Essential Practical NMR for Organic Chemistry

Essential Practical NMR for Organic Chemistry S. A. Richards and J. C. Hollerton © 2011 John Wiley & Sons, Ltd. ISBN: 978-0-470-71092-0

Essential Practical NMR for Organic Chemistry

S. A. RICHARDS AND J. C. HOLLERTON

This edition first published 2011 © 2011 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, amongst other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organisation or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organisation or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher not the author shall be liable for any damages arising herefrom.

Library of Congress Cataloguing-in-Publication Data

Richards, S. A.
Essential practical NMR for organic chemistry / S.A. Richards, J.C. Hollerton.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-71092-0 (cloth)
1. Proton magnetic resonance spectroscopy.
2. Nuclear magnetic resonance spectroscopy.
I. Hollerton, J. C. (John C.), 1959II. Title.

2010033319

A catalogue record for this book is available from the British Library.

Print ISBN: 9780470710920 ePDF ISBN: 9780470976395 oBook ISBN: 9780470976401 ePub ISBN: 9780470977224

QD96.P7R529 2011 543'.66-dc22

Set in 10.5/12.5pt Times by Aptara Inc., New Delhi, India. Printed in Singapore by Fabulous Printers Pte Ltd. We would like to dedicate this book to our families and our NMR colleagues past and present.

Contents

Introduction			xi
1	Getti	ng Started	1
	1.1	The Technique	1
	1.2	Instrumentation	2
	1.3	CW Systems	2
	1.4	FT Systems	2 3
		1.4.1 Origin of the Chemical Shift	6
		1.4.2 Origin of 'Splitting'	7
		1.4.3 Integration	9
2	Prep	aring the Sample	11
	2.1	How Much Sample Do I Need?	12
	2.2	Solvent Selection	13
		2.2.1 Deutero Chloroform (CDCl ₃)	14
		2.2.2 Deutero Dimethyl Sulfoxide (D ₆ -DMSO)	14
		2.2.3 Deutero Methanol (CD ₃ OD)	15
		2.2.4 Deutero Water (D_2O)	16
		2.2.5 Deutero Benzene (C_6D_6)	16
		2.2.6 Carbon Tetrachloride (CCl ₄)	16
		2.2.7 Trifluoroacetic Acid (CF ₃ COOH)	16
		2.2.8 Using Mixed Solvents	17
	2.3	Spectrum Referencing (Proton NMR)	17
	2.4	Sample Preparation	18
		2.4.1 Filtration	19
3	3 Spectrum Acquisition		23
	3.1	Number of Transients	23
	3.2	Number of Points	24
	3.3	Spectral Width	25
	3.4	Acquisition Time	25
	3.5	Pulse Width/Pulse Angle	25
	3.6	Relaxation Delay	27
	3.7	Number of Increments	27
	3.8	Shimming	28
	3.9	Tuning and Matching	30
	3.10	Frequency Lock	30

viii Contents

		3.10.1 Run Unlocked	30
		3.10.2 Internal Lock	30
		3.10.3 External Lock	31
	3.11	To Spin or Not to Spin?	31
4	Processing		
	4.1	Introduction	33
	4.2	Zero Filling and Linear Prediction	33
	4.3	Apodization	34
	4.4	Fourier Transformation	36
	4.5	Phase Correction	36
	4.6	Baseline Correction	38
	4.7	Integration	39
	4.8	Referencing	39
	4.9	Peak Picking	39
5	Inter	preting Your Spectrum	41
	5.1	Common Solvents and Impurities	44
	5.2	Group 1 – Exchangeables and Aldehydes	46
	5.3	Group 2 – Aromatic and Heterocyclic Protons	48
		5.3.1 Monosubstituted Benzene Rings	50
		5.3.2 Multisubstituted Benzene Rings	54
		5.3.3 Heterocyclic Ring Systems (Unsaturated) and Polycyclic	
		Aromatic Systems	57
	5.4	Group 3 – Double and Triple Bonds	61
	5.5	Group 4 – Alkyl Protons	63
6		ing Deeper	67
	6.1	Chiral Centres	67
	6.2	Enantiotopic and Diastereotopic Protons	72
	6.3	Molecular Anisotropy	74
	6.4	Accidental Equivalence	76
	6.5	Restricted Rotation	78
	6.6	Heteronuclear Coupling	82
		6.6.1 Coupling between Protons and ${}^{13}C$	82
		6.6.2 Coupling between Protons and ¹⁹ F	84
		6.6.3 Coupling between Protons and ³¹ P	87
		6.6.4 Coupling between ¹ H and other Heteroatoms	89
		6.6.5 Cyclic Compounds and the Karplus Curve	91
		6.6.6 Salts, Free Bases and Zwitterions	96
7		her Elucidation Techniques – Part 1	101
	7.1	Chemical Techniques	101
	7.2	Deuteration	101
	7.3	Basification and Acidification	103

	7.4	Changing Solvents	104
	7.5	Trifluoroacetylation	104
	7.6	Lanthanide Shift Reagents	106
	7.7	Chiral Resolving Agents	106
8	Furt	ner Elucidation Techniques – Part 2	111
	8.1	Instrumental Techniques	111
	8.2	Spin Decoupling (Homonuclear, 1-D)	111
	8.3	Correlated Spectroscopy (2-D)	112
	8.4	Total Correlation Spectroscopy (1- and 2-D)	116
	8.5	The Nuclear Overhauser Effect and Associated Techniques	116
9	Carbon-13 NMR Spectroscopy		127
	9.1	General Principles and 1-D ¹³ C	127
	9.2	2-D Proton–Carbon (Single Bond) Correlated Spectroscopy	130
	9.3	2-D Proton–Carbon (Multiple Bond) Correlated Spectroscopy	133
	9.4	Piecing It All Together	136
	9.5	Choosing the Right Tool	137
10	Some	e of the Other Tools	143
	10.1	Linking HPLC with NMR	143
		Flow NMR	144
	10.3	Solvent Suppression	145
	10.4		146
	10.5	Other 2-D Techniques	147
		10.5.1 INADEQUATE	147
		10.5.2 J-Resolved	147
		10.5.3 Diffusion Ordered Spectroscopy	148
	10.6	3-D Techniques	149
11	Some of the Other Nuclei		151
	11.1	Fluorine	151
	11.2	Phosphorus	152
	11.3	Nitrogen	152
12	Quar	tification	157
	12.1	Introduction	157
	12.2	Relative Quantification	157
	12.3	Absolute Quantification	158
		12.3.1 Internal Standards	158
		12.3.2 External Standards	158
		12.3.3 Electronic Reference	159
		12.3.4 QUANTAS Technique	159
	12.4	Things to Watch Out For	160
	12.5	Conclusion	161

Contents ix

x Contents

13	Safety		163
	13.1	Magnetic Fields	163
	13.2	Cryogens	165
	13.3	Sample-Related Injuries	166
14	Software		167
	14.1	Acquisition Software	167
	14.2	Processing Software	167
	14.3	Prediction and Simulation Software	169
		14.3.1 ¹³ C Prediction	169
		14.3.2 ¹ H Prediction	171
		14.3.3 Simulation	172
		14.3.4 Structural Verification Software	172
		14.3.5 Structural Elucidation Software	172
15	Problems		173
	15.1	Ten NMR Problems	173
	15.2	Hints	194
	15.3	Answers	195
Glossary			205
Ind	ex		211

Introduction

This book is an up-to-date follow-up to the original "Laboratory Guide to Proton NMR Spectroscopy" (Blackwell Scientific Publications, 1988). It follows the same informal approach and is hopefully fun to read as well as a useful guide. Whilst still concentrating on proton NMR, it includes 2-D approaches and some heteronuclear examples (specifically ¹³C and ¹⁹F plus a little ¹⁵N). The greater coverage is devoted to the techniques that you will be likely to make most use of.

The book is here to help you select the right experiment to solve your problem and to then interpret the results correctly. NMR is a funny beast – it throws up surprises no matter how long you have been doing it (at this point, it should be noted that the authors have about 60 years of NMR experience between them and we still get surprises regularly!).

The strength of NMR, particularly in the small organic molecule area, is that it is very information rich but ironically, this very high density of information can itself create problems for the less experienced practitioner. Information overload can be a problem and we hope to redress this by advocating an ordered approach to handling NMR data. There are huge subtleties in looking at this data; chemical shifts, splitting patterns, integrals, linewidths all have an existence due to physical molecular processes and they each tell a storey about the atoms in the molecule. There is a *reason* for *everything* that you observe in a spectrum and the better your understanding of spectroscopic principles, the greater can be your confidence in your interpretation of the data in front of you.

So, who is this book aimed at? Well, it contains useful information for anyone involved in using NMR as a tool for solving structural problems. It is particularly useful for chemists who have to run and look at their own NMR spectra and also for people who have been working in small molecule NMR for a relatively short time (less than 20 years, say!...). It is focused on small organic molecule work (molecular weight less than 1000, commonly about 300). Ultimately, the book is pragmatic – we discuss cost-effective experiments to solve chemical structure problems as quickly as possible. It deals with some of the unglamorous bits, like making up your sample. These are necessary if dull. It also looks at the more challenging aspects of NMR.

Whilst the book touches on some aspects of NMR theory, the main focus of the text is firmly rooted in data acquisition, problem solving strategy and interpretation. If you find yourself wanting to know more about aspects of theory, we suggest the excellent, *High-Resolution NMR Techniques in Organic Chemistry* by Timothy D W Claridge (Elsevier, ISBN-13: 978-0-08-054818-0) as an approachable next step before delving into the even more theoretical works. Another really good source is Joseph P. Hornak's "The Basics of NMR" website (you can find it by putting "hornak nmr" into your favourite search engine). Whilst writing these chapters, we have often fought with the problem of statements that are partially true and debated whether to insert a qualifier. To get across the fundamental ideas we have tried to minimise the disclaimers and qualifiers. This aids clarity, but be aware, almost everything is more complicated than it first appears!

Thirty years in NMR has been fun. The amazing thing is that it is still fun . . . and challenging . . . and stimulating even now!

Please note that all spectra included in this book were acquired at 400 MHz unless otherwise stated.