms x and input u at time nT

x n T x nT e u nT b e aaT aT+( )( ) = ( ) + ( ) −( )1 1

or in terms of our sequence of samples

x x e u b e an n
aT

n
aT

+ = + −( )1 1

This is in a form similar to that of our original state equation, showing that 
the next x is a linear combination of the present state and the present input. 
We could write this as

x ax bun n n+ = +1

but we would risk confusion between the continuous and discrete 
parameters.

Let us settle for

x px pun n n+ = +1

where

p eaT=

and

q b e aaT= −( )1
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Now if the input is zero, we obtain

x pxn n+ =1

so

x px

x p x

x p xn
n

1 0

2
2

0

0

=
=
=

For stability, pn must not grow indefi nitely, so the magnitude of p must not be 
greater than unity. For a disturbance to decay to zero, we require that

p < 1

8.3.2 Discrete-Time State Equations

We have found a solution for the fi rst-order case, but what if the system is of 
higher order? Can we use similar methods to solve the matrix differential 
equation? Can we use

ẋ x u= +A B

to get a discrete-time form?
In Section 6.3, we multiplied both sides by e−at to get an expression that we 

could integrate. But is there such a thing as e−At when A is a matrix?
We can expand e−at as an infi nite series

e at a t a tat− = − + −1 2 32 2 3 3! ! . . .

and when we differentiate it term by term, we see a result that is −a times the 
series with which we started.

In the same way, we can defi ne

e I At A t A tAt− = − + −2 2 3 32 3! ! . . .

and by differentiating term by term, then comparing powers of t against the 
original series, we see that its derivative is −e−AtA. So now

d
dt

e e e AAt At At− − −( ) = −x x x˙

and by an integral similar to that in Section 6.3, we arrive at
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x x ut e e I A BAt At( ) = ( ) + −( ) −0 1

when u is constant over the interval. Hence

x x un
At

n
At

ne e I A B+
−= + −( )1

1

which we can write as

x x un n nP Q+ = +1

The matrix P is the state transition matrix, sometimes written as F(T).
With zero input, the state is multiplied by P between samples, so that

x xn
nP= 0

If l is an eigenvalue of P, and if x0 is the corresponding eigenvector, then

x xn
n= l 0

so if the magnitude of any eigenvalue is greater than unity, the state will run 
off to infi nity. For a disturbance to decay to zero, we require that

l <1

for every eigenvalue of P.

8.3.3 A Shortcut to Discrete-Time State Equations

For a system like the position controller, there is a more direct way to get the 
discrete-time state equations. We merely solve the equations in a direct way.

We have

˙̇x bu=

so

� �

�
x t x but

x t x x t but

( ) = ( ) +
( ) = ( ) + ( ) +

0

0 0 22

We can rewrite these, giving values of x and v at time T, as

x T x v t ubt

v T v ubT

( ) = ( ) + ( ) +
( ) = ( ) +

0 0 2

0

2
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The state equation is therefore

x

v

T x

v

bT

bT
un

n

n

n
n

+

+







= 










+ 





1

1

21

0 1

2

8.4 THE Z TRANSFORM

A mathematician can make the Laplace transform look simple in comparison 
with the z transform. With contour integrals in the complex frequency plane, 
summation of infi nite series, and an explanation in terms of trains of impulses, 
the subject can be made somewhat forbidding.

8.4.1 The “Next” Operator

There is, of course, another way to look at the topic. While the Laplace s can 
be seen as shorthand for d/dt, z can be regarded as meaning “next.”

The discrete-time matrix state equation is

x xn n nP Q+ = +1 u

which we can regard as defi ning “next” x. For the transform, we can write

z P QX X U= +

and get a discrete transfer function in the form

X U= −( )−
zI P Q

1

It is easy to make a connection between the z operator and lines of software. 
When a variable is changed, we can regard the assignment statement as setting 
the “next” value.

So, from

xslow = xslow + k * (x - xslow) * dt

we can replace dt by T and get

next x x kT x xslow slow slow( ) = + −( )

or in transform terms

zX X kT X Xslow slow slow= + −( )
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so

z kT X kTX− +( ) =1 slow

This gives us the discrete transfer function

X
kT

z kT
Xslow =

− −( )1

Now Vest was given by

V k X Xest slow= −( )

(there is no extra z because this is “algebra” rather than a state equation)

V k
kT

z kT
X

k
z

z kT
X

est = −
− −( )







= −
− −( )

1
1

1
1

To work out the transfer function of the double integrator, we look at the fi nal 
state equation in the previous section:

x

v

T x

v

bT

bT
un

n

n

n
n

+

+







= 










+ 





1

1

21

0 1

2

We can write

z X TV b T U

z V bTU

−( ) = + ( )
−( ) =

1 2

1

2

so, substituting for V and dividing through by (z − 1), we obtain

X
z

z

bT
U= +

−( )
1

1 22

2

Now, if

U fX dV= − − est

we can substitute for Vest to obtain a polynomial in z multiplying X. The roots 
of this polynomial will determine whether the system is stable.
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As an exercise, try the algebra and see what you can tell about f, d, and kT 
for stability. There are more conditions to satisfy than in the continuous 
case.

You can also try pole assignment, where you choose three roots that you 
would like and manipulate the values of f, d, and kT to match the equation 
coeffi cients. Try matching three equal roots of 0.5.

The solution is as follows:

X
z

z

bT
U

z

z

bT
fX dk

z
z kT

X

= +

−( )

= +

−( )
− − −

− −( )






1

1 2

1

1 2
1

1

2

2

2

2

So, multiplying through by the denominators, we have

2 1 1 1 1
2

z z kT X f z kT X dk z X−( ) − −( )( ) = − − −( )( ) − −( )

or bringing everything to the left and taking out the factor X, we obtain

2 1 1 1 1 0
2

z z kT f z kT dk z X−( ) − −( )( ) + − −( )( ) + −( ){ } =

We end up inspecting the roots of

2 6 2 6 4 03 2z kT z kT f dk z f dk fkT− −( ) + − + +( ) − + −( ) =

Remember that we are not looking for the simple condition that all the roots 
have negative real parts, but instead we must show that their magnitudes 
should all be less than unity.

Instead of struggling, we can “cheat” by saying that we would like 
three equal roots of 0.5; in other words, the polynomial in z is equivalent 
to

2 0 5 0
3

z −( ) =.

(The 2 is there to make the coeffi cients of z3 match.)

2 3 1 5 0 25 03 2z z z− + − =. .

By equating coeffi cients, we have

2 3 1 5

1 5

1 5 0 25

kT kT

f dk

f dk f

= =
+ =

+ − =

, so .

.

. .
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thus

1 5 1 25. .f =

giving

f dk= =5
6

2
3

and

A free decision can still be made concerning the sampling interval.
Do not forget that the values of 0.5 have been pulled out of thin air, without 

any real justifi cation. The actual behavior of the system might be better 
assessed by simulation.

8.5 CONVOLUTION AND CORRELATION 

Although these seem to be rather abstruse mathematical tricks, heaped with 
double-summation sigma signs, they are remarkably useful.

8.5.1 Convolution

Having just come to grips with discrete-time control and the z transform, it 
is appropriate to deal with convolution fi rst.

Let us apply a time function u(nT) to our system. If we wish, we can think 
of this as a train of outputs to a digital-to-analog converter—there is no need 
to get tied up with impulses.

Suppose fi rst that we apply just one output, of value 1 at n = 0 and zeros 
from then on. We can express this as a sequence (1,0,0,0,  .  .  .).

How should we describe the output? We are interested only in the sample 
values at t = 0, t = T, t = 2T, and so on, which we can write as y(nT) or yn. We 
might have measured the sequence of values in an experiment or deduced the 
function from mathematical manipulation of state equations, it does not 
matter.

So, if we apply the input sequence

1 0 0 0, , , . . . .( )

to our system we have a special unit response:

h h h h hn1, , , ,2 3 4 . . . , , . . .( )

If the fi rst input is of size u0 instead of 1, we will have an output at each value 
of nT:

y u hn n= 0
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Now suppose instead that we apply an input at t = T, so that

u u= ( )0 0 0 01, , ,, . . .

Everything will happen one sample later, so that the output at (n + 1)T is

y u hn n+ =1 1

so

y u hn n= −1 1

In the fi rst case the result of the input had time nT to “mature,” but the second 
input a sample later has only had time (n − 1)T to mature until we sample the 
output at time nT.

We can go on considering the effect of each individual input ui at time iT, 
which will be

y u hn i n i= −

but when we have to consider the effect of the whole input sequence com-
bined, we must add them all up—assuming that the system is linear.

So, now we have an expression with a summation

y u hn i n i= −∑
Over what range do we have to perform the summation?

Well, it is no use starting before i = 0, since we assume that the input 
sequence started only then. There is no point in continuing beyond i = n, 
unless our system is able to respond to inputs that will happen in the future. 
(Since we might not always be dealing with time functions, this could some-
times be the case.)

The mathematician would say that y is obtained from the convolution of 
u with h.

In some cases we can regard our system as a fi lter, which we apply to 
process the sequence u. It might, for example, be a smoothing fi lter to present 
weather data or gasoline prices more neatly. In the cases where we have to 
perform the summation all the way from the start, it would be called an infi -
nite impulse response (IIR) fi lter, meaning that the effect of a single input 
will take forever to die away.

But we can use other fi lters with a limited “window.” We might just want 
to take the average of the latest 10 values, in which case we start summing 
only from i = n − 9. Alternatively, we may consider our lowpass fi lter to “run 
out of steam” after the unit response has had 10 intervals to decay, so that we 
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chop off the sequence at that point to save computing effort. In either case, 
we will call the fi lter a fi nite impulse response (FIR) fi lter.

We will later see this sort of convolution in action in image processing.

8.5.2 Correlation

In convolution, we multiply the terms of one sequence taken left to right by 
terms from another taken right to left and add up the result.

Correlation is very similar, except the terms are taken in the same 
direction, but with some displacement between them. So what is it useful 
for?

Global Positioning System (GPS) satellites transmit a “song” consisting of 
a repeated pseudorandom binary sequence (PRBS). We can think of this as 
a sequence of +1s and −1s like this:

+ + + + - - - + - - + + - + - 

The 15 symbols repeat to give

+ + + + - - - + - - + + - + - + + + + - - - + - - + 

Now, if we multiply each symbol by itself, we will, of course, get a string of 
+1s, and if we sum these over a cycle, we will get the answer 15. But what 
happens if we move the fi rst sequence—let us call it the template—relative to 
the second that we can consider a test sequence. First let us move it by just 
one symbol:

  + + + + - - - + - - + + - + -  template
+ + + + - - - + - - + + - + - + + + + - -  test
  + + + - + + - - + - + - - - -  product

and now when you sum the terms in the product, you get the answer −1. In 
fact, you will get this answer when you shift the template relative to the test 
sequence by any number of symbols except an exact cycle of 15.

Of course, GPS uses much longer sequences, 1023 for coarse acquisition 
and a huge number for the precision signal. However, the principle is the 
same. By correlating the received signal against a sequence generated in the 
receiver, it is possible to get a measure of the delay time from satellite to 
ground—and hence the distance. In fact, each satellite generates a different 
sequence, and the correlation of one satellite’s “song” against another is 
always near zero.
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(If you are interested, the sequence above is a3 � a4—the next value is 1 
if the third to the left is different from the fourth to the left and −1 if they are 
the same.)

So, we have an expression for the correlation

C n a bi i n( ) = +∑
where we sum over the range of the template, a, to give an answer that is a 
function of the shift, n.

The uses are endless. We can examine an audio signal to try to recognize 
particular sounds in it. By launching into two dimensions and a double 
summation, we can examine image data to look for specifi c objects or 
characters.

Image correlation is something not to be entered lightly, though. If our 
template is just 32 pixels square, we have over 1000 multiplications and addi-
tions for a single point of the result. But if the test image is 320 × 320 pixels, 
we can consider 288 values of shift in each direction. We arrive at some 80 
million operations to process a single image, and that is for a specifi c size and 
orientation of the template.

We have to take a little care with the template, which will probably contain 
analog values rather than simple 1s and −1s. We must reduce its mean to zero, 
so that we will not get a signifi cant response when it is correlated against a 
constant. We must also smooth its ends, so that the “chopped off” data at the 
limits of summation do not look like anything of interest.
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